]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
1453248723eb5ced0ca7713d9019f3550f156c9f
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66 #define emul_to_vcpu(ctxt) \
67 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
68
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
72 */
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32 kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
97
98 #define KVM_NR_SHARED_MSRS 16
99
100 struct kvm_shared_msrs_global {
101 int nr;
102 u32 msrs[KVM_NR_SHARED_MSRS];
103 };
104
105 struct kvm_shared_msrs {
106 struct user_return_notifier urn;
107 bool registered;
108 struct kvm_shared_msr_values {
109 u64 host;
110 u64 curr;
111 } values[KVM_NR_SHARED_MSRS];
112 };
113
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
116
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118 { "pf_fixed", VCPU_STAT(pf_fixed) },
119 { "pf_guest", VCPU_STAT(pf_guest) },
120 { "tlb_flush", VCPU_STAT(tlb_flush) },
121 { "invlpg", VCPU_STAT(invlpg) },
122 { "exits", VCPU_STAT(exits) },
123 { "io_exits", VCPU_STAT(io_exits) },
124 { "mmio_exits", VCPU_STAT(mmio_exits) },
125 { "signal_exits", VCPU_STAT(signal_exits) },
126 { "irq_window", VCPU_STAT(irq_window_exits) },
127 { "nmi_window", VCPU_STAT(nmi_window_exits) },
128 { "halt_exits", VCPU_STAT(halt_exits) },
129 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130 { "hypercalls", VCPU_STAT(hypercalls) },
131 { "request_irq", VCPU_STAT(request_irq_exits) },
132 { "irq_exits", VCPU_STAT(irq_exits) },
133 { "host_state_reload", VCPU_STAT(host_state_reload) },
134 { "efer_reload", VCPU_STAT(efer_reload) },
135 { "fpu_reload", VCPU_STAT(fpu_reload) },
136 { "insn_emulation", VCPU_STAT(insn_emulation) },
137 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138 { "irq_injections", VCPU_STAT(irq_injections) },
139 { "nmi_injections", VCPU_STAT(nmi_injections) },
140 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144 { "mmu_flooded", VM_STAT(mmu_flooded) },
145 { "mmu_recycled", VM_STAT(mmu_recycled) },
146 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147 { "mmu_unsync", VM_STAT(mmu_unsync) },
148 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149 { "largepages", VM_STAT(lpages) },
150 { NULL }
151 };
152
153 u64 __read_mostly host_xcr0;
154
155 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
156
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
158 {
159 int i;
160 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161 vcpu->arch.apf.gfns[i] = ~0;
162 }
163
164 static void kvm_on_user_return(struct user_return_notifier *urn)
165 {
166 unsigned slot;
167 struct kvm_shared_msrs *locals
168 = container_of(urn, struct kvm_shared_msrs, urn);
169 struct kvm_shared_msr_values *values;
170
171 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172 values = &locals->values[slot];
173 if (values->host != values->curr) {
174 wrmsrl(shared_msrs_global.msrs[slot], values->host);
175 values->curr = values->host;
176 }
177 }
178 locals->registered = false;
179 user_return_notifier_unregister(urn);
180 }
181
182 static void shared_msr_update(unsigned slot, u32 msr)
183 {
184 struct kvm_shared_msrs *smsr;
185 u64 value;
186
187 smsr = &__get_cpu_var(shared_msrs);
188 /* only read, and nobody should modify it at this time,
189 * so don't need lock */
190 if (slot >= shared_msrs_global.nr) {
191 printk(KERN_ERR "kvm: invalid MSR slot!");
192 return;
193 }
194 rdmsrl_safe(msr, &value);
195 smsr->values[slot].host = value;
196 smsr->values[slot].curr = value;
197 }
198
199 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 {
201 if (slot >= shared_msrs_global.nr)
202 shared_msrs_global.nr = slot + 1;
203 shared_msrs_global.msrs[slot] = msr;
204 /* we need ensured the shared_msr_global have been updated */
205 smp_wmb();
206 }
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208
209 static void kvm_shared_msr_cpu_online(void)
210 {
211 unsigned i;
212
213 for (i = 0; i < shared_msrs_global.nr; ++i)
214 shared_msr_update(i, shared_msrs_global.msrs[i]);
215 }
216
217 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 {
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221 if (((value ^ smsr->values[slot].curr) & mask) == 0)
222 return;
223 smsr->values[slot].curr = value;
224 wrmsrl(shared_msrs_global.msrs[slot], value);
225 if (!smsr->registered) {
226 smsr->urn.on_user_return = kvm_on_user_return;
227 user_return_notifier_register(&smsr->urn);
228 smsr->registered = true;
229 }
230 }
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232
233 static void drop_user_return_notifiers(void *ignore)
234 {
235 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236
237 if (smsr->registered)
238 kvm_on_user_return(&smsr->urn);
239 }
240
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 {
243 if (irqchip_in_kernel(vcpu->kvm))
244 return vcpu->arch.apic_base;
245 else
246 return vcpu->arch.apic_base;
247 }
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 {
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu->kvm))
254 kvm_lapic_set_base(vcpu, data);
255 else
256 vcpu->arch.apic_base = data;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
262 #define EXCPT_PF 2
263
264 static int exception_class(int vector)
265 {
266 switch (vector) {
267 case PF_VECTOR:
268 return EXCPT_PF;
269 case DE_VECTOR:
270 case TS_VECTOR:
271 case NP_VECTOR:
272 case SS_VECTOR:
273 case GP_VECTOR:
274 return EXCPT_CONTRIBUTORY;
275 default:
276 break;
277 }
278 return EXCPT_BENIGN;
279 }
280
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 unsigned nr, bool has_error, u32 error_code,
283 bool reinject)
284 {
285 u32 prev_nr;
286 int class1, class2;
287
288 kvm_make_request(KVM_REQ_EVENT, vcpu);
289
290 if (!vcpu->arch.exception.pending) {
291 queue:
292 vcpu->arch.exception.pending = true;
293 vcpu->arch.exception.has_error_code = has_error;
294 vcpu->arch.exception.nr = nr;
295 vcpu->arch.exception.error_code = error_code;
296 vcpu->arch.exception.reinject = reinject;
297 return;
298 }
299
300 /* to check exception */
301 prev_nr = vcpu->arch.exception.nr;
302 if (prev_nr == DF_VECTOR) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305 return;
306 }
307 class1 = exception_class(prev_nr);
308 class2 = exception_class(nr);
309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu->arch.exception.pending = true;
313 vcpu->arch.exception.has_error_code = true;
314 vcpu->arch.exception.nr = DF_VECTOR;
315 vcpu->arch.exception.error_code = 0;
316 } else
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
319 exception */
320 goto queue;
321 }
322
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325 kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
328
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337 if (err)
338 kvm_inject_gp(vcpu, 0);
339 else
340 kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345 {
346 ++vcpu->stat.pf_guest;
347 vcpu->arch.cr2 = fault->address;
348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
351
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
353 {
354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356 else
357 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
358 }
359
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
361 {
362 kvm_make_request(KVM_REQ_EVENT, vcpu);
363 vcpu->arch.nmi_pending = 1;
364 }
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
366
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
368 {
369 kvm_multiple_exception(vcpu, nr, true, error_code, false);
370 }
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
372
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 kvm_multiple_exception(vcpu, nr, true, error_code, true);
376 }
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
378
379 /*
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
382 */
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
384 {
385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386 return true;
387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388 return false;
389 }
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
391
392 /*
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
396 */
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398 gfn_t ngfn, void *data, int offset, int len,
399 u32 access)
400 {
401 gfn_t real_gfn;
402 gpa_t ngpa;
403
404 ngpa = gfn_to_gpa(ngfn);
405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406 if (real_gfn == UNMAPPED_GVA)
407 return -EFAULT;
408
409 real_gfn = gpa_to_gfn(real_gfn);
410
411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
412 }
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
414
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416 void *data, int offset, int len, u32 access)
417 {
418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419 data, offset, len, access);
420 }
421
422 /*
423 * Load the pae pdptrs. Return true is they are all valid.
424 */
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
426 {
427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429 int i;
430 int ret;
431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
432
433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434 offset * sizeof(u64), sizeof(pdpte),
435 PFERR_USER_MASK|PFERR_WRITE_MASK);
436 if (ret < 0) {
437 ret = 0;
438 goto out;
439 }
440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441 if (is_present_gpte(pdpte[i]) &&
442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443 ret = 0;
444 goto out;
445 }
446 }
447 ret = 1;
448
449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450 __set_bit(VCPU_EXREG_PDPTR,
451 (unsigned long *)&vcpu->arch.regs_avail);
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
455
456 return ret;
457 }
458 EXPORT_SYMBOL_GPL(load_pdptrs);
459
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 {
462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463 bool changed = true;
464 int offset;
465 gfn_t gfn;
466 int r;
467
468 if (is_long_mode(vcpu) || !is_pae(vcpu))
469 return false;
470
471 if (!test_bit(VCPU_EXREG_PDPTR,
472 (unsigned long *)&vcpu->arch.regs_avail))
473 return true;
474
475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478 PFERR_USER_MASK | PFERR_WRITE_MASK);
479 if (r < 0)
480 goto out;
481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
483
484 return changed;
485 }
486
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
488 {
489 unsigned long old_cr0 = kvm_read_cr0(vcpu);
490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491 X86_CR0_CD | X86_CR0_NW;
492
493 cr0 |= X86_CR0_ET;
494
495 #ifdef CONFIG_X86_64
496 if (cr0 & 0xffffffff00000000UL)
497 return 1;
498 #endif
499
500 cr0 &= ~CR0_RESERVED_BITS;
501
502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503 return 1;
504
505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506 return 1;
507
508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510 if ((vcpu->arch.efer & EFER_LME)) {
511 int cs_db, cs_l;
512
513 if (!is_pae(vcpu))
514 return 1;
515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516 if (cs_l)
517 return 1;
518 } else
519 #endif
520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521 kvm_read_cr3(vcpu)))
522 return 1;
523 }
524
525 kvm_x86_ops->set_cr0(vcpu, cr0);
526
527 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
528 kvm_clear_async_pf_completion_queue(vcpu);
529 kvm_async_pf_hash_reset(vcpu);
530 }
531
532 if ((cr0 ^ old_cr0) & update_bits)
533 kvm_mmu_reset_context(vcpu);
534 return 0;
535 }
536 EXPORT_SYMBOL_GPL(kvm_set_cr0);
537
538 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539 {
540 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
541 }
542 EXPORT_SYMBOL_GPL(kvm_lmsw);
543
544 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
545 {
546 u64 xcr0;
547
548 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
549 if (index != XCR_XFEATURE_ENABLED_MASK)
550 return 1;
551 xcr0 = xcr;
552 if (kvm_x86_ops->get_cpl(vcpu) != 0)
553 return 1;
554 if (!(xcr0 & XSTATE_FP))
555 return 1;
556 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
557 return 1;
558 if (xcr0 & ~host_xcr0)
559 return 1;
560 vcpu->arch.xcr0 = xcr0;
561 vcpu->guest_xcr0_loaded = 0;
562 return 0;
563 }
564
565 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
566 {
567 if (__kvm_set_xcr(vcpu, index, xcr)) {
568 kvm_inject_gp(vcpu, 0);
569 return 1;
570 }
571 return 0;
572 }
573 EXPORT_SYMBOL_GPL(kvm_set_xcr);
574
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
576 {
577 struct kvm_cpuid_entry2 *best;
578
579 best = kvm_find_cpuid_entry(vcpu, 1, 0);
580 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
581 }
582
583 static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
584 {
585 struct kvm_cpuid_entry2 *best;
586
587 best = kvm_find_cpuid_entry(vcpu, 7, 0);
588 return best && (best->ebx & bit(X86_FEATURE_SMEP));
589 }
590
591 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
592 {
593 struct kvm_cpuid_entry2 *best;
594
595 best = kvm_find_cpuid_entry(vcpu, 7, 0);
596 return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
597 }
598
599 static void update_cpuid(struct kvm_vcpu *vcpu)
600 {
601 struct kvm_cpuid_entry2 *best;
602
603 best = kvm_find_cpuid_entry(vcpu, 1, 0);
604 if (!best)
605 return;
606
607 /* Update OSXSAVE bit */
608 if (cpu_has_xsave && best->function == 0x1) {
609 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
610 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
611 best->ecx |= bit(X86_FEATURE_OSXSAVE);
612 }
613 }
614
615 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
616 {
617 unsigned long old_cr4 = kvm_read_cr4(vcpu);
618 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
619 X86_CR4_PAE | X86_CR4_SMEP;
620 if (cr4 & CR4_RESERVED_BITS)
621 return 1;
622
623 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
624 return 1;
625
626 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
627 return 1;
628
629 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
630 return 1;
631
632 if (is_long_mode(vcpu)) {
633 if (!(cr4 & X86_CR4_PAE))
634 return 1;
635 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
636 && ((cr4 ^ old_cr4) & pdptr_bits)
637 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
638 kvm_read_cr3(vcpu)))
639 return 1;
640
641 if (kvm_x86_ops->set_cr4(vcpu, cr4))
642 return 1;
643
644 if ((cr4 ^ old_cr4) & pdptr_bits)
645 kvm_mmu_reset_context(vcpu);
646
647 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
648 update_cpuid(vcpu);
649
650 return 0;
651 }
652 EXPORT_SYMBOL_GPL(kvm_set_cr4);
653
654 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
655 {
656 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
657 kvm_mmu_sync_roots(vcpu);
658 kvm_mmu_flush_tlb(vcpu);
659 return 0;
660 }
661
662 if (is_long_mode(vcpu)) {
663 if (cr3 & CR3_L_MODE_RESERVED_BITS)
664 return 1;
665 } else {
666 if (is_pae(vcpu)) {
667 if (cr3 & CR3_PAE_RESERVED_BITS)
668 return 1;
669 if (is_paging(vcpu) &&
670 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
671 return 1;
672 }
673 /*
674 * We don't check reserved bits in nonpae mode, because
675 * this isn't enforced, and VMware depends on this.
676 */
677 }
678
679 /*
680 * Does the new cr3 value map to physical memory? (Note, we
681 * catch an invalid cr3 even in real-mode, because it would
682 * cause trouble later on when we turn on paging anyway.)
683 *
684 * A real CPU would silently accept an invalid cr3 and would
685 * attempt to use it - with largely undefined (and often hard
686 * to debug) behavior on the guest side.
687 */
688 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
689 return 1;
690 vcpu->arch.cr3 = cr3;
691 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
692 vcpu->arch.mmu.new_cr3(vcpu);
693 return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_cr3);
696
697 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
698 {
699 if (cr8 & CR8_RESERVED_BITS)
700 return 1;
701 if (irqchip_in_kernel(vcpu->kvm))
702 kvm_lapic_set_tpr(vcpu, cr8);
703 else
704 vcpu->arch.cr8 = cr8;
705 return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr8);
708
709 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
710 {
711 if (irqchip_in_kernel(vcpu->kvm))
712 return kvm_lapic_get_cr8(vcpu);
713 else
714 return vcpu->arch.cr8;
715 }
716 EXPORT_SYMBOL_GPL(kvm_get_cr8);
717
718 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720 switch (dr) {
721 case 0 ... 3:
722 vcpu->arch.db[dr] = val;
723 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
724 vcpu->arch.eff_db[dr] = val;
725 break;
726 case 4:
727 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728 return 1; /* #UD */
729 /* fall through */
730 case 6:
731 if (val & 0xffffffff00000000ULL)
732 return -1; /* #GP */
733 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
734 break;
735 case 5:
736 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737 return 1; /* #UD */
738 /* fall through */
739 default: /* 7 */
740 if (val & 0xffffffff00000000ULL)
741 return -1; /* #GP */
742 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
743 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
744 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
745 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
746 }
747 break;
748 }
749
750 return 0;
751 }
752
753 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
754 {
755 int res;
756
757 res = __kvm_set_dr(vcpu, dr, val);
758 if (res > 0)
759 kvm_queue_exception(vcpu, UD_VECTOR);
760 else if (res < 0)
761 kvm_inject_gp(vcpu, 0);
762
763 return res;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_dr);
766
767 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769 switch (dr) {
770 case 0 ... 3:
771 *val = vcpu->arch.db[dr];
772 break;
773 case 4:
774 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
775 return 1;
776 /* fall through */
777 case 6:
778 *val = vcpu->arch.dr6;
779 break;
780 case 5:
781 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
782 return 1;
783 /* fall through */
784 default: /* 7 */
785 *val = vcpu->arch.dr7;
786 break;
787 }
788
789 return 0;
790 }
791
792 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
793 {
794 if (_kvm_get_dr(vcpu, dr, val)) {
795 kvm_queue_exception(vcpu, UD_VECTOR);
796 return 1;
797 }
798 return 0;
799 }
800 EXPORT_SYMBOL_GPL(kvm_get_dr);
801
802 /*
803 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
804 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
805 *
806 * This list is modified at module load time to reflect the
807 * capabilities of the host cpu. This capabilities test skips MSRs that are
808 * kvm-specific. Those are put in the beginning of the list.
809 */
810
811 #define KVM_SAVE_MSRS_BEGIN 9
812 static u32 msrs_to_save[] = {
813 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
814 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
815 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
816 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
817 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
818 MSR_STAR,
819 #ifdef CONFIG_X86_64
820 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
821 #endif
822 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
823 };
824
825 static unsigned num_msrs_to_save;
826
827 static u32 emulated_msrs[] = {
828 MSR_IA32_MISC_ENABLE,
829 MSR_IA32_MCG_STATUS,
830 MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 u64 old_efer = vcpu->arch.efer;
836
837 if (efer & efer_reserved_bits)
838 return 1;
839
840 if (is_paging(vcpu)
841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 return 1;
843
844 if (efer & EFER_FFXSR) {
845 struct kvm_cpuid_entry2 *feat;
846
847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 return 1;
850 }
851
852 if (efer & EFER_SVME) {
853 struct kvm_cpuid_entry2 *feat;
854
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 return 1;
858 }
859
860 efer &= ~EFER_LMA;
861 efer |= vcpu->arch.efer & EFER_LMA;
862
863 kvm_x86_ops->set_efer(vcpu, efer);
864
865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867 /* Update reserved bits */
868 if ((efer ^ old_efer) & EFER_NX)
869 kvm_mmu_reset_context(vcpu);
870
871 return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876 efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
885 */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892 * Adapt set_msr() to msr_io()'s calling convention
893 */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 int version;
902 int r;
903 struct pvclock_wall_clock wc;
904 struct timespec boot;
905
906 if (!wall_clock)
907 return;
908
909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 if (r)
911 return;
912
913 if (version & 1)
914 ++version; /* first time write, random junk */
915
916 ++version;
917
918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920 /*
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
925 */
926 getboottime(&boot);
927
928 wc.sec = boot.tv_sec;
929 wc.nsec = boot.tv_nsec;
930 wc.version = version;
931
932 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
933
934 version++;
935 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
936 }
937
938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
939 {
940 uint32_t quotient, remainder;
941
942 /* Don't try to replace with do_div(), this one calculates
943 * "(dividend << 32) / divisor" */
944 __asm__ ( "divl %4"
945 : "=a" (quotient), "=d" (remainder)
946 : "0" (0), "1" (dividend), "r" (divisor) );
947 return quotient;
948 }
949
950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
951 s8 *pshift, u32 *pmultiplier)
952 {
953 uint64_t scaled64;
954 int32_t shift = 0;
955 uint64_t tps64;
956 uint32_t tps32;
957
958 tps64 = base_khz * 1000LL;
959 scaled64 = scaled_khz * 1000LL;
960 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
961 tps64 >>= 1;
962 shift--;
963 }
964
965 tps32 = (uint32_t)tps64;
966 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
967 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
968 scaled64 >>= 1;
969 else
970 tps32 <<= 1;
971 shift++;
972 }
973
974 *pshift = shift;
975 *pmultiplier = div_frac(scaled64, tps32);
976
977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 __func__, base_khz, scaled_khz, shift, *pmultiplier);
979 }
980
981 static inline u64 get_kernel_ns(void)
982 {
983 struct timespec ts;
984
985 WARN_ON(preemptible());
986 ktime_get_ts(&ts);
987 monotonic_to_bootbased(&ts);
988 return timespec_to_ns(&ts);
989 }
990
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
992 unsigned long max_tsc_khz;
993
994 static inline int kvm_tsc_changes_freq(void)
995 {
996 int cpu = get_cpu();
997 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
998 cpufreq_quick_get(cpu) != 0;
999 put_cpu();
1000 return ret;
1001 }
1002
1003 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1004 {
1005 if (vcpu->arch.virtual_tsc_khz)
1006 return vcpu->arch.virtual_tsc_khz;
1007 else
1008 return __this_cpu_read(cpu_tsc_khz);
1009 }
1010
1011 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1012 {
1013 u64 ret;
1014
1015 WARN_ON(preemptible());
1016 if (kvm_tsc_changes_freq())
1017 printk_once(KERN_WARNING
1018 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1019 ret = nsec * vcpu_tsc_khz(vcpu);
1020 do_div(ret, USEC_PER_SEC);
1021 return ret;
1022 }
1023
1024 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1025 {
1026 /* Compute a scale to convert nanoseconds in TSC cycles */
1027 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1028 &vcpu->arch.tsc_catchup_shift,
1029 &vcpu->arch.tsc_catchup_mult);
1030 }
1031
1032 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1033 {
1034 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1035 vcpu->arch.tsc_catchup_mult,
1036 vcpu->arch.tsc_catchup_shift);
1037 tsc += vcpu->arch.last_tsc_write;
1038 return tsc;
1039 }
1040
1041 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1042 {
1043 struct kvm *kvm = vcpu->kvm;
1044 u64 offset, ns, elapsed;
1045 unsigned long flags;
1046 s64 sdiff;
1047
1048 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1049 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1050 ns = get_kernel_ns();
1051 elapsed = ns - kvm->arch.last_tsc_nsec;
1052 sdiff = data - kvm->arch.last_tsc_write;
1053 if (sdiff < 0)
1054 sdiff = -sdiff;
1055
1056 /*
1057 * Special case: close write to TSC within 5 seconds of
1058 * another CPU is interpreted as an attempt to synchronize
1059 * The 5 seconds is to accommodate host load / swapping as
1060 * well as any reset of TSC during the boot process.
1061 *
1062 * In that case, for a reliable TSC, we can match TSC offsets,
1063 * or make a best guest using elapsed value.
