]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
Merge tag 'mmc-v4.15-rc2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly enable_vnmi = 1;
74 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
75
76 static bool __read_mostly flexpriority_enabled = 1;
77 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
78
79 static bool __read_mostly enable_ept = 1;
80 module_param_named(ept, enable_ept, bool, S_IRUGO);
81
82 static bool __read_mostly enable_unrestricted_guest = 1;
83 module_param_named(unrestricted_guest,
84 enable_unrestricted_guest, bool, S_IRUGO);
85
86 static bool __read_mostly enable_ept_ad_bits = 1;
87 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
88
89 static bool __read_mostly emulate_invalid_guest_state = true;
90 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
91
92 static bool __read_mostly fasteoi = 1;
93 module_param(fasteoi, bool, S_IRUGO);
94
95 static bool __read_mostly enable_apicv = 1;
96 module_param(enable_apicv, bool, S_IRUGO);
97
98 static bool __read_mostly enable_shadow_vmcs = 1;
99 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
100 /*
101 * If nested=1, nested virtualization is supported, i.e., guests may use
102 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
103 * use VMX instructions.
104 */
105 static bool __read_mostly nested = 0;
106 module_param(nested, bool, S_IRUGO);
107
108 static u64 __read_mostly host_xss;
109
110 static bool __read_mostly enable_pml = 1;
111 module_param_named(pml, enable_pml, bool, S_IRUGO);
112
113 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
114
115 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
116 static int __read_mostly cpu_preemption_timer_multi;
117 static bool __read_mostly enable_preemption_timer = 1;
118 #ifdef CONFIG_X86_64
119 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
120 #endif
121
122 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
123 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
124 #define KVM_VM_CR0_ALWAYS_ON \
125 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
126 #define KVM_CR4_GUEST_OWNED_BITS \
127 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
128 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
129
130 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
131 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
132
133 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
134
135 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
136
137 /*
138 * Hyper-V requires all of these, so mark them as supported even though
139 * they are just treated the same as all-context.
140 */
141 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
142 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
143 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
144 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
145 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
146
147 /*
148 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
149 * ple_gap: upper bound on the amount of time between two successive
150 * executions of PAUSE in a loop. Also indicate if ple enabled.
151 * According to test, this time is usually smaller than 128 cycles.
152 * ple_window: upper bound on the amount of time a guest is allowed to execute
153 * in a PAUSE loop. Tests indicate that most spinlocks are held for
154 * less than 2^12 cycles
155 * Time is measured based on a counter that runs at the same rate as the TSC,
156 * refer SDM volume 3b section 21.6.13 & 22.1.3.
157 */
158 #define KVM_VMX_DEFAULT_PLE_GAP 128
159 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
160 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
161 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
162 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
163 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
164
165 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
166 module_param(ple_gap, int, S_IRUGO);
167
168 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, int, S_IRUGO);
170
171 /* Default doubles per-vcpu window every exit. */
172 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, int, S_IRUGO);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, int, S_IRUGO);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
182 module_param(ple_window_max, int, S_IRUGO);
183
184 extern const ulong vmx_return;
185
186 #define NR_AUTOLOAD_MSRS 8
187 #define VMCS02_POOL_SIZE 1
188
189 struct vmcs {
190 u32 revision_id;
191 u32 abort;
192 char data[0];
193 };
194
195 /*
196 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
197 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
198 * loaded on this CPU (so we can clear them if the CPU goes down).
199 */
200 struct loaded_vmcs {
201 struct vmcs *vmcs;
202 struct vmcs *shadow_vmcs;
203 int cpu;
204 bool launched;
205 bool nmi_known_unmasked;
206 unsigned long vmcs_host_cr3; /* May not match real cr3 */
207 unsigned long vmcs_host_cr4; /* May not match real cr4 */
208 /* Support for vnmi-less CPUs */
209 int soft_vnmi_blocked;
210 ktime_t entry_time;
211 s64 vnmi_blocked_time;
212 struct list_head loaded_vmcss_on_cpu_link;
213 };
214
215 struct shared_msr_entry {
216 unsigned index;
217 u64 data;
218 u64 mask;
219 };
220
221 /*
222 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
223 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
224 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
225 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
226 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
227 * More than one of these structures may exist, if L1 runs multiple L2 guests.
228 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
229 * underlying hardware which will be used to run L2.
230 * This structure is packed to ensure that its layout is identical across
231 * machines (necessary for live migration).
232 * If there are changes in this struct, VMCS12_REVISION must be changed.
233 */
234 typedef u64 natural_width;
235 struct __packed vmcs12 {
236 /* According to the Intel spec, a VMCS region must start with the
237 * following two fields. Then follow implementation-specific data.
238 */
239 u32 revision_id;
240 u32 abort;
241
242 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
243 u32 padding[7]; /* room for future expansion */
244
245 u64 io_bitmap_a;
246 u64 io_bitmap_b;
247 u64 msr_bitmap;
248 u64 vm_exit_msr_store_addr;
249 u64 vm_exit_msr_load_addr;
250 u64 vm_entry_msr_load_addr;
251 u64 tsc_offset;
252 u64 virtual_apic_page_addr;
253 u64 apic_access_addr;
254 u64 posted_intr_desc_addr;
255 u64 vm_function_control;
256 u64 ept_pointer;
257 u64 eoi_exit_bitmap0;
258 u64 eoi_exit_bitmap1;
259 u64 eoi_exit_bitmap2;
260 u64 eoi_exit_bitmap3;
261 u64 eptp_list_address;
262 u64 xss_exit_bitmap;
263 u64 guest_physical_address;
264 u64 vmcs_link_pointer;
265 u64 pml_address;
266 u64 guest_ia32_debugctl;
267 u64 guest_ia32_pat;
268 u64 guest_ia32_efer;
269 u64 guest_ia32_perf_global_ctrl;
270 u64 guest_pdptr0;
271 u64 guest_pdptr1;
272 u64 guest_pdptr2;
273 u64 guest_pdptr3;
274 u64 guest_bndcfgs;
275 u64 host_ia32_pat;
276 u64 host_ia32_efer;
277 u64 host_ia32_perf_global_ctrl;
278 u64 padding64[8]; /* room for future expansion */
279 /*
280 * To allow migration of L1 (complete with its L2 guests) between
281 * machines of different natural widths (32 or 64 bit), we cannot have
282 * unsigned long fields with no explict size. We use u64 (aliased
283 * natural_width) instead. Luckily, x86 is little-endian.
284 */
285 natural_width cr0_guest_host_mask;
286 natural_width cr4_guest_host_mask;
287 natural_width cr0_read_shadow;
288 natural_width cr4_read_shadow;
289 natural_width cr3_target_value0;
290 natural_width cr3_target_value1;
291 natural_width cr3_target_value2;
292 natural_width cr3_target_value3;
293 natural_width exit_qualification;
294 natural_width guest_linear_address;
295 natural_width guest_cr0;
296 natural_width guest_cr3;
297 natural_width guest_cr4;
298 natural_width guest_es_base;
299 natural_width guest_cs_base;
300 natural_width guest_ss_base;
301 natural_width guest_ds_base;
302 natural_width guest_fs_base;
303 natural_width guest_gs_base;
304 natural_width guest_ldtr_base;
305 natural_width guest_tr_base;
306 natural_width guest_gdtr_base;
307 natural_width guest_idtr_base;
308 natural_width guest_dr7;
309 natural_width guest_rsp;
310 natural_width guest_rip;
311 natural_width guest_rflags;
312 natural_width guest_pending_dbg_exceptions;
313 natural_width guest_sysenter_esp;
314 natural_width guest_sysenter_eip;
315 natural_width host_cr0;
316 natural_width host_cr3;
317 natural_width host_cr4;
318 natural_width host_fs_base;
319 natural_width host_gs_base;
320 natural_width host_tr_base;
321 natural_width host_gdtr_base;
322 natural_width host_idtr_base;
323 natural_width host_ia32_sysenter_esp;
324 natural_width host_ia32_sysenter_eip;
325 natural_width host_rsp;
326 natural_width host_rip;
327 natural_width paddingl[8]; /* room for future expansion */
328 u32 pin_based_vm_exec_control;
329 u32 cpu_based_vm_exec_control;
330 u32 exception_bitmap;
331 u32 page_fault_error_code_mask;
332 u32 page_fault_error_code_match;
333 u32 cr3_target_count;
334 u32 vm_exit_controls;
335 u32 vm_exit_msr_store_count;
336 u32 vm_exit_msr_load_count;
337 u32 vm_entry_controls;
338 u32 vm_entry_msr_load_count;
339 u32 vm_entry_intr_info_field;
340 u32 vm_entry_exception_error_code;
341 u32 vm_entry_instruction_len;
342 u32 tpr_threshold;
343 u32 secondary_vm_exec_control;
344 u32 vm_instruction_error;
345 u32 vm_exit_reason;
346 u32 vm_exit_intr_info;
347 u32 vm_exit_intr_error_code;
348 u32 idt_vectoring_info_field;
349 u32 idt_vectoring_error_code;
350 u32 vm_exit_instruction_len;
351 u32 vmx_instruction_info;
352 u32 guest_es_limit;
353 u32 guest_cs_limit;
354 u32 guest_ss_limit;
355 u32 guest_ds_limit;
356 u32 guest_fs_limit;
357 u32 guest_gs_limit;
358 u32 guest_ldtr_limit;
359 u32 guest_tr_limit;
360 u32 guest_gdtr_limit;
361 u32 guest_idtr_limit;
362 u32 guest_es_ar_bytes;
363 u32 guest_cs_ar_bytes;
364 u32 guest_ss_ar_bytes;
365 u32 guest_ds_ar_bytes;
366 u32 guest_fs_ar_bytes;
367 u32 guest_gs_ar_bytes;
368 u32 guest_ldtr_ar_bytes;
369 u32 guest_tr_ar_bytes;
370 u32 guest_interruptibility_info;
371 u32 guest_activity_state;
372 u32 guest_sysenter_cs;
373 u32 host_ia32_sysenter_cs;
374 u32 vmx_preemption_timer_value;
375 u32 padding32[7]; /* room for future expansion */
376 u16 virtual_processor_id;
377 u16 posted_intr_nv;
378 u16 guest_es_selector;
379 u16 guest_cs_selector;
380 u16 guest_ss_selector;
381 u16 guest_ds_selector;
382 u16 guest_fs_selector;
383 u16 guest_gs_selector;
384 u16 guest_ldtr_selector;
385 u16 guest_tr_selector;
386 u16 guest_intr_status;
387 u16 guest_pml_index;
388 u16 host_es_selector;
389 u16 host_cs_selector;
390 u16 host_ss_selector;
391 u16 host_ds_selector;
392 u16 host_fs_selector;
393 u16 host_gs_selector;
394 u16 host_tr_selector;
395 };
396
397 /*
398 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
399 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
400 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
401 */
402 #define VMCS12_REVISION 0x11e57ed0
403
404 /*
405 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
406 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
407 * current implementation, 4K are reserved to avoid future complications.
408 */
409 #define VMCS12_SIZE 0x1000
410
411 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
412 struct vmcs02_list {
413 struct list_head list;
414 gpa_t vmptr;
415 struct loaded_vmcs vmcs02;
416 };
417
418 /*
419 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
420 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
421 */
422 struct nested_vmx {
423 /* Has the level1 guest done vmxon? */
424 bool vmxon;
425 gpa_t vmxon_ptr;
426 bool pml_full;
427
428 /* The guest-physical address of the current VMCS L1 keeps for L2 */
429 gpa_t current_vmptr;
430 /*
431 * Cache of the guest's VMCS, existing outside of guest memory.
432 * Loaded from guest memory during VMPTRLD. Flushed to guest
433 * memory during VMCLEAR and VMPTRLD.
434 */
435 struct vmcs12 *cached_vmcs12;
436 /*
437 * Indicates if the shadow vmcs must be updated with the
438 * data hold by vmcs12
439 */
440 bool sync_shadow_vmcs;
441
442 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
443 struct list_head vmcs02_pool;
444 int vmcs02_num;
445 bool change_vmcs01_virtual_x2apic_mode;
446 /* L2 must run next, and mustn't decide to exit to L1. */
447 bool nested_run_pending;
448 /*
449 * Guest pages referred to in vmcs02 with host-physical pointers, so
450 * we must keep them pinned while L2 runs.
451 */
452 struct page *apic_access_page;
453 struct page *virtual_apic_page;
454 struct page *pi_desc_page;
455 struct pi_desc *pi_desc;
456 bool pi_pending;
457 u16 posted_intr_nv;
458
459 unsigned long *msr_bitmap;
460
461 struct hrtimer preemption_timer;
462 bool preemption_timer_expired;
463
464 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
465 u64 vmcs01_debugctl;
466
467 u16 vpid02;
468 u16 last_vpid;
469
470 /*
471 * We only store the "true" versions of the VMX capability MSRs. We
472 * generate the "non-true" versions by setting the must-be-1 bits
473 * according to the SDM.
474 */
475 u32 nested_vmx_procbased_ctls_low;
476 u32 nested_vmx_procbased_ctls_high;
477 u32 nested_vmx_secondary_ctls_low;
478 u32 nested_vmx_secondary_ctls_high;
479 u32 nested_vmx_pinbased_ctls_low;
480 u32 nested_vmx_pinbased_ctls_high;
481 u32 nested_vmx_exit_ctls_low;
482 u32 nested_vmx_exit_ctls_high;
483 u32 nested_vmx_entry_ctls_low;
484 u32 nested_vmx_entry_ctls_high;
485 u32 nested_vmx_misc_low;
486 u32 nested_vmx_misc_high;
487 u32 nested_vmx_ept_caps;
488 u32 nested_vmx_vpid_caps;
489 u64 nested_vmx_basic;
490 u64 nested_vmx_cr0_fixed0;
491 u64 nested_vmx_cr0_fixed1;
492 u64 nested_vmx_cr4_fixed0;
493 u64 nested_vmx_cr4_fixed1;
494 u64 nested_vmx_vmcs_enum;
495 u64 nested_vmx_vmfunc_controls;
496
497 /* SMM related state */
498 struct {
499 /* in VMX operation on SMM entry? */
500 bool vmxon;
501 /* in guest mode on SMM entry? */
502 bool guest_mode;
503 } smm;
504 };
505
506 #define POSTED_INTR_ON 0
507 #define POSTED_INTR_SN 1
508
509 /* Posted-Interrupt Descriptor */
510 struct pi_desc {
511 u32 pir[8]; /* Posted interrupt requested */
512 union {
513 struct {
514 /* bit 256 - Outstanding Notification */
515 u16 on : 1,
516 /* bit 257 - Suppress Notification */
517 sn : 1,
518 /* bit 271:258 - Reserved */
519 rsvd_1 : 14;
520 /* bit 279:272 - Notification Vector */
521 u8 nv;
522 /* bit 287:280 - Reserved */
523 u8 rsvd_2;
524 /* bit 319:288 - Notification Destination */
525 u32 ndst;
526 };
527 u64 control;
528 };
529 u32 rsvd[6];
530 } __aligned(64);
531
532 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
533 {
534 return test_and_set_bit(POSTED_INTR_ON,
535 (unsigned long *)&pi_desc->control);
536 }
537
538 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
539 {
540 return test_and_clear_bit(POSTED_INTR_ON,
541 (unsigned long *)&pi_desc->control);
542 }
543
544 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
545 {
546 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
547 }
548
549 static inline void pi_clear_sn(struct pi_desc *pi_desc)
550 {
551 return clear_bit(POSTED_INTR_SN,
552 (unsigned long *)&pi_desc->control);
553 }
554
555 static inline void pi_set_sn(struct pi_desc *pi_desc)
556 {
557 return set_bit(POSTED_INTR_SN,
558 (unsigned long *)&pi_desc->control);
559 }
560
561 static inline void pi_clear_on(struct pi_desc *pi_desc)
562 {
563 clear_bit(POSTED_INTR_ON,
564 (unsigned long *)&pi_desc->control);
565 }
566
567 static inline int pi_test_on(struct pi_desc *pi_desc)
568 {
569 return test_bit(POSTED_INTR_ON,
570 (unsigned long *)&pi_desc->control);
571 }
572
573 static inline int pi_test_sn(struct pi_desc *pi_desc)
574 {
575 return test_bit(POSTED_INTR_SN,
576 (unsigned long *)&pi_desc->control);
577 }
578
579 struct vcpu_vmx {
580 struct kvm_vcpu vcpu;
581 unsigned long host_rsp;
582 u8 fail;
583 u32 exit_intr_info;
584 u32 idt_vectoring_info;
585 ulong rflags;
586 struct shared_msr_entry *guest_msrs;
587 int nmsrs;
588 int save_nmsrs;
589 unsigned long host_idt_base;
590 #ifdef CONFIG_X86_64
591 u64 msr_host_kernel_gs_base;
592 u64 msr_guest_kernel_gs_base;
593 #endif
594 u32 vm_entry_controls_shadow;
595 u32 vm_exit_controls_shadow;
596 u32 secondary_exec_control;
597
598 /*
599 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
600 * non-nested (L1) guest, it always points to vmcs01. For a nested
601 * guest (L2), it points to a different VMCS.
602 */
603 struct loaded_vmcs vmcs01;
604 struct loaded_vmcs *loaded_vmcs;
605 bool __launched; /* temporary, used in vmx_vcpu_run */
606 struct msr_autoload {
607 unsigned nr;
608 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
609 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
610 } msr_autoload;
611 struct {
612 int loaded;
613 u16 fs_sel, gs_sel, ldt_sel;
614 #ifdef CONFIG_X86_64
615 u16 ds_sel, es_sel;
616 #endif
617 int gs_ldt_reload_needed;
618 int fs_reload_needed;
619 u64 msr_host_bndcfgs;
620 } host_state;
621 struct {
622 int vm86_active;
623 ulong save_rflags;
624 struct kvm_segment segs[8];
625 } rmode;
626 struct {
627 u32 bitmask; /* 4 bits per segment (1 bit per field) */
628 struct kvm_save_segment {
629 u16 selector;
630 unsigned long base;
631 u32 limit;
632 u32 ar;
633 } seg[8];
634 } segment_cache;
635 int vpid;
636 bool emulation_required;
637
638 u32 exit_reason;
639
640 /* Posted interrupt descriptor */
641 struct pi_desc pi_desc;
642
643 /* Support for a guest hypervisor (nested VMX) */
644 struct nested_vmx nested;
645
646 /* Dynamic PLE window. */
647 int ple_window;
648 bool ple_window_dirty;
649
650 /* Support for PML */
651 #define PML_ENTITY_NUM 512
652 struct page *pml_pg;
653
654 /* apic deadline value in host tsc */
655 u64 hv_deadline_tsc;
656
657 u64 current_tsc_ratio;
658
659 u32 host_pkru;
660
661 /*
662 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
663 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
664 * in msr_ia32_feature_control_valid_bits.
665 */
666 u64 msr_ia32_feature_control;
667 u64 msr_ia32_feature_control_valid_bits;
668 };
669
670 enum segment_cache_field {
671 SEG_FIELD_SEL = 0,
672 SEG_FIELD_BASE = 1,
673 SEG_FIELD_LIMIT = 2,
674 SEG_FIELD_AR = 3,
675
676 SEG_FIELD_NR = 4
677 };
678
679 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
680 {
681 return container_of(vcpu, struct vcpu_vmx, vcpu);
682 }
683
684 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
685 {
686 return &(to_vmx(vcpu)->pi_desc);
687 }
688
689 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
690 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
691 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
692 [number##_HIGH] = VMCS12_OFFSET(name)+4
693
694
695 static unsigned long shadow_read_only_fields[] = {
696 /*
697 * We do NOT shadow fields that are modified when L0
698 * traps and emulates any vmx instruction (e.g. VMPTRLD,
699 * VMXON...) executed by L1.
700 * For example, VM_INSTRUCTION_ERROR is read
701 * by L1 if a vmx instruction fails (part of the error path).
702 * Note the code assumes this logic. If for some reason
703 * we start shadowing these fields then we need to
704 * force a shadow sync when L0 emulates vmx instructions
705 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
706 * by nested_vmx_failValid)
707 */
708 VM_EXIT_REASON,
709 VM_EXIT_INTR_INFO,
710 VM_EXIT_INSTRUCTION_LEN,
711 IDT_VECTORING_INFO_FIELD,
712 IDT_VECTORING_ERROR_CODE,
713 VM_EXIT_INTR_ERROR_CODE,
714 EXIT_QUALIFICATION,
715 GUEST_LINEAR_ADDRESS,
716 GUEST_PHYSICAL_ADDRESS
717 };
718 static int max_shadow_read_only_fields =
719 ARRAY_SIZE(shadow_read_only_fields);
720
721 static unsigned long shadow_read_write_fields[] = {
722 TPR_THRESHOLD,
723 GUEST_RIP,
724 GUEST_RSP,
725 GUEST_CR0,
726 GUEST_CR3,
727 GUEST_CR4,
728 GUEST_INTERRUPTIBILITY_INFO,
729 GUEST_RFLAGS,
730 GUEST_CS_SELECTOR,
731 GUEST_CS_AR_BYTES,
732 GUEST_CS_LIMIT,
733 GUEST_CS_BASE,
734 GUEST_ES_BASE,
735 GUEST_BNDCFGS,
736 CR0_GUEST_HOST_MASK,
737 CR0_READ_SHADOW,
738 CR4_READ_SHADOW,
739 TSC_OFFSET,
740 EXCEPTION_BITMAP,
741 CPU_BASED_VM_EXEC_CONTROL,
742 VM_ENTRY_EXCEPTION_ERROR_CODE,
743 VM_ENTRY_INTR_INFO_FIELD,
744 VM_ENTRY_INSTRUCTION_LEN,
745 VM_ENTRY_EXCEPTION_ERROR_CODE,
746 HOST_FS_BASE,
747 HOST_GS_BASE,
748 HOST_FS_SELECTOR,
749 HOST_GS_SELECTOR
750 };
751 static int max_shadow_read_write_fields =
752 ARRAY_SIZE(shadow_read_write_fields);
753
754 static const unsigned short vmcs_field_to_offset_table[] = {
755 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
756 FIELD(POSTED_INTR_NV, posted_intr_nv),
757 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
758 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
759 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
760 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
761 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
762 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
763 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
764 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
765 FIELD(GUEST_INTR_STATUS, guest_intr_status),
766 FIELD(GUEST_PML_INDEX, guest_pml_index),
767 FIELD(HOST_ES_SELECTOR, host_es_selector),
768 FIELD(HOST_CS_SELECTOR, host_cs_selector),
769 FIELD(HOST_SS_SELECTOR, host_ss_selector),
770 FIELD(HOST_DS_SELECTOR, host_ds_selector),
771 FIELD(HOST_FS_SELECTOR, host_fs_selector),
772 FIELD(HOST_GS_SELECTOR, host_gs_selector),
773 FIELD(HOST_TR_SELECTOR, host_tr_selector),
774 FIELD64(IO_BITMAP_A, io_bitmap_a),
775 FIELD64(IO_BITMAP_B, io_bitmap_b),
776 FIELD64(MSR_BITMAP, msr_bitmap),
777 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
778 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
779 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
780 FIELD64(TSC_OFFSET, tsc_offset),
781 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
782 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
783 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
784 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
785 FIELD64(EPT_POINTER, ept_pointer),
786 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
787 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
788 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
789 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
790 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
791 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
792 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
793 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
794 FIELD64(PML_ADDRESS, pml_address),
795 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
796 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
797 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
798 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
799 FIELD64(GUEST_PDPTR0, guest_pdptr0),
800 FIELD64(GUEST_PDPTR1, guest_pdptr1),
801 FIELD64(GUEST_PDPTR2, guest_pdptr2),
802 FIELD64(GUEST_PDPTR3, guest_pdptr3),
803 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
804 FIELD64(HOST_IA32_PAT, host_ia32_pat),
805 FIELD64(HOST_IA32_EFER, host_ia32_efer),
806 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
807 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
808 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
809 FIELD(EXCEPTION_BITMAP, exception_bitmap),
810 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
811 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
812 FIELD(CR3_TARGET_COUNT, cr3_target_count),
813 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
814 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
815 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
816 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
817 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
818 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
819 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
820 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
821 FIELD(TPR_THRESHOLD, tpr_threshold),
822 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
823 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
824 FIELD(VM_EXIT_REASON, vm_exit_reason),
825 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
826 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
827 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
828 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
829 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
830 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
831 FIELD(GUEST_ES_LIMIT, guest_es_limit),
832 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
833 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
834 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
835 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
836 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
837 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
838 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
839 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
840 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
841 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
842 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
843 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
844 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
845 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
846 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
847 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
848 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
849 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
850 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
851 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
852 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
853 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
854 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
855 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
856 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
857 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
858 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
859 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
860 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
861 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
862 FIELD(EXIT_QUALIFICATION, exit_qualification),
863 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
864 FIELD(GUEST_CR0, guest_cr0),
865 FIELD(GUEST_CR3, guest_cr3),
866 FIELD(GUEST_CR4, guest_cr4),
867 FIELD(GUEST_ES_BASE, guest_es_base),
868 FIELD(GUEST_CS_BASE, guest_cs_base),
869 FIELD(GUEST_SS_BASE, guest_ss_base),
870 FIELD(GUEST_DS_BASE, guest_ds_base),
871 FIELD(GUEST_FS_BASE, guest_fs_base),
872 FIELD(GUEST_GS_BASE, guest_gs_base),
873 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
874 FIELD(GUEST_TR_BASE, guest_tr_base),
875 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
876 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
877 FIELD(GUEST_DR7, guest_dr7),
878 FIELD(GUEST_RSP, guest_rsp),
879 FIELD(GUEST_RIP, guest_rip),
880 FIELD(GUEST_RFLAGS, guest_rflags),
881 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
882 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
883 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
884 FIELD(HOST_CR0, host_cr0),
885 FIELD(HOST_CR3, host_cr3),
886 FIELD(HOST_CR4, host_cr4),
887 FIELD(HOST_FS_BASE, host_fs_base),
888 FIELD(HOST_GS_BASE, host_gs_base),
889 FIELD(HOST_TR_BASE, host_tr_base),
890 FIELD(HOST_GDTR_BASE, host_gdtr_base),
891 FIELD(HOST_IDTR_BASE, host_idtr_base),
892 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
893 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
894 FIELD(HOST_RSP, host_rsp),
895 FIELD(HOST_RIP, host_rip),
896 };
897
898 static inline short vmcs_field_to_offset(unsigned long field)
899 {
900 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
901
902 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
903 vmcs_field_to_offset_table[field] == 0)
904 return -ENOENT;
905
906 return vmcs_field_to_offset_table[field];
907 }
908
909 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
910 {
911 return to_vmx(vcpu)->nested.cached_vmcs12;
912 }
913
914 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
915 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
916 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
917 static bool vmx_xsaves_supported(void);
918 static void vmx_set_segment(struct kvm_vcpu *vcpu,
919 struct kvm_segment *var, int seg);
920 static void vmx_get_segment(struct kvm_vcpu *vcpu,
921 struct kvm_segment *var, int seg);
922 static bool guest_state_valid(struct kvm_vcpu *vcpu);
923 static u32 vmx_segment_access_rights(struct kvm_segment *var);
924 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
925 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
926 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
927 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
928 u16 error_code);
929
930 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
931 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
932 /*
933 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
934 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
935 */
936 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
937
938 /*
939 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
940 * can find which vCPU should be waken up.
941 */
942 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
943 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
944
945 enum {
946 VMX_IO_BITMAP_A,
947 VMX_IO_BITMAP_B,
948 VMX_MSR_BITMAP_LEGACY,
949 VMX_MSR_BITMAP_LONGMODE,
950 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
951 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
952 VMX_MSR_BITMAP_LEGACY_X2APIC,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC,
954 VMX_VMREAD_BITMAP,
955 VMX_VMWRITE_BITMAP,
956 VMX_BITMAP_NR
957 };
958
959 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
960
961 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
962 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
963 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
964 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
965 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
966 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
967 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
968 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
969 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
970 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
971
972 static bool cpu_has_load_ia32_efer;
973 static bool cpu_has_load_perf_global_ctrl;
974
975 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
976 static DEFINE_SPINLOCK(vmx_vpid_lock);
977
978 static struct vmcs_config {
979 int size;
980 int order;
981 u32 basic_cap;
982 u32 revision_id;
983 u32 pin_based_exec_ctrl;
984 u32 cpu_based_exec_ctrl;
985 u32 cpu_based_2nd_exec_ctrl;
986 u32 vmexit_ctrl;
987 u32 vmentry_ctrl;
988 } vmcs_config;
989
990 static struct vmx_capability {
991 u32 ept;
992 u32 vpid;
993 } vmx_capability;
994
995 #define VMX_SEGMENT_FIELD(seg) \
996 [VCPU_SREG_##seg] = { \
997 .selector = GUEST_##seg##_SELECTOR, \
998 .base = GUEST_##seg##_BASE, \
999 .limit = GUEST_##seg##_LIMIT, \
1000 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1001 }
1002
1003 static const struct kvm_vmx_segment_field {
1004 unsigned selector;
1005 unsigned base;
1006 unsigned limit;
1007 unsigned ar_bytes;
1008 } kvm_vmx_segment_fields[] = {
1009 VMX_SEGMENT_FIELD(CS),
1010 VMX_SEGMENT_FIELD(DS),
1011 VMX_SEGMENT_FIELD(ES),
1012 VMX_SEGMENT_FIELD(FS),
1013 VMX_SEGMENT_FIELD(GS),
1014 VMX_SEGMENT_FIELD(SS),
1015 VMX_SEGMENT_FIELD(TR),
1016 VMX_SEGMENT_FIELD(LDTR),
1017 };
1018
1019 static u64 host_efer;
1020
1021 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1022
1023 /*
1024 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1025 * away by decrementing the array size.
1026 */
1027 static const u32 vmx_msr_index[] = {
1028 #ifdef CONFIG_X86_64
1029 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1030 #endif
1031 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1032 };
1033
1034 static inline bool is_exception_n(u32 intr_info, u8 vector)
1035 {
1036 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1037 INTR_INFO_VALID_MASK)) ==
1038 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1039 }
1040
1041 static inline bool is_debug(u32 intr_info)
1042 {
1043 return is_exception_n(intr_info, DB_VECTOR);
1044 }
1045
1046 static inline bool is_breakpoint(u32 intr_info)
1047 {
1048 return is_exception_n(intr_info, BP_VECTOR);
1049 }
1050
1051 static inline bool is_page_fault(u32 intr_info)
1052 {
1053 return is_exception_n(intr_info, PF_VECTOR);
1054 }
1055
1056 static inline bool is_no_device(u32 intr_info)
1057 {
1058 return is_exception_n(intr_info, NM_VECTOR);
1059 }
1060
1061 static inline bool is_invalid_opcode(u32 intr_info)
1062 {
1063 return is_exception_n(intr_info, UD_VECTOR);
1064 }
1065
1066 static inline bool is_external_interrupt(u32 intr_info)
1067 {
1068 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1069 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1070 }
1071
1072 static inline bool is_machine_check(u32 intr_info)
1073 {
1074 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1075 INTR_INFO_VALID_MASK)) ==
1076 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1077 }
1078
1079 static inline bool cpu_has_vmx_msr_bitmap(void)
1080 {
1081 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1082 }
1083
1084 static inline bool cpu_has_vmx_tpr_shadow(void)
1085 {
1086 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1087 }
1088
1089 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1090 {
1091 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1092 }
1093
1094 static inline bool cpu_has_secondary_exec_ctrls(void)
1095 {
1096 return vmcs_config.cpu_based_exec_ctrl &
1097 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1098 }
1099
1100 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1101 {
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1104 }
1105
1106 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1107 {
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1110 }
1111
1112 static inline bool cpu_has_vmx_apic_register_virt(void)
1113 {
1114 return vmcs_config.cpu_based_2nd_exec_ctrl &
1115 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1116 }
1117
1118 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1119 {
1120 return vmcs_config.cpu_based_2nd_exec_ctrl &
1121 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1122 }
1123
1124 /*
1125 * Comment's format: document - errata name - stepping - processor name.
1126 * Refer from
1127 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1128 */
1129 static u32 vmx_preemption_cpu_tfms[] = {
1130 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1131 0x000206E6,
1132 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1133 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1134 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1135 0x00020652,
1136 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1137 0x00020655,
1138 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1139 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1140 /*
1141 * 320767.pdf - AAP86 - B1 -
1142 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1143 */
1144 0x000106E5,
1145 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1146 0x000106A0,
1147 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1148 0x000106A1,
1149 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1150 0x000106A4,
1151 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1152 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1153 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1154 0x000106A5,
1155 };
1156
1157 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1158 {
1159 u32 eax = cpuid_eax(0x00000001), i;
1160
1161 /* Clear the reserved bits */
1162 eax &= ~(0x3U << 14 | 0xfU << 28);
1163 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1164 if (eax == vmx_preemption_cpu_tfms[i])
1165 return true;
1166
1167 return false;
1168 }
1169
1170 static inline bool cpu_has_vmx_preemption_timer(void)
1171 {
1172 return vmcs_config.pin_based_exec_ctrl &
1173 PIN_BASED_VMX_PREEMPTION_TIMER;
1174 }
1175
1176 static inline bool cpu_has_vmx_posted_intr(void)
1177 {
1178 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1179 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1180 }
1181
1182 static inline bool cpu_has_vmx_apicv(void)
1183 {
1184 return cpu_has_vmx_apic_register_virt() &&
1185 cpu_has_vmx_virtual_intr_delivery() &&
1186 cpu_has_vmx_posted_intr();
1187 }
1188
1189 static inline bool cpu_has_vmx_flexpriority(void)
1190 {
1191 return cpu_has_vmx_tpr_shadow() &&
1192 cpu_has_vmx_virtualize_apic_accesses();
1193 }
1194
1195 static inline bool cpu_has_vmx_ept_execute_only(void)
1196 {
1197 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1198 }
1199
1200 static inline bool cpu_has_vmx_ept_2m_page(void)
1201 {
1202 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1203 }
1204
1205 static inline bool cpu_has_vmx_ept_1g_page(void)
1206 {
1207 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1208 }
1209
1210 static inline bool cpu_has_vmx_ept_4levels(void)
1211 {
1212 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1213 }
1214
1215 static inline bool cpu_has_vmx_ept_mt_wb(void)
1216 {
1217 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1218 }
1219
1220 static inline bool cpu_has_vmx_ept_5levels(void)
1221 {
1222 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1223 }
1224
1225 static inline bool cpu_has_vmx_ept_ad_bits(void)
1226 {
1227 return vmx_capability.ept & VMX_EPT_AD_BIT;
1228 }
1229
1230 static inline bool cpu_has_vmx_invept_context(void)
1231 {
1232 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1233 }
1234
1235 static inline bool cpu_has_vmx_invept_global(void)
1236 {
1237 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1238 }
1239
1240 static inline bool cpu_has_vmx_invvpid_single(void)
1241 {
1242 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1243 }
1244
1245 static inline bool cpu_has_vmx_invvpid_global(void)
1246 {
1247 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1248 }
1249
1250 static inline bool cpu_has_vmx_invvpid(void)
1251 {
1252 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1253 }
1254
1255 static inline bool cpu_has_vmx_ept(void)
1256 {
1257 return vmcs_config.cpu_based_2nd_exec_ctrl &
1258 SECONDARY_EXEC_ENABLE_EPT;
1259 }
1260
1261 static inline bool cpu_has_vmx_unrestricted_guest(void)
1262 {
1263 return vmcs_config.cpu_based_2nd_exec_ctrl &
1264 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1265 }
1266
1267 static inline bool cpu_has_vmx_ple(void)
1268 {
1269 return vmcs_config.cpu_based_2nd_exec_ctrl &
1270 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1271 }
1272
1273 static inline bool cpu_has_vmx_basic_inout(void)
1274 {
1275 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1276 }
1277
1278 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1279 {
1280 return flexpriority_enabled && lapic_in_kernel(vcpu);
1281 }
1282
1283 static inline bool cpu_has_vmx_vpid(void)
1284 {
1285 return vmcs_config.cpu_based_2nd_exec_ctrl &
1286 SECONDARY_EXEC_ENABLE_VPID;
1287 }
1288
1289 static inline bool cpu_has_vmx_rdtscp(void)
1290 {
1291 return vmcs_config.cpu_based_2nd_exec_ctrl &
1292 SECONDARY_EXEC_RDTSCP;
1293 }
1294
1295 static inline bool cpu_has_vmx_invpcid(void)
1296 {
1297 return vmcs_config.cpu_based_2nd_exec_ctrl &
1298 SECONDARY_EXEC_ENABLE_INVPCID;
1299 }
1300
1301 static inline bool cpu_has_virtual_nmis(void)
1302 {
1303 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1304 }
1305
1306 static inline bool cpu_has_vmx_wbinvd_exit(void)
1307 {
1308 return vmcs_config.cpu_based_2nd_exec_ctrl &
1309 SECONDARY_EXEC_WBINVD_EXITING;
1310 }
1311
1312 static inline bool cpu_has_vmx_shadow_vmcs(void)
1313 {
1314 u64 vmx_msr;
1315 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1316 /* check if the cpu supports writing r/o exit information fields */
1317 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1318 return false;
1319
1320 return vmcs_config.cpu_based_2nd_exec_ctrl &
1321 SECONDARY_EXEC_SHADOW_VMCS;
1322 }
1323
1324 static inline bool cpu_has_vmx_pml(void)
1325 {
1326 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1327 }
1328
1329 static inline bool cpu_has_vmx_tsc_scaling(void)
1330 {
1331 return vmcs_config.cpu_based_2nd_exec_ctrl &
1332 SECONDARY_EXEC_TSC_SCALING;
1333 }
1334
1335 static inline bool cpu_has_vmx_vmfunc(void)
1336 {
1337 return vmcs_config.cpu_based_2nd_exec_ctrl &
1338 SECONDARY_EXEC_ENABLE_VMFUNC;
1339 }
1340
1341 static inline bool report_flexpriority(void)
1342 {
1343 return flexpriority_enabled;
1344 }
1345
1346 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1347 {
1348 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1349 }
1350
1351 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1352 {
1353 return vmcs12->cpu_based_vm_exec_control & bit;
1354 }
1355
1356 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1357 {
1358 return (vmcs12->cpu_based_vm_exec_control &
1359 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1360 (vmcs12->secondary_vm_exec_control & bit);
1361 }
1362
1363 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1364 {
1365 return vmcs12->pin_based_vm_exec_control &
1366 PIN_BASED_VMX_PREEMPTION_TIMER;
1367 }
1368
1369 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1370 {
1371 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1372 }
1373
1374 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1375 {
1376 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1377 }
1378
1379 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1380 {
1381 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1382 }
1383
1384 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1385 {
1386 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1387 }
1388
1389 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1390 {
1391 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1392 }
1393
1394 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1395 {
1396 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1397 }
1398
1399 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1400 {
1401 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1402 }
1403
1404 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1405 {
1406 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1407 }
1408
1409 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1410 {
1411 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1412 }
1413
1414 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1415 {
1416 return nested_cpu_has_vmfunc(vmcs12) &&
1417 (vmcs12->vm_function_control &
1418 VMX_VMFUNC_EPTP_SWITCHING);
1419 }
1420
1421 static inline bool is_nmi(u32 intr_info)
1422 {
1423 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1424 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1425 }
1426
1427 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1428 u32 exit_intr_info,
1429 unsigned long exit_qualification);
1430 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1431 struct vmcs12 *vmcs12,
1432 u32 reason, unsigned long qualification);
1433
1434 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1435 {
1436 int i;
1437
1438 for (i = 0; i < vmx->nmsrs; ++i)
1439 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1440 return i;
1441 return -1;
1442 }
1443
1444 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1445 {
1446 struct {
1447 u64 vpid : 16;
1448 u64 rsvd : 48;
1449 u64 gva;
1450 } operand = { vpid, 0, gva };
1451
1452 asm volatile (__ex(ASM_VMX_INVVPID)
1453 /* CF==1 or ZF==1 --> rc = -1 */
1454 "; ja 1f ; ud2 ; 1:"
1455 : : "a"(&operand), "c"(ext) : "cc", "memory");
1456 }
1457
1458 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1459 {
1460 struct {
1461 u64 eptp, gpa;
1462 } operand = {eptp, gpa};
1463
1464 asm volatile (__ex(ASM_VMX_INVEPT)
1465 /* CF==1 or ZF==1 --> rc = -1 */
1466 "; ja 1f ; ud2 ; 1:\n"
1467 : : "a" (&operand), "c" (ext) : "cc", "memory");
1468 }
1469
1470 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1471 {
1472 int i;
1473
1474 i = __find_msr_index(vmx, msr);
1475 if (i >= 0)
1476 return &vmx->guest_msrs[i];
1477 return NULL;
1478 }
1479
1480 static void vmcs_clear(struct vmcs *vmcs)
1481 {
1482 u64 phys_addr = __pa(vmcs);
1483 u8 error;
1484
1485 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1486 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1487 : "cc", "memory");
1488 if (error)
1489 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1490 vmcs, phys_addr);
1491 }
1492
1493 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1494 {
1495 vmcs_clear(loaded_vmcs->vmcs);
1496 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1497 vmcs_clear(loaded_vmcs->shadow_vmcs);
1498 loaded_vmcs->cpu = -1;
1499 loaded_vmcs->launched = 0;
1500 }
1501
1502 static void vmcs_load(struct vmcs *vmcs)
1503 {
1504 u64 phys_addr = __pa(vmcs);
1505 u8 error;
1506
1507 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1508 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1509 : "cc", "memory");
1510 if (error)
1511 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1512 vmcs, phys_addr);
1513 }
1514
1515 #ifdef CONFIG_KEXEC_CORE
1516 /*
1517 * This bitmap is used to indicate whether the vmclear
1518 * operation is enabled on all cpus. All disabled by
1519 * default.
