]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
176c54b0a03f1bd35e3b1e4f201457ede96256d9
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 200;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "l1d_flush", VCPU_STAT(l1d_flush) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
570 {
571 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
572 rsvd_bits(1, 2);
573 }
574
575 /*
576 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
577 */
578 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
579 {
580 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
581 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
582 int i;
583 int ret;
584 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
585
586 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
587 offset * sizeof(u64), sizeof(pdpte),
588 PFERR_USER_MASK|PFERR_WRITE_MASK);
589 if (ret < 0) {
590 ret = 0;
591 goto out;
592 }
593 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
594 if ((pdpte[i] & PT_PRESENT_MASK) &&
595 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
596 ret = 0;
597 goto out;
598 }
599 }
600 ret = 1;
601
602 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
603 __set_bit(VCPU_EXREG_PDPTR,
604 (unsigned long *)&vcpu->arch.regs_avail);
605 __set_bit(VCPU_EXREG_PDPTR,
606 (unsigned long *)&vcpu->arch.regs_dirty);
607 out:
608
609 return ret;
610 }
611 EXPORT_SYMBOL_GPL(load_pdptrs);
612
613 bool pdptrs_changed(struct kvm_vcpu *vcpu)
614 {
615 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
616 bool changed = true;
617 int offset;
618 gfn_t gfn;
619 int r;
620
621 if (is_long_mode(vcpu) || !is_pae(vcpu))
622 return false;
623
624 if (!test_bit(VCPU_EXREG_PDPTR,
625 (unsigned long *)&vcpu->arch.regs_avail))
626 return true;
627
628 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
629 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
630 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
631 PFERR_USER_MASK | PFERR_WRITE_MASK);
632 if (r < 0)
633 goto out;
634 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
635 out:
636
637 return changed;
638 }
639 EXPORT_SYMBOL_GPL(pdptrs_changed);
640
641 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
642 {
643 unsigned long old_cr0 = kvm_read_cr0(vcpu);
644 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
645
646 cr0 |= X86_CR0_ET;
647
648 #ifdef CONFIG_X86_64
649 if (cr0 & 0xffffffff00000000UL)
650 return 1;
651 #endif
652
653 cr0 &= ~CR0_RESERVED_BITS;
654
655 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
656 return 1;
657
658 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
659 return 1;
660
661 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
662 #ifdef CONFIG_X86_64
663 if ((vcpu->arch.efer & EFER_LME)) {
664 int cs_db, cs_l;
665
666 if (!is_pae(vcpu))
667 return 1;
668 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
669 if (cs_l)
670 return 1;
671 } else
672 #endif
673 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
674 kvm_read_cr3(vcpu)))
675 return 1;
676 }
677
678 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
679 return 1;
680
681 kvm_x86_ops->set_cr0(vcpu, cr0);
682
683 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
684 kvm_clear_async_pf_completion_queue(vcpu);
685 kvm_async_pf_hash_reset(vcpu);
686 }
687
688 if ((cr0 ^ old_cr0) & update_bits)
689 kvm_mmu_reset_context(vcpu);
690
691 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
692 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
693 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
694 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
695
696 return 0;
697 }
698 EXPORT_SYMBOL_GPL(kvm_set_cr0);
699
700 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
701 {
702 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
703 }
704 EXPORT_SYMBOL_GPL(kvm_lmsw);
705
706 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
707 {
708 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
709 !vcpu->guest_xcr0_loaded) {
710 /* kvm_set_xcr() also depends on this */
711 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
712 vcpu->guest_xcr0_loaded = 1;
713 }
714 }
715 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
716
717 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
718 {
719 if (vcpu->guest_xcr0_loaded) {
720 if (vcpu->arch.xcr0 != host_xcr0)
721 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
722 vcpu->guest_xcr0_loaded = 0;
723 }
724 }
725 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
726
727 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
728 {
729 u64 xcr0 = xcr;
730 u64 old_xcr0 = vcpu->arch.xcr0;
731 u64 valid_bits;
732
733 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
734 if (index != XCR_XFEATURE_ENABLED_MASK)
735 return 1;
736 if (!(xcr0 & XFEATURE_MASK_FP))
737 return 1;
738 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
739 return 1;
740
741 /*
742 * Do not allow the guest to set bits that we do not support
743 * saving. However, xcr0 bit 0 is always set, even if the
744 * emulated CPU does not support XSAVE (see fx_init).
745 */
746 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
747 if (xcr0 & ~valid_bits)
748 return 1;
749
750 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
751 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
752 return 1;
753
754 if (xcr0 & XFEATURE_MASK_AVX512) {
755 if (!(xcr0 & XFEATURE_MASK_YMM))
756 return 1;
757 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
758 return 1;
759 }
760 vcpu->arch.xcr0 = xcr0;
761
762 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
763 kvm_update_cpuid(vcpu);
764 return 0;
765 }
766
767 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
768 {
769 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
770 __kvm_set_xcr(vcpu, index, xcr)) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774 return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_xcr);
777
778 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
779 {
780 unsigned long old_cr4 = kvm_read_cr4(vcpu);
781 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
782 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
783
784 if (cr4 & CR4_RESERVED_BITS)
785 return 1;
786
787 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
788 return 1;
789
790 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
791 return 1;
792
793 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
794 return 1;
795
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
797 return 1;
798
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
800 return 1;
801
802 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
803 return 1;
804
805 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
806 return 1;
807
808 if (is_long_mode(vcpu)) {
809 if (!(cr4 & X86_CR4_PAE))
810 return 1;
811 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
812 && ((cr4 ^ old_cr4) & pdptr_bits)
813 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
814 kvm_read_cr3(vcpu)))
815 return 1;
816
817 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
818 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
819 return 1;
820
821 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
822 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
823 return 1;
824 }
825
826 if (kvm_x86_ops->set_cr4(vcpu, cr4))
827 return 1;
828
829 if (((cr4 ^ old_cr4) & pdptr_bits) ||
830 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
831 kvm_mmu_reset_context(vcpu);
832
833 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
834 kvm_update_cpuid(vcpu);
835
836 return 0;
837 }
838 EXPORT_SYMBOL_GPL(kvm_set_cr4);
839
840 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
841 {
842 #ifdef CONFIG_X86_64
843 cr3 &= ~CR3_PCID_INVD;
844 #endif
845
846 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
847 kvm_mmu_sync_roots(vcpu);
848 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
849 return 0;
850 }
851
852 if (is_long_mode(vcpu) &&
853 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
854 return 1;
855 else if (is_pae(vcpu) && is_paging(vcpu) &&
856 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
857 return 1;
858
859 vcpu->arch.cr3 = cr3;
860 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
861 kvm_mmu_new_cr3(vcpu);
862 return 0;
863 }
864 EXPORT_SYMBOL_GPL(kvm_set_cr3);
865
866 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
867 {
868 if (cr8 & CR8_RESERVED_BITS)
869 return 1;
870 if (lapic_in_kernel(vcpu))
871 kvm_lapic_set_tpr(vcpu, cr8);
872 else
873 vcpu->arch.cr8 = cr8;
874 return 0;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_cr8);
877
878 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
879 {
880 if (lapic_in_kernel(vcpu))
881 return kvm_lapic_get_cr8(vcpu);
882 else
883 return vcpu->arch.cr8;
884 }
885 EXPORT_SYMBOL_GPL(kvm_get_cr8);
886
887 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
888 {
889 int i;
890
891 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
892 for (i = 0; i < KVM_NR_DB_REGS; i++)
893 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
894 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
895 }
896 }
897
898 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
899 {
900 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
901 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
902 }
903
904 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
905 {
906 unsigned long dr7;
907
908 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
909 dr7 = vcpu->arch.guest_debug_dr7;
910 else
911 dr7 = vcpu->arch.dr7;
912 kvm_x86_ops->set_dr7(vcpu, dr7);
913 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
914 if (dr7 & DR7_BP_EN_MASK)
915 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
916 }
917
918 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
919 {
920 u64 fixed = DR6_FIXED_1;
921
922 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
923 fixed |= DR6_RTM;
924 return fixed;
925 }
926
927 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 vcpu->arch.db[dr] = val;
932 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
933 vcpu->arch.eff_db[dr] = val;
934 break;
935 case 4:
936 /* fall through */
937 case 6:
938 if (val & 0xffffffff00000000ULL)
939 return -1; /* #GP */
940 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
941 kvm_update_dr6(vcpu);
942 break;
943 case 5:
944 /* fall through */
945 default: /* 7 */
946 if (val & 0xffffffff00000000ULL)
947 return -1; /* #GP */
948 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
949 kvm_update_dr7(vcpu);
950 break;
951 }
952
953 return 0;
954 }
955
956 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
957 {
958 if (__kvm_set_dr(vcpu, dr, val)) {
959 kvm_inject_gp(vcpu, 0);
960 return 1;
961 }
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(kvm_set_dr);
965
966 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
967 {
968 switch (dr) {
969 case 0 ... 3:
970 *val = vcpu->arch.db[dr];
971 break;
972 case 4:
973 /* fall through */
974 case 6:
975 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
976 *val = vcpu->arch.dr6;
977 else
978 *val = kvm_x86_ops->get_dr6(vcpu);
979 break;
980 case 5:
981 /* fall through */
982 default: /* 7 */
983 *val = vcpu->arch.dr7;
984 break;
985 }
986 return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_get_dr);
989
990 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
991 {
992 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
993 u64 data;
994 int err;
995
996 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
997 if (err)
998 return err;
999 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1000 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1001 return err;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1004
1005 /*
1006 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1007 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1008 *
1009 * This list is modified at module load time to reflect the
1010 * capabilities of the host cpu. This capabilities test skips MSRs that are
1011 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1012 * may depend on host virtualization features rather than host cpu features.
1013 */
1014
1015 static u32 msrs_to_save[] = {
1016 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1017 MSR_STAR,
1018 #ifdef CONFIG_X86_64
1019 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1020 #endif
1021 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1022 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1023 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1024 };
1025
1026 static unsigned num_msrs_to_save;
1027
1028 static u32 emulated_msrs[] = {
1029 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1030 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1031 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1032 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1033 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1034 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1035 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1036 HV_X64_MSR_RESET,
1037 HV_X64_MSR_VP_INDEX,
1038 HV_X64_MSR_VP_RUNTIME,
1039 HV_X64_MSR_SCONTROL,
1040 HV_X64_MSR_STIMER0_CONFIG,
1041 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1042 MSR_KVM_PV_EOI_EN,
1043
1044 MSR_IA32_TSC_ADJUST,
1045 MSR_IA32_TSCDEADLINE,
1046 MSR_IA32_MISC_ENABLE,
1047 MSR_IA32_MCG_STATUS,
1048 MSR_IA32_MCG_CTL,
1049 MSR_IA32_MCG_EXT_CTL,
1050 MSR_IA32_SMBASE,
1051 MSR_PLATFORM_INFO,
1052 MSR_MISC_FEATURES_ENABLES,
1053 MSR_AMD64_VIRT_SPEC_CTRL,
1054 };
1055
1056 static unsigned num_emulated_msrs;
1057
1058 /*
1059 * List of msr numbers which are used to expose MSR-based features that
1060 * can be used by a hypervisor to validate requested CPU features.
1061 */
1062 static u32 msr_based_features[] = {
1063 MSR_F10H_DECFG,
1064 MSR_IA32_UCODE_REV,
1065 MSR_IA32_ARCH_CAPABILITIES,
1066 };
1067
1068 static unsigned int num_msr_based_features;
1069
1070 u64 kvm_get_arch_capabilities(void)
1071 {
1072 u64 data;
1073
1074 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1075
1076 /*
1077 * If we're doing cache flushes (either "always" or "cond")
1078 * we will do one whenever the guest does a vmlaunch/vmresume.
1079 * If an outer hypervisor is doing the cache flush for us
1080 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1081 * capability to the guest too, and if EPT is disabled we're not
1082 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1083 * require a nested hypervisor to do a flush of its own.
1084 */
1085 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1086 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1087
1088 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1089 data |= ARCH_CAP_RDCL_NO;
1090 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1091 data |= ARCH_CAP_SSB_NO;
1092 if (!boot_cpu_has_bug(X86_BUG_MDS))
1093 data |= ARCH_CAP_MDS_NO;
1094
1095 /*
1096 * On TAA affected systems, export MDS_NO=0 when:
1097 * - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1098 * - Updated microcode is present. This is detected by
1099 * the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1100 * that VERW clears CPU buffers.
1101 *
1102 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1103 * mitigation and don't complain:
1104 *
1105 * "Vulnerable: Clear CPU buffers attempted, no microcode"
1106 *
1107 * If TSX is disabled on the system, guests are also mitigated against
1108 * TAA and clear CPU buffer mitigation is not required for guests.
1109 */
1110 if (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM) &&
1111 (data & ARCH_CAP_TSX_CTRL_MSR))
1112 data &= ~ARCH_CAP_MDS_NO;
1113
1114 return data;
1115 }
1116
1117 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1118
1119 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1120 {
1121 switch (msr->index) {
1122 case MSR_IA32_ARCH_CAPABILITIES:
1123 msr->data = kvm_get_arch_capabilities();
1124 break;
1125 case MSR_IA32_UCODE_REV:
1126 rdmsrl_safe(msr->index, &msr->data);
1127 break;
1128 default:
1129 if (kvm_x86_ops->get_msr_feature(msr))
1130 return 1;
1131 }
1132 return 0;
1133 }
1134
1135 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1136 {
1137 struct kvm_msr_entry msr;
1138 int r;
1139
1140 msr.index = index;
1141 r = kvm_get_msr_feature(&msr);
1142 if (r)
1143 return r;
1144
1145 *data = msr.data;
1146
1147 return 0;
1148 }
1149
1150 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1151 {
1152 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1153 return false;
1154
1155 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1156 return false;
1157
1158 return true;
1159
1160 }
1161 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1162 {
1163 if (efer & efer_reserved_bits)
1164 return false;
1165
1166 return __kvm_valid_efer(vcpu, efer);
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1169
1170 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1171 {
1172 u64 old_efer = vcpu->arch.efer;
1173 u64 efer = msr_info->data;
1174
1175 if (efer & efer_reserved_bits)
1176 return 1;
1177
1178 if (!msr_info->host_initiated) {
1179 if (!__kvm_valid_efer(vcpu, efer))
1180 return 1;
1181
1182 if (is_paging(vcpu) &&
1183 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1184 return 1;
1185 }
1186
1187 efer &= ~EFER_LMA;
1188 efer |= vcpu->arch.efer & EFER_LMA;
1189
1190 kvm_x86_ops->set_efer(vcpu, efer);
1191
1192 /* Update reserved bits */
1193 if ((efer ^ old_efer) & EFER_NX)
1194 kvm_mmu_reset_context(vcpu);
1195
1196 return 0;
1197 }
1198
1199 void kvm_enable_efer_bits(u64 mask)
1200 {
1201 efer_reserved_bits &= ~mask;
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1204
1205 /*
1206 * Writes msr value into into the appropriate "register".
1207 * Returns 0 on success, non-0 otherwise.
1208 * Assumes vcpu_load() was already called.
1209 */
1210 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1211 {
1212 switch (msr->index) {
1213 case MSR_FS_BASE:
1214 case MSR_GS_BASE:
1215 case MSR_KERNEL_GS_BASE:
1216 case MSR_CSTAR:
1217 case MSR_LSTAR:
1218 if (is_noncanonical_address(msr->data, vcpu))
1219 return 1;
1220 break;
1221 case MSR_IA32_SYSENTER_EIP:
1222 case MSR_IA32_SYSENTER_ESP:
1223 /*
1224 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1225 * non-canonical address is written on Intel but not on
1226 * AMD (which ignores the top 32-bits, because it does
1227 * not implement 64-bit SYSENTER).
1228 *
1229 * 64-bit code should hence be able to write a non-canonical
1230 * value on AMD. Making the address canonical ensures that
1231 * vmentry does not fail on Intel after writing a non-canonical
1232 * value, and that something deterministic happens if the guest
1233 * invokes 64-bit SYSENTER.
1234 */
1235 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1236 }
1237 return kvm_x86_ops->set_msr(vcpu, msr);
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_set_msr);
1240
1241 /*
1242 * Adapt set_msr() to msr_io()'s calling convention
1243 */
1244 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1245 {
1246 struct msr_data msr;
1247 int r;
1248
1249 msr.index = index;
1250 msr.host_initiated = true;
1251 r = kvm_get_msr(vcpu, &msr);
1252 if (r)
1253 return r;
1254
1255 *data = msr.data;
1256 return 0;
1257 }
1258
1259 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1260 {
1261 struct msr_data msr;
1262
1263 msr.data = *data;
1264 msr.index = index;
1265 msr.host_initiated = true;
1266 return kvm_set_msr(vcpu, &msr);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 struct pvclock_gtod_data {
1271 seqcount_t seq;
1272
1273 struct { /* extract of a clocksource struct */
1274 int vclock_mode;
1275 u64 cycle_last;
1276 u64 mask;
1277 u32 mult;
1278 u32 shift;
1279 } clock;
1280
1281 u64 boot_ns;
1282 u64 nsec_base;
1283 u64 wall_time_sec;
1284 };
1285
1286 static struct pvclock_gtod_data pvclock_gtod_data;
1287
1288 static void update_pvclock_gtod(struct timekeeper *tk)
1289 {
1290 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1291 u64 boot_ns;
1292
1293 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1294
1295 write_seqcount_begin(&vdata->seq);
1296
1297 /* copy pvclock gtod data */
1298 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1299 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1300 vdata->clock.mask = tk->tkr_mono.mask;
1301 vdata->clock.mult = tk->tkr_mono.mult;
1302 vdata->clock.shift = tk->tkr_mono.shift;
1303
1304 vdata->boot_ns = boot_ns;
1305 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1306
1307 vdata->wall_time_sec = tk->xtime_sec;
1308
1309 write_seqcount_end(&vdata->seq);
1310 }
1311 #endif
1312
1313 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1314 {
1315 /*
1316 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1317 * vcpu_enter_guest. This function is only called from
1318 * the physical CPU that is running vcpu.
1319 */
1320 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1321 }
1322
1323 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1324 {
1325 int version;
1326 int r;
1327 struct pvclock_wall_clock wc;
1328 struct timespec64 boot;
1329
1330 if (!wall_clock)
1331 return;
1332
1333 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1334 if (r)
1335 return;
1336
1337 if (version & 1)
1338 ++version; /* first time write, random junk */
1339
1340 ++version;
1341
1342 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1343 return;
1344
1345 /*
1346 * The guest calculates current wall clock time by adding
1347 * system time (updated by kvm_guest_time_update below) to the
1348 * wall clock specified here. guest system time equals host
1349 * system time for us, thus we must fill in host boot time here.
1350 */
1351 getboottime64(&boot);
1352
1353 if (kvm->arch.kvmclock_offset) {
1354 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1355 boot = timespec64_sub(boot, ts);
1356 }
1357 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1358 wc.nsec = boot.tv_nsec;
1359 wc.version = version;
1360
1361 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1362
1363 version++;
1364 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1365 }
1366
1367 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1368 {
1369 do_shl32_div32(dividend, divisor);
1370 return dividend;
1371 }
1372
1373 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1374 s8 *pshift, u32 *pmultiplier)
1375 {
1376 uint64_t scaled64;
1377 int32_t shift = 0;
1378 uint64_t tps64;
1379 uint32_t tps32;
1380
1381 tps64 = base_hz;
1382 scaled64 = scaled_hz;
1383 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1384 tps64 >>= 1;
1385 shift--;
1386 }
1387
1388 tps32 = (uint32_t)tps64;
1389 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1390 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1391 scaled64 >>= 1;
1392 else
1393 tps32 <<= 1;
1394 shift++;
1395 }
1396
1397 *pshift = shift;
1398 *pmultiplier = div_frac(scaled64, tps32);
1399
1400 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1401 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1402 }
1403
1404 #ifdef CONFIG_X86_64
1405 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1406 #endif
1407
1408 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1409 static unsigned long max_tsc_khz;
1410
1411 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1412 {
1413 u64 v = (u64)khz * (1000000 + ppm);
1414 do_div(v, 1000000);
1415 return v;
1416 }
1417
1418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1419 {
1420 u64 ratio;
1421
1422 /* Guest TSC same frequency as host TSC? */
1423 if (!scale) {
1424 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1425 return 0;
1426 }
1427
1428 /* TSC scaling supported? */
1429 if (!kvm_has_tsc_control) {
1430 if (user_tsc_khz > tsc_khz) {
1431 vcpu->arch.tsc_catchup = 1;
1432 vcpu->arch.tsc_always_catchup = 1;
1433 return 0;
1434 } else {
1435 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1436 return -1;
1437 }
1438 }
1439
1440 /* TSC scaling required - calculate ratio */
1441 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1442 user_tsc_khz, tsc_khz);
1443
1444 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1445 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1446 user_tsc_khz);
1447 return -1;
1448 }
1449
1450 vcpu->arch.tsc_scaling_ratio = ratio;
1451 return 0;
1452 }
1453
1454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1455 {
1456 u32 thresh_lo, thresh_hi;
1457 int use_scaling = 0;
1458
1459 /* tsc_khz can be zero if TSC calibration fails */
1460 if (user_tsc_khz == 0) {
1461 /* set tsc_scaling_ratio to a safe value */
1462 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1463 return -1;
1464 }
1465
1466 /* Compute a scale to convert nanoseconds in TSC cycles */
1467 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1468 &vcpu->arch.virtual_tsc_shift,
1469 &vcpu->arch.virtual_tsc_mult);
1470 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1471
1472 /*
1473 * Compute the variation in TSC rate which is acceptable
1474 * within the range of tolerance and decide if the
1475 * rate being applied is within that bounds of the hardware
1476 * rate. If so, no scaling or compensation need be done.
1477 */
1478 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1479 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1480 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1481 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1482 use_scaling = 1;
1483 }
1484 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1485 }
1486
1487 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1488 {
1489 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1490 vcpu->arch.virtual_tsc_mult,
1491 vcpu->arch.virtual_tsc_shift);
1492 tsc += vcpu->arch.this_tsc_write;
1493 return tsc;
1494 }
1495
1496 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1497 {
1498 #ifdef CONFIG_X86_64
1499 bool vcpus_matched;
1500 struct kvm_arch *ka = &vcpu->kvm->arch;
1501 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1502
1503 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1504 atomic_read(&vcpu->kvm->online_vcpus));
1505
1506 /*
1507 * Once the masterclock is enabled, always perform request in
1508 * order to update it.
1509 *
1510 * In order to enable masterclock, the host clocksource must be TSC
1511 * and the vcpus need to have matched TSCs. When that happens,
1512 * perform request to enable masterclock.
1513 */
1514 if (ka->use_master_clock ||
1515 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1516 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1517
1518 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1519 atomic_read(&vcpu->kvm->online_vcpus),
1520 ka->use_master_clock, gtod->clock.vclock_mode);
1521 #endif
1522 }
1523
1524 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1525 {
1526 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1527 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1528 }
1529
1530 /*
1531 * Multiply tsc by a fixed point number represented by ratio.
1532 *
1533 * The most significant 64-N bits (mult) of ratio represent the
1534 * integral part of the fixed point number; the remaining N bits
1535 * (frac) represent the fractional part, ie. ratio represents a fixed
1536 * point number (mult + frac * 2^(-N)).
1537 *
1538 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1539 */
1540 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1541 {
1542 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1543 }
1544
1545 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1546 {
1547 u64 _tsc = tsc;
1548 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1549
1550 if (ratio != kvm_default_tsc_scaling_ratio)
1551 _tsc = __scale_tsc(ratio, tsc);
1552
1553 return _tsc;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1556
1557 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1558 {
1559 u64 tsc;
1560
1561 tsc = kvm_scale_tsc(vcpu, rdtsc());
1562
1563 return target_tsc - tsc;
1564 }
1565
1566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1567 {
1568 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1569
1570 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1573
1574 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1575 {
1576 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1577 }
1578
1579 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1580 {
1581 struct kvm *kvm = vcpu->kvm;
1582 u64 offset, ns, elapsed;
1583 unsigned long flags;
1584 bool matched;
1585 bool already_matched;
1586 u64 data = msr->data;
1587 bool synchronizing = false;
1588
1589 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1590 offset = kvm_compute_tsc_offset(vcpu, data);
1591 ns = ktime_get_boot_ns();
1592 elapsed = ns - kvm->arch.last_tsc_nsec;
1593
1594 if (vcpu->arch.virtual_tsc_khz) {
1595 if (data == 0 && msr->host_initiated) {
1596 /*
1597 * detection of vcpu initialization -- need to sync
1598 * with other vCPUs. This particularly helps to keep
1599 * kvm_clock stable after CPU hotplug
1600 */
1601 synchronizing = true;
1602 } else {
1603 u64 tsc_exp = kvm->arch.last_tsc_write +
1604 nsec_to_cycles(vcpu, elapsed);
1605 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1606 /*
1607 * Special case: TSC write with a small delta (1 second)
1608 * of virtual cycle time against real time is
1609 * interpreted as an attempt to synchronize the CPU.
1610 */
1611 synchronizing = data < tsc_exp + tsc_hz &&
1612 data + tsc_hz > tsc_exp;
1613 }
1614 }
1615
1616 /*
1617 * For a reliable TSC, we can match TSC offsets, and for an unstable
1618 * TSC, we add elapsed time in this computation. We could let the
1619 * compensation code attempt to catch up if we fall behind, but
1620 * it's better to try to match offsets from the beginning.
1621 */
1622 if (synchronizing &&
1623 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1624 if (!check_tsc_unstable()) {
1625 offset = kvm->arch.cur_tsc_offset;
1626 pr_debug("kvm: matched tsc offset for %llu\n", data);
1627 } else {
1628 u64 delta = nsec_to_cycles(vcpu, elapsed);
1629 data += delta;
1630 offset = kvm_compute_tsc_offset(vcpu, data);
1631 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1632 }
1633 matched = true;
1634 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1635 } else {
1636 /*
1637 * We split periods of matched TSC writes into generations.
1638 * For each generation, we track the original measured
1639 * nanosecond time, offset, and write, so if TSCs are in
1640 * sync, we can match exact offset, and if not, we can match
1641 * exact software computation in compute_guest_tsc()
1642 *
1643 * These values are tracked in kvm->arch.cur_xxx variables.
1644 */
1645 kvm->arch.cur_tsc_generation++;
1646 kvm->arch.cur_tsc_nsec = ns;
1647 kvm->arch.cur_tsc_write = data;
1648 kvm->arch.cur_tsc_offset = offset;
1649 matched = false;
1650 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1651 kvm->arch.cur_tsc_generation, data);
1652 }
1653
1654 /*
1655 * We also track th most recent recorded KHZ, write and time to
1656 * allow the matching interval to be extended at each write.
1657 */
1658 kvm->arch.last_tsc_nsec = ns;
1659 kvm->arch.last_tsc_write = data;
1660 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1661
1662 vcpu->arch.last_guest_tsc = data;
1663
1664 /* Keep track of which generation this VCPU has synchronized to */
1665 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1666 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1667 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1668
1669 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1670 update_ia32_tsc_adjust_msr(vcpu, offset);
1671
1672 kvm_vcpu_write_tsc_offset(vcpu, offset);
1673 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1674
1675 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1676 if (!matched) {
1677 kvm->arch.nr_vcpus_matched_tsc = 0;
1678 } else if (!already_matched) {
1679 kvm->arch.nr_vcpus_matched_tsc++;
1680 }
1681
1682 kvm_track_tsc_matching(vcpu);
1683 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1684 }
1685
1686 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1687
1688 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1689 s64 adjustment)
1690 {
1691 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1692 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1693 }
1694
1695 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1696 {
1697 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1698 WARN_ON(adjustment < 0);
1699 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1700 adjust_tsc_offset_guest(vcpu, adjustment);
1701 }
1702
1703 #ifdef CONFIG_X86_64
1704
1705 static u64 read_tsc(void)
1706 {
1707 u64 ret = (u64)rdtsc_ordered();
1708 u64 last = pvclock_gtod_data.clock.cycle_last;
1709
1710 if (likely(ret >= last))
1711 return ret;
1712
1713 /*
1714 * GCC likes to generate cmov here, but this branch is extremely
1715 * predictable (it's just a function of time and the likely is
1716 * very likely) and there's a data dependence, so force GCC
1717 * to generate a branch instead. I don't barrier() because
1718 * we don't actually need a barrier, and if this function
1719 * ever gets inlined it will generate worse code.