1064 */
1065 if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1066 elapsed < 5ULL * NSEC_PER_SEC) {
1067 if (!check_tsc_unstable()) {
1068 offset = kvm->arch.last_tsc_offset;
1069 pr_debug("kvm: matched tsc offset for %llu\n", data);
1070 } else {
1071 u64 delta = nsec_to_cycles(vcpu, elapsed);
1072 offset += delta;
1073 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1074 }
1075 ns = kvm->arch.last_tsc_nsec;
1076 }
1077 kvm->arch.last_tsc_nsec = ns;
1078 kvm->arch.last_tsc_write = data;
1079 kvm->arch.last_tsc_offset = offset;
1080 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1081 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1082
1083 /* Reset of TSC must disable overshoot protection below */
1084 vcpu->arch.hv_clock.tsc_timestamp = 0;
1085 vcpu->arch.last_tsc_write = data;
1086 vcpu->arch.last_tsc_nsec = ns;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1089
1090 static int kvm_guest_time_update(struct kvm_vcpu *v)
1091 {
1092 unsigned long flags;
1093 struct kvm_vcpu_arch *vcpu = &v->arch;
1094 void *shared_kaddr;
1095 unsigned long this_tsc_khz;
1096 s64 kernel_ns, max_kernel_ns;
1097 u64 tsc_timestamp;
1098
1099 /* Keep irq disabled to prevent changes to the clock */
1100 local_irq_save(flags);
1101 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1102 kernel_ns = get_kernel_ns();
1103 this_tsc_khz = vcpu_tsc_khz(v);
1104 if (unlikely(this_tsc_khz == 0)) {
1105 local_irq_restore(flags);
1106 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1107 return 1;
1108 }
1109
1110 /*
1111 * We may have to catch up the TSC to match elapsed wall clock
1112 * time for two reasons, even if kvmclock is used.
1113 * 1) CPU could have been running below the maximum TSC rate
1114 * 2) Broken TSC compensation resets the base at each VCPU
1115 * entry to avoid unknown leaps of TSC even when running
1116 * again on the same CPU. This may cause apparent elapsed
1117 * time to disappear, and the guest to stand still or run
1118 * very slowly.
1119 */
1120 if (vcpu->tsc_catchup) {
1121 u64 tsc = compute_guest_tsc(v, kernel_ns);
1122 if (tsc > tsc_timestamp) {
1123 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1124 tsc_timestamp = tsc;
1125 }
1126 }
1127
1128 local_irq_restore(flags);
1129
1130 if (!vcpu->time_page)
1131 return 0;
1132
1133 /*
1134 * Time as measured by the TSC may go backwards when resetting the base
1135 * tsc_timestamp. The reason for this is that the TSC resolution is
1136 * higher than the resolution of the other clock scales. Thus, many
1137 * possible measurments of the TSC correspond to one measurement of any
1138 * other clock, and so a spread of values is possible. This is not a
1139 * problem for the computation of the nanosecond clock; with TSC rates
1140 * around 1GHZ, there can only be a few cycles which correspond to one
1141 * nanosecond value, and any path through this code will inevitably
1142 * take longer than that. However, with the kernel_ns value itself,
1143 * the precision may be much lower, down to HZ granularity. If the
1144 * first sampling of TSC against kernel_ns ends in the low part of the
1145 * range, and the second in the high end of the range, we can get:
1146 *
1147 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1148 *
1149 * As the sampling errors potentially range in the thousands of cycles,
1150 * it is possible such a time value has already been observed by the
1151 * guest. To protect against this, we must compute the system time as
1152 * observed by the guest and ensure the new system time is greater.
1153 */
1154 max_kernel_ns = 0;
1155 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1156 max_kernel_ns = vcpu->last_guest_tsc -
1157 vcpu->hv_clock.tsc_timestamp;
1158 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1159 vcpu->hv_clock.tsc_to_system_mul,
1160 vcpu->hv_clock.tsc_shift);
1161 max_kernel_ns += vcpu->last_kernel_ns;
1162 }
1163
1164 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1165 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1166 &vcpu->hv_clock.tsc_shift,
1167 &vcpu->hv_clock.tsc_to_system_mul);
1168 vcpu->hw_tsc_khz = this_tsc_khz;
1169 }
1170
1171 if (max_kernel_ns > kernel_ns)
1172 kernel_ns = max_kernel_ns;
1173
1174 /* With all the info we got, fill in the values */
1175 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1176 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1177 vcpu->last_kernel_ns = kernel_ns;
1178 vcpu->last_guest_tsc = tsc_timestamp;
1179 vcpu->hv_clock.flags = 0;
1180
1181 /*
1182 * The interface expects us to write an even number signaling that the
1183 * update is finished. Since the guest won't see the intermediate
1184 * state, we just increase by 2 at the end.
1185 */
1186 vcpu->hv_clock.version += 2;
1187
1188 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1189
1190 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1191 sizeof(vcpu->hv_clock));
1192
1193 kunmap_atomic(shared_kaddr, KM_USER0);
1194
1195 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1196 return 0;
1197 }
1198
1199 static bool msr_mtrr_valid(unsigned msr)
1200 {
1201 switch (msr) {
1202 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1203 case MSR_MTRRfix64K_00000:
1204 case MSR_MTRRfix16K_80000:
1205 case MSR_MTRRfix16K_A0000:
1206 case MSR_MTRRfix4K_C0000:
1207 case MSR_MTRRfix4K_C8000:
1208 case MSR_MTRRfix4K_D0000:
1209 case MSR_MTRRfix4K_D8000:
1210 case MSR_MTRRfix4K_E0000:
1211 case MSR_MTRRfix4K_E8000:
1212 case MSR_MTRRfix4K_F0000:
1213 case MSR_MTRRfix4K_F8000:
1214 case MSR_MTRRdefType:
1215 case MSR_IA32_CR_PAT:
1216 return true;
1217 case 0x2f8:
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool valid_pat_type(unsigned t)
1224 {
1225 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1226 }
1227
1228 static bool valid_mtrr_type(unsigned t)
1229 {
1230 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1231 }
1232
1233 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235 int i;
1236
1237 if (!msr_mtrr_valid(msr))
1238 return false;
1239
1240 if (msr == MSR_IA32_CR_PAT) {
1241 for (i = 0; i < 8; i++)
1242 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1243 return false;
1244 return true;
1245 } else if (msr == MSR_MTRRdefType) {
1246 if (data & ~0xcff)
1247 return false;
1248 return valid_mtrr_type(data & 0xff);
1249 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1250 for (i = 0; i < 8 ; i++)
1251 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1252 return false;
1253 return true;
1254 }
1255
1256 /* variable MTRRs */
1257 return valid_mtrr_type(data & 0xff);
1258 }
1259
1260 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1261 {
1262 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1263
1264 if (!mtrr_valid(vcpu, msr, data))
1265 return 1;
1266
1267 if (msr == MSR_MTRRdefType) {
1268 vcpu->arch.mtrr_state.def_type = data;
1269 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1270 } else if (msr == MSR_MTRRfix64K_00000)
1271 p[0] = data;
1272 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1273 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1274 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1275 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1276 else if (msr == MSR_IA32_CR_PAT)
1277 vcpu->arch.pat = data;
1278 else { /* Variable MTRRs */
1279 int idx, is_mtrr_mask;
1280 u64 *pt;
1281
1282 idx = (msr - 0x200) / 2;
1283 is_mtrr_mask = msr - 0x200 - 2 * idx;
1284 if (!is_mtrr_mask)
1285 pt =
1286 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1287 else
1288 pt =
1289 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1290 *pt = data;
1291 }
1292
1293 kvm_mmu_reset_context(vcpu);
1294 return 0;
1295 }
1296
1297 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1298 {
1299 u64 mcg_cap = vcpu->arch.mcg_cap;
1300 unsigned bank_num = mcg_cap & 0xff;
1301
1302 switch (msr) {
1303 case MSR_IA32_MCG_STATUS:
1304 vcpu->arch.mcg_status = data;
1305 break;
1306 case MSR_IA32_MCG_CTL:
1307 if (!(mcg_cap & MCG_CTL_P))
1308 return 1;
1309 if (data != 0 && data != ~(u64)0)
1310 return -1;
1311 vcpu->arch.mcg_ctl = data;
1312 break;
1313 default:
1314 if (msr >= MSR_IA32_MC0_CTL &&
1315 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1316 u32 offset = msr - MSR_IA32_MC0_CTL;
1317 /* only 0 or all 1s can be written to IA32_MCi_CTL
1318 * some Linux kernels though clear bit 10 in bank 4 to
1319 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1320 * this to avoid an uncatched #GP in the guest
1321 */
1322 if ((offset & 0x3) == 0 &&
1323 data != 0 && (data | (1 << 10)) != ~(u64)0)
1324 return -1;
1325 vcpu->arch.mce_banks[offset] = data;
1326 break;
1327 }
1328 return 1;
1329 }
1330 return 0;
1331 }
1332
1333 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1334 {
1335 struct kvm *kvm = vcpu->kvm;
1336 int lm = is_long_mode(vcpu);
1337 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1338 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1339 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1340 : kvm->arch.xen_hvm_config.blob_size_32;
1341 u32 page_num = data & ~PAGE_MASK;
1342 u64 page_addr = data & PAGE_MASK;
1343 u8 *page;
1344 int r;
1345
1346 r = -E2BIG;
1347 if (page_num >= blob_size)
1348 goto out;
1349 r = -ENOMEM;
1350 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1351 if (!page)
1352 goto out;
1353 r = -EFAULT;
1354 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1355 goto out_free;
1356 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1357 goto out_free;
1358 r = 0;
1359 out_free:
1360 kfree(page);
1361 out:
1362 return r;
1363 }
1364
1365 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1366 {
1367 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1368 }
1369
1370 static bool kvm_hv_msr_partition_wide(u32 msr)
1371 {
1372 bool r = false;
1373 switch (msr) {
1374 case HV_X64_MSR_GUEST_OS_ID:
1375 case HV_X64_MSR_HYPERCALL:
1376 r = true;
1377 break;
1378 }
1379
1380 return r;
1381 }
1382
1383 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1384 {
1385 struct kvm *kvm = vcpu->kvm;
1386
1387 switch (msr) {
1388 case HV_X64_MSR_GUEST_OS_ID:
1389 kvm->arch.hv_guest_os_id = data;
1390 /* setting guest os id to zero disables hypercall page */
1391 if (!kvm->arch.hv_guest_os_id)
1392 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1393 break;
1394 case HV_X64_MSR_HYPERCALL: {
1395 u64 gfn;
1396 unsigned long addr;
1397 u8 instructions[4];
1398
1399 /* if guest os id is not set hypercall should remain disabled */
1400 if (!kvm->arch.hv_guest_os_id)
1401 break;
1402 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1403 kvm->arch.hv_hypercall = data;
1404 break;
1405 }
1406 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1407 addr = gfn_to_hva(kvm, gfn);
1408 if (kvm_is_error_hva(addr))
1409 return 1;
1410 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1411 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1412 if (__copy_to_user((void __user *)addr, instructions, 4))
1413 return 1;
1414 kvm->arch.hv_hypercall = data;
1415 break;
1416 }
1417 default:
1418 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1419 "data 0x%llx\n", msr, data);
1420 return 1;
1421 }
1422 return 0;
1423 }
1424
1425 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1426 {
1427 switch (msr) {
1428 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1429 unsigned long addr;
1430
1431 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1432 vcpu->arch.hv_vapic = data;
1433 break;
1434 }
1435 addr = gfn_to_hva(vcpu->kvm, data >>
1436 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1437 if (kvm_is_error_hva(addr))
1438 return 1;
1439 if (__clear_user((void __user *)addr, PAGE_SIZE))
1440 return 1;
1441 vcpu->arch.hv_vapic = data;
1442 break;
1443 }
1444 case HV_X64_MSR_EOI:
1445 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1446 case HV_X64_MSR_ICR:
1447 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1448 case HV_X64_MSR_TPR:
1449 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1450 default:
1451 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1452 "data 0x%llx\n", msr, data);
1453 return 1;
1454 }
1455
1456 return 0;
1457 }
1458
1459 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1460 {
1461 gpa_t gpa = data & ~0x3f;
1462
1463 /* Bits 2:5 are resrved, Should be zero */
1464 if (data & 0x3c)
1465 return 1;
1466
1467 vcpu->arch.apf.msr_val = data;
1468
1469 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1470 kvm_clear_async_pf_completion_queue(vcpu);
1471 kvm_async_pf_hash_reset(vcpu);
1472 return 0;
1473 }
1474
1475 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1476 return 1;
1477
1478 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1479 kvm_async_pf_wakeup_all(vcpu);
1480 return 0;
1481 }
1482
1483 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1484 {
1485 if (vcpu->arch.time_page) {
1486 kvm_release_page_dirty(vcpu->arch.time_page);
1487 vcpu->arch.time_page = NULL;
1488 }
1489 }
1490
1491 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1492 {
1493 u64 delta;
1494
1495 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1496 return;
1497
1498 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1499 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1500 vcpu->arch.st.accum_steal = delta;
1501 }
1502
1503 static void record_steal_time(struct kvm_vcpu *vcpu)
1504 {
1505 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1506 return;
1507
1508 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1509 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1510 return;
1511
1512 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1513 vcpu->arch.st.steal.version += 2;
1514 vcpu->arch.st.accum_steal = 0;
1515
1516 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1517 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1518 }
1519
1520 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1521 {
1522 switch (msr) {
1523 case MSR_EFER:
1524 return set_efer(vcpu, data);
1525 case MSR_K7_HWCR:
1526 data &= ~(u64)0x40; /* ignore flush filter disable */
1527 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1528 if (data != 0) {
1529 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1530 data);
1531 return 1;
1532 }
1533 break;
1534 case MSR_FAM10H_MMIO_CONF_BASE:
1535 if (data != 0) {
1536 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1537 "0x%llx\n", data);
1538 return 1;
1539 }
1540 break;
1541 case MSR_AMD64_NB_CFG:
1542 break;
1543 case MSR_IA32_DEBUGCTLMSR:
1544 if (!data) {
1545 /* We support the non-activated case already */
1546 break;
1547 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1548 /* Values other than LBR and BTF are vendor-specific,
1549 thus reserved and should throw a #GP */
1550 return 1;
1551 }
1552 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1553 __func__, data);
1554 break;
1555 case MSR_IA32_UCODE_REV:
1556 case MSR_IA32_UCODE_WRITE:
1557 case MSR_VM_HSAVE_PA:
1558 case MSR_AMD64_PATCH_LOADER:
1559 break;
1560 case 0x200 ... 0x2ff:
1561 return set_msr_mtrr(vcpu, msr, data);
1562 case MSR_IA32_APICBASE:
1563 kvm_set_apic_base(vcpu, data);
1564 break;
1565 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1566 return kvm_x2apic_msr_write(vcpu, msr, data);
1567 case MSR_IA32_MISC_ENABLE:
1568 vcpu->arch.ia32_misc_enable_msr = data;
1569 break;
1570 case MSR_KVM_WALL_CLOCK_NEW:
1571 case MSR_KVM_WALL_CLOCK:
1572 vcpu->kvm->arch.wall_clock = data;
1573 kvm_write_wall_clock(vcpu->kvm, data);
1574 break;
1575 case MSR_KVM_SYSTEM_TIME_NEW:
1576 case MSR_KVM_SYSTEM_TIME: {
1577 kvmclock_reset(vcpu);
1578
1579 vcpu->arch.time = data;
1580 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1581
1582 /* we verify if the enable bit is set... */
1583 if (!(data & 1))
1584 break;
1585
1586 /* ...but clean it before doing the actual write */
1587 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1588
1589 vcpu->arch.time_page =
1590 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1591
1592 if (is_error_page(vcpu->arch.time_page)) {
1593 kvm_release_page_clean(vcpu->arch.time_page);
1594 vcpu->arch.time_page = NULL;
1595 }
1596 break;
1597 }
1598 case MSR_KVM_ASYNC_PF_EN:
1599 if (kvm_pv_enable_async_pf(vcpu, data))
1600 return 1;
1601 break;
1602 case MSR_KVM_STEAL_TIME:
1603
1604 if (unlikely(!sched_info_on()))
1605 return 1;
1606
1607 if (data & KVM_STEAL_RESERVED_MASK)
1608 return 1;
1609
1610 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1611 data & KVM_STEAL_VALID_BITS))
1612 return 1;
1613
1614 vcpu->arch.st.msr_val = data;
1615
1616 if (!(data & KVM_MSR_ENABLED))
1617 break;
1618
1619 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1620
1621 preempt_disable();
1622 accumulate_steal_time(vcpu);
1623 preempt_enable();
1624
1625 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1626
1627 break;
1628
1629 case MSR_IA32_MCG_CTL:
1630 case MSR_IA32_MCG_STATUS:
1631 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1632 return set_msr_mce(vcpu, msr, data);
1633
1634 /* Performance counters are not protected by a CPUID bit,
1635 * so we should check all of them in the generic path for the sake of
1636 * cross vendor migration.
1637 * Writing a zero into the event select MSRs disables them,
1638 * which we perfectly emulate ;-). Any other value should be at least
1639 * reported, some guests depend on them.
1640 */
1641 case MSR_P6_EVNTSEL0:
1642 case MSR_P6_EVNTSEL1:
1643 case MSR_K7_EVNTSEL0:
1644 case MSR_K7_EVNTSEL1:
1645 case MSR_K7_EVNTSEL2:
1646 case MSR_K7_EVNTSEL3:
1647 if (data != 0)
1648 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1649 "0x%x data 0x%llx\n", msr, data);
1650 break;
1651 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1652 * so we ignore writes to make it happy.
1653 */
1654 case MSR_P6_PERFCTR0:
1655 case MSR_P6_PERFCTR1:
1656 case MSR_K7_PERFCTR0:
1657 case MSR_K7_PERFCTR1:
1658 case MSR_K7_PERFCTR2:
1659 case MSR_K7_PERFCTR3:
1660 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1661 "0x%x data 0x%llx\n", msr, data);
1662 break;
1663 case MSR_K7_CLK_CTL:
1664 /*
1665 * Ignore all writes to this no longer documented MSR.
1666 * Writes are only relevant for old K7 processors,
1667 * all pre-dating SVM, but a recommended workaround from
1668 * AMD for these chips. It is possible to speicify the
1669 * affected processor models on the command line, hence
1670 * the need to ignore the workaround.
1671 */
1672 break;
1673 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1674 if (kvm_hv_msr_partition_wide(msr)) {
1675 int r;
1676 mutex_lock(&vcpu->kvm->lock);
1677 r = set_msr_hyperv_pw(vcpu, msr, data);
1678 mutex_unlock(&vcpu->kvm->lock);
1679 return r;
1680 } else
1681 return set_msr_hyperv(vcpu, msr, data);
1682 break;
1683 case MSR_IA32_BBL_CR_CTL3:
1684 /* Drop writes to this legacy MSR -- see rdmsr
1685 * counterpart for further detail.
1686 */
1687 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1688 break;
1689 default:
1690 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1691 return xen_hvm_config(vcpu, data);
1692 if (!ignore_msrs) {
1693 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1694 msr, data);
1695 return 1;
1696 } else {
1697 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1698 msr, data);
1699 break;
1700 }
1701 }
1702 return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1705
1706
1707 /*
1708 * Reads an msr value (of 'msr_index') into 'pdata'.
1709 * Returns 0 on success, non-0 otherwise.
1710 * Assumes vcpu_load() was already called.
1711 */
1712 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1713 {
1714 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1715 }
1716
1717 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1718 {
1719 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1720
1721 if (!msr_mtrr_valid(msr))
1722 return 1;
1723
1724 if (msr == MSR_MTRRdefType)
1725 *pdata = vcpu->arch.mtrr_state.def_type +
1726 (vcpu->arch.mtrr_state.enabled << 10);
1727 else if (msr == MSR_MTRRfix64K_00000)
1728 *pdata = p[0];
1729 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1730 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1731 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1732 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1733 else if (msr == MSR_IA32_CR_PAT)
1734 *pdata = vcpu->arch.pat;
1735 else { /* Variable MTRRs */
1736 int idx, is_mtrr_mask;
1737 u64 *pt;
1738
1739 idx = (msr - 0x200) / 2;
1740 is_mtrr_mask = msr - 0x200 - 2 * idx;
1741 if (!is_mtrr_mask)
1742 pt =
1743 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1744 else
1745 pt =
1746 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1747 *pdata = *pt;
1748 }
1749
1750 return 0;
1751 }
1752
1753 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1754 {
1755 u64 data;
1756 u64 mcg_cap = vcpu->arch.mcg_cap;
1757 unsigned bank_num = mcg_cap & 0xff;
1758
1759 switch (msr) {
1760 case MSR_IA32_P5_MC_ADDR:
1761 case MSR_IA32_P5_MC_TYPE:
1762 data = 0;
1763 break;
1764 case MSR_IA32_MCG_CAP:
1765 data = vcpu->arch.mcg_cap;
1766 break;
1767 case MSR_IA32_MCG_CTL:
1768 if (!(mcg_cap & MCG_CTL_P))
1769 return 1;
1770 data = vcpu->arch.mcg_ctl;
1771 break;
1772 case MSR_IA32_MCG_STATUS:
1773 data = vcpu->arch.mcg_status;
1774 break;
1775 default:
1776 if (msr >= MSR_IA32_MC0_CTL &&
1777 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1778 u32 offset = msr - MSR_IA32_MC0_CTL;
1779 data = vcpu->arch.mce_banks[offset];
1780 break;
1781 }
1782 return 1;
1783 }
1784 *pdata = data;
1785 return 0;
1786 }
1787
1788 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1789 {
1790 u64 data = 0;
1791 struct kvm *kvm = vcpu->kvm;
1792
1793 switch (msr) {
1794 case HV_X64_MSR_GUEST_OS_ID:
1795 data = kvm->arch.hv_guest_os_id;
1796 break;
1797 case HV_X64_MSR_HYPERCALL:
1798 data = kvm->arch.hv_hypercall;
1799 break;
1800 default:
1801 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1802 return 1;
1803 }
1804
1805 *pdata = data;
1806 return 0;
1807 }
1808
1809 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1810 {
1811 u64 data = 0;
1812
1813 switch (msr) {
1814 case HV_X64_MSR_VP_INDEX: {
1815 int r;
1816 struct kvm_vcpu *v;
1817 kvm_for_each_vcpu(r, v, vcpu->kvm)
1818 if (v == vcpu)
1819 data = r;
1820 break;
1821 }
1822 case HV_X64_MSR_EOI:
1823 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1824 case HV_X64_MSR_ICR:
1825 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1826 case HV_X64_MSR_TPR:
1827 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1828 default:
1829 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1830 return 1;
1831 }
1832 *pdata = data;
1833 return 0;
1834 }
1835
1836 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1837 {
1838 u64 data;
1839
1840 switch (msr) {
1841 case MSR_IA32_PLATFORM_ID:
1842 case MSR_IA32_UCODE_REV:
1843 case MSR_IA32_EBL_CR_POWERON:
1844 case MSR_IA32_DEBUGCTLMSR:
1845 case MSR_IA32_LASTBRANCHFROMIP:
1846 case MSR_IA32_LASTBRANCHTOIP:
1847 case MSR_IA32_LASTINTFROMIP:
1848 case MSR_IA32_LASTINTTOIP:
1849 case MSR_K8_SYSCFG:
1850 case MSR_K7_HWCR:
1851 case MSR_VM_HSAVE_PA:
1852 case MSR_P6_PERFCTR0:
1853 case MSR_P6_PERFCTR1:
1854 case MSR_P6_EVNTSEL0:
1855 case MSR_P6_EVNTSEL1:
1856 case MSR_K7_EVNTSEL0:
1857 case MSR_K7_PERFCTR0:
1858 case MSR_K8_INT_PENDING_MSG:
1859 case MSR_AMD64_NB_CFG:
1860 case MSR_FAM10H_MMIO_CONF_BASE:
1861 data = 0;
1862 break;
1863 case MSR_MTRRcap:
1864 data = 0x500 | KVM_NR_VAR_MTRR;
1865 break;
1866 case 0x200 ... 0x2ff:
1867 return get_msr_mtrr(vcpu, msr, pdata);
1868 case 0xcd: /* fsb frequency */
1869 data = 3;
1870 break;
1871 /*
1872 * MSR_EBC_FREQUENCY_ID
1873 * Conservative value valid for even the basic CPU models.