1520 */
1521 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1522
1523 static inline void crash_enable_local_vmclear(int cpu)
1524 {
1525 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1526 }
1527
1528 static inline void crash_disable_local_vmclear(int cpu)
1529 {
1530 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1531 }
1532
1533 static inline int crash_local_vmclear_enabled(int cpu)
1534 {
1535 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1536 }
1537
1538 static void crash_vmclear_local_loaded_vmcss(void)
1539 {
1540 int cpu = raw_smp_processor_id();
1541 struct loaded_vmcs *v;
1542
1543 if (!crash_local_vmclear_enabled(cpu))
1544 return;
1545
1546 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1547 loaded_vmcss_on_cpu_link)
1548 vmcs_clear(v->vmcs);
1549 }
1550 #else
1551 static inline void crash_enable_local_vmclear(int cpu) { }
1552 static inline void crash_disable_local_vmclear(int cpu) { }
1553 #endif /* CONFIG_KEXEC_CORE */
1554
1555 static void __loaded_vmcs_clear(void *arg)
1556 {
1557 struct loaded_vmcs *loaded_vmcs = arg;
1558 int cpu = raw_smp_processor_id();
1559
1560 if (loaded_vmcs->cpu != cpu)
1561 return; /* vcpu migration can race with cpu offline */
1562 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1563 per_cpu(current_vmcs, cpu) = NULL;
1564 crash_disable_local_vmclear(cpu);
1565 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1566
1567 /*
1568 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1569 * is before setting loaded_vmcs->vcpu to -1 which is done in
1570 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1571 * then adds the vmcs into percpu list before it is deleted.
1572 */
1573 smp_wmb();
1574
1575 loaded_vmcs_init(loaded_vmcs);
1576 crash_enable_local_vmclear(cpu);
1577 }
1578
1579 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1580 {
1581 int cpu = loaded_vmcs->cpu;
1582
1583 if (cpu != -1)
1584 smp_call_function_single(cpu,
1585 __loaded_vmcs_clear, loaded_vmcs, 1);
1586 }
1587
1588 static inline void vpid_sync_vcpu_single(int vpid)
1589 {
1590 if (vpid == 0)
1591 return;
1592
1593 if (cpu_has_vmx_invvpid_single())
1594 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1595 }
1596
1597 static inline void vpid_sync_vcpu_global(void)
1598 {
1599 if (cpu_has_vmx_invvpid_global())
1600 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1601 }
1602
1603 static inline void vpid_sync_context(int vpid)
1604 {
1605 if (cpu_has_vmx_invvpid_single())
1606 vpid_sync_vcpu_single(vpid);
1607 else
1608 vpid_sync_vcpu_global();
1609 }
1610
1611 static inline void ept_sync_global(void)
1612 {
1613 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1614 }
1615
1616 static inline void ept_sync_context(u64 eptp)
1617 {
1618 if (cpu_has_vmx_invept_context())
1619 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1620 else
1621 ept_sync_global();
1622 }
1623
1624 static __always_inline void vmcs_check16(unsigned long field)
1625 {
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1627 "16-bit accessor invalid for 64-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1629 "16-bit accessor invalid for 64-bit high field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1631 "16-bit accessor invalid for 32-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1633 "16-bit accessor invalid for natural width field");
1634 }
1635
1636 static __always_inline void vmcs_check32(unsigned long field)
1637 {
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1639 "32-bit accessor invalid for 16-bit field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1641 "32-bit accessor invalid for natural width field");
1642 }
1643
1644 static __always_inline void vmcs_check64(unsigned long field)
1645 {
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1647 "64-bit accessor invalid for 16-bit field");
1648 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1649 "64-bit accessor invalid for 64-bit high field");
1650 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1651 "64-bit accessor invalid for 32-bit field");
1652 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1653 "64-bit accessor invalid for natural width field");
1654 }
1655
1656 static __always_inline void vmcs_checkl(unsigned long field)
1657 {
1658 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1659 "Natural width accessor invalid for 16-bit field");
1660 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1661 "Natural width accessor invalid for 64-bit field");
1662 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1663 "Natural width accessor invalid for 64-bit high field");
1664 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1665 "Natural width accessor invalid for 32-bit field");
1666 }
1667
1668 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1669 {
1670 unsigned long value;
1671
1672 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1673 : "=a"(value) : "d"(field) : "cc");
1674 return value;
1675 }
1676
1677 static __always_inline u16 vmcs_read16(unsigned long field)
1678 {
1679 vmcs_check16(field);
1680 return __vmcs_readl(field);
1681 }
1682
1683 static __always_inline u32 vmcs_read32(unsigned long field)
1684 {
1685 vmcs_check32(field);
1686 return __vmcs_readl(field);
1687 }
1688
1689 static __always_inline u64 vmcs_read64(unsigned long field)
1690 {
1691 vmcs_check64(field);
1692 #ifdef CONFIG_X86_64
1693 return __vmcs_readl(field);
1694 #else
1695 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1696 #endif
1697 }
1698
1699 static __always_inline unsigned long vmcs_readl(unsigned long field)
1700 {
1701 vmcs_checkl(field);
1702 return __vmcs_readl(field);
1703 }
1704
1705 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1706 {
1707 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1708 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1709 dump_stack();
1710 }
1711
1712 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1713 {
1714 u8 error;
1715
1716 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1717 : "=q"(error) : "a"(value), "d"(field) : "cc");
1718 if (unlikely(error))
1719 vmwrite_error(field, value);
1720 }
1721
1722 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1723 {
1724 vmcs_check16(field);
1725 __vmcs_writel(field, value);
1726 }
1727
1728 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1729 {
1730 vmcs_check32(field);
1731 __vmcs_writel(field, value);
1732 }
1733
1734 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1735 {
1736 vmcs_check64(field);
1737 __vmcs_writel(field, value);
1738 #ifndef CONFIG_X86_64
1739 asm volatile ("");
1740 __vmcs_writel(field+1, value >> 32);
1741 #endif
1742 }
1743
1744 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1745 {
1746 vmcs_checkl(field);
1747 __vmcs_writel(field, value);
1748 }
1749
1750 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1751 {
1752 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1753 "vmcs_clear_bits does not support 64-bit fields");
1754 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1755 }
1756
1757 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1758 {
1759 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1760 "vmcs_set_bits does not support 64-bit fields");
1761 __vmcs_writel(field, __vmcs_readl(field) | mask);
1762 }
1763
1764 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1765 {
1766 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1767 }
1768
1769 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1770 {
1771 vmcs_write32(VM_ENTRY_CONTROLS, val);
1772 vmx->vm_entry_controls_shadow = val;
1773 }
1774
1775 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1776 {
1777 if (vmx->vm_entry_controls_shadow != val)
1778 vm_entry_controls_init(vmx, val);
1779 }
1780
1781 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1782 {
1783 return vmx->vm_entry_controls_shadow;
1784 }
1785
1786
1787 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1788 {
1789 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1790 }
1791
1792 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1793 {
1794 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1795 }
1796
1797 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1798 {
1799 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1800 }
1801
1802 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1803 {
1804 vmcs_write32(VM_EXIT_CONTROLS, val);
1805 vmx->vm_exit_controls_shadow = val;
1806 }
1807
1808 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1809 {
1810 if (vmx->vm_exit_controls_shadow != val)
1811 vm_exit_controls_init(vmx, val);
1812 }
1813
1814 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1815 {
1816 return vmx->vm_exit_controls_shadow;
1817 }
1818
1819
1820 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1821 {
1822 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1823 }
1824
1825 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1826 {
1827 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1828 }
1829
1830 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1831 {
1832 vmx->segment_cache.bitmask = 0;
1833 }
1834
1835 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1836 unsigned field)
1837 {
1838 bool ret;
1839 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1840
1841 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1842 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1843 vmx->segment_cache.bitmask = 0;
1844 }
1845 ret = vmx->segment_cache.bitmask & mask;
1846 vmx->segment_cache.bitmask |= mask;
1847 return ret;
1848 }
1849
1850 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1851 {
1852 u16 *p = &vmx->segment_cache.seg[seg].selector;
1853
1854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1855 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1856 return *p;
1857 }
1858
1859 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1860 {
1861 ulong *p = &vmx->segment_cache.seg[seg].base;
1862
1863 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1864 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1865 return *p;
1866 }
1867
1868 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1869 {
1870 u32 *p = &vmx->segment_cache.seg[seg].limit;
1871
1872 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1873 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1874 return *p;
1875 }
1876
1877 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1878 {
1879 u32 *p = &vmx->segment_cache.seg[seg].ar;
1880
1881 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1882 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1883 return *p;
1884 }
1885
1886 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1887 {
1888 u32 eb;
1889
1890 eb = (1u << PF_VECTOR) | (1u << MC_VECTOR) |
1891 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1892 if ((vcpu->guest_debug &
1893 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1894 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1895 eb |= 1u << BP_VECTOR;
1896 if (to_vmx(vcpu)->rmode.vm86_active)
1897 eb = ~0;
1898 if (enable_ept)
1899 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1900
1901 /* When we are running a nested L2 guest and L1 specified for it a
1902 * certain exception bitmap, we must trap the same exceptions and pass
1903 * them to L1. When running L2, we will only handle the exceptions
1904 * specified above if L1 did not want them.
1905 */
1906 if (is_guest_mode(vcpu))
1907 eb |= get_vmcs12(vcpu)->exception_bitmap;
1908 else
1909 eb |= 1u << UD_VECTOR;
1910
1911 vmcs_write32(EXCEPTION_BITMAP, eb);
1912 }
1913
1914 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1915 unsigned long entry, unsigned long exit)
1916 {
1917 vm_entry_controls_clearbit(vmx, entry);
1918 vm_exit_controls_clearbit(vmx, exit);
1919 }
1920
1921 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1922 {
1923 unsigned i;
1924 struct msr_autoload *m = &vmx->msr_autoload;
1925
1926 switch (msr) {
1927 case MSR_EFER:
1928 if (cpu_has_load_ia32_efer) {
1929 clear_atomic_switch_msr_special(vmx,
1930 VM_ENTRY_LOAD_IA32_EFER,
1931 VM_EXIT_LOAD_IA32_EFER);
1932 return;
1933 }
1934 break;
1935 case MSR_CORE_PERF_GLOBAL_CTRL:
1936 if (cpu_has_load_perf_global_ctrl) {
1937 clear_atomic_switch_msr_special(vmx,
1938 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1939 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1940 return;
1941 }
1942 break;
1943 }
1944
1945 for (i = 0; i < m->nr; ++i)
1946 if (m->guest[i].index == msr)
1947 break;
1948
1949 if (i == m->nr)
1950 return;
1951 --m->nr;
1952 m->guest[i] = m->guest[m->nr];
1953 m->host[i] = m->host[m->nr];
1954 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1955 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1956 }
1957
1958 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1959 unsigned long entry, unsigned long exit,
1960 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1961 u64 guest_val, u64 host_val)
1962 {
1963 vmcs_write64(guest_val_vmcs, guest_val);
1964 vmcs_write64(host_val_vmcs, host_val);
1965 vm_entry_controls_setbit(vmx, entry);
1966 vm_exit_controls_setbit(vmx, exit);
1967 }
1968
1969 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1970 u64 guest_val, u64 host_val)
1971 {
1972 unsigned i;
1973 struct msr_autoload *m = &vmx->msr_autoload;
1974
1975 switch (msr) {
1976 case MSR_EFER:
1977 if (cpu_has_load_ia32_efer) {
1978 add_atomic_switch_msr_special(vmx,
1979 VM_ENTRY_LOAD_IA32_EFER,
1980 VM_EXIT_LOAD_IA32_EFER,
1981 GUEST_IA32_EFER,
1982 HOST_IA32_EFER,
1983 guest_val, host_val);
1984 return;
1985 }
1986 break;
1987 case MSR_CORE_PERF_GLOBAL_CTRL:
1988 if (cpu_has_load_perf_global_ctrl) {
1989 add_atomic_switch_msr_special(vmx,
1990 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1991 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1992 GUEST_IA32_PERF_GLOBAL_CTRL,
1993 HOST_IA32_PERF_GLOBAL_CTRL,
1994 guest_val, host_val);
1995 return;
1996 }
1997 break;
1998 case MSR_IA32_PEBS_ENABLE:
1999 /* PEBS needs a quiescent period after being disabled (to write
2000 * a record). Disabling PEBS through VMX MSR swapping doesn't
2001 * provide that period, so a CPU could write host's record into
2002 * guest's memory.
2003 */
2004 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2005 }
2006
2007 for (i = 0; i < m->nr; ++i)
2008 if (m->guest[i].index == msr)
2009 break;
2010
2011 if (i == NR_AUTOLOAD_MSRS) {
2012 printk_once(KERN_WARNING "Not enough msr switch entries. "
2013 "Can't add msr %x\n", msr);
2014 return;
2015 } else if (i == m->nr) {
2016 ++m->nr;
2017 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2018 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2019 }
2020
2021 m->guest[i].index = msr;
2022 m->guest[i].value = guest_val;
2023 m->host[i].index = msr;
2024 m->host[i].value = host_val;
2025 }
2026
2027 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2028 {
2029 u64 guest_efer = vmx->vcpu.arch.efer;
2030 u64 ignore_bits = 0;
2031
2032 if (!enable_ept) {
2033 /*
2034 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2035 * host CPUID is more efficient than testing guest CPUID
2036 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2037 */
2038 if (boot_cpu_has(X86_FEATURE_SMEP))
2039 guest_efer |= EFER_NX;
2040 else if (!(guest_efer & EFER_NX))
2041 ignore_bits |= EFER_NX;
2042 }
2043
2044 /*
2045 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2046 */
2047 ignore_bits |= EFER_SCE;
2048 #ifdef CONFIG_X86_64
2049 ignore_bits |= EFER_LMA | EFER_LME;
2050 /* SCE is meaningful only in long mode on Intel */
2051 if (guest_efer & EFER_LMA)
2052 ignore_bits &= ~(u64)EFER_SCE;
2053 #endif
2054
2055 clear_atomic_switch_msr(vmx, MSR_EFER);
2056
2057 /*
2058 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2059 * On CPUs that support "load IA32_EFER", always switch EFER
2060 * atomically, since it's faster than switching it manually.
2061 */
2062 if (cpu_has_load_ia32_efer ||
2063 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2064 if (!(guest_efer & EFER_LMA))
2065 guest_efer &= ~EFER_LME;
2066 if (guest_efer != host_efer)
2067 add_atomic_switch_msr(vmx, MSR_EFER,
2068 guest_efer, host_efer);
2069 return false;
2070 } else {
2071 guest_efer &= ~ignore_bits;
2072 guest_efer |= host_efer & ignore_bits;
2073
2074 vmx->guest_msrs[efer_offset].data = guest_efer;
2075 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2076
2077 return true;
2078 }
2079 }
2080
2081 #ifdef CONFIG_X86_32
2082 /*
2083 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2084 * VMCS rather than the segment table. KVM uses this helper to figure
2085 * out the current bases to poke them into the VMCS before entry.
2086 */
2087 static unsigned long segment_base(u16 selector)
2088 {
2089 struct desc_struct *table;
2090 unsigned long v;
2091
2092 if (!(selector & ~SEGMENT_RPL_MASK))
2093 return 0;
2094
2095 table = get_current_gdt_ro();
2096
2097 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2098 u16 ldt_selector = kvm_read_ldt();
2099
2100 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2101 return 0;
2102
2103 table = (struct desc_struct *)segment_base(ldt_selector);
2104 }
2105 v = get_desc_base(&table[selector >> 3]);
2106 return v;
2107 }
2108 #endif
2109
2110 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2111 {
2112 struct vcpu_vmx *vmx = to_vmx(vcpu);
2113 int i;
2114
2115 if (vmx->host_state.loaded)
2116 return;
2117
2118 vmx->host_state.loaded = 1;
2119 /*
2120 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2121 * allow segment selectors with cpl > 0 or ti == 1.
2122 */
2123 vmx->host_state.ldt_sel = kvm_read_ldt();
2124 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2125 savesegment(fs, vmx->host_state.fs_sel);
2126 if (!(vmx->host_state.fs_sel & 7)) {
2127 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2128 vmx->host_state.fs_reload_needed = 0;
2129 } else {
2130 vmcs_write16(HOST_FS_SELECTOR, 0);
2131 vmx->host_state.fs_reload_needed = 1;
2132 }
2133 savesegment(gs, vmx->host_state.gs_sel);
2134 if (!(vmx->host_state.gs_sel & 7))
2135 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2136 else {
2137 vmcs_write16(HOST_GS_SELECTOR, 0);
2138 vmx->host_state.gs_ldt_reload_needed = 1;
2139 }
2140
2141 #ifdef CONFIG_X86_64
2142 savesegment(ds, vmx->host_state.ds_sel);
2143 savesegment(es, vmx->host_state.es_sel);
2144 #endif
2145
2146 #ifdef CONFIG_X86_64
2147 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2148 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2149 #else
2150 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2151 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2152 #endif
2153
2154 #ifdef CONFIG_X86_64
2155 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2156 if (is_long_mode(&vmx->vcpu))
2157 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2158 #endif
2159 if (boot_cpu_has(X86_FEATURE_MPX))
2160 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2161 for (i = 0; i < vmx->save_nmsrs; ++i)
2162 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2163 vmx->guest_msrs[i].data,
2164 vmx->guest_msrs[i].mask);
2165 }
2166
2167 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2168 {
2169 if (!vmx->host_state.loaded)
2170 return;
2171
2172 ++vmx->vcpu.stat.host_state_reload;
2173 vmx->host_state.loaded = 0;
2174 #ifdef CONFIG_X86_64
2175 if (is_long_mode(&vmx->vcpu))
2176 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2177 #endif
2178 if (vmx->host_state.gs_ldt_reload_needed) {
2179 kvm_load_ldt(vmx->host_state.ldt_sel);
2180 #ifdef CONFIG_X86_64
2181 load_gs_index(vmx->host_state.gs_sel);
2182 #else
2183 loadsegment(gs, vmx->host_state.gs_sel);
2184 #endif
2185 }
2186 if (vmx->host_state.fs_reload_needed)
2187 loadsegment(fs, vmx->host_state.fs_sel);
2188 #ifdef CONFIG_X86_64
2189 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2190 loadsegment(ds, vmx->host_state.ds_sel);
2191 loadsegment(es, vmx->host_state.es_sel);
2192 }
2193 #endif
2194 invalidate_tss_limit();
2195 #ifdef CONFIG_X86_64
2196 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2197 #endif
2198 if (vmx->host_state.msr_host_bndcfgs)
2199 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2200 load_fixmap_gdt(raw_smp_processor_id());
2201 }
2202
2203 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2204 {
2205 preempt_disable();
2206 __vmx_load_host_state(vmx);
2207 preempt_enable();
2208 }
2209
2210 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2211 {
2212 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2213 struct pi_desc old, new;
2214 unsigned int dest;
2215
2216 /*
2217 * In case of hot-plug or hot-unplug, we may have to undo
2218 * vmx_vcpu_pi_put even if there is no assigned device. And we
2219 * always keep PI.NDST up to date for simplicity: it makes the
2220 * code easier, and CPU migration is not a fast path.
2221 */
2222 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2223 return;
2224
2225 /*
2226 * First handle the simple case where no cmpxchg is necessary; just
2227 * allow posting non-urgent interrupts.
2228 *
2229 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2230 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2231 * expects the VCPU to be on the blocked_vcpu_list that matches
2232 * PI.NDST.
2233 */
2234 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2235 vcpu->cpu == cpu) {
2236 pi_clear_sn(pi_desc);
2237 return;
2238 }
2239
2240 /* The full case. */
2241 do {
2242 old.control = new.control = pi_desc->control;
2243
2244 dest = cpu_physical_id(cpu);
2245
2246 if (x2apic_enabled())
2247 new.ndst = dest;
2248 else
2249 new.ndst = (dest << 8) & 0xFF00;
2250
2251 new.sn = 0;
2252 } while (cmpxchg64(&pi_desc->control, old.control,
2253 new.control) != old.control);
2254 }
2255
2256 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2257 {
2258 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2259 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2260 }
2261
2262 /*
2263 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2264 * vcpu mutex is already taken.
2265 */
2266 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2267 {
2268 struct vcpu_vmx *vmx = to_vmx(vcpu);
2269 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2270
2271 if (!already_loaded) {
2272 loaded_vmcs_clear(vmx->loaded_vmcs);
2273 local_irq_disable();
2274 crash_disable_local_vmclear(cpu);
2275
2276 /*
2277 * Read loaded_vmcs->cpu should be before fetching
2278 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2279 * See the comments in __loaded_vmcs_clear().
2280 */
2281 smp_rmb();
2282
2283 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2284 &per_cpu(loaded_vmcss_on_cpu, cpu));
2285 crash_enable_local_vmclear(cpu);
2286 local_irq_enable();
2287 }
2288
2289 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2290 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2291 vmcs_load(vmx->loaded_vmcs->vmcs);
2292 }
2293
2294 if (!already_loaded) {
2295 void *gdt = get_current_gdt_ro();
2296 unsigned long sysenter_esp;
2297
2298 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2299
2300 /*
2301 * Linux uses per-cpu TSS and GDT, so set these when switching
2302 * processors. See 22.2.4.
2303 */
2304 vmcs_writel(HOST_TR_BASE,
2305 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2306 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2307
2308 /*
2309 * VM exits change the host TR limit to 0x67 after a VM
2310 * exit. This is okay, since 0x67 covers everything except
2311 * the IO bitmap and have have code to handle the IO bitmap
2312 * being lost after a VM exit.
2313 */
2314 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2315
2316 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2317 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2318
2319 vmx->loaded_vmcs->cpu = cpu;
2320 }
2321
2322 /* Setup TSC multiplier */
2323 if (kvm_has_tsc_control &&
2324 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2325 decache_tsc_multiplier(vmx);
2326
2327 vmx_vcpu_pi_load(vcpu, cpu);
2328 vmx->host_pkru = read_pkru();
2329 }
2330
2331 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2332 {
2333 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2334
2335 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2336 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2337 !kvm_vcpu_apicv_active(vcpu))
2338 return;
2339
2340 /* Set SN when the vCPU is preempted */
2341 if (vcpu->preempted)
2342 pi_set_sn(pi_desc);
2343 }
2344
2345 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2346 {
2347 vmx_vcpu_pi_put(vcpu);
2348
2349 __vmx_load_host_state(to_vmx(vcpu));
2350 }
2351
2352 static bool emulation_required(struct kvm_vcpu *vcpu)
2353 {
2354 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2355 }
2356
2357 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2358
2359 /*
2360 * Return the cr0 value that a nested guest would read. This is a combination
2361 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2362 * its hypervisor (cr0_read_shadow).
2363 */
2364 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2365 {
2366 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2367 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2368 }
2369 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2370 {
2371 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2372 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2373 }
2374
2375 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2376 {
2377 unsigned long rflags, save_rflags;
2378
2379 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2380 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2381 rflags = vmcs_readl(GUEST_RFLAGS);
2382 if (to_vmx(vcpu)->rmode.vm86_active) {
2383 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2384 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2385 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2386 }
2387 to_vmx(vcpu)->rflags = rflags;
2388 }
2389 return to_vmx(vcpu)->rflags;
2390 }
2391
2392 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2393 {
2394 unsigned long old_rflags = vmx_get_rflags(vcpu);
2395
2396 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2397 to_vmx(vcpu)->rflags = rflags;
2398 if (to_vmx(vcpu)->rmode.vm86_active) {
2399 to_vmx(vcpu)->rmode.save_rflags = rflags;
2400 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2401 }
2402 vmcs_writel(GUEST_RFLAGS, rflags);
2403
2404 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2405 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2406 }
2407
2408 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2409 {
2410 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 int ret = 0;
2412
2413 if (interruptibility & GUEST_INTR_STATE_STI)
2414 ret |= KVM_X86_SHADOW_INT_STI;
2415 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2416 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2417
2418 return ret;
2419 }
2420
2421 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2422 {
2423 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2424 u32 interruptibility = interruptibility_old;
2425
2426 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2427
2428 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2429 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2430 else if (mask & KVM_X86_SHADOW_INT_STI)
2431 interruptibility |= GUEST_INTR_STATE_STI;
2432
2433 if ((interruptibility != interruptibility_old))
2434 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2435 }
2436
2437 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2438 {
2439 unsigned long rip;
2440
2441 rip = kvm_rip_read(vcpu);
2442 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2443 kvm_rip_write(vcpu, rip);
2444
2445 /* skipping an emulated instruction also counts */
2446 vmx_set_interrupt_shadow(vcpu, 0);
2447 }
2448
2449 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2450 unsigned long exit_qual)
2451 {
2452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2453 unsigned int nr = vcpu->arch.exception.nr;
2454 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2455
2456 if (vcpu->arch.exception.has_error_code) {
2457 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2458 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2459 }
2460
2461 if (kvm_exception_is_soft(nr))
2462 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2463 else
2464 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2465
2466 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2467 vmx_get_nmi_mask(vcpu))
2468 intr_info |= INTR_INFO_UNBLOCK_NMI;
2469
2470 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2471 }
2472
2473 /*
2474 * KVM wants to inject page-faults which it got to the guest. This function
2475 * checks whether in a nested guest, we need to inject them to L1 or L2.
2476 */
2477 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2478 {
2479 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2480 unsigned int nr = vcpu->arch.exception.nr;
2481
2482 if (nr == PF_VECTOR) {
2483 if (vcpu->arch.exception.nested_apf) {
2484 *exit_qual = vcpu->arch.apf.nested_apf_token;
2485 return 1;
2486 }
2487 /*
2488 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2489 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2490 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2491 * can be written only when inject_pending_event runs. This should be
2492 * conditional on a new capability---if the capability is disabled,
2493 * kvm_multiple_exception would write the ancillary information to
2494 * CR2 or DR6, for backwards ABI-compatibility.
2495 */
2496 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2497 vcpu->arch.exception.error_code)) {
2498 *exit_qual = vcpu->arch.cr2;
2499 return 1;
2500 }
2501 } else {
2502 if (vmcs12->exception_bitmap & (1u << nr)) {
2503 if (nr == DB_VECTOR)
2504 *exit_qual = vcpu->arch.dr6;
2505 else
2506 *exit_qual = 0;
2507 return 1;
2508 }
2509 }
2510
2511 return 0;
2512 }
2513
2514 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2515 {
2516 struct vcpu_vmx *vmx = to_vmx(vcpu);
2517 unsigned nr = vcpu->arch.exception.nr;
2518 bool has_error_code = vcpu->arch.exception.has_error_code;
2519 u32 error_code = vcpu->arch.exception.error_code;
2520 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2521
2522 if (has_error_code) {
2523 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2524 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2525 }
2526
2527 if (vmx->rmode.vm86_active) {
2528 int inc_eip = 0;
2529 if (kvm_exception_is_soft(nr))
2530 inc_eip = vcpu->arch.event_exit_inst_len;
2531 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2532 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2533 return;
2534 }
2535
2536 if (kvm_exception_is_soft(nr)) {
2537 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2538 vmx->vcpu.arch.event_exit_inst_len);
2539 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2540 } else
2541 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2542
2543 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2544 }
2545
2546 static bool vmx_rdtscp_supported(void)
2547 {
2548 return cpu_has_vmx_rdtscp();
2549 }
2550
2551 static bool vmx_invpcid_supported(void)
2552 {
2553 return cpu_has_vmx_invpcid() && enable_ept;
2554 }
2555
2556 /*
2557 * Swap MSR entry in host/guest MSR entry array.
2558 */
2559 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2560 {
2561 struct shared_msr_entry tmp;
2562
2563 tmp = vmx->guest_msrs[to];
2564 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2565 vmx->guest_msrs[from] = tmp;
2566 }
2567
2568 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2569 {
2570 unsigned long *msr_bitmap;
2571
2572 if (is_guest_mode(vcpu))
2573 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2574 else if (cpu_has_secondary_exec_ctrls() &&
2575 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2576 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2577 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2578 if (is_long_mode(vcpu))
2579 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2580 else
2581 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2582 } else {
2583 if (is_long_mode(vcpu))
2584 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2585 else
2586 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2587 }
2588 } else {
2589 if (is_long_mode(vcpu))
2590 msr_bitmap = vmx_msr_bitmap_longmode;
2591 else
2592 msr_bitmap = vmx_msr_bitmap_legacy;
2593 }
2594
2595 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2596 }
2597
2598 /*
2599 * Set up the vmcs to automatically save and restore system
2600 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2601 * mode, as fiddling with msrs is very expensive.
2602 */
2603 static void setup_msrs(struct vcpu_vmx *vmx)
2604 {
2605 int save_nmsrs, index;
2606
2607 save_nmsrs = 0;
2608 #ifdef CONFIG_X86_64
2609 if (is_long_mode(&vmx->vcpu)) {
2610 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2611 if (index >= 0)
2612 move_msr_up(vmx, index, save_nmsrs++);
2613 index = __find_msr_index(vmx, MSR_LSTAR);
2614 if (index >= 0)
2615 move_msr_up(vmx, index, save_nmsrs++);
2616 index = __find_msr_index(vmx, MSR_CSTAR);
2617 if (index >= 0)
2618 move_msr_up(vmx, index, save_nmsrs++);
2619 index = __find_msr_index(vmx, MSR_TSC_AUX);
2620 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2621 move_msr_up(vmx, index, save_nmsrs++);
2622 /*
2623 * MSR_STAR is only needed on long mode guests, and only
2624 * if efer.sce is enabled.
2625 */
2626 index = __find_msr_index(vmx, MSR_STAR);
2627 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2628 move_msr_up(vmx, index, save_nmsrs++);
2629 }
2630 #endif
2631 index = __find_msr_index(vmx, MSR_EFER);
2632 if (index >= 0 && update_transition_efer(vmx, index))
2633 move_msr_up(vmx, index, save_nmsrs++);
2634
2635 vmx->save_nmsrs = save_nmsrs;
2636
2637 if (cpu_has_vmx_msr_bitmap())
2638 vmx_set_msr_bitmap(&vmx->vcpu);
2639 }
2640
2641 /*
2642 * reads and returns guest's timestamp counter "register"
2643 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2644 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2645 */
2646 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2647 {
2648 u64 host_tsc, tsc_offset;
2649
2650 host_tsc = rdtsc();
2651 tsc_offset = vmcs_read64(TSC_OFFSET);
2652 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2653 }
2654
2655 /*
2656 * writes 'offset' into guest's timestamp counter offset register
2657 */
2658 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2659 {
2660 if (is_guest_mode(vcpu)) {
2661 /*
2662 * We're here if L1 chose not to trap WRMSR to TSC. According
2663 * to the spec, this should set L1's TSC; The offset that L1
2664 * set for L2 remains unchanged, and still needs to be added
2665 * to the newly set TSC to get L2's TSC.
2666 */
2667 struct vmcs12 *vmcs12;
2668 /* recalculate vmcs02.TSC_OFFSET: */
2669 vmcs12 = get_vmcs12(vcpu);
2670 vmcs_write64(TSC_OFFSET, offset +
2671 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2672 vmcs12->tsc_offset : 0));
2673 } else {
2674 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2675 vmcs_read64(TSC_OFFSET), offset);
2676 vmcs_write64(TSC_OFFSET, offset);
2677 }
2678 }
2679
2680 /*
2681 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2682 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2683 * all guests if the "nested" module option is off, and can also be disabled
2684 * for a single guest by disabling its VMX cpuid bit.
2685 */
2686 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2687 {
2688 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2689 }
2690
2691 /*
2692 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2693 * returned for the various VMX controls MSRs when nested VMX is enabled.
2694 * The same values should also be used to verify that vmcs12 control fields are
2695 * valid during nested entry from L1 to L2.
2696 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2697 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2698 * bit in the high half is on if the corresponding bit in the control field
2699 * may be on. See also vmx_control_verify().
2700 */
2701 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2702 {
2703 /*
2704 * Note that as a general rule, the high half of the MSRs (bits in
2705 * the control fields which may be 1) should be initialized by the
2706 * intersection of the underlying hardware's MSR (i.e., features which
2707 * can be supported) and the list of features we want to expose -
2708 * because they are known to be properly supported in our code.
2709 * Also, usually, the low half of the MSRs (bits which must be 1) can
2710 * be set to 0, meaning that L1 may turn off any of these bits. The
2711 * reason is that if one of these bits is necessary, it will appear
2712 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2713 * fields of vmcs01 and vmcs02, will turn these bits off - and
2714 * nested_vmx_exit_reflected() will not pass related exits to L1.
2715 * These rules have exceptions below.
2716 */
2717
2718 /* pin-based controls */
2719 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2720 vmx->nested.nested_vmx_pinbased_ctls_low,
2721 vmx->nested.nested_vmx_pinbased_ctls_high);
2722 vmx->nested.nested_vmx_pinbased_ctls_low |=
2723 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2724 vmx->nested.nested_vmx_pinbased_ctls_high &=
2725 PIN_BASED_EXT_INTR_MASK |
2726 PIN_BASED_NMI_EXITING |
2727 PIN_BASED_VIRTUAL_NMIS;
2728 vmx->nested.nested_vmx_pinbased_ctls_high |=
2729 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2730 PIN_BASED_VMX_PREEMPTION_TIMER;
2731 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2732 vmx->nested.nested_vmx_pinbased_ctls_high |=
2733 PIN_BASED_POSTED_INTR;
2734
2735 /* exit controls */
2736 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2737 vmx->nested.nested_vmx_exit_ctls_low,
2738 vmx->nested.nested_vmx_exit_ctls_high);
2739 vmx->nested.nested_vmx_exit_ctls_low =
2740 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2741
2742 vmx->nested.nested_vmx_exit_ctls_high &=
2743 #ifdef CONFIG_X86_64
2744 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2745 #endif
2746 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2747 vmx->nested.nested_vmx_exit_ctls_high |=
2748 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2749 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2750 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2751
2752 if (kvm_mpx_supported())
2753 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2754
2755 /* We support free control of debug control saving. */
2756 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2757
2758 /* entry controls */
2759 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2760 vmx->nested.nested_vmx_entry_ctls_low,
2761 vmx->nested.nested_vmx_entry_ctls_high);
2762 vmx->nested.nested_vmx_entry_ctls_low =
2763 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2764 vmx->nested.nested_vmx_entry_ctls_high &=
2765 #ifdef CONFIG_X86_64
2766 VM_ENTRY_IA32E_MODE |
2767 #endif
2768 VM_ENTRY_LOAD_IA32_PAT;
2769 vmx->nested.nested_vmx_entry_ctls_high |=
2770 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2771 if (kvm_mpx_supported())
2772 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2773
2774 /* We support free control of debug control loading. */
2775 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2776
2777 /* cpu-based controls */
2778 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2779 vmx->nested.nested_vmx_procbased_ctls_low,
2780 vmx->nested.nested_vmx_procbased_ctls_high);
2781 vmx->nested.nested_vmx_procbased_ctls_low =
2782 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2783 vmx->nested.nested_vmx_procbased_ctls_high &=
2784 CPU_BASED_VIRTUAL_INTR_PENDING |
2785 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2786 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2787 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2788 CPU_BASED_CR3_STORE_EXITING |
2789 #ifdef CONFIG_X86_64
2790 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2791 #endif
2792 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2793 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2794 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2795 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2796 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2797 /*
2798 * We can allow some features even when not supported by the
2799 * hardware. For example, L1 can specify an MSR bitmap - and we
2800 * can use it to avoid exits to L1 - even when L0 runs L2
2801 * without MSR bitmaps.
2802 */
2803 vmx->nested.nested_vmx_procbased_ctls_high |=
2804 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2805 CPU_BASED_USE_MSR_BITMAPS;
2806
2807 /* We support free control of CR3 access interception. */
2808 vmx->nested.nested_vmx_procbased_ctls_low &=
2809 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2810
2811 /*
2812 * secondary cpu-based controls. Do not include those that
2813 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2814 */
2815 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2816 vmx->nested.nested_vmx_secondary_ctls_low,
2817 vmx->nested.nested_vmx_secondary_ctls_high);
2818 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2819 vmx->nested.nested_vmx_secondary_ctls_high &=
2820 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2821 SECONDARY_EXEC_DESC |
2822 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2823 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2824 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2825 SECONDARY_EXEC_WBINVD_EXITING;
2826
2827 if (enable_ept) {
2828 /* nested EPT: emulate EPT also to L1 */
2829 vmx->nested.nested_vmx_secondary_ctls_high |=
2830 SECONDARY_EXEC_ENABLE_EPT;
2831 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2832 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2833 if (cpu_has_vmx_ept_execute_only())
2834 vmx->nested.nested_vmx_ept_caps |=
2835 VMX_EPT_EXECUTE_ONLY_BIT;
2836 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2837 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2838 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2839 VMX_EPT_1GB_PAGE_BIT;
2840 if (enable_ept_ad_bits) {
2841 vmx->nested.nested_vmx_secondary_ctls_high |=
2842 SECONDARY_EXEC_ENABLE_PML;
2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2844 }
2845 }
2846
2847 if (cpu_has_vmx_vmfunc()) {
2848 vmx->nested.nested_vmx_secondary_ctls_high |=
2849 SECONDARY_EXEC_ENABLE_VMFUNC;
2850 /*
2851 * Advertise EPTP switching unconditionally
2852 * since we emulate it
2853 */
2854 if (enable_ept)
2855 vmx->nested.nested_vmx_vmfunc_controls =
2856 VMX_VMFUNC_EPTP_SWITCHING;
2857 }
2858
2859 /*
2860 * Old versions of KVM use the single-context version without
2861 * checking for support, so declare that it is supported even
2862 * though it is treated as global context. The alternative is
2863 * not failing the single-context invvpid, and it is worse.
2864 */
2865 if (enable_vpid) {
2866 vmx->nested.nested_vmx_secondary_ctls_high |=
2867 SECONDARY_EXEC_ENABLE_VPID;
2868 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2869 VMX_VPID_EXTENT_SUPPORTED_MASK;
2870 }
2871
2872 if (enable_unrestricted_guest)
2873 vmx->nested.nested_vmx_secondary_ctls_high |=
2874 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2875
2876 /* miscellaneous data */
2877 rdmsr(MSR_IA32_VMX_MISC,
2878 vmx->nested.nested_vmx_misc_low,
2879 vmx->nested.nested_vmx_misc_high);
2880 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2881 vmx->nested.nested_vmx_misc_low |=
2882 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2883 VMX_MISC_ACTIVITY_HLT;
2884 vmx->nested.nested_vmx_misc_high = 0;
2885
2886 /*
2887 * This MSR reports some information about VMX support. We
2888 * should return information about the VMX we emulate for the
2889 * guest, and the VMCS structure we give it - not about the
2890 * VMX support of the underlying hardware.
2891 */
2892 vmx->nested.nested_vmx_basic =
2893 VMCS12_REVISION |
2894 VMX_BASIC_TRUE_CTLS |
2895 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2896 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2897
2898 if (cpu_has_vmx_basic_inout())
2899 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2900
2901 /*
2902 * These MSRs specify bits which the guest must keep fixed on
2903 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2904 * We picked the standard core2 setting.
2905 */
2906 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2907 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2908 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2909 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2910
2911 /* These MSRs specify bits which the guest must keep fixed off. */
2912 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2913 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2914
2915 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2916 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2917 }
2918
2919 /*
2920 * if fixed0[i] == 1: val[i] must be 1
2921 * if fixed1[i] == 0: val[i] must be 0
2922 */
2923 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2924 {
2925 return ((val & fixed1) | fixed0) == val;
2926 }
2927
2928 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2929 {
2930 return fixed_bits_valid(control, low, high);
2931 }
2932
2933 static inline u64 vmx_control_msr(u32 low, u32 high)
2934 {
2935 return low | ((u64)high << 32);
2936 }
2937
2938 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2939 {
2940 superset &= mask;
2941 subset &= mask;
2942
2943 return (superset | subset) == superset;
2944 }
2945
2946 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2947 {
2948 const u64 feature_and_reserved =
2949 /* feature (except bit 48; see below) */
2950 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2951 /* reserved */
2952 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2953 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2954
2955 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2956 return -EINVAL;
2957
2958 /*
2959 * KVM does not emulate a version of VMX that constrains physical
2960 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2961 */
2962 if (data & BIT_ULL(48))
2963 return -EINVAL;
2964
2965 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2966 vmx_basic_vmcs_revision_id(data))
2967 return -EINVAL;
2968
2969 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2970 return -EINVAL;
2971
2972 vmx->nested.nested_vmx_basic = data;
2973 return 0;
2974 }
2975
2976 static int
2977 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2978 {
2979 u64 supported;
2980 u32 *lowp, *highp;
2981
2982 switch (msr_index) {
2983 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2984 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2985 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2986 break;
2987 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2988 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2989 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2990 break;
2991 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2992 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2993 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2994 break;
2995 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2996 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2997 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2998 break;
2999 case MSR_IA32_VMX_PROCBASED_CTLS2:
3000 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3001 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3002 break;
3003 default:
3004 BUG();
3005 }
3006
3007 supported = vmx_control_msr(*lowp, *highp);
3008
3009 /* Check must-be-1 bits are still 1. */
3010 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3011 return -EINVAL;
3012
3013 /* Check must-be-0 bits are still 0. */
3014 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3015 return -EINVAL;
3016
3017 *lowp = data;
3018 *highp = data >> 32;
3019 return 0;
3020 }
3021
3022 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3023 {
3024 const u64 feature_and_reserved_bits =
3025 /* feature */
3026 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3027 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3028 /* reserved */
3029 GENMASK_ULL(13, 9) | BIT_ULL(31);
3030 u64 vmx_misc;
3031
3032 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3033 vmx->nested.nested_vmx_misc_high);
3034
3035 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3036 return -EINVAL;
3037
3038 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3039 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3040 vmx_misc_preemption_timer_rate(data) !=
3041 vmx_misc_preemption_timer_rate(vmx_misc))
3042 return -EINVAL;
3043
3044 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3045 return -EINVAL;
3046
3047 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3048 return -EINVAL;
3049
3050 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3051 return -EINVAL;
3052
3053 vmx->nested.nested_vmx_misc_low = data;
3054 vmx->nested.nested_vmx_misc_high = data >> 32;
3055 return 0;
3056 }
3057
3058 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3059 {
3060 u64 vmx_ept_vpid_cap;
3061
3062 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3063 vmx->nested.nested_vmx_vpid_caps);
3064
3065 /* Every bit is either reserved or a feature bit. */
3066 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3067 return -EINVAL;
3068
3069 vmx->nested.nested_vmx_ept_caps = data;
3070 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3071 return 0;
3072 }
3073
3074 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3075 {
3076 u64 *msr;
3077
3078 switch (msr_index) {
3079 case MSR_IA32_VMX_CR0_FIXED0:
3080 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3081 break;
3082 case MSR_IA32_VMX_CR4_FIXED0:
3083 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3084 break;
3085 default:
3086 BUG();
3087 }
3088
3089 /*
3090 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3091 * must be 1 in the restored value.