1720 */
1721 asm volatile ("");
1722 return last;
1723 }
1724
1725 static inline u64 vgettsc(u64 *cycle_now)
1726 {
1727 long v;
1728 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1729
1730 *cycle_now = read_tsc();
1731
1732 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1733 return v * gtod->clock.mult;
1734 }
1735
1736 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1737 {
1738 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1739 unsigned long seq;
1740 int mode;
1741 u64 ns;
1742
1743 do {
1744 seq = read_seqcount_begin(&gtod->seq);
1745 mode = gtod->clock.vclock_mode;
1746 ns = gtod->nsec_base;
1747 ns += vgettsc(cycle_now);
1748 ns >>= gtod->clock.shift;
1749 ns += gtod->boot_ns;
1750 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1751 *t = ns;
1752
1753 return mode;
1754 }
1755
1756 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1757 {
1758 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1759 unsigned long seq;
1760 int mode;
1761 u64 ns;
1762
1763 do {
1764 seq = read_seqcount_begin(&gtod->seq);
1765 mode = gtod->clock.vclock_mode;
1766 ts->tv_sec = gtod->wall_time_sec;
1767 ns = gtod->nsec_base;
1768 ns += vgettsc(cycle_now);
1769 ns >>= gtod->clock.shift;
1770 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1771
1772 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1773 ts->tv_nsec = ns;
1774
1775 return mode;
1776 }
1777
1778 /* returns true if host is using tsc clocksource */
1779 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1780 {
1781 /* checked again under seqlock below */
1782 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1783 return false;
1784
1785 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1786 }
1787
1788 /* returns true if host is using tsc clocksource */
1789 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1790 u64 *cycle_now)
1791 {
1792 /* checked again under seqlock below */
1793 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1794 return false;
1795
1796 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1797 }
1798 #endif
1799
1800 /*
1801 *
1802 * Assuming a stable TSC across physical CPUS, and a stable TSC
1803 * across virtual CPUs, the following condition is possible.
1804 * Each numbered line represents an event visible to both
1805 * CPUs at the next numbered event.
1806 *
1807 * "timespecX" represents host monotonic time. "tscX" represents
1808 * RDTSC value.
1809 *
1810 * VCPU0 on CPU0 | VCPU1 on CPU1
1811 *
1812 * 1. read timespec0,tsc0
1813 * 2. | timespec1 = timespec0 + N
1814 * | tsc1 = tsc0 + M
1815 * 3. transition to guest | transition to guest
1816 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1817 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1818 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1819 *
1820 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1821 *
1822 * - ret0 < ret1
1823 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1824 * ...
1825 * - 0 < N - M => M < N
1826 *
1827 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1828 * always the case (the difference between two distinct xtime instances
1829 * might be smaller then the difference between corresponding TSC reads,
1830 * when updating guest vcpus pvclock areas).
1831 *
1832 * To avoid that problem, do not allow visibility of distinct
1833 * system_timestamp/tsc_timestamp values simultaneously: use a master
1834 * copy of host monotonic time values. Update that master copy
1835 * in lockstep.
1836 *
1837 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1838 *
1839 */
1840
1841 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1842 {
1843 #ifdef CONFIG_X86_64
1844 struct kvm_arch *ka = &kvm->arch;
1845 int vclock_mode;
1846 bool host_tsc_clocksource, vcpus_matched;
1847
1848 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1849 atomic_read(&kvm->online_vcpus));
1850
1851 /*
1852 * If the host uses TSC clock, then passthrough TSC as stable
1853 * to the guest.
1854 */
1855 host_tsc_clocksource = kvm_get_time_and_clockread(
1856 &ka->master_kernel_ns,
1857 &ka->master_cycle_now);
1858
1859 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1860 && !ka->backwards_tsc_observed
1861 && !ka->boot_vcpu_runs_old_kvmclock;
1862
1863 if (ka->use_master_clock)
1864 atomic_set(&kvm_guest_has_master_clock, 1);
1865
1866 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1867 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1868 vcpus_matched);
1869 #endif
1870 }
1871
1872 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1873 {
1874 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1875 }
1876
1877 static void kvm_gen_update_masterclock(struct kvm *kvm)
1878 {
1879 #ifdef CONFIG_X86_64
1880 int i;
1881 struct kvm_vcpu *vcpu;
1882 struct kvm_arch *ka = &kvm->arch;
1883
1884 spin_lock(&ka->pvclock_gtod_sync_lock);
1885 kvm_make_mclock_inprogress_request(kvm);
1886 /* no guest entries from this point */
1887 pvclock_update_vm_gtod_copy(kvm);
1888
1889 kvm_for_each_vcpu(i, vcpu, kvm)
1890 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1891
1892 /* guest entries allowed */
1893 kvm_for_each_vcpu(i, vcpu, kvm)
1894 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1895
1896 spin_unlock(&ka->pvclock_gtod_sync_lock);
1897 #endif
1898 }
1899
1900 u64 get_kvmclock_ns(struct kvm *kvm)
1901 {
1902 struct kvm_arch *ka = &kvm->arch;
1903 struct pvclock_vcpu_time_info hv_clock;
1904 u64 ret;
1905
1906 spin_lock(&ka->pvclock_gtod_sync_lock);
1907 if (!ka->use_master_clock) {
1908 spin_unlock(&ka->pvclock_gtod_sync_lock);
1909 return ktime_get_boot_ns() + ka->kvmclock_offset;
1910 }
1911
1912 hv_clock.tsc_timestamp = ka->master_cycle_now;
1913 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1914 spin_unlock(&ka->pvclock_gtod_sync_lock);
1915
1916 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1917 get_cpu();
1918
1919 if (__this_cpu_read(cpu_tsc_khz)) {
1920 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1921 &hv_clock.tsc_shift,
1922 &hv_clock.tsc_to_system_mul);
1923 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1924 } else
1925 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1926
1927 put_cpu();
1928
1929 return ret;
1930 }
1931
1932 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1933 {
1934 struct kvm_vcpu_arch *vcpu = &v->arch;
1935 struct pvclock_vcpu_time_info guest_hv_clock;
1936
1937 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1938 &guest_hv_clock, sizeof(guest_hv_clock))))
1939 return;
1940
1941 /* This VCPU is paused, but it's legal for a guest to read another
1942 * VCPU's kvmclock, so we really have to follow the specification where
1943 * it says that version is odd if data is being modified, and even after
1944 * it is consistent.
1945 *
1946 * Version field updates must be kept separate. This is because
1947 * kvm_write_guest_cached might use a "rep movs" instruction, and
1948 * writes within a string instruction are weakly ordered. So there
1949 * are three writes overall.
1950 *
1951 * As a small optimization, only write the version field in the first
1952 * and third write. The vcpu->pv_time cache is still valid, because the
1953 * version field is the first in the struct.
1954 */
1955 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1956
1957 if (guest_hv_clock.version & 1)
1958 ++guest_hv_clock.version; /* first time write, random junk */
1959
1960 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1961 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1962 &vcpu->hv_clock,
1963 sizeof(vcpu->hv_clock.version));
1964
1965 smp_wmb();
1966
1967 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1968 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1969
1970 if (vcpu->pvclock_set_guest_stopped_request) {
1971 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1972 vcpu->pvclock_set_guest_stopped_request = false;
1973 }
1974
1975 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1976
1977 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1978 &vcpu->hv_clock,
1979 sizeof(vcpu->hv_clock));
1980
1981 smp_wmb();
1982
1983 vcpu->hv_clock.version++;
1984 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1985 &vcpu->hv_clock,
1986 sizeof(vcpu->hv_clock.version));
1987 }
1988
1989 static int kvm_guest_time_update(struct kvm_vcpu *v)
1990 {
1991 unsigned long flags, tgt_tsc_khz;
1992 struct kvm_vcpu_arch *vcpu = &v->arch;
1993 struct kvm_arch *ka = &v->kvm->arch;
1994 s64 kernel_ns;
1995 u64 tsc_timestamp, host_tsc;
1996 u8 pvclock_flags;
1997 bool use_master_clock;
1998
1999 kernel_ns = 0;
2000 host_tsc = 0;
2001
2002 /*
2003 * If the host uses TSC clock, then passthrough TSC as stable
2004 * to the guest.
2005 */
2006 spin_lock(&ka->pvclock_gtod_sync_lock);
2007 use_master_clock = ka->use_master_clock;
2008 if (use_master_clock) {
2009 host_tsc = ka->master_cycle_now;
2010 kernel_ns = ka->master_kernel_ns;
2011 }
2012 spin_unlock(&ka->pvclock_gtod_sync_lock);
2013
2014 /* Keep irq disabled to prevent changes to the clock */
2015 local_irq_save(flags);
2016 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2017 if (unlikely(tgt_tsc_khz == 0)) {
2018 local_irq_restore(flags);
2019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2020 return 1;
2021 }
2022 if (!use_master_clock) {
2023 host_tsc = rdtsc();
2024 kernel_ns = ktime_get_boot_ns();
2025 }
2026
2027 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2028
2029 /*
2030 * We may have to catch up the TSC to match elapsed wall clock
2031 * time for two reasons, even if kvmclock is used.
2032 * 1) CPU could have been running below the maximum TSC rate
2033 * 2) Broken TSC compensation resets the base at each VCPU
2034 * entry to avoid unknown leaps of TSC even when running
2035 * again on the same CPU. This may cause apparent elapsed
2036 * time to disappear, and the guest to stand still or run
2037 * very slowly.
2038 */
2039 if (vcpu->tsc_catchup) {
2040 u64 tsc = compute_guest_tsc(v, kernel_ns);
2041 if (tsc > tsc_timestamp) {
2042 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2043 tsc_timestamp = tsc;
2044 }
2045 }
2046
2047 local_irq_restore(flags);
2048
2049 /* With all the info we got, fill in the values */
2050
2051 if (kvm_has_tsc_control)
2052 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2053
2054 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2055 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2056 &vcpu->hv_clock.tsc_shift,
2057 &vcpu->hv_clock.tsc_to_system_mul);
2058 vcpu->hw_tsc_khz = tgt_tsc_khz;
2059 }
2060
2061 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2062 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2063 vcpu->last_guest_tsc = tsc_timestamp;
2064
2065 /* If the host uses TSC clocksource, then it is stable */
2066 pvclock_flags = 0;
2067 if (use_master_clock)
2068 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2069
2070 vcpu->hv_clock.flags = pvclock_flags;
2071
2072 if (vcpu->pv_time_enabled)
2073 kvm_setup_pvclock_page(v);
2074 if (v == kvm_get_vcpu(v->kvm, 0))
2075 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2076 return 0;
2077 }
2078
2079 /*
2080 * kvmclock updates which are isolated to a given vcpu, such as
2081 * vcpu->cpu migration, should not allow system_timestamp from
2082 * the rest of the vcpus to remain static. Otherwise ntp frequency
2083 * correction applies to one vcpu's system_timestamp but not
2084 * the others.
2085 *
2086 * So in those cases, request a kvmclock update for all vcpus.
2087 * We need to rate-limit these requests though, as they can
2088 * considerably slow guests that have a large number of vcpus.
2089 * The time for a remote vcpu to update its kvmclock is bound
2090 * by the delay we use to rate-limit the updates.
2091 */
2092
2093 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2094
2095 static void kvmclock_update_fn(struct work_struct *work)
2096 {
2097 int i;
2098 struct delayed_work *dwork = to_delayed_work(work);
2099 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2100 kvmclock_update_work);
2101 struct kvm *kvm = container_of(ka, struct kvm, arch);
2102 struct kvm_vcpu *vcpu;
2103
2104 kvm_for_each_vcpu(i, vcpu, kvm) {
2105 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2106 kvm_vcpu_kick(vcpu);
2107 }
2108 }
2109
2110 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2111 {
2112 struct kvm *kvm = v->kvm;
2113
2114 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2115 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2116 KVMCLOCK_UPDATE_DELAY);
2117 }
2118
2119 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2120
2121 static void kvmclock_sync_fn(struct work_struct *work)
2122 {
2123 struct delayed_work *dwork = to_delayed_work(work);
2124 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2125 kvmclock_sync_work);
2126 struct kvm *kvm = container_of(ka, struct kvm, arch);
2127
2128 if (!kvmclock_periodic_sync)
2129 return;
2130
2131 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2132 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2133 KVMCLOCK_SYNC_PERIOD);
2134 }
2135
2136 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2137 {
2138 u64 mcg_cap = vcpu->arch.mcg_cap;
2139 unsigned bank_num = mcg_cap & 0xff;
2140 u32 msr = msr_info->index;
2141 u64 data = msr_info->data;
2142
2143 switch (msr) {
2144 case MSR_IA32_MCG_STATUS:
2145 vcpu->arch.mcg_status = data;
2146 break;
2147 case MSR_IA32_MCG_CTL:
2148 if (!(mcg_cap & MCG_CTL_P) &&
2149 (data || !msr_info->host_initiated))
2150 return 1;
2151 if (data != 0 && data != ~(u64)0)
2152 return 1;
2153 vcpu->arch.mcg_ctl = data;
2154 break;
2155 default:
2156 if (msr >= MSR_IA32_MC0_CTL &&
2157 msr < MSR_IA32_MCx_CTL(bank_num)) {
2158 u32 offset = msr - MSR_IA32_MC0_CTL;
2159 /* only 0 or all 1s can be written to IA32_MCi_CTL
2160 * some Linux kernels though clear bit 10 in bank 4 to
2161 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2162 * this to avoid an uncatched #GP in the guest
2163 */
2164 if ((offset & 0x3) == 0 &&
2165 data != 0 && (data | (1 << 10)) != ~(u64)0)
2166 return -1;
2167 if (!msr_info->host_initiated &&
2168 (offset & 0x3) == 1 && data != 0)
2169 return -1;
2170 vcpu->arch.mce_banks[offset] = data;
2171 break;
2172 }
2173 return 1;
2174 }
2175 return 0;
2176 }
2177
2178 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2179 {
2180 struct kvm *kvm = vcpu->kvm;
2181 int lm = is_long_mode(vcpu);
2182 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2183 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2184 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2185 : kvm->arch.xen_hvm_config.blob_size_32;
2186 u32 page_num = data & ~PAGE_MASK;
2187 u64 page_addr = data & PAGE_MASK;
2188 u8 *page;
2189 int r;
2190
2191 r = -E2BIG;
2192 if (page_num >= blob_size)
2193 goto out;
2194 r = -ENOMEM;
2195 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2196 if (IS_ERR(page)) {
2197 r = PTR_ERR(page);
2198 goto out;
2199 }
2200 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2201 goto out_free;
2202 r = 0;
2203 out_free:
2204 kfree(page);
2205 out:
2206 return r;
2207 }
2208
2209 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2210 {
2211 gpa_t gpa = data & ~0x3f;
2212
2213 /* Bits 3:5 are reserved, Should be zero */
2214 if (data & 0x38)
2215 return 1;
2216
2217 vcpu->arch.apf.msr_val = data;
2218
2219 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2220 kvm_clear_async_pf_completion_queue(vcpu);
2221 kvm_async_pf_hash_reset(vcpu);
2222 return 0;
2223 }
2224
2225 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2226 sizeof(u32)))
2227 return 1;
2228
2229 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2230 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2231 kvm_async_pf_wakeup_all(vcpu);
2232 return 0;
2233 }
2234
2235 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2236 {
2237 vcpu->arch.pv_time_enabled = false;
2238 }
2239
2240 static void record_steal_time(struct kvm_vcpu *vcpu)
2241 {
2242 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2243 return;
2244
2245 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2246 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2247 return;
2248
2249 vcpu->arch.st.steal.preempted = 0;
2250
2251 if (vcpu->arch.st.steal.version & 1)
2252 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2253
2254 vcpu->arch.st.steal.version += 1;
2255
2256 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2257 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2258
2259 smp_wmb();
2260
2261 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2262 vcpu->arch.st.last_steal;
2263 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2264
2265 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2266 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2267
2268 smp_wmb();
2269
2270 vcpu->arch.st.steal.version += 1;
2271
2272 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2273 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2274 }
2275
2276 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2277 {
2278 bool pr = false;
2279 u32 msr = msr_info->index;
2280 u64 data = msr_info->data;
2281
2282 switch (msr) {
2283 case MSR_AMD64_NB_CFG:
2284 case MSR_IA32_UCODE_WRITE:
2285 case MSR_VM_HSAVE_PA:
2286 case MSR_AMD64_PATCH_LOADER:
2287 case MSR_AMD64_BU_CFG2:
2288 case MSR_AMD64_DC_CFG:
2289 case MSR_F15H_EX_CFG:
2290 break;
2291
2292 case MSR_IA32_UCODE_REV:
2293 if (msr_info->host_initiated)
2294 vcpu->arch.microcode_version = data;
2295 break;
2296 case MSR_IA32_ARCH_CAPABILITIES:
2297 if (!msr_info->host_initiated)
2298 return 1;
2299 vcpu->arch.arch_capabilities = data;
2300 break;
2301 case MSR_EFER:
2302 return set_efer(vcpu, msr_info);
2303 case MSR_K7_HWCR:
2304 data &= ~(u64)0x40; /* ignore flush filter disable */
2305 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2306 data &= ~(u64)0x8; /* ignore TLB cache disable */
2307 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2308 if (data != 0) {
2309 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2310 data);
2311 return 1;
2312 }
2313 break;
2314 case MSR_FAM10H_MMIO_CONF_BASE:
2315 if (data != 0) {
2316 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2317 "0x%llx\n", data);
2318 return 1;
2319 }
2320 break;
2321 case MSR_IA32_DEBUGCTLMSR:
2322 if (!data) {
2323 /* We support the non-activated case already */
2324 break;
2325 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2326 /* Values other than LBR and BTF are vendor-specific,
2327 thus reserved and should throw a #GP */
2328 return 1;
2329 }
2330 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2331 __func__, data);
2332 break;
2333 case 0x200 ... 0x2ff:
2334 return kvm_mtrr_set_msr(vcpu, msr, data);
2335 case MSR_IA32_APICBASE:
2336 return kvm_set_apic_base(vcpu, msr_info);
2337 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2338 return kvm_x2apic_msr_write(vcpu, msr, data);
2339 case MSR_IA32_TSCDEADLINE:
2340 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2341 break;
2342 case MSR_IA32_TSC_ADJUST:
2343 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2344 if (!msr_info->host_initiated) {
2345 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2346 adjust_tsc_offset_guest(vcpu, adj);
2347 }
2348 vcpu->arch.ia32_tsc_adjust_msr = data;
2349 }
2350 break;
2351 case MSR_IA32_MISC_ENABLE:
2352 vcpu->arch.ia32_misc_enable_msr = data;
2353 break;
2354 case MSR_IA32_SMBASE:
2355 if (!msr_info->host_initiated)
2356 return 1;
2357 vcpu->arch.smbase = data;
2358 break;
2359 case MSR_IA32_TSC:
2360 kvm_write_tsc(vcpu, msr_info);
2361 break;
2362 case MSR_KVM_WALL_CLOCK_NEW:
2363 case MSR_KVM_WALL_CLOCK:
2364 vcpu->kvm->arch.wall_clock = data;
2365 kvm_write_wall_clock(vcpu->kvm, data);
2366 break;
2367 case MSR_KVM_SYSTEM_TIME_NEW:
2368 case MSR_KVM_SYSTEM_TIME: {
2369 struct kvm_arch *ka = &vcpu->kvm->arch;
2370
2371 kvmclock_reset(vcpu);
2372
2373 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2374 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2375
2376 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2377 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2378
2379 ka->boot_vcpu_runs_old_kvmclock = tmp;
2380 }
2381
2382 vcpu->arch.time = data;
2383 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2384
2385 /* we verify if the enable bit is set... */
2386 if (!(data & 1))
2387 break;
2388
2389 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2390 &vcpu->arch.pv_time, data & ~1ULL,
2391 sizeof(struct pvclock_vcpu_time_info)))
2392 vcpu->arch.pv_time_enabled = false;
2393 else
2394 vcpu->arch.pv_time_enabled = true;
2395
2396 break;
2397 }
2398 case MSR_KVM_ASYNC_PF_EN:
2399 if (kvm_pv_enable_async_pf(vcpu, data))
2400 return 1;
2401 break;
2402 case MSR_KVM_STEAL_TIME:
2403
2404 if (unlikely(!sched_info_on()))
2405 return 1;
2406
2407 if (data & KVM_STEAL_RESERVED_MASK)
2408 return 1;
2409
2410 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2411 data & KVM_STEAL_VALID_BITS,
2412 sizeof(struct kvm_steal_time)))
2413 return 1;
2414
2415 vcpu->arch.st.msr_val = data;
2416
2417 if (!(data & KVM_MSR_ENABLED))
2418 break;
2419
2420 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2421
2422 break;
2423 case MSR_KVM_PV_EOI_EN:
2424 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2425 return 1;
2426 break;
2427
2428 case MSR_IA32_MCG_CTL:
2429 case MSR_IA32_MCG_STATUS:
2430 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2431 return set_msr_mce(vcpu, msr_info);
2432
2433 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2434 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2435 pr = true; /* fall through */
2436 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2437 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2438 if (kvm_pmu_is_valid_msr(vcpu, msr))
2439 return kvm_pmu_set_msr(vcpu, msr_info);
2440
2441 if (pr || data != 0)
2442 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2443 "0x%x data 0x%llx\n", msr, data);
2444 break;
2445 case MSR_K7_CLK_CTL:
2446 /*
2447 * Ignore all writes to this no longer documented MSR.
2448 * Writes are only relevant for old K7 processors,
2449 * all pre-dating SVM, but a recommended workaround from
2450 * AMD for these chips. It is possible to specify the
2451 * affected processor models on the command line, hence
2452 * the need to ignore the workaround.
2453 */
2454 break;
2455 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2456 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2457 case HV_X64_MSR_CRASH_CTL:
2458 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2459 return kvm_hv_set_msr_common(vcpu, msr, data,
2460 msr_info->host_initiated);
2461 case MSR_IA32_BBL_CR_CTL3:
2462 /* Drop writes to this legacy MSR -- see rdmsr
2463 * counterpart for further detail.
2464 */
2465 if (report_ignored_msrs)
2466 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2467 msr, data);
2468 break;
2469 case MSR_AMD64_OSVW_ID_LENGTH:
2470 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2471 return 1;
2472 vcpu->arch.osvw.length = data;
2473 break;
2474 case MSR_AMD64_OSVW_STATUS:
2475 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2476 return 1;
2477 vcpu->arch.osvw.status = data;
2478 break;
2479 case MSR_PLATFORM_INFO:
2480 if (!msr_info->host_initiated ||
2481 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2482 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2483 cpuid_fault_enabled(vcpu)))
2484 return 1;
2485 vcpu->arch.msr_platform_info = data;
2486 break;
2487 case MSR_MISC_FEATURES_ENABLES:
2488 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2489 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2490 !supports_cpuid_fault(vcpu)))
2491 return 1;
2492 vcpu->arch.msr_misc_features_enables = data;
2493 break;
2494 default:
2495 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2496 return xen_hvm_config(vcpu, data);
2497 if (kvm_pmu_is_valid_msr(vcpu, msr))
2498 return kvm_pmu_set_msr(vcpu, msr_info);
2499 if (!ignore_msrs) {
2500 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2501 msr, data);
2502 return 1;
2503 } else {
2504 if (report_ignored_msrs)
2505 vcpu_unimpl(vcpu,
2506 "ignored wrmsr: 0x%x data 0x%llx\n",
2507 msr, data);
2508 break;
2509 }
2510 }
2511 return 0;
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2514
2515
2516 /*
2517 * Reads an msr value (of 'msr_index') into 'pdata'.
2518 * Returns 0 on success, non-0 otherwise.
2519 * Assumes vcpu_load() was already called.
2520 */
2521 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2522 {
2523 return kvm_x86_ops->get_msr(vcpu, msr);
2524 }
2525 EXPORT_SYMBOL_GPL(kvm_get_msr);
2526
2527 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2528 {
2529 u64 data;
2530 u64 mcg_cap = vcpu->arch.mcg_cap;
2531 unsigned bank_num = mcg_cap & 0xff;
2532
2533 switch (msr) {
2534 case MSR_IA32_P5_MC_ADDR:
2535 case MSR_IA32_P5_MC_TYPE:
2536 data = 0;
2537 break;
2538 case MSR_IA32_MCG_CAP:
2539 data = vcpu->arch.mcg_cap;
2540 break;
2541 case MSR_IA32_MCG_CTL:
2542 if (!(mcg_cap & MCG_CTL_P) && !host)
2543 return 1;
2544 data = vcpu->arch.mcg_ctl;
2545 break;
2546 case MSR_IA32_MCG_STATUS:
2547 data = vcpu->arch.mcg_status;
2548 break;
2549 default:
2550 if (msr >= MSR_IA32_MC0_CTL &&
2551 msr < MSR_IA32_MCx_CTL(bank_num)) {
2552 u32 offset = msr - MSR_IA32_MC0_CTL;
2553 data = vcpu->arch.mce_banks[offset];
2554 break;
2555 }
2556 return 1;
2557 }
2558 *pdata = data;
2559 return 0;
2560 }
2561
2562 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2563 {
2564 switch (msr_info->index) {
2565 case MSR_IA32_PLATFORM_ID:
2566 case MSR_IA32_EBL_CR_POWERON:
2567 case MSR_IA32_DEBUGCTLMSR:
2568 case MSR_IA32_LASTBRANCHFROMIP:
2569 case MSR_IA32_LASTBRANCHTOIP:
2570 case MSR_IA32_LASTINTFROMIP:
2571 case MSR_IA32_LASTINTTOIP:
2572 case MSR_K8_SYSCFG:
2573 case MSR_K8_TSEG_ADDR:
2574 case MSR_K8_TSEG_MASK:
2575 case MSR_K7_HWCR:
2576 case MSR_VM_HSAVE_PA:
2577 case MSR_K8_INT_PENDING_MSG:
2578 case MSR_AMD64_NB_CFG:
2579 case MSR_FAM10H_MMIO_CONF_BASE:
2580 case MSR_AMD64_BU_CFG2:
2581 case MSR_IA32_PERF_CTL:
2582 case MSR_AMD64_DC_CFG:
2583 case MSR_F15H_EX_CFG:
2584 msr_info->data = 0;
2585 break;
2586 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2587 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2588 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2589 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2590 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2591 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2592 msr_info->data = 0;
2593 break;
2594 case MSR_IA32_UCODE_REV:
2595 msr_info->data = vcpu->arch.microcode_version;
2596 break;
2597 case MSR_IA32_TSC:
2598 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2599 break;
2600 case MSR_IA32_ARCH_CAPABILITIES:
2601 if (!msr_info->host_initiated &&
2602 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2603 return 1;
2604 msr_info->data = vcpu->arch.arch_capabilities;
2605 break;
2606 case MSR_MTRRcap:
2607 case 0x200 ... 0x2ff:
2608 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2609 case 0xcd: /* fsb frequency */
2610 msr_info->data = 3;
2611 break;
2612 /*
2613 * MSR_EBC_FREQUENCY_ID
2614 * Conservative value valid for even the basic CPU models.
2615 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2616 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2617 * and 266MHz for model 3, or 4. Set Core Clock
2618 * Frequency to System Bus Frequency Ratio to 1 (bits
2619 * 31:24) even though these are only valid for CPU
2620 * models > 2, however guests may end up dividing or
2621 * multiplying by zero otherwise.
2622 */
2623 case MSR_EBC_FREQUENCY_ID:
2624 msr_info->data = 1 << 24;
2625 break;
2626 case MSR_IA32_APICBASE:
2627 msr_info->data = kvm_get_apic_base(vcpu);
2628 break;
2629 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2630 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2631 break;
2632 case MSR_IA32_TSCDEADLINE:
2633 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2634 break;
2635 case MSR_IA32_TSC_ADJUST:
2636 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2637 break;
2638 case MSR_IA32_MISC_ENABLE:
2639 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2640 break;
2641 case MSR_IA32_SMBASE:
2642 if (!msr_info->host_initiated)
2643 return 1;
2644 msr_info->data = vcpu->arch.smbase;
2645 break;
2646 case MSR_IA32_PERF_STATUS:
2647 /* TSC increment by tick */
2648 msr_info->data = 1000ULL;
2649 /* CPU multiplier */
2650 msr_info->data |= (((uint64_t)4ULL) << 40);
2651 break;
2652 case MSR_EFER:
2653 msr_info->data = vcpu->arch.efer;
2654 break;
2655 case MSR_KVM_WALL_CLOCK:
2656 case MSR_KVM_WALL_CLOCK_NEW:
2657 msr_info->data = vcpu->kvm->arch.wall_clock;
2658 break;
2659 case MSR_KVM_SYSTEM_TIME:
2660 case MSR_KVM_SYSTEM_TIME_NEW:
2661 msr_info->data = vcpu->arch.time;
2662 break;
2663 case MSR_KVM_ASYNC_PF_EN:
2664 msr_info->data = vcpu->arch.apf.msr_val;
2665 break;
2666 case MSR_KVM_STEAL_TIME:
2667 msr_info->data = vcpu->arch.st.msr_val;
2668 break;
2669 case MSR_KVM_PV_EOI_EN:
2670 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2671 break;
2672 case MSR_IA32_P5_MC_ADDR:
2673 case MSR_IA32_P5_MC_TYPE:
2674 case MSR_IA32_MCG_CAP:
2675 case MSR_IA32_MCG_CTL:
2676 case MSR_IA32_MCG_STATUS:
2677 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2678 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2679 msr_info->host_initiated);
2680 case MSR_K7_CLK_CTL:
2681 /*
2682 * Provide expected ramp-up count for K7. All other
2683 * are set to zero, indicating minimum divisors for
2684 * every field.
2685 *
2686 * This prevents guest kernels on AMD host with CPU
2687 * type 6, model 8 and higher from exploding due to
2688 * the rdmsr failing.
