]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
sched/headers: Prepare to move sched_info_on() and force_schedstat_enabled() from...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32 __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64 __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137
138 static bool __read_mostly backwards_tsc_observed = false;
139
140 #define KVM_NR_SHARED_MSRS 16
141
142 struct kvm_shared_msrs_global {
143 int nr;
144 u32 msrs[KVM_NR_SHARED_MSRS];
145 };
146
147 struct kvm_shared_msrs {
148 struct user_return_notifier urn;
149 bool registered;
150 struct kvm_shared_msr_values {
151 u64 host;
152 u64 curr;
153 } values[KVM_NR_SHARED_MSRS];
154 };
155
156 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
157 static struct kvm_shared_msrs __percpu *shared_msrs;
158
159 struct kvm_stats_debugfs_item debugfs_entries[] = {
160 { "pf_fixed", VCPU_STAT(pf_fixed) },
161 { "pf_guest", VCPU_STAT(pf_guest) },
162 { "tlb_flush", VCPU_STAT(tlb_flush) },
163 { "invlpg", VCPU_STAT(invlpg) },
164 { "exits", VCPU_STAT(exits) },
165 { "io_exits", VCPU_STAT(io_exits) },
166 { "mmio_exits", VCPU_STAT(mmio_exits) },
167 { "signal_exits", VCPU_STAT(signal_exits) },
168 { "irq_window", VCPU_STAT(irq_window_exits) },
169 { "nmi_window", VCPU_STAT(nmi_window_exits) },
170 { "halt_exits", VCPU_STAT(halt_exits) },
171 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
172 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
173 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
174 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
175 { "hypercalls", VCPU_STAT(hypercalls) },
176 { "request_irq", VCPU_STAT(request_irq_exits) },
177 { "irq_exits", VCPU_STAT(irq_exits) },
178 { "host_state_reload", VCPU_STAT(host_state_reload) },
179 { "efer_reload", VCPU_STAT(efer_reload) },
180 { "fpu_reload", VCPU_STAT(fpu_reload) },
181 { "insn_emulation", VCPU_STAT(insn_emulation) },
182 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
183 { "irq_injections", VCPU_STAT(irq_injections) },
184 { "nmi_injections", VCPU_STAT(nmi_injections) },
185 { "req_event", VCPU_STAT(req_event) },
186 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
187 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
188 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
189 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
190 { "mmu_flooded", VM_STAT(mmu_flooded) },
191 { "mmu_recycled", VM_STAT(mmu_recycled) },
192 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
193 { "mmu_unsync", VM_STAT(mmu_unsync) },
194 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
195 { "largepages", VM_STAT(lpages) },
196 { "max_mmu_page_hash_collisions",
197 VM_STAT(max_mmu_page_hash_collisions) },
198 { NULL }
199 };
200
201 u64 __read_mostly host_xcr0;
202
203 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
204
205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
206 {
207 int i;
208 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
209 vcpu->arch.apf.gfns[i] = ~0;
210 }
211
212 static void kvm_on_user_return(struct user_return_notifier *urn)
213 {
214 unsigned slot;
215 struct kvm_shared_msrs *locals
216 = container_of(urn, struct kvm_shared_msrs, urn);
217 struct kvm_shared_msr_values *values;
218 unsigned long flags;
219
220 /*
221 * Disabling irqs at this point since the following code could be
222 * interrupted and executed through kvm_arch_hardware_disable()
223 */
224 local_irq_save(flags);
225 if (locals->registered) {
226 locals->registered = false;
227 user_return_notifier_unregister(urn);
228 }
229 local_irq_restore(flags);
230 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
231 values = &locals->values[slot];
232 if (values->host != values->curr) {
233 wrmsrl(shared_msrs_global.msrs[slot], values->host);
234 values->curr = values->host;
235 }
236 }
237 }
238
239 static void shared_msr_update(unsigned slot, u32 msr)
240 {
241 u64 value;
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244
245 /* only read, and nobody should modify it at this time,
246 * so don't need lock */
247 if (slot >= shared_msrs_global.nr) {
248 printk(KERN_ERR "kvm: invalid MSR slot!");
249 return;
250 }
251 rdmsrl_safe(msr, &value);
252 smsr->values[slot].host = value;
253 smsr->values[slot].curr = value;
254 }
255
256 void kvm_define_shared_msr(unsigned slot, u32 msr)
257 {
258 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
259 shared_msrs_global.msrs[slot] = msr;
260 if (slot >= shared_msrs_global.nr)
261 shared_msrs_global.nr = slot + 1;
262 }
263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
264
265 static void kvm_shared_msr_cpu_online(void)
266 {
267 unsigned i;
268
269 for (i = 0; i < shared_msrs_global.nr; ++i)
270 shared_msr_update(i, shared_msrs_global.msrs[i]);
271 }
272
273 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
274 {
275 unsigned int cpu = smp_processor_id();
276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 int err;
278
279 if (((value ^ smsr->values[slot].curr) & mask) == 0)
280 return 0;
281 smsr->values[slot].curr = value;
282 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
283 if (err)
284 return 1;
285
286 if (!smsr->registered) {
287 smsr->urn.on_user_return = kvm_on_user_return;
288 user_return_notifier_register(&smsr->urn);
289 smsr->registered = true;
290 }
291 return 0;
292 }
293 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
294
295 static void drop_user_return_notifiers(void)
296 {
297 unsigned int cpu = smp_processor_id();
298 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
299
300 if (smsr->registered)
301 kvm_on_user_return(&smsr->urn);
302 }
303
304 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
305 {
306 return vcpu->arch.apic_base;
307 }
308 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
309
310 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
311 {
312 u64 old_state = vcpu->arch.apic_base &
313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 u64 new_state = msr_info->data &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
317 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
318
319 if (!msr_info->host_initiated &&
320 ((msr_info->data & reserved_bits) != 0 ||
321 new_state == X2APIC_ENABLE ||
322 (new_state == MSR_IA32_APICBASE_ENABLE &&
323 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
324 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
325 old_state == 0)))
326 return 1;
327
328 kvm_lapic_set_base(vcpu, msr_info->data);
329 return 0;
330 }
331 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
332
333 asmlinkage __visible void kvm_spurious_fault(void)
334 {
335 /* Fault while not rebooting. We want the trace. */
336 BUG();
337 }
338 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
339
340 #define EXCPT_BENIGN 0
341 #define EXCPT_CONTRIBUTORY 1
342 #define EXCPT_PF 2
343
344 static int exception_class(int vector)
345 {
346 switch (vector) {
347 case PF_VECTOR:
348 return EXCPT_PF;
349 case DE_VECTOR:
350 case TS_VECTOR:
351 case NP_VECTOR:
352 case SS_VECTOR:
353 case GP_VECTOR:
354 return EXCPT_CONTRIBUTORY;
355 default:
356 break;
357 }
358 return EXCPT_BENIGN;
359 }
360
361 #define EXCPT_FAULT 0
362 #define EXCPT_TRAP 1
363 #define EXCPT_ABORT 2
364 #define EXCPT_INTERRUPT 3
365
366 static int exception_type(int vector)
367 {
368 unsigned int mask;
369
370 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
371 return EXCPT_INTERRUPT;
372
373 mask = 1 << vector;
374
375 /* #DB is trap, as instruction watchpoints are handled elsewhere */
376 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
377 return EXCPT_TRAP;
378
379 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
380 return EXCPT_ABORT;
381
382 /* Reserved exceptions will result in fault */
383 return EXCPT_FAULT;
384 }
385
386 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
387 unsigned nr, bool has_error, u32 error_code,
388 bool reinject)
389 {
390 u32 prev_nr;
391 int class1, class2;
392
393 kvm_make_request(KVM_REQ_EVENT, vcpu);
394
395 if (!vcpu->arch.exception.pending) {
396 queue:
397 if (has_error && !is_protmode(vcpu))
398 has_error = false;
399 vcpu->arch.exception.pending = true;
400 vcpu->arch.exception.has_error_code = has_error;
401 vcpu->arch.exception.nr = nr;
402 vcpu->arch.exception.error_code = error_code;
403 vcpu->arch.exception.reinject = reinject;
404 return;
405 }
406
407 /* to check exception */
408 prev_nr = vcpu->arch.exception.nr;
409 if (prev_nr == DF_VECTOR) {
410 /* triple fault -> shutdown */
411 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
412 return;
413 }
414 class1 = exception_class(prev_nr);
415 class2 = exception_class(nr);
416 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
417 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
418 /* generate double fault per SDM Table 5-5 */
419 vcpu->arch.exception.pending = true;
420 vcpu->arch.exception.has_error_code = true;
421 vcpu->arch.exception.nr = DF_VECTOR;
422 vcpu->arch.exception.error_code = 0;
423 } else
424 /* replace previous exception with a new one in a hope
425 that instruction re-execution will regenerate lost
426 exception */
427 goto queue;
428 }
429
430 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
431 {
432 kvm_multiple_exception(vcpu, nr, false, 0, false);
433 }
434 EXPORT_SYMBOL_GPL(kvm_queue_exception);
435
436 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
437 {
438 kvm_multiple_exception(vcpu, nr, false, 0, true);
439 }
440 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
441
442 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
443 {
444 if (err)
445 kvm_inject_gp(vcpu, 0);
446 else
447 return kvm_skip_emulated_instruction(vcpu);
448
449 return 1;
450 }
451 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
452
453 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
454 {
455 ++vcpu->stat.pf_guest;
456 vcpu->arch.cr2 = fault->address;
457 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
458 }
459 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
460
461 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
462 {
463 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
464 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
465 else
466 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
467
468 return fault->nested_page_fault;
469 }
470
471 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
472 {
473 atomic_inc(&vcpu->arch.nmi_queued);
474 kvm_make_request(KVM_REQ_NMI, vcpu);
475 }
476 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
477
478 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
479 {
480 kvm_multiple_exception(vcpu, nr, true, error_code, false);
481 }
482 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
483
484 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
485 {
486 kvm_multiple_exception(vcpu, nr, true, error_code, true);
487 }
488 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
489
490 /*
491 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
492 * a #GP and return false.
493 */
494 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
495 {
496 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
497 return true;
498 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
499 return false;
500 }
501 EXPORT_SYMBOL_GPL(kvm_require_cpl);
502
503 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
504 {
505 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
506 return true;
507
508 kvm_queue_exception(vcpu, UD_VECTOR);
509 return false;
510 }
511 EXPORT_SYMBOL_GPL(kvm_require_dr);
512
513 /*
514 * This function will be used to read from the physical memory of the currently
515 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
516 * can read from guest physical or from the guest's guest physical memory.
517 */
518 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
519 gfn_t ngfn, void *data, int offset, int len,
520 u32 access)
521 {
522 struct x86_exception exception;
523 gfn_t real_gfn;
524 gpa_t ngpa;
525
526 ngpa = gfn_to_gpa(ngfn);
527 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
528 if (real_gfn == UNMAPPED_GVA)
529 return -EFAULT;
530
531 real_gfn = gpa_to_gfn(real_gfn);
532
533 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
534 }
535 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
536
537 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
538 void *data, int offset, int len, u32 access)
539 {
540 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
541 data, offset, len, access);
542 }
543
544 /*
545 * Load the pae pdptrs. Return true is they are all valid.
546 */
547 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
548 {
549 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
550 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
551 int i;
552 int ret;
553 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
554
555 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
556 offset * sizeof(u64), sizeof(pdpte),
557 PFERR_USER_MASK|PFERR_WRITE_MASK);
558 if (ret < 0) {
559 ret = 0;
560 goto out;
561 }
562 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
563 if ((pdpte[i] & PT_PRESENT_MASK) &&
564 (pdpte[i] &
565 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
566 ret = 0;
567 goto out;
568 }
569 }
570 ret = 1;
571
572 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
573 __set_bit(VCPU_EXREG_PDPTR,
574 (unsigned long *)&vcpu->arch.regs_avail);
575 __set_bit(VCPU_EXREG_PDPTR,
576 (unsigned long *)&vcpu->arch.regs_dirty);
577 out:
578
579 return ret;
580 }
581 EXPORT_SYMBOL_GPL(load_pdptrs);
582
583 bool pdptrs_changed(struct kvm_vcpu *vcpu)
584 {
585 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
586 bool changed = true;
587 int offset;
588 gfn_t gfn;
589 int r;
590
591 if (is_long_mode(vcpu) || !is_pae(vcpu))
592 return false;
593
594 if (!test_bit(VCPU_EXREG_PDPTR,
595 (unsigned long *)&vcpu->arch.regs_avail))
596 return true;
597
598 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
599 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
600 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
601 PFERR_USER_MASK | PFERR_WRITE_MASK);
602 if (r < 0)
603 goto out;
604 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
605 out:
606
607 return changed;
608 }
609 EXPORT_SYMBOL_GPL(pdptrs_changed);
610
611 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
612 {
613 unsigned long old_cr0 = kvm_read_cr0(vcpu);
614 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
615
616 cr0 |= X86_CR0_ET;
617
618 #ifdef CONFIG_X86_64
619 if (cr0 & 0xffffffff00000000UL)
620 return 1;
621 #endif
622
623 cr0 &= ~CR0_RESERVED_BITS;
624
625 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
626 return 1;
627
628 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
629 return 1;
630
631 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
632 #ifdef CONFIG_X86_64
633 if ((vcpu->arch.efer & EFER_LME)) {
634 int cs_db, cs_l;
635
636 if (!is_pae(vcpu))
637 return 1;
638 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
639 if (cs_l)
640 return 1;
641 } else
642 #endif
643 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
644 kvm_read_cr3(vcpu)))
645 return 1;
646 }
647
648 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
649 return 1;
650
651 kvm_x86_ops->set_cr0(vcpu, cr0);
652
653 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
654 kvm_clear_async_pf_completion_queue(vcpu);
655 kvm_async_pf_hash_reset(vcpu);
656 }
657
658 if ((cr0 ^ old_cr0) & update_bits)
659 kvm_mmu_reset_context(vcpu);
660
661 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
662 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
663 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
664 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
665
666 return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr0);
669
670 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
671 {
672 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
673 }
674 EXPORT_SYMBOL_GPL(kvm_lmsw);
675
676 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
677 {
678 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
679 !vcpu->guest_xcr0_loaded) {
680 /* kvm_set_xcr() also depends on this */
681 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
682 vcpu->guest_xcr0_loaded = 1;
683 }
684 }
685
686 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
687 {
688 if (vcpu->guest_xcr0_loaded) {
689 if (vcpu->arch.xcr0 != host_xcr0)
690 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
691 vcpu->guest_xcr0_loaded = 0;
692 }
693 }
694
695 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
696 {
697 u64 xcr0 = xcr;
698 u64 old_xcr0 = vcpu->arch.xcr0;
699 u64 valid_bits;
700
701 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
702 if (index != XCR_XFEATURE_ENABLED_MASK)
703 return 1;
704 if (!(xcr0 & XFEATURE_MASK_FP))
705 return 1;
706 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
707 return 1;
708
709 /*
710 * Do not allow the guest to set bits that we do not support
711 * saving. However, xcr0 bit 0 is always set, even if the
712 * emulated CPU does not support XSAVE (see fx_init).
713 */
714 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
715 if (xcr0 & ~valid_bits)
716 return 1;
717
718 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
719 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
720 return 1;
721
722 if (xcr0 & XFEATURE_MASK_AVX512) {
723 if (!(xcr0 & XFEATURE_MASK_YMM))
724 return 1;
725 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
726 return 1;
727 }
728 vcpu->arch.xcr0 = xcr0;
729
730 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
731 kvm_update_cpuid(vcpu);
732 return 0;
733 }
734
735 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
738 __kvm_set_xcr(vcpu, index, xcr)) {
739 kvm_inject_gp(vcpu, 0);
740 return 1;
741 }
742 return 0;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_xcr);
745
746 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
747 {
748 unsigned long old_cr4 = kvm_read_cr4(vcpu);
749 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
750 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
751
752 if (cr4 & CR4_RESERVED_BITS)
753 return 1;
754
755 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
756 return 1;
757
758 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
759 return 1;
760
761 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
762 return 1;
763
764 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
765 return 1;
766
767 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
768 return 1;
769
770 if (is_long_mode(vcpu)) {
771 if (!(cr4 & X86_CR4_PAE))
772 return 1;
773 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
774 && ((cr4 ^ old_cr4) & pdptr_bits)
775 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
776 kvm_read_cr3(vcpu)))
777 return 1;
778
779 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
780 if (!guest_cpuid_has_pcid(vcpu))
781 return 1;
782
783 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
784 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
785 return 1;
786 }
787
788 if (kvm_x86_ops->set_cr4(vcpu, cr4))
789 return 1;
790
791 if (((cr4 ^ old_cr4) & pdptr_bits) ||
792 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
793 kvm_mmu_reset_context(vcpu);
794
795 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
796 kvm_update_cpuid(vcpu);
797
798 return 0;
799 }
800 EXPORT_SYMBOL_GPL(kvm_set_cr4);
801
802 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
803 {
804 #ifdef CONFIG_X86_64
805 cr3 &= ~CR3_PCID_INVD;
806 #endif
807
808 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
809 kvm_mmu_sync_roots(vcpu);
810 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
811 return 0;
812 }
813
814 if (is_long_mode(vcpu)) {
815 if (cr3 & CR3_L_MODE_RESERVED_BITS)
816 return 1;
817 } else if (is_pae(vcpu) && is_paging(vcpu) &&
818 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
819 return 1;
820
821 vcpu->arch.cr3 = cr3;
822 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
823 kvm_mmu_new_cr3(vcpu);
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(kvm_set_cr3);
827
828 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
829 {
830 if (cr8 & CR8_RESERVED_BITS)
831 return 1;
832 if (lapic_in_kernel(vcpu))
833 kvm_lapic_set_tpr(vcpu, cr8);
834 else
835 vcpu->arch.cr8 = cr8;
836 return 0;
837 }
838 EXPORT_SYMBOL_GPL(kvm_set_cr8);
839
840 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
841 {
842 if (lapic_in_kernel(vcpu))
843 return kvm_lapic_get_cr8(vcpu);
844 else
845 return vcpu->arch.cr8;
846 }
847 EXPORT_SYMBOL_GPL(kvm_get_cr8);
848
849 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
850 {
851 int i;
852
853 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
854 for (i = 0; i < KVM_NR_DB_REGS; i++)
855 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
856 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
857 }
858 }
859
860 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
861 {
862 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
863 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
864 }
865
866 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
867 {
868 unsigned long dr7;
869
870 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
871 dr7 = vcpu->arch.guest_debug_dr7;
872 else
873 dr7 = vcpu->arch.dr7;
874 kvm_x86_ops->set_dr7(vcpu, dr7);
875 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
876 if (dr7 & DR7_BP_EN_MASK)
877 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
878 }
879
880 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
881 {
882 u64 fixed = DR6_FIXED_1;
883
884 if (!guest_cpuid_has_rtm(vcpu))
885 fixed |= DR6_RTM;
886 return fixed;
887 }
888
889 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
890 {
891 switch (dr) {
892 case 0 ... 3:
893 vcpu->arch.db[dr] = val;
894 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 vcpu->arch.eff_db[dr] = val;
896 break;
897 case 4:
898 /* fall through */
899 case 6:
900 if (val & 0xffffffff00000000ULL)
901 return -1; /* #GP */
902 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
903 kvm_update_dr6(vcpu);
904 break;
905 case 5:
906 /* fall through */
907 default: /* 7 */
908 if (val & 0xffffffff00000000ULL)
909 return -1; /* #GP */
910 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
911 kvm_update_dr7(vcpu);
912 break;
913 }
914
915 return 0;
916 }
917
918 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
919 {
920 if (__kvm_set_dr(vcpu, dr, val)) {
921 kvm_inject_gp(vcpu, 0);
922 return 1;
923 }
924 return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_set_dr);
927
928 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
929 {
930 switch (dr) {
931 case 0 ... 3:
932 *val = vcpu->arch.db[dr];
933 break;
934 case 4:
935 /* fall through */
936 case 6:
937 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
938 *val = vcpu->arch.dr6;
939 else
940 *val = kvm_x86_ops->get_dr6(vcpu);
941 break;
942 case 5:
943 /* fall through */
944 default: /* 7 */
945 *val = vcpu->arch.dr7;
946 break;
947 }
948 return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_get_dr);
951
952 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
953 {
954 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
955 u64 data;
956 int err;
957
958 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
959 if (err)
960 return err;
961 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
962 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
963 return err;
964 }
965 EXPORT_SYMBOL_GPL(kvm_rdpmc);
966
967 /*
968 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
969 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
970 *
971 * This list is modified at module load time to reflect the
972 * capabilities of the host cpu. This capabilities test skips MSRs that are
973 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
974 * may depend on host virtualization features rather than host cpu features.
975 */
976
977 static u32 msrs_to_save[] = {
978 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
979 MSR_STAR,
980 #ifdef CONFIG_X86_64
981 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
982 #endif
983 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
984 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
985 };
986
987 static unsigned num_msrs_to_save;
988
989 static u32 emulated_msrs[] = {
990 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
991 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
992 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
993 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
994 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
995 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
996 HV_X64_MSR_RESET,
997 HV_X64_MSR_VP_INDEX,
998 HV_X64_MSR_VP_RUNTIME,
999 HV_X64_MSR_SCONTROL,
1000 HV_X64_MSR_STIMER0_CONFIG,
1001 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1002 MSR_KVM_PV_EOI_EN,
1003
1004 MSR_IA32_TSC_ADJUST,
1005 MSR_IA32_TSCDEADLINE,
1006 MSR_IA32_MISC_ENABLE,
1007 MSR_IA32_MCG_STATUS,
1008 MSR_IA32_MCG_CTL,
1009 MSR_IA32_MCG_EXT_CTL,
1010 MSR_IA32_SMBASE,
1011 };
1012
1013 static unsigned num_emulated_msrs;
1014
1015 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 if (efer & efer_reserved_bits)
1018 return false;
1019
1020 if (efer & EFER_FFXSR) {
1021 struct kvm_cpuid_entry2 *feat;
1022
1023 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1024 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1025 return false;
1026 }
1027
1028 if (efer & EFER_SVME) {
1029 struct kvm_cpuid_entry2 *feat;
1030
1031 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1032 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1033 return false;
1034 }
1035
1036 return true;
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1039
1040 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1041 {
1042 u64 old_efer = vcpu->arch.efer;
1043
1044 if (!kvm_valid_efer(vcpu, efer))
1045 return 1;
1046
1047 if (is_paging(vcpu)
1048 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1049 return 1;
1050
1051 efer &= ~EFER_LMA;
1052 efer |= vcpu->arch.efer & EFER_LMA;
1053
1054 kvm_x86_ops->set_efer(vcpu, efer);
1055
1056 /* Update reserved bits */
1057 if ((efer ^ old_efer) & EFER_NX)
1058 kvm_mmu_reset_context(vcpu);
1059
1060 return 0;
1061 }
1062
1063 void kvm_enable_efer_bits(u64 mask)
1064 {
1065 efer_reserved_bits &= ~mask;
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1068
1069 /*
1070 * Writes msr value into into the appropriate "register".
