]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
Merge branch 'pm-opp'
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
128 /*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
132 * According to test, this time is usually smaller than 128 cycles.
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
139 #define KVM_VMX_DEFAULT_PLE_GAP 128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
146 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147 module_param(ple_gap, int, S_IRUGO);
148
149 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150 module_param(ple_window, int, S_IRUGO);
151
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154 module_param(ple_window_grow, int, S_IRUGO);
155
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158 module_param(ple_window_shrink, int, S_IRUGO);
159
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163 module_param(ple_window_max, int, S_IRUGO);
164
165 extern const ulong vmx_return;
166
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
169
170 struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174 };
175
176 /*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181 struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186 };
187
188 struct shared_msr_entry {
189 unsigned index;
190 u64 data;
191 u64 mask;
192 };
193
194 /*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
207 typedef u64 natural_width;
208 struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
214
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
227 u64 posted_intr_desc_addr;
228 u64 ept_pointer;
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
233 u64 xss_exit_bitmap;
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
244 u64 guest_bndcfgs;
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
346 u16 virtual_processor_id;
347 u16 posted_intr_nv;
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
356 u16 guest_intr_status;
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
364 };
365
366 /*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371 #define VMCS12_REVISION 0x11e57ed0
372
373 /*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378 #define VMCS12_SIZE 0x1000
379
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385 };
386
387 /*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391 struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
394 gpa_t vmxon_ptr;
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
401 struct vmcs *current_shadow_vmcs;
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
411 u64 vmcs01_tsc_offset;
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
419 struct page *virtual_apic_page;
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
424 u64 msr_ia32_feature_control;
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
431
432 u16 vpid02;
433 u16 last_vpid;
434
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
451 u32 nested_vmx_vpid_caps;
452 };
453
454 #define POSTED_INTR_ON 0
455 #define POSTED_INTR_SN 1
456
457 /* Posted-Interrupt Descriptor */
458 struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
478 } __aligned(64);
479
480 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481 {
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484 }
485
486 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487 {
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490 }
491
492 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493 {
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495 }
496
497 static inline void pi_clear_sn(struct pi_desc *pi_desc)
498 {
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501 }
502
503 static inline void pi_set_sn(struct pi_desc *pi_desc)
504 {
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507 }
508
509 static inline int pi_test_on(struct pi_desc *pi_desc)
510 {
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_sn(struct pi_desc *pi_desc)
516 {
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 struct vcpu_vmx {
522 struct kvm_vcpu vcpu;
523 unsigned long host_rsp;
524 u8 fail;
525 bool nmi_known_unmasked;
526 u32 exit_intr_info;
527 u32 idt_vectoring_info;
528 ulong rflags;
529 struct shared_msr_entry *guest_msrs;
530 int nmsrs;
531 int save_nmsrs;
532 unsigned long host_idt_base;
533 #ifdef CONFIG_X86_64
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
536 #endif
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
555 #ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557 #endif
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
560 u64 msr_host_bndcfgs;
561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
562 } host_state;
563 struct {
564 int vm86_active;
565 ulong save_rflags;
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
575 } seg[8];
576 } segment_cache;
577 int vpid;
578 bool emulation_required;
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
584 u32 exit_reason;
585
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
595
596 /* Support for PML */
597 #define PML_ENTITY_NUM 512
598 struct page *pml_pg;
599
600 u64 current_tsc_ratio;
601 };
602
603 enum segment_cache_field {
604 SEG_FIELD_SEL = 0,
605 SEG_FIELD_BASE = 1,
606 SEG_FIELD_LIMIT = 2,
607 SEG_FIELD_AR = 3,
608
609 SEG_FIELD_NR = 4
610 };
611
612 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
613 {
614 return container_of(vcpu, struct vcpu_vmx, vcpu);
615 }
616
617 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
618 {
619 return &(to_vmx(vcpu)->pi_desc);
620 }
621
622 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
623 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
624 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
625 [number##_HIGH] = VMCS12_OFFSET(name)+4
626
627
628 static unsigned long shadow_read_only_fields[] = {
629 /*
630 * We do NOT shadow fields that are modified when L0
631 * traps and emulates any vmx instruction (e.g. VMPTRLD,
632 * VMXON...) executed by L1.
633 * For example, VM_INSTRUCTION_ERROR is read
634 * by L1 if a vmx instruction fails (part of the error path).
635 * Note the code assumes this logic. If for some reason
636 * we start shadowing these fields then we need to
637 * force a shadow sync when L0 emulates vmx instructions
638 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
639 * by nested_vmx_failValid)
640 */
641 VM_EXIT_REASON,
642 VM_EXIT_INTR_INFO,
643 VM_EXIT_INSTRUCTION_LEN,
644 IDT_VECTORING_INFO_FIELD,
645 IDT_VECTORING_ERROR_CODE,
646 VM_EXIT_INTR_ERROR_CODE,
647 EXIT_QUALIFICATION,
648 GUEST_LINEAR_ADDRESS,
649 GUEST_PHYSICAL_ADDRESS
650 };
651 static int max_shadow_read_only_fields =
652 ARRAY_SIZE(shadow_read_only_fields);
653
654 static unsigned long shadow_read_write_fields[] = {
655 TPR_THRESHOLD,
656 GUEST_RIP,
657 GUEST_RSP,
658 GUEST_CR0,
659 GUEST_CR3,
660 GUEST_CR4,
661 GUEST_INTERRUPTIBILITY_INFO,
662 GUEST_RFLAGS,
663 GUEST_CS_SELECTOR,
664 GUEST_CS_AR_BYTES,
665 GUEST_CS_LIMIT,
666 GUEST_CS_BASE,
667 GUEST_ES_BASE,
668 GUEST_BNDCFGS,
669 CR0_GUEST_HOST_MASK,
670 CR0_READ_SHADOW,
671 CR4_READ_SHADOW,
672 TSC_OFFSET,
673 EXCEPTION_BITMAP,
674 CPU_BASED_VM_EXEC_CONTROL,
675 VM_ENTRY_EXCEPTION_ERROR_CODE,
676 VM_ENTRY_INTR_INFO_FIELD,
677 VM_ENTRY_INSTRUCTION_LEN,
678 VM_ENTRY_EXCEPTION_ERROR_CODE,
679 HOST_FS_BASE,
680 HOST_GS_BASE,
681 HOST_FS_SELECTOR,
682 HOST_GS_SELECTOR
683 };
684 static int max_shadow_read_write_fields =
685 ARRAY_SIZE(shadow_read_write_fields);
686
687 static const unsigned short vmcs_field_to_offset_table[] = {
688 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
689 FIELD(POSTED_INTR_NV, posted_intr_nv),
690 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
691 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
692 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
693 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
694 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
695 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
696 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
697 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
698 FIELD(GUEST_INTR_STATUS, guest_intr_status),
699 FIELD(HOST_ES_SELECTOR, host_es_selector),
700 FIELD(HOST_CS_SELECTOR, host_cs_selector),
701 FIELD(HOST_SS_SELECTOR, host_ss_selector),
702 FIELD(HOST_DS_SELECTOR, host_ds_selector),
703 FIELD(HOST_FS_SELECTOR, host_fs_selector),
704 FIELD(HOST_GS_SELECTOR, host_gs_selector),
705 FIELD(HOST_TR_SELECTOR, host_tr_selector),
706 FIELD64(IO_BITMAP_A, io_bitmap_a),
707 FIELD64(IO_BITMAP_B, io_bitmap_b),
708 FIELD64(MSR_BITMAP, msr_bitmap),
709 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
710 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
711 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
712 FIELD64(TSC_OFFSET, tsc_offset),
713 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
714 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
715 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
716 FIELD64(EPT_POINTER, ept_pointer),
717 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
718 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
719 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
720 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
721 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
722 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
723 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
724 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
725 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
726 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
727 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
728 FIELD64(GUEST_PDPTR0, guest_pdptr0),
729 FIELD64(GUEST_PDPTR1, guest_pdptr1),
730 FIELD64(GUEST_PDPTR2, guest_pdptr2),
731 FIELD64(GUEST_PDPTR3, guest_pdptr3),
732 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
733 FIELD64(HOST_IA32_PAT, host_ia32_pat),
734 FIELD64(HOST_IA32_EFER, host_ia32_efer),
735 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
736 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
737 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
738 FIELD(EXCEPTION_BITMAP, exception_bitmap),
739 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
740 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
741 FIELD(CR3_TARGET_COUNT, cr3_target_count),
742 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
743 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
744 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
745 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
746 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
747 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
748 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
749 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
750 FIELD(TPR_THRESHOLD, tpr_threshold),
751 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
752 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
753 FIELD(VM_EXIT_REASON, vm_exit_reason),
754 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
755 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
756 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
757 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
758 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
759 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
760 FIELD(GUEST_ES_LIMIT, guest_es_limit),
761 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
762 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
763 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
764 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
765 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
766 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
767 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
768 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
769 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
770 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
771 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
772 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
773 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
774 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
775 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
776 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
777 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
778 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
779 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
780 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
781 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
782 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
783 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
784 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
785 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
786 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
787 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
788 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
789 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
790 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
791 FIELD(EXIT_QUALIFICATION, exit_qualification),
792 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
793 FIELD(GUEST_CR0, guest_cr0),
794 FIELD(GUEST_CR3, guest_cr3),
795 FIELD(GUEST_CR4, guest_cr4),
796 FIELD(GUEST_ES_BASE, guest_es_base),
797 FIELD(GUEST_CS_BASE, guest_cs_base),
798 FIELD(GUEST_SS_BASE, guest_ss_base),
799 FIELD(GUEST_DS_BASE, guest_ds_base),
800 FIELD(GUEST_FS_BASE, guest_fs_base),
801 FIELD(GUEST_GS_BASE, guest_gs_base),
802 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
803 FIELD(GUEST_TR_BASE, guest_tr_base),
804 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
805 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
806 FIELD(GUEST_DR7, guest_dr7),
807 FIELD(GUEST_RSP, guest_rsp),
808 FIELD(GUEST_RIP, guest_rip),
809 FIELD(GUEST_RFLAGS, guest_rflags),
810 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
811 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
812 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
813 FIELD(HOST_CR0, host_cr0),
814 FIELD(HOST_CR3, host_cr3),
815 FIELD(HOST_CR4, host_cr4),
816 FIELD(HOST_FS_BASE, host_fs_base),
817 FIELD(HOST_GS_BASE, host_gs_base),
818 FIELD(HOST_TR_BASE, host_tr_base),
819 FIELD(HOST_GDTR_BASE, host_gdtr_base),
820 FIELD(HOST_IDTR_BASE, host_idtr_base),
821 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
822 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
823 FIELD(HOST_RSP, host_rsp),
824 FIELD(HOST_RIP, host_rip),
825 };
826
827 static inline short vmcs_field_to_offset(unsigned long field)
828 {
829 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
830
831 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
832 vmcs_field_to_offset_table[field] == 0)
833 return -ENOENT;
834
835 return vmcs_field_to_offset_table[field];
836 }
837
838 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
839 {
840 return to_vmx(vcpu)->nested.current_vmcs12;
841 }
842
843 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
844 {
845 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
846 if (is_error_page(page))
847 return NULL;
848
849 return page;
850 }
851
852 static void nested_release_page(struct page *page)
853 {
854 kvm_release_page_dirty(page);
855 }
856
857 static void nested_release_page_clean(struct page *page)
858 {
859 kvm_release_page_clean(page);
860 }
861
862 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
863 static u64 construct_eptp(unsigned long root_hpa);
864 static void kvm_cpu_vmxon(u64 addr);
865 static void kvm_cpu_vmxoff(void);
866 static bool vmx_mpx_supported(void);
867 static bool vmx_xsaves_supported(void);
868 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
869 static void vmx_set_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg);
871 static void vmx_get_segment(struct kvm_vcpu *vcpu,
872 struct kvm_segment *var, int seg);
873 static bool guest_state_valid(struct kvm_vcpu *vcpu);
874 static u32 vmx_segment_access_rights(struct kvm_segment *var);
875 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
876 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
877 static int alloc_identity_pagetable(struct kvm *kvm);
878
879 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
880 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
881 /*
882 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
883 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
884 */
885 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
886 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
887
888 /*
889 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
890 * can find which vCPU should be waken up.
891 */
892 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
893 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
894
895 static unsigned long *vmx_io_bitmap_a;
896 static unsigned long *vmx_io_bitmap_b;
897 static unsigned long *vmx_msr_bitmap_legacy;
898 static unsigned long *vmx_msr_bitmap_longmode;
899 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
900 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
901 static unsigned long *vmx_msr_bitmap_nested;
902 static unsigned long *vmx_vmread_bitmap;
903 static unsigned long *vmx_vmwrite_bitmap;
904
905 static bool cpu_has_load_ia32_efer;
906 static bool cpu_has_load_perf_global_ctrl;
907
908 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
909 static DEFINE_SPINLOCK(vmx_vpid_lock);
910
911 static struct vmcs_config {
912 int size;
913 int order;
914 u32 revision_id;
915 u32 pin_based_exec_ctrl;
916 u32 cpu_based_exec_ctrl;
917 u32 cpu_based_2nd_exec_ctrl;
918 u32 vmexit_ctrl;
919 u32 vmentry_ctrl;
920 } vmcs_config;
921
922 static struct vmx_capability {
923 u32 ept;
924 u32 vpid;
925 } vmx_capability;
926
927 #define VMX_SEGMENT_FIELD(seg) \
928 [VCPU_SREG_##seg] = { \
929 .selector = GUEST_##seg##_SELECTOR, \
930 .base = GUEST_##seg##_BASE, \
931 .limit = GUEST_##seg##_LIMIT, \
932 .ar_bytes = GUEST_##seg##_AR_BYTES, \
933 }
934
935 static const struct kvm_vmx_segment_field {
936 unsigned selector;
937 unsigned base;
938 unsigned limit;
939 unsigned ar_bytes;
940 } kvm_vmx_segment_fields[] = {
941 VMX_SEGMENT_FIELD(CS),
942 VMX_SEGMENT_FIELD(DS),
943 VMX_SEGMENT_FIELD(ES),
944 VMX_SEGMENT_FIELD(FS),
945 VMX_SEGMENT_FIELD(GS),
946 VMX_SEGMENT_FIELD(SS),
947 VMX_SEGMENT_FIELD(TR),
948 VMX_SEGMENT_FIELD(LDTR),
949 };
950
951 static u64 host_efer;
952
953 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
954
955 /*
956 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
957 * away by decrementing the array size.
958 */
959 static const u32 vmx_msr_index[] = {
960 #ifdef CONFIG_X86_64
961 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
962 #endif
963 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
964 };
965
966 static inline bool is_page_fault(u32 intr_info)
967 {
968 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
969 INTR_INFO_VALID_MASK)) ==
970 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
971 }
972
973 static inline bool is_no_device(u32 intr_info)
974 {
975 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
976 INTR_INFO_VALID_MASK)) ==
977 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
978 }
979
980 static inline bool is_invalid_opcode(u32 intr_info)
981 {
982 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
983 INTR_INFO_VALID_MASK)) ==
984 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
985 }
986
987 static inline bool is_external_interrupt(u32 intr_info)
988 {
989 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
990 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
991 }
992
993 static inline bool is_machine_check(u32 intr_info)
994 {
995 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
996 INTR_INFO_VALID_MASK)) ==
997 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
998 }
999
1000 static inline bool cpu_has_vmx_msr_bitmap(void)
1001 {
1002 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1003 }
1004
1005 static inline bool cpu_has_vmx_tpr_shadow(void)
1006 {
1007 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1008 }
1009
1010 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1011 {
1012 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1013 }
1014
1015 static inline bool cpu_has_secondary_exec_ctrls(void)
1016 {
1017 return vmcs_config.cpu_based_exec_ctrl &
1018 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1019 }
1020
1021 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1022 {
1023 return vmcs_config.cpu_based_2nd_exec_ctrl &
1024 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1025 }
1026
1027 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1028 {
1029 return vmcs_config.cpu_based_2nd_exec_ctrl &
1030 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1031 }
1032
1033 static inline bool cpu_has_vmx_apic_register_virt(void)
1034 {
1035 return vmcs_config.cpu_based_2nd_exec_ctrl &
1036 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1037 }
1038
1039 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1040 {
1041 return vmcs_config.cpu_based_2nd_exec_ctrl &
1042 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1043 }
1044
1045 static inline bool cpu_has_vmx_posted_intr(void)
1046 {
1047 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1048 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1049 }
1050
1051 static inline bool cpu_has_vmx_apicv(void)
1052 {
1053 return cpu_has_vmx_apic_register_virt() &&
1054 cpu_has_vmx_virtual_intr_delivery() &&
1055 cpu_has_vmx_posted_intr();
1056 }
1057
1058 static inline bool cpu_has_vmx_flexpriority(void)
1059 {
1060 return cpu_has_vmx_tpr_shadow() &&
1061 cpu_has_vmx_virtualize_apic_accesses();
1062 }
1063
1064 static inline bool cpu_has_vmx_ept_execute_only(void)
1065 {
1066 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1067 }
1068
1069 static inline bool cpu_has_vmx_ept_2m_page(void)
1070 {
1071 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1072 }
1073
1074 static inline bool cpu_has_vmx_ept_1g_page(void)
1075 {
1076 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1077 }
1078
1079 static inline bool cpu_has_vmx_ept_4levels(void)
1080 {
1081 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1082 }
1083
1084 static inline bool cpu_has_vmx_ept_ad_bits(void)
1085 {
1086 return vmx_capability.ept & VMX_EPT_AD_BIT;
1087 }
1088
1089 static inline bool cpu_has_vmx_invept_context(void)
1090 {
1091 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1092 }
1093
1094 static inline bool cpu_has_vmx_invept_global(void)
1095 {
1096 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1097 }
1098
1099 static inline bool cpu_has_vmx_invvpid_single(void)
1100 {
1101 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1102 }
1103
1104 static inline bool cpu_has_vmx_invvpid_global(void)
1105 {
1106 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1107 }
1108
1109 static inline bool cpu_has_vmx_ept(void)
1110 {
1111 return vmcs_config.cpu_based_2nd_exec_ctrl &
1112 SECONDARY_EXEC_ENABLE_EPT;
1113 }
1114
1115 static inline bool cpu_has_vmx_unrestricted_guest(void)
1116 {
1117 return vmcs_config.cpu_based_2nd_exec_ctrl &
1118 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1119 }
1120
1121 static inline bool cpu_has_vmx_ple(void)
1122 {
1123 return vmcs_config.cpu_based_2nd_exec_ctrl &
1124 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1125 }
1126
1127 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1128 {
1129 return flexpriority_enabled && lapic_in_kernel(vcpu);
1130 }
1131
1132 static inline bool cpu_has_vmx_vpid(void)
1133 {
1134 return vmcs_config.cpu_based_2nd_exec_ctrl &
1135 SECONDARY_EXEC_ENABLE_VPID;
1136 }
1137
1138 static inline bool cpu_has_vmx_rdtscp(void)
1139 {
1140 return vmcs_config.cpu_based_2nd_exec_ctrl &
1141 SECONDARY_EXEC_RDTSCP;
1142 }
1143
1144 static inline bool cpu_has_vmx_invpcid(void)
1145 {
1146 return vmcs_config.cpu_based_2nd_exec_ctrl &
1147 SECONDARY_EXEC_ENABLE_INVPCID;
1148 }
1149
1150 static inline bool cpu_has_virtual_nmis(void)
1151 {
1152 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1153 }
1154
1155 static inline bool cpu_has_vmx_wbinvd_exit(void)
1156 {
1157 return vmcs_config.cpu_based_2nd_exec_ctrl &
1158 SECONDARY_EXEC_WBINVD_EXITING;
1159 }
1160
1161 static inline bool cpu_has_vmx_shadow_vmcs(void)
1162 {
1163 u64 vmx_msr;
1164 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1165 /* check if the cpu supports writing r/o exit information fields */
1166 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1167 return false;
1168
1169 return vmcs_config.cpu_based_2nd_exec_ctrl &
1170 SECONDARY_EXEC_SHADOW_VMCS;
1171 }
1172
1173 static inline bool cpu_has_vmx_pml(void)
1174 {
1175 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1176 }
1177
1178 static inline bool cpu_has_vmx_tsc_scaling(void)
1179 {
1180 return vmcs_config.cpu_based_2nd_exec_ctrl &
1181 SECONDARY_EXEC_TSC_SCALING;
1182 }
1183
1184 static inline bool report_flexpriority(void)
1185 {
1186 return flexpriority_enabled;
1187 }
1188
1189 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1190 {
1191 return vmcs12->cpu_based_vm_exec_control & bit;
1192 }
1193
1194 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1195 {
1196 return (vmcs12->cpu_based_vm_exec_control &
1197 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1198 (vmcs12->secondary_vm_exec_control & bit);
1199 }
1200
1201 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1202 {
1203 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1204 }
1205
1206 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1207 {
1208 return vmcs12->pin_based_vm_exec_control &
1209 PIN_BASED_VMX_PREEMPTION_TIMER;
1210 }
1211
1212 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1213 {
1214 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1215 }
1216
1217 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1218 {
1219 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1220 vmx_xsaves_supported();
1221 }
1222
1223 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1224 {
1225 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1226 }
1227
1228 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1229 {
1230 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1231 }
1232
1233 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1234 {
1235 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1236 }
1237
1238 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1239 {
1240 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1241 }
1242
1243 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1244 {
1245 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1246 }
1247
1248 static inline bool is_exception(u32 intr_info)
1249 {
1250 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1251 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1252 }
1253
1254 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1255 u32 exit_intr_info,
1256 unsigned long exit_qualification);
1257 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1258 struct vmcs12 *vmcs12,
1259 u32 reason, unsigned long qualification);
1260
1261 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1262 {
1263 int i;
1264
1265 for (i = 0; i < vmx->nmsrs; ++i)
1266 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1267 return i;
1268 return -1;
1269 }
1270
1271 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1272 {
1273 struct {
1274 u64 vpid : 16;
1275 u64 rsvd : 48;
1276 u64 gva;
1277 } operand = { vpid, 0, gva };
1278
1279 asm volatile (__ex(ASM_VMX_INVVPID)
1280 /* CF==1 or ZF==1 --> rc = -1 */
1281 "; ja 1f ; ud2 ; 1:"
1282 : : "a"(&operand), "c"(ext) : "cc", "memory");
1283 }
1284
1285 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1286 {
1287 struct {
1288 u64 eptp, gpa;
1289 } operand = {eptp, gpa};
1290
1291 asm volatile (__ex(ASM_VMX_INVEPT)
1292 /* CF==1 or ZF==1 --> rc = -1 */
1293 "; ja 1f ; ud2 ; 1:\n"
1294 : : "a" (&operand), "c" (ext) : "cc", "memory");
1295 }
1296
1297 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1298 {
1299 int i;
1300
1301 i = __find_msr_index(vmx, msr);
1302 if (i >= 0)
1303 return &vmx->guest_msrs[i];
1304 return NULL;
1305 }
1306
1307 static void vmcs_clear(struct vmcs *vmcs)
1308 {
1309 u64 phys_addr = __pa(vmcs);
1310 u8 error;
1311
1312 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1313 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1314 : "cc", "memory");
1315 if (error)
1316 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1317 vmcs, phys_addr);
1318 }
1319
1320 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1321 {
1322 vmcs_clear(loaded_vmcs->vmcs);
1323 loaded_vmcs->cpu = -1;
1324 loaded_vmcs->launched = 0;
1325 }
1326
1327 static void vmcs_load(struct vmcs *vmcs)
1328 {
1329 u64 phys_addr = __pa(vmcs);
1330 u8 error;
1331
1332 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1333 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1334 : "cc", "memory");
1335 if (error)
1336 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1337 vmcs, phys_addr);
1338 }
1339
1340 #ifdef CONFIG_KEXEC_CORE
1341 /*
1342 * This bitmap is used to indicate whether the vmclear
1343 * operation is enabled on all cpus. All disabled by
1344 * default.
1345 */
1346 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1347
1348 static inline void crash_enable_local_vmclear(int cpu)
1349 {
1350 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1351 }
1352
1353 static inline void crash_disable_local_vmclear(int cpu)
1354 {
1355 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1356 }
1357
1358 static inline int crash_local_vmclear_enabled(int cpu)
1359 {
1360 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1361 }
1362
1363 static void crash_vmclear_local_loaded_vmcss(void)
1364 {
1365 int cpu = raw_smp_processor_id();
1366 struct loaded_vmcs *v;
1367
1368 if (!crash_local_vmclear_enabled(cpu))
1369 return;
1370
1371 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1372 loaded_vmcss_on_cpu_link)
1373 vmcs_clear(v->vmcs);
1374 }
1375 #else
1376 static inline void crash_enable_local_vmclear(int cpu) { }
1377 static inline void crash_disable_local_vmclear(int cpu) { }
1378 #endif /* CONFIG_KEXEC_CORE */
1379
1380 static void __loaded_vmcs_clear(void *arg)
1381 {
1382 struct loaded_vmcs *loaded_vmcs = arg;
1383 int cpu = raw_smp_processor_id();
1384
1385 if (loaded_vmcs->cpu != cpu)
1386 return; /* vcpu migration can race with cpu offline */
1387 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1388 per_cpu(current_vmcs, cpu) = NULL;
1389 crash_disable_local_vmclear(cpu);
1390 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1391
1392 /*
1393 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1394 * is before setting loaded_vmcs->vcpu to -1 which is done in
1395 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1396 * then adds the vmcs into percpu list before it is deleted.
1397 */
1398 smp_wmb();
1399
1400 loaded_vmcs_init(loaded_vmcs);
1401 crash_enable_local_vmclear(cpu);
1402 }
1403
1404 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1405 {
1406 int cpu = loaded_vmcs->cpu;
1407
1408 if (cpu != -1)
1409 smp_call_function_single(cpu,
1410 __loaded_vmcs_clear, loaded_vmcs, 1);
1411 }
1412
1413 static inline void vpid_sync_vcpu_single(int vpid)
1414 {
1415 if (vpid == 0)
1416 return;
1417
1418 if (cpu_has_vmx_invvpid_single())
1419 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1420 }
1421
1422 static inline void vpid_sync_vcpu_global(void)
1423 {
1424 if (cpu_has_vmx_invvpid_global())
1425 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1426 }
1427
1428 static inline void vpid_sync_context(int vpid)
1429 {
1430 if (cpu_has_vmx_invvpid_single())
1431 vpid_sync_vcpu_single(vpid);
1432 else
1433 vpid_sync_vcpu_global();
1434 }
1435
1436 static inline void ept_sync_global(void)
1437 {
1438 if (cpu_has_vmx_invept_global())
1439 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1440 }
1441
1442 static inline void ept_sync_context(u64 eptp)
1443 {
1444 if (enable_ept) {
1445 if (cpu_has_vmx_invept_context())
1446 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1447 else
1448 ept_sync_global();
1449 }
1450 }
1451
1452 static __always_inline void vmcs_check16(unsigned long field)
1453 {
1454 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1455 "16-bit accessor invalid for 64-bit field");
1456 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1457 "16-bit accessor invalid for 64-bit high field");
1458 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1459 "16-bit accessor invalid for 32-bit high field");
1460 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1461 "16-bit accessor invalid for natural width field");
1462 }
1463
1464 static __always_inline void vmcs_check32(unsigned long field)
1465 {
1466 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1467 "32-bit accessor invalid for 16-bit field");
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1469 "32-bit accessor invalid for natural width field");
1470 }
1471
1472 static __always_inline void vmcs_check64(unsigned long field)
1473 {
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1475 "64-bit accessor invalid for 16-bit field");
1476 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1477 "64-bit accessor invalid for 64-bit high field");
1478 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1479 "64-bit accessor invalid for 32-bit field");
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1481 "64-bit accessor invalid for natural width field");
1482 }
1483
1484 static __always_inline void vmcs_checkl(unsigned long field)
1485 {
1486 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1487 "Natural width accessor invalid for 16-bit field");
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1489 "Natural width accessor invalid for 64-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "Natural width accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "Natural width accessor invalid for 32-bit field");
1494 }
1495
1496 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1497 {
1498 unsigned long value;
1499
1500 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1501 : "=a"(value) : "d"(field) : "cc");
1502 return value;
1503 }
1504
1505 static __always_inline u16 vmcs_read16(unsigned long field)
1506 {
1507 vmcs_check16(field);
1508 return __vmcs_readl(field);
1509 }
1510
1511 static __always_inline u32 vmcs_read32(unsigned long field)
1512 {
1513 vmcs_check32(field);
1514 return __vmcs_readl(field);
1515 }
1516
1517 static __always_inline u64 vmcs_read64(unsigned long field)
1518 {
1519 vmcs_check64(field);
1520 #ifdef CONFIG_X86_64
1521 return __vmcs_readl(field);
1522 #else
1523 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1524 #endif
1525 }
1526
1527 static __always_inline unsigned long vmcs_readl(unsigned long field)
1528 {
1529 vmcs_checkl(field);
1530 return __vmcs_readl(field);
1531 }
1532
1533 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1534 {
1535 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1536 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1537 dump_stack();
1538 }
1539
1540 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1541 {
1542 u8 error;
1543
1544 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1545 : "=q"(error) : "a"(value), "d"(field) : "cc");
1546 if (unlikely(error))
1547 vmwrite_error(field, value);
1548 }
1549
1550 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1551 {
1552 vmcs_check16(field);
1553 __vmcs_writel(field, value);
1554 }
1555
1556 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1557 {
1558 vmcs_check32(field);
1559 __vmcs_writel(field, value);
1560 }
1561
1562 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1563 {
1564 vmcs_check64(field);
1565 __vmcs_writel(field, value);
1566 #ifndef CONFIG_X86_64
1567 asm volatile ("");
1568 __vmcs_writel(field+1, value >> 32);
1569 #endif
1570 }
1571
1572 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1573 {
1574 vmcs_checkl(field);
1575 __vmcs_writel(field, value);
1576 }
1577
1578 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1579 {
1580 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1581 "vmcs_clear_bits does not support 64-bit fields");
1582 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1583 }
1584
1585 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1586 {
1587 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1588 "vmcs_set_bits does not support 64-bit fields");
1589 __vmcs_writel(field, __vmcs_readl(field) | mask);
1590 }
1591
1592 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1593 {
1594 vmcs_write32(VM_ENTRY_CONTROLS, val);
1595 vmx->vm_entry_controls_shadow = val;
1596 }
1597
1598 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1599 {
1600 if (vmx->vm_entry_controls_shadow != val)
1601 vm_entry_controls_init(vmx, val);
1602 }
1603
1604 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1605 {
1606 return vmx->vm_entry_controls_shadow;
1607 }
1608
1609
1610 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1611 {
1612 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1613 }
1614
1615 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1616 {
1617 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1618 }
1619
1620 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1621 {
1622 vmcs_write32(VM_EXIT_CONTROLS, val);
1623 vmx->vm_exit_controls_shadow = val;
1624 }
1625
1626 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1627 {
1628 if (vmx->vm_exit_controls_shadow != val)
1629 vm_exit_controls_init(vmx, val);
1630 }
1631
1632 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1633 {
1634 return vmx->vm_exit_controls_shadow;
1635 }
1636
1637
1638 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1639 {
1640 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1641 }
1642
1643 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1644 {
1645 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1646 }
1647
1648 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1649 {
1650 vmx->segment_cache.bitmask = 0;
1651 }
1652
1653 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1654 unsigned field)
1655 {
1656 bool ret;
1657 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1658
1659 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1660 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1661 vmx->segment_cache.bitmask = 0;
1662 }
1663 ret = vmx->segment_cache.bitmask & mask;
1664 vmx->segment_cache.bitmask |= mask;
1665 return ret;
1666 }
1667
1668 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1669 {
1670 u16 *p = &vmx->segment_cache.seg[seg].selector;
1671
1672 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1673 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1674 return *p;
1675 }
1676
1677 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1678 {
1679 ulong *p = &vmx->segment_cache.seg[seg].base;
1680
1681 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1682 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1683 return *p;
1684 }
1685
1686 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1687 {
1688 u32 *p = &vmx->segment_cache.seg[seg].limit;
1689
1690 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1691 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1692 return *p;
1693 }
1694
1695 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1696 {
1697 u32 *p = &vmx->segment_cache.seg[seg].ar;
1698
1699 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1700 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1701 return *p;
1702 }
1703
1704 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1705 {
1706 u32 eb;
1707
1708 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1709 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1710 if ((vcpu->guest_debug &
1711 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1712 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1713 eb |= 1u << BP_VECTOR;
1714 if (to_vmx(vcpu)->rmode.vm86_active)
1715 eb = ~0;
1716 if (enable_ept)
1717 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1718 if (vcpu->fpu_active)
1719 eb &= ~(1u << NM_VECTOR);
1720
1721 /* When we are running a nested L2 guest and L1 specified for it a
1722 * certain exception bitmap, we must trap the same exceptions and pass
1723 * them to L1. When running L2, we will only handle the exceptions
1724 * specified above if L1 did not want them.
1725 */
1726 if (is_guest_mode(vcpu))
1727 eb |= get_vmcs12(vcpu)->exception_bitmap;
1728
1729 vmcs_write32(EXCEPTION_BITMAP, eb);
1730 }
1731
1732 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1733 unsigned long entry, unsigned long exit)
1734 {
1735 vm_entry_controls_clearbit(vmx, entry);
1736 vm_exit_controls_clearbit(vmx, exit);
1737 }
1738
1739 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1740 {
1741 unsigned i;
1742 struct msr_autoload *m = &vmx->msr_autoload;
1743
1744 switch (msr) {
1745 case MSR_EFER:
1746 if (cpu_has_load_ia32_efer) {
1747 clear_atomic_switch_msr_special(vmx,
1748 VM_ENTRY_LOAD_IA32_EFER,
1749 VM_EXIT_LOAD_IA32_EFER);
1750 return;
1751 }
1752 break;
1753 case MSR_CORE_PERF_GLOBAL_CTRL:
1754 if (cpu_has_load_perf_global_ctrl) {
1755 clear_atomic_switch_msr_special(vmx,
1756 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1757 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1758 return;
1759 }
1760 break;
1761 }
1762
1763 for (i = 0; i < m->nr; ++i)
1764 if (m->guest[i].index == msr)
1765 break;
1766
1767 if (i == m->nr)
1768 return;
1769 --m->nr;
1770 m->guest[i] = m->guest[m->nr];
1771 m->host[i] = m->host[m->nr];
1772 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1773 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1774 }
1775
1776 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1777 unsigned long entry, unsigned long exit,
1778 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1779 u64 guest_val, u64 host_val)
1780 {
1781 vmcs_write64(guest_val_vmcs, guest_val);
1782 vmcs_write64(host_val_vmcs, host_val);
1783 vm_entry_controls_setbit(vmx, entry);
1784 vm_exit_controls_setbit(vmx, exit);
1785 }
1786
1787 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1788 u64 guest_val, u64 host_val)
1789 {
1790 unsigned i;
1791 struct msr_autoload *m = &vmx->msr_autoload;
1792
1793 switch (msr) {
1794 case MSR_EFER:
1795 if (cpu_has_load_ia32_efer) {
1796 add_atomic_switch_msr_special(vmx,
1797 VM_ENTRY_LOAD_IA32_EFER,
1798 VM_EXIT_LOAD_IA32_EFER,
1799 GUEST_IA32_EFER,
1800 HOST_IA32_EFER,
1801 guest_val, host_val);
1802 return;
1803 }
1804 break;
1805 case MSR_CORE_PERF_GLOBAL_CTRL:
1806 if (cpu_has_load_perf_global_ctrl) {
1807 add_atomic_switch_msr_special(vmx,
1808 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1809 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1810 GUEST_IA32_PERF_GLOBAL_CTRL,
1811 HOST_IA32_PERF_GLOBAL_CTRL,
1812 guest_val, host_val);
1813 return;
1814 }
1815 break;
1816 case MSR_IA32_PEBS_ENABLE:
1817 /* PEBS needs a quiescent period after being disabled (to write
1818 * a record). Disabling PEBS through VMX MSR swapping doesn't
1819 * provide that period, so a CPU could write host's record into
1820 * guest's memory.
1821 */
1822 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1823 }
1824
1825 for (i = 0; i < m->nr; ++i)
1826 if (m->guest[i].index == msr)
1827 break;
1828
1829 if (i == NR_AUTOLOAD_MSRS) {
1830 printk_once(KERN_WARNING "Not enough msr switch entries. "
1831 "Can't add msr %x\n", msr);
1832 return;
1833 } else if (i == m->nr) {
1834 ++m->nr;
1835 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1836 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1837 }
1838
1839 m->guest[i].index = msr;
1840 m->guest[i].value = guest_val;
1841 m->host[i].index = msr;
1842 m->host[i].value = host_val;
1843 }
1844
1845 static void reload_tss(void)
1846 {
1847 /*
1848 * VT restores TR but not its size. Useless.