2689 */
2690 msr_info->data = 0x20000000;
2691 break;
2692 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2693 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2694 case HV_X64_MSR_CRASH_CTL:
2695 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2696 return kvm_hv_get_msr_common(vcpu,
2697 msr_info->index, &msr_info->data,
2698 msr_info->host_initiated);
2699 break;
2700 case MSR_IA32_BBL_CR_CTL3:
2701 /* This legacy MSR exists but isn't fully documented in current
2702 * silicon. It is however accessed by winxp in very narrow
2703 * scenarios where it sets bit #19, itself documented as
2704 * a "reserved" bit. Best effort attempt to source coherent
2705 * read data here should the balance of the register be
2706 * interpreted by the guest:
2707 *
2708 * L2 cache control register 3: 64GB range, 256KB size,
2709 * enabled, latency 0x1, configured
2710 */
2711 msr_info->data = 0xbe702111;
2712 break;
2713 case MSR_AMD64_OSVW_ID_LENGTH:
2714 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2715 return 1;
2716 msr_info->data = vcpu->arch.osvw.length;
2717 break;
2718 case MSR_AMD64_OSVW_STATUS:
2719 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2720 return 1;
2721 msr_info->data = vcpu->arch.osvw.status;
2722 break;
2723 case MSR_PLATFORM_INFO:
2724 msr_info->data = vcpu->arch.msr_platform_info;
2725 break;
2726 case MSR_MISC_FEATURES_ENABLES:
2727 msr_info->data = vcpu->arch.msr_misc_features_enables;
2728 break;
2729 default:
2730 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2731 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2732 if (!ignore_msrs) {
2733 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2734 msr_info->index);
2735 return 1;
2736 } else {
2737 if (report_ignored_msrs)
2738 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2739 msr_info->index);
2740 msr_info->data = 0;
2741 }
2742 break;
2743 }
2744 return 0;
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2747
2748 /*
2749 * Read or write a bunch of msrs. All parameters are kernel addresses.
2750 *
2751 * @return number of msrs set successfully.
2752 */
2753 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2754 struct kvm_msr_entry *entries,
2755 int (*do_msr)(struct kvm_vcpu *vcpu,
2756 unsigned index, u64 *data))
2757 {
2758 int i;
2759
2760 for (i = 0; i < msrs->nmsrs; ++i)
2761 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2762 break;
2763
2764 return i;
2765 }
2766
2767 /*
2768 * Read or write a bunch of msrs. Parameters are user addresses.
2769 *
2770 * @return number of msrs set successfully.
2771 */
2772 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2773 int (*do_msr)(struct kvm_vcpu *vcpu,
2774 unsigned index, u64 *data),
2775 int writeback)
2776 {
2777 struct kvm_msrs msrs;
2778 struct kvm_msr_entry *entries;
2779 int r, n;
2780 unsigned size;
2781
2782 r = -EFAULT;
2783 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2784 goto out;
2785
2786 r = -E2BIG;
2787 if (msrs.nmsrs >= MAX_IO_MSRS)
2788 goto out;
2789
2790 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2791 entries = memdup_user(user_msrs->entries, size);
2792 if (IS_ERR(entries)) {
2793 r = PTR_ERR(entries);
2794 goto out;
2795 }
2796
2797 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2798 if (r < 0)
2799 goto out_free;
2800
2801 r = -EFAULT;
2802 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2803 goto out_free;
2804
2805 r = n;
2806
2807 out_free:
2808 kfree(entries);
2809 out:
2810 return r;
2811 }
2812
2813 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2814 {
2815 int r;
2816
2817 switch (ext) {
2818 case KVM_CAP_IRQCHIP:
2819 case KVM_CAP_HLT:
2820 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2821 case KVM_CAP_SET_TSS_ADDR:
2822 case KVM_CAP_EXT_CPUID:
2823 case KVM_CAP_EXT_EMUL_CPUID:
2824 case KVM_CAP_CLOCKSOURCE:
2825 case KVM_CAP_PIT:
2826 case KVM_CAP_NOP_IO_DELAY:
2827 case KVM_CAP_MP_STATE:
2828 case KVM_CAP_SYNC_MMU:
2829 case KVM_CAP_USER_NMI:
2830 case KVM_CAP_REINJECT_CONTROL:
2831 case KVM_CAP_IRQ_INJECT_STATUS:
2832 case KVM_CAP_IOEVENTFD:
2833 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2834 case KVM_CAP_PIT2:
2835 case KVM_CAP_PIT_STATE2:
2836 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2837 case KVM_CAP_XEN_HVM:
2838 case KVM_CAP_VCPU_EVENTS:
2839 case KVM_CAP_HYPERV:
2840 case KVM_CAP_HYPERV_VAPIC:
2841 case KVM_CAP_HYPERV_SPIN:
2842 case KVM_CAP_HYPERV_SYNIC:
2843 case KVM_CAP_HYPERV_SYNIC2:
2844 case KVM_CAP_HYPERV_VP_INDEX:
2845 case KVM_CAP_PCI_SEGMENT:
2846 case KVM_CAP_DEBUGREGS:
2847 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2848 case KVM_CAP_XSAVE:
2849 case KVM_CAP_ASYNC_PF:
2850 case KVM_CAP_GET_TSC_KHZ:
2851 case KVM_CAP_KVMCLOCK_CTRL:
2852 case KVM_CAP_READONLY_MEM:
2853 case KVM_CAP_HYPERV_TIME:
2854 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2855 case KVM_CAP_TSC_DEADLINE_TIMER:
2856 case KVM_CAP_ENABLE_CAP_VM:
2857 case KVM_CAP_DISABLE_QUIRKS:
2858 case KVM_CAP_SET_BOOT_CPU_ID:
2859 case KVM_CAP_SPLIT_IRQCHIP:
2860 case KVM_CAP_IMMEDIATE_EXIT:
2861 case KVM_CAP_GET_MSR_FEATURES:
2862 r = 1;
2863 break;
2864 case KVM_CAP_ADJUST_CLOCK:
2865 r = KVM_CLOCK_TSC_STABLE;
2866 break;
2867 case KVM_CAP_X86_GUEST_MWAIT:
2868 r = kvm_mwait_in_guest();
2869 break;
2870 case KVM_CAP_X86_SMM:
2871 /* SMBASE is usually relocated above 1M on modern chipsets,
2872 * and SMM handlers might indeed rely on 4G segment limits,
2873 * so do not report SMM to be available if real mode is
2874 * emulated via vm86 mode. Still, do not go to great lengths
2875 * to avoid userspace's usage of the feature, because it is a
2876 * fringe case that is not enabled except via specific settings
2877 * of the module parameters.
2878 */
2879 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2880 break;
2881 case KVM_CAP_VAPIC:
2882 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2883 break;
2884 case KVM_CAP_NR_VCPUS:
2885 r = KVM_SOFT_MAX_VCPUS;
2886 break;
2887 case KVM_CAP_MAX_VCPUS:
2888 r = KVM_MAX_VCPUS;
2889 break;
2890 case KVM_CAP_MAX_VCPU_ID:
2891 r = KVM_MAX_VCPU_ID;
2892 break;
2893 case KVM_CAP_NR_MEMSLOTS:
2894 r = KVM_USER_MEM_SLOTS;
2895 break;
2896 case KVM_CAP_PV_MMU: /* obsolete */
2897 r = 0;
2898 break;
2899 case KVM_CAP_MCE:
2900 r = KVM_MAX_MCE_BANKS;
2901 break;
2902 case KVM_CAP_XCRS:
2903 r = boot_cpu_has(X86_FEATURE_XSAVE);
2904 break;
2905 case KVM_CAP_TSC_CONTROL:
2906 r = kvm_has_tsc_control;
2907 break;
2908 case KVM_CAP_X2APIC_API:
2909 r = KVM_X2APIC_API_VALID_FLAGS;
2910 break;
2911 default:
2912 r = 0;
2913 break;
2914 }
2915 return r;
2916
2917 }
2918
2919 long kvm_arch_dev_ioctl(struct file *filp,
2920 unsigned int ioctl, unsigned long arg)
2921 {
2922 void __user *argp = (void __user *)arg;
2923 long r;
2924
2925 switch (ioctl) {
2926 case KVM_GET_MSR_INDEX_LIST: {
2927 struct kvm_msr_list __user *user_msr_list = argp;
2928 struct kvm_msr_list msr_list;
2929 unsigned n;
2930
2931 r = -EFAULT;
2932 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2933 goto out;
2934 n = msr_list.nmsrs;
2935 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2936 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2937 goto out;
2938 r = -E2BIG;
2939 if (n < msr_list.nmsrs)
2940 goto out;
2941 r = -EFAULT;
2942 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2943 num_msrs_to_save * sizeof(u32)))
2944 goto out;
2945 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2946 &emulated_msrs,
2947 num_emulated_msrs * sizeof(u32)))
2948 goto out;
2949 r = 0;
2950 break;
2951 }
2952 case KVM_GET_SUPPORTED_CPUID:
2953 case KVM_GET_EMULATED_CPUID: {
2954 struct kvm_cpuid2 __user *cpuid_arg = argp;
2955 struct kvm_cpuid2 cpuid;
2956
2957 r = -EFAULT;
2958 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2959 goto out;
2960
2961 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2962 ioctl);
2963 if (r)
2964 goto out;
2965
2966 r = -EFAULT;
2967 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2968 goto out;
2969 r = 0;
2970 break;
2971 }
2972 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2973 r = -EFAULT;
2974 if (copy_to_user(argp, &kvm_mce_cap_supported,
2975 sizeof(kvm_mce_cap_supported)))
2976 goto out;
2977 r = 0;
2978 break;
2979 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2980 struct kvm_msr_list __user *user_msr_list = argp;
2981 struct kvm_msr_list msr_list;
2982 unsigned int n;
2983
2984 r = -EFAULT;
2985 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2986 goto out;
2987 n = msr_list.nmsrs;
2988 msr_list.nmsrs = num_msr_based_features;
2989 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2990 goto out;
2991 r = -E2BIG;
2992 if (n < msr_list.nmsrs)
2993 goto out;
2994 r = -EFAULT;
2995 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2996 num_msr_based_features * sizeof(u32)))
2997 goto out;
2998 r = 0;
2999 break;
3000 }
3001 case KVM_GET_MSRS:
3002 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3003 break;
3004 }
3005 default:
3006 r = -EINVAL;
3007 }
3008 out:
3009 return r;
3010 }
3011
3012 static void wbinvd_ipi(void *garbage)
3013 {
3014 wbinvd();
3015 }
3016
3017 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3018 {
3019 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3020 }
3021
3022 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3023 {
3024 /* Address WBINVD may be executed by guest */
3025 if (need_emulate_wbinvd(vcpu)) {
3026 if (kvm_x86_ops->has_wbinvd_exit())
3027 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3028 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3029 smp_call_function_single(vcpu->cpu,
3030 wbinvd_ipi, NULL, 1);
3031 }
3032
3033 kvm_x86_ops->vcpu_load(vcpu, cpu);
3034
3035 /* Apply any externally detected TSC adjustments (due to suspend) */
3036 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3037 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3038 vcpu->arch.tsc_offset_adjustment = 0;
3039 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3040 }
3041
3042 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3043 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3044 rdtsc() - vcpu->arch.last_host_tsc;
3045 if (tsc_delta < 0)
3046 mark_tsc_unstable("KVM discovered backwards TSC");
3047
3048 if (check_tsc_unstable()) {
3049 u64 offset = kvm_compute_tsc_offset(vcpu,
3050 vcpu->arch.last_guest_tsc);
3051 kvm_vcpu_write_tsc_offset(vcpu, offset);
3052 vcpu->arch.tsc_catchup = 1;
3053 }
3054
3055 if (kvm_lapic_hv_timer_in_use(vcpu))
3056 kvm_lapic_restart_hv_timer(vcpu);
3057
3058 /*
3059 * On a host with synchronized TSC, there is no need to update
3060 * kvmclock on vcpu->cpu migration
3061 */
3062 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3063 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3064 if (vcpu->cpu != cpu)
3065 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3066 vcpu->cpu = cpu;
3067 }
3068
3069 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3070 }
3071
3072 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3073 {
3074 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3075 return;
3076
3077 vcpu->arch.st.steal.preempted = 1;
3078
3079 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3080 &vcpu->arch.st.steal.preempted,
3081 offsetof(struct kvm_steal_time, preempted),
3082 sizeof(vcpu->arch.st.steal.preempted));
3083 }
3084
3085 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3086 {
3087 int idx;
3088
3089 if (vcpu->preempted)
3090 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3091
3092 /*
3093 * Disable page faults because we're in atomic context here.
3094 * kvm_write_guest_offset_cached() would call might_fault()
3095 * that relies on pagefault_disable() to tell if there's a
3096 * bug. NOTE: the write to guest memory may not go through if
3097 * during postcopy live migration or if there's heavy guest
3098 * paging.
3099 */
3100 pagefault_disable();
3101 /*
3102 * kvm_memslots() will be called by
3103 * kvm_write_guest_offset_cached() so take the srcu lock.
3104 */
3105 idx = srcu_read_lock(&vcpu->kvm->srcu);
3106 kvm_steal_time_set_preempted(vcpu);
3107 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3108 pagefault_enable();
3109 kvm_x86_ops->vcpu_put(vcpu);
3110 vcpu->arch.last_host_tsc = rdtsc();
3111 /*
3112 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3113 * on every vmexit, but if not, we might have a stale dr6 from the
3114 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3115 */
3116 set_debugreg(0, 6);
3117 }
3118
3119 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3120 struct kvm_lapic_state *s)
3121 {
3122 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3123 kvm_x86_ops->sync_pir_to_irr(vcpu);
3124
3125 return kvm_apic_get_state(vcpu, s);
3126 }
3127
3128 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3129 struct kvm_lapic_state *s)
3130 {
3131 int r;
3132
3133 r = kvm_apic_set_state(vcpu, s);
3134 if (r)
3135 return r;
3136 update_cr8_intercept(vcpu);
3137
3138 return 0;
3139 }
3140
3141 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3142 {
3143 return (!lapic_in_kernel(vcpu) ||
3144 kvm_apic_accept_pic_intr(vcpu));
3145 }
3146
3147 /*
3148 * if userspace requested an interrupt window, check that the
3149 * interrupt window is open.
3150 *
3151 * No need to exit to userspace if we already have an interrupt queued.
3152 */
3153 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3154 {
3155 return kvm_arch_interrupt_allowed(vcpu) &&
3156 !kvm_cpu_has_interrupt(vcpu) &&
3157 !kvm_event_needs_reinjection(vcpu) &&
3158 kvm_cpu_accept_dm_intr(vcpu);
3159 }
3160
3161 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3162 struct kvm_interrupt *irq)
3163 {
3164 if (irq->irq >= KVM_NR_INTERRUPTS)
3165 return -EINVAL;
3166
3167 if (!irqchip_in_kernel(vcpu->kvm)) {
3168 kvm_queue_interrupt(vcpu, irq->irq, false);
3169 kvm_make_request(KVM_REQ_EVENT, vcpu);
3170 return 0;
3171 }
3172
3173 /*
3174 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3175 * fail for in-kernel 8259.
3176 */
3177 if (pic_in_kernel(vcpu->kvm))
3178 return -ENXIO;
3179
3180 if (vcpu->arch.pending_external_vector != -1)
3181 return -EEXIST;
3182
3183 vcpu->arch.pending_external_vector = irq->irq;
3184 kvm_make_request(KVM_REQ_EVENT, vcpu);
3185 return 0;
3186 }
3187
3188 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3189 {
3190 kvm_inject_nmi(vcpu);
3191
3192 return 0;
3193 }
3194
3195 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3196 {
3197 kvm_make_request(KVM_REQ_SMI, vcpu);
3198
3199 return 0;
3200 }
3201
3202 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3203 struct kvm_tpr_access_ctl *tac)
3204 {
3205 if (tac->flags)
3206 return -EINVAL;
3207 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3208 return 0;
3209 }
3210
3211 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3212 u64 mcg_cap)
3213 {
3214 int r;
3215 unsigned bank_num = mcg_cap & 0xff, bank;
3216
3217 r = -EINVAL;
3218 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3219 goto out;
3220 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3221 goto out;
3222 r = 0;
3223 vcpu->arch.mcg_cap = mcg_cap;
3224 /* Init IA32_MCG_CTL to all 1s */
3225 if (mcg_cap & MCG_CTL_P)
3226 vcpu->arch.mcg_ctl = ~(u64)0;
3227 /* Init IA32_MCi_CTL to all 1s */
3228 for (bank = 0; bank < bank_num; bank++)
3229 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3230
3231 if (kvm_x86_ops->setup_mce)
3232 kvm_x86_ops->setup_mce(vcpu);
3233 out:
3234 return r;
3235 }
3236
3237 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3238 struct kvm_x86_mce *mce)
3239 {
3240 u64 mcg_cap = vcpu->arch.mcg_cap;
3241 unsigned bank_num = mcg_cap & 0xff;
3242 u64 *banks = vcpu->arch.mce_banks;
3243
3244 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3245 return -EINVAL;
3246 /*
3247 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3248 * reporting is disabled
3249 */
3250 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3251 vcpu->arch.mcg_ctl != ~(u64)0)
3252 return 0;
3253 banks += 4 * mce->bank;
3254 /*
3255 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3256 * reporting is disabled for the bank
3257 */
3258 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3259 return 0;
3260 if (mce->status & MCI_STATUS_UC) {
3261 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3262 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3263 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3264 return 0;
3265 }
3266 if (banks[1] & MCI_STATUS_VAL)
3267 mce->status |= MCI_STATUS_OVER;
3268 banks[2] = mce->addr;
3269 banks[3] = mce->misc;
3270 vcpu->arch.mcg_status = mce->mcg_status;
3271 banks[1] = mce->status;
3272 kvm_queue_exception(vcpu, MC_VECTOR);
3273 } else if (!(banks[1] & MCI_STATUS_VAL)
3274 || !(banks[1] & MCI_STATUS_UC)) {
3275 if (banks[1] & MCI_STATUS_VAL)
3276 mce->status |= MCI_STATUS_OVER;
3277 banks[2] = mce->addr;
3278 banks[3] = mce->misc;
3279 banks[1] = mce->status;
3280 } else
3281 banks[1] |= MCI_STATUS_OVER;
3282 return 0;
3283 }
3284
3285 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3286 struct kvm_vcpu_events *events)
3287 {
3288 process_nmi(vcpu);
3289 /*
3290 * FIXME: pass injected and pending separately. This is only
3291 * needed for nested virtualization, whose state cannot be
3292 * migrated yet. For now we can combine them.
3293 */
3294 events->exception.injected =
3295 (vcpu->arch.exception.pending ||
3296 vcpu->arch.exception.injected) &&
3297 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3298 events->exception.nr = vcpu->arch.exception.nr;
3299 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3300 events->exception.pad = 0;
3301 events->exception.error_code = vcpu->arch.exception.error_code;
3302
3303 events->interrupt.injected =
3304 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3305 events->interrupt.nr = vcpu->arch.interrupt.nr;
3306 events->interrupt.soft = 0;
3307 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3308
3309 events->nmi.injected = vcpu->arch.nmi_injected;
3310 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3311 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3312 events->nmi.pad = 0;
3313
3314 events->sipi_vector = 0; /* never valid when reporting to user space */
3315
3316 events->smi.smm = is_smm(vcpu);
3317 events->smi.pending = vcpu->arch.smi_pending;
3318 events->smi.smm_inside_nmi =
3319 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3320 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3321
3322 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3323 | KVM_VCPUEVENT_VALID_SHADOW
3324 | KVM_VCPUEVENT_VALID_SMM);
3325 memset(&events->reserved, 0, sizeof(events->reserved));
3326 }
3327
3328 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3329
3330 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3331 struct kvm_vcpu_events *events)
3332 {
3333 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3334 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3335 | KVM_VCPUEVENT_VALID_SHADOW
3336 | KVM_VCPUEVENT_VALID_SMM))
3337 return -EINVAL;
3338
3339 if (events->exception.injected &&
3340 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3341 is_guest_mode(vcpu)))
3342 return -EINVAL;
3343
3344 /* INITs are latched while in SMM */
3345 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3346 (events->smi.smm || events->smi.pending) &&
3347 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3348 return -EINVAL;
3349
3350 process_nmi(vcpu);
3351 vcpu->arch.exception.injected = false;
3352 vcpu->arch.exception.pending = events->exception.injected;
3353 vcpu->arch.exception.nr = events->exception.nr;
3354 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3355 vcpu->arch.exception.error_code = events->exception.error_code;
3356
3357 vcpu->arch.interrupt.pending = events->interrupt.injected;
3358 vcpu->arch.interrupt.nr = events->interrupt.nr;
3359 vcpu->arch.interrupt.soft = events->interrupt.soft;
3360 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3361 kvm_x86_ops->set_interrupt_shadow(vcpu,
3362 events->interrupt.shadow);
3363
3364 vcpu->arch.nmi_injected = events->nmi.injected;
3365 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3366 vcpu->arch.nmi_pending = events->nmi.pending;
3367 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3368
3369 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3370 lapic_in_kernel(vcpu))
3371 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3372
3373 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3374 u32 hflags = vcpu->arch.hflags;
3375 if (events->smi.smm)
3376 hflags |= HF_SMM_MASK;
3377 else
3378 hflags &= ~HF_SMM_MASK;
3379 kvm_set_hflags(vcpu, hflags);
3380
3381 vcpu->arch.smi_pending = events->smi.pending;
3382
3383 if (events->smi.smm) {
3384 if (events->smi.smm_inside_nmi)
3385 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3386 else
3387 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3388 if (lapic_in_kernel(vcpu)) {
3389 if (events->smi.latched_init)
3390 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3391 else
3392 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3393 }
3394 }
3395 }
3396
3397 kvm_make_request(KVM_REQ_EVENT, vcpu);
3398
3399 return 0;
3400 }
3401
3402 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3403 struct kvm_debugregs *dbgregs)
3404 {
3405 unsigned long val;
3406
3407 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3408 kvm_get_dr(vcpu, 6, &val);
3409 dbgregs->dr6 = val;
3410 dbgregs->dr7 = vcpu->arch.dr7;
3411 dbgregs->flags = 0;
3412 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3413 }
3414
3415 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3416 struct kvm_debugregs *dbgregs)
3417 {
3418 if (dbgregs->flags)
3419 return -EINVAL;
3420
3421 if (dbgregs->dr6 & ~0xffffffffull)
3422 return -EINVAL;
3423 if (dbgregs->dr7 & ~0xffffffffull)
3424 return -EINVAL;
3425
3426 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3427 kvm_update_dr0123(vcpu);
3428 vcpu->arch.dr6 = dbgregs->dr6;
3429 kvm_update_dr6(vcpu);
3430 vcpu->arch.dr7 = dbgregs->dr7;
3431 kvm_update_dr7(vcpu);
3432
3433 return 0;
3434 }
3435
3436 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3437
3438 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3439 {
3440 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3441 u64 xstate_bv = xsave->header.xfeatures;
3442 u64 valid;
3443
3444 /*
3445 * Copy legacy XSAVE area, to avoid complications with CPUID
3446 * leaves 0 and 1 in the loop below.
3447 */
3448 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3449
3450 /* Set XSTATE_BV */
3451 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3452 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3453
3454 /*
3455 * Copy each region from the possibly compacted offset to the
3456 * non-compacted offset.
3457 */
3458 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3459 while (valid) {
3460 u64 feature = valid & -valid;
3461 int index = fls64(feature) - 1;
3462 void *src = get_xsave_addr(xsave, feature);
3463
3464 if (src) {
3465 u32 size, offset, ecx, edx;
3466 cpuid_count(XSTATE_CPUID, index,
3467 &size, &offset, &ecx, &edx);
3468 if (feature == XFEATURE_MASK_PKRU)
3469 memcpy(dest + offset, &vcpu->arch.pkru,
3470 sizeof(vcpu->arch.pkru));
3471 else
3472 memcpy(dest + offset, src, size);
3473
3474 }
3475
3476 valid -= feature;
3477 }
3478 }
3479
3480 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3481 {
3482 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3483 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3484 u64 valid;
3485
3486 /*
3487 * Copy legacy XSAVE area, to avoid complications with CPUID
3488 * leaves 0 and 1 in the loop below.
3489 */
3490 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3491
3492 /* Set XSTATE_BV and possibly XCOMP_BV. */
3493 xsave->header.xfeatures = xstate_bv;
3494 if (boot_cpu_has(X86_FEATURE_XSAVES))
3495 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3496
3497 /*
3498 * Copy each region from the non-compacted offset to the
3499 * possibly compacted offset.
3500 */
3501 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3502 while (valid) {
3503 u64 feature = valid & -valid;
3504 int index = fls64(feature) - 1;
3505 void *dest = get_xsave_addr(xsave, feature);
3506
3507 if (dest) {
3508 u32 size, offset, ecx, edx;
3509 cpuid_count(XSTATE_CPUID, index,
3510 &size, &offset, &ecx, &edx);
3511 if (feature == XFEATURE_MASK_PKRU)
3512 memcpy(&vcpu->arch.pkru, src + offset,
3513 sizeof(vcpu->arch.pkru));
3514 else
3515 memcpy(dest, src + offset, size);
3516 }
3517
3518 valid -= feature;
3519 }
3520 }
3521
3522 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3523 struct kvm_xsave *guest_xsave)
3524 {
3525 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3526 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3527 fill_xsave((u8 *) guest_xsave->region, vcpu);
3528 } else {
3529 memcpy(guest_xsave->region,
3530 &vcpu->arch.guest_fpu.state.fxsave,
3531 sizeof(struct fxregs_state));
3532 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3533 XFEATURE_MASK_FPSSE;
3534 }
3535 }
3536
3537 #define XSAVE_MXCSR_OFFSET 24
3538
3539 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3540 struct kvm_xsave *guest_xsave)
3541 {
3542 u64 xstate_bv =
3543 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3544 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3545
3546 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3547 /*
3548 * Here we allow setting states that are not present in
3549 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3550 * with old userspace.
3551 */
3552 if (xstate_bv & ~kvm_supported_xcr0() ||
3553 mxcsr & ~mxcsr_feature_mask)
3554 return -EINVAL;
3555 load_xsave(vcpu, (u8 *)guest_xsave->region);
3556 } else {
3557 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3558 mxcsr & ~mxcsr_feature_mask)
3559 return -EINVAL;
3560 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3561 guest_xsave->region, sizeof(struct fxregs_state));
3562 }
3563 return 0;
3564 }
3565
3566 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3567 struct kvm_xcrs *guest_xcrs)
3568 {
3569 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3570 guest_xcrs->nr_xcrs = 0;
3571 return;
3572 }
3573
3574 guest_xcrs->nr_xcrs = 1;
3575 guest_xcrs->flags = 0;
3576 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3577 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3578 }
3579
3580 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3581 struct kvm_xcrs *guest_xcrs)
3582 {
3583 int i, r = 0;
3584
3585 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3586 return -EINVAL;
3587
3588 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3589 return -EINVAL;
3590
3591 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3592 /* Only support XCR0 currently */
3593 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3594 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3595 guest_xcrs->xcrs[i].value);
3596 break;
3597 }
3598 if (r)
3599 r = -EINVAL;
3600 return r;
3601 }
3602
3603 /*
3604 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3605 * stopped by the hypervisor. This function will be called from the host only.
3606 * EINVAL is returned when the host attempts to set the flag for a guest that
3607 * does not support pv clocks.