1071 * Returns 0 on success, non-0 otherwise.
1072 * Assumes vcpu_load() was already called.
1073 */
1074 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1075 {
1076 switch (msr->index) {
1077 case MSR_FS_BASE:
1078 case MSR_GS_BASE:
1079 case MSR_KERNEL_GS_BASE:
1080 case MSR_CSTAR:
1081 case MSR_LSTAR:
1082 if (is_noncanonical_address(msr->data))
1083 return 1;
1084 break;
1085 case MSR_IA32_SYSENTER_EIP:
1086 case MSR_IA32_SYSENTER_ESP:
1087 /*
1088 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1089 * non-canonical address is written on Intel but not on
1090 * AMD (which ignores the top 32-bits, because it does
1091 * not implement 64-bit SYSENTER).
1092 *
1093 * 64-bit code should hence be able to write a non-canonical
1094 * value on AMD. Making the address canonical ensures that
1095 * vmentry does not fail on Intel after writing a non-canonical
1096 * value, and that something deterministic happens if the guest
1097 * invokes 64-bit SYSENTER.
1098 */
1099 msr->data = get_canonical(msr->data);
1100 }
1101 return kvm_x86_ops->set_msr(vcpu, msr);
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_set_msr);
1104
1105 /*
1106 * Adapt set_msr() to msr_io()'s calling convention
1107 */
1108 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1109 {
1110 struct msr_data msr;
1111 int r;
1112
1113 msr.index = index;
1114 msr.host_initiated = true;
1115 r = kvm_get_msr(vcpu, &msr);
1116 if (r)
1117 return r;
1118
1119 *data = msr.data;
1120 return 0;
1121 }
1122
1123 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1124 {
1125 struct msr_data msr;
1126
1127 msr.data = *data;
1128 msr.index = index;
1129 msr.host_initiated = true;
1130 return kvm_set_msr(vcpu, &msr);
1131 }
1132
1133 #ifdef CONFIG_X86_64
1134 struct pvclock_gtod_data {
1135 seqcount_t seq;
1136
1137 struct { /* extract of a clocksource struct */
1138 int vclock_mode;
1139 u64 cycle_last;
1140 u64 mask;
1141 u32 mult;
1142 u32 shift;
1143 } clock;
1144
1145 u64 boot_ns;
1146 u64 nsec_base;
1147 u64 wall_time_sec;
1148 };
1149
1150 static struct pvclock_gtod_data pvclock_gtod_data;
1151
1152 static void update_pvclock_gtod(struct timekeeper *tk)
1153 {
1154 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1155 u64 boot_ns;
1156
1157 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1158
1159 write_seqcount_begin(&vdata->seq);
1160
1161 /* copy pvclock gtod data */
1162 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1163 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1164 vdata->clock.mask = tk->tkr_mono.mask;
1165 vdata->clock.mult = tk->tkr_mono.mult;
1166 vdata->clock.shift = tk->tkr_mono.shift;
1167
1168 vdata->boot_ns = boot_ns;
1169 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1170
1171 vdata->wall_time_sec = tk->xtime_sec;
1172
1173 write_seqcount_end(&vdata->seq);
1174 }
1175 #endif
1176
1177 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1178 {
1179 /*
1180 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1181 * vcpu_enter_guest. This function is only called from
1182 * the physical CPU that is running vcpu.
1183 */
1184 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1185 }
1186
1187 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1188 {
1189 int version;
1190 int r;
1191 struct pvclock_wall_clock wc;
1192 struct timespec64 boot;
1193
1194 if (!wall_clock)
1195 return;
1196
1197 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1198 if (r)
1199 return;
1200
1201 if (version & 1)
1202 ++version; /* first time write, random junk */
1203
1204 ++version;
1205
1206 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1207 return;
1208
1209 /*
1210 * The guest calculates current wall clock time by adding
1211 * system time (updated by kvm_guest_time_update below) to the
1212 * wall clock specified here. guest system time equals host
1213 * system time for us, thus we must fill in host boot time here.
1214 */
1215 getboottime64(&boot);
1216
1217 if (kvm->arch.kvmclock_offset) {
1218 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1219 boot = timespec64_sub(boot, ts);
1220 }
1221 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1222 wc.nsec = boot.tv_nsec;
1223 wc.version = version;
1224
1225 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1226
1227 version++;
1228 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1229 }
1230
1231 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1232 {
1233 do_shl32_div32(dividend, divisor);
1234 return dividend;
1235 }
1236
1237 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1238 s8 *pshift, u32 *pmultiplier)
1239 {
1240 uint64_t scaled64;
1241 int32_t shift = 0;
1242 uint64_t tps64;
1243 uint32_t tps32;
1244
1245 tps64 = base_hz;
1246 scaled64 = scaled_hz;
1247 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1248 tps64 >>= 1;
1249 shift--;
1250 }
1251
1252 tps32 = (uint32_t)tps64;
1253 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1254 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1255 scaled64 >>= 1;
1256 else
1257 tps32 <<= 1;
1258 shift++;
1259 }
1260
1261 *pshift = shift;
1262 *pmultiplier = div_frac(scaled64, tps32);
1263
1264 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1265 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1266 }
1267
1268 #ifdef CONFIG_X86_64
1269 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1270 #endif
1271
1272 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1273 static unsigned long max_tsc_khz;
1274
1275 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1276 {
1277 u64 v = (u64)khz * (1000000 + ppm);
1278 do_div(v, 1000000);
1279 return v;
1280 }
1281
1282 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1283 {
1284 u64 ratio;
1285
1286 /* Guest TSC same frequency as host TSC? */
1287 if (!scale) {
1288 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1289 return 0;
1290 }
1291
1292 /* TSC scaling supported? */
1293 if (!kvm_has_tsc_control) {
1294 if (user_tsc_khz > tsc_khz) {
1295 vcpu->arch.tsc_catchup = 1;
1296 vcpu->arch.tsc_always_catchup = 1;
1297 return 0;
1298 } else {
1299 WARN(1, "user requested TSC rate below hardware speed\n");
1300 return -1;
1301 }
1302 }
1303
1304 /* TSC scaling required - calculate ratio */
1305 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1306 user_tsc_khz, tsc_khz);
1307
1308 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1309 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1310 user_tsc_khz);
1311 return -1;
1312 }
1313
1314 vcpu->arch.tsc_scaling_ratio = ratio;
1315 return 0;
1316 }
1317
1318 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1319 {
1320 u32 thresh_lo, thresh_hi;
1321 int use_scaling = 0;
1322
1323 /* tsc_khz can be zero if TSC calibration fails */
1324 if (user_tsc_khz == 0) {
1325 /* set tsc_scaling_ratio to a safe value */
1326 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1327 return -1;
1328 }
1329
1330 /* Compute a scale to convert nanoseconds in TSC cycles */
1331 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1332 &vcpu->arch.virtual_tsc_shift,
1333 &vcpu->arch.virtual_tsc_mult);
1334 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1335
1336 /*
1337 * Compute the variation in TSC rate which is acceptable
1338 * within the range of tolerance and decide if the
1339 * rate being applied is within that bounds of the hardware
1340 * rate. If so, no scaling or compensation need be done.
1341 */
1342 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1343 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1344 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1345 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1346 use_scaling = 1;
1347 }
1348 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1349 }
1350
1351 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1352 {
1353 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1354 vcpu->arch.virtual_tsc_mult,
1355 vcpu->arch.virtual_tsc_shift);
1356 tsc += vcpu->arch.this_tsc_write;
1357 return tsc;
1358 }
1359
1360 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1361 {
1362 #ifdef CONFIG_X86_64
1363 bool vcpus_matched;
1364 struct kvm_arch *ka = &vcpu->kvm->arch;
1365 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1366
1367 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1368 atomic_read(&vcpu->kvm->online_vcpus));
1369
1370 /*
1371 * Once the masterclock is enabled, always perform request in
1372 * order to update it.
1373 *
1374 * In order to enable masterclock, the host clocksource must be TSC
1375 * and the vcpus need to have matched TSCs. When that happens,
1376 * perform request to enable masterclock.
1377 */
1378 if (ka->use_master_clock ||
1379 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1380 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1381
1382 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1383 atomic_read(&vcpu->kvm->online_vcpus),
1384 ka->use_master_clock, gtod->clock.vclock_mode);
1385 #endif
1386 }
1387
1388 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1389 {
1390 u64 curr_offset = vcpu->arch.tsc_offset;
1391 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1392 }
1393
1394 /*
1395 * Multiply tsc by a fixed point number represented by ratio.
1396 *
1397 * The most significant 64-N bits (mult) of ratio represent the
1398 * integral part of the fixed point number; the remaining N bits
1399 * (frac) represent the fractional part, ie. ratio represents a fixed
1400 * point number (mult + frac * 2^(-N)).
1401 *
1402 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1403 */
1404 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1405 {
1406 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1407 }
1408
1409 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1410 {
1411 u64 _tsc = tsc;
1412 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1413
1414 if (ratio != kvm_default_tsc_scaling_ratio)
1415 _tsc = __scale_tsc(ratio, tsc);
1416
1417 return _tsc;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1420
1421 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1422 {
1423 u64 tsc;
1424
1425 tsc = kvm_scale_tsc(vcpu, rdtsc());
1426
1427 return target_tsc - tsc;
1428 }
1429
1430 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1431 {
1432 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1435
1436 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1437 {
1438 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1439 vcpu->arch.tsc_offset = offset;
1440 }
1441
1442 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1443 {
1444 struct kvm *kvm = vcpu->kvm;
1445 u64 offset, ns, elapsed;
1446 unsigned long flags;
1447 s64 usdiff;
1448 bool matched;
1449 bool already_matched;
1450 u64 data = msr->data;
1451
1452 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1453 offset = kvm_compute_tsc_offset(vcpu, data);
1454 ns = ktime_get_boot_ns();
1455 elapsed = ns - kvm->arch.last_tsc_nsec;
1456
1457 if (vcpu->arch.virtual_tsc_khz) {
1458 int faulted = 0;
1459
1460 /* n.b - signed multiplication and division required */
1461 usdiff = data - kvm->arch.last_tsc_write;
1462 #ifdef CONFIG_X86_64
1463 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1464 #else
1465 /* do_div() only does unsigned */
1466 asm("1: idivl %[divisor]\n"
1467 "2: xor %%edx, %%edx\n"
1468 " movl $0, %[faulted]\n"
1469 "3:\n"
1470 ".section .fixup,\"ax\"\n"
1471 "4: movl $1, %[faulted]\n"
1472 " jmp 3b\n"
1473 ".previous\n"
1474
1475 _ASM_EXTABLE(1b, 4b)
1476
1477 : "=A"(usdiff), [faulted] "=r" (faulted)
1478 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1479
1480 #endif
1481 do_div(elapsed, 1000);
1482 usdiff -= elapsed;
1483 if (usdiff < 0)
1484 usdiff = -usdiff;
1485
1486 /* idivl overflow => difference is larger than USEC_PER_SEC */
1487 if (faulted)
1488 usdiff = USEC_PER_SEC;
1489 } else
1490 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1491
1492 /*
1493 * Special case: TSC write with a small delta (1 second) of virtual
1494 * cycle time against real time is interpreted as an attempt to
1495 * synchronize the CPU.
1496 *
1497 * For a reliable TSC, we can match TSC offsets, and for an unstable
1498 * TSC, we add elapsed time in this computation. We could let the
1499 * compensation code attempt to catch up if we fall behind, but
1500 * it's better to try to match offsets from the beginning.
1501 */
1502 if (usdiff < USEC_PER_SEC &&
1503 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504 if (!check_tsc_unstable()) {
1505 offset = kvm->arch.cur_tsc_offset;
1506 pr_debug("kvm: matched tsc offset for %llu\n", data);
1507 } else {
1508 u64 delta = nsec_to_cycles(vcpu, elapsed);
1509 data += delta;
1510 offset = kvm_compute_tsc_offset(vcpu, data);
1511 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512 }
1513 matched = true;
1514 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515 } else {
1516 /*
1517 * We split periods of matched TSC writes into generations.
1518 * For each generation, we track the original measured
1519 * nanosecond time, offset, and write, so if TSCs are in
1520 * sync, we can match exact offset, and if not, we can match
1521 * exact software computation in compute_guest_tsc()
1522 *
1523 * These values are tracked in kvm->arch.cur_xxx variables.
1524 */
1525 kvm->arch.cur_tsc_generation++;
1526 kvm->arch.cur_tsc_nsec = ns;
1527 kvm->arch.cur_tsc_write = data;
1528 kvm->arch.cur_tsc_offset = offset;
1529 matched = false;
1530 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531 kvm->arch.cur_tsc_generation, data);
1532 }
1533
1534 /*
1535 * We also track th most recent recorded KHZ, write and time to
1536 * allow the matching interval to be extended at each write.
1537 */
1538 kvm->arch.last_tsc_nsec = ns;
1539 kvm->arch.last_tsc_write = data;
1540 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541
1542 vcpu->arch.last_guest_tsc = data;
1543
1544 /* Keep track of which generation this VCPU has synchronized to */
1545 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548
1549 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1550 update_ia32_tsc_adjust_msr(vcpu, offset);
1551 kvm_vcpu_write_tsc_offset(vcpu, offset);
1552 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1553
1554 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1555 if (!matched) {
1556 kvm->arch.nr_vcpus_matched_tsc = 0;
1557 } else if (!already_matched) {
1558 kvm->arch.nr_vcpus_matched_tsc++;
1559 }
1560
1561 kvm_track_tsc_matching(vcpu);
1562 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1563 }
1564
1565 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1566
1567 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1568 s64 adjustment)
1569 {
1570 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1571 }
1572
1573 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1574 {
1575 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1576 WARN_ON(adjustment < 0);
1577 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1578 adjust_tsc_offset_guest(vcpu, adjustment);
1579 }
1580
1581 #ifdef CONFIG_X86_64
1582
1583 static u64 read_tsc(void)
1584 {
1585 u64 ret = (u64)rdtsc_ordered();
1586 u64 last = pvclock_gtod_data.clock.cycle_last;
1587
1588 if (likely(ret >= last))
1589 return ret;
1590
1591 /*
1592 * GCC likes to generate cmov here, but this branch is extremely
1593 * predictable (it's just a function of time and the likely is
1594 * very likely) and there's a data dependence, so force GCC
1595 * to generate a branch instead. I don't barrier() because
1596 * we don't actually need a barrier, and if this function
1597 * ever gets inlined it will generate worse code.
1598 */
1599 asm volatile ("");
1600 return last;
1601 }
1602
1603 static inline u64 vgettsc(u64 *cycle_now)
1604 {
1605 long v;
1606 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1607
1608 *cycle_now = read_tsc();
1609
1610 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1611 return v * gtod->clock.mult;
1612 }
1613
1614 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1615 {
1616 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1617 unsigned long seq;
1618 int mode;
1619 u64 ns;
1620
1621 do {
1622 seq = read_seqcount_begin(&gtod->seq);
1623 mode = gtod->clock.vclock_mode;
1624 ns = gtod->nsec_base;
1625 ns += vgettsc(cycle_now);
1626 ns >>= gtod->clock.shift;
1627 ns += gtod->boot_ns;
1628 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1629 *t = ns;
1630
1631 return mode;
1632 }
1633
1634 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1635 {
1636 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1637 unsigned long seq;
1638 int mode;
1639 u64 ns;
1640
1641 do {
1642 seq = read_seqcount_begin(&gtod->seq);
1643 mode = gtod->clock.vclock_mode;
1644 ts->tv_sec = gtod->wall_time_sec;
1645 ns = gtod->nsec_base;
1646 ns += vgettsc(cycle_now);
1647 ns >>= gtod->clock.shift;
1648 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1649
1650 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1651 ts->tv_nsec = ns;
1652
1653 return mode;
1654 }
1655
1656 /* returns true if host is using tsc clocksource */
1657 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1658 {
1659 /* checked again under seqlock below */
1660 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1661 return false;
1662
1663 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1664 }
1665
1666 /* returns true if host is using tsc clocksource */
1667 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1668 u64 *cycle_now)
1669 {
1670 /* checked again under seqlock below */
1671 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1672 return false;
1673
1674 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1675 }
1676 #endif
1677
1678 /*
1679 *
1680 * Assuming a stable TSC across physical CPUS, and a stable TSC
1681 * across virtual CPUs, the following condition is possible.
1682 * Each numbered line represents an event visible to both
1683 * CPUs at the next numbered event.
1684 *
1685 * "timespecX" represents host monotonic time. "tscX" represents
1686 * RDTSC value.
1687 *
1688 * VCPU0 on CPU0 | VCPU1 on CPU1
1689 *
1690 * 1. read timespec0,tsc0
1691 * 2. | timespec1 = timespec0 + N
1692 * | tsc1 = tsc0 + M
1693 * 3. transition to guest | transition to guest
1694 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1695 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1696 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1697 *
1698 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1699 *
1700 * - ret0 < ret1
1701 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1702 * ...
1703 * - 0 < N - M => M < N
1704 *
1705 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1706 * always the case (the difference between two distinct xtime instances
1707 * might be smaller then the difference between corresponding TSC reads,
1708 * when updating guest vcpus pvclock areas).
1709 *
1710 * To avoid that problem, do not allow visibility of distinct
1711 * system_timestamp/tsc_timestamp values simultaneously: use a master
1712 * copy of host monotonic time values. Update that master copy
1713 * in lockstep.
1714 *
1715 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1716 *
1717 */
1718
1719 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1720 {
1721 #ifdef CONFIG_X86_64
1722 struct kvm_arch *ka = &kvm->arch;
1723 int vclock_mode;
1724 bool host_tsc_clocksource, vcpus_matched;
1725
1726 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1727 atomic_read(&kvm->online_vcpus));
1728
1729 /*
1730 * If the host uses TSC clock, then passthrough TSC as stable
1731 * to the guest.
1732 */
1733 host_tsc_clocksource = kvm_get_time_and_clockread(
1734 &ka->master_kernel_ns,
1735 &ka->master_cycle_now);
1736
1737 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1738 && !backwards_tsc_observed
1739 && !ka->boot_vcpu_runs_old_kvmclock;
1740
1741 if (ka->use_master_clock)
1742 atomic_set(&kvm_guest_has_master_clock, 1);
1743
1744 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1745 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1746 vcpus_matched);
1747 #endif
1748 }
1749
1750 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1751 {
1752 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1753 }
1754
1755 static void kvm_gen_update_masterclock(struct kvm *kvm)
1756 {
1757 #ifdef CONFIG_X86_64
1758 int i;
1759 struct kvm_vcpu *vcpu;
1760 struct kvm_arch *ka = &kvm->arch;
1761
1762 spin_lock(&ka->pvclock_gtod_sync_lock);
1763 kvm_make_mclock_inprogress_request(kvm);
1764 /* no guest entries from this point */
1765 pvclock_update_vm_gtod_copy(kvm);
1766
1767 kvm_for_each_vcpu(i, vcpu, kvm)
1768 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1769
1770 /* guest entries allowed */
1771 kvm_for_each_vcpu(i, vcpu, kvm)
1772 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1773
1774 spin_unlock(&ka->pvclock_gtod_sync_lock);
1775 #endif
1776 }
1777
1778 static u64 __get_kvmclock_ns(struct kvm *kvm)
1779 {
1780 struct kvm_arch *ka = &kvm->arch;
1781 struct pvclock_vcpu_time_info hv_clock;
1782
1783 spin_lock(&ka->pvclock_gtod_sync_lock);
1784 if (!ka->use_master_clock) {
1785 spin_unlock(&ka->pvclock_gtod_sync_lock);
1786 return ktime_get_boot_ns() + ka->kvmclock_offset;
1787 }
1788
1789 hv_clock.tsc_timestamp = ka->master_cycle_now;
1790 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1791 spin_unlock(&ka->pvclock_gtod_sync_lock);
1792
1793 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1794 &hv_clock.tsc_shift,
1795 &hv_clock.tsc_to_system_mul);
1796 return __pvclock_read_cycles(&hv_clock, rdtsc());
1797 }
1798
1799 u64 get_kvmclock_ns(struct kvm *kvm)
1800 {
1801 unsigned long flags;
1802 s64 ns;
1803
1804 local_irq_save(flags);
1805 ns = __get_kvmclock_ns(kvm);
1806 local_irq_restore(flags);
1807
1808 return ns;
1809 }
1810
1811 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1812 {
1813 struct kvm_vcpu_arch *vcpu = &v->arch;
1814 struct pvclock_vcpu_time_info guest_hv_clock;
1815
1816 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1817 &guest_hv_clock, sizeof(guest_hv_clock))))
1818 return;
1819
1820 /* This VCPU is paused, but it's legal for a guest to read another
1821 * VCPU's kvmclock, so we really have to follow the specification where
1822 * it says that version is odd if data is being modified, and even after
1823 * it is consistent.
1824 *
1825 * Version field updates must be kept separate. This is because
1826 * kvm_write_guest_cached might use a "rep movs" instruction, and
1827 * writes within a string instruction are weakly ordered. So there
1828 * are three writes overall.
1829 *
1830 * As a small optimization, only write the version field in the first
1831 * and third write. The vcpu->pv_time cache is still valid, because the
1832 * version field is the first in the struct.
1833 */
1834 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1835
1836 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1837 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1838 &vcpu->hv_clock,
1839 sizeof(vcpu->hv_clock.version));
1840
1841 smp_wmb();
1842
1843 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1844 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1845
1846 if (vcpu->pvclock_set_guest_stopped_request) {
1847 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1848 vcpu->pvclock_set_guest_stopped_request = false;
1849 }
1850
1851 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1852
1853 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1854 &vcpu->hv_clock,
1855 sizeof(vcpu->hv_clock));
1856
1857 smp_wmb();
1858
1859 vcpu->hv_clock.version++;
1860 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1861 &vcpu->hv_clock,
1862 sizeof(vcpu->hv_clock.version));
1863 }
1864
1865 static int kvm_guest_time_update(struct kvm_vcpu *v)
1866 {
1867 unsigned long flags, tgt_tsc_khz;
1868 struct kvm_vcpu_arch *vcpu = &v->arch;
1869 struct kvm_arch *ka = &v->kvm->arch;
1870 s64 kernel_ns;
1871 u64 tsc_timestamp, host_tsc;
1872 u8 pvclock_flags;
1873 bool use_master_clock;
1874
1875 kernel_ns = 0;
1876 host_tsc = 0;
1877
1878 /*
1879 * If the host uses TSC clock, then passthrough TSC as stable
1880 * to the guest.