1874 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876 * and 266MHz for model 3, or 4. Set Core Clock
1877 * Frequency to System Bus Frequency Ratio to 1 (bits
1878 * 31:24) even though these are only valid for CPU
1879 * models > 2, however guests may end up dividing or
1880 * multiplying by zero otherwise.
1881 */
1882 case MSR_EBC_FREQUENCY_ID:
1883 data = 1 << 24;
1884 break;
1885 case MSR_IA32_APICBASE:
1886 data = kvm_get_apic_base(vcpu);
1887 break;
1888 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1889 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1890 break;
1891 case MSR_IA32_MISC_ENABLE:
1892 data = vcpu->arch.ia32_misc_enable_msr;
1893 break;
1894 case MSR_IA32_PERF_STATUS:
1895 /* TSC increment by tick */
1896 data = 1000ULL;
1897 /* CPU multiplier */
1898 data |= (((uint64_t)4ULL) << 40);
1899 break;
1900 case MSR_EFER:
1901 data = vcpu->arch.efer;
1902 break;
1903 case MSR_KVM_WALL_CLOCK:
1904 case MSR_KVM_WALL_CLOCK_NEW:
1905 data = vcpu->kvm->arch.wall_clock;
1906 break;
1907 case MSR_KVM_SYSTEM_TIME:
1908 case MSR_KVM_SYSTEM_TIME_NEW:
1909 data = vcpu->arch.time;
1910 break;
1911 case MSR_KVM_ASYNC_PF_EN:
1912 data = vcpu->arch.apf.msr_val;
1913 break;
1914 case MSR_KVM_STEAL_TIME:
1915 data = vcpu->arch.st.msr_val;
1916 break;
1917 case MSR_IA32_P5_MC_ADDR:
1918 case MSR_IA32_P5_MC_TYPE:
1919 case MSR_IA32_MCG_CAP:
1920 case MSR_IA32_MCG_CTL:
1921 case MSR_IA32_MCG_STATUS:
1922 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1923 return get_msr_mce(vcpu, msr, pdata);
1924 case MSR_K7_CLK_CTL:
1925 /*
1926 * Provide expected ramp-up count for K7. All other
1927 * are set to zero, indicating minimum divisors for
1928 * every field.
1929 *
1930 * This prevents guest kernels on AMD host with CPU
1931 * type 6, model 8 and higher from exploding due to
1932 * the rdmsr failing.
1933 */
1934 data = 0x20000000;
1935 break;
1936 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1937 if (kvm_hv_msr_partition_wide(msr)) {
1938 int r;
1939 mutex_lock(&vcpu->kvm->lock);
1940 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1941 mutex_unlock(&vcpu->kvm->lock);
1942 return r;
1943 } else
1944 return get_msr_hyperv(vcpu, msr, pdata);
1945 break;
1946 case MSR_IA32_BBL_CR_CTL3:
1947 /* This legacy MSR exists but isn't fully documented in current
1948 * silicon. It is however accessed by winxp in very narrow
1949 * scenarios where it sets bit #19, itself documented as
1950 * a "reserved" bit. Best effort attempt to source coherent
1951 * read data here should the balance of the register be
1952 * interpreted by the guest:
1953 *
1954 * L2 cache control register 3: 64GB range, 256KB size,
1955 * enabled, latency 0x1, configured
1956 */
1957 data = 0xbe702111;
1958 break;
1959 default:
1960 if (!ignore_msrs) {
1961 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1962 return 1;
1963 } else {
1964 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1965 data = 0;
1966 }
1967 break;
1968 }
1969 *pdata = data;
1970 return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1973
1974 /*
1975 * Read or write a bunch of msrs. All parameters are kernel addresses.
1976 *
1977 * @return number of msrs set successfully.
1978 */
1979 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1980 struct kvm_msr_entry *entries,
1981 int (*do_msr)(struct kvm_vcpu *vcpu,
1982 unsigned index, u64 *data))
1983 {
1984 int i, idx;
1985
1986 idx = srcu_read_lock(&vcpu->kvm->srcu);
1987 for (i = 0; i < msrs->nmsrs; ++i)
1988 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1989 break;
1990 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1991
1992 return i;
1993 }
1994
1995 /*
1996 * Read or write a bunch of msrs. Parameters are user addresses.
1997 *
1998 * @return number of msrs set successfully.
1999 */
2000 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2001 int (*do_msr)(struct kvm_vcpu *vcpu,
2002 unsigned index, u64 *data),
2003 int writeback)
2004 {
2005 struct kvm_msrs msrs;
2006 struct kvm_msr_entry *entries;
2007 int r, n;
2008 unsigned size;
2009
2010 r = -EFAULT;
2011 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2012 goto out;
2013
2014 r = -E2BIG;
2015 if (msrs.nmsrs >= MAX_IO_MSRS)
2016 goto out;
2017
2018 r = -ENOMEM;
2019 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2020 entries = kmalloc(size, GFP_KERNEL);
2021 if (!entries)
2022 goto out;
2023
2024 r = -EFAULT;
2025 if (copy_from_user(entries, user_msrs->entries, size))
2026 goto out_free;
2027
2028 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2029 if (r < 0)
2030 goto out_free;
2031
2032 r = -EFAULT;
2033 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2034 goto out_free;
2035
2036 r = n;
2037
2038 out_free:
2039 kfree(entries);
2040 out:
2041 return r;
2042 }
2043
2044 int kvm_dev_ioctl_check_extension(long ext)
2045 {
2046 int r;
2047
2048 switch (ext) {
2049 case KVM_CAP_IRQCHIP:
2050 case KVM_CAP_HLT:
2051 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2052 case KVM_CAP_SET_TSS_ADDR:
2053 case KVM_CAP_EXT_CPUID:
2054 case KVM_CAP_CLOCKSOURCE:
2055 case KVM_CAP_PIT:
2056 case KVM_CAP_NOP_IO_DELAY:
2057 case KVM_CAP_MP_STATE:
2058 case KVM_CAP_SYNC_MMU:
2059 case KVM_CAP_USER_NMI:
2060 case KVM_CAP_REINJECT_CONTROL:
2061 case KVM_CAP_IRQ_INJECT_STATUS:
2062 case KVM_CAP_ASSIGN_DEV_IRQ:
2063 case KVM_CAP_IRQFD:
2064 case KVM_CAP_IOEVENTFD:
2065 case KVM_CAP_PIT2:
2066 case KVM_CAP_PIT_STATE2:
2067 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2068 case KVM_CAP_XEN_HVM:
2069 case KVM_CAP_ADJUST_CLOCK:
2070 case KVM_CAP_VCPU_EVENTS:
2071 case KVM_CAP_HYPERV:
2072 case KVM_CAP_HYPERV_VAPIC:
2073 case KVM_CAP_HYPERV_SPIN:
2074 case KVM_CAP_PCI_SEGMENT:
2075 case KVM_CAP_DEBUGREGS:
2076 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2077 case KVM_CAP_XSAVE:
2078 case KVM_CAP_ASYNC_PF:
2079 case KVM_CAP_GET_TSC_KHZ:
2080 r = 1;
2081 break;
2082 case KVM_CAP_COALESCED_MMIO:
2083 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2084 break;
2085 case KVM_CAP_VAPIC:
2086 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2087 break;
2088 case KVM_CAP_NR_VCPUS:
2089 r = KVM_MAX_VCPUS;
2090 break;
2091 case KVM_CAP_NR_MEMSLOTS:
2092 r = KVM_MEMORY_SLOTS;
2093 break;
2094 case KVM_CAP_PV_MMU: /* obsolete */
2095 r = 0;
2096 break;
2097 case KVM_CAP_IOMMU:
2098 r = iommu_found();
2099 break;
2100 case KVM_CAP_MCE:
2101 r = KVM_MAX_MCE_BANKS;
2102 break;
2103 case KVM_CAP_XCRS:
2104 r = cpu_has_xsave;
2105 break;
2106 case KVM_CAP_TSC_CONTROL:
2107 r = kvm_has_tsc_control;
2108 break;
2109 default:
2110 r = 0;
2111 break;
2112 }
2113 return r;
2114
2115 }
2116
2117 long kvm_arch_dev_ioctl(struct file *filp,
2118 unsigned int ioctl, unsigned long arg)
2119 {
2120 void __user *argp = (void __user *)arg;
2121 long r;
2122
2123 switch (ioctl) {
2124 case KVM_GET_MSR_INDEX_LIST: {
2125 struct kvm_msr_list __user *user_msr_list = argp;
2126 struct kvm_msr_list msr_list;
2127 unsigned n;
2128
2129 r = -EFAULT;
2130 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2131 goto out;
2132 n = msr_list.nmsrs;
2133 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2134 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2135 goto out;
2136 r = -E2BIG;
2137 if (n < msr_list.nmsrs)
2138 goto out;
2139 r = -EFAULT;
2140 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2141 num_msrs_to_save * sizeof(u32)))
2142 goto out;
2143 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2144 &emulated_msrs,
2145 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2146 goto out;
2147 r = 0;
2148 break;
2149 }
2150 case KVM_GET_SUPPORTED_CPUID: {
2151 struct kvm_cpuid2 __user *cpuid_arg = argp;
2152 struct kvm_cpuid2 cpuid;
2153
2154 r = -EFAULT;
2155 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2156 goto out;
2157 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2158 cpuid_arg->entries);
2159 if (r)
2160 goto out;
2161
2162 r = -EFAULT;
2163 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2164 goto out;
2165 r = 0;
2166 break;
2167 }
2168 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2169 u64 mce_cap;
2170
2171 mce_cap = KVM_MCE_CAP_SUPPORTED;
2172 r = -EFAULT;
2173 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2174 goto out;
2175 r = 0;
2176 break;
2177 }
2178 default:
2179 r = -EINVAL;
2180 }
2181 out:
2182 return r;
2183 }
2184
2185 static void wbinvd_ipi(void *garbage)
2186 {
2187 wbinvd();
2188 }
2189
2190 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2191 {
2192 return vcpu->kvm->arch.iommu_domain &&
2193 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2194 }
2195
2196 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2197 {
2198 /* Address WBINVD may be executed by guest */
2199 if (need_emulate_wbinvd(vcpu)) {
2200 if (kvm_x86_ops->has_wbinvd_exit())
2201 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2202 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2203 smp_call_function_single(vcpu->cpu,
2204 wbinvd_ipi, NULL, 1);
2205 }
2206
2207 kvm_x86_ops->vcpu_load(vcpu, cpu);
2208 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2209 /* Make sure TSC doesn't go backwards */
2210 s64 tsc_delta;
2211 u64 tsc;
2212
2213 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2214 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2215 tsc - vcpu->arch.last_guest_tsc;
2216
2217 if (tsc_delta < 0)
2218 mark_tsc_unstable("KVM discovered backwards TSC");
2219 if (check_tsc_unstable()) {
2220 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2221 vcpu->arch.tsc_catchup = 1;
2222 }
2223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2224 if (vcpu->cpu != cpu)
2225 kvm_migrate_timers(vcpu);
2226 vcpu->cpu = cpu;
2227 }
2228
2229 accumulate_steal_time(vcpu);
2230 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2231 }
2232
2233 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2234 {
2235 kvm_x86_ops->vcpu_put(vcpu);
2236 kvm_put_guest_fpu(vcpu);
2237 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2238 }
2239
2240 static int is_efer_nx(void)
2241 {
2242 unsigned long long efer = 0;
2243
2244 rdmsrl_safe(MSR_EFER, &efer);
2245 return efer & EFER_NX;
2246 }
2247
2248 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2249 {
2250 int i;
2251 struct kvm_cpuid_entry2 *e, *entry;
2252
2253 entry = NULL;
2254 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2255 e = &vcpu->arch.cpuid_entries[i];
2256 if (e->function == 0x80000001) {
2257 entry = e;
2258 break;
2259 }
2260 }
2261 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2262 entry->edx &= ~(1 << 20);
2263 printk(KERN_INFO "kvm: guest NX capability removed\n");
2264 }
2265 }
2266
2267 /* when an old userspace process fills a new kernel module */
2268 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2269 struct kvm_cpuid *cpuid,
2270 struct kvm_cpuid_entry __user *entries)
2271 {
2272 int r, i;
2273 struct kvm_cpuid_entry *cpuid_entries;
2274
2275 r = -E2BIG;
2276 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2277 goto out;
2278 r = -ENOMEM;
2279 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2280 if (!cpuid_entries)
2281 goto out;
2282 r = -EFAULT;
2283 if (copy_from_user(cpuid_entries, entries,
2284 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2285 goto out_free;
2286 for (i = 0; i < cpuid->nent; i++) {
2287 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2288 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2289 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2290 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2291 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2292 vcpu->arch.cpuid_entries[i].index = 0;
2293 vcpu->arch.cpuid_entries[i].flags = 0;
2294 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2295 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2296 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2297 }
2298 vcpu->arch.cpuid_nent = cpuid->nent;
2299 cpuid_fix_nx_cap(vcpu);
2300 r = 0;
2301 kvm_apic_set_version(vcpu);
2302 kvm_x86_ops->cpuid_update(vcpu);
2303 update_cpuid(vcpu);
2304
2305 out_free:
2306 vfree(cpuid_entries);
2307 out:
2308 return r;
2309 }
2310
2311 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2312 struct kvm_cpuid2 *cpuid,
2313 struct kvm_cpuid_entry2 __user *entries)
2314 {
2315 int r;
2316
2317 r = -E2BIG;
2318 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2319 goto out;
2320 r = -EFAULT;
2321 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2322 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2323 goto out;
2324 vcpu->arch.cpuid_nent = cpuid->nent;
2325 kvm_apic_set_version(vcpu);
2326 kvm_x86_ops->cpuid_update(vcpu);
2327 update_cpuid(vcpu);
2328 return 0;
2329
2330 out:
2331 return r;
2332 }
2333
2334 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2335 struct kvm_cpuid2 *cpuid,
2336 struct kvm_cpuid_entry2 __user *entries)
2337 {
2338 int r;
2339
2340 r = -E2BIG;
2341 if (cpuid->nent < vcpu->arch.cpuid_nent)
2342 goto out;
2343 r = -EFAULT;
2344 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2345 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2346 goto out;
2347 return 0;
2348
2349 out:
2350 cpuid->nent = vcpu->arch.cpuid_nent;
2351 return r;
2352 }
2353
2354 static void cpuid_mask(u32 *word, int wordnum)
2355 {
2356 *word &= boot_cpu_data.x86_capability[wordnum];
2357 }
2358
2359 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2360 u32 index)
2361 {
2362 entry->function = function;
2363 entry->index = index;
2364 cpuid_count(entry->function, entry->index,
2365 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2366 entry->flags = 0;
2367 }
2368
2369 static bool supported_xcr0_bit(unsigned bit)
2370 {
2371 u64 mask = ((u64)1 << bit);
2372
2373 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2374 }
2375
2376 #define F(x) bit(X86_FEATURE_##x)
2377
2378 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2379 u32 index, int *nent, int maxnent)
2380 {
2381 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2382 #ifdef CONFIG_X86_64
2383 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2384 ? F(GBPAGES) : 0;
2385 unsigned f_lm = F(LM);
2386 #else
2387 unsigned f_gbpages = 0;
2388 unsigned f_lm = 0;
2389 #endif
2390 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2391
2392 /* cpuid 1.edx */
2393 const u32 kvm_supported_word0_x86_features =
2394 F(FPU) | F(VME) | F(DE) | F(PSE) |
2395 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2396 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2397 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2398 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2399 0 /* Reserved, DS, ACPI */ | F(MMX) |
2400 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2401 0 /* HTT, TM, Reserved, PBE */;
2402 /* cpuid 0x80000001.edx */
2403 const u32 kvm_supported_word1_x86_features =
2404 F(FPU) | F(VME) | F(DE) | F(PSE) |
2405 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2406 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2407 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2408 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2409 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2410 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2411 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2412 /* cpuid 1.ecx */
2413 const u32 kvm_supported_word4_x86_features =
2414 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2415 0 /* DS-CPL, VMX, SMX, EST */ |
2416 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2417 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2418 0 /* Reserved, DCA */ | F(XMM4_1) |
2419 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2420 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2421 F(F16C) | F(RDRAND);
2422 /* cpuid 0x80000001.ecx */
2423 const u32 kvm_supported_word6_x86_features =
2424 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2425 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2426 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2427 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2428
2429 /* cpuid 0xC0000001.edx */
2430 const u32 kvm_supported_word5_x86_features =
2431 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2432 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2433 F(PMM) | F(PMM_EN);
2434
2435 /* cpuid 7.0.ebx */
2436 const u32 kvm_supported_word9_x86_features =
2437 F(SMEP) | F(FSGSBASE) | F(ERMS);
2438
2439 /* all calls to cpuid_count() should be made on the same cpu */
2440 get_cpu();
2441 do_cpuid_1_ent(entry, function, index);
2442 ++*nent;
2443
2444 switch (function) {
2445 case 0:
2446 entry->eax = min(entry->eax, (u32)0xd);
2447 break;
2448 case 1:
2449 entry->edx &= kvm_supported_word0_x86_features;
2450 cpuid_mask(&entry->edx, 0);
2451 entry->ecx &= kvm_supported_word4_x86_features;
2452 cpuid_mask(&entry->ecx, 4);
2453 /* we support x2apic emulation even if host does not support
2454 * it since we emulate x2apic in software */
2455 entry->ecx |= F(X2APIC);
2456 break;
2457 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2458 * may return different values. This forces us to get_cpu() before
2459 * issuing the first command, and also to emulate this annoying behavior
2460 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2461 case 2: {
2462 int t, times = entry->eax & 0xff;
2463
2464 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2465 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2466 for (t = 1; t < times && *nent < maxnent; ++t) {
2467 do_cpuid_1_ent(&entry[t], function, 0);
2468 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2469 ++*nent;
2470 }
2471 break;
2472 }
2473 /* function 4 has additional index. */
2474 case 4: {
2475 int i, cache_type;
2476
2477 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2478 /* read more entries until cache_type is zero */
2479 for (i = 1; *nent < maxnent; ++i) {
2480 cache_type = entry[i - 1].eax & 0x1f;
2481 if (!cache_type)
2482 break;
2483 do_cpuid_1_ent(&entry[i], function, i);
2484 entry[i].flags |=
2485 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2486 ++*nent;
2487 }
2488 break;
2489 }
2490 case 7: {
2491 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2492 /* Mask ebx against host capbability word 9 */
2493 if (index == 0) {
2494 entry->ebx &= kvm_supported_word9_x86_features;
2495 cpuid_mask(&entry->ebx, 9);
2496 } else
2497 entry->ebx = 0;
2498 entry->eax = 0;
2499 entry->ecx = 0;
2500 entry->edx = 0;
2501 break;
2502 }
2503 case 9:
2504 break;
2505 /* function 0xb has additional index. */
2506 case 0xb: {
2507 int i, level_type;
2508
2509 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2510 /* read more entries until level_type is zero */
2511 for (i = 1; *nent < maxnent; ++i) {
2512 level_type = entry[i - 1].ecx & 0xff00;
2513 if (!level_type)
2514 break;
2515 do_cpuid_1_ent(&entry[i], function, i);
2516 entry[i].flags |=
2517 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2518 ++*nent;
2519 }
2520 break;
2521 }
2522 case 0xd: {
2523 int idx, i;
2524
2525 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2526 for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2527 do_cpuid_1_ent(&entry[i], function, idx);
2528 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2529 continue;
2530 entry[i].flags |=
2531 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2532 ++*nent;
2533 ++i;
2534 }
2535 break;
2536 }
2537 case KVM_CPUID_SIGNATURE: {
2538 char signature[12] = "KVMKVMKVM\0\0";
2539 u32 *sigptr = (u32 *)signature;
2540 entry->eax = 0;
2541 entry->ebx = sigptr[0];
2542 entry->ecx = sigptr[1];
2543 entry->edx = sigptr[2];
2544 break;
2545 }
2546 case KVM_CPUID_FEATURES:
2547 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2548 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2549 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2550 (1 << KVM_FEATURE_ASYNC_PF) |
2551 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2552
2553 if (sched_info_on())
2554 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2555
2556 entry->ebx = 0;
2557 entry->ecx = 0;
2558 entry->edx = 0;
2559 break;
2560 case 0x80000000:
2561 entry->eax = min(entry->eax, 0x8000001a);
2562 break;
2563 case 0x80000001:
2564 entry->edx &= kvm_supported_word1_x86_features;
2565 cpuid_mask(&entry->edx, 1);
2566 entry->ecx &= kvm_supported_word6_x86_features;
2567 cpuid_mask(&entry->ecx, 6);
2568 break;
2569 case 0x80000008: {
2570 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2571 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2572 unsigned phys_as = entry->eax & 0xff;
2573
2574 if (!g_phys_as)
2575 g_phys_as = phys_as;
2576 entry->eax = g_phys_as | (virt_as << 8);
2577 entry->ebx = entry->edx = 0;
2578 break;
2579 }
2580 case 0x80000019:
2581 entry->ecx = entry->edx = 0;
2582 break;
2583 case 0x8000001a:
2584 break;
2585 case 0x8000001d:
2586 break;
2587 /*Add support for Centaur's CPUID instruction*/
2588 case 0xC0000000:
2589 /*Just support up to 0xC0000004 now*/
2590 entry->eax = min(entry->eax, 0xC0000004);
2591 break;
2592 case 0xC0000001:
2593 entry->edx &= kvm_supported_word5_x86_features;
2594 cpuid_mask(&entry->edx, 5);
2595 break;
2596 case 3: /* Processor serial number */
2597 case 5: /* MONITOR/MWAIT */
2598 case 6: /* Thermal management */
2599 case 0xA: /* Architectural Performance Monitoring */
2600 case 0x80000007: /* Advanced power management */
2601 case 0xC0000002:
2602 case 0xC0000003:
2603 case 0xC0000004:
2604 default:
2605 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2606 break;
2607 }
2608
2609 kvm_x86_ops->set_supported_cpuid(function, entry);
2610
2611 put_cpu();
2612 }
2613
2614 #undef F
2615
2616 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2617 struct kvm_cpuid_entry2 __user *entries)
2618 {
2619 struct kvm_cpuid_entry2 *cpuid_entries;