1849 */
1850 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1851 struct desc_struct *descs;
1852
1853 descs = (void *)gdt->address;
1854 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1855 load_TR_desc();
1856 }
1857
1858 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1859 {
1860 u64 guest_efer = vmx->vcpu.arch.efer;
1861 u64 ignore_bits = 0;
1862
1863 if (!enable_ept) {
1864 /*
1865 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1866 * host CPUID is more efficient than testing guest CPUID
1867 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1868 */
1869 if (boot_cpu_has(X86_FEATURE_SMEP))
1870 guest_efer |= EFER_NX;
1871 else if (!(guest_efer & EFER_NX))
1872 ignore_bits |= EFER_NX;
1873 }
1874
1875 /*
1876 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1877 */
1878 ignore_bits |= EFER_SCE;
1879 #ifdef CONFIG_X86_64
1880 ignore_bits |= EFER_LMA | EFER_LME;
1881 /* SCE is meaningful only in long mode on Intel */
1882 if (guest_efer & EFER_LMA)
1883 ignore_bits &= ~(u64)EFER_SCE;
1884 #endif
1885
1886 clear_atomic_switch_msr(vmx, MSR_EFER);
1887
1888 /*
1889 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1890 * On CPUs that support "load IA32_EFER", always switch EFER
1891 * atomically, since it's faster than switching it manually.
1892 */
1893 if (cpu_has_load_ia32_efer ||
1894 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1895 if (!(guest_efer & EFER_LMA))
1896 guest_efer &= ~EFER_LME;
1897 if (guest_efer != host_efer)
1898 add_atomic_switch_msr(vmx, MSR_EFER,
1899 guest_efer, host_efer);
1900 return false;
1901 } else {
1902 guest_efer &= ~ignore_bits;
1903 guest_efer |= host_efer & ignore_bits;
1904
1905 vmx->guest_msrs[efer_offset].data = guest_efer;
1906 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1907
1908 return true;
1909 }
1910 }
1911
1912 static unsigned long segment_base(u16 selector)
1913 {
1914 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1915 struct desc_struct *d;
1916 unsigned long table_base;
1917 unsigned long v;
1918
1919 if (!(selector & ~3))
1920 return 0;
1921
1922 table_base = gdt->address;
1923
1924 if (selector & 4) { /* from ldt */
1925 u16 ldt_selector = kvm_read_ldt();
1926
1927 if (!(ldt_selector & ~3))
1928 return 0;
1929
1930 table_base = segment_base(ldt_selector);
1931 }
1932 d = (struct desc_struct *)(table_base + (selector & ~7));
1933 v = get_desc_base(d);
1934 #ifdef CONFIG_X86_64
1935 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1936 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1937 #endif
1938 return v;
1939 }
1940
1941 static inline unsigned long kvm_read_tr_base(void)
1942 {
1943 u16 tr;
1944 asm("str %0" : "=g"(tr));
1945 return segment_base(tr);
1946 }
1947
1948 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1949 {
1950 struct vcpu_vmx *vmx = to_vmx(vcpu);
1951 int i;
1952
1953 if (vmx->host_state.loaded)
1954 return;
1955
1956 vmx->host_state.loaded = 1;
1957 /*
1958 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1959 * allow segment selectors with cpl > 0 or ti == 1.
1960 */
1961 vmx->host_state.ldt_sel = kvm_read_ldt();
1962 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1963 savesegment(fs, vmx->host_state.fs_sel);
1964 if (!(vmx->host_state.fs_sel & 7)) {
1965 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1966 vmx->host_state.fs_reload_needed = 0;
1967 } else {
1968 vmcs_write16(HOST_FS_SELECTOR, 0);
1969 vmx->host_state.fs_reload_needed = 1;
1970 }
1971 savesegment(gs, vmx->host_state.gs_sel);
1972 if (!(vmx->host_state.gs_sel & 7))
1973 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1974 else {
1975 vmcs_write16(HOST_GS_SELECTOR, 0);
1976 vmx->host_state.gs_ldt_reload_needed = 1;
1977 }
1978
1979 #ifdef CONFIG_X86_64
1980 savesegment(ds, vmx->host_state.ds_sel);
1981 savesegment(es, vmx->host_state.es_sel);
1982 #endif
1983
1984 #ifdef CONFIG_X86_64
1985 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1986 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1987 #else
1988 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1989 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1990 #endif
1991
1992 #ifdef CONFIG_X86_64
1993 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1994 if (is_long_mode(&vmx->vcpu))
1995 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1996 #endif
1997 if (boot_cpu_has(X86_FEATURE_MPX))
1998 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1999 for (i = 0; i < vmx->save_nmsrs; ++i)
2000 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2001 vmx->guest_msrs[i].data,
2002 vmx->guest_msrs[i].mask);
2003 }
2004
2005 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2006 {
2007 if (!vmx->host_state.loaded)
2008 return;
2009
2010 ++vmx->vcpu.stat.host_state_reload;
2011 vmx->host_state.loaded = 0;
2012 #ifdef CONFIG_X86_64
2013 if (is_long_mode(&vmx->vcpu))
2014 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2015 #endif
2016 if (vmx->host_state.gs_ldt_reload_needed) {
2017 kvm_load_ldt(vmx->host_state.ldt_sel);
2018 #ifdef CONFIG_X86_64
2019 load_gs_index(vmx->host_state.gs_sel);
2020 #else
2021 loadsegment(gs, vmx->host_state.gs_sel);
2022 #endif
2023 }
2024 if (vmx->host_state.fs_reload_needed)
2025 loadsegment(fs, vmx->host_state.fs_sel);
2026 #ifdef CONFIG_X86_64
2027 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2028 loadsegment(ds, vmx->host_state.ds_sel);
2029 loadsegment(es, vmx->host_state.es_sel);
2030 }
2031 #endif
2032 reload_tss();
2033 #ifdef CONFIG_X86_64
2034 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2035 #endif
2036 if (vmx->host_state.msr_host_bndcfgs)
2037 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2038 /*
2039 * If the FPU is not active (through the host task or
2040 * the guest vcpu), then restore the cr0.TS bit.
2041 */
2042 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2043 stts();
2044 load_gdt(this_cpu_ptr(&host_gdt));
2045 }
2046
2047 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2048 {
2049 preempt_disable();
2050 __vmx_load_host_state(vmx);
2051 preempt_enable();
2052 }
2053
2054 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2055 {
2056 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2057 struct pi_desc old, new;
2058 unsigned int dest;
2059
2060 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2061 !irq_remapping_cap(IRQ_POSTING_CAP))
2062 return;
2063
2064 do {
2065 old.control = new.control = pi_desc->control;
2066
2067 /*
2068 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2069 * are two possible cases:
2070 * 1. After running 'pre_block', context switch
2071 * happened. For this case, 'sn' was set in
2072 * vmx_vcpu_put(), so we need to clear it here.
2073 * 2. After running 'pre_block', we were blocked,
2074 * and woken up by some other guy. For this case,
2075 * we don't need to do anything, 'pi_post_block'
2076 * will do everything for us. However, we cannot
2077 * check whether it is case #1 or case #2 here
2078 * (maybe, not needed), so we also clear sn here,
2079 * I think it is not a big deal.
2080 */
2081 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2082 if (vcpu->cpu != cpu) {
2083 dest = cpu_physical_id(cpu);
2084
2085 if (x2apic_enabled())
2086 new.ndst = dest;
2087 else
2088 new.ndst = (dest << 8) & 0xFF00;
2089 }
2090
2091 /* set 'NV' to 'notification vector' */
2092 new.nv = POSTED_INTR_VECTOR;
2093 }
2094
2095 /* Allow posting non-urgent interrupts */
2096 new.sn = 0;
2097 } while (cmpxchg(&pi_desc->control, old.control,
2098 new.control) != old.control);
2099 }
2100 /*
2101 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2102 * vcpu mutex is already taken.
2103 */
2104 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2105 {
2106 struct vcpu_vmx *vmx = to_vmx(vcpu);
2107 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2108
2109 if (!vmm_exclusive)
2110 kvm_cpu_vmxon(phys_addr);
2111 else if (vmx->loaded_vmcs->cpu != cpu)
2112 loaded_vmcs_clear(vmx->loaded_vmcs);
2113
2114 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2115 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2116 vmcs_load(vmx->loaded_vmcs->vmcs);
2117 }
2118
2119 if (vmx->loaded_vmcs->cpu != cpu) {
2120 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2121 unsigned long sysenter_esp;
2122
2123 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2124 local_irq_disable();
2125 crash_disable_local_vmclear(cpu);
2126
2127 /*
2128 * Read loaded_vmcs->cpu should be before fetching
2129 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2130 * See the comments in __loaded_vmcs_clear().
2131 */
2132 smp_rmb();
2133
2134 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2135 &per_cpu(loaded_vmcss_on_cpu, cpu));
2136 crash_enable_local_vmclear(cpu);
2137 local_irq_enable();
2138
2139 /*
2140 * Linux uses per-cpu TSS and GDT, so set these when switching
2141 * processors.
2142 */
2143 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2144 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2145
2146 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2147 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2148
2149 vmx->loaded_vmcs->cpu = cpu;
2150 }
2151
2152 /* Setup TSC multiplier */
2153 if (kvm_has_tsc_control &&
2154 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2155 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2156 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2157 }
2158
2159 vmx_vcpu_pi_load(vcpu, cpu);
2160 }
2161
2162 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2163 {
2164 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2165
2166 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2167 !irq_remapping_cap(IRQ_POSTING_CAP))
2168 return;
2169
2170 /* Set SN when the vCPU is preempted */
2171 if (vcpu->preempted)
2172 pi_set_sn(pi_desc);
2173 }
2174
2175 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2176 {
2177 vmx_vcpu_pi_put(vcpu);
2178
2179 __vmx_load_host_state(to_vmx(vcpu));
2180 if (!vmm_exclusive) {
2181 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2182 vcpu->cpu = -1;
2183 kvm_cpu_vmxoff();
2184 }
2185 }
2186
2187 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2188 {
2189 ulong cr0;
2190
2191 if (vcpu->fpu_active)
2192 return;
2193 vcpu->fpu_active = 1;
2194 cr0 = vmcs_readl(GUEST_CR0);
2195 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2196 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2197 vmcs_writel(GUEST_CR0, cr0);
2198 update_exception_bitmap(vcpu);
2199 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2200 if (is_guest_mode(vcpu))
2201 vcpu->arch.cr0_guest_owned_bits &=
2202 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2203 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2204 }
2205
2206 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2207
2208 /*
2209 * Return the cr0 value that a nested guest would read. This is a combination
2210 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2211 * its hypervisor (cr0_read_shadow).
2212 */
2213 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2214 {
2215 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2216 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2217 }
2218 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2219 {
2220 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2221 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2222 }
2223
2224 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2225 {
2226 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2227 * set this *before* calling this function.
2228 */
2229 vmx_decache_cr0_guest_bits(vcpu);
2230 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2231 update_exception_bitmap(vcpu);
2232 vcpu->arch.cr0_guest_owned_bits = 0;
2233 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2234 if (is_guest_mode(vcpu)) {
2235 /*
2236 * L1's specified read shadow might not contain the TS bit,
2237 * so now that we turned on shadowing of this bit, we need to
2238 * set this bit of the shadow. Like in nested_vmx_run we need
2239 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2240 * up-to-date here because we just decached cr0.TS (and we'll
2241 * only update vmcs12->guest_cr0 on nested exit).
2242 */
2243 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2244 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2245 (vcpu->arch.cr0 & X86_CR0_TS);
2246 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2247 } else
2248 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2249 }
2250
2251 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2252 {
2253 unsigned long rflags, save_rflags;
2254
2255 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2256 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2257 rflags = vmcs_readl(GUEST_RFLAGS);
2258 if (to_vmx(vcpu)->rmode.vm86_active) {
2259 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2260 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2261 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2262 }
2263 to_vmx(vcpu)->rflags = rflags;
2264 }
2265 return to_vmx(vcpu)->rflags;
2266 }
2267
2268 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2269 {
2270 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2271 to_vmx(vcpu)->rflags = rflags;
2272 if (to_vmx(vcpu)->rmode.vm86_active) {
2273 to_vmx(vcpu)->rmode.save_rflags = rflags;
2274 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2275 }
2276 vmcs_writel(GUEST_RFLAGS, rflags);
2277 }
2278
2279 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2280 {
2281 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2282 int ret = 0;
2283
2284 if (interruptibility & GUEST_INTR_STATE_STI)
2285 ret |= KVM_X86_SHADOW_INT_STI;
2286 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2287 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2288
2289 return ret;
2290 }
2291
2292 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2293 {
2294 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2295 u32 interruptibility = interruptibility_old;
2296
2297 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2298
2299 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2300 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2301 else if (mask & KVM_X86_SHADOW_INT_STI)
2302 interruptibility |= GUEST_INTR_STATE_STI;
2303
2304 if ((interruptibility != interruptibility_old))
2305 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2306 }
2307
2308 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2309 {
2310 unsigned long rip;
2311
2312 rip = kvm_rip_read(vcpu);
2313 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2314 kvm_rip_write(vcpu, rip);
2315
2316 /* skipping an emulated instruction also counts */
2317 vmx_set_interrupt_shadow(vcpu, 0);
2318 }
2319
2320 /*
2321 * KVM wants to inject page-faults which it got to the guest. This function
2322 * checks whether in a nested guest, we need to inject them to L1 or L2.
2323 */
2324 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2325 {
2326 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2327
2328 if (!(vmcs12->exception_bitmap & (1u << nr)))
2329 return 0;
2330
2331 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2332 vmcs_read32(VM_EXIT_INTR_INFO),
2333 vmcs_readl(EXIT_QUALIFICATION));
2334 return 1;
2335 }
2336
2337 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2338 bool has_error_code, u32 error_code,
2339 bool reinject)
2340 {
2341 struct vcpu_vmx *vmx = to_vmx(vcpu);
2342 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2343
2344 if (!reinject && is_guest_mode(vcpu) &&
2345 nested_vmx_check_exception(vcpu, nr))
2346 return;
2347
2348 if (has_error_code) {
2349 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2350 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2351 }
2352
2353 if (vmx->rmode.vm86_active) {
2354 int inc_eip = 0;
2355 if (kvm_exception_is_soft(nr))
2356 inc_eip = vcpu->arch.event_exit_inst_len;
2357 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2358 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2359 return;
2360 }
2361
2362 if (kvm_exception_is_soft(nr)) {
2363 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2364 vmx->vcpu.arch.event_exit_inst_len);
2365 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2366 } else
2367 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2368
2369 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2370 }
2371
2372 static bool vmx_rdtscp_supported(void)
2373 {
2374 return cpu_has_vmx_rdtscp();
2375 }
2376
2377 static bool vmx_invpcid_supported(void)
2378 {
2379 return cpu_has_vmx_invpcid() && enable_ept;
2380 }
2381
2382 /*
2383 * Swap MSR entry in host/guest MSR entry array.
2384 */
2385 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2386 {
2387 struct shared_msr_entry tmp;
2388
2389 tmp = vmx->guest_msrs[to];
2390 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2391 vmx->guest_msrs[from] = tmp;
2392 }
2393
2394 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2395 {
2396 unsigned long *msr_bitmap;
2397
2398 if (is_guest_mode(vcpu))
2399 msr_bitmap = vmx_msr_bitmap_nested;
2400 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2401 if (is_long_mode(vcpu))
2402 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2403 else
2404 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2405 } else {
2406 if (is_long_mode(vcpu))
2407 msr_bitmap = vmx_msr_bitmap_longmode;
2408 else
2409 msr_bitmap = vmx_msr_bitmap_legacy;
2410 }
2411
2412 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2413 }
2414
2415 /*
2416 * Set up the vmcs to automatically save and restore system
2417 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2418 * mode, as fiddling with msrs is very expensive.
2419 */
2420 static void setup_msrs(struct vcpu_vmx *vmx)
2421 {
2422 int save_nmsrs, index;
2423
2424 save_nmsrs = 0;
2425 #ifdef CONFIG_X86_64
2426 if (is_long_mode(&vmx->vcpu)) {
2427 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2428 if (index >= 0)
2429 move_msr_up(vmx, index, save_nmsrs++);
2430 index = __find_msr_index(vmx, MSR_LSTAR);
2431 if (index >= 0)
2432 move_msr_up(vmx, index, save_nmsrs++);
2433 index = __find_msr_index(vmx, MSR_CSTAR);
2434 if (index >= 0)
2435 move_msr_up(vmx, index, save_nmsrs++);
2436 index = __find_msr_index(vmx, MSR_TSC_AUX);
2437 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2438 move_msr_up(vmx, index, save_nmsrs++);
2439 /*
2440 * MSR_STAR is only needed on long mode guests, and only
2441 * if efer.sce is enabled.
2442 */
2443 index = __find_msr_index(vmx, MSR_STAR);
2444 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2445 move_msr_up(vmx, index, save_nmsrs++);
2446 }
2447 #endif
2448 index = __find_msr_index(vmx, MSR_EFER);
2449 if (index >= 0 && update_transition_efer(vmx, index))
2450 move_msr_up(vmx, index, save_nmsrs++);
2451
2452 vmx->save_nmsrs = save_nmsrs;
2453
2454 if (cpu_has_vmx_msr_bitmap())
2455 vmx_set_msr_bitmap(&vmx->vcpu);
2456 }
2457
2458 /*
2459 * reads and returns guest's timestamp counter "register"
2460 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2461 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2462 */
2463 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2464 {
2465 u64 host_tsc, tsc_offset;
2466
2467 host_tsc = rdtsc();
2468 tsc_offset = vmcs_read64(TSC_OFFSET);
2469 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2470 }
2471
2472 /*
2473 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2474 * counter, even if a nested guest (L2) is currently running.
2475 */
2476 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2477 {
2478 u64 tsc_offset;
2479
2480 tsc_offset = is_guest_mode(vcpu) ?
2481 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2482 vmcs_read64(TSC_OFFSET);
2483 return host_tsc + tsc_offset;
2484 }
2485
2486 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2487 {
2488 return vmcs_read64(TSC_OFFSET);
2489 }
2490
2491 /*
2492 * writes 'offset' into guest's timestamp counter offset register
2493 */
2494 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2495 {
2496 if (is_guest_mode(vcpu)) {
2497 /*
2498 * We're here if L1 chose not to trap WRMSR to TSC. According
2499 * to the spec, this should set L1's TSC; The offset that L1
2500 * set for L2 remains unchanged, and still needs to be added
2501 * to the newly set TSC to get L2's TSC.
2502 */
2503 struct vmcs12 *vmcs12;
2504 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2505 /* recalculate vmcs02.TSC_OFFSET: */
2506 vmcs12 = get_vmcs12(vcpu);
2507 vmcs_write64(TSC_OFFSET, offset +
2508 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2509 vmcs12->tsc_offset : 0));
2510 } else {
2511 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2512 vmcs_read64(TSC_OFFSET), offset);
2513 vmcs_write64(TSC_OFFSET, offset);
2514 }
2515 }
2516
2517 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2518 {
2519 u64 offset = vmcs_read64(TSC_OFFSET);
2520
2521 vmcs_write64(TSC_OFFSET, offset + adjustment);
2522 if (is_guest_mode(vcpu)) {
2523 /* Even when running L2, the adjustment needs to apply to L1 */
2524 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2525 } else
2526 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2527 offset + adjustment);
2528 }
2529
2530 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2531 {
2532 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2533 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2534 }
2535
2536 /*
2537 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2538 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2539 * all guests if the "nested" module option is off, and can also be disabled
2540 * for a single guest by disabling its VMX cpuid bit.
2541 */
2542 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2543 {
2544 return nested && guest_cpuid_has_vmx(vcpu);
2545 }
2546
2547 /*
2548 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2549 * returned for the various VMX controls MSRs when nested VMX is enabled.
2550 * The same values should also be used to verify that vmcs12 control fields are
2551 * valid during nested entry from L1 to L2.
2552 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2553 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2554 * bit in the high half is on if the corresponding bit in the control field
2555 * may be on. See also vmx_control_verify().
2556 */
2557 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2558 {
2559 /*
2560 * Note that as a general rule, the high half of the MSRs (bits in
2561 * the control fields which may be 1) should be initialized by the
2562 * intersection of the underlying hardware's MSR (i.e., features which
2563 * can be supported) and the list of features we want to expose -
2564 * because they are known to be properly supported in our code.
2565 * Also, usually, the low half of the MSRs (bits which must be 1) can
2566 * be set to 0, meaning that L1 may turn off any of these bits. The
2567 * reason is that if one of these bits is necessary, it will appear
2568 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2569 * fields of vmcs01 and vmcs02, will turn these bits off - and
2570 * nested_vmx_exit_handled() will not pass related exits to L1.
2571 * These rules have exceptions below.
2572 */
2573
2574 /* pin-based controls */
2575 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2576 vmx->nested.nested_vmx_pinbased_ctls_low,
2577 vmx->nested.nested_vmx_pinbased_ctls_high);
2578 vmx->nested.nested_vmx_pinbased_ctls_low |=
2579 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2580 vmx->nested.nested_vmx_pinbased_ctls_high &=
2581 PIN_BASED_EXT_INTR_MASK |
2582 PIN_BASED_NMI_EXITING |
2583 PIN_BASED_VIRTUAL_NMIS;
2584 vmx->nested.nested_vmx_pinbased_ctls_high |=
2585 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2586 PIN_BASED_VMX_PREEMPTION_TIMER;
2587 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2588 vmx->nested.nested_vmx_pinbased_ctls_high |=
2589 PIN_BASED_POSTED_INTR;
2590
2591 /* exit controls */
2592 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2593 vmx->nested.nested_vmx_exit_ctls_low,
2594 vmx->nested.nested_vmx_exit_ctls_high);
2595 vmx->nested.nested_vmx_exit_ctls_low =
2596 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2597
2598 vmx->nested.nested_vmx_exit_ctls_high &=
2599 #ifdef CONFIG_X86_64
2600 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2601 #endif
2602 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2603 vmx->nested.nested_vmx_exit_ctls_high |=
2604 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2605 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2606 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2607
2608 if (vmx_mpx_supported())
2609 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2610
2611 /* We support free control of debug control saving. */
2612 vmx->nested.nested_vmx_true_exit_ctls_low =
2613 vmx->nested.nested_vmx_exit_ctls_low &
2614 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2615
2616 /* entry controls */
2617 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2618 vmx->nested.nested_vmx_entry_ctls_low,
2619 vmx->nested.nested_vmx_entry_ctls_high);
2620 vmx->nested.nested_vmx_entry_ctls_low =
2621 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2622 vmx->nested.nested_vmx_entry_ctls_high &=
2623 #ifdef CONFIG_X86_64
2624 VM_ENTRY_IA32E_MODE |
2625 #endif
2626 VM_ENTRY_LOAD_IA32_PAT;
2627 vmx->nested.nested_vmx_entry_ctls_high |=
2628 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2629 if (vmx_mpx_supported())
2630 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2631
2632 /* We support free control of debug control loading. */
2633 vmx->nested.nested_vmx_true_entry_ctls_low =
2634 vmx->nested.nested_vmx_entry_ctls_low &
2635 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2636
2637 /* cpu-based controls */
2638 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2639 vmx->nested.nested_vmx_procbased_ctls_low,
2640 vmx->nested.nested_vmx_procbased_ctls_high);
2641 vmx->nested.nested_vmx_procbased_ctls_low =
2642 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2643 vmx->nested.nested_vmx_procbased_ctls_high &=
2644 CPU_BASED_VIRTUAL_INTR_PENDING |
2645 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2646 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2647 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2648 CPU_BASED_CR3_STORE_EXITING |
2649 #ifdef CONFIG_X86_64
2650 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2651 #endif
2652 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2653 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2654 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2655 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2656 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2657 /*
2658 * We can allow some features even when not supported by the
2659 * hardware. For example, L1 can specify an MSR bitmap - and we
2660 * can use it to avoid exits to L1 - even when L0 runs L2
2661 * without MSR bitmaps.
2662 */
2663 vmx->nested.nested_vmx_procbased_ctls_high |=
2664 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2665 CPU_BASED_USE_MSR_BITMAPS;
2666
2667 /* We support free control of CR3 access interception. */
2668 vmx->nested.nested_vmx_true_procbased_ctls_low =
2669 vmx->nested.nested_vmx_procbased_ctls_low &
2670 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2671
2672 /* secondary cpu-based controls */
2673 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2674 vmx->nested.nested_vmx_secondary_ctls_low,
2675 vmx->nested.nested_vmx_secondary_ctls_high);
2676 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2677 vmx->nested.nested_vmx_secondary_ctls_high &=
2678 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2679 SECONDARY_EXEC_RDTSCP |
2680 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2681 SECONDARY_EXEC_ENABLE_VPID |
2682 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2683 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2684 SECONDARY_EXEC_WBINVD_EXITING |
2685 SECONDARY_EXEC_XSAVES |
2686 SECONDARY_EXEC_PCOMMIT;
2687
2688 if (enable_ept) {
2689 /* nested EPT: emulate EPT also to L1 */
2690 vmx->nested.nested_vmx_secondary_ctls_high |=
2691 SECONDARY_EXEC_ENABLE_EPT;
2692 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2693 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2694 VMX_EPT_INVEPT_BIT;
2695 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2696 /*
2697 * For nested guests, we don't do anything specific
2698 * for single context invalidation. Hence, only advertise
2699 * support for global context invalidation.
2700 */
2701 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2702 } else
2703 vmx->nested.nested_vmx_ept_caps = 0;
2704
2705 if (enable_vpid)
2706 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2707 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2708 else
2709 vmx->nested.nested_vmx_vpid_caps = 0;
2710
2711 if (enable_unrestricted_guest)
2712 vmx->nested.nested_vmx_secondary_ctls_high |=
2713 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2714
2715 /* miscellaneous data */
2716 rdmsr(MSR_IA32_VMX_MISC,
2717 vmx->nested.nested_vmx_misc_low,
2718 vmx->nested.nested_vmx_misc_high);
2719 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2720 vmx->nested.nested_vmx_misc_low |=
2721 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2722 VMX_MISC_ACTIVITY_HLT;
2723 vmx->nested.nested_vmx_misc_high = 0;
2724 }
2725
2726 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2727 {
2728 /*
2729 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2730 */
2731 return ((control & high) | low) == control;
2732 }
2733
2734 static inline u64 vmx_control_msr(u32 low, u32 high)
2735 {
2736 return low | ((u64)high << 32);
2737 }
2738
2739 /* Returns 0 on success, non-0 otherwise. */
2740 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2741 {
2742 struct vcpu_vmx *vmx = to_vmx(vcpu);
2743
2744 switch (msr_index) {
2745 case MSR_IA32_VMX_BASIC:
2746 /*
2747 * This MSR reports some information about VMX support. We
2748 * should return information about the VMX we emulate for the
2749 * guest, and the VMCS structure we give it - not about the
2750 * VMX support of the underlying hardware.
2751 */
2752 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2753 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2754 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2755 break;
2756 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2757 case MSR_IA32_VMX_PINBASED_CTLS:
2758 *pdata = vmx_control_msr(
2759 vmx->nested.nested_vmx_pinbased_ctls_low,
2760 vmx->nested.nested_vmx_pinbased_ctls_high);
2761 break;
2762 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2763 *pdata = vmx_control_msr(
2764 vmx->nested.nested_vmx_true_procbased_ctls_low,
2765 vmx->nested.nested_vmx_procbased_ctls_high);
2766 break;
2767 case MSR_IA32_VMX_PROCBASED_CTLS:
2768 *pdata = vmx_control_msr(
2769 vmx->nested.nested_vmx_procbased_ctls_low,
2770 vmx->nested.nested_vmx_procbased_ctls_high);
2771 break;
2772 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2773 *pdata = vmx_control_msr(
2774 vmx->nested.nested_vmx_true_exit_ctls_low,
2775 vmx->nested.nested_vmx_exit_ctls_high);
2776 break;
2777 case MSR_IA32_VMX_EXIT_CTLS:
2778 *pdata = vmx_control_msr(
2779 vmx->nested.nested_vmx_exit_ctls_low,
2780 vmx->nested.nested_vmx_exit_ctls_high);
2781 break;
2782 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2783 *pdata = vmx_control_msr(
2784 vmx->nested.nested_vmx_true_entry_ctls_low,
2785 vmx->nested.nested_vmx_entry_ctls_high);
2786 break;
2787 case MSR_IA32_VMX_ENTRY_CTLS:
2788 *pdata = vmx_control_msr(
2789 vmx->nested.nested_vmx_entry_ctls_low,
2790 vmx->nested.nested_vmx_entry_ctls_high);
2791 break;
2792 case MSR_IA32_VMX_MISC:
2793 *pdata = vmx_control_msr(
2794 vmx->nested.nested_vmx_misc_low,
2795 vmx->nested.nested_vmx_misc_high);
2796 break;
2797 /*
2798 * These MSRs specify bits which the guest must keep fixed (on or off)
2799 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2800 * We picked the standard core2 setting.
2801 */
2802 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2803 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2804 case MSR_IA32_VMX_CR0_FIXED0:
2805 *pdata = VMXON_CR0_ALWAYSON;
2806 break;
2807 case MSR_IA32_VMX_CR0_FIXED1:
2808 *pdata = -1ULL;
2809 break;
2810 case MSR_IA32_VMX_CR4_FIXED0:
2811 *pdata = VMXON_CR4_ALWAYSON;
2812 break;
2813 case MSR_IA32_VMX_CR4_FIXED1:
2814 *pdata = -1ULL;
2815 break;
2816 case MSR_IA32_VMX_VMCS_ENUM:
2817 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2818 break;
2819 case MSR_IA32_VMX_PROCBASED_CTLS2:
2820 *pdata = vmx_control_msr(
2821 vmx->nested.nested_vmx_secondary_ctls_low,
2822 vmx->nested.nested_vmx_secondary_ctls_high);
2823 break;
2824 case MSR_IA32_VMX_EPT_VPID_CAP:
2825 /* Currently, no nested vpid support */
2826 *pdata = vmx->nested.nested_vmx_ept_caps |
2827 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2828 break;
2829 default:
2830 return 1;
2831 }
2832
2833 return 0;
2834 }
2835
2836 /*
2837 * Reads an msr value (of 'msr_index') into 'pdata'.
2838 * Returns 0 on success, non-0 otherwise.
2839 * Assumes vcpu_load() was already called.
2840 */
2841 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2842 {
2843 struct shared_msr_entry *msr;
2844
2845 switch (msr_info->index) {
2846 #ifdef CONFIG_X86_64
2847 case MSR_FS_BASE:
2848 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2849 break;
2850 case MSR_GS_BASE:
2851 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2852 break;
2853 case MSR_KERNEL_GS_BASE:
2854 vmx_load_host_state(to_vmx(vcpu));
2855 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2856 break;
2857 #endif
2858 case MSR_EFER:
2859 return kvm_get_msr_common(vcpu, msr_info);
2860 case MSR_IA32_TSC:
2861 msr_info->data = guest_read_tsc(vcpu);
2862 break;
2863 case MSR_IA32_SYSENTER_CS:
2864 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2865 break;
2866 case MSR_IA32_SYSENTER_EIP:
2867 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2868 break;
2869 case MSR_IA32_SYSENTER_ESP:
2870 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2871 break;
2872 case MSR_IA32_BNDCFGS:
2873 if (!vmx_mpx_supported())
2874 return 1;
2875 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2876 break;
2877 case MSR_IA32_FEATURE_CONTROL:
2878 if (!nested_vmx_allowed(vcpu))
2879 return 1;
2880 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2881 break;
2882 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2883 if (!nested_vmx_allowed(vcpu))
2884 return 1;
2885 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2886 case MSR_IA32_XSS:
2887 if (!vmx_xsaves_supported())
2888 return 1;
2889 msr_info->data = vcpu->arch.ia32_xss;
2890 break;
2891 case MSR_TSC_AUX:
2892 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2893 return 1;
2894 /* Otherwise falls through */
2895 default:
2896 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2897 if (msr) {
2898 msr_info->data = msr->data;
2899 break;
2900 }
2901 return kvm_get_msr_common(vcpu, msr_info);
2902 }
2903
2904 return 0;
2905 }
2906
2907 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2908
2909 /*
2910 * Writes msr value into into the appropriate "register".
2911 * Returns 0 on success, non-0 otherwise.
2912 * Assumes vcpu_load() was already called.
2913 */
2914 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2915 {
2916 struct vcpu_vmx *vmx = to_vmx(vcpu);
2917 struct shared_msr_entry *msr;
2918 int ret = 0;
2919 u32 msr_index = msr_info->index;
2920 u64 data = msr_info->data;
2921
2922 switch (msr_index) {
2923 case MSR_EFER:
2924 ret = kvm_set_msr_common(vcpu, msr_info);
2925 break;
2926 #ifdef CONFIG_X86_64
2927 case MSR_FS_BASE:
2928 vmx_segment_cache_clear(vmx);
2929 vmcs_writel(GUEST_FS_BASE, data);
2930 break;
2931 case MSR_GS_BASE:
2932 vmx_segment_cache_clear(vmx);
2933 vmcs_writel(GUEST_GS_BASE, data);
2934 break;
2935 case MSR_KERNEL_GS_BASE:
2936 vmx_load_host_state(vmx);
2937 vmx->msr_guest_kernel_gs_base = data;
2938 break;
2939 #endif
2940 case MSR_IA32_SYSENTER_CS:
2941 vmcs_write32(GUEST_SYSENTER_CS, data);
2942 break;
2943 case MSR_IA32_SYSENTER_EIP:
2944 vmcs_writel(GUEST_SYSENTER_EIP, data);
2945 break;
2946 case MSR_IA32_SYSENTER_ESP:
2947 vmcs_writel(GUEST_SYSENTER_ESP, data);
2948 break;
2949 case MSR_IA32_BNDCFGS:
2950 if (!vmx_mpx_supported())
2951 return 1;
2952 vmcs_write64(GUEST_BNDCFGS, data);
2953 break;
2954 case MSR_IA32_TSC:
2955 kvm_write_tsc(vcpu, msr_info);
2956 break;
2957 case MSR_IA32_CR_PAT:
2958 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2959 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2960 return 1;
2961 vmcs_write64(GUEST_IA32_PAT, data);
2962 vcpu->arch.pat = data;
2963 break;
2964 }
2965 ret = kvm_set_msr_common(vcpu, msr_info);
2966 break;
2967 case MSR_IA32_TSC_ADJUST:
2968 ret = kvm_set_msr_common(vcpu, msr_info);
2969 break;
2970 case MSR_IA32_FEATURE_CONTROL:
2971 if (!nested_vmx_allowed(vcpu) ||
2972 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2973 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2974 return 1;
2975 vmx->nested.msr_ia32_feature_control = data;
2976 if (msr_info->host_initiated && data == 0)
2977 vmx_leave_nested(vcpu);
2978 break;
2979 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2980 return 1; /* they are read-only */
2981 case MSR_IA32_XSS:
2982 if (!vmx_xsaves_supported())
2983 return 1;
2984 /*
2985 * The only supported bit as of Skylake is bit 8, but
2986 * it is not supported on KVM.