1881 */
1882 spin_lock(&ka->pvclock_gtod_sync_lock);
1883 use_master_clock = ka->use_master_clock;
1884 if (use_master_clock) {
1885 host_tsc = ka->master_cycle_now;
1886 kernel_ns = ka->master_kernel_ns;
1887 }
1888 spin_unlock(&ka->pvclock_gtod_sync_lock);
1889
1890 /* Keep irq disabled to prevent changes to the clock */
1891 local_irq_save(flags);
1892 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1893 if (unlikely(tgt_tsc_khz == 0)) {
1894 local_irq_restore(flags);
1895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1896 return 1;
1897 }
1898 if (!use_master_clock) {
1899 host_tsc = rdtsc();
1900 kernel_ns = ktime_get_boot_ns();
1901 }
1902
1903 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1904
1905 /*
1906 * We may have to catch up the TSC to match elapsed wall clock
1907 * time for two reasons, even if kvmclock is used.
1908 * 1) CPU could have been running below the maximum TSC rate
1909 * 2) Broken TSC compensation resets the base at each VCPU
1910 * entry to avoid unknown leaps of TSC even when running
1911 * again on the same CPU. This may cause apparent elapsed
1912 * time to disappear, and the guest to stand still or run
1913 * very slowly.
1914 */
1915 if (vcpu->tsc_catchup) {
1916 u64 tsc = compute_guest_tsc(v, kernel_ns);
1917 if (tsc > tsc_timestamp) {
1918 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1919 tsc_timestamp = tsc;
1920 }
1921 }
1922
1923 local_irq_restore(flags);
1924
1925 /* With all the info we got, fill in the values */
1926
1927 if (kvm_has_tsc_control)
1928 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1929
1930 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1931 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1932 &vcpu->hv_clock.tsc_shift,
1933 &vcpu->hv_clock.tsc_to_system_mul);
1934 vcpu->hw_tsc_khz = tgt_tsc_khz;
1935 }
1936
1937 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1938 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1939 vcpu->last_guest_tsc = tsc_timestamp;
1940
1941 /* If the host uses TSC clocksource, then it is stable */
1942 pvclock_flags = 0;
1943 if (use_master_clock)
1944 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1945
1946 vcpu->hv_clock.flags = pvclock_flags;
1947
1948 if (vcpu->pv_time_enabled)
1949 kvm_setup_pvclock_page(v);
1950 if (v == kvm_get_vcpu(v->kvm, 0))
1951 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1952 return 0;
1953 }
1954
1955 /*
1956 * kvmclock updates which are isolated to a given vcpu, such as
1957 * vcpu->cpu migration, should not allow system_timestamp from
1958 * the rest of the vcpus to remain static. Otherwise ntp frequency
1959 * correction applies to one vcpu's system_timestamp but not
1960 * the others.
1961 *
1962 * So in those cases, request a kvmclock update for all vcpus.
1963 * We need to rate-limit these requests though, as they can
1964 * considerably slow guests that have a large number of vcpus.
1965 * The time for a remote vcpu to update its kvmclock is bound
1966 * by the delay we use to rate-limit the updates.
1967 */
1968
1969 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1970
1971 static void kvmclock_update_fn(struct work_struct *work)
1972 {
1973 int i;
1974 struct delayed_work *dwork = to_delayed_work(work);
1975 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1976 kvmclock_update_work);
1977 struct kvm *kvm = container_of(ka, struct kvm, arch);
1978 struct kvm_vcpu *vcpu;
1979
1980 kvm_for_each_vcpu(i, vcpu, kvm) {
1981 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1982 kvm_vcpu_kick(vcpu);
1983 }
1984 }
1985
1986 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1987 {
1988 struct kvm *kvm = v->kvm;
1989
1990 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1991 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1992 KVMCLOCK_UPDATE_DELAY);
1993 }
1994
1995 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1996
1997 static void kvmclock_sync_fn(struct work_struct *work)
1998 {
1999 struct delayed_work *dwork = to_delayed_work(work);
2000 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2001 kvmclock_sync_work);
2002 struct kvm *kvm = container_of(ka, struct kvm, arch);
2003
2004 if (!kvmclock_periodic_sync)
2005 return;
2006
2007 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2008 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2009 KVMCLOCK_SYNC_PERIOD);
2010 }
2011
2012 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2013 {
2014 u64 mcg_cap = vcpu->arch.mcg_cap;
2015 unsigned bank_num = mcg_cap & 0xff;
2016
2017 switch (msr) {
2018 case MSR_IA32_MCG_STATUS:
2019 vcpu->arch.mcg_status = data;
2020 break;
2021 case MSR_IA32_MCG_CTL:
2022 if (!(mcg_cap & MCG_CTL_P))
2023 return 1;
2024 if (data != 0 && data != ~(u64)0)
2025 return -1;
2026 vcpu->arch.mcg_ctl = data;
2027 break;
2028 default:
2029 if (msr >= MSR_IA32_MC0_CTL &&
2030 msr < MSR_IA32_MCx_CTL(bank_num)) {
2031 u32 offset = msr - MSR_IA32_MC0_CTL;
2032 /* only 0 or all 1s can be written to IA32_MCi_CTL
2033 * some Linux kernels though clear bit 10 in bank 4 to
2034 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2035 * this to avoid an uncatched #GP in the guest
2036 */
2037 if ((offset & 0x3) == 0 &&
2038 data != 0 && (data | (1 << 10)) != ~(u64)0)
2039 return -1;
2040 vcpu->arch.mce_banks[offset] = data;
2041 break;
2042 }
2043 return 1;
2044 }
2045 return 0;
2046 }
2047
2048 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2049 {
2050 struct kvm *kvm = vcpu->kvm;
2051 int lm = is_long_mode(vcpu);
2052 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2053 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2054 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2055 : kvm->arch.xen_hvm_config.blob_size_32;
2056 u32 page_num = data & ~PAGE_MASK;
2057 u64 page_addr = data & PAGE_MASK;
2058 u8 *page;
2059 int r;
2060
2061 r = -E2BIG;
2062 if (page_num >= blob_size)
2063 goto out;
2064 r = -ENOMEM;
2065 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2066 if (IS_ERR(page)) {
2067 r = PTR_ERR(page);
2068 goto out;
2069 }
2070 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2071 goto out_free;
2072 r = 0;
2073 out_free:
2074 kfree(page);
2075 out:
2076 return r;
2077 }
2078
2079 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2080 {
2081 gpa_t gpa = data & ~0x3f;
2082
2083 /* Bits 2:5 are reserved, Should be zero */
2084 if (data & 0x3c)
2085 return 1;
2086
2087 vcpu->arch.apf.msr_val = data;
2088
2089 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2090 kvm_clear_async_pf_completion_queue(vcpu);
2091 kvm_async_pf_hash_reset(vcpu);
2092 return 0;
2093 }
2094
2095 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2096 sizeof(u32)))
2097 return 1;
2098
2099 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2100 kvm_async_pf_wakeup_all(vcpu);
2101 return 0;
2102 }
2103
2104 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2105 {
2106 vcpu->arch.pv_time_enabled = false;
2107 }
2108
2109 static void record_steal_time(struct kvm_vcpu *vcpu)
2110 {
2111 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2112 return;
2113
2114 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2116 return;
2117
2118 vcpu->arch.st.steal.preempted = 0;
2119
2120 if (vcpu->arch.st.steal.version & 1)
2121 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2122
2123 vcpu->arch.st.steal.version += 1;
2124
2125 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2126 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127
2128 smp_wmb();
2129
2130 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2131 vcpu->arch.st.last_steal;
2132 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2133
2134 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2135 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2136
2137 smp_wmb();
2138
2139 vcpu->arch.st.steal.version += 1;
2140
2141 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2142 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2143 }
2144
2145 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2146 {
2147 bool pr = false;
2148 u32 msr = msr_info->index;
2149 u64 data = msr_info->data;
2150
2151 switch (msr) {
2152 case MSR_AMD64_NB_CFG:
2153 case MSR_IA32_UCODE_REV:
2154 case MSR_IA32_UCODE_WRITE:
2155 case MSR_VM_HSAVE_PA:
2156 case MSR_AMD64_PATCH_LOADER:
2157 case MSR_AMD64_BU_CFG2:
2158 break;
2159
2160 case MSR_EFER:
2161 return set_efer(vcpu, data);
2162 case MSR_K7_HWCR:
2163 data &= ~(u64)0x40; /* ignore flush filter disable */
2164 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2165 data &= ~(u64)0x8; /* ignore TLB cache disable */
2166 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2167 if (data != 0) {
2168 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2169 data);
2170 return 1;
2171 }
2172 break;
2173 case MSR_FAM10H_MMIO_CONF_BASE:
2174 if (data != 0) {
2175 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2176 "0x%llx\n", data);
2177 return 1;
2178 }
2179 break;
2180 case MSR_IA32_DEBUGCTLMSR:
2181 if (!data) {
2182 /* We support the non-activated case already */
2183 break;
2184 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2185 /* Values other than LBR and BTF are vendor-specific,
2186 thus reserved and should throw a #GP */
2187 return 1;
2188 }
2189 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2190 __func__, data);
2191 break;
2192 case 0x200 ... 0x2ff:
2193 return kvm_mtrr_set_msr(vcpu, msr, data);
2194 case MSR_IA32_APICBASE:
2195 return kvm_set_apic_base(vcpu, msr_info);
2196 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2197 return kvm_x2apic_msr_write(vcpu, msr, data);
2198 case MSR_IA32_TSCDEADLINE:
2199 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2200 break;
2201 case MSR_IA32_TSC_ADJUST:
2202 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2203 if (!msr_info->host_initiated) {
2204 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2205 adjust_tsc_offset_guest(vcpu, adj);
2206 }
2207 vcpu->arch.ia32_tsc_adjust_msr = data;
2208 }
2209 break;
2210 case MSR_IA32_MISC_ENABLE:
2211 vcpu->arch.ia32_misc_enable_msr = data;
2212 break;
2213 case MSR_IA32_SMBASE:
2214 if (!msr_info->host_initiated)
2215 return 1;
2216 vcpu->arch.smbase = data;
2217 break;
2218 case MSR_KVM_WALL_CLOCK_NEW:
2219 case MSR_KVM_WALL_CLOCK:
2220 vcpu->kvm->arch.wall_clock = data;
2221 kvm_write_wall_clock(vcpu->kvm, data);
2222 break;
2223 case MSR_KVM_SYSTEM_TIME_NEW:
2224 case MSR_KVM_SYSTEM_TIME: {
2225 struct kvm_arch *ka = &vcpu->kvm->arch;
2226
2227 kvmclock_reset(vcpu);
2228
2229 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2230 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2231
2232 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2233 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2234 &vcpu->requests);
2235
2236 ka->boot_vcpu_runs_old_kvmclock = tmp;
2237 }
2238
2239 vcpu->arch.time = data;
2240 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2241
2242 /* we verify if the enable bit is set... */
2243 if (!(data & 1))
2244 break;
2245
2246 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2247 &vcpu->arch.pv_time, data & ~1ULL,
2248 sizeof(struct pvclock_vcpu_time_info)))
2249 vcpu->arch.pv_time_enabled = false;
2250 else
2251 vcpu->arch.pv_time_enabled = true;
2252
2253 break;
2254 }
2255 case MSR_KVM_ASYNC_PF_EN:
2256 if (kvm_pv_enable_async_pf(vcpu, data))
2257 return 1;
2258 break;
2259 case MSR_KVM_STEAL_TIME:
2260
2261 if (unlikely(!sched_info_on()))
2262 return 1;
2263
2264 if (data & KVM_STEAL_RESERVED_MASK)
2265 return 1;
2266
2267 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2268 data & KVM_STEAL_VALID_BITS,
2269 sizeof(struct kvm_steal_time)))
2270 return 1;
2271
2272 vcpu->arch.st.msr_val = data;
2273
2274 if (!(data & KVM_MSR_ENABLED))
2275 break;
2276
2277 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2278
2279 break;
2280 case MSR_KVM_PV_EOI_EN:
2281 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2282 return 1;
2283 break;
2284
2285 case MSR_IA32_MCG_CTL:
2286 case MSR_IA32_MCG_STATUS:
2287 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2288 return set_msr_mce(vcpu, msr, data);
2289
2290 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2291 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2292 pr = true; /* fall through */
2293 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2294 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2295 if (kvm_pmu_is_valid_msr(vcpu, msr))
2296 return kvm_pmu_set_msr(vcpu, msr_info);
2297
2298 if (pr || data != 0)
2299 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2300 "0x%x data 0x%llx\n", msr, data);
2301 break;
2302 case MSR_K7_CLK_CTL:
2303 /*
2304 * Ignore all writes to this no longer documented MSR.
2305 * Writes are only relevant for old K7 processors,
2306 * all pre-dating SVM, but a recommended workaround from
2307 * AMD for these chips. It is possible to specify the
2308 * affected processor models on the command line, hence
2309 * the need to ignore the workaround.
2310 */
2311 break;
2312 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2313 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2314 case HV_X64_MSR_CRASH_CTL:
2315 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2316 return kvm_hv_set_msr_common(vcpu, msr, data,
2317 msr_info->host_initiated);
2318 case MSR_IA32_BBL_CR_CTL3:
2319 /* Drop writes to this legacy MSR -- see rdmsr
2320 * counterpart for further detail.
2321 */
2322 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2323 break;
2324 case MSR_AMD64_OSVW_ID_LENGTH:
2325 if (!guest_cpuid_has_osvw(vcpu))
2326 return 1;
2327 vcpu->arch.osvw.length = data;
2328 break;
2329 case MSR_AMD64_OSVW_STATUS:
2330 if (!guest_cpuid_has_osvw(vcpu))
2331 return 1;
2332 vcpu->arch.osvw.status = data;
2333 break;
2334 default:
2335 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2336 return xen_hvm_config(vcpu, data);
2337 if (kvm_pmu_is_valid_msr(vcpu, msr))
2338 return kvm_pmu_set_msr(vcpu, msr_info);
2339 if (!ignore_msrs) {
2340 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2341 msr, data);
2342 return 1;
2343 } else {
2344 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2345 msr, data);
2346 break;
2347 }
2348 }
2349 return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2352
2353
2354 /*
2355 * Reads an msr value (of 'msr_index') into 'pdata'.
2356 * Returns 0 on success, non-0 otherwise.
2357 * Assumes vcpu_load() was already called.
2358 */
2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2360 {
2361 return kvm_x86_ops->get_msr(vcpu, msr);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_get_msr);
2364
2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 {
2367 u64 data;
2368 u64 mcg_cap = vcpu->arch.mcg_cap;
2369 unsigned bank_num = mcg_cap & 0xff;
2370
2371 switch (msr) {
2372 case MSR_IA32_P5_MC_ADDR:
2373 case MSR_IA32_P5_MC_TYPE:
2374 data = 0;
2375 break;
2376 case MSR_IA32_MCG_CAP:
2377 data = vcpu->arch.mcg_cap;
2378 break;
2379 case MSR_IA32_MCG_CTL:
2380 if (!(mcg_cap & MCG_CTL_P))
2381 return 1;
2382 data = vcpu->arch.mcg_ctl;
2383 break;
2384 case MSR_IA32_MCG_STATUS:
2385 data = vcpu->arch.mcg_status;
2386 break;
2387 default:
2388 if (msr >= MSR_IA32_MC0_CTL &&
2389 msr < MSR_IA32_MCx_CTL(bank_num)) {
2390 u32 offset = msr - MSR_IA32_MC0_CTL;
2391 data = vcpu->arch.mce_banks[offset];
2392 break;
2393 }
2394 return 1;
2395 }
2396 *pdata = data;
2397 return 0;
2398 }
2399
2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402 switch (msr_info->index) {
2403 case MSR_IA32_PLATFORM_ID:
2404 case MSR_IA32_EBL_CR_POWERON:
2405 case MSR_IA32_DEBUGCTLMSR:
2406 case MSR_IA32_LASTBRANCHFROMIP:
2407 case MSR_IA32_LASTBRANCHTOIP:
2408 case MSR_IA32_LASTINTFROMIP:
2409 case MSR_IA32_LASTINTTOIP:
2410 case MSR_K8_SYSCFG:
2411 case MSR_K8_TSEG_ADDR:
2412 case MSR_K8_TSEG_MASK:
2413 case MSR_K7_HWCR:
2414 case MSR_VM_HSAVE_PA:
2415 case MSR_K8_INT_PENDING_MSG:
2416 case MSR_AMD64_NB_CFG:
2417 case MSR_FAM10H_MMIO_CONF_BASE:
2418 case MSR_AMD64_BU_CFG2:
2419 case MSR_IA32_PERF_CTL:
2420 msr_info->data = 0;
2421 break;
2422 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428 msr_info->data = 0;
2429 break;
2430 case MSR_IA32_UCODE_REV:
2431 msr_info->data = 0x100000000ULL;
2432 break;
2433 case MSR_MTRRcap:
2434 case 0x200 ... 0x2ff:
2435 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436 case 0xcd: /* fsb frequency */
2437 msr_info->data = 3;
2438 break;
2439 /*
2440 * MSR_EBC_FREQUENCY_ID
2441 * Conservative value valid for even the basic CPU models.
2442 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444 * and 266MHz for model 3, or 4. Set Core Clock
2445 * Frequency to System Bus Frequency Ratio to 1 (bits
2446 * 31:24) even though these are only valid for CPU
2447 * models > 2, however guests may end up dividing or
2448 * multiplying by zero otherwise.
2449 */
2450 case MSR_EBC_FREQUENCY_ID:
2451 msr_info->data = 1 << 24;
2452 break;
2453 case MSR_IA32_APICBASE:
2454 msr_info->data = kvm_get_apic_base(vcpu);
2455 break;
2456 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458 break;
2459 case MSR_IA32_TSCDEADLINE:
2460 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461 break;
2462 case MSR_IA32_TSC_ADJUST:
2463 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464 break;
2465 case MSR_IA32_MISC_ENABLE:
2466 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467 break;
2468 case MSR_IA32_SMBASE:
2469 if (!msr_info->host_initiated)
2470 return 1;
2471 msr_info->data = vcpu->arch.smbase;
2472 break;
2473 case MSR_IA32_PERF_STATUS:
2474 /* TSC increment by tick */
2475 msr_info->data = 1000ULL;
2476 /* CPU multiplier */
2477 msr_info->data |= (((uint64_t)4ULL) << 40);
2478 break;
2479 case MSR_EFER:
2480 msr_info->data = vcpu->arch.efer;
2481 break;
2482 case MSR_KVM_WALL_CLOCK:
2483 case MSR_KVM_WALL_CLOCK_NEW:
2484 msr_info->data = vcpu->kvm->arch.wall_clock;
2485 break;
2486 case MSR_KVM_SYSTEM_TIME:
2487 case MSR_KVM_SYSTEM_TIME_NEW:
2488 msr_info->data = vcpu->arch.time;
2489 break;
2490 case MSR_KVM_ASYNC_PF_EN:
2491 msr_info->data = vcpu->arch.apf.msr_val;
2492 break;
2493 case MSR_KVM_STEAL_TIME:
2494 msr_info->data = vcpu->arch.st.msr_val;
2495 break;
2496 case MSR_KVM_PV_EOI_EN:
2497 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498 break;
2499 case MSR_IA32_P5_MC_ADDR:
2500 case MSR_IA32_P5_MC_TYPE:
2501 case MSR_IA32_MCG_CAP:
2502 case MSR_IA32_MCG_CTL:
2503 case MSR_IA32_MCG_STATUS:
2504 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506 case MSR_K7_CLK_CTL:
2507 /*
2508 * Provide expected ramp-up count for K7. All other
2509 * are set to zero, indicating minimum divisors for
2510 * every field.
2511 *
2512 * This prevents guest kernels on AMD host with CPU
2513 * type 6, model 8 and higher from exploding due to
2514 * the rdmsr failing.
2515 */
2516 msr_info->data = 0x20000000;
2517 break;
2518 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520 case HV_X64_MSR_CRASH_CTL:
2521 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522 return kvm_hv_get_msr_common(vcpu,
2523 msr_info->index, &msr_info->data);
2524 break;
2525 case MSR_IA32_BBL_CR_CTL3:
2526 /* This legacy MSR exists but isn't fully documented in current
2527 * silicon. It is however accessed by winxp in very narrow
2528 * scenarios where it sets bit #19, itself documented as
2529 * a "reserved" bit. Best effort attempt to source coherent
2530 * read data here should the balance of the register be
2531 * interpreted by the guest:
2532 *
2533 * L2 cache control register 3: 64GB range, 256KB size,
2534 * enabled, latency 0x1, configured
2535 */
2536 msr_info->data = 0xbe702111;
2537 break;
2538 case MSR_AMD64_OSVW_ID_LENGTH:
2539 if (!guest_cpuid_has_osvw(vcpu))
2540 return 1;
2541 msr_info->data = vcpu->arch.osvw.length;
2542 break;
2543 case MSR_AMD64_OSVW_STATUS:
2544 if (!guest_cpuid_has_osvw(vcpu))
2545 return 1;
2546 msr_info->data = vcpu->arch.osvw.status;
2547 break;
2548 default:
2549 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2550 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2551 if (!ignore_msrs) {
2552 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2553 msr_info->index);
2554 return 1;
2555 } else {
2556 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2557 msr_info->data = 0;
2558 }
2559 break;
2560 }
2561 return 0;
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2564
2565 /*
2566 * Read or write a bunch of msrs. All parameters are kernel addresses.
2567 *
2568 * @return number of msrs set successfully.
2569 */
2570 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2571 struct kvm_msr_entry *entries,
2572 int (*do_msr)(struct kvm_vcpu *vcpu,
2573 unsigned index, u64 *data))
2574 {
2575 int i, idx;
2576
2577 idx = srcu_read_lock(&vcpu->kvm->srcu);
2578 for (i = 0; i < msrs->nmsrs; ++i)
2579 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2580 break;
2581 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2582
2583 return i;
2584 }
2585
2586 /*
2587 * Read or write a bunch of msrs. Parameters are user addresses.
2588 *
2589 * @return number of msrs set successfully.