3608 */
3609 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3610 {
3611 if (!vcpu->arch.pv_time_enabled)
3612 return -EINVAL;
3613 vcpu->arch.pvclock_set_guest_stopped_request = true;
3614 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3615 return 0;
3616 }
3617
3618 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3619 struct kvm_enable_cap *cap)
3620 {
3621 if (cap->flags)
3622 return -EINVAL;
3623
3624 switch (cap->cap) {
3625 case KVM_CAP_HYPERV_SYNIC2:
3626 if (cap->args[0])
3627 return -EINVAL;
3628 case KVM_CAP_HYPERV_SYNIC:
3629 if (!irqchip_in_kernel(vcpu->kvm))
3630 return -EINVAL;
3631 return kvm_hv_activate_synic(vcpu, cap->cap ==
3632 KVM_CAP_HYPERV_SYNIC2);
3633 default:
3634 return -EINVAL;
3635 }
3636 }
3637
3638 long kvm_arch_vcpu_ioctl(struct file *filp,
3639 unsigned int ioctl, unsigned long arg)
3640 {
3641 struct kvm_vcpu *vcpu = filp->private_data;
3642 void __user *argp = (void __user *)arg;
3643 int r;
3644 union {
3645 struct kvm_lapic_state *lapic;
3646 struct kvm_xsave *xsave;
3647 struct kvm_xcrs *xcrs;
3648 void *buffer;
3649 } u;
3650
3651 u.buffer = NULL;
3652 switch (ioctl) {
3653 case KVM_GET_LAPIC: {
3654 r = -EINVAL;
3655 if (!lapic_in_kernel(vcpu))
3656 goto out;
3657 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3658
3659 r = -ENOMEM;
3660 if (!u.lapic)
3661 goto out;
3662 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3663 if (r)
3664 goto out;
3665 r = -EFAULT;
3666 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3667 goto out;
3668 r = 0;
3669 break;
3670 }
3671 case KVM_SET_LAPIC: {
3672 r = -EINVAL;
3673 if (!lapic_in_kernel(vcpu))
3674 goto out;
3675 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3676 if (IS_ERR(u.lapic))
3677 return PTR_ERR(u.lapic);
3678
3679 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3680 break;
3681 }
3682 case KVM_INTERRUPT: {
3683 struct kvm_interrupt irq;
3684
3685 r = -EFAULT;
3686 if (copy_from_user(&irq, argp, sizeof irq))
3687 goto out;
3688 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3689 break;
3690 }
3691 case KVM_NMI: {
3692 r = kvm_vcpu_ioctl_nmi(vcpu);
3693 break;
3694 }
3695 case KVM_SMI: {
3696 r = kvm_vcpu_ioctl_smi(vcpu);
3697 break;
3698 }
3699 case KVM_SET_CPUID: {
3700 struct kvm_cpuid __user *cpuid_arg = argp;
3701 struct kvm_cpuid cpuid;
3702
3703 r = -EFAULT;
3704 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3705 goto out;
3706 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3707 break;
3708 }
3709 case KVM_SET_CPUID2: {
3710 struct kvm_cpuid2 __user *cpuid_arg = argp;
3711 struct kvm_cpuid2 cpuid;
3712
3713 r = -EFAULT;
3714 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3715 goto out;
3716 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3717 cpuid_arg->entries);
3718 break;
3719 }
3720 case KVM_GET_CPUID2: {
3721 struct kvm_cpuid2 __user *cpuid_arg = argp;
3722 struct kvm_cpuid2 cpuid;
3723
3724 r = -EFAULT;
3725 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3726 goto out;
3727 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3728 cpuid_arg->entries);
3729 if (r)
3730 goto out;
3731 r = -EFAULT;
3732 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3733 goto out;
3734 r = 0;
3735 break;
3736 }
3737 case KVM_GET_MSRS: {
3738 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3739 r = msr_io(vcpu, argp, do_get_msr, 1);
3740 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3741 break;
3742 }
3743 case KVM_SET_MSRS: {
3744 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3745 r = msr_io(vcpu, argp, do_set_msr, 0);
3746 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3747 break;
3748 }
3749 case KVM_TPR_ACCESS_REPORTING: {
3750 struct kvm_tpr_access_ctl tac;
3751
3752 r = -EFAULT;
3753 if (copy_from_user(&tac, argp, sizeof tac))
3754 goto out;
3755 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3756 if (r)
3757 goto out;
3758 r = -EFAULT;
3759 if (copy_to_user(argp, &tac, sizeof tac))
3760 goto out;
3761 r = 0;
3762 break;
3763 };
3764 case KVM_SET_VAPIC_ADDR: {
3765 struct kvm_vapic_addr va;
3766 int idx;
3767
3768 r = -EINVAL;
3769 if (!lapic_in_kernel(vcpu))
3770 goto out;
3771 r = -EFAULT;
3772 if (copy_from_user(&va, argp, sizeof va))
3773 goto out;
3774 idx = srcu_read_lock(&vcpu->kvm->srcu);
3775 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3776 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3777 break;
3778 }
3779 case KVM_X86_SETUP_MCE: {
3780 u64 mcg_cap;
3781
3782 r = -EFAULT;
3783 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3784 goto out;
3785 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3786 break;
3787 }
3788 case KVM_X86_SET_MCE: {
3789 struct kvm_x86_mce mce;
3790
3791 r = -EFAULT;
3792 if (copy_from_user(&mce, argp, sizeof mce))
3793 goto out;
3794 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3795 break;
3796 }
3797 case KVM_GET_VCPU_EVENTS: {
3798 struct kvm_vcpu_events events;
3799
3800 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3801
3802 r = -EFAULT;
3803 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3804 break;
3805 r = 0;
3806 break;
3807 }
3808 case KVM_SET_VCPU_EVENTS: {
3809 struct kvm_vcpu_events events;
3810
3811 r = -EFAULT;
3812 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3813 break;
3814
3815 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3816 break;
3817 }
3818 case KVM_GET_DEBUGREGS: {
3819 struct kvm_debugregs dbgregs;
3820
3821 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3822
3823 r = -EFAULT;
3824 if (copy_to_user(argp, &dbgregs,
3825 sizeof(struct kvm_debugregs)))
3826 break;
3827 r = 0;
3828 break;
3829 }
3830 case KVM_SET_DEBUGREGS: {
3831 struct kvm_debugregs dbgregs;
3832
3833 r = -EFAULT;
3834 if (copy_from_user(&dbgregs, argp,
3835 sizeof(struct kvm_debugregs)))
3836 break;
3837
3838 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3839 break;
3840 }
3841 case KVM_GET_XSAVE: {
3842 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3843 r = -ENOMEM;
3844 if (!u.xsave)
3845 break;
3846
3847 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3848
3849 r = -EFAULT;
3850 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3851 break;
3852 r = 0;
3853 break;
3854 }
3855 case KVM_SET_XSAVE: {
3856 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3857 if (IS_ERR(u.xsave))
3858 return PTR_ERR(u.xsave);
3859
3860 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3861 break;
3862 }
3863 case KVM_GET_XCRS: {
3864 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3865 r = -ENOMEM;
3866 if (!u.xcrs)
3867 break;
3868
3869 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3870
3871 r = -EFAULT;
3872 if (copy_to_user(argp, u.xcrs,
3873 sizeof(struct kvm_xcrs)))
3874 break;
3875 r = 0;
3876 break;
3877 }
3878 case KVM_SET_XCRS: {
3879 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3880 if (IS_ERR(u.xcrs))
3881 return PTR_ERR(u.xcrs);
3882
3883 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3884 break;
3885 }
3886 case KVM_SET_TSC_KHZ: {
3887 u32 user_tsc_khz;
3888
3889 r = -EINVAL;
3890 user_tsc_khz = (u32)arg;
3891
3892 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3893 goto out;
3894
3895 if (user_tsc_khz == 0)
3896 user_tsc_khz = tsc_khz;
3897
3898 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3899 r = 0;
3900
3901 goto out;
3902 }
3903 case KVM_GET_TSC_KHZ: {
3904 r = vcpu->arch.virtual_tsc_khz;
3905 goto out;
3906 }
3907 case KVM_KVMCLOCK_CTRL: {
3908 r = kvm_set_guest_paused(vcpu);
3909 goto out;
3910 }
3911 case KVM_ENABLE_CAP: {
3912 struct kvm_enable_cap cap;
3913
3914 r = -EFAULT;
3915 if (copy_from_user(&cap, argp, sizeof(cap)))
3916 goto out;
3917 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3918 break;
3919 }
3920 default:
3921 r = -EINVAL;
3922 }
3923 out:
3924 kfree(u.buffer);
3925 return r;
3926 }
3927
3928 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3929 {
3930 return VM_FAULT_SIGBUS;
3931 }
3932
3933 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3934 {
3935 int ret;
3936
3937 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3938 return -EINVAL;
3939 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3940 return ret;
3941 }
3942
3943 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3944 u64 ident_addr)
3945 {
3946 kvm->arch.ept_identity_map_addr = ident_addr;
3947 return 0;
3948 }
3949
3950 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3951 unsigned long kvm_nr_mmu_pages)
3952 {
3953 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3954 return -EINVAL;
3955
3956 mutex_lock(&kvm->slots_lock);
3957
3958 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3959 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3960
3961 mutex_unlock(&kvm->slots_lock);
3962 return 0;
3963 }
3964
3965 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3966 {
3967 return kvm->arch.n_max_mmu_pages;
3968 }
3969
3970 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3971 {
3972 struct kvm_pic *pic = kvm->arch.vpic;
3973 int r;
3974
3975 r = 0;
3976 switch (chip->chip_id) {
3977 case KVM_IRQCHIP_PIC_MASTER:
3978 memcpy(&chip->chip.pic, &pic->pics[0],
3979 sizeof(struct kvm_pic_state));
3980 break;
3981 case KVM_IRQCHIP_PIC_SLAVE:
3982 memcpy(&chip->chip.pic, &pic->pics[1],
3983 sizeof(struct kvm_pic_state));
3984 break;
3985 case KVM_IRQCHIP_IOAPIC:
3986 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3987 break;
3988 default:
3989 r = -EINVAL;
3990 break;
3991 }
3992 return r;
3993 }
3994
3995 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3996 {
3997 struct kvm_pic *pic = kvm->arch.vpic;
3998 int r;
3999
4000 r = 0;
4001 switch (chip->chip_id) {
4002 case KVM_IRQCHIP_PIC_MASTER:
4003 spin_lock(&pic->lock);
4004 memcpy(&pic->pics[0], &chip->chip.pic,
4005 sizeof(struct kvm_pic_state));
4006 spin_unlock(&pic->lock);
4007 break;
4008 case KVM_IRQCHIP_PIC_SLAVE:
4009 spin_lock(&pic->lock);
4010 memcpy(&pic->pics[1], &chip->chip.pic,
4011 sizeof(struct kvm_pic_state));
4012 spin_unlock(&pic->lock);
4013 break;
4014 case KVM_IRQCHIP_IOAPIC:
4015 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4016 break;
4017 default:
4018 r = -EINVAL;
4019 break;
4020 }
4021 kvm_pic_update_irq(pic);
4022 return r;
4023 }
4024
4025 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4026 {
4027 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4028
4029 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4030
4031 mutex_lock(&kps->lock);
4032 memcpy(ps, &kps->channels, sizeof(*ps));
4033 mutex_unlock(&kps->lock);
4034 return 0;
4035 }
4036
4037 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4038 {
4039 int i;
4040 struct kvm_pit *pit = kvm->arch.vpit;
4041
4042 mutex_lock(&pit->pit_state.lock);
4043 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4044 for (i = 0; i < 3; i++)
4045 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4046 mutex_unlock(&pit->pit_state.lock);
4047 return 0;
4048 }
4049
4050 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4051 {
4052 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4053 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4054 sizeof(ps->channels));
4055 ps->flags = kvm->arch.vpit->pit_state.flags;
4056 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4057 memset(&ps->reserved, 0, sizeof(ps->reserved));
4058 return 0;
4059 }
4060
4061 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4062 {
4063 int start = 0;
4064 int i;
4065 u32 prev_legacy, cur_legacy;
4066 struct kvm_pit *pit = kvm->arch.vpit;
4067
4068 mutex_lock(&pit->pit_state.lock);
4069 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4070 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4071 if (!prev_legacy && cur_legacy)
4072 start = 1;
4073 memcpy(&pit->pit_state.channels, &ps->channels,
4074 sizeof(pit->pit_state.channels));
4075 pit->pit_state.flags = ps->flags;
4076 for (i = 0; i < 3; i++)
4077 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4078 start && i == 0);
4079 mutex_unlock(&pit->pit_state.lock);
4080 return 0;
4081 }
4082
4083 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4084 struct kvm_reinject_control *control)
4085 {
4086 struct kvm_pit *pit = kvm->arch.vpit;
4087
4088 if (!pit)
4089 return -ENXIO;
4090
4091 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4092 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4093 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4094 */
4095 mutex_lock(&pit->pit_state.lock);
4096 kvm_pit_set_reinject(pit, control->pit_reinject);
4097 mutex_unlock(&pit->pit_state.lock);
4098
4099 return 0;
4100 }
4101
4102 /**
4103 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4104 * @kvm: kvm instance
4105 * @log: slot id and address to which we copy the log
4106 *
4107 * Steps 1-4 below provide general overview of dirty page logging. See
4108 * kvm_get_dirty_log_protect() function description for additional details.
4109 *
4110 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4111 * always flush the TLB (step 4) even if previous step failed and the dirty
4112 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4113 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4114 * writes will be marked dirty for next log read.
4115 *
4116 * 1. Take a snapshot of the bit and clear it if needed.
4117 * 2. Write protect the corresponding page.
4118 * 3. Copy the snapshot to the userspace.
4119 * 4. Flush TLB's if needed.
4120 */
4121 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4122 {
4123 bool is_dirty = false;
4124 int r;
4125
4126 mutex_lock(&kvm->slots_lock);
4127
4128 /*
4129 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4130 */
4131 if (kvm_x86_ops->flush_log_dirty)
4132 kvm_x86_ops->flush_log_dirty(kvm);
4133
4134 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4135
4136 /*
4137 * All the TLBs can be flushed out of mmu lock, see the comments in
4138 * kvm_mmu_slot_remove_write_access().
4139 */
4140 lockdep_assert_held(&kvm->slots_lock);
4141 if (is_dirty)
4142 kvm_flush_remote_tlbs(kvm);
4143
4144 mutex_unlock(&kvm->slots_lock);
4145 return r;
4146 }
4147
4148 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4149 bool line_status)
4150 {
4151 if (!irqchip_in_kernel(kvm))
4152 return -ENXIO;
4153
4154 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4155 irq_event->irq, irq_event->level,
4156 line_status);
4157 return 0;
4158 }
4159
4160 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4161 struct kvm_enable_cap *cap)
4162 {
4163 int r;
4164
4165 if (cap->flags)
4166 return -EINVAL;
4167
4168 switch (cap->cap) {
4169 case KVM_CAP_DISABLE_QUIRKS:
4170 kvm->arch.disabled_quirks = cap->args[0];
4171 r = 0;
4172 break;
4173 case KVM_CAP_SPLIT_IRQCHIP: {
4174 mutex_lock(&kvm->lock);
4175 r = -EINVAL;
4176 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4177 goto split_irqchip_unlock;
4178 r = -EEXIST;
4179 if (irqchip_in_kernel(kvm))
4180 goto split_irqchip_unlock;
4181 if (kvm->created_vcpus)
4182 goto split_irqchip_unlock;
4183 r = kvm_setup_empty_irq_routing(kvm);
4184 if (r)
4185 goto split_irqchip_unlock;
4186 /* Pairs with irqchip_in_kernel. */
4187 smp_wmb();
4188 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4189 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4190 r = 0;
4191 split_irqchip_unlock:
4192 mutex_unlock(&kvm->lock);
4193 break;
4194 }
4195 case KVM_CAP_X2APIC_API:
4196 r = -EINVAL;
4197 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4198 break;
4199
4200 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4201 kvm->arch.x2apic_format = true;
4202 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4203 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4204
4205 r = 0;
4206 break;
4207 default:
4208 r = -EINVAL;
4209 break;
4210 }
4211 return r;
4212 }
4213
4214 long kvm_arch_vm_ioctl(struct file *filp,
4215 unsigned int ioctl, unsigned long arg)
4216 {
4217 struct kvm *kvm = filp->private_data;
4218 void __user *argp = (void __user *)arg;
4219 int r = -ENOTTY;
4220 /*
4221 * This union makes it completely explicit to gcc-3.x
4222 * that these two variables' stack usage should be
4223 * combined, not added together.
4224 */
4225 union {
4226 struct kvm_pit_state ps;
4227 struct kvm_pit_state2 ps2;
4228 struct kvm_pit_config pit_config;
4229 } u;
4230
4231 switch (ioctl) {
4232 case KVM_SET_TSS_ADDR:
4233 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4234 break;
4235 case KVM_SET_IDENTITY_MAP_ADDR: {
4236 u64 ident_addr;
4237
4238 mutex_lock(&kvm->lock);
4239 r = -EINVAL;
4240 if (kvm->created_vcpus)
4241 goto set_identity_unlock;
4242 r = -EFAULT;
4243 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4244 goto set_identity_unlock;
4245 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4246 set_identity_unlock:
4247 mutex_unlock(&kvm->lock);
4248 break;
4249 }
4250 case KVM_SET_NR_MMU_PAGES:
4251 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4252 break;
4253 case KVM_GET_NR_MMU_PAGES:
4254 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4255 break;
4256 case KVM_CREATE_IRQCHIP: {
4257 mutex_lock(&kvm->lock);
4258
4259 r = -EEXIST;
4260 if (irqchip_in_kernel(kvm))
4261 goto create_irqchip_unlock;
4262
4263 r = -EINVAL;
4264 if (kvm->created_vcpus)
4265 goto create_irqchip_unlock;
4266
4267 r = kvm_pic_init(kvm);
4268 if (r)
4269 goto create_irqchip_unlock;
4270
4271 r = kvm_ioapic_init(kvm);
4272 if (r) {
4273 kvm_pic_destroy(kvm);
4274 goto create_irqchip_unlock;
4275 }
4276
4277 r = kvm_setup_default_irq_routing(kvm);
4278 if (r) {
4279 kvm_ioapic_destroy(kvm);
4280 kvm_pic_destroy(kvm);
4281 goto create_irqchip_unlock;
4282 }
4283 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4284 smp_wmb();
4285 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4286 create_irqchip_unlock:
4287 mutex_unlock(&kvm->lock);
4288 break;
4289 }
4290 case KVM_CREATE_PIT:
4291 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4292 goto create_pit;
4293 case KVM_CREATE_PIT2:
4294 r = -EFAULT;
4295 if (copy_from_user(&u.pit_config, argp,
4296 sizeof(struct kvm_pit_config)))
4297 goto out;
4298 create_pit:
4299 mutex_lock(&kvm->lock);
4300 r = -EEXIST;
4301 if (kvm->arch.vpit)
4302 goto create_pit_unlock;
4303 r = -ENOMEM;
4304 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4305 if (kvm->arch.vpit)
4306 r = 0;
4307 create_pit_unlock:
4308 mutex_unlock(&kvm->lock);
4309 break;
4310 case KVM_GET_IRQCHIP: {
4311 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4312 struct kvm_irqchip *chip;
4313
4314 chip = memdup_user(argp, sizeof(*chip));
4315 if (IS_ERR(chip)) {
4316 r = PTR_ERR(chip);
4317 goto out;
4318 }
4319
4320 r = -ENXIO;
4321 if (!irqchip_kernel(kvm))
4322 goto get_irqchip_out;
4323 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4324 if (r)
4325 goto get_irqchip_out;
4326 r = -EFAULT;
4327 if (copy_to_user(argp, chip, sizeof *chip))
4328 goto get_irqchip_out;
4329 r = 0;
4330 get_irqchip_out:
4331 kfree(chip);
4332 break;
4333 }
4334 case KVM_SET_IRQCHIP: {
4335 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4336 struct kvm_irqchip *chip;
4337
4338 chip = memdup_user(argp, sizeof(*chip));
4339 if (IS_ERR(chip)) {
4340 r = PTR_ERR(chip);
4341 goto out;
4342 }
4343
4344 r = -ENXIO;
4345 if (!irqchip_kernel(kvm))
4346 goto set_irqchip_out;
4347 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4348 if (r)
4349 goto set_irqchip_out;
4350 r = 0;
4351 set_irqchip_out:
4352 kfree(chip);
4353 break;
4354 }
4355 case KVM_GET_PIT: {
4356 r = -EFAULT;
4357 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4358 goto out;
4359 r = -ENXIO;
4360 if (!kvm->arch.vpit)
4361 goto out;
4362 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4363 if (r)
4364 goto out;
4365 r = -EFAULT;
4366 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4367 goto out;
4368 r = 0;
4369 break;
4370 }
4371 case KVM_SET_PIT: {
4372 r = -EFAULT;
4373 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4374 goto out;
4375 r = -ENXIO;
4376 if (!kvm->arch.vpit)
4377 goto out;
4378 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4379 break;
4380 }
4381 case KVM_GET_PIT2: {
4382 r = -ENXIO;
4383 if (!kvm->arch.vpit)
4384 goto out;
4385 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4386 if (r)
4387 goto out;
4388 r = -EFAULT;
4389 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4390 goto out;
4391 r = 0;
4392 break;
4393 }
4394 case KVM_SET_PIT2: {
4395 r = -EFAULT;
4396 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4397 goto out;
4398 r = -ENXIO;
4399 if (!kvm->arch.vpit)
4400 goto out;
4401 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4402 break;
4403 }
4404 case KVM_REINJECT_CONTROL: {
4405 struct kvm_reinject_control control;
4406 r = -EFAULT;
4407 if (copy_from_user(&control, argp, sizeof(control)))
4408 goto out;
4409 r = kvm_vm_ioctl_reinject(kvm, &control);
4410 break;
4411 }
4412 case KVM_SET_BOOT_CPU_ID:
4413 r = 0;
4414 mutex_lock(&kvm->lock);
4415 if (kvm->created_vcpus)
4416 r = -EBUSY;
4417 else
4418 kvm->arch.bsp_vcpu_id = arg;
4419 mutex_unlock(&kvm->lock);
4420 break;
4421 case KVM_XEN_HVM_CONFIG: {
4422 struct kvm_xen_hvm_config xhc;
4423 r = -EFAULT;
4424 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4425 goto out;
4426 r = -EINVAL;
4427 if (xhc.flags)
4428 goto out;
4429 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4430 r = 0;
4431 break;
4432 }
4433 case KVM_SET_CLOCK: {
4434 struct kvm_clock_data user_ns;
4435 u64 now_ns;
4436
4437 r = -EFAULT;
4438 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4439 goto out;
4440
4441 r = -EINVAL;
4442 if (user_ns.flags)
4443 goto out;
4444
4445 r = 0;
4446 /*
4447 * TODO: userspace has to take care of races with VCPU_RUN, so
4448 * kvm_gen_update_masterclock() can be cut down to locked
4449 * pvclock_update_vm_gtod_copy().
4450 */
4451 kvm_gen_update_masterclock(kvm);
4452 now_ns = get_kvmclock_ns(kvm);
4453 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4454 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4455 break;
4456 }
4457 case KVM_GET_CLOCK: {
4458 struct kvm_clock_data user_ns;
4459 u64 now_ns;
4460
4461 now_ns = get_kvmclock_ns(kvm);
4462 user_ns.clock = now_ns;
4463 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4464 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4465
4466 r = -EFAULT;
4467 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4468 goto out;
4469 r = 0;
4470 break;
4471 }
4472 case KVM_ENABLE_CAP: {
4473 struct kvm_enable_cap cap;
4474
4475 r = -EFAULT;
4476 if (copy_from_user(&cap, argp, sizeof(cap)))
4477 goto out;
4478 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4479 break;
4480 }
4481 default:
4482 r = -ENOTTY;
4483 }
4484 out:
4485 return r;
4486 }
4487
4488 static void kvm_init_msr_list(void)
4489 {
4490 u32 dummy[2];
4491 unsigned i, j;
4492
4493 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4494 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4495 continue;
4496
4497 /*
4498 * Even MSRs that are valid in the host may not be exposed
4499 * to the guests in some cases.
4500 */
4501 switch (msrs_to_save[i]) {
4502 case MSR_IA32_BNDCFGS:
4503 if (!kvm_x86_ops->mpx_supported())
4504 continue;
4505 break;
4506 case MSR_TSC_AUX:
4507 if (!kvm_x86_ops->rdtscp_supported())
4508 continue;
4509 break;
4510 default:
4511 break;
4512 }
4513
4514 if (j < i)
4515 msrs_to_save[j] = msrs_to_save[i];
4516 j++;
4517 }
4518 num_msrs_to_save = j;
4519
4520 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4521 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4522 continue;
4523
4524 if (j < i)
4525 emulated_msrs[j] = emulated_msrs[i];
4526 j++;
4527 }
4528 num_emulated_msrs = j;
4529
4530 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4531 struct kvm_msr_entry msr;
4532
4533 msr.index = msr_based_features[i];
4534 if (kvm_get_msr_feature(&msr))
4535 continue;
4536
4537 if (j < i)
4538 msr_based_features[j] = msr_based_features[i];
4539 j++;
4540 }
4541 num_msr_based_features = j;
4542 }
4543
4544 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4545 const void *v)
4546 {
4547 int handled = 0;
4548 int n;
4549
4550 do {
4551 n = min(len, 8);
4552 if (!(lapic_in_kernel(vcpu) &&
4553 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4554 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4555 break;
4556 handled += n;
4557 addr += n;
4558 len -= n;
4559 v += n;
4560 } while (len);
4561
4562 return handled;
4563 }
4564
4565 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4566 {
4567 int handled = 0;
4568 int n;
4569
4570 do {
4571 n = min(len, 8);
4572 if (!(lapic_in_kernel(vcpu) &&
4573 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4574 addr, n, v))
4575 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4576 break;
4577 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4578 handled += n;
4579 addr += n;
4580 len -= n;
4581 v += n;
4582 } while (len);
4583
4584 return handled;
4585 }
4586
4587 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4588 struct kvm_segment *var, int seg)
4589 {
4590 kvm_x86_ops->set_segment(vcpu, var, seg);
4591 }
4592
4593 void kvm_get_segment(struct kvm_vcpu *vcpu,
4594 struct kvm_segment *var, int seg)
4595 {
4596 kvm_x86_ops->get_segment(vcpu, var, seg);
4597 }
4598
4599 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4600 struct x86_exception *exception)
4601 {
4602 gpa_t t_gpa;
4603
4604 BUG_ON(!mmu_is_nested(vcpu));
4605
4606 /* NPT walks are always user-walks */
4607 access |= PFERR_USER_MASK;
4608 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4609
4610 return t_gpa;
4611 }
4612
4613 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4614 struct x86_exception *exception)
4615 {
4616 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4617 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4618 }
4619
4620 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4621 struct x86_exception *exception)
4622 {
4623 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4624 access |= PFERR_FETCH_MASK;
4625 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4626 }
4627
4628 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4629 struct x86_exception *exception)
4630 {
4631 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4632 access |= PFERR_WRITE_MASK;
4633 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4634 }
4635
4636 /* uses this to access any guest's mapped memory without checking CPL */
4637 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4638 struct x86_exception *exception)
4639 {
4640 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4641 }
4642
4643 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4644 struct kvm_vcpu *vcpu, u32 access,
4645 struct x86_exception *exception)
4646 {
4647 void *data = val;
4648 int r = X86EMUL_CONTINUE;
4649
4650 while (bytes) {
4651 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4652 exception);
4653 unsigned offset = addr & (PAGE_SIZE-1);
4654 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4655 int ret;
4656
4657 if (gpa == UNMAPPED_GVA)
4658 return X86EMUL_PROPAGATE_FAULT;
4659 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4660 offset, toread);
4661 if (ret < 0) {
4662 r = X86EMUL_IO_NEEDED;
4663 goto out;
4664 }
4665
4666 bytes -= toread;
4667 data += toread;
4668 addr += toread;
4669 }
4670 out:
4671 return r;
4672 }
4673
4674 /* used for instruction fetching */
4675 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4676 gva_t addr, void *val, unsigned int bytes,
4677 struct x86_exception *exception)
4678 {
4679 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4680 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4681 unsigned offset;
4682 int ret;
4683
4684 /* Inline kvm_read_guest_virt_helper for speed. */
4685 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4686 exception);
4687 if (unlikely(gpa == UNMAPPED_GVA))
4688 return X86EMUL_PROPAGATE_FAULT;
4689
4690 offset = addr & (PAGE_SIZE-1);
4691 if (WARN_ON(offset + bytes > PAGE_SIZE))
4692 bytes = (unsigned)PAGE_SIZE - offset;
4693 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4694 offset, bytes);
4695 if (unlikely(ret < 0))
4696 return X86EMUL_IO_NEEDED;
4697
4698 return X86EMUL_CONTINUE;
4699 }
4700
4701 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4702 gva_t addr, void *val, unsigned int bytes,
4703 struct x86_exception *exception)
4704 {
4705 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4706
4707 /*
4708 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4709 * is returned, but our callers are not ready for that and they blindly
4710 * call kvm_inject_page_fault. Ensure that they at least do not leak
4711 * uninitialized kernel stack memory into cr2 and error code.
4712 */
4713 memset(exception, 0, sizeof(*exception));
4714 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4715 exception);
4716 }
4717 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4718
4719 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4720 gva_t addr, void *val, unsigned int bytes,
4721 struct x86_exception *exception, bool system)
4722 {
4723 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4724 u32 access = 0;
4725
4726 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4727 access |= PFERR_USER_MASK;
4728
4729 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4730 }
4731
4732 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4733 unsigned long addr, void *val, unsigned int bytes)
4734 {
4735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4736 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4737
4738 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4739 }
4740
4741 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4742 struct kvm_vcpu *vcpu, u32 access,
4743 struct x86_exception *exception)
4744 {
4745 void *data = val;
4746 int r = X86EMUL_CONTINUE;
4747
4748 while (bytes) {
4749 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4750 access,
4751 exception);
4752 unsigned offset = addr & (PAGE_SIZE-1);
4753 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4754 int ret;
4755
4756 if (gpa == UNMAPPED_GVA)
4757 return X86EMUL_PROPAGATE_FAULT;
4758 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4759 if (ret < 0) {
4760 r = X86EMUL_IO_NEEDED;
4761 goto out;
4762 }
4763
4764 bytes -= towrite;
4765 data += towrite;
4766 addr += towrite;
4767 }
4768 out:
4769 return r;
4770 }
4771
4772 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4773 unsigned int bytes, struct x86_exception *exception,
4774 bool system)
4775 {
4776 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4777 u32 access = PFERR_WRITE_MASK;
4778
4779 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4780 access |= PFERR_USER_MASK;
4781
4782 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4783 access, exception);
4784 }
4785
4786 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4787 unsigned int bytes, struct x86_exception *exception)
4788 {
4789 /* kvm_write_guest_virt_system can pull in tons of pages. */
4790 vcpu->arch.l1tf_flush_l1d = true;
4791
4792 /*
4793 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4794 * is returned, but our callers are not ready for that and they blindly
4795 * call kvm_inject_page_fault. Ensure that they at least do not leak
4796 * uninitialized kernel stack memory into cr2 and error code.