2987 */
2988 if (data != 0)
2989 return 1;
2990 vcpu->arch.ia32_xss = data;
2991 if (vcpu->arch.ia32_xss != host_xss)
2992 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2993 vcpu->arch.ia32_xss, host_xss);
2994 else
2995 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2996 break;
2997 case MSR_TSC_AUX:
2998 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2999 return 1;
3000 /* Check reserved bit, higher 32 bits should be zero */
3001 if ((data >> 32) != 0)
3002 return 1;
3003 /* Otherwise falls through */
3004 default:
3005 msr = find_msr_entry(vmx, msr_index);
3006 if (msr) {
3007 u64 old_msr_data = msr->data;
3008 msr->data = data;
3009 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3010 preempt_disable();
3011 ret = kvm_set_shared_msr(msr->index, msr->data,
3012 msr->mask);
3013 preempt_enable();
3014 if (ret)
3015 msr->data = old_msr_data;
3016 }
3017 break;
3018 }
3019 ret = kvm_set_msr_common(vcpu, msr_info);
3020 }
3021
3022 return ret;
3023 }
3024
3025 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3026 {
3027 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3028 switch (reg) {
3029 case VCPU_REGS_RSP:
3030 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3031 break;
3032 case VCPU_REGS_RIP:
3033 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3034 break;
3035 case VCPU_EXREG_PDPTR:
3036 if (enable_ept)
3037 ept_save_pdptrs(vcpu);
3038 break;
3039 default:
3040 break;
3041 }
3042 }
3043
3044 static __init int cpu_has_kvm_support(void)
3045 {
3046 return cpu_has_vmx();
3047 }
3048
3049 static __init int vmx_disabled_by_bios(void)
3050 {
3051 u64 msr;
3052
3053 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3054 if (msr & FEATURE_CONTROL_LOCKED) {
3055 /* launched w/ TXT and VMX disabled */
3056 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3057 && tboot_enabled())
3058 return 1;
3059 /* launched w/o TXT and VMX only enabled w/ TXT */
3060 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3061 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3062 && !tboot_enabled()) {
3063 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3064 "activate TXT before enabling KVM\n");
3065 return 1;
3066 }
3067 /* launched w/o TXT and VMX disabled */
3068 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3069 && !tboot_enabled())
3070 return 1;
3071 }
3072
3073 return 0;
3074 }
3075
3076 static void kvm_cpu_vmxon(u64 addr)
3077 {
3078 asm volatile (ASM_VMX_VMXON_RAX
3079 : : "a"(&addr), "m"(addr)
3080 : "memory", "cc");
3081 }
3082
3083 static int hardware_enable(void)
3084 {
3085 int cpu = raw_smp_processor_id();
3086 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3087 u64 old, test_bits;
3088
3089 if (cr4_read_shadow() & X86_CR4_VMXE)
3090 return -EBUSY;
3091
3092 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3093 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3094 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3095
3096 /*
3097 * Now we can enable the vmclear operation in kdump
3098 * since the loaded_vmcss_on_cpu list on this cpu
3099 * has been initialized.
3100 *
3101 * Though the cpu is not in VMX operation now, there
3102 * is no problem to enable the vmclear operation
3103 * for the loaded_vmcss_on_cpu list is empty!
3104 */
3105 crash_enable_local_vmclear(cpu);
3106
3107 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3108
3109 test_bits = FEATURE_CONTROL_LOCKED;
3110 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3111 if (tboot_enabled())
3112 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3113
3114 if ((old & test_bits) != test_bits) {
3115 /* enable and lock */
3116 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3117 }
3118 cr4_set_bits(X86_CR4_VMXE);
3119
3120 if (vmm_exclusive) {
3121 kvm_cpu_vmxon(phys_addr);
3122 ept_sync_global();
3123 }
3124
3125 native_store_gdt(this_cpu_ptr(&host_gdt));
3126
3127 return 0;
3128 }
3129
3130 static void vmclear_local_loaded_vmcss(void)
3131 {
3132 int cpu = raw_smp_processor_id();
3133 struct loaded_vmcs *v, *n;
3134
3135 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3136 loaded_vmcss_on_cpu_link)
3137 __loaded_vmcs_clear(v);
3138 }
3139
3140
3141 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3142 * tricks.
3143 */
3144 static void kvm_cpu_vmxoff(void)
3145 {
3146 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3147 }
3148
3149 static void hardware_disable(void)
3150 {
3151 if (vmm_exclusive) {
3152 vmclear_local_loaded_vmcss();
3153 kvm_cpu_vmxoff();
3154 }
3155 cr4_clear_bits(X86_CR4_VMXE);
3156 }
3157
3158 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3159 u32 msr, u32 *result)
3160 {
3161 u32 vmx_msr_low, vmx_msr_high;
3162 u32 ctl = ctl_min | ctl_opt;
3163
3164 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3165
3166 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3167 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3168
3169 /* Ensure minimum (required) set of control bits are supported. */
3170 if (ctl_min & ~ctl)
3171 return -EIO;
3172
3173 *result = ctl;
3174 return 0;
3175 }
3176
3177 static __init bool allow_1_setting(u32 msr, u32 ctl)
3178 {
3179 u32 vmx_msr_low, vmx_msr_high;
3180
3181 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3182 return vmx_msr_high & ctl;
3183 }
3184
3185 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3186 {
3187 u32 vmx_msr_low, vmx_msr_high;
3188 u32 min, opt, min2, opt2;
3189 u32 _pin_based_exec_control = 0;
3190 u32 _cpu_based_exec_control = 0;
3191 u32 _cpu_based_2nd_exec_control = 0;
3192 u32 _vmexit_control = 0;
3193 u32 _vmentry_control = 0;
3194
3195 min = CPU_BASED_HLT_EXITING |
3196 #ifdef CONFIG_X86_64
3197 CPU_BASED_CR8_LOAD_EXITING |
3198 CPU_BASED_CR8_STORE_EXITING |
3199 #endif
3200 CPU_BASED_CR3_LOAD_EXITING |
3201 CPU_BASED_CR3_STORE_EXITING |
3202 CPU_BASED_USE_IO_BITMAPS |
3203 CPU_BASED_MOV_DR_EXITING |
3204 CPU_BASED_USE_TSC_OFFSETING |
3205 CPU_BASED_MWAIT_EXITING |
3206 CPU_BASED_MONITOR_EXITING |
3207 CPU_BASED_INVLPG_EXITING |
3208 CPU_BASED_RDPMC_EXITING;
3209
3210 opt = CPU_BASED_TPR_SHADOW |
3211 CPU_BASED_USE_MSR_BITMAPS |
3212 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3213 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3214 &_cpu_based_exec_control) < 0)
3215 return -EIO;
3216 #ifdef CONFIG_X86_64
3217 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3218 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3219 ~CPU_BASED_CR8_STORE_EXITING;
3220 #endif
3221 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3222 min2 = 0;
3223 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3224 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3225 SECONDARY_EXEC_WBINVD_EXITING |
3226 SECONDARY_EXEC_ENABLE_VPID |
3227 SECONDARY_EXEC_ENABLE_EPT |
3228 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3229 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3230 SECONDARY_EXEC_RDTSCP |
3231 SECONDARY_EXEC_ENABLE_INVPCID |
3232 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3233 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3234 SECONDARY_EXEC_SHADOW_VMCS |
3235 SECONDARY_EXEC_XSAVES |
3236 SECONDARY_EXEC_ENABLE_PML |
3237 SECONDARY_EXEC_PCOMMIT |
3238 SECONDARY_EXEC_TSC_SCALING;
3239 if (adjust_vmx_controls(min2, opt2,
3240 MSR_IA32_VMX_PROCBASED_CTLS2,
3241 &_cpu_based_2nd_exec_control) < 0)
3242 return -EIO;
3243 }
3244 #ifndef CONFIG_X86_64
3245 if (!(_cpu_based_2nd_exec_control &
3246 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3247 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3248 #endif
3249
3250 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3251 _cpu_based_2nd_exec_control &= ~(
3252 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3253 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3254 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3255
3256 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3257 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3258 enabled */
3259 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3260 CPU_BASED_CR3_STORE_EXITING |
3261 CPU_BASED_INVLPG_EXITING);
3262 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3263 vmx_capability.ept, vmx_capability.vpid);
3264 }
3265
3266 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3267 #ifdef CONFIG_X86_64
3268 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3269 #endif
3270 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3271 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3272 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3273 &_vmexit_control) < 0)
3274 return -EIO;
3275
3276 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3277 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3278 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3279 &_pin_based_exec_control) < 0)
3280 return -EIO;
3281
3282 if (!(_cpu_based_2nd_exec_control &
3283 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3284 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3285 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3286
3287 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3288 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3289 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3290 &_vmentry_control) < 0)
3291 return -EIO;
3292
3293 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3294
3295 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3296 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3297 return -EIO;
3298
3299 #ifdef CONFIG_X86_64
3300 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3301 if (vmx_msr_high & (1u<<16))
3302 return -EIO;
3303 #endif
3304
3305 /* Require Write-Back (WB) memory type for VMCS accesses. */
3306 if (((vmx_msr_high >> 18) & 15) != 6)
3307 return -EIO;
3308
3309 vmcs_conf->size = vmx_msr_high & 0x1fff;
3310 vmcs_conf->order = get_order(vmcs_config.size);
3311 vmcs_conf->revision_id = vmx_msr_low;
3312
3313 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3314 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3315 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3316 vmcs_conf->vmexit_ctrl = _vmexit_control;
3317 vmcs_conf->vmentry_ctrl = _vmentry_control;
3318
3319 cpu_has_load_ia32_efer =
3320 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3321 VM_ENTRY_LOAD_IA32_EFER)
3322 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3323 VM_EXIT_LOAD_IA32_EFER);
3324
3325 cpu_has_load_perf_global_ctrl =
3326 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3327 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3328 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3329 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3330
3331 /*
3332 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3333 * but due to arrata below it can't be used. Workaround is to use
3334 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3335 *
3336 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3337 *
3338 * AAK155 (model 26)
3339 * AAP115 (model 30)
3340 * AAT100 (model 37)
3341 * BC86,AAY89,BD102 (model 44)
3342 * BA97 (model 46)
3343 *
3344 */
3345 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3346 switch (boot_cpu_data.x86_model) {
3347 case 26:
3348 case 30:
3349 case 37:
3350 case 44:
3351 case 46:
3352 cpu_has_load_perf_global_ctrl = false;
3353 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3354 "does not work properly. Using workaround\n");
3355 break;
3356 default:
3357 break;
3358 }
3359 }
3360
3361 if (cpu_has_xsaves)
3362 rdmsrl(MSR_IA32_XSS, host_xss);
3363
3364 return 0;
3365 }
3366
3367 static struct vmcs *alloc_vmcs_cpu(int cpu)
3368 {
3369 int node = cpu_to_node(cpu);
3370 struct page *pages;
3371 struct vmcs *vmcs;
3372
3373 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3374 if (!pages)
3375 return NULL;
3376 vmcs = page_address(pages);
3377 memset(vmcs, 0, vmcs_config.size);
3378 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3379 return vmcs;
3380 }
3381
3382 static struct vmcs *alloc_vmcs(void)
3383 {
3384 return alloc_vmcs_cpu(raw_smp_processor_id());
3385 }
3386
3387 static void free_vmcs(struct vmcs *vmcs)
3388 {
3389 free_pages((unsigned long)vmcs, vmcs_config.order);
3390 }
3391
3392 /*
3393 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3394 */
3395 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3396 {
3397 if (!loaded_vmcs->vmcs)
3398 return;
3399 loaded_vmcs_clear(loaded_vmcs);
3400 free_vmcs(loaded_vmcs->vmcs);
3401 loaded_vmcs->vmcs = NULL;
3402 }
3403
3404 static void free_kvm_area(void)
3405 {
3406 int cpu;
3407
3408 for_each_possible_cpu(cpu) {
3409 free_vmcs(per_cpu(vmxarea, cpu));
3410 per_cpu(vmxarea, cpu) = NULL;
3411 }
3412 }
3413
3414 static void init_vmcs_shadow_fields(void)
3415 {
3416 int i, j;
3417
3418 /* No checks for read only fields yet */
3419
3420 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3421 switch (shadow_read_write_fields[i]) {
3422 case GUEST_BNDCFGS:
3423 if (!vmx_mpx_supported())
3424 continue;
3425 break;
3426 default:
3427 break;
3428 }
3429
3430 if (j < i)
3431 shadow_read_write_fields[j] =
3432 shadow_read_write_fields[i];
3433 j++;
3434 }
3435 max_shadow_read_write_fields = j;
3436
3437 /* shadowed fields guest access without vmexit */
3438 for (i = 0; i < max_shadow_read_write_fields; i++) {
3439 clear_bit(shadow_read_write_fields[i],
3440 vmx_vmwrite_bitmap);
3441 clear_bit(shadow_read_write_fields[i],
3442 vmx_vmread_bitmap);
3443 }
3444 for (i = 0; i < max_shadow_read_only_fields; i++)
3445 clear_bit(shadow_read_only_fields[i],
3446 vmx_vmread_bitmap);
3447 }
3448
3449 static __init int alloc_kvm_area(void)
3450 {
3451 int cpu;
3452
3453 for_each_possible_cpu(cpu) {
3454 struct vmcs *vmcs;
3455
3456 vmcs = alloc_vmcs_cpu(cpu);
3457 if (!vmcs) {
3458 free_kvm_area();
3459 return -ENOMEM;
3460 }
3461
3462 per_cpu(vmxarea, cpu) = vmcs;
3463 }
3464 return 0;
3465 }
3466
3467 static bool emulation_required(struct kvm_vcpu *vcpu)
3468 {
3469 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3470 }
3471
3472 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3473 struct kvm_segment *save)
3474 {
3475 if (!emulate_invalid_guest_state) {
3476 /*
3477 * CS and SS RPL should be equal during guest entry according
3478 * to VMX spec, but in reality it is not always so. Since vcpu
3479 * is in the middle of the transition from real mode to
3480 * protected mode it is safe to assume that RPL 0 is a good
3481 * default value.
3482 */
3483 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3484 save->selector &= ~SEGMENT_RPL_MASK;
3485 save->dpl = save->selector & SEGMENT_RPL_MASK;
3486 save->s = 1;
3487 }
3488 vmx_set_segment(vcpu, save, seg);
3489 }
3490
3491 static void enter_pmode(struct kvm_vcpu *vcpu)
3492 {
3493 unsigned long flags;
3494 struct vcpu_vmx *vmx = to_vmx(vcpu);
3495
3496 /*
3497 * Update real mode segment cache. It may be not up-to-date if sement
3498 * register was written while vcpu was in a guest mode.
3499 */
3500 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3501 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3502 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3503 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3504 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3505 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3506
3507 vmx->rmode.vm86_active = 0;
3508
3509 vmx_segment_cache_clear(vmx);
3510
3511 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3512
3513 flags = vmcs_readl(GUEST_RFLAGS);
3514 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3515 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3516 vmcs_writel(GUEST_RFLAGS, flags);
3517
3518 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3519 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3520
3521 update_exception_bitmap(vcpu);
3522
3523 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3524 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3525 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3526 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3527 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3528 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3529 }
3530
3531 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3532 {
3533 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3534 struct kvm_segment var = *save;
3535
3536 var.dpl = 0x3;
3537 if (seg == VCPU_SREG_CS)
3538 var.type = 0x3;
3539
3540 if (!emulate_invalid_guest_state) {
3541 var.selector = var.base >> 4;
3542 var.base = var.base & 0xffff0;
3543 var.limit = 0xffff;
3544 var.g = 0;
3545 var.db = 0;
3546 var.present = 1;
3547 var.s = 1;
3548 var.l = 0;
3549 var.unusable = 0;
3550 var.type = 0x3;
3551 var.avl = 0;
3552 if (save->base & 0xf)
3553 printk_once(KERN_WARNING "kvm: segment base is not "
3554 "paragraph aligned when entering "
3555 "protected mode (seg=%d)", seg);
3556 }
3557
3558 vmcs_write16(sf->selector, var.selector);
3559 vmcs_write32(sf->base, var.base);
3560 vmcs_write32(sf->limit, var.limit);
3561 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3562 }
3563
3564 static void enter_rmode(struct kvm_vcpu *vcpu)
3565 {
3566 unsigned long flags;
3567 struct vcpu_vmx *vmx = to_vmx(vcpu);
3568
3569 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3570 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3571 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3572 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3573 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3574 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3575 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3576
3577 vmx->rmode.vm86_active = 1;
3578
3579 /*
3580 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3581 * vcpu. Warn the user that an update is overdue.
3582 */
3583 if (!vcpu->kvm->arch.tss_addr)
3584 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3585 "called before entering vcpu\n");
3586
3587 vmx_segment_cache_clear(vmx);
3588
3589 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3590 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3591 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3592
3593 flags = vmcs_readl(GUEST_RFLAGS);
3594 vmx->rmode.save_rflags = flags;
3595
3596 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3597
3598 vmcs_writel(GUEST_RFLAGS, flags);
3599 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3600 update_exception_bitmap(vcpu);
3601
3602 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3603 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3604 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3605 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3606 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3607 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3608
3609 kvm_mmu_reset_context(vcpu);
3610 }
3611
3612 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3613 {
3614 struct vcpu_vmx *vmx = to_vmx(vcpu);
3615 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3616
3617 if (!msr)
3618 return;
3619
3620 /*
3621 * Force kernel_gs_base reloading before EFER changes, as control
3622 * of this msr depends on is_long_mode().
3623 */
3624 vmx_load_host_state(to_vmx(vcpu));
3625 vcpu->arch.efer = efer;
3626 if (efer & EFER_LMA) {
3627 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3628 msr->data = efer;
3629 } else {
3630 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3631
3632 msr->data = efer & ~EFER_LME;
3633 }
3634 setup_msrs(vmx);
3635 }
3636
3637 #ifdef CONFIG_X86_64
3638
3639 static void enter_lmode(struct kvm_vcpu *vcpu)
3640 {
3641 u32 guest_tr_ar;
3642
3643 vmx_segment_cache_clear(to_vmx(vcpu));
3644
3645 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3646 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3647 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3648 __func__);
3649 vmcs_write32(GUEST_TR_AR_BYTES,
3650 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3651 | VMX_AR_TYPE_BUSY_64_TSS);
3652 }
3653 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3654 }
3655
3656 static void exit_lmode(struct kvm_vcpu *vcpu)
3657 {
3658 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3659 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3660 }
3661
3662 #endif
3663
3664 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3665 {
3666 vpid_sync_context(vpid);
3667 if (enable_ept) {
3668 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3669 return;
3670 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3671 }
3672 }
3673
3674 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3675 {
3676 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3677 }
3678
3679 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3680 {
3681 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3682
3683 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3684 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3685 }
3686
3687 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3688 {
3689 if (enable_ept && is_paging(vcpu))
3690 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3691 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3692 }
3693
3694 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3695 {
3696 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3697
3698 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3699 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3700 }
3701
3702 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3703 {
3704 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3705
3706 if (!test_bit(VCPU_EXREG_PDPTR,
3707 (unsigned long *)&vcpu->arch.regs_dirty))
3708 return;
3709
3710 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3711 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3712 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3713 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3714 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3715 }
3716 }
3717
3718 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3719 {
3720 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3721
3722 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3723 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3724 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3725 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3726 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3727 }
3728
3729 __set_bit(VCPU_EXREG_PDPTR,
3730 (unsigned long *)&vcpu->arch.regs_avail);
3731 __set_bit(VCPU_EXREG_PDPTR,
3732 (unsigned long *)&vcpu->arch.regs_dirty);
3733 }
3734
3735 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3736
3737 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3738 unsigned long cr0,
3739 struct kvm_vcpu *vcpu)
3740 {
3741 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3742 vmx_decache_cr3(vcpu);
3743 if (!(cr0 & X86_CR0_PG)) {
3744 /* From paging/starting to nonpaging */
3745 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3746 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3747 (CPU_BASED_CR3_LOAD_EXITING |
3748 CPU_BASED_CR3_STORE_EXITING));
3749 vcpu->arch.cr0 = cr0;
3750 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3751 } else if (!is_paging(vcpu)) {
3752 /* From nonpaging to paging */
3753 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3754 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3755 ~(CPU_BASED_CR3_LOAD_EXITING |
3756 CPU_BASED_CR3_STORE_EXITING));
3757 vcpu->arch.cr0 = cr0;
3758 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3759 }
3760
3761 if (!(cr0 & X86_CR0_WP))
3762 *hw_cr0 &= ~X86_CR0_WP;
3763 }
3764
3765 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3766 {
3767 struct vcpu_vmx *vmx = to_vmx(vcpu);
3768 unsigned long hw_cr0;
3769
3770 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3771 if (enable_unrestricted_guest)
3772 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3773 else {
3774 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3775
3776 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3777 enter_pmode(vcpu);
3778
3779 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3780 enter_rmode(vcpu);
3781 }
3782
3783 #ifdef CONFIG_X86_64
3784 if (vcpu->arch.efer & EFER_LME) {
3785 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3786 enter_lmode(vcpu);
3787 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3788 exit_lmode(vcpu);
3789 }
3790 #endif
3791
3792 if (enable_ept)
3793 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3794
3795 if (!vcpu->fpu_active)
3796 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3797
3798 vmcs_writel(CR0_READ_SHADOW, cr0);
3799 vmcs_writel(GUEST_CR0, hw_cr0);
3800 vcpu->arch.cr0 = cr0;
3801
3802 /* depends on vcpu->arch.cr0 to be set to a new value */
3803 vmx->emulation_required = emulation_required(vcpu);
3804 }
3805
3806 static u64 construct_eptp(unsigned long root_hpa)
3807 {
3808 u64 eptp;
3809
3810 /* TODO write the value reading from MSR */
3811 eptp = VMX_EPT_DEFAULT_MT |
3812 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3813 if (enable_ept_ad_bits)
3814 eptp |= VMX_EPT_AD_ENABLE_BIT;
3815 eptp |= (root_hpa & PAGE_MASK);
3816
3817 return eptp;
3818 }
3819
3820 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3821 {
3822 unsigned long guest_cr3;
3823 u64 eptp;
3824
3825 guest_cr3 = cr3;
3826 if (enable_ept) {
3827 eptp = construct_eptp(cr3);
3828 vmcs_write64(EPT_POINTER, eptp);
3829 if (is_paging(vcpu) || is_guest_mode(vcpu))
3830 guest_cr3 = kvm_read_cr3(vcpu);
3831 else
3832 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3833 ept_load_pdptrs(vcpu);
3834 }
3835
3836 vmx_flush_tlb(vcpu);
3837 vmcs_writel(GUEST_CR3, guest_cr3);
3838 }
3839
3840 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3841 {
3842 /*
3843 * Pass through host's Machine Check Enable value to hw_cr4, which
3844 * is in force while we are in guest mode. Do not let guests control
3845 * this bit, even if host CR4.MCE == 0.
3846 */
3847 unsigned long hw_cr4 =
3848 (cr4_read_shadow() & X86_CR4_MCE) |
3849 (cr4 & ~X86_CR4_MCE) |
3850 (to_vmx(vcpu)->rmode.vm86_active ?
3851 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3852
3853 if (cr4 & X86_CR4_VMXE) {
3854 /*
3855 * To use VMXON (and later other VMX instructions), a guest
3856 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3857 * So basically the check on whether to allow nested VMX
3858 * is here.
3859 */
3860 if (!nested_vmx_allowed(vcpu))
3861 return 1;
3862 }
3863 if (to_vmx(vcpu)->nested.vmxon &&
3864 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3865 return 1;
3866
3867 vcpu->arch.cr4 = cr4;
3868 if (enable_ept) {
3869 if (!is_paging(vcpu)) {
3870 hw_cr4 &= ~X86_CR4_PAE;
3871 hw_cr4 |= X86_CR4_PSE;
3872 } else if (!(cr4 & X86_CR4_PAE)) {
3873 hw_cr4 &= ~X86_CR4_PAE;
3874 }
3875 }
3876
3877 if (!enable_unrestricted_guest && !is_paging(vcpu))
3878 /*
3879 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3880 * hardware. However KVM always uses paging mode without
3881 * unrestricted guest.
3882 * To emulate this behavior, SMEP/SMAP needs to be manually
3883 * disabled when guest switches to non-paging mode.
3884 */
3885 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3886
3887 vmcs_writel(CR4_READ_SHADOW, cr4);
3888 vmcs_writel(GUEST_CR4, hw_cr4);
3889 return 0;
3890 }
3891
3892 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3893 struct kvm_segment *var, int seg)
3894 {
3895 struct vcpu_vmx *vmx = to_vmx(vcpu);
3896 u32 ar;
3897
3898 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3899 *var = vmx->rmode.segs[seg];
3900 if (seg == VCPU_SREG_TR
3901 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3902 return;
3903 var->base = vmx_read_guest_seg_base(vmx, seg);
3904 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3905 return;
3906 }
3907 var->base = vmx_read_guest_seg_base(vmx, seg);
3908 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3909 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3910 ar = vmx_read_guest_seg_ar(vmx, seg);
3911 var->unusable = (ar >> 16) & 1;
3912 var->type = ar & 15;
3913 var->s = (ar >> 4) & 1;
3914 var->dpl = (ar >> 5) & 3;
3915 /*
3916 * Some userspaces do not preserve unusable property. Since usable
3917 * segment has to be present according to VMX spec we can use present
3918 * property to amend userspace bug by making unusable segment always
3919 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3920 * segment as unusable.
3921 */
3922 var->present = !var->unusable;
3923 var->avl = (ar >> 12) & 1;
3924 var->l = (ar >> 13) & 1;
3925 var->db = (ar >> 14) & 1;
3926 var->g = (ar >> 15) & 1;
3927 }
3928
3929 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3930 {
3931 struct kvm_segment s;
3932
3933 if (to_vmx(vcpu)->rmode.vm86_active) {
3934 vmx_get_segment(vcpu, &s, seg);
3935 return s.base;
3936 }
3937 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3938 }
3939
3940 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3941 {
3942 struct vcpu_vmx *vmx = to_vmx(vcpu);
3943
3944 if (unlikely(vmx->rmode.vm86_active))
3945 return 0;
3946 else {
3947 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3948 return VMX_AR_DPL(ar);
3949 }
3950 }
3951
3952 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3953 {
3954 u32 ar;
3955
3956 if (var->unusable || !var->present)
3957 ar = 1 << 16;
3958 else {
3959 ar = var->type & 15;
3960 ar |= (var->s & 1) << 4;
3961 ar |= (var->dpl & 3) << 5;
3962 ar |= (var->present & 1) << 7;
3963 ar |= (var->avl & 1) << 12;
3964 ar |= (var->l & 1) << 13;
3965 ar |= (var->db & 1) << 14;
3966 ar |= (var->g & 1) << 15;
3967 }
3968
3969 return ar;
3970 }
3971
3972 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3973 struct kvm_segment *var, int seg)
3974 {
3975 struct vcpu_vmx *vmx = to_vmx(vcpu);
3976 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3977
3978 vmx_segment_cache_clear(vmx);
3979
3980 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3981 vmx->rmode.segs[seg] = *var;
3982 if (seg == VCPU_SREG_TR)
3983 vmcs_write16(sf->selector, var->selector);
3984 else if (var->s)
3985 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3986 goto out;
3987 }
3988
3989 vmcs_writel(sf->base, var->base);
3990 vmcs_write32(sf->limit, var->limit);
3991 vmcs_write16(sf->selector, var->selector);
3992
3993 /*
3994 * Fix the "Accessed" bit in AR field of segment registers for older
3995 * qemu binaries.
3996 * IA32 arch specifies that at the time of processor reset the
3997 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3998 * is setting it to 0 in the userland code. This causes invalid guest
3999 * state vmexit when "unrestricted guest" mode is turned on.
4000 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4001 * tree. Newer qemu binaries with that qemu fix would not need this
4002 * kvm hack.
4003 */
4004 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4005 var->type |= 0x1; /* Accessed */
4006
4007 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4008
4009 out:
4010 vmx->emulation_required = emulation_required(vcpu);
4011 }
4012
4013 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4014 {
4015 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4016
4017 *db = (ar >> 14) & 1;
4018 *l = (ar >> 13) & 1;
4019 }
4020
4021 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4022 {
4023 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4024 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4025 }
4026
4027 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4028 {
4029 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4030 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4031 }
4032
4033 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4034 {
4035 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4036 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4037 }
4038
4039 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4040 {
4041 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4042 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4043 }
4044
4045 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4046 {
4047 struct kvm_segment var;
4048 u32 ar;
4049
4050 vmx_get_segment(vcpu, &var, seg);
4051 var.dpl = 0x3;
4052 if (seg == VCPU_SREG_CS)
4053 var.type = 0x3;
4054 ar = vmx_segment_access_rights(&var);
4055
4056 if (var.base != (var.selector << 4))
4057 return false;
4058 if (var.limit != 0xffff)
4059 return false;
4060 if (ar != 0xf3)
4061 return false;
4062
4063 return true;
4064 }
4065
4066 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4067 {
4068 struct kvm_segment cs;
4069 unsigned int cs_rpl;
4070
4071 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4072 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4073
4074 if (cs.unusable)
4075 return false;
4076 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4077 return false;
4078 if (!cs.s)
4079 return false;
4080 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4081 if (cs.dpl > cs_rpl)
4082 return false;
4083 } else {
4084 if (cs.dpl != cs_rpl)
4085 return false;
4086 }
4087 if (!cs.present)
4088 return false;
4089
4090 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4091 return true;
4092 }
4093
4094 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4095 {
4096 struct kvm_segment ss;
4097 unsigned int ss_rpl;
4098
4099 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4100 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4101
4102 if (ss.unusable)
4103 return true;
4104 if (ss.type != 3 && ss.type != 7)
4105 return false;
4106 if (!ss.s)
4107 return false;
4108 if (ss.dpl != ss_rpl) /* DPL != RPL */
4109 return false;
4110 if (!ss.present)
4111 return false;
4112
4113 return true;
4114 }
4115
4116 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4117 {
4118 struct kvm_segment var;
4119 unsigned int rpl;
4120
4121 vmx_get_segment(vcpu, &var, seg);
4122 rpl = var.selector & SEGMENT_RPL_MASK;
4123
4124 if (var.unusable)
4125 return true;
4126 if (!var.s)
4127 return false;
4128 if (!var.present)
4129 return false;
4130 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4131 if (var.dpl < rpl) /* DPL < RPL */
4132 return false;
4133 }
4134
4135 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4136 * rights flags
4137 */
4138 return true;
4139 }
4140
4141 static bool tr_valid(struct kvm_vcpu *vcpu)
4142 {
4143 struct kvm_segment tr;
4144
4145 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4146
4147 if (tr.unusable)
4148 return false;
4149 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4150 return false;
4151 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4152 return false;
4153 if (!tr.present)
4154 return false;
4155
4156 return true;
4157 }
4158
4159 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4160 {
4161 struct kvm_segment ldtr;
4162
4163 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4164
4165 if (ldtr.unusable)
4166 return true;
4167 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4168 return false;
4169 if (ldtr.type != 2)
4170 return false;
4171 if (!ldtr.present)
4172 return false;
4173
4174 return true;
4175 }
4176
4177 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4178 {
4179 struct kvm_segment cs, ss;
4180
4181 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4182 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4183
4184 return ((cs.selector & SEGMENT_RPL_MASK) ==
4185 (ss.selector & SEGMENT_RPL_MASK));
4186 }
4187
4188 /*
4189 * Check if guest state is valid. Returns true if valid, false if
4190 * not.
4191 * We assume that registers are always usable
4192 */
4193 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4194 {
4195 if (enable_unrestricted_guest)
4196 return true;
4197
4198 /* real mode guest state checks */
4199 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4200 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4201 return false;
4202 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4203 return false;
4204 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4205 return false;
4206 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4207 return false;
4208 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4209 return false;
4210 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4211 return false;
4212 } else {
4213 /* protected mode guest state checks */
4214 if (!cs_ss_rpl_check(vcpu))
4215 return false;
4216 if (!code_segment_valid(vcpu))
4217 return false;
4218 if (!stack_segment_valid(vcpu))
4219 return false;
4220 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4221 return false;
4222 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4223 return false;
4224 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4225 return false;
4226 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4227 return false;
4228 if (!tr_valid(vcpu))
4229 return false;
4230 if (!ldtr_valid(vcpu))
4231 return false;
4232 }
4233 /* TODO:
4234 * - Add checks on RIP
4235 * - Add checks on RFLAGS
4236 */
4237
4238 return true;
4239 }
4240
4241 static int init_rmode_tss(struct kvm *kvm)
4242 {
4243 gfn_t fn;
4244 u16 data = 0;
4245 int idx, r;
4246
4247 idx = srcu_read_lock(&kvm->srcu);
4248 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4249 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4250 if (r < 0)
4251 goto out;
4252 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4253 r = kvm_write_guest_page(kvm, fn++, &data,
4254 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4255 if (r < 0)
4256 goto out;
4257 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4258 if (r < 0)
4259 goto out;
4260 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4261 if (r < 0)
4262 goto out;
4263 data = ~0;
4264 r = kvm_write_guest_page(kvm, fn, &data,
4265 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4266 sizeof(u8));
4267 out:
4268 srcu_read_unlock(&kvm->srcu, idx);
4269 return r;
4270 }
4271
4272 static int init_rmode_identity_map(struct kvm *kvm)
4273 {
4274 int i, idx, r = 0;
4275 kvm_pfn_t identity_map_pfn;
4276 u32 tmp;
4277
4278 if (!enable_ept)
4279 return 0;
4280
4281 /* Protect kvm->arch.ept_identity_pagetable_done. */
4282 mutex_lock(&kvm->slots_lock);
4283
4284 if (likely(kvm->arch.ept_identity_pagetable_done))
4285 goto out2;
4286
4287 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4288
4289 r = alloc_identity_pagetable(kvm);
4290 if (r < 0)
4291 goto out2;
4292
4293 idx = srcu_read_lock(&kvm->srcu);
4294 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4295 if (r < 0)
4296 goto out;
4297 /* Set up identity-mapping pagetable for EPT in real mode */
4298 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4299 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4300 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4301 r = kvm_write_guest_page(kvm, identity_map_pfn,
4302 &tmp, i * sizeof(tmp), sizeof(tmp));
4303 if (r < 0)
4304 goto out;
4305 }
4306 kvm->arch.ept_identity_pagetable_done = true;
4307
4308 out:
4309 srcu_read_unlock(&kvm->srcu, idx);
4310
4311 out2:
4312 mutex_unlock(&kvm->slots_lock);
4313 return r;
4314 }
4315
4316 static void seg_setup(int seg)
4317 {
4318 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4319 unsigned int ar;
4320
4321 vmcs_write16(sf->selector, 0);
4322 vmcs_writel(sf->base, 0);
4323 vmcs_write32(sf->limit, 0xffff);
4324 ar = 0x93;
4325 if (seg == VCPU_SREG_CS)
4326 ar |= 0x08; /* code segment */
4327
4328 vmcs_write32(sf->ar_bytes, ar);
4329 }
4330
4331 static int alloc_apic_access_page(struct kvm *kvm)
4332 {
4333 struct page *page;
4334 int r = 0;
4335
4336 mutex_lock(&kvm->slots_lock);
4337 if (kvm->arch.apic_access_page_done)
4338 goto out;
4339 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4340 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4341 if (r)
4342 goto out;
4343
4344 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4345 if (is_error_page(page)) {
4346 r = -EFAULT;
4347 goto out;
4348 }
4349
4350 /*
4351 * Do not pin the page in memory, so that memory hot-unplug
4352 * is able to migrate it.
4353 */
4354 put_page(page);
4355 kvm->arch.apic_access_page_done = true;
4356 out:
4357 mutex_unlock(&kvm->slots_lock);
4358 return r;
4359 }
4360
4361 static int alloc_identity_pagetable(struct kvm *kvm)
4362 {
4363 /* Called with kvm->slots_lock held. */
4364
4365 int r = 0;
4366
4367 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4368
4369 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4370 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4371
4372 return r;
4373 }
4374
4375 static int allocate_vpid(void)
4376 {
4377 int vpid;
4378
4379 if (!enable_vpid)
4380 return 0;
4381 spin_lock(&vmx_vpid_lock);
4382 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4383 if (vpid < VMX_NR_VPIDS)
4384 __set_bit(vpid, vmx_vpid_bitmap);
4385 else
4386 vpid = 0;
4387 spin_unlock(&vmx_vpid_lock);
4388 return vpid;
4389 }
4390
4391 static void free_vpid(int vpid)
4392 {
4393 if (!enable_vpid || vpid == 0)
4394 return;
4395 spin_lock(&vmx_vpid_lock);
4396 __clear_bit(vpid, vmx_vpid_bitmap);
4397 spin_unlock(&vmx_vpid_lock);
4398 }
4399
4400 #define MSR_TYPE_R 1
4401 #define MSR_TYPE_W 2
4402 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4403 u32 msr, int type)
4404 {
4405 int f = sizeof(unsigned long);
4406
4407 if (!cpu_has_vmx_msr_bitmap())
4408 return;
4409
4410 /*
4411 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4412 * have the write-low and read-high bitmap offsets the wrong way round.