2590 */
2591 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2592 int (*do_msr)(struct kvm_vcpu *vcpu,
2593 unsigned index, u64 *data),
2594 int writeback)
2595 {
2596 struct kvm_msrs msrs;
2597 struct kvm_msr_entry *entries;
2598 int r, n;
2599 unsigned size;
2600
2601 r = -EFAULT;
2602 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2603 goto out;
2604
2605 r = -E2BIG;
2606 if (msrs.nmsrs >= MAX_IO_MSRS)
2607 goto out;
2608
2609 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2610 entries = memdup_user(user_msrs->entries, size);
2611 if (IS_ERR(entries)) {
2612 r = PTR_ERR(entries);
2613 goto out;
2614 }
2615
2616 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2617 if (r < 0)
2618 goto out_free;
2619
2620 r = -EFAULT;
2621 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2622 goto out_free;
2623
2624 r = n;
2625
2626 out_free:
2627 kfree(entries);
2628 out:
2629 return r;
2630 }
2631
2632 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2633 {
2634 int r;
2635
2636 switch (ext) {
2637 case KVM_CAP_IRQCHIP:
2638 case KVM_CAP_HLT:
2639 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2640 case KVM_CAP_SET_TSS_ADDR:
2641 case KVM_CAP_EXT_CPUID:
2642 case KVM_CAP_EXT_EMUL_CPUID:
2643 case KVM_CAP_CLOCKSOURCE:
2644 case KVM_CAP_PIT:
2645 case KVM_CAP_NOP_IO_DELAY:
2646 case KVM_CAP_MP_STATE:
2647 case KVM_CAP_SYNC_MMU:
2648 case KVM_CAP_USER_NMI:
2649 case KVM_CAP_REINJECT_CONTROL:
2650 case KVM_CAP_IRQ_INJECT_STATUS:
2651 case KVM_CAP_IOEVENTFD:
2652 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2653 case KVM_CAP_PIT2:
2654 case KVM_CAP_PIT_STATE2:
2655 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2656 case KVM_CAP_XEN_HVM:
2657 case KVM_CAP_VCPU_EVENTS:
2658 case KVM_CAP_HYPERV:
2659 case KVM_CAP_HYPERV_VAPIC:
2660 case KVM_CAP_HYPERV_SPIN:
2661 case KVM_CAP_HYPERV_SYNIC:
2662 case KVM_CAP_PCI_SEGMENT:
2663 case KVM_CAP_DEBUGREGS:
2664 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2665 case KVM_CAP_XSAVE:
2666 case KVM_CAP_ASYNC_PF:
2667 case KVM_CAP_GET_TSC_KHZ:
2668 case KVM_CAP_KVMCLOCK_CTRL:
2669 case KVM_CAP_READONLY_MEM:
2670 case KVM_CAP_HYPERV_TIME:
2671 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2672 case KVM_CAP_TSC_DEADLINE_TIMER:
2673 case KVM_CAP_ENABLE_CAP_VM:
2674 case KVM_CAP_DISABLE_QUIRKS:
2675 case KVM_CAP_SET_BOOT_CPU_ID:
2676 case KVM_CAP_SPLIT_IRQCHIP:
2677 case KVM_CAP_IMMEDIATE_EXIT:
2678 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2679 case KVM_CAP_ASSIGN_DEV_IRQ:
2680 case KVM_CAP_PCI_2_3:
2681 #endif
2682 r = 1;
2683 break;
2684 case KVM_CAP_ADJUST_CLOCK:
2685 r = KVM_CLOCK_TSC_STABLE;
2686 break;
2687 case KVM_CAP_X86_SMM:
2688 /* SMBASE is usually relocated above 1M on modern chipsets,
2689 * and SMM handlers might indeed rely on 4G segment limits,
2690 * so do not report SMM to be available if real mode is
2691 * emulated via vm86 mode. Still, do not go to great lengths
2692 * to avoid userspace's usage of the feature, because it is a
2693 * fringe case that is not enabled except via specific settings
2694 * of the module parameters.
2695 */
2696 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2697 break;
2698 case KVM_CAP_COALESCED_MMIO:
2699 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2700 break;
2701 case KVM_CAP_VAPIC:
2702 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2703 break;
2704 case KVM_CAP_NR_VCPUS:
2705 r = KVM_SOFT_MAX_VCPUS;
2706 break;
2707 case KVM_CAP_MAX_VCPUS:
2708 r = KVM_MAX_VCPUS;
2709 break;
2710 case KVM_CAP_NR_MEMSLOTS:
2711 r = KVM_USER_MEM_SLOTS;
2712 break;
2713 case KVM_CAP_PV_MMU: /* obsolete */
2714 r = 0;
2715 break;
2716 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2717 case KVM_CAP_IOMMU:
2718 r = iommu_present(&pci_bus_type);
2719 break;
2720 #endif
2721 case KVM_CAP_MCE:
2722 r = KVM_MAX_MCE_BANKS;
2723 break;
2724 case KVM_CAP_XCRS:
2725 r = boot_cpu_has(X86_FEATURE_XSAVE);
2726 break;
2727 case KVM_CAP_TSC_CONTROL:
2728 r = kvm_has_tsc_control;
2729 break;
2730 case KVM_CAP_X2APIC_API:
2731 r = KVM_X2APIC_API_VALID_FLAGS;
2732 break;
2733 default:
2734 r = 0;
2735 break;
2736 }
2737 return r;
2738
2739 }
2740
2741 long kvm_arch_dev_ioctl(struct file *filp,
2742 unsigned int ioctl, unsigned long arg)
2743 {
2744 void __user *argp = (void __user *)arg;
2745 long r;
2746
2747 switch (ioctl) {
2748 case KVM_GET_MSR_INDEX_LIST: {
2749 struct kvm_msr_list __user *user_msr_list = argp;
2750 struct kvm_msr_list msr_list;
2751 unsigned n;
2752
2753 r = -EFAULT;
2754 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2755 goto out;
2756 n = msr_list.nmsrs;
2757 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2758 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2759 goto out;
2760 r = -E2BIG;
2761 if (n < msr_list.nmsrs)
2762 goto out;
2763 r = -EFAULT;
2764 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2765 num_msrs_to_save * sizeof(u32)))
2766 goto out;
2767 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2768 &emulated_msrs,
2769 num_emulated_msrs * sizeof(u32)))
2770 goto out;
2771 r = 0;
2772 break;
2773 }
2774 case KVM_GET_SUPPORTED_CPUID:
2775 case KVM_GET_EMULATED_CPUID: {
2776 struct kvm_cpuid2 __user *cpuid_arg = argp;
2777 struct kvm_cpuid2 cpuid;
2778
2779 r = -EFAULT;
2780 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2781 goto out;
2782
2783 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2784 ioctl);
2785 if (r)
2786 goto out;
2787
2788 r = -EFAULT;
2789 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2790 goto out;
2791 r = 0;
2792 break;
2793 }
2794 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2795 r = -EFAULT;
2796 if (copy_to_user(argp, &kvm_mce_cap_supported,
2797 sizeof(kvm_mce_cap_supported)))
2798 goto out;
2799 r = 0;
2800 break;
2801 }
2802 default:
2803 r = -EINVAL;
2804 }
2805 out:
2806 return r;
2807 }
2808
2809 static void wbinvd_ipi(void *garbage)
2810 {
2811 wbinvd();
2812 }
2813
2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2815 {
2816 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2817 }
2818
2819 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2820 {
2821 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2822 }
2823
2824 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2825 {
2826 /* Address WBINVD may be executed by guest */
2827 if (need_emulate_wbinvd(vcpu)) {
2828 if (kvm_x86_ops->has_wbinvd_exit())
2829 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2830 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2831 smp_call_function_single(vcpu->cpu,
2832 wbinvd_ipi, NULL, 1);
2833 }
2834
2835 kvm_x86_ops->vcpu_load(vcpu, cpu);
2836
2837 /* Apply any externally detected TSC adjustments (due to suspend) */
2838 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2839 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2840 vcpu->arch.tsc_offset_adjustment = 0;
2841 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2842 }
2843
2844 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2845 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2846 rdtsc() - vcpu->arch.last_host_tsc;
2847 if (tsc_delta < 0)
2848 mark_tsc_unstable("KVM discovered backwards TSC");
2849
2850 if (check_tsc_unstable()) {
2851 u64 offset = kvm_compute_tsc_offset(vcpu,
2852 vcpu->arch.last_guest_tsc);
2853 kvm_vcpu_write_tsc_offset(vcpu, offset);
2854 vcpu->arch.tsc_catchup = 1;
2855 }
2856 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2857 kvm_x86_ops->set_hv_timer(vcpu,
2858 kvm_get_lapic_target_expiration_tsc(vcpu)))
2859 kvm_lapic_switch_to_sw_timer(vcpu);
2860 /*
2861 * On a host with synchronized TSC, there is no need to update
2862 * kvmclock on vcpu->cpu migration
2863 */
2864 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2865 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2866 if (vcpu->cpu != cpu)
2867 kvm_migrate_timers(vcpu);
2868 vcpu->cpu = cpu;
2869 }
2870
2871 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2872 }
2873
2874 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2875 {
2876 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2877 return;
2878
2879 vcpu->arch.st.steal.preempted = 1;
2880
2881 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2882 &vcpu->arch.st.steal.preempted,
2883 offsetof(struct kvm_steal_time, preempted),
2884 sizeof(vcpu->arch.st.steal.preempted));
2885 }
2886
2887 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2888 {
2889 int idx;
2890 /*
2891 * Disable page faults because we're in atomic context here.
2892 * kvm_write_guest_offset_cached() would call might_fault()
2893 * that relies on pagefault_disable() to tell if there's a
2894 * bug. NOTE: the write to guest memory may not go through if
2895 * during postcopy live migration or if there's heavy guest
2896 * paging.
2897 */
2898 pagefault_disable();
2899 /*
2900 * kvm_memslots() will be called by
2901 * kvm_write_guest_offset_cached() so take the srcu lock.
2902 */
2903 idx = srcu_read_lock(&vcpu->kvm->srcu);
2904 kvm_steal_time_set_preempted(vcpu);
2905 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2906 pagefault_enable();
2907 kvm_x86_ops->vcpu_put(vcpu);
2908 kvm_put_guest_fpu(vcpu);
2909 vcpu->arch.last_host_tsc = rdtsc();
2910 }
2911
2912 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2913 struct kvm_lapic_state *s)
2914 {
2915 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2916 kvm_x86_ops->sync_pir_to_irr(vcpu);
2917
2918 return kvm_apic_get_state(vcpu, s);
2919 }
2920
2921 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2922 struct kvm_lapic_state *s)
2923 {
2924 int r;
2925
2926 r = kvm_apic_set_state(vcpu, s);
2927 if (r)
2928 return r;
2929 update_cr8_intercept(vcpu);
2930
2931 return 0;
2932 }
2933
2934 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2935 {
2936 return (!lapic_in_kernel(vcpu) ||
2937 kvm_apic_accept_pic_intr(vcpu));
2938 }
2939
2940 /*
2941 * if userspace requested an interrupt window, check that the
2942 * interrupt window is open.
2943 *
2944 * No need to exit to userspace if we already have an interrupt queued.
2945 */
2946 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2947 {
2948 return kvm_arch_interrupt_allowed(vcpu) &&
2949 !kvm_cpu_has_interrupt(vcpu) &&
2950 !kvm_event_needs_reinjection(vcpu) &&
2951 kvm_cpu_accept_dm_intr(vcpu);
2952 }
2953
2954 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2955 struct kvm_interrupt *irq)
2956 {
2957 if (irq->irq >= KVM_NR_INTERRUPTS)
2958 return -EINVAL;
2959
2960 if (!irqchip_in_kernel(vcpu->kvm)) {
2961 kvm_queue_interrupt(vcpu, irq->irq, false);
2962 kvm_make_request(KVM_REQ_EVENT, vcpu);
2963 return 0;
2964 }
2965
2966 /*
2967 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2968 * fail for in-kernel 8259.
2969 */
2970 if (pic_in_kernel(vcpu->kvm))
2971 return -ENXIO;
2972
2973 if (vcpu->arch.pending_external_vector != -1)
2974 return -EEXIST;
2975
2976 vcpu->arch.pending_external_vector = irq->irq;
2977 kvm_make_request(KVM_REQ_EVENT, vcpu);
2978 return 0;
2979 }
2980
2981 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2982 {
2983 kvm_inject_nmi(vcpu);
2984
2985 return 0;
2986 }
2987
2988 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2989 {
2990 kvm_make_request(KVM_REQ_SMI, vcpu);
2991
2992 return 0;
2993 }
2994
2995 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2996 struct kvm_tpr_access_ctl *tac)
2997 {
2998 if (tac->flags)
2999 return -EINVAL;
3000 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3001 return 0;
3002 }
3003
3004 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3005 u64 mcg_cap)
3006 {
3007 int r;
3008 unsigned bank_num = mcg_cap & 0xff, bank;
3009
3010 r = -EINVAL;
3011 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3012 goto out;
3013 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3014 goto out;
3015 r = 0;
3016 vcpu->arch.mcg_cap = mcg_cap;
3017 /* Init IA32_MCG_CTL to all 1s */
3018 if (mcg_cap & MCG_CTL_P)
3019 vcpu->arch.mcg_ctl = ~(u64)0;
3020 /* Init IA32_MCi_CTL to all 1s */
3021 for (bank = 0; bank < bank_num; bank++)
3022 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3023
3024 if (kvm_x86_ops->setup_mce)
3025 kvm_x86_ops->setup_mce(vcpu);
3026 out:
3027 return r;
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3031 struct kvm_x86_mce *mce)
3032 {
3033 u64 mcg_cap = vcpu->arch.mcg_cap;
3034 unsigned bank_num = mcg_cap & 0xff;
3035 u64 *banks = vcpu->arch.mce_banks;
3036
3037 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3038 return -EINVAL;
3039 /*
3040 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3041 * reporting is disabled
3042 */
3043 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3044 vcpu->arch.mcg_ctl != ~(u64)0)
3045 return 0;
3046 banks += 4 * mce->bank;
3047 /*
3048 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3049 * reporting is disabled for the bank
3050 */
3051 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3052 return 0;
3053 if (mce->status & MCI_STATUS_UC) {
3054 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3055 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3056 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3057 return 0;
3058 }
3059 if (banks[1] & MCI_STATUS_VAL)
3060 mce->status |= MCI_STATUS_OVER;
3061 banks[2] = mce->addr;
3062 banks[3] = mce->misc;
3063 vcpu->arch.mcg_status = mce->mcg_status;
3064 banks[1] = mce->status;
3065 kvm_queue_exception(vcpu, MC_VECTOR);
3066 } else if (!(banks[1] & MCI_STATUS_VAL)
3067 || !(banks[1] & MCI_STATUS_UC)) {
3068 if (banks[1] & MCI_STATUS_VAL)
3069 mce->status |= MCI_STATUS_OVER;
3070 banks[2] = mce->addr;
3071 banks[3] = mce->misc;
3072 banks[1] = mce->status;
3073 } else
3074 banks[1] |= MCI_STATUS_OVER;
3075 return 0;
3076 }
3077
3078 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3079 struct kvm_vcpu_events *events)
3080 {
3081 process_nmi(vcpu);
3082 events->exception.injected =
3083 vcpu->arch.exception.pending &&
3084 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3085 events->exception.nr = vcpu->arch.exception.nr;
3086 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3087 events->exception.pad = 0;
3088 events->exception.error_code = vcpu->arch.exception.error_code;
3089
3090 events->interrupt.injected =
3091 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3092 events->interrupt.nr = vcpu->arch.interrupt.nr;
3093 events->interrupt.soft = 0;
3094 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3095
3096 events->nmi.injected = vcpu->arch.nmi_injected;
3097 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3098 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3099 events->nmi.pad = 0;
3100
3101 events->sipi_vector = 0; /* never valid when reporting to user space */
3102
3103 events->smi.smm = is_smm(vcpu);
3104 events->smi.pending = vcpu->arch.smi_pending;
3105 events->smi.smm_inside_nmi =
3106 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3107 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3108
3109 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3110 | KVM_VCPUEVENT_VALID_SHADOW
3111 | KVM_VCPUEVENT_VALID_SMM);
3112 memset(&events->reserved, 0, sizeof(events->reserved));
3113 }
3114
3115 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3116
3117 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3118 struct kvm_vcpu_events *events)
3119 {
3120 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3121 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3122 | KVM_VCPUEVENT_VALID_SHADOW
3123 | KVM_VCPUEVENT_VALID_SMM))
3124 return -EINVAL;
3125
3126 if (events->exception.injected &&
3127 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3128 return -EINVAL;
3129
3130 process_nmi(vcpu);
3131 vcpu->arch.exception.pending = events->exception.injected;
3132 vcpu->arch.exception.nr = events->exception.nr;
3133 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3134 vcpu->arch.exception.error_code = events->exception.error_code;
3135
3136 vcpu->arch.interrupt.pending = events->interrupt.injected;
3137 vcpu->arch.interrupt.nr = events->interrupt.nr;
3138 vcpu->arch.interrupt.soft = events->interrupt.soft;
3139 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3140 kvm_x86_ops->set_interrupt_shadow(vcpu,
3141 events->interrupt.shadow);
3142
3143 vcpu->arch.nmi_injected = events->nmi.injected;
3144 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3145 vcpu->arch.nmi_pending = events->nmi.pending;
3146 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3147
3148 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3149 lapic_in_kernel(vcpu))
3150 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3151
3152 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3153 u32 hflags = vcpu->arch.hflags;
3154 if (events->smi.smm)
3155 hflags |= HF_SMM_MASK;
3156 else
3157 hflags &= ~HF_SMM_MASK;
3158 kvm_set_hflags(vcpu, hflags);
3159
3160 vcpu->arch.smi_pending = events->smi.pending;
3161 if (events->smi.smm_inside_nmi)
3162 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3163 else
3164 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3165 if (lapic_in_kernel(vcpu)) {
3166 if (events->smi.latched_init)
3167 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3168 else
3169 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3170 }
3171 }
3172
3173 kvm_make_request(KVM_REQ_EVENT, vcpu);
3174
3175 return 0;
3176 }
3177
3178 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3179 struct kvm_debugregs *dbgregs)
3180 {
3181 unsigned long val;
3182
3183 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3184 kvm_get_dr(vcpu, 6, &val);
3185 dbgregs->dr6 = val;
3186 dbgregs->dr7 = vcpu->arch.dr7;
3187 dbgregs->flags = 0;
3188 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3189 }
3190
3191 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3192 struct kvm_debugregs *dbgregs)
3193 {
3194 if (dbgregs->flags)
3195 return -EINVAL;
3196
3197 if (dbgregs->dr6 & ~0xffffffffull)
3198 return -EINVAL;
3199 if (dbgregs->dr7 & ~0xffffffffull)
3200 return -EINVAL;
3201
3202 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3203 kvm_update_dr0123(vcpu);
3204 vcpu->arch.dr6 = dbgregs->dr6;
3205 kvm_update_dr6(vcpu);
3206 vcpu->arch.dr7 = dbgregs->dr7;
3207 kvm_update_dr7(vcpu);
3208
3209 return 0;
3210 }
3211
3212 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3213
3214 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3215 {
3216 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3217 u64 xstate_bv = xsave->header.xfeatures;
3218 u64 valid;
3219
3220 /*
3221 * Copy legacy XSAVE area, to avoid complications with CPUID
3222 * leaves 0 and 1 in the loop below.
3223 */
3224 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3225
3226 /* Set XSTATE_BV */
3227 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3228 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3229
3230 /*
3231 * Copy each region from the possibly compacted offset to the
3232 * non-compacted offset.
3233 */
3234 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3235 while (valid) {
3236 u64 feature = valid & -valid;
3237 int index = fls64(feature) - 1;
3238 void *src = get_xsave_addr(xsave, feature);
3239
3240 if (src) {
3241 u32 size, offset, ecx, edx;
3242 cpuid_count(XSTATE_CPUID, index,
3243 &size, &offset, &ecx, &edx);
3244 memcpy(dest + offset, src, size);
3245 }
3246
3247 valid -= feature;
3248 }
3249 }
3250
3251 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3252 {
3253 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3254 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3255 u64 valid;
3256
3257 /*
3258 * Copy legacy XSAVE area, to avoid complications with CPUID
3259 * leaves 0 and 1 in the loop below.
3260 */
3261 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3262
3263 /* Set XSTATE_BV and possibly XCOMP_BV. */
3264 xsave->header.xfeatures = xstate_bv;
3265 if (boot_cpu_has(X86_FEATURE_XSAVES))
3266 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3267
3268 /*
3269 * Copy each region from the non-compacted offset to the
3270 * possibly compacted offset.
3271 */
3272 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3273 while (valid) {
3274 u64 feature = valid & -valid;
3275 int index = fls64(feature) - 1;
3276 void *dest = get_xsave_addr(xsave, feature);
3277
3278 if (dest) {
3279 u32 size, offset, ecx, edx;
3280 cpuid_count(XSTATE_CPUID, index,
3281 &size, &offset, &ecx, &edx);
3282 memcpy(dest, src + offset, size);
3283 }
3284
3285 valid -= feature;
3286 }
3287 }
3288
3289 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3290 struct kvm_xsave *guest_xsave)
3291 {
3292 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3293 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3294 fill_xsave((u8 *) guest_xsave->region, vcpu);
3295 } else {
3296 memcpy(guest_xsave->region,
3297 &vcpu->arch.guest_fpu.state.fxsave,
3298 sizeof(struct fxregs_state));
3299 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3300 XFEATURE_MASK_FPSSE;
3301 }
3302 }
3303
3304 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3305 struct kvm_xsave *guest_xsave)
3306 {
3307 u64 xstate_bv =
3308 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3309
3310 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3311 /*
3312 * Here we allow setting states that are not present in
3313 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3314 * with old userspace.
3315 */
3316 if (xstate_bv & ~kvm_supported_xcr0())
3317 return -EINVAL;
3318 load_xsave(vcpu, (u8 *)guest_xsave->region);
3319 } else {
3320 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3321 return -EINVAL;
3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323 guest_xsave->region, sizeof(struct fxregs_state));
3324 }
3325 return 0;
3326 }
3327
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329 struct kvm_xcrs *guest_xcrs)
3330 {
3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332 guest_xcrs->nr_xcrs = 0;
3333 return;
3334 }
3335
3336 guest_xcrs->nr_xcrs = 1;
3337 guest_xcrs->flags = 0;
3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3340 }
3341
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343 struct kvm_xcrs *guest_xcrs)
3344 {
3345 int i, r = 0;
3346
3347 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3348 return -EINVAL;
3349
3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3351 return -EINVAL;
3352
3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354 /* Only support XCR0 currently */
3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357 guest_xcrs->xcrs[i].value);
3358 break;
3359 }
3360 if (r)
3361 r = -EINVAL;
3362 return r;
3363 }
3364
3365 /*
3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367 * stopped by the hypervisor. This function will be called from the host only.
3368 * EINVAL is returned when the host attempts to set the flag for a guest that
3369 * does not support pv clocks.