4797 */
4798 memset(exception, 0, sizeof(*exception));
4799 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4800 PFERR_WRITE_MASK, exception);
4801 }
4802 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4803
4804 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4805 gpa_t gpa, bool write)
4806 {
4807 /* For APIC access vmexit */
4808 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4809 return 1;
4810
4811 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4812 trace_vcpu_match_mmio(gva, gpa, write, true);
4813 return 1;
4814 }
4815
4816 return 0;
4817 }
4818
4819 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4820 gpa_t *gpa, struct x86_exception *exception,
4821 bool write)
4822 {
4823 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4824 | (write ? PFERR_WRITE_MASK : 0);
4825
4826 /*
4827 * currently PKRU is only applied to ept enabled guest so
4828 * there is no pkey in EPT page table for L1 guest or EPT
4829 * shadow page table for L2 guest.
4830 */
4831 if (vcpu_match_mmio_gva(vcpu, gva)
4832 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4833 vcpu->arch.access, 0, access)) {
4834 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4835 (gva & (PAGE_SIZE - 1));
4836 trace_vcpu_match_mmio(gva, *gpa, write, false);
4837 return 1;
4838 }
4839
4840 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4841
4842 if (*gpa == UNMAPPED_GVA)
4843 return -1;
4844
4845 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4846 }
4847
4848 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4849 const void *val, int bytes)
4850 {
4851 int ret;
4852
4853 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4854 if (ret < 0)
4855 return 0;
4856 kvm_page_track_write(vcpu, gpa, val, bytes);
4857 return 1;
4858 }
4859
4860 struct read_write_emulator_ops {
4861 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4862 int bytes);
4863 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4864 void *val, int bytes);
4865 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4866 int bytes, void *val);
4867 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4868 void *val, int bytes);
4869 bool write;
4870 };
4871
4872 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4873 {
4874 if (vcpu->mmio_read_completed) {
4875 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4876 vcpu->mmio_fragments[0].gpa, val);
4877 vcpu->mmio_read_completed = 0;
4878 return 1;
4879 }
4880
4881 return 0;
4882 }
4883
4884 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4885 void *val, int bytes)
4886 {
4887 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4888 }
4889
4890 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4891 void *val, int bytes)
4892 {
4893 return emulator_write_phys(vcpu, gpa, val, bytes);
4894 }
4895
4896 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4897 {
4898 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4899 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4900 }
4901
4902 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4903 void *val, int bytes)
4904 {
4905 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4906 return X86EMUL_IO_NEEDED;
4907 }
4908
4909 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4910 void *val, int bytes)
4911 {
4912 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4913
4914 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4915 return X86EMUL_CONTINUE;
4916 }
4917
4918 static const struct read_write_emulator_ops read_emultor = {
4919 .read_write_prepare = read_prepare,
4920 .read_write_emulate = read_emulate,
4921 .read_write_mmio = vcpu_mmio_read,
4922 .read_write_exit_mmio = read_exit_mmio,
4923 };
4924
4925 static const struct read_write_emulator_ops write_emultor = {
4926 .read_write_emulate = write_emulate,
4927 .read_write_mmio = write_mmio,
4928 .read_write_exit_mmio = write_exit_mmio,
4929 .write = true,
4930 };
4931
4932 static int emulator_read_write_onepage(unsigned long addr, void *val,
4933 unsigned int bytes,
4934 struct x86_exception *exception,
4935 struct kvm_vcpu *vcpu,
4936 const struct read_write_emulator_ops *ops)
4937 {
4938 gpa_t gpa;
4939 int handled, ret;
4940 bool write = ops->write;
4941 struct kvm_mmio_fragment *frag;
4942 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4943
4944 /*
4945 * If the exit was due to a NPF we may already have a GPA.
4946 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4947 * Note, this cannot be used on string operations since string
4948 * operation using rep will only have the initial GPA from the NPF
4949 * occurred.
4950 */
4951 if (vcpu->arch.gpa_available &&
4952 emulator_can_use_gpa(ctxt) &&
4953 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4954 gpa = vcpu->arch.gpa_val;
4955 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4956 } else {
4957 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4958 if (ret < 0)
4959 return X86EMUL_PROPAGATE_FAULT;
4960 }
4961
4962 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4963 return X86EMUL_CONTINUE;
4964
4965 /*
4966 * Is this MMIO handled locally?
4967 */
4968 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4969 if (handled == bytes)
4970 return X86EMUL_CONTINUE;
4971
4972 gpa += handled;
4973 bytes -= handled;
4974 val += handled;
4975
4976 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4977 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4978 frag->gpa = gpa;
4979 frag->data = val;
4980 frag->len = bytes;
4981 return X86EMUL_CONTINUE;
4982 }
4983
4984 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4985 unsigned long addr,
4986 void *val, unsigned int bytes,
4987 struct x86_exception *exception,
4988 const struct read_write_emulator_ops *ops)
4989 {
4990 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4991 gpa_t gpa;
4992 int rc;
4993
4994 if (ops->read_write_prepare &&
4995 ops->read_write_prepare(vcpu, val, bytes))
4996 return X86EMUL_CONTINUE;
4997
4998 vcpu->mmio_nr_fragments = 0;
4999
5000 /* Crossing a page boundary? */
5001 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5002 int now;
5003
5004 now = -addr & ~PAGE_MASK;
5005 rc = emulator_read_write_onepage(addr, val, now, exception,
5006 vcpu, ops);
5007
5008 if (rc != X86EMUL_CONTINUE)
5009 return rc;
5010 addr += now;
5011 if (ctxt->mode != X86EMUL_MODE_PROT64)
5012 addr = (u32)addr;
5013 val += now;
5014 bytes -= now;
5015 }
5016
5017 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5018 vcpu, ops);
5019 if (rc != X86EMUL_CONTINUE)
5020 return rc;
5021
5022 if (!vcpu->mmio_nr_fragments)
5023 return rc;
5024
5025 gpa = vcpu->mmio_fragments[0].gpa;
5026
5027 vcpu->mmio_needed = 1;
5028 vcpu->mmio_cur_fragment = 0;
5029
5030 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5031 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5032 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5033 vcpu->run->mmio.phys_addr = gpa;
5034
5035 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5036 }
5037
5038 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5039 unsigned long addr,
5040 void *val,
5041 unsigned int bytes,
5042 struct x86_exception *exception)
5043 {
5044 return emulator_read_write(ctxt, addr, val, bytes,
5045 exception, &read_emultor);
5046 }
5047
5048 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5049 unsigned long addr,
5050 const void *val,
5051 unsigned int bytes,
5052 struct x86_exception *exception)
5053 {
5054 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5055 exception, &write_emultor);
5056 }
5057
5058 #define CMPXCHG_TYPE(t, ptr, old, new) \
5059 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5060
5061 #ifdef CONFIG_X86_64
5062 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5063 #else
5064 # define CMPXCHG64(ptr, old, new) \
5065 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5066 #endif
5067
5068 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5069 unsigned long addr,
5070 const void *old,
5071 const void *new,
5072 unsigned int bytes,
5073 struct x86_exception *exception)
5074 {
5075 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5076 gpa_t gpa;
5077 struct page *page;
5078 char *kaddr;
5079 bool exchanged;
5080
5081 /* guests cmpxchg8b have to be emulated atomically */
5082 if (bytes > 8 || (bytes & (bytes - 1)))
5083 goto emul_write;
5084
5085 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5086
5087 if (gpa == UNMAPPED_GVA ||
5088 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5089 goto emul_write;
5090
5091 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5092 goto emul_write;
5093
5094 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5095 if (is_error_page(page))
5096 goto emul_write;
5097
5098 kaddr = kmap_atomic(page);
5099 kaddr += offset_in_page(gpa);
5100 switch (bytes) {
5101 case 1:
5102 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5103 break;
5104 case 2:
5105 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5106 break;
5107 case 4:
5108 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5109 break;
5110 case 8:
5111 exchanged = CMPXCHG64(kaddr, old, new);
5112 break;
5113 default:
5114 BUG();
5115 }
5116 kunmap_atomic(kaddr);
5117 kvm_release_page_dirty(page);
5118
5119 if (!exchanged)
5120 return X86EMUL_CMPXCHG_FAILED;
5121
5122 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5123 kvm_page_track_write(vcpu, gpa, new, bytes);
5124
5125 return X86EMUL_CONTINUE;
5126
5127 emul_write:
5128 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5129
5130 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5131 }
5132
5133 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5134 {
5135 int r = 0, i;
5136
5137 for (i = 0; i < vcpu->arch.pio.count; i++) {
5138 if (vcpu->arch.pio.in)
5139 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5140 vcpu->arch.pio.size, pd);
5141 else
5142 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5143 vcpu->arch.pio.port, vcpu->arch.pio.size,
5144 pd);
5145 if (r)
5146 break;
5147 pd += vcpu->arch.pio.size;
5148 }
5149 return r;
5150 }
5151
5152 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5153 unsigned short port, void *val,
5154 unsigned int count, bool in)
5155 {
5156 vcpu->arch.pio.port = port;
5157 vcpu->arch.pio.in = in;
5158 vcpu->arch.pio.count = count;
5159 vcpu->arch.pio.size = size;
5160
5161 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5162 vcpu->arch.pio.count = 0;
5163 return 1;
5164 }
5165
5166 vcpu->run->exit_reason = KVM_EXIT_IO;
5167 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5168 vcpu->run->io.size = size;
5169 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5170 vcpu->run->io.count = count;
5171 vcpu->run->io.port = port;
5172
5173 return 0;
5174 }
5175
5176 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5177 int size, unsigned short port, void *val,
5178 unsigned int count)
5179 {
5180 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5181 int ret;
5182
5183 if (vcpu->arch.pio.count)
5184 goto data_avail;
5185
5186 memset(vcpu->arch.pio_data, 0, size * count);
5187
5188 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5189 if (ret) {
5190 data_avail:
5191 memcpy(val, vcpu->arch.pio_data, size * count);
5192 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5193 vcpu->arch.pio.count = 0;
5194 return 1;
5195 }
5196
5197 return 0;
5198 }
5199
5200 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5201 int size, unsigned short port,
5202 const void *val, unsigned int count)
5203 {
5204 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5205
5206 memcpy(vcpu->arch.pio_data, val, size * count);
5207 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5208 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5209 }
5210
5211 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5212 {
5213 return kvm_x86_ops->get_segment_base(vcpu, seg);
5214 }
5215
5216 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5217 {
5218 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5219 }
5220
5221 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5222 {
5223 if (!need_emulate_wbinvd(vcpu))
5224 return X86EMUL_CONTINUE;
5225
5226 if (kvm_x86_ops->has_wbinvd_exit()) {
5227 int cpu = get_cpu();
5228
5229 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5230 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5231 wbinvd_ipi, NULL, 1);
5232 put_cpu();
5233 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5234 } else
5235 wbinvd();
5236 return X86EMUL_CONTINUE;
5237 }
5238
5239 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5240 {
5241 kvm_emulate_wbinvd_noskip(vcpu);
5242 return kvm_skip_emulated_instruction(vcpu);
5243 }
5244 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5245
5246
5247
5248 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5249 {
5250 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5251 }
5252
5253 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5254 unsigned long *dest)
5255 {
5256 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5257 }
5258
5259 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5260 unsigned long value)
5261 {
5262
5263 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5264 }
5265
5266 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5267 {
5268 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5269 }
5270
5271 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5272 {
5273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5274 unsigned long value;
5275
5276 switch (cr) {
5277 case 0:
5278 value = kvm_read_cr0(vcpu);
5279 break;
5280 case 2:
5281 value = vcpu->arch.cr2;
5282 break;
5283 case 3:
5284 value = kvm_read_cr3(vcpu);
5285 break;
5286 case 4:
5287 value = kvm_read_cr4(vcpu);
5288 break;
5289 case 8:
5290 value = kvm_get_cr8(vcpu);
5291 break;
5292 default:
5293 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5294 return 0;
5295 }
5296
5297 return value;
5298 }
5299
5300 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5301 {
5302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5303 int res = 0;
5304
5305 switch (cr) {
5306 case 0:
5307 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5308 break;
5309 case 2:
5310 vcpu->arch.cr2 = val;
5311 break;
5312 case 3:
5313 res = kvm_set_cr3(vcpu, val);
5314 break;
5315 case 4:
5316 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5317 break;
5318 case 8:
5319 res = kvm_set_cr8(vcpu, val);
5320 break;
5321 default:
5322 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5323 res = -1;
5324 }
5325
5326 return res;
5327 }
5328
5329 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5330 {
5331 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5332 }
5333
5334 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5335 {
5336 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5337 }
5338
5339 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5340 {
5341 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5342 }
5343
5344 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5345 {
5346 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5347 }
5348
5349 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5350 {
5351 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5352 }
5353
5354 static unsigned long emulator_get_cached_segment_base(
5355 struct x86_emulate_ctxt *ctxt, int seg)
5356 {
5357 return get_segment_base(emul_to_vcpu(ctxt), seg);
5358 }
5359
5360 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5361 struct desc_struct *desc, u32 *base3,
5362 int seg)
5363 {
5364 struct kvm_segment var;
5365
5366 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5367 *selector = var.selector;
5368
5369 if (var.unusable) {
5370 memset(desc, 0, sizeof(*desc));
5371 if (base3)
5372 *base3 = 0;
5373 return false;
5374 }
5375
5376 if (var.g)
5377 var.limit >>= 12;
5378 set_desc_limit(desc, var.limit);
5379 set_desc_base(desc, (unsigned long)var.base);
5380 #ifdef CONFIG_X86_64
5381 if (base3)
5382 *base3 = var.base >> 32;
5383 #endif
5384 desc->type = var.type;
5385 desc->s = var.s;
5386 desc->dpl = var.dpl;
5387 desc->p = var.present;
5388 desc->avl = var.avl;
5389 desc->l = var.l;
5390 desc->d = var.db;
5391 desc->g = var.g;
5392
5393 return true;
5394 }
5395
5396 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5397 struct desc_struct *desc, u32 base3,
5398 int seg)
5399 {
5400 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5401 struct kvm_segment var;
5402
5403 var.selector = selector;
5404 var.base = get_desc_base(desc);
5405 #ifdef CONFIG_X86_64
5406 var.base |= ((u64)base3) << 32;
5407 #endif
5408 var.limit = get_desc_limit(desc);
5409 if (desc->g)
5410 var.limit = (var.limit << 12) | 0xfff;
5411 var.type = desc->type;
5412 var.dpl = desc->dpl;
5413 var.db = desc->d;
5414 var.s = desc->s;
5415 var.l = desc->l;
5416 var.g = desc->g;
5417 var.avl = desc->avl;
5418 var.present = desc->p;
5419 var.unusable = !var.present;
5420 var.padding = 0;
5421
5422 kvm_set_segment(vcpu, &var, seg);
5423 return;
5424 }
5425
5426 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5427 u32 msr_index, u64 *pdata)
5428 {
5429 struct msr_data msr;
5430 int r;
5431
5432 msr.index = msr_index;
5433 msr.host_initiated = false;
5434 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5435 if (r)
5436 return r;
5437
5438 *pdata = msr.data;
5439 return 0;
5440 }
5441
5442 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5443 u32 msr_index, u64 data)
5444 {
5445 struct msr_data msr;
5446
5447 msr.data = data;
5448 msr.index = msr_index;
5449 msr.host_initiated = false;
5450 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5451 }
5452
5453 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5454 {
5455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5456
5457 return vcpu->arch.smbase;
5458 }
5459
5460 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5461 {
5462 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5463
5464 vcpu->arch.smbase = smbase;
5465 }
5466
5467 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5468 u32 pmc)
5469 {
5470 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5471 }
5472
5473 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5474 u32 pmc, u64 *pdata)
5475 {
5476 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5477 }
5478
5479 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5480 {
5481 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5482 }
5483
5484 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5485 struct x86_instruction_info *info,
5486 enum x86_intercept_stage stage)
5487 {
5488 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5489 }
5490
5491 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5492 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5493 {
5494 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5495 }
5496
5497 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5498 {
5499 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5500 }
5501
5502 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5503 {
5504 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5505 }
5506
5507 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5508 {
5509 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5510 }
5511
5512 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5513 {
5514 return emul_to_vcpu(ctxt)->arch.hflags;
5515 }
5516
5517 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5518 {
5519 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5520 }
5521
5522 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5523 {
5524 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5525 }
5526
5527 static const struct x86_emulate_ops emulate_ops = {
5528 .read_gpr = emulator_read_gpr,
5529 .write_gpr = emulator_write_gpr,
5530 .read_std = emulator_read_std,
5531 .write_std = emulator_write_std,
5532 .read_phys = kvm_read_guest_phys_system,
5533 .fetch = kvm_fetch_guest_virt,
5534 .read_emulated = emulator_read_emulated,
5535 .write_emulated = emulator_write_emulated,
5536 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5537 .invlpg = emulator_invlpg,
5538 .pio_in_emulated = emulator_pio_in_emulated,
5539 .pio_out_emulated = emulator_pio_out_emulated,
5540 .get_segment = emulator_get_segment,
5541 .set_segment = emulator_set_segment,
5542 .get_cached_segment_base = emulator_get_cached_segment_base,
5543 .get_gdt = emulator_get_gdt,
5544 .get_idt = emulator_get_idt,
5545 .set_gdt = emulator_set_gdt,
5546 .set_idt = emulator_set_idt,
5547 .get_cr = emulator_get_cr,
5548 .set_cr = emulator_set_cr,
5549 .cpl = emulator_get_cpl,
5550 .get_dr = emulator_get_dr,
5551 .set_dr = emulator_set_dr,
5552 .get_smbase = emulator_get_smbase,
5553 .set_smbase = emulator_set_smbase,
5554 .set_msr = emulator_set_msr,
5555 .get_msr = emulator_get_msr,
5556 .check_pmc = emulator_check_pmc,
5557 .read_pmc = emulator_read_pmc,
5558 .halt = emulator_halt,
5559 .wbinvd = emulator_wbinvd,
5560 .fix_hypercall = emulator_fix_hypercall,
5561 .intercept = emulator_intercept,
5562 .get_cpuid = emulator_get_cpuid,
5563 .set_nmi_mask = emulator_set_nmi_mask,
5564 .get_hflags = emulator_get_hflags,
5565 .set_hflags = emulator_set_hflags,
5566 .pre_leave_smm = emulator_pre_leave_smm,
5567 };
5568
5569 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5570 {
5571 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5572 /*
5573 * an sti; sti; sequence only disable interrupts for the first
5574 * instruction. So, if the last instruction, be it emulated or
5575 * not, left the system with the INT_STI flag enabled, it
5576 * means that the last instruction is an sti. We should not
5577 * leave the flag on in this case. The same goes for mov ss
5578 */
5579 if (int_shadow & mask)
5580 mask = 0;
5581 if (unlikely(int_shadow || mask)) {
5582 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5583 if (!mask)
5584 kvm_make_request(KVM_REQ_EVENT, vcpu);
5585 }
5586 }
5587
5588 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5589 {
5590 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5591 if (ctxt->exception.vector == PF_VECTOR)
5592 return kvm_propagate_fault(vcpu, &ctxt->exception);
5593
5594 if (ctxt->exception.error_code_valid)
5595 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5596 ctxt->exception.error_code);
5597 else
5598 kvm_queue_exception(vcpu, ctxt->exception.vector);
5599 return false;
5600 }
5601
5602 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5603 {
5604 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5605 int cs_db, cs_l;
5606
5607 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5608
5609 ctxt->eflags = kvm_get_rflags(vcpu);
5610 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5611
5612 ctxt->eip = kvm_rip_read(vcpu);
5613 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5614 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5615 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5616 cs_db ? X86EMUL_MODE_PROT32 :
5617 X86EMUL_MODE_PROT16;
5618 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5619 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5620 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5621
5622 init_decode_cache(ctxt);
5623 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5624 }
5625
5626 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5627 {
5628 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5629 int ret;
5630
5631 init_emulate_ctxt(vcpu);
5632
5633 ctxt->op_bytes = 2;
5634 ctxt->ad_bytes = 2;
5635 ctxt->_eip = ctxt->eip + inc_eip;
5636 ret = emulate_int_real(ctxt, irq);
5637
5638 if (ret != X86EMUL_CONTINUE)
5639 return EMULATE_FAIL;
5640
5641 ctxt->eip = ctxt->_eip;
5642 kvm_rip_write(vcpu, ctxt->eip);
5643 kvm_set_rflags(vcpu, ctxt->eflags);
5644
5645 if (irq == NMI_VECTOR)
5646 vcpu->arch.nmi_pending = 0;
5647 else
5648 vcpu->arch.interrupt.pending = false;
5649
5650 return EMULATE_DONE;
5651 }
5652 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5653
5654 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5655 {
5656 int r = EMULATE_DONE;
5657
5658 ++vcpu->stat.insn_emulation_fail;
5659 trace_kvm_emulate_insn_failed(vcpu);
5660 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5661 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5662 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5663 vcpu->run->internal.ndata = 0;
5664 r = EMULATE_USER_EXIT;
5665 }
5666 kvm_queue_exception(vcpu, UD_VECTOR);
5667
5668 return r;
5669 }
5670
5671 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5672 bool write_fault_to_shadow_pgtable,
5673 int emulation_type)
5674 {
5675 gpa_t gpa = cr2;
5676 kvm_pfn_t pfn;
5677
5678 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5679 return false;
5680
5681 if (!vcpu->arch.mmu.direct_map) {
5682 /*
5683 * Write permission should be allowed since only
5684 * write access need to be emulated.
5685 */
5686 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5687
5688 /*
5689 * If the mapping is invalid in guest, let cpu retry
5690 * it to generate fault.
5691 */
5692 if (gpa == UNMAPPED_GVA)
5693 return true;
5694 }
5695
5696 /*
5697 * Do not retry the unhandleable instruction if it faults on the
5698 * readonly host memory, otherwise it will goto a infinite loop:
5699 * retry instruction -> write #PF -> emulation fail -> retry
5700 * instruction -> ...
5701 */
5702 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5703
5704 /*
5705 * If the instruction failed on the error pfn, it can not be fixed,
5706 * report the error to userspace.
5707 */
5708 if (is_error_noslot_pfn(pfn))
5709 return false;
5710
5711 kvm_release_pfn_clean(pfn);
5712
5713 /* The instructions are well-emulated on direct mmu. */
5714 if (vcpu->arch.mmu.direct_map) {
5715 unsigned int indirect_shadow_pages;
5716
5717 spin_lock(&vcpu->kvm->mmu_lock);
5718 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5719 spin_unlock(&vcpu->kvm->mmu_lock);
5720
5721 if (indirect_shadow_pages)
5722 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5723
5724 return true;
5725 }
5726
5727 /*
5728 * if emulation was due to access to shadowed page table
5729 * and it failed try to unshadow page and re-enter the
5730 * guest to let CPU execute the instruction.
5731 */
5732 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5733
5734 /*
5735 * If the access faults on its page table, it can not
5736 * be fixed by unprotecting shadow page and it should
5737 * be reported to userspace.
5738 */
5739 return !write_fault_to_shadow_pgtable;
5740 }
5741
5742 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5743 unsigned long cr2, int emulation_type)
5744 {
5745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5746 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5747
5748 last_retry_eip = vcpu->arch.last_retry_eip;
5749 last_retry_addr = vcpu->arch.last_retry_addr;
5750
5751 /*
5752 * If the emulation is caused by #PF and it is non-page_table
5753 * writing instruction, it means the VM-EXIT is caused by shadow
5754 * page protected, we can zap the shadow page and retry this
5755 * instruction directly.
5756 *
5757 * Note: if the guest uses a non-page-table modifying instruction
5758 * on the PDE that points to the instruction, then we will unmap
5759 * the instruction and go to an infinite loop. So, we cache the
5760 * last retried eip and the last fault address, if we meet the eip
5761 * and the address again, we can break out of the potential infinite
5762 * loop.
5763 */
5764 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5765
5766 if (!(emulation_type & EMULTYPE_RETRY))
5767 return false;
5768
5769 if (x86_page_table_writing_insn(ctxt))
5770 return false;
5771
5772 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5773 return false;
5774
5775 vcpu->arch.last_retry_eip = ctxt->eip;
5776 vcpu->arch.last_retry_addr = cr2;
5777
5778 if (!vcpu->arch.mmu.direct_map)
5779 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5780
5781 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5782
5783 return true;
5784 }
5785
5786 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5787 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5788
5789 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5790 {
5791 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5792 /* This is a good place to trace that we are exiting SMM. */
5793 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5794
5795 /* Process a latched INIT or SMI, if any. */
5796 kvm_make_request(KVM_REQ_EVENT, vcpu);
5797 }
5798
5799 kvm_mmu_reset_context(vcpu);
5800 }
5801
5802 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5803 {
5804 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5805
5806 vcpu->arch.hflags = emul_flags;
5807
5808 if (changed & HF_SMM_MASK)
5809 kvm_smm_changed(vcpu);
5810 }
5811
5812 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5813 unsigned long *db)
5814 {
5815 u32 dr6 = 0;
5816 int i;
5817 u32 enable, rwlen;
5818
5819 enable = dr7;
5820 rwlen = dr7 >> 16;
5821 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5822 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5823 dr6 |= (1 << i);
5824 return dr6;
5825 }
5826
5827 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5828 {
5829 struct kvm_run *kvm_run = vcpu->run;
5830
5831 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5832 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5833 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5834 kvm_run->debug.arch.exception = DB_VECTOR;
5835 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5836 *r = EMULATE_USER_EXIT;
5837 } else {
5838 /*
5839 * "Certain debug exceptions may clear bit 0-3. The
5840 * remaining contents of the DR6 register are never
5841 * cleared by the processor".
5842 */
5843 vcpu->arch.dr6 &= ~15;
5844 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5845 kvm_queue_exception(vcpu, DB_VECTOR);
5846 }
5847 }
5848
5849 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5850 {
5851 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5852 int r = EMULATE_DONE;
5853
5854 kvm_x86_ops->skip_emulated_instruction(vcpu);
5855
5856 /*
5857 * rflags is the old, "raw" value of the flags. The new value has
5858 * not been saved yet.
5859 *
5860 * This is correct even for TF set by the guest, because "the
5861 * processor will not generate this exception after the instruction
5862 * that sets the TF flag".
5863 */
5864 if (unlikely(rflags & X86_EFLAGS_TF))
5865 kvm_vcpu_do_singlestep(vcpu, &r);
5866 return r == EMULATE_DONE;
5867 }
5868 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5869
5870 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5871 {
5872 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5873 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5874 struct kvm_run *kvm_run = vcpu->run;
5875 unsigned long eip = kvm_get_linear_rip(vcpu);
5876 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5877 vcpu->arch.guest_debug_dr7,
5878 vcpu->arch.eff_db);
5879
5880 if (dr6 != 0) {
5881 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5882 kvm_run->debug.arch.pc = eip;
5883 kvm_run->debug.arch.exception = DB_VECTOR;
5884 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5885 *r = EMULATE_USER_EXIT;
5886 return true;
5887 }
5888 }
5889
5890 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5891 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5892 unsigned long eip = kvm_get_linear_rip(vcpu);
5893 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5894 vcpu->arch.dr7,
5895 vcpu->arch.db);
5896
5897 if (dr6 != 0) {
5898 vcpu->arch.dr6 &= ~15;
5899 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5900 kvm_queue_exception(vcpu, DB_VECTOR);
5901 *r = EMULATE_DONE;
5902 return true;
5903 }
5904 }
5905
5906 return false;
5907 }
5908
5909 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5910 unsigned long cr2,
5911 int emulation_type,
5912 void *insn,
5913 int insn_len)
5914 {
5915 int r;
5916 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5917 bool writeback = true;
5918 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5919
5920 vcpu->arch.l1tf_flush_l1d = true;
5921
5922 /*
5923 * Clear write_fault_to_shadow_pgtable here to ensure it is
5924 * never reused.
5925 */
5926 vcpu->arch.write_fault_to_shadow_pgtable = false;
5927 kvm_clear_exception_queue(vcpu);
5928
5929 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5930 init_emulate_ctxt(vcpu);
5931
5932 /*
5933 * We will reenter on the same instruction since
5934 * we do not set complete_userspace_io. This does not
5935 * handle watchpoints yet, those would be handled in
5936 * the emulate_ops.
5937 */
5938 if (!(emulation_type & EMULTYPE_SKIP) &&
5939 kvm_vcpu_check_breakpoint(vcpu, &r))
5940 return r;
5941
5942 ctxt->interruptibility = 0;
5943 ctxt->have_exception = false;
5944 ctxt->exception.vector = -1;
5945 ctxt->perm_ok = false;
5946
5947 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5948
5949 r = x86_decode_insn(ctxt, insn, insn_len);
5950
5951 trace_kvm_emulate_insn_start(vcpu);
5952 ++vcpu->stat.insn_emulation;
5953 if (r != EMULATION_OK) {
5954 if (emulation_type & EMULTYPE_TRAP_UD)
5955 return EMULATE_FAIL;
5956 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5957 emulation_type))
5958 return EMULATE_DONE;
5959 if (ctxt->have_exception) {
5960 /*
5961 * #UD should result in just EMULATION_FAILED, and trap-like
5962 * exception should not be encountered during decode.