3092 */
3093 if (!is_bitwise_subset(data, *msr, -1ULL))
3094 return -EINVAL;
3095
3096 *msr = data;
3097 return 0;
3098 }
3099
3100 /*
3101 * Called when userspace is restoring VMX MSRs.
3102 *
3103 * Returns 0 on success, non-0 otherwise.
3104 */
3105 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3106 {
3107 struct vcpu_vmx *vmx = to_vmx(vcpu);
3108
3109 switch (msr_index) {
3110 case MSR_IA32_VMX_BASIC:
3111 return vmx_restore_vmx_basic(vmx, data);
3112 case MSR_IA32_VMX_PINBASED_CTLS:
3113 case MSR_IA32_VMX_PROCBASED_CTLS:
3114 case MSR_IA32_VMX_EXIT_CTLS:
3115 case MSR_IA32_VMX_ENTRY_CTLS:
3116 /*
3117 * The "non-true" VMX capability MSRs are generated from the
3118 * "true" MSRs, so we do not support restoring them directly.
3119 *
3120 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3121 * should restore the "true" MSRs with the must-be-1 bits
3122 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3123 * DEFAULT SETTINGS".
3124 */
3125 return -EINVAL;
3126 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3127 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3128 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3129 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3130 case MSR_IA32_VMX_PROCBASED_CTLS2:
3131 return vmx_restore_control_msr(vmx, msr_index, data);
3132 case MSR_IA32_VMX_MISC:
3133 return vmx_restore_vmx_misc(vmx, data);
3134 case MSR_IA32_VMX_CR0_FIXED0:
3135 case MSR_IA32_VMX_CR4_FIXED0:
3136 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3137 case MSR_IA32_VMX_CR0_FIXED1:
3138 case MSR_IA32_VMX_CR4_FIXED1:
3139 /*
3140 * These MSRs are generated based on the vCPU's CPUID, so we
3141 * do not support restoring them directly.
3142 */
3143 return -EINVAL;
3144 case MSR_IA32_VMX_EPT_VPID_CAP:
3145 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3146 case MSR_IA32_VMX_VMCS_ENUM:
3147 vmx->nested.nested_vmx_vmcs_enum = data;
3148 return 0;
3149 default:
3150 /*
3151 * The rest of the VMX capability MSRs do not support restore.
3152 */
3153 return -EINVAL;
3154 }
3155 }
3156
3157 /* Returns 0 on success, non-0 otherwise. */
3158 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3159 {
3160 struct vcpu_vmx *vmx = to_vmx(vcpu);
3161
3162 switch (msr_index) {
3163 case MSR_IA32_VMX_BASIC:
3164 *pdata = vmx->nested.nested_vmx_basic;
3165 break;
3166 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3167 case MSR_IA32_VMX_PINBASED_CTLS:
3168 *pdata = vmx_control_msr(
3169 vmx->nested.nested_vmx_pinbased_ctls_low,
3170 vmx->nested.nested_vmx_pinbased_ctls_high);
3171 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3172 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3173 break;
3174 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3175 case MSR_IA32_VMX_PROCBASED_CTLS:
3176 *pdata = vmx_control_msr(
3177 vmx->nested.nested_vmx_procbased_ctls_low,
3178 vmx->nested.nested_vmx_procbased_ctls_high);
3179 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3180 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3181 break;
3182 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3183 case MSR_IA32_VMX_EXIT_CTLS:
3184 *pdata = vmx_control_msr(
3185 vmx->nested.nested_vmx_exit_ctls_low,
3186 vmx->nested.nested_vmx_exit_ctls_high);
3187 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3188 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3189 break;
3190 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3191 case MSR_IA32_VMX_ENTRY_CTLS:
3192 *pdata = vmx_control_msr(
3193 vmx->nested.nested_vmx_entry_ctls_low,
3194 vmx->nested.nested_vmx_entry_ctls_high);
3195 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3196 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3197 break;
3198 case MSR_IA32_VMX_MISC:
3199 *pdata = vmx_control_msr(
3200 vmx->nested.nested_vmx_misc_low,
3201 vmx->nested.nested_vmx_misc_high);
3202 break;
3203 case MSR_IA32_VMX_CR0_FIXED0:
3204 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3205 break;
3206 case MSR_IA32_VMX_CR0_FIXED1:
3207 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3208 break;
3209 case MSR_IA32_VMX_CR4_FIXED0:
3210 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3211 break;
3212 case MSR_IA32_VMX_CR4_FIXED1:
3213 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3214 break;
3215 case MSR_IA32_VMX_VMCS_ENUM:
3216 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3217 break;
3218 case MSR_IA32_VMX_PROCBASED_CTLS2:
3219 *pdata = vmx_control_msr(
3220 vmx->nested.nested_vmx_secondary_ctls_low,
3221 vmx->nested.nested_vmx_secondary_ctls_high);
3222 break;
3223 case MSR_IA32_VMX_EPT_VPID_CAP:
3224 *pdata = vmx->nested.nested_vmx_ept_caps |
3225 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3226 break;
3227 case MSR_IA32_VMX_VMFUNC:
3228 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3229 break;
3230 default:
3231 return 1;
3232 }
3233
3234 return 0;
3235 }
3236
3237 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3238 uint64_t val)
3239 {
3240 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3241
3242 return !(val & ~valid_bits);
3243 }
3244
3245 /*
3246 * Reads an msr value (of 'msr_index') into 'pdata'.
3247 * Returns 0 on success, non-0 otherwise.
3248 * Assumes vcpu_load() was already called.
3249 */
3250 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3251 {
3252 struct shared_msr_entry *msr;
3253
3254 switch (msr_info->index) {
3255 #ifdef CONFIG_X86_64
3256 case MSR_FS_BASE:
3257 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3258 break;
3259 case MSR_GS_BASE:
3260 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3261 break;
3262 case MSR_KERNEL_GS_BASE:
3263 vmx_load_host_state(to_vmx(vcpu));
3264 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3265 break;
3266 #endif
3267 case MSR_EFER:
3268 return kvm_get_msr_common(vcpu, msr_info);
3269 case MSR_IA32_TSC:
3270 msr_info->data = guest_read_tsc(vcpu);
3271 break;
3272 case MSR_IA32_SYSENTER_CS:
3273 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3274 break;
3275 case MSR_IA32_SYSENTER_EIP:
3276 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3277 break;
3278 case MSR_IA32_SYSENTER_ESP:
3279 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3280 break;
3281 case MSR_IA32_BNDCFGS:
3282 if (!kvm_mpx_supported() ||
3283 (!msr_info->host_initiated &&
3284 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3285 return 1;
3286 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3287 break;
3288 case MSR_IA32_MCG_EXT_CTL:
3289 if (!msr_info->host_initiated &&
3290 !(to_vmx(vcpu)->msr_ia32_feature_control &
3291 FEATURE_CONTROL_LMCE))
3292 return 1;
3293 msr_info->data = vcpu->arch.mcg_ext_ctl;
3294 break;
3295 case MSR_IA32_FEATURE_CONTROL:
3296 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3297 break;
3298 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3299 if (!nested_vmx_allowed(vcpu))
3300 return 1;
3301 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3302 case MSR_IA32_XSS:
3303 if (!vmx_xsaves_supported())
3304 return 1;
3305 msr_info->data = vcpu->arch.ia32_xss;
3306 break;
3307 case MSR_TSC_AUX:
3308 if (!msr_info->host_initiated &&
3309 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3310 return 1;
3311 /* Otherwise falls through */
3312 default:
3313 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3314 if (msr) {
3315 msr_info->data = msr->data;
3316 break;
3317 }
3318 return kvm_get_msr_common(vcpu, msr_info);
3319 }
3320
3321 return 0;
3322 }
3323
3324 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3325
3326 /*
3327 * Writes msr value into into the appropriate "register".
3328 * Returns 0 on success, non-0 otherwise.
3329 * Assumes vcpu_load() was already called.
3330 */
3331 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3332 {
3333 struct vcpu_vmx *vmx = to_vmx(vcpu);
3334 struct shared_msr_entry *msr;
3335 int ret = 0;
3336 u32 msr_index = msr_info->index;
3337 u64 data = msr_info->data;
3338
3339 switch (msr_index) {
3340 case MSR_EFER:
3341 ret = kvm_set_msr_common(vcpu, msr_info);
3342 break;
3343 #ifdef CONFIG_X86_64
3344 case MSR_FS_BASE:
3345 vmx_segment_cache_clear(vmx);
3346 vmcs_writel(GUEST_FS_BASE, data);
3347 break;
3348 case MSR_GS_BASE:
3349 vmx_segment_cache_clear(vmx);
3350 vmcs_writel(GUEST_GS_BASE, data);
3351 break;
3352 case MSR_KERNEL_GS_BASE:
3353 vmx_load_host_state(vmx);
3354 vmx->msr_guest_kernel_gs_base = data;
3355 break;
3356 #endif
3357 case MSR_IA32_SYSENTER_CS:
3358 vmcs_write32(GUEST_SYSENTER_CS, data);
3359 break;
3360 case MSR_IA32_SYSENTER_EIP:
3361 vmcs_writel(GUEST_SYSENTER_EIP, data);
3362 break;
3363 case MSR_IA32_SYSENTER_ESP:
3364 vmcs_writel(GUEST_SYSENTER_ESP, data);
3365 break;
3366 case MSR_IA32_BNDCFGS:
3367 if (!kvm_mpx_supported() ||
3368 (!msr_info->host_initiated &&
3369 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3370 return 1;
3371 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3372 (data & MSR_IA32_BNDCFGS_RSVD))
3373 return 1;
3374 vmcs_write64(GUEST_BNDCFGS, data);
3375 break;
3376 case MSR_IA32_TSC:
3377 kvm_write_tsc(vcpu, msr_info);
3378 break;
3379 case MSR_IA32_CR_PAT:
3380 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3381 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3382 return 1;
3383 vmcs_write64(GUEST_IA32_PAT, data);
3384 vcpu->arch.pat = data;
3385 break;
3386 }
3387 ret = kvm_set_msr_common(vcpu, msr_info);
3388 break;
3389 case MSR_IA32_TSC_ADJUST:
3390 ret = kvm_set_msr_common(vcpu, msr_info);
3391 break;
3392 case MSR_IA32_MCG_EXT_CTL:
3393 if ((!msr_info->host_initiated &&
3394 !(to_vmx(vcpu)->msr_ia32_feature_control &
3395 FEATURE_CONTROL_LMCE)) ||
3396 (data & ~MCG_EXT_CTL_LMCE_EN))
3397 return 1;
3398 vcpu->arch.mcg_ext_ctl = data;
3399 break;
3400 case MSR_IA32_FEATURE_CONTROL:
3401 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3402 (to_vmx(vcpu)->msr_ia32_feature_control &
3403 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3404 return 1;
3405 vmx->msr_ia32_feature_control = data;
3406 if (msr_info->host_initiated && data == 0)
3407 vmx_leave_nested(vcpu);
3408 break;
3409 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3410 if (!msr_info->host_initiated)
3411 return 1; /* they are read-only */
3412 if (!nested_vmx_allowed(vcpu))
3413 return 1;
3414 return vmx_set_vmx_msr(vcpu, msr_index, data);
3415 case MSR_IA32_XSS:
3416 if (!vmx_xsaves_supported())
3417 return 1;
3418 /*
3419 * The only supported bit as of Skylake is bit 8, but
3420 * it is not supported on KVM.
3421 */
3422 if (data != 0)
3423 return 1;
3424 vcpu->arch.ia32_xss = data;
3425 if (vcpu->arch.ia32_xss != host_xss)
3426 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3427 vcpu->arch.ia32_xss, host_xss);
3428 else
3429 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3430 break;
3431 case MSR_TSC_AUX:
3432 if (!msr_info->host_initiated &&
3433 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3434 return 1;
3435 /* Check reserved bit, higher 32 bits should be zero */
3436 if ((data >> 32) != 0)
3437 return 1;
3438 /* Otherwise falls through */
3439 default:
3440 msr = find_msr_entry(vmx, msr_index);
3441 if (msr) {
3442 u64 old_msr_data = msr->data;
3443 msr->data = data;
3444 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3445 preempt_disable();
3446 ret = kvm_set_shared_msr(msr->index, msr->data,
3447 msr->mask);
3448 preempt_enable();
3449 if (ret)
3450 msr->data = old_msr_data;
3451 }
3452 break;
3453 }
3454 ret = kvm_set_msr_common(vcpu, msr_info);
3455 }
3456
3457 return ret;
3458 }
3459
3460 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3461 {
3462 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3463 switch (reg) {
3464 case VCPU_REGS_RSP:
3465 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3466 break;
3467 case VCPU_REGS_RIP:
3468 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3469 break;
3470 case VCPU_EXREG_PDPTR:
3471 if (enable_ept)
3472 ept_save_pdptrs(vcpu);
3473 break;
3474 default:
3475 break;
3476 }
3477 }
3478
3479 static __init int cpu_has_kvm_support(void)
3480 {
3481 return cpu_has_vmx();
3482 }
3483
3484 static __init int vmx_disabled_by_bios(void)
3485 {
3486 u64 msr;
3487
3488 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3489 if (msr & FEATURE_CONTROL_LOCKED) {
3490 /* launched w/ TXT and VMX disabled */
3491 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3492 && tboot_enabled())
3493 return 1;
3494 /* launched w/o TXT and VMX only enabled w/ TXT */
3495 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3496 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3497 && !tboot_enabled()) {
3498 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3499 "activate TXT before enabling KVM\n");
3500 return 1;
3501 }
3502 /* launched w/o TXT and VMX disabled */
3503 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3504 && !tboot_enabled())
3505 return 1;
3506 }
3507
3508 return 0;
3509 }
3510
3511 static void kvm_cpu_vmxon(u64 addr)
3512 {
3513 cr4_set_bits(X86_CR4_VMXE);
3514 intel_pt_handle_vmx(1);
3515
3516 asm volatile (ASM_VMX_VMXON_RAX
3517 : : "a"(&addr), "m"(addr)
3518 : "memory", "cc");
3519 }
3520
3521 static int hardware_enable(void)
3522 {
3523 int cpu = raw_smp_processor_id();
3524 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3525 u64 old, test_bits;
3526
3527 if (cr4_read_shadow() & X86_CR4_VMXE)
3528 return -EBUSY;
3529
3530 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3531 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3532 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3533
3534 /*
3535 * Now we can enable the vmclear operation in kdump
3536 * since the loaded_vmcss_on_cpu list on this cpu
3537 * has been initialized.
3538 *
3539 * Though the cpu is not in VMX operation now, there
3540 * is no problem to enable the vmclear operation
3541 * for the loaded_vmcss_on_cpu list is empty!
3542 */
3543 crash_enable_local_vmclear(cpu);
3544
3545 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3546
3547 test_bits = FEATURE_CONTROL_LOCKED;
3548 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3549 if (tboot_enabled())
3550 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3551
3552 if ((old & test_bits) != test_bits) {
3553 /* enable and lock */
3554 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3555 }
3556 kvm_cpu_vmxon(phys_addr);
3557 if (enable_ept)
3558 ept_sync_global();
3559
3560 return 0;
3561 }
3562
3563 static void vmclear_local_loaded_vmcss(void)
3564 {
3565 int cpu = raw_smp_processor_id();
3566 struct loaded_vmcs *v, *n;
3567
3568 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3569 loaded_vmcss_on_cpu_link)
3570 __loaded_vmcs_clear(v);
3571 }
3572
3573
3574 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3575 * tricks.
3576 */
3577 static void kvm_cpu_vmxoff(void)
3578 {
3579 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3580
3581 intel_pt_handle_vmx(0);
3582 cr4_clear_bits(X86_CR4_VMXE);
3583 }
3584
3585 static void hardware_disable(void)
3586 {
3587 vmclear_local_loaded_vmcss();
3588 kvm_cpu_vmxoff();
3589 }
3590
3591 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3592 u32 msr, u32 *result)
3593 {
3594 u32 vmx_msr_low, vmx_msr_high;
3595 u32 ctl = ctl_min | ctl_opt;
3596
3597 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3598
3599 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3600 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3601
3602 /* Ensure minimum (required) set of control bits are supported. */
3603 if (ctl_min & ~ctl)
3604 return -EIO;
3605
3606 *result = ctl;
3607 return 0;
3608 }
3609
3610 static __init bool allow_1_setting(u32 msr, u32 ctl)
3611 {
3612 u32 vmx_msr_low, vmx_msr_high;
3613
3614 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3615 return vmx_msr_high & ctl;
3616 }
3617
3618 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3619 {
3620 u32 vmx_msr_low, vmx_msr_high;
3621 u32 min, opt, min2, opt2;
3622 u32 _pin_based_exec_control = 0;
3623 u32 _cpu_based_exec_control = 0;
3624 u32 _cpu_based_2nd_exec_control = 0;
3625 u32 _vmexit_control = 0;
3626 u32 _vmentry_control = 0;
3627
3628 min = CPU_BASED_HLT_EXITING |
3629 #ifdef CONFIG_X86_64
3630 CPU_BASED_CR8_LOAD_EXITING |
3631 CPU_BASED_CR8_STORE_EXITING |
3632 #endif
3633 CPU_BASED_CR3_LOAD_EXITING |
3634 CPU_BASED_CR3_STORE_EXITING |
3635 CPU_BASED_USE_IO_BITMAPS |
3636 CPU_BASED_MOV_DR_EXITING |
3637 CPU_BASED_USE_TSC_OFFSETING |
3638 CPU_BASED_INVLPG_EXITING |
3639 CPU_BASED_RDPMC_EXITING;
3640
3641 if (!kvm_mwait_in_guest())
3642 min |= CPU_BASED_MWAIT_EXITING |
3643 CPU_BASED_MONITOR_EXITING;
3644
3645 opt = CPU_BASED_TPR_SHADOW |
3646 CPU_BASED_USE_MSR_BITMAPS |
3647 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3648 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3649 &_cpu_based_exec_control) < 0)
3650 return -EIO;
3651 #ifdef CONFIG_X86_64
3652 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3653 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3654 ~CPU_BASED_CR8_STORE_EXITING;
3655 #endif
3656 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3657 min2 = 0;
3658 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3659 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3660 SECONDARY_EXEC_WBINVD_EXITING |
3661 SECONDARY_EXEC_ENABLE_VPID |
3662 SECONDARY_EXEC_ENABLE_EPT |
3663 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3664 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3665 SECONDARY_EXEC_RDTSCP |
3666 SECONDARY_EXEC_ENABLE_INVPCID |
3667 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3668 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3669 SECONDARY_EXEC_SHADOW_VMCS |
3670 SECONDARY_EXEC_XSAVES |
3671 SECONDARY_EXEC_RDSEED_EXITING |
3672 SECONDARY_EXEC_RDRAND_EXITING |
3673 SECONDARY_EXEC_ENABLE_PML |
3674 SECONDARY_EXEC_TSC_SCALING |
3675 SECONDARY_EXEC_ENABLE_VMFUNC;
3676 if (adjust_vmx_controls(min2, opt2,
3677 MSR_IA32_VMX_PROCBASED_CTLS2,
3678 &_cpu_based_2nd_exec_control) < 0)
3679 return -EIO;
3680 }
3681 #ifndef CONFIG_X86_64
3682 if (!(_cpu_based_2nd_exec_control &
3683 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3684 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3685 #endif
3686
3687 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3688 _cpu_based_2nd_exec_control &= ~(
3689 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3690 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3691 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3692
3693 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3694 &vmx_capability.ept, &vmx_capability.vpid);
3695
3696 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3697 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3698 enabled */
3699 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3700 CPU_BASED_CR3_STORE_EXITING |
3701 CPU_BASED_INVLPG_EXITING);
3702 } else if (vmx_capability.ept) {
3703 vmx_capability.ept = 0;
3704 pr_warn_once("EPT CAP should not exist if not support "
3705 "1-setting enable EPT VM-execution control\n");
3706 }
3707 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3708 vmx_capability.vpid) {
3709 vmx_capability.vpid = 0;
3710 pr_warn_once("VPID CAP should not exist if not support "
3711 "1-setting enable VPID VM-execution control\n");
3712 }
3713
3714 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3715 #ifdef CONFIG_X86_64
3716 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3717 #endif
3718 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3719 VM_EXIT_CLEAR_BNDCFGS;
3720 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3721 &_vmexit_control) < 0)
3722 return -EIO;
3723
3724 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3725 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3726 PIN_BASED_VMX_PREEMPTION_TIMER;
3727 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3728 &_pin_based_exec_control) < 0)
3729 return -EIO;
3730
3731 if (cpu_has_broken_vmx_preemption_timer())
3732 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3733 if (!(_cpu_based_2nd_exec_control &
3734 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3735 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3736
3737 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3738 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3739 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3740 &_vmentry_control) < 0)
3741 return -EIO;
3742
3743 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3744
3745 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3746 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3747 return -EIO;
3748
3749 #ifdef CONFIG_X86_64
3750 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3751 if (vmx_msr_high & (1u<<16))
3752 return -EIO;
3753 #endif
3754
3755 /* Require Write-Back (WB) memory type for VMCS accesses. */
3756 if (((vmx_msr_high >> 18) & 15) != 6)
3757 return -EIO;
3758
3759 vmcs_conf->size = vmx_msr_high & 0x1fff;
3760 vmcs_conf->order = get_order(vmcs_conf->size);
3761 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3762 vmcs_conf->revision_id = vmx_msr_low;
3763
3764 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3765 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3766 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3767 vmcs_conf->vmexit_ctrl = _vmexit_control;
3768 vmcs_conf->vmentry_ctrl = _vmentry_control;
3769
3770 cpu_has_load_ia32_efer =
3771 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3772 VM_ENTRY_LOAD_IA32_EFER)
3773 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3774 VM_EXIT_LOAD_IA32_EFER);
3775
3776 cpu_has_load_perf_global_ctrl =
3777 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3778 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3779 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3780 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3781
3782 /*
3783 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3784 * but due to errata below it can't be used. Workaround is to use
3785 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3786 *
3787 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3788 *
3789 * AAK155 (model 26)
3790 * AAP115 (model 30)
3791 * AAT100 (model 37)
3792 * BC86,AAY89,BD102 (model 44)
3793 * BA97 (model 46)
3794 *
3795 */
3796 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3797 switch (boot_cpu_data.x86_model) {
3798 case 26:
3799 case 30:
3800 case 37:
3801 case 44:
3802 case 46:
3803 cpu_has_load_perf_global_ctrl = false;
3804 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3805 "does not work properly. Using workaround\n");
3806 break;
3807 default:
3808 break;
3809 }
3810 }
3811
3812 if (boot_cpu_has(X86_FEATURE_XSAVES))
3813 rdmsrl(MSR_IA32_XSS, host_xss);
3814
3815 return 0;
3816 }
3817
3818 static struct vmcs *alloc_vmcs_cpu(int cpu)
3819 {
3820 int node = cpu_to_node(cpu);
3821 struct page *pages;
3822 struct vmcs *vmcs;
3823
3824 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3825 if (!pages)
3826 return NULL;
3827 vmcs = page_address(pages);
3828 memset(vmcs, 0, vmcs_config.size);
3829 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3830 return vmcs;
3831 }
3832
3833 static struct vmcs *alloc_vmcs(void)
3834 {
3835 return alloc_vmcs_cpu(raw_smp_processor_id());
3836 }
3837
3838 static void free_vmcs(struct vmcs *vmcs)
3839 {
3840 free_pages((unsigned long)vmcs, vmcs_config.order);
3841 }
3842
3843 /*
3844 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3845 */
3846 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3847 {
3848 if (!loaded_vmcs->vmcs)
3849 return;
3850 loaded_vmcs_clear(loaded_vmcs);
3851 free_vmcs(loaded_vmcs->vmcs);
3852 loaded_vmcs->vmcs = NULL;
3853 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3854 }
3855
3856 static void free_kvm_area(void)
3857 {
3858 int cpu;
3859
3860 for_each_possible_cpu(cpu) {
3861 free_vmcs(per_cpu(vmxarea, cpu));
3862 per_cpu(vmxarea, cpu) = NULL;
3863 }
3864 }
3865
3866 enum vmcs_field_type {
3867 VMCS_FIELD_TYPE_U16 = 0,
3868 VMCS_FIELD_TYPE_U64 = 1,
3869 VMCS_FIELD_TYPE_U32 = 2,
3870 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3871 };
3872
3873 static inline int vmcs_field_type(unsigned long field)
3874 {
3875 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3876 return VMCS_FIELD_TYPE_U32;
3877 return (field >> 13) & 0x3 ;
3878 }
3879
3880 static inline int vmcs_field_readonly(unsigned long field)
3881 {
3882 return (((field >> 10) & 0x3) == 1);
3883 }
3884
3885 static void init_vmcs_shadow_fields(void)
3886 {
3887 int i, j;
3888
3889 /* No checks for read only fields yet */
3890
3891 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3892 switch (shadow_read_write_fields[i]) {
3893 case GUEST_BNDCFGS:
3894 if (!kvm_mpx_supported())
3895 continue;
3896 break;
3897 default:
3898 break;
3899 }
3900
3901 if (j < i)
3902 shadow_read_write_fields[j] =
3903 shadow_read_write_fields[i];
3904 j++;
3905 }
3906 max_shadow_read_write_fields = j;
3907
3908 /* shadowed fields guest access without vmexit */
3909 for (i = 0; i < max_shadow_read_write_fields; i++) {
3910 unsigned long field = shadow_read_write_fields[i];
3911
3912 clear_bit(field, vmx_vmwrite_bitmap);
3913 clear_bit(field, vmx_vmread_bitmap);
3914 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3915 clear_bit(field + 1, vmx_vmwrite_bitmap);
3916 clear_bit(field + 1, vmx_vmread_bitmap);
3917 }
3918 }
3919 for (i = 0; i < max_shadow_read_only_fields; i++) {
3920 unsigned long field = shadow_read_only_fields[i];
3921
3922 clear_bit(field, vmx_vmread_bitmap);
3923 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3924 clear_bit(field + 1, vmx_vmread_bitmap);
3925 }
3926 }
3927
3928 static __init int alloc_kvm_area(void)
3929 {
3930 int cpu;
3931
3932 for_each_possible_cpu(cpu) {
3933 struct vmcs *vmcs;
3934
3935 vmcs = alloc_vmcs_cpu(cpu);
3936 if (!vmcs) {
3937 free_kvm_area();
3938 return -ENOMEM;
3939 }
3940
3941 per_cpu(vmxarea, cpu) = vmcs;
3942 }
3943 return 0;
3944 }
3945
3946 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3947 struct kvm_segment *save)
3948 {
3949 if (!emulate_invalid_guest_state) {
3950 /*
3951 * CS and SS RPL should be equal during guest entry according
3952 * to VMX spec, but in reality it is not always so. Since vcpu
3953 * is in the middle of the transition from real mode to
3954 * protected mode it is safe to assume that RPL 0 is a good
3955 * default value.
3956 */
3957 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3958 save->selector &= ~SEGMENT_RPL_MASK;
3959 save->dpl = save->selector & SEGMENT_RPL_MASK;
3960 save->s = 1;
3961 }
3962 vmx_set_segment(vcpu, save, seg);
3963 }
3964
3965 static void enter_pmode(struct kvm_vcpu *vcpu)
3966 {
3967 unsigned long flags;
3968 struct vcpu_vmx *vmx = to_vmx(vcpu);
3969
3970 /*
3971 * Update real mode segment cache. It may be not up-to-date if sement
3972 * register was written while vcpu was in a guest mode.
3973 */
3974 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3975 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3976 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3977 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3978 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3979 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3980
3981 vmx->rmode.vm86_active = 0;
3982
3983 vmx_segment_cache_clear(vmx);
3984
3985 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3986
3987 flags = vmcs_readl(GUEST_RFLAGS);
3988 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3989 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3990 vmcs_writel(GUEST_RFLAGS, flags);
3991
3992 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3993 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3994
3995 update_exception_bitmap(vcpu);
3996
3997 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3998 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3999 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4000 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4001 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4002 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4003 }
4004
4005 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4006 {
4007 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4008 struct kvm_segment var = *save;
4009
4010 var.dpl = 0x3;
4011 if (seg == VCPU_SREG_CS)
4012 var.type = 0x3;
4013
4014 if (!emulate_invalid_guest_state) {
4015 var.selector = var.base >> 4;
4016 var.base = var.base & 0xffff0;
4017 var.limit = 0xffff;
4018 var.g = 0;
4019 var.db = 0;
4020 var.present = 1;
4021 var.s = 1;
4022 var.l = 0;
4023 var.unusable = 0;
4024 var.type = 0x3;
4025 var.avl = 0;
4026 if (save->base & 0xf)
4027 printk_once(KERN_WARNING "kvm: segment base is not "
4028 "paragraph aligned when entering "
4029 "protected mode (seg=%d)", seg);
4030 }
4031
4032 vmcs_write16(sf->selector, var.selector);
4033 vmcs_writel(sf->base, var.base);
4034 vmcs_write32(sf->limit, var.limit);
4035 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4036 }
4037
4038 static void enter_rmode(struct kvm_vcpu *vcpu)
4039 {
4040 unsigned long flags;
4041 struct vcpu_vmx *vmx = to_vmx(vcpu);
4042
4043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4044 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4046 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4047 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4048 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4049 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4050
4051 vmx->rmode.vm86_active = 1;
4052
4053 /*
4054 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4055 * vcpu. Warn the user that an update is overdue.
4056 */
4057 if (!vcpu->kvm->arch.tss_addr)
4058 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4059 "called before entering vcpu\n");
4060
4061 vmx_segment_cache_clear(vmx);
4062
4063 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4064 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4065 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4066
4067 flags = vmcs_readl(GUEST_RFLAGS);
4068 vmx->rmode.save_rflags = flags;
4069
4070 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4071
4072 vmcs_writel(GUEST_RFLAGS, flags);
4073 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4074 update_exception_bitmap(vcpu);
4075
4076 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4077 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4078 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4079 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4080 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4081 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4082
4083 kvm_mmu_reset_context(vcpu);
4084 }
4085
4086 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4087 {
4088 struct vcpu_vmx *vmx = to_vmx(vcpu);
4089 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4090
4091 if (!msr)
4092 return;
4093
4094 /*
4095 * Force kernel_gs_base reloading before EFER changes, as control
4096 * of this msr depends on is_long_mode().
4097 */
4098 vmx_load_host_state(to_vmx(vcpu));
4099 vcpu->arch.efer = efer;
4100 if (efer & EFER_LMA) {
4101 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4102 msr->data = efer;
4103 } else {
4104 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4105
4106 msr->data = efer & ~EFER_LME;
4107 }
4108 setup_msrs(vmx);
4109 }
4110
4111 #ifdef CONFIG_X86_64
4112
4113 static void enter_lmode(struct kvm_vcpu *vcpu)
4114 {
4115 u32 guest_tr_ar;
4116
4117 vmx_segment_cache_clear(to_vmx(vcpu));
4118
4119 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4120 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4121 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4122 __func__);
4123 vmcs_write32(GUEST_TR_AR_BYTES,
4124 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4125 | VMX_AR_TYPE_BUSY_64_TSS);
4126 }
4127 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4128 }
4129
4130 static void exit_lmode(struct kvm_vcpu *vcpu)
4131 {
4132 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4133 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4134 }
4135
4136 #endif
4137
4138 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4139 {
4140 if (enable_ept) {
4141 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4142 return;
4143 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4144 } else {
4145 vpid_sync_context(vpid);
4146 }
4147 }
4148
4149 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4150 {
4151 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4152 }
4153
4154 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4155 {
4156 if (enable_ept)
4157 vmx_flush_tlb(vcpu);
4158 }
4159
4160 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4161 {
4162 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4163
4164 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4165 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4166 }
4167
4168 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4169 {
4170 if (enable_ept && is_paging(vcpu))
4171 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4172 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4173 }
4174
4175 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4176 {
4177 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4178
4179 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4180 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4181 }
4182
4183 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4184 {
4185 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4186
4187 if (!test_bit(VCPU_EXREG_PDPTR,
4188 (unsigned long *)&vcpu->arch.regs_dirty))
4189 return;
4190
4191 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4192 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4193 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4194 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4195 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4196 }
4197 }
4198
4199 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4200 {
4201 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4202
4203 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4204 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4205 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4206 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4207 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4208 }
4209
4210 __set_bit(VCPU_EXREG_PDPTR,
4211 (unsigned long *)&vcpu->arch.regs_avail);
4212 __set_bit(VCPU_EXREG_PDPTR,
4213 (unsigned long *)&vcpu->arch.regs_dirty);
4214 }
4215
4216 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4217 {
4218 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4219 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4220 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4221
4222 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4223 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4224 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4225 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4226
4227 return fixed_bits_valid(val, fixed0, fixed1);
4228 }
4229
4230 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4231 {
4232 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4233 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4234
4235 return fixed_bits_valid(val, fixed0, fixed1);
4236 }
4237
4238 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4239 {
4240 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4241 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4242
4243 return fixed_bits_valid(val, fixed0, fixed1);
4244 }
4245
4246 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4247 #define nested_guest_cr4_valid nested_cr4_valid
4248 #define nested_host_cr4_valid nested_cr4_valid
4249
4250 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4251
4252 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4253 unsigned long cr0,
4254 struct kvm_vcpu *vcpu)
4255 {
4256 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4257 vmx_decache_cr3(vcpu);
4258 if (!(cr0 & X86_CR0_PG)) {
4259 /* From paging/starting to nonpaging */
4260 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4261 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4262 (CPU_BASED_CR3_LOAD_EXITING |
4263 CPU_BASED_CR3_STORE_EXITING));
4264 vcpu->arch.cr0 = cr0;
4265 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4266 } else if (!is_paging(vcpu)) {
4267 /* From nonpaging to paging */
4268 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4269 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4270 ~(CPU_BASED_CR3_LOAD_EXITING |
4271 CPU_BASED_CR3_STORE_EXITING));
4272 vcpu->arch.cr0 = cr0;
4273 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4274 }
4275
4276 if (!(cr0 & X86_CR0_WP))
4277 *hw_cr0 &= ~X86_CR0_WP;
4278 }
4279
4280 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4281 {
4282 struct vcpu_vmx *vmx = to_vmx(vcpu);
4283 unsigned long hw_cr0;
4284
4285 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4286 if (enable_unrestricted_guest)
4287 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4288 else {
4289 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4290
4291 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4292 enter_pmode(vcpu);
4293
4294 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4295 enter_rmode(vcpu);
4296 }
4297
4298 #ifdef CONFIG_X86_64
4299 if (vcpu->arch.efer & EFER_LME) {
4300 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4301 enter_lmode(vcpu);
4302 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4303 exit_lmode(vcpu);
4304 }
4305 #endif
4306
4307 if (enable_ept)
4308 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4309
4310 vmcs_writel(CR0_READ_SHADOW, cr0);
4311 vmcs_writel(GUEST_CR0, hw_cr0);
4312 vcpu->arch.cr0 = cr0;
4313
4314 /* depends on vcpu->arch.cr0 to be set to a new value */
4315 vmx->emulation_required = emulation_required(vcpu);
4316 }
4317
4318 static int get_ept_level(struct kvm_vcpu *vcpu)
4319 {
4320 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4321 return 5;
4322 return 4;
4323 }
4324
4325 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4326 {
4327 u64 eptp = VMX_EPTP_MT_WB;
4328
4329 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4330
4331 if (enable_ept_ad_bits &&
4332 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4333 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4334 eptp |= (root_hpa & PAGE_MASK);
4335
4336 return eptp;
4337 }
4338
4339 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4340 {
4341 unsigned long guest_cr3;
4342 u64 eptp;
4343
4344 guest_cr3 = cr3;
4345 if (enable_ept) {
4346 eptp = construct_eptp(vcpu, cr3);
4347 vmcs_write64(EPT_POINTER, eptp);
4348 if (is_paging(vcpu) || is_guest_mode(vcpu))
4349 guest_cr3 = kvm_read_cr3(vcpu);
4350 else
4351 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4352 ept_load_pdptrs(vcpu);
4353 }
4354
4355 vmx_flush_tlb(vcpu);
4356 vmcs_writel(GUEST_CR3, guest_cr3);
4357 }
4358
4359 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4360 {
4361 /*
4362 * Pass through host's Machine Check Enable value to hw_cr4, which
4363 * is in force while we are in guest mode. Do not let guests control
4364 * this bit, even if host CR4.MCE == 0.
4365 */
4366 unsigned long hw_cr4 =
4367 (cr4_read_shadow() & X86_CR4_MCE) |
4368 (cr4 & ~X86_CR4_MCE) |
4369 (to_vmx(vcpu)->rmode.vm86_active ?
4370 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4371
4372 if (cr4 & X86_CR4_VMXE) {
4373 /*
4374 * To use VMXON (and later other VMX instructions), a guest
4375 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4376 * So basically the check on whether to allow nested VMX
4377 * is here.
4378 */
4379 if (!nested_vmx_allowed(vcpu))
4380 return 1;
4381 }
4382
4383 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4384 return 1;
4385
4386 vcpu->arch.cr4 = cr4;
4387 if (enable_ept) {
4388 if (!is_paging(vcpu)) {
4389 hw_cr4 &= ~X86_CR4_PAE;
4390 hw_cr4 |= X86_CR4_PSE;
4391 } else if (!(cr4 & X86_CR4_PAE)) {
4392 hw_cr4 &= ~X86_CR4_PAE;
4393 }
4394 }
4395
4396 if (!enable_unrestricted_guest && !is_paging(vcpu))
4397 /*
4398 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4399 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4400 * to be manually disabled when guest switches to non-paging
4401 * mode.
4402 *
4403 * If !enable_unrestricted_guest, the CPU is always running
4404 * with CR0.PG=1 and CR4 needs to be modified.
4405 * If enable_unrestricted_guest, the CPU automatically
4406 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4407 */
4408 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4409
4410 vmcs_writel(CR4_READ_SHADOW, cr4);
4411 vmcs_writel(GUEST_CR4, hw_cr4);
4412 return 0;
4413 }
4414
4415 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4416 struct kvm_segment *var, int seg)
4417 {
4418 struct vcpu_vmx *vmx = to_vmx(vcpu);
4419 u32 ar;
4420
4421 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4422 *var = vmx->rmode.segs[seg];
4423 if (seg == VCPU_SREG_TR
4424 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4425 return;
4426 var->base = vmx_read_guest_seg_base(vmx, seg);
4427 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4428 return;
4429 }
4430 var->base = vmx_read_guest_seg_base(vmx, seg);
4431 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4432 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4433 ar = vmx_read_guest_seg_ar(vmx, seg);
4434 var->unusable = (ar >> 16) & 1;
4435 var->type = ar & 15;
4436 var->s = (ar >> 4) & 1;
4437 var->dpl = (ar >> 5) & 3;
4438 /*
4439 * Some userspaces do not preserve unusable property. Since usable
4440 * segment has to be present according to VMX spec we can use present
4441 * property to amend userspace bug by making unusable segment always
4442 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4443 * segment as unusable.
4444 */
4445 var->present = !var->unusable;
4446 var->avl = (ar >> 12) & 1;
4447 var->l = (ar >> 13) & 1;
4448 var->db = (ar >> 14) & 1;
4449 var->g = (ar >> 15) & 1;
4450 }
4451
4452 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4453 {
4454 struct kvm_segment s;
4455
4456 if (to_vmx(vcpu)->rmode.vm86_active) {
4457 vmx_get_segment(vcpu, &s, seg);
4458 return s.base;
4459 }
4460 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4461 }
4462
4463 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4464 {
4465 struct vcpu_vmx *vmx = to_vmx(vcpu);
4466
4467 if (unlikely(vmx->rmode.vm86_active))
4468 return 0;
4469 else {
4470 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4471 return VMX_AR_DPL(ar);
4472 }
4473 }
4474
4475 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4476 {
4477 u32 ar;
4478
4479 if (var->unusable || !var->present)
4480 ar = 1 << 16;
4481 else {
4482 ar = var->type & 15;
4483 ar |= (var->s & 1) << 4;
4484 ar |= (var->dpl & 3) << 5;
4485 ar |= (var->present & 1) << 7;
4486 ar |= (var->avl & 1) << 12;
4487 ar |= (var->l & 1) << 13;
4488 ar |= (var->db & 1) << 14;
4489 ar |= (var->g & 1) << 15;
4490 }
4491
4492 return ar;
4493 }
4494
4495 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4496 struct kvm_segment *var, int seg)
4497 {
4498 struct vcpu_vmx *vmx = to_vmx(vcpu);
4499 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4500
4501 vmx_segment_cache_clear(vmx);
4502
4503 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4504 vmx->rmode.segs[seg] = *var;
4505 if (seg == VCPU_SREG_TR)
4506 vmcs_write16(sf->selector, var->selector);
4507 else if (var->s)
4508 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4509 goto out;
4510 }
4511
4512 vmcs_writel(sf->base, var->base);
4513 vmcs_write32(sf->limit, var->limit);
4514 vmcs_write16(sf->selector, var->selector);
4515
4516 /*
4517 * Fix the "Accessed" bit in AR field of segment registers for older
4518 * qemu binaries.
4519 * IA32 arch specifies that at the time of processor reset the
4520 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4521 * is setting it to 0 in the userland code. This causes invalid guest
4522 * state vmexit when "unrestricted guest" mode is turned on.
4523 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4524 * tree. Newer qemu binaries with that qemu fix would not need this
4525 * kvm hack.