3370 */
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3372 {
3373 if (!vcpu->arch.pv_time_enabled)
3374 return -EINVAL;
3375 vcpu->arch.pvclock_set_guest_stopped_request = true;
3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377 return 0;
3378 }
3379
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381 struct kvm_enable_cap *cap)
3382 {
3383 if (cap->flags)
3384 return -EINVAL;
3385
3386 switch (cap->cap) {
3387 case KVM_CAP_HYPERV_SYNIC:
3388 if (!irqchip_in_kernel(vcpu->kvm))
3389 return -EINVAL;
3390 return kvm_hv_activate_synic(vcpu);
3391 default:
3392 return -EINVAL;
3393 }
3394 }
3395
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3398 {
3399 struct kvm_vcpu *vcpu = filp->private_data;
3400 void __user *argp = (void __user *)arg;
3401 int r;
3402 union {
3403 struct kvm_lapic_state *lapic;
3404 struct kvm_xsave *xsave;
3405 struct kvm_xcrs *xcrs;
3406 void *buffer;
3407 } u;
3408
3409 u.buffer = NULL;
3410 switch (ioctl) {
3411 case KVM_GET_LAPIC: {
3412 r = -EINVAL;
3413 if (!lapic_in_kernel(vcpu))
3414 goto out;
3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416
3417 r = -ENOMEM;
3418 if (!u.lapic)
3419 goto out;
3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3421 if (r)
3422 goto out;
3423 r = -EFAULT;
3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425 goto out;
3426 r = 0;
3427 break;
3428 }
3429 case KVM_SET_LAPIC: {
3430 r = -EINVAL;
3431 if (!lapic_in_kernel(vcpu))
3432 goto out;
3433 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434 if (IS_ERR(u.lapic))
3435 return PTR_ERR(u.lapic);
3436
3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3438 break;
3439 }
3440 case KVM_INTERRUPT: {
3441 struct kvm_interrupt irq;
3442
3443 r = -EFAULT;
3444 if (copy_from_user(&irq, argp, sizeof irq))
3445 goto out;
3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3447 break;
3448 }
3449 case KVM_NMI: {
3450 r = kvm_vcpu_ioctl_nmi(vcpu);
3451 break;
3452 }
3453 case KVM_SMI: {
3454 r = kvm_vcpu_ioctl_smi(vcpu);
3455 break;
3456 }
3457 case KVM_SET_CPUID: {
3458 struct kvm_cpuid __user *cpuid_arg = argp;
3459 struct kvm_cpuid cpuid;
3460
3461 r = -EFAULT;
3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463 goto out;
3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3465 break;
3466 }
3467 case KVM_SET_CPUID2: {
3468 struct kvm_cpuid2 __user *cpuid_arg = argp;
3469 struct kvm_cpuid2 cpuid;
3470
3471 r = -EFAULT;
3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473 goto out;
3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475 cpuid_arg->entries);
3476 break;
3477 }
3478 case KVM_GET_CPUID2: {
3479 struct kvm_cpuid2 __user *cpuid_arg = argp;
3480 struct kvm_cpuid2 cpuid;
3481
3482 r = -EFAULT;
3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3484 goto out;
3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486 cpuid_arg->entries);
3487 if (r)
3488 goto out;
3489 r = -EFAULT;
3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3491 goto out;
3492 r = 0;
3493 break;
3494 }
3495 case KVM_GET_MSRS:
3496 r = msr_io(vcpu, argp, do_get_msr, 1);
3497 break;
3498 case KVM_SET_MSRS:
3499 r = msr_io(vcpu, argp, do_set_msr, 0);
3500 break;
3501 case KVM_TPR_ACCESS_REPORTING: {
3502 struct kvm_tpr_access_ctl tac;
3503
3504 r = -EFAULT;
3505 if (copy_from_user(&tac, argp, sizeof tac))
3506 goto out;
3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3508 if (r)
3509 goto out;
3510 r = -EFAULT;
3511 if (copy_to_user(argp, &tac, sizeof tac))
3512 goto out;
3513 r = 0;
3514 break;
3515 };
3516 case KVM_SET_VAPIC_ADDR: {
3517 struct kvm_vapic_addr va;
3518 int idx;
3519
3520 r = -EINVAL;
3521 if (!lapic_in_kernel(vcpu))
3522 goto out;
3523 r = -EFAULT;
3524 if (copy_from_user(&va, argp, sizeof va))
3525 goto out;
3526 idx = srcu_read_lock(&vcpu->kvm->srcu);
3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3529 break;
3530 }
3531 case KVM_X86_SETUP_MCE: {
3532 u64 mcg_cap;
3533
3534 r = -EFAULT;
3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3536 goto out;
3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3538 break;
3539 }
3540 case KVM_X86_SET_MCE: {
3541 struct kvm_x86_mce mce;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&mce, argp, sizeof mce))
3545 goto out;
3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3547 break;
3548 }
3549 case KVM_GET_VCPU_EVENTS: {
3550 struct kvm_vcpu_events events;
3551
3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3553
3554 r = -EFAULT;
3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556 break;
3557 r = 0;
3558 break;
3559 }
3560 case KVM_SET_VCPU_EVENTS: {
3561 struct kvm_vcpu_events events;
3562
3563 r = -EFAULT;
3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3565 break;
3566
3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3568 break;
3569 }
3570 case KVM_GET_DEBUGREGS: {
3571 struct kvm_debugregs dbgregs;
3572
3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3574
3575 r = -EFAULT;
3576 if (copy_to_user(argp, &dbgregs,
3577 sizeof(struct kvm_debugregs)))
3578 break;
3579 r = 0;
3580 break;
3581 }
3582 case KVM_SET_DEBUGREGS: {
3583 struct kvm_debugregs dbgregs;
3584
3585 r = -EFAULT;
3586 if (copy_from_user(&dbgregs, argp,
3587 sizeof(struct kvm_debugregs)))
3588 break;
3589
3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3591 break;
3592 }
3593 case KVM_GET_XSAVE: {
3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595 r = -ENOMEM;
3596 if (!u.xsave)
3597 break;
3598
3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3600
3601 r = -EFAULT;
3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603 break;
3604 r = 0;
3605 break;
3606 }
3607 case KVM_SET_XSAVE: {
3608 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609 if (IS_ERR(u.xsave))
3610 return PTR_ERR(u.xsave);
3611
3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3613 break;
3614 }
3615 case KVM_GET_XCRS: {
3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617 r = -ENOMEM;
3618 if (!u.xcrs)
3619 break;
3620
3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3622
3623 r = -EFAULT;
3624 if (copy_to_user(argp, u.xcrs,
3625 sizeof(struct kvm_xcrs)))
3626 break;
3627 r = 0;
3628 break;
3629 }
3630 case KVM_SET_XCRS: {
3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3632 if (IS_ERR(u.xcrs))
3633 return PTR_ERR(u.xcrs);
3634
3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3636 break;
3637 }
3638 case KVM_SET_TSC_KHZ: {
3639 u32 user_tsc_khz;
3640
3641 r = -EINVAL;
3642 user_tsc_khz = (u32)arg;
3643
3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3645 goto out;
3646
3647 if (user_tsc_khz == 0)
3648 user_tsc_khz = tsc_khz;
3649
3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651 r = 0;
3652
3653 goto out;
3654 }
3655 case KVM_GET_TSC_KHZ: {
3656 r = vcpu->arch.virtual_tsc_khz;
3657 goto out;
3658 }
3659 case KVM_KVMCLOCK_CTRL: {
3660 r = kvm_set_guest_paused(vcpu);
3661 goto out;
3662 }
3663 case KVM_ENABLE_CAP: {
3664 struct kvm_enable_cap cap;
3665
3666 r = -EFAULT;
3667 if (copy_from_user(&cap, argp, sizeof(cap)))
3668 goto out;
3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3670 break;
3671 }
3672 default:
3673 r = -EINVAL;
3674 }
3675 out:
3676 kfree(u.buffer);
3677 return r;
3678 }
3679
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3681 {
3682 return VM_FAULT_SIGBUS;
3683 }
3684
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3686 {
3687 int ret;
3688
3689 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3690 return -EINVAL;
3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3692 return ret;
3693 }
3694
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3696 u64 ident_addr)
3697 {
3698 kvm->arch.ept_identity_map_addr = ident_addr;
3699 return 0;
3700 }
3701
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703 u32 kvm_nr_mmu_pages)
3704 {
3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3706 return -EINVAL;
3707
3708 mutex_lock(&kvm->slots_lock);
3709
3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3712
3713 mutex_unlock(&kvm->slots_lock);
3714 return 0;
3715 }
3716
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3718 {
3719 return kvm->arch.n_max_mmu_pages;
3720 }
3721
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 {
3724 int r;
3725
3726 r = 0;
3727 switch (chip->chip_id) {
3728 case KVM_IRQCHIP_PIC_MASTER:
3729 memcpy(&chip->chip.pic,
3730 &pic_irqchip(kvm)->pics[0],
3731 sizeof(struct kvm_pic_state));
3732 break;
3733 case KVM_IRQCHIP_PIC_SLAVE:
3734 memcpy(&chip->chip.pic,
3735 &pic_irqchip(kvm)->pics[1],
3736 sizeof(struct kvm_pic_state));
3737 break;
3738 case KVM_IRQCHIP_IOAPIC:
3739 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3740 break;
3741 default:
3742 r = -EINVAL;
3743 break;
3744 }
3745 return r;
3746 }
3747
3748 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3749 {
3750 int r;
3751
3752 r = 0;
3753 switch (chip->chip_id) {
3754 case KVM_IRQCHIP_PIC_MASTER:
3755 spin_lock(&pic_irqchip(kvm)->lock);
3756 memcpy(&pic_irqchip(kvm)->pics[0],
3757 &chip->chip.pic,
3758 sizeof(struct kvm_pic_state));
3759 spin_unlock(&pic_irqchip(kvm)->lock);
3760 break;
3761 case KVM_IRQCHIP_PIC_SLAVE:
3762 spin_lock(&pic_irqchip(kvm)->lock);
3763 memcpy(&pic_irqchip(kvm)->pics[1],
3764 &chip->chip.pic,
3765 sizeof(struct kvm_pic_state));
3766 spin_unlock(&pic_irqchip(kvm)->lock);
3767 break;
3768 case KVM_IRQCHIP_IOAPIC:
3769 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3770 break;
3771 default:
3772 r = -EINVAL;
3773 break;
3774 }
3775 kvm_pic_update_irq(pic_irqchip(kvm));
3776 return r;
3777 }
3778
3779 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3780 {
3781 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3782
3783 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3784
3785 mutex_lock(&kps->lock);
3786 memcpy(ps, &kps->channels, sizeof(*ps));
3787 mutex_unlock(&kps->lock);
3788 return 0;
3789 }
3790
3791 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3792 {
3793 int i;
3794 struct kvm_pit *pit = kvm->arch.vpit;
3795
3796 mutex_lock(&pit->pit_state.lock);
3797 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3798 for (i = 0; i < 3; i++)
3799 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3800 mutex_unlock(&pit->pit_state.lock);
3801 return 0;
3802 }
3803
3804 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3805 {
3806 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3807 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3808 sizeof(ps->channels));
3809 ps->flags = kvm->arch.vpit->pit_state.flags;
3810 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3811 memset(&ps->reserved, 0, sizeof(ps->reserved));
3812 return 0;
3813 }
3814
3815 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3816 {
3817 int start = 0;
3818 int i;
3819 u32 prev_legacy, cur_legacy;
3820 struct kvm_pit *pit = kvm->arch.vpit;
3821
3822 mutex_lock(&pit->pit_state.lock);
3823 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3824 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3825 if (!prev_legacy && cur_legacy)
3826 start = 1;
3827 memcpy(&pit->pit_state.channels, &ps->channels,
3828 sizeof(pit->pit_state.channels));
3829 pit->pit_state.flags = ps->flags;
3830 for (i = 0; i < 3; i++)
3831 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3832 start && i == 0);
3833 mutex_unlock(&pit->pit_state.lock);
3834 return 0;
3835 }
3836
3837 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3838 struct kvm_reinject_control *control)
3839 {
3840 struct kvm_pit *pit = kvm->arch.vpit;
3841
3842 if (!pit)
3843 return -ENXIO;
3844
3845 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3846 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3847 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3848 */
3849 mutex_lock(&pit->pit_state.lock);
3850 kvm_pit_set_reinject(pit, control->pit_reinject);
3851 mutex_unlock(&pit->pit_state.lock);
3852
3853 return 0;
3854 }
3855
3856 /**
3857 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3858 * @kvm: kvm instance
3859 * @log: slot id and address to which we copy the log
3860 *
3861 * Steps 1-4 below provide general overview of dirty page logging. See
3862 * kvm_get_dirty_log_protect() function description for additional details.
3863 *
3864 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3865 * always flush the TLB (step 4) even if previous step failed and the dirty
3866 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3867 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3868 * writes will be marked dirty for next log read.
3869 *
3870 * 1. Take a snapshot of the bit and clear it if needed.
3871 * 2. Write protect the corresponding page.
3872 * 3. Copy the snapshot to the userspace.
3873 * 4. Flush TLB's if needed.
3874 */
3875 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3876 {
3877 bool is_dirty = false;
3878 int r;
3879
3880 mutex_lock(&kvm->slots_lock);
3881
3882 /*
3883 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3884 */
3885 if (kvm_x86_ops->flush_log_dirty)
3886 kvm_x86_ops->flush_log_dirty(kvm);
3887
3888 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3889
3890 /*
3891 * All the TLBs can be flushed out of mmu lock, see the comments in
3892 * kvm_mmu_slot_remove_write_access().
3893 */
3894 lockdep_assert_held(&kvm->slots_lock);
3895 if (is_dirty)
3896 kvm_flush_remote_tlbs(kvm);
3897
3898 mutex_unlock(&kvm->slots_lock);
3899 return r;
3900 }
3901
3902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3903 bool line_status)
3904 {
3905 if (!irqchip_in_kernel(kvm))
3906 return -ENXIO;
3907
3908 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3909 irq_event->irq, irq_event->level,
3910 line_status);
3911 return 0;
3912 }
3913
3914 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3915 struct kvm_enable_cap *cap)
3916 {
3917 int r;
3918
3919 if (cap->flags)
3920 return -EINVAL;
3921
3922 switch (cap->cap) {
3923 case KVM_CAP_DISABLE_QUIRKS:
3924 kvm->arch.disabled_quirks = cap->args[0];
3925 r = 0;
3926 break;
3927 case KVM_CAP_SPLIT_IRQCHIP: {
3928 mutex_lock(&kvm->lock);
3929 r = -EINVAL;
3930 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3931 goto split_irqchip_unlock;
3932 r = -EEXIST;
3933 if (irqchip_in_kernel(kvm))
3934 goto split_irqchip_unlock;
3935 if (kvm->created_vcpus)
3936 goto split_irqchip_unlock;
3937 r = kvm_setup_empty_irq_routing(kvm);
3938 if (r)
3939 goto split_irqchip_unlock;
3940 /* Pairs with irqchip_in_kernel. */
3941 smp_wmb();
3942 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3943 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3944 r = 0;
3945 split_irqchip_unlock:
3946 mutex_unlock(&kvm->lock);
3947 break;
3948 }
3949 case KVM_CAP_X2APIC_API:
3950 r = -EINVAL;
3951 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3952 break;
3953
3954 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3955 kvm->arch.x2apic_format = true;
3956 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3957 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3958
3959 r = 0;
3960 break;
3961 default:
3962 r = -EINVAL;
3963 break;
3964 }
3965 return r;
3966 }
3967
3968 long kvm_arch_vm_ioctl(struct file *filp,
3969 unsigned int ioctl, unsigned long arg)
3970 {
3971 struct kvm *kvm = filp->private_data;
3972 void __user *argp = (void __user *)arg;
3973 int r = -ENOTTY;
3974 /*
3975 * This union makes it completely explicit to gcc-3.x
3976 * that these two variables' stack usage should be
3977 * combined, not added together.
3978 */
3979 union {
3980 struct kvm_pit_state ps;
3981 struct kvm_pit_state2 ps2;
3982 struct kvm_pit_config pit_config;
3983 } u;
3984
3985 switch (ioctl) {
3986 case KVM_SET_TSS_ADDR:
3987 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3988 break;
3989 case KVM_SET_IDENTITY_MAP_ADDR: {
3990 u64 ident_addr;
3991
3992 r = -EFAULT;
3993 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3994 goto out;
3995 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3996 break;
3997 }
3998 case KVM_SET_NR_MMU_PAGES:
3999 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4000 break;
4001 case KVM_GET_NR_MMU_PAGES:
4002 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4003 break;
4004 case KVM_CREATE_IRQCHIP: {
4005 mutex_lock(&kvm->lock);
4006
4007 r = -EEXIST;
4008 if (irqchip_in_kernel(kvm))
4009 goto create_irqchip_unlock;
4010
4011 r = -EINVAL;
4012 if (kvm->created_vcpus)
4013 goto create_irqchip_unlock;
4014
4015 r = kvm_pic_init(kvm);
4016 if (r)
4017 goto create_irqchip_unlock;
4018
4019 r = kvm_ioapic_init(kvm);
4020 if (r) {
4021 mutex_lock(&kvm->slots_lock);
4022 kvm_pic_destroy(kvm);
4023 mutex_unlock(&kvm->slots_lock);
4024 goto create_irqchip_unlock;
4025 }
4026
4027 r = kvm_setup_default_irq_routing(kvm);
4028 if (r) {
4029 mutex_lock(&kvm->slots_lock);
4030 mutex_lock(&kvm->irq_lock);
4031 kvm_ioapic_destroy(kvm);
4032 kvm_pic_destroy(kvm);
4033 mutex_unlock(&kvm->irq_lock);
4034 mutex_unlock(&kvm->slots_lock);
4035 goto create_irqchip_unlock;
4036 }
4037 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4038 smp_wmb();
4039 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4040 create_irqchip_unlock:
4041 mutex_unlock(&kvm->lock);
4042 break;
4043 }
4044 case KVM_CREATE_PIT:
4045 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4046 goto create_pit;
4047 case KVM_CREATE_PIT2:
4048 r = -EFAULT;
4049 if (copy_from_user(&u.pit_config, argp,
4050 sizeof(struct kvm_pit_config)))
4051 goto out;
4052 create_pit:
4053 mutex_lock(&kvm->lock);
4054 r = -EEXIST;
4055 if (kvm->arch.vpit)
4056 goto create_pit_unlock;
4057 r = -ENOMEM;
4058 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4059 if (kvm->arch.vpit)
4060 r = 0;
4061 create_pit_unlock:
4062 mutex_unlock(&kvm->lock);
4063 break;
4064 case KVM_GET_IRQCHIP: {
4065 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4066 struct kvm_irqchip *chip;
4067
4068 chip = memdup_user(argp, sizeof(*chip));
4069 if (IS_ERR(chip)) {
4070 r = PTR_ERR(chip);
4071 goto out;
4072 }
4073
4074 r = -ENXIO;
4075 if (!irqchip_kernel(kvm))
4076 goto get_irqchip_out;
4077 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4078 if (r)
4079 goto get_irqchip_out;
4080 r = -EFAULT;
4081 if (copy_to_user(argp, chip, sizeof *chip))
4082 goto get_irqchip_out;
4083 r = 0;
4084 get_irqchip_out:
4085 kfree(chip);
4086 break;
4087 }
4088 case KVM_SET_IRQCHIP: {
4089 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4090 struct kvm_irqchip *chip;
4091
4092 chip = memdup_user(argp, sizeof(*chip));
4093 if (IS_ERR(chip)) {
4094 r = PTR_ERR(chip);
4095 goto out;
4096 }
4097
4098 r = -ENXIO;
4099 if (!irqchip_kernel(kvm))
4100 goto set_irqchip_out;
4101 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4102 if (r)
4103 goto set_irqchip_out;
4104 r = 0;
4105 set_irqchip_out:
4106 kfree(chip);
4107 break;
4108 }
4109 case KVM_GET_PIT: {
4110 r = -EFAULT;
4111 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4112 goto out;
4113 r = -ENXIO;
4114 if (!kvm->arch.vpit)
4115 goto out;
4116 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4117 if (r)
4118 goto out;
4119 r = -EFAULT;
4120 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4121 goto out;
4122 r = 0;
4123 break;
4124 }
4125 case KVM_SET_PIT: {
4126 r = -EFAULT;
4127 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4128 goto out;
4129 r = -ENXIO;
4130 if (!kvm->arch.vpit)
4131 goto out;
4132 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4133 break;
4134 }
4135 case KVM_GET_PIT2: {
4136 r = -ENXIO;
4137 if (!kvm->arch.vpit)
4138 goto out;
4139 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4140 if (r)
4141 goto out;
4142 r = -EFAULT;
4143 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4144 goto out;
4145 r = 0;
4146 break;
4147 }
4148 case KVM_SET_PIT2: {
4149 r = -EFAULT;
4150 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4151 goto out;
4152 r = -ENXIO;
4153 if (!kvm->arch.vpit)
4154 goto out;
4155 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4156 break;
4157 }
4158 case KVM_REINJECT_CONTROL: {
4159 struct kvm_reinject_control control;
4160 r = -EFAULT;
4161 if (copy_from_user(&control, argp, sizeof(control)))
4162 goto out;
4163 r = kvm_vm_ioctl_reinject(kvm, &control);
4164 break;
4165 }
4166 case KVM_SET_BOOT_CPU_ID:
4167 r = 0;
4168 mutex_lock(&kvm->lock);
4169 if (kvm->created_vcpus)
4170 r = -EBUSY;
4171 else
4172 kvm->arch.bsp_vcpu_id = arg;
4173 mutex_unlock(&kvm->lock);
4174 break;
4175 case KVM_XEN_HVM_CONFIG: {
4176 r = -EFAULT;
4177 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4178 sizeof(struct kvm_xen_hvm_config)))
4179 goto out;
4180 r = -EINVAL;
4181 if (kvm->arch.xen_hvm_config.flags)
4182 goto out;
4183 r = 0;
4184 break;
4185 }
4186 case KVM_SET_CLOCK: {
4187 struct kvm_clock_data user_ns;
4188 u64 now_ns;
4189
4190 r = -EFAULT;
4191 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4192 goto out;
4193
4194 r = -EINVAL;
4195 if (user_ns.flags)
4196 goto out;
4197
4198 r = 0;
4199 local_irq_disable();
4200 now_ns = __get_kvmclock_ns(kvm);
4201 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4202 local_irq_enable();
4203 kvm_gen_update_masterclock(kvm);
4204 break;
4205 }
4206 case KVM_GET_CLOCK: {
4207 struct kvm_clock_data user_ns;
4208 u64 now_ns;
4209
4210 local_irq_disable();
4211 now_ns = __get_kvmclock_ns(kvm);
4212 user_ns.clock = now_ns;
4213 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4214 local_irq_enable();
4215 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4216
4217 r = -EFAULT;
4218 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4219 goto out;
4220 r = 0;
4221 break;
4222 }
4223 case KVM_ENABLE_CAP: {
4224 struct kvm_enable_cap cap;
4225
4226 r = -EFAULT;
4227 if (copy_from_user(&cap, argp, sizeof(cap)))
4228 goto out;
4229 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4230 break;
4231 }
4232 default:
4233 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4234 }
4235 out:
4236 return r;
4237 }
4238
4239 static void kvm_init_msr_list(void)
4240 {
4241 u32 dummy[2];
4242 unsigned i, j;
4243
4244 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4245 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4246 continue;
4247
4248 /*
4249 * Even MSRs that are valid in the host may not be exposed
4250 * to the guests in some cases.
