]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: Add support for guest/host-only profiling
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42 #include <asm/perf_event.h>
43
44 #include "trace.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 #define __ex_clear(x, reg) \
48 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 static int __read_mostly fasteoi = 1;
76 module_param(fasteoi, bool, S_IRUGO);
77
78 /*
79 * If nested=1, nested virtualization is supported, i.e., guests may use
80 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
81 * use VMX instructions.
82 */
83 static int __read_mostly nested = 0;
84 module_param(nested, bool, S_IRUGO);
85
86 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
87 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
88 #define KVM_GUEST_CR0_MASK \
89 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
90 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
91 (X86_CR0_WP | X86_CR0_NE)
92 #define KVM_VM_CR0_ALWAYS_ON \
93 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
94 #define KVM_CR4_GUEST_OWNED_BITS \
95 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
96 | X86_CR4_OSXMMEXCPT)
97
98 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
99 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
100
101 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
102
103 /*
104 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
105 * ple_gap: upper bound on the amount of time between two successive
106 * executions of PAUSE in a loop. Also indicate if ple enabled.
107 * According to test, this time is usually smaller than 128 cycles.
108 * ple_window: upper bound on the amount of time a guest is allowed to execute
109 * in a PAUSE loop. Tests indicate that most spinlocks are held for
110 * less than 2^12 cycles
111 * Time is measured based on a counter that runs at the same rate as the TSC,
112 * refer SDM volume 3b section 21.6.13 & 22.1.3.
113 */
114 #define KVM_VMX_DEFAULT_PLE_GAP 128
115 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
116 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
117 module_param(ple_gap, int, S_IRUGO);
118
119 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
120 module_param(ple_window, int, S_IRUGO);
121
122 #define NR_AUTOLOAD_MSRS 8
123 #define VMCS02_POOL_SIZE 1
124
125 struct vmcs {
126 u32 revision_id;
127 u32 abort;
128 char data[0];
129 };
130
131 /*
132 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
133 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
134 * loaded on this CPU (so we can clear them if the CPU goes down).
135 */
136 struct loaded_vmcs {
137 struct vmcs *vmcs;
138 int cpu;
139 int launched;
140 struct list_head loaded_vmcss_on_cpu_link;
141 };
142
143 struct shared_msr_entry {
144 unsigned index;
145 u64 data;
146 u64 mask;
147 };
148
149 /*
150 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
151 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
152 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
153 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
154 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
155 * More than one of these structures may exist, if L1 runs multiple L2 guests.
156 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
157 * underlying hardware which will be used to run L2.
158 * This structure is packed to ensure that its layout is identical across
159 * machines (necessary for live migration).
160 * If there are changes in this struct, VMCS12_REVISION must be changed.
161 */
162 typedef u64 natural_width;
163 struct __packed vmcs12 {
164 /* According to the Intel spec, a VMCS region must start with the
165 * following two fields. Then follow implementation-specific data.
166 */
167 u32 revision_id;
168 u32 abort;
169
170 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
171 u32 padding[7]; /* room for future expansion */
172
173 u64 io_bitmap_a;
174 u64 io_bitmap_b;
175 u64 msr_bitmap;
176 u64 vm_exit_msr_store_addr;
177 u64 vm_exit_msr_load_addr;
178 u64 vm_entry_msr_load_addr;
179 u64 tsc_offset;
180 u64 virtual_apic_page_addr;
181 u64 apic_access_addr;
182 u64 ept_pointer;
183 u64 guest_physical_address;
184 u64 vmcs_link_pointer;
185 u64 guest_ia32_debugctl;
186 u64 guest_ia32_pat;
187 u64 guest_ia32_efer;
188 u64 guest_ia32_perf_global_ctrl;
189 u64 guest_pdptr0;
190 u64 guest_pdptr1;
191 u64 guest_pdptr2;
192 u64 guest_pdptr3;
193 u64 host_ia32_pat;
194 u64 host_ia32_efer;
195 u64 host_ia32_perf_global_ctrl;
196 u64 padding64[8]; /* room for future expansion */
197 /*
198 * To allow migration of L1 (complete with its L2 guests) between
199 * machines of different natural widths (32 or 64 bit), we cannot have
200 * unsigned long fields with no explict size. We use u64 (aliased
201 * natural_width) instead. Luckily, x86 is little-endian.
202 */
203 natural_width cr0_guest_host_mask;
204 natural_width cr4_guest_host_mask;
205 natural_width cr0_read_shadow;
206 natural_width cr4_read_shadow;
207 natural_width cr3_target_value0;
208 natural_width cr3_target_value1;
209 natural_width cr3_target_value2;
210 natural_width cr3_target_value3;
211 natural_width exit_qualification;
212 natural_width guest_linear_address;
213 natural_width guest_cr0;
214 natural_width guest_cr3;
215 natural_width guest_cr4;
216 natural_width guest_es_base;
217 natural_width guest_cs_base;
218 natural_width guest_ss_base;
219 natural_width guest_ds_base;
220 natural_width guest_fs_base;
221 natural_width guest_gs_base;
222 natural_width guest_ldtr_base;
223 natural_width guest_tr_base;
224 natural_width guest_gdtr_base;
225 natural_width guest_idtr_base;
226 natural_width guest_dr7;
227 natural_width guest_rsp;
228 natural_width guest_rip;
229 natural_width guest_rflags;
230 natural_width guest_pending_dbg_exceptions;
231 natural_width guest_sysenter_esp;
232 natural_width guest_sysenter_eip;
233 natural_width host_cr0;
234 natural_width host_cr3;
235 natural_width host_cr4;
236 natural_width host_fs_base;
237 natural_width host_gs_base;
238 natural_width host_tr_base;
239 natural_width host_gdtr_base;
240 natural_width host_idtr_base;
241 natural_width host_ia32_sysenter_esp;
242 natural_width host_ia32_sysenter_eip;
243 natural_width host_rsp;
244 natural_width host_rip;
245 natural_width paddingl[8]; /* room for future expansion */
246 u32 pin_based_vm_exec_control;
247 u32 cpu_based_vm_exec_control;
248 u32 exception_bitmap;
249 u32 page_fault_error_code_mask;
250 u32 page_fault_error_code_match;
251 u32 cr3_target_count;
252 u32 vm_exit_controls;
253 u32 vm_exit_msr_store_count;
254 u32 vm_exit_msr_load_count;
255 u32 vm_entry_controls;
256 u32 vm_entry_msr_load_count;
257 u32 vm_entry_intr_info_field;
258 u32 vm_entry_exception_error_code;
259 u32 vm_entry_instruction_len;
260 u32 tpr_threshold;
261 u32 secondary_vm_exec_control;
262 u32 vm_instruction_error;
263 u32 vm_exit_reason;
264 u32 vm_exit_intr_info;
265 u32 vm_exit_intr_error_code;
266 u32 idt_vectoring_info_field;
267 u32 idt_vectoring_error_code;
268 u32 vm_exit_instruction_len;
269 u32 vmx_instruction_info;
270 u32 guest_es_limit;
271 u32 guest_cs_limit;
272 u32 guest_ss_limit;
273 u32 guest_ds_limit;
274 u32 guest_fs_limit;
275 u32 guest_gs_limit;
276 u32 guest_ldtr_limit;
277 u32 guest_tr_limit;
278 u32 guest_gdtr_limit;
279 u32 guest_idtr_limit;
280 u32 guest_es_ar_bytes;
281 u32 guest_cs_ar_bytes;
282 u32 guest_ss_ar_bytes;
283 u32 guest_ds_ar_bytes;
284 u32 guest_fs_ar_bytes;
285 u32 guest_gs_ar_bytes;
286 u32 guest_ldtr_ar_bytes;
287 u32 guest_tr_ar_bytes;
288 u32 guest_interruptibility_info;
289 u32 guest_activity_state;
290 u32 guest_sysenter_cs;
291 u32 host_ia32_sysenter_cs;
292 u32 padding32[8]; /* room for future expansion */
293 u16 virtual_processor_id;
294 u16 guest_es_selector;
295 u16 guest_cs_selector;
296 u16 guest_ss_selector;
297 u16 guest_ds_selector;
298 u16 guest_fs_selector;
299 u16 guest_gs_selector;
300 u16 guest_ldtr_selector;
301 u16 guest_tr_selector;
302 u16 host_es_selector;
303 u16 host_cs_selector;
304 u16 host_ss_selector;
305 u16 host_ds_selector;
306 u16 host_fs_selector;
307 u16 host_gs_selector;
308 u16 host_tr_selector;
309 };
310
311 /*
312 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
313 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
314 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
315 */
316 #define VMCS12_REVISION 0x11e57ed0
317
318 /*
319 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
320 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
321 * current implementation, 4K are reserved to avoid future complications.
322 */
323 #define VMCS12_SIZE 0x1000
324
325 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
326 struct vmcs02_list {
327 struct list_head list;
328 gpa_t vmptr;
329 struct loaded_vmcs vmcs02;
330 };
331
332 /*
333 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
334 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
335 */
336 struct nested_vmx {
337 /* Has the level1 guest done vmxon? */
338 bool vmxon;
339
340 /* The guest-physical address of the current VMCS L1 keeps for L2 */
341 gpa_t current_vmptr;
342 /* The host-usable pointer to the above */
343 struct page *current_vmcs12_page;
344 struct vmcs12 *current_vmcs12;
345
346 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
347 struct list_head vmcs02_pool;
348 int vmcs02_num;
349 u64 vmcs01_tsc_offset;
350 /* L2 must run next, and mustn't decide to exit to L1. */
351 bool nested_run_pending;
352 /*
353 * Guest pages referred to in vmcs02 with host-physical pointers, so
354 * we must keep them pinned while L2 runs.
355 */
356 struct page *apic_access_page;
357 };
358
359 struct vcpu_vmx {
360 struct kvm_vcpu vcpu;
361 unsigned long host_rsp;
362 u8 fail;
363 u8 cpl;
364 bool nmi_known_unmasked;
365 u32 exit_intr_info;
366 u32 idt_vectoring_info;
367 ulong rflags;
368 struct shared_msr_entry *guest_msrs;
369 int nmsrs;
370 int save_nmsrs;
371 #ifdef CONFIG_X86_64
372 u64 msr_host_kernel_gs_base;
373 u64 msr_guest_kernel_gs_base;
374 #endif
375 /*
376 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
377 * non-nested (L1) guest, it always points to vmcs01. For a nested
378 * guest (L2), it points to a different VMCS.
379 */
380 struct loaded_vmcs vmcs01;
381 struct loaded_vmcs *loaded_vmcs;
382 bool __launched; /* temporary, used in vmx_vcpu_run */
383 struct msr_autoload {
384 unsigned nr;
385 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
386 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
387 } msr_autoload;
388 struct {
389 int loaded;
390 u16 fs_sel, gs_sel, ldt_sel;
391 int gs_ldt_reload_needed;
392 int fs_reload_needed;
393 } host_state;
394 struct {
395 int vm86_active;
396 ulong save_rflags;
397 struct kvm_save_segment {
398 u16 selector;
399 unsigned long base;
400 u32 limit;
401 u32 ar;
402 } tr, es, ds, fs, gs;
403 } rmode;
404 struct {
405 u32 bitmask; /* 4 bits per segment (1 bit per field) */
406 struct kvm_save_segment seg[8];
407 } segment_cache;
408 int vpid;
409 bool emulation_required;
410
411 /* Support for vnmi-less CPUs */
412 int soft_vnmi_blocked;
413 ktime_t entry_time;
414 s64 vnmi_blocked_time;
415 u32 exit_reason;
416
417 bool rdtscp_enabled;
418
419 /* Support for a guest hypervisor (nested VMX) */
420 struct nested_vmx nested;
421 };
422
423 enum segment_cache_field {
424 SEG_FIELD_SEL = 0,
425 SEG_FIELD_BASE = 1,
426 SEG_FIELD_LIMIT = 2,
427 SEG_FIELD_AR = 3,
428
429 SEG_FIELD_NR = 4
430 };
431
432 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
433 {
434 return container_of(vcpu, struct vcpu_vmx, vcpu);
435 }
436
437 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
438 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
439 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
440 [number##_HIGH] = VMCS12_OFFSET(name)+4
441
442 static unsigned short vmcs_field_to_offset_table[] = {
443 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
444 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
445 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
446 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
447 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
448 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
449 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
450 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
451 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
452 FIELD(HOST_ES_SELECTOR, host_es_selector),
453 FIELD(HOST_CS_SELECTOR, host_cs_selector),
454 FIELD(HOST_SS_SELECTOR, host_ss_selector),
455 FIELD(HOST_DS_SELECTOR, host_ds_selector),
456 FIELD(HOST_FS_SELECTOR, host_fs_selector),
457 FIELD(HOST_GS_SELECTOR, host_gs_selector),
458 FIELD(HOST_TR_SELECTOR, host_tr_selector),
459 FIELD64(IO_BITMAP_A, io_bitmap_a),
460 FIELD64(IO_BITMAP_B, io_bitmap_b),
461 FIELD64(MSR_BITMAP, msr_bitmap),
462 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
463 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
464 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
465 FIELD64(TSC_OFFSET, tsc_offset),
466 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
467 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
468 FIELD64(EPT_POINTER, ept_pointer),
469 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
470 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
471 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
472 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
473 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
474 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
475 FIELD64(GUEST_PDPTR0, guest_pdptr0),
476 FIELD64(GUEST_PDPTR1, guest_pdptr1),
477 FIELD64(GUEST_PDPTR2, guest_pdptr2),
478 FIELD64(GUEST_PDPTR3, guest_pdptr3),
479 FIELD64(HOST_IA32_PAT, host_ia32_pat),
480 FIELD64(HOST_IA32_EFER, host_ia32_efer),
481 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
482 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
483 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
484 FIELD(EXCEPTION_BITMAP, exception_bitmap),
485 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
486 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
487 FIELD(CR3_TARGET_COUNT, cr3_target_count),
488 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
489 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
490 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
491 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
492 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
493 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
494 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
495 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
496 FIELD(TPR_THRESHOLD, tpr_threshold),
497 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
498 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
499 FIELD(VM_EXIT_REASON, vm_exit_reason),
500 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
501 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
502 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
503 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
504 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
505 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
506 FIELD(GUEST_ES_LIMIT, guest_es_limit),
507 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
508 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
509 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
510 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
511 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
512 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
513 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
514 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
515 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
516 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
517 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
518 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
519 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
520 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
521 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
522 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
523 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
524 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
525 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
526 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
527 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
528 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
529 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
530 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
531 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
532 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
533 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
534 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
535 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
536 FIELD(EXIT_QUALIFICATION, exit_qualification),
537 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
538 FIELD(GUEST_CR0, guest_cr0),
539 FIELD(GUEST_CR3, guest_cr3),
540 FIELD(GUEST_CR4, guest_cr4),
541 FIELD(GUEST_ES_BASE, guest_es_base),
542 FIELD(GUEST_CS_BASE, guest_cs_base),
543 FIELD(GUEST_SS_BASE, guest_ss_base),
544 FIELD(GUEST_DS_BASE, guest_ds_base),
545 FIELD(GUEST_FS_BASE, guest_fs_base),
546 FIELD(GUEST_GS_BASE, guest_gs_base),
547 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
548 FIELD(GUEST_TR_BASE, guest_tr_base),
549 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
550 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
551 FIELD(GUEST_DR7, guest_dr7),
552 FIELD(GUEST_RSP, guest_rsp),
553 FIELD(GUEST_RIP, guest_rip),
554 FIELD(GUEST_RFLAGS, guest_rflags),
555 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
556 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
557 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
558 FIELD(HOST_CR0, host_cr0),
559 FIELD(HOST_CR3, host_cr3),
560 FIELD(HOST_CR4, host_cr4),
561 FIELD(HOST_FS_BASE, host_fs_base),
562 FIELD(HOST_GS_BASE, host_gs_base),
563 FIELD(HOST_TR_BASE, host_tr_base),
564 FIELD(HOST_GDTR_BASE, host_gdtr_base),
565 FIELD(HOST_IDTR_BASE, host_idtr_base),
566 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
567 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
568 FIELD(HOST_RSP, host_rsp),
569 FIELD(HOST_RIP, host_rip),
570 };
571 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
572
573 static inline short vmcs_field_to_offset(unsigned long field)
574 {
575 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
576 return -1;
577 return vmcs_field_to_offset_table[field];
578 }
579
580 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
581 {
582 return to_vmx(vcpu)->nested.current_vmcs12;
583 }
584
585 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
586 {
587 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
588 if (is_error_page(page)) {
589 kvm_release_page_clean(page);
590 return NULL;
591 }
592 return page;
593 }
594
595 static void nested_release_page(struct page *page)
596 {
597 kvm_release_page_dirty(page);
598 }
599
600 static void nested_release_page_clean(struct page *page)
601 {
602 kvm_release_page_clean(page);
603 }
604
605 static u64 construct_eptp(unsigned long root_hpa);
606 static void kvm_cpu_vmxon(u64 addr);
607 static void kvm_cpu_vmxoff(void);
608 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
609 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
610
611 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
612 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
613 /*
614 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
615 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
616 */
617 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
618 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
619
620 static unsigned long *vmx_io_bitmap_a;
621 static unsigned long *vmx_io_bitmap_b;
622 static unsigned long *vmx_msr_bitmap_legacy;
623 static unsigned long *vmx_msr_bitmap_longmode;
624
625 static bool cpu_has_load_ia32_efer;
626 static bool cpu_has_load_perf_global_ctrl;
627
628 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
629 static DEFINE_SPINLOCK(vmx_vpid_lock);
630
631 static struct vmcs_config {
632 int size;
633 int order;
634 u32 revision_id;
635 u32 pin_based_exec_ctrl;
636 u32 cpu_based_exec_ctrl;
637 u32 cpu_based_2nd_exec_ctrl;
638 u32 vmexit_ctrl;
639 u32 vmentry_ctrl;
640 } vmcs_config;
641
642 static struct vmx_capability {
643 u32 ept;
644 u32 vpid;
645 } vmx_capability;
646
647 #define VMX_SEGMENT_FIELD(seg) \
648 [VCPU_SREG_##seg] = { \
649 .selector = GUEST_##seg##_SELECTOR, \
650 .base = GUEST_##seg##_BASE, \
651 .limit = GUEST_##seg##_LIMIT, \
652 .ar_bytes = GUEST_##seg##_AR_BYTES, \
653 }
654
655 static struct kvm_vmx_segment_field {
656 unsigned selector;
657 unsigned base;
658 unsigned limit;
659 unsigned ar_bytes;
660 } kvm_vmx_segment_fields[] = {
661 VMX_SEGMENT_FIELD(CS),
662 VMX_SEGMENT_FIELD(DS),
663 VMX_SEGMENT_FIELD(ES),
664 VMX_SEGMENT_FIELD(FS),
665 VMX_SEGMENT_FIELD(GS),
666 VMX_SEGMENT_FIELD(SS),
667 VMX_SEGMENT_FIELD(TR),
668 VMX_SEGMENT_FIELD(LDTR),
669 };
670
671 static u64 host_efer;
672
673 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
674
675 /*
676 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
677 * away by decrementing the array size.