4413 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4414 */
4415 if (msr <= 0x1fff) {
4416 if (type & MSR_TYPE_R)
4417 /* read-low */
4418 __clear_bit(msr, msr_bitmap + 0x000 / f);
4419
4420 if (type & MSR_TYPE_W)
4421 /* write-low */
4422 __clear_bit(msr, msr_bitmap + 0x800 / f);
4423
4424 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4425 msr &= 0x1fff;
4426 if (type & MSR_TYPE_R)
4427 /* read-high */
4428 __clear_bit(msr, msr_bitmap + 0x400 / f);
4429
4430 if (type & MSR_TYPE_W)
4431 /* write-high */
4432 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4433
4434 }
4435 }
4436
4437 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4438 u32 msr, int type)
4439 {
4440 int f = sizeof(unsigned long);
4441
4442 if (!cpu_has_vmx_msr_bitmap())
4443 return;
4444
4445 /*
4446 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4447 * have the write-low and read-high bitmap offsets the wrong way round.
4448 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4449 */
4450 if (msr <= 0x1fff) {
4451 if (type & MSR_TYPE_R)
4452 /* read-low */
4453 __set_bit(msr, msr_bitmap + 0x000 / f);
4454
4455 if (type & MSR_TYPE_W)
4456 /* write-low */
4457 __set_bit(msr, msr_bitmap + 0x800 / f);
4458
4459 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4460 msr &= 0x1fff;
4461 if (type & MSR_TYPE_R)
4462 /* read-high */
4463 __set_bit(msr, msr_bitmap + 0x400 / f);
4464
4465 if (type & MSR_TYPE_W)
4466 /* write-high */
4467 __set_bit(msr, msr_bitmap + 0xc00 / f);
4468
4469 }
4470 }
4471
4472 /*
4473 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4474 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4475 */
4476 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4477 unsigned long *msr_bitmap_nested,
4478 u32 msr, int type)
4479 {
4480 int f = sizeof(unsigned long);
4481
4482 if (!cpu_has_vmx_msr_bitmap()) {
4483 WARN_ON(1);
4484 return;
4485 }
4486
4487 /*
4488 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4489 * have the write-low and read-high bitmap offsets the wrong way round.
4490 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4491 */
4492 if (msr <= 0x1fff) {
4493 if (type & MSR_TYPE_R &&
4494 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4495 /* read-low */
4496 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4497
4498 if (type & MSR_TYPE_W &&
4499 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4500 /* write-low */
4501 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4502
4503 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4504 msr &= 0x1fff;
4505 if (type & MSR_TYPE_R &&
4506 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4507 /* read-high */
4508 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4509
4510 if (type & MSR_TYPE_W &&
4511 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4512 /* write-high */
4513 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4514
4515 }
4516 }
4517
4518 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4519 {
4520 if (!longmode_only)
4521 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4522 msr, MSR_TYPE_R | MSR_TYPE_W);
4523 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4524 msr, MSR_TYPE_R | MSR_TYPE_W);
4525 }
4526
4527 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4528 {
4529 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4530 msr, MSR_TYPE_R);
4531 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4532 msr, MSR_TYPE_R);
4533 }
4534
4535 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4536 {
4537 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4538 msr, MSR_TYPE_R);
4539 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4540 msr, MSR_TYPE_R);
4541 }
4542
4543 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4544 {
4545 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4546 msr, MSR_TYPE_W);
4547 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4548 msr, MSR_TYPE_W);
4549 }
4550
4551 static bool vmx_get_enable_apicv(void)
4552 {
4553 return enable_apicv;
4554 }
4555
4556 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4557 {
4558 struct vcpu_vmx *vmx = to_vmx(vcpu);
4559 int max_irr;
4560 void *vapic_page;
4561 u16 status;
4562
4563 if (vmx->nested.pi_desc &&
4564 vmx->nested.pi_pending) {
4565 vmx->nested.pi_pending = false;
4566 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4567 return 0;
4568
4569 max_irr = find_last_bit(
4570 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4571
4572 if (max_irr == 256)
4573 return 0;
4574
4575 vapic_page = kmap(vmx->nested.virtual_apic_page);
4576 if (!vapic_page) {
4577 WARN_ON(1);
4578 return -ENOMEM;
4579 }
4580 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4581 kunmap(vmx->nested.virtual_apic_page);
4582
4583 status = vmcs_read16(GUEST_INTR_STATUS);
4584 if ((u8)max_irr > ((u8)status & 0xff)) {
4585 status &= ~0xff;
4586 status |= (u8)max_irr;
4587 vmcs_write16(GUEST_INTR_STATUS, status);
4588 }
4589 }
4590 return 0;
4591 }
4592
4593 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4594 {
4595 #ifdef CONFIG_SMP
4596 if (vcpu->mode == IN_GUEST_MODE) {
4597 struct vcpu_vmx *vmx = to_vmx(vcpu);
4598
4599 /*
4600 * Currently, we don't support urgent interrupt,
4601 * all interrupts are recognized as non-urgent
4602 * interrupt, so we cannot post interrupts when
4603 * 'SN' is set.
4604 *
4605 * If the vcpu is in guest mode, it means it is
4606 * running instead of being scheduled out and
4607 * waiting in the run queue, and that's the only
4608 * case when 'SN' is set currently, warning if
4609 * 'SN' is set.
4610 */
4611 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4612
4613 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4614 POSTED_INTR_VECTOR);
4615 return true;
4616 }
4617 #endif
4618 return false;
4619 }
4620
4621 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4622 int vector)
4623 {
4624 struct vcpu_vmx *vmx = to_vmx(vcpu);
4625
4626 if (is_guest_mode(vcpu) &&
4627 vector == vmx->nested.posted_intr_nv) {
4628 /* the PIR and ON have been set by L1. */
4629 kvm_vcpu_trigger_posted_interrupt(vcpu);
4630 /*
4631 * If a posted intr is not recognized by hardware,
4632 * we will accomplish it in the next vmentry.
4633 */
4634 vmx->nested.pi_pending = true;
4635 kvm_make_request(KVM_REQ_EVENT, vcpu);
4636 return 0;
4637 }
4638 return -1;
4639 }
4640 /*
4641 * Send interrupt to vcpu via posted interrupt way.
4642 * 1. If target vcpu is running(non-root mode), send posted interrupt
4643 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4644 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4645 * interrupt from PIR in next vmentry.
4646 */
4647 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4648 {
4649 struct vcpu_vmx *vmx = to_vmx(vcpu);
4650 int r;
4651
4652 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4653 if (!r)
4654 return;
4655
4656 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4657 return;
4658
4659 r = pi_test_and_set_on(&vmx->pi_desc);
4660 kvm_make_request(KVM_REQ_EVENT, vcpu);
4661 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4662 kvm_vcpu_kick(vcpu);
4663 }
4664
4665 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4666 {
4667 struct vcpu_vmx *vmx = to_vmx(vcpu);
4668
4669 if (!pi_test_and_clear_on(&vmx->pi_desc))
4670 return;
4671
4672 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4673 }
4674
4675 /*
4676 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4677 * will not change in the lifetime of the guest.
4678 * Note that host-state that does change is set elsewhere. E.g., host-state
4679 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4680 */
4681 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4682 {
4683 u32 low32, high32;
4684 unsigned long tmpl;
4685 struct desc_ptr dt;
4686 unsigned long cr4;
4687
4688 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4689 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4690
4691 /* Save the most likely value for this task's CR4 in the VMCS. */
4692 cr4 = cr4_read_shadow();
4693 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4694 vmx->host_state.vmcs_host_cr4 = cr4;
4695
4696 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4697 #ifdef CONFIG_X86_64
4698 /*
4699 * Load null selectors, so we can avoid reloading them in
4700 * __vmx_load_host_state(), in case userspace uses the null selectors
4701 * too (the expected case).
4702 */
4703 vmcs_write16(HOST_DS_SELECTOR, 0);
4704 vmcs_write16(HOST_ES_SELECTOR, 0);
4705 #else
4706 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4707 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4708 #endif
4709 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4710 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4711
4712 native_store_idt(&dt);
4713 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4714 vmx->host_idt_base = dt.address;
4715
4716 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4717
4718 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4719 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4720 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4721 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4722
4723 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4724 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4725 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4726 }
4727 }
4728
4729 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4730 {
4731 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4732 if (enable_ept)
4733 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4734 if (is_guest_mode(&vmx->vcpu))
4735 vmx->vcpu.arch.cr4_guest_owned_bits &=
4736 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4737 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4738 }
4739
4740 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4741 {
4742 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4743
4744 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4745 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4746 return pin_based_exec_ctrl;
4747 }
4748
4749 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4750 {
4751 struct vcpu_vmx *vmx = to_vmx(vcpu);
4752
4753 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4754 }
4755
4756 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4757 {
4758 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4759
4760 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4761 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4762
4763 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4764 exec_control &= ~CPU_BASED_TPR_SHADOW;
4765 #ifdef CONFIG_X86_64
4766 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4767 CPU_BASED_CR8_LOAD_EXITING;
4768 #endif
4769 }
4770 if (!enable_ept)
4771 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4772 CPU_BASED_CR3_LOAD_EXITING |
4773 CPU_BASED_INVLPG_EXITING;
4774 return exec_control;
4775 }
4776
4777 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4778 {
4779 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4780 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4781 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4782 if (vmx->vpid == 0)
4783 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4784 if (!enable_ept) {
4785 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4786 enable_unrestricted_guest = 0;
4787 /* Enable INVPCID for non-ept guests may cause performance regression. */
4788 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4789 }
4790 if (!enable_unrestricted_guest)
4791 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4792 if (!ple_gap)
4793 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4794 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4795 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4796 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4797 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4798 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4799 (handle_vmptrld).
4800 We can NOT enable shadow_vmcs here because we don't have yet
4801 a current VMCS12
4802 */
4803 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4804
4805 if (!enable_pml)
4806 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4807
4808 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4809 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4810
4811 return exec_control;
4812 }
4813
4814 static void ept_set_mmio_spte_mask(void)
4815 {
4816 /*
4817 * EPT Misconfigurations can be generated if the value of bits 2:0
4818 * of an EPT paging-structure entry is 110b (write/execute).
4819 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4820 * spte.
4821 */
4822 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4823 }
4824
4825 #define VMX_XSS_EXIT_BITMAP 0
4826 /*
4827 * Sets up the vmcs for emulated real mode.
4828 */
4829 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4830 {
4831 #ifdef CONFIG_X86_64
4832 unsigned long a;
4833 #endif
4834 int i;
4835
4836 /* I/O */
4837 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4838 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4839
4840 if (enable_shadow_vmcs) {
4841 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4842 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4843 }
4844 if (cpu_has_vmx_msr_bitmap())
4845 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4846
4847 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4848
4849 /* Control */
4850 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4851
4852 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4853
4854 if (cpu_has_secondary_exec_ctrls())
4855 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4856 vmx_secondary_exec_control(vmx));
4857
4858 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4859 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4860 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4861 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4862 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4863
4864 vmcs_write16(GUEST_INTR_STATUS, 0);
4865
4866 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4867 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4868 }
4869
4870 if (ple_gap) {
4871 vmcs_write32(PLE_GAP, ple_gap);
4872 vmx->ple_window = ple_window;
4873 vmx->ple_window_dirty = true;
4874 }
4875
4876 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4877 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4878 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4879
4880 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4881 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4882 vmx_set_constant_host_state(vmx);
4883 #ifdef CONFIG_X86_64
4884 rdmsrl(MSR_FS_BASE, a);
4885 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4886 rdmsrl(MSR_GS_BASE, a);
4887 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4888 #else
4889 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4890 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4891 #endif
4892
4893 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4894 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4895 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4896 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4897 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4898
4899 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4900 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4901
4902 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4903 u32 index = vmx_msr_index[i];
4904 u32 data_low, data_high;
4905 int j = vmx->nmsrs;
4906
4907 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4908 continue;
4909 if (wrmsr_safe(index, data_low, data_high) < 0)
4910 continue;
4911 vmx->guest_msrs[j].index = i;
4912 vmx->guest_msrs[j].data = 0;
4913 vmx->guest_msrs[j].mask = -1ull;
4914 ++vmx->nmsrs;
4915 }
4916
4917
4918 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4919
4920 /* 22.2.1, 20.8.1 */
4921 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4922
4923 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4924 set_cr4_guest_host_mask(vmx);
4925
4926 if (vmx_xsaves_supported())
4927 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4928
4929 return 0;
4930 }
4931
4932 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4933 {
4934 struct vcpu_vmx *vmx = to_vmx(vcpu);
4935 struct msr_data apic_base_msr;
4936 u64 cr0;
4937
4938 vmx->rmode.vm86_active = 0;
4939
4940 vmx->soft_vnmi_blocked = 0;
4941
4942 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4943 kvm_set_cr8(vcpu, 0);
4944
4945 if (!init_event) {
4946 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4947 MSR_IA32_APICBASE_ENABLE;
4948 if (kvm_vcpu_is_reset_bsp(vcpu))
4949 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4950 apic_base_msr.host_initiated = true;
4951 kvm_set_apic_base(vcpu, &apic_base_msr);
4952 }
4953
4954 vmx_segment_cache_clear(vmx);
4955
4956 seg_setup(VCPU_SREG_CS);
4957 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4958 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4959
4960 seg_setup(VCPU_SREG_DS);
4961 seg_setup(VCPU_SREG_ES);
4962 seg_setup(VCPU_SREG_FS);
4963 seg_setup(VCPU_SREG_GS);
4964 seg_setup(VCPU_SREG_SS);
4965
4966 vmcs_write16(GUEST_TR_SELECTOR, 0);
4967 vmcs_writel(GUEST_TR_BASE, 0);
4968 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4969 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4970
4971 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4972 vmcs_writel(GUEST_LDTR_BASE, 0);
4973 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4974 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4975
4976 if (!init_event) {
4977 vmcs_write32(GUEST_SYSENTER_CS, 0);
4978 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4979 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4980 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4981 }
4982
4983 vmcs_writel(GUEST_RFLAGS, 0x02);
4984 kvm_rip_write(vcpu, 0xfff0);
4985
4986 vmcs_writel(GUEST_GDTR_BASE, 0);
4987 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4988
4989 vmcs_writel(GUEST_IDTR_BASE, 0);
4990 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4991
4992 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4993 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4994 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4995
4996 setup_msrs(vmx);
4997
4998 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4999
5000 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5001 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5002 if (cpu_need_tpr_shadow(vcpu))
5003 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5004 __pa(vcpu->arch.apic->regs));
5005 vmcs_write32(TPR_THRESHOLD, 0);
5006 }
5007
5008 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5009
5010 if (kvm_vcpu_apicv_active(vcpu))
5011 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5012
5013 if (vmx->vpid != 0)
5014 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5015
5016 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5017 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5018 vmx->vcpu.arch.cr0 = cr0;
5019 vmx_set_cr4(vcpu, 0);
5020 vmx_set_efer(vcpu, 0);
5021 vmx_fpu_activate(vcpu);
5022 update_exception_bitmap(vcpu);
5023
5024 vpid_sync_context(vmx->vpid);
5025 }
5026
5027 /*
5028 * In nested virtualization, check if L1 asked to exit on external interrupts.
5029 * For most existing hypervisors, this will always return true.
5030 */
5031 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5032 {
5033 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5034 PIN_BASED_EXT_INTR_MASK;
5035 }
5036
5037 /*
5038 * In nested virtualization, check if L1 has set
5039 * VM_EXIT_ACK_INTR_ON_EXIT
5040 */
5041 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5042 {
5043 return get_vmcs12(vcpu)->vm_exit_controls &
5044 VM_EXIT_ACK_INTR_ON_EXIT;
5045 }
5046
5047 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5048 {
5049 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5050 PIN_BASED_NMI_EXITING;
5051 }
5052
5053 static void enable_irq_window(struct kvm_vcpu *vcpu)
5054 {
5055 u32 cpu_based_vm_exec_control;
5056
5057 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5058 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5059 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5060 }
5061
5062 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5063 {
5064 u32 cpu_based_vm_exec_control;
5065
5066 if (!cpu_has_virtual_nmis() ||
5067 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5068 enable_irq_window(vcpu);
5069 return;
5070 }
5071
5072 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5073 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5074 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5075 }
5076
5077 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5078 {
5079 struct vcpu_vmx *vmx = to_vmx(vcpu);
5080 uint32_t intr;
5081 int irq = vcpu->arch.interrupt.nr;
5082
5083 trace_kvm_inj_virq(irq);
5084
5085 ++vcpu->stat.irq_injections;
5086 if (vmx->rmode.vm86_active) {
5087 int inc_eip = 0;
5088 if (vcpu->arch.interrupt.soft)
5089 inc_eip = vcpu->arch.event_exit_inst_len;
5090 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5091 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5092 return;
5093 }
5094 intr = irq | INTR_INFO_VALID_MASK;
5095 if (vcpu->arch.interrupt.soft) {
5096 intr |= INTR_TYPE_SOFT_INTR;
5097 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5098 vmx->vcpu.arch.event_exit_inst_len);
5099 } else
5100 intr |= INTR_TYPE_EXT_INTR;
5101 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5102 }
5103
5104 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5105 {
5106 struct vcpu_vmx *vmx = to_vmx(vcpu);
5107
5108 if (is_guest_mode(vcpu))
5109 return;
5110
5111 if (!cpu_has_virtual_nmis()) {
5112 /*
5113 * Tracking the NMI-blocked state in software is built upon
5114 * finding the next open IRQ window. This, in turn, depends on
5115 * well-behaving guests: They have to keep IRQs disabled at
5116 * least as long as the NMI handler runs. Otherwise we may
5117 * cause NMI nesting, maybe breaking the guest. But as this is
5118 * highly unlikely, we can live with the residual risk.
5119 */
5120 vmx->soft_vnmi_blocked = 1;
5121 vmx->vnmi_blocked_time = 0;
5122 }
5123
5124 ++vcpu->stat.nmi_injections;
5125 vmx->nmi_known_unmasked = false;
5126 if (vmx->rmode.vm86_active) {
5127 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5128 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5129 return;
5130 }
5131 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5132 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5133 }
5134
5135 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5136 {
5137 if (!cpu_has_virtual_nmis())
5138 return to_vmx(vcpu)->soft_vnmi_blocked;
5139 if (to_vmx(vcpu)->nmi_known_unmasked)
5140 return false;
5141 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5142 }
5143
5144 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5145 {
5146 struct vcpu_vmx *vmx = to_vmx(vcpu);
5147
5148 if (!cpu_has_virtual_nmis()) {
5149 if (vmx->soft_vnmi_blocked != masked) {
5150 vmx->soft_vnmi_blocked = masked;
5151 vmx->vnmi_blocked_time = 0;
5152 }
5153 } else {
5154 vmx->nmi_known_unmasked = !masked;
5155 if (masked)
5156 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5157 GUEST_INTR_STATE_NMI);
5158 else
5159 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5160 GUEST_INTR_STATE_NMI);
5161 }
5162 }
5163
5164 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5165 {
5166 if (to_vmx(vcpu)->nested.nested_run_pending)
5167 return 0;
5168
5169 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5170 return 0;
5171
5172 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5173 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5174 | GUEST_INTR_STATE_NMI));
5175 }
5176
5177 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5178 {
5179 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5180 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5181 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5182 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5183 }
5184
5185 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5186 {
5187 int ret;
5188
5189 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5190 PAGE_SIZE * 3);
5191 if (ret)
5192 return ret;
5193 kvm->arch.tss_addr = addr;
5194 return init_rmode_tss(kvm);
5195 }
5196
5197 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5198 {
5199 switch (vec) {
5200 case BP_VECTOR:
5201 /*
5202 * Update instruction length as we may reinject the exception
5203 * from user space while in guest debugging mode.
5204 */
5205 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5206 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5207 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5208 return false;
5209 /* fall through */
5210 case DB_VECTOR:
5211 if (vcpu->guest_debug &
5212 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5213 return false;
5214 /* fall through */
5215 case DE_VECTOR:
5216 case OF_VECTOR:
5217 case BR_VECTOR:
5218 case UD_VECTOR:
5219 case DF_VECTOR:
5220 case SS_VECTOR:
5221 case GP_VECTOR:
5222 case MF_VECTOR:
5223 return true;
5224 break;
5225 }
5226 return false;
5227 }
5228
5229 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5230 int vec, u32 err_code)
5231 {
5232 /*
5233 * Instruction with address size override prefix opcode 0x67
5234 * Cause the #SS fault with 0 error code in VM86 mode.
5235 */
5236 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5237 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5238 if (vcpu->arch.halt_request) {
5239 vcpu->arch.halt_request = 0;
5240 return kvm_vcpu_halt(vcpu);
5241 }
5242 return 1;
5243 }
5244 return 0;
5245 }
5246
5247 /*
5248 * Forward all other exceptions that are valid in real mode.
5249 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5250 * the required debugging infrastructure rework.
5251 */
5252 kvm_queue_exception(vcpu, vec);
5253 return 1;
5254 }
5255
5256 /*
5257 * Trigger machine check on the host. We assume all the MSRs are already set up
5258 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5259 * We pass a fake environment to the machine check handler because we want
5260 * the guest to be always treated like user space, no matter what context
5261 * it used internally.
5262 */
5263 static void kvm_machine_check(void)
5264 {
5265 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5266 struct pt_regs regs = {
5267 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5268 .flags = X86_EFLAGS_IF,
5269 };
5270
5271 do_machine_check(&regs, 0);
5272 #endif
5273 }
5274
5275 static int handle_machine_check(struct kvm_vcpu *vcpu)
5276 {
5277 /* already handled by vcpu_run */
5278 return 1;
5279 }
5280
5281 static int handle_exception(struct kvm_vcpu *vcpu)
5282 {
5283 struct vcpu_vmx *vmx = to_vmx(vcpu);
5284 struct kvm_run *kvm_run = vcpu->run;
5285 u32 intr_info, ex_no, error_code;
5286 unsigned long cr2, rip, dr6;
5287 u32 vect_info;
5288 enum emulation_result er;
5289
5290 vect_info = vmx->idt_vectoring_info;
5291 intr_info = vmx->exit_intr_info;
5292
5293 if (is_machine_check(intr_info))
5294 return handle_machine_check(vcpu);
5295
5296 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5297 return 1; /* already handled by vmx_vcpu_run() */
5298
5299 if (is_no_device(intr_info)) {
5300 vmx_fpu_activate(vcpu);
5301 return 1;
5302 }
5303
5304 if (is_invalid_opcode(intr_info)) {
5305 if (is_guest_mode(vcpu)) {
5306 kvm_queue_exception(vcpu, UD_VECTOR);
5307 return 1;
5308 }
5309 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5310 if (er != EMULATE_DONE)
5311 kvm_queue_exception(vcpu, UD_VECTOR);
5312 return 1;
5313 }
5314
5315 error_code = 0;
5316 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5317 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5318
5319 /*
5320 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5321 * MMIO, it is better to report an internal error.
5322 * See the comments in vmx_handle_exit.
5323 */
5324 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5325 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5326 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5327 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5328 vcpu->run->internal.ndata = 3;
5329 vcpu->run->internal.data[0] = vect_info;
5330 vcpu->run->internal.data[1] = intr_info;
5331 vcpu->run->internal.data[2] = error_code;
5332 return 0;
5333 }
5334
5335 if (is_page_fault(intr_info)) {
5336 /* EPT won't cause page fault directly */
5337 BUG_ON(enable_ept);
5338 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5339 trace_kvm_page_fault(cr2, error_code);
5340
5341 if (kvm_event_needs_reinjection(vcpu))
5342 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5343 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5344 }
5345
5346 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5347
5348 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5349 return handle_rmode_exception(vcpu, ex_no, error_code);
5350
5351 switch (ex_no) {
5352 case AC_VECTOR:
5353 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5354 return 1;
5355 case DB_VECTOR:
5356 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5357 if (!(vcpu->guest_debug &
5358 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5359 vcpu->arch.dr6 &= ~15;
5360 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5361 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5362 skip_emulated_instruction(vcpu);
5363
5364 kvm_queue_exception(vcpu, DB_VECTOR);
5365 return 1;
5366 }
5367 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5368 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5369 /* fall through */
5370 case BP_VECTOR:
5371 /*
5372 * Update instruction length as we may reinject #BP from
5373 * user space while in guest debugging mode. Reading it for
5374 * #DB as well causes no harm, it is not used in that case.
5375 */
5376 vmx->vcpu.arch.event_exit_inst_len =
5377 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5378 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5379 rip = kvm_rip_read(vcpu);
5380 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5381 kvm_run->debug.arch.exception = ex_no;
5382 break;
5383 default:
5384 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5385 kvm_run->ex.exception = ex_no;
5386 kvm_run->ex.error_code = error_code;
5387 break;
5388 }
5389 return 0;
5390 }
5391
5392 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5393 {
5394 ++vcpu->stat.irq_exits;
5395 return 1;
5396 }
5397
5398 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5399 {
5400 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5401 return 0;
5402 }
5403
5404 static int handle_io(struct kvm_vcpu *vcpu)
5405 {
5406 unsigned long exit_qualification;
5407 int size, in, string;
5408 unsigned port;
5409
5410 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5411 string = (exit_qualification & 16) != 0;
5412 in = (exit_qualification & 8) != 0;
5413
5414 ++vcpu->stat.io_exits;
5415
5416 if (string || in)
5417 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5418
5419 port = exit_qualification >> 16;
5420 size = (exit_qualification & 7) + 1;
5421 skip_emulated_instruction(vcpu);
5422
5423 return kvm_fast_pio_out(vcpu, size, port);
5424 }
5425
5426 static void
5427 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5428 {
5429 /*
5430 * Patch in the VMCALL instruction:
5431 */
5432 hypercall[0] = 0x0f;
5433 hypercall[1] = 0x01;
5434 hypercall[2] = 0xc1;
5435 }
5436
5437 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5438 {
5439 unsigned long always_on = VMXON_CR0_ALWAYSON;
5440 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5441
5442 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5443 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5444 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5445 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5446 return (val & always_on) == always_on;
5447 }
5448
5449 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5450 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5451 {
5452 if (is_guest_mode(vcpu)) {
5453 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5454 unsigned long orig_val = val;
5455
5456 /*
5457 * We get here when L2 changed cr0 in a way that did not change
5458 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5459 * but did change L0 shadowed bits. So we first calculate the
5460 * effective cr0 value that L1 would like to write into the
5461 * hardware. It consists of the L2-owned bits from the new
5462 * value combined with the L1-owned bits from L1's guest_cr0.
5463 */
5464 val = (val & ~vmcs12->cr0_guest_host_mask) |
5465 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5466
5467 if (!nested_cr0_valid(vcpu, val))
5468 return 1;
5469
5470 if (kvm_set_cr0(vcpu, val))
5471 return 1;
5472 vmcs_writel(CR0_READ_SHADOW, orig_val);
5473 return 0;
5474 } else {
5475 if (to_vmx(vcpu)->nested.vmxon &&
5476 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5477 return 1;
5478 return kvm_set_cr0(vcpu, val);
5479 }
5480 }
5481
5482 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5483 {
5484 if (is_guest_mode(vcpu)) {
5485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5486 unsigned long orig_val = val;
5487
5488 /* analogously to handle_set_cr0 */
5489 val = (val & ~vmcs12->cr4_guest_host_mask) |
5490 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5491 if (kvm_set_cr4(vcpu, val))
5492 return 1;
5493 vmcs_writel(CR4_READ_SHADOW, orig_val);
5494 return 0;
5495 } else
5496 return kvm_set_cr4(vcpu, val);
5497 }
5498
5499 /* called to set cr0 as approriate for clts instruction exit. */
5500 static void handle_clts(struct kvm_vcpu *vcpu)
5501 {
5502 if (is_guest_mode(vcpu)) {
5503 /*
5504 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5505 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5506 * just pretend it's off (also in arch.cr0 for fpu_activate).
5507 */
5508 vmcs_writel(CR0_READ_SHADOW,
5509 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5510 vcpu->arch.cr0 &= ~X86_CR0_TS;
5511 } else
5512 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5513 }
5514
5515 static int handle_cr(struct kvm_vcpu *vcpu)
5516 {
5517 unsigned long exit_qualification, val;
5518 int cr;
5519 int reg;
5520 int err;
5521
5522 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5523 cr = exit_qualification & 15;
5524 reg = (exit_qualification >> 8) & 15;
5525 switch ((exit_qualification >> 4) & 3) {
5526 case 0: /* mov to cr */
5527 val = kvm_register_readl(vcpu, reg);
5528 trace_kvm_cr_write(cr, val);
5529 switch (cr) {
5530 case 0:
5531 err = handle_set_cr0(vcpu, val);
5532 kvm_complete_insn_gp(vcpu, err);
5533 return 1;
5534 case 3:
5535 err = kvm_set_cr3(vcpu, val);
5536 kvm_complete_insn_gp(vcpu, err);
5537 return 1;
5538 case 4:
5539 err = handle_set_cr4(vcpu, val);
5540 kvm_complete_insn_gp(vcpu, err);
5541 return 1;
5542 case 8: {
5543 u8 cr8_prev = kvm_get_cr8(vcpu);
5544 u8 cr8 = (u8)val;
5545 err = kvm_set_cr8(vcpu, cr8);
5546 kvm_complete_insn_gp(vcpu, err);
5547 if (lapic_in_kernel(vcpu))
5548 return 1;
5549 if (cr8_prev <= cr8)
5550 return 1;
5551 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5552 return 0;
5553 }
5554 }
5555 break;
5556 case 2: /* clts */
5557 handle_clts(vcpu);
5558 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5559 skip_emulated_instruction(vcpu);
5560 vmx_fpu_activate(vcpu);
5561 return 1;
5562 case 1: /*mov from cr*/
5563 switch (cr) {
5564 case 3:
5565 val = kvm_read_cr3(vcpu);
5566 kvm_register_write(vcpu, reg, val);
5567 trace_kvm_cr_read(cr, val);
5568 skip_emulated_instruction(vcpu);
5569 return 1;
5570 case 8:
5571 val = kvm_get_cr8(vcpu);
5572 kvm_register_write(vcpu, reg, val);
5573 trace_kvm_cr_read(cr, val);
5574 skip_emulated_instruction(vcpu);
5575 return 1;
5576 }
5577 break;
5578 case 3: /* lmsw */
5579 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5580 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5581 kvm_lmsw(vcpu, val);
5582
5583 skip_emulated_instruction(vcpu);
5584 return 1;
5585 default:
5586 break;
5587 }
5588 vcpu->run->exit_reason = 0;
5589 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5590 (int)(exit_qualification >> 4) & 3, cr);
5591 return 0;
5592 }
5593
5594 static int handle_dr(struct kvm_vcpu *vcpu)
5595 {
5596 unsigned long exit_qualification;
5597 int dr, dr7, reg;
5598
5599 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5600 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5601
5602 /* First, if DR does not exist, trigger UD */
5603 if (!kvm_require_dr(vcpu, dr))
5604 return 1;
5605
5606 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5607 if (!kvm_require_cpl(vcpu, 0))
5608 return 1;
5609 dr7 = vmcs_readl(GUEST_DR7);
5610 if (dr7 & DR7_GD) {
5611 /*
5612 * As the vm-exit takes precedence over the debug trap, we
5613 * need to emulate the latter, either for the host or the
5614 * guest debugging itself.
5615 */
5616 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5617 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5618 vcpu->run->debug.arch.dr7 = dr7;
5619 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5620 vcpu->run->debug.arch.exception = DB_VECTOR;
5621 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5622 return 0;
5623 } else {
5624 vcpu->arch.dr6 &= ~15;
5625 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5626 kvm_queue_exception(vcpu, DB_VECTOR);
5627 return 1;
5628 }
5629 }
5630
5631 if (vcpu->guest_debug == 0) {
5632 u32 cpu_based_vm_exec_control;
5633
5634 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5635 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5636 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5637
5638 /*
5639 * No more DR vmexits; force a reload of the debug registers
5640 * and reenter on this instruction. The next vmexit will
5641 * retrieve the full state of the debug registers.
5642 */
5643 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5644 return 1;
5645 }
5646
5647 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5648 if (exit_qualification & TYPE_MOV_FROM_DR) {
5649 unsigned long val;
5650
5651 if (kvm_get_dr(vcpu, dr, &val))
5652 return 1;
5653 kvm_register_write(vcpu, reg, val);
5654 } else
5655 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5656 return 1;
5657
5658 skip_emulated_instruction(vcpu);
5659 return 1;
5660 }
5661
5662 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5663 {
5664 return vcpu->arch.dr6;
5665 }
5666
5667 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5668 {
5669 }
5670
5671 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5672 {
5673 u32 cpu_based_vm_exec_control;
5674
5675 get_debugreg(vcpu->arch.db[0], 0);
5676 get_debugreg(vcpu->arch.db[1], 1);
5677 get_debugreg(vcpu->arch.db[2], 2);
5678 get_debugreg(vcpu->arch.db[3], 3);
5679 get_debugreg(vcpu->arch.dr6, 6);
5680 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5681
5682 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5683
5684 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5685 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5686 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5687 }
5688
5689 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5690 {
5691 vmcs_writel(GUEST_DR7, val);
5692 }
5693
5694 static int handle_cpuid(struct kvm_vcpu *vcpu)
5695 {
5696 kvm_emulate_cpuid(vcpu);
5697 return 1;
5698 }
5699
5700 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5701 {
5702 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5703 struct msr_data msr_info;
5704
5705 msr_info.index = ecx;
5706 msr_info.host_initiated = false;
5707 if (vmx_get_msr(vcpu, &msr_info)) {
5708 trace_kvm_msr_read_ex(ecx);
5709 kvm_inject_gp(vcpu, 0);
5710 return 1;
5711 }
5712
5713 trace_kvm_msr_read(ecx, msr_info.data);
5714
5715 /* FIXME: handling of bits 32:63 of rax, rdx */
5716 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5717 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5718 skip_emulated_instruction(vcpu);
5719 return 1;
5720 }
5721
5722 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5723 {
5724 struct msr_data msr;
5725 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5726 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5727 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5728
5729 msr.data = data;
5730 msr.index = ecx;
5731 msr.host_initiated = false;
5732 if (kvm_set_msr(vcpu, &msr) != 0) {
5733 trace_kvm_msr_write_ex(ecx, data);
5734 kvm_inject_gp(vcpu, 0);
5735 return 1;
5736 }
5737
5738 trace_kvm_msr_write(ecx, data);
5739 skip_emulated_instruction(vcpu);
5740 return 1;
5741 }
5742
5743 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5744 {
5745 kvm_make_request(KVM_REQ_EVENT, vcpu);
5746 return 1;
5747 }
5748
5749 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5750 {
5751 u32 cpu_based_vm_exec_control;
5752
5753 /* clear pending irq */
5754 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5755 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5756 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5757
5758 kvm_make_request(KVM_REQ_EVENT, vcpu);
5759
5760 ++vcpu->stat.irq_window_exits;
5761 return 1;
5762 }
5763
5764 static int handle_halt(struct kvm_vcpu *vcpu)
5765 {
5766 return kvm_emulate_halt(vcpu);
5767 }
5768
5769 static int handle_vmcall(struct kvm_vcpu *vcpu)
5770 {
5771 kvm_emulate_hypercall(vcpu);
5772 return 1;
5773 }
5774
5775 static int handle_invd(struct kvm_vcpu *vcpu)
5776 {
5777 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5778 }
5779
5780 static int handle_invlpg(struct kvm_vcpu *vcpu)
5781 {
5782 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5783
5784 kvm_mmu_invlpg(vcpu, exit_qualification);
5785 skip_emulated_instruction(vcpu);
5786 return 1;
5787 }
5788
5789 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5790 {
5791 int err;
5792
5793 err = kvm_rdpmc(vcpu);
5794 kvm_complete_insn_gp(vcpu, err);
5795
5796 return 1;
5797 }
5798
5799 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5800 {
5801 kvm_emulate_wbinvd(vcpu);
5802 return 1;
5803 }
5804
5805 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5806 {
5807 u64 new_bv = kvm_read_edx_eax(vcpu);
5808 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5809
5810 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5811 skip_emulated_instruction(vcpu);
5812 return 1;
5813 }
5814
5815 static int handle_xsaves(struct kvm_vcpu *vcpu)
5816 {
5817 skip_emulated_instruction(vcpu);
5818 WARN(1, "this should never happen\n");
5819 return 1;
5820 }
5821
5822 static int handle_xrstors(struct kvm_vcpu *vcpu)
5823 {
5824 skip_emulated_instruction(vcpu);
5825 WARN(1, "this should never happen\n");
5826 return 1;
5827 }
5828
5829 static int handle_apic_access(struct kvm_vcpu *vcpu)
5830 {
5831 if (likely(fasteoi)) {
5832 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5833 int access_type, offset;
5834
5835 access_type = exit_qualification & APIC_ACCESS_TYPE;
5836 offset = exit_qualification & APIC_ACCESS_OFFSET;
5837 /*
5838 * Sane guest uses MOV to write EOI, with written value
5839 * not cared. So make a short-circuit here by avoiding
5840 * heavy instruction emulation.