4526 */
4527 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4528 var->type |= 0x1; /* Accessed */
4529
4530 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4531
4532 out:
4533 vmx->emulation_required = emulation_required(vcpu);
4534 }
4535
4536 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4537 {
4538 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4539
4540 *db = (ar >> 14) & 1;
4541 *l = (ar >> 13) & 1;
4542 }
4543
4544 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4545 {
4546 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4547 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4548 }
4549
4550 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4551 {
4552 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4553 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4554 }
4555
4556 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4557 {
4558 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4559 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4560 }
4561
4562 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4563 {
4564 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4565 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4566 }
4567
4568 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4569 {
4570 struct kvm_segment var;
4571 u32 ar;
4572
4573 vmx_get_segment(vcpu, &var, seg);
4574 var.dpl = 0x3;
4575 if (seg == VCPU_SREG_CS)
4576 var.type = 0x3;
4577 ar = vmx_segment_access_rights(&var);
4578
4579 if (var.base != (var.selector << 4))
4580 return false;
4581 if (var.limit != 0xffff)
4582 return false;
4583 if (ar != 0xf3)
4584 return false;
4585
4586 return true;
4587 }
4588
4589 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4590 {
4591 struct kvm_segment cs;
4592 unsigned int cs_rpl;
4593
4594 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4595 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4596
4597 if (cs.unusable)
4598 return false;
4599 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4600 return false;
4601 if (!cs.s)
4602 return false;
4603 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4604 if (cs.dpl > cs_rpl)
4605 return false;
4606 } else {
4607 if (cs.dpl != cs_rpl)
4608 return false;
4609 }
4610 if (!cs.present)
4611 return false;
4612
4613 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4614 return true;
4615 }
4616
4617 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4618 {
4619 struct kvm_segment ss;
4620 unsigned int ss_rpl;
4621
4622 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4623 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4624
4625 if (ss.unusable)
4626 return true;
4627 if (ss.type != 3 && ss.type != 7)
4628 return false;
4629 if (!ss.s)
4630 return false;
4631 if (ss.dpl != ss_rpl) /* DPL != RPL */
4632 return false;
4633 if (!ss.present)
4634 return false;
4635
4636 return true;
4637 }
4638
4639 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4640 {
4641 struct kvm_segment var;
4642 unsigned int rpl;
4643
4644 vmx_get_segment(vcpu, &var, seg);
4645 rpl = var.selector & SEGMENT_RPL_MASK;
4646
4647 if (var.unusable)
4648 return true;
4649 if (!var.s)
4650 return false;
4651 if (!var.present)
4652 return false;
4653 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4654 if (var.dpl < rpl) /* DPL < RPL */
4655 return false;
4656 }
4657
4658 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4659 * rights flags
4660 */
4661 return true;
4662 }
4663
4664 static bool tr_valid(struct kvm_vcpu *vcpu)
4665 {
4666 struct kvm_segment tr;
4667
4668 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4669
4670 if (tr.unusable)
4671 return false;
4672 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4673 return false;
4674 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4675 return false;
4676 if (!tr.present)
4677 return false;
4678
4679 return true;
4680 }
4681
4682 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4683 {
4684 struct kvm_segment ldtr;
4685
4686 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4687
4688 if (ldtr.unusable)
4689 return true;
4690 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4691 return false;
4692 if (ldtr.type != 2)
4693 return false;
4694 if (!ldtr.present)
4695 return false;
4696
4697 return true;
4698 }
4699
4700 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4701 {
4702 struct kvm_segment cs, ss;
4703
4704 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4705 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4706
4707 return ((cs.selector & SEGMENT_RPL_MASK) ==
4708 (ss.selector & SEGMENT_RPL_MASK));
4709 }
4710
4711 /*
4712 * Check if guest state is valid. Returns true if valid, false if
4713 * not.
4714 * We assume that registers are always usable
4715 */
4716 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4717 {
4718 if (enable_unrestricted_guest)
4719 return true;
4720
4721 /* real mode guest state checks */
4722 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4723 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4724 return false;
4725 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4726 return false;
4727 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4728 return false;
4729 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4730 return false;
4731 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4732 return false;
4733 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4734 return false;
4735 } else {
4736 /* protected mode guest state checks */
4737 if (!cs_ss_rpl_check(vcpu))
4738 return false;
4739 if (!code_segment_valid(vcpu))
4740 return false;
4741 if (!stack_segment_valid(vcpu))
4742 return false;
4743 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4744 return false;
4745 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4746 return false;
4747 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4748 return false;
4749 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4750 return false;
4751 if (!tr_valid(vcpu))
4752 return false;
4753 if (!ldtr_valid(vcpu))
4754 return false;
4755 }
4756 /* TODO:
4757 * - Add checks on RIP
4758 * - Add checks on RFLAGS
4759 */
4760
4761 return true;
4762 }
4763
4764 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4765 {
4766 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4767 }
4768
4769 static int init_rmode_tss(struct kvm *kvm)
4770 {
4771 gfn_t fn;
4772 u16 data = 0;
4773 int idx, r;
4774
4775 idx = srcu_read_lock(&kvm->srcu);
4776 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4777 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4778 if (r < 0)
4779 goto out;
4780 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4781 r = kvm_write_guest_page(kvm, fn++, &data,
4782 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4783 if (r < 0)
4784 goto out;
4785 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4786 if (r < 0)
4787 goto out;
4788 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4789 if (r < 0)
4790 goto out;
4791 data = ~0;
4792 r = kvm_write_guest_page(kvm, fn, &data,
4793 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4794 sizeof(u8));
4795 out:
4796 srcu_read_unlock(&kvm->srcu, idx);
4797 return r;
4798 }
4799
4800 static int init_rmode_identity_map(struct kvm *kvm)
4801 {
4802 int i, idx, r = 0;
4803 kvm_pfn_t identity_map_pfn;
4804 u32 tmp;
4805
4806 /* Protect kvm->arch.ept_identity_pagetable_done. */
4807 mutex_lock(&kvm->slots_lock);
4808
4809 if (likely(kvm->arch.ept_identity_pagetable_done))
4810 goto out2;
4811
4812 if (!kvm->arch.ept_identity_map_addr)
4813 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4814 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4815
4816 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4817 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4818 if (r < 0)
4819 goto out2;
4820
4821 idx = srcu_read_lock(&kvm->srcu);
4822 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4823 if (r < 0)
4824 goto out;
4825 /* Set up identity-mapping pagetable for EPT in real mode */
4826 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4827 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4828 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4829 r = kvm_write_guest_page(kvm, identity_map_pfn,
4830 &tmp, i * sizeof(tmp), sizeof(tmp));
4831 if (r < 0)
4832 goto out;
4833 }
4834 kvm->arch.ept_identity_pagetable_done = true;
4835
4836 out:
4837 srcu_read_unlock(&kvm->srcu, idx);
4838
4839 out2:
4840 mutex_unlock(&kvm->slots_lock);
4841 return r;
4842 }
4843
4844 static void seg_setup(int seg)
4845 {
4846 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4847 unsigned int ar;
4848
4849 vmcs_write16(sf->selector, 0);
4850 vmcs_writel(sf->base, 0);
4851 vmcs_write32(sf->limit, 0xffff);
4852 ar = 0x93;
4853 if (seg == VCPU_SREG_CS)
4854 ar |= 0x08; /* code segment */
4855
4856 vmcs_write32(sf->ar_bytes, ar);
4857 }
4858
4859 static int alloc_apic_access_page(struct kvm *kvm)
4860 {
4861 struct page *page;
4862 int r = 0;
4863
4864 mutex_lock(&kvm->slots_lock);
4865 if (kvm->arch.apic_access_page_done)
4866 goto out;
4867 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4868 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4869 if (r)
4870 goto out;
4871
4872 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4873 if (is_error_page(page)) {
4874 r = -EFAULT;
4875 goto out;
4876 }
4877
4878 /*
4879 * Do not pin the page in memory, so that memory hot-unplug
4880 * is able to migrate it.
4881 */
4882 put_page(page);
4883 kvm->arch.apic_access_page_done = true;
4884 out:
4885 mutex_unlock(&kvm->slots_lock);
4886 return r;
4887 }
4888
4889 static int allocate_vpid(void)
4890 {
4891 int vpid;
4892
4893 if (!enable_vpid)
4894 return 0;
4895 spin_lock(&vmx_vpid_lock);
4896 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4897 if (vpid < VMX_NR_VPIDS)
4898 __set_bit(vpid, vmx_vpid_bitmap);
4899 else
4900 vpid = 0;
4901 spin_unlock(&vmx_vpid_lock);
4902 return vpid;
4903 }
4904
4905 static void free_vpid(int vpid)
4906 {
4907 if (!enable_vpid || vpid == 0)
4908 return;
4909 spin_lock(&vmx_vpid_lock);
4910 __clear_bit(vpid, vmx_vpid_bitmap);
4911 spin_unlock(&vmx_vpid_lock);
4912 }
4913
4914 #define MSR_TYPE_R 1
4915 #define MSR_TYPE_W 2
4916 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4917 u32 msr, int type)
4918 {
4919 int f = sizeof(unsigned long);
4920
4921 if (!cpu_has_vmx_msr_bitmap())
4922 return;
4923
4924 /*
4925 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4926 * have the write-low and read-high bitmap offsets the wrong way round.
4927 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4928 */
4929 if (msr <= 0x1fff) {
4930 if (type & MSR_TYPE_R)
4931 /* read-low */
4932 __clear_bit(msr, msr_bitmap + 0x000 / f);
4933
4934 if (type & MSR_TYPE_W)
4935 /* write-low */
4936 __clear_bit(msr, msr_bitmap + 0x800 / f);
4937
4938 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4939 msr &= 0x1fff;
4940 if (type & MSR_TYPE_R)
4941 /* read-high */
4942 __clear_bit(msr, msr_bitmap + 0x400 / f);
4943
4944 if (type & MSR_TYPE_W)
4945 /* write-high */
4946 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4947
4948 }
4949 }
4950
4951 /*
4952 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4953 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4954 */
4955 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4956 unsigned long *msr_bitmap_nested,
4957 u32 msr, int type)
4958 {
4959 int f = sizeof(unsigned long);
4960
4961 if (!cpu_has_vmx_msr_bitmap()) {
4962 WARN_ON(1);
4963 return;
4964 }
4965
4966 /*
4967 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4968 * have the write-low and read-high bitmap offsets the wrong way round.
4969 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4970 */
4971 if (msr <= 0x1fff) {
4972 if (type & MSR_TYPE_R &&
4973 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4974 /* read-low */
4975 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4976
4977 if (type & MSR_TYPE_W &&
4978 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4979 /* write-low */
4980 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4981
4982 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4983 msr &= 0x1fff;
4984 if (type & MSR_TYPE_R &&
4985 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4986 /* read-high */
4987 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4988
4989 if (type & MSR_TYPE_W &&
4990 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4991 /* write-high */
4992 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4993
4994 }
4995 }
4996
4997 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4998 {
4999 if (!longmode_only)
5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
5001 msr, MSR_TYPE_R | MSR_TYPE_W);
5002 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
5003 msr, MSR_TYPE_R | MSR_TYPE_W);
5004 }
5005
5006 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
5007 {
5008 if (apicv_active) {
5009 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5010 msr, type);
5011 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5012 msr, type);
5013 } else {
5014 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5015 msr, type);
5016 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5017 msr, type);
5018 }
5019 }
5020
5021 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5022 {
5023 return enable_apicv;
5024 }
5025
5026 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5027 {
5028 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5029 gfn_t gfn;
5030
5031 /*
5032 * Don't need to mark the APIC access page dirty; it is never
5033 * written to by the CPU during APIC virtualization.
5034 */
5035
5036 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5037 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5038 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5039 }
5040
5041 if (nested_cpu_has_posted_intr(vmcs12)) {
5042 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5043 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5044 }
5045 }
5046
5047
5048 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5049 {
5050 struct vcpu_vmx *vmx = to_vmx(vcpu);
5051 int max_irr;
5052 void *vapic_page;
5053 u16 status;
5054
5055 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5056 return;
5057
5058 vmx->nested.pi_pending = false;
5059 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5060 return;
5061
5062 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5063 if (max_irr != 256) {
5064 vapic_page = kmap(vmx->nested.virtual_apic_page);
5065 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5066 kunmap(vmx->nested.virtual_apic_page);
5067
5068 status = vmcs_read16(GUEST_INTR_STATUS);
5069 if ((u8)max_irr > ((u8)status & 0xff)) {
5070 status &= ~0xff;
5071 status |= (u8)max_irr;
5072 vmcs_write16(GUEST_INTR_STATUS, status);
5073 }
5074 }
5075
5076 nested_mark_vmcs12_pages_dirty(vcpu);
5077 }
5078
5079 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5080 bool nested)
5081 {
5082 #ifdef CONFIG_SMP
5083 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5084
5085 if (vcpu->mode == IN_GUEST_MODE) {
5086 /*
5087 * The vector of interrupt to be delivered to vcpu had
5088 * been set in PIR before this function.
5089 *
5090 * Following cases will be reached in this block, and
5091 * we always send a notification event in all cases as
5092 * explained below.
5093 *
5094 * Case 1: vcpu keeps in non-root mode. Sending a
5095 * notification event posts the interrupt to vcpu.
5096 *
5097 * Case 2: vcpu exits to root mode and is still
5098 * runnable. PIR will be synced to vIRR before the
5099 * next vcpu entry. Sending a notification event in
5100 * this case has no effect, as vcpu is not in root
5101 * mode.
5102 *
5103 * Case 3: vcpu exits to root mode and is blocked.
5104 * vcpu_block() has already synced PIR to vIRR and
5105 * never blocks vcpu if vIRR is not cleared. Therefore,
5106 * a blocked vcpu here does not wait for any requested
5107 * interrupts in PIR, and sending a notification event
5108 * which has no effect is safe here.
5109 */
5110
5111 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5112 return true;
5113 }
5114 #endif
5115 return false;
5116 }
5117
5118 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5119 int vector)
5120 {
5121 struct vcpu_vmx *vmx = to_vmx(vcpu);
5122
5123 if (is_guest_mode(vcpu) &&
5124 vector == vmx->nested.posted_intr_nv) {
5125 /* the PIR and ON have been set by L1. */
5126 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5127 /*
5128 * If a posted intr is not recognized by hardware,
5129 * we will accomplish it in the next vmentry.
5130 */
5131 vmx->nested.pi_pending = true;
5132 kvm_make_request(KVM_REQ_EVENT, vcpu);
5133 return 0;
5134 }
5135 return -1;
5136 }
5137 /*
5138 * Send interrupt to vcpu via posted interrupt way.
5139 * 1. If target vcpu is running(non-root mode), send posted interrupt
5140 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5141 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5142 * interrupt from PIR in next vmentry.
5143 */
5144 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5145 {
5146 struct vcpu_vmx *vmx = to_vmx(vcpu);
5147 int r;
5148
5149 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5150 if (!r)
5151 return;
5152
5153 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5154 return;
5155
5156 /* If a previous notification has sent the IPI, nothing to do. */
5157 if (pi_test_and_set_on(&vmx->pi_desc))
5158 return;
5159
5160 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5161 kvm_vcpu_kick(vcpu);
5162 }
5163
5164 /*
5165 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5166 * will not change in the lifetime of the guest.
5167 * Note that host-state that does change is set elsewhere. E.g., host-state
5168 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5169 */
5170 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5171 {
5172 u32 low32, high32;
5173 unsigned long tmpl;
5174 struct desc_ptr dt;
5175 unsigned long cr0, cr3, cr4;
5176
5177 cr0 = read_cr0();
5178 WARN_ON(cr0 & X86_CR0_TS);
5179 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5180
5181 /*
5182 * Save the most likely value for this task's CR3 in the VMCS.
5183 * We can't use __get_current_cr3_fast() because we're not atomic.
5184 */
5185 cr3 = __read_cr3();
5186 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5187 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5188
5189 /* Save the most likely value for this task's CR4 in the VMCS. */
5190 cr4 = cr4_read_shadow();
5191 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5192 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5193
5194 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5195 #ifdef CONFIG_X86_64
5196 /*
5197 * Load null selectors, so we can avoid reloading them in
5198 * __vmx_load_host_state(), in case userspace uses the null selectors
5199 * too (the expected case).
5200 */
5201 vmcs_write16(HOST_DS_SELECTOR, 0);
5202 vmcs_write16(HOST_ES_SELECTOR, 0);
5203 #else
5204 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5205 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5206 #endif
5207 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5208 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5209
5210 store_idt(&dt);
5211 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5212 vmx->host_idt_base = dt.address;
5213
5214 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5215
5216 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5217 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5218 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5219 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5220
5221 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5222 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5223 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5224 }
5225 }
5226
5227 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5228 {
5229 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5230 if (enable_ept)
5231 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5232 if (is_guest_mode(&vmx->vcpu))
5233 vmx->vcpu.arch.cr4_guest_owned_bits &=
5234 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5235 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5236 }
5237
5238 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5239 {
5240 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5241
5242 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5243 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5244
5245 if (!enable_vnmi)
5246 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5247
5248 /* Enable the preemption timer dynamically */
5249 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5250 return pin_based_exec_ctrl;
5251 }
5252
5253 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5254 {
5255 struct vcpu_vmx *vmx = to_vmx(vcpu);
5256
5257 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5258 if (cpu_has_secondary_exec_ctrls()) {
5259 if (kvm_vcpu_apicv_active(vcpu))
5260 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5261 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5262 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5263 else
5264 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5265 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5266 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5267 }
5268
5269 if (cpu_has_vmx_msr_bitmap())
5270 vmx_set_msr_bitmap(vcpu);
5271 }
5272
5273 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5274 {
5275 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5276
5277 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5278 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5279
5280 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5281 exec_control &= ~CPU_BASED_TPR_SHADOW;
5282 #ifdef CONFIG_X86_64
5283 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5284 CPU_BASED_CR8_LOAD_EXITING;
5285 #endif
5286 }
5287 if (!enable_ept)
5288 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5289 CPU_BASED_CR3_LOAD_EXITING |
5290 CPU_BASED_INVLPG_EXITING;
5291 return exec_control;
5292 }
5293
5294 static bool vmx_rdrand_supported(void)
5295 {
5296 return vmcs_config.cpu_based_2nd_exec_ctrl &
5297 SECONDARY_EXEC_RDRAND_EXITING;
5298 }
5299
5300 static bool vmx_rdseed_supported(void)
5301 {
5302 return vmcs_config.cpu_based_2nd_exec_ctrl &
5303 SECONDARY_EXEC_RDSEED_EXITING;
5304 }
5305
5306 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5307 {
5308 struct kvm_vcpu *vcpu = &vmx->vcpu;
5309
5310 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5311 if (!cpu_need_virtualize_apic_accesses(vcpu))
5312 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5313 if (vmx->vpid == 0)
5314 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5315 if (!enable_ept) {
5316 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5317 enable_unrestricted_guest = 0;
5318 /* Enable INVPCID for non-ept guests may cause performance regression. */
5319 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5320 }
5321 if (!enable_unrestricted_guest)
5322 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5323 if (!ple_gap)
5324 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5325 if (!kvm_vcpu_apicv_active(vcpu))
5326 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5327 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5328 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5329 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5330 (handle_vmptrld).
5331 We can NOT enable shadow_vmcs here because we don't have yet
5332 a current VMCS12
5333 */
5334 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5335
5336 if (!enable_pml)
5337 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5338
5339 if (vmx_xsaves_supported()) {
5340 /* Exposing XSAVES only when XSAVE is exposed */
5341 bool xsaves_enabled =
5342 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5343 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5344
5345 if (!xsaves_enabled)
5346 exec_control &= ~SECONDARY_EXEC_XSAVES;
5347
5348 if (nested) {
5349 if (xsaves_enabled)
5350 vmx->nested.nested_vmx_secondary_ctls_high |=
5351 SECONDARY_EXEC_XSAVES;
5352 else
5353 vmx->nested.nested_vmx_secondary_ctls_high &=
5354 ~SECONDARY_EXEC_XSAVES;
5355 }
5356 }
5357
5358 if (vmx_rdtscp_supported()) {
5359 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5360 if (!rdtscp_enabled)
5361 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5362
5363 if (nested) {
5364 if (rdtscp_enabled)
5365 vmx->nested.nested_vmx_secondary_ctls_high |=
5366 SECONDARY_EXEC_RDTSCP;
5367 else
5368 vmx->nested.nested_vmx_secondary_ctls_high &=
5369 ~SECONDARY_EXEC_RDTSCP;
5370 }
5371 }
5372
5373 if (vmx_invpcid_supported()) {
5374 /* Exposing INVPCID only when PCID is exposed */
5375 bool invpcid_enabled =
5376 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5377 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5378
5379 if (!invpcid_enabled) {
5380 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5381 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5382 }
5383
5384 if (nested) {
5385 if (invpcid_enabled)
5386 vmx->nested.nested_vmx_secondary_ctls_high |=
5387 SECONDARY_EXEC_ENABLE_INVPCID;
5388 else
5389 vmx->nested.nested_vmx_secondary_ctls_high &=
5390 ~SECONDARY_EXEC_ENABLE_INVPCID;
5391 }
5392 }
5393
5394 if (vmx_rdrand_supported()) {
5395 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5396 if (rdrand_enabled)
5397 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
5398
5399 if (nested) {
5400 if (rdrand_enabled)
5401 vmx->nested.nested_vmx_secondary_ctls_high |=
5402 SECONDARY_EXEC_RDRAND_EXITING;
5403 else
5404 vmx->nested.nested_vmx_secondary_ctls_high &=
5405 ~SECONDARY_EXEC_RDRAND_EXITING;
5406 }
5407 }
5408
5409 if (vmx_rdseed_supported()) {
5410 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5411 if (rdseed_enabled)
5412 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
5413
5414 if (nested) {
5415 if (rdseed_enabled)
5416 vmx->nested.nested_vmx_secondary_ctls_high |=
5417 SECONDARY_EXEC_RDSEED_EXITING;
5418 else
5419 vmx->nested.nested_vmx_secondary_ctls_high &=
5420 ~SECONDARY_EXEC_RDSEED_EXITING;
5421 }
5422 }
5423
5424 vmx->secondary_exec_control = exec_control;
5425 }
5426
5427 static void ept_set_mmio_spte_mask(void)
5428 {
5429 /*
5430 * EPT Misconfigurations can be generated if the value of bits 2:0
5431 * of an EPT paging-structure entry is 110b (write/execute).
5432 */
5433 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5434 VMX_EPT_MISCONFIG_WX_VALUE);
5435 }
5436
5437 #define VMX_XSS_EXIT_BITMAP 0
5438 /*
5439 * Sets up the vmcs for emulated real mode.
5440 */
5441 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
5442 {
5443 #ifdef CONFIG_X86_64
5444 unsigned long a;
5445 #endif
5446 int i;
5447
5448 /* I/O */
5449 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5450 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5451
5452 if (enable_shadow_vmcs) {
5453 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5454 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5455 }
5456 if (cpu_has_vmx_msr_bitmap())
5457 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5458
5459 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5460
5461 /* Control */
5462 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5463 vmx->hv_deadline_tsc = -1;
5464
5465 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5466
5467 if (cpu_has_secondary_exec_ctrls()) {
5468 vmx_compute_secondary_exec_control(vmx);
5469 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5470 vmx->secondary_exec_control);
5471 }
5472
5473 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5474 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5475 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5476 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5477 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5478
5479 vmcs_write16(GUEST_INTR_STATUS, 0);
5480
5481 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5482 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5483 }
5484
5485 if (ple_gap) {
5486 vmcs_write32(PLE_GAP, ple_gap);
5487 vmx->ple_window = ple_window;
5488 vmx->ple_window_dirty = true;
5489 }
5490
5491 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5492 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5493 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5494
5495 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5496 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5497 vmx_set_constant_host_state(vmx);
5498 #ifdef CONFIG_X86_64
5499 rdmsrl(MSR_FS_BASE, a);
5500 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5501 rdmsrl(MSR_GS_BASE, a);
5502 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5503 #else
5504 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5505 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5506 #endif
5507
5508 if (cpu_has_vmx_vmfunc())
5509 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5510
5511 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5512 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5513 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5514 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5515 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5516
5517 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5518 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5519
5520 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5521 u32 index = vmx_msr_index[i];
5522 u32 data_low, data_high;
5523 int j = vmx->nmsrs;
5524
5525 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5526 continue;
5527 if (wrmsr_safe(index, data_low, data_high) < 0)
5528 continue;
5529 vmx->guest_msrs[j].index = i;
5530 vmx->guest_msrs[j].data = 0;
5531 vmx->guest_msrs[j].mask = -1ull;
5532 ++vmx->nmsrs;
5533 }
5534
5535
5536 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5537
5538 /* 22.2.1, 20.8.1 */
5539 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5540
5541 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5542 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5543
5544 set_cr4_guest_host_mask(vmx);
5545
5546 if (vmx_xsaves_supported())
5547 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5548
5549 if (enable_pml) {
5550 ASSERT(vmx->pml_pg);
5551 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5552 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5553 }
5554 }
5555
5556 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5557 {
5558 struct vcpu_vmx *vmx = to_vmx(vcpu);
5559 struct msr_data apic_base_msr;
5560 u64 cr0;
5561
5562 vmx->rmode.vm86_active = 0;
5563
5564 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5565 kvm_set_cr8(vcpu, 0);
5566
5567 if (!init_event) {
5568 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5569 MSR_IA32_APICBASE_ENABLE;
5570 if (kvm_vcpu_is_reset_bsp(vcpu))
5571 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5572 apic_base_msr.host_initiated = true;
5573 kvm_set_apic_base(vcpu, &apic_base_msr);
5574 }
5575
5576 vmx_segment_cache_clear(vmx);
5577
5578 seg_setup(VCPU_SREG_CS);
5579 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5580 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5581
5582 seg_setup(VCPU_SREG_DS);
5583 seg_setup(VCPU_SREG_ES);
5584 seg_setup(VCPU_SREG_FS);
5585 seg_setup(VCPU_SREG_GS);
5586 seg_setup(VCPU_SREG_SS);
5587
5588 vmcs_write16(GUEST_TR_SELECTOR, 0);
5589 vmcs_writel(GUEST_TR_BASE, 0);
5590 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5591 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5592
5593 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5594 vmcs_writel(GUEST_LDTR_BASE, 0);
5595 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5596 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5597
5598 if (!init_event) {
5599 vmcs_write32(GUEST_SYSENTER_CS, 0);
5600 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5601 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5602 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5603 }
5604
5605 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5606 kvm_rip_write(vcpu, 0xfff0);
5607
5608 vmcs_writel(GUEST_GDTR_BASE, 0);
5609 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5610
5611 vmcs_writel(GUEST_IDTR_BASE, 0);
5612 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5613
5614 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5615 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5616 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5617 if (kvm_mpx_supported())
5618 vmcs_write64(GUEST_BNDCFGS, 0);
5619
5620 setup_msrs(vmx);
5621
5622 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5623
5624 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5625 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5626 if (cpu_need_tpr_shadow(vcpu))
5627 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5628 __pa(vcpu->arch.apic->regs));
5629 vmcs_write32(TPR_THRESHOLD, 0);
5630 }
5631
5632 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5633
5634 if (vmx->vpid != 0)
5635 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5636
5637 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5638 vmx->vcpu.arch.cr0 = cr0;
5639 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5640 vmx_set_cr4(vcpu, 0);
5641 vmx_set_efer(vcpu, 0);
5642
5643 update_exception_bitmap(vcpu);
5644
5645 vpid_sync_context(vmx->vpid);
5646 }
5647
5648 /*
5649 * In nested virtualization, check if L1 asked to exit on external interrupts.
5650 * For most existing hypervisors, this will always return true.
5651 */
5652 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5653 {
5654 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5655 PIN_BASED_EXT_INTR_MASK;
5656 }
5657
5658 /*
5659 * In nested virtualization, check if L1 has set
5660 * VM_EXIT_ACK_INTR_ON_EXIT
5661 */
5662 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5663 {
5664 return get_vmcs12(vcpu)->vm_exit_controls &
5665 VM_EXIT_ACK_INTR_ON_EXIT;
5666 }
5667
5668 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5669 {
5670 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5671 PIN_BASED_NMI_EXITING;
5672 }
5673
5674 static void enable_irq_window(struct kvm_vcpu *vcpu)
5675 {
5676 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5677 CPU_BASED_VIRTUAL_INTR_PENDING);
5678 }
5679
5680 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5681 {
5682 if (!enable_vnmi ||
5683 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5684 enable_irq_window(vcpu);
5685 return;
5686 }
5687
5688 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5689 CPU_BASED_VIRTUAL_NMI_PENDING);
5690 }
5691
5692 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5693 {
5694 struct vcpu_vmx *vmx = to_vmx(vcpu);
5695 uint32_t intr;
5696 int irq = vcpu->arch.interrupt.nr;
5697
5698 trace_kvm_inj_virq(irq);
5699
5700 ++vcpu->stat.irq_injections;
5701 if (vmx->rmode.vm86_active) {
5702 int inc_eip = 0;
5703 if (vcpu->arch.interrupt.soft)
5704 inc_eip = vcpu->arch.event_exit_inst_len;
5705 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5706 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5707 return;
5708 }
5709 intr = irq | INTR_INFO_VALID_MASK;
5710 if (vcpu->arch.interrupt.soft) {
5711 intr |= INTR_TYPE_SOFT_INTR;
5712 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5713 vmx->vcpu.arch.event_exit_inst_len);
5714 } else
5715 intr |= INTR_TYPE_EXT_INTR;
5716 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5717 }
5718
5719 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5720 {
5721 struct vcpu_vmx *vmx = to_vmx(vcpu);
5722
5723 if (!enable_vnmi) {
5724 /*
5725 * Tracking the NMI-blocked state in software is built upon
5726 * finding the next open IRQ window. This, in turn, depends on
5727 * well-behaving guests: They have to keep IRQs disabled at
5728 * least as long as the NMI handler runs. Otherwise we may
5729 * cause NMI nesting, maybe breaking the guest. But as this is
5730 * highly unlikely, we can live with the residual risk.
5731 */
5732 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5733 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5734 }
5735
5736 ++vcpu->stat.nmi_injections;
5737 vmx->loaded_vmcs->nmi_known_unmasked = false;
5738
5739 if (vmx->rmode.vm86_active) {
5740 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5741 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5742 return;
5743 }
5744
5745 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5746 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5747 }
5748
5749 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5750 {
5751 struct vcpu_vmx *vmx = to_vmx(vcpu);
5752 bool masked;
5753
5754 if (!enable_vnmi)
5755 return vmx->loaded_vmcs->soft_vnmi_blocked;
5756 if (vmx->loaded_vmcs->nmi_known_unmasked)
5757 return false;
5758 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5759 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5760 return masked;
5761 }
5762
5763 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5764 {
5765 struct vcpu_vmx *vmx = to_vmx(vcpu);
5766
5767 if (!enable_vnmi) {
5768 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5769 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5770 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5771 }
5772 } else {
5773 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5774 if (masked)
5775 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5776 GUEST_INTR_STATE_NMI);
5777 else
5778 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5779 GUEST_INTR_STATE_NMI);
5780 }
5781 }
5782
5783 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5784 {
5785 if (to_vmx(vcpu)->nested.nested_run_pending)
5786 return 0;
5787
5788 if (!enable_vnmi &&
5789 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5790 return 0;
5791
5792 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5793 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5794 | GUEST_INTR_STATE_NMI));
5795 }
5796
5797 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5798 {
5799 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5800 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5801 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5802 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5803 }
5804
5805 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5806 {
5807 int ret;
5808
5809 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5810 PAGE_SIZE * 3);
5811 if (ret)
5812 return ret;
5813 kvm->arch.tss_addr = addr;
5814 return init_rmode_tss(kvm);
5815 }
5816
5817 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5818 {
5819 switch (vec) {
5820 case BP_VECTOR:
5821 /*
5822 * Update instruction length as we may reinject the exception
5823 * from user space while in guest debugging mode.
5824 */
5825 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5826 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5827 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5828 return false;
5829 /* fall through */
5830 case DB_VECTOR:
5831 if (vcpu->guest_debug &
5832 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5833 return false;
5834 /* fall through */
5835 case DE_VECTOR:
5836 case OF_VECTOR:
5837 case BR_VECTOR:
5838 case UD_VECTOR:
5839 case DF_VECTOR:
5840 case SS_VECTOR:
5841 case GP_VECTOR:
5842 case MF_VECTOR:
5843 return true;
5844 break;
5845 }
5846 return false;
5847 }
5848
5849 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5850 int vec, u32 err_code)
5851 {
5852 /*
5853 * Instruction with address size override prefix opcode 0x67
5854 * Cause the #SS fault with 0 error code in VM86 mode.
5855 */
5856 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5857 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5858 if (vcpu->arch.halt_request) {
5859 vcpu->arch.halt_request = 0;
5860 return kvm_vcpu_halt(vcpu);
5861 }
5862 return 1;
5863 }
5864 return 0;
5865 }
5866
5867 /*
5868 * Forward all other exceptions that are valid in real mode.
5869 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5870 * the required debugging infrastructure rework.
5871 */
5872 kvm_queue_exception(vcpu, vec);
5873 return 1;
5874 }
5875
5876 /*
5877 * Trigger machine check on the host. We assume all the MSRs are already set up
5878 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5879 * We pass a fake environment to the machine check handler because we want
5880 * the guest to be always treated like user space, no matter what context
5881 * it used internally.
5882 */
5883 static void kvm_machine_check(void)
5884 {
5885 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5886 struct pt_regs regs = {
5887 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5888 .flags = X86_EFLAGS_IF,
5889 };
5890
5891 do_machine_check(&regs, 0);
5892 #endif
5893 }
5894
5895 static int handle_machine_check(struct kvm_vcpu *vcpu)
5896 {
5897 /* already handled by vcpu_run */
5898 return 1;
5899 }
5900
5901 static int handle_exception(struct kvm_vcpu *vcpu)
5902 {
5903 struct vcpu_vmx *vmx = to_vmx(vcpu);
5904 struct kvm_run *kvm_run = vcpu->run;
5905 u32 intr_info, ex_no, error_code;
5906 unsigned long cr2, rip, dr6;
5907 u32 vect_info;
5908 enum emulation_result er;
5909
5910 vect_info = vmx->idt_vectoring_info;
5911 intr_info = vmx->exit_intr_info;
5912
5913 if (is_machine_check(intr_info))
5914 return handle_machine_check(vcpu);
5915
5916 if (is_nmi(intr_info))
5917 return 1; /* already handled by vmx_vcpu_run() */
5918
5919 if (is_invalid_opcode(intr_info)) {
5920 WARN_ON_ONCE(is_guest_mode(vcpu));
5921 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5922 if (er == EMULATE_USER_EXIT)
5923 return 0;
5924 if (er != EMULATE_DONE)
5925 kvm_queue_exception(vcpu, UD_VECTOR);
5926 return 1;
5927 }
5928
5929 error_code = 0;
5930 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5931 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5932
5933 /*
5934 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5935 * MMIO, it is better to report an internal error.
5936 * See the comments in vmx_handle_exit.
5937 */
5938 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5939 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5940 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5941 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5942 vcpu->run->internal.ndata = 3;
5943 vcpu->run->internal.data[0] = vect_info;
5944 vcpu->run->internal.data[1] = intr_info;
5945 vcpu->run->internal.data[2] = error_code;
5946 return 0;
5947 }
5948
5949 if (is_page_fault(intr_info)) {
5950 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5951 /* EPT won't cause page fault directly */
5952 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5953 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5954 }
5955
5956 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5957
5958 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5959 return handle_rmode_exception(vcpu, ex_no, error_code);
5960
5961 switch (ex_no) {
5962 case AC_VECTOR:
5963 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5964 return 1;
5965 case DB_VECTOR:
5966 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5967 if (!(vcpu->guest_debug &
5968 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5969 vcpu->arch.dr6 &= ~15;
5970 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5971 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5972 skip_emulated_instruction(vcpu);
5973
5974 kvm_queue_exception(vcpu, DB_VECTOR);
5975 return 1;
5976 }
5977 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5978 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5979 /* fall through */
5980 case BP_VECTOR:
5981 /*
5982 * Update instruction length as we may reinject #BP from
5983 * user space while in guest debugging mode. Reading it for
5984 * #DB as well causes no harm, it is not used in that case.
5985 */
5986 vmx->vcpu.arch.event_exit_inst_len =
5987 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5988 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5989 rip = kvm_rip_read(vcpu);
5990 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5991 kvm_run->debug.arch.exception = ex_no;
5992 break;
5993 default:
5994 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5995 kvm_run->ex.exception = ex_no;
5996 kvm_run->ex.error_code = error_code;
5997 break;
5998 }
5999 return 0;
6000 }
6001
6002 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6003 {
6004 ++vcpu->stat.irq_exits;
6005 return 1;
6006 }
6007
6008 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6009 {
6010 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6011 vcpu->mmio_needed = 0;
6012 return 0;
6013 }
6014
6015 static int handle_io(struct kvm_vcpu *vcpu)
6016 {
6017 unsigned long exit_qualification;
6018 int size, in, string, ret;
6019 unsigned port;
6020
6021 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6022 string = (exit_qualification & 16) != 0;
6023 in = (exit_qualification & 8) != 0;
6024
6025 ++vcpu->stat.io_exits;
6026
6027 if (string || in)
6028 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6029
6030 port = exit_qualification >> 16;
6031 size = (exit_qualification & 7) + 1;
6032
6033 ret = kvm_skip_emulated_instruction(vcpu);
6034
6035 /*
6036 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6037 * KVM_EXIT_DEBUG here.
6038 */
6039 return kvm_fast_pio_out(vcpu, size, port) && ret;
6040 }
6041
6042 static void
6043 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6044 {
6045 /*
6046 * Patch in the VMCALL instruction:
6047 */
6048 hypercall[0] = 0x0f;
6049 hypercall[1] = 0x01;
6050 hypercall[2] = 0xc1;
6051 }
6052
6053 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6054 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6055 {
6056 if (is_guest_mode(vcpu)) {
6057 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6058 unsigned long orig_val = val;
6059
6060 /*
6061 * We get here when L2 changed cr0 in a way that did not change
6062 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6063 * but did change L0 shadowed bits. So we first calculate the
6064 * effective cr0 value that L1 would like to write into the
6065 * hardware. It consists of the L2-owned bits from the new
6066 * value combined with the L1-owned bits from L1's guest_cr0.
6067 */
6068 val = (val & ~vmcs12->cr0_guest_host_mask) |
6069 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6070
6071 if (!nested_guest_cr0_valid(vcpu, val))
6072 return 1;
6073
6074 if (kvm_set_cr0(vcpu, val))
6075 return 1;
6076 vmcs_writel(CR0_READ_SHADOW, orig_val);
6077 return 0;
6078 } else {
6079 if (to_vmx(vcpu)->nested.vmxon &&
6080 !nested_host_cr0_valid(vcpu, val))
6081 return 1;
6082
6083 return kvm_set_cr0(vcpu, val);
6084 }
6085 }
6086
6087 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6088 {
6089 if (is_guest_mode(vcpu)) {
6090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6091 unsigned long orig_val = val;
6092
6093 /* analogously to handle_set_cr0 */
6094 val = (val & ~vmcs12->cr4_guest_host_mask) |
6095 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6096 if (kvm_set_cr4(vcpu, val))
6097 return 1;
6098 vmcs_writel(CR4_READ_SHADOW, orig_val);
6099 return 0;
6100 } else
6101 return kvm_set_cr4(vcpu, val);
6102 }
6103
6104 static int handle_cr(struct kvm_vcpu *vcpu)
6105 {
6106 unsigned long exit_qualification, val;
6107 int cr;
6108 int reg;
6109 int err;
6110 int ret;
6111
6112 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6113 cr = exit_qualification & 15;
6114 reg = (exit_qualification >> 8) & 15;
6115 switch ((exit_qualification >> 4) & 3) {
6116 case 0: /* mov to cr */
6117 val = kvm_register_readl(vcpu, reg);
6118 trace_kvm_cr_write(cr, val);
6119 switch (cr) {
6120 case 0:
6121 err = handle_set_cr0(vcpu, val);
6122 return kvm_complete_insn_gp(vcpu, err);
6123 case 3:
6124 err = kvm_set_cr3(vcpu, val);
6125 return kvm_complete_insn_gp(vcpu, err);
6126 case 4:
6127 err = handle_set_cr4(vcpu, val);
6128 return kvm_complete_insn_gp(vcpu, err);
6129 case 8: {
6130 u8 cr8_prev = kvm_get_cr8(vcpu);
6131 u8 cr8 = (u8)val;
6132 err = kvm_set_cr8(vcpu, cr8);
6133 ret = kvm_complete_insn_gp(vcpu, err);
6134 if (lapic_in_kernel(vcpu))
6135 return ret;
6136 if (cr8_prev <= cr8)
6137 return ret;
6138 /*
6139 * TODO: we might be squashing a
6140 * KVM_GUESTDBG_SINGLESTEP-triggered
6141 * KVM_EXIT_DEBUG here.
6142 */
6143 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6144 return 0;
6145 }
6146 }
6147 break;
6148 case 2: /* clts */
6149 WARN_ONCE(1, "Guest should always own CR0.TS");
6150 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6151 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6152 return kvm_skip_emulated_instruction(vcpu);
6153 case 1: /*mov from cr*/
6154 switch (cr) {
6155 case 3:
6156 val = kvm_read_cr3(vcpu);
6157 kvm_register_write(vcpu, reg, val);
6158 trace_kvm_cr_read(cr, val);
6159 return kvm_skip_emulated_instruction(vcpu);
6160 case 8:
6161 val = kvm_get_cr8(vcpu);
6162 kvm_register_write(vcpu, reg, val);
6163 trace_kvm_cr_read(cr, val);
6164 return kvm_skip_emulated_instruction(vcpu);
6165 }
6166 break;
6167 case 3: /* lmsw */
6168 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6169 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6170 kvm_lmsw(vcpu, val);
6171
6172 return kvm_skip_emulated_instruction(vcpu);
6173 default:
6174 break;
6175 }
6176 vcpu->run->exit_reason = 0;
6177 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6178 (int)(exit_qualification >> 4) & 3, cr);
6179 return 0;
6180 }
6181
6182 static int handle_dr(struct kvm_vcpu *vcpu)
6183 {
6184 unsigned long exit_qualification;
6185 int dr, dr7, reg;
6186
6187 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6188 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6189
6190 /* First, if DR does not exist, trigger UD */
6191 if (!kvm_require_dr(vcpu, dr))
6192 return 1;
6193
6194 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6195 if (!kvm_require_cpl(vcpu, 0))
6196 return 1;
6197 dr7 = vmcs_readl(GUEST_DR7);
6198 if (dr7 & DR7_GD) {
6199 /*
6200 * As the vm-exit takes precedence over the debug trap, we
6201 * need to emulate the latter, either for the host or the
6202 * guest debugging itself.