2620 int limit, nent = 0, r = -E2BIG;
2621 u32 func;
2622
2623 if (cpuid->nent < 1)
2624 goto out;
2625 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2626 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2627 r = -ENOMEM;
2628 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2629 if (!cpuid_entries)
2630 goto out;
2631
2632 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2633 limit = cpuid_entries[0].eax;
2634 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2635 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2636 &nent, cpuid->nent);
2637 r = -E2BIG;
2638 if (nent >= cpuid->nent)
2639 goto out_free;
2640
2641 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2642 limit = cpuid_entries[nent - 1].eax;
2643 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2644 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2645 &nent, cpuid->nent);
2646
2647
2648
2649 r = -E2BIG;
2650 if (nent >= cpuid->nent)
2651 goto out_free;
2652
2653 /* Add support for Centaur's CPUID instruction. */
2654 if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2655 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2656 &nent, cpuid->nent);
2657
2658 r = -E2BIG;
2659 if (nent >= cpuid->nent)
2660 goto out_free;
2661
2662 limit = cpuid_entries[nent - 1].eax;
2663 for (func = 0xC0000001;
2664 func <= limit && nent < cpuid->nent; ++func)
2665 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2666 &nent, cpuid->nent);
2667
2668 r = -E2BIG;
2669 if (nent >= cpuid->nent)
2670 goto out_free;
2671 }
2672
2673 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2674 cpuid->nent);
2675
2676 r = -E2BIG;
2677 if (nent >= cpuid->nent)
2678 goto out_free;
2679
2680 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2681 cpuid->nent);
2682
2683 r = -E2BIG;
2684 if (nent >= cpuid->nent)
2685 goto out_free;
2686
2687 r = -EFAULT;
2688 if (copy_to_user(entries, cpuid_entries,
2689 nent * sizeof(struct kvm_cpuid_entry2)))
2690 goto out_free;
2691 cpuid->nent = nent;
2692 r = 0;
2693
2694 out_free:
2695 vfree(cpuid_entries);
2696 out:
2697 return r;
2698 }
2699
2700 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2701 struct kvm_lapic_state *s)
2702 {
2703 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2704
2705 return 0;
2706 }
2707
2708 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2709 struct kvm_lapic_state *s)
2710 {
2711 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2712 kvm_apic_post_state_restore(vcpu);
2713 update_cr8_intercept(vcpu);
2714
2715 return 0;
2716 }
2717
2718 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2719 struct kvm_interrupt *irq)
2720 {
2721 if (irq->irq < 0 || irq->irq >= 256)
2722 return -EINVAL;
2723 if (irqchip_in_kernel(vcpu->kvm))
2724 return -ENXIO;
2725
2726 kvm_queue_interrupt(vcpu, irq->irq, false);
2727 kvm_make_request(KVM_REQ_EVENT, vcpu);
2728
2729 return 0;
2730 }
2731
2732 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2733 {
2734 kvm_inject_nmi(vcpu);
2735
2736 return 0;
2737 }
2738
2739 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2740 struct kvm_tpr_access_ctl *tac)
2741 {
2742 if (tac->flags)
2743 return -EINVAL;
2744 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2745 return 0;
2746 }
2747
2748 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2749 u64 mcg_cap)
2750 {
2751 int r;
2752 unsigned bank_num = mcg_cap & 0xff, bank;
2753
2754 r = -EINVAL;
2755 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2756 goto out;
2757 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2758 goto out;
2759 r = 0;
2760 vcpu->arch.mcg_cap = mcg_cap;
2761 /* Init IA32_MCG_CTL to all 1s */
2762 if (mcg_cap & MCG_CTL_P)
2763 vcpu->arch.mcg_ctl = ~(u64)0;
2764 /* Init IA32_MCi_CTL to all 1s */
2765 for (bank = 0; bank < bank_num; bank++)
2766 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2767 out:
2768 return r;
2769 }
2770
2771 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2772 struct kvm_x86_mce *mce)
2773 {
2774 u64 mcg_cap = vcpu->arch.mcg_cap;
2775 unsigned bank_num = mcg_cap & 0xff;
2776 u64 *banks = vcpu->arch.mce_banks;
2777
2778 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2779 return -EINVAL;
2780 /*
2781 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2782 * reporting is disabled
2783 */
2784 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2785 vcpu->arch.mcg_ctl != ~(u64)0)
2786 return 0;
2787 banks += 4 * mce->bank;
2788 /*
2789 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2790 * reporting is disabled for the bank
2791 */
2792 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2793 return 0;
2794 if (mce->status & MCI_STATUS_UC) {
2795 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2796 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2797 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2798 return 0;
2799 }
2800 if (banks[1] & MCI_STATUS_VAL)
2801 mce->status |= MCI_STATUS_OVER;
2802 banks[2] = mce->addr;
2803 banks[3] = mce->misc;
2804 vcpu->arch.mcg_status = mce->mcg_status;
2805 banks[1] = mce->status;
2806 kvm_queue_exception(vcpu, MC_VECTOR);
2807 } else if (!(banks[1] & MCI_STATUS_VAL)
2808 || !(banks[1] & MCI_STATUS_UC)) {
2809 if (banks[1] & MCI_STATUS_VAL)
2810 mce->status |= MCI_STATUS_OVER;
2811 banks[2] = mce->addr;
2812 banks[3] = mce->misc;
2813 banks[1] = mce->status;
2814 } else
2815 banks[1] |= MCI_STATUS_OVER;
2816 return 0;
2817 }
2818
2819 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2820 struct kvm_vcpu_events *events)
2821 {
2822 events->exception.injected =
2823 vcpu->arch.exception.pending &&
2824 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2825 events->exception.nr = vcpu->arch.exception.nr;
2826 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2827 events->exception.pad = 0;
2828 events->exception.error_code = vcpu->arch.exception.error_code;
2829
2830 events->interrupt.injected =
2831 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2832 events->interrupt.nr = vcpu->arch.interrupt.nr;
2833 events->interrupt.soft = 0;
2834 events->interrupt.shadow =
2835 kvm_x86_ops->get_interrupt_shadow(vcpu,
2836 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2837
2838 events->nmi.injected = vcpu->arch.nmi_injected;
2839 events->nmi.pending = vcpu->arch.nmi_pending;
2840 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2841 events->nmi.pad = 0;
2842
2843 events->sipi_vector = vcpu->arch.sipi_vector;
2844
2845 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2846 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2847 | KVM_VCPUEVENT_VALID_SHADOW);
2848 memset(&events->reserved, 0, sizeof(events->reserved));
2849 }
2850
2851 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2852 struct kvm_vcpu_events *events)
2853 {
2854 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2855 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2856 | KVM_VCPUEVENT_VALID_SHADOW))
2857 return -EINVAL;
2858
2859 vcpu->arch.exception.pending = events->exception.injected;
2860 vcpu->arch.exception.nr = events->exception.nr;
2861 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2862 vcpu->arch.exception.error_code = events->exception.error_code;
2863
2864 vcpu->arch.interrupt.pending = events->interrupt.injected;
2865 vcpu->arch.interrupt.nr = events->interrupt.nr;
2866 vcpu->arch.interrupt.soft = events->interrupt.soft;
2867 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2868 kvm_x86_ops->set_interrupt_shadow(vcpu,
2869 events->interrupt.shadow);
2870
2871 vcpu->arch.nmi_injected = events->nmi.injected;
2872 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2873 vcpu->arch.nmi_pending = events->nmi.pending;
2874 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2875
2876 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2877 vcpu->arch.sipi_vector = events->sipi_vector;
2878
2879 kvm_make_request(KVM_REQ_EVENT, vcpu);
2880
2881 return 0;
2882 }
2883
2884 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2885 struct kvm_debugregs *dbgregs)
2886 {
2887 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2888 dbgregs->dr6 = vcpu->arch.dr6;
2889 dbgregs->dr7 = vcpu->arch.dr7;
2890 dbgregs->flags = 0;
2891 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2892 }
2893
2894 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2895 struct kvm_debugregs *dbgregs)
2896 {
2897 if (dbgregs->flags)
2898 return -EINVAL;
2899
2900 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2901 vcpu->arch.dr6 = dbgregs->dr6;
2902 vcpu->arch.dr7 = dbgregs->dr7;
2903
2904 return 0;
2905 }
2906
2907 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2908 struct kvm_xsave *guest_xsave)
2909 {
2910 if (cpu_has_xsave)
2911 memcpy(guest_xsave->region,
2912 &vcpu->arch.guest_fpu.state->xsave,
2913 xstate_size);
2914 else {
2915 memcpy(guest_xsave->region,
2916 &vcpu->arch.guest_fpu.state->fxsave,
2917 sizeof(struct i387_fxsave_struct));
2918 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2919 XSTATE_FPSSE;
2920 }
2921 }
2922
2923 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2924 struct kvm_xsave *guest_xsave)
2925 {
2926 u64 xstate_bv =
2927 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2928
2929 if (cpu_has_xsave)
2930 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2931 guest_xsave->region, xstate_size);
2932 else {
2933 if (xstate_bv & ~XSTATE_FPSSE)
2934 return -EINVAL;
2935 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2936 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2937 }
2938 return 0;
2939 }
2940
2941 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2942 struct kvm_xcrs *guest_xcrs)
2943 {
2944 if (!cpu_has_xsave) {
2945 guest_xcrs->nr_xcrs = 0;
2946 return;
2947 }
2948
2949 guest_xcrs->nr_xcrs = 1;
2950 guest_xcrs->flags = 0;
2951 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2952 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2953 }
2954
2955 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2956 struct kvm_xcrs *guest_xcrs)
2957 {
2958 int i, r = 0;
2959
2960 if (!cpu_has_xsave)
2961 return -EINVAL;
2962
2963 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2964 return -EINVAL;
2965
2966 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2967 /* Only support XCR0 currently */
2968 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2969 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2970 guest_xcrs->xcrs[0].value);
2971 break;
2972 }
2973 if (r)
2974 r = -EINVAL;
2975 return r;
2976 }
2977
2978 long kvm_arch_vcpu_ioctl(struct file *filp,
2979 unsigned int ioctl, unsigned long arg)
2980 {
2981 struct kvm_vcpu *vcpu = filp->private_data;
2982 void __user *argp = (void __user *)arg;
2983 int r;
2984 union {
2985 struct kvm_lapic_state *lapic;
2986 struct kvm_xsave *xsave;
2987 struct kvm_xcrs *xcrs;
2988 void *buffer;
2989 } u;
2990
2991 u.buffer = NULL;
2992 switch (ioctl) {
2993 case KVM_GET_LAPIC: {
2994 r = -EINVAL;
2995 if (!vcpu->arch.apic)
2996 goto out;
2997 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2998
2999 r = -ENOMEM;
3000 if (!u.lapic)
3001 goto out;
3002 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3003 if (r)
3004 goto out;
3005 r = -EFAULT;
3006 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3007 goto out;
3008 r = 0;
3009 break;
3010 }
3011 case KVM_SET_LAPIC: {
3012 r = -EINVAL;
3013 if (!vcpu->arch.apic)
3014 goto out;
3015 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3016 r = -ENOMEM;
3017 if (!u.lapic)
3018 goto out;
3019 r = -EFAULT;
3020 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3021 goto out;
3022 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3023 if (r)
3024 goto out;
3025 r = 0;
3026 break;
3027 }
3028 case KVM_INTERRUPT: {
3029 struct kvm_interrupt irq;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&irq, argp, sizeof irq))
3033 goto out;
3034 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3035 if (r)
3036 goto out;
3037 r = 0;
3038 break;
3039 }
3040 case KVM_NMI: {
3041 r = kvm_vcpu_ioctl_nmi(vcpu);
3042 if (r)
3043 goto out;
3044 r = 0;
3045 break;
3046 }
3047 case KVM_SET_CPUID: {
3048 struct kvm_cpuid __user *cpuid_arg = argp;
3049 struct kvm_cpuid cpuid;
3050
3051 r = -EFAULT;
3052 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3053 goto out;
3054 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3055 if (r)
3056 goto out;
3057 break;
3058 }
3059 case KVM_SET_CPUID2: {
3060 struct kvm_cpuid2 __user *cpuid_arg = argp;
3061 struct kvm_cpuid2 cpuid;
3062
3063 r = -EFAULT;
3064 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3065 goto out;
3066 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3067 cpuid_arg->entries);
3068 if (r)
3069 goto out;
3070 break;
3071 }
3072 case KVM_GET_CPUID2: {
3073 struct kvm_cpuid2 __user *cpuid_arg = argp;
3074 struct kvm_cpuid2 cpuid;
3075
3076 r = -EFAULT;
3077 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3078 goto out;
3079 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3080 cpuid_arg->entries);
3081 if (r)
3082 goto out;
3083 r = -EFAULT;
3084 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3085 goto out;
3086 r = 0;
3087 break;
3088 }
3089 case KVM_GET_MSRS:
3090 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3091 break;
3092 case KVM_SET_MSRS:
3093 r = msr_io(vcpu, argp, do_set_msr, 0);
3094 break;
3095 case KVM_TPR_ACCESS_REPORTING: {
3096 struct kvm_tpr_access_ctl tac;
3097
3098 r = -EFAULT;
3099 if (copy_from_user(&tac, argp, sizeof tac))
3100 goto out;
3101 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3102 if (r)
3103 goto out;
3104 r = -EFAULT;
3105 if (copy_to_user(argp, &tac, sizeof tac))
3106 goto out;
3107 r = 0;
3108 break;
3109 };
3110 case KVM_SET_VAPIC_ADDR: {
3111 struct kvm_vapic_addr va;
3112
3113 r = -EINVAL;
3114 if (!irqchip_in_kernel(vcpu->kvm))
3115 goto out;
3116 r = -EFAULT;
3117 if (copy_from_user(&va, argp, sizeof va))
3118 goto out;
3119 r = 0;
3120 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3121 break;
3122 }
3123 case KVM_X86_SETUP_MCE: {
3124 u64 mcg_cap;
3125
3126 r = -EFAULT;
3127 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3128 goto out;
3129 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3130 break;
3131 }
3132 case KVM_X86_SET_MCE: {
3133 struct kvm_x86_mce mce;
3134
3135 r = -EFAULT;
3136 if (copy_from_user(&mce, argp, sizeof mce))
3137 goto out;
3138 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3139 break;
3140 }
3141 case KVM_GET_VCPU_EVENTS: {
3142 struct kvm_vcpu_events events;
3143
3144 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3145
3146 r = -EFAULT;
3147 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3148 break;
3149 r = 0;
3150 break;
3151 }
3152 case KVM_SET_VCPU_EVENTS: {
3153 struct kvm_vcpu_events events;
3154
3155 r = -EFAULT;
3156 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3157 break;
3158
3159 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3160 break;
3161 }
3162 case KVM_GET_DEBUGREGS: {
3163 struct kvm_debugregs dbgregs;
3164
3165 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3166
3167 r = -EFAULT;
3168 if (copy_to_user(argp, &dbgregs,
3169 sizeof(struct kvm_debugregs)))
3170 break;
3171 r = 0;
3172 break;
3173 }
3174 case KVM_SET_DEBUGREGS: {
3175 struct kvm_debugregs dbgregs;
3176
3177 r = -EFAULT;
3178 if (copy_from_user(&dbgregs, argp,
3179 sizeof(struct kvm_debugregs)))
3180 break;
3181
3182 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3183 break;
3184 }
3185 case KVM_GET_XSAVE: {
3186 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3187 r = -ENOMEM;
3188 if (!u.xsave)
3189 break;
3190
3191 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3192
3193 r = -EFAULT;
3194 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3195 break;
3196 r = 0;
3197 break;
3198 }
3199 case KVM_SET_XSAVE: {
3200 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3201 r = -ENOMEM;
3202 if (!u.xsave)
3203 break;
3204
3205 r = -EFAULT;
3206 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3207 break;
3208
3209 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3210 break;
3211 }
3212 case KVM_GET_XCRS: {
3213 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3214 r = -ENOMEM;
3215 if (!u.xcrs)
3216 break;
3217
3218 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3219
3220 r = -EFAULT;
3221 if (copy_to_user(argp, u.xcrs,
3222 sizeof(struct kvm_xcrs)))
3223 break;
3224 r = 0;
3225 break;
3226 }
3227 case KVM_SET_XCRS: {
3228 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3229 r = -ENOMEM;
3230 if (!u.xcrs)
3231 break;
3232
3233 r = -EFAULT;
3234 if (copy_from_user(u.xcrs, argp,
3235 sizeof(struct kvm_xcrs)))
3236 break;
3237
3238 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3239 break;
3240 }
3241 case KVM_SET_TSC_KHZ: {
3242 u32 user_tsc_khz;
3243
3244 r = -EINVAL;
3245 if (!kvm_has_tsc_control)
3246 break;
3247
3248 user_tsc_khz = (u32)arg;
3249
3250 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3251 goto out;
3252
3253 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3254
3255 r = 0;
3256 goto out;
3257 }
3258 case KVM_GET_TSC_KHZ: {
3259 r = -EIO;
3260 if (check_tsc_unstable())
3261 goto out;
3262
3263 r = vcpu_tsc_khz(vcpu);
3264
3265 goto out;
3266 }
3267 default:
3268 r = -EINVAL;
3269 }
3270 out:
3271 kfree(u.buffer);
3272 return r;
3273 }
3274
3275 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3276 {
3277 int ret;
3278
3279 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3280 return -1;
3281 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3282 return ret;
3283 }
3284
3285 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3286 u64 ident_addr)
3287 {
3288 kvm->arch.ept_identity_map_addr = ident_addr;
3289 return 0;
3290 }
3291
3292 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3293 u32 kvm_nr_mmu_pages)
3294 {
3295 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3296 return -EINVAL;
3297
3298 mutex_lock(&kvm->slots_lock);
3299 spin_lock(&kvm->mmu_lock);
3300
3301 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3302 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3303
3304 spin_unlock(&kvm->mmu_lock);
3305 mutex_unlock(&kvm->slots_lock);
3306 return 0;
3307 }
3308
3309 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3310 {
3311 return kvm->arch.n_max_mmu_pages;
3312 }
3313
3314 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3315 {
3316 int r;
3317
3318 r = 0;
3319 switch (chip->chip_id) {
3320 case KVM_IRQCHIP_PIC_MASTER:
3321 memcpy(&chip->chip.pic,
3322 &pic_irqchip(kvm)->pics[0],
3323 sizeof(struct kvm_pic_state));
3324 break;
3325 case KVM_IRQCHIP_PIC_SLAVE:
3326 memcpy(&chip->chip.pic,
3327 &pic_irqchip(kvm)->pics[1],
3328 sizeof(struct kvm_pic_state));
3329 break;
3330 case KVM_IRQCHIP_IOAPIC:
3331 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3332 break;
3333 default:
3334 r = -EINVAL;
3335 break;
3336 }
3337 return r;
3338 }
3339
3340 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3341 {
3342 int r;
3343
3344 r = 0;
3345 switch (chip->chip_id) {
3346 case KVM_IRQCHIP_PIC_MASTER:
3347 spin_lock(&pic_irqchip(kvm)->lock);
3348 memcpy(&pic_irqchip(kvm)->pics[0],
3349 &chip->chip.pic,
3350 sizeof(struct kvm_pic_state));
3351 spin_unlock(&pic_irqchip(kvm)->lock);
3352 break;
3353 case KVM_IRQCHIP_PIC_SLAVE:
3354 spin_lock(&pic_irqchip(kvm)->lock);
3355 memcpy(&pic_irqchip(kvm)->pics[1],
3356 &chip->chip.pic,
3357 sizeof(struct kvm_pic_state));
3358 spin_unlock(&pic_irqchip(kvm)->lock);
3359 break;
3360 case KVM_IRQCHIP_IOAPIC:
3361 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3362 break;
3363 default:
3364 r = -EINVAL;
3365 break;
3366 }
3367 kvm_pic_update_irq(pic_irqchip(kvm));
3368 return r;
3369 }
3370
3371 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3372 {
3373 int r = 0;
3374
3375 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3376 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3377 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3378 return r;
3379 }
3380
3381 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3382 {
3383 int r = 0;
3384
3385 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3387 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3388 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3389 return r;
3390 }
3391
3392 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3393 {
3394 int r = 0;
3395
3396 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3397 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3398 sizeof(ps->channels));
3399 ps->flags = kvm->arch.vpit->pit_state.flags;
3400 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3401 memset(&ps->reserved, 0, sizeof(ps->reserved));
3402 return r;
3403 }
3404
3405 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3406 {
3407 int r = 0, start = 0;
3408 u32 prev_legacy, cur_legacy;
3409 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3410 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3411 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3412 if (!prev_legacy && cur_legacy)
3413 start = 1;
3414 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3415 sizeof(kvm->arch.vpit->pit_state.channels));
3416 kvm->arch.vpit->pit_state.flags = ps->flags;
3417 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3418 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3419 return r;
3420 }
3421
3422 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3423 struct kvm_reinject_control *control)
3424 {
3425 if (!kvm->arch.vpit)
3426 return -ENXIO;
3427 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3428 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3429 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3430 return 0;
3431 }
3432
3433 /*
3434 * Get (and clear) the dirty memory log for a memory slot.