678 */
679 static const u32 vmx_msr_index[] = {
680 #ifdef CONFIG_X86_64
681 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
682 #endif
683 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
684 };
685 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
686
687 static inline bool is_page_fault(u32 intr_info)
688 {
689 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
690 INTR_INFO_VALID_MASK)) ==
691 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
692 }
693
694 static inline bool is_no_device(u32 intr_info)
695 {
696 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
697 INTR_INFO_VALID_MASK)) ==
698 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
699 }
700
701 static inline bool is_invalid_opcode(u32 intr_info)
702 {
703 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
704 INTR_INFO_VALID_MASK)) ==
705 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
706 }
707
708 static inline bool is_external_interrupt(u32 intr_info)
709 {
710 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
711 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
712 }
713
714 static inline bool is_machine_check(u32 intr_info)
715 {
716 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
717 INTR_INFO_VALID_MASK)) ==
718 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
719 }
720
721 static inline bool cpu_has_vmx_msr_bitmap(void)
722 {
723 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
724 }
725
726 static inline bool cpu_has_vmx_tpr_shadow(void)
727 {
728 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
729 }
730
731 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
732 {
733 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
734 }
735
736 static inline bool cpu_has_secondary_exec_ctrls(void)
737 {
738 return vmcs_config.cpu_based_exec_ctrl &
739 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
740 }
741
742 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
743 {
744 return vmcs_config.cpu_based_2nd_exec_ctrl &
745 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
746 }
747
748 static inline bool cpu_has_vmx_flexpriority(void)
749 {
750 return cpu_has_vmx_tpr_shadow() &&
751 cpu_has_vmx_virtualize_apic_accesses();
752 }
753
754 static inline bool cpu_has_vmx_ept_execute_only(void)
755 {
756 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
757 }
758
759 static inline bool cpu_has_vmx_eptp_uncacheable(void)
760 {
761 return vmx_capability.ept & VMX_EPTP_UC_BIT;
762 }
763
764 static inline bool cpu_has_vmx_eptp_writeback(void)
765 {
766 return vmx_capability.ept & VMX_EPTP_WB_BIT;
767 }
768
769 static inline bool cpu_has_vmx_ept_2m_page(void)
770 {
771 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
772 }
773
774 static inline bool cpu_has_vmx_ept_1g_page(void)
775 {
776 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
777 }
778
779 static inline bool cpu_has_vmx_ept_4levels(void)
780 {
781 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
782 }
783
784 static inline bool cpu_has_vmx_invept_individual_addr(void)
785 {
786 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
787 }
788
789 static inline bool cpu_has_vmx_invept_context(void)
790 {
791 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
792 }
793
794 static inline bool cpu_has_vmx_invept_global(void)
795 {
796 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
797 }
798
799 static inline bool cpu_has_vmx_invvpid_single(void)
800 {
801 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
802 }
803
804 static inline bool cpu_has_vmx_invvpid_global(void)
805 {
806 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
807 }
808
809 static inline bool cpu_has_vmx_ept(void)
810 {
811 return vmcs_config.cpu_based_2nd_exec_ctrl &
812 SECONDARY_EXEC_ENABLE_EPT;
813 }
814
815 static inline bool cpu_has_vmx_unrestricted_guest(void)
816 {
817 return vmcs_config.cpu_based_2nd_exec_ctrl &
818 SECONDARY_EXEC_UNRESTRICTED_GUEST;
819 }
820
821 static inline bool cpu_has_vmx_ple(void)
822 {
823 return vmcs_config.cpu_based_2nd_exec_ctrl &
824 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
825 }
826
827 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
828 {
829 return flexpriority_enabled && irqchip_in_kernel(kvm);
830 }
831
832 static inline bool cpu_has_vmx_vpid(void)
833 {
834 return vmcs_config.cpu_based_2nd_exec_ctrl &
835 SECONDARY_EXEC_ENABLE_VPID;
836 }
837
838 static inline bool cpu_has_vmx_rdtscp(void)
839 {
840 return vmcs_config.cpu_based_2nd_exec_ctrl &
841 SECONDARY_EXEC_RDTSCP;
842 }
843
844 static inline bool cpu_has_virtual_nmis(void)
845 {
846 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
847 }
848
849 static inline bool cpu_has_vmx_wbinvd_exit(void)
850 {
851 return vmcs_config.cpu_based_2nd_exec_ctrl &
852 SECONDARY_EXEC_WBINVD_EXITING;
853 }
854
855 static inline bool report_flexpriority(void)
856 {
857 return flexpriority_enabled;
858 }
859
860 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
861 {
862 return vmcs12->cpu_based_vm_exec_control & bit;
863 }
864
865 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
866 {
867 return (vmcs12->cpu_based_vm_exec_control &
868 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
869 (vmcs12->secondary_vm_exec_control & bit);
870 }
871
872 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
873 struct kvm_vcpu *vcpu)
874 {
875 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
876 }
877
878 static inline bool is_exception(u32 intr_info)
879 {
880 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
881 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
882 }
883
884 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
885 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
886 struct vmcs12 *vmcs12,
887 u32 reason, unsigned long qualification);
888
889 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
890 {
891 int i;
892
893 for (i = 0; i < vmx->nmsrs; ++i)
894 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
895 return i;
896 return -1;
897 }
898
899 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
900 {
901 struct {
902 u64 vpid : 16;
903 u64 rsvd : 48;
904 u64 gva;
905 } operand = { vpid, 0, gva };
906
907 asm volatile (__ex(ASM_VMX_INVVPID)
908 /* CF==1 or ZF==1 --> rc = -1 */
909 "; ja 1f ; ud2 ; 1:"
910 : : "a"(&operand), "c"(ext) : "cc", "memory");
911 }
912
913 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
914 {
915 struct {
916 u64 eptp, gpa;
917 } operand = {eptp, gpa};
918
919 asm volatile (__ex(ASM_VMX_INVEPT)
920 /* CF==1 or ZF==1 --> rc = -1 */
921 "; ja 1f ; ud2 ; 1:\n"
922 : : "a" (&operand), "c" (ext) : "cc", "memory");
923 }
924
925 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
926 {
927 int i;
928
929 i = __find_msr_index(vmx, msr);
930 if (i >= 0)
931 return &vmx->guest_msrs[i];
932 return NULL;
933 }
934
935 static void vmcs_clear(struct vmcs *vmcs)
936 {
937 u64 phys_addr = __pa(vmcs);
938 u8 error;
939
940 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
941 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
942 : "cc", "memory");
943 if (error)
944 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
945 vmcs, phys_addr);
946 }
947
948 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
949 {
950 vmcs_clear(loaded_vmcs->vmcs);
951 loaded_vmcs->cpu = -1;
952 loaded_vmcs->launched = 0;
953 }
954
955 static void vmcs_load(struct vmcs *vmcs)
956 {
957 u64 phys_addr = __pa(vmcs);
958 u8 error;
959
960 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
961 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
962 : "cc", "memory");
963 if (error)
964 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
965 vmcs, phys_addr);
966 }
967
968 static void __loaded_vmcs_clear(void *arg)
969 {
970 struct loaded_vmcs *loaded_vmcs = arg;
971 int cpu = raw_smp_processor_id();
972
973 if (loaded_vmcs->cpu != cpu)
974 return; /* vcpu migration can race with cpu offline */
975 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
976 per_cpu(current_vmcs, cpu) = NULL;
977 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
978 loaded_vmcs_init(loaded_vmcs);
979 }
980
981 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
982 {
983 if (loaded_vmcs->cpu != -1)
984 smp_call_function_single(
985 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
986 }
987
988 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
989 {
990 if (vmx->vpid == 0)
991 return;
992
993 if (cpu_has_vmx_invvpid_single())
994 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
995 }
996
997 static inline void vpid_sync_vcpu_global(void)
998 {
999 if (cpu_has_vmx_invvpid_global())
1000 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1001 }
1002
1003 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1004 {
1005 if (cpu_has_vmx_invvpid_single())
1006 vpid_sync_vcpu_single(vmx);
1007 else
1008 vpid_sync_vcpu_global();
1009 }
1010
1011 static inline void ept_sync_global(void)
1012 {
1013 if (cpu_has_vmx_invept_global())
1014 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1015 }
1016
1017 static inline void ept_sync_context(u64 eptp)
1018 {
1019 if (enable_ept) {
1020 if (cpu_has_vmx_invept_context())
1021 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1022 else
1023 ept_sync_global();
1024 }
1025 }
1026
1027 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1028 {
1029 if (enable_ept) {
1030 if (cpu_has_vmx_invept_individual_addr())
1031 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1032 eptp, gpa);
1033 else
1034 ept_sync_context(eptp);
1035 }
1036 }
1037
1038 static __always_inline unsigned long vmcs_readl(unsigned long field)
1039 {
1040 unsigned long value;
1041
1042 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1043 : "=a"(value) : "d"(field) : "cc");
1044 return value;
1045 }
1046
1047 static __always_inline u16 vmcs_read16(unsigned long field)
1048 {
1049 return vmcs_readl(field);
1050 }
1051
1052 static __always_inline u32 vmcs_read32(unsigned long field)
1053 {
1054 return vmcs_readl(field);
1055 }
1056
1057 static __always_inline u64 vmcs_read64(unsigned long field)
1058 {
1059 #ifdef CONFIG_X86_64
1060 return vmcs_readl(field);
1061 #else
1062 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1063 #endif
1064 }
1065
1066 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1067 {
1068 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1069 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1070 dump_stack();
1071 }
1072
1073 static void vmcs_writel(unsigned long field, unsigned long value)
1074 {
1075 u8 error;
1076
1077 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1078 : "=q"(error) : "a"(value), "d"(field) : "cc");
1079 if (unlikely(error))
1080 vmwrite_error(field, value);
1081 }
1082
1083 static void vmcs_write16(unsigned long field, u16 value)
1084 {
1085 vmcs_writel(field, value);
1086 }
1087
1088 static void vmcs_write32(unsigned long field, u32 value)
1089 {
1090 vmcs_writel(field, value);
1091 }
1092
1093 static void vmcs_write64(unsigned long field, u64 value)
1094 {
1095 vmcs_writel(field, value);
1096 #ifndef CONFIG_X86_64
1097 asm volatile ("");
1098 vmcs_writel(field+1, value >> 32);
1099 #endif
1100 }
1101
1102 static void vmcs_clear_bits(unsigned long field, u32 mask)
1103 {
1104 vmcs_writel(field, vmcs_readl(field) & ~mask);
1105 }
1106
1107 static void vmcs_set_bits(unsigned long field, u32 mask)
1108 {
1109 vmcs_writel(field, vmcs_readl(field) | mask);
1110 }
1111
1112 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1113 {
1114 vmx->segment_cache.bitmask = 0;
1115 }
1116
1117 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1118 unsigned field)
1119 {
1120 bool ret;
1121 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1122
1123 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1124 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1125 vmx->segment_cache.bitmask = 0;
1126 }
1127 ret = vmx->segment_cache.bitmask & mask;
1128 vmx->segment_cache.bitmask |= mask;
1129 return ret;
1130 }
1131
1132 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1133 {
1134 u16 *p = &vmx->segment_cache.seg[seg].selector;
1135
1136 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1137 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1138 return *p;
1139 }
1140
1141 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1142 {
1143 ulong *p = &vmx->segment_cache.seg[seg].base;
1144
1145 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1146 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1147 return *p;
1148 }
1149
1150 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1151 {
1152 u32 *p = &vmx->segment_cache.seg[seg].limit;
1153
1154 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1155 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1156 return *p;
1157 }
1158
1159 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1160 {
1161 u32 *p = &vmx->segment_cache.seg[seg].ar;
1162
1163 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1164 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1165 return *p;
1166 }
1167
1168 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1169 {
1170 u32 eb;
1171
1172 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1173 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1174 if ((vcpu->guest_debug &
1175 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1176 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1177 eb |= 1u << BP_VECTOR;
1178 if (to_vmx(vcpu)->rmode.vm86_active)
1179 eb = ~0;
1180 if (enable_ept)
1181 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1182 if (vcpu->fpu_active)
1183 eb &= ~(1u << NM_VECTOR);
1184
1185 /* When we are running a nested L2 guest and L1 specified for it a
1186 * certain exception bitmap, we must trap the same exceptions and pass
1187 * them to L1. When running L2, we will only handle the exceptions
1188 * specified above if L1 did not want them.
1189 */
1190 if (is_guest_mode(vcpu))
1191 eb |= get_vmcs12(vcpu)->exception_bitmap;
1192
1193 vmcs_write32(EXCEPTION_BITMAP, eb);
1194 }
1195
1196 static void clear_atomic_switch_msr_special(unsigned long entry,
1197 unsigned long exit)
1198 {
1199 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1200 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1201 }
1202
1203 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1204 {
1205 unsigned i;
1206 struct msr_autoload *m = &vmx->msr_autoload;
1207
1208 switch (msr) {
1209 case MSR_EFER:
1210 if (cpu_has_load_ia32_efer) {
1211 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1212 VM_EXIT_LOAD_IA32_EFER);
1213 return;
1214 }
1215 break;
1216 case MSR_CORE_PERF_GLOBAL_CTRL:
1217 if (cpu_has_load_perf_global_ctrl) {
1218 clear_atomic_switch_msr_special(
1219 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1220 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1221 return;
1222 }
1223 break;
1224 }
1225
1226 for (i = 0; i < m->nr; ++i)
1227 if (m->guest[i].index == msr)
1228 break;
1229
1230 if (i == m->nr)
1231 return;
1232 --m->nr;
1233 m->guest[i] = m->guest[m->nr];
1234 m->host[i] = m->host[m->nr];
1235 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237 }
1238
1239 static void add_atomic_switch_msr_special(unsigned long entry,
1240 unsigned long exit, unsigned long guest_val_vmcs,
1241 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1242 {
1243 vmcs_write64(guest_val_vmcs, guest_val);
1244 vmcs_write64(host_val_vmcs, host_val);
1245 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1246 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1247 }
1248
1249 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1250 u64 guest_val, u64 host_val)
1251 {
1252 unsigned i;
1253 struct msr_autoload *m = &vmx->msr_autoload;
1254
1255 switch (msr) {
1256 case MSR_EFER:
1257 if (cpu_has_load_ia32_efer) {
1258 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1259 VM_EXIT_LOAD_IA32_EFER,
1260 GUEST_IA32_EFER,
1261 HOST_IA32_EFER,
1262 guest_val, host_val);
1263 return;
1264 }
1265 break;
1266 case MSR_CORE_PERF_GLOBAL_CTRL:
1267 if (cpu_has_load_perf_global_ctrl) {
1268 add_atomic_switch_msr_special(
1269 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1270 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 GUEST_IA32_PERF_GLOBAL_CTRL,
1272 HOST_IA32_PERF_GLOBAL_CTRL,
1273 guest_val, host_val);
1274 return;
1275 }
1276 break;
1277 }
1278
1279 for (i = 0; i < m->nr; ++i)
1280 if (m->guest[i].index == msr)
1281 break;
1282
1283 if (i == m->nr) {
1284 ++m->nr;
1285 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1286 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1287 }
1288
1289 m->guest[i].index = msr;
1290 m->guest[i].value = guest_val;
1291 m->host[i].index = msr;
1292 m->host[i].value = host_val;
1293 }
1294
1295 static void reload_tss(void)
1296 {
1297 /*
1298 * VT restores TR but not its size. Useless.
1299 */
1300 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1301 struct desc_struct *descs;
1302
1303 descs = (void *)gdt->address;
1304 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1305 load_TR_desc();
1306 }
1307
1308 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1309 {
1310 u64 guest_efer;
1311 u64 ignore_bits;
1312
1313 guest_efer = vmx->vcpu.arch.efer;
1314
1315 /*
1316 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1317 * outside long mode
1318 */
1319 ignore_bits = EFER_NX | EFER_SCE;
1320 #ifdef CONFIG_X86_64
1321 ignore_bits |= EFER_LMA | EFER_LME;
1322 /* SCE is meaningful only in long mode on Intel */
1323 if (guest_efer & EFER_LMA)
1324 ignore_bits &= ~(u64)EFER_SCE;
1325 #endif
1326 guest_efer &= ~ignore_bits;
1327 guest_efer |= host_efer & ignore_bits;
1328 vmx->guest_msrs[efer_offset].data = guest_efer;
1329 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1330
1331 clear_atomic_switch_msr(vmx, MSR_EFER);
1332 /* On ept, can't emulate nx, and must switch nx atomically */
1333 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1334 guest_efer = vmx->vcpu.arch.efer;
1335 if (!(guest_efer & EFER_LMA))
1336 guest_efer &= ~EFER_LME;
1337 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1338 return false;
1339 }
1340
1341 return true;
1342 }
1343
1344 static unsigned long segment_base(u16 selector)
1345 {
1346 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1347 struct desc_struct *d;
1348 unsigned long table_base;
1349 unsigned long v;
1350
1351 if (!(selector & ~3))
1352 return 0;
1353
1354 table_base = gdt->address;
1355
1356 if (selector & 4) { /* from ldt */
1357 u16 ldt_selector = kvm_read_ldt();
1358
1359 if (!(ldt_selector & ~3))
1360 return 0;
1361
1362 table_base = segment_base(ldt_selector);
1363 }
1364 d = (struct desc_struct *)(table_base + (selector & ~7));
1365 v = get_desc_base(d);
1366 #ifdef CONFIG_X86_64
1367 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1368 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1369 #endif
1370 return v;
1371 }
1372
1373 static inline unsigned long kvm_read_tr_base(void)
1374 {
1375 u16 tr;
1376 asm("str %0" : "=g"(tr));
1377 return segment_base(tr);
1378 }
1379
1380 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1381 {
1382 struct vcpu_vmx *vmx = to_vmx(vcpu);
1383 int i;
1384
1385 if (vmx->host_state.loaded)
1386 return;
1387
1388 vmx->host_state.loaded = 1;
1389 /*
1390 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1391 * allow segment selectors with cpl > 0 or ti == 1.
1392 */
1393 vmx->host_state.ldt_sel = kvm_read_ldt();
1394 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1395 savesegment(fs, vmx->host_state.fs_sel);
1396 if (!(vmx->host_state.fs_sel & 7)) {
1397 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1398 vmx->host_state.fs_reload_needed = 0;
1399 } else {
1400 vmcs_write16(HOST_FS_SELECTOR, 0);
1401 vmx->host_state.fs_reload_needed = 1;
1402 }
1403 savesegment(gs, vmx->host_state.gs_sel);
1404 if (!(vmx->host_state.gs_sel & 7))
1405 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1406 else {
1407 vmcs_write16(HOST_GS_SELECTOR, 0);
1408 vmx->host_state.gs_ldt_reload_needed = 1;
1409 }
1410
1411 #ifdef CONFIG_X86_64
1412 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1413 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1414 #else
1415 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1416 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1417 #endif
1418
1419 #ifdef CONFIG_X86_64
1420 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1421 if (is_long_mode(&vmx->vcpu))
1422 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1423 #endif
1424 for (i = 0; i < vmx->save_nmsrs; ++i)
1425 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1426 vmx->guest_msrs[i].data,
1427 vmx->guest_msrs[i].mask);
1428 }
1429
1430 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1431 {
1432 if (!vmx->host_state.loaded)
1433 return;
1434
1435 ++vmx->vcpu.stat.host_state_reload;
1436 vmx->host_state.loaded = 0;
1437 #ifdef CONFIG_X86_64
1438 if (is_long_mode(&vmx->vcpu))
1439 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1440 #endif
1441 if (vmx->host_state.gs_ldt_reload_needed) {
1442 kvm_load_ldt(vmx->host_state.ldt_sel);
1443 #ifdef CONFIG_X86_64
1444 load_gs_index(vmx->host_state.gs_sel);
1445 #else
1446 loadsegment(gs, vmx->host_state.gs_sel);
1447 #endif
1448 }
1449 if (vmx->host_state.fs_reload_needed)
1450 loadsegment(fs, vmx->host_state.fs_sel);
1451 reload_tss();
1452 #ifdef CONFIG_X86_64
1453 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1454 #endif
1455 if (current_thread_info()->status & TS_USEDFPU)
1456 clts();
1457 load_gdt(&__get_cpu_var(host_gdt));
1458 }
1459
1460 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1461 {
1462 preempt_disable();
1463 __vmx_load_host_state(vmx);
1464 preempt_enable();
1465 }
1466
1467 /*
1468 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1469 * vcpu mutex is already taken.
1470 */
1471 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1472 {
1473 struct vcpu_vmx *vmx = to_vmx(vcpu);
1474 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1475
1476 if (!vmm_exclusive)
1477 kvm_cpu_vmxon(phys_addr);
1478 else if (vmx->loaded_vmcs->cpu != cpu)
1479 loaded_vmcs_clear(vmx->loaded_vmcs);
1480
1481 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1482 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1483 vmcs_load(vmx->loaded_vmcs->vmcs);
1484 }
1485
1486 if (vmx->loaded_vmcs->cpu != cpu) {
1487 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1488 unsigned long sysenter_esp;
1489
1490 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1491 local_irq_disable();
1492 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1493 &per_cpu(loaded_vmcss_on_cpu, cpu));
1494 local_irq_enable();
1495
1496 /*
1497 * Linux uses per-cpu TSS and GDT, so set these when switching
1498 * processors.
1499 */
1500 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1501 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1502
1503 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1504 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1505 vmx->loaded_vmcs->cpu = cpu;
1506 }
1507 }
1508
1509 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1510 {
1511 __vmx_load_host_state(to_vmx(vcpu));
1512 if (!vmm_exclusive) {
1513 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1514 vcpu->cpu = -1;
1515 kvm_cpu_vmxoff();
1516 }
1517 }
1518
1519 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1520 {
1521 ulong cr0;
1522
1523 if (vcpu->fpu_active)
1524 return;
1525 vcpu->fpu_active = 1;
1526 cr0 = vmcs_readl(GUEST_CR0);
1527 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1528 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1529 vmcs_writel(GUEST_CR0, cr0);
1530 update_exception_bitmap(vcpu);
1531 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1532 if (is_guest_mode(vcpu))
1533 vcpu->arch.cr0_guest_owned_bits &=
1534 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1535 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1536 }
1537
1538 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1539
1540 /*
1541 * Return the cr0 value that a nested guest would read. This is a combination
1542 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1543 * its hypervisor (cr0_read_shadow).
1544 */
1545 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1546 {
1547 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1548 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1549 }
1550 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1551 {
1552 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1553 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1554 }
1555
1556 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1557 {
1558 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1559 * set this *before* calling this function.
1560 */
1561 vmx_decache_cr0_guest_bits(vcpu);
1562 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1563 update_exception_bitmap(vcpu);
1564 vcpu->arch.cr0_guest_owned_bits = 0;
1565 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1566 if (is_guest_mode(vcpu)) {
1567 /*
1568 * L1's specified read shadow might not contain the TS bit,
1569 * so now that we turned on shadowing of this bit, we need to
1570 * set this bit of the shadow. Like in nested_vmx_run we need
1571 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1572 * up-to-date here because we just decached cr0.TS (and we'll
1573 * only update vmcs12->guest_cr0 on nested exit).
1574 */
1575 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1576 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1577 (vcpu->arch.cr0 & X86_CR0_TS);
1578 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1579 } else
1580 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1581 }
1582
1583 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1584 {
1585 unsigned long rflags, save_rflags;
1586
1587 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1588 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1589 rflags = vmcs_readl(GUEST_RFLAGS);
1590 if (to_vmx(vcpu)->rmode.vm86_active) {
1591 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1592 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1593 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1594 }
1595 to_vmx(vcpu)->rflags = rflags;
1596 }
1597 return to_vmx(vcpu)->rflags;
1598 }
1599
1600 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1601 {
1602 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1603 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1604 to_vmx(vcpu)->rflags = rflags;
1605 if (to_vmx(vcpu)->rmode.vm86_active) {
1606 to_vmx(vcpu)->rmode.save_rflags = rflags;
1607 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1608 }
1609 vmcs_writel(GUEST_RFLAGS, rflags);
1610 }
1611
1612 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1613 {
1614 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1615 int ret = 0;
1616
1617 if (interruptibility & GUEST_INTR_STATE_STI)
1618 ret |= KVM_X86_SHADOW_INT_STI;
1619 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1620 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1621
1622 return ret & mask;
1623 }
1624
1625 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1626 {
1627 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1628 u32 interruptibility = interruptibility_old;
1629
1630 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1631
1632 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1633 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1634 else if (mask & KVM_X86_SHADOW_INT_STI)
1635 interruptibility |= GUEST_INTR_STATE_STI;
1636
1637 if ((interruptibility != interruptibility_old))
1638 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1639 }
1640
1641 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1642 {
1643 unsigned long rip;
1644
1645 rip = kvm_rip_read(vcpu);
1646 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1647 kvm_rip_write(vcpu, rip);
1648
1649 /* skipping an emulated instruction also counts */
1650 vmx_set_interrupt_shadow(vcpu, 0);
1651 }
1652
1653 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1654 {
1655 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1656 * explicitly skip the instruction because if the HLT state is set, then
1657 * the instruction is already executing and RIP has already been
1658 * advanced. */
1659 if (!yield_on_hlt &&
1660 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1661 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1662 }
1663
1664 /*
1665 * KVM wants to inject page-faults which it got to the guest. This function
1666 * checks whether in a nested guest, we need to inject them to L1 or L2.
1667 * This function assumes it is called with the exit reason in vmcs02 being
1668 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1669 * is running).
1670 */
1671 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1672 {
1673 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1674
1675 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1676 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1677 return 0;
1678
1679 nested_vmx_vmexit(vcpu);
1680 return 1;
1681 }
1682
1683 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1684 bool has_error_code, u32 error_code,
1685 bool reinject)
1686 {
1687 struct vcpu_vmx *vmx = to_vmx(vcpu);
1688 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1689
1690 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1691 nested_pf_handled(vcpu))
1692 return;
1693
1694 if (has_error_code) {
1695 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1696 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1697 }
1698
1699 if (vmx->rmode.vm86_active) {
1700 int inc_eip = 0;
1701 if (kvm_exception_is_soft(nr))
1702 inc_eip = vcpu->arch.event_exit_inst_len;
1703 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1705 return;
1706 }
1707
1708 if (kvm_exception_is_soft(nr)) {
1709 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1710 vmx->vcpu.arch.event_exit_inst_len);
1711 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1712 } else
1713 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1714
1715 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1716 vmx_clear_hlt(vcpu);
1717 }
1718
1719 static bool vmx_rdtscp_supported(void)
1720 {
1721 return cpu_has_vmx_rdtscp();
1722 }
1723
1724 /*
1725 * Swap MSR entry in host/guest MSR entry array.
1726 */
1727 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1728 {
1729 struct shared_msr_entry tmp;
1730
1731 tmp = vmx->guest_msrs[to];
1732 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1733 vmx->guest_msrs[from] = tmp;
1734 }
1735
1736 /*
1737 * Set up the vmcs to automatically save and restore system
1738 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1739 * mode, as fiddling with msrs is very expensive.
1740 */
1741 static void setup_msrs(struct vcpu_vmx *vmx)
1742 {
1743 int save_nmsrs, index;
1744 unsigned long *msr_bitmap;
1745
1746 vmx_load_host_state(vmx);
1747 save_nmsrs = 0;
1748 #ifdef CONFIG_X86_64
1749 if (is_long_mode(&vmx->vcpu)) {
1750 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1751 if (index >= 0)
1752 move_msr_up(vmx, index, save_nmsrs++);
1753 index = __find_msr_index(vmx, MSR_LSTAR);
1754 if (index >= 0)
1755 move_msr_up(vmx, index, save_nmsrs++);
1756 index = __find_msr_index(vmx, MSR_CSTAR);
1757 if (index >= 0)
1758 move_msr_up(vmx, index, save_nmsrs++);
1759 index = __find_msr_index(vmx, MSR_TSC_AUX);
1760 if (index >= 0 && vmx->rdtscp_enabled)
1761 move_msr_up(vmx, index, save_nmsrs++);
1762 /*
1763 * MSR_STAR is only needed on long mode guests, and only
1764 * if efer.sce is enabled.
1765 */
1766 index = __find_msr_index(vmx, MSR_STAR);
1767 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1768 move_msr_up(vmx, index, save_nmsrs++);
1769 }
1770 #endif
1771 index = __find_msr_index(vmx, MSR_EFER);
1772 if (index >= 0 && update_transition_efer(vmx, index))
1773 move_msr_up(vmx, index, save_nmsrs++);
1774
1775 vmx->save_nmsrs = save_nmsrs;
1776
1777 if (cpu_has_vmx_msr_bitmap()) {
1778 if (is_long_mode(&vmx->vcpu))
1779 msr_bitmap = vmx_msr_bitmap_longmode;
1780 else
1781 msr_bitmap = vmx_msr_bitmap_legacy;
1782
1783 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1784 }
1785 }
1786
1787 /*
1788 * reads and returns guest's timestamp counter "register"
1789 * guest_tsc = host_tsc + tsc_offset -- 21.3
1790 */
1791 static u64 guest_read_tsc(void)
1792 {
1793 u64 host_tsc, tsc_offset;
1794
1795 rdtscll(host_tsc);
1796 tsc_offset = vmcs_read64(TSC_OFFSET);
1797 return host_tsc + tsc_offset;
1798 }
1799
1800 /*
1801 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1802 * counter, even if a nested guest (L2) is currently running.
1803 */
1804 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1805 {
1806 u64 host_tsc, tsc_offset;
1807
1808 rdtscll(host_tsc);
1809 tsc_offset = is_guest_mode(vcpu) ?
1810 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1811 vmcs_read64(TSC_OFFSET);
1812 return host_tsc + tsc_offset;
1813 }
1814
1815 /*
1816 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1817 * ioctl. In this case the call-back should update internal vmx state to make
1818 * the changes effective.
1819 */
1820 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1821 {
1822 /* Nothing to do here */
1823 }
1824
1825 /*
1826 * writes 'offset' into guest's timestamp counter offset register
1827 */
1828 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1829 {
1830 if (is_guest_mode(vcpu)) {
1831 /*
1832 * We're here if L1 chose not to trap WRMSR to TSC. According
1833 * to the spec, this should set L1's TSC; The offset that L1
1834 * set for L2 remains unchanged, and still needs to be added
1835 * to the newly set TSC to get L2's TSC.
1836 */
1837 struct vmcs12 *vmcs12;
1838 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1839 /* recalculate vmcs02.TSC_OFFSET: */
1840 vmcs12 = get_vmcs12(vcpu);
1841 vmcs_write64(TSC_OFFSET, offset +
1842 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1843 vmcs12->tsc_offset : 0));
1844 } else {
1845 vmcs_write64(TSC_OFFSET, offset);
1846 }
1847 }
1848
1849 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1850 {
1851 u64 offset = vmcs_read64(TSC_OFFSET);
1852 vmcs_write64(TSC_OFFSET, offset + adjustment);
1853 if (is_guest_mode(vcpu)) {
1854 /* Even when running L2, the adjustment needs to apply to L1 */
1855 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1856 }
1857 }
1858
1859 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1860 {
1861 return target_tsc - native_read_tsc();
1862 }
1863
1864 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1865 {
1866 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1867 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1868 }
1869
1870 /*
1871 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1872 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1873 * all guests if the "nested" module option is off, and can also be disabled
1874 * for a single guest by disabling its VMX cpuid bit.