6203 */
6204 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6205 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6206 vcpu->run->debug.arch.dr7 = dr7;
6207 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6208 vcpu->run->debug.arch.exception = DB_VECTOR;
6209 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6210 return 0;
6211 } else {
6212 vcpu->arch.dr6 &= ~15;
6213 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6214 kvm_queue_exception(vcpu, DB_VECTOR);
6215 return 1;
6216 }
6217 }
6218
6219 if (vcpu->guest_debug == 0) {
6220 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6221 CPU_BASED_MOV_DR_EXITING);
6222
6223 /*
6224 * No more DR vmexits; force a reload of the debug registers
6225 * and reenter on this instruction. The next vmexit will
6226 * retrieve the full state of the debug registers.
6227 */
6228 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6229 return 1;
6230 }
6231
6232 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6233 if (exit_qualification & TYPE_MOV_FROM_DR) {
6234 unsigned long val;
6235
6236 if (kvm_get_dr(vcpu, dr, &val))
6237 return 1;
6238 kvm_register_write(vcpu, reg, val);
6239 } else
6240 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6241 return 1;
6242
6243 return kvm_skip_emulated_instruction(vcpu);
6244 }
6245
6246 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6247 {
6248 return vcpu->arch.dr6;
6249 }
6250
6251 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6252 {
6253 }
6254
6255 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6256 {
6257 get_debugreg(vcpu->arch.db[0], 0);
6258 get_debugreg(vcpu->arch.db[1], 1);
6259 get_debugreg(vcpu->arch.db[2], 2);
6260 get_debugreg(vcpu->arch.db[3], 3);
6261 get_debugreg(vcpu->arch.dr6, 6);
6262 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6263
6264 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6265 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6266 }
6267
6268 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6269 {
6270 vmcs_writel(GUEST_DR7, val);
6271 }
6272
6273 static int handle_cpuid(struct kvm_vcpu *vcpu)
6274 {
6275 return kvm_emulate_cpuid(vcpu);
6276 }
6277
6278 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6279 {
6280 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6281 struct msr_data msr_info;
6282
6283 msr_info.index = ecx;
6284 msr_info.host_initiated = false;
6285 if (vmx_get_msr(vcpu, &msr_info)) {
6286 trace_kvm_msr_read_ex(ecx);
6287 kvm_inject_gp(vcpu, 0);
6288 return 1;
6289 }
6290
6291 trace_kvm_msr_read(ecx, msr_info.data);
6292
6293 /* FIXME: handling of bits 32:63 of rax, rdx */
6294 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6295 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6296 return kvm_skip_emulated_instruction(vcpu);
6297 }
6298
6299 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6300 {
6301 struct msr_data msr;
6302 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6303 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6304 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6305
6306 msr.data = data;
6307 msr.index = ecx;
6308 msr.host_initiated = false;
6309 if (kvm_set_msr(vcpu, &msr) != 0) {
6310 trace_kvm_msr_write_ex(ecx, data);
6311 kvm_inject_gp(vcpu, 0);
6312 return 1;
6313 }
6314
6315 trace_kvm_msr_write(ecx, data);
6316 return kvm_skip_emulated_instruction(vcpu);
6317 }
6318
6319 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6320 {
6321 kvm_apic_update_ppr(vcpu);
6322 return 1;
6323 }
6324
6325 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6326 {
6327 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6328 CPU_BASED_VIRTUAL_INTR_PENDING);
6329
6330 kvm_make_request(KVM_REQ_EVENT, vcpu);
6331
6332 ++vcpu->stat.irq_window_exits;
6333 return 1;
6334 }
6335
6336 static int handle_halt(struct kvm_vcpu *vcpu)
6337 {
6338 return kvm_emulate_halt(vcpu);
6339 }
6340
6341 static int handle_vmcall(struct kvm_vcpu *vcpu)
6342 {
6343 return kvm_emulate_hypercall(vcpu);
6344 }
6345
6346 static int handle_invd(struct kvm_vcpu *vcpu)
6347 {
6348 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6349 }
6350
6351 static int handle_invlpg(struct kvm_vcpu *vcpu)
6352 {
6353 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6354
6355 kvm_mmu_invlpg(vcpu, exit_qualification);
6356 return kvm_skip_emulated_instruction(vcpu);
6357 }
6358
6359 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6360 {
6361 int err;
6362
6363 err = kvm_rdpmc(vcpu);
6364 return kvm_complete_insn_gp(vcpu, err);
6365 }
6366
6367 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6368 {
6369 return kvm_emulate_wbinvd(vcpu);
6370 }
6371
6372 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6373 {
6374 u64 new_bv = kvm_read_edx_eax(vcpu);
6375 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6376
6377 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6378 return kvm_skip_emulated_instruction(vcpu);
6379 return 1;
6380 }
6381
6382 static int handle_xsaves(struct kvm_vcpu *vcpu)
6383 {
6384 kvm_skip_emulated_instruction(vcpu);
6385 WARN(1, "this should never happen\n");
6386 return 1;
6387 }
6388
6389 static int handle_xrstors(struct kvm_vcpu *vcpu)
6390 {
6391 kvm_skip_emulated_instruction(vcpu);
6392 WARN(1, "this should never happen\n");
6393 return 1;
6394 }
6395
6396 static int handle_apic_access(struct kvm_vcpu *vcpu)
6397 {
6398 if (likely(fasteoi)) {
6399 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6400 int access_type, offset;
6401
6402 access_type = exit_qualification & APIC_ACCESS_TYPE;
6403 offset = exit_qualification & APIC_ACCESS_OFFSET;
6404 /*
6405 * Sane guest uses MOV to write EOI, with written value
6406 * not cared. So make a short-circuit here by avoiding
6407 * heavy instruction emulation.
6408 */
6409 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6410 (offset == APIC_EOI)) {
6411 kvm_lapic_set_eoi(vcpu);
6412 return kvm_skip_emulated_instruction(vcpu);
6413 }
6414 }
6415 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6416 }
6417
6418 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6419 {
6420 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6421 int vector = exit_qualification & 0xff;
6422
6423 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6424 kvm_apic_set_eoi_accelerated(vcpu, vector);
6425 return 1;
6426 }
6427
6428 static int handle_apic_write(struct kvm_vcpu *vcpu)
6429 {
6430 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6431 u32 offset = exit_qualification & 0xfff;
6432
6433 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6434 kvm_apic_write_nodecode(vcpu, offset);
6435 return 1;
6436 }
6437
6438 static int handle_task_switch(struct kvm_vcpu *vcpu)
6439 {
6440 struct vcpu_vmx *vmx = to_vmx(vcpu);
6441 unsigned long exit_qualification;
6442 bool has_error_code = false;
6443 u32 error_code = 0;
6444 u16 tss_selector;
6445 int reason, type, idt_v, idt_index;
6446
6447 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6448 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6449 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6450
6451 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6452
6453 reason = (u32)exit_qualification >> 30;
6454 if (reason == TASK_SWITCH_GATE && idt_v) {
6455 switch (type) {
6456 case INTR_TYPE_NMI_INTR:
6457 vcpu->arch.nmi_injected = false;
6458 vmx_set_nmi_mask(vcpu, true);
6459 break;
6460 case INTR_TYPE_EXT_INTR:
6461 case INTR_TYPE_SOFT_INTR:
6462 kvm_clear_interrupt_queue(vcpu);
6463 break;
6464 case INTR_TYPE_HARD_EXCEPTION:
6465 if (vmx->idt_vectoring_info &
6466 VECTORING_INFO_DELIVER_CODE_MASK) {
6467 has_error_code = true;
6468 error_code =
6469 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6470 }
6471 /* fall through */
6472 case INTR_TYPE_SOFT_EXCEPTION:
6473 kvm_clear_exception_queue(vcpu);
6474 break;
6475 default:
6476 break;
6477 }
6478 }
6479 tss_selector = exit_qualification;
6480
6481 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6482 type != INTR_TYPE_EXT_INTR &&
6483 type != INTR_TYPE_NMI_INTR))
6484 skip_emulated_instruction(vcpu);
6485
6486 if (kvm_task_switch(vcpu, tss_selector,
6487 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6488 has_error_code, error_code) == EMULATE_FAIL) {
6489 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6490 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6491 vcpu->run->internal.ndata = 0;
6492 return 0;
6493 }
6494
6495 /*
6496 * TODO: What about debug traps on tss switch?
6497 * Are we supposed to inject them and update dr6?
6498 */
6499
6500 return 1;
6501 }
6502
6503 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6504 {
6505 unsigned long exit_qualification;
6506 gpa_t gpa;
6507 u64 error_code;
6508
6509 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6510
6511 /*
6512 * EPT violation happened while executing iret from NMI,
6513 * "blocked by NMI" bit has to be set before next VM entry.
6514 * There are errata that may cause this bit to not be set:
6515 * AAK134, BY25.
6516 */
6517 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6518 enable_vnmi &&
6519 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6520 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6521
6522 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6523 trace_kvm_page_fault(gpa, exit_qualification);
6524
6525 /* Is it a read fault? */
6526 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6527 ? PFERR_USER_MASK : 0;
6528 /* Is it a write fault? */
6529 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6530 ? PFERR_WRITE_MASK : 0;
6531 /* Is it a fetch fault? */
6532 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6533 ? PFERR_FETCH_MASK : 0;
6534 /* ept page table entry is present? */
6535 error_code |= (exit_qualification &
6536 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6537 EPT_VIOLATION_EXECUTABLE))
6538 ? PFERR_PRESENT_MASK : 0;
6539
6540 error_code |= (exit_qualification & 0x100) != 0 ?
6541 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6542
6543 vcpu->arch.exit_qualification = exit_qualification;
6544 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6545 }
6546
6547 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6548 {
6549 int ret;
6550 gpa_t gpa;
6551
6552 /*
6553 * A nested guest cannot optimize MMIO vmexits, because we have an
6554 * nGPA here instead of the required GPA.
6555 */
6556 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6557 if (!is_guest_mode(vcpu) &&
6558 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6559 trace_kvm_fast_mmio(gpa);
6560 return kvm_skip_emulated_instruction(vcpu);
6561 }
6562
6563 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6564 if (ret >= 0)
6565 return ret;
6566
6567 /* It is the real ept misconfig */
6568 WARN_ON(1);
6569
6570 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6571 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6572
6573 return 0;
6574 }
6575
6576 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6577 {
6578 WARN_ON_ONCE(!enable_vnmi);
6579 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6580 CPU_BASED_VIRTUAL_NMI_PENDING);
6581 ++vcpu->stat.nmi_window_exits;
6582 kvm_make_request(KVM_REQ_EVENT, vcpu);
6583
6584 return 1;
6585 }
6586
6587 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6588 {
6589 struct vcpu_vmx *vmx = to_vmx(vcpu);
6590 enum emulation_result err = EMULATE_DONE;
6591 int ret = 1;
6592 u32 cpu_exec_ctrl;
6593 bool intr_window_requested;
6594 unsigned count = 130;
6595
6596 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6597 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6598
6599 while (vmx->emulation_required && count-- != 0) {
6600 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6601 return handle_interrupt_window(&vmx->vcpu);
6602
6603 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6604 return 1;
6605
6606 err = emulate_instruction(vcpu, 0);
6607
6608 if (err == EMULATE_USER_EXIT) {
6609 ++vcpu->stat.mmio_exits;
6610 ret = 0;
6611 goto out;
6612 }
6613
6614 if (err != EMULATE_DONE) {
6615 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6616 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6617 vcpu->run->internal.ndata = 0;
6618 return 0;
6619 }
6620
6621 if (vcpu->arch.halt_request) {
6622 vcpu->arch.halt_request = 0;
6623 ret = kvm_vcpu_halt(vcpu);
6624 goto out;
6625 }
6626
6627 if (signal_pending(current))
6628 goto out;
6629 if (need_resched())
6630 schedule();
6631 }
6632
6633 out:
6634 return ret;
6635 }
6636
6637 static int __grow_ple_window(int val)
6638 {
6639 if (ple_window_grow < 1)
6640 return ple_window;
6641
6642 val = min(val, ple_window_actual_max);
6643
6644 if (ple_window_grow < ple_window)
6645 val *= ple_window_grow;
6646 else
6647 val += ple_window_grow;
6648
6649 return val;
6650 }
6651
6652 static int __shrink_ple_window(int val, int modifier, int minimum)
6653 {
6654 if (modifier < 1)
6655 return ple_window;
6656
6657 if (modifier < ple_window)
6658 val /= modifier;
6659 else
6660 val -= modifier;
6661
6662 return max(val, minimum);
6663 }
6664
6665 static void grow_ple_window(struct kvm_vcpu *vcpu)
6666 {
6667 struct vcpu_vmx *vmx = to_vmx(vcpu);
6668 int old = vmx->ple_window;
6669
6670 vmx->ple_window = __grow_ple_window(old);
6671
6672 if (vmx->ple_window != old)
6673 vmx->ple_window_dirty = true;
6674
6675 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6676 }
6677
6678 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6679 {
6680 struct vcpu_vmx *vmx = to_vmx(vcpu);
6681 int old = vmx->ple_window;
6682
6683 vmx->ple_window = __shrink_ple_window(old,
6684 ple_window_shrink, ple_window);
6685
6686 if (vmx->ple_window != old)
6687 vmx->ple_window_dirty = true;
6688
6689 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6690 }
6691
6692 /*
6693 * ple_window_actual_max is computed to be one grow_ple_window() below
6694 * ple_window_max. (See __grow_ple_window for the reason.)
6695 * This prevents overflows, because ple_window_max is int.
6696 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6697 * this process.
6698 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6699 */
6700 static void update_ple_window_actual_max(void)
6701 {
6702 ple_window_actual_max =
6703 __shrink_ple_window(max(ple_window_max, ple_window),
6704 ple_window_grow, INT_MIN);
6705 }
6706
6707 /*
6708 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6709 */
6710 static void wakeup_handler(void)
6711 {
6712 struct kvm_vcpu *vcpu;
6713 int cpu = smp_processor_id();
6714
6715 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6716 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6717 blocked_vcpu_list) {
6718 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6719
6720 if (pi_test_on(pi_desc) == 1)
6721 kvm_vcpu_kick(vcpu);
6722 }
6723 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6724 }
6725
6726 void vmx_enable_tdp(void)
6727 {
6728 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6729 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6730 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6731 0ull, VMX_EPT_EXECUTABLE_MASK,
6732 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6733 VMX_EPT_RWX_MASK, 0ull);
6734
6735 ept_set_mmio_spte_mask();
6736 kvm_enable_tdp();
6737 }
6738
6739 static __init int hardware_setup(void)
6740 {
6741 int r = -ENOMEM, i, msr;
6742
6743 rdmsrl_safe(MSR_EFER, &host_efer);
6744
6745 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6746 kvm_define_shared_msr(i, vmx_msr_index[i]);
6747
6748 for (i = 0; i < VMX_BITMAP_NR; i++) {
6749 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6750 if (!vmx_bitmap[i])
6751 goto out;
6752 }
6753
6754 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6755 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6756
6757 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6758
6759 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6760
6761 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6762 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6763
6764 if (setup_vmcs_config(&vmcs_config) < 0) {
6765 r = -EIO;
6766 goto out;
6767 }
6768
6769 if (boot_cpu_has(X86_FEATURE_NX))
6770 kvm_enable_efer_bits(EFER_NX);
6771
6772 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6773 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6774 enable_vpid = 0;
6775
6776 if (!cpu_has_vmx_shadow_vmcs())
6777 enable_shadow_vmcs = 0;
6778 if (enable_shadow_vmcs)
6779 init_vmcs_shadow_fields();
6780
6781 if (!cpu_has_vmx_ept() ||
6782 !cpu_has_vmx_ept_4levels() ||
6783 !cpu_has_vmx_ept_mt_wb() ||
6784 !cpu_has_vmx_invept_global())
6785 enable_ept = 0;
6786
6787 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6788 enable_ept_ad_bits = 0;
6789
6790 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
6791 enable_unrestricted_guest = 0;
6792
6793 if (!cpu_has_vmx_flexpriority())
6794 flexpriority_enabled = 0;
6795
6796 if (!cpu_has_virtual_nmis())
6797 enable_vnmi = 0;
6798
6799 /*
6800 * set_apic_access_page_addr() is used to reload apic access
6801 * page upon invalidation. No need to do anything if not
6802 * using the APIC_ACCESS_ADDR VMCS field.
6803 */
6804 if (!flexpriority_enabled)
6805 kvm_x86_ops->set_apic_access_page_addr = NULL;
6806
6807 if (!cpu_has_vmx_tpr_shadow())
6808 kvm_x86_ops->update_cr8_intercept = NULL;
6809
6810 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6811 kvm_disable_largepages();
6812
6813 if (!cpu_has_vmx_ple()) {
6814 ple_gap = 0;
6815 ple_window = 0;
6816 ple_window_grow = 0;
6817 ple_window_max = 0;
6818 ple_window_shrink = 0;
6819 }
6820
6821 if (!cpu_has_vmx_apicv()) {
6822 enable_apicv = 0;
6823 kvm_x86_ops->sync_pir_to_irr = NULL;
6824 }
6825
6826 if (cpu_has_vmx_tsc_scaling()) {
6827 kvm_has_tsc_control = true;
6828 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6829 kvm_tsc_scaling_ratio_frac_bits = 48;
6830 }
6831
6832 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6833 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6834 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6835 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6836 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6837 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6838
6839 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6840 vmx_msr_bitmap_legacy, PAGE_SIZE);
6841 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6842 vmx_msr_bitmap_longmode, PAGE_SIZE);
6843 memcpy(vmx_msr_bitmap_legacy_x2apic,
6844 vmx_msr_bitmap_legacy, PAGE_SIZE);
6845 memcpy(vmx_msr_bitmap_longmode_x2apic,
6846 vmx_msr_bitmap_longmode, PAGE_SIZE);
6847
6848 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6849
6850 for (msr = 0x800; msr <= 0x8ff; msr++) {
6851 if (msr == 0x839 /* TMCCT */)
6852 continue;
6853 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6854 }
6855
6856 /*
6857 * TPR reads and writes can be virtualized even if virtual interrupt
6858 * delivery is not in use.
6859 */
6860 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6861 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6862
6863 /* EOI */
6864 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6865 /* SELF-IPI */
6866 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6867
6868 if (enable_ept)
6869 vmx_enable_tdp();
6870 else
6871 kvm_disable_tdp();
6872
6873 update_ple_window_actual_max();
6874
6875 /*
6876 * Only enable PML when hardware supports PML feature, and both EPT
6877 * and EPT A/D bit features are enabled -- PML depends on them to work.
6878 */
6879 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6880 enable_pml = 0;
6881
6882 if (!enable_pml) {
6883 kvm_x86_ops->slot_enable_log_dirty = NULL;
6884 kvm_x86_ops->slot_disable_log_dirty = NULL;
6885 kvm_x86_ops->flush_log_dirty = NULL;
6886 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6887 }
6888
6889 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6890 u64 vmx_msr;
6891
6892 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6893 cpu_preemption_timer_multi =
6894 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6895 } else {
6896 kvm_x86_ops->set_hv_timer = NULL;
6897 kvm_x86_ops->cancel_hv_timer = NULL;
6898 }
6899
6900 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6901
6902 kvm_mce_cap_supported |= MCG_LMCE_P;
6903
6904 return alloc_kvm_area();
6905
6906 out:
6907 for (i = 0; i < VMX_BITMAP_NR; i++)
6908 free_page((unsigned long)vmx_bitmap[i]);
6909
6910 return r;
6911 }
6912
6913 static __exit void hardware_unsetup(void)
6914 {
6915 int i;
6916
6917 for (i = 0; i < VMX_BITMAP_NR; i++)
6918 free_page((unsigned long)vmx_bitmap[i]);
6919
6920 free_kvm_area();
6921 }
6922
6923 /*
6924 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6925 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6926 */
6927 static int handle_pause(struct kvm_vcpu *vcpu)
6928 {
6929 if (ple_gap)
6930 grow_ple_window(vcpu);
6931
6932 /*
6933 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6934 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6935 * never set PAUSE_EXITING and just set PLE if supported,
6936 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6937 */
6938 kvm_vcpu_on_spin(vcpu, true);
6939 return kvm_skip_emulated_instruction(vcpu);
6940 }
6941
6942 static int handle_nop(struct kvm_vcpu *vcpu)
6943 {
6944 return kvm_skip_emulated_instruction(vcpu);
6945 }
6946
6947 static int handle_mwait(struct kvm_vcpu *vcpu)
6948 {
6949 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6950 return handle_nop(vcpu);
6951 }
6952
6953 static int handle_invalid_op(struct kvm_vcpu *vcpu)
6954 {
6955 kvm_queue_exception(vcpu, UD_VECTOR);
6956 return 1;
6957 }
6958
6959 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6960 {
6961 return 1;
6962 }
6963
6964 static int handle_monitor(struct kvm_vcpu *vcpu)
6965 {
6966 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6967 return handle_nop(vcpu);
6968 }
6969
6970 /*
6971 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6972 * We could reuse a single VMCS for all the L2 guests, but we also want the
6973 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6974 * allows keeping them loaded on the processor, and in the future will allow
6975 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6976 * every entry if they never change.
6977 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6978 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6979 *
6980 * The following functions allocate and free a vmcs02 in this pool.
6981 */
6982
6983 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6984 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6985 {
6986 struct vmcs02_list *item;
6987 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6988 if (item->vmptr == vmx->nested.current_vmptr) {
6989 list_move(&item->list, &vmx->nested.vmcs02_pool);
6990 return &item->vmcs02;
6991 }
6992
6993 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6994 /* Recycle the least recently used VMCS. */
6995 item = list_last_entry(&vmx->nested.vmcs02_pool,
6996 struct vmcs02_list, list);
6997 item->vmptr = vmx->nested.current_vmptr;
6998 list_move(&item->list, &vmx->nested.vmcs02_pool);
6999 return &item->vmcs02;
7000 }
7001
7002 /* Create a new VMCS */
7003 item = kzalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
7004 if (!item)
7005 return NULL;
7006 item->vmcs02.vmcs = alloc_vmcs();
7007 item->vmcs02.shadow_vmcs = NULL;
7008 if (!item->vmcs02.vmcs) {
7009 kfree(item);
7010 return NULL;
7011 }
7012 loaded_vmcs_init(&item->vmcs02);
7013 item->vmptr = vmx->nested.current_vmptr;
7014 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
7015 vmx->nested.vmcs02_num++;
7016 return &item->vmcs02;
7017 }
7018
7019 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
7020 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
7021 {
7022 struct vmcs02_list *item;
7023 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
7024 if (item->vmptr == vmptr) {
7025 free_loaded_vmcs(&item->vmcs02);
7026 list_del(&item->list);
7027 kfree(item);
7028 vmx->nested.vmcs02_num--;
7029 return;
7030 }
7031 }
7032
7033 /*
7034 * Free all VMCSs saved for this vcpu, except the one pointed by
7035 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7036 * must be &vmx->vmcs01.
7037 */
7038 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7039 {
7040 struct vmcs02_list *item, *n;
7041
7042 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7043 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7044 /*
7045 * Something will leak if the above WARN triggers. Better than
7046 * a use-after-free.
7047 */
7048 if (vmx->loaded_vmcs == &item->vmcs02)
7049 continue;
7050
7051 free_loaded_vmcs(&item->vmcs02);
7052 list_del(&item->list);
7053 kfree(item);
7054 vmx->nested.vmcs02_num--;
7055 }
7056 }
7057
7058 /*
7059 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7060 * set the success or error code of an emulated VMX instruction, as specified
7061 * by Vol 2B, VMX Instruction Reference, "Conventions".
7062 */
7063 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7064 {
7065 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7066 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7067 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7068 }
7069
7070 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7071 {
7072 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7073 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7074 X86_EFLAGS_SF | X86_EFLAGS_OF))
7075 | X86_EFLAGS_CF);
7076 }
7077
7078 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7079 u32 vm_instruction_error)
7080 {
7081 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7082 /*
7083 * failValid writes the error number to the current VMCS, which
7084 * can't be done there isn't a current VMCS.
7085 */
7086 nested_vmx_failInvalid(vcpu);
7087 return;
7088 }
7089 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7090 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7091 X86_EFLAGS_SF | X86_EFLAGS_OF))
7092 | X86_EFLAGS_ZF);
7093 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7094 /*
7095 * We don't need to force a shadow sync because
7096 * VM_INSTRUCTION_ERROR is not shadowed
7097 */
7098 }
7099
7100 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7101 {
7102 /* TODO: not to reset guest simply here. */
7103 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7104 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7105 }
7106
7107 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7108 {
7109 struct vcpu_vmx *vmx =
7110 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7111
7112 vmx->nested.preemption_timer_expired = true;
7113 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7114 kvm_vcpu_kick(&vmx->vcpu);
7115
7116 return HRTIMER_NORESTART;
7117 }
7118
7119 /*
7120 * Decode the memory-address operand of a vmx instruction, as recorded on an
7121 * exit caused by such an instruction (run by a guest hypervisor).
7122 * On success, returns 0. When the operand is invalid, returns 1 and throws
7123 * #UD or #GP.
7124 */
7125 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7126 unsigned long exit_qualification,
7127 u32 vmx_instruction_info, bool wr, gva_t *ret)
7128 {
7129 gva_t off;
7130 bool exn;
7131 struct kvm_segment s;
7132
7133 /*
7134 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7135 * Execution", on an exit, vmx_instruction_info holds most of the
7136 * addressing components of the operand. Only the displacement part
7137 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7138 * For how an actual address is calculated from all these components,
7139 * refer to Vol. 1, "Operand Addressing".
7140 */
7141 int scaling = vmx_instruction_info & 3;
7142 int addr_size = (vmx_instruction_info >> 7) & 7;
7143 bool is_reg = vmx_instruction_info & (1u << 10);
7144 int seg_reg = (vmx_instruction_info >> 15) & 7;
7145 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7146 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7147 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7148 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7149
7150 if (is_reg) {
7151 kvm_queue_exception(vcpu, UD_VECTOR);
7152 return 1;
7153 }
7154
7155 /* Addr = segment_base + offset */
7156 /* offset = base + [index * scale] + displacement */
7157 off = exit_qualification; /* holds the displacement */
7158 if (base_is_valid)
7159 off += kvm_register_read(vcpu, base_reg);
7160 if (index_is_valid)
7161 off += kvm_register_read(vcpu, index_reg)<<scaling;
7162 vmx_get_segment(vcpu, &s, seg_reg);
7163 *ret = s.base + off;
7164
7165 if (addr_size == 1) /* 32 bit */
7166 *ret &= 0xffffffff;
7167
7168 /* Checks for #GP/#SS exceptions. */
7169 exn = false;
7170 if (is_long_mode(vcpu)) {
7171 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7172 * non-canonical form. This is the only check on the memory
7173 * destination for long mode!
7174 */
7175 exn = is_noncanonical_address(*ret, vcpu);
7176 } else if (is_protmode(vcpu)) {
7177 /* Protected mode: apply checks for segment validity in the
7178 * following order:
7179 * - segment type check (#GP(0) may be thrown)
7180 * - usability check (#GP(0)/#SS(0))
7181 * - limit check (#GP(0)/#SS(0))
7182 */
7183 if (wr)
7184 /* #GP(0) if the destination operand is located in a
7185 * read-only data segment or any code segment.
7186 */
7187 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7188 else
7189 /* #GP(0) if the source operand is located in an
7190 * execute-only code segment
7191 */
7192 exn = ((s.type & 0xa) == 8);
7193 if (exn) {
7194 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7195 return 1;
7196 }
7197 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7198 */
7199 exn = (s.unusable != 0);
7200 /* Protected mode: #GP(0)/#SS(0) if the memory
7201 * operand is outside the segment limit.
7202 */
7203 exn = exn || (off + sizeof(u64) > s.limit);
7204 }
7205 if (exn) {
7206 kvm_queue_exception_e(vcpu,
7207 seg_reg == VCPU_SREG_SS ?
7208 SS_VECTOR : GP_VECTOR,
7209 0);
7210 return 1;
7211 }
7212
7213 return 0;
7214 }
7215
7216 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7217 {
7218 gva_t gva;
7219 struct x86_exception e;
7220
7221 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7222 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7223 return 1;
7224
7225 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7226 sizeof(*vmpointer), &e)) {
7227 kvm_inject_page_fault(vcpu, &e);
7228 return 1;
7229 }
7230
7231 return 0;
7232 }
7233
7234 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7235 {
7236 struct vcpu_vmx *vmx = to_vmx(vcpu);
7237 struct vmcs *shadow_vmcs;
7238
7239 if (cpu_has_vmx_msr_bitmap()) {
7240 vmx->nested.msr_bitmap =
7241 (unsigned long *)__get_free_page(GFP_KERNEL);
7242 if (!vmx->nested.msr_bitmap)
7243 goto out_msr_bitmap;
7244 }
7245
7246 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7247 if (!vmx->nested.cached_vmcs12)
7248 goto out_cached_vmcs12;
7249
7250 if (enable_shadow_vmcs) {
7251 shadow_vmcs = alloc_vmcs();
7252 if (!shadow_vmcs)
7253 goto out_shadow_vmcs;
7254 /* mark vmcs as shadow */
7255 shadow_vmcs->revision_id |= (1u << 31);
7256 /* init shadow vmcs */
7257 vmcs_clear(shadow_vmcs);
7258 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7259 }
7260
7261 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7262 vmx->nested.vmcs02_num = 0;
7263
7264 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7265 HRTIMER_MODE_REL_PINNED);
7266 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7267
7268 vmx->nested.vmxon = true;
7269 return 0;
7270
7271 out_shadow_vmcs:
7272 kfree(vmx->nested.cached_vmcs12);
7273
7274 out_cached_vmcs12:
7275 free_page((unsigned long)vmx->nested.msr_bitmap);
7276
7277 out_msr_bitmap:
7278 return -ENOMEM;
7279 }
7280
7281 /*
7282 * Emulate the VMXON instruction.
7283 * Currently, we just remember that VMX is active, and do not save or even
7284 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7285 * do not currently need to store anything in that guest-allocated memory
7286 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7287 * argument is different from the VMXON pointer (which the spec says they do).
7288 */
7289 static int handle_vmon(struct kvm_vcpu *vcpu)
7290 {
7291 int ret;
7292 gpa_t vmptr;
7293 struct page *page;
7294 struct vcpu_vmx *vmx = to_vmx(vcpu);
7295 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7296 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7297
7298 /*
7299 * The Intel VMX Instruction Reference lists a bunch of bits that are
7300 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7301 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7302 * Otherwise, we should fail with #UD. But most faulting conditions
7303 * have already been checked by hardware, prior to the VM-exit for
7304 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7305 * that bit set to 1 in non-root mode.
7306 */
7307 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7308 kvm_queue_exception(vcpu, UD_VECTOR);
7309 return 1;
7310 }
7311
7312 if (vmx->nested.vmxon) {
7313 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7314 return kvm_skip_emulated_instruction(vcpu);
7315 }
7316
7317 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7318 != VMXON_NEEDED_FEATURES) {
7319 kvm_inject_gp(vcpu, 0);
7320 return 1;
7321 }
7322
7323 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7324 return 1;
7325
7326 /*
7327 * SDM 3: 24.11.5
7328 * The first 4 bytes of VMXON region contain the supported
7329 * VMCS revision identifier
7330 *
7331 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7332 * which replaces physical address width with 32
7333 */
7334 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7335 nested_vmx_failInvalid(vcpu);
7336 return kvm_skip_emulated_instruction(vcpu);
7337 }
7338
7339 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7340 if (is_error_page(page)) {
7341 nested_vmx_failInvalid(vcpu);
7342 return kvm_skip_emulated_instruction(vcpu);
7343 }
7344 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7345 kunmap(page);
7346 kvm_release_page_clean(page);
7347 nested_vmx_failInvalid(vcpu);
7348 return kvm_skip_emulated_instruction(vcpu);
7349 }
7350 kunmap(page);
7351 kvm_release_page_clean(page);
7352
7353 vmx->nested.vmxon_ptr = vmptr;
7354 ret = enter_vmx_operation(vcpu);
7355 if (ret)
7356 return ret;
7357
7358 nested_vmx_succeed(vcpu);
7359 return kvm_skip_emulated_instruction(vcpu);
7360 }
7361
7362 /*
7363 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7364 * for running VMX instructions (except VMXON, whose prerequisites are
7365 * slightly different). It also specifies what exception to inject otherwise.
7366 * Note that many of these exceptions have priority over VM exits, so they
7367 * don't have to be checked again here.
7368 */
7369 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7370 {
7371 if (!to_vmx(vcpu)->nested.vmxon) {
7372 kvm_queue_exception(vcpu, UD_VECTOR);
7373 return 0;
7374 }
7375 return 1;
7376 }
7377
7378 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7379 {
7380 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7381 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7382 }
7383
7384 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7385 {
7386 if (vmx->nested.current_vmptr == -1ull)
7387 return;
7388
7389 if (enable_shadow_vmcs) {
7390 /* copy to memory all shadowed fields in case
7391 they were modified */
7392 copy_shadow_to_vmcs12(vmx);
7393 vmx->nested.sync_shadow_vmcs = false;
7394 vmx_disable_shadow_vmcs(vmx);
7395 }
7396 vmx->nested.posted_intr_nv = -1;
7397
7398 /* Flush VMCS12 to guest memory */
7399 kvm_vcpu_write_guest_page(&vmx->vcpu,
7400 vmx->nested.current_vmptr >> PAGE_SHIFT,
7401 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7402
7403 vmx->nested.current_vmptr = -1ull;
7404 }
7405
7406 /*
7407 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7408 * just stops using VMX.
7409 */
7410 static void free_nested(struct vcpu_vmx *vmx)
7411 {
7412 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
7413 return;
7414
7415 vmx->nested.vmxon = false;
7416 vmx->nested.smm.vmxon = false;
7417 free_vpid(vmx->nested.vpid02);
7418 vmx->nested.posted_intr_nv = -1;
7419 vmx->nested.current_vmptr = -1ull;
7420 if (vmx->nested.msr_bitmap) {
7421 free_page((unsigned long)vmx->nested.msr_bitmap);
7422 vmx->nested.msr_bitmap = NULL;
7423 }
7424 if (enable_shadow_vmcs) {
7425 vmx_disable_shadow_vmcs(vmx);
7426 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7427 free_vmcs(vmx->vmcs01.shadow_vmcs);
7428 vmx->vmcs01.shadow_vmcs = NULL;
7429 }
7430 kfree(vmx->nested.cached_vmcs12);
7431 /* Unpin physical memory we referred to in current vmcs02 */
7432 if (vmx->nested.apic_access_page) {
7433 kvm_release_page_dirty(vmx->nested.apic_access_page);
7434 vmx->nested.apic_access_page = NULL;
7435 }
7436 if (vmx->nested.virtual_apic_page) {
7437 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7438 vmx->nested.virtual_apic_page = NULL;
7439 }
7440 if (vmx->nested.pi_desc_page) {
7441 kunmap(vmx->nested.pi_desc_page);
7442 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7443 vmx->nested.pi_desc_page = NULL;
7444 vmx->nested.pi_desc = NULL;
7445 }
7446
7447 nested_free_all_saved_vmcss(vmx);
7448 }
7449
7450 /* Emulate the VMXOFF instruction */
7451 static int handle_vmoff(struct kvm_vcpu *vcpu)
7452 {
7453 if (!nested_vmx_check_permission(vcpu))
7454 return 1;
7455 free_nested(to_vmx(vcpu));
7456 nested_vmx_succeed(vcpu);
7457 return kvm_skip_emulated_instruction(vcpu);
7458 }
7459
7460 /* Emulate the VMCLEAR instruction */
7461 static int handle_vmclear(struct kvm_vcpu *vcpu)
7462 {
7463 struct vcpu_vmx *vmx = to_vmx(vcpu);
7464 u32 zero = 0;
7465 gpa_t vmptr;
7466
7467 if (!nested_vmx_check_permission(vcpu))
7468 return 1;
7469
7470 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7471 return 1;
7472
7473 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7474 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7475 return kvm_skip_emulated_instruction(vcpu);
7476 }
7477
7478 if (vmptr == vmx->nested.vmxon_ptr) {
7479 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7480 return kvm_skip_emulated_instruction(vcpu);
7481 }
7482
7483 if (vmptr == vmx->nested.current_vmptr)
7484 nested_release_vmcs12(vmx);
7485
7486 kvm_vcpu_write_guest(vcpu,
7487 vmptr + offsetof(struct vmcs12, launch_state),
7488 &zero, sizeof(zero));
7489
7490 nested_free_vmcs02(vmx, vmptr);
7491
7492 nested_vmx_succeed(vcpu);
7493 return kvm_skip_emulated_instruction(vcpu);
7494 }
7495
7496 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7497
7498 /* Emulate the VMLAUNCH instruction */
7499 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7500 {
7501 return nested_vmx_run(vcpu, true);
7502 }
7503
7504 /* Emulate the VMRESUME instruction */
7505 static int handle_vmresume(struct kvm_vcpu *vcpu)
7506 {
7507
7508 return nested_vmx_run(vcpu, false);
7509 }
7510
7511 /*
7512 * Read a vmcs12 field. Since these can have varying lengths and we return
7513 * one type, we chose the biggest type (u64) and zero-extend the return value
7514 * to that size. Note that the caller, handle_vmread, might need to use only
7515 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7516 * 64-bit fields are to be returned).
7517 */
7518 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7519 unsigned long field, u64 *ret)
7520 {
7521 short offset = vmcs_field_to_offset(field);
7522 char *p;
7523
7524 if (offset < 0)
7525 return offset;
7526
7527 p = ((char *)(get_vmcs12(vcpu))) + offset;
7528
7529 switch (vmcs_field_type(field)) {
7530 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7531 *ret = *((natural_width *)p);
7532 return 0;
7533 case VMCS_FIELD_TYPE_U16:
7534 *ret = *((u16 *)p);
7535 return 0;
7536 case VMCS_FIELD_TYPE_U32:
7537 *ret = *((u32 *)p);
7538 return 0;
7539 case VMCS_FIELD_TYPE_U64:
7540 *ret = *((u64 *)p);
7541 return 0;
7542 default:
7543 WARN_ON(1);
7544 return -ENOENT;
7545 }
7546 }
7547
7548
7549 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7550 unsigned long field, u64 field_value){
7551 short offset = vmcs_field_to_offset(field);
7552 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7553 if (offset < 0)
7554 return offset;
7555
7556 switch (vmcs_field_type(field)) {
7557 case VMCS_FIELD_TYPE_U16:
7558 *(u16 *)p = field_value;
7559 return 0;
7560 case VMCS_FIELD_TYPE_U32:
7561 *(u32 *)p = field_value;
7562 return 0;
7563 case VMCS_FIELD_TYPE_U64:
7564 *(u64 *)p = field_value;
7565 return 0;
7566 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7567 *(natural_width *)p = field_value;
7568 return 0;
7569 default:
7570 WARN_ON(1);
7571 return -ENOENT;
7572 }
7573
7574 }
7575
7576 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7577 {
7578 int i;
7579 unsigned long field;
7580 u64 field_value;
7581 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7582 const unsigned long *fields = shadow_read_write_fields;
7583 const int num_fields = max_shadow_read_write_fields;
7584
7585 preempt_disable();
7586
7587 vmcs_load(shadow_vmcs);
7588
7589 for (i = 0; i < num_fields; i++) {
7590 field = fields[i];
7591 switch (vmcs_field_type(field)) {
7592 case VMCS_FIELD_TYPE_U16:
7593 field_value = vmcs_read16(field);
7594 break;
7595 case VMCS_FIELD_TYPE_U32:
7596 field_value = vmcs_read32(field);
7597 break;
7598 case VMCS_FIELD_TYPE_U64:
7599 field_value = vmcs_read64(field);
7600 break;
7601 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7602 field_value = vmcs_readl(field);
7603 break;
7604 default:
7605 WARN_ON(1);
7606 continue;
7607 }
7608 vmcs12_write_any(&vmx->vcpu, field, field_value);
7609 }
7610
7611 vmcs_clear(shadow_vmcs);
7612 vmcs_load(vmx->loaded_vmcs->vmcs);
7613
7614 preempt_enable();
7615 }
7616
7617 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7618 {
7619 const unsigned long *fields[] = {
7620 shadow_read_write_fields,
7621 shadow_read_only_fields
7622 };
7623 const int max_fields[] = {
7624 max_shadow_read_write_fields,
7625 max_shadow_read_only_fields
7626 };
7627 int i, q;
7628 unsigned long field;
7629 u64 field_value = 0;
7630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7631
7632 vmcs_load(shadow_vmcs);
7633
7634 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7635 for (i = 0; i < max_fields[q]; i++) {
7636 field = fields[q][i];
7637 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7638
7639 switch (vmcs_field_type(field)) {
7640 case VMCS_FIELD_TYPE_U16:
7641 vmcs_write16(field, (u16)field_value);
7642 break;
7643 case VMCS_FIELD_TYPE_U32:
7644 vmcs_write32(field, (u32)field_value);
7645 break;
7646 case VMCS_FIELD_TYPE_U64:
7647 vmcs_write64(field, (u64)field_value);
7648 break;
7649 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7650 vmcs_writel(field, (long)field_value);
7651 break;
7652 default:
7653 WARN_ON(1);
7654 break;
7655 }
7656 }
7657 }
7658
7659 vmcs_clear(shadow_vmcs);
7660 vmcs_load(vmx->loaded_vmcs->vmcs);
7661 }
7662
7663 /*
7664 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7665 * used before) all generate the same failure when it is missing.
7666 */
7667 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7668 {
7669 struct vcpu_vmx *vmx = to_vmx(vcpu);
7670 if (vmx->nested.current_vmptr == -1ull) {
7671 nested_vmx_failInvalid(vcpu);
7672 return 0;
7673 }
7674 return 1;
7675 }
7676
7677 static int handle_vmread(struct kvm_vcpu *vcpu)
7678 {
7679 unsigned long field;
7680 u64 field_value;
7681 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7682 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7683 gva_t gva = 0;
7684
7685 if (!nested_vmx_check_permission(vcpu))
7686 return 1;
7687
7688 if (!nested_vmx_check_vmcs12(vcpu))
7689 return kvm_skip_emulated_instruction(vcpu);
7690
7691 /* Decode instruction info and find the field to read */
7692 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7693 /* Read the field, zero-extended to a u64 field_value */
7694 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7695 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7696 return kvm_skip_emulated_instruction(vcpu);
7697 }
7698 /*
7699 * Now copy part of this value to register or memory, as requested.