4251 */
4252 switch (msrs_to_save[i]) {
4253 case MSR_IA32_BNDCFGS:
4254 if (!kvm_x86_ops->mpx_supported())
4255 continue;
4256 break;
4257 case MSR_TSC_AUX:
4258 if (!kvm_x86_ops->rdtscp_supported())
4259 continue;
4260 break;
4261 default:
4262 break;
4263 }
4264
4265 if (j < i)
4266 msrs_to_save[j] = msrs_to_save[i];
4267 j++;
4268 }
4269 num_msrs_to_save = j;
4270
4271 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4272 switch (emulated_msrs[i]) {
4273 case MSR_IA32_SMBASE:
4274 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4275 continue;
4276 break;
4277 default:
4278 break;
4279 }
4280
4281 if (j < i)
4282 emulated_msrs[j] = emulated_msrs[i];
4283 j++;
4284 }
4285 num_emulated_msrs = j;
4286 }
4287
4288 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4289 const void *v)
4290 {
4291 int handled = 0;
4292 int n;
4293
4294 do {
4295 n = min(len, 8);
4296 if (!(lapic_in_kernel(vcpu) &&
4297 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4298 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4299 break;
4300 handled += n;
4301 addr += n;
4302 len -= n;
4303 v += n;
4304 } while (len);
4305
4306 return handled;
4307 }
4308
4309 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4310 {
4311 int handled = 0;
4312 int n;
4313
4314 do {
4315 n = min(len, 8);
4316 if (!(lapic_in_kernel(vcpu) &&
4317 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4318 addr, n, v))
4319 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4320 break;
4321 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4322 handled += n;
4323 addr += n;
4324 len -= n;
4325 v += n;
4326 } while (len);
4327
4328 return handled;
4329 }
4330
4331 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4332 struct kvm_segment *var, int seg)
4333 {
4334 kvm_x86_ops->set_segment(vcpu, var, seg);
4335 }
4336
4337 void kvm_get_segment(struct kvm_vcpu *vcpu,
4338 struct kvm_segment *var, int seg)
4339 {
4340 kvm_x86_ops->get_segment(vcpu, var, seg);
4341 }
4342
4343 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4344 struct x86_exception *exception)
4345 {
4346 gpa_t t_gpa;
4347
4348 BUG_ON(!mmu_is_nested(vcpu));
4349
4350 /* NPT walks are always user-walks */
4351 access |= PFERR_USER_MASK;
4352 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4353
4354 return t_gpa;
4355 }
4356
4357 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4358 struct x86_exception *exception)
4359 {
4360 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4361 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4362 }
4363
4364 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4365 struct x86_exception *exception)
4366 {
4367 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4368 access |= PFERR_FETCH_MASK;
4369 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4370 }
4371
4372 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4373 struct x86_exception *exception)
4374 {
4375 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4376 access |= PFERR_WRITE_MASK;
4377 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4378 }
4379
4380 /* uses this to access any guest's mapped memory without checking CPL */
4381 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4382 struct x86_exception *exception)
4383 {
4384 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4385 }
4386
4387 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4388 struct kvm_vcpu *vcpu, u32 access,
4389 struct x86_exception *exception)
4390 {
4391 void *data = val;
4392 int r = X86EMUL_CONTINUE;
4393
4394 while (bytes) {
4395 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4396 exception);
4397 unsigned offset = addr & (PAGE_SIZE-1);
4398 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4399 int ret;
4400
4401 if (gpa == UNMAPPED_GVA)
4402 return X86EMUL_PROPAGATE_FAULT;
4403 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4404 offset, toread);
4405 if (ret < 0) {
4406 r = X86EMUL_IO_NEEDED;
4407 goto out;
4408 }
4409
4410 bytes -= toread;
4411 data += toread;
4412 addr += toread;
4413 }
4414 out:
4415 return r;
4416 }
4417
4418 /* used for instruction fetching */
4419 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4420 gva_t addr, void *val, unsigned int bytes,
4421 struct x86_exception *exception)
4422 {
4423 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4424 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4425 unsigned offset;
4426 int ret;
4427
4428 /* Inline kvm_read_guest_virt_helper for speed. */
4429 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4430 exception);
4431 if (unlikely(gpa == UNMAPPED_GVA))
4432 return X86EMUL_PROPAGATE_FAULT;
4433
4434 offset = addr & (PAGE_SIZE-1);
4435 if (WARN_ON(offset + bytes > PAGE_SIZE))
4436 bytes = (unsigned)PAGE_SIZE - offset;
4437 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4438 offset, bytes);
4439 if (unlikely(ret < 0))
4440 return X86EMUL_IO_NEEDED;
4441
4442 return X86EMUL_CONTINUE;
4443 }
4444
4445 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4446 gva_t addr, void *val, unsigned int bytes,
4447 struct x86_exception *exception)
4448 {
4449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4451
4452 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4453 exception);
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4456
4457 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4458 gva_t addr, void *val, unsigned int bytes,
4459 struct x86_exception *exception)
4460 {
4461 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4462 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4463 }
4464
4465 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4466 unsigned long addr, void *val, unsigned int bytes)
4467 {
4468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4470
4471 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4472 }
4473
4474 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4475 gva_t addr, void *val,
4476 unsigned int bytes,
4477 struct x86_exception *exception)
4478 {
4479 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4480 void *data = val;
4481 int r = X86EMUL_CONTINUE;
4482
4483 while (bytes) {
4484 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4485 PFERR_WRITE_MASK,
4486 exception);
4487 unsigned offset = addr & (PAGE_SIZE-1);
4488 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4489 int ret;
4490
4491 if (gpa == UNMAPPED_GVA)
4492 return X86EMUL_PROPAGATE_FAULT;
4493 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4494 if (ret < 0) {
4495 r = X86EMUL_IO_NEEDED;
4496 goto out;
4497 }
4498
4499 bytes -= towrite;
4500 data += towrite;
4501 addr += towrite;
4502 }
4503 out:
4504 return r;
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4507
4508 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4509 gpa_t gpa, bool write)
4510 {
4511 /* For APIC access vmexit */
4512 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4513 return 1;
4514
4515 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4516 trace_vcpu_match_mmio(gva, gpa, write, true);
4517 return 1;
4518 }
4519
4520 return 0;
4521 }
4522
4523 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4524 gpa_t *gpa, struct x86_exception *exception,
4525 bool write)
4526 {
4527 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4528 | (write ? PFERR_WRITE_MASK : 0);
4529
4530 /*
4531 * currently PKRU is only applied to ept enabled guest so
4532 * there is no pkey in EPT page table for L1 guest or EPT
4533 * shadow page table for L2 guest.
4534 */
4535 if (vcpu_match_mmio_gva(vcpu, gva)
4536 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4537 vcpu->arch.access, 0, access)) {
4538 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4539 (gva & (PAGE_SIZE - 1));
4540 trace_vcpu_match_mmio(gva, *gpa, write, false);
4541 return 1;
4542 }
4543
4544 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4545
4546 if (*gpa == UNMAPPED_GVA)
4547 return -1;
4548
4549 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4550 }
4551
4552 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4553 const void *val, int bytes)
4554 {
4555 int ret;
4556
4557 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4558 if (ret < 0)
4559 return 0;
4560 kvm_page_track_write(vcpu, gpa, val, bytes);
4561 return 1;
4562 }
4563
4564 struct read_write_emulator_ops {
4565 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4566 int bytes);
4567 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4568 void *val, int bytes);
4569 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4570 int bytes, void *val);
4571 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4572 void *val, int bytes);
4573 bool write;
4574 };
4575
4576 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4577 {
4578 if (vcpu->mmio_read_completed) {
4579 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4580 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4581 vcpu->mmio_read_completed = 0;
4582 return 1;
4583 }
4584
4585 return 0;
4586 }
4587
4588 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 void *val, int bytes)
4590 {
4591 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4592 }
4593
4594 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4595 void *val, int bytes)
4596 {
4597 return emulator_write_phys(vcpu, gpa, val, bytes);
4598 }
4599
4600 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4601 {
4602 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4603 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4604 }
4605
4606 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4607 void *val, int bytes)
4608 {
4609 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4610 return X86EMUL_IO_NEEDED;
4611 }
4612
4613 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4614 void *val, int bytes)
4615 {
4616 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4617
4618 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4619 return X86EMUL_CONTINUE;
4620 }
4621
4622 static const struct read_write_emulator_ops read_emultor = {
4623 .read_write_prepare = read_prepare,
4624 .read_write_emulate = read_emulate,
4625 .read_write_mmio = vcpu_mmio_read,
4626 .read_write_exit_mmio = read_exit_mmio,
4627 };
4628
4629 static const struct read_write_emulator_ops write_emultor = {
4630 .read_write_emulate = write_emulate,
4631 .read_write_mmio = write_mmio,
4632 .read_write_exit_mmio = write_exit_mmio,
4633 .write = true,
4634 };
4635
4636 static int emulator_read_write_onepage(unsigned long addr, void *val,
4637 unsigned int bytes,
4638 struct x86_exception *exception,
4639 struct kvm_vcpu *vcpu,
4640 const struct read_write_emulator_ops *ops)
4641 {
4642 gpa_t gpa;
4643 int handled, ret;
4644 bool write = ops->write;
4645 struct kvm_mmio_fragment *frag;
4646 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4647
4648 /*
4649 * If the exit was due to a NPF we may already have a GPA.
4650 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4651 * Note, this cannot be used on string operations since string
4652 * operation using rep will only have the initial GPA from the NPF
4653 * occurred.
4654 */
4655 if (vcpu->arch.gpa_available &&
4656 emulator_can_use_gpa(ctxt) &&
4657 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4658 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4659 gpa = exception->address;
4660 goto mmio;
4661 }
4662
4663 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4664
4665 if (ret < 0)
4666 return X86EMUL_PROPAGATE_FAULT;
4667
4668 /* For APIC access vmexit */
4669 if (ret)
4670 goto mmio;
4671
4672 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4673 return X86EMUL_CONTINUE;
4674
4675 mmio:
4676 /*
4677 * Is this MMIO handled locally?
4678 */
4679 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4680 if (handled == bytes)
4681 return X86EMUL_CONTINUE;
4682
4683 gpa += handled;
4684 bytes -= handled;
4685 val += handled;
4686
4687 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4688 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4689 frag->gpa = gpa;
4690 frag->data = val;
4691 frag->len = bytes;
4692 return X86EMUL_CONTINUE;
4693 }
4694
4695 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4696 unsigned long addr,
4697 void *val, unsigned int bytes,
4698 struct x86_exception *exception,
4699 const struct read_write_emulator_ops *ops)
4700 {
4701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4702 gpa_t gpa;
4703 int rc;
4704
4705 if (ops->read_write_prepare &&
4706 ops->read_write_prepare(vcpu, val, bytes))
4707 return X86EMUL_CONTINUE;
4708
4709 vcpu->mmio_nr_fragments = 0;
4710
4711 /* Crossing a page boundary? */
4712 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4713 int now;
4714
4715 now = -addr & ~PAGE_MASK;
4716 rc = emulator_read_write_onepage(addr, val, now, exception,
4717 vcpu, ops);
4718
4719 if (rc != X86EMUL_CONTINUE)
4720 return rc;
4721 addr += now;
4722 if (ctxt->mode != X86EMUL_MODE_PROT64)
4723 addr = (u32)addr;
4724 val += now;
4725 bytes -= now;
4726 }
4727
4728 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4729 vcpu, ops);
4730 if (rc != X86EMUL_CONTINUE)
4731 return rc;
4732
4733 if (!vcpu->mmio_nr_fragments)
4734 return rc;
4735
4736 gpa = vcpu->mmio_fragments[0].gpa;
4737
4738 vcpu->mmio_needed = 1;
4739 vcpu->mmio_cur_fragment = 0;
4740
4741 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4742 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4743 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4744 vcpu->run->mmio.phys_addr = gpa;
4745
4746 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4747 }
4748
4749 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4750 unsigned long addr,
4751 void *val,
4752 unsigned int bytes,
4753 struct x86_exception *exception)
4754 {
4755 return emulator_read_write(ctxt, addr, val, bytes,
4756 exception, &read_emultor);
4757 }
4758
4759 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4760 unsigned long addr,
4761 const void *val,
4762 unsigned int bytes,
4763 struct x86_exception *exception)
4764 {
4765 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4766 exception, &write_emultor);
4767 }
4768
4769 #define CMPXCHG_TYPE(t, ptr, old, new) \
4770 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4771
4772 #ifdef CONFIG_X86_64
4773 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4774 #else
4775 # define CMPXCHG64(ptr, old, new) \
4776 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4777 #endif
4778
4779 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4780 unsigned long addr,
4781 const void *old,
4782 const void *new,
4783 unsigned int bytes,
4784 struct x86_exception *exception)
4785 {
4786 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4787 gpa_t gpa;
4788 struct page *page;
4789 char *kaddr;
4790 bool exchanged;
4791
4792 /* guests cmpxchg8b have to be emulated atomically */
4793 if (bytes > 8 || (bytes & (bytes - 1)))
4794 goto emul_write;
4795
4796 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4797
4798 if (gpa == UNMAPPED_GVA ||
4799 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4800 goto emul_write;
4801
4802 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4803 goto emul_write;
4804
4805 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4806 if (is_error_page(page))
4807 goto emul_write;
4808
4809 kaddr = kmap_atomic(page);
4810 kaddr += offset_in_page(gpa);
4811 switch (bytes) {
4812 case 1:
4813 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4814 break;
4815 case 2:
4816 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4817 break;
4818 case 4:
4819 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4820 break;
4821 case 8:
4822 exchanged = CMPXCHG64(kaddr, old, new);
4823 break;
4824 default:
4825 BUG();
4826 }
4827 kunmap_atomic(kaddr);
4828 kvm_release_page_dirty(page);
4829
4830 if (!exchanged)
4831 return X86EMUL_CMPXCHG_FAILED;
4832
4833 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4834 kvm_page_track_write(vcpu, gpa, new, bytes);
4835
4836 return X86EMUL_CONTINUE;
4837
4838 emul_write:
4839 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4840
4841 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4842 }
4843
4844 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4845 {
4846 /* TODO: String I/O for in kernel device */
4847 int r;
4848
4849 if (vcpu->arch.pio.in)
4850 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4851 vcpu->arch.pio.size, pd);
4852 else
4853 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4854 vcpu->arch.pio.port, vcpu->arch.pio.size,
4855 pd);
4856 return r;
4857 }
4858
4859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4860 unsigned short port, void *val,
4861 unsigned int count, bool in)
4862 {
4863 vcpu->arch.pio.port = port;
4864 vcpu->arch.pio.in = in;
4865 vcpu->arch.pio.count = count;
4866 vcpu->arch.pio.size = size;
4867
4868 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4869 vcpu->arch.pio.count = 0;
4870 return 1;
4871 }
4872
4873 vcpu->run->exit_reason = KVM_EXIT_IO;
4874 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4875 vcpu->run->io.size = size;
4876 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4877 vcpu->run->io.count = count;
4878 vcpu->run->io.port = port;
4879
4880 return 0;
4881 }
4882
4883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4884 int size, unsigned short port, void *val,
4885 unsigned int count)
4886 {
4887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4888 int ret;
4889
4890 if (vcpu->arch.pio.count)
4891 goto data_avail;
4892
4893 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4894 if (ret) {
4895 data_avail:
4896 memcpy(val, vcpu->arch.pio_data, size * count);
4897 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4898 vcpu->arch.pio.count = 0;
4899 return 1;
4900 }
4901
4902 return 0;
4903 }
4904
4905 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4906 int size, unsigned short port,
4907 const void *val, unsigned int count)
4908 {
4909 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4910
4911 memcpy(vcpu->arch.pio_data, val, size * count);
4912 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4913 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4914 }
4915
4916 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4917 {
4918 return kvm_x86_ops->get_segment_base(vcpu, seg);
4919 }
4920
4921 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4922 {
4923 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4924 }
4925
4926 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4927 {
4928 if (!need_emulate_wbinvd(vcpu))
4929 return X86EMUL_CONTINUE;
4930
4931 if (kvm_x86_ops->has_wbinvd_exit()) {
4932 int cpu = get_cpu();
4933
4934 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4935 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4936 wbinvd_ipi, NULL, 1);
4937 put_cpu();
4938 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4939 } else
4940 wbinvd();
4941 return X86EMUL_CONTINUE;
4942 }
4943
4944 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4945 {
4946 kvm_emulate_wbinvd_noskip(vcpu);
4947 return kvm_skip_emulated_instruction(vcpu);
4948 }
4949 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4950
4951
4952
4953 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4954 {
4955 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4956 }
4957
4958 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959 unsigned long *dest)
4960 {
4961 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4962 }
4963
4964 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4965 unsigned long value)
4966 {
4967
4968 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4969 }
4970
4971 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4972 {
4973 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4974 }
4975
4976 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4977 {
4978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4979 unsigned long value;
4980
4981 switch (cr) {
4982 case 0:
4983 value = kvm_read_cr0(vcpu);
4984 break;
4985 case 2:
4986 value = vcpu->arch.cr2;
4987 break;
4988 case 3:
4989 value = kvm_read_cr3(vcpu);
4990 break;
4991 case 4:
4992 value = kvm_read_cr4(vcpu);
4993 break;
4994 case 8:
4995 value = kvm_get_cr8(vcpu);
4996 break;
4997 default:
4998 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4999 return 0;
5000 }
5001
5002 return value;
5003 }
5004
5005 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5006 {
5007 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5008 int res = 0;
5009
5010 switch (cr) {
5011 case 0:
5012 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5013 break;
5014 case 2:
5015 vcpu->arch.cr2 = val;
5016 break;
5017 case 3:
5018 res = kvm_set_cr3(vcpu, val);
5019 break;
5020 case 4:
5021 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5022 break;
5023 case 8:
5024 res = kvm_set_cr8(vcpu, val);
5025 break;
5026 default:
5027 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5028 res = -1;
5029 }
5030
5031 return res;
5032 }
5033
5034 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5035 {
5036 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5037 }
5038
5039 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5040 {
5041 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5042 }
5043
5044 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5045 {
5046 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5047 }
5048
5049 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5050 {
5051 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5052 }
5053
5054 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5055 {
5056 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5057 }
5058
5059 static unsigned long emulator_get_cached_segment_base(
5060 struct x86_emulate_ctxt *ctxt, int seg)
5061 {
5062 return get_segment_base(emul_to_vcpu(ctxt), seg);
5063 }
5064
5065 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5066 struct desc_struct *desc, u32 *base3,
5067 int seg)
5068 {
5069 struct kvm_segment var;
5070
5071 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5072 *selector = var.selector;
5073
5074 if (var.unusable) {
5075 memset(desc, 0, sizeof(*desc));
5076 return false;
5077 }
5078
5079 if (var.g)
5080 var.limit >>= 12;
5081 set_desc_limit(desc, var.limit);
5082 set_desc_base(desc, (unsigned long)var.base);
5083 #ifdef CONFIG_X86_64
5084 if (base3)
5085 *base3 = var.base >> 32;
5086 #endif
5087 desc->type = var.type;
5088 desc->s = var.s;
5089 desc->dpl = var.dpl;
5090 desc->p = var.present;
5091 desc->avl = var.avl;
5092 desc->l = var.l;
5093 desc->d = var.db;
5094 desc->g = var.g;
5095
5096 return true;
5097 }
5098
5099 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5100 struct desc_struct *desc, u32 base3,
5101 int seg)
5102 {
5103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5104 struct kvm_segment var;
5105
5106 var.selector = selector;
5107 var.base = get_desc_base(desc);
5108 #ifdef CONFIG_X86_64
5109 var.base |= ((u64)base3) << 32;
5110 #endif
5111 var.limit = get_desc_limit(desc);
5112 if (desc->g)
5113 var.limit = (var.limit << 12) | 0xfff;
5114 var.type = desc->type;
5115 var.dpl = desc->dpl;
5116 var.db = desc->d;
5117 var.s = desc->s;
5118 var.l = desc->l;
5119 var.g = desc->g;
5120 var.avl = desc->avl;
5121 var.present = desc->p;
5122 var.unusable = !var.present;
5123 var.padding = 0;
5124
5125 kvm_set_segment(vcpu, &var, seg);
5126 return;
5127 }
5128
5129 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5130 u32 msr_index, u64 *pdata)
5131 {
5132 struct msr_data msr;
5133 int r;
5134
5135 msr.index = msr_index;
5136 msr.host_initiated = false;
5137 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5138 if (r)
5139 return r;
5140
5141 *pdata = msr.data;
5142 return 0;
5143 }
5144
5145 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5146 u32 msr_index, u64 data)
5147 {
5148 struct msr_data msr;
5149
5150 msr.data = data;
5151 msr.index = msr_index;
5152 msr.host_initiated = false;
5153 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5154 }
5155
5156 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5157 {
5158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5159
5160 return vcpu->arch.smbase;
5161 }
5162
5163 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5164 {
5165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5166
5167 vcpu->arch.smbase = smbase;
5168 }
5169
5170 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5171 u32 pmc)
5172 {
5173 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5174 }
5175
5176 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5177 u32 pmc, u64 *pdata)
5178 {
5179 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5180 }
5181
5182 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5183 {
5184 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5185 }
5186
5187 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5188 {
5189 preempt_disable();
5190 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5191 }
5192
5193 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5194 {
5195 preempt_enable();
5196 }
5197
5198 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5199 struct x86_instruction_info *info,
5200 enum x86_intercept_stage stage)
5201 {
5202 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5203 }
5204
5205 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5206 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5207 {
5208 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5209 }
5210
5211 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5212 {
5213 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5214 }
5215
5216 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5217 {
5218 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5219 }
5220
5221 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5222 {
5223 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5224 }
5225
5226 static const struct x86_emulate_ops emulate_ops = {
5227 .read_gpr = emulator_read_gpr,
5228 .write_gpr = emulator_write_gpr,
5229 .read_std = kvm_read_guest_virt_system,
5230 .write_std = kvm_write_guest_virt_system,
5231 .read_phys = kvm_read_guest_phys_system,
5232 .fetch = kvm_fetch_guest_virt,
5233 .read_emulated = emulator_read_emulated,
5234 .write_emulated = emulator_write_emulated,
5235 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5236 .invlpg = emulator_invlpg,
5237 .pio_in_emulated = emulator_pio_in_emulated,
5238 .pio_out_emulated = emulator_pio_out_emulated,
5239 .get_segment = emulator_get_segment,
5240 .set_segment = emulator_set_segment,
5241 .get_cached_segment_base = emulator_get_cached_segment_base,
5242 .get_gdt = emulator_get_gdt,
5243 .get_idt = emulator_get_idt,
5244 .set_gdt = emulator_set_gdt,
5245 .set_idt = emulator_set_idt,
5246 .get_cr = emulator_get_cr,
5247 .set_cr = emulator_set_cr,
5248 .cpl = emulator_get_cpl,
5249 .get_dr = emulator_get_dr,
5250 .set_dr = emulator_set_dr,
5251 .get_smbase = emulator_get_smbase,
5252 .set_smbase = emulator_set_smbase,
5253 .set_msr = emulator_set_msr,
5254 .get_msr = emulator_get_msr,
5255 .check_pmc = emulator_check_pmc,
5256 .read_pmc = emulator_read_pmc,
5257 .halt = emulator_halt,
5258 .wbinvd = emulator_wbinvd,
5259 .fix_hypercall = emulator_fix_hypercall,
5260 .get_fpu = emulator_get_fpu,
5261 .put_fpu = emulator_put_fpu,
5262 .intercept = emulator_intercept,
5263 .get_cpuid = emulator_get_cpuid,
5264 .set_nmi_mask = emulator_set_nmi_mask,
5265 };
5266
5267 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5268 {
5269 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5270 /*
5271 * an sti; sti; sequence only disable interrupts for the first
5272 * instruction. So, if the last instruction, be it emulated or
5273 * not, left the system with the INT_STI flag enabled, it
5274 * means that the last instruction is an sti. We should not
5275 * leave the flag on in this case. The same goes for mov ss
5276 */
5277 if (int_shadow & mask)
5278 mask = 0;
5279 if (unlikely(int_shadow || mask)) {
5280 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5281 if (!mask)
5282 kvm_make_request(KVM_REQ_EVENT, vcpu);
5283 }
5284 }
5285
5286 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5287 {
5288 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5289 if (ctxt->exception.vector == PF_VECTOR)
5290 return kvm_propagate_fault(vcpu, &ctxt->exception);
5291
5292 if (ctxt->exception.error_code_valid)
5293 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5294 ctxt->exception.error_code);
5295 else
5296 kvm_queue_exception(vcpu, ctxt->exception.vector);
5297 return false;
5298 }
5299
5300 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5301 {
5302 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5303 int cs_db, cs_l;
5304
5305 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5306
5307 ctxt->eflags = kvm_get_rflags(vcpu);
5308 ctxt->eip = kvm_rip_read(vcpu);
5309 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5310 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5311 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5312 cs_db ? X86EMUL_MODE_PROT32 :
5313 X86EMUL_MODE_PROT16;
5314 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5315 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5316 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5317 ctxt->emul_flags = vcpu->arch.hflags;
5318
5319 init_decode_cache(ctxt);
5320 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5321 }
5322
5323 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5324 {
5325 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5326 int ret;
5327
5328 init_emulate_ctxt(vcpu);
5329
5330 ctxt->op_bytes = 2;
5331 ctxt->ad_bytes = 2;
5332 ctxt->_eip = ctxt->eip + inc_eip;
5333 ret = emulate_int_real(ctxt, irq);
5334
5335 if (ret != X86EMUL_CONTINUE)
5336 return EMULATE_FAIL;
5337
5338 ctxt->eip = ctxt->_eip;
5339 kvm_rip_write(vcpu, ctxt->eip);
5340 kvm_set_rflags(vcpu, ctxt->eflags);
5341
5342 if (irq == NMI_VECTOR)
5343 vcpu->arch.nmi_pending = 0;
5344 else
5345 vcpu->arch.interrupt.pending = false;
5346
5347 return EMULATE_DONE;
5348 }
5349 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5350
5351 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5352 {
5353 int r = EMULATE_DONE;
5354
5355 ++vcpu->stat.insn_emulation_fail;
5356 trace_kvm_emulate_insn_failed(vcpu);
5357 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5358 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5359 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5360 vcpu->run->internal.ndata = 0;
5361 r = EMULATE_FAIL;
5362 }
5363 kvm_queue_exception(vcpu, UD_VECTOR);
5364
5365 return r;
5366 }
5367
5368 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5369 bool write_fault_to_shadow_pgtable,
5370 int emulation_type)
5371 {
5372 gpa_t gpa = cr2;
5373 kvm_pfn_t pfn;
5374
5375 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5376 return false;
5377
5378 if (!vcpu->arch.mmu.direct_map) {
5379 /*
5380 * Write permission should be allowed since only
5381 * write access need to be emulated.