3435 */
3436 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3437 struct kvm_dirty_log *log)
3438 {
3439 int r, i;
3440 struct kvm_memory_slot *memslot;
3441 unsigned long n;
3442 unsigned long is_dirty = 0;
3443
3444 mutex_lock(&kvm->slots_lock);
3445
3446 r = -EINVAL;
3447 if (log->slot >= KVM_MEMORY_SLOTS)
3448 goto out;
3449
3450 memslot = &kvm->memslots->memslots[log->slot];
3451 r = -ENOENT;
3452 if (!memslot->dirty_bitmap)
3453 goto out;
3454
3455 n = kvm_dirty_bitmap_bytes(memslot);
3456
3457 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3458 is_dirty = memslot->dirty_bitmap[i];
3459
3460 /* If nothing is dirty, don't bother messing with page tables. */
3461 if (is_dirty) {
3462 struct kvm_memslots *slots, *old_slots;
3463 unsigned long *dirty_bitmap;
3464
3465 dirty_bitmap = memslot->dirty_bitmap_head;
3466 if (memslot->dirty_bitmap == dirty_bitmap)
3467 dirty_bitmap += n / sizeof(long);
3468 memset(dirty_bitmap, 0, n);
3469
3470 r = -ENOMEM;
3471 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3472 if (!slots)
3473 goto out;
3474 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3475 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3476 slots->generation++;
3477
3478 old_slots = kvm->memslots;
3479 rcu_assign_pointer(kvm->memslots, slots);
3480 synchronize_srcu_expedited(&kvm->srcu);
3481 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3482 kfree(old_slots);
3483
3484 spin_lock(&kvm->mmu_lock);
3485 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3486 spin_unlock(&kvm->mmu_lock);
3487
3488 r = -EFAULT;
3489 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3490 goto out;
3491 } else {
3492 r = -EFAULT;
3493 if (clear_user(log->dirty_bitmap, n))
3494 goto out;
3495 }
3496
3497 r = 0;
3498 out:
3499 mutex_unlock(&kvm->slots_lock);
3500 return r;
3501 }
3502
3503 long kvm_arch_vm_ioctl(struct file *filp,
3504 unsigned int ioctl, unsigned long arg)
3505 {
3506 struct kvm *kvm = filp->private_data;
3507 void __user *argp = (void __user *)arg;
3508 int r = -ENOTTY;
3509 /*
3510 * This union makes it completely explicit to gcc-3.x
3511 * that these two variables' stack usage should be
3512 * combined, not added together.
3513 */
3514 union {
3515 struct kvm_pit_state ps;
3516 struct kvm_pit_state2 ps2;
3517 struct kvm_pit_config pit_config;
3518 } u;
3519
3520 switch (ioctl) {
3521 case KVM_SET_TSS_ADDR:
3522 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3523 if (r < 0)
3524 goto out;
3525 break;
3526 case KVM_SET_IDENTITY_MAP_ADDR: {
3527 u64 ident_addr;
3528
3529 r = -EFAULT;
3530 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3531 goto out;
3532 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3533 if (r < 0)
3534 goto out;
3535 break;
3536 }
3537 case KVM_SET_NR_MMU_PAGES:
3538 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3539 if (r)
3540 goto out;
3541 break;
3542 case KVM_GET_NR_MMU_PAGES:
3543 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3544 break;
3545 case KVM_CREATE_IRQCHIP: {
3546 struct kvm_pic *vpic;
3547
3548 mutex_lock(&kvm->lock);
3549 r = -EEXIST;
3550 if (kvm->arch.vpic)
3551 goto create_irqchip_unlock;
3552 r = -ENOMEM;
3553 vpic = kvm_create_pic(kvm);
3554 if (vpic) {
3555 r = kvm_ioapic_init(kvm);
3556 if (r) {
3557 mutex_lock(&kvm->slots_lock);
3558 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3559 &vpic->dev);
3560 mutex_unlock(&kvm->slots_lock);
3561 kfree(vpic);
3562 goto create_irqchip_unlock;
3563 }
3564 } else
3565 goto create_irqchip_unlock;
3566 smp_wmb();
3567 kvm->arch.vpic = vpic;
3568 smp_wmb();
3569 r = kvm_setup_default_irq_routing(kvm);
3570 if (r) {
3571 mutex_lock(&kvm->slots_lock);
3572 mutex_lock(&kvm->irq_lock);
3573 kvm_ioapic_destroy(kvm);
3574 kvm_destroy_pic(kvm);
3575 mutex_unlock(&kvm->irq_lock);
3576 mutex_unlock(&kvm->slots_lock);
3577 }
3578 create_irqchip_unlock:
3579 mutex_unlock(&kvm->lock);
3580 break;
3581 }
3582 case KVM_CREATE_PIT:
3583 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3584 goto create_pit;
3585 case KVM_CREATE_PIT2:
3586 r = -EFAULT;
3587 if (copy_from_user(&u.pit_config, argp,
3588 sizeof(struct kvm_pit_config)))
3589 goto out;
3590 create_pit:
3591 mutex_lock(&kvm->slots_lock);
3592 r = -EEXIST;
3593 if (kvm->arch.vpit)
3594 goto create_pit_unlock;
3595 r = -ENOMEM;
3596 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3597 if (kvm->arch.vpit)
3598 r = 0;
3599 create_pit_unlock:
3600 mutex_unlock(&kvm->slots_lock);
3601 break;
3602 case KVM_IRQ_LINE_STATUS:
3603 case KVM_IRQ_LINE: {
3604 struct kvm_irq_level irq_event;
3605
3606 r = -EFAULT;
3607 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3608 goto out;
3609 r = -ENXIO;
3610 if (irqchip_in_kernel(kvm)) {
3611 __s32 status;
3612 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3613 irq_event.irq, irq_event.level);
3614 if (ioctl == KVM_IRQ_LINE_STATUS) {
3615 r = -EFAULT;
3616 irq_event.status = status;
3617 if (copy_to_user(argp, &irq_event,
3618 sizeof irq_event))
3619 goto out;
3620 }
3621 r = 0;
3622 }
3623 break;
3624 }
3625 case KVM_GET_IRQCHIP: {
3626 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3627 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3628
3629 r = -ENOMEM;
3630 if (!chip)
3631 goto out;
3632 r = -EFAULT;
3633 if (copy_from_user(chip, argp, sizeof *chip))
3634 goto get_irqchip_out;
3635 r = -ENXIO;
3636 if (!irqchip_in_kernel(kvm))
3637 goto get_irqchip_out;
3638 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3639 if (r)
3640 goto get_irqchip_out;
3641 r = -EFAULT;
3642 if (copy_to_user(argp, chip, sizeof *chip))
3643 goto get_irqchip_out;
3644 r = 0;
3645 get_irqchip_out:
3646 kfree(chip);
3647 if (r)
3648 goto out;
3649 break;
3650 }
3651 case KVM_SET_IRQCHIP: {
3652 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3653 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3654
3655 r = -ENOMEM;
3656 if (!chip)
3657 goto out;
3658 r = -EFAULT;
3659 if (copy_from_user(chip, argp, sizeof *chip))
3660 goto set_irqchip_out;
3661 r = -ENXIO;
3662 if (!irqchip_in_kernel(kvm))
3663 goto set_irqchip_out;
3664 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3665 if (r)
3666 goto set_irqchip_out;
3667 r = 0;
3668 set_irqchip_out:
3669 kfree(chip);
3670 if (r)
3671 goto out;
3672 break;
3673 }
3674 case KVM_GET_PIT: {
3675 r = -EFAULT;
3676 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3677 goto out;
3678 r = -ENXIO;
3679 if (!kvm->arch.vpit)
3680 goto out;
3681 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3682 if (r)
3683 goto out;
3684 r = -EFAULT;
3685 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3686 goto out;
3687 r = 0;
3688 break;
3689 }
3690 case KVM_SET_PIT: {
3691 r = -EFAULT;
3692 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3693 goto out;
3694 r = -ENXIO;
3695 if (!kvm->arch.vpit)
3696 goto out;
3697 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3698 if (r)
3699 goto out;
3700 r = 0;
3701 break;
3702 }
3703 case KVM_GET_PIT2: {
3704 r = -ENXIO;
3705 if (!kvm->arch.vpit)
3706 goto out;
3707 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3708 if (r)
3709 goto out;
3710 r = -EFAULT;
3711 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3712 goto out;
3713 r = 0;
3714 break;
3715 }
3716 case KVM_SET_PIT2: {
3717 r = -EFAULT;
3718 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3719 goto out;
3720 r = -ENXIO;
3721 if (!kvm->arch.vpit)
3722 goto out;
3723 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3724 if (r)
3725 goto out;
3726 r = 0;
3727 break;
3728 }
3729 case KVM_REINJECT_CONTROL: {
3730 struct kvm_reinject_control control;
3731 r = -EFAULT;
3732 if (copy_from_user(&control, argp, sizeof(control)))
3733 goto out;
3734 r = kvm_vm_ioctl_reinject(kvm, &control);
3735 if (r)
3736 goto out;
3737 r = 0;
3738 break;
3739 }
3740 case KVM_XEN_HVM_CONFIG: {
3741 r = -EFAULT;
3742 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3743 sizeof(struct kvm_xen_hvm_config)))
3744 goto out;
3745 r = -EINVAL;
3746 if (kvm->arch.xen_hvm_config.flags)
3747 goto out;
3748 r = 0;
3749 break;
3750 }
3751 case KVM_SET_CLOCK: {
3752 struct kvm_clock_data user_ns;
3753 u64 now_ns;
3754 s64 delta;
3755
3756 r = -EFAULT;
3757 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3758 goto out;
3759
3760 r = -EINVAL;
3761 if (user_ns.flags)
3762 goto out;
3763
3764 r = 0;
3765 local_irq_disable();
3766 now_ns = get_kernel_ns();
3767 delta = user_ns.clock - now_ns;
3768 local_irq_enable();
3769 kvm->arch.kvmclock_offset = delta;
3770 break;
3771 }
3772 case KVM_GET_CLOCK: {
3773 struct kvm_clock_data user_ns;
3774 u64 now_ns;
3775
3776 local_irq_disable();
3777 now_ns = get_kernel_ns();
3778 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3779 local_irq_enable();
3780 user_ns.flags = 0;
3781 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3782
3783 r = -EFAULT;
3784 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3785 goto out;
3786 r = 0;
3787 break;
3788 }
3789
3790 default:
3791 ;
3792 }
3793 out:
3794 return r;
3795 }
3796
3797 static void kvm_init_msr_list(void)
3798 {
3799 u32 dummy[2];
3800 unsigned i, j;
3801
3802 /* skip the first msrs in the list. KVM-specific */
3803 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3804 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3805 continue;
3806 if (j < i)
3807 msrs_to_save[j] = msrs_to_save[i];
3808 j++;
3809 }
3810 num_msrs_to_save = j;
3811 }
3812
3813 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3814 const void *v)
3815 {
3816 int handled = 0;
3817 int n;
3818
3819 do {
3820 n = min(len, 8);
3821 if (!(vcpu->arch.apic &&
3822 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3823 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3824 break;
3825 handled += n;
3826 addr += n;
3827 len -= n;
3828 v += n;
3829 } while (len);
3830
3831 return handled;
3832 }
3833
3834 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3835 {
3836 int handled = 0;
3837 int n;
3838
3839 do {
3840 n = min(len, 8);
3841 if (!(vcpu->arch.apic &&
3842 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3843 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3844 break;
3845 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3846 handled += n;
3847 addr += n;
3848 len -= n;
3849 v += n;
3850 } while (len);
3851
3852 return handled;
3853 }
3854
3855 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3856 struct kvm_segment *var, int seg)
3857 {
3858 kvm_x86_ops->set_segment(vcpu, var, seg);
3859 }
3860
3861 void kvm_get_segment(struct kvm_vcpu *vcpu,
3862 struct kvm_segment *var, int seg)
3863 {
3864 kvm_x86_ops->get_segment(vcpu, var, seg);
3865 }
3866
3867 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3868 {
3869 return gpa;
3870 }
3871
3872 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3873 {
3874 gpa_t t_gpa;
3875 struct x86_exception exception;
3876
3877 BUG_ON(!mmu_is_nested(vcpu));
3878
3879 /* NPT walks are always user-walks */
3880 access |= PFERR_USER_MASK;
3881 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3882
3883 return t_gpa;
3884 }
3885
3886 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3887 struct x86_exception *exception)
3888 {
3889 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3890 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3891 }
3892
3893 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3894 struct x86_exception *exception)
3895 {
3896 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3897 access |= PFERR_FETCH_MASK;
3898 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3899 }
3900
3901 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3902 struct x86_exception *exception)
3903 {
3904 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3905 access |= PFERR_WRITE_MASK;
3906 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3907 }
3908
3909 /* uses this to access any guest's mapped memory without checking CPL */
3910 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3911 struct x86_exception *exception)
3912 {
3913 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3914 }
3915
3916 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3917 struct kvm_vcpu *vcpu, u32 access,
3918 struct x86_exception *exception)
3919 {
3920 void *data = val;
3921 int r = X86EMUL_CONTINUE;
3922
3923 while (bytes) {
3924 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3925 exception);
3926 unsigned offset = addr & (PAGE_SIZE-1);
3927 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3928 int ret;
3929
3930 if (gpa == UNMAPPED_GVA)
3931 return X86EMUL_PROPAGATE_FAULT;
3932 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3933 if (ret < 0) {
3934 r = X86EMUL_IO_NEEDED;
3935 goto out;
3936 }
3937
3938 bytes -= toread;
3939 data += toread;
3940 addr += toread;
3941 }
3942 out:
3943 return r;
3944 }
3945
3946 /* used for instruction fetching */
3947 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3948 gva_t addr, void *val, unsigned int bytes,
3949 struct x86_exception *exception)
3950 {
3951 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3952 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3953
3954 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3955 access | PFERR_FETCH_MASK,
3956 exception);
3957 }
3958
3959 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3960 gva_t addr, void *val, unsigned int bytes,
3961 struct x86_exception *exception)
3962 {
3963 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3964 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3965
3966 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3967 exception);
3968 }
3969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3970
3971 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3972 gva_t addr, void *val, unsigned int bytes,
3973 struct x86_exception *exception)
3974 {
3975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3976 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3977 }
3978
3979 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3980 gva_t addr, void *val,
3981 unsigned int bytes,
3982 struct x86_exception *exception)
3983 {
3984 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3985 void *data = val;
3986 int r = X86EMUL_CONTINUE;
3987
3988 while (bytes) {
3989 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3990 PFERR_WRITE_MASK,
3991 exception);
3992 unsigned offset = addr & (PAGE_SIZE-1);
3993 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3994 int ret;
3995
3996 if (gpa == UNMAPPED_GVA)
3997 return X86EMUL_PROPAGATE_FAULT;
3998 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3999 if (ret < 0) {
4000 r = X86EMUL_IO_NEEDED;
4001 goto out;
4002 }
4003
4004 bytes -= towrite;
4005 data += towrite;
4006 addr += towrite;
4007 }
4008 out:
4009 return r;
4010 }
4011 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4012
4013 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4014 gpa_t *gpa, struct x86_exception *exception,
4015 bool write)
4016 {
4017 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4018
4019 if (vcpu_match_mmio_gva(vcpu, gva) &&
4020 check_write_user_access(vcpu, write, access,
4021 vcpu->arch.access)) {
4022 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4023 (gva & (PAGE_SIZE - 1));
4024 trace_vcpu_match_mmio(gva, *gpa, write, false);
4025 return 1;
4026 }
4027
4028 if (write)
4029 access |= PFERR_WRITE_MASK;
4030
4031 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4032
4033 if (*gpa == UNMAPPED_GVA)
4034 return -1;
4035
4036 /* For APIC access vmexit */
4037 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4038 return 1;
4039
4040 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4041 trace_vcpu_match_mmio(gva, *gpa, write, true);
4042 return 1;
4043 }
4044
4045 return 0;
4046 }
4047
4048 static int emulator_read_emulated_onepage(unsigned long addr,
4049 void *val,
4050 unsigned int bytes,
4051 struct x86_exception *exception,
4052 struct kvm_vcpu *vcpu)
4053 {
4054 gpa_t gpa;
4055 int handled, ret;
4056
4057 if (vcpu->mmio_read_completed) {
4058 memcpy(val, vcpu->mmio_data, bytes);
4059 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4060 vcpu->mmio_phys_addr, *(u64 *)val);
4061 vcpu->mmio_read_completed = 0;
4062 return X86EMUL_CONTINUE;
4063 }
4064
4065 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, false);
4066
4067 if (ret < 0)
4068 return X86EMUL_PROPAGATE_FAULT;
4069
4070 if (ret)
4071 goto mmio;
4072
4073 if (!kvm_read_guest(vcpu->kvm, gpa, val, bytes))
4074 return X86EMUL_CONTINUE;
4075
4076 mmio:
4077 /*
4078 * Is this MMIO handled locally?
4079 */
4080 handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
4081
4082 if (handled == bytes)
4083 return X86EMUL_CONTINUE;
4084
4085 gpa += handled;
4086 bytes -= handled;
4087 val += handled;
4088
4089 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4090
4091 vcpu->mmio_needed = 1;
4092 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4093 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4094 vcpu->mmio_size = bytes;
4095 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4096 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
4097 vcpu->mmio_index = 0;
4098
4099 return X86EMUL_IO_NEEDED;
4100 }
4101
4102 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4103 unsigned long addr,
4104 void *val,
4105 unsigned int bytes,
4106 struct x86_exception *exception)
4107 {
4108 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4109
4110 /* Crossing a page boundary? */
4111 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4112 int rc, now;
4113
4114 now = -addr & ~PAGE_MASK;
4115 rc = emulator_read_emulated_onepage(addr, val, now, exception,
4116 vcpu);
4117 if (rc != X86EMUL_CONTINUE)
4118 return rc;
4119 addr += now;
4120 val += now;
4121 bytes -= now;
4122 }
4123 return emulator_read_emulated_onepage(addr, val, bytes, exception,
4124 vcpu);
4125 }
4126
4127 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4128 const void *val, int bytes)
4129 {
4130 int ret;
4131
4132 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4133 if (ret < 0)
4134 return 0;
4135 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4136 return 1;
4137 }
4138
4139 static int emulator_write_emulated_onepage(unsigned long addr,
4140 const void *val,
4141 unsigned int bytes,
4142 struct x86_exception *exception,
4143 struct kvm_vcpu *vcpu)
4144 {
4145 gpa_t gpa;
4146 int handled, ret;
4147
4148 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, true);
4149
4150 if (ret < 0)
4151 return X86EMUL_PROPAGATE_FAULT;
4152
4153 /* For APIC access vmexit */
4154 if (ret)
4155 goto mmio;
4156
4157 if (emulator_write_phys(vcpu, gpa, val, bytes))
4158 return X86EMUL_CONTINUE;
4159
4160 mmio:
4161 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4162 /*
4163 * Is this MMIO handled locally?