1875 */
1876 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1877 {
1878 return nested && guest_cpuid_has_vmx(vcpu);
1879 }
1880
1881 /*
1882 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1883 * returned for the various VMX controls MSRs when nested VMX is enabled.
1884 * The same values should also be used to verify that vmcs12 control fields are
1885 * valid during nested entry from L1 to L2.
1886 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1887 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1888 * bit in the high half is on if the corresponding bit in the control field
1889 * may be on. See also vmx_control_verify().
1890 * TODO: allow these variables to be modified (downgraded) by module options
1891 * or other means.
1892 */
1893 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1894 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1895 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1896 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1897 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1898 static __init void nested_vmx_setup_ctls_msrs(void)
1899 {
1900 /*
1901 * Note that as a general rule, the high half of the MSRs (bits in
1902 * the control fields which may be 1) should be initialized by the
1903 * intersection of the underlying hardware's MSR (i.e., features which
1904 * can be supported) and the list of features we want to expose -
1905 * because they are known to be properly supported in our code.
1906 * Also, usually, the low half of the MSRs (bits which must be 1) can
1907 * be set to 0, meaning that L1 may turn off any of these bits. The
1908 * reason is that if one of these bits is necessary, it will appear
1909 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1910 * fields of vmcs01 and vmcs02, will turn these bits off - and
1911 * nested_vmx_exit_handled() will not pass related exits to L1.
1912 * These rules have exceptions below.
1913 */
1914
1915 /* pin-based controls */
1916 /*
1917 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1918 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1919 */
1920 nested_vmx_pinbased_ctls_low = 0x16 ;
1921 nested_vmx_pinbased_ctls_high = 0x16 |
1922 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1923 PIN_BASED_VIRTUAL_NMIS;
1924
1925 /* exit controls */
1926 nested_vmx_exit_ctls_low = 0;
1927 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1928 #ifdef CONFIG_X86_64
1929 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1930 #else
1931 nested_vmx_exit_ctls_high = 0;
1932 #endif
1933
1934 /* entry controls */
1935 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1936 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1937 nested_vmx_entry_ctls_low = 0;
1938 nested_vmx_entry_ctls_high &=
1939 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1940
1941 /* cpu-based controls */
1942 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1943 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1944 nested_vmx_procbased_ctls_low = 0;
1945 nested_vmx_procbased_ctls_high &=
1946 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1947 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1948 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1949 CPU_BASED_CR3_STORE_EXITING |
1950 #ifdef CONFIG_X86_64
1951 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1952 #endif
1953 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1954 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1955 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1956 /*
1957 * We can allow some features even when not supported by the
1958 * hardware. For example, L1 can specify an MSR bitmap - and we
1959 * can use it to avoid exits to L1 - even when L0 runs L2
1960 * without MSR bitmaps.
1961 */
1962 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1963
1964 /* secondary cpu-based controls */
1965 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1966 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1967 nested_vmx_secondary_ctls_low = 0;
1968 nested_vmx_secondary_ctls_high &=
1969 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1970 }
1971
1972 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1973 {
1974 /*
1975 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1976 */
1977 return ((control & high) | low) == control;
1978 }
1979
1980 static inline u64 vmx_control_msr(u32 low, u32 high)
1981 {
1982 return low | ((u64)high << 32);
1983 }
1984
1985 /*
1986 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1987 * also let it use VMX-specific MSRs.
1988 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1989 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1990 * like all other MSRs).
1991 */
1992 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1993 {
1994 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1995 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1996 /*
1997 * According to the spec, processors which do not support VMX
1998 * should throw a #GP(0) when VMX capability MSRs are read.
1999 */
2000 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2001 return 1;
2002 }
2003
2004 switch (msr_index) {
2005 case MSR_IA32_FEATURE_CONTROL:
2006 *pdata = 0;
2007 break;
2008 case MSR_IA32_VMX_BASIC:
2009 /*
2010 * This MSR reports some information about VMX support. We
2011 * should return information about the VMX we emulate for the
2012 * guest, and the VMCS structure we give it - not about the
2013 * VMX support of the underlying hardware.
2014 */
2015 *pdata = VMCS12_REVISION |
2016 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2017 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2018 break;
2019 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2020 case MSR_IA32_VMX_PINBASED_CTLS:
2021 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2022 nested_vmx_pinbased_ctls_high);
2023 break;
2024 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2025 case MSR_IA32_VMX_PROCBASED_CTLS:
2026 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2027 nested_vmx_procbased_ctls_high);
2028 break;
2029 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2030 case MSR_IA32_VMX_EXIT_CTLS:
2031 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2032 nested_vmx_exit_ctls_high);
2033 break;
2034 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2035 case MSR_IA32_VMX_ENTRY_CTLS:
2036 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2037 nested_vmx_entry_ctls_high);
2038 break;
2039 case MSR_IA32_VMX_MISC:
2040 *pdata = 0;
2041 break;
2042 /*
2043 * These MSRs specify bits which the guest must keep fixed (on or off)
2044 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2045 * We picked the standard core2 setting.
2046 */
2047 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2048 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2049 case MSR_IA32_VMX_CR0_FIXED0:
2050 *pdata = VMXON_CR0_ALWAYSON;
2051 break;
2052 case MSR_IA32_VMX_CR0_FIXED1:
2053 *pdata = -1ULL;
2054 break;
2055 case MSR_IA32_VMX_CR4_FIXED0:
2056 *pdata = VMXON_CR4_ALWAYSON;
2057 break;
2058 case MSR_IA32_VMX_CR4_FIXED1:
2059 *pdata = -1ULL;
2060 break;
2061 case MSR_IA32_VMX_VMCS_ENUM:
2062 *pdata = 0x1f;
2063 break;
2064 case MSR_IA32_VMX_PROCBASED_CTLS2:
2065 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2066 nested_vmx_secondary_ctls_high);
2067 break;
2068 case MSR_IA32_VMX_EPT_VPID_CAP:
2069 /* Currently, no nested ept or nested vpid */
2070 *pdata = 0;
2071 break;
2072 default:
2073 return 0;
2074 }
2075
2076 return 1;
2077 }
2078
2079 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2080 {
2081 if (!nested_vmx_allowed(vcpu))
2082 return 0;
2083
2084 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2085 /* TODO: the right thing. */
2086 return 1;
2087 /*
2088 * No need to treat VMX capability MSRs specially: If we don't handle
2089 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2090 */
2091 return 0;
2092 }
2093
2094 /*
2095 * Reads an msr value (of 'msr_index') into 'pdata'.
2096 * Returns 0 on success, non-0 otherwise.
2097 * Assumes vcpu_load() was already called.
2098 */
2099 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2100 {
2101 u64 data;
2102 struct shared_msr_entry *msr;
2103
2104 if (!pdata) {
2105 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2106 return -EINVAL;
2107 }
2108
2109 switch (msr_index) {
2110 #ifdef CONFIG_X86_64
2111 case MSR_FS_BASE:
2112 data = vmcs_readl(GUEST_FS_BASE);
2113 break;
2114 case MSR_GS_BASE:
2115 data = vmcs_readl(GUEST_GS_BASE);
2116 break;
2117 case MSR_KERNEL_GS_BASE:
2118 vmx_load_host_state(to_vmx(vcpu));
2119 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2120 break;
2121 #endif
2122 case MSR_EFER:
2123 return kvm_get_msr_common(vcpu, msr_index, pdata);
2124 case MSR_IA32_TSC:
2125 data = guest_read_tsc();
2126 break;
2127 case MSR_IA32_SYSENTER_CS:
2128 data = vmcs_read32(GUEST_SYSENTER_CS);
2129 break;
2130 case MSR_IA32_SYSENTER_EIP:
2131 data = vmcs_readl(GUEST_SYSENTER_EIP);
2132 break;
2133 case MSR_IA32_SYSENTER_ESP:
2134 data = vmcs_readl(GUEST_SYSENTER_ESP);
2135 break;
2136 case MSR_TSC_AUX:
2137 if (!to_vmx(vcpu)->rdtscp_enabled)
2138 return 1;
2139 /* Otherwise falls through */
2140 default:
2141 vmx_load_host_state(to_vmx(vcpu));
2142 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2143 return 0;
2144 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2145 if (msr) {
2146 vmx_load_host_state(to_vmx(vcpu));
2147 data = msr->data;
2148 break;
2149 }
2150 return kvm_get_msr_common(vcpu, msr_index, pdata);
2151 }
2152
2153 *pdata = data;
2154 return 0;
2155 }
2156
2157 /*
2158 * Writes msr value into into the appropriate "register".
2159 * Returns 0 on success, non-0 otherwise.
2160 * Assumes vcpu_load() was already called.
2161 */
2162 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2163 {
2164 struct vcpu_vmx *vmx = to_vmx(vcpu);
2165 struct shared_msr_entry *msr;
2166 int ret = 0;
2167
2168 switch (msr_index) {
2169 case MSR_EFER:
2170 vmx_load_host_state(vmx);
2171 ret = kvm_set_msr_common(vcpu, msr_index, data);
2172 break;
2173 #ifdef CONFIG_X86_64
2174 case MSR_FS_BASE:
2175 vmx_segment_cache_clear(vmx);
2176 vmcs_writel(GUEST_FS_BASE, data);
2177 break;
2178 case MSR_GS_BASE:
2179 vmx_segment_cache_clear(vmx);
2180 vmcs_writel(GUEST_GS_BASE, data);
2181 break;
2182 case MSR_KERNEL_GS_BASE:
2183 vmx_load_host_state(vmx);
2184 vmx->msr_guest_kernel_gs_base = data;
2185 break;
2186 #endif
2187 case MSR_IA32_SYSENTER_CS:
2188 vmcs_write32(GUEST_SYSENTER_CS, data);
2189 break;
2190 case MSR_IA32_SYSENTER_EIP:
2191 vmcs_writel(GUEST_SYSENTER_EIP, data);
2192 break;
2193 case MSR_IA32_SYSENTER_ESP:
2194 vmcs_writel(GUEST_SYSENTER_ESP, data);
2195 break;
2196 case MSR_IA32_TSC:
2197 kvm_write_tsc(vcpu, data);
2198 break;
2199 case MSR_IA32_CR_PAT:
2200 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2201 vmcs_write64(GUEST_IA32_PAT, data);
2202 vcpu->arch.pat = data;
2203 break;
2204 }
2205 ret = kvm_set_msr_common(vcpu, msr_index, data);
2206 break;
2207 case MSR_TSC_AUX:
2208 if (!vmx->rdtscp_enabled)
2209 return 1;
2210 /* Check reserved bit, higher 32 bits should be zero */
2211 if ((data >> 32) != 0)
2212 return 1;
2213 /* Otherwise falls through */
2214 default:
2215 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2216 break;
2217 msr = find_msr_entry(vmx, msr_index);
2218 if (msr) {
2219 vmx_load_host_state(vmx);
2220 msr->data = data;
2221 break;
2222 }
2223 ret = kvm_set_msr_common(vcpu, msr_index, data);
2224 }
2225
2226 return ret;
2227 }
2228
2229 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2230 {
2231 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2232 switch (reg) {
2233 case VCPU_REGS_RSP:
2234 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2235 break;
2236 case VCPU_REGS_RIP:
2237 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2238 break;
2239 case VCPU_EXREG_PDPTR:
2240 if (enable_ept)
2241 ept_save_pdptrs(vcpu);
2242 break;
2243 default:
2244 break;
2245 }
2246 }
2247
2248 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2249 {
2250 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2251 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2252 else
2253 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2254
2255 update_exception_bitmap(vcpu);
2256 }
2257
2258 static __init int cpu_has_kvm_support(void)
2259 {
2260 return cpu_has_vmx();
2261 }
2262
2263 static __init int vmx_disabled_by_bios(void)
2264 {
2265 u64 msr;
2266
2267 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2268 if (msr & FEATURE_CONTROL_LOCKED) {
2269 /* launched w/ TXT and VMX disabled */
2270 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2271 && tboot_enabled())
2272 return 1;
2273 /* launched w/o TXT and VMX only enabled w/ TXT */
2274 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2275 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2276 && !tboot_enabled()) {
2277 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2278 "activate TXT before enabling KVM\n");
2279 return 1;
2280 }
2281 /* launched w/o TXT and VMX disabled */
2282 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2283 && !tboot_enabled())
2284 return 1;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static void kvm_cpu_vmxon(u64 addr)
2291 {
2292 asm volatile (ASM_VMX_VMXON_RAX
2293 : : "a"(&addr), "m"(addr)
2294 : "memory", "cc");
2295 }
2296
2297 static int hardware_enable(void *garbage)
2298 {
2299 int cpu = raw_smp_processor_id();
2300 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2301 u64 old, test_bits;
2302
2303 if (read_cr4() & X86_CR4_VMXE)
2304 return -EBUSY;
2305
2306 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2307 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2308
2309 test_bits = FEATURE_CONTROL_LOCKED;
2310 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2311 if (tboot_enabled())
2312 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2313
2314 if ((old & test_bits) != test_bits) {
2315 /* enable and lock */
2316 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2317 }
2318 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2319
2320 if (vmm_exclusive) {
2321 kvm_cpu_vmxon(phys_addr);
2322 ept_sync_global();
2323 }
2324
2325 store_gdt(&__get_cpu_var(host_gdt));
2326
2327 return 0;
2328 }
2329
2330 static void vmclear_local_loaded_vmcss(void)
2331 {
2332 int cpu = raw_smp_processor_id();
2333 struct loaded_vmcs *v, *n;
2334
2335 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2336 loaded_vmcss_on_cpu_link)
2337 __loaded_vmcs_clear(v);
2338 }
2339
2340
2341 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2342 * tricks.
2343 */
2344 static void kvm_cpu_vmxoff(void)
2345 {
2346 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2347 }
2348
2349 static void hardware_disable(void *garbage)
2350 {
2351 if (vmm_exclusive) {
2352 vmclear_local_loaded_vmcss();
2353 kvm_cpu_vmxoff();
2354 }
2355 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2356 }
2357
2358 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2359 u32 msr, u32 *result)
2360 {
2361 u32 vmx_msr_low, vmx_msr_high;
2362 u32 ctl = ctl_min | ctl_opt;
2363
2364 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2365
2366 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2367 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2368
2369 /* Ensure minimum (required) set of control bits are supported. */
2370 if (ctl_min & ~ctl)
2371 return -EIO;
2372
2373 *result = ctl;
2374 return 0;
2375 }
2376
2377 static __init bool allow_1_setting(u32 msr, u32 ctl)
2378 {
2379 u32 vmx_msr_low, vmx_msr_high;
2380
2381 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382 return vmx_msr_high & ctl;
2383 }
2384
2385 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2386 {
2387 u32 vmx_msr_low, vmx_msr_high;
2388 u32 min, opt, min2, opt2;
2389 u32 _pin_based_exec_control = 0;
2390 u32 _cpu_based_exec_control = 0;
2391 u32 _cpu_based_2nd_exec_control = 0;
2392 u32 _vmexit_control = 0;
2393 u32 _vmentry_control = 0;
2394
2395 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2396 opt = PIN_BASED_VIRTUAL_NMIS;
2397 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2398 &_pin_based_exec_control) < 0)
2399 return -EIO;
2400
2401 min =
2402 #ifdef CONFIG_X86_64
2403 CPU_BASED_CR8_LOAD_EXITING |
2404 CPU_BASED_CR8_STORE_EXITING |
2405 #endif
2406 CPU_BASED_CR3_LOAD_EXITING |
2407 CPU_BASED_CR3_STORE_EXITING |
2408 CPU_BASED_USE_IO_BITMAPS |
2409 CPU_BASED_MOV_DR_EXITING |
2410 CPU_BASED_USE_TSC_OFFSETING |
2411 CPU_BASED_MWAIT_EXITING |
2412 CPU_BASED_MONITOR_EXITING |
2413 CPU_BASED_INVLPG_EXITING;
2414
2415 if (yield_on_hlt)
2416 min |= CPU_BASED_HLT_EXITING;
2417
2418 opt = CPU_BASED_TPR_SHADOW |
2419 CPU_BASED_USE_MSR_BITMAPS |
2420 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2421 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2422 &_cpu_based_exec_control) < 0)
2423 return -EIO;
2424 #ifdef CONFIG_X86_64
2425 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2426 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2427 ~CPU_BASED_CR8_STORE_EXITING;
2428 #endif
2429 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2430 min2 = 0;
2431 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2432 SECONDARY_EXEC_WBINVD_EXITING |
2433 SECONDARY_EXEC_ENABLE_VPID |
2434 SECONDARY_EXEC_ENABLE_EPT |
2435 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2436 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2437 SECONDARY_EXEC_RDTSCP;
2438 if (adjust_vmx_controls(min2, opt2,
2439 MSR_IA32_VMX_PROCBASED_CTLS2,
2440 &_cpu_based_2nd_exec_control) < 0)
2441 return -EIO;
2442 }
2443 #ifndef CONFIG_X86_64
2444 if (!(_cpu_based_2nd_exec_control &
2445 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2446 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2447 #endif
2448 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2449 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2450 enabled */
2451 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2452 CPU_BASED_CR3_STORE_EXITING |
2453 CPU_BASED_INVLPG_EXITING);
2454 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2455 vmx_capability.ept, vmx_capability.vpid);
2456 }
2457
2458 min = 0;
2459 #ifdef CONFIG_X86_64
2460 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2461 #endif
2462 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2463 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2464 &_vmexit_control) < 0)
2465 return -EIO;
2466
2467 min = 0;
2468 opt = VM_ENTRY_LOAD_IA32_PAT;
2469 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2470 &_vmentry_control) < 0)
2471 return -EIO;
2472
2473 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2474
2475 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2476 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2477 return -EIO;
2478
2479 #ifdef CONFIG_X86_64
2480 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2481 if (vmx_msr_high & (1u<<16))
2482 return -EIO;
2483 #endif
2484
2485 /* Require Write-Back (WB) memory type for VMCS accesses. */
2486 if (((vmx_msr_high >> 18) & 15) != 6)
2487 return -EIO;
2488
2489 vmcs_conf->size = vmx_msr_high & 0x1fff;
2490 vmcs_conf->order = get_order(vmcs_config.size);
2491 vmcs_conf->revision_id = vmx_msr_low;
2492
2493 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2494 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2495 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2496 vmcs_conf->vmexit_ctrl = _vmexit_control;
2497 vmcs_conf->vmentry_ctrl = _vmentry_control;
2498
2499 cpu_has_load_ia32_efer =
2500 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2501 VM_ENTRY_LOAD_IA32_EFER)
2502 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2503 VM_EXIT_LOAD_IA32_EFER);
2504
2505 cpu_has_load_perf_global_ctrl =
2506 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2507 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2508 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2509 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2510
2511 /*
2512 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2513 * but due to arrata below it can't be used. Workaround is to use
2514 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2515 *
2516 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2517 *
2518 * AAK155 (model 26)
2519 * AAP115 (model 30)
2520 * AAT100 (model 37)
2521 * BC86,AAY89,BD102 (model 44)
2522 * BA97 (model 46)
2523 *
2524 */
2525 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2526 switch (boot_cpu_data.x86_model) {
2527 case 26:
2528 case 30:
2529 case 37:
2530 case 44:
2531 case 46:
2532 cpu_has_load_perf_global_ctrl = false;
2533 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2534 "does not work properly. Using workaround\n");
2535 break;
2536 default:
2537 break;
2538 }
2539 }
2540
2541 return 0;
2542 }
2543
2544 static struct vmcs *alloc_vmcs_cpu(int cpu)
2545 {
2546 int node = cpu_to_node(cpu);
2547 struct page *pages;
2548 struct vmcs *vmcs;
2549
2550 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2551 if (!pages)
2552 return NULL;
2553 vmcs = page_address(pages);
2554 memset(vmcs, 0, vmcs_config.size);
2555 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2556 return vmcs;
2557 }
2558
2559 static struct vmcs *alloc_vmcs(void)
2560 {
2561 return alloc_vmcs_cpu(raw_smp_processor_id());
2562 }
2563
2564 static void free_vmcs(struct vmcs *vmcs)
2565 {
2566 free_pages((unsigned long)vmcs, vmcs_config.order);
2567 }
2568
2569 /*
2570 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2571 */
2572 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2573 {
2574 if (!loaded_vmcs->vmcs)
2575 return;
2576 loaded_vmcs_clear(loaded_vmcs);
2577 free_vmcs(loaded_vmcs->vmcs);
2578 loaded_vmcs->vmcs = NULL;
2579 }
2580
2581 static void free_kvm_area(void)
2582 {
2583 int cpu;
2584
2585 for_each_possible_cpu(cpu) {
2586 free_vmcs(per_cpu(vmxarea, cpu));
2587 per_cpu(vmxarea, cpu) = NULL;
2588 }
2589 }
2590
2591 static __init int alloc_kvm_area(void)
2592 {
2593 int cpu;
2594
2595 for_each_possible_cpu(cpu) {
2596 struct vmcs *vmcs;
2597
2598 vmcs = alloc_vmcs_cpu(cpu);
2599 if (!vmcs) {
2600 free_kvm_area();
2601 return -ENOMEM;
2602 }
2603
2604 per_cpu(vmxarea, cpu) = vmcs;
2605 }
2606 return 0;
2607 }
2608
2609 static __init int hardware_setup(void)
2610 {
2611 if (setup_vmcs_config(&vmcs_config) < 0)
2612 return -EIO;
2613
2614 if (boot_cpu_has(X86_FEATURE_NX))
2615 kvm_enable_efer_bits(EFER_NX);
2616
2617 if (!cpu_has_vmx_vpid())
2618 enable_vpid = 0;
2619
2620 if (!cpu_has_vmx_ept() ||
2621 !cpu_has_vmx_ept_4levels()) {
2622 enable_ept = 0;
2623 enable_unrestricted_guest = 0;
2624 }
2625
2626 if (!cpu_has_vmx_unrestricted_guest())
2627 enable_unrestricted_guest = 0;
2628
2629 if (!cpu_has_vmx_flexpriority())
2630 flexpriority_enabled = 0;
2631
2632 if (!cpu_has_vmx_tpr_shadow())
2633 kvm_x86_ops->update_cr8_intercept = NULL;
2634
2635 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2636 kvm_disable_largepages();
2637
2638 if (!cpu_has_vmx_ple())
2639 ple_gap = 0;
2640
2641 if (nested)
2642 nested_vmx_setup_ctls_msrs();
2643
2644 return alloc_kvm_area();
2645 }
2646
2647 static __exit void hardware_unsetup(void)
2648 {
2649 free_kvm_area();
2650 }
2651
2652 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2653 {
2654 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2655
2656 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2657 vmcs_write16(sf->selector, save->selector);
2658 vmcs_writel(sf->base, save->base);
2659 vmcs_write32(sf->limit, save->limit);
2660 vmcs_write32(sf->ar_bytes, save->ar);
2661 } else {
2662 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2663 << AR_DPL_SHIFT;
2664 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2665 }
2666 }
2667
2668 static void enter_pmode(struct kvm_vcpu *vcpu)
2669 {
2670 unsigned long flags;
2671 struct vcpu_vmx *vmx = to_vmx(vcpu);
2672
2673 vmx->emulation_required = 1;
2674 vmx->rmode.vm86_active = 0;
2675
2676 vmx_segment_cache_clear(vmx);
2677
2678 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2679 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2680 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2681 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2682
2683 flags = vmcs_readl(GUEST_RFLAGS);
2684 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2685 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2686 vmcs_writel(GUEST_RFLAGS, flags);
2687
2688 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2689 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2690
2691 update_exception_bitmap(vcpu);
2692
2693 if (emulate_invalid_guest_state)
2694 return;
2695
2696 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2697 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2698 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2699 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2700
2701 vmx_segment_cache_clear(vmx);
2702
2703 vmcs_write16(GUEST_SS_SELECTOR, 0);
2704 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2705
2706 vmcs_write16(GUEST_CS_SELECTOR,
2707 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2708 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2709 }
2710
2711 static gva_t rmode_tss_base(struct kvm *kvm)
2712 {
2713 if (!kvm->arch.tss_addr) {
2714 struct kvm_memslots *slots;
2715 gfn_t base_gfn;
2716
2717 slots = kvm_memslots(kvm);
2718 base_gfn = slots->memslots[0].base_gfn +
2719 kvm->memslots->memslots[0].npages - 3;
2720 return base_gfn << PAGE_SHIFT;
2721 }
2722 return kvm->arch.tss_addr;
2723 }
2724
2725 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2726 {
2727 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2728
2729 save->selector = vmcs_read16(sf->selector);
2730 save->base = vmcs_readl(sf->base);
2731 save->limit = vmcs_read32(sf->limit);
2732 save->ar = vmcs_read32(sf->ar_bytes);
2733 vmcs_write16(sf->selector, save->base >> 4);
2734 vmcs_write32(sf->base, save->base & 0xffff0);
2735 vmcs_write32(sf->limit, 0xffff);
2736 vmcs_write32(sf->ar_bytes, 0xf3);
2737 if (save->base & 0xf)
2738 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2739 " aligned when entering protected mode (seg=%d)",
2740 seg);
2741 }
2742
2743 static void enter_rmode(struct kvm_vcpu *vcpu)
2744 {
2745 unsigned long flags;
2746 struct vcpu_vmx *vmx = to_vmx(vcpu);
2747
2748 if (enable_unrestricted_guest)
2749 return;
2750
2751 vmx->emulation_required = 1;
2752 vmx->rmode.vm86_active = 1;
2753
2754 /*
2755 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2756 * vcpu. Call it here with phys address pointing 16M below 4G.