7700 * Note that the number of bits actually copied is 32 or 64 depending
7701 * on the guest's mode (32 or 64 bit), not on the given field's length.
7702 */
7703 if (vmx_instruction_info & (1u << 10)) {
7704 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7705 field_value);
7706 } else {
7707 if (get_vmx_mem_address(vcpu, exit_qualification,
7708 vmx_instruction_info, true, &gva))
7709 return 1;
7710 /* _system ok, as hardware has verified cpl=0 */
7711 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7712 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7713 }
7714
7715 nested_vmx_succeed(vcpu);
7716 return kvm_skip_emulated_instruction(vcpu);
7717 }
7718
7719
7720 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7721 {
7722 unsigned long field;
7723 gva_t gva;
7724 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7725 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7726 /* The value to write might be 32 or 64 bits, depending on L1's long
7727 * mode, and eventually we need to write that into a field of several
7728 * possible lengths. The code below first zero-extends the value to 64
7729 * bit (field_value), and then copies only the appropriate number of
7730 * bits into the vmcs12 field.
7731 */
7732 u64 field_value = 0;
7733 struct x86_exception e;
7734
7735 if (!nested_vmx_check_permission(vcpu))
7736 return 1;
7737
7738 if (!nested_vmx_check_vmcs12(vcpu))
7739 return kvm_skip_emulated_instruction(vcpu);
7740
7741 if (vmx_instruction_info & (1u << 10))
7742 field_value = kvm_register_readl(vcpu,
7743 (((vmx_instruction_info) >> 3) & 0xf));
7744 else {
7745 if (get_vmx_mem_address(vcpu, exit_qualification,
7746 vmx_instruction_info, false, &gva))
7747 return 1;
7748 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7749 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7750 kvm_inject_page_fault(vcpu, &e);
7751 return 1;
7752 }
7753 }
7754
7755
7756 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7757 if (vmcs_field_readonly(field)) {
7758 nested_vmx_failValid(vcpu,
7759 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7760 return kvm_skip_emulated_instruction(vcpu);
7761 }
7762
7763 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7764 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7765 return kvm_skip_emulated_instruction(vcpu);
7766 }
7767
7768 nested_vmx_succeed(vcpu);
7769 return kvm_skip_emulated_instruction(vcpu);
7770 }
7771
7772 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7773 {
7774 vmx->nested.current_vmptr = vmptr;
7775 if (enable_shadow_vmcs) {
7776 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7777 SECONDARY_EXEC_SHADOW_VMCS);
7778 vmcs_write64(VMCS_LINK_POINTER,
7779 __pa(vmx->vmcs01.shadow_vmcs));
7780 vmx->nested.sync_shadow_vmcs = true;
7781 }
7782 }
7783
7784 /* Emulate the VMPTRLD instruction */
7785 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7786 {
7787 struct vcpu_vmx *vmx = to_vmx(vcpu);
7788 gpa_t vmptr;
7789
7790 if (!nested_vmx_check_permission(vcpu))
7791 return 1;
7792
7793 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7794 return 1;
7795
7796 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7797 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7798 return kvm_skip_emulated_instruction(vcpu);
7799 }
7800
7801 if (vmptr == vmx->nested.vmxon_ptr) {
7802 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7803 return kvm_skip_emulated_instruction(vcpu);
7804 }
7805
7806 if (vmx->nested.current_vmptr != vmptr) {
7807 struct vmcs12 *new_vmcs12;
7808 struct page *page;
7809 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7810 if (is_error_page(page)) {
7811 nested_vmx_failInvalid(vcpu);
7812 return kvm_skip_emulated_instruction(vcpu);
7813 }
7814 new_vmcs12 = kmap(page);
7815 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7816 kunmap(page);
7817 kvm_release_page_clean(page);
7818 nested_vmx_failValid(vcpu,
7819 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7820 return kvm_skip_emulated_instruction(vcpu);
7821 }
7822
7823 nested_release_vmcs12(vmx);
7824 /*
7825 * Load VMCS12 from guest memory since it is not already
7826 * cached.
7827 */
7828 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7829 kunmap(page);
7830 kvm_release_page_clean(page);
7831
7832 set_current_vmptr(vmx, vmptr);
7833 }
7834
7835 nested_vmx_succeed(vcpu);
7836 return kvm_skip_emulated_instruction(vcpu);
7837 }
7838
7839 /* Emulate the VMPTRST instruction */
7840 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7841 {
7842 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7843 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7844 gva_t vmcs_gva;
7845 struct x86_exception e;
7846
7847 if (!nested_vmx_check_permission(vcpu))
7848 return 1;
7849
7850 if (get_vmx_mem_address(vcpu, exit_qualification,
7851 vmx_instruction_info, true, &vmcs_gva))
7852 return 1;
7853 /* ok to use *_system, as hardware has verified cpl=0 */
7854 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7855 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7856 sizeof(u64), &e)) {
7857 kvm_inject_page_fault(vcpu, &e);
7858 return 1;
7859 }
7860 nested_vmx_succeed(vcpu);
7861 return kvm_skip_emulated_instruction(vcpu);
7862 }
7863
7864 /* Emulate the INVEPT instruction */
7865 static int handle_invept(struct kvm_vcpu *vcpu)
7866 {
7867 struct vcpu_vmx *vmx = to_vmx(vcpu);
7868 u32 vmx_instruction_info, types;
7869 unsigned long type;
7870 gva_t gva;
7871 struct x86_exception e;
7872 struct {
7873 u64 eptp, gpa;
7874 } operand;
7875
7876 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7877 SECONDARY_EXEC_ENABLE_EPT) ||
7878 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7879 kvm_queue_exception(vcpu, UD_VECTOR);
7880 return 1;
7881 }
7882
7883 if (!nested_vmx_check_permission(vcpu))
7884 return 1;
7885
7886 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7887 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7888
7889 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7890
7891 if (type >= 32 || !(types & (1 << type))) {
7892 nested_vmx_failValid(vcpu,
7893 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7894 return kvm_skip_emulated_instruction(vcpu);
7895 }
7896
7897 /* According to the Intel VMX instruction reference, the memory
7898 * operand is read even if it isn't needed (e.g., for type==global)
7899 */
7900 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7901 vmx_instruction_info, false, &gva))
7902 return 1;
7903 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7904 sizeof(operand), &e)) {
7905 kvm_inject_page_fault(vcpu, &e);
7906 return 1;
7907 }
7908
7909 switch (type) {
7910 case VMX_EPT_EXTENT_GLOBAL:
7911 /*
7912 * TODO: track mappings and invalidate
7913 * single context requests appropriately
7914 */
7915 case VMX_EPT_EXTENT_CONTEXT:
7916 kvm_mmu_sync_roots(vcpu);
7917 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7918 nested_vmx_succeed(vcpu);
7919 break;
7920 default:
7921 BUG_ON(1);
7922 break;
7923 }
7924
7925 return kvm_skip_emulated_instruction(vcpu);
7926 }
7927
7928 static int handle_invvpid(struct kvm_vcpu *vcpu)
7929 {
7930 struct vcpu_vmx *vmx = to_vmx(vcpu);
7931 u32 vmx_instruction_info;
7932 unsigned long type, types;
7933 gva_t gva;
7934 struct x86_exception e;
7935 struct {
7936 u64 vpid;
7937 u64 gla;
7938 } operand;
7939
7940 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7941 SECONDARY_EXEC_ENABLE_VPID) ||
7942 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7943 kvm_queue_exception(vcpu, UD_VECTOR);
7944 return 1;
7945 }
7946
7947 if (!nested_vmx_check_permission(vcpu))
7948 return 1;
7949
7950 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7951 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7952
7953 types = (vmx->nested.nested_vmx_vpid_caps &
7954 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7955
7956 if (type >= 32 || !(types & (1 << type))) {
7957 nested_vmx_failValid(vcpu,
7958 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7959 return kvm_skip_emulated_instruction(vcpu);
7960 }
7961
7962 /* according to the intel vmx instruction reference, the memory
7963 * operand is read even if it isn't needed (e.g., for type==global)
7964 */
7965 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7966 vmx_instruction_info, false, &gva))
7967 return 1;
7968 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7969 sizeof(operand), &e)) {
7970 kvm_inject_page_fault(vcpu, &e);
7971 return 1;
7972 }
7973 if (operand.vpid >> 16) {
7974 nested_vmx_failValid(vcpu,
7975 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7976 return kvm_skip_emulated_instruction(vcpu);
7977 }
7978
7979 switch (type) {
7980 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7981 if (is_noncanonical_address(operand.gla, vcpu)) {
7982 nested_vmx_failValid(vcpu,
7983 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7984 return kvm_skip_emulated_instruction(vcpu);
7985 }
7986 /* fall through */
7987 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7988 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7989 if (!operand.vpid) {
7990 nested_vmx_failValid(vcpu,
7991 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7992 return kvm_skip_emulated_instruction(vcpu);
7993 }
7994 break;
7995 case VMX_VPID_EXTENT_ALL_CONTEXT:
7996 break;
7997 default:
7998 WARN_ON_ONCE(1);
7999 return kvm_skip_emulated_instruction(vcpu);
8000 }
8001
8002 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
8003 nested_vmx_succeed(vcpu);
8004
8005 return kvm_skip_emulated_instruction(vcpu);
8006 }
8007
8008 static int handle_pml_full(struct kvm_vcpu *vcpu)
8009 {
8010 unsigned long exit_qualification;
8011
8012 trace_kvm_pml_full(vcpu->vcpu_id);
8013
8014 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8015
8016 /*
8017 * PML buffer FULL happened while executing iret from NMI,
8018 * "blocked by NMI" bit has to be set before next VM entry.
8019 */
8020 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8021 enable_vnmi &&
8022 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8023 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8024 GUEST_INTR_STATE_NMI);
8025
8026 /*
8027 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8028 * here.., and there's no userspace involvement needed for PML.
8029 */
8030 return 1;
8031 }
8032
8033 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8034 {
8035 kvm_lapic_expired_hv_timer(vcpu);
8036 return 1;
8037 }
8038
8039 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8040 {
8041 struct vcpu_vmx *vmx = to_vmx(vcpu);
8042 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8043
8044 /* Check for memory type validity */
8045 switch (address & VMX_EPTP_MT_MASK) {
8046 case VMX_EPTP_MT_UC:
8047 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8048 return false;
8049 break;
8050 case VMX_EPTP_MT_WB:
8051 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8052 return false;
8053 break;
8054 default:
8055 return false;
8056 }
8057
8058 /* only 4 levels page-walk length are valid */
8059 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8060 return false;
8061
8062 /* Reserved bits should not be set */
8063 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8064 return false;
8065
8066 /* AD, if set, should be supported */
8067 if (address & VMX_EPTP_AD_ENABLE_BIT) {
8068 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8069 return false;
8070 }
8071
8072 return true;
8073 }
8074
8075 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8076 struct vmcs12 *vmcs12)
8077 {
8078 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8079 u64 address;
8080 bool accessed_dirty;
8081 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8082
8083 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8084 !nested_cpu_has_ept(vmcs12))
8085 return 1;
8086
8087 if (index >= VMFUNC_EPTP_ENTRIES)
8088 return 1;
8089
8090
8091 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8092 &address, index * 8, 8))
8093 return 1;
8094
8095 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8096
8097 /*
8098 * If the (L2) guest does a vmfunc to the currently
8099 * active ept pointer, we don't have to do anything else
8100 */
8101 if (vmcs12->ept_pointer != address) {
8102 if (!valid_ept_address(vcpu, address))
8103 return 1;
8104
8105 kvm_mmu_unload(vcpu);
8106 mmu->ept_ad = accessed_dirty;
8107 mmu->base_role.ad_disabled = !accessed_dirty;
8108 vmcs12->ept_pointer = address;
8109 /*
8110 * TODO: Check what's the correct approach in case
8111 * mmu reload fails. Currently, we just let the next
8112 * reload potentially fail
8113 */
8114 kvm_mmu_reload(vcpu);
8115 }
8116
8117 return 0;
8118 }
8119
8120 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8121 {
8122 struct vcpu_vmx *vmx = to_vmx(vcpu);
8123 struct vmcs12 *vmcs12;
8124 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8125
8126 /*
8127 * VMFUNC is only supported for nested guests, but we always enable the
8128 * secondary control for simplicity; for non-nested mode, fake that we
8129 * didn't by injecting #UD.
8130 */
8131 if (!is_guest_mode(vcpu)) {
8132 kvm_queue_exception(vcpu, UD_VECTOR);
8133 return 1;
8134 }
8135
8136 vmcs12 = get_vmcs12(vcpu);
8137 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8138 goto fail;
8139
8140 switch (function) {
8141 case 0:
8142 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8143 goto fail;
8144 break;
8145 default:
8146 goto fail;
8147 }
8148 return kvm_skip_emulated_instruction(vcpu);
8149
8150 fail:
8151 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8152 vmcs_read32(VM_EXIT_INTR_INFO),
8153 vmcs_readl(EXIT_QUALIFICATION));
8154 return 1;
8155 }
8156
8157 /*
8158 * The exit handlers return 1 if the exit was handled fully and guest execution
8159 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8160 * to be done to userspace and return 0.
8161 */
8162 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8163 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8164 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
8165 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
8166 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
8167 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
8168 [EXIT_REASON_CR_ACCESS] = handle_cr,
8169 [EXIT_REASON_DR_ACCESS] = handle_dr,
8170 [EXIT_REASON_CPUID] = handle_cpuid,
8171 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8172 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8173 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8174 [EXIT_REASON_HLT] = handle_halt,
8175 [EXIT_REASON_INVD] = handle_invd,
8176 [EXIT_REASON_INVLPG] = handle_invlpg,
8177 [EXIT_REASON_RDPMC] = handle_rdpmc,
8178 [EXIT_REASON_VMCALL] = handle_vmcall,
8179 [EXIT_REASON_VMCLEAR] = handle_vmclear,
8180 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
8181 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
8182 [EXIT_REASON_VMPTRST] = handle_vmptrst,
8183 [EXIT_REASON_VMREAD] = handle_vmread,
8184 [EXIT_REASON_VMRESUME] = handle_vmresume,
8185 [EXIT_REASON_VMWRITE] = handle_vmwrite,
8186 [EXIT_REASON_VMOFF] = handle_vmoff,
8187 [EXIT_REASON_VMON] = handle_vmon,
8188 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8189 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
8190 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
8191 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
8192 [EXIT_REASON_WBINVD] = handle_wbinvd,
8193 [EXIT_REASON_XSETBV] = handle_xsetbv,
8194 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
8195 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
8196 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8197 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
8198 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
8199 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
8200 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
8201 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
8202 [EXIT_REASON_INVEPT] = handle_invept,
8203 [EXIT_REASON_INVVPID] = handle_invvpid,
8204 [EXIT_REASON_RDRAND] = handle_invalid_op,
8205 [EXIT_REASON_RDSEED] = handle_invalid_op,
8206 [EXIT_REASON_XSAVES] = handle_xsaves,
8207 [EXIT_REASON_XRSTORS] = handle_xrstors,
8208 [EXIT_REASON_PML_FULL] = handle_pml_full,
8209 [EXIT_REASON_VMFUNC] = handle_vmfunc,
8210 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
8211 };
8212
8213 static const int kvm_vmx_max_exit_handlers =
8214 ARRAY_SIZE(kvm_vmx_exit_handlers);
8215
8216 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8217 struct vmcs12 *vmcs12)
8218 {
8219 unsigned long exit_qualification;
8220 gpa_t bitmap, last_bitmap;
8221 unsigned int port;
8222 int size;
8223 u8 b;
8224
8225 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8226 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8227
8228 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8229
8230 port = exit_qualification >> 16;
8231 size = (exit_qualification & 7) + 1;
8232
8233 last_bitmap = (gpa_t)-1;
8234 b = -1;
8235
8236 while (size > 0) {
8237 if (port < 0x8000)
8238 bitmap = vmcs12->io_bitmap_a;
8239 else if (port < 0x10000)
8240 bitmap = vmcs12->io_bitmap_b;
8241 else
8242 return true;
8243 bitmap += (port & 0x7fff) / 8;
8244
8245 if (last_bitmap != bitmap)
8246 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8247 return true;
8248 if (b & (1 << (port & 7)))
8249 return true;
8250
8251 port++;
8252 size--;
8253 last_bitmap = bitmap;
8254 }
8255
8256 return false;
8257 }
8258
8259 /*
8260 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8261 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8262 * disinterest in the current event (read or write a specific MSR) by using an
8263 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8264 */
8265 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8266 struct vmcs12 *vmcs12, u32 exit_reason)
8267 {
8268 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8269 gpa_t bitmap;
8270
8271 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8272 return true;
8273
8274 /*
8275 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8276 * for the four combinations of read/write and low/high MSR numbers.
8277 * First we need to figure out which of the four to use:
8278 */
8279 bitmap = vmcs12->msr_bitmap;
8280 if (exit_reason == EXIT_REASON_MSR_WRITE)
8281 bitmap += 2048;
8282 if (msr_index >= 0xc0000000) {
8283 msr_index -= 0xc0000000;
8284 bitmap += 1024;
8285 }
8286
8287 /* Then read the msr_index'th bit from this bitmap: */
8288 if (msr_index < 1024*8) {
8289 unsigned char b;
8290 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8291 return true;
8292 return 1 & (b >> (msr_index & 7));
8293 } else
8294 return true; /* let L1 handle the wrong parameter */
8295 }
8296
8297 /*
8298 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8299 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8300 * intercept (via guest_host_mask etc.) the current event.
8301 */
8302 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8303 struct vmcs12 *vmcs12)
8304 {
8305 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8306 int cr = exit_qualification & 15;
8307 int reg;
8308 unsigned long val;
8309
8310 switch ((exit_qualification >> 4) & 3) {
8311 case 0: /* mov to cr */
8312 reg = (exit_qualification >> 8) & 15;
8313 val = kvm_register_readl(vcpu, reg);
8314 switch (cr) {
8315 case 0:
8316 if (vmcs12->cr0_guest_host_mask &
8317 (val ^ vmcs12->cr0_read_shadow))
8318 return true;
8319 break;
8320 case 3:
8321 if ((vmcs12->cr3_target_count >= 1 &&
8322 vmcs12->cr3_target_value0 == val) ||
8323 (vmcs12->cr3_target_count >= 2 &&
8324 vmcs12->cr3_target_value1 == val) ||
8325 (vmcs12->cr3_target_count >= 3 &&
8326 vmcs12->cr3_target_value2 == val) ||
8327 (vmcs12->cr3_target_count >= 4 &&
8328 vmcs12->cr3_target_value3 == val))
8329 return false;
8330 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8331 return true;
8332 break;
8333 case 4:
8334 if (vmcs12->cr4_guest_host_mask &
8335 (vmcs12->cr4_read_shadow ^ val))
8336 return true;
8337 break;
8338 case 8:
8339 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8340 return true;
8341 break;
8342 }
8343 break;
8344 case 2: /* clts */
8345 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8346 (vmcs12->cr0_read_shadow & X86_CR0_TS))
8347 return true;
8348 break;
8349 case 1: /* mov from cr */
8350 switch (cr) {
8351 case 3:
8352 if (vmcs12->cpu_based_vm_exec_control &
8353 CPU_BASED_CR3_STORE_EXITING)
8354 return true;
8355 break;
8356 case 8:
8357 if (vmcs12->cpu_based_vm_exec_control &
8358 CPU_BASED_CR8_STORE_EXITING)
8359 return true;
8360 break;
8361 }
8362 break;
8363 case 3: /* lmsw */
8364 /*
8365 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8366 * cr0. Other attempted changes are ignored, with no exit.
8367 */
8368 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8369 if (vmcs12->cr0_guest_host_mask & 0xe &
8370 (val ^ vmcs12->cr0_read_shadow))
8371 return true;
8372 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8373 !(vmcs12->cr0_read_shadow & 0x1) &&
8374 (val & 0x1))
8375 return true;
8376 break;
8377 }
8378 return false;
8379 }
8380
8381 /*
8382 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8383 * should handle it ourselves in L0 (and then continue L2). Only call this
8384 * when in is_guest_mode (L2).
8385 */
8386 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8387 {
8388 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8389 struct vcpu_vmx *vmx = to_vmx(vcpu);
8390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8391
8392 if (vmx->nested.nested_run_pending)
8393 return false;
8394
8395 if (unlikely(vmx->fail)) {
8396 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8397 vmcs_read32(VM_INSTRUCTION_ERROR));
8398 return true;
8399 }
8400
8401 /*
8402 * The host physical addresses of some pages of guest memory
8403 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8404 * may write to these pages via their host physical address while
8405 * L2 is running, bypassing any address-translation-based dirty
8406 * tracking (e.g. EPT write protection).
8407 *
8408 * Mark them dirty on every exit from L2 to prevent them from
8409 * getting out of sync with dirty tracking.
8410 */
8411 nested_mark_vmcs12_pages_dirty(vcpu);
8412
8413 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8414 vmcs_readl(EXIT_QUALIFICATION),
8415 vmx->idt_vectoring_info,
8416 intr_info,
8417 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8418 KVM_ISA_VMX);
8419
8420 switch (exit_reason) {
8421 case EXIT_REASON_EXCEPTION_NMI:
8422 if (is_nmi(intr_info))
8423 return false;
8424 else if (is_page_fault(intr_info))
8425 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8426 else if (is_no_device(intr_info) &&
8427 !(vmcs12->guest_cr0 & X86_CR0_TS))
8428 return false;
8429 else if (is_debug(intr_info) &&
8430 vcpu->guest_debug &
8431 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8432 return false;
8433 else if (is_breakpoint(intr_info) &&
8434 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8435 return false;
8436 return vmcs12->exception_bitmap &
8437 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8438 case EXIT_REASON_EXTERNAL_INTERRUPT:
8439 return false;
8440 case EXIT_REASON_TRIPLE_FAULT:
8441 return true;
8442 case EXIT_REASON_PENDING_INTERRUPT:
8443 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8444 case EXIT_REASON_NMI_WINDOW:
8445 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8446 case EXIT_REASON_TASK_SWITCH:
8447 return true;
8448 case EXIT_REASON_CPUID:
8449 return true;
8450 case EXIT_REASON_HLT:
8451 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8452 case EXIT_REASON_INVD:
8453 return true;
8454 case EXIT_REASON_INVLPG:
8455 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8456 case EXIT_REASON_RDPMC:
8457 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8458 case EXIT_REASON_RDRAND:
8459 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
8460 case EXIT_REASON_RDSEED:
8461 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
8462 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8463 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8464 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8465 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8466 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8467 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8468 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8469 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8470 /*
8471 * VMX instructions trap unconditionally. This allows L1 to
8472 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8473 */
8474 return true;
8475 case EXIT_REASON_CR_ACCESS:
8476 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8477 case EXIT_REASON_DR_ACCESS:
8478 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8479 case EXIT_REASON_IO_INSTRUCTION:
8480 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8481 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8482 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8483 case EXIT_REASON_MSR_READ:
8484 case EXIT_REASON_MSR_WRITE:
8485 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8486 case EXIT_REASON_INVALID_STATE:
8487 return true;
8488 case EXIT_REASON_MWAIT_INSTRUCTION:
8489 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8490 case EXIT_REASON_MONITOR_TRAP_FLAG:
8491 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8492 case EXIT_REASON_MONITOR_INSTRUCTION:
8493 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8494 case EXIT_REASON_PAUSE_INSTRUCTION:
8495 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8496 nested_cpu_has2(vmcs12,
8497 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8498 case EXIT_REASON_MCE_DURING_VMENTRY:
8499 return false;
8500 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8501 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8502 case EXIT_REASON_APIC_ACCESS:
8503 return nested_cpu_has2(vmcs12,
8504 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8505 case EXIT_REASON_APIC_WRITE:
8506 case EXIT_REASON_EOI_INDUCED:
8507 /* apic_write and eoi_induced should exit unconditionally. */
8508 return true;
8509 case EXIT_REASON_EPT_VIOLATION:
8510 /*
8511 * L0 always deals with the EPT violation. If nested EPT is
8512 * used, and the nested mmu code discovers that the address is
8513 * missing in the guest EPT table (EPT12), the EPT violation
8514 * will be injected with nested_ept_inject_page_fault()
8515 */
8516 return false;
8517 case EXIT_REASON_EPT_MISCONFIG:
8518 /*
8519 * L2 never uses directly L1's EPT, but rather L0's own EPT
8520 * table (shadow on EPT) or a merged EPT table that L0 built
8521 * (EPT on EPT). So any problems with the structure of the
8522 * table is L0's fault.
8523 */
8524 return false;
8525 case EXIT_REASON_INVPCID:
8526 return
8527 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8528 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8529 case EXIT_REASON_WBINVD:
8530 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8531 case EXIT_REASON_XSETBV:
8532 return true;
8533 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8534 /*
8535 * This should never happen, since it is not possible to
8536 * set XSS to a non-zero value---neither in L1 nor in L2.
8537 * If if it were, XSS would have to be checked against
8538 * the XSS exit bitmap in vmcs12.
8539 */
8540 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8541 case EXIT_REASON_PREEMPTION_TIMER:
8542 return false;
8543 case EXIT_REASON_PML_FULL:
8544 /* We emulate PML support to L1. */
8545 return false;
8546 case EXIT_REASON_VMFUNC:
8547 /* VM functions are emulated through L2->L0 vmexits. */
8548 return false;
8549 default:
8550 return true;
8551 }
8552 }
8553
8554 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8555 {
8556 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8557
8558 /*
8559 * At this point, the exit interruption info in exit_intr_info
8560 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8561 * we need to query the in-kernel LAPIC.
8562 */
8563 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8564 if ((exit_intr_info &
8565 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8566 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8567 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8568 vmcs12->vm_exit_intr_error_code =
8569 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8570 }
8571
8572 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8573 vmcs_readl(EXIT_QUALIFICATION));
8574 return 1;
8575 }
8576
8577 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8578 {
8579 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8580 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8581 }
8582
8583 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8584 {
8585 if (vmx->pml_pg) {
8586 __free_page(vmx->pml_pg);
8587 vmx->pml_pg = NULL;
8588 }
8589 }
8590
8591 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8592 {
8593 struct vcpu_vmx *vmx = to_vmx(vcpu);
8594 u64 *pml_buf;
8595 u16 pml_idx;
8596
8597 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8598
8599 /* Do nothing if PML buffer is empty */
8600 if (pml_idx == (PML_ENTITY_NUM - 1))
8601 return;
8602
8603 /* PML index always points to next available PML buffer entity */
8604 if (pml_idx >= PML_ENTITY_NUM)
8605 pml_idx = 0;
8606 else
8607 pml_idx++;
8608
8609 pml_buf = page_address(vmx->pml_pg);
8610 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8611 u64 gpa;
8612
8613 gpa = pml_buf[pml_idx];
8614 WARN_ON(gpa & (PAGE_SIZE - 1));
8615 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8616 }
8617
8618 /* reset PML index */
8619 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8620 }
8621
8622 /*
8623 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8624 * Called before reporting dirty_bitmap to userspace.
8625 */
8626 static void kvm_flush_pml_buffers(struct kvm *kvm)
8627 {
8628 int i;
8629 struct kvm_vcpu *vcpu;
8630 /*
8631 * We only need to kick vcpu out of guest mode here, as PML buffer
8632 * is flushed at beginning of all VMEXITs, and it's obvious that only
8633 * vcpus running in guest are possible to have unflushed GPAs in PML
8634 * buffer.
8635 */
8636 kvm_for_each_vcpu(i, vcpu, kvm)
8637 kvm_vcpu_kick(vcpu);
8638 }
8639
8640 static void vmx_dump_sel(char *name, uint32_t sel)
8641 {
8642 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8643 name, vmcs_read16(sel),
8644 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8645 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8646 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8647 }
8648
8649 static void vmx_dump_dtsel(char *name, uint32_t limit)
8650 {
8651 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8652 name, vmcs_read32(limit),
8653 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8654 }
8655
8656 static void dump_vmcs(void)
8657 {
8658 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8659 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8660 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8661 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8662 u32 secondary_exec_control = 0;
8663 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8664 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8665 int i, n;
8666
8667 if (cpu_has_secondary_exec_ctrls())
8668 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8669
8670 pr_err("*** Guest State ***\n");
8671 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8672 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8673 vmcs_readl(CR0_GUEST_HOST_MASK));
8674 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8675 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8676 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8677 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8678 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8679 {
8680 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8681 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8682 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8683 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8684 }
8685 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8686 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8687 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8688 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8689 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8690 vmcs_readl(GUEST_SYSENTER_ESP),
8691 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8692 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8693 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8694 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8695 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8696 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8697 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8698 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8699 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8700 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8701 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8702 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8703 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8704 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8705 efer, vmcs_read64(GUEST_IA32_PAT));
8706 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8707 vmcs_read64(GUEST_IA32_DEBUGCTL),
8708 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8709 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8710 pr_err("PerfGlobCtl = 0x%016llx\n",
8711 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8712 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8713 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8714 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8715 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8716 vmcs_read32(GUEST_ACTIVITY_STATE));
8717 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8718 pr_err("InterruptStatus = %04x\n",
8719 vmcs_read16(GUEST_INTR_STATUS));
8720
8721 pr_err("*** Host State ***\n");
8722 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8723 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8724 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8725 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8726 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8727 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8728 vmcs_read16(HOST_TR_SELECTOR));
8729 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8730 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8731 vmcs_readl(HOST_TR_BASE));
8732 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8733 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8734 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8735 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8736 vmcs_readl(HOST_CR4));
8737 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8738 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8739 vmcs_read32(HOST_IA32_SYSENTER_CS),
8740 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8741 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8742 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8743 vmcs_read64(HOST_IA32_EFER),
8744 vmcs_read64(HOST_IA32_PAT));
8745 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8746 pr_err("PerfGlobCtl = 0x%016llx\n",
8747 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8748
8749 pr_err("*** Control State ***\n");
8750 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8751 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8752 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8753 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8754 vmcs_read32(EXCEPTION_BITMAP),
8755 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8756 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8757 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8758 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8759 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8760 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8761 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8762 vmcs_read32(VM_EXIT_INTR_INFO),
8763 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8764 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8765 pr_err(" reason=%08x qualification=%016lx\n",
8766 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8767 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8768 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8769 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8770 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8771 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8772 pr_err("TSC Multiplier = 0x%016llx\n",
8773 vmcs_read64(TSC_MULTIPLIER));
8774 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8775 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8776 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8777 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8778 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8779 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8780 n = vmcs_read32(CR3_TARGET_COUNT);
8781 for (i = 0; i + 1 < n; i += 4)
8782 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8783 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8784 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8785 if (i < n)
8786 pr_err("CR3 target%u=%016lx\n",
8787 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8788 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8789 pr_err("PLE Gap=%08x Window=%08x\n",
8790 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8791 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8792 pr_err("Virtual processor ID = 0x%04x\n",
8793 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8794 }
8795
8796 /*
8797 * The guest has exited. See if we can fix it or if we need userspace
8798 * assistance.
8799 */
8800 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8801 {
8802 struct vcpu_vmx *vmx = to_vmx(vcpu);
8803 u32 exit_reason = vmx->exit_reason;
8804 u32 vectoring_info = vmx->idt_vectoring_info;
8805
8806 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8807
8808 /*
8809 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8810 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8811 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8812 * mode as if vcpus is in root mode, the PML buffer must has been
8813 * flushed already.
8814 */
8815 if (enable_pml)
8816 vmx_flush_pml_buffer(vcpu);
8817
8818 /* If guest state is invalid, start emulating */
8819 if (vmx->emulation_required)
8820 return handle_invalid_guest_state(vcpu);
8821
8822 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8823 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8824
8825 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8826 dump_vmcs();
8827 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8828 vcpu->run->fail_entry.hardware_entry_failure_reason
8829 = exit_reason;
8830 return 0;
8831 }
8832
8833 if (unlikely(vmx->fail)) {
8834 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8835 vcpu->run->fail_entry.hardware_entry_failure_reason
8836 = vmcs_read32(VM_INSTRUCTION_ERROR);
8837 return 0;
8838 }
8839
8840 /*
8841 * Note:
8842 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8843 * delivery event since it indicates guest is accessing MMIO.
8844 * The vm-exit can be triggered again after return to guest that
8845 * will cause infinite loop.
8846 */
8847 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8848 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8849 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8850 exit_reason != EXIT_REASON_PML_FULL &&
8851 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8852 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8853 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8854 vcpu->run->internal.ndata = 3;
8855 vcpu->run->internal.data[0] = vectoring_info;
8856 vcpu->run->internal.data[1] = exit_reason;
8857 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8858 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8859 vcpu->run->internal.ndata++;
8860 vcpu->run->internal.data[3] =
8861 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8862 }
8863 return 0;
8864 }
8865
8866 if (unlikely(!enable_vnmi &&
8867 vmx->loaded_vmcs->soft_vnmi_blocked)) {
8868 if (vmx_interrupt_allowed(vcpu)) {
8869 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8870 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8871 vcpu->arch.nmi_pending) {
8872 /*
8873 * This CPU don't support us in finding the end of an
8874 * NMI-blocked window if the guest runs with IRQs
8875 * disabled. So we pull the trigger after 1 s of
8876 * futile waiting, but inform the user about this.
8877 */
8878 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8879 "state on VCPU %d after 1 s timeout\n",
8880 __func__, vcpu->vcpu_id);
8881 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8882 }
8883 }
8884
8885 if (exit_reason < kvm_vmx_max_exit_handlers
8886 && kvm_vmx_exit_handlers[exit_reason])
8887 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8888 else {
8889 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8890 exit_reason);
8891 kvm_queue_exception(vcpu, UD_VECTOR);
8892 return 1;
8893 }
8894 }
8895
8896 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8897 {
8898 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8899
8900 if (is_guest_mode(vcpu) &&
8901 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8902 return;
8903
8904 if (irr == -1 || tpr < irr) {
8905 vmcs_write32(TPR_THRESHOLD, 0);
8906 return;
8907 }
8908
8909 vmcs_write32(TPR_THRESHOLD, irr);
8910 }
8911
8912 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8913 {
8914 u32 sec_exec_control;
8915
8916 /* Postpone execution until vmcs01 is the current VMCS. */
8917 if (is_guest_mode(vcpu)) {
8918 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8919 return;
8920 }
8921
8922 if (!cpu_has_vmx_virtualize_x2apic_mode())
8923 return;
8924
8925 if (!cpu_need_tpr_shadow(vcpu))
8926 return;
8927
8928 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8929
8930 if (set) {
8931 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8932 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8933 } else {
8934 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8935 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8936 vmx_flush_tlb_ept_only(vcpu);
8937 }
8938 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8939
8940 vmx_set_msr_bitmap(vcpu);
8941 }
8942
8943 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8944 {
8945 struct vcpu_vmx *vmx = to_vmx(vcpu);
8946
8947 /*
8948 * Currently we do not handle the nested case where L2 has an
8949 * APIC access page of its own; that page is still pinned.
8950 * Hence, we skip the case where the VCPU is in guest mode _and_
8951 * L1 prepared an APIC access page for L2.
8952 *
8953 * For the case where L1 and L2 share the same APIC access page
8954 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8955 * in the vmcs12), this function will only update either the vmcs01
8956 * or the vmcs02. If the former, the vmcs02 will be updated by
8957 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8958 * the next L2->L1 exit.
8959 */
8960 if (!is_guest_mode(vcpu) ||
8961 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8962 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8963 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8964 vmx_flush_tlb_ept_only(vcpu);
8965 }
8966 }
8967
8968 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8969 {
8970 u16 status;
8971 u8 old;
8972
8973 if (max_isr == -1)
8974 max_isr = 0;
8975
8976 status = vmcs_read16(GUEST_INTR_STATUS);
8977 old = status >> 8;
8978 if (max_isr != old) {
8979 status &= 0xff;
8980 status |= max_isr << 8;
8981 vmcs_write16(GUEST_INTR_STATUS, status);
8982 }
8983 }
8984
8985 static void vmx_set_rvi(int vector)
8986 {
8987 u16 status;
8988 u8 old;
8989
8990 if (vector == -1)
8991 vector = 0;
8992
8993 status = vmcs_read16(GUEST_INTR_STATUS);
8994 old = (u8)status & 0xff;
8995 if ((u8)vector != old) {
8996 status &= ~0xff;
8997 status |= (u8)vector;
8998 vmcs_write16(GUEST_INTR_STATUS, status);
8999 }
9000 }
9001
9002 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9003 {
9004 if (!is_guest_mode(vcpu)) {
9005 vmx_set_rvi(max_irr);
9006 return;
9007 }
9008
9009 if (max_irr == -1)
9010 return;
9011
9012 /*
9013 * In guest mode. If a vmexit is needed, vmx_check_nested_events
9014 * handles it.
9015 */
9016 if (nested_exit_on_intr(vcpu))
9017 return;
9018
9019 /*
9020 * Else, fall back to pre-APICv interrupt injection since L2
9021 * is run without virtual interrupt delivery.
9022 */
9023 if (!kvm_event_needs_reinjection(vcpu) &&
9024 vmx_interrupt_allowed(vcpu)) {
9025 kvm_queue_interrupt(vcpu, max_irr, false);
9026 vmx_inject_irq(vcpu);
9027 }
9028 }
9029
9030 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9031 {
9032 struct vcpu_vmx *vmx = to_vmx(vcpu);
9033 int max_irr;
9034
9035 WARN_ON(!vcpu->arch.apicv_active);
9036 if (pi_test_on(&vmx->pi_desc)) {
9037 pi_clear_on(&vmx->pi_desc);
9038 /*
9039 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9040 * But on x86 this is just a compiler barrier anyway.
9041 */
9042 smp_mb__after_atomic();
9043 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9044 } else {
9045 max_irr = kvm_lapic_find_highest_irr(vcpu);
9046 }
9047 vmx_hwapic_irr_update(vcpu, max_irr);
9048 return max_irr;
9049 }
9050
9051 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9052 {
9053 if (!kvm_vcpu_apicv_active(vcpu))
9054 return;
9055
9056 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9057 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9058 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9059 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9060 }
9061
9062 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9063 {
9064 struct vcpu_vmx *vmx = to_vmx(vcpu);
9065
9066 pi_clear_on(&vmx->pi_desc);
9067 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9068 }
9069
9070 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9071 {
9072 u32 exit_intr_info = 0;
9073 u16 basic_exit_reason = (u16)vmx->exit_reason;
9074
9075 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9076 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9077 return;
9078
9079 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9080 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9081 vmx->exit_intr_info = exit_intr_info;
9082
9083 /* if exit due to PF check for async PF */
9084 if (is_page_fault(exit_intr_info))
9085 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9086
9087 /* Handle machine checks before interrupts are enabled */
9088 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9089 is_machine_check(exit_intr_info))
9090 kvm_machine_check();
9091
9092 /* We need to handle NMIs before interrupts are enabled */
9093 if (is_nmi(exit_intr_info)) {
9094 kvm_before_handle_nmi(&vmx->vcpu);
9095 asm("int $2");
9096 kvm_after_handle_nmi(&vmx->vcpu);
9097 }
9098 }
9099
9100 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9101 {
9102 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9103
9104 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9105 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9106 unsigned int vector;
9107 unsigned long entry;
9108 gate_desc *desc;
9109 struct vcpu_vmx *vmx = to_vmx(vcpu);
9110 #ifdef CONFIG_X86_64
9111 unsigned long tmp;
9112 #endif
9113
9114 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9115 desc = (gate_desc *)vmx->host_idt_base + vector;
9116 entry = gate_offset(desc);
9117 asm volatile(
9118 #ifdef CONFIG_X86_64
9119 "mov %%" _ASM_SP ", %[sp]\n\t"
9120 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9121 "push $%c[ss]\n\t"
9122 "push %[sp]\n\t"
9123 #endif
9124 "pushf\n\t"
9125 __ASM_SIZE(push) " $%c[cs]\n\t"
9126 "call *%[entry]\n\t"
9127 :
9128 #ifdef CONFIG_X86_64
9129 [sp]"=&r"(tmp),
9130 #endif
9131 ASM_CALL_CONSTRAINT
9132 :
9133 [entry]"r"(entry),
9134 [ss]"i"(__KERNEL_DS),
9135 [cs]"i"(__KERNEL_CS)
9136 );
9137 }
9138 }
9139 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9140
9141 static bool vmx_has_high_real_mode_segbase(void)
9142 {
9143 return enable_unrestricted_guest || emulate_invalid_guest_state;
9144 }
9145
9146 static bool vmx_mpx_supported(void)
9147 {
9148 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9149 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9150 }
9151
9152 static bool vmx_xsaves_supported(void)
9153 {
9154 return vmcs_config.cpu_based_2nd_exec_ctrl &
9155 SECONDARY_EXEC_XSAVES;
9156 }
9157
9158 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9159 {
9160 u32 exit_intr_info;
9161 bool unblock_nmi;
9162 u8 vector;
9163 bool idtv_info_valid;
9164
9165 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9166
9167 if (enable_vnmi) {
9168 if (vmx->loaded_vmcs->nmi_known_unmasked)
9169 return;
9170 /*
9171 * Can't use vmx->exit_intr_info since we're not sure what
9172 * the exit reason is.
9173 */
9174 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9175 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9176 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9177 /*
9178 * SDM 3: 27.7.1.2 (September 2008)
9179 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9180 * a guest IRET fault.
9181 * SDM 3: 23.2.2 (September 2008)
9182 * Bit 12 is undefined in any of the following cases:
9183 * If the VM exit sets the valid bit in the IDT-vectoring
9184 * information field.
9185 * If the VM exit is due to a double fault.
9186 */
9187 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9188 vector != DF_VECTOR && !idtv_info_valid)
9189 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9190 GUEST_INTR_STATE_NMI);
9191 else
9192 vmx->loaded_vmcs->nmi_known_unmasked =
9193 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9194 & GUEST_INTR_STATE_NMI);
9195 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9196 vmx->loaded_vmcs->vnmi_blocked_time +=
9197 ktime_to_ns(ktime_sub(ktime_get(),
9198 vmx->loaded_vmcs->entry_time));
9199 }
9200
9201 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9202 u32 idt_vectoring_info,
9203 int instr_len_field,
9204 int error_code_field)
9205 {
9206 u8 vector;
9207 int type;
9208 bool idtv_info_valid;
9209
9210 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9211
9212 vcpu->arch.nmi_injected = false;
9213 kvm_clear_exception_queue(vcpu);
9214 kvm_clear_interrupt_queue(vcpu);
9215
9216 if (!idtv_info_valid)
9217 return;
9218
9219 kvm_make_request(KVM_REQ_EVENT, vcpu);
9220
9221 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9222 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9223
9224 switch (type) {
9225 case INTR_TYPE_NMI_INTR:
9226 vcpu->arch.nmi_injected = true;
9227 /*
9228 * SDM 3: 27.7.1.2 (September 2008)
9229 * Clear bit "block by NMI" before VM entry if a NMI
9230 * delivery faulted.