5841 */
5842 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5843 (offset == APIC_EOI)) {
5844 kvm_lapic_set_eoi(vcpu);
5845 skip_emulated_instruction(vcpu);
5846 return 1;
5847 }
5848 }
5849 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5850 }
5851
5852 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5853 {
5854 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5855 int vector = exit_qualification & 0xff;
5856
5857 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5858 kvm_apic_set_eoi_accelerated(vcpu, vector);
5859 return 1;
5860 }
5861
5862 static int handle_apic_write(struct kvm_vcpu *vcpu)
5863 {
5864 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5865 u32 offset = exit_qualification & 0xfff;
5866
5867 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5868 kvm_apic_write_nodecode(vcpu, offset);
5869 return 1;
5870 }
5871
5872 static int handle_task_switch(struct kvm_vcpu *vcpu)
5873 {
5874 struct vcpu_vmx *vmx = to_vmx(vcpu);
5875 unsigned long exit_qualification;
5876 bool has_error_code = false;
5877 u32 error_code = 0;
5878 u16 tss_selector;
5879 int reason, type, idt_v, idt_index;
5880
5881 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5882 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5883 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5884
5885 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5886
5887 reason = (u32)exit_qualification >> 30;
5888 if (reason == TASK_SWITCH_GATE && idt_v) {
5889 switch (type) {
5890 case INTR_TYPE_NMI_INTR:
5891 vcpu->arch.nmi_injected = false;
5892 vmx_set_nmi_mask(vcpu, true);
5893 break;
5894 case INTR_TYPE_EXT_INTR:
5895 case INTR_TYPE_SOFT_INTR:
5896 kvm_clear_interrupt_queue(vcpu);
5897 break;
5898 case INTR_TYPE_HARD_EXCEPTION:
5899 if (vmx->idt_vectoring_info &
5900 VECTORING_INFO_DELIVER_CODE_MASK) {
5901 has_error_code = true;
5902 error_code =
5903 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5904 }
5905 /* fall through */
5906 case INTR_TYPE_SOFT_EXCEPTION:
5907 kvm_clear_exception_queue(vcpu);
5908 break;
5909 default:
5910 break;
5911 }
5912 }
5913 tss_selector = exit_qualification;
5914
5915 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5916 type != INTR_TYPE_EXT_INTR &&
5917 type != INTR_TYPE_NMI_INTR))
5918 skip_emulated_instruction(vcpu);
5919
5920 if (kvm_task_switch(vcpu, tss_selector,
5921 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5922 has_error_code, error_code) == EMULATE_FAIL) {
5923 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5924 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5925 vcpu->run->internal.ndata = 0;
5926 return 0;
5927 }
5928
5929 /*
5930 * TODO: What about debug traps on tss switch?
5931 * Are we supposed to inject them and update dr6?
5932 */
5933
5934 return 1;
5935 }
5936
5937 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5938 {
5939 unsigned long exit_qualification;
5940 gpa_t gpa;
5941 u32 error_code;
5942 int gla_validity;
5943
5944 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5945
5946 gla_validity = (exit_qualification >> 7) & 0x3;
5947 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5948 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5949 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5950 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5951 vmcs_readl(GUEST_LINEAR_ADDRESS));
5952 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5953 (long unsigned int)exit_qualification);
5954 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5955 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5956 return 0;
5957 }
5958
5959 /*
5960 * EPT violation happened while executing iret from NMI,
5961 * "blocked by NMI" bit has to be set before next VM entry.
5962 * There are errata that may cause this bit to not be set:
5963 * AAK134, BY25.
5964 */
5965 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5966 cpu_has_virtual_nmis() &&
5967 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5968 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5969
5970 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5971 trace_kvm_page_fault(gpa, exit_qualification);
5972
5973 /* It is a write fault? */
5974 error_code = exit_qualification & PFERR_WRITE_MASK;
5975 /* It is a fetch fault? */
5976 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5977 /* ept page table is present? */
5978 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5979
5980 vcpu->arch.exit_qualification = exit_qualification;
5981
5982 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5983 }
5984
5985 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5986 {
5987 int ret;
5988 gpa_t gpa;
5989
5990 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5991 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5992 skip_emulated_instruction(vcpu);
5993 trace_kvm_fast_mmio(gpa);
5994 return 1;
5995 }
5996
5997 ret = handle_mmio_page_fault(vcpu, gpa, true);
5998 if (likely(ret == RET_MMIO_PF_EMULATE))
5999 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6000 EMULATE_DONE;
6001
6002 if (unlikely(ret == RET_MMIO_PF_INVALID))
6003 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6004
6005 if (unlikely(ret == RET_MMIO_PF_RETRY))
6006 return 1;
6007
6008 /* It is the real ept misconfig */
6009 WARN_ON(1);
6010
6011 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6012 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6013
6014 return 0;
6015 }
6016
6017 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6018 {
6019 u32 cpu_based_vm_exec_control;
6020
6021 /* clear pending NMI */
6022 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6023 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6024 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6025 ++vcpu->stat.nmi_window_exits;
6026 kvm_make_request(KVM_REQ_EVENT, vcpu);
6027
6028 return 1;
6029 }
6030
6031 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6032 {
6033 struct vcpu_vmx *vmx = to_vmx(vcpu);
6034 enum emulation_result err = EMULATE_DONE;
6035 int ret = 1;
6036 u32 cpu_exec_ctrl;
6037 bool intr_window_requested;
6038 unsigned count = 130;
6039
6040 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6041 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6042
6043 while (vmx->emulation_required && count-- != 0) {
6044 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6045 return handle_interrupt_window(&vmx->vcpu);
6046
6047 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6048 return 1;
6049
6050 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6051
6052 if (err == EMULATE_USER_EXIT) {
6053 ++vcpu->stat.mmio_exits;
6054 ret = 0;
6055 goto out;
6056 }
6057
6058 if (err != EMULATE_DONE) {
6059 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6060 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6061 vcpu->run->internal.ndata = 0;
6062 return 0;
6063 }
6064
6065 if (vcpu->arch.halt_request) {
6066 vcpu->arch.halt_request = 0;
6067 ret = kvm_vcpu_halt(vcpu);
6068 goto out;
6069 }
6070
6071 if (signal_pending(current))
6072 goto out;
6073 if (need_resched())
6074 schedule();
6075 }
6076
6077 out:
6078 return ret;
6079 }
6080
6081 static int __grow_ple_window(int val)
6082 {
6083 if (ple_window_grow < 1)
6084 return ple_window;
6085
6086 val = min(val, ple_window_actual_max);
6087
6088 if (ple_window_grow < ple_window)
6089 val *= ple_window_grow;
6090 else
6091 val += ple_window_grow;
6092
6093 return val;
6094 }
6095
6096 static int __shrink_ple_window(int val, int modifier, int minimum)
6097 {
6098 if (modifier < 1)
6099 return ple_window;
6100
6101 if (modifier < ple_window)
6102 val /= modifier;
6103 else
6104 val -= modifier;
6105
6106 return max(val, minimum);
6107 }
6108
6109 static void grow_ple_window(struct kvm_vcpu *vcpu)
6110 {
6111 struct vcpu_vmx *vmx = to_vmx(vcpu);
6112 int old = vmx->ple_window;
6113
6114 vmx->ple_window = __grow_ple_window(old);
6115
6116 if (vmx->ple_window != old)
6117 vmx->ple_window_dirty = true;
6118
6119 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6120 }
6121
6122 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6123 {
6124 struct vcpu_vmx *vmx = to_vmx(vcpu);
6125 int old = vmx->ple_window;
6126
6127 vmx->ple_window = __shrink_ple_window(old,
6128 ple_window_shrink, ple_window);
6129
6130 if (vmx->ple_window != old)
6131 vmx->ple_window_dirty = true;
6132
6133 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6134 }
6135
6136 /*
6137 * ple_window_actual_max is computed to be one grow_ple_window() below
6138 * ple_window_max. (See __grow_ple_window for the reason.)
6139 * This prevents overflows, because ple_window_max is int.
6140 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6141 * this process.
6142 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6143 */
6144 static void update_ple_window_actual_max(void)
6145 {
6146 ple_window_actual_max =
6147 __shrink_ple_window(max(ple_window_max, ple_window),
6148 ple_window_grow, INT_MIN);
6149 }
6150
6151 /*
6152 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6153 */
6154 static void wakeup_handler(void)
6155 {
6156 struct kvm_vcpu *vcpu;
6157 int cpu = smp_processor_id();
6158
6159 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6160 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6161 blocked_vcpu_list) {
6162 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6163
6164 if (pi_test_on(pi_desc) == 1)
6165 kvm_vcpu_kick(vcpu);
6166 }
6167 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6168 }
6169
6170 static __init int hardware_setup(void)
6171 {
6172 int r = -ENOMEM, i, msr;
6173
6174 rdmsrl_safe(MSR_EFER, &host_efer);
6175
6176 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6177 kvm_define_shared_msr(i, vmx_msr_index[i]);
6178
6179 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6180 if (!vmx_io_bitmap_a)
6181 return r;
6182
6183 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6184 if (!vmx_io_bitmap_b)
6185 goto out;
6186
6187 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6188 if (!vmx_msr_bitmap_legacy)
6189 goto out1;
6190
6191 vmx_msr_bitmap_legacy_x2apic =
6192 (unsigned long *)__get_free_page(GFP_KERNEL);
6193 if (!vmx_msr_bitmap_legacy_x2apic)
6194 goto out2;
6195
6196 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6197 if (!vmx_msr_bitmap_longmode)
6198 goto out3;
6199
6200 vmx_msr_bitmap_longmode_x2apic =
6201 (unsigned long *)__get_free_page(GFP_KERNEL);
6202 if (!vmx_msr_bitmap_longmode_x2apic)
6203 goto out4;
6204
6205 if (nested) {
6206 vmx_msr_bitmap_nested =
6207 (unsigned long *)__get_free_page(GFP_KERNEL);
6208 if (!vmx_msr_bitmap_nested)
6209 goto out5;
6210 }
6211
6212 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6213 if (!vmx_vmread_bitmap)
6214 goto out6;
6215
6216 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6217 if (!vmx_vmwrite_bitmap)
6218 goto out7;
6219
6220 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6221 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6222
6223 /*
6224 * Allow direct access to the PC debug port (it is often used for I/O
6225 * delays, but the vmexits simply slow things down).
6226 */
6227 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6228 clear_bit(0x80, vmx_io_bitmap_a);
6229
6230 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6231
6232 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6233 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6234 if (nested)
6235 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6236
6237 if (setup_vmcs_config(&vmcs_config) < 0) {
6238 r = -EIO;
6239 goto out8;
6240 }
6241
6242 if (boot_cpu_has(X86_FEATURE_NX))
6243 kvm_enable_efer_bits(EFER_NX);
6244
6245 if (!cpu_has_vmx_vpid())
6246 enable_vpid = 0;
6247 if (!cpu_has_vmx_shadow_vmcs())
6248 enable_shadow_vmcs = 0;
6249 if (enable_shadow_vmcs)
6250 init_vmcs_shadow_fields();
6251
6252 if (!cpu_has_vmx_ept() ||
6253 !cpu_has_vmx_ept_4levels()) {
6254 enable_ept = 0;
6255 enable_unrestricted_guest = 0;
6256 enable_ept_ad_bits = 0;
6257 }
6258
6259 if (!cpu_has_vmx_ept_ad_bits())
6260 enable_ept_ad_bits = 0;
6261
6262 if (!cpu_has_vmx_unrestricted_guest())
6263 enable_unrestricted_guest = 0;
6264
6265 if (!cpu_has_vmx_flexpriority())
6266 flexpriority_enabled = 0;
6267
6268 /*
6269 * set_apic_access_page_addr() is used to reload apic access
6270 * page upon invalidation. No need to do anything if not
6271 * using the APIC_ACCESS_ADDR VMCS field.
6272 */
6273 if (!flexpriority_enabled)
6274 kvm_x86_ops->set_apic_access_page_addr = NULL;
6275
6276 if (!cpu_has_vmx_tpr_shadow())
6277 kvm_x86_ops->update_cr8_intercept = NULL;
6278
6279 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6280 kvm_disable_largepages();
6281
6282 if (!cpu_has_vmx_ple())
6283 ple_gap = 0;
6284
6285 if (!cpu_has_vmx_apicv())
6286 enable_apicv = 0;
6287
6288 if (cpu_has_vmx_tsc_scaling()) {
6289 kvm_has_tsc_control = true;
6290 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6291 kvm_tsc_scaling_ratio_frac_bits = 48;
6292 }
6293
6294 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6295 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6296 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6297 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6298 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6299 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6300 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6301
6302 memcpy(vmx_msr_bitmap_legacy_x2apic,
6303 vmx_msr_bitmap_legacy, PAGE_SIZE);
6304 memcpy(vmx_msr_bitmap_longmode_x2apic,
6305 vmx_msr_bitmap_longmode, PAGE_SIZE);
6306
6307 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6308
6309 if (enable_apicv) {
6310 for (msr = 0x800; msr <= 0x8ff; msr++)
6311 vmx_disable_intercept_msr_read_x2apic(msr);
6312
6313 /* According SDM, in x2apic mode, the whole id reg is used.
6314 * But in KVM, it only use the highest eight bits. Need to
6315 * intercept it */
6316 vmx_enable_intercept_msr_read_x2apic(0x802);
6317 /* TMCCT */
6318 vmx_enable_intercept_msr_read_x2apic(0x839);
6319 /* TPR */
6320 vmx_disable_intercept_msr_write_x2apic(0x808);
6321 /* EOI */
6322 vmx_disable_intercept_msr_write_x2apic(0x80b);
6323 /* SELF-IPI */
6324 vmx_disable_intercept_msr_write_x2apic(0x83f);
6325 }
6326
6327 if (enable_ept) {
6328 kvm_mmu_set_mask_ptes(0ull,
6329 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6330 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6331 0ull, VMX_EPT_EXECUTABLE_MASK);
6332 ept_set_mmio_spte_mask();
6333 kvm_enable_tdp();
6334 } else
6335 kvm_disable_tdp();
6336
6337 update_ple_window_actual_max();
6338
6339 /*
6340 * Only enable PML when hardware supports PML feature, and both EPT
6341 * and EPT A/D bit features are enabled -- PML depends on them to work.
6342 */
6343 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6344 enable_pml = 0;
6345
6346 if (!enable_pml) {
6347 kvm_x86_ops->slot_enable_log_dirty = NULL;
6348 kvm_x86_ops->slot_disable_log_dirty = NULL;
6349 kvm_x86_ops->flush_log_dirty = NULL;
6350 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6351 }
6352
6353 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6354
6355 return alloc_kvm_area();
6356
6357 out8:
6358 free_page((unsigned long)vmx_vmwrite_bitmap);
6359 out7:
6360 free_page((unsigned long)vmx_vmread_bitmap);
6361 out6:
6362 if (nested)
6363 free_page((unsigned long)vmx_msr_bitmap_nested);
6364 out5:
6365 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6366 out4:
6367 free_page((unsigned long)vmx_msr_bitmap_longmode);
6368 out3:
6369 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6370 out2:
6371 free_page((unsigned long)vmx_msr_bitmap_legacy);
6372 out1:
6373 free_page((unsigned long)vmx_io_bitmap_b);
6374 out:
6375 free_page((unsigned long)vmx_io_bitmap_a);
6376
6377 return r;
6378 }
6379
6380 static __exit void hardware_unsetup(void)
6381 {
6382 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6383 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6384 free_page((unsigned long)vmx_msr_bitmap_legacy);
6385 free_page((unsigned long)vmx_msr_bitmap_longmode);
6386 free_page((unsigned long)vmx_io_bitmap_b);
6387 free_page((unsigned long)vmx_io_bitmap_a);
6388 free_page((unsigned long)vmx_vmwrite_bitmap);
6389 free_page((unsigned long)vmx_vmread_bitmap);
6390 if (nested)
6391 free_page((unsigned long)vmx_msr_bitmap_nested);
6392
6393 free_kvm_area();
6394 }
6395
6396 /*
6397 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6398 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6399 */
6400 static int handle_pause(struct kvm_vcpu *vcpu)
6401 {
6402 if (ple_gap)
6403 grow_ple_window(vcpu);
6404
6405 skip_emulated_instruction(vcpu);
6406 kvm_vcpu_on_spin(vcpu);
6407
6408 return 1;
6409 }
6410
6411 static int handle_nop(struct kvm_vcpu *vcpu)
6412 {
6413 skip_emulated_instruction(vcpu);
6414 return 1;
6415 }
6416
6417 static int handle_mwait(struct kvm_vcpu *vcpu)
6418 {
6419 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6420 return handle_nop(vcpu);
6421 }
6422
6423 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6424 {
6425 return 1;
6426 }
6427
6428 static int handle_monitor(struct kvm_vcpu *vcpu)
6429 {
6430 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6431 return handle_nop(vcpu);
6432 }
6433
6434 /*
6435 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6436 * We could reuse a single VMCS for all the L2 guests, but we also want the
6437 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6438 * allows keeping them loaded on the processor, and in the future will allow
6439 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6440 * every entry if they never change.
6441 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6442 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6443 *
6444 * The following functions allocate and free a vmcs02 in this pool.
6445 */
6446
6447 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6448 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6449 {
6450 struct vmcs02_list *item;
6451 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6452 if (item->vmptr == vmx->nested.current_vmptr) {
6453 list_move(&item->list, &vmx->nested.vmcs02_pool);
6454 return &item->vmcs02;
6455 }
6456
6457 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6458 /* Recycle the least recently used VMCS. */
6459 item = list_entry(vmx->nested.vmcs02_pool.prev,
6460 struct vmcs02_list, list);
6461 item->vmptr = vmx->nested.current_vmptr;
6462 list_move(&item->list, &vmx->nested.vmcs02_pool);
6463 return &item->vmcs02;
6464 }
6465
6466 /* Create a new VMCS */
6467 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6468 if (!item)
6469 return NULL;
6470 item->vmcs02.vmcs = alloc_vmcs();
6471 if (!item->vmcs02.vmcs) {
6472 kfree(item);
6473 return NULL;
6474 }
6475 loaded_vmcs_init(&item->vmcs02);
6476 item->vmptr = vmx->nested.current_vmptr;
6477 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6478 vmx->nested.vmcs02_num++;
6479 return &item->vmcs02;
6480 }
6481
6482 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6483 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6484 {
6485 struct vmcs02_list *item;
6486 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6487 if (item->vmptr == vmptr) {
6488 free_loaded_vmcs(&item->vmcs02);
6489 list_del(&item->list);
6490 kfree(item);
6491 vmx->nested.vmcs02_num--;
6492 return;
6493 }
6494 }
6495
6496 /*
6497 * Free all VMCSs saved for this vcpu, except the one pointed by
6498 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6499 * must be &vmx->vmcs01.
6500 */
6501 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6502 {
6503 struct vmcs02_list *item, *n;
6504
6505 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6506 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6507 /*
6508 * Something will leak if the above WARN triggers. Better than
6509 * a use-after-free.
6510 */
6511 if (vmx->loaded_vmcs == &item->vmcs02)
6512 continue;
6513
6514 free_loaded_vmcs(&item->vmcs02);
6515 list_del(&item->list);
6516 kfree(item);
6517 vmx->nested.vmcs02_num--;
6518 }
6519 }
6520
6521 /*
6522 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6523 * set the success or error code of an emulated VMX instruction, as specified
6524 * by Vol 2B, VMX Instruction Reference, "Conventions".
6525 */
6526 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6527 {
6528 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6529 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6530 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6531 }
6532
6533 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6534 {
6535 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6536 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6537 X86_EFLAGS_SF | X86_EFLAGS_OF))
6538 | X86_EFLAGS_CF);
6539 }
6540
6541 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6542 u32 vm_instruction_error)
6543 {
6544 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6545 /*
6546 * failValid writes the error number to the current VMCS, which
6547 * can't be done there isn't a current VMCS.
6548 */
6549 nested_vmx_failInvalid(vcpu);
6550 return;
6551 }
6552 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6553 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6554 X86_EFLAGS_SF | X86_EFLAGS_OF))
6555 | X86_EFLAGS_ZF);
6556 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6557 /*
6558 * We don't need to force a shadow sync because
6559 * VM_INSTRUCTION_ERROR is not shadowed
6560 */
6561 }
6562
6563 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6564 {
6565 /* TODO: not to reset guest simply here. */
6566 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6567 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6568 }
6569
6570 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6571 {
6572 struct vcpu_vmx *vmx =
6573 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6574
6575 vmx->nested.preemption_timer_expired = true;
6576 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6577 kvm_vcpu_kick(&vmx->vcpu);
6578
6579 return HRTIMER_NORESTART;
6580 }
6581
6582 /*
6583 * Decode the memory-address operand of a vmx instruction, as recorded on an
6584 * exit caused by such an instruction (run by a guest hypervisor).
6585 * On success, returns 0. When the operand is invalid, returns 1 and throws
6586 * #UD or #GP.
6587 */
6588 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6589 unsigned long exit_qualification,
6590 u32 vmx_instruction_info, bool wr, gva_t *ret)
6591 {
6592 gva_t off;
6593 bool exn;
6594 struct kvm_segment s;
6595
6596 /*
6597 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6598 * Execution", on an exit, vmx_instruction_info holds most of the
6599 * addressing components of the operand. Only the displacement part
6600 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6601 * For how an actual address is calculated from all these components,
6602 * refer to Vol. 1, "Operand Addressing".
6603 */
6604 int scaling = vmx_instruction_info & 3;
6605 int addr_size = (vmx_instruction_info >> 7) & 7;
6606 bool is_reg = vmx_instruction_info & (1u << 10);
6607 int seg_reg = (vmx_instruction_info >> 15) & 7;
6608 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6609 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6610 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6611 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6612
6613 if (is_reg) {
6614 kvm_queue_exception(vcpu, UD_VECTOR);
6615 return 1;
6616 }
6617
6618 /* Addr = segment_base + offset */
6619 /* offset = base + [index * scale] + displacement */
6620 off = exit_qualification; /* holds the displacement */
6621 if (base_is_valid)
6622 off += kvm_register_read(vcpu, base_reg);
6623 if (index_is_valid)
6624 off += kvm_register_read(vcpu, index_reg)<<scaling;
6625 vmx_get_segment(vcpu, &s, seg_reg);
6626 *ret = s.base + off;
6627
6628 if (addr_size == 1) /* 32 bit */
6629 *ret &= 0xffffffff;
6630
6631 /* Checks for #GP/#SS exceptions. */
6632 exn = false;
6633 if (is_protmode(vcpu)) {
6634 /* Protected mode: apply checks for segment validity in the
6635 * following order:
6636 * - segment type check (#GP(0) may be thrown)
6637 * - usability check (#GP(0)/#SS(0))
6638 * - limit check (#GP(0)/#SS(0))
6639 */
6640 if (wr)
6641 /* #GP(0) if the destination operand is located in a
6642 * read-only data segment or any code segment.
6643 */
6644 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6645 else
6646 /* #GP(0) if the source operand is located in an
6647 * execute-only code segment
6648 */
6649 exn = ((s.type & 0xa) == 8);
6650 }
6651 if (exn) {
6652 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6653 return 1;
6654 }
6655 if (is_long_mode(vcpu)) {
6656 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6657 * non-canonical form. This is an only check for long mode.
6658 */
6659 exn = is_noncanonical_address(*ret);
6660 } else if (is_protmode(vcpu)) {
6661 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6662 */
6663 exn = (s.unusable != 0);
6664 /* Protected mode: #GP(0)/#SS(0) if the memory
6665 * operand is outside the segment limit.
6666 */
6667 exn = exn || (off + sizeof(u64) > s.limit);
6668 }
6669 if (exn) {
6670 kvm_queue_exception_e(vcpu,
6671 seg_reg == VCPU_SREG_SS ?
6672 SS_VECTOR : GP_VECTOR,
6673 0);
6674 return 1;
6675 }
6676
6677 return 0;
6678 }
6679
6680 /*
6681 * This function performs the various checks including
6682 * - if it's 4KB aligned
6683 * - No bits beyond the physical address width are set
6684 * - Returns 0 on success or else 1
6685 * (Intel SDM Section 30.3)
6686 */
6687 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6688 gpa_t *vmpointer)
6689 {
6690 gva_t gva;
6691 gpa_t vmptr;
6692 struct x86_exception e;
6693 struct page *page;
6694 struct vcpu_vmx *vmx = to_vmx(vcpu);
6695 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6696
6697 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6698 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6699 return 1;
6700
6701 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6702 sizeof(vmptr), &e)) {
6703 kvm_inject_page_fault(vcpu, &e);
6704 return 1;
6705 }
6706
6707 switch (exit_reason) {
6708 case EXIT_REASON_VMON:
6709 /*
6710 * SDM 3: 24.11.5
6711 * The first 4 bytes of VMXON region contain the supported
6712 * VMCS revision identifier
6713 *
6714 * Note - IA32_VMX_BASIC[48] will never be 1
6715 * for the nested case;
6716 * which replaces physical address width with 32
6717 *
6718 */
6719 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6720 nested_vmx_failInvalid(vcpu);
6721 skip_emulated_instruction(vcpu);
6722 return 1;
6723 }
6724
6725 page = nested_get_page(vcpu, vmptr);
6726 if (page == NULL ||
6727 *(u32 *)kmap(page) != VMCS12_REVISION) {
6728 nested_vmx_failInvalid(vcpu);
6729 kunmap(page);
6730 skip_emulated_instruction(vcpu);
6731 return 1;
6732 }
6733 kunmap(page);
6734 vmx->nested.vmxon_ptr = vmptr;
6735 break;
6736 case EXIT_REASON_VMCLEAR:
6737 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6738 nested_vmx_failValid(vcpu,
6739 VMXERR_VMCLEAR_INVALID_ADDRESS);
6740 skip_emulated_instruction(vcpu);
6741 return 1;
6742 }
6743
6744 if (vmptr == vmx->nested.vmxon_ptr) {
6745 nested_vmx_failValid(vcpu,
6746 VMXERR_VMCLEAR_VMXON_POINTER);
6747 skip_emulated_instruction(vcpu);
6748 return 1;
6749 }
6750 break;
6751 case EXIT_REASON_VMPTRLD:
6752 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6753 nested_vmx_failValid(vcpu,
6754 VMXERR_VMPTRLD_INVALID_ADDRESS);
6755 skip_emulated_instruction(vcpu);
6756 return 1;
6757 }
6758
6759 if (vmptr == vmx->nested.vmxon_ptr) {
6760 nested_vmx_failValid(vcpu,
6761 VMXERR_VMCLEAR_VMXON_POINTER);
6762 skip_emulated_instruction(vcpu);
6763 return 1;
6764 }
6765 break;
6766 default:
6767 return 1; /* shouldn't happen */
6768 }
6769
6770 if (vmpointer)
6771 *vmpointer = vmptr;
6772 return 0;
6773 }
6774
6775 /*
6776 * Emulate the VMXON instruction.
6777 * Currently, we just remember that VMX is active, and do not save or even
6778 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6779 * do not currently need to store anything in that guest-allocated memory
6780 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6781 * argument is different from the VMXON pointer (which the spec says they do).
6782 */
6783 static int handle_vmon(struct kvm_vcpu *vcpu)
6784 {
6785 struct kvm_segment cs;
6786 struct vcpu_vmx *vmx = to_vmx(vcpu);
6787 struct vmcs *shadow_vmcs;
6788 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6789 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6790
6791 /* The Intel VMX Instruction Reference lists a bunch of bits that
6792 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6793 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6794 * Otherwise, we should fail with #UD. We test these now:
6795 */
6796 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6797 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6798 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6799 kvm_queue_exception(vcpu, UD_VECTOR);
6800 return 1;
6801 }
6802
6803 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6804 if (is_long_mode(vcpu) && !cs.l) {
6805 kvm_queue_exception(vcpu, UD_VECTOR);
6806 return 1;
6807 }
6808
6809 if (vmx_get_cpl(vcpu)) {
6810 kvm_inject_gp(vcpu, 0);
6811 return 1;
6812 }
6813
6814 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6815 return 1;
6816
6817 if (vmx->nested.vmxon) {
6818 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6819 skip_emulated_instruction(vcpu);
6820 return 1;
6821 }
6822
6823 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6824 != VMXON_NEEDED_FEATURES) {
6825 kvm_inject_gp(vcpu, 0);
6826 return 1;
6827 }
6828
6829 if (enable_shadow_vmcs) {
6830 shadow_vmcs = alloc_vmcs();
6831 if (!shadow_vmcs)
6832 return -ENOMEM;
6833 /* mark vmcs as shadow */
6834 shadow_vmcs->revision_id |= (1u << 31);
6835 /* init shadow vmcs */
6836 vmcs_clear(shadow_vmcs);
6837 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6838 }
6839
6840 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6841 vmx->nested.vmcs02_num = 0;
6842
6843 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6844 HRTIMER_MODE_REL);
6845 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6846
6847 vmx->nested.vmxon = true;
6848
6849 skip_emulated_instruction(vcpu);
6850 nested_vmx_succeed(vcpu);
6851 return 1;
6852 }
6853
6854 /*
6855 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6856 * for running VMX instructions (except VMXON, whose prerequisites are
6857 * slightly different). It also specifies what exception to inject otherwise.
6858 */
6859 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6860 {
6861 struct kvm_segment cs;
6862 struct vcpu_vmx *vmx = to_vmx(vcpu);
6863
6864 if (!vmx->nested.vmxon) {
6865 kvm_queue_exception(vcpu, UD_VECTOR);
6866 return 0;
6867 }
6868
6869 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6870 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6871 (is_long_mode(vcpu) && !cs.l)) {
6872 kvm_queue_exception(vcpu, UD_VECTOR);
6873 return 0;
6874 }
6875
6876 if (vmx_get_cpl(vcpu)) {
6877 kvm_inject_gp(vcpu, 0);
6878 return 0;
6879 }
6880
6881 return 1;
6882 }
6883
6884 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6885 {
6886 if (vmx->nested.current_vmptr == -1ull)
6887 return;
6888
6889 /* current_vmptr and current_vmcs12 are always set/reset together */
6890 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6891 return;
6892
6893 if (enable_shadow_vmcs) {
6894 /* copy to memory all shadowed fields in case
6895 they were modified */
6896 copy_shadow_to_vmcs12(vmx);
6897 vmx->nested.sync_shadow_vmcs = false;
6898 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6899 SECONDARY_EXEC_SHADOW_VMCS);
6900 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6901 }
6902 vmx->nested.posted_intr_nv = -1;
6903 kunmap(vmx->nested.current_vmcs12_page);
6904 nested_release_page(vmx->nested.current_vmcs12_page);
6905 vmx->nested.current_vmptr = -1ull;
6906 vmx->nested.current_vmcs12 = NULL;
6907 }
6908
6909 /*
6910 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6911 * just stops using VMX.
6912 */
6913 static void free_nested(struct vcpu_vmx *vmx)
6914 {
6915 if (!vmx->nested.vmxon)
6916 return;
6917
6918 vmx->nested.vmxon = false;
6919 free_vpid(vmx->nested.vpid02);
6920 nested_release_vmcs12(vmx);
6921 if (enable_shadow_vmcs)
6922 free_vmcs(vmx->nested.current_shadow_vmcs);
6923 /* Unpin physical memory we referred to in current vmcs02 */
6924 if (vmx->nested.apic_access_page) {
6925 nested_release_page(vmx->nested.apic_access_page);
6926 vmx->nested.apic_access_page = NULL;
6927 }
6928 if (vmx->nested.virtual_apic_page) {
6929 nested_release_page(vmx->nested.virtual_apic_page);
6930 vmx->nested.virtual_apic_page = NULL;
6931 }
6932 if (vmx->nested.pi_desc_page) {
6933 kunmap(vmx->nested.pi_desc_page);
6934 nested_release_page(vmx->nested.pi_desc_page);
6935 vmx->nested.pi_desc_page = NULL;
6936 vmx->nested.pi_desc = NULL;
6937 }
6938
6939 nested_free_all_saved_vmcss(vmx);
6940 }
6941
6942 /* Emulate the VMXOFF instruction */
6943 static int handle_vmoff(struct kvm_vcpu *vcpu)
6944 {
6945 if (!nested_vmx_check_permission(vcpu))
6946 return 1;
6947 free_nested(to_vmx(vcpu));
6948 skip_emulated_instruction(vcpu);
6949 nested_vmx_succeed(vcpu);
6950 return 1;
6951 }
6952
6953 /* Emulate the VMCLEAR instruction */
6954 static int handle_vmclear(struct kvm_vcpu *vcpu)
6955 {
6956 struct vcpu_vmx *vmx = to_vmx(vcpu);
6957 gpa_t vmptr;
6958 struct vmcs12 *vmcs12;
6959 struct page *page;
6960
6961 if (!nested_vmx_check_permission(vcpu))
6962 return 1;
6963
6964 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6965 return 1;
6966
6967 if (vmptr == vmx->nested.current_vmptr)
6968 nested_release_vmcs12(vmx);
6969
6970 page = nested_get_page(vcpu, vmptr);
6971 if (page == NULL) {
6972 /*
6973 * For accurate processor emulation, VMCLEAR beyond available
6974 * physical memory should do nothing at all. However, it is
6975 * possible that a nested vmx bug, not a guest hypervisor bug,
6976 * resulted in this case, so let's shut down before doing any
6977 * more damage:
6978 */
6979 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6980 return 1;
6981 }
6982 vmcs12 = kmap(page);
6983 vmcs12->launch_state = 0;
6984 kunmap(page);
6985 nested_release_page(page);
6986
6987 nested_free_vmcs02(vmx, vmptr);
6988
6989 skip_emulated_instruction(vcpu);
6990 nested_vmx_succeed(vcpu);
6991 return 1;
6992 }
6993
6994 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6995
6996 /* Emulate the VMLAUNCH instruction */
6997 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6998 {
6999 return nested_vmx_run(vcpu, true);
7000 }
7001
7002 /* Emulate the VMRESUME instruction */
7003 static int handle_vmresume(struct kvm_vcpu *vcpu)
7004 {
7005
7006 return nested_vmx_run(vcpu, false);
7007 }
7008
7009 enum vmcs_field_type {
7010 VMCS_FIELD_TYPE_U16 = 0,
7011 VMCS_FIELD_TYPE_U64 = 1,
7012 VMCS_FIELD_TYPE_U32 = 2,
7013 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7014 };
7015
7016 static inline int vmcs_field_type(unsigned long field)
7017 {
7018 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7019 return VMCS_FIELD_TYPE_U32;
7020 return (field >> 13) & 0x3 ;
7021 }
7022
7023 static inline int vmcs_field_readonly(unsigned long field)
7024 {
7025 return (((field >> 10) & 0x3) == 1);
7026 }
7027
7028 /*
7029 * Read a vmcs12 field. Since these can have varying lengths and we return
7030 * one type, we chose the biggest type (u64) and zero-extend the return value
7031 * to that size. Note that the caller, handle_vmread, might need to use only
7032 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7033 * 64-bit fields are to be returned).