2757 */
2758 if (!vcpu->kvm->arch.tss_addr) {
2759 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2760 "called before entering vcpu\n");
2761 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2762 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2763 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2764 }
2765
2766 vmx_segment_cache_clear(vmx);
2767
2768 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2769 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2770 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2771
2772 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2773 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2774
2775 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2776 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2777
2778 flags = vmcs_readl(GUEST_RFLAGS);
2779 vmx->rmode.save_rflags = flags;
2780
2781 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2782
2783 vmcs_writel(GUEST_RFLAGS, flags);
2784 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2785 update_exception_bitmap(vcpu);
2786
2787 if (emulate_invalid_guest_state)
2788 goto continue_rmode;
2789
2790 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2791 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2792 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2793
2794 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2795 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2796 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2797 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2798 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2799
2800 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2801 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2802 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2803 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2804
2805 continue_rmode:
2806 kvm_mmu_reset_context(vcpu);
2807 }
2808
2809 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2810 {
2811 struct vcpu_vmx *vmx = to_vmx(vcpu);
2812 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2813
2814 if (!msr)
2815 return;
2816
2817 /*
2818 * Force kernel_gs_base reloading before EFER changes, as control
2819 * of this msr depends on is_long_mode().
2820 */
2821 vmx_load_host_state(to_vmx(vcpu));
2822 vcpu->arch.efer = efer;
2823 if (efer & EFER_LMA) {
2824 vmcs_write32(VM_ENTRY_CONTROLS,
2825 vmcs_read32(VM_ENTRY_CONTROLS) |
2826 VM_ENTRY_IA32E_MODE);
2827 msr->data = efer;
2828 } else {
2829 vmcs_write32(VM_ENTRY_CONTROLS,
2830 vmcs_read32(VM_ENTRY_CONTROLS) &
2831 ~VM_ENTRY_IA32E_MODE);
2832
2833 msr->data = efer & ~EFER_LME;
2834 }
2835 setup_msrs(vmx);
2836 }
2837
2838 #ifdef CONFIG_X86_64
2839
2840 static void enter_lmode(struct kvm_vcpu *vcpu)
2841 {
2842 u32 guest_tr_ar;
2843
2844 vmx_segment_cache_clear(to_vmx(vcpu));
2845
2846 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2847 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2848 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2849 __func__);
2850 vmcs_write32(GUEST_TR_AR_BYTES,
2851 (guest_tr_ar & ~AR_TYPE_MASK)
2852 | AR_TYPE_BUSY_64_TSS);
2853 }
2854 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2855 }
2856
2857 static void exit_lmode(struct kvm_vcpu *vcpu)
2858 {
2859 vmcs_write32(VM_ENTRY_CONTROLS,
2860 vmcs_read32(VM_ENTRY_CONTROLS)
2861 & ~VM_ENTRY_IA32E_MODE);
2862 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2863 }
2864
2865 #endif
2866
2867 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2868 {
2869 vpid_sync_context(to_vmx(vcpu));
2870 if (enable_ept) {
2871 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2872 return;
2873 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2874 }
2875 }
2876
2877 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2878 {
2879 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2880
2881 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2882 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2883 }
2884
2885 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2886 {
2887 if (enable_ept && is_paging(vcpu))
2888 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2889 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2890 }
2891
2892 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2893 {
2894 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2895
2896 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2897 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2898 }
2899
2900 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2901 {
2902 if (!test_bit(VCPU_EXREG_PDPTR,
2903 (unsigned long *)&vcpu->arch.regs_dirty))
2904 return;
2905
2906 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2907 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2908 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2909 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2910 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2911 }
2912 }
2913
2914 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2915 {
2916 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2917 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2918 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2919 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2920 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2921 }
2922
2923 __set_bit(VCPU_EXREG_PDPTR,
2924 (unsigned long *)&vcpu->arch.regs_avail);
2925 __set_bit(VCPU_EXREG_PDPTR,
2926 (unsigned long *)&vcpu->arch.regs_dirty);
2927 }
2928
2929 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2930
2931 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2932 unsigned long cr0,
2933 struct kvm_vcpu *vcpu)
2934 {
2935 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2936 vmx_decache_cr3(vcpu);
2937 if (!(cr0 & X86_CR0_PG)) {
2938 /* From paging/starting to nonpaging */
2939 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2940 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2941 (CPU_BASED_CR3_LOAD_EXITING |
2942 CPU_BASED_CR3_STORE_EXITING));
2943 vcpu->arch.cr0 = cr0;
2944 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2945 } else if (!is_paging(vcpu)) {
2946 /* From nonpaging to paging */
2947 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2948 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2949 ~(CPU_BASED_CR3_LOAD_EXITING |
2950 CPU_BASED_CR3_STORE_EXITING));
2951 vcpu->arch.cr0 = cr0;
2952 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2953 }
2954
2955 if (!(cr0 & X86_CR0_WP))
2956 *hw_cr0 &= ~X86_CR0_WP;
2957 }
2958
2959 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2960 {
2961 struct vcpu_vmx *vmx = to_vmx(vcpu);
2962 unsigned long hw_cr0;
2963
2964 if (enable_unrestricted_guest)
2965 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2966 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2967 else
2968 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2969
2970 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2971 enter_pmode(vcpu);
2972
2973 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2974 enter_rmode(vcpu);
2975
2976 #ifdef CONFIG_X86_64
2977 if (vcpu->arch.efer & EFER_LME) {
2978 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2979 enter_lmode(vcpu);
2980 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2981 exit_lmode(vcpu);
2982 }
2983 #endif
2984
2985 if (enable_ept)
2986 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2987
2988 if (!vcpu->fpu_active)
2989 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2990
2991 vmcs_writel(CR0_READ_SHADOW, cr0);
2992 vmcs_writel(GUEST_CR0, hw_cr0);
2993 vcpu->arch.cr0 = cr0;
2994 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2995 }
2996
2997 static u64 construct_eptp(unsigned long root_hpa)
2998 {
2999 u64 eptp;
3000
3001 /* TODO write the value reading from MSR */
3002 eptp = VMX_EPT_DEFAULT_MT |
3003 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3004 eptp |= (root_hpa & PAGE_MASK);
3005
3006 return eptp;
3007 }
3008
3009 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3010 {
3011 unsigned long guest_cr3;
3012 u64 eptp;
3013
3014 guest_cr3 = cr3;
3015 if (enable_ept) {
3016 eptp = construct_eptp(cr3);
3017 vmcs_write64(EPT_POINTER, eptp);
3018 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3019 vcpu->kvm->arch.ept_identity_map_addr;
3020 ept_load_pdptrs(vcpu);
3021 }
3022
3023 vmx_flush_tlb(vcpu);
3024 vmcs_writel(GUEST_CR3, guest_cr3);
3025 }
3026
3027 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3028 {
3029 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3030 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3031
3032 if (cr4 & X86_CR4_VMXE) {
3033 /*
3034 * To use VMXON (and later other VMX instructions), a guest
3035 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3036 * So basically the check on whether to allow nested VMX
3037 * is here.
3038 */
3039 if (!nested_vmx_allowed(vcpu))
3040 return 1;
3041 } else if (to_vmx(vcpu)->nested.vmxon)
3042 return 1;
3043
3044 vcpu->arch.cr4 = cr4;
3045 if (enable_ept) {
3046 if (!is_paging(vcpu)) {
3047 hw_cr4 &= ~X86_CR4_PAE;
3048 hw_cr4 |= X86_CR4_PSE;
3049 } else if (!(cr4 & X86_CR4_PAE)) {
3050 hw_cr4 &= ~X86_CR4_PAE;
3051 }
3052 }
3053
3054 vmcs_writel(CR4_READ_SHADOW, cr4);
3055 vmcs_writel(GUEST_CR4, hw_cr4);
3056 return 0;
3057 }
3058
3059 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3060 struct kvm_segment *var, int seg)
3061 {
3062 struct vcpu_vmx *vmx = to_vmx(vcpu);
3063 struct kvm_save_segment *save;
3064 u32 ar;
3065
3066 if (vmx->rmode.vm86_active
3067 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3068 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3069 || seg == VCPU_SREG_GS)
3070 && !emulate_invalid_guest_state) {
3071 switch (seg) {
3072 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3073 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3074 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3075 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3076 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3077 default: BUG();
3078 }
3079 var->selector = save->selector;
3080 var->base = save->base;
3081 var->limit = save->limit;
3082 ar = save->ar;
3083 if (seg == VCPU_SREG_TR
3084 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3085 goto use_saved_rmode_seg;
3086 }
3087 var->base = vmx_read_guest_seg_base(vmx, seg);
3088 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3089 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3090 ar = vmx_read_guest_seg_ar(vmx, seg);
3091 use_saved_rmode_seg:
3092 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3093 ar = 0;
3094 var->type = ar & 15;
3095 var->s = (ar >> 4) & 1;
3096 var->dpl = (ar >> 5) & 3;
3097 var->present = (ar >> 7) & 1;
3098 var->avl = (ar >> 12) & 1;
3099 var->l = (ar >> 13) & 1;
3100 var->db = (ar >> 14) & 1;
3101 var->g = (ar >> 15) & 1;
3102 var->unusable = (ar >> 16) & 1;
3103 }
3104
3105 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3106 {
3107 struct kvm_segment s;
3108
3109 if (to_vmx(vcpu)->rmode.vm86_active) {
3110 vmx_get_segment(vcpu, &s, seg);
3111 return s.base;
3112 }
3113 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3114 }
3115
3116 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3117 {
3118 if (!is_protmode(vcpu))
3119 return 0;
3120
3121 if (!is_long_mode(vcpu)
3122 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3123 return 3;
3124
3125 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3126 }
3127
3128 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3129 {
3130 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3131 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3132 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3133 }
3134 return to_vmx(vcpu)->cpl;
3135 }
3136
3137
3138 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3139 {
3140 u32 ar;
3141
3142 if (var->unusable)
3143 ar = 1 << 16;
3144 else {
3145 ar = var->type & 15;
3146 ar |= (var->s & 1) << 4;
3147 ar |= (var->dpl & 3) << 5;
3148 ar |= (var->present & 1) << 7;
3149 ar |= (var->avl & 1) << 12;
3150 ar |= (var->l & 1) << 13;
3151 ar |= (var->db & 1) << 14;
3152 ar |= (var->g & 1) << 15;
3153 }
3154 if (ar == 0) /* a 0 value means unusable */
3155 ar = AR_UNUSABLE_MASK;
3156
3157 return ar;
3158 }
3159
3160 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3161 struct kvm_segment *var, int seg)
3162 {
3163 struct vcpu_vmx *vmx = to_vmx(vcpu);
3164 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3165 u32 ar;
3166
3167 vmx_segment_cache_clear(vmx);
3168
3169 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3170 vmcs_write16(sf->selector, var->selector);
3171 vmx->rmode.tr.selector = var->selector;
3172 vmx->rmode.tr.base = var->base;
3173 vmx->rmode.tr.limit = var->limit;
3174 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3175 return;
3176 }
3177 vmcs_writel(sf->base, var->base);
3178 vmcs_write32(sf->limit, var->limit);
3179 vmcs_write16(sf->selector, var->selector);
3180 if (vmx->rmode.vm86_active && var->s) {
3181 /*
3182 * Hack real-mode segments into vm86 compatibility.
3183 */
3184 if (var->base == 0xffff0000 && var->selector == 0xf000)
3185 vmcs_writel(sf->base, 0xf0000);
3186 ar = 0xf3;
3187 } else
3188 ar = vmx_segment_access_rights(var);
3189
3190 /*
3191 * Fix the "Accessed" bit in AR field of segment registers for older
3192 * qemu binaries.
3193 * IA32 arch specifies that at the time of processor reset the
3194 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3195 * is setting it to 0 in the usedland code. This causes invalid guest
3196 * state vmexit when "unrestricted guest" mode is turned on.
3197 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3198 * tree. Newer qemu binaries with that qemu fix would not need this
3199 * kvm hack.
3200 */
3201 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3202 ar |= 0x1; /* Accessed */
3203
3204 vmcs_write32(sf->ar_bytes, ar);
3205 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3206 }
3207
3208 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3209 {
3210 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3211
3212 *db = (ar >> 14) & 1;
3213 *l = (ar >> 13) & 1;
3214 }
3215
3216 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3217 {
3218 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3219 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3220 }
3221
3222 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3223 {
3224 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3225 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3226 }
3227
3228 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3229 {
3230 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3231 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3232 }
3233
3234 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3235 {
3236 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3237 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3238 }
3239
3240 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3241 {
3242 struct kvm_segment var;
3243 u32 ar;
3244
3245 vmx_get_segment(vcpu, &var, seg);
3246 ar = vmx_segment_access_rights(&var);
3247
3248 if (var.base != (var.selector << 4))
3249 return false;
3250 if (var.limit != 0xffff)
3251 return false;
3252 if (ar != 0xf3)
3253 return false;
3254
3255 return true;
3256 }
3257
3258 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3259 {
3260 struct kvm_segment cs;
3261 unsigned int cs_rpl;
3262
3263 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3264 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3265
3266 if (cs.unusable)
3267 return false;
3268 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3269 return false;
3270 if (!cs.s)
3271 return false;
3272 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3273 if (cs.dpl > cs_rpl)
3274 return false;
3275 } else {
3276 if (cs.dpl != cs_rpl)
3277 return false;
3278 }
3279 if (!cs.present)
3280 return false;
3281
3282 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3283 return true;
3284 }
3285
3286 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3287 {
3288 struct kvm_segment ss;
3289 unsigned int ss_rpl;
3290
3291 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3292 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3293
3294 if (ss.unusable)
3295 return true;
3296 if (ss.type != 3 && ss.type != 7)
3297 return false;
3298 if (!ss.s)
3299 return false;
3300 if (ss.dpl != ss_rpl) /* DPL != RPL */
3301 return false;
3302 if (!ss.present)
3303 return false;
3304
3305 return true;
3306 }
3307
3308 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3309 {
3310 struct kvm_segment var;
3311 unsigned int rpl;
3312
3313 vmx_get_segment(vcpu, &var, seg);
3314 rpl = var.selector & SELECTOR_RPL_MASK;
3315
3316 if (var.unusable)
3317 return true;
3318 if (!var.s)
3319 return false;
3320 if (!var.present)
3321 return false;
3322 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3323 if (var.dpl < rpl) /* DPL < RPL */
3324 return false;
3325 }
3326
3327 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3328 * rights flags
3329 */
3330 return true;
3331 }
3332
3333 static bool tr_valid(struct kvm_vcpu *vcpu)
3334 {
3335 struct kvm_segment tr;
3336
3337 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3338
3339 if (tr.unusable)
3340 return false;
3341 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3342 return false;
3343 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3344 return false;
3345 if (!tr.present)
3346 return false;
3347
3348 return true;
3349 }
3350
3351 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3352 {
3353 struct kvm_segment ldtr;
3354
3355 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3356
3357 if (ldtr.unusable)
3358 return true;
3359 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3360 return false;
3361 if (ldtr.type != 2)
3362 return false;
3363 if (!ldtr.present)
3364 return false;
3365
3366 return true;
3367 }
3368
3369 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3370 {
3371 struct kvm_segment cs, ss;
3372
3373 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3374 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3375
3376 return ((cs.selector & SELECTOR_RPL_MASK) ==
3377 (ss.selector & SELECTOR_RPL_MASK));
3378 }
3379
3380 /*
3381 * Check if guest state is valid. Returns true if valid, false if
3382 * not.
3383 * We assume that registers are always usable
3384 */
3385 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3386 {
3387 /* real mode guest state checks */
3388 if (!is_protmode(vcpu)) {
3389 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3390 return false;
3391 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3392 return false;
3393 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3394 return false;
3395 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3396 return false;
3397 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3398 return false;
3399 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3400 return false;
3401 } else {
3402 /* protected mode guest state checks */
3403 if (!cs_ss_rpl_check(vcpu))
3404 return false;
3405 if (!code_segment_valid(vcpu))
3406 return false;
3407 if (!stack_segment_valid(vcpu))
3408 return false;
3409 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3410 return false;
3411 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3412 return false;
3413 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3414 return false;
3415 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3416 return false;
3417 if (!tr_valid(vcpu))
3418 return false;
3419 if (!ldtr_valid(vcpu))
3420 return false;
3421 }
3422 /* TODO:
3423 * - Add checks on RIP
3424 * - Add checks on RFLAGS
3425 */
3426
3427 return true;
3428 }
3429
3430 static int init_rmode_tss(struct kvm *kvm)
3431 {
3432 gfn_t fn;
3433 u16 data = 0;
3434 int r, idx, ret = 0;
3435
3436 idx = srcu_read_lock(&kvm->srcu);
3437 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3438 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3439 if (r < 0)
3440 goto out;
3441 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3442 r = kvm_write_guest_page(kvm, fn++, &data,
3443 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3444 if (r < 0)
3445 goto out;
3446 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3447 if (r < 0)
3448 goto out;
3449 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3450 if (r < 0)
3451 goto out;
3452 data = ~0;
3453 r = kvm_write_guest_page(kvm, fn, &data,
3454 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3455 sizeof(u8));
3456 if (r < 0)
3457 goto out;
3458
3459 ret = 1;
3460 out:
3461 srcu_read_unlock(&kvm->srcu, idx);
3462 return ret;
3463 }
3464
3465 static int init_rmode_identity_map(struct kvm *kvm)
3466 {
3467 int i, idx, r, ret;
3468 pfn_t identity_map_pfn;
3469 u32 tmp;
3470
3471 if (!enable_ept)
3472 return 1;
3473 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3474 printk(KERN_ERR "EPT: identity-mapping pagetable "
3475 "haven't been allocated!\n");
3476 return 0;
3477 }
3478 if (likely(kvm->arch.ept_identity_pagetable_done))
3479 return 1;
3480 ret = 0;
3481 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3482 idx = srcu_read_lock(&kvm->srcu);
3483 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3484 if (r < 0)
3485 goto out;
3486 /* Set up identity-mapping pagetable for EPT in real mode */
3487 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3488 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3489 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3490 r = kvm_write_guest_page(kvm, identity_map_pfn,
3491 &tmp, i * sizeof(tmp), sizeof(tmp));
3492 if (r < 0)
3493 goto out;
3494 }
3495 kvm->arch.ept_identity_pagetable_done = true;
3496 ret = 1;
3497 out:
3498 srcu_read_unlock(&kvm->srcu, idx);
3499 return ret;
3500 }
3501
3502 static void seg_setup(int seg)
3503 {
3504 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3505 unsigned int ar;
3506
3507 vmcs_write16(sf->selector, 0);
3508 vmcs_writel(sf->base, 0);
3509 vmcs_write32(sf->limit, 0xffff);
3510 if (enable_unrestricted_guest) {
3511 ar = 0x93;
3512 if (seg == VCPU_SREG_CS)
3513 ar |= 0x08; /* code segment */
3514 } else
3515 ar = 0xf3;
3516
3517 vmcs_write32(sf->ar_bytes, ar);
3518 }
3519
3520 static int alloc_apic_access_page(struct kvm *kvm)
3521 {
3522 struct kvm_userspace_memory_region kvm_userspace_mem;
3523 int r = 0;
3524
3525 mutex_lock(&kvm->slots_lock);
3526 if (kvm->arch.apic_access_page)
3527 goto out;
3528 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3529 kvm_userspace_mem.flags = 0;
3530 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3531 kvm_userspace_mem.memory_size = PAGE_SIZE;
3532 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3533 if (r)
3534 goto out;
3535
3536 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3537 out:
3538 mutex_unlock(&kvm->slots_lock);
3539 return r;
3540 }
3541
3542 static int alloc_identity_pagetable(struct kvm *kvm)
3543 {
3544 struct kvm_userspace_memory_region kvm_userspace_mem;
3545 int r = 0;
3546
3547 mutex_lock(&kvm->slots_lock);
3548 if (kvm->arch.ept_identity_pagetable)
3549 goto out;
3550 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3551 kvm_userspace_mem.flags = 0;
3552 kvm_userspace_mem.guest_phys_addr =
3553 kvm->arch.ept_identity_map_addr;
3554 kvm_userspace_mem.memory_size = PAGE_SIZE;
3555 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3556 if (r)
3557 goto out;
3558
3559 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3560 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3561 out:
3562 mutex_unlock(&kvm->slots_lock);
3563 return r;
3564 }
3565
3566 static void allocate_vpid(struct vcpu_vmx *vmx)
3567 {
3568 int vpid;
3569
3570 vmx->vpid = 0;
3571 if (!enable_vpid)
3572 return;
3573 spin_lock(&vmx_vpid_lock);
3574 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3575 if (vpid < VMX_NR_VPIDS) {
3576 vmx->vpid = vpid;
3577 __set_bit(vpid, vmx_vpid_bitmap);
3578 }
3579 spin_unlock(&vmx_vpid_lock);
3580 }
3581
3582 static void free_vpid(struct vcpu_vmx *vmx)
3583 {
3584 if (!enable_vpid)
3585 return;
3586 spin_lock(&vmx_vpid_lock);
3587 if (vmx->vpid != 0)
3588 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3589 spin_unlock(&vmx_vpid_lock);
3590 }
3591
3592 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3593 {
3594 int f = sizeof(unsigned long);
3595
3596 if (!cpu_has_vmx_msr_bitmap())
3597 return;
3598
3599 /*
3600 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3601 * have the write-low and read-high bitmap offsets the wrong way round.
3602 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3603 */
3604 if (msr <= 0x1fff) {
3605 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3606 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3607 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3608 msr &= 0x1fff;
3609 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3610 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3611 }
3612 }
3613
3614 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3615 {
3616 if (!longmode_only)
3617 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3618 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3619 }
3620
3621 /*
3622 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3623 * will not change in the lifetime of the guest.
3624 * Note that host-state that does change is set elsewhere. E.g., host-state
3625 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3626 */
3627 static void vmx_set_constant_host_state(void)
3628 {
3629 u32 low32, high32;
3630 unsigned long tmpl;
3631 struct desc_ptr dt;
3632
3633 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3634 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3635 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3636
3637 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3638 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3639 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3640 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3641 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3642
3643 native_store_idt(&dt);
3644 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3645
3646 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3647 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3648
3649 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3650 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3651 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3652 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3653
3654 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3655 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3656 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3657 }
3658 }
3659
3660 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3661 {
3662 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3663 if (enable_ept)
3664 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3665 if (is_guest_mode(&vmx->vcpu))
3666 vmx->vcpu.arch.cr4_guest_owned_bits &=
3667 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3668 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3669 }
3670
3671 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3672 {
3673 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3674 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3675 exec_control &= ~CPU_BASED_TPR_SHADOW;
3676 #ifdef CONFIG_X86_64
3677 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3678 CPU_BASED_CR8_LOAD_EXITING;
3679 #endif
3680 }
3681 if (!enable_ept)
3682 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3683 CPU_BASED_CR3_LOAD_EXITING |
3684 CPU_BASED_INVLPG_EXITING;
3685 return exec_control;
3686 }
3687
3688 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3689 {
3690 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3691 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3692 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3693 if (vmx->vpid == 0)
3694 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3695 if (!enable_ept) {
3696 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3697 enable_unrestricted_guest = 0;
3698 }
3699 if (!enable_unrestricted_guest)
3700 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3701 if (!ple_gap)
3702 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3703 return exec_control;
3704 }
3705
3706 static void ept_set_mmio_spte_mask(void)
3707 {
3708 /*
3709 * EPT Misconfigurations can be generated if the value of bits 2:0
3710 * of an EPT paging-structure entry is 110b (write/execute).
3711 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3712 * spte.
3713 */
3714 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3715 }
3716
3717 /*
3718 * Sets up the vmcs for emulated real mode.