5963 */
5964 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
5965 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
5966 inject_emulated_exception(vcpu);
5967 return EMULATE_DONE;
5968 }
5969 if (emulation_type & EMULTYPE_SKIP)
5970 return EMULATE_FAIL;
5971 return handle_emulation_failure(vcpu);
5972 }
5973 }
5974
5975 if (emulation_type & EMULTYPE_SKIP) {
5976 kvm_rip_write(vcpu, ctxt->_eip);
5977 if (ctxt->eflags & X86_EFLAGS_RF)
5978 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5979 return EMULATE_DONE;
5980 }
5981
5982 if (retry_instruction(ctxt, cr2, emulation_type))
5983 return EMULATE_DONE;
5984
5985 /* this is needed for vmware backdoor interface to work since it
5986 changes registers values during IO operation */
5987 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5988 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5989 emulator_invalidate_register_cache(ctxt);
5990 }
5991
5992 restart:
5993 /* Save the faulting GPA (cr2) in the address field */
5994 ctxt->exception.address = cr2;
5995
5996 r = x86_emulate_insn(ctxt);
5997
5998 if (r == EMULATION_INTERCEPTED)
5999 return EMULATE_DONE;
6000
6001 if (r == EMULATION_FAILED) {
6002 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6003 emulation_type))
6004 return EMULATE_DONE;
6005
6006 return handle_emulation_failure(vcpu);
6007 }
6008
6009 if (ctxt->have_exception) {
6010 r = EMULATE_DONE;
6011 if (inject_emulated_exception(vcpu))
6012 return r;
6013 } else if (vcpu->arch.pio.count) {
6014 if (!vcpu->arch.pio.in) {
6015 /* FIXME: return into emulator if single-stepping. */
6016 vcpu->arch.pio.count = 0;
6017 } else {
6018 writeback = false;
6019 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6020 }
6021 r = EMULATE_USER_EXIT;
6022 } else if (vcpu->mmio_needed) {
6023 if (!vcpu->mmio_is_write)
6024 writeback = false;
6025 r = EMULATE_USER_EXIT;
6026 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6027 } else if (r == EMULATION_RESTART)
6028 goto restart;
6029 else
6030 r = EMULATE_DONE;
6031
6032 if (writeback) {
6033 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6034 toggle_interruptibility(vcpu, ctxt->interruptibility);
6035 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6036 if (!ctxt->have_exception ||
6037 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6038 kvm_rip_write(vcpu, ctxt->eip);
6039 if (r == EMULATE_DONE && ctxt->tf)
6040 kvm_vcpu_do_singlestep(vcpu, &r);
6041 __kvm_set_rflags(vcpu, ctxt->eflags);
6042 }
6043
6044 /*
6045 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6046 * do nothing, and it will be requested again as soon as
6047 * the shadow expires. But we still need to check here,
6048 * because POPF has no interrupt shadow.
6049 */
6050 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6051 kvm_make_request(KVM_REQ_EVENT, vcpu);
6052 } else
6053 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6054
6055 return r;
6056 }
6057 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6058
6059 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6060 {
6061 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6062 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6063 size, port, &val, 1);
6064 /* do not return to emulator after return from userspace */
6065 vcpu->arch.pio.count = 0;
6066 return ret;
6067 }
6068 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6069
6070 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6071 {
6072 unsigned long val;
6073
6074 /* We should only ever be called with arch.pio.count equal to 1 */
6075 BUG_ON(vcpu->arch.pio.count != 1);
6076
6077 /* For size less than 4 we merge, else we zero extend */
6078 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6079 : 0;
6080
6081 /*
6082 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6083 * the copy and tracing
6084 */
6085 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6086 vcpu->arch.pio.port, &val, 1);
6087 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6088
6089 return 1;
6090 }
6091
6092 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6093 {
6094 unsigned long val;
6095 int ret;
6096
6097 /* For size less than 4 we merge, else we zero extend */
6098 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6099
6100 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6101 &val, 1);
6102 if (ret) {
6103 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6104 return ret;
6105 }
6106
6107 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6108
6109 return 0;
6110 }
6111 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6112
6113 static int kvmclock_cpu_down_prep(unsigned int cpu)
6114 {
6115 __this_cpu_write(cpu_tsc_khz, 0);
6116 return 0;
6117 }
6118
6119 static void tsc_khz_changed(void *data)
6120 {
6121 struct cpufreq_freqs *freq = data;
6122 unsigned long khz = 0;
6123
6124 if (data)
6125 khz = freq->new;
6126 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6127 khz = cpufreq_quick_get(raw_smp_processor_id());
6128 if (!khz)
6129 khz = tsc_khz;
6130 __this_cpu_write(cpu_tsc_khz, khz);
6131 }
6132
6133 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6134 void *data)
6135 {
6136 struct cpufreq_freqs *freq = data;
6137 struct kvm *kvm;
6138 struct kvm_vcpu *vcpu;
6139 int i, send_ipi = 0;
6140
6141 /*
6142 * We allow guests to temporarily run on slowing clocks,
6143 * provided we notify them after, or to run on accelerating
6144 * clocks, provided we notify them before. Thus time never
6145 * goes backwards.
6146 *
6147 * However, we have a problem. We can't atomically update
6148 * the frequency of a given CPU from this function; it is
6149 * merely a notifier, which can be called from any CPU.
6150 * Changing the TSC frequency at arbitrary points in time
6151 * requires a recomputation of local variables related to
6152 * the TSC for each VCPU. We must flag these local variables
6153 * to be updated and be sure the update takes place with the
6154 * new frequency before any guests proceed.
6155 *
6156 * Unfortunately, the combination of hotplug CPU and frequency
6157 * change creates an intractable locking scenario; the order
6158 * of when these callouts happen is undefined with respect to
6159 * CPU hotplug, and they can race with each other. As such,
6160 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6161 * undefined; you can actually have a CPU frequency change take
6162 * place in between the computation of X and the setting of the
6163 * variable. To protect against this problem, all updates of
6164 * the per_cpu tsc_khz variable are done in an interrupt
6165 * protected IPI, and all callers wishing to update the value
6166 * must wait for a synchronous IPI to complete (which is trivial
6167 * if the caller is on the CPU already). This establishes the
6168 * necessary total order on variable updates.
6169 *
6170 * Note that because a guest time update may take place
6171 * anytime after the setting of the VCPU's request bit, the
6172 * correct TSC value must be set before the request. However,
6173 * to ensure the update actually makes it to any guest which
6174 * starts running in hardware virtualization between the set
6175 * and the acquisition of the spinlock, we must also ping the
6176 * CPU after setting the request bit.
6177 *
6178 */
6179
6180 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6181 return 0;
6182 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6183 return 0;
6184
6185 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6186
6187 spin_lock(&kvm_lock);
6188 list_for_each_entry(kvm, &vm_list, vm_list) {
6189 kvm_for_each_vcpu(i, vcpu, kvm) {
6190 if (vcpu->cpu != freq->cpu)
6191 continue;
6192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6193 if (vcpu->cpu != smp_processor_id())
6194 send_ipi = 1;
6195 }
6196 }
6197 spin_unlock(&kvm_lock);
6198
6199 if (freq->old < freq->new && send_ipi) {
6200 /*
6201 * We upscale the frequency. Must make the guest
6202 * doesn't see old kvmclock values while running with
6203 * the new frequency, otherwise we risk the guest sees
6204 * time go backwards.
6205 *
6206 * In case we update the frequency for another cpu
6207 * (which might be in guest context) send an interrupt
6208 * to kick the cpu out of guest context. Next time
6209 * guest context is entered kvmclock will be updated,
6210 * so the guest will not see stale values.
6211 */
6212 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6213 }
6214 return 0;
6215 }
6216
6217 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6218 .notifier_call = kvmclock_cpufreq_notifier
6219 };
6220
6221 static int kvmclock_cpu_online(unsigned int cpu)
6222 {
6223 tsc_khz_changed(NULL);
6224 return 0;
6225 }
6226
6227 static void kvm_timer_init(void)
6228 {
6229 max_tsc_khz = tsc_khz;
6230
6231 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6232 #ifdef CONFIG_CPU_FREQ
6233 struct cpufreq_policy policy;
6234 int cpu;
6235
6236 memset(&policy, 0, sizeof(policy));
6237 cpu = get_cpu();
6238 cpufreq_get_policy(&policy, cpu);
6239 if (policy.cpuinfo.max_freq)
6240 max_tsc_khz = policy.cpuinfo.max_freq;
6241 put_cpu();
6242 #endif
6243 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6244 CPUFREQ_TRANSITION_NOTIFIER);
6245 }
6246 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6247
6248 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6249 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6250 }
6251
6252 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6253
6254 int kvm_is_in_guest(void)
6255 {
6256 return __this_cpu_read(current_vcpu) != NULL;
6257 }
6258
6259 static int kvm_is_user_mode(void)
6260 {
6261 int user_mode = 3;
6262
6263 if (__this_cpu_read(current_vcpu))
6264 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6265
6266 return user_mode != 0;
6267 }
6268
6269 static unsigned long kvm_get_guest_ip(void)
6270 {
6271 unsigned long ip = 0;
6272
6273 if (__this_cpu_read(current_vcpu))
6274 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6275
6276 return ip;
6277 }
6278
6279 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6280 .is_in_guest = kvm_is_in_guest,
6281 .is_user_mode = kvm_is_user_mode,
6282 .get_guest_ip = kvm_get_guest_ip,
6283 };
6284
6285 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6286 {
6287 __this_cpu_write(current_vcpu, vcpu);
6288 }
6289 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6290
6291 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6292 {
6293 __this_cpu_write(current_vcpu, NULL);
6294 }
6295 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6296
6297 static void kvm_set_mmio_spte_mask(void)
6298 {
6299 u64 mask;
6300 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6301
6302 /*
6303 * Set the reserved bits and the present bit of an paging-structure
6304 * entry to generate page fault with PFER.RSV = 1.
6305 */
6306
6307 /*
6308 * Mask the uppermost physical address bit, which would be reserved as
6309 * long as the supported physical address width is less than 52.
6310 */
6311 mask = 1ull << 51;
6312
6313 /* Set the present bit. */
6314 mask |= 1ull;
6315
6316 /*
6317 * If reserved bit is not supported, clear the present bit to disable
6318 * mmio page fault.
6319 */
6320 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6321 mask &= ~1ull;
6322
6323 kvm_mmu_set_mmio_spte_mask(mask, mask);
6324 }
6325
6326 #ifdef CONFIG_X86_64
6327 static void pvclock_gtod_update_fn(struct work_struct *work)
6328 {
6329 struct kvm *kvm;
6330
6331 struct kvm_vcpu *vcpu;
6332 int i;
6333
6334 spin_lock(&kvm_lock);
6335 list_for_each_entry(kvm, &vm_list, vm_list)
6336 kvm_for_each_vcpu(i, vcpu, kvm)
6337 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6338 atomic_set(&kvm_guest_has_master_clock, 0);
6339 spin_unlock(&kvm_lock);
6340 }
6341
6342 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6343
6344 /*
6345 * Notification about pvclock gtod data update.
6346 */
6347 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6348 void *priv)
6349 {
6350 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6351 struct timekeeper *tk = priv;
6352
6353 update_pvclock_gtod(tk);
6354
6355 /* disable master clock if host does not trust, or does not
6356 * use, TSC clocksource
6357 */
6358 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6359 atomic_read(&kvm_guest_has_master_clock) != 0)
6360 queue_work(system_long_wq, &pvclock_gtod_work);
6361
6362 return 0;
6363 }
6364
6365 static struct notifier_block pvclock_gtod_notifier = {
6366 .notifier_call = pvclock_gtod_notify,
6367 };
6368 #endif
6369
6370 int kvm_arch_init(void *opaque)
6371 {
6372 int r;
6373 struct kvm_x86_ops *ops = opaque;
6374
6375 if (kvm_x86_ops) {
6376 printk(KERN_ERR "kvm: already loaded the other module\n");
6377 r = -EEXIST;
6378 goto out;
6379 }
6380
6381 if (!ops->cpu_has_kvm_support()) {
6382 printk(KERN_ERR "kvm: no hardware support\n");
6383 r = -EOPNOTSUPP;
6384 goto out;
6385 }
6386 if (ops->disabled_by_bios()) {
6387 printk(KERN_WARNING "kvm: disabled by bios\n");
6388 r = -EOPNOTSUPP;
6389 goto out;
6390 }
6391
6392 r = -ENOMEM;
6393 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6394 if (!shared_msrs) {
6395 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6396 goto out;
6397 }
6398
6399 r = kvm_mmu_module_init();
6400 if (r)
6401 goto out_free_percpu;
6402
6403 kvm_set_mmio_spte_mask();
6404
6405 kvm_x86_ops = ops;
6406
6407 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6408 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6409 PT_PRESENT_MASK, 0, sme_me_mask);
6410 kvm_timer_init();
6411
6412 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6413
6414 if (boot_cpu_has(X86_FEATURE_XSAVE))
6415 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6416
6417 kvm_lapic_init();
6418 #ifdef CONFIG_X86_64
6419 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6420 #endif
6421
6422 return 0;
6423
6424 out_free_percpu:
6425 free_percpu(shared_msrs);
6426 out:
6427 return r;
6428 }
6429
6430 void kvm_arch_exit(void)
6431 {
6432 kvm_lapic_exit();
6433 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6434
6435 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6436 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6437 CPUFREQ_TRANSITION_NOTIFIER);
6438 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6439 #ifdef CONFIG_X86_64
6440 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6441 #endif
6442 kvm_x86_ops = NULL;
6443 kvm_mmu_module_exit();
6444 free_percpu(shared_msrs);
6445 }
6446
6447 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6448 {
6449 ++vcpu->stat.halt_exits;
6450 if (lapic_in_kernel(vcpu)) {
6451 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6452 return 1;
6453 } else {
6454 vcpu->run->exit_reason = KVM_EXIT_HLT;
6455 return 0;
6456 }
6457 }
6458 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6459
6460 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6461 {
6462 int ret = kvm_skip_emulated_instruction(vcpu);
6463 /*
6464 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6465 * KVM_EXIT_DEBUG here.
6466 */
6467 return kvm_vcpu_halt(vcpu) && ret;
6468 }
6469 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6470
6471 #ifdef CONFIG_X86_64
6472 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6473 unsigned long clock_type)
6474 {
6475 struct kvm_clock_pairing clock_pairing;
6476 struct timespec ts;
6477 u64 cycle;
6478 int ret;
6479
6480 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6481 return -KVM_EOPNOTSUPP;
6482
6483 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6484 return -KVM_EOPNOTSUPP;
6485
6486 clock_pairing.sec = ts.tv_sec;
6487 clock_pairing.nsec = ts.tv_nsec;
6488 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6489 clock_pairing.flags = 0;
6490 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6491
6492 ret = 0;
6493 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6494 sizeof(struct kvm_clock_pairing)))
6495 ret = -KVM_EFAULT;
6496
6497 return ret;
6498 }
6499 #endif
6500
6501 /*
6502 * kvm_pv_kick_cpu_op: Kick a vcpu.
6503 *
6504 * @apicid - apicid of vcpu to be kicked.
6505 */
6506 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6507 {
6508 struct kvm_lapic_irq lapic_irq;
6509
6510 lapic_irq.shorthand = 0;
6511 lapic_irq.dest_mode = 0;
6512 lapic_irq.level = 0;
6513 lapic_irq.dest_id = apicid;
6514 lapic_irq.msi_redir_hint = false;
6515
6516 lapic_irq.delivery_mode = APIC_DM_REMRD;
6517 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6518 }
6519
6520 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6521 {
6522 vcpu->arch.apicv_active = false;
6523 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6524 }
6525
6526 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6527 {
6528 unsigned long nr, a0, a1, a2, a3, ret;
6529 int op_64_bit;
6530
6531 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6532 if (!kvm_hv_hypercall(vcpu))
6533 return 0;
6534 goto out;
6535 }
6536
6537 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6538 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6539 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6540 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6541 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6542
6543 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6544
6545 op_64_bit = is_64_bit_mode(vcpu);
6546 if (!op_64_bit) {
6547 nr &= 0xFFFFFFFF;
6548 a0 &= 0xFFFFFFFF;
6549 a1 &= 0xFFFFFFFF;
6550 a2 &= 0xFFFFFFFF;
6551 a3 &= 0xFFFFFFFF;
6552 }
6553
6554 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6555 ret = -KVM_EPERM;
6556 goto out_error;
6557 }
6558
6559 switch (nr) {
6560 case KVM_HC_VAPIC_POLL_IRQ:
6561 ret = 0;
6562 break;
6563 case KVM_HC_KICK_CPU:
6564 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6565 ret = 0;
6566 break;
6567 #ifdef CONFIG_X86_64
6568 case KVM_HC_CLOCK_PAIRING:
6569 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6570 break;
6571 #endif
6572 default:
6573 ret = -KVM_ENOSYS;
6574 break;
6575 }
6576 out_error:
6577 if (!op_64_bit)
6578 ret = (u32)ret;
6579 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6580
6581 out:
6582 ++vcpu->stat.hypercalls;
6583 return kvm_skip_emulated_instruction(vcpu);
6584 }
6585 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6586
6587 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6588 {
6589 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6590 char instruction[3];
6591 unsigned long rip = kvm_rip_read(vcpu);
6592
6593 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6594
6595 return emulator_write_emulated(ctxt, rip, instruction, 3,
6596 &ctxt->exception);
6597 }
6598
6599 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6600 {
6601 return vcpu->run->request_interrupt_window &&
6602 likely(!pic_in_kernel(vcpu->kvm));
6603 }
6604
6605 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6606 {
6607 struct kvm_run *kvm_run = vcpu->run;
6608
6609 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6610 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6611 kvm_run->cr8 = kvm_get_cr8(vcpu);
6612 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6613 kvm_run->ready_for_interrupt_injection =
6614 pic_in_kernel(vcpu->kvm) ||
6615 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6616 }
6617
6618 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6619 {
6620 int max_irr, tpr;
6621
6622 if (!kvm_x86_ops->update_cr8_intercept)
6623 return;
6624
6625 if (!lapic_in_kernel(vcpu))
6626 return;
6627
6628 if (vcpu->arch.apicv_active)
6629 return;
6630
6631 if (!vcpu->arch.apic->vapic_addr)
6632 max_irr = kvm_lapic_find_highest_irr(vcpu);
6633 else
6634 max_irr = -1;
6635
6636 if (max_irr != -1)
6637 max_irr >>= 4;
6638
6639 tpr = kvm_lapic_get_cr8(vcpu);
6640
6641 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6642 }
6643
6644 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6645 {
6646 int r;
6647
6648 /* try to reinject previous events if any */
6649 if (vcpu->arch.exception.injected) {
6650 kvm_x86_ops->queue_exception(vcpu);
6651 return 0;
6652 }
6653
6654 /*
6655 * Exceptions must be injected immediately, or the exception
6656 * frame will have the address of the NMI or interrupt handler.
6657 */
6658 if (!vcpu->arch.exception.pending) {
6659 if (vcpu->arch.nmi_injected) {
6660 kvm_x86_ops->set_nmi(vcpu);
6661 return 0;
6662 }
6663
6664 if (vcpu->arch.interrupt.pending) {
6665 kvm_x86_ops->set_irq(vcpu);
6666 return 0;
6667 }
6668 }
6669
6670 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6671 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6672 if (r != 0)
6673 return r;
6674 }
6675
6676 /* try to inject new event if pending */
6677 if (vcpu->arch.exception.pending) {
6678 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6679 vcpu->arch.exception.has_error_code,
6680 vcpu->arch.exception.error_code);
6681
6682 vcpu->arch.exception.pending = false;
6683 vcpu->arch.exception.injected = true;
6684
6685 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6686 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6687 X86_EFLAGS_RF);
6688
6689 if (vcpu->arch.exception.nr == DB_VECTOR &&
6690 (vcpu->arch.dr7 & DR7_GD)) {
6691 vcpu->arch.dr7 &= ~DR7_GD;
6692 kvm_update_dr7(vcpu);
6693 }
6694
6695 kvm_x86_ops->queue_exception(vcpu);
6696 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6697 vcpu->arch.smi_pending = false;
6698 enter_smm(vcpu);
6699 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6700 --vcpu->arch.nmi_pending;
6701 vcpu->arch.nmi_injected = true;
6702 kvm_x86_ops->set_nmi(vcpu);
6703 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6704 /*
6705 * Because interrupts can be injected asynchronously, we are
6706 * calling check_nested_events again here to avoid a race condition.
6707 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6708 * proposal and current concerns. Perhaps we should be setting
6709 * KVM_REQ_EVENT only on certain events and not unconditionally?
6710 */
6711 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6712 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6713 if (r != 0)
6714 return r;
6715 }
6716 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6717 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6718 false);
6719 kvm_x86_ops->set_irq(vcpu);
6720 }
6721 }
6722
6723 return 0;
6724 }
6725
6726 static void process_nmi(struct kvm_vcpu *vcpu)
6727 {
6728 unsigned limit = 2;
6729
6730 /*
6731 * x86 is limited to one NMI running, and one NMI pending after it.
6732 * If an NMI is already in progress, limit further NMIs to just one.
6733 * Otherwise, allow two (and we'll inject the first one immediately).
6734 */
6735 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6736 limit = 1;
6737
6738 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6739 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6740 kvm_make_request(KVM_REQ_EVENT, vcpu);
6741 }
6742
6743 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6744 {
6745 u32 flags = 0;
6746 flags |= seg->g << 23;
6747 flags |= seg->db << 22;
6748 flags |= seg->l << 21;
6749 flags |= seg->avl << 20;
6750 flags |= seg->present << 15;
6751 flags |= seg->dpl << 13;
6752 flags |= seg->s << 12;
6753 flags |= seg->type << 8;
6754 return flags;
6755 }
6756
6757 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6758 {
6759 struct kvm_segment seg;
6760 int offset;
6761
6762 kvm_get_segment(vcpu, &seg, n);
6763 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6764
6765 if (n < 3)
6766 offset = 0x7f84 + n * 12;
6767 else
6768 offset = 0x7f2c + (n - 3) * 12;
6769
6770 put_smstate(u32, buf, offset + 8, seg.base);
6771 put_smstate(u32, buf, offset + 4, seg.limit);
6772 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6773 }
6774
6775 #ifdef CONFIG_X86_64
6776 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6777 {
6778 struct kvm_segment seg;
6779 int offset;
6780 u16 flags;
6781
6782 kvm_get_segment(vcpu, &seg, n);
6783 offset = 0x7e00 + n * 16;
6784
6785 flags = enter_smm_get_segment_flags(&seg) >> 8;
6786 put_smstate(u16, buf, offset, seg.selector);
6787 put_smstate(u16, buf, offset + 2, flags);
6788 put_smstate(u32, buf, offset + 4, seg.limit);
6789 put_smstate(u64, buf, offset + 8, seg.base);
6790 }
6791 #endif
6792
6793 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6794 {
6795 struct desc_ptr dt;
6796 struct kvm_segment seg;
6797 unsigned long val;
6798 int i;
6799
6800 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6801 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6802 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6803 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6804
6805 for (i = 0; i < 8; i++)
6806 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6807
6808 kvm_get_dr(vcpu, 6, &val);
6809 put_smstate(u32, buf, 0x7fcc, (u32)val);
6810 kvm_get_dr(vcpu, 7, &val);
6811 put_smstate(u32, buf, 0x7fc8, (u32)val);
6812
6813 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6814 put_smstate(u32, buf, 0x7fc4, seg.selector);
6815 put_smstate(u32, buf, 0x7f64, seg.base);
6816 put_smstate(u32, buf, 0x7f60, seg.limit);
6817 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6818
6819 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6820 put_smstate(u32, buf, 0x7fc0, seg.selector);
6821 put_smstate(u32, buf, 0x7f80, seg.base);
6822 put_smstate(u32, buf, 0x7f7c, seg.limit);
6823 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6824
6825 kvm_x86_ops->get_gdt(vcpu, &dt);
6826 put_smstate(u32, buf, 0x7f74, dt.address);
6827 put_smstate(u32, buf, 0x7f70, dt.size);
6828
6829 kvm_x86_ops->get_idt(vcpu, &dt);
6830 put_smstate(u32, buf, 0x7f58, dt.address);
6831 put_smstate(u32, buf, 0x7f54, dt.size);
6832
6833 for (i = 0; i < 6; i++)
6834 enter_smm_save_seg_32(vcpu, buf, i);
6835
6836 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6837
6838 /* revision id */
6839 put_smstate(u32, buf, 0x7efc, 0x00020000);
6840 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6841 }
6842
6843 #ifdef CONFIG_X86_64
6844 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6845 {
6846 struct desc_ptr dt;
6847 struct kvm_segment seg;
6848 unsigned long val;
6849 int i;
6850
6851 for (i = 0; i < 16; i++)
6852 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6853
6854 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6855 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6856
6857 kvm_get_dr(vcpu, 6, &val);
6858 put_smstate(u64, buf, 0x7f68, val);
6859 kvm_get_dr(vcpu, 7, &val);
6860 put_smstate(u64, buf, 0x7f60, val);
6861
6862 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6863 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6864 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6865
6866 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6867
6868 /* revision id */
6869 put_smstate(u32, buf, 0x7efc, 0x00020064);
6870
6871 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6872
6873 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6874 put_smstate(u16, buf, 0x7e90, seg.selector);
6875 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6876 put_smstate(u32, buf, 0x7e94, seg.limit);
6877 put_smstate(u64, buf, 0x7e98, seg.base);
6878
6879 kvm_x86_ops->get_idt(vcpu, &dt);
6880 put_smstate(u32, buf, 0x7e84, dt.size);
6881 put_smstate(u64, buf, 0x7e88, dt.address);
6882
6883 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6884 put_smstate(u16, buf, 0x7e70, seg.selector);
6885 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6886 put_smstate(u32, buf, 0x7e74, seg.limit);
6887 put_smstate(u64, buf, 0x7e78, seg.base);
6888
6889 kvm_x86_ops->get_gdt(vcpu, &dt);
6890 put_smstate(u32, buf, 0x7e64, dt.size);
6891 put_smstate(u64, buf, 0x7e68, dt.address);
6892
6893 for (i = 0; i < 6; i++)
6894 enter_smm_save_seg_64(vcpu, buf, i);
6895 }
6896 #endif
6897
6898 static void enter_smm(struct kvm_vcpu *vcpu)
6899 {
6900 struct kvm_segment cs, ds;
6901 struct desc_ptr dt;
6902 char buf[512];
6903 u32 cr0;
6904
6905 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6906 memset(buf, 0, 512);
6907 #ifdef CONFIG_X86_64
6908 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6909 enter_smm_save_state_64(vcpu, buf);
6910 else
6911 #endif
6912 enter_smm_save_state_32(vcpu, buf);
6913
6914 /*
6915 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6916 * vCPU state (e.g. leave guest mode) after we've saved the state into
6917 * the SMM state-save area.
6918 */
6919 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6920
6921 vcpu->arch.hflags |= HF_SMM_MASK;
6922 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6923
6924 if (kvm_x86_ops->get_nmi_mask(vcpu))
6925 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6926 else
6927 kvm_x86_ops->set_nmi_mask(vcpu, true);
6928
6929 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6930 kvm_rip_write(vcpu, 0x8000);
6931
6932 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6933 kvm_x86_ops->set_cr0(vcpu, cr0);
6934 vcpu->arch.cr0 = cr0;
6935
6936 kvm_x86_ops->set_cr4(vcpu, 0);
6937
6938 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6939 dt.address = dt.size = 0;
6940 kvm_x86_ops->set_idt(vcpu, &dt);
6941
6942 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6943
6944 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6945 cs.base = vcpu->arch.smbase;
6946
6947 ds.selector = 0;
6948 ds.base = 0;
6949
6950 cs.limit = ds.limit = 0xffffffff;
6951 cs.type = ds.type = 0x3;
6952 cs.dpl = ds.dpl = 0;
6953 cs.db = ds.db = 0;
6954 cs.s = ds.s = 1;
6955 cs.l = ds.l = 0;
6956 cs.g = ds.g = 1;
6957 cs.avl = ds.avl = 0;
6958 cs.present = ds.present = 1;
6959 cs.unusable = ds.unusable = 0;
6960 cs.padding = ds.padding = 0;
6961
6962 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6963 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6964 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6965 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6966 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6967 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6968
6969 #ifdef CONFIG_X86_64
6970 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6971 kvm_x86_ops->set_efer(vcpu, 0);
6972 #endif
6973
6974 kvm_update_cpuid(vcpu);
6975 kvm_mmu_reset_context(vcpu);
6976 }
6977
6978 static void process_smi(struct kvm_vcpu *vcpu)
6979 {
6980 vcpu->arch.smi_pending = true;
6981 kvm_make_request(KVM_REQ_EVENT, vcpu);
6982 }
6983
6984 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6985 {
6986 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6987 }
6988
6989 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6990 {
6991 u64 eoi_exit_bitmap[4];
6992
6993 if (!kvm_apic_present(vcpu))
6994 return;
6995
6996 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6997
6998 if (irqchip_split(vcpu->kvm))
6999 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7000 else {
7001 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7002 kvm_x86_ops->sync_pir_to_irr(vcpu);
7003 if (ioapic_in_kernel(vcpu->kvm))
7004 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7005 }
7006 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7007 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7008 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7009 }
7010
7011 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
7012 {
7013 ++vcpu->stat.tlb_flush;
7014 kvm_x86_ops->tlb_flush(vcpu);
7015 }
7016
7017 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7018 unsigned long start, unsigned long end)
7019 {
7020 unsigned long apic_address;
7021
7022 /*
7023 * The physical address of apic access page is stored in the VMCS.