7034 */
7035 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7036 unsigned long field, u64 *ret)
7037 {
7038 short offset = vmcs_field_to_offset(field);
7039 char *p;
7040
7041 if (offset < 0)
7042 return offset;
7043
7044 p = ((char *)(get_vmcs12(vcpu))) + offset;
7045
7046 switch (vmcs_field_type(field)) {
7047 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7048 *ret = *((natural_width *)p);
7049 return 0;
7050 case VMCS_FIELD_TYPE_U16:
7051 *ret = *((u16 *)p);
7052 return 0;
7053 case VMCS_FIELD_TYPE_U32:
7054 *ret = *((u32 *)p);
7055 return 0;
7056 case VMCS_FIELD_TYPE_U64:
7057 *ret = *((u64 *)p);
7058 return 0;
7059 default:
7060 WARN_ON(1);
7061 return -ENOENT;
7062 }
7063 }
7064
7065
7066 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7067 unsigned long field, u64 field_value){
7068 short offset = vmcs_field_to_offset(field);
7069 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7070 if (offset < 0)
7071 return offset;
7072
7073 switch (vmcs_field_type(field)) {
7074 case VMCS_FIELD_TYPE_U16:
7075 *(u16 *)p = field_value;
7076 return 0;
7077 case VMCS_FIELD_TYPE_U32:
7078 *(u32 *)p = field_value;
7079 return 0;
7080 case VMCS_FIELD_TYPE_U64:
7081 *(u64 *)p = field_value;
7082 return 0;
7083 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7084 *(natural_width *)p = field_value;
7085 return 0;
7086 default:
7087 WARN_ON(1);
7088 return -ENOENT;
7089 }
7090
7091 }
7092
7093 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7094 {
7095 int i;
7096 unsigned long field;
7097 u64 field_value;
7098 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7099 const unsigned long *fields = shadow_read_write_fields;
7100 const int num_fields = max_shadow_read_write_fields;
7101
7102 preempt_disable();
7103
7104 vmcs_load(shadow_vmcs);
7105
7106 for (i = 0; i < num_fields; i++) {
7107 field = fields[i];
7108 switch (vmcs_field_type(field)) {
7109 case VMCS_FIELD_TYPE_U16:
7110 field_value = vmcs_read16(field);
7111 break;
7112 case VMCS_FIELD_TYPE_U32:
7113 field_value = vmcs_read32(field);
7114 break;
7115 case VMCS_FIELD_TYPE_U64:
7116 field_value = vmcs_read64(field);
7117 break;
7118 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7119 field_value = vmcs_readl(field);
7120 break;
7121 default:
7122 WARN_ON(1);
7123 continue;
7124 }
7125 vmcs12_write_any(&vmx->vcpu, field, field_value);
7126 }
7127
7128 vmcs_clear(shadow_vmcs);
7129 vmcs_load(vmx->loaded_vmcs->vmcs);
7130
7131 preempt_enable();
7132 }
7133
7134 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7135 {
7136 const unsigned long *fields[] = {
7137 shadow_read_write_fields,
7138 shadow_read_only_fields
7139 };
7140 const int max_fields[] = {
7141 max_shadow_read_write_fields,
7142 max_shadow_read_only_fields
7143 };
7144 int i, q;
7145 unsigned long field;
7146 u64 field_value = 0;
7147 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7148
7149 vmcs_load(shadow_vmcs);
7150
7151 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7152 for (i = 0; i < max_fields[q]; i++) {
7153 field = fields[q][i];
7154 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7155
7156 switch (vmcs_field_type(field)) {
7157 case VMCS_FIELD_TYPE_U16:
7158 vmcs_write16(field, (u16)field_value);
7159 break;
7160 case VMCS_FIELD_TYPE_U32:
7161 vmcs_write32(field, (u32)field_value);
7162 break;
7163 case VMCS_FIELD_TYPE_U64:
7164 vmcs_write64(field, (u64)field_value);
7165 break;
7166 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7167 vmcs_writel(field, (long)field_value);
7168 break;
7169 default:
7170 WARN_ON(1);
7171 break;
7172 }
7173 }
7174 }
7175
7176 vmcs_clear(shadow_vmcs);
7177 vmcs_load(vmx->loaded_vmcs->vmcs);
7178 }
7179
7180 /*
7181 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7182 * used before) all generate the same failure when it is missing.
7183 */
7184 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7185 {
7186 struct vcpu_vmx *vmx = to_vmx(vcpu);
7187 if (vmx->nested.current_vmptr == -1ull) {
7188 nested_vmx_failInvalid(vcpu);
7189 skip_emulated_instruction(vcpu);
7190 return 0;
7191 }
7192 return 1;
7193 }
7194
7195 static int handle_vmread(struct kvm_vcpu *vcpu)
7196 {
7197 unsigned long field;
7198 u64 field_value;
7199 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7200 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7201 gva_t gva = 0;
7202
7203 if (!nested_vmx_check_permission(vcpu) ||
7204 !nested_vmx_check_vmcs12(vcpu))
7205 return 1;
7206
7207 /* Decode instruction info and find the field to read */
7208 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7209 /* Read the field, zero-extended to a u64 field_value */
7210 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7211 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7212 skip_emulated_instruction(vcpu);
7213 return 1;
7214 }
7215 /*
7216 * Now copy part of this value to register or memory, as requested.
7217 * Note that the number of bits actually copied is 32 or 64 depending
7218 * on the guest's mode (32 or 64 bit), not on the given field's length.
7219 */
7220 if (vmx_instruction_info & (1u << 10)) {
7221 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7222 field_value);
7223 } else {
7224 if (get_vmx_mem_address(vcpu, exit_qualification,
7225 vmx_instruction_info, true, &gva))
7226 return 1;
7227 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7228 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7229 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7230 }
7231
7232 nested_vmx_succeed(vcpu);
7233 skip_emulated_instruction(vcpu);
7234 return 1;
7235 }
7236
7237
7238 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7239 {
7240 unsigned long field;
7241 gva_t gva;
7242 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7243 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7244 /* The value to write might be 32 or 64 bits, depending on L1's long
7245 * mode, and eventually we need to write that into a field of several
7246 * possible lengths. The code below first zero-extends the value to 64
7247 * bit (field_value), and then copies only the approriate number of
7248 * bits into the vmcs12 field.
7249 */
7250 u64 field_value = 0;
7251 struct x86_exception e;
7252
7253 if (!nested_vmx_check_permission(vcpu) ||
7254 !nested_vmx_check_vmcs12(vcpu))
7255 return 1;
7256
7257 if (vmx_instruction_info & (1u << 10))
7258 field_value = kvm_register_readl(vcpu,
7259 (((vmx_instruction_info) >> 3) & 0xf));
7260 else {
7261 if (get_vmx_mem_address(vcpu, exit_qualification,
7262 vmx_instruction_info, false, &gva))
7263 return 1;
7264 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7265 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7266 kvm_inject_page_fault(vcpu, &e);
7267 return 1;
7268 }
7269 }
7270
7271
7272 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7273 if (vmcs_field_readonly(field)) {
7274 nested_vmx_failValid(vcpu,
7275 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7276 skip_emulated_instruction(vcpu);
7277 return 1;
7278 }
7279
7280 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7281 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7282 skip_emulated_instruction(vcpu);
7283 return 1;
7284 }
7285
7286 nested_vmx_succeed(vcpu);
7287 skip_emulated_instruction(vcpu);
7288 return 1;
7289 }
7290
7291 /* Emulate the VMPTRLD instruction */
7292 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7293 {
7294 struct vcpu_vmx *vmx = to_vmx(vcpu);
7295 gpa_t vmptr;
7296
7297 if (!nested_vmx_check_permission(vcpu))
7298 return 1;
7299
7300 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7301 return 1;
7302
7303 if (vmx->nested.current_vmptr != vmptr) {
7304 struct vmcs12 *new_vmcs12;
7305 struct page *page;
7306 page = nested_get_page(vcpu, vmptr);
7307 if (page == NULL) {
7308 nested_vmx_failInvalid(vcpu);
7309 skip_emulated_instruction(vcpu);
7310 return 1;
7311 }
7312 new_vmcs12 = kmap(page);
7313 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7314 kunmap(page);
7315 nested_release_page_clean(page);
7316 nested_vmx_failValid(vcpu,
7317 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7318 skip_emulated_instruction(vcpu);
7319 return 1;
7320 }
7321
7322 nested_release_vmcs12(vmx);
7323 vmx->nested.current_vmptr = vmptr;
7324 vmx->nested.current_vmcs12 = new_vmcs12;
7325 vmx->nested.current_vmcs12_page = page;
7326 if (enable_shadow_vmcs) {
7327 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7328 SECONDARY_EXEC_SHADOW_VMCS);
7329 vmcs_write64(VMCS_LINK_POINTER,
7330 __pa(vmx->nested.current_shadow_vmcs));
7331 vmx->nested.sync_shadow_vmcs = true;
7332 }
7333 }
7334
7335 nested_vmx_succeed(vcpu);
7336 skip_emulated_instruction(vcpu);
7337 return 1;
7338 }
7339
7340 /* Emulate the VMPTRST instruction */
7341 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7342 {
7343 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7344 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7345 gva_t vmcs_gva;
7346 struct x86_exception e;
7347
7348 if (!nested_vmx_check_permission(vcpu))
7349 return 1;
7350
7351 if (get_vmx_mem_address(vcpu, exit_qualification,
7352 vmx_instruction_info, true, &vmcs_gva))
7353 return 1;
7354 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7355 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7356 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7357 sizeof(u64), &e)) {
7358 kvm_inject_page_fault(vcpu, &e);
7359 return 1;
7360 }
7361 nested_vmx_succeed(vcpu);
7362 skip_emulated_instruction(vcpu);
7363 return 1;
7364 }
7365
7366 /* Emulate the INVEPT instruction */
7367 static int handle_invept(struct kvm_vcpu *vcpu)
7368 {
7369 struct vcpu_vmx *vmx = to_vmx(vcpu);
7370 u32 vmx_instruction_info, types;
7371 unsigned long type;
7372 gva_t gva;
7373 struct x86_exception e;
7374 struct {
7375 u64 eptp, gpa;
7376 } operand;
7377
7378 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7379 SECONDARY_EXEC_ENABLE_EPT) ||
7380 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7381 kvm_queue_exception(vcpu, UD_VECTOR);
7382 return 1;
7383 }
7384
7385 if (!nested_vmx_check_permission(vcpu))
7386 return 1;
7387
7388 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7389 kvm_queue_exception(vcpu, UD_VECTOR);
7390 return 1;
7391 }
7392
7393 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7394 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7395
7396 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7397
7398 if (!(types & (1UL << type))) {
7399 nested_vmx_failValid(vcpu,
7400 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7401 return 1;
7402 }
7403
7404 /* According to the Intel VMX instruction reference, the memory
7405 * operand is read even if it isn't needed (e.g., for type==global)
7406 */
7407 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7408 vmx_instruction_info, false, &gva))
7409 return 1;
7410 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7411 sizeof(operand), &e)) {
7412 kvm_inject_page_fault(vcpu, &e);
7413 return 1;
7414 }
7415
7416 switch (type) {
7417 case VMX_EPT_EXTENT_GLOBAL:
7418 kvm_mmu_sync_roots(vcpu);
7419 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7420 nested_vmx_succeed(vcpu);
7421 break;
7422 default:
7423 /* Trap single context invalidation invept calls */
7424 BUG_ON(1);
7425 break;
7426 }
7427
7428 skip_emulated_instruction(vcpu);
7429 return 1;
7430 }
7431
7432 static int handle_invvpid(struct kvm_vcpu *vcpu)
7433 {
7434 struct vcpu_vmx *vmx = to_vmx(vcpu);
7435 u32 vmx_instruction_info;
7436 unsigned long type, types;
7437 gva_t gva;
7438 struct x86_exception e;
7439 int vpid;
7440
7441 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7442 SECONDARY_EXEC_ENABLE_VPID) ||
7443 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7444 kvm_queue_exception(vcpu, UD_VECTOR);
7445 return 1;
7446 }
7447
7448 if (!nested_vmx_check_permission(vcpu))
7449 return 1;
7450
7451 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7452 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7453
7454 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7455
7456 if (!(types & (1UL << type))) {
7457 nested_vmx_failValid(vcpu,
7458 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7459 return 1;
7460 }
7461
7462 /* according to the intel vmx instruction reference, the memory
7463 * operand is read even if it isn't needed (e.g., for type==global)
7464 */
7465 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7466 vmx_instruction_info, false, &gva))
7467 return 1;
7468 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7469 sizeof(u32), &e)) {
7470 kvm_inject_page_fault(vcpu, &e);
7471 return 1;
7472 }
7473
7474 switch (type) {
7475 case VMX_VPID_EXTENT_ALL_CONTEXT:
7476 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7477 nested_vmx_succeed(vcpu);
7478 break;
7479 default:
7480 /* Trap single context invalidation invvpid calls */
7481 BUG_ON(1);
7482 break;
7483 }
7484
7485 skip_emulated_instruction(vcpu);
7486 return 1;
7487 }
7488
7489 static int handle_pml_full(struct kvm_vcpu *vcpu)
7490 {
7491 unsigned long exit_qualification;
7492
7493 trace_kvm_pml_full(vcpu->vcpu_id);
7494
7495 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7496
7497 /*
7498 * PML buffer FULL happened while executing iret from NMI,
7499 * "blocked by NMI" bit has to be set before next VM entry.
7500 */
7501 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7502 cpu_has_virtual_nmis() &&
7503 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7504 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7505 GUEST_INTR_STATE_NMI);
7506
7507 /*
7508 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7509 * here.., and there's no userspace involvement needed for PML.
7510 */
7511 return 1;
7512 }
7513
7514 static int handle_pcommit(struct kvm_vcpu *vcpu)
7515 {
7516 /* we never catch pcommit instruct for L1 guest. */
7517 WARN_ON(1);
7518 return 1;
7519 }
7520
7521 /*
7522 * The exit handlers return 1 if the exit was handled fully and guest execution
7523 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7524 * to be done to userspace and return 0.
7525 */
7526 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7527 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7528 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7529 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7530 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7531 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7532 [EXIT_REASON_CR_ACCESS] = handle_cr,
7533 [EXIT_REASON_DR_ACCESS] = handle_dr,
7534 [EXIT_REASON_CPUID] = handle_cpuid,
7535 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7536 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7537 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7538 [EXIT_REASON_HLT] = handle_halt,
7539 [EXIT_REASON_INVD] = handle_invd,
7540 [EXIT_REASON_INVLPG] = handle_invlpg,
7541 [EXIT_REASON_RDPMC] = handle_rdpmc,
7542 [EXIT_REASON_VMCALL] = handle_vmcall,
7543 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7544 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7545 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7546 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7547 [EXIT_REASON_VMREAD] = handle_vmread,
7548 [EXIT_REASON_VMRESUME] = handle_vmresume,
7549 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7550 [EXIT_REASON_VMOFF] = handle_vmoff,
7551 [EXIT_REASON_VMON] = handle_vmon,
7552 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7553 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7554 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7555 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7556 [EXIT_REASON_WBINVD] = handle_wbinvd,
7557 [EXIT_REASON_XSETBV] = handle_xsetbv,
7558 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7559 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7560 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7561 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7562 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7563 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7564 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7565 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7566 [EXIT_REASON_INVEPT] = handle_invept,
7567 [EXIT_REASON_INVVPID] = handle_invvpid,
7568 [EXIT_REASON_XSAVES] = handle_xsaves,
7569 [EXIT_REASON_XRSTORS] = handle_xrstors,
7570 [EXIT_REASON_PML_FULL] = handle_pml_full,
7571 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7572 };
7573
7574 static const int kvm_vmx_max_exit_handlers =
7575 ARRAY_SIZE(kvm_vmx_exit_handlers);
7576
7577 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7578 struct vmcs12 *vmcs12)
7579 {
7580 unsigned long exit_qualification;
7581 gpa_t bitmap, last_bitmap;
7582 unsigned int port;
7583 int size;
7584 u8 b;
7585
7586 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7587 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7588
7589 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7590
7591 port = exit_qualification >> 16;
7592 size = (exit_qualification & 7) + 1;
7593
7594 last_bitmap = (gpa_t)-1;
7595 b = -1;
7596
7597 while (size > 0) {
7598 if (port < 0x8000)
7599 bitmap = vmcs12->io_bitmap_a;
7600 else if (port < 0x10000)
7601 bitmap = vmcs12->io_bitmap_b;
7602 else
7603 return true;
7604 bitmap += (port & 0x7fff) / 8;
7605
7606 if (last_bitmap != bitmap)
7607 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7608 return true;
7609 if (b & (1 << (port & 7)))
7610 return true;
7611
7612 port++;
7613 size--;
7614 last_bitmap = bitmap;
7615 }
7616
7617 return false;
7618 }
7619
7620 /*
7621 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7622 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7623 * disinterest in the current event (read or write a specific MSR) by using an
7624 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7625 */
7626 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7627 struct vmcs12 *vmcs12, u32 exit_reason)
7628 {
7629 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7630 gpa_t bitmap;
7631
7632 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7633 return true;
7634
7635 /*
7636 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7637 * for the four combinations of read/write and low/high MSR numbers.
7638 * First we need to figure out which of the four to use:
7639 */
7640 bitmap = vmcs12->msr_bitmap;
7641 if (exit_reason == EXIT_REASON_MSR_WRITE)
7642 bitmap += 2048;
7643 if (msr_index >= 0xc0000000) {
7644 msr_index -= 0xc0000000;
7645 bitmap += 1024;
7646 }
7647
7648 /* Then read the msr_index'th bit from this bitmap: */
7649 if (msr_index < 1024*8) {
7650 unsigned char b;
7651 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7652 return true;
7653 return 1 & (b >> (msr_index & 7));
7654 } else
7655 return true; /* let L1 handle the wrong parameter */
7656 }
7657
7658 /*
7659 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7660 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7661 * intercept (via guest_host_mask etc.) the current event.
7662 */
7663 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7664 struct vmcs12 *vmcs12)
7665 {
7666 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7667 int cr = exit_qualification & 15;
7668 int reg = (exit_qualification >> 8) & 15;
7669 unsigned long val = kvm_register_readl(vcpu, reg);
7670
7671 switch ((exit_qualification >> 4) & 3) {
7672 case 0: /* mov to cr */
7673 switch (cr) {
7674 case 0:
7675 if (vmcs12->cr0_guest_host_mask &
7676 (val ^ vmcs12->cr0_read_shadow))
7677 return true;
7678 break;
7679 case 3:
7680 if ((vmcs12->cr3_target_count >= 1 &&
7681 vmcs12->cr3_target_value0 == val) ||
7682 (vmcs12->cr3_target_count >= 2 &&
7683 vmcs12->cr3_target_value1 == val) ||
7684 (vmcs12->cr3_target_count >= 3 &&
7685 vmcs12->cr3_target_value2 == val) ||
7686 (vmcs12->cr3_target_count >= 4 &&
7687 vmcs12->cr3_target_value3 == val))
7688 return false;
7689 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7690 return true;
7691 break;
7692 case 4:
7693 if (vmcs12->cr4_guest_host_mask &
7694 (vmcs12->cr4_read_shadow ^ val))
7695 return true;
7696 break;
7697 case 8:
7698 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7699 return true;
7700 break;
7701 }
7702 break;
7703 case 2: /* clts */
7704 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7705 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7706 return true;
7707 break;
7708 case 1: /* mov from cr */
7709 switch (cr) {
7710 case 3:
7711 if (vmcs12->cpu_based_vm_exec_control &
7712 CPU_BASED_CR3_STORE_EXITING)
7713 return true;
7714 break;
7715 case 8:
7716 if (vmcs12->cpu_based_vm_exec_control &
7717 CPU_BASED_CR8_STORE_EXITING)
7718 return true;
7719 break;
7720 }
7721 break;
7722 case 3: /* lmsw */
7723 /*
7724 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7725 * cr0. Other attempted changes are ignored, with no exit.
7726 */
7727 if (vmcs12->cr0_guest_host_mask & 0xe &
7728 (val ^ vmcs12->cr0_read_shadow))
7729 return true;
7730 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7731 !(vmcs12->cr0_read_shadow & 0x1) &&
7732 (val & 0x1))
7733 return true;
7734 break;
7735 }
7736 return false;
7737 }
7738
7739 /*
7740 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7741 * should handle it ourselves in L0 (and then continue L2). Only call this
7742 * when in is_guest_mode (L2).
7743 */
7744 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7745 {
7746 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7747 struct vcpu_vmx *vmx = to_vmx(vcpu);
7748 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7749 u32 exit_reason = vmx->exit_reason;
7750
7751 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7752 vmcs_readl(EXIT_QUALIFICATION),
7753 vmx->idt_vectoring_info,
7754 intr_info,
7755 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7756 KVM_ISA_VMX);
7757
7758 if (vmx->nested.nested_run_pending)
7759 return false;
7760
7761 if (unlikely(vmx->fail)) {
7762 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7763 vmcs_read32(VM_INSTRUCTION_ERROR));
7764 return true;
7765 }
7766
7767 switch (exit_reason) {
7768 case EXIT_REASON_EXCEPTION_NMI:
7769 if (!is_exception(intr_info))
7770 return false;
7771 else if (is_page_fault(intr_info))
7772 return enable_ept;
7773 else if (is_no_device(intr_info) &&
7774 !(vmcs12->guest_cr0 & X86_CR0_TS))
7775 return false;
7776 return vmcs12->exception_bitmap &
7777 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7778 case EXIT_REASON_EXTERNAL_INTERRUPT:
7779 return false;
7780 case EXIT_REASON_TRIPLE_FAULT:
7781 return true;
7782 case EXIT_REASON_PENDING_INTERRUPT:
7783 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7784 case EXIT_REASON_NMI_WINDOW:
7785 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7786 case EXIT_REASON_TASK_SWITCH:
7787 return true;
7788 case EXIT_REASON_CPUID:
7789 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7790 return false;
7791 return true;
7792 case EXIT_REASON_HLT:
7793 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7794 case EXIT_REASON_INVD:
7795 return true;
7796 case EXIT_REASON_INVLPG:
7797 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7798 case EXIT_REASON_RDPMC:
7799 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7800 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7801 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7802 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7803 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7804 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7805 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7806 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7807 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7808 /*
7809 * VMX instructions trap unconditionally. This allows L1 to
7810 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7811 */
7812 return true;
7813 case EXIT_REASON_CR_ACCESS:
7814 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7815 case EXIT_REASON_DR_ACCESS:
7816 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7817 case EXIT_REASON_IO_INSTRUCTION:
7818 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7819 case EXIT_REASON_MSR_READ:
7820 case EXIT_REASON_MSR_WRITE:
7821 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7822 case EXIT_REASON_INVALID_STATE:
7823 return true;
7824 case EXIT_REASON_MWAIT_INSTRUCTION:
7825 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7826 case EXIT_REASON_MONITOR_TRAP_FLAG:
7827 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7828 case EXIT_REASON_MONITOR_INSTRUCTION:
7829 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7830 case EXIT_REASON_PAUSE_INSTRUCTION:
7831 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7832 nested_cpu_has2(vmcs12,
7833 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7834 case EXIT_REASON_MCE_DURING_VMENTRY:
7835 return false;
7836 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7837 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7838 case EXIT_REASON_APIC_ACCESS:
7839 return nested_cpu_has2(vmcs12,
7840 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7841 case EXIT_REASON_APIC_WRITE:
7842 case EXIT_REASON_EOI_INDUCED:
7843 /* apic_write and eoi_induced should exit unconditionally. */
7844 return true;
7845 case EXIT_REASON_EPT_VIOLATION:
7846 /*
7847 * L0 always deals with the EPT violation. If nested EPT is
7848 * used, and the nested mmu code discovers that the address is
7849 * missing in the guest EPT table (EPT12), the EPT violation
7850 * will be injected with nested_ept_inject_page_fault()
7851 */
7852 return false;
7853 case EXIT_REASON_EPT_MISCONFIG:
7854 /*
7855 * L2 never uses directly L1's EPT, but rather L0's own EPT
7856 * table (shadow on EPT) or a merged EPT table that L0 built
7857 * (EPT on EPT). So any problems with the structure of the
7858 * table is L0's fault.
7859 */
7860 return false;
7861 case EXIT_REASON_WBINVD:
7862 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7863 case EXIT_REASON_XSETBV:
7864 return true;
7865 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7866 /*
7867 * This should never happen, since it is not possible to
7868 * set XSS to a non-zero value---neither in L1 nor in L2.
7869 * If if it were, XSS would have to be checked against
7870 * the XSS exit bitmap in vmcs12.
7871 */
7872 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7873 case EXIT_REASON_PCOMMIT:
7874 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7875 default:
7876 return true;
7877 }
7878 }
7879
7880 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7881 {
7882 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7883 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7884 }
7885
7886 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7887 {
7888 struct page *pml_pg;
7889
7890 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7891 if (!pml_pg)
7892 return -ENOMEM;
7893
7894 vmx->pml_pg = pml_pg;
7895
7896 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7897 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7898
7899 return 0;
7900 }
7901
7902 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7903 {
7904 if (vmx->pml_pg) {
7905 __free_page(vmx->pml_pg);
7906 vmx->pml_pg = NULL;
7907 }
7908 }
7909
7910 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7911 {
7912 struct vcpu_vmx *vmx = to_vmx(vcpu);
7913 u64 *pml_buf;
7914 u16 pml_idx;
7915
7916 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7917
7918 /* Do nothing if PML buffer is empty */
7919 if (pml_idx == (PML_ENTITY_NUM - 1))
7920 return;
7921
7922 /* PML index always points to next available PML buffer entity */
7923 if (pml_idx >= PML_ENTITY_NUM)
7924 pml_idx = 0;
7925 else
7926 pml_idx++;
7927
7928 pml_buf = page_address(vmx->pml_pg);
7929 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7930 u64 gpa;
7931
7932 gpa = pml_buf[pml_idx];
7933 WARN_ON(gpa & (PAGE_SIZE - 1));
7934 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7935 }
7936
7937 /* reset PML index */
7938 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7939 }
7940
7941 /*
7942 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7943 * Called before reporting dirty_bitmap to userspace.
7944 */
7945 static void kvm_flush_pml_buffers(struct kvm *kvm)
7946 {
7947 int i;
7948 struct kvm_vcpu *vcpu;
7949 /*
7950 * We only need to kick vcpu out of guest mode here, as PML buffer
7951 * is flushed at beginning of all VMEXITs, and it's obvious that only
7952 * vcpus running in guest are possible to have unflushed GPAs in PML
7953 * buffer.
7954 */
7955 kvm_for_each_vcpu(i, vcpu, kvm)
7956 kvm_vcpu_kick(vcpu);
7957 }
7958
7959 static void vmx_dump_sel(char *name, uint32_t sel)
7960 {
7961 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7962 name, vmcs_read32(sel),
7963 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7964 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7965 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7966 }
7967
7968 static void vmx_dump_dtsel(char *name, uint32_t limit)
7969 {
7970 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7971 name, vmcs_read32(limit),
7972 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7973 }
7974
7975 static void dump_vmcs(void)
7976 {
7977 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7978 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7979 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7980 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7981 u32 secondary_exec_control = 0;
7982 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7983 u64 efer = vmcs_read64(GUEST_IA32_EFER);
7984 int i, n;
7985
7986 if (cpu_has_secondary_exec_ctrls())
7987 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7988
7989 pr_err("*** Guest State ***\n");
7990 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7991 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7992 vmcs_readl(CR0_GUEST_HOST_MASK));
7993 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7994 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7995 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7996 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7997 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7998 {
7999 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8000 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8001 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8002 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8003 }
8004 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8005 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8006 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8007 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8008 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8009 vmcs_readl(GUEST_SYSENTER_ESP),
8010 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8011 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8012 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8013 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8014 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8015 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8016 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8017 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8018 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8019 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8020 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8021 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8022 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8023 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8024 efer, vmcs_read64(GUEST_IA32_PAT));
8025 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8026 vmcs_read64(GUEST_IA32_DEBUGCTL),
8027 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8028 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8029 pr_err("PerfGlobCtl = 0x%016llx\n",
8030 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8031 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8032 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8033 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8034 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8035 vmcs_read32(GUEST_ACTIVITY_STATE));
8036 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8037 pr_err("InterruptStatus = %04x\n",
8038 vmcs_read16(GUEST_INTR_STATUS));
8039
8040 pr_err("*** Host State ***\n");
8041 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8042 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8043 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8044 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8045 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8046 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8047 vmcs_read16(HOST_TR_SELECTOR));
8048 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8049 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8050 vmcs_readl(HOST_TR_BASE));
8051 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8052 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8053 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8054 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8055 vmcs_readl(HOST_CR4));
8056 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8057 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8058 vmcs_read32(HOST_IA32_SYSENTER_CS),
8059 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8060 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8061 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8062 vmcs_read64(HOST_IA32_EFER),
8063 vmcs_read64(HOST_IA32_PAT));
8064 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8065 pr_err("PerfGlobCtl = 0x%016llx\n",
8066 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8067
8068 pr_err("*** Control State ***\n");
8069 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8070 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8071 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8072 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8073 vmcs_read32(EXCEPTION_BITMAP),
8074 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8075 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8076 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8077 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8078 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8079 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8080 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8081 vmcs_read32(VM_EXIT_INTR_INFO),
8082 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8083 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8084 pr_err(" reason=%08x qualification=%016lx\n",
8085 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8086 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8087 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8088 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8089 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8090 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8091 pr_err("TSC Multiplier = 0x%016llx\n",
8092 vmcs_read64(TSC_MULTIPLIER));
8093 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8094 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8095 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8096 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8097 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8098 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8099 n = vmcs_read32(CR3_TARGET_COUNT);
8100 for (i = 0; i + 1 < n; i += 4)
8101 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8102 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8103 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8104 if (i < n)
8105 pr_err("CR3 target%u=%016lx\n",
8106 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8107 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8108 pr_err("PLE Gap=%08x Window=%08x\n",
8109 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8110 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8111 pr_err("Virtual processor ID = 0x%04x\n",
8112 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8113 }
8114
8115 /*
8116 * The guest has exited. See if we can fix it or if we need userspace
8117 * assistance.
8118 */
8119 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8120 {
8121 struct vcpu_vmx *vmx = to_vmx(vcpu);
8122 u32 exit_reason = vmx->exit_reason;
8123 u32 vectoring_info = vmx->idt_vectoring_info;
8124
8125 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8126
8127 /*
8128 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8129 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8130 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8131 * mode as if vcpus is in root mode, the PML buffer must has been
8132 * flushed already.
8133 */
8134 if (enable_pml)
8135 vmx_flush_pml_buffer(vcpu);
8136
8137 /* If guest state is invalid, start emulating */
8138 if (vmx->emulation_required)
8139 return handle_invalid_guest_state(vcpu);
8140
8141 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8142 nested_vmx_vmexit(vcpu, exit_reason,
8143 vmcs_read32(VM_EXIT_INTR_INFO),
8144 vmcs_readl(EXIT_QUALIFICATION));
8145 return 1;
8146 }
8147
8148 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8149 dump_vmcs();
8150 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8151 vcpu->run->fail_entry.hardware_entry_failure_reason
8152 = exit_reason;
8153 return 0;
8154 }
8155
8156 if (unlikely(vmx->fail)) {
8157 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8158 vcpu->run->fail_entry.hardware_entry_failure_reason
8159 = vmcs_read32(VM_INSTRUCTION_ERROR);
8160 return 0;
8161 }
8162
8163 /*
8164 * Note:
8165 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8166 * delivery event since it indicates guest is accessing MMIO.
8167 * The vm-exit can be triggered again after return to guest that
8168 * will cause infinite loop.
8169 */
8170 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8171 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8172 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8173 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8174 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8175 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8176 vcpu->run->internal.ndata = 2;
8177 vcpu->run->internal.data[0] = vectoring_info;
8178 vcpu->run->internal.data[1] = exit_reason;
8179 return 0;
8180 }
8181
8182 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8183 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8184 get_vmcs12(vcpu))))) {
8185 if (vmx_interrupt_allowed(vcpu)) {
8186 vmx->soft_vnmi_blocked = 0;
8187 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8188 vcpu->arch.nmi_pending) {
8189 /*
8190 * This CPU don't support us in finding the end of an
8191 * NMI-blocked window if the guest runs with IRQs
8192 * disabled. So we pull the trigger after 1 s of
8193 * futile waiting, but inform the user about this.
8194 */
8195 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8196 "state on VCPU %d after 1 s timeout\n",
8197 __func__, vcpu->vcpu_id);
8198 vmx->soft_vnmi_blocked = 0;
8199 }
8200 }
8201
8202 if (exit_reason < kvm_vmx_max_exit_handlers
8203 && kvm_vmx_exit_handlers[exit_reason])
8204 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8205 else {
8206 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8207 kvm_queue_exception(vcpu, UD_VECTOR);
8208 return 1;
8209 }
8210 }
8211
8212 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8213 {
8214 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8215
8216 if (is_guest_mode(vcpu) &&
8217 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8218 return;
8219
8220 if (irr == -1 || tpr < irr) {
8221 vmcs_write32(TPR_THRESHOLD, 0);
8222 return;
8223 }
8224
8225 vmcs_write32(TPR_THRESHOLD, irr);
8226 }
8227
8228 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8229 {
8230 u32 sec_exec_control;
8231
8232 /*
8233 * There is not point to enable virtualize x2apic without enable
8234 * apicv
8235 */
8236 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8237 !kvm_vcpu_apicv_active(vcpu))
8238 return;
8239
8240 if (!cpu_need_tpr_shadow(vcpu))
8241 return;
8242
8243 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8244
8245 if (set) {
8246 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8247 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8248 } else {
8249 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8250 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8251 }
8252 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8253
8254 vmx_set_msr_bitmap(vcpu);
8255 }
8256
8257 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8258 {
8259 struct vcpu_vmx *vmx = to_vmx(vcpu);
8260
8261 /*
8262 * Currently we do not handle the nested case where L2 has an
8263 * APIC access page of its own; that page is still pinned.
8264 * Hence, we skip the case where the VCPU is in guest mode _and_
8265 * L1 prepared an APIC access page for L2.
8266 *
8267 * For the case where L1 and L2 share the same APIC access page
8268 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8269 * in the vmcs12), this function will only update either the vmcs01
8270 * or the vmcs02. If the former, the vmcs02 will be updated by
8271 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8272 * the next L2->L1 exit.
8273 */
8274 if (!is_guest_mode(vcpu) ||
8275 !nested_cpu_has2(vmx->nested.current_vmcs12,
8276 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8277 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8278 }
8279
8280 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8281 {
8282 u16 status;
8283 u8 old;
8284
8285 if (isr == -1)
8286 isr = 0;
8287
8288 status = vmcs_read16(GUEST_INTR_STATUS);
8289 old = status >> 8;
8290 if (isr != old) {
8291 status &= 0xff;
8292 status |= isr << 8;
8293 vmcs_write16(GUEST_INTR_STATUS, status);
8294 }
8295 }
8296
8297 static void vmx_set_rvi(int vector)
8298 {
8299 u16 status;
8300 u8 old;
8301
8302 if (vector == -1)
8303 vector = 0;
8304
8305 status = vmcs_read16(GUEST_INTR_STATUS);
8306 old = (u8)status & 0xff;
8307 if ((u8)vector != old) {
8308 status &= ~0xff;
8309 status |= (u8)vector;
8310 vmcs_write16(GUEST_INTR_STATUS, status);
8311 }
8312 }
8313
8314 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8315 {
8316 if (!is_guest_mode(vcpu)) {
8317 vmx_set_rvi(max_irr);
8318 return;
8319 }
8320
8321 if (max_irr == -1)
8322 return;
8323
8324 /*
8325 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8326 * handles it.
8327 */
8328 if (nested_exit_on_intr(vcpu))
8329 return;
8330
8331 /*
8332 * Else, fall back to pre-APICv interrupt injection since L2
8333 * is run without virtual interrupt delivery.
8334 */
8335 if (!kvm_event_needs_reinjection(vcpu) &&
8336 vmx_interrupt_allowed(vcpu)) {
8337 kvm_queue_interrupt(vcpu, max_irr, false);
8338 vmx_inject_irq(vcpu);
8339 }
8340 }
8341
8342 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8343 {
8344 if (!kvm_vcpu_apicv_active(vcpu))
8345 return;
8346
8347 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8348 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8349 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8350 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8351 }
8352
8353 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8354 {
8355 u32 exit_intr_info;
8356
8357 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8358 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8359 return;
8360
8361 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8362 exit_intr_info = vmx->exit_intr_info;
8363
8364 /* Handle machine checks before interrupts are enabled */
8365 if (is_machine_check(exit_intr_info))
8366 kvm_machine_check();
8367
8368 /* We need to handle NMIs before interrupts are enabled */
8369 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8370 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8371 kvm_before_handle_nmi(&vmx->vcpu);
8372 asm("int $2");
8373 kvm_after_handle_nmi(&vmx->vcpu);
8374 }
8375 }
8376
8377 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8378 {
8379 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8380
8381 /*
8382 * If external interrupt exists, IF bit is set in rflags/eflags on the
8383 * interrupt stack frame, and interrupt will be enabled on a return
8384 * from interrupt handler.