3719 */
3720 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3721 {
3722 #ifdef CONFIG_X86_64
3723 unsigned long a;
3724 #endif
3725 int i;
3726
3727 /* I/O */
3728 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3729 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3730
3731 if (cpu_has_vmx_msr_bitmap())
3732 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3733
3734 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3735
3736 /* Control */
3737 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3738 vmcs_config.pin_based_exec_ctrl);
3739
3740 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3741
3742 if (cpu_has_secondary_exec_ctrls()) {
3743 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3744 vmx_secondary_exec_control(vmx));
3745 }
3746
3747 if (ple_gap) {
3748 vmcs_write32(PLE_GAP, ple_gap);
3749 vmcs_write32(PLE_WINDOW, ple_window);
3750 }
3751
3752 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3753 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3754 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3755
3756 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3757 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3758 vmx_set_constant_host_state();
3759 #ifdef CONFIG_X86_64
3760 rdmsrl(MSR_FS_BASE, a);
3761 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3762 rdmsrl(MSR_GS_BASE, a);
3763 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3764 #else
3765 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3766 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3767 #endif
3768
3769 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3770 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3771 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3772 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3773 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3774
3775 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3776 u32 msr_low, msr_high;
3777 u64 host_pat;
3778 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3779 host_pat = msr_low | ((u64) msr_high << 32);
3780 /* Write the default value follow host pat */
3781 vmcs_write64(GUEST_IA32_PAT, host_pat);
3782 /* Keep arch.pat sync with GUEST_IA32_PAT */
3783 vmx->vcpu.arch.pat = host_pat;
3784 }
3785
3786 for (i = 0; i < NR_VMX_MSR; ++i) {
3787 u32 index = vmx_msr_index[i];
3788 u32 data_low, data_high;
3789 int j = vmx->nmsrs;
3790
3791 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3792 continue;
3793 if (wrmsr_safe(index, data_low, data_high) < 0)
3794 continue;
3795 vmx->guest_msrs[j].index = i;
3796 vmx->guest_msrs[j].data = 0;
3797 vmx->guest_msrs[j].mask = -1ull;
3798 ++vmx->nmsrs;
3799 }
3800
3801 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3802
3803 /* 22.2.1, 20.8.1 */
3804 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3805
3806 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3807 set_cr4_guest_host_mask(vmx);
3808
3809 kvm_write_tsc(&vmx->vcpu, 0);
3810
3811 return 0;
3812 }
3813
3814 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3815 {
3816 struct vcpu_vmx *vmx = to_vmx(vcpu);
3817 u64 msr;
3818 int ret;
3819
3820 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3821
3822 vmx->rmode.vm86_active = 0;
3823
3824 vmx->soft_vnmi_blocked = 0;
3825
3826 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3827 kvm_set_cr8(&vmx->vcpu, 0);
3828 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3829 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3830 msr |= MSR_IA32_APICBASE_BSP;
3831 kvm_set_apic_base(&vmx->vcpu, msr);
3832
3833 ret = fx_init(&vmx->vcpu);
3834 if (ret != 0)
3835 goto out;
3836
3837 vmx_segment_cache_clear(vmx);
3838
3839 seg_setup(VCPU_SREG_CS);
3840 /*
3841 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3842 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3843 */
3844 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3845 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3846 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3847 } else {
3848 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3849 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3850 }
3851
3852 seg_setup(VCPU_SREG_DS);
3853 seg_setup(VCPU_SREG_ES);
3854 seg_setup(VCPU_SREG_FS);
3855 seg_setup(VCPU_SREG_GS);
3856 seg_setup(VCPU_SREG_SS);
3857
3858 vmcs_write16(GUEST_TR_SELECTOR, 0);
3859 vmcs_writel(GUEST_TR_BASE, 0);
3860 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3861 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3862
3863 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3864 vmcs_writel(GUEST_LDTR_BASE, 0);
3865 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3866 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3867
3868 vmcs_write32(GUEST_SYSENTER_CS, 0);
3869 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3870 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3871
3872 vmcs_writel(GUEST_RFLAGS, 0x02);
3873 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3874 kvm_rip_write(vcpu, 0xfff0);
3875 else
3876 kvm_rip_write(vcpu, 0);
3877 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3878
3879 vmcs_writel(GUEST_DR7, 0x400);
3880
3881 vmcs_writel(GUEST_GDTR_BASE, 0);
3882 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3883
3884 vmcs_writel(GUEST_IDTR_BASE, 0);
3885 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3886
3887 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3888 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3889 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3890
3891 /* Special registers */
3892 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3893
3894 setup_msrs(vmx);
3895
3896 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3897
3898 if (cpu_has_vmx_tpr_shadow()) {
3899 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3900 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3901 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3902 __pa(vmx->vcpu.arch.apic->regs));
3903 vmcs_write32(TPR_THRESHOLD, 0);
3904 }
3905
3906 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3907 vmcs_write64(APIC_ACCESS_ADDR,
3908 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3909
3910 if (vmx->vpid != 0)
3911 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3912
3913 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3914 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3915 vmx_set_cr4(&vmx->vcpu, 0);
3916 vmx_set_efer(&vmx->vcpu, 0);
3917 vmx_fpu_activate(&vmx->vcpu);
3918 update_exception_bitmap(&vmx->vcpu);
3919
3920 vpid_sync_context(vmx);
3921
3922 ret = 0;
3923
3924 /* HACK: Don't enable emulation on guest boot/reset */
3925 vmx->emulation_required = 0;
3926
3927 out:
3928 return ret;
3929 }
3930
3931 /*
3932 * In nested virtualization, check if L1 asked to exit on external interrupts.
3933 * For most existing hypervisors, this will always return true.
3934 */
3935 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3936 {
3937 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3938 PIN_BASED_EXT_INTR_MASK;
3939 }
3940
3941 static void enable_irq_window(struct kvm_vcpu *vcpu)
3942 {
3943 u32 cpu_based_vm_exec_control;
3944 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3945 /* We can get here when nested_run_pending caused
3946 * vmx_interrupt_allowed() to return false. In this case, do
3947 * nothing - the interrupt will be injected later.
3948 */
3949 return;
3950
3951 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3952 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3953 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3954 }
3955
3956 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3957 {
3958 u32 cpu_based_vm_exec_control;
3959
3960 if (!cpu_has_virtual_nmis()) {
3961 enable_irq_window(vcpu);
3962 return;
3963 }
3964
3965 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3966 enable_irq_window(vcpu);
3967 return;
3968 }
3969 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3970 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3971 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3972 }
3973
3974 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3975 {
3976 struct vcpu_vmx *vmx = to_vmx(vcpu);
3977 uint32_t intr;
3978 int irq = vcpu->arch.interrupt.nr;
3979
3980 trace_kvm_inj_virq(irq);
3981
3982 ++vcpu->stat.irq_injections;
3983 if (vmx->rmode.vm86_active) {
3984 int inc_eip = 0;
3985 if (vcpu->arch.interrupt.soft)
3986 inc_eip = vcpu->arch.event_exit_inst_len;
3987 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3988 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3989 return;
3990 }
3991 intr = irq | INTR_INFO_VALID_MASK;
3992 if (vcpu->arch.interrupt.soft) {
3993 intr |= INTR_TYPE_SOFT_INTR;
3994 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3995 vmx->vcpu.arch.event_exit_inst_len);
3996 } else
3997 intr |= INTR_TYPE_EXT_INTR;
3998 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3999 vmx_clear_hlt(vcpu);
4000 }
4001
4002 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4003 {
4004 struct vcpu_vmx *vmx = to_vmx(vcpu);
4005
4006 if (is_guest_mode(vcpu))
4007 return;
4008
4009 if (!cpu_has_virtual_nmis()) {
4010 /*
4011 * Tracking the NMI-blocked state in software is built upon
4012 * finding the next open IRQ window. This, in turn, depends on
4013 * well-behaving guests: They have to keep IRQs disabled at
4014 * least as long as the NMI handler runs. Otherwise we may
4015 * cause NMI nesting, maybe breaking the guest. But as this is
4016 * highly unlikely, we can live with the residual risk.
4017 */
4018 vmx->soft_vnmi_blocked = 1;
4019 vmx->vnmi_blocked_time = 0;
4020 }
4021
4022 ++vcpu->stat.nmi_injections;
4023 vmx->nmi_known_unmasked = false;
4024 if (vmx->rmode.vm86_active) {
4025 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4026 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4027 return;
4028 }
4029 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4030 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4031 vmx_clear_hlt(vcpu);
4032 }
4033
4034 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4035 {
4036 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4037 return 0;
4038
4039 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4040 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4041 | GUEST_INTR_STATE_NMI));
4042 }
4043
4044 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4045 {
4046 if (!cpu_has_virtual_nmis())
4047 return to_vmx(vcpu)->soft_vnmi_blocked;
4048 if (to_vmx(vcpu)->nmi_known_unmasked)
4049 return false;
4050 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4051 }
4052
4053 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4054 {
4055 struct vcpu_vmx *vmx = to_vmx(vcpu);
4056
4057 if (!cpu_has_virtual_nmis()) {
4058 if (vmx->soft_vnmi_blocked != masked) {
4059 vmx->soft_vnmi_blocked = masked;
4060 vmx->vnmi_blocked_time = 0;
4061 }
4062 } else {
4063 vmx->nmi_known_unmasked = !masked;
4064 if (masked)
4065 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4066 GUEST_INTR_STATE_NMI);
4067 else
4068 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4069 GUEST_INTR_STATE_NMI);
4070 }
4071 }
4072
4073 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4074 {
4075 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4076 struct vmcs12 *vmcs12;
4077 if (to_vmx(vcpu)->nested.nested_run_pending)
4078 return 0;
4079 nested_vmx_vmexit(vcpu);
4080 vmcs12 = get_vmcs12(vcpu);
4081 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4082 vmcs12->vm_exit_intr_info = 0;
4083 /* fall through to normal code, but now in L1, not L2 */
4084 }
4085
4086 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4087 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4088 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4089 }
4090
4091 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4092 {
4093 int ret;
4094 struct kvm_userspace_memory_region tss_mem = {
4095 .slot = TSS_PRIVATE_MEMSLOT,
4096 .guest_phys_addr = addr,
4097 .memory_size = PAGE_SIZE * 3,
4098 .flags = 0,
4099 };
4100
4101 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4102 if (ret)
4103 return ret;
4104 kvm->arch.tss_addr = addr;
4105 if (!init_rmode_tss(kvm))
4106 return -ENOMEM;
4107
4108 return 0;
4109 }
4110
4111 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4112 int vec, u32 err_code)
4113 {
4114 /*
4115 * Instruction with address size override prefix opcode 0x67
4116 * Cause the #SS fault with 0 error code in VM86 mode.
4117 */
4118 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4119 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4120 return 1;
4121 /*
4122 * Forward all other exceptions that are valid in real mode.
4123 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4124 * the required debugging infrastructure rework.
4125 */
4126 switch (vec) {
4127 case DB_VECTOR:
4128 if (vcpu->guest_debug &
4129 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4130 return 0;
4131 kvm_queue_exception(vcpu, vec);
4132 return 1;
4133 case BP_VECTOR:
4134 /*
4135 * Update instruction length as we may reinject the exception
4136 * from user space while in guest debugging mode.
4137 */
4138 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4139 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4140 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4141 return 0;
4142 /* fall through */
4143 case DE_VECTOR:
4144 case OF_VECTOR:
4145 case BR_VECTOR:
4146 case UD_VECTOR:
4147 case DF_VECTOR:
4148 case SS_VECTOR:
4149 case GP_VECTOR:
4150 case MF_VECTOR:
4151 kvm_queue_exception(vcpu, vec);
4152 return 1;
4153 }
4154 return 0;
4155 }
4156
4157 /*
4158 * Trigger machine check on the host. We assume all the MSRs are already set up
4159 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4160 * We pass a fake environment to the machine check handler because we want
4161 * the guest to be always treated like user space, no matter what context
4162 * it used internally.
4163 */
4164 static void kvm_machine_check(void)
4165 {
4166 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4167 struct pt_regs regs = {
4168 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4169 .flags = X86_EFLAGS_IF,
4170 };
4171
4172 do_machine_check(&regs, 0);
4173 #endif
4174 }
4175
4176 static int handle_machine_check(struct kvm_vcpu *vcpu)
4177 {
4178 /* already handled by vcpu_run */
4179 return 1;
4180 }
4181
4182 static int handle_exception(struct kvm_vcpu *vcpu)
4183 {
4184 struct vcpu_vmx *vmx = to_vmx(vcpu);
4185 struct kvm_run *kvm_run = vcpu->run;
4186 u32 intr_info, ex_no, error_code;
4187 unsigned long cr2, rip, dr6;
4188 u32 vect_info;
4189 enum emulation_result er;
4190
4191 vect_info = vmx->idt_vectoring_info;
4192 intr_info = vmx->exit_intr_info;
4193
4194 if (is_machine_check(intr_info))
4195 return handle_machine_check(vcpu);
4196
4197 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4198 !is_page_fault(intr_info)) {
4199 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4200 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4201 vcpu->run->internal.ndata = 2;
4202 vcpu->run->internal.data[0] = vect_info;
4203 vcpu->run->internal.data[1] = intr_info;
4204 return 0;
4205 }
4206
4207 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4208 return 1; /* already handled by vmx_vcpu_run() */
4209
4210 if (is_no_device(intr_info)) {
4211 vmx_fpu_activate(vcpu);
4212 return 1;
4213 }
4214
4215 if (is_invalid_opcode(intr_info)) {
4216 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4217 if (er != EMULATE_DONE)
4218 kvm_queue_exception(vcpu, UD_VECTOR);
4219 return 1;
4220 }
4221
4222 error_code = 0;
4223 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4224 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4225 if (is_page_fault(intr_info)) {
4226 /* EPT won't cause page fault directly */
4227 BUG_ON(enable_ept);
4228 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4229 trace_kvm_page_fault(cr2, error_code);
4230
4231 if (kvm_event_needs_reinjection(vcpu))
4232 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4233 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4234 }
4235
4236 if (vmx->rmode.vm86_active &&
4237 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4238 error_code)) {
4239 if (vcpu->arch.halt_request) {
4240 vcpu->arch.halt_request = 0;
4241 return kvm_emulate_halt(vcpu);
4242 }
4243 return 1;
4244 }
4245
4246 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4247 switch (ex_no) {
4248 case DB_VECTOR:
4249 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4250 if (!(vcpu->guest_debug &
4251 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4252 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4253 kvm_queue_exception(vcpu, DB_VECTOR);
4254 return 1;
4255 }
4256 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4257 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4258 /* fall through */
4259 case BP_VECTOR:
4260 /*
4261 * Update instruction length as we may reinject #BP from
4262 * user space while in guest debugging mode. Reading it for
4263 * #DB as well causes no harm, it is not used in that case.
4264 */
4265 vmx->vcpu.arch.event_exit_inst_len =
4266 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4267 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4268 rip = kvm_rip_read(vcpu);
4269 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4270 kvm_run->debug.arch.exception = ex_no;
4271 break;
4272 default:
4273 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4274 kvm_run->ex.exception = ex_no;
4275 kvm_run->ex.error_code = error_code;
4276 break;
4277 }
4278 return 0;
4279 }
4280
4281 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4282 {
4283 ++vcpu->stat.irq_exits;
4284 return 1;
4285 }
4286
4287 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4288 {
4289 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4290 return 0;
4291 }
4292
4293 static int handle_io(struct kvm_vcpu *vcpu)
4294 {
4295 unsigned long exit_qualification;
4296 int size, in, string;
4297 unsigned port;
4298
4299 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4300 string = (exit_qualification & 16) != 0;
4301 in = (exit_qualification & 8) != 0;
4302
4303 ++vcpu->stat.io_exits;
4304
4305 if (string || in)
4306 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4307
4308 port = exit_qualification >> 16;
4309 size = (exit_qualification & 7) + 1;
4310 skip_emulated_instruction(vcpu);
4311
4312 return kvm_fast_pio_out(vcpu, size, port);
4313 }
4314
4315 static void
4316 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4317 {
4318 /*
4319 * Patch in the VMCALL instruction:
4320 */
4321 hypercall[0] = 0x0f;
4322 hypercall[1] = 0x01;
4323 hypercall[2] = 0xc1;
4324 }
4325
4326 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4327 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4328 {
4329 if (to_vmx(vcpu)->nested.vmxon &&
4330 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4331 return 1;
4332
4333 if (is_guest_mode(vcpu)) {
4334 /*
4335 * We get here when L2 changed cr0 in a way that did not change
4336 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4337 * but did change L0 shadowed bits. This can currently happen
4338 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4339 * loading) while pretending to allow the guest to change it.
4340 */
4341 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4342 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4343 return 1;
4344 vmcs_writel(CR0_READ_SHADOW, val);
4345 return 0;
4346 } else
4347 return kvm_set_cr0(vcpu, val);
4348 }
4349
4350 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4351 {
4352 if (is_guest_mode(vcpu)) {
4353 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4354 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4355 return 1;
4356 vmcs_writel(CR4_READ_SHADOW, val);
4357 return 0;
4358 } else
4359 return kvm_set_cr4(vcpu, val);
4360 }
4361
4362 /* called to set cr0 as approriate for clts instruction exit. */
4363 static void handle_clts(struct kvm_vcpu *vcpu)
4364 {
4365 if (is_guest_mode(vcpu)) {
4366 /*
4367 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4368 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4369 * just pretend it's off (also in arch.cr0 for fpu_activate).
4370 */
4371 vmcs_writel(CR0_READ_SHADOW,
4372 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4373 vcpu->arch.cr0 &= ~X86_CR0_TS;
4374 } else
4375 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4376 }
4377
4378 static int handle_cr(struct kvm_vcpu *vcpu)
4379 {
4380 unsigned long exit_qualification, val;
4381 int cr;
4382 int reg;
4383 int err;
4384
4385 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4386 cr = exit_qualification & 15;
4387 reg = (exit_qualification >> 8) & 15;
4388 switch ((exit_qualification >> 4) & 3) {
4389 case 0: /* mov to cr */
4390 val = kvm_register_read(vcpu, reg);
4391 trace_kvm_cr_write(cr, val);
4392 switch (cr) {
4393 case 0:
4394 err = handle_set_cr0(vcpu, val);
4395 kvm_complete_insn_gp(vcpu, err);
4396 return 1;
4397 case 3:
4398 err = kvm_set_cr3(vcpu, val);
4399 kvm_complete_insn_gp(vcpu, err);
4400 return 1;
4401 case 4:
4402 err = handle_set_cr4(vcpu, val);
4403 kvm_complete_insn_gp(vcpu, err);
4404 return 1;
4405 case 8: {
4406 u8 cr8_prev = kvm_get_cr8(vcpu);
4407 u8 cr8 = kvm_register_read(vcpu, reg);
4408 err = kvm_set_cr8(vcpu, cr8);
4409 kvm_complete_insn_gp(vcpu, err);
4410 if (irqchip_in_kernel(vcpu->kvm))
4411 return 1;
4412 if (cr8_prev <= cr8)
4413 return 1;
4414 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4415 return 0;
4416 }
4417 };
4418 break;
4419 case 2: /* clts */
4420 handle_clts(vcpu);
4421 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4422 skip_emulated_instruction(vcpu);
4423 vmx_fpu_activate(vcpu);
4424 return 1;
4425 case 1: /*mov from cr*/
4426 switch (cr) {
4427 case 3:
4428 val = kvm_read_cr3(vcpu);
4429 kvm_register_write(vcpu, reg, val);
4430 trace_kvm_cr_read(cr, val);
4431 skip_emulated_instruction(vcpu);
4432 return 1;
4433 case 8:
4434 val = kvm_get_cr8(vcpu);
4435 kvm_register_write(vcpu, reg, val);
4436 trace_kvm_cr_read(cr, val);
4437 skip_emulated_instruction(vcpu);
4438 return 1;
4439 }
4440 break;
4441 case 3: /* lmsw */
4442 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4443 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4444 kvm_lmsw(vcpu, val);
4445
4446 skip_emulated_instruction(vcpu);
4447 return 1;
4448 default:
4449 break;
4450 }
4451 vcpu->run->exit_reason = 0;
4452 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4453 (int)(exit_qualification >> 4) & 3, cr);
4454 return 0;
4455 }
4456
4457 static int handle_dr(struct kvm_vcpu *vcpu)
4458 {
4459 unsigned long exit_qualification;
4460 int dr, reg;
4461
4462 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4463 if (!kvm_require_cpl(vcpu, 0))
4464 return 1;
4465 dr = vmcs_readl(GUEST_DR7);
4466 if (dr & DR7_GD) {
4467 /*
4468 * As the vm-exit takes precedence over the debug trap, we
4469 * need to emulate the latter, either for the host or the
4470 * guest debugging itself.
4471 */
4472 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4473 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4474 vcpu->run->debug.arch.dr7 = dr;
4475 vcpu->run->debug.arch.pc =
4476 vmcs_readl(GUEST_CS_BASE) +
4477 vmcs_readl(GUEST_RIP);
4478 vcpu->run->debug.arch.exception = DB_VECTOR;
4479 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4480 return 0;
4481 } else {
4482 vcpu->arch.dr7 &= ~DR7_GD;
4483 vcpu->arch.dr6 |= DR6_BD;
4484 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4485 kvm_queue_exception(vcpu, DB_VECTOR);
4486 return 1;
4487 }
4488 }
4489
4490 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4491 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4492 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4493 if (exit_qualification & TYPE_MOV_FROM_DR) {
4494 unsigned long val;
4495 if (!kvm_get_dr(vcpu, dr, &val))
4496 kvm_register_write(vcpu, reg, val);
4497 } else
4498 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4499 skip_emulated_instruction(vcpu);
4500 return 1;
4501 }
4502
4503 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4504 {
4505 vmcs_writel(GUEST_DR7, val);
4506 }
4507
4508 static int handle_cpuid(struct kvm_vcpu *vcpu)
4509 {
4510 kvm_emulate_cpuid(vcpu);
4511 return 1;
4512 }
4513
4514 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4515 {
4516 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4517 u64 data;
4518
4519 if (vmx_get_msr(vcpu, ecx, &data)) {
4520 trace_kvm_msr_read_ex(ecx);
4521 kvm_inject_gp(vcpu, 0);
4522 return 1;
4523 }
4524
4525 trace_kvm_msr_read(ecx, data);
4526
4527 /* FIXME: handling of bits 32:63 of rax, rdx */
4528 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4529 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4530 skip_emulated_instruction(vcpu);
4531 return 1;
4532 }
4533
4534 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4535 {
4536 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4537 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4538 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4539
4540 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4541 trace_kvm_msr_write_ex(ecx, data);
4542 kvm_inject_gp(vcpu, 0);
4543 return 1;
4544 }
4545
4546 trace_kvm_msr_write(ecx, data);
4547 skip_emulated_instruction(vcpu);
4548 return 1;
4549 }
4550
4551 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4552 {
4553 kvm_make_request(KVM_REQ_EVENT, vcpu);
4554 return 1;
4555 }
4556
4557 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4558 {
4559 u32 cpu_based_vm_exec_control;
4560
4561 /* clear pending irq */
4562 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4563 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4564 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4565
4566 kvm_make_request(KVM_REQ_EVENT, vcpu);
4567
4568 ++vcpu->stat.irq_window_exits;
4569
4570 /*
4571 * If the user space waits to inject interrupts, exit as soon as
4572 * possible
4573 */
4574 if (!irqchip_in_kernel(vcpu->kvm) &&
4575 vcpu->run->request_interrupt_window &&
4576 !kvm_cpu_has_interrupt(vcpu)) {
4577 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4578 return 0;
4579 }
4580 return 1;
4581 }
4582
4583 static int handle_halt(struct kvm_vcpu *vcpu)
4584 {
4585 skip_emulated_instruction(vcpu);
4586 return kvm_emulate_halt(vcpu);
4587 }
4588
4589 static int handle_vmcall(struct kvm_vcpu *vcpu)
4590 {
4591 skip_emulated_instruction(vcpu);
4592 kvm_emulate_hypercall(vcpu);
4593 return 1;
4594 }
4595
4596 static int handle_invd(struct kvm_vcpu *vcpu)
4597 {
4598 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4599 }
4600
4601 static int handle_invlpg(struct kvm_vcpu *vcpu)
4602 {
4603 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4604
4605 kvm_mmu_invlpg(vcpu, exit_qualification);
4606 skip_emulated_instruction(vcpu);
4607 return 1;
4608 }
4609
4610 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4611 {
4612 skip_emulated_instruction(vcpu);
4613 kvm_emulate_wbinvd(vcpu);
4614 return 1;
4615 }
4616
4617 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4618 {
4619 u64 new_bv = kvm_read_edx_eax(vcpu);
4620 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4621
4622 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4623 skip_emulated_instruction(vcpu);
4624 return 1;
4625 }
4626
4627 static int handle_apic_access(struct kvm_vcpu *vcpu)
4628 {
4629 if (likely(fasteoi)) {
4630 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4631 int access_type, offset;
4632
4633 access_type = exit_qualification & APIC_ACCESS_TYPE;
4634 offset = exit_qualification & APIC_ACCESS_OFFSET;
4635 /*
4636 * Sane guest uses MOV to write EOI, with written value
4637 * not cared. So make a short-circuit here by avoiding
4638 * heavy instruction emulation.