9231 */
9232 vmx_set_nmi_mask(vcpu, false);
9233 break;
9234 case INTR_TYPE_SOFT_EXCEPTION:
9235 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9236 /* fall through */
9237 case INTR_TYPE_HARD_EXCEPTION:
9238 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9239 u32 err = vmcs_read32(error_code_field);
9240 kvm_requeue_exception_e(vcpu, vector, err);
9241 } else
9242 kvm_requeue_exception(vcpu, vector);
9243 break;
9244 case INTR_TYPE_SOFT_INTR:
9245 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9246 /* fall through */
9247 case INTR_TYPE_EXT_INTR:
9248 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9249 break;
9250 default:
9251 break;
9252 }
9253 }
9254
9255 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9256 {
9257 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9258 VM_EXIT_INSTRUCTION_LEN,
9259 IDT_VECTORING_ERROR_CODE);
9260 }
9261
9262 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9263 {
9264 __vmx_complete_interrupts(vcpu,
9265 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9266 VM_ENTRY_INSTRUCTION_LEN,
9267 VM_ENTRY_EXCEPTION_ERROR_CODE);
9268
9269 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9270 }
9271
9272 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9273 {
9274 int i, nr_msrs;
9275 struct perf_guest_switch_msr *msrs;
9276
9277 msrs = perf_guest_get_msrs(&nr_msrs);
9278
9279 if (!msrs)
9280 return;
9281
9282 for (i = 0; i < nr_msrs; i++)
9283 if (msrs[i].host == msrs[i].guest)
9284 clear_atomic_switch_msr(vmx, msrs[i].msr);
9285 else
9286 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9287 msrs[i].host);
9288 }
9289
9290 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9291 {
9292 struct vcpu_vmx *vmx = to_vmx(vcpu);
9293 u64 tscl;
9294 u32 delta_tsc;
9295
9296 if (vmx->hv_deadline_tsc == -1)
9297 return;
9298
9299 tscl = rdtsc();
9300 if (vmx->hv_deadline_tsc > tscl)
9301 /* sure to be 32 bit only because checked on set_hv_timer */
9302 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9303 cpu_preemption_timer_multi);
9304 else
9305 delta_tsc = 0;
9306
9307 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9308 }
9309
9310 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9311 {
9312 struct vcpu_vmx *vmx = to_vmx(vcpu);
9313 unsigned long debugctlmsr, cr3, cr4;
9314
9315 /* Record the guest's net vcpu time for enforced NMI injections. */
9316 if (unlikely(!enable_vnmi &&
9317 vmx->loaded_vmcs->soft_vnmi_blocked))
9318 vmx->loaded_vmcs->entry_time = ktime_get();
9319
9320 /* Don't enter VMX if guest state is invalid, let the exit handler
9321 start emulation until we arrive back to a valid state */
9322 if (vmx->emulation_required)
9323 return;
9324
9325 if (vmx->ple_window_dirty) {
9326 vmx->ple_window_dirty = false;
9327 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9328 }
9329
9330 if (vmx->nested.sync_shadow_vmcs) {
9331 copy_vmcs12_to_shadow(vmx);
9332 vmx->nested.sync_shadow_vmcs = false;
9333 }
9334
9335 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9336 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9337 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9338 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9339
9340 cr3 = __get_current_cr3_fast();
9341 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9342 vmcs_writel(HOST_CR3, cr3);
9343 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9344 }
9345
9346 cr4 = cr4_read_shadow();
9347 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9348 vmcs_writel(HOST_CR4, cr4);
9349 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9350 }
9351
9352 /* When single-stepping over STI and MOV SS, we must clear the
9353 * corresponding interruptibility bits in the guest state. Otherwise
9354 * vmentry fails as it then expects bit 14 (BS) in pending debug
9355 * exceptions being set, but that's not correct for the guest debugging
9356 * case. */
9357 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9358 vmx_set_interrupt_shadow(vcpu, 0);
9359
9360 if (static_cpu_has(X86_FEATURE_PKU) &&
9361 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9362 vcpu->arch.pkru != vmx->host_pkru)
9363 __write_pkru(vcpu->arch.pkru);
9364
9365 atomic_switch_perf_msrs(vmx);
9366 debugctlmsr = get_debugctlmsr();
9367
9368 vmx_arm_hv_timer(vcpu);
9369
9370 vmx->__launched = vmx->loaded_vmcs->launched;
9371 asm(
9372 /* Store host registers */
9373 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9374 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9375 "push %%" _ASM_CX " \n\t"
9376 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9377 "je 1f \n\t"
9378 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9379 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9380 "1: \n\t"
9381 /* Reload cr2 if changed */
9382 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9383 "mov %%cr2, %%" _ASM_DX " \n\t"
9384 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9385 "je 2f \n\t"
9386 "mov %%" _ASM_AX", %%cr2 \n\t"
9387 "2: \n\t"
9388 /* Check if vmlaunch of vmresume is needed */
9389 "cmpl $0, %c[launched](%0) \n\t"
9390 /* Load guest registers. Don't clobber flags. */
9391 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9392 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9393 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9394 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9395 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9396 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9397 #ifdef CONFIG_X86_64
9398 "mov %c[r8](%0), %%r8 \n\t"
9399 "mov %c[r9](%0), %%r9 \n\t"
9400 "mov %c[r10](%0), %%r10 \n\t"
9401 "mov %c[r11](%0), %%r11 \n\t"
9402 "mov %c[r12](%0), %%r12 \n\t"
9403 "mov %c[r13](%0), %%r13 \n\t"
9404 "mov %c[r14](%0), %%r14 \n\t"
9405 "mov %c[r15](%0), %%r15 \n\t"
9406 #endif
9407 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9408
9409 /* Enter guest mode */
9410 "jne 1f \n\t"
9411 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9412 "jmp 2f \n\t"
9413 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9414 "2: "
9415 /* Save guest registers, load host registers, keep flags */
9416 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9417 "pop %0 \n\t"
9418 "setbe %c[fail](%0)\n\t"
9419 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9420 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9421 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9422 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9423 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9424 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9425 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9426 #ifdef CONFIG_X86_64
9427 "mov %%r8, %c[r8](%0) \n\t"
9428 "mov %%r9, %c[r9](%0) \n\t"
9429 "mov %%r10, %c[r10](%0) \n\t"
9430 "mov %%r11, %c[r11](%0) \n\t"
9431 "mov %%r12, %c[r12](%0) \n\t"
9432 "mov %%r13, %c[r13](%0) \n\t"
9433 "mov %%r14, %c[r14](%0) \n\t"
9434 "mov %%r15, %c[r15](%0) \n\t"
9435 "xor %%r8d, %%r8d \n\t"
9436 "xor %%r9d, %%r9d \n\t"
9437 "xor %%r10d, %%r10d \n\t"
9438 "xor %%r11d, %%r11d \n\t"
9439 "xor %%r12d, %%r12d \n\t"
9440 "xor %%r13d, %%r13d \n\t"
9441 "xor %%r14d, %%r14d \n\t"
9442 "xor %%r15d, %%r15d \n\t"
9443 #endif
9444 "mov %%cr2, %%" _ASM_AX " \n\t"
9445 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9446
9447 "xor %%eax, %%eax \n\t"
9448 "xor %%ebx, %%ebx \n\t"
9449 "xor %%esi, %%esi \n\t"
9450 "xor %%edi, %%edi \n\t"
9451 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9452 ".pushsection .rodata \n\t"
9453 ".global vmx_return \n\t"
9454 "vmx_return: " _ASM_PTR " 2b \n\t"
9455 ".popsection"
9456 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9457 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9458 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9459 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9460 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9461 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9462 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9463 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9464 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9465 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9466 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9467 #ifdef CONFIG_X86_64
9468 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9469 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9470 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9471 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9472 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9473 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9474 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9475 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9476 #endif
9477 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9478 [wordsize]"i"(sizeof(ulong))
9479 : "cc", "memory"
9480 #ifdef CONFIG_X86_64
9481 , "rax", "rbx", "rdi", "rsi"
9482 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9483 #else
9484 , "eax", "ebx", "edi", "esi"
9485 #endif
9486 );
9487
9488 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9489 if (debugctlmsr)
9490 update_debugctlmsr(debugctlmsr);
9491
9492 #ifndef CONFIG_X86_64
9493 /*
9494 * The sysexit path does not restore ds/es, so we must set them to
9495 * a reasonable value ourselves.
9496 *
9497 * We can't defer this to vmx_load_host_state() since that function
9498 * may be executed in interrupt context, which saves and restore segments
9499 * around it, nullifying its effect.
9500 */
9501 loadsegment(ds, __USER_DS);
9502 loadsegment(es, __USER_DS);
9503 #endif
9504
9505 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9506 | (1 << VCPU_EXREG_RFLAGS)
9507 | (1 << VCPU_EXREG_PDPTR)
9508 | (1 << VCPU_EXREG_SEGMENTS)
9509 | (1 << VCPU_EXREG_CR3));
9510 vcpu->arch.regs_dirty = 0;
9511
9512 /*
9513 * eager fpu is enabled if PKEY is supported and CR4 is switched
9514 * back on host, so it is safe to read guest PKRU from current
9515 * XSAVE.
9516 */
9517 if (static_cpu_has(X86_FEATURE_PKU) &&
9518 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9519 vcpu->arch.pkru = __read_pkru();
9520 if (vcpu->arch.pkru != vmx->host_pkru)
9521 __write_pkru(vmx->host_pkru);
9522 }
9523
9524 /*
9525 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9526 * we did not inject a still-pending event to L1 now because of
9527 * nested_run_pending, we need to re-enable this bit.
9528 */
9529 if (vmx->nested.nested_run_pending)
9530 kvm_make_request(KVM_REQ_EVENT, vcpu);
9531
9532 vmx->nested.nested_run_pending = 0;
9533 vmx->idt_vectoring_info = 0;
9534
9535 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9536 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9537 return;
9538
9539 vmx->loaded_vmcs->launched = 1;
9540 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9541
9542 vmx_complete_atomic_exit(vmx);
9543 vmx_recover_nmi_blocking(vmx);
9544 vmx_complete_interrupts(vmx);
9545 }
9546 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9547
9548 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9549 {
9550 struct vcpu_vmx *vmx = to_vmx(vcpu);
9551 int cpu;
9552
9553 if (vmx->loaded_vmcs == vmcs)
9554 return;
9555
9556 cpu = get_cpu();
9557 vmx->loaded_vmcs = vmcs;
9558 vmx_vcpu_put(vcpu);
9559 vmx_vcpu_load(vcpu, cpu);
9560 put_cpu();
9561 }
9562
9563 /*
9564 * Ensure that the current vmcs of the logical processor is the
9565 * vmcs01 of the vcpu before calling free_nested().
9566 */
9567 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9568 {
9569 struct vcpu_vmx *vmx = to_vmx(vcpu);
9570 int r;
9571
9572 r = vcpu_load(vcpu);
9573 BUG_ON(r);
9574 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9575 free_nested(vmx);
9576 vcpu_put(vcpu);
9577 }
9578
9579 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9580 {
9581 struct vcpu_vmx *vmx = to_vmx(vcpu);
9582
9583 if (enable_pml)
9584 vmx_destroy_pml_buffer(vmx);
9585 free_vpid(vmx->vpid);
9586 leave_guest_mode(vcpu);
9587 vmx_free_vcpu_nested(vcpu);
9588 free_loaded_vmcs(vmx->loaded_vmcs);
9589 kfree(vmx->guest_msrs);
9590 kvm_vcpu_uninit(vcpu);
9591 kmem_cache_free(kvm_vcpu_cache, vmx);
9592 }
9593
9594 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9595 {
9596 int err;
9597 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9598 int cpu;
9599
9600 if (!vmx)
9601 return ERR_PTR(-ENOMEM);
9602
9603 vmx->vpid = allocate_vpid();
9604
9605 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9606 if (err)
9607 goto free_vcpu;
9608
9609 err = -ENOMEM;
9610
9611 /*
9612 * If PML is turned on, failure on enabling PML just results in failure
9613 * of creating the vcpu, therefore we can simplify PML logic (by
9614 * avoiding dealing with cases, such as enabling PML partially on vcpus
9615 * for the guest, etc.
9616 */
9617 if (enable_pml) {
9618 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9619 if (!vmx->pml_pg)
9620 goto uninit_vcpu;
9621 }
9622
9623 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9624 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9625 > PAGE_SIZE);
9626
9627 if (!vmx->guest_msrs)
9628 goto free_pml;
9629
9630 vmx->loaded_vmcs = &vmx->vmcs01;
9631 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9632 vmx->loaded_vmcs->shadow_vmcs = NULL;
9633 if (!vmx->loaded_vmcs->vmcs)
9634 goto free_msrs;
9635 loaded_vmcs_init(vmx->loaded_vmcs);
9636
9637 cpu = get_cpu();
9638 vmx_vcpu_load(&vmx->vcpu, cpu);
9639 vmx->vcpu.cpu = cpu;
9640 vmx_vcpu_setup(vmx);
9641 vmx_vcpu_put(&vmx->vcpu);
9642 put_cpu();
9643 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9644 err = alloc_apic_access_page(kvm);
9645 if (err)
9646 goto free_vmcs;
9647 }
9648
9649 if (enable_ept) {
9650 err = init_rmode_identity_map(kvm);
9651 if (err)
9652 goto free_vmcs;
9653 }
9654
9655 if (nested) {
9656 nested_vmx_setup_ctls_msrs(vmx);
9657 vmx->nested.vpid02 = allocate_vpid();
9658 }
9659
9660 vmx->nested.posted_intr_nv = -1;
9661 vmx->nested.current_vmptr = -1ull;
9662
9663 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9664
9665 /*
9666 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9667 * or POSTED_INTR_WAKEUP_VECTOR.
9668 */
9669 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9670 vmx->pi_desc.sn = 1;
9671
9672 return &vmx->vcpu;
9673
9674 free_vmcs:
9675 free_vpid(vmx->nested.vpid02);
9676 free_loaded_vmcs(vmx->loaded_vmcs);
9677 free_msrs:
9678 kfree(vmx->guest_msrs);
9679 free_pml:
9680 vmx_destroy_pml_buffer(vmx);
9681 uninit_vcpu:
9682 kvm_vcpu_uninit(&vmx->vcpu);
9683 free_vcpu:
9684 free_vpid(vmx->vpid);
9685 kmem_cache_free(kvm_vcpu_cache, vmx);
9686 return ERR_PTR(err);
9687 }
9688
9689 static void __init vmx_check_processor_compat(void *rtn)
9690 {
9691 struct vmcs_config vmcs_conf;
9692
9693 *(int *)rtn = 0;
9694 if (setup_vmcs_config(&vmcs_conf) < 0)
9695 *(int *)rtn = -EIO;
9696 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9697 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9698 smp_processor_id());
9699 *(int *)rtn = -EIO;
9700 }
9701 }
9702
9703 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9704 {
9705 u8 cache;
9706 u64 ipat = 0;
9707
9708 /* For VT-d and EPT combination
9709 * 1. MMIO: always map as UC
9710 * 2. EPT with VT-d:
9711 * a. VT-d without snooping control feature: can't guarantee the
9712 * result, try to trust guest.
9713 * b. VT-d with snooping control feature: snooping control feature of
9714 * VT-d engine can guarantee the cache correctness. Just set it
9715 * to WB to keep consistent with host. So the same as item 3.
9716 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9717 * consistent with host MTRR
9718 */
9719 if (is_mmio) {
9720 cache = MTRR_TYPE_UNCACHABLE;
9721 goto exit;
9722 }
9723
9724 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9725 ipat = VMX_EPT_IPAT_BIT;
9726 cache = MTRR_TYPE_WRBACK;
9727 goto exit;
9728 }
9729
9730 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9731 ipat = VMX_EPT_IPAT_BIT;
9732 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9733 cache = MTRR_TYPE_WRBACK;
9734 else
9735 cache = MTRR_TYPE_UNCACHABLE;
9736 goto exit;
9737 }
9738
9739 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9740
9741 exit:
9742 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9743 }
9744
9745 static int vmx_get_lpage_level(void)
9746 {
9747 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9748 return PT_DIRECTORY_LEVEL;
9749 else
9750 /* For shadow and EPT supported 1GB page */
9751 return PT_PDPE_LEVEL;
9752 }
9753
9754 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9755 {
9756 /*
9757 * These bits in the secondary execution controls field
9758 * are dynamic, the others are mostly based on the hypervisor
9759 * architecture and the guest's CPUID. Do not touch the
9760 * dynamic bits.
9761 */
9762 u32 mask =
9763 SECONDARY_EXEC_SHADOW_VMCS |
9764 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9765 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9766
9767 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9768
9769 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9770 (new_ctl & ~mask) | (cur_ctl & mask));
9771 }
9772
9773 /*
9774 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9775 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9776 */
9777 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9778 {
9779 struct vcpu_vmx *vmx = to_vmx(vcpu);
9780 struct kvm_cpuid_entry2 *entry;
9781
9782 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9783 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9784
9785 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9786 if (entry && (entry->_reg & (_cpuid_mask))) \
9787 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9788 } while (0)
9789
9790 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9791 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9792 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9793 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9794 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9795 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9796 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9797 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9798 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9799 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9800 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9801 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9802 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9803 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9804 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9805
9806 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9807 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9808 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9809 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9810 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9811 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
9812
9813 #undef cr4_fixed1_update
9814 }
9815
9816 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9817 {
9818 struct vcpu_vmx *vmx = to_vmx(vcpu);
9819
9820 if (cpu_has_secondary_exec_ctrls()) {
9821 vmx_compute_secondary_exec_control(vmx);
9822 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9823 }
9824
9825 if (nested_vmx_allowed(vcpu))
9826 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9827 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9828 else
9829 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9830 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9831
9832 if (nested_vmx_allowed(vcpu))
9833 nested_vmx_cr_fixed1_bits_update(vcpu);
9834 }
9835
9836 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9837 {
9838 if (func == 1 && nested)
9839 entry->ecx |= bit(X86_FEATURE_VMX);
9840 }
9841
9842 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9843 struct x86_exception *fault)
9844 {
9845 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9846 struct vcpu_vmx *vmx = to_vmx(vcpu);
9847 u32 exit_reason;
9848 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9849
9850 if (vmx->nested.pml_full) {
9851 exit_reason = EXIT_REASON_PML_FULL;
9852 vmx->nested.pml_full = false;
9853 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9854 } else if (fault->error_code & PFERR_RSVD_MASK)
9855 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9856 else
9857 exit_reason = EXIT_REASON_EPT_VIOLATION;
9858
9859 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9860 vmcs12->guest_physical_address = fault->address;
9861 }
9862
9863 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9864 {
9865 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9866 }
9867
9868 /* Callbacks for nested_ept_init_mmu_context: */
9869
9870 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9871 {
9872 /* return the page table to be shadowed - in our case, EPT12 */
9873 return get_vmcs12(vcpu)->ept_pointer;
9874 }
9875
9876 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9877 {
9878 WARN_ON(mmu_is_nested(vcpu));
9879 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9880 return 1;
9881
9882 kvm_mmu_unload(vcpu);
9883 kvm_init_shadow_ept_mmu(vcpu,
9884 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9885 VMX_EPT_EXECUTE_ONLY_BIT,
9886 nested_ept_ad_enabled(vcpu));
9887 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9888 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9889 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9890
9891 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9892 return 0;
9893 }
9894
9895 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9896 {
9897 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9898 }
9899
9900 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9901 u16 error_code)
9902 {
9903 bool inequality, bit;
9904
9905 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9906 inequality =
9907 (error_code & vmcs12->page_fault_error_code_mask) !=
9908 vmcs12->page_fault_error_code_match;
9909 return inequality ^ bit;
9910 }
9911
9912 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9913 struct x86_exception *fault)
9914 {
9915 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9916
9917 WARN_ON(!is_guest_mode(vcpu));
9918
9919 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9920 !to_vmx(vcpu)->nested.nested_run_pending) {
9921 vmcs12->vm_exit_intr_error_code = fault->error_code;
9922 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9923 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9924 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9925 fault->address);
9926 } else {
9927 kvm_inject_page_fault(vcpu, fault);
9928 }
9929 }
9930
9931 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9932 struct vmcs12 *vmcs12);
9933
9934 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9935 struct vmcs12 *vmcs12)
9936 {
9937 struct vcpu_vmx *vmx = to_vmx(vcpu);
9938 struct page *page;
9939 u64 hpa;
9940
9941 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9942 /*
9943 * Translate L1 physical address to host physical
9944 * address for vmcs02. Keep the page pinned, so this
9945 * physical address remains valid. We keep a reference
9946 * to it so we can release it later.
9947 */
9948 if (vmx->nested.apic_access_page) { /* shouldn't happen */
9949 kvm_release_page_dirty(vmx->nested.apic_access_page);
9950 vmx->nested.apic_access_page = NULL;
9951 }
9952 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9953 /*
9954 * If translation failed, no matter: This feature asks
9955 * to exit when accessing the given address, and if it
9956 * can never be accessed, this feature won't do
9957 * anything anyway.
9958 */
9959 if (!is_error_page(page)) {
9960 vmx->nested.apic_access_page = page;
9961 hpa = page_to_phys(vmx->nested.apic_access_page);
9962 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9963 } else {
9964 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9965 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9966 }
9967 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9968 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9969 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9970 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9971 kvm_vcpu_reload_apic_access_page(vcpu);
9972 }
9973
9974 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9975 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9976 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9977 vmx->nested.virtual_apic_page = NULL;
9978 }
9979 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9980
9981 /*
9982 * If translation failed, VM entry will fail because
9983 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9984 * Failing the vm entry is _not_ what the processor
9985 * does but it's basically the only possibility we
9986 * have. We could still enter the guest if CR8 load
9987 * exits are enabled, CR8 store exits are enabled, and
9988 * virtualize APIC access is disabled; in this case
9989 * the processor would never use the TPR shadow and we
9990 * could simply clear the bit from the execution
9991 * control. But such a configuration is useless, so
9992 * let's keep the code simple.
9993 */
9994 if (!is_error_page(page)) {
9995 vmx->nested.virtual_apic_page = page;
9996 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9997 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9998 }
9999 }
10000
10001 if (nested_cpu_has_posted_intr(vmcs12)) {
10002 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10003 kunmap(vmx->nested.pi_desc_page);
10004 kvm_release_page_dirty(vmx->nested.pi_desc_page);
10005 vmx->nested.pi_desc_page = NULL;
10006 }
10007 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10008 if (is_error_page(page))
10009 return;
10010 vmx->nested.pi_desc_page = page;
10011 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10012 vmx->nested.pi_desc =
10013 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10014 (unsigned long)(vmcs12->posted_intr_desc_addr &
10015 (PAGE_SIZE - 1)));
10016 vmcs_write64(POSTED_INTR_DESC_ADDR,
10017 page_to_phys(vmx->nested.pi_desc_page) +
10018 (unsigned long)(vmcs12->posted_intr_desc_addr &
10019 (PAGE_SIZE - 1)));
10020 }
10021 if (cpu_has_vmx_msr_bitmap() &&
10022 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10023 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10024 ;
10025 else
10026 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10027 CPU_BASED_USE_MSR_BITMAPS);
10028 }
10029
10030 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10031 {
10032 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10033 struct vcpu_vmx *vmx = to_vmx(vcpu);
10034
10035 if (vcpu->arch.virtual_tsc_khz == 0)
10036 return;
10037
10038 /* Make sure short timeouts reliably trigger an immediate vmexit.
10039 * hrtimer_start does not guarantee this. */
10040 if (preemption_timeout <= 1) {
10041 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10042 return;
10043 }
10044
10045 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10046 preemption_timeout *= 1000000;
10047 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10048 hrtimer_start(&vmx->nested.preemption_timer,
10049 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10050 }
10051
10052 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10053 struct vmcs12 *vmcs12)
10054 {
10055 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10056 return 0;
10057
10058 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10059 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10060 return -EINVAL;
10061
10062 return 0;
10063 }
10064
10065 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10066 struct vmcs12 *vmcs12)
10067 {
10068 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10069 return 0;
10070
10071 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10072 return -EINVAL;
10073
10074 return 0;
10075 }
10076
10077 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10078 struct vmcs12 *vmcs12)
10079 {
10080 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10081 return 0;
10082
10083 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10084 return -EINVAL;
10085
10086 return 0;
10087 }
10088
10089 /*
10090 * Merge L0's and L1's MSR bitmap, return false to indicate that
10091 * we do not use the hardware.
10092 */
10093 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10094 struct vmcs12 *vmcs12)
10095 {
10096 int msr;
10097 struct page *page;
10098 unsigned long *msr_bitmap_l1;
10099 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10100
10101 /* This shortcut is ok because we support only x2APIC MSRs so far. */
10102 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10103 return false;
10104
10105 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10106 if (is_error_page(page))
10107 return false;
10108 msr_bitmap_l1 = (unsigned long *)kmap(page);
10109
10110 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10111
10112 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10113 if (nested_cpu_has_apic_reg_virt(vmcs12))
10114 for (msr = 0x800; msr <= 0x8ff; msr++)
10115 nested_vmx_disable_intercept_for_msr(
10116 msr_bitmap_l1, msr_bitmap_l0,
10117 msr, MSR_TYPE_R);
10118
10119 nested_vmx_disable_intercept_for_msr(
10120 msr_bitmap_l1, msr_bitmap_l0,
10121 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10122 MSR_TYPE_R | MSR_TYPE_W);
10123
10124 if (nested_cpu_has_vid(vmcs12)) {
10125 nested_vmx_disable_intercept_for_msr(
10126 msr_bitmap_l1, msr_bitmap_l0,
10127 APIC_BASE_MSR + (APIC_EOI >> 4),
10128 MSR_TYPE_W);
10129 nested_vmx_disable_intercept_for_msr(
10130 msr_bitmap_l1, msr_bitmap_l0,
10131 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10132 MSR_TYPE_W);
10133 }
10134 }
10135 kunmap(page);
10136 kvm_release_page_clean(page);
10137
10138 return true;
10139 }
10140
10141 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10142 struct vmcs12 *vmcs12)
10143 {
10144 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10145 !nested_cpu_has_apic_reg_virt(vmcs12) &&
10146 !nested_cpu_has_vid(vmcs12) &&
10147 !nested_cpu_has_posted_intr(vmcs12))
10148 return 0;
10149
10150 /*
10151 * If virtualize x2apic mode is enabled,
10152 * virtualize apic access must be disabled.
10153 */
10154 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10155 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10156 return -EINVAL;
10157
10158 /*
10159 * If virtual interrupt delivery is enabled,
10160 * we must exit on external interrupts.
10161 */
10162 if (nested_cpu_has_vid(vmcs12) &&
10163 !nested_exit_on_intr(vcpu))
10164 return -EINVAL;
10165
10166 /*
10167 * bits 15:8 should be zero in posted_intr_nv,
10168 * the descriptor address has been already checked
10169 * in nested_get_vmcs12_pages.
10170 */
10171 if (nested_cpu_has_posted_intr(vmcs12) &&
10172 (!nested_cpu_has_vid(vmcs12) ||
10173 !nested_exit_intr_ack_set(vcpu) ||
10174 vmcs12->posted_intr_nv & 0xff00))
10175 return -EINVAL;
10176
10177 /* tpr shadow is needed by all apicv features. */
10178 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10179 return -EINVAL;
10180
10181 return 0;
10182 }
10183
10184 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10185 unsigned long count_field,
10186 unsigned long addr_field)
10187 {
10188 int maxphyaddr;
10189 u64 count, addr;
10190
10191 if (vmcs12_read_any(vcpu, count_field, &count) ||
10192 vmcs12_read_any(vcpu, addr_field, &addr)) {
10193 WARN_ON(1);
10194 return -EINVAL;
10195 }
10196 if (count == 0)
10197 return 0;
10198 maxphyaddr = cpuid_maxphyaddr(vcpu);
10199 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10200 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10201 pr_debug_ratelimited(
10202 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10203 addr_field, maxphyaddr, count, addr);
10204 return -EINVAL;
10205 }
10206 return 0;
10207 }
10208
10209 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10210 struct vmcs12 *vmcs12)
10211 {
10212 if (vmcs12->vm_exit_msr_load_count == 0 &&
10213 vmcs12->vm_exit_msr_store_count == 0 &&
10214 vmcs12->vm_entry_msr_load_count == 0)
10215 return 0; /* Fast path */
10216 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10217 VM_EXIT_MSR_LOAD_ADDR) ||
10218 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10219 VM_EXIT_MSR_STORE_ADDR) ||
10220 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10221 VM_ENTRY_MSR_LOAD_ADDR))
10222 return -EINVAL;
10223 return 0;
10224 }
10225
10226 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10227 struct vmcs12 *vmcs12)
10228 {
10229 u64 address = vmcs12->pml_address;
10230 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10231
10232 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10233 if (!nested_cpu_has_ept(vmcs12) ||
10234 !IS_ALIGNED(address, 4096) ||
10235 address >> maxphyaddr)
10236 return -EINVAL;
10237 }
10238
10239 return 0;
10240 }
10241
10242 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10243 struct vmx_msr_entry *e)
10244 {
10245 /* x2APIC MSR accesses are not allowed */
10246 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10247 return -EINVAL;
10248 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10249 e->index == MSR_IA32_UCODE_REV)
10250 return -EINVAL;
10251 if (e->reserved != 0)
10252 return -EINVAL;
10253 return 0;
10254 }
10255
10256 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10257 struct vmx_msr_entry *e)
10258 {
10259 if (e->index == MSR_FS_BASE ||
10260 e->index == MSR_GS_BASE ||
10261 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10262 nested_vmx_msr_check_common(vcpu, e))
10263 return -EINVAL;
10264 return 0;
10265 }
10266
10267 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10268 struct vmx_msr_entry *e)
10269 {
10270 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10271 nested_vmx_msr_check_common(vcpu, e))
10272 return -EINVAL;
10273 return 0;
10274 }
10275
10276 /*
10277 * Load guest's/host's msr at nested entry/exit.
10278 * return 0 for success, entry index for failure.
10279 */
10280 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10281 {
10282 u32 i;
10283 struct vmx_msr_entry e;
10284 struct msr_data msr;
10285
10286 msr.host_initiated = false;
10287 for (i = 0; i < count; i++) {
10288 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10289 &e, sizeof(e))) {
10290 pr_debug_ratelimited(
10291 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10292 __func__, i, gpa + i * sizeof(e));
10293 goto fail;
10294 }
10295 if (nested_vmx_load_msr_check(vcpu, &e)) {
10296 pr_debug_ratelimited(
10297 "%s check failed (%u, 0x%x, 0x%x)\n",
10298 __func__, i, e.index, e.reserved);
10299 goto fail;
10300 }
10301 msr.index = e.index;
10302 msr.data = e.value;
10303 if (kvm_set_msr(vcpu, &msr)) {
10304 pr_debug_ratelimited(
10305 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10306 __func__, i, e.index, e.value);
10307 goto fail;
10308 }
10309 }
10310 return 0;
10311 fail:
10312 return i + 1;
10313 }
10314
10315 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10316 {
10317 u32 i;
10318 struct vmx_msr_entry e;
10319
10320 for (i = 0; i < count; i++) {
10321 struct msr_data msr_info;
10322 if (kvm_vcpu_read_guest(vcpu,
10323 gpa + i * sizeof(e),
10324 &e, 2 * sizeof(u32))) {
10325 pr_debug_ratelimited(
10326 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10327 __func__, i, gpa + i * sizeof(e));
10328 return -EINVAL;
10329 }
10330 if (nested_vmx_store_msr_check(vcpu, &e)) {
10331 pr_debug_ratelimited(
10332 "%s check failed (%u, 0x%x, 0x%x)\n",
10333 __func__, i, e.index, e.reserved);
10334 return -EINVAL;
10335 }
10336 msr_info.host_initiated = false;
10337 msr_info.index = e.index;
10338 if (kvm_get_msr(vcpu, &msr_info)) {
10339 pr_debug_ratelimited(
10340 "%s cannot read MSR (%u, 0x%x)\n",
10341 __func__, i, e.index);
10342 return -EINVAL;
10343 }
10344 if (kvm_vcpu_write_guest(vcpu,
10345 gpa + i * sizeof(e) +
10346 offsetof(struct vmx_msr_entry, value),
10347 &msr_info.data, sizeof(msr_info.data))) {
10348 pr_debug_ratelimited(
10349 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10350 __func__, i, e.index, msr_info.data);
10351 return -EINVAL;
10352 }
10353 }
10354 return 0;
10355 }
10356
10357 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10358 {
10359 unsigned long invalid_mask;
10360
10361 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10362 return (val & invalid_mask) == 0;
10363 }
10364
10365 /*
10366 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10367 * emulating VM entry into a guest with EPT enabled.
10368 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10369 * is assigned to entry_failure_code on failure.
10370 */
10371 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10372 u32 *entry_failure_code)
10373 {
10374 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10375 if (!nested_cr3_valid(vcpu, cr3)) {
10376 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10377 return 1;
10378 }
10379
10380 /*
10381 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10382 * must not be dereferenced.
10383 */
10384 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10385 !nested_ept) {
10386 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10387 *entry_failure_code = ENTRY_FAIL_PDPTE;
10388 return 1;
10389 }
10390 }
10391
10392 vcpu->arch.cr3 = cr3;
10393 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10394 }
10395
10396 kvm_mmu_reset_context(vcpu);
10397 return 0;
10398 }
10399
10400 /*
10401 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10402 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10403 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10404 * guest in a way that will both be appropriate to L1's requests, and our
10405 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10406 * function also has additional necessary side-effects, like setting various
10407 * vcpu->arch fields.
10408 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10409 * is assigned to entry_failure_code on failure.
10410 */
10411 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10412 bool from_vmentry, u32 *entry_failure_code)
10413 {
10414 struct vcpu_vmx *vmx = to_vmx(vcpu);
10415 u32 exec_control, vmcs12_exec_ctrl;
10416
10417 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10418 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10419 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10420 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10421 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10422 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10423 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10424 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10425 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10426 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10427 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10428 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10429 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10430 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10431 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10432 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10433 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10434 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10435 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10436 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10437 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10438 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10439 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10440 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10441 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10442 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10443 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10444 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10445 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10446 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10447 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10448 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10449 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10450 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10451 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10452 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10453
10454 if (from_vmentry &&
10455 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10456 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10457 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10458 } else {
10459 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10460 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10461 }
10462 if (from_vmentry) {
10463 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10464 vmcs12->vm_entry_intr_info_field);
10465 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10466 vmcs12->vm_entry_exception_error_code);
10467 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10468 vmcs12->vm_entry_instruction_len);
10469 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10470 vmcs12->guest_interruptibility_info);
10471 vmx->loaded_vmcs->nmi_known_unmasked =
10472 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10473 } else {
10474 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10475 }
10476 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10477 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10478 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10479 vmcs12->guest_pending_dbg_exceptions);
10480 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10481 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10482
10483 if (nested_cpu_has_xsaves(vmcs12))
10484 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10485 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10486
10487 exec_control = vmcs12->pin_based_vm_exec_control;
10488
10489 /* Preemption timer setting is only taken from vmcs01. */
10490 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10491 exec_control |= vmcs_config.pin_based_exec_ctrl;
10492 if (vmx->hv_deadline_tsc == -1)
10493 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10494
10495 /* Posted interrupts setting is only taken from vmcs12. */
10496 if (nested_cpu_has_posted_intr(vmcs12)) {
10497 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10498 vmx->nested.pi_pending = false;
10499 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10500 } else {
10501 exec_control &= ~PIN_BASED_POSTED_INTR;
10502 }
10503
10504 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10505
10506 vmx->nested.preemption_timer_expired = false;
10507 if (nested_cpu_has_preemption_timer(vmcs12))
10508 vmx_start_preemption_timer(vcpu);
10509
10510 /*
10511 * Whether page-faults are trapped is determined by a combination of
10512 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10513 * If enable_ept, L0 doesn't care about page faults and we should
10514 * set all of these to L1's desires. However, if !enable_ept, L0 does
10515 * care about (at least some) page faults, and because it is not easy
10516 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10517 * to exit on each and every L2 page fault. This is done by setting
10518 * MASK=MATCH=0 and (see below) EB.PF=1.
10519 * Note that below we don't need special code to set EB.PF beyond the
10520 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10521 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10522 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10523 */
10524 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10525 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10526 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10527 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10528
10529 if (cpu_has_secondary_exec_ctrls()) {
10530 exec_control = vmx->secondary_exec_control;
10531
10532 /* Take the following fields only from vmcs12 */
10533 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10534 SECONDARY_EXEC_ENABLE_INVPCID |
10535 SECONDARY_EXEC_RDTSCP |
10536 SECONDARY_EXEC_XSAVES |
10537 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10538 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10539 SECONDARY_EXEC_ENABLE_VMFUNC);
10540 if (nested_cpu_has(vmcs12,
10541 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10542 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10543 ~SECONDARY_EXEC_ENABLE_PML;
10544 exec_control |= vmcs12_exec_ctrl;
10545 }
10546
10547 /* All VMFUNCs are currently emulated through L0 vmexits. */
10548 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10549 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10550
10551 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10552 vmcs_write64(EOI_EXIT_BITMAP0,
10553 vmcs12->eoi_exit_bitmap0);
10554 vmcs_write64(EOI_EXIT_BITMAP1,
10555 vmcs12->eoi_exit_bitmap1);
10556 vmcs_write64(EOI_EXIT_BITMAP2,
10557 vmcs12->eoi_exit_bitmap2);
10558 vmcs_write64(EOI_EXIT_BITMAP3,
10559 vmcs12->eoi_exit_bitmap3);
10560 vmcs_write16(GUEST_INTR_STATUS,
10561 vmcs12->guest_intr_status);
10562 }
10563
10564 /*
10565 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10566 * nested_get_vmcs12_pages will either fix it up or
10567 * remove the VM execution control.
10568 */
10569 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10570 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10571
10572 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10573 }
10574
10575
10576 /*
10577 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10578 * Some constant fields are set here by vmx_set_constant_host_state().
10579 * Other fields are different per CPU, and will be set later when
10580 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10581 */
10582 vmx_set_constant_host_state(vmx);
10583
10584 /*
10585 * Set the MSR load/store lists to match L0's settings.
10586 */
10587 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10588 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10589 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10590 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10591 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10592
10593 /*
10594 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10595 * entry, but only if the current (host) sp changed from the value
10596 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10597 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10598 * here we just force the write to happen on entry.
10599 */
10600 vmx->host_rsp = 0;
10601
10602 exec_control = vmx_exec_control(vmx); /* L0's desires */
10603 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10604 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10605 exec_control &= ~CPU_BASED_TPR_SHADOW;
10606 exec_control |= vmcs12->cpu_based_vm_exec_control;
10607
10608 /*
10609 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10610 * nested_get_vmcs12_pages can't fix it up, the illegal value
10611 * will result in a VM entry failure.
10612 */
10613 if (exec_control & CPU_BASED_TPR_SHADOW) {
10614 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10615 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10616 } else {
10617 #ifdef CONFIG_X86_64
10618 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10619 CPU_BASED_CR8_STORE_EXITING;
10620 #endif
10621 }
10622
10623 /*
10624 * Merging of IO bitmap not currently supported.
10625 * Rather, exit every time.
10626 */
10627 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10628 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10629
10630 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10631
10632 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10633 * bitwise-or of what L1 wants to trap for L2, and what we want to
10634 * trap. Note that CR0.TS also needs updating - we do this later.
10635 */
10636 update_exception_bitmap(vcpu);
10637 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10638 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10639
10640 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10641 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10642 * bits are further modified by vmx_set_efer() below.
10643 */
10644 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10645
10646 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10647 * emulated by vmx_set_efer(), below.
10648 */
10649 vm_entry_controls_init(vmx,
10650 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10651 ~VM_ENTRY_IA32E_MODE) |
10652 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10653
10654 if (from_vmentry &&
10655 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10656 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10657 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10658 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10659 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10660 }
10661
10662 set_cr4_guest_host_mask(vmx);
10663
10664 if (from_vmentry &&
10665 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10666 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10667
10668 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10669 vmcs_write64(TSC_OFFSET,
10670 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10671 else
10672 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10673 if (kvm_has_tsc_control)
10674 decache_tsc_multiplier(vmx);
10675
10676 if (enable_vpid) {
10677 /*
10678 * There is no direct mapping between vpid02 and vpid12, the
10679 * vpid02 is per-vCPU for L0 and reused while the value of
10680 * vpid12 is changed w/ one invvpid during nested vmentry.
10681 * The vpid12 is allocated by L1 for L2, so it will not
10682 * influence global bitmap(for vpid01 and vpid02 allocation)
10683 * even if spawn a lot of nested vCPUs.
10684 */
10685 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10686 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10687 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10688 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10689 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10690 }
10691 } else {
10692 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10693 vmx_flush_tlb(vcpu);
10694 }
10695
10696 }
10697
10698 if (enable_pml) {
10699 /*
10700 * Conceptually we want to copy the PML address and index from
10701 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10702 * since we always flush the log on each vmexit, this happens
10703 * to be equivalent to simply resetting the fields in vmcs02.
10704 */
10705 ASSERT(vmx->pml_pg);
10706 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10707 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10708 }
10709
10710 if (nested_cpu_has_ept(vmcs12)) {
10711 if (nested_ept_init_mmu_context(vcpu)) {
10712 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10713 return 1;
10714 }
10715 } else if (nested_cpu_has2(vmcs12,
10716 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10717 vmx_flush_tlb_ept_only(vcpu);
10718 }
10719
10720 /*
10721 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10722 * bits which we consider mandatory enabled.