4164 */
4165 handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
4166 if (handled == bytes)
4167 return X86EMUL_CONTINUE;
4168
4169 gpa += handled;
4170 bytes -= handled;
4171 val += handled;
4172
4173 vcpu->mmio_needed = 1;
4174 memcpy(vcpu->mmio_data, val, bytes);
4175 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4176 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4177 vcpu->mmio_size = bytes;
4178 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4179 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
4180 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4181 vcpu->mmio_index = 0;
4182
4183 return X86EMUL_CONTINUE;
4184 }
4185
4186 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4187 unsigned long addr,
4188 const void *val,
4189 unsigned int bytes,
4190 struct x86_exception *exception)
4191 {
4192 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4193
4194 /* Crossing a page boundary? */
4195 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4196 int rc, now;
4197
4198 now = -addr & ~PAGE_MASK;
4199 rc = emulator_write_emulated_onepage(addr, val, now, exception,
4200 vcpu);
4201 if (rc != X86EMUL_CONTINUE)
4202 return rc;
4203 addr += now;
4204 val += now;
4205 bytes -= now;
4206 }
4207 return emulator_write_emulated_onepage(addr, val, bytes, exception,
4208 vcpu);
4209 }
4210
4211 #define CMPXCHG_TYPE(t, ptr, old, new) \
4212 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4213
4214 #ifdef CONFIG_X86_64
4215 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4216 #else
4217 # define CMPXCHG64(ptr, old, new) \
4218 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4219 #endif
4220
4221 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4222 unsigned long addr,
4223 const void *old,
4224 const void *new,
4225 unsigned int bytes,
4226 struct x86_exception *exception)
4227 {
4228 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4229 gpa_t gpa;
4230 struct page *page;
4231 char *kaddr;
4232 bool exchanged;
4233
4234 /* guests cmpxchg8b have to be emulated atomically */
4235 if (bytes > 8 || (bytes & (bytes - 1)))
4236 goto emul_write;
4237
4238 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4239
4240 if (gpa == UNMAPPED_GVA ||
4241 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4242 goto emul_write;
4243
4244 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4245 goto emul_write;
4246
4247 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4248 if (is_error_page(page)) {
4249 kvm_release_page_clean(page);
4250 goto emul_write;
4251 }
4252
4253 kaddr = kmap_atomic(page, KM_USER0);
4254 kaddr += offset_in_page(gpa);
4255 switch (bytes) {
4256 case 1:
4257 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4258 break;
4259 case 2:
4260 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4261 break;
4262 case 4:
4263 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4264 break;
4265 case 8:
4266 exchanged = CMPXCHG64(kaddr, old, new);
4267 break;
4268 default:
4269 BUG();
4270 }
4271 kunmap_atomic(kaddr, KM_USER0);
4272 kvm_release_page_dirty(page);
4273
4274 if (!exchanged)
4275 return X86EMUL_CMPXCHG_FAILED;
4276
4277 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4278
4279 return X86EMUL_CONTINUE;
4280
4281 emul_write:
4282 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4283
4284 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4285 }
4286
4287 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4288 {
4289 /* TODO: String I/O for in kernel device */
4290 int r;
4291
4292 if (vcpu->arch.pio.in)
4293 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4294 vcpu->arch.pio.size, pd);
4295 else
4296 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4297 vcpu->arch.pio.port, vcpu->arch.pio.size,
4298 pd);
4299 return r;
4300 }
4301
4302
4303 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4304 int size, unsigned short port, void *val,
4305 unsigned int count)
4306 {
4307 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4308
4309 if (vcpu->arch.pio.count)
4310 goto data_avail;
4311
4312 trace_kvm_pio(0, port, size, count);
4313
4314 vcpu->arch.pio.port = port;
4315 vcpu->arch.pio.in = 1;
4316 vcpu->arch.pio.count = count;
4317 vcpu->arch.pio.size = size;
4318
4319 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4320 data_avail:
4321 memcpy(val, vcpu->arch.pio_data, size * count);
4322 vcpu->arch.pio.count = 0;
4323 return 1;
4324 }
4325
4326 vcpu->run->exit_reason = KVM_EXIT_IO;
4327 vcpu->run->io.direction = KVM_EXIT_IO_IN;
4328 vcpu->run->io.size = size;
4329 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4330 vcpu->run->io.count = count;
4331 vcpu->run->io.port = port;
4332
4333 return 0;
4334 }
4335
4336 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4337 int size, unsigned short port,
4338 const void *val, unsigned int count)
4339 {
4340 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4341
4342 trace_kvm_pio(1, port, size, count);
4343
4344 vcpu->arch.pio.port = port;
4345 vcpu->arch.pio.in = 0;
4346 vcpu->arch.pio.count = count;
4347 vcpu->arch.pio.size = size;
4348
4349 memcpy(vcpu->arch.pio_data, val, size * count);
4350
4351 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4352 vcpu->arch.pio.count = 0;
4353 return 1;
4354 }
4355
4356 vcpu->run->exit_reason = KVM_EXIT_IO;
4357 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4358 vcpu->run->io.size = size;
4359 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4360 vcpu->run->io.count = count;
4361 vcpu->run->io.port = port;
4362
4363 return 0;
4364 }
4365
4366 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4367 {
4368 return kvm_x86_ops->get_segment_base(vcpu, seg);
4369 }
4370
4371 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4372 {
4373 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4374 }
4375
4376 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4377 {
4378 if (!need_emulate_wbinvd(vcpu))
4379 return X86EMUL_CONTINUE;
4380
4381 if (kvm_x86_ops->has_wbinvd_exit()) {
4382 int cpu = get_cpu();
4383
4384 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4385 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4386 wbinvd_ipi, NULL, 1);
4387 put_cpu();
4388 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4389 } else
4390 wbinvd();
4391 return X86EMUL_CONTINUE;
4392 }
4393 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4394
4395 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4396 {
4397 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4398 }
4399
4400 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4401 {
4402 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4403 }
4404
4405 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4406 {
4407
4408 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4409 }
4410
4411 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4412 {
4413 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4414 }
4415
4416 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4417 {
4418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4419 unsigned long value;
4420
4421 switch (cr) {
4422 case 0:
4423 value = kvm_read_cr0(vcpu);
4424 break;
4425 case 2:
4426 value = vcpu->arch.cr2;
4427 break;
4428 case 3:
4429 value = kvm_read_cr3(vcpu);
4430 break;
4431 case 4:
4432 value = kvm_read_cr4(vcpu);
4433 break;
4434 case 8:
4435 value = kvm_get_cr8(vcpu);
4436 break;
4437 default:
4438 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4439 return 0;
4440 }
4441
4442 return value;
4443 }
4444
4445 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4446 {
4447 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4448 int res = 0;
4449
4450 switch (cr) {
4451 case 0:
4452 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4453 break;
4454 case 2:
4455 vcpu->arch.cr2 = val;
4456 break;
4457 case 3:
4458 res = kvm_set_cr3(vcpu, val);
4459 break;
4460 case 4:
4461 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4462 break;
4463 case 8:
4464 res = kvm_set_cr8(vcpu, val);
4465 break;
4466 default:
4467 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4468 res = -1;
4469 }
4470
4471 return res;
4472 }
4473
4474 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4475 {
4476 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4477 }
4478
4479 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4480 {
4481 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4482 }
4483
4484 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4485 {
4486 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4487 }
4488
4489 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4490 {
4491 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4492 }
4493
4494 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4495 {
4496 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4497 }
4498
4499 static unsigned long emulator_get_cached_segment_base(
4500 struct x86_emulate_ctxt *ctxt, int seg)
4501 {
4502 return get_segment_base(emul_to_vcpu(ctxt), seg);
4503 }
4504
4505 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4506 struct desc_struct *desc, u32 *base3,
4507 int seg)
4508 {
4509 struct kvm_segment var;
4510
4511 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4512 *selector = var.selector;
4513
4514 if (var.unusable)
4515 return false;
4516
4517 if (var.g)
4518 var.limit >>= 12;
4519 set_desc_limit(desc, var.limit);
4520 set_desc_base(desc, (unsigned long)var.base);
4521 #ifdef CONFIG_X86_64
4522 if (base3)
4523 *base3 = var.base >> 32;
4524 #endif
4525 desc->type = var.type;
4526 desc->s = var.s;
4527 desc->dpl = var.dpl;
4528 desc->p = var.present;
4529 desc->avl = var.avl;
4530 desc->l = var.l;
4531 desc->d = var.db;
4532 desc->g = var.g;
4533
4534 return true;
4535 }
4536
4537 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4538 struct desc_struct *desc, u32 base3,
4539 int seg)
4540 {
4541 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4542 struct kvm_segment var;
4543
4544 var.selector = selector;
4545 var.base = get_desc_base(desc);
4546 #ifdef CONFIG_X86_64
4547 var.base |= ((u64)base3) << 32;
4548 #endif
4549 var.limit = get_desc_limit(desc);
4550 if (desc->g)
4551 var.limit = (var.limit << 12) | 0xfff;
4552 var.type = desc->type;
4553 var.present = desc->p;
4554 var.dpl = desc->dpl;
4555 var.db = desc->d;
4556 var.s = desc->s;
4557 var.l = desc->l;
4558 var.g = desc->g;
4559 var.avl = desc->avl;
4560 var.present = desc->p;
4561 var.unusable = !var.present;
4562 var.padding = 0;
4563
4564 kvm_set_segment(vcpu, &var, seg);
4565 return;
4566 }
4567
4568 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4569 u32 msr_index, u64 *pdata)
4570 {
4571 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4572 }
4573
4574 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4575 u32 msr_index, u64 data)
4576 {
4577 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4578 }
4579
4580 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4581 {
4582 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4583 }
4584
4585 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4586 {
4587 preempt_disable();
4588 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4589 /*
4590 * CR0.TS may reference the host fpu state, not the guest fpu state,
4591 * so it may be clear at this point.
4592 */
4593 clts();
4594 }
4595
4596 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4597 {
4598 preempt_enable();
4599 }
4600
4601 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4602 struct x86_instruction_info *info,
4603 enum x86_intercept_stage stage)
4604 {
4605 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4606 }
4607
4608 static struct x86_emulate_ops emulate_ops = {
4609 .read_std = kvm_read_guest_virt_system,
4610 .write_std = kvm_write_guest_virt_system,
4611 .fetch = kvm_fetch_guest_virt,
4612 .read_emulated = emulator_read_emulated,
4613 .write_emulated = emulator_write_emulated,
4614 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4615 .invlpg = emulator_invlpg,
4616 .pio_in_emulated = emulator_pio_in_emulated,
4617 .pio_out_emulated = emulator_pio_out_emulated,
4618 .get_segment = emulator_get_segment,
4619 .set_segment = emulator_set_segment,
4620 .get_cached_segment_base = emulator_get_cached_segment_base,
4621 .get_gdt = emulator_get_gdt,
4622 .get_idt = emulator_get_idt,
4623 .set_gdt = emulator_set_gdt,
4624 .set_idt = emulator_set_idt,
4625 .get_cr = emulator_get_cr,
4626 .set_cr = emulator_set_cr,
4627 .cpl = emulator_get_cpl,
4628 .get_dr = emulator_get_dr,
4629 .set_dr = emulator_set_dr,
4630 .set_msr = emulator_set_msr,
4631 .get_msr = emulator_get_msr,
4632 .halt = emulator_halt,
4633 .wbinvd = emulator_wbinvd,
4634 .fix_hypercall = emulator_fix_hypercall,
4635 .get_fpu = emulator_get_fpu,
4636 .put_fpu = emulator_put_fpu,
4637 .intercept = emulator_intercept,
4638 };
4639
4640 static void cache_all_regs(struct kvm_vcpu *vcpu)
4641 {
4642 kvm_register_read(vcpu, VCPU_REGS_RAX);
4643 kvm_register_read(vcpu, VCPU_REGS_RSP);
4644 kvm_register_read(vcpu, VCPU_REGS_RIP);
4645 vcpu->arch.regs_dirty = ~0;
4646 }
4647
4648 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4649 {
4650 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4651 /*
4652 * an sti; sti; sequence only disable interrupts for the first
4653 * instruction. So, if the last instruction, be it emulated or
4654 * not, left the system with the INT_STI flag enabled, it
4655 * means that the last instruction is an sti. We should not
4656 * leave the flag on in this case. The same goes for mov ss
4657 */
4658 if (!(int_shadow & mask))
4659 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4660 }
4661
4662 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4663 {
4664 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4665 if (ctxt->exception.vector == PF_VECTOR)
4666 kvm_propagate_fault(vcpu, &ctxt->exception);
4667 else if (ctxt->exception.error_code_valid)
4668 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4669 ctxt->exception.error_code);
4670 else
4671 kvm_queue_exception(vcpu, ctxt->exception.vector);
4672 }
4673
4674 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4675 const unsigned long *regs)
4676 {
4677 memset(&ctxt->twobyte, 0,
4678 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4679 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4680
4681 ctxt->fetch.start = 0;
4682 ctxt->fetch.end = 0;
4683 ctxt->io_read.pos = 0;
4684 ctxt->io_read.end = 0;
4685 ctxt->mem_read.pos = 0;
4686 ctxt->mem_read.end = 0;
4687 }
4688
4689 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4690 {
4691 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4692 int cs_db, cs_l;
4693
4694 /*
4695 * TODO: fix emulate.c to use guest_read/write_register
4696 * instead of direct ->regs accesses, can save hundred cycles
4697 * on Intel for instructions that don't read/change RSP, for
4698 * for example.
4699 */
4700 cache_all_regs(vcpu);
4701
4702 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4703
4704 ctxt->eflags = kvm_get_rflags(vcpu);
4705 ctxt->eip = kvm_rip_read(vcpu);
4706 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4707 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4708 cs_l ? X86EMUL_MODE_PROT64 :
4709 cs_db ? X86EMUL_MODE_PROT32 :
4710 X86EMUL_MODE_PROT16;
4711 ctxt->guest_mode = is_guest_mode(vcpu);
4712
4713 init_decode_cache(ctxt, vcpu->arch.regs);
4714 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4715 }
4716
4717 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4718 {
4719 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4720 int ret;
4721
4722 init_emulate_ctxt(vcpu);
4723
4724 ctxt->op_bytes = 2;
4725 ctxt->ad_bytes = 2;
4726 ctxt->_eip = ctxt->eip + inc_eip;
4727 ret = emulate_int_real(ctxt, irq);
4728
4729 if (ret != X86EMUL_CONTINUE)
4730 return EMULATE_FAIL;
4731
4732 ctxt->eip = ctxt->_eip;
4733 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4734 kvm_rip_write(vcpu, ctxt->eip);
4735 kvm_set_rflags(vcpu, ctxt->eflags);
4736
4737 if (irq == NMI_VECTOR)
4738 vcpu->arch.nmi_pending = false;
4739 else
4740 vcpu->arch.interrupt.pending = false;
4741
4742 return EMULATE_DONE;
4743 }
4744 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4745
4746 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4747 {
4748 int r = EMULATE_DONE;
4749
4750 ++vcpu->stat.insn_emulation_fail;
4751 trace_kvm_emulate_insn_failed(vcpu);
4752 if (!is_guest_mode(vcpu)) {
4753 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4754 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4755 vcpu->run->internal.ndata = 0;
4756 r = EMULATE_FAIL;
4757 }
4758 kvm_queue_exception(vcpu, UD_VECTOR);
4759
4760 return r;
4761 }
4762
4763 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4764 {
4765 gpa_t gpa;
4766
4767 if (tdp_enabled)
4768 return false;
4769
4770 /*
4771 * if emulation was due to access to shadowed page table
4772 * and it failed try to unshadow page and re-entetr the
4773 * guest to let CPU execute the instruction.
4774 */
4775 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4776 return true;
4777
4778 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4779
4780 if (gpa == UNMAPPED_GVA)
4781 return true; /* let cpu generate fault */
4782
4783 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4784 return true;
4785
4786 return false;
4787 }
4788
4789 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4790 unsigned long cr2,
4791 int emulation_type,
4792 void *insn,
4793 int insn_len)
4794 {
4795 int r;
4796 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4797 bool writeback = true;
4798
4799 kvm_clear_exception_queue(vcpu);
4800
4801 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4802 init_emulate_ctxt(vcpu);
4803 ctxt->interruptibility = 0;
4804 ctxt->have_exception = false;
4805 ctxt->perm_ok = false;
4806
4807 ctxt->only_vendor_specific_insn
4808 = emulation_type & EMULTYPE_TRAP_UD;
4809
4810 r = x86_decode_insn(ctxt, insn, insn_len);
4811
4812 trace_kvm_emulate_insn_start(vcpu);
4813 ++vcpu->stat.insn_emulation;
4814 if (r) {
4815 if (emulation_type & EMULTYPE_TRAP_UD)
4816 return EMULATE_FAIL;
4817 if (reexecute_instruction(vcpu, cr2))
4818 return EMULATE_DONE;
4819 if (emulation_type & EMULTYPE_SKIP)
4820 return EMULATE_FAIL;
4821 return handle_emulation_failure(vcpu);
4822 }
4823 }
4824
4825 if (emulation_type & EMULTYPE_SKIP) {
4826 kvm_rip_write(vcpu, ctxt->_eip);
4827 return EMULATE_DONE;
4828 }
4829
4830 /* this is needed for vmware backdoor interface to work since it
4831 changes registers values during IO operation */
4832 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4833 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4834 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4835 }
4836
4837 restart:
4838 r = x86_emulate_insn(ctxt);
4839
4840 if (r == EMULATION_INTERCEPTED)
4841 return EMULATE_DONE;
4842
4843 if (r == EMULATION_FAILED) {
4844 if (reexecute_instruction(vcpu, cr2))
4845 return EMULATE_DONE;
4846
4847 return handle_emulation_failure(vcpu);
4848 }
4849
4850 if (ctxt->have_exception) {
4851 inject_emulated_exception(vcpu);
4852 r = EMULATE_DONE;
4853 } else if (vcpu->arch.pio.count) {
4854 if (!vcpu->arch.pio.in)
4855 vcpu->arch.pio.count = 0;
4856 else
4857 writeback = false;
4858 r = EMULATE_DO_MMIO;
4859 } else if (vcpu->mmio_needed) {
4860 if (!vcpu->mmio_is_write)
4861 writeback = false;
4862 r = EMULATE_DO_MMIO;
4863 } else if (r == EMULATION_RESTART)
4864 goto restart;
4865 else
4866 r = EMULATE_DONE;
4867
4868 if (writeback) {
4869 toggle_interruptibility(vcpu, ctxt->interruptibility);
4870 kvm_set_rflags(vcpu, ctxt->eflags);
4871 kvm_make_request(KVM_REQ_EVENT, vcpu);
4872 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4873 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4874 kvm_rip_write(vcpu, ctxt->eip);
4875 } else
4876 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4877
4878 return r;
4879 }
4880 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4881
4882 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4883 {
4884 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4885 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4886 size, port, &val, 1);
4887 /* do not return to emulator after return from userspace */
4888 vcpu->arch.pio.count = 0;
4889 return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4892
4893 static void tsc_bad(void *info)
4894 {
4895 __this_cpu_write(cpu_tsc_khz, 0);
4896 }
4897
4898 static void tsc_khz_changed(void *data)
4899 {
4900 struct cpufreq_freqs *freq = data;
4901 unsigned long khz = 0;
4902
4903 if (data)
4904 khz = freq->new;
4905 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4906 khz = cpufreq_quick_get(raw_smp_processor_id());
4907 if (!khz)
4908 khz = tsc_khz;
4909 __this_cpu_write(cpu_tsc_khz, khz);
4910 }
4911
4912 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4913 void *data)
4914 {
4915 struct cpufreq_freqs *freq = data;
4916 struct kvm *kvm;
4917 struct kvm_vcpu *vcpu;
4918 int i, send_ipi = 0;
4919
4920 /*
4921 * We allow guests to temporarily run on slowing clocks,
4922 * provided we notify them after, or to run on accelerating
4923 * clocks, provided we notify them before. Thus time never
4924 * goes backwards.
4925 *
4926 * However, we have a problem. We can't atomically update
4927 * the frequency of a given CPU from this function; it is
4928 * merely a notifier, which can be called from any CPU.
4929 * Changing the TSC frequency at arbitrary points in time
4930 * requires a recomputation of local variables related to
4931 * the TSC for each VCPU. We must flag these local variables
4932 * to be updated and be sure the update takes place with the
4933 * new frequency before any guests proceed.
4934 *
4935 * Unfortunately, the combination of hotplug CPU and frequency
4936 * change creates an intractable locking scenario; the order
4937 * of when these callouts happen is undefined with respect to
4938 * CPU hotplug, and they can race with each other. As such,
4939 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4940 * undefined; you can actually have a CPU frequency change take
4941 * place in between the computation of X and the setting of the
4942 * variable. To protect against this problem, all updates of
4943 * the per_cpu tsc_khz variable are done in an interrupt
4944 * protected IPI, and all callers wishing to update the value
4945 * must wait for a synchronous IPI to complete (which is trivial
4946 * if the caller is on the CPU already). This establishes the
4947 * necessary total order on variable updates.
4948 *
4949 * Note that because a guest time update may take place
4950 * anytime after the setting of the VCPU's request bit, the
4951 * correct TSC value must be set before the request. However,
4952 * to ensure the update actually makes it to any guest which
4953 * starts running in hardware virtualization between the set
4954 * and the acquisition of the spinlock, we must also ping the
4955 * CPU after setting the request bit.
4956 *
4957 */
4958
4959 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4960 return 0;
4961 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4962 return 0;
4963
4964 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4965
4966 raw_spin_lock(&kvm_lock);
4967 list_for_each_entry(kvm, &vm_list, vm_list) {
4968 kvm_for_each_vcpu(i, vcpu, kvm) {
4969 if (vcpu->cpu != freq->cpu)
4970 continue;
4971 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4972 if (vcpu->cpu != smp_processor_id())
4973 send_ipi = 1;
4974 }
4975 }
4976 raw_spin_unlock(&kvm_lock);
4977
4978 if (freq->old < freq->new && send_ipi) {
4979 /*
4980 * We upscale the frequency. Must make the guest
4981 * doesn't see old kvmclock values while running with
4982 * the new frequency, otherwise we risk the guest sees
4983 * time go backwards.
4984 *
4985 * In case we update the frequency for another cpu
4986 * (which might be in guest context) send an interrupt
4987 * to kick the cpu out of guest context. Next time
4988 * guest context is entered kvmclock will be updated,
4989 * so the guest will not see stale values.
4990 */
4991 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4992 }
4993 return 0;
4994 }
4995
4996 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4997 .notifier_call = kvmclock_cpufreq_notifier
4998 };
4999
5000 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5001 unsigned long action, void *hcpu)
5002 {
5003 unsigned int cpu = (unsigned long)hcpu;
5004
5005 switch (action) {
5006 case CPU_ONLINE:
5007 case CPU_DOWN_FAILED:
5008 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5009 break;
5010 case CPU_DOWN_PREPARE:
5011 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5012 break;
5013 }
5014 return NOTIFY_OK;
5015 }
5016
5017 static struct notifier_block kvmclock_cpu_notifier_block = {
5018 .notifier_call = kvmclock_cpu_notifier,
5019 .priority = -INT_MAX
5020 };
5021
5022 static void kvm_timer_init(void)
5023 {
5024 int cpu;
5025
5026 max_tsc_khz = tsc_khz;
5027 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5028 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5029 #ifdef CONFIG_CPU_FREQ
5030 struct cpufreq_policy policy;
5031 memset(&policy, 0, sizeof(policy));
5032 cpu = get_cpu();
5033 cpufreq_get_policy(&policy, cpu);
5034 if (policy.cpuinfo.max_freq)
5035 max_tsc_khz = policy.cpuinfo.max_freq;
5036 put_cpu();
5037 #endif
5038 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5039 CPUFREQ_TRANSITION_NOTIFIER);
5040 }
5041 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5042 for_each_online_cpu(cpu)
5043 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5044 }
5045
5046 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5047
5048 static int kvm_is_in_guest(void)
5049 {
5050 return percpu_read(current_vcpu) != NULL;
5051 }
5052
5053 static int kvm_is_user_mode(void)
5054 {
5055 int user_mode = 3;
5056
5057 if (percpu_read(current_vcpu))
5058 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5059
5060 return user_mode != 0;
5061 }
5062
5063 static unsigned long kvm_get_guest_ip(void)
5064 {
5065 unsigned long ip = 0;
5066
5067 if (percpu_read(current_vcpu))
5068 ip = kvm_rip_read(percpu_read(current_vcpu));
5069
5070 return ip;
5071 }
5072
5073 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5074 .is_in_guest = kvm_is_in_guest,
5075 .is_user_mode = kvm_is_user_mode,
5076 .get_guest_ip = kvm_get_guest_ip,
5077 };
5078
5079 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5080 {
5081 percpu_write(current_vcpu, vcpu);
5082 }
5083 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5084
5085 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5086 {
5087 percpu_write(current_vcpu, NULL);
5088 }
5089 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5090
5091 static void kvm_set_mmio_spte_mask(void)
5092 {
5093 u64 mask;
5094 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5095
5096 /*
5097 * Set the reserved bits and the present bit of an paging-structure
5098 * entry to generate page fault with PFER.RSV = 1.
5099 */
5100 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5101 mask |= 1ull;
5102
5103 #ifdef CONFIG_X86_64
5104 /*
5105 * If reserved bit is not supported, clear the present bit to disable
5106 * mmio page fault.