4639 */
4640 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4641 (offset == APIC_EOI)) {
4642 kvm_lapic_set_eoi(vcpu);
4643 skip_emulated_instruction(vcpu);
4644 return 1;
4645 }
4646 }
4647 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4648 }
4649
4650 static int handle_task_switch(struct kvm_vcpu *vcpu)
4651 {
4652 struct vcpu_vmx *vmx = to_vmx(vcpu);
4653 unsigned long exit_qualification;
4654 bool has_error_code = false;
4655 u32 error_code = 0;
4656 u16 tss_selector;
4657 int reason, type, idt_v;
4658
4659 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4660 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4661
4662 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4663
4664 reason = (u32)exit_qualification >> 30;
4665 if (reason == TASK_SWITCH_GATE && idt_v) {
4666 switch (type) {
4667 case INTR_TYPE_NMI_INTR:
4668 vcpu->arch.nmi_injected = false;
4669 vmx_set_nmi_mask(vcpu, true);
4670 break;
4671 case INTR_TYPE_EXT_INTR:
4672 case INTR_TYPE_SOFT_INTR:
4673 kvm_clear_interrupt_queue(vcpu);
4674 break;
4675 case INTR_TYPE_HARD_EXCEPTION:
4676 if (vmx->idt_vectoring_info &
4677 VECTORING_INFO_DELIVER_CODE_MASK) {
4678 has_error_code = true;
4679 error_code =
4680 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4681 }
4682 /* fall through */
4683 case INTR_TYPE_SOFT_EXCEPTION:
4684 kvm_clear_exception_queue(vcpu);
4685 break;
4686 default:
4687 break;
4688 }
4689 }
4690 tss_selector = exit_qualification;
4691
4692 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4693 type != INTR_TYPE_EXT_INTR &&
4694 type != INTR_TYPE_NMI_INTR))
4695 skip_emulated_instruction(vcpu);
4696
4697 if (kvm_task_switch(vcpu, tss_selector, reason,
4698 has_error_code, error_code) == EMULATE_FAIL) {
4699 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4700 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4701 vcpu->run->internal.ndata = 0;
4702 return 0;
4703 }
4704
4705 /* clear all local breakpoint enable flags */
4706 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4707
4708 /*
4709 * TODO: What about debug traps on tss switch?
4710 * Are we supposed to inject them and update dr6?
4711 */
4712
4713 return 1;
4714 }
4715
4716 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4717 {
4718 unsigned long exit_qualification;
4719 gpa_t gpa;
4720 int gla_validity;
4721
4722 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4723
4724 if (exit_qualification & (1 << 6)) {
4725 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4726 return -EINVAL;
4727 }
4728
4729 gla_validity = (exit_qualification >> 7) & 0x3;
4730 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4731 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4732 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4733 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4734 vmcs_readl(GUEST_LINEAR_ADDRESS));
4735 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4736 (long unsigned int)exit_qualification);
4737 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4738 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4739 return 0;
4740 }
4741
4742 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4743 trace_kvm_page_fault(gpa, exit_qualification);
4744 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4745 }
4746
4747 static u64 ept_rsvd_mask(u64 spte, int level)
4748 {
4749 int i;
4750 u64 mask = 0;
4751
4752 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4753 mask |= (1ULL << i);
4754
4755 if (level > 2)
4756 /* bits 7:3 reserved */
4757 mask |= 0xf8;
4758 else if (level == 2) {
4759 if (spte & (1ULL << 7))
4760 /* 2MB ref, bits 20:12 reserved */
4761 mask |= 0x1ff000;
4762 else
4763 /* bits 6:3 reserved */
4764 mask |= 0x78;
4765 }
4766
4767 return mask;
4768 }
4769
4770 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4771 int level)
4772 {
4773 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4774
4775 /* 010b (write-only) */
4776 WARN_ON((spte & 0x7) == 0x2);
4777
4778 /* 110b (write/execute) */
4779 WARN_ON((spte & 0x7) == 0x6);
4780
4781 /* 100b (execute-only) and value not supported by logical processor */
4782 if (!cpu_has_vmx_ept_execute_only())
4783 WARN_ON((spte & 0x7) == 0x4);
4784
4785 /* not 000b */
4786 if ((spte & 0x7)) {
4787 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4788
4789 if (rsvd_bits != 0) {
4790 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4791 __func__, rsvd_bits);
4792 WARN_ON(1);
4793 }
4794
4795 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4796 u64 ept_mem_type = (spte & 0x38) >> 3;
4797
4798 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4799 ept_mem_type == 7) {
4800 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4801 __func__, ept_mem_type);
4802 WARN_ON(1);
4803 }
4804 }
4805 }
4806 }
4807
4808 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4809 {
4810 u64 sptes[4];
4811 int nr_sptes, i, ret;
4812 gpa_t gpa;
4813
4814 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4815
4816 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4817 if (likely(ret == 1))
4818 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4819 EMULATE_DONE;
4820 if (unlikely(!ret))
4821 return 1;
4822
4823 /* It is the real ept misconfig */
4824 printk(KERN_ERR "EPT: Misconfiguration.\n");
4825 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4826
4827 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4828
4829 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4830 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4831
4832 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4833 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4834
4835 return 0;
4836 }
4837
4838 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4839 {
4840 u32 cpu_based_vm_exec_control;
4841
4842 /* clear pending NMI */
4843 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4844 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4845 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4846 ++vcpu->stat.nmi_window_exits;
4847 kvm_make_request(KVM_REQ_EVENT, vcpu);
4848
4849 return 1;
4850 }
4851
4852 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4853 {
4854 struct vcpu_vmx *vmx = to_vmx(vcpu);
4855 enum emulation_result err = EMULATE_DONE;
4856 int ret = 1;
4857 u32 cpu_exec_ctrl;
4858 bool intr_window_requested;
4859
4860 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4861 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4862
4863 while (!guest_state_valid(vcpu)) {
4864 if (intr_window_requested
4865 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4866 return handle_interrupt_window(&vmx->vcpu);
4867
4868 err = emulate_instruction(vcpu, 0);
4869
4870 if (err == EMULATE_DO_MMIO) {
4871 ret = 0;
4872 goto out;
4873 }
4874
4875 if (err != EMULATE_DONE)
4876 return 0;
4877
4878 if (signal_pending(current))
4879 goto out;
4880 if (need_resched())
4881 schedule();
4882 }
4883
4884 vmx->emulation_required = 0;
4885 out:
4886 return ret;
4887 }
4888
4889 /*
4890 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4891 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4892 */
4893 static int handle_pause(struct kvm_vcpu *vcpu)
4894 {
4895 skip_emulated_instruction(vcpu);
4896 kvm_vcpu_on_spin(vcpu);
4897
4898 return 1;
4899 }
4900
4901 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4902 {
4903 kvm_queue_exception(vcpu, UD_VECTOR);
4904 return 1;
4905 }
4906
4907 /*
4908 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4909 * We could reuse a single VMCS for all the L2 guests, but we also want the
4910 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4911 * allows keeping them loaded on the processor, and in the future will allow
4912 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4913 * every entry if they never change.
4914 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4915 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4916 *
4917 * The following functions allocate and free a vmcs02 in this pool.
4918 */
4919
4920 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4921 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4922 {
4923 struct vmcs02_list *item;
4924 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4925 if (item->vmptr == vmx->nested.current_vmptr) {
4926 list_move(&item->list, &vmx->nested.vmcs02_pool);
4927 return &item->vmcs02;
4928 }
4929
4930 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4931 /* Recycle the least recently used VMCS. */
4932 item = list_entry(vmx->nested.vmcs02_pool.prev,
4933 struct vmcs02_list, list);
4934 item->vmptr = vmx->nested.current_vmptr;
4935 list_move(&item->list, &vmx->nested.vmcs02_pool);
4936 return &item->vmcs02;
4937 }
4938
4939 /* Create a new VMCS */
4940 item = (struct vmcs02_list *)
4941 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4942 if (!item)
4943 return NULL;
4944 item->vmcs02.vmcs = alloc_vmcs();
4945 if (!item->vmcs02.vmcs) {
4946 kfree(item);
4947 return NULL;
4948 }
4949 loaded_vmcs_init(&item->vmcs02);
4950 item->vmptr = vmx->nested.current_vmptr;
4951 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4952 vmx->nested.vmcs02_num++;
4953 return &item->vmcs02;
4954 }
4955
4956 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4957 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4958 {
4959 struct vmcs02_list *item;
4960 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4961 if (item->vmptr == vmptr) {
4962 free_loaded_vmcs(&item->vmcs02);
4963 list_del(&item->list);
4964 kfree(item);
4965 vmx->nested.vmcs02_num--;
4966 return;
4967 }
4968 }
4969
4970 /*
4971 * Free all VMCSs saved for this vcpu, except the one pointed by
4972 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4973 * currently used, if running L2), and vmcs01 when running L2.
4974 */
4975 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4976 {
4977 struct vmcs02_list *item, *n;
4978 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4979 if (vmx->loaded_vmcs != &item->vmcs02)
4980 free_loaded_vmcs(&item->vmcs02);
4981 list_del(&item->list);
4982 kfree(item);
4983 }
4984 vmx->nested.vmcs02_num = 0;
4985
4986 if (vmx->loaded_vmcs != &vmx->vmcs01)
4987 free_loaded_vmcs(&vmx->vmcs01);
4988 }
4989
4990 /*
4991 * Emulate the VMXON instruction.
4992 * Currently, we just remember that VMX is active, and do not save or even
4993 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4994 * do not currently need to store anything in that guest-allocated memory
4995 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4996 * argument is different from the VMXON pointer (which the spec says they do).
4997 */
4998 static int handle_vmon(struct kvm_vcpu *vcpu)
4999 {
5000 struct kvm_segment cs;
5001 struct vcpu_vmx *vmx = to_vmx(vcpu);
5002
5003 /* The Intel VMX Instruction Reference lists a bunch of bits that
5004 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5005 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5006 * Otherwise, we should fail with #UD. We test these now:
5007 */
5008 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5009 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5010 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5011 kvm_queue_exception(vcpu, UD_VECTOR);
5012 return 1;
5013 }
5014
5015 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5016 if (is_long_mode(vcpu) && !cs.l) {
5017 kvm_queue_exception(vcpu, UD_VECTOR);
5018 return 1;
5019 }
5020
5021 if (vmx_get_cpl(vcpu)) {
5022 kvm_inject_gp(vcpu, 0);
5023 return 1;
5024 }
5025
5026 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5027 vmx->nested.vmcs02_num = 0;
5028
5029 vmx->nested.vmxon = true;
5030
5031 skip_emulated_instruction(vcpu);
5032 return 1;
5033 }
5034
5035 /*
5036 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5037 * for running VMX instructions (except VMXON, whose prerequisites are
5038 * slightly different). It also specifies what exception to inject otherwise.
5039 */
5040 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5041 {
5042 struct kvm_segment cs;
5043 struct vcpu_vmx *vmx = to_vmx(vcpu);
5044
5045 if (!vmx->nested.vmxon) {
5046 kvm_queue_exception(vcpu, UD_VECTOR);
5047 return 0;
5048 }
5049
5050 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5051 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5052 (is_long_mode(vcpu) && !cs.l)) {
5053 kvm_queue_exception(vcpu, UD_VECTOR);
5054 return 0;
5055 }
5056
5057 if (vmx_get_cpl(vcpu)) {
5058 kvm_inject_gp(vcpu, 0);
5059 return 0;
5060 }
5061
5062 return 1;
5063 }
5064
5065 /*
5066 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5067 * just stops using VMX.
5068 */
5069 static void free_nested(struct vcpu_vmx *vmx)
5070 {
5071 if (!vmx->nested.vmxon)
5072 return;
5073 vmx->nested.vmxon = false;
5074 if (vmx->nested.current_vmptr != -1ull) {
5075 kunmap(vmx->nested.current_vmcs12_page);
5076 nested_release_page(vmx->nested.current_vmcs12_page);
5077 vmx->nested.current_vmptr = -1ull;
5078 vmx->nested.current_vmcs12 = NULL;
5079 }
5080 /* Unpin physical memory we referred to in current vmcs02 */
5081 if (vmx->nested.apic_access_page) {
5082 nested_release_page(vmx->nested.apic_access_page);
5083 vmx->nested.apic_access_page = 0;
5084 }
5085
5086 nested_free_all_saved_vmcss(vmx);
5087 }
5088
5089 /* Emulate the VMXOFF instruction */
5090 static int handle_vmoff(struct kvm_vcpu *vcpu)
5091 {
5092 if (!nested_vmx_check_permission(vcpu))
5093 return 1;
5094 free_nested(to_vmx(vcpu));
5095 skip_emulated_instruction(vcpu);
5096 return 1;
5097 }
5098
5099 /*
5100 * Decode the memory-address operand of a vmx instruction, as recorded on an
5101 * exit caused by such an instruction (run by a guest hypervisor).
5102 * On success, returns 0. When the operand is invalid, returns 1 and throws
5103 * #UD or #GP.
5104 */
5105 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5106 unsigned long exit_qualification,
5107 u32 vmx_instruction_info, gva_t *ret)
5108 {
5109 /*
5110 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5111 * Execution", on an exit, vmx_instruction_info holds most of the
5112 * addressing components of the operand. Only the displacement part
5113 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5114 * For how an actual address is calculated from all these components,
5115 * refer to Vol. 1, "Operand Addressing".
5116 */
5117 int scaling = vmx_instruction_info & 3;
5118 int addr_size = (vmx_instruction_info >> 7) & 7;
5119 bool is_reg = vmx_instruction_info & (1u << 10);
5120 int seg_reg = (vmx_instruction_info >> 15) & 7;
5121 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5122 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5123 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5124 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5125
5126 if (is_reg) {
5127 kvm_queue_exception(vcpu, UD_VECTOR);
5128 return 1;
5129 }
5130
5131 /* Addr = segment_base + offset */
5132 /* offset = base + [index * scale] + displacement */
5133 *ret = vmx_get_segment_base(vcpu, seg_reg);
5134 if (base_is_valid)
5135 *ret += kvm_register_read(vcpu, base_reg);
5136 if (index_is_valid)
5137 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5138 *ret += exit_qualification; /* holds the displacement */
5139
5140 if (addr_size == 1) /* 32 bit */
5141 *ret &= 0xffffffff;
5142
5143 /*
5144 * TODO: throw #GP (and return 1) in various cases that the VM*
5145 * instructions require it - e.g., offset beyond segment limit,
5146 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5147 * address, and so on. Currently these are not checked.
5148 */
5149 return 0;
5150 }
5151
5152 /*
5153 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5154 * set the success or error code of an emulated VMX instruction, as specified
5155 * by Vol 2B, VMX Instruction Reference, "Conventions".
5156 */
5157 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5158 {
5159 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5160 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5161 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5162 }
5163
5164 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5165 {
5166 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5167 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5168 X86_EFLAGS_SF | X86_EFLAGS_OF))
5169 | X86_EFLAGS_CF);
5170 }
5171
5172 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5173 u32 vm_instruction_error)
5174 {
5175 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5176 /*
5177 * failValid writes the error number to the current VMCS, which
5178 * can't be done there isn't a current VMCS.
5179 */
5180 nested_vmx_failInvalid(vcpu);
5181 return;
5182 }
5183 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5184 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5185 X86_EFLAGS_SF | X86_EFLAGS_OF))
5186 | X86_EFLAGS_ZF);
5187 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5188 }
5189
5190 /* Emulate the VMCLEAR instruction */
5191 static int handle_vmclear(struct kvm_vcpu *vcpu)
5192 {
5193 struct vcpu_vmx *vmx = to_vmx(vcpu);
5194 gva_t gva;
5195 gpa_t vmptr;
5196 struct vmcs12 *vmcs12;
5197 struct page *page;
5198 struct x86_exception e;
5199
5200 if (!nested_vmx_check_permission(vcpu))
5201 return 1;
5202
5203 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5204 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5205 return 1;
5206
5207 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5208 sizeof(vmptr), &e)) {
5209 kvm_inject_page_fault(vcpu, &e);
5210 return 1;
5211 }
5212
5213 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5214 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5215 skip_emulated_instruction(vcpu);
5216 return 1;
5217 }
5218
5219 if (vmptr == vmx->nested.current_vmptr) {
5220 kunmap(vmx->nested.current_vmcs12_page);
5221 nested_release_page(vmx->nested.current_vmcs12_page);
5222 vmx->nested.current_vmptr = -1ull;
5223 vmx->nested.current_vmcs12 = NULL;
5224 }
5225
5226 page = nested_get_page(vcpu, vmptr);
5227 if (page == NULL) {
5228 /*
5229 * For accurate processor emulation, VMCLEAR beyond available
5230 * physical memory should do nothing at all. However, it is
5231 * possible that a nested vmx bug, not a guest hypervisor bug,
5232 * resulted in this case, so let's shut down before doing any
5233 * more damage:
5234 */
5235 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236 return 1;
5237 }
5238 vmcs12 = kmap(page);
5239 vmcs12->launch_state = 0;
5240 kunmap(page);
5241 nested_release_page(page);
5242
5243 nested_free_vmcs02(vmx, vmptr);
5244
5245 skip_emulated_instruction(vcpu);
5246 nested_vmx_succeed(vcpu);
5247 return 1;
5248 }
5249
5250 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5251
5252 /* Emulate the VMLAUNCH instruction */
5253 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5254 {
5255 return nested_vmx_run(vcpu, true);
5256 }
5257
5258 /* Emulate the VMRESUME instruction */
5259 static int handle_vmresume(struct kvm_vcpu *vcpu)
5260 {
5261
5262 return nested_vmx_run(vcpu, false);
5263 }
5264
5265 enum vmcs_field_type {
5266 VMCS_FIELD_TYPE_U16 = 0,
5267 VMCS_FIELD_TYPE_U64 = 1,
5268 VMCS_FIELD_TYPE_U32 = 2,
5269 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5270 };
5271
5272 static inline int vmcs_field_type(unsigned long field)
5273 {
5274 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5275 return VMCS_FIELD_TYPE_U32;
5276 return (field >> 13) & 0x3 ;
5277 }
5278
5279 static inline int vmcs_field_readonly(unsigned long field)
5280 {
5281 return (((field >> 10) & 0x3) == 1);
5282 }
5283
5284 /*
5285 * Read a vmcs12 field. Since these can have varying lengths and we return
5286 * one type, we chose the biggest type (u64) and zero-extend the return value
5287 * to that size. Note that the caller, handle_vmread, might need to use only
5288 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5289 * 64-bit fields are to be returned).
5290 */
5291 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5292 unsigned long field, u64 *ret)
5293 {
5294 short offset = vmcs_field_to_offset(field);
5295 char *p;
5296
5297 if (offset < 0)
5298 return 0;
5299
5300 p = ((char *)(get_vmcs12(vcpu))) + offset;
5301
5302 switch (vmcs_field_type(field)) {
5303 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5304 *ret = *((natural_width *)p);
5305 return 1;
5306 case VMCS_FIELD_TYPE_U16:
5307 *ret = *((u16 *)p);
5308 return 1;
5309 case VMCS_FIELD_TYPE_U32:
5310 *ret = *((u32 *)p);
5311 return 1;
5312 case VMCS_FIELD_TYPE_U64:
5313 *ret = *((u64 *)p);
5314 return 1;
5315 default:
5316 return 0; /* can never happen. */
5317 }
5318 }
5319
5320 /*
5321 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5322 * used before) all generate the same failure when it is missing.
5323 */
5324 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5325 {
5326 struct vcpu_vmx *vmx = to_vmx(vcpu);
5327 if (vmx->nested.current_vmptr == -1ull) {
5328 nested_vmx_failInvalid(vcpu);
5329 skip_emulated_instruction(vcpu);
5330 return 0;
5331 }
5332 return 1;
5333 }
5334
5335 static int handle_vmread(struct kvm_vcpu *vcpu)
5336 {
5337 unsigned long field;
5338 u64 field_value;
5339 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5340 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5341 gva_t gva = 0;
5342
5343 if (!nested_vmx_check_permission(vcpu) ||
5344 !nested_vmx_check_vmcs12(vcpu))
5345 return 1;
5346
5347 /* Decode instruction info and find the field to read */
5348 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5349 /* Read the field, zero-extended to a u64 field_value */
5350 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5351 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5352 skip_emulated_instruction(vcpu);
5353 return 1;
5354 }
5355 /*
5356 * Now copy part of this value to register or memory, as requested.
5357 * Note that the number of bits actually copied is 32 or 64 depending
5358 * on the guest's mode (32 or 64 bit), not on the given field's length.
5359 */
5360 if (vmx_instruction_info & (1u << 10)) {
5361 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5362 field_value);
5363 } else {
5364 if (get_vmx_mem_address(vcpu, exit_qualification,
5365 vmx_instruction_info, &gva))
5366 return 1;
5367 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5368 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5369 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5370 }
5371
5372 nested_vmx_succeed(vcpu);
5373 skip_emulated_instruction(vcpu);
5374 return 1;
5375 }
5376
5377
5378 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5379 {
5380 unsigned long field;
5381 gva_t gva;
5382 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5383 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5384 char *p;
5385 short offset;
5386 /* The value to write might be 32 or 64 bits, depending on L1's long
5387 * mode, and eventually we need to write that into a field of several
5388 * possible lengths. The code below first zero-extends the value to 64
5389 * bit (field_value), and then copies only the approriate number of
5390 * bits into the vmcs12 field.
5391 */
5392 u64 field_value = 0;
5393 struct x86_exception e;
5394
5395 if (!nested_vmx_check_permission(vcpu) ||
5396 !nested_vmx_check_vmcs12(vcpu))
5397 return 1;
5398
5399 if (vmx_instruction_info & (1u << 10))
5400 field_value = kvm_register_read(vcpu,
5401 (((vmx_instruction_info) >> 3) & 0xf));
5402 else {
5403 if (get_vmx_mem_address(vcpu, exit_qualification,
5404 vmx_instruction_info, &gva))
5405 return 1;
5406 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5407 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5408 kvm_inject_page_fault(vcpu, &e);
5409 return 1;
5410 }
5411 }
5412
5413
5414 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5415 if (vmcs_field_readonly(field)) {
5416 nested_vmx_failValid(vcpu,
5417 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5418 skip_emulated_instruction(vcpu);
5419 return 1;
5420 }
5421
5422 offset = vmcs_field_to_offset(field);
5423 if (offset < 0) {
5424 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5425 skip_emulated_instruction(vcpu);
5426 return 1;
5427 }
5428 p = ((char *) get_vmcs12(vcpu)) + offset;
5429
5430 switch (vmcs_field_type(field)) {
5431 case VMCS_FIELD_TYPE_U16:
5432 *(u16 *)p = field_value;
5433 break;
5434 case VMCS_FIELD_TYPE_U32:
5435 *(u32 *)p = field_value;
5436 break;
5437 case VMCS_FIELD_TYPE_U64:
5438 *(u64 *)p = field_value;
5439 break;
5440 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5441 *(natural_width *)p = field_value;
5442 break;
5443 default:
5444 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5445 skip_emulated_instruction(vcpu);
5446 return 1;
5447 }
5448
5449 nested_vmx_succeed(vcpu);
5450 skip_emulated_instruction(vcpu);
5451 return 1;
5452 }
5453
5454 /* Emulate the VMPTRLD instruction */
5455 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5456 {
5457 struct vcpu_vmx *vmx = to_vmx(vcpu);
5458 gva_t gva;
5459 gpa_t vmptr;
5460 struct x86_exception e;
5461
5462 if (!nested_vmx_check_permission(vcpu))
5463 return 1;
5464
5465 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5466 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5467 return 1;
5468
5469 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5470 sizeof(vmptr), &e)) {
5471 kvm_inject_page_fault(vcpu, &e);
5472 return 1;
5473 }
5474
5475 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5476 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5477 skip_emulated_instruction(vcpu);
5478 return 1;
5479 }
5480
5481 if (vmx->nested.current_vmptr != vmptr) {
5482 struct vmcs12 *new_vmcs12;
5483 struct page *page;
5484 page = nested_get_page(vcpu, vmptr);
5485 if (page == NULL) {
5486 nested_vmx_failInvalid(vcpu);
5487 skip_emulated_instruction(vcpu);
5488 return 1;
5489 }
5490 new_vmcs12 = kmap(page);
5491 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5492 kunmap(page);
5493 nested_release_page_clean(page);
5494 nested_vmx_failValid(vcpu,
5495 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5496 skip_emulated_instruction(vcpu);
5497 return 1;
5498 }
5499 if (vmx->nested.current_vmptr != -1ull) {
5500 kunmap(vmx->nested.current_vmcs12_page);
5501 nested_release_page(vmx->nested.current_vmcs12_page);
5502 }
5503
5504 vmx->nested.current_vmptr = vmptr;
5505 vmx->nested.current_vmcs12 = new_vmcs12;
5506 vmx->nested.current_vmcs12_page = page;
5507 }
5508
5509 nested_vmx_succeed(vcpu);
5510 skip_emulated_instruction(vcpu);
5511 return 1;
5512 }
5513
5514 /* Emulate the VMPTRST instruction */
5515 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5516 {
5517 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5518 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5519 gva_t vmcs_gva;
5520 struct x86_exception e;
5521
5522 if (!nested_vmx_check_permission(vcpu))
5523 return 1;
5524
5525 if (get_vmx_mem_address(vcpu, exit_qualification,
5526 vmx_instruction_info, &vmcs_gva))
5527 return 1;
5528 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5529 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5530 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5531 sizeof(u64), &e)) {
5532 kvm_inject_page_fault(vcpu, &e);
5533 return 1;
5534 }
5535 nested_vmx_succeed(vcpu);
5536 skip_emulated_instruction(vcpu);
5537 return 1;
5538 }
5539
5540 /*
5541 * The exit handlers return 1 if the exit was handled fully and guest execution
5542 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5543 * to be done to userspace and return 0.