8385 */
8386 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8387 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8388 unsigned int vector;
8389 unsigned long entry;
8390 gate_desc *desc;
8391 struct vcpu_vmx *vmx = to_vmx(vcpu);
8392 #ifdef CONFIG_X86_64
8393 unsigned long tmp;
8394 #endif
8395
8396 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8397 desc = (gate_desc *)vmx->host_idt_base + vector;
8398 entry = gate_offset(*desc);
8399 asm volatile(
8400 #ifdef CONFIG_X86_64
8401 "mov %%" _ASM_SP ", %[sp]\n\t"
8402 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8403 "push $%c[ss]\n\t"
8404 "push %[sp]\n\t"
8405 #endif
8406 "pushf\n\t"
8407 "orl $0x200, (%%" _ASM_SP ")\n\t"
8408 __ASM_SIZE(push) " $%c[cs]\n\t"
8409 "call *%[entry]\n\t"
8410 :
8411 #ifdef CONFIG_X86_64
8412 [sp]"=&r"(tmp)
8413 #endif
8414 :
8415 [entry]"r"(entry),
8416 [ss]"i"(__KERNEL_DS),
8417 [cs]"i"(__KERNEL_CS)
8418 );
8419 } else
8420 local_irq_enable();
8421 }
8422
8423 static bool vmx_has_high_real_mode_segbase(void)
8424 {
8425 return enable_unrestricted_guest || emulate_invalid_guest_state;
8426 }
8427
8428 static bool vmx_mpx_supported(void)
8429 {
8430 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8431 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8432 }
8433
8434 static bool vmx_xsaves_supported(void)
8435 {
8436 return vmcs_config.cpu_based_2nd_exec_ctrl &
8437 SECONDARY_EXEC_XSAVES;
8438 }
8439
8440 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8441 {
8442 u32 exit_intr_info;
8443 bool unblock_nmi;
8444 u8 vector;
8445 bool idtv_info_valid;
8446
8447 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8448
8449 if (cpu_has_virtual_nmis()) {
8450 if (vmx->nmi_known_unmasked)
8451 return;
8452 /*
8453 * Can't use vmx->exit_intr_info since we're not sure what
8454 * the exit reason is.
8455 */
8456 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8457 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8458 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8459 /*
8460 * SDM 3: 27.7.1.2 (September 2008)
8461 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8462 * a guest IRET fault.
8463 * SDM 3: 23.2.2 (September 2008)
8464 * Bit 12 is undefined in any of the following cases:
8465 * If the VM exit sets the valid bit in the IDT-vectoring
8466 * information field.
8467 * If the VM exit is due to a double fault.
8468 */
8469 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8470 vector != DF_VECTOR && !idtv_info_valid)
8471 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8472 GUEST_INTR_STATE_NMI);
8473 else
8474 vmx->nmi_known_unmasked =
8475 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8476 & GUEST_INTR_STATE_NMI);
8477 } else if (unlikely(vmx->soft_vnmi_blocked))
8478 vmx->vnmi_blocked_time +=
8479 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8480 }
8481
8482 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8483 u32 idt_vectoring_info,
8484 int instr_len_field,
8485 int error_code_field)
8486 {
8487 u8 vector;
8488 int type;
8489 bool idtv_info_valid;
8490
8491 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8492
8493 vcpu->arch.nmi_injected = false;
8494 kvm_clear_exception_queue(vcpu);
8495 kvm_clear_interrupt_queue(vcpu);
8496
8497 if (!idtv_info_valid)
8498 return;
8499
8500 kvm_make_request(KVM_REQ_EVENT, vcpu);
8501
8502 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8503 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8504
8505 switch (type) {
8506 case INTR_TYPE_NMI_INTR:
8507 vcpu->arch.nmi_injected = true;
8508 /*
8509 * SDM 3: 27.7.1.2 (September 2008)
8510 * Clear bit "block by NMI" before VM entry if a NMI
8511 * delivery faulted.
8512 */
8513 vmx_set_nmi_mask(vcpu, false);
8514 break;
8515 case INTR_TYPE_SOFT_EXCEPTION:
8516 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8517 /* fall through */
8518 case INTR_TYPE_HARD_EXCEPTION:
8519 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8520 u32 err = vmcs_read32(error_code_field);
8521 kvm_requeue_exception_e(vcpu, vector, err);
8522 } else
8523 kvm_requeue_exception(vcpu, vector);
8524 break;
8525 case INTR_TYPE_SOFT_INTR:
8526 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8527 /* fall through */
8528 case INTR_TYPE_EXT_INTR:
8529 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8530 break;
8531 default:
8532 break;
8533 }
8534 }
8535
8536 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8537 {
8538 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8539 VM_EXIT_INSTRUCTION_LEN,
8540 IDT_VECTORING_ERROR_CODE);
8541 }
8542
8543 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8544 {
8545 __vmx_complete_interrupts(vcpu,
8546 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8547 VM_ENTRY_INSTRUCTION_LEN,
8548 VM_ENTRY_EXCEPTION_ERROR_CODE);
8549
8550 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8551 }
8552
8553 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8554 {
8555 int i, nr_msrs;
8556 struct perf_guest_switch_msr *msrs;
8557
8558 msrs = perf_guest_get_msrs(&nr_msrs);
8559
8560 if (!msrs)
8561 return;
8562
8563 for (i = 0; i < nr_msrs; i++)
8564 if (msrs[i].host == msrs[i].guest)
8565 clear_atomic_switch_msr(vmx, msrs[i].msr);
8566 else
8567 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8568 msrs[i].host);
8569 }
8570
8571 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8572 {
8573 struct vcpu_vmx *vmx = to_vmx(vcpu);
8574 unsigned long debugctlmsr, cr4;
8575
8576 /* Record the guest's net vcpu time for enforced NMI injections. */
8577 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8578 vmx->entry_time = ktime_get();
8579
8580 /* Don't enter VMX if guest state is invalid, let the exit handler
8581 start emulation until we arrive back to a valid state */
8582 if (vmx->emulation_required)
8583 return;
8584
8585 if (vmx->ple_window_dirty) {
8586 vmx->ple_window_dirty = false;
8587 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8588 }
8589
8590 if (vmx->nested.sync_shadow_vmcs) {
8591 copy_vmcs12_to_shadow(vmx);
8592 vmx->nested.sync_shadow_vmcs = false;
8593 }
8594
8595 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8596 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8597 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8598 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8599
8600 cr4 = cr4_read_shadow();
8601 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8602 vmcs_writel(HOST_CR4, cr4);
8603 vmx->host_state.vmcs_host_cr4 = cr4;
8604 }
8605
8606 /* When single-stepping over STI and MOV SS, we must clear the
8607 * corresponding interruptibility bits in the guest state. Otherwise
8608 * vmentry fails as it then expects bit 14 (BS) in pending debug
8609 * exceptions being set, but that's not correct for the guest debugging
8610 * case. */
8611 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8612 vmx_set_interrupt_shadow(vcpu, 0);
8613
8614 atomic_switch_perf_msrs(vmx);
8615 debugctlmsr = get_debugctlmsr();
8616
8617 vmx->__launched = vmx->loaded_vmcs->launched;
8618 asm(
8619 /* Store host registers */
8620 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8621 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8622 "push %%" _ASM_CX " \n\t"
8623 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8624 "je 1f \n\t"
8625 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8626 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8627 "1: \n\t"
8628 /* Reload cr2 if changed */
8629 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8630 "mov %%cr2, %%" _ASM_DX " \n\t"
8631 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8632 "je 2f \n\t"
8633 "mov %%" _ASM_AX", %%cr2 \n\t"
8634 "2: \n\t"
8635 /* Check if vmlaunch of vmresume is needed */
8636 "cmpl $0, %c[launched](%0) \n\t"
8637 /* Load guest registers. Don't clobber flags. */
8638 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8639 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8640 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8641 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8642 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8643 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8644 #ifdef CONFIG_X86_64
8645 "mov %c[r8](%0), %%r8 \n\t"
8646 "mov %c[r9](%0), %%r9 \n\t"
8647 "mov %c[r10](%0), %%r10 \n\t"
8648 "mov %c[r11](%0), %%r11 \n\t"
8649 "mov %c[r12](%0), %%r12 \n\t"
8650 "mov %c[r13](%0), %%r13 \n\t"
8651 "mov %c[r14](%0), %%r14 \n\t"
8652 "mov %c[r15](%0), %%r15 \n\t"
8653 #endif
8654 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8655
8656 /* Enter guest mode */
8657 "jne 1f \n\t"
8658 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8659 "jmp 2f \n\t"
8660 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8661 "2: "
8662 /* Save guest registers, load host registers, keep flags */
8663 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8664 "pop %0 \n\t"
8665 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8666 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8667 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8668 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8669 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8670 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8671 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8672 #ifdef CONFIG_X86_64
8673 "mov %%r8, %c[r8](%0) \n\t"
8674 "mov %%r9, %c[r9](%0) \n\t"
8675 "mov %%r10, %c[r10](%0) \n\t"
8676 "mov %%r11, %c[r11](%0) \n\t"
8677 "mov %%r12, %c[r12](%0) \n\t"
8678 "mov %%r13, %c[r13](%0) \n\t"
8679 "mov %%r14, %c[r14](%0) \n\t"
8680 "mov %%r15, %c[r15](%0) \n\t"
8681 #endif
8682 "mov %%cr2, %%" _ASM_AX " \n\t"
8683 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8684
8685 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8686 "setbe %c[fail](%0) \n\t"
8687 ".pushsection .rodata \n\t"
8688 ".global vmx_return \n\t"
8689 "vmx_return: " _ASM_PTR " 2b \n\t"
8690 ".popsection"
8691 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8692 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8693 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8694 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8695 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8696 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8697 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8698 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8699 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8700 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8701 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8702 #ifdef CONFIG_X86_64
8703 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8704 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8705 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8706 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8707 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8708 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8709 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8710 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8711 #endif
8712 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8713 [wordsize]"i"(sizeof(ulong))
8714 : "cc", "memory"
8715 #ifdef CONFIG_X86_64
8716 , "rax", "rbx", "rdi", "rsi"
8717 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8718 #else
8719 , "eax", "ebx", "edi", "esi"
8720 #endif
8721 );
8722
8723 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8724 if (debugctlmsr)
8725 update_debugctlmsr(debugctlmsr);
8726
8727 #ifndef CONFIG_X86_64
8728 /*
8729 * The sysexit path does not restore ds/es, so we must set them to
8730 * a reasonable value ourselves.
8731 *
8732 * We can't defer this to vmx_load_host_state() since that function
8733 * may be executed in interrupt context, which saves and restore segments
8734 * around it, nullifying its effect.
8735 */
8736 loadsegment(ds, __USER_DS);
8737 loadsegment(es, __USER_DS);
8738 #endif
8739
8740 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8741 | (1 << VCPU_EXREG_RFLAGS)
8742 | (1 << VCPU_EXREG_PDPTR)
8743 | (1 << VCPU_EXREG_SEGMENTS)
8744 | (1 << VCPU_EXREG_CR3));
8745 vcpu->arch.regs_dirty = 0;
8746
8747 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8748
8749 vmx->loaded_vmcs->launched = 1;
8750
8751 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8752
8753 /*
8754 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8755 * we did not inject a still-pending event to L1 now because of
8756 * nested_run_pending, we need to re-enable this bit.
8757 */
8758 if (vmx->nested.nested_run_pending)
8759 kvm_make_request(KVM_REQ_EVENT, vcpu);
8760
8761 vmx->nested.nested_run_pending = 0;
8762
8763 vmx_complete_atomic_exit(vmx);
8764 vmx_recover_nmi_blocking(vmx);
8765 vmx_complete_interrupts(vmx);
8766 }
8767
8768 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8769 {
8770 struct vcpu_vmx *vmx = to_vmx(vcpu);
8771 int cpu;
8772
8773 if (vmx->loaded_vmcs == &vmx->vmcs01)
8774 return;
8775
8776 cpu = get_cpu();
8777 vmx->loaded_vmcs = &vmx->vmcs01;
8778 vmx_vcpu_put(vcpu);
8779 vmx_vcpu_load(vcpu, cpu);
8780 vcpu->cpu = cpu;
8781 put_cpu();
8782 }
8783
8784 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8785 {
8786 struct vcpu_vmx *vmx = to_vmx(vcpu);
8787
8788 if (enable_pml)
8789 vmx_destroy_pml_buffer(vmx);
8790 free_vpid(vmx->vpid);
8791 leave_guest_mode(vcpu);
8792 vmx_load_vmcs01(vcpu);
8793 free_nested(vmx);
8794 free_loaded_vmcs(vmx->loaded_vmcs);
8795 kfree(vmx->guest_msrs);
8796 kvm_vcpu_uninit(vcpu);
8797 kmem_cache_free(kvm_vcpu_cache, vmx);
8798 }
8799
8800 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8801 {
8802 int err;
8803 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8804 int cpu;
8805
8806 if (!vmx)
8807 return ERR_PTR(-ENOMEM);
8808
8809 vmx->vpid = allocate_vpid();
8810
8811 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8812 if (err)
8813 goto free_vcpu;
8814
8815 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8816 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8817 > PAGE_SIZE);
8818
8819 err = -ENOMEM;
8820 if (!vmx->guest_msrs) {
8821 goto uninit_vcpu;
8822 }
8823
8824 vmx->loaded_vmcs = &vmx->vmcs01;
8825 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8826 if (!vmx->loaded_vmcs->vmcs)
8827 goto free_msrs;
8828 if (!vmm_exclusive)
8829 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8830 loaded_vmcs_init(vmx->loaded_vmcs);
8831 if (!vmm_exclusive)
8832 kvm_cpu_vmxoff();
8833
8834 cpu = get_cpu();
8835 vmx_vcpu_load(&vmx->vcpu, cpu);
8836 vmx->vcpu.cpu = cpu;
8837 err = vmx_vcpu_setup(vmx);
8838 vmx_vcpu_put(&vmx->vcpu);
8839 put_cpu();
8840 if (err)
8841 goto free_vmcs;
8842 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8843 err = alloc_apic_access_page(kvm);
8844 if (err)
8845 goto free_vmcs;
8846 }
8847
8848 if (enable_ept) {
8849 if (!kvm->arch.ept_identity_map_addr)
8850 kvm->arch.ept_identity_map_addr =
8851 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8852 err = init_rmode_identity_map(kvm);
8853 if (err)
8854 goto free_vmcs;
8855 }
8856
8857 if (nested) {
8858 nested_vmx_setup_ctls_msrs(vmx);
8859 vmx->nested.vpid02 = allocate_vpid();
8860 }
8861
8862 vmx->nested.posted_intr_nv = -1;
8863 vmx->nested.current_vmptr = -1ull;
8864 vmx->nested.current_vmcs12 = NULL;
8865
8866 /*
8867 * If PML is turned on, failure on enabling PML just results in failure
8868 * of creating the vcpu, therefore we can simplify PML logic (by
8869 * avoiding dealing with cases, such as enabling PML partially on vcpus
8870 * for the guest, etc.
8871 */
8872 if (enable_pml) {
8873 err = vmx_create_pml_buffer(vmx);
8874 if (err)
8875 goto free_vmcs;
8876 }
8877
8878 return &vmx->vcpu;
8879
8880 free_vmcs:
8881 free_vpid(vmx->nested.vpid02);
8882 free_loaded_vmcs(vmx->loaded_vmcs);
8883 free_msrs:
8884 kfree(vmx->guest_msrs);
8885 uninit_vcpu:
8886 kvm_vcpu_uninit(&vmx->vcpu);
8887 free_vcpu:
8888 free_vpid(vmx->vpid);
8889 kmem_cache_free(kvm_vcpu_cache, vmx);
8890 return ERR_PTR(err);
8891 }
8892
8893 static void __init vmx_check_processor_compat(void *rtn)
8894 {
8895 struct vmcs_config vmcs_conf;
8896
8897 *(int *)rtn = 0;
8898 if (setup_vmcs_config(&vmcs_conf) < 0)
8899 *(int *)rtn = -EIO;
8900 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8901 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8902 smp_processor_id());
8903 *(int *)rtn = -EIO;
8904 }
8905 }
8906
8907 static int get_ept_level(void)
8908 {
8909 return VMX_EPT_DEFAULT_GAW + 1;
8910 }
8911
8912 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8913 {
8914 u8 cache;
8915 u64 ipat = 0;
8916
8917 /* For VT-d and EPT combination
8918 * 1. MMIO: always map as UC
8919 * 2. EPT with VT-d:
8920 * a. VT-d without snooping control feature: can't guarantee the
8921 * result, try to trust guest.
8922 * b. VT-d with snooping control feature: snooping control feature of
8923 * VT-d engine can guarantee the cache correctness. Just set it
8924 * to WB to keep consistent with host. So the same as item 3.
8925 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8926 * consistent with host MTRR
8927 */
8928 if (is_mmio) {
8929 cache = MTRR_TYPE_UNCACHABLE;
8930 goto exit;
8931 }
8932
8933 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8934 ipat = VMX_EPT_IPAT_BIT;
8935 cache = MTRR_TYPE_WRBACK;
8936 goto exit;
8937 }
8938
8939 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8940 ipat = VMX_EPT_IPAT_BIT;
8941 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8942 cache = MTRR_TYPE_WRBACK;
8943 else
8944 cache = MTRR_TYPE_UNCACHABLE;
8945 goto exit;
8946 }
8947
8948 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8949
8950 exit:
8951 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8952 }
8953
8954 static int vmx_get_lpage_level(void)
8955 {
8956 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8957 return PT_DIRECTORY_LEVEL;
8958 else
8959 /* For shadow and EPT supported 1GB page */
8960 return PT_PDPE_LEVEL;
8961 }
8962
8963 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8964 {
8965 /*
8966 * These bits in the secondary execution controls field
8967 * are dynamic, the others are mostly based on the hypervisor
8968 * architecture and the guest's CPUID. Do not touch the
8969 * dynamic bits.
8970 */
8971 u32 mask =
8972 SECONDARY_EXEC_SHADOW_VMCS |
8973 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8974 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8975
8976 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8977
8978 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8979 (new_ctl & ~mask) | (cur_ctl & mask));
8980 }
8981
8982 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8983 {
8984 struct kvm_cpuid_entry2 *best;
8985 struct vcpu_vmx *vmx = to_vmx(vcpu);
8986 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8987
8988 if (vmx_rdtscp_supported()) {
8989 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8990 if (!rdtscp_enabled)
8991 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8992
8993 if (nested) {
8994 if (rdtscp_enabled)
8995 vmx->nested.nested_vmx_secondary_ctls_high |=
8996 SECONDARY_EXEC_RDTSCP;
8997 else
8998 vmx->nested.nested_vmx_secondary_ctls_high &=
8999 ~SECONDARY_EXEC_RDTSCP;
9000 }
9001 }
9002
9003 /* Exposing INVPCID only when PCID is exposed */
9004 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9005 if (vmx_invpcid_supported() &&
9006 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9007 !guest_cpuid_has_pcid(vcpu))) {
9008 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9009
9010 if (best)
9011 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9012 }
9013
9014 if (cpu_has_secondary_exec_ctrls())
9015 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9016
9017 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9018 if (guest_cpuid_has_pcommit(vcpu))
9019 vmx->nested.nested_vmx_secondary_ctls_high |=
9020 SECONDARY_EXEC_PCOMMIT;
9021 else
9022 vmx->nested.nested_vmx_secondary_ctls_high &=
9023 ~SECONDARY_EXEC_PCOMMIT;
9024 }
9025 }
9026
9027 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9028 {
9029 if (func == 1 && nested)
9030 entry->ecx |= bit(X86_FEATURE_VMX);
9031 }
9032
9033 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9034 struct x86_exception *fault)
9035 {
9036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9037 u32 exit_reason;
9038
9039 if (fault->error_code & PFERR_RSVD_MASK)
9040 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9041 else
9042 exit_reason = EXIT_REASON_EPT_VIOLATION;
9043 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9044 vmcs12->guest_physical_address = fault->address;
9045 }
9046
9047 /* Callbacks for nested_ept_init_mmu_context: */
9048
9049 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9050 {
9051 /* return the page table to be shadowed - in our case, EPT12 */
9052 return get_vmcs12(vcpu)->ept_pointer;
9053 }
9054
9055 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9056 {
9057 WARN_ON(mmu_is_nested(vcpu));
9058 kvm_init_shadow_ept_mmu(vcpu,
9059 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9060 VMX_EPT_EXECUTE_ONLY_BIT);
9061 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9062 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9063 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9064
9065 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9066 }
9067
9068 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9069 {
9070 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9071 }
9072
9073 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9074 u16 error_code)
9075 {
9076 bool inequality, bit;
9077
9078 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9079 inequality =
9080 (error_code & vmcs12->page_fault_error_code_mask) !=
9081 vmcs12->page_fault_error_code_match;
9082 return inequality ^ bit;
9083 }
9084
9085 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9086 struct x86_exception *fault)
9087 {
9088 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9089
9090 WARN_ON(!is_guest_mode(vcpu));
9091
9092 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9093 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9094 vmcs_read32(VM_EXIT_INTR_INFO),
9095 vmcs_readl(EXIT_QUALIFICATION));
9096 else
9097 kvm_inject_page_fault(vcpu, fault);
9098 }
9099
9100 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9101 struct vmcs12 *vmcs12)
9102 {
9103 struct vcpu_vmx *vmx = to_vmx(vcpu);
9104 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9105
9106 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9107 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9108 vmcs12->apic_access_addr >> maxphyaddr)
9109 return false;
9110
9111 /*
9112 * Translate L1 physical address to host physical
9113 * address for vmcs02. Keep the page pinned, so this
9114 * physical address remains valid. We keep a reference
9115 * to it so we can release it later.
9116 */
9117 if (vmx->nested.apic_access_page) /* shouldn't happen */
9118 nested_release_page(vmx->nested.apic_access_page);
9119 vmx->nested.apic_access_page =
9120 nested_get_page(vcpu, vmcs12->apic_access_addr);
9121 }
9122
9123 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9124 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9125 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9126 return false;
9127
9128 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9129 nested_release_page(vmx->nested.virtual_apic_page);
9130 vmx->nested.virtual_apic_page =
9131 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9132
9133 /*
9134 * Failing the vm entry is _not_ what the processor does
9135 * but it's basically the only possibility we have.
9136 * We could still enter the guest if CR8 load exits are
9137 * enabled, CR8 store exits are enabled, and virtualize APIC
9138 * access is disabled; in this case the processor would never
9139 * use the TPR shadow and we could simply clear the bit from
9140 * the execution control. But such a configuration is useless,
9141 * so let's keep the code simple.
9142 */
9143 if (!vmx->nested.virtual_apic_page)
9144 return false;
9145 }
9146
9147 if (nested_cpu_has_posted_intr(vmcs12)) {
9148 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9149 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9150 return false;
9151
9152 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9153 kunmap(vmx->nested.pi_desc_page);
9154 nested_release_page(vmx->nested.pi_desc_page);
9155 }
9156 vmx->nested.pi_desc_page =
9157 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9158 if (!vmx->nested.pi_desc_page)
9159 return false;
9160
9161 vmx->nested.pi_desc =
9162 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9163 if (!vmx->nested.pi_desc) {
9164 nested_release_page_clean(vmx->nested.pi_desc_page);
9165 return false;
9166 }
9167 vmx->nested.pi_desc =
9168 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9169 (unsigned long)(vmcs12->posted_intr_desc_addr &
9170 (PAGE_SIZE - 1)));
9171 }
9172
9173 return true;
9174 }
9175
9176 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9177 {
9178 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9179 struct vcpu_vmx *vmx = to_vmx(vcpu);
9180
9181 if (vcpu->arch.virtual_tsc_khz == 0)
9182 return;
9183
9184 /* Make sure short timeouts reliably trigger an immediate vmexit.
9185 * hrtimer_start does not guarantee this. */
9186 if (preemption_timeout <= 1) {
9187 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9188 return;
9189 }
9190
9191 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9192 preemption_timeout *= 1000000;
9193 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9194 hrtimer_start(&vmx->nested.preemption_timer,
9195 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9196 }
9197
9198 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9199 struct vmcs12 *vmcs12)
9200 {
9201 int maxphyaddr;
9202 u64 addr;
9203
9204 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9205 return 0;
9206
9207 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9208 WARN_ON(1);
9209 return -EINVAL;
9210 }
9211 maxphyaddr = cpuid_maxphyaddr(vcpu);
9212
9213 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9214 ((addr + PAGE_SIZE) >> maxphyaddr))
9215 return -EINVAL;
9216
9217 return 0;
9218 }
9219
9220 /*
9221 * Merge L0's and L1's MSR bitmap, return false to indicate that
9222 * we do not use the hardware.
9223 */
9224 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9225 struct vmcs12 *vmcs12)
9226 {
9227 int msr;
9228 struct page *page;
9229 unsigned long *msr_bitmap;
9230
9231 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9232 return false;
9233
9234 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9235 if (!page) {
9236 WARN_ON(1);
9237 return false;
9238 }
9239 msr_bitmap = (unsigned long *)kmap(page);
9240 if (!msr_bitmap) {
9241 nested_release_page_clean(page);
9242 WARN_ON(1);
9243 return false;
9244 }
9245
9246 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9247 if (nested_cpu_has_apic_reg_virt(vmcs12))
9248 for (msr = 0x800; msr <= 0x8ff; msr++)
9249 nested_vmx_disable_intercept_for_msr(
9250 msr_bitmap,
9251 vmx_msr_bitmap_nested,
9252 msr, MSR_TYPE_R);
9253 /* TPR is allowed */
9254 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9255 vmx_msr_bitmap_nested,
9256 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9257 MSR_TYPE_R | MSR_TYPE_W);
9258 if (nested_cpu_has_vid(vmcs12)) {
9259 /* EOI and self-IPI are allowed */
9260 nested_vmx_disable_intercept_for_msr(
9261 msr_bitmap,
9262 vmx_msr_bitmap_nested,
9263 APIC_BASE_MSR + (APIC_EOI >> 4),
9264 MSR_TYPE_W);
9265 nested_vmx_disable_intercept_for_msr(
9266 msr_bitmap,
9267 vmx_msr_bitmap_nested,
9268 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9269 MSR_TYPE_W);
9270 }
9271 } else {
9272 /*
9273 * Enable reading intercept of all the x2apic
9274 * MSRs. We should not rely on vmcs12 to do any
9275 * optimizations here, it may have been modified
9276 * by L1.
9277 */
9278 for (msr = 0x800; msr <= 0x8ff; msr++)
9279 __vmx_enable_intercept_for_msr(
9280 vmx_msr_bitmap_nested,
9281 msr,
9282 MSR_TYPE_R);
9283
9284 __vmx_enable_intercept_for_msr(
9285 vmx_msr_bitmap_nested,
9286 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9287 MSR_TYPE_W);
9288 __vmx_enable_intercept_for_msr(
9289 vmx_msr_bitmap_nested,
9290 APIC_BASE_MSR + (APIC_EOI >> 4),
9291 MSR_TYPE_W);
9292 __vmx_enable_intercept_for_msr(
9293 vmx_msr_bitmap_nested,
9294 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9295 MSR_TYPE_W);
9296 }
9297 kunmap(page);
9298 nested_release_page_clean(page);
9299
9300 return true;
9301 }
9302
9303 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9304 struct vmcs12 *vmcs12)
9305 {
9306 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9307 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9308 !nested_cpu_has_vid(vmcs12) &&
9309 !nested_cpu_has_posted_intr(vmcs12))
9310 return 0;
9311
9312 /*
9313 * If virtualize x2apic mode is enabled,
9314 * virtualize apic access must be disabled.
9315 */
9316 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9317 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9318 return -EINVAL;
9319
9320 /*
9321 * If virtual interrupt delivery is enabled,
9322 * we must exit on external interrupts.
9323 */
9324 if (nested_cpu_has_vid(vmcs12) &&
9325 !nested_exit_on_intr(vcpu))
9326 return -EINVAL;
9327
9328 /*
9329 * bits 15:8 should be zero in posted_intr_nv,
9330 * the descriptor address has been already checked
9331 * in nested_get_vmcs12_pages.
9332 */
9333 if (nested_cpu_has_posted_intr(vmcs12) &&
9334 (!nested_cpu_has_vid(vmcs12) ||
9335 !nested_exit_intr_ack_set(vcpu) ||
9336 vmcs12->posted_intr_nv & 0xff00))
9337 return -EINVAL;
9338
9339 /* tpr shadow is needed by all apicv features. */
9340 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9341 return -EINVAL;
9342
9343 return 0;
9344 }
9345
9346 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9347 unsigned long count_field,
9348 unsigned long addr_field)
9349 {
9350 int maxphyaddr;
9351 u64 count, addr;
9352
9353 if (vmcs12_read_any(vcpu, count_field, &count) ||
9354 vmcs12_read_any(vcpu, addr_field, &addr)) {
9355 WARN_ON(1);
9356 return -EINVAL;
9357 }
9358 if (count == 0)
9359 return 0;
9360 maxphyaddr = cpuid_maxphyaddr(vcpu);
9361 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9362 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9363 pr_warn_ratelimited(
9364 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9365 addr_field, maxphyaddr, count, addr);
9366 return -EINVAL;
9367 }
9368 return 0;
9369 }
9370
9371 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9372 struct vmcs12 *vmcs12)
9373 {
9374 if (vmcs12->vm_exit_msr_load_count == 0 &&
9375 vmcs12->vm_exit_msr_store_count == 0 &&
9376 vmcs12->vm_entry_msr_load_count == 0)
9377 return 0; /* Fast path */
9378 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9379 VM_EXIT_MSR_LOAD_ADDR) ||
9380 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9381 VM_EXIT_MSR_STORE_ADDR) ||
9382 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9383 VM_ENTRY_MSR_LOAD_ADDR))
9384 return -EINVAL;
9385 return 0;
9386 }
9387
9388 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9389 struct vmx_msr_entry *e)
9390 {
9391 /* x2APIC MSR accesses are not allowed */
9392 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9393 return -EINVAL;
9394 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9395 e->index == MSR_IA32_UCODE_REV)
9396 return -EINVAL;
9397 if (e->reserved != 0)
9398 return -EINVAL;
9399 return 0;
9400 }
9401
9402 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9403 struct vmx_msr_entry *e)
9404 {
9405 if (e->index == MSR_FS_BASE ||
9406 e->index == MSR_GS_BASE ||
9407 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9408 nested_vmx_msr_check_common(vcpu, e))
9409 return -EINVAL;
9410 return 0;
9411 }
9412
9413 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9414 struct vmx_msr_entry *e)
9415 {
9416 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9417 nested_vmx_msr_check_common(vcpu, e))
9418 return -EINVAL;
9419 return 0;
9420 }
9421
9422 /*
9423 * Load guest's/host's msr at nested entry/exit.
9424 * return 0 for success, entry index for failure.
9425 */
9426 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9427 {
9428 u32 i;
9429 struct vmx_msr_entry e;
9430 struct msr_data msr;
9431
9432 msr.host_initiated = false;
9433 for (i = 0; i < count; i++) {
9434 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9435 &e, sizeof(e))) {
9436 pr_warn_ratelimited(
9437 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9438 __func__, i, gpa + i * sizeof(e));
9439 goto fail;
9440 }
9441 if (nested_vmx_load_msr_check(vcpu, &e)) {
9442 pr_warn_ratelimited(
9443 "%s check failed (%u, 0x%x, 0x%x)\n",
9444 __func__, i, e.index, e.reserved);
9445 goto fail;
9446 }
9447 msr.index = e.index;
9448 msr.data = e.value;
9449 if (kvm_set_msr(vcpu, &msr)) {
9450 pr_warn_ratelimited(
9451 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9452 __func__, i, e.index, e.value);
9453 goto fail;
9454 }
9455 }
9456 return 0;
9457 fail:
9458 return i + 1;
9459 }
9460
9461 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9462 {
9463 u32 i;
9464 struct vmx_msr_entry e;
9465
9466 for (i = 0; i < count; i++) {
9467 struct msr_data msr_info;
9468 if (kvm_vcpu_read_guest(vcpu,
9469 gpa + i * sizeof(e),
9470 &e, 2 * sizeof(u32))) {
9471 pr_warn_ratelimited(
9472 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9473 __func__, i, gpa + i * sizeof(e));
9474 return -EINVAL;
9475 }
9476 if (nested_vmx_store_msr_check(vcpu, &e)) {
9477 pr_warn_ratelimited(
9478 "%s check failed (%u, 0x%x, 0x%x)\n",
9479 __func__, i, e.index, e.reserved);
9480 return -EINVAL;
9481 }
9482 msr_info.host_initiated = false;
9483 msr_info.index = e.index;
9484 if (kvm_get_msr(vcpu, &msr_info)) {
9485 pr_warn_ratelimited(
9486 "%s cannot read MSR (%u, 0x%x)\n",
9487 __func__, i, e.index);
9488 return -EINVAL;
9489 }
9490 if (kvm_vcpu_write_guest(vcpu,
9491 gpa + i * sizeof(e) +
9492 offsetof(struct vmx_msr_entry, value),
9493 &msr_info.data, sizeof(msr_info.data))) {
9494 pr_warn_ratelimited(
9495 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9496 __func__, i, e.index, msr_info.data);
9497 return -EINVAL;
9498 }
9499 }
9500 return 0;
9501 }
9502
9503 /*
9504 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9505 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9506 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9507 * guest in a way that will both be appropriate to L1's requests, and our
9508 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9509 * function also has additional necessary side-effects, like setting various
9510 * vcpu->arch fields.
9511 */
9512 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9513 {
9514 struct vcpu_vmx *vmx = to_vmx(vcpu);
9515 u32 exec_control;
9516
9517 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9518 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9519 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9520 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9521 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9522 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9523 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9524 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9525 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9526 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9527 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9528 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9529 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9530 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9531 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9532 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9533 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9534 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9535 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9536 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9537 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9538 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9539 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9540 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9541 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9542 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9543 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9544 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9545 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9546 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9547 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9548 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9549 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9550 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9551 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9552 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9553
9554 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9555 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9556 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9557 } else {
9558 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9559 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9560 }
9561 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9562 vmcs12->vm_entry_intr_info_field);
9563 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9564 vmcs12->vm_entry_exception_error_code);
9565 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9566 vmcs12->vm_entry_instruction_len);
9567 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9568 vmcs12->guest_interruptibility_info);
9569 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9570 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9571 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9572 vmcs12->guest_pending_dbg_exceptions);
9573 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9574 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9575
9576 if (nested_cpu_has_xsaves(vmcs12))
9577 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9578 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9579
9580 exec_control = vmcs12->pin_based_vm_exec_control;
9581 exec_control |= vmcs_config.pin_based_exec_ctrl;
9582 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9583
9584 if (nested_cpu_has_posted_intr(vmcs12)) {
9585 /*
9586 * Note that we use L0's vector here and in
9587 * vmx_deliver_nested_posted_interrupt.
9588 */
9589 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9590 vmx->nested.pi_pending = false;
9591 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9592 vmcs_write64(POSTED_INTR_DESC_ADDR,
9593 page_to_phys(vmx->nested.pi_desc_page) +
9594 (unsigned long)(vmcs12->posted_intr_desc_addr &
9595 (PAGE_SIZE - 1)));
9596 } else
9597 exec_control &= ~PIN_BASED_POSTED_INTR;
9598
9599 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9600
9601 vmx->nested.preemption_timer_expired = false;
9602 if (nested_cpu_has_preemption_timer(vmcs12))
9603 vmx_start_preemption_timer(vcpu);
9604
9605 /*
9606 * Whether page-faults are trapped is determined by a combination of
9607 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9608 * If enable_ept, L0 doesn't care about page faults and we should
9609 * set all of these to L1's desires. However, if !enable_ept, L0 does
9610 * care about (at least some) page faults, and because it is not easy
9611 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9612 * to exit on each and every L2 page fault. This is done by setting
9613 * MASK=MATCH=0 and (see below) EB.PF=1.
9614 * Note that below we don't need special code to set EB.PF beyond the
9615 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9616 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9617 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9618 *
9619 * A problem with this approach (when !enable_ept) is that L1 may be
9620 * injected with more page faults than it asked for. This could have
9621 * caused problems, but in practice existing hypervisors don't care.
9622 * To fix this, we will need to emulate the PFEC checking (on the L1
9623 * page tables), using walk_addr(), when injecting PFs to L1.
9624 */
9625 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9626 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9627 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9628 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9629
9630 if (cpu_has_secondary_exec_ctrls()) {
9631 exec_control = vmx_secondary_exec_control(vmx);
9632
9633 /* Take the following fields only from vmcs12 */
9634 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9635 SECONDARY_EXEC_RDTSCP |
9636 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9637 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9638 SECONDARY_EXEC_PCOMMIT);
9639 if (nested_cpu_has(vmcs12,
9640 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9641 exec_control |= vmcs12->secondary_vm_exec_control;
9642
9643 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9644 /*
9645 * If translation failed, no matter: This feature asks
9646 * to exit when accessing the given address, and if it
9647 * can never be accessed, this feature won't do
9648 * anything anyway.