7024 * Update it when it becomes invalid.
7025 */
7026 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7027 if (start <= apic_address && apic_address < end)
7028 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7029 }
7030
7031 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7032 {
7033 struct page *page = NULL;
7034
7035 if (!lapic_in_kernel(vcpu))
7036 return;
7037
7038 if (!kvm_x86_ops->set_apic_access_page_addr)
7039 return;
7040
7041 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7042 if (is_error_page(page))
7043 return;
7044 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7045
7046 /*
7047 * Do not pin apic access page in memory, the MMU notifier
7048 * will call us again if it is migrated or swapped out.
7049 */
7050 put_page(page);
7051 }
7052 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7053
7054 /*
7055 * Returns 1 to let vcpu_run() continue the guest execution loop without
7056 * exiting to the userspace. Otherwise, the value will be returned to the
7057 * userspace.
7058 */
7059 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7060 {
7061 int r;
7062 bool req_int_win =
7063 dm_request_for_irq_injection(vcpu) &&
7064 kvm_cpu_accept_dm_intr(vcpu);
7065
7066 bool req_immediate_exit = false;
7067
7068 if (kvm_request_pending(vcpu)) {
7069 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7070 kvm_mmu_unload(vcpu);
7071 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7072 __kvm_migrate_timers(vcpu);
7073 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7074 kvm_gen_update_masterclock(vcpu->kvm);
7075 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7076 kvm_gen_kvmclock_update(vcpu);
7077 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7078 r = kvm_guest_time_update(vcpu);
7079 if (unlikely(r))
7080 goto out;
7081 }
7082 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7083 kvm_mmu_sync_roots(vcpu);
7084 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7085 kvm_vcpu_flush_tlb(vcpu);
7086 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7087 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7088 r = 0;
7089 goto out;
7090 }
7091 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7092 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7093 vcpu->mmio_needed = 0;
7094 r = 0;
7095 goto out;
7096 }
7097 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7098 /* Page is swapped out. Do synthetic halt */
7099 vcpu->arch.apf.halted = true;
7100 r = 1;
7101 goto out;
7102 }
7103 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7104 record_steal_time(vcpu);
7105 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7106 process_smi(vcpu);
7107 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7108 process_nmi(vcpu);
7109 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7110 kvm_pmu_handle_event(vcpu);
7111 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7112 kvm_pmu_deliver_pmi(vcpu);
7113 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7114 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7115 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7116 vcpu->arch.ioapic_handled_vectors)) {
7117 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7118 vcpu->run->eoi.vector =
7119 vcpu->arch.pending_ioapic_eoi;
7120 r = 0;
7121 goto out;
7122 }
7123 }
7124 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7125 vcpu_scan_ioapic(vcpu);
7126 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7127 kvm_vcpu_reload_apic_access_page(vcpu);
7128 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7129 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7130 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7131 r = 0;
7132 goto out;
7133 }
7134 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7135 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7136 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7137 r = 0;
7138 goto out;
7139 }
7140 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7141 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7142 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7143 r = 0;
7144 goto out;
7145 }
7146
7147 /*
7148 * KVM_REQ_HV_STIMER has to be processed after
7149 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7150 * depend on the guest clock being up-to-date
7151 */
7152 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7153 kvm_hv_process_stimers(vcpu);
7154 }
7155
7156 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7157 ++vcpu->stat.req_event;
7158 kvm_apic_accept_events(vcpu);
7159 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7160 r = 1;
7161 goto out;
7162 }
7163
7164 if (inject_pending_event(vcpu, req_int_win) != 0)
7165 req_immediate_exit = true;
7166 else {
7167 /* Enable SMI/NMI/IRQ window open exits if needed.
7168 *
7169 * SMIs have three cases:
7170 * 1) They can be nested, and then there is nothing to
7171 * do here because RSM will cause a vmexit anyway.
7172 * 2) There is an ISA-specific reason why SMI cannot be
7173 * injected, and the moment when this changes can be
7174 * intercepted.
7175 * 3) Or the SMI can be pending because
7176 * inject_pending_event has completed the injection
7177 * of an IRQ or NMI from the previous vmexit, and
7178 * then we request an immediate exit to inject the
7179 * SMI.
7180 */
7181 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7182 if (!kvm_x86_ops->enable_smi_window(vcpu))
7183 req_immediate_exit = true;
7184 if (vcpu->arch.nmi_pending)
7185 kvm_x86_ops->enable_nmi_window(vcpu);
7186 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7187 kvm_x86_ops->enable_irq_window(vcpu);
7188 WARN_ON(vcpu->arch.exception.pending);
7189 }
7190
7191 if (kvm_lapic_enabled(vcpu)) {
7192 update_cr8_intercept(vcpu);
7193 kvm_lapic_sync_to_vapic(vcpu);
7194 }
7195 }
7196
7197 r = kvm_mmu_reload(vcpu);
7198 if (unlikely(r)) {
7199 goto cancel_injection;
7200 }
7201
7202 preempt_disable();
7203
7204 kvm_x86_ops->prepare_guest_switch(vcpu);
7205
7206 /*
7207 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7208 * IPI are then delayed after guest entry, which ensures that they
7209 * result in virtual interrupt delivery.
7210 */
7211 local_irq_disable();
7212 vcpu->mode = IN_GUEST_MODE;
7213
7214 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7215
7216 /*
7217 * 1) We should set ->mode before checking ->requests. Please see
7218 * the comment in kvm_vcpu_exiting_guest_mode().
7219 *
7220 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7221 * pairs with the memory barrier implicit in pi_test_and_set_on
7222 * (see vmx_deliver_posted_interrupt).
7223 *
7224 * 3) This also orders the write to mode from any reads to the page
7225 * tables done while the VCPU is running. Please see the comment
7226 * in kvm_flush_remote_tlbs.
7227 */
7228 smp_mb__after_srcu_read_unlock();
7229
7230 /*
7231 * This handles the case where a posted interrupt was
7232 * notified with kvm_vcpu_kick.
7233 */
7234 if (kvm_lapic_enabled(vcpu)) {
7235 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7236 kvm_x86_ops->sync_pir_to_irr(vcpu);
7237 }
7238
7239 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7240 || need_resched() || signal_pending(current)) {
7241 vcpu->mode = OUTSIDE_GUEST_MODE;
7242 smp_wmb();
7243 local_irq_enable();
7244 preempt_enable();
7245 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7246 r = 1;
7247 goto cancel_injection;
7248 }
7249
7250 if (req_immediate_exit) {
7251 kvm_make_request(KVM_REQ_EVENT, vcpu);
7252 smp_send_reschedule(vcpu->cpu);
7253 }
7254
7255 trace_kvm_entry(vcpu->vcpu_id);
7256 wait_lapic_expire(vcpu);
7257 guest_enter_irqoff();
7258
7259 if (unlikely(vcpu->arch.switch_db_regs)) {
7260 set_debugreg(0, 7);
7261 set_debugreg(vcpu->arch.eff_db[0], 0);
7262 set_debugreg(vcpu->arch.eff_db[1], 1);
7263 set_debugreg(vcpu->arch.eff_db[2], 2);
7264 set_debugreg(vcpu->arch.eff_db[3], 3);
7265 set_debugreg(vcpu->arch.dr6, 6);
7266 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7267 }
7268
7269 kvm_x86_ops->run(vcpu);
7270
7271 /*
7272 * Do this here before restoring debug registers on the host. And
7273 * since we do this before handling the vmexit, a DR access vmexit
7274 * can (a) read the correct value of the debug registers, (b) set
7275 * KVM_DEBUGREG_WONT_EXIT again.
7276 */
7277 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7278 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7279 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7280 kvm_update_dr0123(vcpu);
7281 kvm_update_dr6(vcpu);
7282 kvm_update_dr7(vcpu);
7283 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7284 }
7285
7286 /*
7287 * If the guest has used debug registers, at least dr7
7288 * will be disabled while returning to the host.
7289 * If we don't have active breakpoints in the host, we don't
7290 * care about the messed up debug address registers. But if
7291 * we have some of them active, restore the old state.
7292 */
7293 if (hw_breakpoint_active())
7294 hw_breakpoint_restore();
7295
7296 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7297
7298 vcpu->mode = OUTSIDE_GUEST_MODE;
7299 smp_wmb();
7300
7301 kvm_x86_ops->handle_external_intr(vcpu);
7302
7303 ++vcpu->stat.exits;
7304
7305 guest_exit_irqoff();
7306
7307 local_irq_enable();
7308 preempt_enable();
7309
7310 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7311
7312 /*
7313 * Profile KVM exit RIPs:
7314 */
7315 if (unlikely(prof_on == KVM_PROFILING)) {
7316 unsigned long rip = kvm_rip_read(vcpu);
7317 profile_hit(KVM_PROFILING, (void *)rip);
7318 }
7319
7320 if (unlikely(vcpu->arch.tsc_always_catchup))
7321 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7322
7323 if (vcpu->arch.apic_attention)
7324 kvm_lapic_sync_from_vapic(vcpu);
7325
7326 vcpu->arch.gpa_available = false;
7327 r = kvm_x86_ops->handle_exit(vcpu);
7328 return r;
7329
7330 cancel_injection:
7331 kvm_x86_ops->cancel_injection(vcpu);
7332 if (unlikely(vcpu->arch.apic_attention))
7333 kvm_lapic_sync_from_vapic(vcpu);
7334 out:
7335 return r;
7336 }
7337
7338 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7339 {
7340 if (!kvm_arch_vcpu_runnable(vcpu) &&
7341 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7342 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7343 kvm_vcpu_block(vcpu);
7344 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7345
7346 if (kvm_x86_ops->post_block)
7347 kvm_x86_ops->post_block(vcpu);
7348
7349 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7350 return 1;
7351 }
7352
7353 kvm_apic_accept_events(vcpu);
7354 switch(vcpu->arch.mp_state) {
7355 case KVM_MP_STATE_HALTED:
7356 vcpu->arch.pv.pv_unhalted = false;
7357 vcpu->arch.mp_state =
7358 KVM_MP_STATE_RUNNABLE;
7359 case KVM_MP_STATE_RUNNABLE:
7360 vcpu->arch.apf.halted = false;
7361 break;
7362 case KVM_MP_STATE_INIT_RECEIVED:
7363 break;
7364 default:
7365 return -EINTR;
7366 break;
7367 }
7368 return 1;
7369 }
7370
7371 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7372 {
7373 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7374 kvm_x86_ops->check_nested_events(vcpu, false);
7375
7376 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7377 !vcpu->arch.apf.halted);
7378 }
7379
7380 static int vcpu_run(struct kvm_vcpu *vcpu)
7381 {
7382 int r;
7383 struct kvm *kvm = vcpu->kvm;
7384
7385 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7386 vcpu->arch.l1tf_flush_l1d = true;
7387
7388 for (;;) {
7389 if (kvm_vcpu_running(vcpu)) {
7390 r = vcpu_enter_guest(vcpu);
7391 } else {
7392 r = vcpu_block(kvm, vcpu);
7393 }
7394
7395 if (r <= 0)
7396 break;
7397
7398 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7399 if (kvm_cpu_has_pending_timer(vcpu))
7400 kvm_inject_pending_timer_irqs(vcpu);
7401
7402 if (dm_request_for_irq_injection(vcpu) &&
7403 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7404 r = 0;
7405 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7406 ++vcpu->stat.request_irq_exits;
7407 break;
7408 }
7409
7410 kvm_check_async_pf_completion(vcpu);
7411
7412 if (signal_pending(current)) {
7413 r = -EINTR;
7414 vcpu->run->exit_reason = KVM_EXIT_INTR;
7415 ++vcpu->stat.signal_exits;
7416 break;
7417 }
7418 if (need_resched()) {
7419 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7420 cond_resched();
7421 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7422 }
7423 }
7424
7425 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7426
7427 return r;
7428 }
7429
7430 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7431 {
7432 int r;
7433 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7434 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7435 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7436 if (r != EMULATE_DONE)
7437 return 0;
7438 return 1;
7439 }
7440
7441 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7442 {
7443 BUG_ON(!vcpu->arch.pio.count);
7444
7445 return complete_emulated_io(vcpu);
7446 }
7447
7448 /*
7449 * Implements the following, as a state machine:
7450 *
7451 * read:
7452 * for each fragment
7453 * for each mmio piece in the fragment
7454 * write gpa, len
7455 * exit
7456 * copy data
7457 * execute insn
7458 *
7459 * write:
7460 * for each fragment
7461 * for each mmio piece in the fragment
7462 * write gpa, len
7463 * copy data
7464 * exit
7465 */
7466 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7467 {
7468 struct kvm_run *run = vcpu->run;
7469 struct kvm_mmio_fragment *frag;
7470 unsigned len;
7471
7472 BUG_ON(!vcpu->mmio_needed);
7473
7474 /* Complete previous fragment */
7475 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7476 len = min(8u, frag->len);
7477 if (!vcpu->mmio_is_write)
7478 memcpy(frag->data, run->mmio.data, len);
7479
7480 if (frag->len <= 8) {
7481 /* Switch to the next fragment. */
7482 frag++;
7483 vcpu->mmio_cur_fragment++;
7484 } else {
7485 /* Go forward to the next mmio piece. */
7486 frag->data += len;
7487 frag->gpa += len;
7488 frag->len -= len;
7489 }
7490
7491 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7492 vcpu->mmio_needed = 0;
7493
7494 /* FIXME: return into emulator if single-stepping. */
7495 if (vcpu->mmio_is_write)
7496 return 1;
7497 vcpu->mmio_read_completed = 1;
7498 return complete_emulated_io(vcpu);
7499 }
7500
7501 run->exit_reason = KVM_EXIT_MMIO;
7502 run->mmio.phys_addr = frag->gpa;
7503 if (vcpu->mmio_is_write)
7504 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7505 run->mmio.len = min(8u, frag->len);
7506 run->mmio.is_write = vcpu->mmio_is_write;
7507 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7508 return 0;
7509 }
7510
7511
7512 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7513 {
7514 int r;
7515
7516 kvm_sigset_activate(vcpu);
7517
7518 kvm_load_guest_fpu(vcpu);
7519
7520 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7521 if (kvm_run->immediate_exit) {
7522 r = -EINTR;
7523 goto out;
7524 }
7525 kvm_vcpu_block(vcpu);
7526 kvm_apic_accept_events(vcpu);
7527 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7528 r = -EAGAIN;
7529 if (signal_pending(current)) {
7530 r = -EINTR;
7531 vcpu->run->exit_reason = KVM_EXIT_INTR;
7532 ++vcpu->stat.signal_exits;
7533 }
7534 goto out;
7535 }
7536
7537 /* re-sync apic's tpr */
7538 if (!lapic_in_kernel(vcpu)) {
7539 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7540 r = -EINVAL;
7541 goto out;
7542 }
7543 }
7544
7545 if (unlikely(vcpu->arch.complete_userspace_io)) {
7546 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7547 vcpu->arch.complete_userspace_io = NULL;
7548 r = cui(vcpu);
7549 if (r <= 0)
7550 goto out;
7551 } else
7552 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7553
7554 if (kvm_run->immediate_exit)
7555 r = -EINTR;
7556 else
7557 r = vcpu_run(vcpu);
7558
7559 out:
7560 kvm_put_guest_fpu(vcpu);
7561 post_kvm_run_save(vcpu);
7562 kvm_sigset_deactivate(vcpu);
7563
7564 return r;
7565 }
7566
7567 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7568 {
7569 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7570 /*
7571 * We are here if userspace calls get_regs() in the middle of
7572 * instruction emulation. Registers state needs to be copied
7573 * back from emulation context to vcpu. Userspace shouldn't do
7574 * that usually, but some bad designed PV devices (vmware
7575 * backdoor interface) need this to work
7576 */
7577 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7578 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7579 }
7580 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7581 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7582 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7583 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7584 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7585 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7586 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7587 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7588 #ifdef CONFIG_X86_64
7589 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7590 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7591 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7592 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7593 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7594 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7595 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7596 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7597 #endif
7598
7599 regs->rip = kvm_rip_read(vcpu);
7600 regs->rflags = kvm_get_rflags(vcpu);
7601
7602 return 0;
7603 }
7604
7605 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7606 {
7607 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7608 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7609
7610 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7611 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7612 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7613 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7614 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7615 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7616 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7617 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7618 #ifdef CONFIG_X86_64
7619 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7620 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7621 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7622 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7623 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7624 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7625 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7626 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7627 #endif
7628
7629 kvm_rip_write(vcpu, regs->rip);
7630 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7631
7632 vcpu->arch.exception.pending = false;
7633
7634 kvm_make_request(KVM_REQ_EVENT, vcpu);
7635
7636 return 0;
7637 }
7638
7639 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7640 {
7641 struct kvm_segment cs;
7642
7643 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7644 *db = cs.db;
7645 *l = cs.l;
7646 }
7647 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7648
7649 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7650 struct kvm_sregs *sregs)
7651 {
7652 struct desc_ptr dt;
7653
7654 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7655 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7656 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7657 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7658 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7659 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7660
7661 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7662 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7663
7664 kvm_x86_ops->get_idt(vcpu, &dt);
7665 sregs->idt.limit = dt.size;
7666 sregs->idt.base = dt.address;
7667 kvm_x86_ops->get_gdt(vcpu, &dt);
7668 sregs->gdt.limit = dt.size;
7669 sregs->gdt.base = dt.address;
7670
7671 sregs->cr0 = kvm_read_cr0(vcpu);
7672 sregs->cr2 = vcpu->arch.cr2;
7673 sregs->cr3 = kvm_read_cr3(vcpu);
7674 sregs->cr4 = kvm_read_cr4(vcpu);
7675 sregs->cr8 = kvm_get_cr8(vcpu);
7676 sregs->efer = vcpu->arch.efer;
7677 sregs->apic_base = kvm_get_apic_base(vcpu);
7678
7679 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7680
7681 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7682 set_bit(vcpu->arch.interrupt.nr,
7683 (unsigned long *)sregs->interrupt_bitmap);
7684
7685 return 0;
7686 }
7687
7688 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7689 struct kvm_mp_state *mp_state)
7690 {
7691 kvm_apic_accept_events(vcpu);
7692 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7693 vcpu->arch.pv.pv_unhalted)
7694 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7695 else
7696 mp_state->mp_state = vcpu->arch.mp_state;
7697
7698 return 0;
7699 }
7700
7701 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7702 struct kvm_mp_state *mp_state)
7703 {
7704 if (!lapic_in_kernel(vcpu) &&
7705 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7706 return -EINVAL;
7707
7708 /* INITs are latched while in SMM */
7709 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7710 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7711 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7712 return -EINVAL;
7713
7714 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7715 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7716 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7717 } else
7718 vcpu->arch.mp_state = mp_state->mp_state;
7719 kvm_make_request(KVM_REQ_EVENT, vcpu);
7720 return 0;
7721 }
7722
7723 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7724 int reason, bool has_error_code, u32 error_code)
7725 {
7726 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7727 int ret;
7728
7729 init_emulate_ctxt(vcpu);
7730
7731 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7732 has_error_code, error_code);
7733
7734 if (ret)
7735 return EMULATE_FAIL;
7736
7737 kvm_rip_write(vcpu, ctxt->eip);
7738 kvm_set_rflags(vcpu, ctxt->eflags);
7739 kvm_make_request(KVM_REQ_EVENT, vcpu);
7740 return EMULATE_DONE;
7741 }
7742 EXPORT_SYMBOL_GPL(kvm_task_switch);
7743
7744 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7745 {
7746 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7747 /*
7748 * When EFER.LME and CR0.PG are set, the processor is in
7749 * 64-bit mode (though maybe in a 32-bit code segment).
7750 * CR4.PAE and EFER.LMA must be set.
7751 */
7752 if (!(sregs->cr4 & X86_CR4_PAE)
7753 || !(sregs->efer & EFER_LMA))
7754 return -EINVAL;
7755 } else {
7756 /*
7757 * Not in 64-bit mode: EFER.LMA is clear and the code
7758 * segment cannot be 64-bit.
7759 */
7760 if (sregs->efer & EFER_LMA || sregs->cs.l)
7761 return -EINVAL;
7762 }
7763
7764 return 0;
7765 }
7766
7767 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7768 struct kvm_sregs *sregs)
7769 {
7770 struct msr_data apic_base_msr;
7771 int mmu_reset_needed = 0;
7772 int cpuid_update_needed = 0;
7773 int pending_vec, max_bits, idx;
7774 struct desc_ptr dt;
7775
7776 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7777 (sregs->cr4 & X86_CR4_OSXSAVE))
7778 return -EINVAL;
7779
7780 if (kvm_valid_sregs(vcpu, sregs))
7781 return -EINVAL;
7782
7783 apic_base_msr.data = sregs->apic_base;
7784 apic_base_msr.host_initiated = true;
7785 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7786 return -EINVAL;
7787
7788 dt.size = sregs->idt.limit;
7789 dt.address = sregs->idt.base;
7790 kvm_x86_ops->set_idt(vcpu, &dt);
7791 dt.size = sregs->gdt.limit;
7792 dt.address = sregs->gdt.base;
7793 kvm_x86_ops->set_gdt(vcpu, &dt);
7794
7795 vcpu->arch.cr2 = sregs->cr2;
7796 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7797 vcpu->arch.cr3 = sregs->cr3;
7798 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7799
7800 kvm_set_cr8(vcpu, sregs->cr8);
7801
7802 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7803 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7804
7805 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7806 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7807 vcpu->arch.cr0 = sregs->cr0;
7808
7809 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7810 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7811 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7812 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7813 if (cpuid_update_needed)
7814 kvm_update_cpuid(vcpu);
7815
7816 idx = srcu_read_lock(&vcpu->kvm->srcu);
7817 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7818 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7819 mmu_reset_needed = 1;
7820 }
7821 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7822
7823 if (mmu_reset_needed)
7824 kvm_mmu_reset_context(vcpu);
7825
7826 max_bits = KVM_NR_INTERRUPTS;
7827 pending_vec = find_first_bit(
7828 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7829 if (pending_vec < max_bits) {
7830 kvm_queue_interrupt(vcpu, pending_vec, false);
7831 pr_debug("Set back pending irq %d\n", pending_vec);
7832 }
7833
7834 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7835 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7836 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7837 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7838 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7839 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7840
7841 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7842 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7843
7844 update_cr8_intercept(vcpu);
7845
7846 /* Older userspace won't unhalt the vcpu on reset. */
7847 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7848 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7849 !is_protmode(vcpu))
7850 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7851
7852 kvm_make_request(KVM_REQ_EVENT, vcpu);
7853
7854 return 0;
7855 }
7856
7857 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7858 struct kvm_guest_debug *dbg)
7859 {
7860 unsigned long rflags;
7861 int i, r;
7862
7863 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7864 r = -EBUSY;
7865 if (vcpu->arch.exception.pending)
7866 goto out;
7867 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7868 kvm_queue_exception(vcpu, DB_VECTOR);
7869 else
7870 kvm_queue_exception(vcpu, BP_VECTOR);
7871 }
7872
7873 /*
7874 * Read rflags as long as potentially injected trace flags are still
7875 * filtered out.
7876 */
7877 rflags = kvm_get_rflags(vcpu);
7878
7879 vcpu->guest_debug = dbg->control;
7880 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7881 vcpu->guest_debug = 0;
7882
7883 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7884 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7885 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7886 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7887 } else {
7888 for (i = 0; i < KVM_NR_DB_REGS; i++)
7889 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7890 }
7891 kvm_update_dr7(vcpu);
7892
7893 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7894 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7895 get_segment_base(vcpu, VCPU_SREG_CS);
7896
7897 /*
7898 * Trigger an rflags update that will inject or remove the trace
7899 * flags.
7900 */
7901 kvm_set_rflags(vcpu, rflags);
7902
7903 kvm_x86_ops->update_bp_intercept(vcpu);
7904
7905 r = 0;
7906
7907 out:
7908
7909 return r;
7910 }
7911
7912 /*
7913 * Translate a guest virtual address to a guest physical address.
7914 */
7915 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7916 struct kvm_translation *tr)
7917 {
7918 unsigned long vaddr = tr->linear_address;
7919 gpa_t gpa;
7920 int idx;
7921
7922 idx = srcu_read_lock(&vcpu->kvm->srcu);
7923 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7924 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7925 tr->physical_address = gpa;
7926 tr->valid = gpa != UNMAPPED_GVA;
7927 tr->writeable = 1;
7928 tr->usermode = 0;
7929
7930 return 0;
7931 }
7932
7933 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7934 {
7935 struct fxregs_state *fxsave =
7936 &vcpu->arch.guest_fpu.state.fxsave;
7937
7938 memcpy(fpu->fpr, fxsave->st_space, 128);
7939 fpu->fcw = fxsave->cwd;
7940 fpu->fsw = fxsave->swd;
7941 fpu->ftwx = fxsave->twd;
7942 fpu->last_opcode = fxsave->fop;
7943 fpu->last_ip = fxsave->rip;
7944 fpu->last_dp = fxsave->rdp;
7945 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7946
7947 return 0;
7948 }
7949
7950 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7951 {
7952 struct fxregs_state *fxsave =
7953 &vcpu->arch.guest_fpu.state.fxsave;
7954
7955 memcpy(fxsave->st_space, fpu->fpr, 128);
7956 fxsave->cwd = fpu->fcw;
7957 fxsave->swd = fpu->fsw;
7958 fxsave->twd = fpu->ftwx;
7959 fxsave->fop = fpu->last_opcode;
7960 fxsave->rip = fpu->last_ip;
7961 fxsave->rdp = fpu->last_dp;
7962 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7963
7964 return 0;
7965 }
7966
7967 static void fx_init(struct kvm_vcpu *vcpu)
7968 {
7969 fpstate_init(&vcpu->arch.guest_fpu.state);
7970 if (boot_cpu_has(X86_FEATURE_XSAVES))
7971 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7972 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7973
7974 /*
7975 * Ensure guest xcr0 is valid for loading
7976 */
7977 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7978
7979 vcpu->arch.cr0 |= X86_CR0_ET;
7980 }
7981
7982 /* Swap (qemu) user FPU context for the guest FPU context. */
7983 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7984 {
7985 preempt_disable();
7986 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7987 /* PKRU is separately restored in kvm_x86_ops->run. */
7988 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7989 ~XFEATURE_MASK_PKRU);
7990 preempt_enable();
7991 trace_kvm_fpu(1);
7992 }
7993
7994 /* When vcpu_run ends, restore user space FPU context. */
7995 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7996 {
7997 preempt_disable();
7998 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7999 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8000 preempt_enable();
8001 ++vcpu->stat.fpu_reload;
8002 trace_kvm_fpu(0);
8003 }
8004
8005 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8006 {
8007 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8008
8009 kvmclock_reset(vcpu);
8010
8011 kvm_x86_ops->vcpu_free(vcpu);
8012 free_cpumask_var(wbinvd_dirty_mask);
8013 }
8014
8015 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8016 unsigned int id)
8017 {
8018 struct kvm_vcpu *vcpu;
8019
8020 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8021 printk_once(KERN_WARNING
8022 "kvm: SMP vm created on host with unstable TSC; "
8023 "guest TSC will not be reliable\n");
8024
8025 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8026
8027 return vcpu;
8028 }
8029
8030 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8031 {
8032 int r;
8033
8034 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8035 kvm_vcpu_mtrr_init(vcpu);
8036 r = vcpu_load(vcpu);
8037 if (r)
8038 return r;
8039 kvm_vcpu_reset(vcpu, false);
8040 kvm_mmu_setup(vcpu);
8041 vcpu_put(vcpu);
8042 return r;
8043 }
8044
8045 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8046 {
8047 struct msr_data msr;
8048 struct kvm *kvm = vcpu->kvm;
8049
8050 kvm_hv_vcpu_postcreate(vcpu);
8051
8052 if (vcpu_load(vcpu))
8053 return;
8054 msr.data = 0x0;
8055 msr.index = MSR_IA32_TSC;
8056 msr.host_initiated = true;
8057 kvm_write_tsc(vcpu, &msr);
8058 vcpu_put(vcpu);
8059
8060 if (!kvmclock_periodic_sync)
8061 return;
8062
8063 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8064 KVMCLOCK_SYNC_PERIOD);
8065 }
8066
8067 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8068 {
8069 int r;
8070 vcpu->arch.apf.msr_val = 0;
8071
8072 r = vcpu_load(vcpu);
8073 BUG_ON(r);
8074 kvm_mmu_unload(vcpu);
8075 vcpu_put(vcpu);
8076
8077 kvm_x86_ops->vcpu_free(vcpu);
8078 }
8079
8080 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8081 {
8082 kvm_lapic_reset(vcpu, init_event);
8083
8084 vcpu->arch.hflags = 0;
8085
8086 vcpu->arch.smi_pending = 0;
8087 atomic_set(&vcpu->arch.nmi_queued, 0);
8088 vcpu->arch.nmi_pending = 0;
8089 vcpu->arch.nmi_injected = false;
8090 kvm_clear_interrupt_queue(vcpu);
8091 kvm_clear_exception_queue(vcpu);
8092 vcpu->arch.exception.pending = false;
8093
8094 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8095 kvm_update_dr0123(vcpu);
8096 vcpu->arch.dr6 = DR6_INIT;
8097 kvm_update_dr6(vcpu);
8098 vcpu->arch.dr7 = DR7_FIXED_1;
8099 kvm_update_dr7(vcpu);
8100
8101 vcpu->arch.cr2 = 0;
8102
8103 kvm_make_request(KVM_REQ_EVENT, vcpu);
8104 vcpu->arch.apf.msr_val = 0;
8105 vcpu->arch.st.msr_val = 0;
8106
8107 kvmclock_reset(vcpu);
8108
8109 kvm_clear_async_pf_completion_queue(vcpu);
8110 kvm_async_pf_hash_reset(vcpu);
8111 vcpu->arch.apf.halted = false;
8112
8113 if (kvm_mpx_supported()) {
8114 void *mpx_state_buffer;
8115
8116 /*
8117 * To avoid have the INIT path from kvm_apic_has_events() that be
8118 * called with loaded FPU and does not let userspace fix the state.