5544 */
5545 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5546 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5547 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5548 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5549 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5550 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5551 [EXIT_REASON_CR_ACCESS] = handle_cr,
5552 [EXIT_REASON_DR_ACCESS] = handle_dr,
5553 [EXIT_REASON_CPUID] = handle_cpuid,
5554 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5555 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5556 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5557 [EXIT_REASON_HLT] = handle_halt,
5558 [EXIT_REASON_INVD] = handle_invd,
5559 [EXIT_REASON_INVLPG] = handle_invlpg,
5560 [EXIT_REASON_VMCALL] = handle_vmcall,
5561 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5562 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5563 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5564 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5565 [EXIT_REASON_VMREAD] = handle_vmread,
5566 [EXIT_REASON_VMRESUME] = handle_vmresume,
5567 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5568 [EXIT_REASON_VMOFF] = handle_vmoff,
5569 [EXIT_REASON_VMON] = handle_vmon,
5570 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5571 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5572 [EXIT_REASON_WBINVD] = handle_wbinvd,
5573 [EXIT_REASON_XSETBV] = handle_xsetbv,
5574 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5575 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5576 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5577 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5578 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5579 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5580 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5581 };
5582
5583 static const int kvm_vmx_max_exit_handlers =
5584 ARRAY_SIZE(kvm_vmx_exit_handlers);
5585
5586 /*
5587 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5588 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5589 * disinterest in the current event (read or write a specific MSR) by using an
5590 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5591 */
5592 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5593 struct vmcs12 *vmcs12, u32 exit_reason)
5594 {
5595 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5596 gpa_t bitmap;
5597
5598 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5599 return 1;
5600
5601 /*
5602 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5603 * for the four combinations of read/write and low/high MSR numbers.
5604 * First we need to figure out which of the four to use:
5605 */
5606 bitmap = vmcs12->msr_bitmap;
5607 if (exit_reason == EXIT_REASON_MSR_WRITE)
5608 bitmap += 2048;
5609 if (msr_index >= 0xc0000000) {
5610 msr_index -= 0xc0000000;
5611 bitmap += 1024;
5612 }
5613
5614 /* Then read the msr_index'th bit from this bitmap: */
5615 if (msr_index < 1024*8) {
5616 unsigned char b;
5617 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5618 return 1 & (b >> (msr_index & 7));
5619 } else
5620 return 1; /* let L1 handle the wrong parameter */
5621 }
5622
5623 /*
5624 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5625 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5626 * intercept (via guest_host_mask etc.) the current event.
5627 */
5628 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5629 struct vmcs12 *vmcs12)
5630 {
5631 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5632 int cr = exit_qualification & 15;
5633 int reg = (exit_qualification >> 8) & 15;
5634 unsigned long val = kvm_register_read(vcpu, reg);
5635
5636 switch ((exit_qualification >> 4) & 3) {
5637 case 0: /* mov to cr */
5638 switch (cr) {
5639 case 0:
5640 if (vmcs12->cr0_guest_host_mask &
5641 (val ^ vmcs12->cr0_read_shadow))
5642 return 1;
5643 break;
5644 case 3:
5645 if ((vmcs12->cr3_target_count >= 1 &&
5646 vmcs12->cr3_target_value0 == val) ||
5647 (vmcs12->cr3_target_count >= 2 &&
5648 vmcs12->cr3_target_value1 == val) ||
5649 (vmcs12->cr3_target_count >= 3 &&
5650 vmcs12->cr3_target_value2 == val) ||
5651 (vmcs12->cr3_target_count >= 4 &&
5652 vmcs12->cr3_target_value3 == val))
5653 return 0;
5654 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5655 return 1;
5656 break;
5657 case 4:
5658 if (vmcs12->cr4_guest_host_mask &
5659 (vmcs12->cr4_read_shadow ^ val))
5660 return 1;
5661 break;
5662 case 8:
5663 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5664 return 1;
5665 break;
5666 }
5667 break;
5668 case 2: /* clts */
5669 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5670 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5671 return 1;
5672 break;
5673 case 1: /* mov from cr */
5674 switch (cr) {
5675 case 3:
5676 if (vmcs12->cpu_based_vm_exec_control &
5677 CPU_BASED_CR3_STORE_EXITING)
5678 return 1;
5679 break;
5680 case 8:
5681 if (vmcs12->cpu_based_vm_exec_control &
5682 CPU_BASED_CR8_STORE_EXITING)
5683 return 1;
5684 break;
5685 }
5686 break;
5687 case 3: /* lmsw */
5688 /*
5689 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5690 * cr0. Other attempted changes are ignored, with no exit.
5691 */
5692 if (vmcs12->cr0_guest_host_mask & 0xe &
5693 (val ^ vmcs12->cr0_read_shadow))
5694 return 1;
5695 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5696 !(vmcs12->cr0_read_shadow & 0x1) &&
5697 (val & 0x1))
5698 return 1;
5699 break;
5700 }
5701 return 0;
5702 }
5703
5704 /*
5705 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5706 * should handle it ourselves in L0 (and then continue L2). Only call this
5707 * when in is_guest_mode (L2).
5708 */
5709 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5710 {
5711 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5712 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5713 struct vcpu_vmx *vmx = to_vmx(vcpu);
5714 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5715
5716 if (vmx->nested.nested_run_pending)
5717 return 0;
5718
5719 if (unlikely(vmx->fail)) {
5720 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5721 vmcs_read32(VM_INSTRUCTION_ERROR));
5722 return 1;
5723 }
5724
5725 switch (exit_reason) {
5726 case EXIT_REASON_EXCEPTION_NMI:
5727 if (!is_exception(intr_info))
5728 return 0;
5729 else if (is_page_fault(intr_info))
5730 return enable_ept;
5731 return vmcs12->exception_bitmap &
5732 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5733 case EXIT_REASON_EXTERNAL_INTERRUPT:
5734 return 0;
5735 case EXIT_REASON_TRIPLE_FAULT:
5736 return 1;
5737 case EXIT_REASON_PENDING_INTERRUPT:
5738 case EXIT_REASON_NMI_WINDOW:
5739 /*
5740 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5741 * (aka Interrupt Window Exiting) only when L1 turned it on,
5742 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5743 * Same for NMI Window Exiting.
5744 */
5745 return 1;
5746 case EXIT_REASON_TASK_SWITCH:
5747 return 1;
5748 case EXIT_REASON_CPUID:
5749 return 1;
5750 case EXIT_REASON_HLT:
5751 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5752 case EXIT_REASON_INVD:
5753 return 1;
5754 case EXIT_REASON_INVLPG:
5755 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5756 case EXIT_REASON_RDPMC:
5757 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5758 case EXIT_REASON_RDTSC:
5759 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5760 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5761 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5762 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5763 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5764 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5765 /*
5766 * VMX instructions trap unconditionally. This allows L1 to
5767 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5768 */
5769 return 1;
5770 case EXIT_REASON_CR_ACCESS:
5771 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5772 case EXIT_REASON_DR_ACCESS:
5773 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5774 case EXIT_REASON_IO_INSTRUCTION:
5775 /* TODO: support IO bitmaps */
5776 return 1;
5777 case EXIT_REASON_MSR_READ:
5778 case EXIT_REASON_MSR_WRITE:
5779 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5780 case EXIT_REASON_INVALID_STATE:
5781 return 1;
5782 case EXIT_REASON_MWAIT_INSTRUCTION:
5783 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5784 case EXIT_REASON_MONITOR_INSTRUCTION:
5785 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5786 case EXIT_REASON_PAUSE_INSTRUCTION:
5787 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5788 nested_cpu_has2(vmcs12,
5789 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5790 case EXIT_REASON_MCE_DURING_VMENTRY:
5791 return 0;
5792 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5793 return 1;
5794 case EXIT_REASON_APIC_ACCESS:
5795 return nested_cpu_has2(vmcs12,
5796 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5797 case EXIT_REASON_EPT_VIOLATION:
5798 case EXIT_REASON_EPT_MISCONFIG:
5799 return 0;
5800 case EXIT_REASON_WBINVD:
5801 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5802 case EXIT_REASON_XSETBV:
5803 return 1;
5804 default:
5805 return 1;
5806 }
5807 }
5808
5809 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5810 {
5811 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5812 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5813 }
5814
5815 /*
5816 * The guest has exited. See if we can fix it or if we need userspace
5817 * assistance.
5818 */
5819 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5820 {
5821 struct vcpu_vmx *vmx = to_vmx(vcpu);
5822 u32 exit_reason = vmx->exit_reason;
5823 u32 vectoring_info = vmx->idt_vectoring_info;
5824
5825 /* If guest state is invalid, start emulating */
5826 if (vmx->emulation_required && emulate_invalid_guest_state)
5827 return handle_invalid_guest_state(vcpu);
5828
5829 /*
5830 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5831 * we did not inject a still-pending event to L1 now because of
5832 * nested_run_pending, we need to re-enable this bit.
5833 */
5834 if (vmx->nested.nested_run_pending)
5835 kvm_make_request(KVM_REQ_EVENT, vcpu);
5836
5837 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5838 exit_reason == EXIT_REASON_VMRESUME))
5839 vmx->nested.nested_run_pending = 1;
5840 else
5841 vmx->nested.nested_run_pending = 0;
5842
5843 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5844 nested_vmx_vmexit(vcpu);
5845 return 1;
5846 }
5847
5848 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5849 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5850 vcpu->run->fail_entry.hardware_entry_failure_reason
5851 = exit_reason;
5852 return 0;
5853 }
5854
5855 if (unlikely(vmx->fail)) {
5856 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5857 vcpu->run->fail_entry.hardware_entry_failure_reason
5858 = vmcs_read32(VM_INSTRUCTION_ERROR);
5859 return 0;
5860 }
5861
5862 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5863 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5864 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5865 exit_reason != EXIT_REASON_TASK_SWITCH))
5866 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5867 "(0x%x) and exit reason is 0x%x\n",
5868 __func__, vectoring_info, exit_reason);
5869
5870 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5871 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5872 get_vmcs12(vcpu), vcpu)))) {
5873 if (vmx_interrupt_allowed(vcpu)) {
5874 vmx->soft_vnmi_blocked = 0;
5875 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5876 vcpu->arch.nmi_pending) {
5877 /*
5878 * This CPU don't support us in finding the end of an
5879 * NMI-blocked window if the guest runs with IRQs
5880 * disabled. So we pull the trigger after 1 s of
5881 * futile waiting, but inform the user about this.
5882 */
5883 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5884 "state on VCPU %d after 1 s timeout\n",
5885 __func__, vcpu->vcpu_id);
5886 vmx->soft_vnmi_blocked = 0;
5887 }
5888 }
5889
5890 if (exit_reason < kvm_vmx_max_exit_handlers
5891 && kvm_vmx_exit_handlers[exit_reason])
5892 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5893 else {
5894 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5895 vcpu->run->hw.hardware_exit_reason = exit_reason;
5896 }
5897 return 0;
5898 }
5899
5900 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5901 {
5902 if (irr == -1 || tpr < irr) {
5903 vmcs_write32(TPR_THRESHOLD, 0);
5904 return;
5905 }
5906
5907 vmcs_write32(TPR_THRESHOLD, irr);
5908 }
5909
5910 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5911 {
5912 u32 exit_intr_info;
5913
5914 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5915 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5916 return;
5917
5918 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5919 exit_intr_info = vmx->exit_intr_info;
5920
5921 /* Handle machine checks before interrupts are enabled */
5922 if (is_machine_check(exit_intr_info))
5923 kvm_machine_check();
5924
5925 /* We need to handle NMIs before interrupts are enabled */
5926 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5927 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5928 kvm_before_handle_nmi(&vmx->vcpu);
5929 asm("int $2");
5930 kvm_after_handle_nmi(&vmx->vcpu);
5931 }
5932 }
5933
5934 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5935 {
5936 u32 exit_intr_info;
5937 bool unblock_nmi;
5938 u8 vector;
5939 bool idtv_info_valid;
5940
5941 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5942
5943 if (cpu_has_virtual_nmis()) {
5944 if (vmx->nmi_known_unmasked)
5945 return;
5946 /*
5947 * Can't use vmx->exit_intr_info since we're not sure what
5948 * the exit reason is.
5949 */
5950 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5951 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5952 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5953 /*
5954 * SDM 3: 27.7.1.2 (September 2008)
5955 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5956 * a guest IRET fault.
5957 * SDM 3: 23.2.2 (September 2008)
5958 * Bit 12 is undefined in any of the following cases:
5959 * If the VM exit sets the valid bit in the IDT-vectoring
5960 * information field.
5961 * If the VM exit is due to a double fault.
5962 */
5963 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5964 vector != DF_VECTOR && !idtv_info_valid)
5965 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5966 GUEST_INTR_STATE_NMI);
5967 else
5968 vmx->nmi_known_unmasked =
5969 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5970 & GUEST_INTR_STATE_NMI);
5971 } else if (unlikely(vmx->soft_vnmi_blocked))
5972 vmx->vnmi_blocked_time +=
5973 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5974 }
5975
5976 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5977 u32 idt_vectoring_info,
5978 int instr_len_field,
5979 int error_code_field)
5980 {
5981 u8 vector;
5982 int type;
5983 bool idtv_info_valid;
5984
5985 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5986
5987 vmx->vcpu.arch.nmi_injected = false;
5988 kvm_clear_exception_queue(&vmx->vcpu);
5989 kvm_clear_interrupt_queue(&vmx->vcpu);
5990
5991 if (!idtv_info_valid)
5992 return;
5993
5994 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5995
5996 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5997 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5998
5999 switch (type) {
6000 case INTR_TYPE_NMI_INTR:
6001 vmx->vcpu.arch.nmi_injected = true;
6002 /*
6003 * SDM 3: 27.7.1.2 (September 2008)
6004 * Clear bit "block by NMI" before VM entry if a NMI
6005 * delivery faulted.
6006 */
6007 vmx_set_nmi_mask(&vmx->vcpu, false);
6008 break;
6009 case INTR_TYPE_SOFT_EXCEPTION:
6010 vmx->vcpu.arch.event_exit_inst_len =
6011 vmcs_read32(instr_len_field);
6012 /* fall through */
6013 case INTR_TYPE_HARD_EXCEPTION:
6014 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6015 u32 err = vmcs_read32(error_code_field);
6016 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6017 } else
6018 kvm_queue_exception(&vmx->vcpu, vector);
6019 break;
6020 case INTR_TYPE_SOFT_INTR:
6021 vmx->vcpu.arch.event_exit_inst_len =
6022 vmcs_read32(instr_len_field);
6023 /* fall through */
6024 case INTR_TYPE_EXT_INTR:
6025 kvm_queue_interrupt(&vmx->vcpu, vector,
6026 type == INTR_TYPE_SOFT_INTR);
6027 break;
6028 default:
6029 break;
6030 }
6031 }
6032
6033 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6034 {
6035 if (is_guest_mode(&vmx->vcpu))
6036 return;
6037 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6038 VM_EXIT_INSTRUCTION_LEN,
6039 IDT_VECTORING_ERROR_CODE);
6040 }
6041
6042 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6043 {
6044 if (is_guest_mode(vcpu))
6045 return;
6046 __vmx_complete_interrupts(to_vmx(vcpu),
6047 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6048 VM_ENTRY_INSTRUCTION_LEN,
6049 VM_ENTRY_EXCEPTION_ERROR_CODE);
6050
6051 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6052 }
6053
6054 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6055 {
6056 int i, nr_msrs;
6057 struct perf_guest_switch_msr *msrs;
6058
6059 msrs = perf_guest_get_msrs(&nr_msrs);
6060
6061 if (!msrs)
6062 return;
6063
6064 for (i = 0; i < nr_msrs; i++)
6065 if (msrs[i].host == msrs[i].guest)
6066 clear_atomic_switch_msr(vmx, msrs[i].msr);
6067 else
6068 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6069 msrs[i].host);
6070 }
6071
6072 #ifdef CONFIG_X86_64
6073 #define R "r"
6074 #define Q "q"
6075 #else
6076 #define R "e"
6077 #define Q "l"
6078 #endif
6079
6080 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6081 {
6082 struct vcpu_vmx *vmx = to_vmx(vcpu);
6083
6084 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6085 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6086 if (vmcs12->idt_vectoring_info_field &
6087 VECTORING_INFO_VALID_MASK) {
6088 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6089 vmcs12->idt_vectoring_info_field);
6090 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6091 vmcs12->vm_exit_instruction_len);
6092 if (vmcs12->idt_vectoring_info_field &
6093 VECTORING_INFO_DELIVER_CODE_MASK)
6094 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6095 vmcs12->idt_vectoring_error_code);
6096 }
6097 }
6098
6099 /* Record the guest's net vcpu time for enforced NMI injections. */
6100 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6101 vmx->entry_time = ktime_get();
6102
6103 /* Don't enter VMX if guest state is invalid, let the exit handler
6104 start emulation until we arrive back to a valid state */
6105 if (vmx->emulation_required && emulate_invalid_guest_state)
6106 return;
6107
6108 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6109 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6110 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6111 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6112
6113 /* When single-stepping over STI and MOV SS, we must clear the
6114 * corresponding interruptibility bits in the guest state. Otherwise
6115 * vmentry fails as it then expects bit 14 (BS) in pending debug
6116 * exceptions being set, but that's not correct for the guest debugging
6117 * case. */
6118 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6119 vmx_set_interrupt_shadow(vcpu, 0);
6120
6121 atomic_switch_perf_msrs(vmx);
6122
6123 vmx->__launched = vmx->loaded_vmcs->launched;
6124 asm(
6125 /* Store host registers */
6126 "push %%"R"dx; push %%"R"bp;"
6127 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6128 "push %%"R"cx \n\t"
6129 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6130 "je 1f \n\t"
6131 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6132 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6133 "1: \n\t"
6134 /* Reload cr2 if changed */
6135 "mov %c[cr2](%0), %%"R"ax \n\t"
6136 "mov %%cr2, %%"R"dx \n\t"
6137 "cmp %%"R"ax, %%"R"dx \n\t"
6138 "je 2f \n\t"
6139 "mov %%"R"ax, %%cr2 \n\t"
6140 "2: \n\t"
6141 /* Check if vmlaunch of vmresume is needed */
6142 "cmpl $0, %c[launched](%0) \n\t"
6143 /* Load guest registers. Don't clobber flags. */
6144 "mov %c[rax](%0), %%"R"ax \n\t"
6145 "mov %c[rbx](%0), %%"R"bx \n\t"
6146 "mov %c[rdx](%0), %%"R"dx \n\t"
6147 "mov %c[rsi](%0), %%"R"si \n\t"
6148 "mov %c[rdi](%0), %%"R"di \n\t"
6149 "mov %c[rbp](%0), %%"R"bp \n\t"
6150 #ifdef CONFIG_X86_64
6151 "mov %c[r8](%0), %%r8 \n\t"
6152 "mov %c[r9](%0), %%r9 \n\t"
6153 "mov %c[r10](%0), %%r10 \n\t"
6154 "mov %c[r11](%0), %%r11 \n\t"
6155 "mov %c[r12](%0), %%r12 \n\t"
6156 "mov %c[r13](%0), %%r13 \n\t"
6157 "mov %c[r14](%0), %%r14 \n\t"
6158 "mov %c[r15](%0), %%r15 \n\t"
6159 #endif
6160 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6161
6162 /* Enter guest mode */
6163 "jne .Llaunched \n\t"
6164 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6165 "jmp .Lkvm_vmx_return \n\t"
6166 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6167 ".Lkvm_vmx_return: "
6168 /* Save guest registers, load host registers, keep flags */
6169 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6170 "pop %0 \n\t"
6171 "mov %%"R"ax, %c[rax](%0) \n\t"
6172 "mov %%"R"bx, %c[rbx](%0) \n\t"
6173 "pop"Q" %c[rcx](%0) \n\t"
6174 "mov %%"R"dx, %c[rdx](%0) \n\t"
6175 "mov %%"R"si, %c[rsi](%0) \n\t"
6176 "mov %%"R"di, %c[rdi](%0) \n\t"
6177 "mov %%"R"bp, %c[rbp](%0) \n\t"
6178 #ifdef CONFIG_X86_64
6179 "mov %%r8, %c[r8](%0) \n\t"
6180 "mov %%r9, %c[r9](%0) \n\t"
6181 "mov %%r10, %c[r10](%0) \n\t"
6182 "mov %%r11, %c[r11](%0) \n\t"
6183 "mov %%r12, %c[r12](%0) \n\t"
6184 "mov %%r13, %c[r13](%0) \n\t"
6185 "mov %%r14, %c[r14](%0) \n\t"
6186 "mov %%r15, %c[r15](%0) \n\t"
6187 #endif
6188 "mov %%cr2, %%"R"ax \n\t"
6189 "mov %%"R"ax, %c[cr2](%0) \n\t"
6190
6191 "pop %%"R"bp; pop %%"R"dx \n\t"
6192 "setbe %c[fail](%0) \n\t"
6193 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6194 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6195 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6196 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6197 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6198 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6199 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6200 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6201 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6202 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6203 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6204 #ifdef CONFIG_X86_64
6205 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6206 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6207 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6208 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6209 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6210 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6211 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6212 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6213 #endif
6214 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6215 [wordsize]"i"(sizeof(ulong))
6216 : "cc", "memory"
6217 , R"ax", R"bx", R"di", R"si"
6218 #ifdef CONFIG_X86_64
6219 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6220 #endif
6221 );
6222
6223 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6224 | (1 << VCPU_EXREG_RFLAGS)
6225 | (1 << VCPU_EXREG_CPL)
6226 | (1 << VCPU_EXREG_PDPTR)
6227 | (1 << VCPU_EXREG_SEGMENTS)
6228 | (1 << VCPU_EXREG_CR3));
6229 vcpu->arch.regs_dirty = 0;
6230
6231 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6232
6233 if (is_guest_mode(vcpu)) {
6234 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6235 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6236 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6237 vmcs12->idt_vectoring_error_code =
6238 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6239 vmcs12->vm_exit_instruction_len =
6240 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6241 }
6242 }
6243
6244 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6245 vmx->loaded_vmcs->launched = 1;
6246
6247 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6248 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6249
6250 vmx_complete_atomic_exit(vmx);
6251 vmx_recover_nmi_blocking(vmx);
6252 vmx_complete_interrupts(vmx);
6253 }
6254
6255 #undef R
6256 #undef Q
6257
6258 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6259 {
6260 struct vcpu_vmx *vmx = to_vmx(vcpu);
6261
6262 free_vpid(vmx);
6263 free_nested(vmx);
6264 free_loaded_vmcs(vmx->loaded_vmcs);
6265 kfree(vmx->guest_msrs);
6266 kvm_vcpu_uninit(vcpu);
6267 kmem_cache_free(kvm_vcpu_cache, vmx);
6268 }
6269
6270 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6271 {
6272 int err;
6273 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6274 int cpu;
6275
6276 if (!vmx)
6277 return ERR_PTR(-ENOMEM);
6278
6279 allocate_vpid(vmx);
6280
6281 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6282 if (err)
6283 goto free_vcpu;
6284
6285 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6286 err = -ENOMEM;
6287 if (!vmx->guest_msrs) {
6288 goto uninit_vcpu;
6289 }
6290
6291 vmx->loaded_vmcs = &vmx->vmcs01;
6292 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6293 if (!vmx->loaded_vmcs->vmcs)
6294 goto free_msrs;
6295 if (!vmm_exclusive)
6296 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6297 loaded_vmcs_init(vmx->loaded_vmcs);
6298 if (!vmm_exclusive)
6299 kvm_cpu_vmxoff();
6300
6301 cpu = get_cpu();
6302 vmx_vcpu_load(&vmx->vcpu, cpu);
6303 vmx->vcpu.cpu = cpu;
6304 err = vmx_vcpu_setup(vmx);
6305 vmx_vcpu_put(&vmx->vcpu);
6306 put_cpu();
6307 if (err)
6308 goto free_vmcs;
6309 if (vm_need_virtualize_apic_accesses(kvm))
6310 err = alloc_apic_access_page(kvm);
6311 if (err)
6312 goto free_vmcs;
6313
6314 if (enable_ept) {
6315 if (!kvm->arch.ept_identity_map_addr)
6316 kvm->arch.ept_identity_map_addr =
6317 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6318 err = -ENOMEM;
6319 if (alloc_identity_pagetable(kvm) != 0)
6320 goto free_vmcs;
6321 if (!init_rmode_identity_map(kvm))
6322 goto free_vmcs;
6323 }
6324
6325 vmx->nested.current_vmptr = -1ull;
6326 vmx->nested.current_vmcs12 = NULL;
6327
6328 return &vmx->vcpu;
6329
6330 free_vmcs:
6331 free_vmcs(vmx->loaded_vmcs->vmcs);
6332 free_msrs:
6333 kfree(vmx->guest_msrs);
6334 uninit_vcpu:
6335 kvm_vcpu_uninit(&vmx->vcpu);
6336 free_vcpu:
6337 free_vpid(vmx);
6338 kmem_cache_free(kvm_vcpu_cache, vmx);
6339 return ERR_PTR(err);
6340 }
6341
6342 static void __init vmx_check_processor_compat(void *rtn)
6343 {
6344 struct vmcs_config vmcs_conf;
6345
6346 *(int *)rtn = 0;
6347 if (setup_vmcs_config(&vmcs_conf) < 0)
6348 *(int *)rtn = -EIO;
6349 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6350 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6351 smp_processor_id());
6352 *(int *)rtn = -EIO;
6353 }
6354 }
6355
6356 static int get_ept_level(void)
6357 {
6358 return VMX_EPT_DEFAULT_GAW + 1;
6359 }
6360
6361 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6362 {
6363 u64 ret;
6364
6365 /* For VT-d and EPT combination
6366 * 1. MMIO: always map as UC
6367 * 2. EPT with VT-d:
6368 * a. VT-d without snooping control feature: can't guarantee the
6369 * result, try to trust guest.