5107 */
5108 if (maxphyaddr == 52)
5109 mask &= ~1ull;
5110 #endif
5111
5112 kvm_mmu_set_mmio_spte_mask(mask);
5113 }
5114
5115 int kvm_arch_init(void *opaque)
5116 {
5117 int r;
5118 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5119
5120 if (kvm_x86_ops) {
5121 printk(KERN_ERR "kvm: already loaded the other module\n");
5122 r = -EEXIST;
5123 goto out;
5124 }
5125
5126 if (!ops->cpu_has_kvm_support()) {
5127 printk(KERN_ERR "kvm: no hardware support\n");
5128 r = -EOPNOTSUPP;
5129 goto out;
5130 }
5131 if (ops->disabled_by_bios()) {
5132 printk(KERN_ERR "kvm: disabled by bios\n");
5133 r = -EOPNOTSUPP;
5134 goto out;
5135 }
5136
5137 r = kvm_mmu_module_init();
5138 if (r)
5139 goto out;
5140
5141 kvm_set_mmio_spte_mask();
5142 kvm_init_msr_list();
5143
5144 kvm_x86_ops = ops;
5145 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5146 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5147
5148 kvm_timer_init();
5149
5150 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5151
5152 if (cpu_has_xsave)
5153 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5154
5155 return 0;
5156
5157 out:
5158 return r;
5159 }
5160
5161 void kvm_arch_exit(void)
5162 {
5163 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5164
5165 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5166 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5167 CPUFREQ_TRANSITION_NOTIFIER);
5168 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5169 kvm_x86_ops = NULL;
5170 kvm_mmu_module_exit();
5171 }
5172
5173 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5174 {
5175 ++vcpu->stat.halt_exits;
5176 if (irqchip_in_kernel(vcpu->kvm)) {
5177 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5178 return 1;
5179 } else {
5180 vcpu->run->exit_reason = KVM_EXIT_HLT;
5181 return 0;
5182 }
5183 }
5184 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5185
5186 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5187 unsigned long a1)
5188 {
5189 if (is_long_mode(vcpu))
5190 return a0;
5191 else
5192 return a0 | ((gpa_t)a1 << 32);
5193 }
5194
5195 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5196 {
5197 u64 param, ingpa, outgpa, ret;
5198 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5199 bool fast, longmode;
5200 int cs_db, cs_l;
5201
5202 /*
5203 * hypercall generates UD from non zero cpl and real mode
5204 * per HYPER-V spec
5205 */
5206 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5207 kvm_queue_exception(vcpu, UD_VECTOR);
5208 return 0;
5209 }
5210
5211 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5212 longmode = is_long_mode(vcpu) && cs_l == 1;
5213
5214 if (!longmode) {
5215 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5216 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5217 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5218 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5219 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5220 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5221 }
5222 #ifdef CONFIG_X86_64
5223 else {
5224 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5225 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5226 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5227 }
5228 #endif
5229
5230 code = param & 0xffff;
5231 fast = (param >> 16) & 0x1;
5232 rep_cnt = (param >> 32) & 0xfff;
5233 rep_idx = (param >> 48) & 0xfff;
5234
5235 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5236
5237 switch (code) {
5238 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5239 kvm_vcpu_on_spin(vcpu);
5240 break;
5241 default:
5242 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5243 break;
5244 }
5245
5246 ret = res | (((u64)rep_done & 0xfff) << 32);
5247 if (longmode) {
5248 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5249 } else {
5250 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5251 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5252 }
5253
5254 return 1;
5255 }
5256
5257 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5258 {
5259 unsigned long nr, a0, a1, a2, a3, ret;
5260 int r = 1;
5261
5262 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5263 return kvm_hv_hypercall(vcpu);
5264
5265 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5266 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5267 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5268 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5269 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5270
5271 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5272
5273 if (!is_long_mode(vcpu)) {
5274 nr &= 0xFFFFFFFF;
5275 a0 &= 0xFFFFFFFF;
5276 a1 &= 0xFFFFFFFF;
5277 a2 &= 0xFFFFFFFF;
5278 a3 &= 0xFFFFFFFF;
5279 }
5280
5281 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5282 ret = -KVM_EPERM;
5283 goto out;
5284 }
5285
5286 switch (nr) {
5287 case KVM_HC_VAPIC_POLL_IRQ:
5288 ret = 0;
5289 break;
5290 case KVM_HC_MMU_OP:
5291 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5292 break;
5293 default:
5294 ret = -KVM_ENOSYS;
5295 break;
5296 }
5297 out:
5298 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5299 ++vcpu->stat.hypercalls;
5300 return r;
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5303
5304 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5305 {
5306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5307 char instruction[3];
5308 unsigned long rip = kvm_rip_read(vcpu);
5309
5310 /*
5311 * Blow out the MMU to ensure that no other VCPU has an active mapping
5312 * to ensure that the updated hypercall appears atomically across all
5313 * VCPUs.
5314 */
5315 kvm_mmu_zap_all(vcpu->kvm);
5316
5317 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5318
5319 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5320 }
5321
5322 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5323 {
5324 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5325 int j, nent = vcpu->arch.cpuid_nent;
5326
5327 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5328 /* when no next entry is found, the current entry[i] is reselected */
5329 for (j = i + 1; ; j = (j + 1) % nent) {
5330 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5331 if (ej->function == e->function) {
5332 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5333 return j;
5334 }
5335 }
5336 return 0; /* silence gcc, even though control never reaches here */
5337 }
5338
5339 /* find an entry with matching function, matching index (if needed), and that
5340 * should be read next (if it's stateful) */
5341 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5342 u32 function, u32 index)
5343 {
5344 if (e->function != function)
5345 return 0;
5346 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5347 return 0;
5348 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5349 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5350 return 0;
5351 return 1;
5352 }
5353
5354 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5355 u32 function, u32 index)
5356 {
5357 int i;
5358 struct kvm_cpuid_entry2 *best = NULL;
5359
5360 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5361 struct kvm_cpuid_entry2 *e;
5362
5363 e = &vcpu->arch.cpuid_entries[i];
5364 if (is_matching_cpuid_entry(e, function, index)) {
5365 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5366 move_to_next_stateful_cpuid_entry(vcpu, i);
5367 best = e;
5368 break;
5369 }
5370 }
5371 return best;
5372 }
5373 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5374
5375 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5376 {
5377 struct kvm_cpuid_entry2 *best;
5378
5379 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5380 if (!best || best->eax < 0x80000008)
5381 goto not_found;
5382 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5383 if (best)
5384 return best->eax & 0xff;
5385 not_found:
5386 return 36;
5387 }
5388
5389 /*
5390 * If no match is found, check whether we exceed the vCPU's limit
5391 * and return the content of the highest valid _standard_ leaf instead.
5392 * This is to satisfy the CPUID specification.
5393 */
5394 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5395 u32 function, u32 index)
5396 {
5397 struct kvm_cpuid_entry2 *maxlevel;
5398
5399 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5400 if (!maxlevel || maxlevel->eax >= function)
5401 return NULL;
5402 if (function & 0x80000000) {
5403 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5404 if (!maxlevel)
5405 return NULL;
5406 }
5407 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5408 }
5409
5410 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5411 {
5412 u32 function, index;
5413 struct kvm_cpuid_entry2 *best;
5414
5415 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5416 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5417 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5418 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5419 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5420 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5421 best = kvm_find_cpuid_entry(vcpu, function, index);
5422
5423 if (!best)
5424 best = check_cpuid_limit(vcpu, function, index);
5425
5426 if (best) {
5427 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5428 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5429 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5430 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5431 }
5432 kvm_x86_ops->skip_emulated_instruction(vcpu);
5433 trace_kvm_cpuid(function,
5434 kvm_register_read(vcpu, VCPU_REGS_RAX),
5435 kvm_register_read(vcpu, VCPU_REGS_RBX),
5436 kvm_register_read(vcpu, VCPU_REGS_RCX),
5437 kvm_register_read(vcpu, VCPU_REGS_RDX));
5438 }
5439 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5440
5441 /*
5442 * Check if userspace requested an interrupt window, and that the
5443 * interrupt window is open.
5444 *
5445 * No need to exit to userspace if we already have an interrupt queued.
5446 */
5447 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5448 {
5449 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5450 vcpu->run->request_interrupt_window &&
5451 kvm_arch_interrupt_allowed(vcpu));
5452 }
5453
5454 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5455 {
5456 struct kvm_run *kvm_run = vcpu->run;
5457
5458 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5459 kvm_run->cr8 = kvm_get_cr8(vcpu);
5460 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5461 if (irqchip_in_kernel(vcpu->kvm))
5462 kvm_run->ready_for_interrupt_injection = 1;
5463 else
5464 kvm_run->ready_for_interrupt_injection =
5465 kvm_arch_interrupt_allowed(vcpu) &&
5466 !kvm_cpu_has_interrupt(vcpu) &&
5467 !kvm_event_needs_reinjection(vcpu);
5468 }
5469
5470 static void vapic_enter(struct kvm_vcpu *vcpu)
5471 {
5472 struct kvm_lapic *apic = vcpu->arch.apic;
5473 struct page *page;
5474
5475 if (!apic || !apic->vapic_addr)
5476 return;
5477
5478 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5479
5480 vcpu->arch.apic->vapic_page = page;
5481 }
5482
5483 static void vapic_exit(struct kvm_vcpu *vcpu)
5484 {
5485 struct kvm_lapic *apic = vcpu->arch.apic;
5486 int idx;
5487
5488 if (!apic || !apic->vapic_addr)
5489 return;
5490
5491 idx = srcu_read_lock(&vcpu->kvm->srcu);
5492 kvm_release_page_dirty(apic->vapic_page);
5493 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5494 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5495 }
5496
5497 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5498 {
5499 int max_irr, tpr;
5500
5501 if (!kvm_x86_ops->update_cr8_intercept)
5502 return;
5503
5504 if (!vcpu->arch.apic)
5505 return;
5506
5507 if (!vcpu->arch.apic->vapic_addr)
5508 max_irr = kvm_lapic_find_highest_irr(vcpu);
5509 else
5510 max_irr = -1;
5511
5512 if (max_irr != -1)
5513 max_irr >>= 4;
5514
5515 tpr = kvm_lapic_get_cr8(vcpu);
5516
5517 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5518 }
5519
5520 static void inject_pending_event(struct kvm_vcpu *vcpu)
5521 {
5522 /* try to reinject previous events if any */
5523 if (vcpu->arch.exception.pending) {
5524 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5525 vcpu->arch.exception.has_error_code,
5526 vcpu->arch.exception.error_code);
5527 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5528 vcpu->arch.exception.has_error_code,
5529 vcpu->arch.exception.error_code,
5530 vcpu->arch.exception.reinject);
5531 return;
5532 }
5533
5534 if (vcpu->arch.nmi_injected) {
5535 kvm_x86_ops->set_nmi(vcpu);
5536 return;
5537 }
5538
5539 if (vcpu->arch.interrupt.pending) {
5540 kvm_x86_ops->set_irq(vcpu);
5541 return;
5542 }
5543
5544 /* try to inject new event if pending */
5545 if (vcpu->arch.nmi_pending) {
5546 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5547 vcpu->arch.nmi_pending = false;
5548 vcpu->arch.nmi_injected = true;
5549 kvm_x86_ops->set_nmi(vcpu);
5550 }
5551 } else if (kvm_cpu_has_interrupt(vcpu)) {
5552 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5553 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5554 false);
5555 kvm_x86_ops->set_irq(vcpu);
5556 }
5557 }
5558 }
5559
5560 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5561 {
5562 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5563 !vcpu->guest_xcr0_loaded) {
5564 /* kvm_set_xcr() also depends on this */
5565 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5566 vcpu->guest_xcr0_loaded = 1;
5567 }
5568 }
5569
5570 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5571 {
5572 if (vcpu->guest_xcr0_loaded) {
5573 if (vcpu->arch.xcr0 != host_xcr0)
5574 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5575 vcpu->guest_xcr0_loaded = 0;
5576 }
5577 }
5578
5579 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5580 {
5581 int r;
5582 bool nmi_pending;
5583 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5584 vcpu->run->request_interrupt_window;
5585
5586 if (vcpu->requests) {
5587 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5588 kvm_mmu_unload(vcpu);
5589 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5590 __kvm_migrate_timers(vcpu);
5591 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5592 r = kvm_guest_time_update(vcpu);
5593 if (unlikely(r))
5594 goto out;
5595 }
5596 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5597 kvm_mmu_sync_roots(vcpu);
5598 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5599 kvm_x86_ops->tlb_flush(vcpu);
5600 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5601 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5602 r = 0;
5603 goto out;
5604 }
5605 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5606 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5607 r = 0;
5608 goto out;
5609 }
5610 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5611 vcpu->fpu_active = 0;
5612 kvm_x86_ops->fpu_deactivate(vcpu);
5613 }
5614 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5615 /* Page is swapped out. Do synthetic halt */
5616 vcpu->arch.apf.halted = true;
5617 r = 1;
5618 goto out;
5619 }
5620 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5621 record_steal_time(vcpu);
5622
5623 }
5624
5625 r = kvm_mmu_reload(vcpu);
5626 if (unlikely(r))
5627 goto out;
5628
5629 /*
5630 * An NMI can be injected between local nmi_pending read and
5631 * vcpu->arch.nmi_pending read inside inject_pending_event().
5632 * But in that case, KVM_REQ_EVENT will be set, which makes
5633 * the race described above benign.
5634 */
5635 nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5636
5637 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5638 inject_pending_event(vcpu);
5639
5640 /* enable NMI/IRQ window open exits if needed */
5641 if (nmi_pending)
5642 kvm_x86_ops->enable_nmi_window(vcpu);
5643 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5644 kvm_x86_ops->enable_irq_window(vcpu);
5645
5646 if (kvm_lapic_enabled(vcpu)) {
5647 update_cr8_intercept(vcpu);
5648 kvm_lapic_sync_to_vapic(vcpu);
5649 }
5650 }
5651
5652 preempt_disable();
5653
5654 kvm_x86_ops->prepare_guest_switch(vcpu);
5655 if (vcpu->fpu_active)
5656 kvm_load_guest_fpu(vcpu);
5657 kvm_load_guest_xcr0(vcpu);
5658
5659 vcpu->mode = IN_GUEST_MODE;
5660
5661 /* We should set ->mode before check ->requests,
5662 * see the comment in make_all_cpus_request.
5663 */
5664 smp_mb();
5665
5666 local_irq_disable();
5667
5668 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5669 || need_resched() || signal_pending(current)) {
5670 vcpu->mode = OUTSIDE_GUEST_MODE;
5671 smp_wmb();
5672 local_irq_enable();
5673 preempt_enable();
5674 kvm_x86_ops->cancel_injection(vcpu);
5675 r = 1;
5676 goto out;
5677 }
5678
5679 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5680
5681 kvm_guest_enter();
5682
5683 if (unlikely(vcpu->arch.switch_db_regs)) {
5684 set_debugreg(0, 7);
5685 set_debugreg(vcpu->arch.eff_db[0], 0);
5686 set_debugreg(vcpu->arch.eff_db[1], 1);
5687 set_debugreg(vcpu->arch.eff_db[2], 2);
5688 set_debugreg(vcpu->arch.eff_db[3], 3);
5689 }
5690
5691 trace_kvm_entry(vcpu->vcpu_id);
5692 kvm_x86_ops->run(vcpu);
5693
5694 /*
5695 * If the guest has used debug registers, at least dr7
5696 * will be disabled while returning to the host.
5697 * If we don't have active breakpoints in the host, we don't
5698 * care about the messed up debug address registers. But if
5699 * we have some of them active, restore the old state.
5700 */
5701 if (hw_breakpoint_active())
5702 hw_breakpoint_restore();
5703
5704 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5705
5706 vcpu->mode = OUTSIDE_GUEST_MODE;
5707 smp_wmb();
5708 local_irq_enable();
5709
5710 ++vcpu->stat.exits;
5711
5712 /*
5713 * We must have an instruction between local_irq_enable() and
5714 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5715 * the interrupt shadow. The stat.exits increment will do nicely.
5716 * But we need to prevent reordering, hence this barrier():
5717 */
5718 barrier();
5719
5720 kvm_guest_exit();
5721
5722 preempt_enable();
5723
5724 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5725
5726 /*
5727 * Profile KVM exit RIPs:
5728 */
5729 if (unlikely(prof_on == KVM_PROFILING)) {
5730 unsigned long rip = kvm_rip_read(vcpu);
5731 profile_hit(KVM_PROFILING, (void *)rip);
5732 }
5733
5734
5735 kvm_lapic_sync_from_vapic(vcpu);
5736
5737 r = kvm_x86_ops->handle_exit(vcpu);
5738 out:
5739 return r;
5740 }
5741
5742
5743 static int __vcpu_run(struct kvm_vcpu *vcpu)
5744 {
5745 int r;
5746 struct kvm *kvm = vcpu->kvm;
5747
5748 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5749 pr_debug("vcpu %d received sipi with vector # %x\n",
5750 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5751 kvm_lapic_reset(vcpu);
5752 r = kvm_arch_vcpu_reset(vcpu);
5753 if (r)
5754 return r;
5755 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5756 }
5757
5758 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5759 vapic_enter(vcpu);
5760
5761 r = 1;
5762 while (r > 0) {
5763 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5764 !vcpu->arch.apf.halted)
5765 r = vcpu_enter_guest(vcpu);
5766 else {
5767 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5768 kvm_vcpu_block(vcpu);
5769 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5770 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5771 {
5772 switch(vcpu->arch.mp_state) {
5773 case KVM_MP_STATE_HALTED:
5774 vcpu->arch.mp_state =
5775 KVM_MP_STATE_RUNNABLE;
5776 case KVM_MP_STATE_RUNNABLE:
5777 vcpu->arch.apf.halted = false;
5778 break;
5779 case KVM_MP_STATE_SIPI_RECEIVED:
5780 default:
5781 r = -EINTR;
5782 break;
5783 }
5784 }
5785 }
5786
5787 if (r <= 0)
5788 break;
5789
5790 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5791 if (kvm_cpu_has_pending_timer(vcpu))
5792 kvm_inject_pending_timer_irqs(vcpu);
5793
5794 if (dm_request_for_irq_injection(vcpu)) {
5795 r = -EINTR;
5796 vcpu->run->exit_reason = KVM_EXIT_INTR;
5797 ++vcpu->stat.request_irq_exits;
5798 }
5799
5800 kvm_check_async_pf_completion(vcpu);
5801
5802 if (signal_pending(current)) {
5803 r = -EINTR;
5804 vcpu->run->exit_reason = KVM_EXIT_INTR;
5805 ++vcpu->stat.signal_exits;
5806 }
5807 if (need_resched()) {
5808 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5809 kvm_resched(vcpu);
5810 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5811 }
5812 }
5813
5814 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5815
5816 vapic_exit(vcpu);
5817
5818 return r;
5819 }
5820
5821 static int complete_mmio(struct kvm_vcpu *vcpu)
5822 {
5823 struct kvm_run *run = vcpu->run;
5824 int r;
5825
5826 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5827 return 1;
5828
5829 if (vcpu->mmio_needed) {
5830 vcpu->mmio_needed = 0;
5831 if (!vcpu->mmio_is_write)
5832 memcpy(vcpu->mmio_data + vcpu->mmio_index,
5833 run->mmio.data, 8);
5834 vcpu->mmio_index += 8;
5835 if (vcpu->mmio_index < vcpu->mmio_size) {
5836 run->exit_reason = KVM_EXIT_MMIO;
5837 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5838 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5839 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5840 run->mmio.is_write = vcpu->mmio_is_write;
5841 vcpu->mmio_needed = 1;
5842 return 0;
5843 }
5844 if (vcpu->mmio_is_write)
5845 return 1;
5846 vcpu->mmio_read_completed = 1;
5847 }
5848 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5849 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5850 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5851 if (r != EMULATE_DONE)
5852 return 0;
5853 return 1;
5854 }
5855
5856 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5857 {
5858 int r;
5859 sigset_t sigsaved;
5860
5861 if (!tsk_used_math(current) && init_fpu(current))
5862 return -ENOMEM;
5863
5864 if (vcpu->sigset_active)
5865 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5866
5867 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5868 kvm_vcpu_block(vcpu);
5869 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5870 r = -EAGAIN;
5871 goto out;
5872 }
5873
5874 /* re-sync apic's tpr */
5875 if (!irqchip_in_kernel(vcpu->kvm)) {
5876 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5877 r = -EINVAL;
5878 goto out;
5879 }
5880 }
5881
5882 r = complete_mmio(vcpu);
5883 if (r <= 0)
5884 goto out;
5885
5886 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5887 kvm_register_write(vcpu, VCPU_REGS_RAX,
5888 kvm_run->hypercall.ret);
5889
5890 r = __vcpu_run(vcpu);
5891
5892 out:
5893 post_kvm_run_save(vcpu);
5894 if (vcpu->sigset_active)
5895 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5896
5897 return r;
5898 }
5899
5900 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5901 {
5902 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5903 /*
5904 * We are here if userspace calls get_regs() in the middle of
5905 * instruction emulation. Registers state needs to be copied
5906 * back from emulation context to vcpu. Usrapace shouldn't do
5907 * that usually, but some bad designed PV devices (vmware
5908 * backdoor interface) need this to work
5909 */
5910 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5911 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5912 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5913 }
5914 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5915 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5916 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5917 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5918 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5919 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5920 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5921 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5922 #ifdef CONFIG_X86_64
5923 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5924 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5925 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5926 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5927 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5928 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5929 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5930 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5931 #endif
5932
5933 regs->rip = kvm_rip_read(vcpu);
5934 regs->rflags = kvm_get_rflags(vcpu);
5935
5936 return 0;
5937 }
5938
5939 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5940 {
5941 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5942 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5943
5944 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5945 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5946 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5947 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5948 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5949 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5950 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5951 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5952 #ifdef CONFIG_X86_64
5953 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5954 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5955 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5956 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5957 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5958 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5959 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5960 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5961 #endif
5962
5963 kvm_rip_write(vcpu, regs->rip);
5964 kvm_set_rflags(vcpu, regs->rflags);
5965
5966 vcpu->arch.exception.pending = false;
5967
5968 kvm_make_request(KVM_REQ_EVENT, vcpu);
5969
5970 return 0;
5971 }
5972
5973 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5974 {
5975 struct kvm_segment cs;
5976
5977 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5978 *db = cs.db;
5979 *l = cs.l;
5980 }
5981 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5982
5983 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5984 struct kvm_sregs *sregs)
5985 {
5986 struct desc_ptr dt;
5987
5988 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5989 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5990 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5991 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5992 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5993 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5994
5995 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5996 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5997
5998 kvm_x86_ops->get_idt(vcpu, &dt);
5999 sregs->idt.limit = dt.size;
6000 sregs->idt.base = dt.address;
6001 kvm_x86_ops->get_gdt(vcpu, &dt);
6002 sregs->gdt.limit = dt.size;
6003 sregs->gdt.base = dt.address;
6004
6005 sregs->cr0 = kvm_read_cr0(vcpu);
6006 sregs->cr2 = vcpu->arch.cr2;
6007 sregs->cr3 = kvm_read_cr3(vcpu);
6008 sregs->cr4 = kvm_read_cr4(vcpu);
6009 sregs->cr8 = kvm_get_cr8(vcpu);
6010 sregs->efer = vcpu->arch.efer;
6011 sregs->apic_base = kvm_get_apic_base(vcpu);
6012
6013 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6014
6015 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6016 set_bit(vcpu->arch.interrupt.nr,
6017 (unsigned long *)sregs->interrupt_bitmap);
6018
6019 return 0;
6020 }
6021
6022 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6023 struct kvm_mp_state *mp_state)
6024 {
6025 mp_state->mp_state = vcpu->arch.mp_state;
6026 return 0;
6027 }
6028
6029 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6030 struct kvm_mp_state *mp_state)
6031 {
6032 vcpu->arch.mp_state = mp_state->mp_state;
6033 kvm_make_request(KVM_REQ_EVENT, vcpu);
6034 return 0;
6035 }
6036
6037 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6038 bool has_error_code, u32 error_code)
6039 {
6040 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6041 int ret;
6042
6043 init_emulate_ctxt(vcpu);
6044
6045 ret = emulator_task_switch(ctxt, tss_selector, reason,
6046 has_error_code, error_code);
6047
6048 if (ret)
6049 return EMULATE_FAIL;
6050
6051 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6052 kvm_rip_write(vcpu, ctxt->eip);
6053 kvm_set_rflags(vcpu, ctxt->eflags);
6054 kvm_make_request(KVM_REQ_EVENT, vcpu);
6055 return EMULATE_DONE;
6056 }
6057 EXPORT_SYMBOL_GPL(kvm_task_switch);
6058
6059 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6060 struct kvm_sregs *sregs)
6061 {
6062 int mmu_reset_needed = 0;
6063 int pending_vec, max_bits, idx;
6064 struct desc_ptr dt;
6065
6066 dt.size = sregs->idt.limit;
6067 dt.address = sregs->idt.base;
6068 kvm_x86_ops->set_idt(vcpu, &dt);
6069 dt.size = sregs->gdt.limit;
6070 dt.address = sregs->gdt.base;
6071 kvm_x86_ops->set_gdt(vcpu, &dt);
6072
6073 vcpu->arch.cr2 = sregs->cr2;
6074 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6075 vcpu->arch.cr3 = sregs->cr3;
6076 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6077
6078 kvm_set_cr8(vcpu, sregs->cr8);
6079
6080 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6081 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6082 kvm_set_apic_base(vcpu, sregs->apic_base);
6083
6084 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6085 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6086 vcpu->arch.cr0 = sregs->cr0;
6087
6088 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6089 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6090 if (sregs->cr4 & X86_CR4_OSXSAVE)
6091 update_cpuid(vcpu);
6092
6093 idx = srcu_read_lock(&vcpu->kvm->srcu);
6094 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6095 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6096 mmu_reset_needed = 1;
6097 }
6098 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6099
6100 if (mmu_reset_needed)
6101 kvm_mmu_reset_context(vcpu);
6102
6103 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6104 pending_vec = find_first_bit(
6105 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6106 if (pending_vec < max_bits) {
6107 kvm_queue_interrupt(vcpu, pending_vec, false);
6108 pr_debug("Set back pending irq %d\n", pending_vec);
6109 }
6110
6111 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6112 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6113 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6114 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6115 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6116 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6117
6118 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6119 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6120
6121 update_cr8_intercept(vcpu);
6122
6123 /* Older userspace won't unhalt the vcpu on reset. */
6124 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6125 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6126 !is_protmode(vcpu))
6127 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6128
6129 kvm_make_request(KVM_REQ_EVENT, vcpu);
6130
6131 return 0;
6132 }
6133
6134 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6135 struct kvm_guest_debug *dbg)
6136 {
6137 unsigned long rflags;
6138 int i, r;
6139
6140 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6141 r = -EBUSY;
6142 if (vcpu->arch.exception.pending)
6143 goto out;
6144 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6145 kvm_queue_exception(vcpu, DB_VECTOR);
6146 else
6147 kvm_queue_exception(vcpu, BP_VECTOR);
6148 }
6149
6150 /*
6151 * Read rflags as long as potentially injected trace flags are still
6152 * filtered out.