10723 * The CR0_READ_SHADOW is what L2 should have expected to read given
10724 * the specifications by L1; It's not enough to take
10725 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10726 * have more bits than L1 expected.
10727 */
10728 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10729 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10730
10731 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10732 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10733
10734 if (from_vmentry &&
10735 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10736 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10737 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10738 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10739 else
10740 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10741 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10742 vmx_set_efer(vcpu, vcpu->arch.efer);
10743
10744 /* Shadow page tables on either EPT or shadow page tables. */
10745 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10746 entry_failure_code))
10747 return 1;
10748
10749 if (!enable_ept)
10750 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10751
10752 /*
10753 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10754 */
10755 if (enable_ept) {
10756 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10757 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10758 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10759 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10760 }
10761
10762 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10763 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10764 return 0;
10765 }
10766
10767 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10768 {
10769 struct vcpu_vmx *vmx = to_vmx(vcpu);
10770
10771 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10772 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10773 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10774
10775 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10776 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10777
10778 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10779 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10780
10781 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10782 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10783
10784 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10785 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10786
10787 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10788 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10789
10790 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10791 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10792
10793 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10794 vmx->nested.nested_vmx_procbased_ctls_low,
10795 vmx->nested.nested_vmx_procbased_ctls_high) ||
10796 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10797 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10798 vmx->nested.nested_vmx_secondary_ctls_low,
10799 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10800 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10801 vmx->nested.nested_vmx_pinbased_ctls_low,
10802 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10803 !vmx_control_verify(vmcs12->vm_exit_controls,
10804 vmx->nested.nested_vmx_exit_ctls_low,
10805 vmx->nested.nested_vmx_exit_ctls_high) ||
10806 !vmx_control_verify(vmcs12->vm_entry_controls,
10807 vmx->nested.nested_vmx_entry_ctls_low,
10808 vmx->nested.nested_vmx_entry_ctls_high))
10809 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10810
10811 if (nested_cpu_has_vmfunc(vmcs12)) {
10812 if (vmcs12->vm_function_control &
10813 ~vmx->nested.nested_vmx_vmfunc_controls)
10814 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10815
10816 if (nested_cpu_has_eptp_switching(vmcs12)) {
10817 if (!nested_cpu_has_ept(vmcs12) ||
10818 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10819 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10820 }
10821 }
10822
10823 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10824 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10825
10826 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10827 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10828 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10829 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10830
10831 return 0;
10832 }
10833
10834 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10835 u32 *exit_qual)
10836 {
10837 bool ia32e;
10838
10839 *exit_qual = ENTRY_FAIL_DEFAULT;
10840
10841 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10842 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10843 return 1;
10844
10845 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10846 vmcs12->vmcs_link_pointer != -1ull) {
10847 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10848 return 1;
10849 }
10850
10851 /*
10852 * If the load IA32_EFER VM-entry control is 1, the following checks
10853 * are performed on the field for the IA32_EFER MSR:
10854 * - Bits reserved in the IA32_EFER MSR must be 0.
10855 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10856 * the IA-32e mode guest VM-exit control. It must also be identical
10857 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10858 * CR0.PG) is 1.
10859 */
10860 if (to_vmx(vcpu)->nested.nested_run_pending &&
10861 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10862 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10863 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10864 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10865 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10866 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10867 return 1;
10868 }
10869
10870 /*
10871 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10872 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10873 * the values of the LMA and LME bits in the field must each be that of
10874 * the host address-space size VM-exit control.
10875 */
10876 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10877 ia32e = (vmcs12->vm_exit_controls &
10878 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10879 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10880 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10881 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10882 return 1;
10883 }
10884
10885 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
10886 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
10887 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
10888 return 1;
10889
10890 return 0;
10891 }
10892
10893 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10894 {
10895 struct vcpu_vmx *vmx = to_vmx(vcpu);
10896 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10897 struct loaded_vmcs *vmcs02;
10898 u32 msr_entry_idx;
10899 u32 exit_qual;
10900
10901 vmcs02 = nested_get_current_vmcs02(vmx);
10902 if (!vmcs02)
10903 return -ENOMEM;
10904
10905 enter_guest_mode(vcpu);
10906
10907 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10908 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10909
10910 vmx_switch_vmcs(vcpu, vmcs02);
10911 vmx_segment_cache_clear(vmx);
10912
10913 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10914 leave_guest_mode(vcpu);
10915 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10916 nested_vmx_entry_failure(vcpu, vmcs12,
10917 EXIT_REASON_INVALID_STATE, exit_qual);
10918 return 1;
10919 }
10920
10921 nested_get_vmcs12_pages(vcpu, vmcs12);
10922
10923 msr_entry_idx = nested_vmx_load_msr(vcpu,
10924 vmcs12->vm_entry_msr_load_addr,
10925 vmcs12->vm_entry_msr_load_count);
10926 if (msr_entry_idx) {
10927 leave_guest_mode(vcpu);
10928 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10929 nested_vmx_entry_failure(vcpu, vmcs12,
10930 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10931 return 1;
10932 }
10933
10934 /*
10935 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10936 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10937 * returned as far as L1 is concerned. It will only return (and set
10938 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10939 */
10940 return 0;
10941 }
10942
10943 /*
10944 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10945 * for running an L2 nested guest.
10946 */
10947 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10948 {
10949 struct vmcs12 *vmcs12;
10950 struct vcpu_vmx *vmx = to_vmx(vcpu);
10951 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10952 u32 exit_qual;
10953 int ret;
10954
10955 if (!nested_vmx_check_permission(vcpu))
10956 return 1;
10957
10958 if (!nested_vmx_check_vmcs12(vcpu))
10959 goto out;
10960
10961 vmcs12 = get_vmcs12(vcpu);
10962
10963 if (enable_shadow_vmcs)
10964 copy_shadow_to_vmcs12(vmx);
10965
10966 /*
10967 * The nested entry process starts with enforcing various prerequisites
10968 * on vmcs12 as required by the Intel SDM, and act appropriately when
10969 * they fail: As the SDM explains, some conditions should cause the
10970 * instruction to fail, while others will cause the instruction to seem
10971 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10972 * To speed up the normal (success) code path, we should avoid checking
10973 * for misconfigurations which will anyway be caught by the processor
10974 * when using the merged vmcs02.
10975 */
10976 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10977 nested_vmx_failValid(vcpu,
10978 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10979 goto out;
10980 }
10981
10982 if (vmcs12->launch_state == launch) {
10983 nested_vmx_failValid(vcpu,
10984 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10985 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10986 goto out;
10987 }
10988
10989 ret = check_vmentry_prereqs(vcpu, vmcs12);
10990 if (ret) {
10991 nested_vmx_failValid(vcpu, ret);
10992 goto out;
10993 }
10994
10995 /*
10996 * After this point, the trap flag no longer triggers a singlestep trap
10997 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10998 * This is not 100% correct; for performance reasons, we delegate most
10999 * of the checks on host state to the processor. If those fail,
11000 * the singlestep trap is missed.
11001 */
11002 skip_emulated_instruction(vcpu);
11003
11004 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11005 if (ret) {
11006 nested_vmx_entry_failure(vcpu, vmcs12,
11007 EXIT_REASON_INVALID_STATE, exit_qual);
11008 return 1;
11009 }
11010
11011 /*
11012 * We're finally done with prerequisite checking, and can start with
11013 * the nested entry.
11014 */
11015
11016 ret = enter_vmx_non_root_mode(vcpu, true);
11017 if (ret)
11018 return ret;
11019
11020 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
11021 return kvm_vcpu_halt(vcpu);
11022
11023 vmx->nested.nested_run_pending = 1;
11024
11025 return 1;
11026
11027 out:
11028 return kvm_skip_emulated_instruction(vcpu);
11029 }
11030
11031 /*
11032 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11033 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11034 * This function returns the new value we should put in vmcs12.guest_cr0.
11035 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11036 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11037 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11038 * didn't trap the bit, because if L1 did, so would L0).
11039 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11040 * been modified by L2, and L1 knows it. So just leave the old value of
11041 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11042 * isn't relevant, because if L0 traps this bit it can set it to anything.
11043 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11044 * changed these bits, and therefore they need to be updated, but L0
11045 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11046 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11047 */
11048 static inline unsigned long
11049 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11050 {
11051 return
11052 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11053 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11054 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11055 vcpu->arch.cr0_guest_owned_bits));
11056 }
11057
11058 static inline unsigned long
11059 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11060 {
11061 return
11062 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11063 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11064 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11065 vcpu->arch.cr4_guest_owned_bits));
11066 }
11067
11068 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11069 struct vmcs12 *vmcs12)
11070 {
11071 u32 idt_vectoring;
11072 unsigned int nr;
11073
11074 if (vcpu->arch.exception.injected) {
11075 nr = vcpu->arch.exception.nr;
11076 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11077
11078 if (kvm_exception_is_soft(nr)) {
11079 vmcs12->vm_exit_instruction_len =
11080 vcpu->arch.event_exit_inst_len;
11081 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11082 } else
11083 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11084
11085 if (vcpu->arch.exception.has_error_code) {
11086 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11087 vmcs12->idt_vectoring_error_code =
11088 vcpu->arch.exception.error_code;
11089 }
11090
11091 vmcs12->idt_vectoring_info_field = idt_vectoring;
11092 } else if (vcpu->arch.nmi_injected) {
11093 vmcs12->idt_vectoring_info_field =
11094 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11095 } else if (vcpu->arch.interrupt.pending) {
11096 nr = vcpu->arch.interrupt.nr;
11097 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11098
11099 if (vcpu->arch.interrupt.soft) {
11100 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11101 vmcs12->vm_entry_instruction_len =
11102 vcpu->arch.event_exit_inst_len;
11103 } else
11104 idt_vectoring |= INTR_TYPE_EXT_INTR;
11105
11106 vmcs12->idt_vectoring_info_field = idt_vectoring;
11107 }
11108 }
11109
11110 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11111 {
11112 struct vcpu_vmx *vmx = to_vmx(vcpu);
11113 unsigned long exit_qual;
11114 bool block_nested_events =
11115 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11116
11117 if (vcpu->arch.exception.pending &&
11118 nested_vmx_check_exception(vcpu, &exit_qual)) {
11119 if (block_nested_events)
11120 return -EBUSY;
11121 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11122 vcpu->arch.exception.pending = false;
11123 return 0;
11124 }
11125
11126 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11127 vmx->nested.preemption_timer_expired) {
11128 if (block_nested_events)
11129 return -EBUSY;
11130 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11131 return 0;
11132 }
11133
11134 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11135 if (block_nested_events)
11136 return -EBUSY;
11137 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11138 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11139 INTR_INFO_VALID_MASK, 0);
11140 /*
11141 * The NMI-triggered VM exit counts as injection:
11142 * clear this one and block further NMIs.
11143 */
11144 vcpu->arch.nmi_pending = 0;
11145 vmx_set_nmi_mask(vcpu, true);
11146 return 0;
11147 }
11148
11149 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11150 nested_exit_on_intr(vcpu)) {
11151 if (block_nested_events)
11152 return -EBUSY;
11153 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11154 return 0;
11155 }
11156
11157 vmx_complete_nested_posted_interrupt(vcpu);
11158 return 0;
11159 }
11160
11161 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11162 {
11163 ktime_t remaining =
11164 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11165 u64 value;
11166
11167 if (ktime_to_ns(remaining) <= 0)
11168 return 0;
11169
11170 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11171 do_div(value, 1000000);
11172 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11173 }
11174
11175 /*
11176 * Update the guest state fields of vmcs12 to reflect changes that
11177 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11178 * VM-entry controls is also updated, since this is really a guest
11179 * state bit.)
11180 */
11181 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11182 {
11183 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11184 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11185
11186 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11187 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11188 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11189
11190 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11191 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11192 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11193 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11194 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11195 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11196 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11197 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11198 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11199 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11200 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11201 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11202 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11203 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11204 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11205 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11206 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11207 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11208 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11209 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11210 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11211 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11212 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11213 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11214 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11215 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11216 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11217 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11218 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11219 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11220 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11221 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11222 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11223 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11224 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11225 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11226
11227 vmcs12->guest_interruptibility_info =
11228 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11229 vmcs12->guest_pending_dbg_exceptions =
11230 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11231 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11232 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11233 else
11234 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11235
11236 if (nested_cpu_has_preemption_timer(vmcs12)) {
11237 if (vmcs12->vm_exit_controls &
11238 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11239 vmcs12->vmx_preemption_timer_value =
11240 vmx_get_preemption_timer_value(vcpu);
11241 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11242 }
11243
11244 /*
11245 * In some cases (usually, nested EPT), L2 is allowed to change its
11246 * own CR3 without exiting. If it has changed it, we must keep it.
11247 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11248 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11249 *
11250 * Additionally, restore L2's PDPTR to vmcs12.
11251 */
11252 if (enable_ept) {
11253 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11254 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11255 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11256 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11257 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11258 }
11259
11260 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11261
11262 if (nested_cpu_has_vid(vmcs12))
11263 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11264
11265 vmcs12->vm_entry_controls =
11266 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11267 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11268
11269 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11270 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11271 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11272 }
11273
11274 /* TODO: These cannot have changed unless we have MSR bitmaps and
11275 * the relevant bit asks not to trap the change */
11276 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11277 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11278 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11279 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11280 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11281 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11282 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11283 if (kvm_mpx_supported())
11284 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11285 }
11286
11287 /*
11288 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11289 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11290 * and this function updates it to reflect the changes to the guest state while
11291 * L2 was running (and perhaps made some exits which were handled directly by L0
11292 * without going back to L1), and to reflect the exit reason.
11293 * Note that we do not have to copy here all VMCS fields, just those that
11294 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11295 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11296 * which already writes to vmcs12 directly.
11297 */
11298 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11299 u32 exit_reason, u32 exit_intr_info,
11300 unsigned long exit_qualification)
11301 {
11302 /* update guest state fields: */
11303 sync_vmcs12(vcpu, vmcs12);
11304
11305 /* update exit information fields: */
11306
11307 vmcs12->vm_exit_reason = exit_reason;
11308 vmcs12->exit_qualification = exit_qualification;
11309 vmcs12->vm_exit_intr_info = exit_intr_info;
11310
11311 vmcs12->idt_vectoring_info_field = 0;
11312 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11313 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11314
11315 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11316 vmcs12->launch_state = 1;
11317
11318 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11319 * instead of reading the real value. */
11320 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11321
11322 /*
11323 * Transfer the event that L0 or L1 may wanted to inject into
11324 * L2 to IDT_VECTORING_INFO_FIELD.
11325 */
11326 vmcs12_save_pending_event(vcpu, vmcs12);
11327 }
11328
11329 /*
11330 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11331 * preserved above and would only end up incorrectly in L1.
11332 */
11333 vcpu->arch.nmi_injected = false;
11334 kvm_clear_exception_queue(vcpu);
11335 kvm_clear_interrupt_queue(vcpu);
11336 }
11337
11338 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11339 struct vmcs12 *vmcs12)
11340 {
11341 u32 entry_failure_code;
11342
11343 nested_ept_uninit_mmu_context(vcpu);
11344
11345 /*
11346 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11347 * couldn't have changed.
11348 */
11349 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11350 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11351
11352 if (!enable_ept)
11353 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11354 }
11355
11356 /*
11357 * A part of what we need to when the nested L2 guest exits and we want to
11358 * run its L1 parent, is to reset L1's guest state to the host state specified
11359 * in vmcs12.
11360 * This function is to be called not only on normal nested exit, but also on
11361 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11362 * Failures During or After Loading Guest State").
11363 * This function should be called when the active VMCS is L1's (vmcs01).
11364 */
11365 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11366 struct vmcs12 *vmcs12)
11367 {
11368 struct kvm_segment seg;
11369
11370 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11371 vcpu->arch.efer = vmcs12->host_ia32_efer;
11372 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11373 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11374 else
11375 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11376 vmx_set_efer(vcpu, vcpu->arch.efer);
11377
11378 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11379 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11380 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11381 /*
11382 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11383 * actually changed, because vmx_set_cr0 refers to efer set above.
11384 *
11385 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11386 * (KVM doesn't change it);
11387 */
11388 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11389 vmx_set_cr0(vcpu, vmcs12->host_cr0);
11390
11391 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
11392 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11393 vmx_set_cr4(vcpu, vmcs12->host_cr4);
11394
11395 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11396
11397 if (enable_vpid) {
11398 /*
11399 * Trivially support vpid by letting L2s share their parent
11400 * L1's vpid. TODO: move to a more elaborate solution, giving
11401 * each L2 its own vpid and exposing the vpid feature to L1.
11402 */
11403 vmx_flush_tlb(vcpu);
11404 }
11405 /* Restore posted intr vector. */
11406 if (nested_cpu_has_posted_intr(vmcs12))
11407 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11408
11409 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11410 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11411 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11412 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11413 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11414 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11415 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
11416
11417 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11418 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11419 vmcs_write64(GUEST_BNDCFGS, 0);
11420
11421 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11422 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11423 vcpu->arch.pat = vmcs12->host_ia32_pat;
11424 }
11425 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11426 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11427 vmcs12->host_ia32_perf_global_ctrl);
11428
11429 /* Set L1 segment info according to Intel SDM
11430 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11431 seg = (struct kvm_segment) {
11432 .base = 0,
11433 .limit = 0xFFFFFFFF,
11434 .selector = vmcs12->host_cs_selector,
11435 .type = 11,
11436 .present = 1,
11437 .s = 1,
11438 .g = 1
11439 };
11440 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11441 seg.l = 1;
11442 else
11443 seg.db = 1;
11444 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11445 seg = (struct kvm_segment) {
11446 .base = 0,
11447 .limit = 0xFFFFFFFF,
11448 .type = 3,
11449 .present = 1,
11450 .s = 1,
11451 .db = 1,
11452 .g = 1
11453 };
11454 seg.selector = vmcs12->host_ds_selector;
11455 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11456 seg.selector = vmcs12->host_es_selector;
11457 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11458 seg.selector = vmcs12->host_ss_selector;
11459 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11460 seg.selector = vmcs12->host_fs_selector;
11461 seg.base = vmcs12->host_fs_base;
11462 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11463 seg.selector = vmcs12->host_gs_selector;
11464 seg.base = vmcs12->host_gs_base;
11465 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11466 seg = (struct kvm_segment) {
11467 .base = vmcs12->host_tr_base,
11468 .limit = 0x67,
11469 .selector = vmcs12->host_tr_selector,
11470 .type = 11,
11471 .present = 1
11472 };
11473 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11474
11475 kvm_set_dr(vcpu, 7, 0x400);
11476 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11477
11478 if (cpu_has_vmx_msr_bitmap())
11479 vmx_set_msr_bitmap(vcpu);
11480
11481 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11482 vmcs12->vm_exit_msr_load_count))
11483 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11484 }
11485
11486 /*
11487 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11488 * and modify vmcs12 to make it see what it would expect to see there if
11489 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11490 */
11491 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11492 u32 exit_intr_info,
11493 unsigned long exit_qualification)
11494 {
11495 struct vcpu_vmx *vmx = to_vmx(vcpu);
11496 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11497
11498 /* trying to cancel vmlaunch/vmresume is a bug */
11499 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11500
11501 /*
11502 * The only expected VM-instruction error is "VM entry with
11503 * invalid control field(s)." Anything else indicates a
11504 * problem with L0.
11505 */
11506 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11507 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11508
11509 leave_guest_mode(vcpu);
11510
11511 if (likely(!vmx->fail)) {
11512 if (exit_reason == -1)
11513 sync_vmcs12(vcpu, vmcs12);
11514 else
11515 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11516 exit_qualification);
11517
11518 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11519 vmcs12->vm_exit_msr_store_count))
11520 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11521 }
11522
11523 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11524 vm_entry_controls_reset_shadow(vmx);
11525 vm_exit_controls_reset_shadow(vmx);
11526 vmx_segment_cache_clear(vmx);
11527
11528 /* if no vmcs02 cache requested, remove the one we used */
11529 if (VMCS02_POOL_SIZE == 0)
11530 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11531
11532 /* Update any VMCS fields that might have changed while L2 ran */
11533 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11534 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11535 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11536 if (vmx->hv_deadline_tsc == -1)
11537 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11538 PIN_BASED_VMX_PREEMPTION_TIMER);
11539 else
11540 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11541 PIN_BASED_VMX_PREEMPTION_TIMER);
11542 if (kvm_has_tsc_control)
11543 decache_tsc_multiplier(vmx);
11544
11545 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11546 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11547 vmx_set_virtual_x2apic_mode(vcpu,
11548 vcpu->arch.apic_base & X2APIC_ENABLE);
11549 } else if (!nested_cpu_has_ept(vmcs12) &&
11550 nested_cpu_has2(vmcs12,
11551 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11552 vmx_flush_tlb_ept_only(vcpu);
11553 }
11554
11555 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11556 vmx->host_rsp = 0;
11557
11558 /* Unpin physical memory we referred to in vmcs02 */
11559 if (vmx->nested.apic_access_page) {
11560 kvm_release_page_dirty(vmx->nested.apic_access_page);
11561 vmx->nested.apic_access_page = NULL;
11562 }
11563 if (vmx->nested.virtual_apic_page) {
11564 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11565 vmx->nested.virtual_apic_page = NULL;
11566 }
11567 if (vmx->nested.pi_desc_page) {
11568 kunmap(vmx->nested.pi_desc_page);
11569 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11570 vmx->nested.pi_desc_page = NULL;
11571 vmx->nested.pi_desc = NULL;
11572 }
11573
11574 /*
11575 * We are now running in L2, mmu_notifier will force to reload the
11576 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11577 */
11578 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11579
11580 if (enable_shadow_vmcs && exit_reason != -1)
11581 vmx->nested.sync_shadow_vmcs = true;
11582
11583 /* in case we halted in L2 */
11584 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11585
11586 if (likely(!vmx->fail)) {
11587 /*
11588 * TODO: SDM says that with acknowledge interrupt on
11589 * exit, bit 31 of the VM-exit interrupt information
11590 * (valid interrupt) is always set to 1 on
11591 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11592 * need kvm_cpu_has_interrupt(). See the commit
11593 * message for details.
11594 */
11595 if (nested_exit_intr_ack_set(vcpu) &&
11596 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11597 kvm_cpu_has_interrupt(vcpu)) {
11598 int irq = kvm_cpu_get_interrupt(vcpu);
11599 WARN_ON(irq < 0);
11600 vmcs12->vm_exit_intr_info = irq |
11601 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11602 }
11603
11604 if (exit_reason != -1)
11605 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11606 vmcs12->exit_qualification,
11607 vmcs12->idt_vectoring_info_field,
11608 vmcs12->vm_exit_intr_info,
11609 vmcs12->vm_exit_intr_error_code,
11610 KVM_ISA_VMX);
11611
11612 load_vmcs12_host_state(vcpu, vmcs12);
11613
11614 return;
11615 }
11616
11617 /*
11618 * After an early L2 VM-entry failure, we're now back
11619 * in L1 which thinks it just finished a VMLAUNCH or
11620 * VMRESUME instruction, so we need to set the failure
11621 * flag and the VM-instruction error field of the VMCS
11622 * accordingly.
11623 */
11624 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11625
11626 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11627
11628 /*
11629 * The emulated instruction was already skipped in
11630 * nested_vmx_run, but the updated RIP was never
11631 * written back to the vmcs01.
11632 */
11633 skip_emulated_instruction(vcpu);
11634 vmx->fail = 0;
11635 }
11636
11637 /*
11638 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11639 */
11640 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11641 {
11642 if (is_guest_mode(vcpu)) {
11643 to_vmx(vcpu)->nested.nested_run_pending = 0;
11644 nested_vmx_vmexit(vcpu, -1, 0, 0);
11645 }
11646 free_nested(to_vmx(vcpu));
11647 }
11648
11649 /*
11650 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11651 * 23.7 "VM-entry failures during or after loading guest state" (this also
11652 * lists the acceptable exit-reason and exit-qualification parameters).
11653 * It should only be called before L2 actually succeeded to run, and when
11654 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11655 */
11656 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11657 struct vmcs12 *vmcs12,
11658 u32 reason, unsigned long qualification)
11659 {
11660 load_vmcs12_host_state(vcpu, vmcs12);
11661 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11662 vmcs12->exit_qualification = qualification;
11663 nested_vmx_succeed(vcpu);
11664 if (enable_shadow_vmcs)
11665 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11666 }
11667
11668 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11669 struct x86_instruction_info *info,
11670 enum x86_intercept_stage stage)
11671 {
11672 return X86EMUL_CONTINUE;
11673 }
11674
11675 #ifdef CONFIG_X86_64
11676 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11677 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11678 u64 divisor, u64 *result)
11679 {
11680 u64 low = a << shift, high = a >> (64 - shift);
11681
11682 /* To avoid the overflow on divq */
11683 if (high >= divisor)
11684 return 1;
11685
11686 /* Low hold the result, high hold rem which is discarded */
11687 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11688 "rm" (divisor), "0" (low), "1" (high));
11689 *result = low;
11690
11691 return 0;
11692 }
11693
11694 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11695 {
11696 struct vcpu_vmx *vmx = to_vmx(vcpu);
11697 u64 tscl = rdtsc();
11698 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11699 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11700
11701 /* Convert to host delta tsc if tsc scaling is enabled */
11702 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11703 u64_shl_div_u64(delta_tsc,
11704 kvm_tsc_scaling_ratio_frac_bits,
11705 vcpu->arch.tsc_scaling_ratio,
11706 &delta_tsc))
11707 return -ERANGE;
11708
11709 /*
11710 * If the delta tsc can't fit in the 32 bit after the multi shift,
11711 * we can't use the preemption timer.
11712 * It's possible that it fits on later vmentries, but checking
11713 * on every vmentry is costly so we just use an hrtimer.
11714 */
11715 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11716 return -ERANGE;
11717
11718 vmx->hv_deadline_tsc = tscl + delta_tsc;
11719 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11720 PIN_BASED_VMX_PREEMPTION_TIMER);
11721
11722 return delta_tsc == 0;
11723 }
11724
11725 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11726 {
11727 struct vcpu_vmx *vmx = to_vmx(vcpu);
11728 vmx->hv_deadline_tsc = -1;
11729 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11730 PIN_BASED_VMX_PREEMPTION_TIMER);
11731 }
11732 #endif
11733
11734 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11735 {
11736 if (ple_gap)
11737 shrink_ple_window(vcpu);
11738 }
11739
11740 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11741 struct kvm_memory_slot *slot)
11742 {
11743 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11744 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11745 }
11746
11747 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11748 struct kvm_memory_slot *slot)
11749 {
11750 kvm_mmu_slot_set_dirty(kvm, slot);
11751 }
11752
11753 static void vmx_flush_log_dirty(struct kvm *kvm)
11754 {
11755 kvm_flush_pml_buffers(kvm);
11756 }
11757
11758 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11759 {
11760 struct vmcs12 *vmcs12;
11761 struct vcpu_vmx *vmx = to_vmx(vcpu);
11762 gpa_t gpa;
11763 struct page *page = NULL;
11764 u64 *pml_address;
11765
11766 if (is_guest_mode(vcpu)) {
11767 WARN_ON_ONCE(vmx->nested.pml_full);
11768
11769 /*
11770 * Check if PML is enabled for the nested guest.
11771 * Whether eptp bit 6 is set is already checked
11772 * as part of A/D emulation.
11773 */
11774 vmcs12 = get_vmcs12(vcpu);
11775 if (!nested_cpu_has_pml(vmcs12))
11776 return 0;
11777
11778 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11779 vmx->nested.pml_full = true;
11780 return 1;
11781 }
11782
11783 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11784
11785 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11786 if (is_error_page(page))
11787 return 0;
11788
11789 pml_address = kmap(page);
11790 pml_address[vmcs12->guest_pml_index--] = gpa;
11791 kunmap(page);
11792 kvm_release_page_clean(page);
11793 }
11794
11795 return 0;
11796 }
11797
11798 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11799 struct kvm_memory_slot *memslot,
11800 gfn_t offset, unsigned long mask)
11801 {
11802 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11803 }
11804
11805 static void __pi_post_block(struct kvm_vcpu *vcpu)
11806 {
11807 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11808 struct pi_desc old, new;
11809 unsigned int dest;
11810
11811 do {
11812 old.control = new.control = pi_desc->control;
11813 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11814 "Wakeup handler not enabled while the VCPU is blocked\n");
11815
11816 dest = cpu_physical_id(vcpu->cpu);
11817
11818 if (x2apic_enabled())
11819 new.ndst = dest;
11820 else
11821 new.ndst = (dest << 8) & 0xFF00;
11822
11823 /* set 'NV' to 'notification vector' */
11824 new.nv = POSTED_INTR_VECTOR;
11825 } while (cmpxchg64(&pi_desc->control, old.control,
11826 new.control) != old.control);
11827
11828 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11829 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11830 list_del(&vcpu->blocked_vcpu_list);
11831 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11832 vcpu->pre_pcpu = -1;
11833 }
11834 }
11835
11836 /*
11837 * This routine does the following things for vCPU which is going
11838 * to be blocked if VT-d PI is enabled.
11839 * - Store the vCPU to the wakeup list, so when interrupts happen
11840 * we can find the right vCPU to wake up.
11841 * - Change the Posted-interrupt descriptor as below:
11842 * 'NDST' <-- vcpu->pre_pcpu
11843 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11844 * - If 'ON' is set during this process, which means at least one
11845 * interrupt is posted for this vCPU, we cannot block it, in
11846 * this case, return 1, otherwise, return 0.
11847 *
11848 */
11849 static int pi_pre_block(struct kvm_vcpu *vcpu)
11850 {
11851 unsigned int dest;
11852 struct pi_desc old, new;
11853 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11854
11855 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11856 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11857 !kvm_vcpu_apicv_active(vcpu))
11858 return 0;
11859
11860 WARN_ON(irqs_disabled());
11861 local_irq_disable();
11862 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11863 vcpu->pre_pcpu = vcpu->cpu;
11864 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11865 list_add_tail(&vcpu->blocked_vcpu_list,
11866 &per_cpu(blocked_vcpu_on_cpu,
11867 vcpu->pre_pcpu));
11868 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11869 }
11870
11871 do {
11872 old.control = new.control = pi_desc->control;
11873
11874 WARN((pi_desc->sn == 1),
11875 "Warning: SN field of posted-interrupts "
11876 "is set before blocking\n");
11877
11878 /*
11879 * Since vCPU can be preempted during this process,
11880 * vcpu->cpu could be different with pre_pcpu, we
11881 * need to set pre_pcpu as the destination of wakeup
11882 * notification event, then we can find the right vCPU
11883 * to wakeup in wakeup handler if interrupts happen
11884 * when the vCPU is in blocked state.
11885 */
11886 dest = cpu_physical_id(vcpu->pre_pcpu);
11887
11888 if (x2apic_enabled())
11889 new.ndst = dest;
11890 else
11891 new.ndst = (dest << 8) & 0xFF00;
11892
11893 /* set 'NV' to 'wakeup vector' */
11894 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11895 } while (cmpxchg64(&pi_desc->control, old.control,
11896 new.control) != old.control);
11897
11898 /* We should not block the vCPU if an interrupt is posted for it. */
11899 if (pi_test_on(pi_desc) == 1)
11900 __pi_post_block(vcpu);
11901
11902 local_irq_enable();
11903 return (vcpu->pre_pcpu == -1);
11904 }
11905
11906 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11907 {
11908 if (pi_pre_block(vcpu))
11909 return 1;
11910
11911 if (kvm_lapic_hv_timer_in_use(vcpu))
11912 kvm_lapic_switch_to_sw_timer(vcpu);
11913
11914 return 0;
11915 }
11916
11917 static void pi_post_block(struct kvm_vcpu *vcpu)
11918 {
11919 if (vcpu->pre_pcpu == -1)
11920 return;
11921
11922 WARN_ON(irqs_disabled());
11923 local_irq_disable();
11924 __pi_post_block(vcpu);
11925 local_irq_enable();
11926 }
11927
11928 static void vmx_post_block(struct kvm_vcpu *vcpu)
11929 {
11930 if (kvm_x86_ops->set_hv_timer)
11931 kvm_lapic_switch_to_hv_timer(vcpu);
11932
11933 pi_post_block(vcpu);
11934 }
11935
11936 /*
11937 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11938 *
11939 * @kvm: kvm
11940 * @host_irq: host irq of the interrupt
11941 * @guest_irq: gsi of the interrupt
11942 * @set: set or unset PI
11943 * returns 0 on success, < 0 on failure
11944 */
11945 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11946 uint32_t guest_irq, bool set)
11947 {
11948 struct kvm_kernel_irq_routing_entry *e;
11949 struct kvm_irq_routing_table *irq_rt;
11950 struct kvm_lapic_irq irq;
11951 struct kvm_vcpu *vcpu;
11952 struct vcpu_data vcpu_info;
11953 int idx, ret = 0;
11954
11955 if (!kvm_arch_has_assigned_device(kvm) ||
11956 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11957 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11958 return 0;
11959
11960 idx = srcu_read_lock(&kvm->irq_srcu);
11961 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11962 if (guest_irq >= irq_rt->nr_rt_entries ||
11963 hlist_empty(&irq_rt->map[guest_irq])) {
11964 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11965 guest_irq, irq_rt->nr_rt_entries);
11966 goto out;
11967 }
11968
11969 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11970 if (e->type != KVM_IRQ_ROUTING_MSI)
11971 continue;
11972 /*
11973 * VT-d PI cannot support posting multicast/broadcast
11974 * interrupts to a vCPU, we still use interrupt remapping
11975 * for these kind of interrupts.
11976 *
11977 * For lowest-priority interrupts, we only support
11978 * those with single CPU as the destination, e.g. user
11979 * configures the interrupts via /proc/irq or uses
11980 * irqbalance to make the interrupts single-CPU.
11981 *
11982 * We will support full lowest-priority interrupt later.
11983 */
11984
11985 kvm_set_msi_irq(kvm, e, &irq);
11986 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11987 /*
11988 * Make sure the IRTE is in remapped mode if
11989 * we don't handle it in posted mode.
11990 */
11991 ret = irq_set_vcpu_affinity(host_irq, NULL);
11992 if (ret < 0) {
11993 printk(KERN_INFO
11994 "failed to back to remapped mode, irq: %u\n",
11995 host_irq);
11996 goto out;
11997 }
11998
11999 continue;
12000 }
12001
12002 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12003 vcpu_info.vector = irq.vector;
12004
12005 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
12006 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12007
12008 if (set)
12009 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12010 else
12011 ret = irq_set_vcpu_affinity(host_irq, NULL);
12012
12013 if (ret < 0) {
12014 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12015 __func__);
12016 goto out;
12017 }
12018 }
12019
12020 ret = 0;
12021 out:
12022 srcu_read_unlock(&kvm->irq_srcu, idx);
12023 return ret;
12024 }
12025
12026 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12027 {
12028 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12029 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12030 FEATURE_CONTROL_LMCE;
12031 else
12032 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12033 ~FEATURE_CONTROL_LMCE;
12034 }
12035
12036 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12037 {
12038 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12039 if (to_vmx(vcpu)->nested.nested_run_pending)
12040 return 0;
12041 return 1;
12042 }
12043
12044 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12045 {
12046 struct vcpu_vmx *vmx = to_vmx(vcpu);
12047
12048 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12049 if (vmx->nested.smm.guest_mode)
12050 nested_vmx_vmexit(vcpu, -1, 0, 0);
12051
12052 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12053 vmx->nested.vmxon = false;
12054 return 0;
12055 }
12056
12057 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12058 {
12059 struct vcpu_vmx *vmx = to_vmx(vcpu);
12060 int ret;
12061
12062 if (vmx->nested.smm.vmxon) {
12063 vmx->nested.vmxon = true;
12064 vmx->nested.smm.vmxon = false;
12065 }
12066
12067 if (vmx->nested.smm.guest_mode) {
12068 vcpu->arch.hflags &= ~HF_SMM_MASK;
12069 ret = enter_vmx_non_root_mode(vcpu, false);
12070 vcpu->arch.hflags |= HF_SMM_MASK;
12071 if (ret)
12072 return ret;
12073
12074 vmx->nested.smm.guest_mode = false;
12075 }
12076 return 0;
12077 }
12078
12079 static int enable_smi_window(struct kvm_vcpu *vcpu)
12080 {
12081 return 0;
12082 }
12083
12084 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12085 .cpu_has_kvm_support = cpu_has_kvm_support,
12086 .disabled_by_bios = vmx_disabled_by_bios,
12087 .hardware_setup = hardware_setup,
12088 .hardware_unsetup = hardware_unsetup,
12089 .check_processor_compatibility = vmx_check_processor_compat,
12090 .hardware_enable = hardware_enable,
12091 .hardware_disable = hardware_disable,
12092 .cpu_has_accelerated_tpr = report_flexpriority,
12093 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
12094
12095 .vcpu_create = vmx_create_vcpu,
12096 .vcpu_free = vmx_free_vcpu,
12097 .vcpu_reset = vmx_vcpu_reset,
12098
12099 .prepare_guest_switch = vmx_save_host_state,
12100 .vcpu_load = vmx_vcpu_load,
12101 .vcpu_put = vmx_vcpu_put,
12102
12103 .update_bp_intercept = update_exception_bitmap,
12104 .get_msr = vmx_get_msr,
12105 .set_msr = vmx_set_msr,
12106 .get_segment_base = vmx_get_segment_base,
12107 .get_segment = vmx_get_segment,
12108 .set_segment = vmx_set_segment,
12109 .get_cpl = vmx_get_cpl,
12110 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
12111 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
12112 .decache_cr3 = vmx_decache_cr3,
12113 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
12114 .set_cr0 = vmx_set_cr0,
12115 .set_cr3 = vmx_set_cr3,
12116 .set_cr4 = vmx_set_cr4,
12117 .set_efer = vmx_set_efer,
12118 .get_idt = vmx_get_idt,
12119 .set_idt = vmx_set_idt,
12120 .get_gdt = vmx_get_gdt,
12121 .set_gdt = vmx_set_gdt,
12122 .get_dr6 = vmx_get_dr6,
12123 .set_dr6 = vmx_set_dr6,
12124 .set_dr7 = vmx_set_dr7,
12125 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
12126 .cache_reg = vmx_cache_reg,
12127 .get_rflags = vmx_get_rflags,
12128 .set_rflags = vmx_set_rflags,
12129
12130 .tlb_flush = vmx_flush_tlb,
12131
12132 .run = vmx_vcpu_run,
12133 .handle_exit = vmx_handle_exit,
12134 .skip_emulated_instruction = skip_emulated_instruction,
12135 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12136 .get_interrupt_shadow = vmx_get_interrupt_shadow,
12137 .patch_hypercall = vmx_patch_hypercall,
12138 .set_irq = vmx_inject_irq,
12139 .set_nmi = vmx_inject_nmi,
12140 .queue_exception = vmx_queue_exception,
12141 .cancel_injection = vmx_cancel_injection,
12142 .interrupt_allowed = vmx_interrupt_allowed,
12143 .nmi_allowed = vmx_nmi_allowed,
12144 .get_nmi_mask = vmx_get_nmi_mask,
12145 .set_nmi_mask = vmx_set_nmi_mask,
12146 .enable_nmi_window = enable_nmi_window,
12147 .enable_irq_window = enable_irq_window,
12148 .update_cr8_intercept = update_cr8_intercept,
12149 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12150 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12151 .get_enable_apicv = vmx_get_enable_apicv,
12152 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12153 .load_eoi_exitmap = vmx_load_eoi_exitmap,
12154 .apicv_post_state_restore = vmx_apicv_post_state_restore,
12155 .hwapic_irr_update = vmx_hwapic_irr_update,
12156 .hwapic_isr_update = vmx_hwapic_isr_update,
12157 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12158 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12159
12160 .set_tss_addr = vmx_set_tss_addr,
12161 .get_tdp_level = get_ept_level,
12162 .get_mt_mask = vmx_get_mt_mask,
12163
12164 .get_exit_info = vmx_get_exit_info,
12165
12166 .get_lpage_level = vmx_get_lpage_level,
12167
12168 .cpuid_update = vmx_cpuid_update,
12169
12170 .rdtscp_supported = vmx_rdtscp_supported,
12171 .invpcid_supported = vmx_invpcid_supported,
12172
12173 .set_supported_cpuid = vmx_set_supported_cpuid,
12174
12175 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12176
12177 .write_tsc_offset = vmx_write_tsc_offset,
12178
12179 .set_tdp_cr3 = vmx_set_cr3,
12180
12181 .check_intercept = vmx_check_intercept,
12182 .handle_external_intr = vmx_handle_external_intr,
12183 .mpx_supported = vmx_mpx_supported,
12184 .xsaves_supported = vmx_xsaves_supported,
12185
12186 .check_nested_events = vmx_check_nested_events,
12187
12188 .sched_in = vmx_sched_in,
12189
12190 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12191 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12192 .flush_log_dirty = vmx_flush_log_dirty,
12193 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12194 .write_log_dirty = vmx_write_pml_buffer,
12195
12196 .pre_block = vmx_pre_block,
12197 .post_block = vmx_post_block,
12198
12199 .pmu_ops = &intel_pmu_ops,
12200
12201 .update_pi_irte = vmx_update_pi_irte,
12202
12203 #ifdef CONFIG_X86_64
12204 .set_hv_timer = vmx_set_hv_timer,
12205 .cancel_hv_timer = vmx_cancel_hv_timer,
12206 #endif
12207
12208 .setup_mce = vmx_setup_mce,
12209
12210 .smi_allowed = vmx_smi_allowed,
12211 .pre_enter_smm = vmx_pre_enter_smm,
12212 .pre_leave_smm = vmx_pre_leave_smm,
12213 .enable_smi_window = enable_smi_window,
12214 };
12215
12216 static int __init vmx_init(void)
12217 {
12218 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12219 __alignof__(struct vcpu_vmx), THIS_MODULE);
12220 if (r)
12221 return r;
12222
12223 #ifdef CONFIG_KEXEC_CORE
12224 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12225 crash_vmclear_local_loaded_vmcss);
12226 #endif
12227
12228 return 0;
12229 }
12230
12231 static void __exit vmx_exit(void)
12232 {
12233 #ifdef CONFIG_KEXEC_CORE
12234 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12235 synchronize_rcu();
12236 #endif
12237
12238 kvm_exit();
12239 }
12240
12241 module_init(vmx_init)
12242 module_exit(vmx_exit)