5382 */
5383 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5384
5385 /*
5386 * If the mapping is invalid in guest, let cpu retry
5387 * it to generate fault.
5388 */
5389 if (gpa == UNMAPPED_GVA)
5390 return true;
5391 }
5392
5393 /*
5394 * Do not retry the unhandleable instruction if it faults on the
5395 * readonly host memory, otherwise it will goto a infinite loop:
5396 * retry instruction -> write #PF -> emulation fail -> retry
5397 * instruction -> ...
5398 */
5399 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5400
5401 /*
5402 * If the instruction failed on the error pfn, it can not be fixed,
5403 * report the error to userspace.
5404 */
5405 if (is_error_noslot_pfn(pfn))
5406 return false;
5407
5408 kvm_release_pfn_clean(pfn);
5409
5410 /* The instructions are well-emulated on direct mmu. */
5411 if (vcpu->arch.mmu.direct_map) {
5412 unsigned int indirect_shadow_pages;
5413
5414 spin_lock(&vcpu->kvm->mmu_lock);
5415 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5416 spin_unlock(&vcpu->kvm->mmu_lock);
5417
5418 if (indirect_shadow_pages)
5419 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5420
5421 return true;
5422 }
5423
5424 /*
5425 * if emulation was due to access to shadowed page table
5426 * and it failed try to unshadow page and re-enter the
5427 * guest to let CPU execute the instruction.
5428 */
5429 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5430
5431 /*
5432 * If the access faults on its page table, it can not
5433 * be fixed by unprotecting shadow page and it should
5434 * be reported to userspace.
5435 */
5436 return !write_fault_to_shadow_pgtable;
5437 }
5438
5439 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5440 unsigned long cr2, int emulation_type)
5441 {
5442 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5443 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5444
5445 last_retry_eip = vcpu->arch.last_retry_eip;
5446 last_retry_addr = vcpu->arch.last_retry_addr;
5447
5448 /*
5449 * If the emulation is caused by #PF and it is non-page_table
5450 * writing instruction, it means the VM-EXIT is caused by shadow
5451 * page protected, we can zap the shadow page and retry this
5452 * instruction directly.
5453 *
5454 * Note: if the guest uses a non-page-table modifying instruction
5455 * on the PDE that points to the instruction, then we will unmap
5456 * the instruction and go to an infinite loop. So, we cache the
5457 * last retried eip and the last fault address, if we meet the eip
5458 * and the address again, we can break out of the potential infinite
5459 * loop.
5460 */
5461 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5462
5463 if (!(emulation_type & EMULTYPE_RETRY))
5464 return false;
5465
5466 if (x86_page_table_writing_insn(ctxt))
5467 return false;
5468
5469 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5470 return false;
5471
5472 vcpu->arch.last_retry_eip = ctxt->eip;
5473 vcpu->arch.last_retry_addr = cr2;
5474
5475 if (!vcpu->arch.mmu.direct_map)
5476 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5477
5478 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5479
5480 return true;
5481 }
5482
5483 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5484 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5485
5486 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5487 {
5488 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5489 /* This is a good place to trace that we are exiting SMM. */
5490 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5491
5492 /* Process a latched INIT or SMI, if any. */
5493 kvm_make_request(KVM_REQ_EVENT, vcpu);
5494 }
5495
5496 kvm_mmu_reset_context(vcpu);
5497 }
5498
5499 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5500 {
5501 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5502
5503 vcpu->arch.hflags = emul_flags;
5504
5505 if (changed & HF_SMM_MASK)
5506 kvm_smm_changed(vcpu);
5507 }
5508
5509 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5510 unsigned long *db)
5511 {
5512 u32 dr6 = 0;
5513 int i;
5514 u32 enable, rwlen;
5515
5516 enable = dr7;
5517 rwlen = dr7 >> 16;
5518 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5519 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5520 dr6 |= (1 << i);
5521 return dr6;
5522 }
5523
5524 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5525 {
5526 struct kvm_run *kvm_run = vcpu->run;
5527
5528 /*
5529 * rflags is the old, "raw" value of the flags. The new value has
5530 * not been saved yet.
5531 *
5532 * This is correct even for TF set by the guest, because "the
5533 * processor will not generate this exception after the instruction
5534 * that sets the TF flag".
5535 */
5536 if (unlikely(rflags & X86_EFLAGS_TF)) {
5537 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5538 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5539 DR6_RTM;
5540 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5541 kvm_run->debug.arch.exception = DB_VECTOR;
5542 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5543 *r = EMULATE_USER_EXIT;
5544 } else {
5545 /*
5546 * "Certain debug exceptions may clear bit 0-3. The
5547 * remaining contents of the DR6 register are never
5548 * cleared by the processor".
5549 */
5550 vcpu->arch.dr6 &= ~15;
5551 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5552 kvm_queue_exception(vcpu, DB_VECTOR);
5553 }
5554 }
5555 }
5556
5557 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5558 {
5559 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5560 int r = EMULATE_DONE;
5561
5562 kvm_x86_ops->skip_emulated_instruction(vcpu);
5563 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5564 return r == EMULATE_DONE;
5565 }
5566 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5567
5568 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5569 {
5570 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5571 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5572 struct kvm_run *kvm_run = vcpu->run;
5573 unsigned long eip = kvm_get_linear_rip(vcpu);
5574 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5575 vcpu->arch.guest_debug_dr7,
5576 vcpu->arch.eff_db);
5577
5578 if (dr6 != 0) {
5579 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5580 kvm_run->debug.arch.pc = eip;
5581 kvm_run->debug.arch.exception = DB_VECTOR;
5582 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5583 *r = EMULATE_USER_EXIT;
5584 return true;
5585 }
5586 }
5587
5588 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5589 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5590 unsigned long eip = kvm_get_linear_rip(vcpu);
5591 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5592 vcpu->arch.dr7,
5593 vcpu->arch.db);
5594
5595 if (dr6 != 0) {
5596 vcpu->arch.dr6 &= ~15;
5597 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5598 kvm_queue_exception(vcpu, DB_VECTOR);
5599 *r = EMULATE_DONE;
5600 return true;
5601 }
5602 }
5603
5604 return false;
5605 }
5606
5607 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5608 unsigned long cr2,
5609 int emulation_type,
5610 void *insn,
5611 int insn_len)
5612 {
5613 int r;
5614 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5615 bool writeback = true;
5616 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5617
5618 /*
5619 * Clear write_fault_to_shadow_pgtable here to ensure it is
5620 * never reused.
5621 */
5622 vcpu->arch.write_fault_to_shadow_pgtable = false;
5623 kvm_clear_exception_queue(vcpu);
5624
5625 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5626 init_emulate_ctxt(vcpu);
5627
5628 /*
5629 * We will reenter on the same instruction since
5630 * we do not set complete_userspace_io. This does not
5631 * handle watchpoints yet, those would be handled in
5632 * the emulate_ops.
5633 */
5634 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5635 return r;
5636
5637 ctxt->interruptibility = 0;
5638 ctxt->have_exception = false;
5639 ctxt->exception.vector = -1;
5640 ctxt->perm_ok = false;
5641
5642 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5643
5644 r = x86_decode_insn(ctxt, insn, insn_len);
5645
5646 trace_kvm_emulate_insn_start(vcpu);
5647 ++vcpu->stat.insn_emulation;
5648 if (r != EMULATION_OK) {
5649 if (emulation_type & EMULTYPE_TRAP_UD)
5650 return EMULATE_FAIL;
5651 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5652 emulation_type))
5653 return EMULATE_DONE;
5654 if (emulation_type & EMULTYPE_SKIP)
5655 return EMULATE_FAIL;
5656 return handle_emulation_failure(vcpu);
5657 }
5658 }
5659
5660 if (emulation_type & EMULTYPE_SKIP) {
5661 kvm_rip_write(vcpu, ctxt->_eip);
5662 if (ctxt->eflags & X86_EFLAGS_RF)
5663 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5664 return EMULATE_DONE;
5665 }
5666
5667 if (retry_instruction(ctxt, cr2, emulation_type))
5668 return EMULATE_DONE;
5669
5670 /* this is needed for vmware backdoor interface to work since it
5671 changes registers values during IO operation */
5672 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5673 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5674 emulator_invalidate_register_cache(ctxt);
5675 }
5676
5677 restart:
5678 /* Save the faulting GPA (cr2) in the address field */
5679 ctxt->exception.address = cr2;
5680
5681 r = x86_emulate_insn(ctxt);
5682
5683 if (r == EMULATION_INTERCEPTED)
5684 return EMULATE_DONE;
5685
5686 if (r == EMULATION_FAILED) {
5687 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5688 emulation_type))
5689 return EMULATE_DONE;
5690
5691 return handle_emulation_failure(vcpu);
5692 }
5693
5694 if (ctxt->have_exception) {
5695 r = EMULATE_DONE;
5696 if (inject_emulated_exception(vcpu))
5697 return r;
5698 } else if (vcpu->arch.pio.count) {
5699 if (!vcpu->arch.pio.in) {
5700 /* FIXME: return into emulator if single-stepping. */
5701 vcpu->arch.pio.count = 0;
5702 } else {
5703 writeback = false;
5704 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5705 }
5706 r = EMULATE_USER_EXIT;
5707 } else if (vcpu->mmio_needed) {
5708 if (!vcpu->mmio_is_write)
5709 writeback = false;
5710 r = EMULATE_USER_EXIT;
5711 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5712 } else if (r == EMULATION_RESTART)
5713 goto restart;
5714 else
5715 r = EMULATE_DONE;
5716
5717 if (writeback) {
5718 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5719 toggle_interruptibility(vcpu, ctxt->interruptibility);
5720 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5721 if (vcpu->arch.hflags != ctxt->emul_flags)
5722 kvm_set_hflags(vcpu, ctxt->emul_flags);
5723 kvm_rip_write(vcpu, ctxt->eip);
5724 if (r == EMULATE_DONE)
5725 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5726 if (!ctxt->have_exception ||
5727 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5728 __kvm_set_rflags(vcpu, ctxt->eflags);
5729
5730 /*
5731 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5732 * do nothing, and it will be requested again as soon as
5733 * the shadow expires. But we still need to check here,
5734 * because POPF has no interrupt shadow.
5735 */
5736 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5737 kvm_make_request(KVM_REQ_EVENT, vcpu);
5738 } else
5739 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5740
5741 return r;
5742 }
5743 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5744
5745 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5746 {
5747 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5748 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5749 size, port, &val, 1);
5750 /* do not return to emulator after return from userspace */
5751 vcpu->arch.pio.count = 0;
5752 return ret;
5753 }
5754 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5755
5756 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5757 {
5758 unsigned long val;
5759
5760 /* We should only ever be called with arch.pio.count equal to 1 */
5761 BUG_ON(vcpu->arch.pio.count != 1);
5762
5763 /* For size less than 4 we merge, else we zero extend */
5764 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5765 : 0;
5766
5767 /*
5768 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5769 * the copy and tracing
5770 */
5771 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5772 vcpu->arch.pio.port, &val, 1);
5773 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5774
5775 return 1;
5776 }
5777
5778 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5779 {
5780 unsigned long val;
5781 int ret;
5782
5783 /* For size less than 4 we merge, else we zero extend */
5784 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5785
5786 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5787 &val, 1);
5788 if (ret) {
5789 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5790 return ret;
5791 }
5792
5793 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5794
5795 return 0;
5796 }
5797 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5798
5799 static int kvmclock_cpu_down_prep(unsigned int cpu)
5800 {
5801 __this_cpu_write(cpu_tsc_khz, 0);
5802 return 0;
5803 }
5804
5805 static void tsc_khz_changed(void *data)
5806 {
5807 struct cpufreq_freqs *freq = data;
5808 unsigned long khz = 0;
5809
5810 if (data)
5811 khz = freq->new;
5812 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5813 khz = cpufreq_quick_get(raw_smp_processor_id());
5814 if (!khz)
5815 khz = tsc_khz;
5816 __this_cpu_write(cpu_tsc_khz, khz);
5817 }
5818
5819 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5820 void *data)
5821 {
5822 struct cpufreq_freqs *freq = data;
5823 struct kvm *kvm;
5824 struct kvm_vcpu *vcpu;
5825 int i, send_ipi = 0;
5826
5827 /*
5828 * We allow guests to temporarily run on slowing clocks,
5829 * provided we notify them after, or to run on accelerating
5830 * clocks, provided we notify them before. Thus time never
5831 * goes backwards.
5832 *
5833 * However, we have a problem. We can't atomically update
5834 * the frequency of a given CPU from this function; it is
5835 * merely a notifier, which can be called from any CPU.
5836 * Changing the TSC frequency at arbitrary points in time
5837 * requires a recomputation of local variables related to
5838 * the TSC for each VCPU. We must flag these local variables
5839 * to be updated and be sure the update takes place with the
5840 * new frequency before any guests proceed.
5841 *
5842 * Unfortunately, the combination of hotplug CPU and frequency
5843 * change creates an intractable locking scenario; the order
5844 * of when these callouts happen is undefined with respect to
5845 * CPU hotplug, and they can race with each other. As such,
5846 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5847 * undefined; you can actually have a CPU frequency change take
5848 * place in between the computation of X and the setting of the
5849 * variable. To protect against this problem, all updates of
5850 * the per_cpu tsc_khz variable are done in an interrupt
5851 * protected IPI, and all callers wishing to update the value
5852 * must wait for a synchronous IPI to complete (which is trivial
5853 * if the caller is on the CPU already). This establishes the
5854 * necessary total order on variable updates.
5855 *
5856 * Note that because a guest time update may take place
5857 * anytime after the setting of the VCPU's request bit, the
5858 * correct TSC value must be set before the request. However,
5859 * to ensure the update actually makes it to any guest which
5860 * starts running in hardware virtualization between the set
5861 * and the acquisition of the spinlock, we must also ping the
5862 * CPU after setting the request bit.
5863 *
5864 */
5865
5866 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5867 return 0;
5868 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5869 return 0;
5870
5871 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5872
5873 spin_lock(&kvm_lock);
5874 list_for_each_entry(kvm, &vm_list, vm_list) {
5875 kvm_for_each_vcpu(i, vcpu, kvm) {
5876 if (vcpu->cpu != freq->cpu)
5877 continue;
5878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5879 if (vcpu->cpu != smp_processor_id())
5880 send_ipi = 1;
5881 }
5882 }
5883 spin_unlock(&kvm_lock);
5884
5885 if (freq->old < freq->new && send_ipi) {
5886 /*
5887 * We upscale the frequency. Must make the guest
5888 * doesn't see old kvmclock values while running with
5889 * the new frequency, otherwise we risk the guest sees
5890 * time go backwards.
5891 *
5892 * In case we update the frequency for another cpu
5893 * (which might be in guest context) send an interrupt
5894 * to kick the cpu out of guest context. Next time
5895 * guest context is entered kvmclock will be updated,
5896 * so the guest will not see stale values.
5897 */
5898 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5899 }
5900 return 0;
5901 }
5902
5903 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5904 .notifier_call = kvmclock_cpufreq_notifier
5905 };
5906
5907 static int kvmclock_cpu_online(unsigned int cpu)
5908 {
5909 tsc_khz_changed(NULL);
5910 return 0;
5911 }
5912
5913 static void kvm_timer_init(void)
5914 {
5915 max_tsc_khz = tsc_khz;
5916
5917 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5918 #ifdef CONFIG_CPU_FREQ
5919 struct cpufreq_policy policy;
5920 int cpu;
5921
5922 memset(&policy, 0, sizeof(policy));
5923 cpu = get_cpu();
5924 cpufreq_get_policy(&policy, cpu);
5925 if (policy.cpuinfo.max_freq)
5926 max_tsc_khz = policy.cpuinfo.max_freq;
5927 put_cpu();
5928 #endif
5929 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5930 CPUFREQ_TRANSITION_NOTIFIER);
5931 }
5932 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5933
5934 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5935 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5936 }
5937
5938 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5939
5940 int kvm_is_in_guest(void)
5941 {
5942 return __this_cpu_read(current_vcpu) != NULL;
5943 }
5944
5945 static int kvm_is_user_mode(void)
5946 {
5947 int user_mode = 3;
5948
5949 if (__this_cpu_read(current_vcpu))
5950 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5951
5952 return user_mode != 0;
5953 }
5954
5955 static unsigned long kvm_get_guest_ip(void)
5956 {
5957 unsigned long ip = 0;
5958
5959 if (__this_cpu_read(current_vcpu))
5960 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5961
5962 return ip;
5963 }
5964
5965 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5966 .is_in_guest = kvm_is_in_guest,
5967 .is_user_mode = kvm_is_user_mode,
5968 .get_guest_ip = kvm_get_guest_ip,
5969 };
5970
5971 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5972 {
5973 __this_cpu_write(current_vcpu, vcpu);
5974 }
5975 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5976
5977 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5978 {
5979 __this_cpu_write(current_vcpu, NULL);
5980 }
5981 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5982
5983 static void kvm_set_mmio_spte_mask(void)
5984 {
5985 u64 mask;
5986 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5987
5988 /*
5989 * Set the reserved bits and the present bit of an paging-structure
5990 * entry to generate page fault with PFER.RSV = 1.
5991 */
5992 /* Mask the reserved physical address bits. */
5993 mask = rsvd_bits(maxphyaddr, 51);
5994
5995 /* Set the present bit. */
5996 mask |= 1ull;
5997
5998 #ifdef CONFIG_X86_64
5999 /*
6000 * If reserved bit is not supported, clear the present bit to disable
6001 * mmio page fault.
6002 */
6003 if (maxphyaddr == 52)
6004 mask &= ~1ull;
6005 #endif
6006
6007 kvm_mmu_set_mmio_spte_mask(mask);
6008 }
6009
6010 #ifdef CONFIG_X86_64
6011 static void pvclock_gtod_update_fn(struct work_struct *work)
6012 {
6013 struct kvm *kvm;
6014
6015 struct kvm_vcpu *vcpu;
6016 int i;
6017
6018 spin_lock(&kvm_lock);
6019 list_for_each_entry(kvm, &vm_list, vm_list)
6020 kvm_for_each_vcpu(i, vcpu, kvm)
6021 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6022 atomic_set(&kvm_guest_has_master_clock, 0);
6023 spin_unlock(&kvm_lock);
6024 }
6025
6026 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6027
6028 /*
6029 * Notification about pvclock gtod data update.