9649 */
9650 if (!vmx->nested.apic_access_page)
9651 exec_control &=
9652 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9653 else
9654 vmcs_write64(APIC_ACCESS_ADDR,
9655 page_to_phys(vmx->nested.apic_access_page));
9656 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9657 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9658 exec_control |=
9659 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9660 kvm_vcpu_reload_apic_access_page(vcpu);
9661 }
9662
9663 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9664 vmcs_write64(EOI_EXIT_BITMAP0,
9665 vmcs12->eoi_exit_bitmap0);
9666 vmcs_write64(EOI_EXIT_BITMAP1,
9667 vmcs12->eoi_exit_bitmap1);
9668 vmcs_write64(EOI_EXIT_BITMAP2,
9669 vmcs12->eoi_exit_bitmap2);
9670 vmcs_write64(EOI_EXIT_BITMAP3,
9671 vmcs12->eoi_exit_bitmap3);
9672 vmcs_write16(GUEST_INTR_STATUS,
9673 vmcs12->guest_intr_status);
9674 }
9675
9676 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9677 }
9678
9679
9680 /*
9681 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9682 * Some constant fields are set here by vmx_set_constant_host_state().
9683 * Other fields are different per CPU, and will be set later when
9684 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9685 */
9686 vmx_set_constant_host_state(vmx);
9687
9688 /*
9689 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9690 * entry, but only if the current (host) sp changed from the value
9691 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9692 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9693 * here we just force the write to happen on entry.
9694 */
9695 vmx->host_rsp = 0;
9696
9697 exec_control = vmx_exec_control(vmx); /* L0's desires */
9698 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9699 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9700 exec_control &= ~CPU_BASED_TPR_SHADOW;
9701 exec_control |= vmcs12->cpu_based_vm_exec_control;
9702
9703 if (exec_control & CPU_BASED_TPR_SHADOW) {
9704 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9705 page_to_phys(vmx->nested.virtual_apic_page));
9706 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9707 }
9708
9709 if (cpu_has_vmx_msr_bitmap() &&
9710 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9711 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9712 /* MSR_BITMAP will be set by following vmx_set_efer. */
9713 } else
9714 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9715
9716 /*
9717 * Merging of IO bitmap not currently supported.
9718 * Rather, exit every time.
9719 */
9720 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9721 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9722
9723 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9724
9725 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9726 * bitwise-or of what L1 wants to trap for L2, and what we want to
9727 * trap. Note that CR0.TS also needs updating - we do this later.
9728 */
9729 update_exception_bitmap(vcpu);
9730 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9731 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9732
9733 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9734 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9735 * bits are further modified by vmx_set_efer() below.
9736 */
9737 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9738
9739 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9740 * emulated by vmx_set_efer(), below.
9741 */
9742 vm_entry_controls_init(vmx,
9743 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9744 ~VM_ENTRY_IA32E_MODE) |
9745 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9746
9747 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9748 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9749 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9750 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9751 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9752
9753
9754 set_cr4_guest_host_mask(vmx);
9755
9756 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9757 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9758
9759 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9760 vmcs_write64(TSC_OFFSET,
9761 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9762 else
9763 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9764
9765 if (enable_vpid) {
9766 /*
9767 * There is no direct mapping between vpid02 and vpid12, the
9768 * vpid02 is per-vCPU for L0 and reused while the value of
9769 * vpid12 is changed w/ one invvpid during nested vmentry.
9770 * The vpid12 is allocated by L1 for L2, so it will not
9771 * influence global bitmap(for vpid01 and vpid02 allocation)
9772 * even if spawn a lot of nested vCPUs.
9773 */
9774 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9775 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9776 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9777 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9778 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9779 }
9780 } else {
9781 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9782 vmx_flush_tlb(vcpu);
9783 }
9784
9785 }
9786
9787 if (nested_cpu_has_ept(vmcs12)) {
9788 kvm_mmu_unload(vcpu);
9789 nested_ept_init_mmu_context(vcpu);
9790 }
9791
9792 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9793 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9794 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9795 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9796 else
9797 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9798 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9799 vmx_set_efer(vcpu, vcpu->arch.efer);
9800
9801 /*
9802 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9803 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9804 * The CR0_READ_SHADOW is what L2 should have expected to read given
9805 * the specifications by L1; It's not enough to take
9806 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9807 * have more bits than L1 expected.
9808 */
9809 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9810 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9811
9812 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9813 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9814
9815 /* shadow page tables on either EPT or shadow page tables */
9816 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9817 kvm_mmu_reset_context(vcpu);
9818
9819 if (!enable_ept)
9820 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9821
9822 /*
9823 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9824 */
9825 if (enable_ept) {
9826 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9827 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9828 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9829 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9830 }
9831
9832 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9833 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9834 }
9835
9836 /*
9837 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9838 * for running an L2 nested guest.
9839 */
9840 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9841 {
9842 struct vmcs12 *vmcs12;
9843 struct vcpu_vmx *vmx = to_vmx(vcpu);
9844 int cpu;
9845 struct loaded_vmcs *vmcs02;
9846 bool ia32e;
9847 u32 msr_entry_idx;
9848
9849 if (!nested_vmx_check_permission(vcpu) ||
9850 !nested_vmx_check_vmcs12(vcpu))
9851 return 1;
9852
9853 skip_emulated_instruction(vcpu);
9854 vmcs12 = get_vmcs12(vcpu);
9855
9856 if (enable_shadow_vmcs)
9857 copy_shadow_to_vmcs12(vmx);
9858
9859 /*
9860 * The nested entry process starts with enforcing various prerequisites
9861 * on vmcs12 as required by the Intel SDM, and act appropriately when
9862 * they fail: As the SDM explains, some conditions should cause the
9863 * instruction to fail, while others will cause the instruction to seem
9864 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9865 * To speed up the normal (success) code path, we should avoid checking
9866 * for misconfigurations which will anyway be caught by the processor
9867 * when using the merged vmcs02.
9868 */
9869 if (vmcs12->launch_state == launch) {
9870 nested_vmx_failValid(vcpu,
9871 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9872 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9873 return 1;
9874 }
9875
9876 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9877 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9878 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9879 return 1;
9880 }
9881
9882 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9883 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9884 return 1;
9885 }
9886
9887 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9888 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9889 return 1;
9890 }
9891
9892 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9893 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9894 return 1;
9895 }
9896
9897 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9898 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9899 return 1;
9900 }
9901
9902 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9903 vmx->nested.nested_vmx_true_procbased_ctls_low,
9904 vmx->nested.nested_vmx_procbased_ctls_high) ||
9905 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9906 vmx->nested.nested_vmx_secondary_ctls_low,
9907 vmx->nested.nested_vmx_secondary_ctls_high) ||
9908 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9909 vmx->nested.nested_vmx_pinbased_ctls_low,
9910 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9911 !vmx_control_verify(vmcs12->vm_exit_controls,
9912 vmx->nested.nested_vmx_true_exit_ctls_low,
9913 vmx->nested.nested_vmx_exit_ctls_high) ||
9914 !vmx_control_verify(vmcs12->vm_entry_controls,
9915 vmx->nested.nested_vmx_true_entry_ctls_low,
9916 vmx->nested.nested_vmx_entry_ctls_high))
9917 {
9918 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9919 return 1;
9920 }
9921
9922 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9923 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9924 nested_vmx_failValid(vcpu,
9925 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9926 return 1;
9927 }
9928
9929 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9930 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9931 nested_vmx_entry_failure(vcpu, vmcs12,
9932 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9933 return 1;
9934 }
9935 if (vmcs12->vmcs_link_pointer != -1ull) {
9936 nested_vmx_entry_failure(vcpu, vmcs12,
9937 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9938 return 1;
9939 }
9940
9941 /*
9942 * If the load IA32_EFER VM-entry control is 1, the following checks
9943 * are performed on the field for the IA32_EFER MSR:
9944 * - Bits reserved in the IA32_EFER MSR must be 0.
9945 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9946 * the IA-32e mode guest VM-exit control. It must also be identical
9947 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9948 * CR0.PG) is 1.
9949 */
9950 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9951 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9952 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9953 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9954 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9955 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9956 nested_vmx_entry_failure(vcpu, vmcs12,
9957 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9958 return 1;
9959 }
9960 }
9961
9962 /*
9963 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9964 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9965 * the values of the LMA and LME bits in the field must each be that of
9966 * the host address-space size VM-exit control.
9967 */
9968 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9969 ia32e = (vmcs12->vm_exit_controls &
9970 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9971 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9972 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9973 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9974 nested_vmx_entry_failure(vcpu, vmcs12,
9975 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9976 return 1;
9977 }
9978 }
9979
9980 /*
9981 * We're finally done with prerequisite checking, and can start with
9982 * the nested entry.
9983 */
9984
9985 vmcs02 = nested_get_current_vmcs02(vmx);
9986 if (!vmcs02)
9987 return -ENOMEM;
9988
9989 enter_guest_mode(vcpu);
9990
9991 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9992
9993 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9994 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9995
9996 cpu = get_cpu();
9997 vmx->loaded_vmcs = vmcs02;
9998 vmx_vcpu_put(vcpu);
9999 vmx_vcpu_load(vcpu, cpu);
10000 vcpu->cpu = cpu;
10001 put_cpu();
10002
10003 vmx_segment_cache_clear(vmx);
10004
10005 prepare_vmcs02(vcpu, vmcs12);
10006
10007 msr_entry_idx = nested_vmx_load_msr(vcpu,
10008 vmcs12->vm_entry_msr_load_addr,
10009 vmcs12->vm_entry_msr_load_count);
10010 if (msr_entry_idx) {
10011 leave_guest_mode(vcpu);
10012 vmx_load_vmcs01(vcpu);
10013 nested_vmx_entry_failure(vcpu, vmcs12,
10014 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10015 return 1;
10016 }
10017
10018 vmcs12->launch_state = 1;
10019
10020 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10021 return kvm_vcpu_halt(vcpu);
10022
10023 vmx->nested.nested_run_pending = 1;
10024
10025 /*
10026 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10027 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10028 * returned as far as L1 is concerned. It will only return (and set
10029 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10030 */
10031 return 1;
10032 }
10033
10034 /*
10035 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10036 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10037 * This function returns the new value we should put in vmcs12.guest_cr0.
10038 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10039 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10040 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10041 * didn't trap the bit, because if L1 did, so would L0).
10042 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10043 * been modified by L2, and L1 knows it. So just leave the old value of
10044 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10045 * isn't relevant, because if L0 traps this bit it can set it to anything.
10046 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10047 * changed these bits, and therefore they need to be updated, but L0
10048 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10049 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10050 */
10051 static inline unsigned long
10052 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10053 {
10054 return
10055 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10056 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10057 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10058 vcpu->arch.cr0_guest_owned_bits));
10059 }
10060
10061 static inline unsigned long
10062 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10063 {
10064 return
10065 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10066 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10067 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10068 vcpu->arch.cr4_guest_owned_bits));
10069 }
10070
10071 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10072 struct vmcs12 *vmcs12)
10073 {
10074 u32 idt_vectoring;
10075 unsigned int nr;
10076
10077 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10078 nr = vcpu->arch.exception.nr;
10079 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10080
10081 if (kvm_exception_is_soft(nr)) {
10082 vmcs12->vm_exit_instruction_len =
10083 vcpu->arch.event_exit_inst_len;
10084 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10085 } else
10086 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10087
10088 if (vcpu->arch.exception.has_error_code) {
10089 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10090 vmcs12->idt_vectoring_error_code =
10091 vcpu->arch.exception.error_code;
10092 }
10093
10094 vmcs12->idt_vectoring_info_field = idt_vectoring;
10095 } else if (vcpu->arch.nmi_injected) {
10096 vmcs12->idt_vectoring_info_field =
10097 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10098 } else if (vcpu->arch.interrupt.pending) {
10099 nr = vcpu->arch.interrupt.nr;
10100 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10101
10102 if (vcpu->arch.interrupt.soft) {
10103 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10104 vmcs12->vm_entry_instruction_len =
10105 vcpu->arch.event_exit_inst_len;
10106 } else
10107 idt_vectoring |= INTR_TYPE_EXT_INTR;
10108
10109 vmcs12->idt_vectoring_info_field = idt_vectoring;
10110 }
10111 }
10112
10113 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10114 {
10115 struct vcpu_vmx *vmx = to_vmx(vcpu);
10116
10117 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10118 vmx->nested.preemption_timer_expired) {
10119 if (vmx->nested.nested_run_pending)
10120 return -EBUSY;
10121 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10122 return 0;
10123 }
10124
10125 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10126 if (vmx->nested.nested_run_pending ||
10127 vcpu->arch.interrupt.pending)
10128 return -EBUSY;
10129 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10130 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10131 INTR_INFO_VALID_MASK, 0);
10132 /*
10133 * The NMI-triggered VM exit counts as injection:
10134 * clear this one and block further NMIs.
10135 */
10136 vcpu->arch.nmi_pending = 0;
10137 vmx_set_nmi_mask(vcpu, true);
10138 return 0;
10139 }
10140
10141 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10142 nested_exit_on_intr(vcpu)) {
10143 if (vmx->nested.nested_run_pending)
10144 return -EBUSY;
10145 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10146 return 0;
10147 }
10148
10149 return vmx_complete_nested_posted_interrupt(vcpu);
10150 }
10151
10152 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10153 {
10154 ktime_t remaining =
10155 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10156 u64 value;
10157
10158 if (ktime_to_ns(remaining) <= 0)
10159 return 0;
10160
10161 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10162 do_div(value, 1000000);
10163 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10164 }
10165
10166 /*
10167 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10168 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10169 * and this function updates it to reflect the changes to the guest state while
10170 * L2 was running (and perhaps made some exits which were handled directly by L0
10171 * without going back to L1), and to reflect the exit reason.
10172 * Note that we do not have to copy here all VMCS fields, just those that
10173 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10174 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10175 * which already writes to vmcs12 directly.
10176 */
10177 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10178 u32 exit_reason, u32 exit_intr_info,
10179 unsigned long exit_qualification)
10180 {
10181 /* update guest state fields: */
10182 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10183 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10184
10185 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10186 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10187 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10188
10189 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10190 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10191 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10192 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10193 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10194 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10195 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10196 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10197 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10198 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10199 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10200 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10201 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10202 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10203 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10204 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10205 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10206 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10207 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10208 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10209 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10210 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10211 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10212 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10213 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10214 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10215 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10216 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10217 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10218 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10219 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10220 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10221 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10222 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10223 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10224 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10225
10226 vmcs12->guest_interruptibility_info =
10227 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10228 vmcs12->guest_pending_dbg_exceptions =
10229 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10230 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10231 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10232 else
10233 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10234
10235 if (nested_cpu_has_preemption_timer(vmcs12)) {
10236 if (vmcs12->vm_exit_controls &
10237 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10238 vmcs12->vmx_preemption_timer_value =
10239 vmx_get_preemption_timer_value(vcpu);
10240 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10241 }
10242
10243 /*
10244 * In some cases (usually, nested EPT), L2 is allowed to change its
10245 * own CR3 without exiting. If it has changed it, we must keep it.
10246 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10247 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10248 *
10249 * Additionally, restore L2's PDPTR to vmcs12.
10250 */
10251 if (enable_ept) {
10252 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10253 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10254 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10255 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10256 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10257 }
10258
10259 if (nested_cpu_has_vid(vmcs12))
10260 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10261
10262 vmcs12->vm_entry_controls =
10263 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10264 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10265
10266 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10267 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10268 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10269 }
10270
10271 /* TODO: These cannot have changed unless we have MSR bitmaps and
10272 * the relevant bit asks not to trap the change */
10273 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10274 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10275 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10276 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10277 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10278 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10279 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10280 if (vmx_mpx_supported())
10281 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10282 if (nested_cpu_has_xsaves(vmcs12))
10283 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10284
10285 /* update exit information fields: */
10286
10287 vmcs12->vm_exit_reason = exit_reason;
10288 vmcs12->exit_qualification = exit_qualification;
10289
10290 vmcs12->vm_exit_intr_info = exit_intr_info;
10291 if ((vmcs12->vm_exit_intr_info &
10292 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10293 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10294 vmcs12->vm_exit_intr_error_code =
10295 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10296 vmcs12->idt_vectoring_info_field = 0;
10297 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10298 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10299
10300 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10301 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10302 * instead of reading the real value. */
10303 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10304
10305 /*
10306 * Transfer the event that L0 or L1 may wanted to inject into
10307 * L2 to IDT_VECTORING_INFO_FIELD.
10308 */
10309 vmcs12_save_pending_event(vcpu, vmcs12);
10310 }
10311
10312 /*
10313 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10314 * preserved above and would only end up incorrectly in L1.
10315 */
10316 vcpu->arch.nmi_injected = false;
10317 kvm_clear_exception_queue(vcpu);
10318 kvm_clear_interrupt_queue(vcpu);
10319 }
10320
10321 /*
10322 * A part of what we need to when the nested L2 guest exits and we want to
10323 * run its L1 parent, is to reset L1's guest state to the host state specified
10324 * in vmcs12.
10325 * This function is to be called not only on normal nested exit, but also on
10326 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10327 * Failures During or After Loading Guest State").
10328 * This function should be called when the active VMCS is L1's (vmcs01).
10329 */
10330 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10331 struct vmcs12 *vmcs12)
10332 {
10333 struct kvm_segment seg;
10334
10335 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10336 vcpu->arch.efer = vmcs12->host_ia32_efer;
10337 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10338 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10339 else
10340 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10341 vmx_set_efer(vcpu, vcpu->arch.efer);
10342
10343 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10344 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10345 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10346 /*
10347 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10348 * actually changed, because it depends on the current state of
10349 * fpu_active (which may have changed).
10350 * Note that vmx_set_cr0 refers to efer set above.
10351 */
10352 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10353 /*
10354 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10355 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10356 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10357 */
10358 update_exception_bitmap(vcpu);
10359 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10360 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10361
10362 /*
10363 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10364 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10365 */
10366 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10367 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10368
10369 nested_ept_uninit_mmu_context(vcpu);
10370
10371 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10372 kvm_mmu_reset_context(vcpu);
10373
10374 if (!enable_ept)
10375 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10376
10377 if (enable_vpid) {
10378 /*
10379 * Trivially support vpid by letting L2s share their parent
10380 * L1's vpid. TODO: move to a more elaborate solution, giving
10381 * each L2 its own vpid and exposing the vpid feature to L1.
10382 */
10383 vmx_flush_tlb(vcpu);
10384 }
10385
10386
10387 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10388 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10389 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10390 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10391 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10392
10393 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10394 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10395 vmcs_write64(GUEST_BNDCFGS, 0);
10396
10397 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10398 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10399 vcpu->arch.pat = vmcs12->host_ia32_pat;
10400 }
10401 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10402 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10403 vmcs12->host_ia32_perf_global_ctrl);
10404
10405 /* Set L1 segment info according to Intel SDM
10406 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10407 seg = (struct kvm_segment) {
10408 .base = 0,
10409 .limit = 0xFFFFFFFF,
10410 .selector = vmcs12->host_cs_selector,
10411 .type = 11,
10412 .present = 1,
10413 .s = 1,
10414 .g = 1
10415 };
10416 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10417 seg.l = 1;
10418 else
10419 seg.db = 1;
10420 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10421 seg = (struct kvm_segment) {
10422 .base = 0,
10423 .limit = 0xFFFFFFFF,
10424 .type = 3,
10425 .present = 1,
10426 .s = 1,
10427 .db = 1,
10428 .g = 1
10429 };
10430 seg.selector = vmcs12->host_ds_selector;
10431 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10432 seg.selector = vmcs12->host_es_selector;
10433 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10434 seg.selector = vmcs12->host_ss_selector;
10435 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10436 seg.selector = vmcs12->host_fs_selector;
10437 seg.base = vmcs12->host_fs_base;
10438 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10439 seg.selector = vmcs12->host_gs_selector;
10440 seg.base = vmcs12->host_gs_base;
10441 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10442 seg = (struct kvm_segment) {
10443 .base = vmcs12->host_tr_base,
10444 .limit = 0x67,
10445 .selector = vmcs12->host_tr_selector,
10446 .type = 11,
10447 .present = 1
10448 };
10449 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10450
10451 kvm_set_dr(vcpu, 7, 0x400);
10452 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10453
10454 if (cpu_has_vmx_msr_bitmap())
10455 vmx_set_msr_bitmap(vcpu);
10456
10457 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10458 vmcs12->vm_exit_msr_load_count))
10459 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10460 }
10461
10462 /*
10463 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10464 * and modify vmcs12 to make it see what it would expect to see there if
10465 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10466 */
10467 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10468 u32 exit_intr_info,
10469 unsigned long exit_qualification)
10470 {
10471 struct vcpu_vmx *vmx = to_vmx(vcpu);
10472 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10473
10474 /* trying to cancel vmlaunch/vmresume is a bug */
10475 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10476
10477 leave_guest_mode(vcpu);
10478 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10479 exit_qualification);
10480
10481 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10482 vmcs12->vm_exit_msr_store_count))
10483 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10484
10485 vmx_load_vmcs01(vcpu);
10486
10487 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10488 && nested_exit_intr_ack_set(vcpu)) {
10489 int irq = kvm_cpu_get_interrupt(vcpu);
10490 WARN_ON(irq < 0);
10491 vmcs12->vm_exit_intr_info = irq |
10492 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10493 }
10494
10495 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10496 vmcs12->exit_qualification,
10497 vmcs12->idt_vectoring_info_field,
10498 vmcs12->vm_exit_intr_info,
10499 vmcs12->vm_exit_intr_error_code,
10500 KVM_ISA_VMX);
10501
10502 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10503 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10504 vmx_segment_cache_clear(vmx);
10505
10506 /* if no vmcs02 cache requested, remove the one we used */
10507 if (VMCS02_POOL_SIZE == 0)
10508 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10509
10510 load_vmcs12_host_state(vcpu, vmcs12);
10511
10512 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10513 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10514
10515 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10516 vmx->host_rsp = 0;
10517
10518 /* Unpin physical memory we referred to in vmcs02 */
10519 if (vmx->nested.apic_access_page) {
10520 nested_release_page(vmx->nested.apic_access_page);
10521 vmx->nested.apic_access_page = NULL;
10522 }
10523 if (vmx->nested.virtual_apic_page) {
10524 nested_release_page(vmx->nested.virtual_apic_page);
10525 vmx->nested.virtual_apic_page = NULL;
10526 }
10527 if (vmx->nested.pi_desc_page) {
10528 kunmap(vmx->nested.pi_desc_page);
10529 nested_release_page(vmx->nested.pi_desc_page);
10530 vmx->nested.pi_desc_page = NULL;
10531 vmx->nested.pi_desc = NULL;
10532 }
10533
10534 /*
10535 * We are now running in L2, mmu_notifier will force to reload the
10536 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10537 */
10538 kvm_vcpu_reload_apic_access_page(vcpu);
10539
10540 /*
10541 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10542 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10543 * success or failure flag accordingly.
10544 */
10545 if (unlikely(vmx->fail)) {
10546 vmx->fail = 0;
10547 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10548 } else
10549 nested_vmx_succeed(vcpu);
10550 if (enable_shadow_vmcs)
10551 vmx->nested.sync_shadow_vmcs = true;
10552
10553 /* in case we halted in L2 */
10554 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10555 }
10556
10557 /*
10558 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10559 */
10560 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10561 {
10562 if (is_guest_mode(vcpu))
10563 nested_vmx_vmexit(vcpu, -1, 0, 0);
10564 free_nested(to_vmx(vcpu));
10565 }
10566
10567 /*
10568 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10569 * 23.7 "VM-entry failures during or after loading guest state" (this also
10570 * lists the acceptable exit-reason and exit-qualification parameters).
10571 * It should only be called before L2 actually succeeded to run, and when
10572 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10573 */
10574 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10575 struct vmcs12 *vmcs12,
10576 u32 reason, unsigned long qualification)
10577 {
10578 load_vmcs12_host_state(vcpu, vmcs12);
10579 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10580 vmcs12->exit_qualification = qualification;
10581 nested_vmx_succeed(vcpu);
10582 if (enable_shadow_vmcs)
10583 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10584 }
10585
10586 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10587 struct x86_instruction_info *info,
10588 enum x86_intercept_stage stage)
10589 {
10590 return X86EMUL_CONTINUE;
10591 }
10592
10593 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10594 {
10595 if (ple_gap)
10596 shrink_ple_window(vcpu);
10597 }
10598
10599 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10600 struct kvm_memory_slot *slot)
10601 {
10602 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10603 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10604 }
10605
10606 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10607 struct kvm_memory_slot *slot)
10608 {
10609 kvm_mmu_slot_set_dirty(kvm, slot);
10610 }
10611
10612 static void vmx_flush_log_dirty(struct kvm *kvm)
10613 {
10614 kvm_flush_pml_buffers(kvm);
10615 }
10616
10617 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10618 struct kvm_memory_slot *memslot,
10619 gfn_t offset, unsigned long mask)
10620 {
10621 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10622 }
10623
10624 /*
10625 * This routine does the following things for vCPU which is going
10626 * to be blocked if VT-d PI is enabled.
10627 * - Store the vCPU to the wakeup list, so when interrupts happen
10628 * we can find the right vCPU to wake up.
10629 * - Change the Posted-interrupt descriptor as below:
10630 * 'NDST' <-- vcpu->pre_pcpu
10631 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10632 * - If 'ON' is set during this process, which means at least one
10633 * interrupt is posted for this vCPU, we cannot block it, in
10634 * this case, return 1, otherwise, return 0.
10635 *
10636 */
10637 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10638 {
10639 unsigned long flags;
10640 unsigned int dest;
10641 struct pi_desc old, new;
10642 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10643
10644 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10645 !irq_remapping_cap(IRQ_POSTING_CAP))
10646 return 0;
10647
10648 vcpu->pre_pcpu = vcpu->cpu;
10649 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10650 vcpu->pre_pcpu), flags);
10651 list_add_tail(&vcpu->blocked_vcpu_list,
10652 &per_cpu(blocked_vcpu_on_cpu,
10653 vcpu->pre_pcpu));
10654 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10655 vcpu->pre_pcpu), flags);
10656
10657 do {
10658 old.control = new.control = pi_desc->control;
10659
10660 /*
10661 * We should not block the vCPU if
10662 * an interrupt is posted for it.
10663 */
10664 if (pi_test_on(pi_desc) == 1) {
10665 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10666 vcpu->pre_pcpu), flags);
10667 list_del(&vcpu->blocked_vcpu_list);
10668 spin_unlock_irqrestore(
10669 &per_cpu(blocked_vcpu_on_cpu_lock,
10670 vcpu->pre_pcpu), flags);
10671 vcpu->pre_pcpu = -1;
10672
10673 return 1;
10674 }
10675
10676 WARN((pi_desc->sn == 1),
10677 "Warning: SN field of posted-interrupts "
10678 "is set before blocking\n");
10679
10680 /*
10681 * Since vCPU can be preempted during this process,
10682 * vcpu->cpu could be different with pre_pcpu, we
10683 * need to set pre_pcpu as the destination of wakeup
10684 * notification event, then we can find the right vCPU
10685 * to wakeup in wakeup handler if interrupts happen
10686 * when the vCPU is in blocked state.
10687 */
10688 dest = cpu_physical_id(vcpu->pre_pcpu);
10689
10690 if (x2apic_enabled())
10691 new.ndst = dest;
10692 else
10693 new.ndst = (dest << 8) & 0xFF00;
10694
10695 /* set 'NV' to 'wakeup vector' */
10696 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10697 } while (cmpxchg(&pi_desc->control, old.control,
10698 new.control) != old.control);
10699
10700 return 0;
10701 }
10702
10703 static void vmx_post_block(struct kvm_vcpu *vcpu)
10704 {
10705 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10706 struct pi_desc old, new;
10707 unsigned int dest;
10708 unsigned long flags;
10709
10710 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10711 !irq_remapping_cap(IRQ_POSTING_CAP))
10712 return;
10713
10714 do {
10715 old.control = new.control = pi_desc->control;
10716
10717 dest = cpu_physical_id(vcpu->cpu);
10718
10719 if (x2apic_enabled())
10720 new.ndst = dest;
10721 else
10722 new.ndst = (dest << 8) & 0xFF00;
10723
10724 /* Allow posting non-urgent interrupts */
10725 new.sn = 0;
10726
10727 /* set 'NV' to 'notification vector' */
10728 new.nv = POSTED_INTR_VECTOR;
10729 } while (cmpxchg(&pi_desc->control, old.control,
10730 new.control) != old.control);
10731
10732 if(vcpu->pre_pcpu != -1) {
10733 spin_lock_irqsave(
10734 &per_cpu(blocked_vcpu_on_cpu_lock,
10735 vcpu->pre_pcpu), flags);
10736 list_del(&vcpu->blocked_vcpu_list);
10737 spin_unlock_irqrestore(
10738 &per_cpu(blocked_vcpu_on_cpu_lock,
10739 vcpu->pre_pcpu), flags);
10740 vcpu->pre_pcpu = -1;
10741 }
10742 }
10743
10744 /*
10745 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10746 *
10747 * @kvm: kvm
10748 * @host_irq: host irq of the interrupt
10749 * @guest_irq: gsi of the interrupt
10750 * @set: set or unset PI
10751 * returns 0 on success, < 0 on failure
10752 */
10753 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10754 uint32_t guest_irq, bool set)
10755 {
10756 struct kvm_kernel_irq_routing_entry *e;
10757 struct kvm_irq_routing_table *irq_rt;
10758 struct kvm_lapic_irq irq;
10759 struct kvm_vcpu *vcpu;
10760 struct vcpu_data vcpu_info;
10761 int idx, ret = -EINVAL;
10762
10763 if (!kvm_arch_has_assigned_device(kvm) ||
10764 !irq_remapping_cap(IRQ_POSTING_CAP))
10765 return 0;
10766
10767 idx = srcu_read_lock(&kvm->irq_srcu);
10768 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10769 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10770
10771 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10772 if (e->type != KVM_IRQ_ROUTING_MSI)
10773 continue;
10774 /*
10775 * VT-d PI cannot support posting multicast/broadcast
10776 * interrupts to a vCPU, we still use interrupt remapping
10777 * for these kind of interrupts.
10778 *
10779 * For lowest-priority interrupts, we only support
10780 * those with single CPU as the destination, e.g. user
10781 * configures the interrupts via /proc/irq or uses
10782 * irqbalance to make the interrupts single-CPU.
10783 *
10784 * We will support full lowest-priority interrupt later.
10785 */
10786
10787 kvm_set_msi_irq(e, &irq);
10788 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10789 continue;
10790
10791 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10792 vcpu_info.vector = irq.vector;
10793
10794 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10795 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10796
10797 if (set)
10798 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10799 else {
10800 /* suppress notification event before unposting */
10801 pi_set_sn(vcpu_to_pi_desc(vcpu));
10802 ret = irq_set_vcpu_affinity(host_irq, NULL);
10803 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10804 }
10805
10806 if (ret < 0) {
10807 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10808 __func__);
10809 goto out;
10810 }
10811 }
10812
10813 ret = 0;
10814 out:
10815 srcu_read_unlock(&kvm->irq_srcu, idx);
10816 return ret;
10817 }
10818
10819 static struct kvm_x86_ops vmx_x86_ops = {
10820 .cpu_has_kvm_support = cpu_has_kvm_support,
10821 .disabled_by_bios = vmx_disabled_by_bios,
10822 .hardware_setup = hardware_setup,
10823 .hardware_unsetup = hardware_unsetup,
10824 .check_processor_compatibility = vmx_check_processor_compat,
10825 .hardware_enable = hardware_enable,
10826 .hardware_disable = hardware_disable,
10827 .cpu_has_accelerated_tpr = report_flexpriority,
10828 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10829
10830 .vcpu_create = vmx_create_vcpu,
10831 .vcpu_free = vmx_free_vcpu,
10832 .vcpu_reset = vmx_vcpu_reset,
10833
10834 .prepare_guest_switch = vmx_save_host_state,
10835 .vcpu_load = vmx_vcpu_load,
10836 .vcpu_put = vmx_vcpu_put,
10837
10838 .update_bp_intercept = update_exception_bitmap,
10839 .get_msr = vmx_get_msr,
10840 .set_msr = vmx_set_msr,
10841 .get_segment_base = vmx_get_segment_base,
10842 .get_segment = vmx_get_segment,
10843 .set_segment = vmx_set_segment,
10844 .get_cpl = vmx_get_cpl,
10845 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10846 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10847 .decache_cr3 = vmx_decache_cr3,
10848 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10849 .set_cr0 = vmx_set_cr0,
10850 .set_cr3 = vmx_set_cr3,
10851 .set_cr4 = vmx_set_cr4,
10852 .set_efer = vmx_set_efer,
10853 .get_idt = vmx_get_idt,
10854 .set_idt = vmx_set_idt,
10855 .get_gdt = vmx_get_gdt,
10856 .set_gdt = vmx_set_gdt,
10857 .get_dr6 = vmx_get_dr6,
10858 .set_dr6 = vmx_set_dr6,
10859 .set_dr7 = vmx_set_dr7,
10860 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10861 .cache_reg = vmx_cache_reg,
10862 .get_rflags = vmx_get_rflags,
10863 .set_rflags = vmx_set_rflags,
10864 .fpu_activate = vmx_fpu_activate,
10865 .fpu_deactivate = vmx_fpu_deactivate,
10866
10867 .tlb_flush = vmx_flush_tlb,
10868
10869 .run = vmx_vcpu_run,
10870 .handle_exit = vmx_handle_exit,
10871 .skip_emulated_instruction = skip_emulated_instruction,
10872 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10873 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10874 .patch_hypercall = vmx_patch_hypercall,
10875 .set_irq = vmx_inject_irq,
10876 .set_nmi = vmx_inject_nmi,
10877 .queue_exception = vmx_queue_exception,
10878 .cancel_injection = vmx_cancel_injection,
10879 .interrupt_allowed = vmx_interrupt_allowed,
10880 .nmi_allowed = vmx_nmi_allowed,
10881 .get_nmi_mask = vmx_get_nmi_mask,
10882 .set_nmi_mask = vmx_set_nmi_mask,
10883 .enable_nmi_window = enable_nmi_window,
10884 .enable_irq_window = enable_irq_window,
10885 .update_cr8_intercept = update_cr8_intercept,
10886 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10887 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10888 .get_enable_apicv = vmx_get_enable_apicv,
10889 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
10890 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10891 .hwapic_irr_update = vmx_hwapic_irr_update,
10892 .hwapic_isr_update = vmx_hwapic_isr_update,
10893 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10894 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10895
10896 .set_tss_addr = vmx_set_tss_addr,
10897 .get_tdp_level = get_ept_level,
10898 .get_mt_mask = vmx_get_mt_mask,
10899
10900 .get_exit_info = vmx_get_exit_info,
10901
10902 .get_lpage_level = vmx_get_lpage_level,
10903
10904 .cpuid_update = vmx_cpuid_update,
10905
10906 .rdtscp_supported = vmx_rdtscp_supported,
10907 .invpcid_supported = vmx_invpcid_supported,
10908
10909 .set_supported_cpuid = vmx_set_supported_cpuid,
10910
10911 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10912
10913 .read_tsc_offset = vmx_read_tsc_offset,
10914 .write_tsc_offset = vmx_write_tsc_offset,
10915 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10916 .read_l1_tsc = vmx_read_l1_tsc,
10917
10918 .set_tdp_cr3 = vmx_set_cr3,
10919
10920 .check_intercept = vmx_check_intercept,
10921 .handle_external_intr = vmx_handle_external_intr,
10922 .mpx_supported = vmx_mpx_supported,
10923 .xsaves_supported = vmx_xsaves_supported,
10924
10925 .check_nested_events = vmx_check_nested_events,
10926
10927 .sched_in = vmx_sched_in,
10928
10929 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10930 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10931 .flush_log_dirty = vmx_flush_log_dirty,
10932 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10933
10934 .pre_block = vmx_pre_block,
10935 .post_block = vmx_post_block,
10936
10937 .pmu_ops = &intel_pmu_ops,
10938
10939 .update_pi_irte = vmx_update_pi_irte,
10940 };
10941
10942 static int __init vmx_init(void)
10943 {
10944 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10945 __alignof__(struct vcpu_vmx), THIS_MODULE);
10946 if (r)
10947 return r;
10948
10949 #ifdef CONFIG_KEXEC_CORE
10950 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10951 crash_vmclear_local_loaded_vmcss);
10952 #endif
10953
10954 return 0;
10955 }
10956
10957 static void __exit vmx_exit(void)
10958 {
10959 #ifdef CONFIG_KEXEC_CORE
10960 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10961 synchronize_rcu();
10962 #endif
10963
10964 kvm_exit();
10965 }
10966
10967 module_init(vmx_init)
10968 module_exit(vmx_exit)