6370 * b. VT-d with snooping control feature: snooping control feature of
6371 * VT-d engine can guarantee the cache correctness. Just set it
6372 * to WB to keep consistent with host. So the same as item 3.
6373 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6374 * consistent with host MTRR
6375 */
6376 if (is_mmio)
6377 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6378 else if (vcpu->kvm->arch.iommu_domain &&
6379 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6380 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6381 VMX_EPT_MT_EPTE_SHIFT;
6382 else
6383 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6384 | VMX_EPT_IPAT_BIT;
6385
6386 return ret;
6387 }
6388
6389 static int vmx_get_lpage_level(void)
6390 {
6391 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6392 return PT_DIRECTORY_LEVEL;
6393 else
6394 /* For shadow and EPT supported 1GB page */
6395 return PT_PDPE_LEVEL;
6396 }
6397
6398 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6399 {
6400 struct kvm_cpuid_entry2 *best;
6401 struct vcpu_vmx *vmx = to_vmx(vcpu);
6402 u32 exec_control;
6403
6404 vmx->rdtscp_enabled = false;
6405 if (vmx_rdtscp_supported()) {
6406 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6407 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6408 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6409 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6410 vmx->rdtscp_enabled = true;
6411 else {
6412 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6413 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6414 exec_control);
6415 }
6416 }
6417 }
6418 }
6419
6420 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6421 {
6422 if (func == 1 && nested)
6423 entry->ecx |= bit(X86_FEATURE_VMX);
6424 }
6425
6426 /*
6427 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6428 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6429 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6430 * guest in a way that will both be appropriate to L1's requests, and our
6431 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6432 * function also has additional necessary side-effects, like setting various
6433 * vcpu->arch fields.
6434 */
6435 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6436 {
6437 struct vcpu_vmx *vmx = to_vmx(vcpu);
6438 u32 exec_control;
6439
6440 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6441 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6442 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6443 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6444 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6445 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6446 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6447 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6448 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6449 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6450 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6451 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6452 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6453 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6454 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6455 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6456 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6457 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6458 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6459 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6460 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6461 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6462 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6463 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6464 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6465 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6466 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6467 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6468 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6469 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6470 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6471 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6472 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6473 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6474 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6475 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6476
6477 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6478 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6479 vmcs12->vm_entry_intr_info_field);
6480 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6481 vmcs12->vm_entry_exception_error_code);
6482 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6483 vmcs12->vm_entry_instruction_len);
6484 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6485 vmcs12->guest_interruptibility_info);
6486 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6487 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6488 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6489 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6490 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6491 vmcs12->guest_pending_dbg_exceptions);
6492 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6493 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6494
6495 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6496
6497 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6498 (vmcs_config.pin_based_exec_ctrl |
6499 vmcs12->pin_based_vm_exec_control));
6500
6501 /*
6502 * Whether page-faults are trapped is determined by a combination of
6503 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6504 * If enable_ept, L0 doesn't care about page faults and we should
6505 * set all of these to L1's desires. However, if !enable_ept, L0 does
6506 * care about (at least some) page faults, and because it is not easy
6507 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6508 * to exit on each and every L2 page fault. This is done by setting
6509 * MASK=MATCH=0 and (see below) EB.PF=1.
6510 * Note that below we don't need special code to set EB.PF beyond the
6511 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6512 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6513 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6514 *
6515 * A problem with this approach (when !enable_ept) is that L1 may be
6516 * injected with more page faults than it asked for. This could have
6517 * caused problems, but in practice existing hypervisors don't care.
6518 * To fix this, we will need to emulate the PFEC checking (on the L1
6519 * page tables), using walk_addr(), when injecting PFs to L1.
6520 */
6521 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6522 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6523 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6524 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6525
6526 if (cpu_has_secondary_exec_ctrls()) {
6527 u32 exec_control = vmx_secondary_exec_control(vmx);
6528 if (!vmx->rdtscp_enabled)
6529 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6530 /* Take the following fields only from vmcs12 */
6531 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6532 if (nested_cpu_has(vmcs12,
6533 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6534 exec_control |= vmcs12->secondary_vm_exec_control;
6535
6536 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6537 /*
6538 * Translate L1 physical address to host physical
6539 * address for vmcs02. Keep the page pinned, so this
6540 * physical address remains valid. We keep a reference
6541 * to it so we can release it later.
6542 */
6543 if (vmx->nested.apic_access_page) /* shouldn't happen */
6544 nested_release_page(vmx->nested.apic_access_page);
6545 vmx->nested.apic_access_page =
6546 nested_get_page(vcpu, vmcs12->apic_access_addr);
6547 /*
6548 * If translation failed, no matter: This feature asks
6549 * to exit when accessing the given address, and if it
6550 * can never be accessed, this feature won't do
6551 * anything anyway.
6552 */
6553 if (!vmx->nested.apic_access_page)
6554 exec_control &=
6555 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6556 else
6557 vmcs_write64(APIC_ACCESS_ADDR,
6558 page_to_phys(vmx->nested.apic_access_page));
6559 }
6560
6561 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6562 }
6563
6564
6565 /*
6566 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6567 * Some constant fields are set here by vmx_set_constant_host_state().
6568 * Other fields are different per CPU, and will be set later when
6569 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6570 */
6571 vmx_set_constant_host_state();
6572
6573 /*
6574 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6575 * entry, but only if the current (host) sp changed from the value
6576 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6577 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6578 * here we just force the write to happen on entry.
6579 */
6580 vmx->host_rsp = 0;
6581
6582 exec_control = vmx_exec_control(vmx); /* L0's desires */
6583 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6584 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6585 exec_control &= ~CPU_BASED_TPR_SHADOW;
6586 exec_control |= vmcs12->cpu_based_vm_exec_control;
6587 /*
6588 * Merging of IO and MSR bitmaps not currently supported.
6589 * Rather, exit every time.
6590 */
6591 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6592 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6593 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6594
6595 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6596
6597 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6598 * bitwise-or of what L1 wants to trap for L2, and what we want to
6599 * trap. Note that CR0.TS also needs updating - we do this later.
6600 */
6601 update_exception_bitmap(vcpu);
6602 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6603 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6604
6605 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6606 vmcs_write32(VM_EXIT_CONTROLS,
6607 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6608 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6609 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6610
6611 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6612 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6613 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6614 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6615
6616
6617 set_cr4_guest_host_mask(vmx);
6618
6619 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6620 vmcs_write64(TSC_OFFSET,
6621 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6622 else
6623 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6624
6625 if (enable_vpid) {
6626 /*
6627 * Trivially support vpid by letting L2s share their parent
6628 * L1's vpid. TODO: move to a more elaborate solution, giving
6629 * each L2 its own vpid and exposing the vpid feature to L1.
6630 */
6631 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6632 vmx_flush_tlb(vcpu);
6633 }
6634
6635 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6636 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6637 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6638 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6639 else
6640 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6641 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6642 vmx_set_efer(vcpu, vcpu->arch.efer);
6643
6644 /*
6645 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6646 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6647 * The CR0_READ_SHADOW is what L2 should have expected to read given
6648 * the specifications by L1; It's not enough to take
6649 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6650 * have more bits than L1 expected.
6651 */
6652 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6653 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6654
6655 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6656 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6657
6658 /* shadow page tables on either EPT or shadow page tables */
6659 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6660 kvm_mmu_reset_context(vcpu);
6661
6662 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6663 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6664 }
6665
6666 /*
6667 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6668 * for running an L2 nested guest.
6669 */
6670 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6671 {
6672 struct vmcs12 *vmcs12;
6673 struct vcpu_vmx *vmx = to_vmx(vcpu);
6674 int cpu;
6675 struct loaded_vmcs *vmcs02;
6676
6677 if (!nested_vmx_check_permission(vcpu) ||
6678 !nested_vmx_check_vmcs12(vcpu))
6679 return 1;
6680
6681 skip_emulated_instruction(vcpu);
6682 vmcs12 = get_vmcs12(vcpu);
6683
6684 /*
6685 * The nested entry process starts with enforcing various prerequisites
6686 * on vmcs12 as required by the Intel SDM, and act appropriately when
6687 * they fail: As the SDM explains, some conditions should cause the
6688 * instruction to fail, while others will cause the instruction to seem
6689 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6690 * To speed up the normal (success) code path, we should avoid checking
6691 * for misconfigurations which will anyway be caught by the processor
6692 * when using the merged vmcs02.
6693 */
6694 if (vmcs12->launch_state == launch) {
6695 nested_vmx_failValid(vcpu,
6696 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6697 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6698 return 1;
6699 }
6700
6701 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6702 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6703 /*TODO: Also verify bits beyond physical address width are 0*/
6704 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6705 return 1;
6706 }
6707
6708 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6709 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6710 /*TODO: Also verify bits beyond physical address width are 0*/
6711 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6712 return 1;
6713 }
6714
6715 if (vmcs12->vm_entry_msr_load_count > 0 ||
6716 vmcs12->vm_exit_msr_load_count > 0 ||
6717 vmcs12->vm_exit_msr_store_count > 0) {
6718 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6719 __func__);
6720 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6721 return 1;
6722 }
6723
6724 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6725 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6726 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6727 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6728 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6729 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6730 !vmx_control_verify(vmcs12->vm_exit_controls,
6731 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6732 !vmx_control_verify(vmcs12->vm_entry_controls,
6733 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6734 {
6735 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6736 return 1;
6737 }
6738
6739 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6740 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6741 nested_vmx_failValid(vcpu,
6742 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6743 return 1;
6744 }
6745
6746 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6747 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6748 nested_vmx_entry_failure(vcpu, vmcs12,
6749 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6750 return 1;
6751 }
6752 if (vmcs12->vmcs_link_pointer != -1ull) {
6753 nested_vmx_entry_failure(vcpu, vmcs12,
6754 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6755 return 1;
6756 }
6757
6758 /*
6759 * We're finally done with prerequisite checking, and can start with
6760 * the nested entry.
6761 */
6762
6763 vmcs02 = nested_get_current_vmcs02(vmx);
6764 if (!vmcs02)
6765 return -ENOMEM;
6766
6767 enter_guest_mode(vcpu);
6768
6769 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6770
6771 cpu = get_cpu();
6772 vmx->loaded_vmcs = vmcs02;
6773 vmx_vcpu_put(vcpu);
6774 vmx_vcpu_load(vcpu, cpu);
6775 vcpu->cpu = cpu;
6776 put_cpu();
6777
6778 vmcs12->launch_state = 1;
6779
6780 prepare_vmcs02(vcpu, vmcs12);
6781
6782 /*
6783 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6784 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6785 * returned as far as L1 is concerned. It will only return (and set
6786 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6787 */
6788 return 1;
6789 }
6790
6791 /*
6792 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6793 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6794 * This function returns the new value we should put in vmcs12.guest_cr0.
6795 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6796 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6797 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6798 * didn't trap the bit, because if L1 did, so would L0).
6799 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6800 * been modified by L2, and L1 knows it. So just leave the old value of
6801 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6802 * isn't relevant, because if L0 traps this bit it can set it to anything.
6803 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6804 * changed these bits, and therefore they need to be updated, but L0
6805 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6806 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6807 */
6808 static inline unsigned long
6809 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6810 {
6811 return
6812 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6813 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6814 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6815 vcpu->arch.cr0_guest_owned_bits));
6816 }
6817
6818 static inline unsigned long
6819 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6820 {
6821 return
6822 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6823 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6824 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6825 vcpu->arch.cr4_guest_owned_bits));
6826 }
6827
6828 /*
6829 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6830 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6831 * and this function updates it to reflect the changes to the guest state while
6832 * L2 was running (and perhaps made some exits which were handled directly by L0
6833 * without going back to L1), and to reflect the exit reason.
6834 * Note that we do not have to copy here all VMCS fields, just those that
6835 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6836 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6837 * which already writes to vmcs12 directly.
6838 */
6839 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6840 {
6841 /* update guest state fields: */
6842 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6843 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6844
6845 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6846 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6847 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6848 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6849
6850 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6851 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6852 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6853 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6854 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6855 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6856 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6857 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6858 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6859 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6860 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6861 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6862 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6863 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6864 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6865 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6866 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6867 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6868 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6869 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6870 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6871 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6872 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6873 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6874 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6875 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6876 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6877 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6878 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6879 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6880 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6881 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6882 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6883 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6884 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6885 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6886
6887 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6888 vmcs12->guest_interruptibility_info =
6889 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6890 vmcs12->guest_pending_dbg_exceptions =
6891 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6892
6893 /* TODO: These cannot have changed unless we have MSR bitmaps and
6894 * the relevant bit asks not to trap the change */
6895 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6896 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6897 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6898 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6899 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6900 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6901
6902 /* update exit information fields: */
6903
6904 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6905 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6906
6907 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6908 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6909 vmcs12->idt_vectoring_info_field =
6910 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6911 vmcs12->idt_vectoring_error_code =
6912 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6913 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6914 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6915
6916 /* clear vm-entry fields which are to be cleared on exit */
6917 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6918 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6919 }
6920
6921 /*
6922 * A part of what we need to when the nested L2 guest exits and we want to
6923 * run its L1 parent, is to reset L1's guest state to the host state specified
6924 * in vmcs12.
6925 * This function is to be called not only on normal nested exit, but also on
6926 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6927 * Failures During or After Loading Guest State").
6928 * This function should be called when the active VMCS is L1's (vmcs01).
6929 */
6930 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6931 {
6932 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6933 vcpu->arch.efer = vmcs12->host_ia32_efer;
6934 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6935 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6936 else
6937 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6938 vmx_set_efer(vcpu, vcpu->arch.efer);
6939
6940 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6941 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6942 /*
6943 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6944 * actually changed, because it depends on the current state of
6945 * fpu_active (which may have changed).
6946 * Note that vmx_set_cr0 refers to efer set above.
6947 */
6948 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6949 /*
6950 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6951 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6952 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6953 */
6954 update_exception_bitmap(vcpu);
6955 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6956 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6957
6958 /*
6959 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6960 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6961 */
6962 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6963 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6964
6965 /* shadow page tables on either EPT or shadow page tables */
6966 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6967 kvm_mmu_reset_context(vcpu);
6968
6969 if (enable_vpid) {
6970 /*
6971 * Trivially support vpid by letting L2s share their parent
6972 * L1's vpid. TODO: move to a more elaborate solution, giving
6973 * each L2 its own vpid and exposing the vpid feature to L1.
6974 */
6975 vmx_flush_tlb(vcpu);
6976 }
6977
6978
6979 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6980 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6981 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6982 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6983 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6984 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6985 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6986 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6987 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6988 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6989 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6990 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6991 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6992 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6993 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6994
6995 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6996 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6997 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6998 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6999 vmcs12->host_ia32_perf_global_ctrl);
7000 }
7001
7002 /*
7003 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7004 * and modify vmcs12 to make it see what it would expect to see there if
7005 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7006 */
7007 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7008 {
7009 struct vcpu_vmx *vmx = to_vmx(vcpu);
7010 int cpu;
7011 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7012
7013 leave_guest_mode(vcpu);
7014 prepare_vmcs12(vcpu, vmcs12);
7015
7016 cpu = get_cpu();
7017 vmx->loaded_vmcs = &vmx->vmcs01;
7018 vmx_vcpu_put(vcpu);
7019 vmx_vcpu_load(vcpu, cpu);
7020 vcpu->cpu = cpu;
7021 put_cpu();
7022
7023 /* if no vmcs02 cache requested, remove the one we used */
7024 if (VMCS02_POOL_SIZE == 0)
7025 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7026
7027 load_vmcs12_host_state(vcpu, vmcs12);
7028
7029 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7030 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7031
7032 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7033 vmx->host_rsp = 0;
7034
7035 /* Unpin physical memory we referred to in vmcs02 */
7036 if (vmx->nested.apic_access_page) {
7037 nested_release_page(vmx->nested.apic_access_page);
7038 vmx->nested.apic_access_page = 0;
7039 }
7040
7041 /*
7042 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7043 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7044 * success or failure flag accordingly.
7045 */
7046 if (unlikely(vmx->fail)) {
7047 vmx->fail = 0;
7048 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7049 } else
7050 nested_vmx_succeed(vcpu);
7051 }
7052
7053 /*
7054 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7055 * 23.7 "VM-entry failures during or after loading guest state" (this also
7056 * lists the acceptable exit-reason and exit-qualification parameters).
7057 * It should only be called before L2 actually succeeded to run, and when
7058 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7059 */
7060 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7061 struct vmcs12 *vmcs12,
7062 u32 reason, unsigned long qualification)
7063 {
7064 load_vmcs12_host_state(vcpu, vmcs12);
7065 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7066 vmcs12->exit_qualification = qualification;
7067 nested_vmx_succeed(vcpu);
7068 }
7069
7070 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7071 struct x86_instruction_info *info,
7072 enum x86_intercept_stage stage)
7073 {
7074 return X86EMUL_CONTINUE;
7075 }
7076
7077 static struct kvm_x86_ops vmx_x86_ops = {
7078 .cpu_has_kvm_support = cpu_has_kvm_support,
7079 .disabled_by_bios = vmx_disabled_by_bios,
7080 .hardware_setup = hardware_setup,
7081 .hardware_unsetup = hardware_unsetup,
7082 .check_processor_compatibility = vmx_check_processor_compat,
7083 .hardware_enable = hardware_enable,
7084 .hardware_disable = hardware_disable,
7085 .cpu_has_accelerated_tpr = report_flexpriority,
7086
7087 .vcpu_create = vmx_create_vcpu,
7088 .vcpu_free = vmx_free_vcpu,
7089 .vcpu_reset = vmx_vcpu_reset,
7090
7091 .prepare_guest_switch = vmx_save_host_state,
7092 .vcpu_load = vmx_vcpu_load,
7093 .vcpu_put = vmx_vcpu_put,
7094
7095 .set_guest_debug = set_guest_debug,
7096 .get_msr = vmx_get_msr,
7097 .set_msr = vmx_set_msr,
7098 .get_segment_base = vmx_get_segment_base,
7099 .get_segment = vmx_get_segment,
7100 .set_segment = vmx_set_segment,
7101 .get_cpl = vmx_get_cpl,
7102 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7103 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7104 .decache_cr3 = vmx_decache_cr3,
7105 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7106 .set_cr0 = vmx_set_cr0,
7107 .set_cr3 = vmx_set_cr3,
7108 .set_cr4 = vmx_set_cr4,
7109 .set_efer = vmx_set_efer,
7110 .get_idt = vmx_get_idt,
7111 .set_idt = vmx_set_idt,
7112 .get_gdt = vmx_get_gdt,
7113 .set_gdt = vmx_set_gdt,
7114 .set_dr7 = vmx_set_dr7,
7115 .cache_reg = vmx_cache_reg,
7116 .get_rflags = vmx_get_rflags,
7117 .set_rflags = vmx_set_rflags,
7118 .fpu_activate = vmx_fpu_activate,
7119 .fpu_deactivate = vmx_fpu_deactivate,
7120
7121 .tlb_flush = vmx_flush_tlb,
7122
7123 .run = vmx_vcpu_run,
7124 .handle_exit = vmx_handle_exit,
7125 .skip_emulated_instruction = skip_emulated_instruction,
7126 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7127 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7128 .patch_hypercall = vmx_patch_hypercall,
7129 .set_irq = vmx_inject_irq,
7130 .set_nmi = vmx_inject_nmi,
7131 .queue_exception = vmx_queue_exception,
7132 .cancel_injection = vmx_cancel_injection,
7133 .interrupt_allowed = vmx_interrupt_allowed,
7134 .nmi_allowed = vmx_nmi_allowed,
7135 .get_nmi_mask = vmx_get_nmi_mask,
7136 .set_nmi_mask = vmx_set_nmi_mask,
7137 .enable_nmi_window = enable_nmi_window,
7138 .enable_irq_window = enable_irq_window,
7139 .update_cr8_intercept = update_cr8_intercept,
7140
7141 .set_tss_addr = vmx_set_tss_addr,
7142 .get_tdp_level = get_ept_level,
7143 .get_mt_mask = vmx_get_mt_mask,
7144
7145 .get_exit_info = vmx_get_exit_info,
7146
7147 .get_lpage_level = vmx_get_lpage_level,
7148
7149 .cpuid_update = vmx_cpuid_update,
7150
7151 .rdtscp_supported = vmx_rdtscp_supported,
7152
7153 .set_supported_cpuid = vmx_set_supported_cpuid,
7154
7155 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7156
7157 .set_tsc_khz = vmx_set_tsc_khz,
7158 .write_tsc_offset = vmx_write_tsc_offset,
7159 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7160 .compute_tsc_offset = vmx_compute_tsc_offset,
7161 .read_l1_tsc = vmx_read_l1_tsc,
7162
7163 .set_tdp_cr3 = vmx_set_cr3,
7164
7165 .check_intercept = vmx_check_intercept,
7166 };
7167
7168 static int __init vmx_init(void)
7169 {
7170 int r, i;
7171
7172 rdmsrl_safe(MSR_EFER, &host_efer);
7173
7174 for (i = 0; i < NR_VMX_MSR; ++i)
7175 kvm_define_shared_msr(i, vmx_msr_index[i]);
7176
7177 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7178 if (!vmx_io_bitmap_a)
7179 return -ENOMEM;
7180
7181 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7182 if (!vmx_io_bitmap_b) {
7183 r = -ENOMEM;
7184 goto out;
7185 }
7186
7187 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7188 if (!vmx_msr_bitmap_legacy) {
7189 r = -ENOMEM;
7190 goto out1;
7191 }
7192
7193 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7194 if (!vmx_msr_bitmap_longmode) {
7195 r = -ENOMEM;
7196 goto out2;
7197 }
7198
7199 /*
7200 * Allow direct access to the PC debug port (it is often used for I/O
7201 * delays, but the vmexits simply slow things down).
7202 */
7203 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7204 clear_bit(0x80, vmx_io_bitmap_a);
7205
7206 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7207
7208 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7209 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7210
7211 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7212
7213 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7214 __alignof__(struct vcpu_vmx), THIS_MODULE);
7215 if (r)
7216 goto out3;
7217
7218 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7219 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7220 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7221 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7222 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7223 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7224
7225 if (enable_ept) {
7226 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7227 VMX_EPT_EXECUTABLE_MASK);
7228 ept_set_mmio_spte_mask();
7229 kvm_enable_tdp();
7230 } else
7231 kvm_disable_tdp();
7232
7233 return 0;
7234
7235 out3:
7236 free_page((unsigned long)vmx_msr_bitmap_longmode);
7237 out2:
7238 free_page((unsigned long)vmx_msr_bitmap_legacy);
7239 out1:
7240 free_page((unsigned long)vmx_io_bitmap_b);
7241 out:
7242 free_page((unsigned long)vmx_io_bitmap_a);
7243 return r;
7244 }
7245
7246 static void __exit vmx_exit(void)
7247 {
7248 free_page((unsigned long)vmx_msr_bitmap_legacy);
7249 free_page((unsigned long)vmx_msr_bitmap_longmode);
7250 free_page((unsigned long)vmx_io_bitmap_b);
7251 free_page((unsigned long)vmx_io_bitmap_a);
7252
7253 kvm_exit();
7254 }
7255
7256 module_init(vmx_init)
7257 module_exit(vmx_exit)