8119 */
8120 if (init_event)
8121 kvm_put_guest_fpu(vcpu);
8122 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8123 XFEATURE_MASK_BNDREGS);
8124 if (mpx_state_buffer)
8125 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8126 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8127 XFEATURE_MASK_BNDCSR);
8128 if (mpx_state_buffer)
8129 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8130 if (init_event)
8131 kvm_load_guest_fpu(vcpu);
8132 }
8133
8134 if (!init_event) {
8135 kvm_pmu_reset(vcpu);
8136 vcpu->arch.smbase = 0x30000;
8137
8138 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8139 vcpu->arch.msr_misc_features_enables = 0;
8140
8141 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8142 }
8143
8144 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8145 vcpu->arch.regs_avail = ~0;
8146 vcpu->arch.regs_dirty = ~0;
8147
8148 vcpu->arch.ia32_xss = 0;
8149
8150 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8151 }
8152
8153 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8154 {
8155 struct kvm_segment cs;
8156
8157 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8158 cs.selector = vector << 8;
8159 cs.base = vector << 12;
8160 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8161 kvm_rip_write(vcpu, 0);
8162 }
8163
8164 int kvm_arch_hardware_enable(void)
8165 {
8166 struct kvm *kvm;
8167 struct kvm_vcpu *vcpu;
8168 int i;
8169 int ret;
8170 u64 local_tsc;
8171 u64 max_tsc = 0;
8172 bool stable, backwards_tsc = false;
8173
8174 kvm_shared_msr_cpu_online();
8175 ret = kvm_x86_ops->hardware_enable();
8176 if (ret != 0)
8177 return ret;
8178
8179 local_tsc = rdtsc();
8180 stable = !check_tsc_unstable();
8181 list_for_each_entry(kvm, &vm_list, vm_list) {
8182 kvm_for_each_vcpu(i, vcpu, kvm) {
8183 if (!stable && vcpu->cpu == smp_processor_id())
8184 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8185 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8186 backwards_tsc = true;
8187 if (vcpu->arch.last_host_tsc > max_tsc)
8188 max_tsc = vcpu->arch.last_host_tsc;
8189 }
8190 }
8191 }
8192
8193 /*
8194 * Sometimes, even reliable TSCs go backwards. This happens on
8195 * platforms that reset TSC during suspend or hibernate actions, but
8196 * maintain synchronization. We must compensate. Fortunately, we can
8197 * detect that condition here, which happens early in CPU bringup,
8198 * before any KVM threads can be running. Unfortunately, we can't
8199 * bring the TSCs fully up to date with real time, as we aren't yet far
8200 * enough into CPU bringup that we know how much real time has actually
8201 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8202 * variables that haven't been updated yet.
8203 *
8204 * So we simply find the maximum observed TSC above, then record the
8205 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8206 * the adjustment will be applied. Note that we accumulate
8207 * adjustments, in case multiple suspend cycles happen before some VCPU
8208 * gets a chance to run again. In the event that no KVM threads get a
8209 * chance to run, we will miss the entire elapsed period, as we'll have
8210 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8211 * loose cycle time. This isn't too big a deal, since the loss will be
8212 * uniform across all VCPUs (not to mention the scenario is extremely
8213 * unlikely). It is possible that a second hibernate recovery happens
8214 * much faster than a first, causing the observed TSC here to be
8215 * smaller; this would require additional padding adjustment, which is
8216 * why we set last_host_tsc to the local tsc observed here.
8217 *
8218 * N.B. - this code below runs only on platforms with reliable TSC,
8219 * as that is the only way backwards_tsc is set above. Also note
8220 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8221 * have the same delta_cyc adjustment applied if backwards_tsc
8222 * is detected. Note further, this adjustment is only done once,
8223 * as we reset last_host_tsc on all VCPUs to stop this from being
8224 * called multiple times (one for each physical CPU bringup).
8225 *
8226 * Platforms with unreliable TSCs don't have to deal with this, they
8227 * will be compensated by the logic in vcpu_load, which sets the TSC to
8228 * catchup mode. This will catchup all VCPUs to real time, but cannot
8229 * guarantee that they stay in perfect synchronization.
8230 */
8231 if (backwards_tsc) {
8232 u64 delta_cyc = max_tsc - local_tsc;
8233 list_for_each_entry(kvm, &vm_list, vm_list) {
8234 kvm->arch.backwards_tsc_observed = true;
8235 kvm_for_each_vcpu(i, vcpu, kvm) {
8236 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8237 vcpu->arch.last_host_tsc = local_tsc;
8238 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8239 }
8240
8241 /*
8242 * We have to disable TSC offset matching.. if you were
8243 * booting a VM while issuing an S4 host suspend....
8244 * you may have some problem. Solving this issue is
8245 * left as an exercise to the reader.
8246 */
8247 kvm->arch.last_tsc_nsec = 0;
8248 kvm->arch.last_tsc_write = 0;
8249 }
8250
8251 }
8252 return 0;
8253 }
8254
8255 void kvm_arch_hardware_disable(void)
8256 {
8257 kvm_x86_ops->hardware_disable();
8258 drop_user_return_notifiers();
8259 }
8260
8261 int kvm_arch_hardware_setup(void)
8262 {
8263 int r;
8264
8265 r = kvm_x86_ops->hardware_setup();
8266 if (r != 0)
8267 return r;
8268
8269 if (kvm_has_tsc_control) {
8270 /*
8271 * Make sure the user can only configure tsc_khz values that
8272 * fit into a signed integer.
8273 * A min value is not calculated needed because it will always
8274 * be 1 on all machines.
8275 */
8276 u64 max = min(0x7fffffffULL,
8277 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8278 kvm_max_guest_tsc_khz = max;
8279
8280 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8281 }
8282
8283 kvm_init_msr_list();
8284 return 0;
8285 }
8286
8287 void kvm_arch_hardware_unsetup(void)
8288 {
8289 kvm_x86_ops->hardware_unsetup();
8290 }
8291
8292 void kvm_arch_check_processor_compat(void *rtn)
8293 {
8294 kvm_x86_ops->check_processor_compatibility(rtn);
8295 }
8296
8297 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8298 {
8299 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8300 }
8301 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8302
8303 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8304 {
8305 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8306 }
8307
8308 struct static_key kvm_no_apic_vcpu __read_mostly;
8309 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8310
8311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8312 {
8313 struct page *page;
8314 int r;
8315
8316 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8317 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8318 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8319 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8320 else
8321 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8322
8323 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8324 if (!page) {
8325 r = -ENOMEM;
8326 goto fail;
8327 }
8328 vcpu->arch.pio_data = page_address(page);
8329
8330 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8331
8332 r = kvm_mmu_create(vcpu);
8333 if (r < 0)
8334 goto fail_free_pio_data;
8335
8336 if (irqchip_in_kernel(vcpu->kvm)) {
8337 r = kvm_create_lapic(vcpu);
8338 if (r < 0)
8339 goto fail_mmu_destroy;
8340 } else
8341 static_key_slow_inc(&kvm_no_apic_vcpu);
8342
8343 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8344 GFP_KERNEL);
8345 if (!vcpu->arch.mce_banks) {
8346 r = -ENOMEM;
8347 goto fail_free_lapic;
8348 }
8349 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8350
8351 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8352 r = -ENOMEM;
8353 goto fail_free_mce_banks;
8354 }
8355
8356 fx_init(vcpu);
8357
8358 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8359
8360 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8361
8362 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8363
8364 kvm_async_pf_hash_reset(vcpu);
8365 kvm_pmu_init(vcpu);
8366
8367 vcpu->arch.pending_external_vector = -1;
8368 vcpu->arch.preempted_in_kernel = false;
8369
8370 kvm_hv_vcpu_init(vcpu);
8371
8372 return 0;
8373
8374 fail_free_mce_banks:
8375 kfree(vcpu->arch.mce_banks);
8376 fail_free_lapic:
8377 kvm_free_lapic(vcpu);
8378 fail_mmu_destroy:
8379 kvm_mmu_destroy(vcpu);
8380 fail_free_pio_data:
8381 free_page((unsigned long)vcpu->arch.pio_data);
8382 fail:
8383 return r;
8384 }
8385
8386 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8387 {
8388 int idx;
8389
8390 kvm_hv_vcpu_uninit(vcpu);
8391 kvm_pmu_destroy(vcpu);
8392 kfree(vcpu->arch.mce_banks);
8393 kvm_free_lapic(vcpu);
8394 idx = srcu_read_lock(&vcpu->kvm->srcu);
8395 kvm_mmu_destroy(vcpu);
8396 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8397 free_page((unsigned long)vcpu->arch.pio_data);
8398 if (!lapic_in_kernel(vcpu))
8399 static_key_slow_dec(&kvm_no_apic_vcpu);
8400 }
8401
8402 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8403 {
8404 vcpu->arch.l1tf_flush_l1d = true;
8405 kvm_x86_ops->sched_in(vcpu, cpu);
8406 }
8407
8408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8409 {
8410 if (type)
8411 return -EINVAL;
8412
8413 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8414 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8415 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8416 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8417 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8418
8419 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8420 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8421 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8422 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8423 &kvm->arch.irq_sources_bitmap);
8424
8425 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8426 mutex_init(&kvm->arch.apic_map_lock);
8427 mutex_init(&kvm->arch.hyperv.hv_lock);
8428 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8429
8430 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8431 pvclock_update_vm_gtod_copy(kvm);
8432
8433 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8434 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8435
8436 kvm_page_track_init(kvm);
8437 kvm_mmu_init_vm(kvm);
8438
8439 if (kvm_x86_ops->vm_init)
8440 return kvm_x86_ops->vm_init(kvm);
8441
8442 return 0;
8443 }
8444
8445 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8446 {
8447 int r;
8448 r = vcpu_load(vcpu);
8449 BUG_ON(r);
8450 kvm_mmu_unload(vcpu);
8451 vcpu_put(vcpu);
8452 }
8453
8454 static void kvm_free_vcpus(struct kvm *kvm)
8455 {
8456 unsigned int i;
8457 struct kvm_vcpu *vcpu;
8458
8459 /*
8460 * Unpin any mmu pages first.
8461 */
8462 kvm_for_each_vcpu(i, vcpu, kvm) {
8463 kvm_clear_async_pf_completion_queue(vcpu);
8464 kvm_unload_vcpu_mmu(vcpu);
8465 }
8466 kvm_for_each_vcpu(i, vcpu, kvm)
8467 kvm_arch_vcpu_free(vcpu);
8468
8469 mutex_lock(&kvm->lock);
8470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8471 kvm->vcpus[i] = NULL;
8472
8473 atomic_set(&kvm->online_vcpus, 0);
8474 mutex_unlock(&kvm->lock);
8475 }
8476
8477 void kvm_arch_sync_events(struct kvm *kvm)
8478 {
8479 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8480 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8481 kvm_free_pit(kvm);
8482 }
8483
8484 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8485 {
8486 int i, r;
8487 unsigned long hva;
8488 struct kvm_memslots *slots = kvm_memslots(kvm);
8489 struct kvm_memory_slot *slot, old;
8490
8491 /* Called with kvm->slots_lock held. */
8492 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8493 return -EINVAL;
8494
8495 slot = id_to_memslot(slots, id);
8496 if (size) {
8497 if (slot->npages)
8498 return -EEXIST;
8499
8500 /*
8501 * MAP_SHARED to prevent internal slot pages from being moved
8502 * by fork()/COW.
8503 */
8504 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8505 MAP_SHARED | MAP_ANONYMOUS, 0);
8506 if (IS_ERR((void *)hva))
8507 return PTR_ERR((void *)hva);
8508 } else {
8509 if (!slot->npages)
8510 return 0;
8511
8512 hva = 0;
8513 }
8514
8515 old = *slot;
8516 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8517 struct kvm_userspace_memory_region m;
8518
8519 m.slot = id | (i << 16);
8520 m.flags = 0;
8521 m.guest_phys_addr = gpa;
8522 m.userspace_addr = hva;
8523 m.memory_size = size;
8524 r = __kvm_set_memory_region(kvm, &m);
8525 if (r < 0)
8526 return r;
8527 }
8528
8529 if (!size)
8530 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8531
8532 return 0;
8533 }
8534 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8535
8536 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8537 {
8538 int r;
8539
8540 mutex_lock(&kvm->slots_lock);
8541 r = __x86_set_memory_region(kvm, id, gpa, size);
8542 mutex_unlock(&kvm->slots_lock);
8543
8544 return r;
8545 }
8546 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8547
8548 void kvm_arch_destroy_vm(struct kvm *kvm)
8549 {
8550 if (current->mm == kvm->mm) {
8551 /*
8552 * Free memory regions allocated on behalf of userspace,
8553 * unless the the memory map has changed due to process exit
8554 * or fd copying.
8555 */
8556 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8557 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8558 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8559 }
8560 if (kvm_x86_ops->vm_destroy)
8561 kvm_x86_ops->vm_destroy(kvm);
8562 kvm_pic_destroy(kvm);
8563 kvm_ioapic_destroy(kvm);
8564 kvm_free_vcpus(kvm);
8565 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8566 kvm_mmu_uninit_vm(kvm);
8567 kvm_page_track_cleanup(kvm);
8568 }
8569
8570 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8571 struct kvm_memory_slot *dont)
8572 {
8573 int i;
8574
8575 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8576 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8577 kvfree(free->arch.rmap[i]);
8578 free->arch.rmap[i] = NULL;
8579 }
8580 if (i == 0)
8581 continue;
8582
8583 if (!dont || free->arch.lpage_info[i - 1] !=
8584 dont->arch.lpage_info[i - 1]) {
8585 kvfree(free->arch.lpage_info[i - 1]);
8586 free->arch.lpage_info[i - 1] = NULL;
8587 }
8588 }
8589
8590 kvm_page_track_free_memslot(free, dont);
8591 }
8592
8593 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8594 unsigned long npages)
8595 {
8596 int i;
8597
8598 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8599 struct kvm_lpage_info *linfo;
8600 unsigned long ugfn;
8601 int lpages;
8602 int level = i + 1;
8603
8604 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8605 slot->base_gfn, level) + 1;
8606
8607 slot->arch.rmap[i] =
8608 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8609 if (!slot->arch.rmap[i])
8610 goto out_free;
8611 if (i == 0)
8612 continue;
8613
8614 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8615 if (!linfo)
8616 goto out_free;
8617
8618 slot->arch.lpage_info[i - 1] = linfo;
8619
8620 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8621 linfo[0].disallow_lpage = 1;
8622 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8623 linfo[lpages - 1].disallow_lpage = 1;
8624 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8625 /*
8626 * If the gfn and userspace address are not aligned wrt each
8627 * other, or if explicitly asked to, disable large page
8628 * support for this slot
8629 */
8630 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8631 !kvm_largepages_enabled()) {
8632 unsigned long j;
8633
8634 for (j = 0; j < lpages; ++j)
8635 linfo[j].disallow_lpage = 1;
8636 }
8637 }
8638
8639 if (kvm_page_track_create_memslot(slot, npages))
8640 goto out_free;
8641
8642 return 0;
8643
8644 out_free:
8645 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8646 kvfree(slot->arch.rmap[i]);
8647 slot->arch.rmap[i] = NULL;
8648 if (i == 0)
8649 continue;
8650
8651 kvfree(slot->arch.lpage_info[i - 1]);
8652 slot->arch.lpage_info[i - 1] = NULL;
8653 }
8654 return -ENOMEM;
8655 }
8656
8657 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
8658 {
8659 /*
8660 * memslots->generation has been incremented.
8661 * mmio generation may have reached its maximum value.
8662 */
8663 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
8664 }
8665
8666 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8667 struct kvm_memory_slot *memslot,
8668 const struct kvm_userspace_memory_region *mem,
8669 enum kvm_mr_change change)
8670 {
8671 return 0;
8672 }
8673
8674 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8675 struct kvm_memory_slot *new)
8676 {
8677 /* Still write protect RO slot */
8678 if (new->flags & KVM_MEM_READONLY) {
8679 kvm_mmu_slot_remove_write_access(kvm, new);
8680 return;
8681 }
8682
8683 /*
8684 * Call kvm_x86_ops dirty logging hooks when they are valid.
8685 *
8686 * kvm_x86_ops->slot_disable_log_dirty is called when:
8687 *
8688 * - KVM_MR_CREATE with dirty logging is disabled
8689 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8690 *
8691 * The reason is, in case of PML, we need to set D-bit for any slots
8692 * with dirty logging disabled in order to eliminate unnecessary GPA
8693 * logging in PML buffer (and potential PML buffer full VMEXT). This
8694 * guarantees leaving PML enabled during guest's lifetime won't have
8695 * any additonal overhead from PML when guest is running with dirty
8696 * logging disabled for memory slots.
8697 *
8698 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8699 * to dirty logging mode.
8700 *
8701 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8702 *
8703 * In case of write protect:
8704 *
8705 * Write protect all pages for dirty logging.
8706 *
8707 * All the sptes including the large sptes which point to this
8708 * slot are set to readonly. We can not create any new large
8709 * spte on this slot until the end of the logging.
8710 *
8711 * See the comments in fast_page_fault().
8712 */
8713 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8714 if (kvm_x86_ops->slot_enable_log_dirty)
8715 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8716 else
8717 kvm_mmu_slot_remove_write_access(kvm, new);
8718 } else {
8719 if (kvm_x86_ops->slot_disable_log_dirty)
8720 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8721 }
8722 }
8723
8724 void kvm_arch_commit_memory_region(struct kvm *kvm,
8725 const struct kvm_userspace_memory_region *mem,
8726 const struct kvm_memory_slot *old,
8727 const struct kvm_memory_slot *new,
8728 enum kvm_mr_change change)
8729 {
8730 int nr_mmu_pages = 0;
8731
8732 if (!kvm->arch.n_requested_mmu_pages)
8733 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8734
8735 if (nr_mmu_pages)
8736 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8737
8738 /*
8739 * Dirty logging tracks sptes in 4k granularity, meaning that large
8740 * sptes have to be split. If live migration is successful, the guest
8741 * in the source machine will be destroyed and large sptes will be
8742 * created in the destination. However, if the guest continues to run
8743 * in the source machine (for example if live migration fails), small
8744 * sptes will remain around and cause bad performance.
8745 *
8746 * Scan sptes if dirty logging has been stopped, dropping those
8747 * which can be collapsed into a single large-page spte. Later
8748 * page faults will create the large-page sptes.
8749 */
8750 if ((change != KVM_MR_DELETE) &&
8751 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8752 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8753 kvm_mmu_zap_collapsible_sptes(kvm, new);
8754
8755 /*
8756 * Set up write protection and/or dirty logging for the new slot.
8757 *
8758 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8759 * been zapped so no dirty logging staff is needed for old slot. For
8760 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8761 * new and it's also covered when dealing with the new slot.
8762 *
8763 * FIXME: const-ify all uses of struct kvm_memory_slot.
8764 */
8765 if (change != KVM_MR_DELETE)
8766 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8767 }
8768
8769 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8770 {
8771 kvm_mmu_invalidate_zap_all_pages(kvm);
8772 }
8773
8774 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8775 struct kvm_memory_slot *slot)
8776 {
8777 kvm_page_track_flush_slot(kvm, slot);
8778 }
8779
8780 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8781 {
8782 if (!list_empty_careful(&vcpu->async_pf.done))
8783 return true;
8784
8785 if (kvm_apic_has_events(vcpu))
8786 return true;
8787
8788 if (vcpu->arch.pv.pv_unhalted)
8789 return true;
8790
8791 if (vcpu->arch.exception.pending)
8792 return true;
8793
8794 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8795 (vcpu->arch.nmi_pending &&
8796 kvm_x86_ops->nmi_allowed(vcpu)))
8797 return true;
8798
8799 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8800 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8801 return true;
8802
8803 if (kvm_arch_interrupt_allowed(vcpu) &&
8804 kvm_cpu_has_interrupt(vcpu))
8805 return true;
8806
8807 if (kvm_hv_has_stimer_pending(vcpu))
8808 return true;
8809
8810 return false;
8811 }
8812
8813 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8814 {
8815 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8816 }
8817
8818 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
8819 {
8820 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
8821 return true;
8822
8823 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8824 kvm_test_request(KVM_REQ_SMI, vcpu) ||
8825 kvm_test_request(KVM_REQ_EVENT, vcpu))
8826 return true;
8827
8828 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
8829 return true;
8830
8831 return false;
8832 }
8833
8834 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8835 {
8836 return vcpu->arch.preempted_in_kernel;
8837 }
8838
8839 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8840 {
8841 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8842 }
8843
8844 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8845 {
8846 return kvm_x86_ops->interrupt_allowed(vcpu);
8847 }
8848
8849 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8850 {
8851 if (is_64_bit_mode(vcpu))
8852 return kvm_rip_read(vcpu);
8853 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8854 kvm_rip_read(vcpu));
8855 }
8856 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8857
8858 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8859 {
8860 return kvm_get_linear_rip(vcpu) == linear_rip;
8861 }
8862 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8863
8864 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8865 {
8866 unsigned long rflags;
8867
8868 rflags = kvm_x86_ops->get_rflags(vcpu);
8869 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8870 rflags &= ~X86_EFLAGS_TF;
8871 return rflags;
8872 }
8873 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8874
8875 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8876 {
8877 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8878 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8879 rflags |= X86_EFLAGS_TF;
8880 kvm_x86_ops->set_rflags(vcpu, rflags);
8881 }
8882
8883 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8884 {
8885 __kvm_set_rflags(vcpu, rflags);
8886 kvm_make_request(KVM_REQ_EVENT, vcpu);
8887 }
8888 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8889
8890 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8891 {
8892 int r;
8893
8894 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8895 work->wakeup_all)
8896 return;
8897
8898 r = kvm_mmu_reload(vcpu);
8899 if (unlikely(r))
8900 return;
8901
8902 if (!vcpu->arch.mmu.direct_map &&
8903 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8904 return;
8905
8906 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8907 }
8908
8909 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8910 {
8911 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8912 }
8913
8914 static inline u32 kvm_async_pf_next_probe(u32 key)
8915 {
8916 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8917 }
8918
8919 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8920 {
8921 u32 key = kvm_async_pf_hash_fn(gfn);
8922
8923 while (vcpu->arch.apf.gfns[key] != ~0)
8924 key = kvm_async_pf_next_probe(key);
8925
8926 vcpu->arch.apf.gfns[key] = gfn;
8927 }
8928
8929 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8930 {
8931 int i;
8932 u32 key = kvm_async_pf_hash_fn(gfn);
8933
8934 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8935 (vcpu->arch.apf.gfns[key] != gfn &&
8936 vcpu->arch.apf.gfns[key] != ~0); i++)
8937 key = kvm_async_pf_next_probe(key);
8938
8939 return key;
8940 }
8941
8942 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8943 {
8944 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8945 }
8946
8947 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8948 {
8949 u32 i, j, k;
8950
8951 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8952 while (true) {
8953 vcpu->arch.apf.gfns[i] = ~0;
8954 do {
8955 j = kvm_async_pf_next_probe(j);
8956 if (vcpu->arch.apf.gfns[j] == ~0)
8957 return;
8958 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8959 /*
8960 * k lies cyclically in ]i,j]
8961 * | i.k.j |
8962 * |....j i.k.| or |.k..j i...|
8963 */
8964 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8965 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8966 i = j;
8967 }
8968 }
8969
8970 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8971 {
8972
8973 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8974 sizeof(val));
8975 }
8976
8977 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8978 {
8979
8980 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8981 sizeof(u32));
8982 }
8983
8984 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8985 struct kvm_async_pf *work)
8986 {
8987 struct x86_exception fault;
8988
8989 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8990 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8991
8992 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8993 (vcpu->arch.apf.send_user_only &&
8994 kvm_x86_ops->get_cpl(vcpu) == 0))
8995 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8996 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8997 fault.vector = PF_VECTOR;
8998 fault.error_code_valid = true;
8999 fault.error_code = 0;
9000 fault.nested_page_fault = false;
9001 fault.address = work->arch.token;
9002 fault.async_page_fault = true;
9003 kvm_inject_page_fault(vcpu, &fault);
9004 }
9005 }
9006
9007 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9008 struct kvm_async_pf *work)
9009 {
9010 struct x86_exception fault;
9011 u32 val;
9012
9013 if (work->wakeup_all)
9014 work->arch.token = ~0; /* broadcast wakeup */
9015 else
9016 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9017 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9018
9019 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9020 !apf_get_user(vcpu, &val)) {
9021 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9022 vcpu->arch.exception.pending &&
9023 vcpu->arch.exception.nr == PF_VECTOR &&
9024 !apf_put_user(vcpu, 0)) {
9025 vcpu->arch.exception.injected = false;
9026 vcpu->arch.exception.pending = false;
9027 vcpu->arch.exception.nr = 0;
9028 vcpu->arch.exception.has_error_code = false;
9029 vcpu->arch.exception.error_code = 0;
9030 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9031 fault.vector = PF_VECTOR;
9032 fault.error_code_valid = true;
9033 fault.error_code = 0;
9034 fault.nested_page_fault = false;
9035 fault.address = work->arch.token;
9036 fault.async_page_fault = true;
9037 kvm_inject_page_fault(vcpu, &fault);
9038 }
9039 }
9040 vcpu->arch.apf.halted = false;
9041 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9042 }
9043
9044 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9045 {
9046 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9047 return true;
9048 else
9049 return kvm_can_do_async_pf(vcpu);
9050 }
9051
9052 void kvm_arch_start_assignment(struct kvm *kvm)
9053 {
9054 atomic_inc(&kvm->arch.assigned_device_count);
9055 }
9056 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9057
9058 void kvm_arch_end_assignment(struct kvm *kvm)
9059 {
9060 atomic_dec(&kvm->arch.assigned_device_count);
9061 }
9062 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9063
9064 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9065 {
9066 return atomic_read(&kvm->arch.assigned_device_count);
9067 }
9068 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9069
9070 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9071 {
9072 atomic_inc(&kvm->arch.noncoherent_dma_count);
9073 }
9074 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9075
9076 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9077 {
9078 atomic_dec(&kvm->arch.noncoherent_dma_count);
9079 }
9080 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9081
9082 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9083 {
9084 return atomic_read(&kvm->arch.noncoherent_dma_count);
9085 }
9086 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9087
9088 bool kvm_arch_has_irq_bypass(void)
9089 {
9090 return kvm_x86_ops->update_pi_irte != NULL;
9091 }
9092
9093 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9094 struct irq_bypass_producer *prod)
9095 {
9096 struct kvm_kernel_irqfd *irqfd =
9097 container_of(cons, struct kvm_kernel_irqfd, consumer);
9098
9099 irqfd->producer = prod;
9100
9101 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9102 prod->irq, irqfd->gsi, 1);
9103 }
9104
9105 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9106 struct irq_bypass_producer *prod)
9107 {
9108 int ret;
9109 struct kvm_kernel_irqfd *irqfd =
9110 container_of(cons, struct kvm_kernel_irqfd, consumer);
9111
9112 WARN_ON(irqfd->producer != prod);
9113 irqfd->producer = NULL;
9114
9115 /*
9116 * When producer of consumer is unregistered, we change back to
9117 * remapped mode, so we can re-use the current implementation
9118 * when the irq is masked/disabled or the consumer side (KVM
9119 * int this case doesn't want to receive the interrupts.
9120 */
9121 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9122 if (ret)
9123 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9124 " fails: %d\n", irqfd->consumer.token, ret);
9125 }
9126
9127 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9128 uint32_t guest_irq, bool set)
9129 {
9130 if (!kvm_x86_ops->update_pi_irte)
9131 return -EINVAL;
9132
9133 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9134 }
9135
9136 bool kvm_vector_hashing_enabled(void)
9137 {
9138 return vector_hashing;
9139 }
9140 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9141
9142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9157 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9158 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9159 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9160 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);