6153 */
6154 rflags = kvm_get_rflags(vcpu);
6155
6156 vcpu->guest_debug = dbg->control;
6157 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6158 vcpu->guest_debug = 0;
6159
6160 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6161 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6162 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6163 vcpu->arch.switch_db_regs =
6164 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6165 } else {
6166 for (i = 0; i < KVM_NR_DB_REGS; i++)
6167 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6168 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6169 }
6170
6171 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6172 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6173 get_segment_base(vcpu, VCPU_SREG_CS);
6174
6175 /*
6176 * Trigger an rflags update that will inject or remove the trace
6177 * flags.
6178 */
6179 kvm_set_rflags(vcpu, rflags);
6180
6181 kvm_x86_ops->set_guest_debug(vcpu, dbg);
6182
6183 r = 0;
6184
6185 out:
6186
6187 return r;
6188 }
6189
6190 /*
6191 * Translate a guest virtual address to a guest physical address.
6192 */
6193 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6194 struct kvm_translation *tr)
6195 {
6196 unsigned long vaddr = tr->linear_address;
6197 gpa_t gpa;
6198 int idx;
6199
6200 idx = srcu_read_lock(&vcpu->kvm->srcu);
6201 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6202 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6203 tr->physical_address = gpa;
6204 tr->valid = gpa != UNMAPPED_GVA;
6205 tr->writeable = 1;
6206 tr->usermode = 0;
6207
6208 return 0;
6209 }
6210
6211 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6212 {
6213 struct i387_fxsave_struct *fxsave =
6214 &vcpu->arch.guest_fpu.state->fxsave;
6215
6216 memcpy(fpu->fpr, fxsave->st_space, 128);
6217 fpu->fcw = fxsave->cwd;
6218 fpu->fsw = fxsave->swd;
6219 fpu->ftwx = fxsave->twd;
6220 fpu->last_opcode = fxsave->fop;
6221 fpu->last_ip = fxsave->rip;
6222 fpu->last_dp = fxsave->rdp;
6223 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6224
6225 return 0;
6226 }
6227
6228 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6229 {
6230 struct i387_fxsave_struct *fxsave =
6231 &vcpu->arch.guest_fpu.state->fxsave;
6232
6233 memcpy(fxsave->st_space, fpu->fpr, 128);
6234 fxsave->cwd = fpu->fcw;
6235 fxsave->swd = fpu->fsw;
6236 fxsave->twd = fpu->ftwx;
6237 fxsave->fop = fpu->last_opcode;
6238 fxsave->rip = fpu->last_ip;
6239 fxsave->rdp = fpu->last_dp;
6240 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6241
6242 return 0;
6243 }
6244
6245 int fx_init(struct kvm_vcpu *vcpu)
6246 {
6247 int err;
6248
6249 err = fpu_alloc(&vcpu->arch.guest_fpu);
6250 if (err)
6251 return err;
6252
6253 fpu_finit(&vcpu->arch.guest_fpu);
6254
6255 /*
6256 * Ensure guest xcr0 is valid for loading
6257 */
6258 vcpu->arch.xcr0 = XSTATE_FP;
6259
6260 vcpu->arch.cr0 |= X86_CR0_ET;
6261
6262 return 0;
6263 }
6264 EXPORT_SYMBOL_GPL(fx_init);
6265
6266 static void fx_free(struct kvm_vcpu *vcpu)
6267 {
6268 fpu_free(&vcpu->arch.guest_fpu);
6269 }
6270
6271 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6272 {
6273 if (vcpu->guest_fpu_loaded)
6274 return;
6275
6276 /*
6277 * Restore all possible states in the guest,
6278 * and assume host would use all available bits.
6279 * Guest xcr0 would be loaded later.
6280 */
6281 kvm_put_guest_xcr0(vcpu);
6282 vcpu->guest_fpu_loaded = 1;
6283 unlazy_fpu(current);
6284 fpu_restore_checking(&vcpu->arch.guest_fpu);
6285 trace_kvm_fpu(1);
6286 }
6287
6288 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6289 {
6290 kvm_put_guest_xcr0(vcpu);
6291
6292 if (!vcpu->guest_fpu_loaded)
6293 return;
6294
6295 vcpu->guest_fpu_loaded = 0;
6296 fpu_save_init(&vcpu->arch.guest_fpu);
6297 ++vcpu->stat.fpu_reload;
6298 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6299 trace_kvm_fpu(0);
6300 }
6301
6302 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6303 {
6304 kvmclock_reset(vcpu);
6305
6306 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6307 fx_free(vcpu);
6308 kvm_x86_ops->vcpu_free(vcpu);
6309 }
6310
6311 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6312 unsigned int id)
6313 {
6314 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6315 printk_once(KERN_WARNING
6316 "kvm: SMP vm created on host with unstable TSC; "
6317 "guest TSC will not be reliable\n");
6318 return kvm_x86_ops->vcpu_create(kvm, id);
6319 }
6320
6321 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6322 {
6323 int r;
6324
6325 vcpu->arch.mtrr_state.have_fixed = 1;
6326 vcpu_load(vcpu);
6327 r = kvm_arch_vcpu_reset(vcpu);
6328 if (r == 0)
6329 r = kvm_mmu_setup(vcpu);
6330 vcpu_put(vcpu);
6331
6332 return r;
6333 }
6334
6335 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6336 {
6337 vcpu->arch.apf.msr_val = 0;
6338
6339 vcpu_load(vcpu);
6340 kvm_mmu_unload(vcpu);
6341 vcpu_put(vcpu);
6342
6343 fx_free(vcpu);
6344 kvm_x86_ops->vcpu_free(vcpu);
6345 }
6346
6347 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6348 {
6349 vcpu->arch.nmi_pending = false;
6350 vcpu->arch.nmi_injected = false;
6351
6352 vcpu->arch.switch_db_regs = 0;
6353 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6354 vcpu->arch.dr6 = DR6_FIXED_1;
6355 vcpu->arch.dr7 = DR7_FIXED_1;
6356
6357 kvm_make_request(KVM_REQ_EVENT, vcpu);
6358 vcpu->arch.apf.msr_val = 0;
6359 vcpu->arch.st.msr_val = 0;
6360
6361 kvmclock_reset(vcpu);
6362
6363 kvm_clear_async_pf_completion_queue(vcpu);
6364 kvm_async_pf_hash_reset(vcpu);
6365 vcpu->arch.apf.halted = false;
6366
6367 return kvm_x86_ops->vcpu_reset(vcpu);
6368 }
6369
6370 int kvm_arch_hardware_enable(void *garbage)
6371 {
6372 struct kvm *kvm;
6373 struct kvm_vcpu *vcpu;
6374 int i;
6375
6376 kvm_shared_msr_cpu_online();
6377 list_for_each_entry(kvm, &vm_list, vm_list)
6378 kvm_for_each_vcpu(i, vcpu, kvm)
6379 if (vcpu->cpu == smp_processor_id())
6380 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6381 return kvm_x86_ops->hardware_enable(garbage);
6382 }
6383
6384 void kvm_arch_hardware_disable(void *garbage)
6385 {
6386 kvm_x86_ops->hardware_disable(garbage);
6387 drop_user_return_notifiers(garbage);
6388 }
6389
6390 int kvm_arch_hardware_setup(void)
6391 {
6392 return kvm_x86_ops->hardware_setup();
6393 }
6394
6395 void kvm_arch_hardware_unsetup(void)
6396 {
6397 kvm_x86_ops->hardware_unsetup();
6398 }
6399
6400 void kvm_arch_check_processor_compat(void *rtn)
6401 {
6402 kvm_x86_ops->check_processor_compatibility(rtn);
6403 }
6404
6405 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6406 {
6407 struct page *page;
6408 struct kvm *kvm;
6409 int r;
6410
6411 BUG_ON(vcpu->kvm == NULL);
6412 kvm = vcpu->kvm;
6413
6414 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6415 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6416 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6417 vcpu->arch.mmu.translate_gpa = translate_gpa;
6418 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6419 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6420 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6421 else
6422 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6423
6424 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6425 if (!page) {
6426 r = -ENOMEM;
6427 goto fail;
6428 }
6429 vcpu->arch.pio_data = page_address(page);
6430
6431 kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6432
6433 r = kvm_mmu_create(vcpu);
6434 if (r < 0)
6435 goto fail_free_pio_data;
6436
6437 if (irqchip_in_kernel(kvm)) {
6438 r = kvm_create_lapic(vcpu);
6439 if (r < 0)
6440 goto fail_mmu_destroy;
6441 }
6442
6443 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6444 GFP_KERNEL);
6445 if (!vcpu->arch.mce_banks) {
6446 r = -ENOMEM;
6447 goto fail_free_lapic;
6448 }
6449 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6450
6451 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6452 goto fail_free_mce_banks;
6453
6454 kvm_async_pf_hash_reset(vcpu);
6455
6456 return 0;
6457 fail_free_mce_banks:
6458 kfree(vcpu->arch.mce_banks);
6459 fail_free_lapic:
6460 kvm_free_lapic(vcpu);
6461 fail_mmu_destroy:
6462 kvm_mmu_destroy(vcpu);
6463 fail_free_pio_data:
6464 free_page((unsigned long)vcpu->arch.pio_data);
6465 fail:
6466 return r;
6467 }
6468
6469 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6470 {
6471 int idx;
6472
6473 kfree(vcpu->arch.mce_banks);
6474 kvm_free_lapic(vcpu);
6475 idx = srcu_read_lock(&vcpu->kvm->srcu);
6476 kvm_mmu_destroy(vcpu);
6477 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6478 free_page((unsigned long)vcpu->arch.pio_data);
6479 }
6480
6481 int kvm_arch_init_vm(struct kvm *kvm)
6482 {
6483 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6484 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6485
6486 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6487 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6488
6489 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6490
6491 return 0;
6492 }
6493
6494 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6495 {
6496 vcpu_load(vcpu);
6497 kvm_mmu_unload(vcpu);
6498 vcpu_put(vcpu);
6499 }
6500
6501 static void kvm_free_vcpus(struct kvm *kvm)
6502 {
6503 unsigned int i;
6504 struct kvm_vcpu *vcpu;
6505
6506 /*
6507 * Unpin any mmu pages first.
6508 */
6509 kvm_for_each_vcpu(i, vcpu, kvm) {
6510 kvm_clear_async_pf_completion_queue(vcpu);
6511 kvm_unload_vcpu_mmu(vcpu);
6512 }
6513 kvm_for_each_vcpu(i, vcpu, kvm)
6514 kvm_arch_vcpu_free(vcpu);
6515
6516 mutex_lock(&kvm->lock);
6517 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6518 kvm->vcpus[i] = NULL;
6519
6520 atomic_set(&kvm->online_vcpus, 0);
6521 mutex_unlock(&kvm->lock);
6522 }
6523
6524 void kvm_arch_sync_events(struct kvm *kvm)
6525 {
6526 kvm_free_all_assigned_devices(kvm);
6527 kvm_free_pit(kvm);
6528 }
6529
6530 void kvm_arch_destroy_vm(struct kvm *kvm)
6531 {
6532 kvm_iommu_unmap_guest(kvm);
6533 kfree(kvm->arch.vpic);
6534 kfree(kvm->arch.vioapic);
6535 kvm_free_vcpus(kvm);
6536 if (kvm->arch.apic_access_page)
6537 put_page(kvm->arch.apic_access_page);
6538 if (kvm->arch.ept_identity_pagetable)
6539 put_page(kvm->arch.ept_identity_pagetable);
6540 }
6541
6542 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6543 struct kvm_memory_slot *memslot,
6544 struct kvm_memory_slot old,
6545 struct kvm_userspace_memory_region *mem,
6546 int user_alloc)
6547 {
6548 int npages = memslot->npages;
6549 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6550
6551 /* Prevent internal slot pages from being moved by fork()/COW. */
6552 if (memslot->id >= KVM_MEMORY_SLOTS)
6553 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6554
6555 /*To keep backward compatibility with older userspace,
6556 *x86 needs to hanlde !user_alloc case.
6557 */
6558 if (!user_alloc) {
6559 if (npages && !old.rmap) {
6560 unsigned long userspace_addr;
6561
6562 down_write(&current->mm->mmap_sem);
6563 userspace_addr = do_mmap(NULL, 0,
6564 npages * PAGE_SIZE,
6565 PROT_READ | PROT_WRITE,
6566 map_flags,
6567 0);
6568 up_write(&current->mm->mmap_sem);
6569
6570 if (IS_ERR((void *)userspace_addr))
6571 return PTR_ERR((void *)userspace_addr);
6572
6573 memslot->userspace_addr = userspace_addr;
6574 }
6575 }
6576
6577
6578 return 0;
6579 }
6580
6581 void kvm_arch_commit_memory_region(struct kvm *kvm,
6582 struct kvm_userspace_memory_region *mem,
6583 struct kvm_memory_slot old,
6584 int user_alloc)
6585 {
6586
6587 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6588
6589 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6590 int ret;
6591
6592 down_write(&current->mm->mmap_sem);
6593 ret = do_munmap(current->mm, old.userspace_addr,
6594 old.npages * PAGE_SIZE);
6595 up_write(&current->mm->mmap_sem);
6596 if (ret < 0)
6597 printk(KERN_WARNING
6598 "kvm_vm_ioctl_set_memory_region: "
6599 "failed to munmap memory\n");
6600 }
6601
6602 if (!kvm->arch.n_requested_mmu_pages)
6603 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6604
6605 spin_lock(&kvm->mmu_lock);
6606 if (nr_mmu_pages)
6607 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6608 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6609 spin_unlock(&kvm->mmu_lock);
6610 }
6611
6612 void kvm_arch_flush_shadow(struct kvm *kvm)
6613 {
6614 kvm_mmu_zap_all(kvm);
6615 kvm_reload_remote_mmus(kvm);
6616 }
6617
6618 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6619 {
6620 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6621 !vcpu->arch.apf.halted)
6622 || !list_empty_careful(&vcpu->async_pf.done)
6623 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6624 || vcpu->arch.nmi_pending ||
6625 (kvm_arch_interrupt_allowed(vcpu) &&
6626 kvm_cpu_has_interrupt(vcpu));
6627 }
6628
6629 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6630 {
6631 int me;
6632 int cpu = vcpu->cpu;
6633
6634 if (waitqueue_active(&vcpu->wq)) {
6635 wake_up_interruptible(&vcpu->wq);
6636 ++vcpu->stat.halt_wakeup;
6637 }
6638
6639 me = get_cpu();
6640 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6641 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6642 smp_send_reschedule(cpu);
6643 put_cpu();
6644 }
6645
6646 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6647 {
6648 return kvm_x86_ops->interrupt_allowed(vcpu);
6649 }
6650
6651 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6652 {
6653 unsigned long current_rip = kvm_rip_read(vcpu) +
6654 get_segment_base(vcpu, VCPU_SREG_CS);
6655
6656 return current_rip == linear_rip;
6657 }
6658 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6659
6660 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6661 {
6662 unsigned long rflags;
6663
6664 rflags = kvm_x86_ops->get_rflags(vcpu);
6665 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6666 rflags &= ~X86_EFLAGS_TF;
6667 return rflags;
6668 }
6669 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6670
6671 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6672 {
6673 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6674 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6675 rflags |= X86_EFLAGS_TF;
6676 kvm_x86_ops->set_rflags(vcpu, rflags);
6677 kvm_make_request(KVM_REQ_EVENT, vcpu);
6678 }
6679 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6680
6681 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6682 {
6683 int r;
6684
6685 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6686 is_error_page(work->page))
6687 return;
6688
6689 r = kvm_mmu_reload(vcpu);
6690 if (unlikely(r))
6691 return;
6692
6693 if (!vcpu->arch.mmu.direct_map &&
6694 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6695 return;
6696
6697 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6698 }
6699
6700 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6701 {
6702 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6703 }
6704
6705 static inline u32 kvm_async_pf_next_probe(u32 key)
6706 {
6707 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6708 }
6709
6710 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6711 {
6712 u32 key = kvm_async_pf_hash_fn(gfn);
6713
6714 while (vcpu->arch.apf.gfns[key] != ~0)
6715 key = kvm_async_pf_next_probe(key);
6716
6717 vcpu->arch.apf.gfns[key] = gfn;
6718 }
6719
6720 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6721 {
6722 int i;
6723 u32 key = kvm_async_pf_hash_fn(gfn);
6724
6725 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6726 (vcpu->arch.apf.gfns[key] != gfn &&
6727 vcpu->arch.apf.gfns[key] != ~0); i++)
6728 key = kvm_async_pf_next_probe(key);
6729
6730 return key;
6731 }
6732
6733 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6734 {
6735 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6736 }
6737
6738 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6739 {
6740 u32 i, j, k;
6741
6742 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6743 while (true) {
6744 vcpu->arch.apf.gfns[i] = ~0;
6745 do {
6746 j = kvm_async_pf_next_probe(j);
6747 if (vcpu->arch.apf.gfns[j] == ~0)
6748 return;
6749 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6750 /*
6751 * k lies cyclically in ]i,j]
6752 * | i.k.j |
6753 * |....j i.k.| or |.k..j i...|
6754 */
6755 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6756 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6757 i = j;
6758 }
6759 }
6760
6761 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6762 {
6763
6764 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6765 sizeof(val));
6766 }
6767
6768 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6769 struct kvm_async_pf *work)
6770 {
6771 struct x86_exception fault;
6772
6773 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6774 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6775
6776 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6777 (vcpu->arch.apf.send_user_only &&
6778 kvm_x86_ops->get_cpl(vcpu) == 0))
6779 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6780 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6781 fault.vector = PF_VECTOR;
6782 fault.error_code_valid = true;
6783 fault.error_code = 0;
6784 fault.nested_page_fault = false;
6785 fault.address = work->arch.token;
6786 kvm_inject_page_fault(vcpu, &fault);
6787 }
6788 }
6789
6790 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6791 struct kvm_async_pf *work)
6792 {
6793 struct x86_exception fault;
6794
6795 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6796 if (is_error_page(work->page))
6797 work->arch.token = ~0; /* broadcast wakeup */
6798 else
6799 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6800
6801 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6802 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6803 fault.vector = PF_VECTOR;
6804 fault.error_code_valid = true;
6805 fault.error_code = 0;
6806 fault.nested_page_fault = false;
6807 fault.address = work->arch.token;
6808 kvm_inject_page_fault(vcpu, &fault);
6809 }
6810 vcpu->arch.apf.halted = false;
6811 }
6812
6813 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6814 {
6815 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6816 return true;
6817 else
6818 return !kvm_event_needs_reinjection(vcpu) &&
6819 kvm_x86_ops->interrupt_allowed(vcpu);
6820 }
6821
6822 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6823 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6824 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6825 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);