6030 */
6031 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6032 void *priv)
6033 {
6034 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6035 struct timekeeper *tk = priv;
6036
6037 update_pvclock_gtod(tk);
6038
6039 /* disable master clock if host does not trust, or does not
6040 * use, TSC clocksource
6041 */
6042 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6043 atomic_read(&kvm_guest_has_master_clock) != 0)
6044 queue_work(system_long_wq, &pvclock_gtod_work);
6045
6046 return 0;
6047 }
6048
6049 static struct notifier_block pvclock_gtod_notifier = {
6050 .notifier_call = pvclock_gtod_notify,
6051 };
6052 #endif
6053
6054 int kvm_arch_init(void *opaque)
6055 {
6056 int r;
6057 struct kvm_x86_ops *ops = opaque;
6058
6059 if (kvm_x86_ops) {
6060 printk(KERN_ERR "kvm: already loaded the other module\n");
6061 r = -EEXIST;
6062 goto out;
6063 }
6064
6065 if (!ops->cpu_has_kvm_support()) {
6066 printk(KERN_ERR "kvm: no hardware support\n");
6067 r = -EOPNOTSUPP;
6068 goto out;
6069 }
6070 if (ops->disabled_by_bios()) {
6071 printk(KERN_ERR "kvm: disabled by bios\n");
6072 r = -EOPNOTSUPP;
6073 goto out;
6074 }
6075
6076 r = -ENOMEM;
6077 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6078 if (!shared_msrs) {
6079 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6080 goto out;
6081 }
6082
6083 r = kvm_mmu_module_init();
6084 if (r)
6085 goto out_free_percpu;
6086
6087 kvm_set_mmio_spte_mask();
6088
6089 kvm_x86_ops = ops;
6090
6091 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6092 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6093 PT_PRESENT_MASK, 0);
6094 kvm_timer_init();
6095
6096 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6097
6098 if (boot_cpu_has(X86_FEATURE_XSAVE))
6099 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6100
6101 kvm_lapic_init();
6102 #ifdef CONFIG_X86_64
6103 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6104 #endif
6105
6106 return 0;
6107
6108 out_free_percpu:
6109 free_percpu(shared_msrs);
6110 out:
6111 return r;
6112 }
6113
6114 void kvm_arch_exit(void)
6115 {
6116 kvm_lapic_exit();
6117 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6118
6119 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6120 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6121 CPUFREQ_TRANSITION_NOTIFIER);
6122 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6123 #ifdef CONFIG_X86_64
6124 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6125 #endif
6126 kvm_x86_ops = NULL;
6127 kvm_mmu_module_exit();
6128 free_percpu(shared_msrs);
6129 }
6130
6131 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6132 {
6133 ++vcpu->stat.halt_exits;
6134 if (lapic_in_kernel(vcpu)) {
6135 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6136 return 1;
6137 } else {
6138 vcpu->run->exit_reason = KVM_EXIT_HLT;
6139 return 0;
6140 }
6141 }
6142 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6143
6144 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6145 {
6146 int ret = kvm_skip_emulated_instruction(vcpu);
6147 /*
6148 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6149 * KVM_EXIT_DEBUG here.
6150 */
6151 return kvm_vcpu_halt(vcpu) && ret;
6152 }
6153 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6154
6155 #ifdef CONFIG_X86_64
6156 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6157 unsigned long clock_type)
6158 {
6159 struct kvm_clock_pairing clock_pairing;
6160 struct timespec ts;
6161 u64 cycle;
6162 int ret;
6163
6164 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6165 return -KVM_EOPNOTSUPP;
6166
6167 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6168 return -KVM_EOPNOTSUPP;
6169
6170 clock_pairing.sec = ts.tv_sec;
6171 clock_pairing.nsec = ts.tv_nsec;
6172 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6173 clock_pairing.flags = 0;
6174
6175 ret = 0;
6176 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6177 sizeof(struct kvm_clock_pairing)))
6178 ret = -KVM_EFAULT;
6179
6180 return ret;
6181 }
6182 #endif
6183
6184 /*
6185 * kvm_pv_kick_cpu_op: Kick a vcpu.
6186 *
6187 * @apicid - apicid of vcpu to be kicked.
6188 */
6189 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6190 {
6191 struct kvm_lapic_irq lapic_irq;
6192
6193 lapic_irq.shorthand = 0;
6194 lapic_irq.dest_mode = 0;
6195 lapic_irq.dest_id = apicid;
6196 lapic_irq.msi_redir_hint = false;
6197
6198 lapic_irq.delivery_mode = APIC_DM_REMRD;
6199 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6200 }
6201
6202 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6203 {
6204 vcpu->arch.apicv_active = false;
6205 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6206 }
6207
6208 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6209 {
6210 unsigned long nr, a0, a1, a2, a3, ret;
6211 int op_64_bit, r;
6212
6213 r = kvm_skip_emulated_instruction(vcpu);
6214
6215 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6216 return kvm_hv_hypercall(vcpu);
6217
6218 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6219 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6220 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6221 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6222 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6223
6224 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6225
6226 op_64_bit = is_64_bit_mode(vcpu);
6227 if (!op_64_bit) {
6228 nr &= 0xFFFFFFFF;
6229 a0 &= 0xFFFFFFFF;
6230 a1 &= 0xFFFFFFFF;
6231 a2 &= 0xFFFFFFFF;
6232 a3 &= 0xFFFFFFFF;
6233 }
6234
6235 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6236 ret = -KVM_EPERM;
6237 goto out;
6238 }
6239
6240 switch (nr) {
6241 case KVM_HC_VAPIC_POLL_IRQ:
6242 ret = 0;
6243 break;
6244 case KVM_HC_KICK_CPU:
6245 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6246 ret = 0;
6247 break;
6248 #ifdef CONFIG_X86_64
6249 case KVM_HC_CLOCK_PAIRING:
6250 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6251 break;
6252 #endif
6253 default:
6254 ret = -KVM_ENOSYS;
6255 break;
6256 }
6257 out:
6258 if (!op_64_bit)
6259 ret = (u32)ret;
6260 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6261 ++vcpu->stat.hypercalls;
6262 return r;
6263 }
6264 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6265
6266 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6267 {
6268 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6269 char instruction[3];
6270 unsigned long rip = kvm_rip_read(vcpu);
6271
6272 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6273
6274 return emulator_write_emulated(ctxt, rip, instruction, 3,
6275 &ctxt->exception);
6276 }
6277
6278 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6279 {
6280 return vcpu->run->request_interrupt_window &&
6281 likely(!pic_in_kernel(vcpu->kvm));
6282 }
6283
6284 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6285 {
6286 struct kvm_run *kvm_run = vcpu->run;
6287
6288 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6289 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6290 kvm_run->cr8 = kvm_get_cr8(vcpu);
6291 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6292 kvm_run->ready_for_interrupt_injection =
6293 pic_in_kernel(vcpu->kvm) ||
6294 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6295 }
6296
6297 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6298 {
6299 int max_irr, tpr;
6300
6301 if (!kvm_x86_ops->update_cr8_intercept)
6302 return;
6303
6304 if (!lapic_in_kernel(vcpu))
6305 return;
6306
6307 if (vcpu->arch.apicv_active)
6308 return;
6309
6310 if (!vcpu->arch.apic->vapic_addr)
6311 max_irr = kvm_lapic_find_highest_irr(vcpu);
6312 else
6313 max_irr = -1;
6314
6315 if (max_irr != -1)
6316 max_irr >>= 4;
6317
6318 tpr = kvm_lapic_get_cr8(vcpu);
6319
6320 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6321 }
6322
6323 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6324 {
6325 int r;
6326
6327 /* try to reinject previous events if any */
6328 if (vcpu->arch.exception.pending) {
6329 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6330 vcpu->arch.exception.has_error_code,
6331 vcpu->arch.exception.error_code);
6332
6333 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6334 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6335 X86_EFLAGS_RF);
6336
6337 if (vcpu->arch.exception.nr == DB_VECTOR &&
6338 (vcpu->arch.dr7 & DR7_GD)) {
6339 vcpu->arch.dr7 &= ~DR7_GD;
6340 kvm_update_dr7(vcpu);
6341 }
6342
6343 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6344 vcpu->arch.exception.has_error_code,
6345 vcpu->arch.exception.error_code,
6346 vcpu->arch.exception.reinject);
6347 return 0;
6348 }
6349
6350 if (vcpu->arch.nmi_injected) {
6351 kvm_x86_ops->set_nmi(vcpu);
6352 return 0;
6353 }
6354
6355 if (vcpu->arch.interrupt.pending) {
6356 kvm_x86_ops->set_irq(vcpu);
6357 return 0;
6358 }
6359
6360 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6361 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6362 if (r != 0)
6363 return r;
6364 }
6365
6366 /* try to inject new event if pending */
6367 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6368 vcpu->arch.smi_pending = false;
6369 enter_smm(vcpu);
6370 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6371 --vcpu->arch.nmi_pending;
6372 vcpu->arch.nmi_injected = true;
6373 kvm_x86_ops->set_nmi(vcpu);
6374 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6375 /*
6376 * Because interrupts can be injected asynchronously, we are
6377 * calling check_nested_events again here to avoid a race condition.
6378 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6379 * proposal and current concerns. Perhaps we should be setting
6380 * KVM_REQ_EVENT only on certain events and not unconditionally?
6381 */
6382 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6383 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6384 if (r != 0)
6385 return r;
6386 }
6387 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6388 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6389 false);
6390 kvm_x86_ops->set_irq(vcpu);
6391 }
6392 }
6393
6394 return 0;
6395 }
6396
6397 static void process_nmi(struct kvm_vcpu *vcpu)
6398 {
6399 unsigned limit = 2;
6400
6401 /*
6402 * x86 is limited to one NMI running, and one NMI pending after it.
6403 * If an NMI is already in progress, limit further NMIs to just one.
6404 * Otherwise, allow two (and we'll inject the first one immediately).
6405 */
6406 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6407 limit = 1;
6408
6409 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6410 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6411 kvm_make_request(KVM_REQ_EVENT, vcpu);
6412 }
6413
6414 #define put_smstate(type, buf, offset, val) \
6415 *(type *)((buf) + (offset) - 0x7e00) = val
6416
6417 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6418 {
6419 u32 flags = 0;
6420 flags |= seg->g << 23;
6421 flags |= seg->db << 22;
6422 flags |= seg->l << 21;
6423 flags |= seg->avl << 20;
6424 flags |= seg->present << 15;
6425 flags |= seg->dpl << 13;
6426 flags |= seg->s << 12;
6427 flags |= seg->type << 8;
6428 return flags;
6429 }
6430
6431 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6432 {
6433 struct kvm_segment seg;
6434 int offset;
6435
6436 kvm_get_segment(vcpu, &seg, n);
6437 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6438
6439 if (n < 3)
6440 offset = 0x7f84 + n * 12;
6441 else
6442 offset = 0x7f2c + (n - 3) * 12;
6443
6444 put_smstate(u32, buf, offset + 8, seg.base);
6445 put_smstate(u32, buf, offset + 4, seg.limit);
6446 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6447 }
6448
6449 #ifdef CONFIG_X86_64
6450 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6451 {
6452 struct kvm_segment seg;
6453 int offset;
6454 u16 flags;
6455
6456 kvm_get_segment(vcpu, &seg, n);
6457 offset = 0x7e00 + n * 16;
6458
6459 flags = enter_smm_get_segment_flags(&seg) >> 8;
6460 put_smstate(u16, buf, offset, seg.selector);
6461 put_smstate(u16, buf, offset + 2, flags);
6462 put_smstate(u32, buf, offset + 4, seg.limit);
6463 put_smstate(u64, buf, offset + 8, seg.base);
6464 }
6465 #endif
6466
6467 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6468 {
6469 struct desc_ptr dt;
6470 struct kvm_segment seg;
6471 unsigned long val;
6472 int i;
6473
6474 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6475 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6476 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6477 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6478
6479 for (i = 0; i < 8; i++)
6480 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6481
6482 kvm_get_dr(vcpu, 6, &val);
6483 put_smstate(u32, buf, 0x7fcc, (u32)val);
6484 kvm_get_dr(vcpu, 7, &val);
6485 put_smstate(u32, buf, 0x7fc8, (u32)val);
6486
6487 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6488 put_smstate(u32, buf, 0x7fc4, seg.selector);
6489 put_smstate(u32, buf, 0x7f64, seg.base);
6490 put_smstate(u32, buf, 0x7f60, seg.limit);
6491 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6492
6493 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6494 put_smstate(u32, buf, 0x7fc0, seg.selector);
6495 put_smstate(u32, buf, 0x7f80, seg.base);
6496 put_smstate(u32, buf, 0x7f7c, seg.limit);
6497 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6498
6499 kvm_x86_ops->get_gdt(vcpu, &dt);
6500 put_smstate(u32, buf, 0x7f74, dt.address);
6501 put_smstate(u32, buf, 0x7f70, dt.size);
6502
6503 kvm_x86_ops->get_idt(vcpu, &dt);
6504 put_smstate(u32, buf, 0x7f58, dt.address);
6505 put_smstate(u32, buf, 0x7f54, dt.size);
6506
6507 for (i = 0; i < 6; i++)
6508 enter_smm_save_seg_32(vcpu, buf, i);
6509
6510 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6511
6512 /* revision id */
6513 put_smstate(u32, buf, 0x7efc, 0x00020000);
6514 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6515 }
6516
6517 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6518 {
6519 #ifdef CONFIG_X86_64
6520 struct desc_ptr dt;
6521 struct kvm_segment seg;
6522 unsigned long val;
6523 int i;
6524
6525 for (i = 0; i < 16; i++)
6526 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6527
6528 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6529 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6530
6531 kvm_get_dr(vcpu, 6, &val);
6532 put_smstate(u64, buf, 0x7f68, val);
6533 kvm_get_dr(vcpu, 7, &val);
6534 put_smstate(u64, buf, 0x7f60, val);
6535
6536 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6537 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6538 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6539
6540 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6541
6542 /* revision id */
6543 put_smstate(u32, buf, 0x7efc, 0x00020064);
6544
6545 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6546
6547 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6548 put_smstate(u16, buf, 0x7e90, seg.selector);
6549 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6550 put_smstate(u32, buf, 0x7e94, seg.limit);
6551 put_smstate(u64, buf, 0x7e98, seg.base);
6552
6553 kvm_x86_ops->get_idt(vcpu, &dt);
6554 put_smstate(u32, buf, 0x7e84, dt.size);
6555 put_smstate(u64, buf, 0x7e88, dt.address);
6556
6557 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6558 put_smstate(u16, buf, 0x7e70, seg.selector);
6559 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6560 put_smstate(u32, buf, 0x7e74, seg.limit);
6561 put_smstate(u64, buf, 0x7e78, seg.base);
6562
6563 kvm_x86_ops->get_gdt(vcpu, &dt);
6564 put_smstate(u32, buf, 0x7e64, dt.size);
6565 put_smstate(u64, buf, 0x7e68, dt.address);
6566
6567 for (i = 0; i < 6; i++)
6568 enter_smm_save_seg_64(vcpu, buf, i);
6569 #else
6570 WARN_ON_ONCE(1);
6571 #endif
6572 }
6573
6574 static void enter_smm(struct kvm_vcpu *vcpu)
6575 {
6576 struct kvm_segment cs, ds;
6577 struct desc_ptr dt;
6578 char buf[512];
6579 u32 cr0;
6580
6581 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6582 vcpu->arch.hflags |= HF_SMM_MASK;
6583 memset(buf, 0, 512);
6584 if (guest_cpuid_has_longmode(vcpu))
6585 enter_smm_save_state_64(vcpu, buf);
6586 else
6587 enter_smm_save_state_32(vcpu, buf);
6588
6589 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6590
6591 if (kvm_x86_ops->get_nmi_mask(vcpu))
6592 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6593 else
6594 kvm_x86_ops->set_nmi_mask(vcpu, true);
6595
6596 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6597 kvm_rip_write(vcpu, 0x8000);
6598
6599 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6600 kvm_x86_ops->set_cr0(vcpu, cr0);
6601 vcpu->arch.cr0 = cr0;
6602
6603 kvm_x86_ops->set_cr4(vcpu, 0);
6604
6605 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6606 dt.address = dt.size = 0;
6607 kvm_x86_ops->set_idt(vcpu, &dt);
6608
6609 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6610
6611 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6612 cs.base = vcpu->arch.smbase;
6613
6614 ds.selector = 0;
6615 ds.base = 0;
6616
6617 cs.limit = ds.limit = 0xffffffff;
6618 cs.type = ds.type = 0x3;
6619 cs.dpl = ds.dpl = 0;
6620 cs.db = ds.db = 0;
6621 cs.s = ds.s = 1;
6622 cs.l = ds.l = 0;
6623 cs.g = ds.g = 1;
6624 cs.avl = ds.avl = 0;
6625 cs.present = ds.present = 1;
6626 cs.unusable = ds.unusable = 0;
6627 cs.padding = ds.padding = 0;
6628
6629 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6631 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6632 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6633 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6634 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6635
6636 if (guest_cpuid_has_longmode(vcpu))
6637 kvm_x86_ops->set_efer(vcpu, 0);
6638
6639 kvm_update_cpuid(vcpu);
6640 kvm_mmu_reset_context(vcpu);
6641 }
6642
6643 static void process_smi(struct kvm_vcpu *vcpu)
6644 {
6645 vcpu->arch.smi_pending = true;
6646 kvm_make_request(KVM_REQ_EVENT, vcpu);
6647 }
6648
6649 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6650 {
6651 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6652 }
6653
6654 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6655 {
6656 u64 eoi_exit_bitmap[4];
6657
6658 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6659 return;
6660
6661 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6662
6663 if (irqchip_split(vcpu->kvm))
6664 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6665 else {
6666 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6667 kvm_x86_ops->sync_pir_to_irr(vcpu);
6668 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6669 }
6670 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6671 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6672 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6673 }
6674
6675 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6676 {
6677 ++vcpu->stat.tlb_flush;
6678 kvm_x86_ops->tlb_flush(vcpu);
6679 }
6680
6681 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6682 {
6683 struct page *page = NULL;
6684
6685 if (!lapic_in_kernel(vcpu))
6686 return;
6687
6688 if (!kvm_x86_ops->set_apic_access_page_addr)
6689 return;
6690
6691 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6692 if (is_error_page(page))
6693 return;
6694 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6695
6696 /*
6697 * Do not pin apic access page in memory, the MMU notifier
6698 * will call us again if it is migrated or swapped out.
6699 */
6700 put_page(page);
6701 }
6702 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6703
6704 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6705 unsigned long address)
6706 {
6707 /*
6708 * The physical address of apic access page is stored in the VMCS.
6709 * Update it when it becomes invalid.
6710 */
6711 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6712 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6713 }
6714
6715 /*
6716 * Returns 1 to let vcpu_run() continue the guest execution loop without
6717 * exiting to the userspace. Otherwise, the value will be returned to the
6718 * userspace.
6719 */
6720 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6721 {
6722 int r;
6723 bool req_int_win =
6724 dm_request_for_irq_injection(vcpu) &&
6725 kvm_cpu_accept_dm_intr(vcpu);
6726
6727 bool req_immediate_exit = false;
6728
6729 if (vcpu->requests) {
6730 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6731 kvm_mmu_unload(vcpu);
6732 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6733 __kvm_migrate_timers(vcpu);
6734 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6735 kvm_gen_update_masterclock(vcpu->kvm);
6736 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6737 kvm_gen_kvmclock_update(vcpu);
6738 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6739 r = kvm_guest_time_update(vcpu);
6740 if (unlikely(r))
6741 goto out;
6742 }
6743 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6744 kvm_mmu_sync_roots(vcpu);
6745 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6746 kvm_vcpu_flush_tlb(vcpu);
6747 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6748 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6749 r = 0;
6750 goto out;
6751 }
6752 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6753 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6754 r = 0;
6755 goto out;
6756 }
6757 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6758 /* Page is swapped out. Do synthetic halt */
6759 vcpu->arch.apf.halted = true;
6760 r = 1;
6761 goto out;
6762 }
6763 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6764 record_steal_time(vcpu);
6765 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6766 process_smi(vcpu);
6767 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6768 process_nmi(vcpu);
6769 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6770 kvm_pmu_handle_event(vcpu);
6771 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6772 kvm_pmu_deliver_pmi(vcpu);
6773 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6774 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6775 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6776 vcpu->arch.ioapic_handled_vectors)) {
6777 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6778 vcpu->run->eoi.vector =
6779 vcpu->arch.pending_ioapic_eoi;
6780 r = 0;
6781 goto out;
6782 }
6783 }
6784 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6785 vcpu_scan_ioapic(vcpu);
6786 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6787 kvm_vcpu_reload_apic_access_page(vcpu);
6788 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6789 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6790 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6791 r = 0;
6792 goto out;
6793 }
6794 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6795 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6796 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6797 r = 0;
6798 goto out;
6799 }
6800 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6801 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6802 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6803 r = 0;
6804 goto out;
6805 }
6806
6807 /*
6808 * KVM_REQ_HV_STIMER has to be processed after
6809 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6810 * depend on the guest clock being up-to-date
6811 */
6812 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6813 kvm_hv_process_stimers(vcpu);
6814 }
6815
6816 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6817 ++vcpu->stat.req_event;
6818 kvm_apic_accept_events(vcpu);
6819 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6820 r = 1;
6821 goto out;
6822 }
6823
6824 if (inject_pending_event(vcpu, req_int_win) != 0)
6825 req_immediate_exit = true;
6826 else {
6827 /* Enable NMI/IRQ window open exits if needed.
6828 *
6829 * SMIs have two cases: 1) they can be nested, and
6830 * then there is nothing to do here because RSM will
6831 * cause a vmexit anyway; 2) or the SMI can be pending
6832 * because inject_pending_event has completed the
6833 * injection of an IRQ or NMI from the previous vmexit,
6834 * and then we request an immediate exit to inject the SMI.
6835 */
6836 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6837 req_immediate_exit = true;
6838 if (vcpu->arch.nmi_pending)
6839 kvm_x86_ops->enable_nmi_window(vcpu);
6840 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6841 kvm_x86_ops->enable_irq_window(vcpu);
6842 }
6843
6844 if (kvm_lapic_enabled(vcpu)) {
6845 update_cr8_intercept(vcpu);
6846 kvm_lapic_sync_to_vapic(vcpu);
6847 }
6848 }
6849
6850 r = kvm_mmu_reload(vcpu);
6851 if (unlikely(r)) {
6852 goto cancel_injection;
6853 }
6854
6855 preempt_disable();
6856
6857 kvm_x86_ops->prepare_guest_switch(vcpu);
6858 kvm_load_guest_fpu(vcpu);
6859
6860 /*
6861 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6862 * IPI are then delayed after guest entry, which ensures that they
6863 * result in virtual interrupt delivery.
6864 */
6865 local_irq_disable();
6866 vcpu->mode = IN_GUEST_MODE;
6867
6868 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6869
6870 /*
6871 * 1) We should set ->mode before checking ->requests. Please see
6872 * the comment in kvm_make_all_cpus_request.
6873 *
6874 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6875 * pairs with the memory barrier implicit in pi_test_and_set_on
6876 * (see vmx_deliver_posted_interrupt).
6877 *
6878 * 3) This also orders the write to mode from any reads to the page
6879 * tables done while the VCPU is running. Please see the comment
6880 * in kvm_flush_remote_tlbs.
6881 */
6882 smp_mb__after_srcu_read_unlock();
6883
6884 /*
6885 * This handles the case where a posted interrupt was
6886 * notified with kvm_vcpu_kick.
6887 */
6888 if (kvm_lapic_enabled(vcpu)) {
6889 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6890 kvm_x86_ops->sync_pir_to_irr(vcpu);
6891 }
6892
6893 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6894 || need_resched() || signal_pending(current)) {
6895 vcpu->mode = OUTSIDE_GUEST_MODE;
6896 smp_wmb();
6897 local_irq_enable();
6898 preempt_enable();
6899 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6900 r = 1;
6901 goto cancel_injection;
6902 }
6903
6904 kvm_load_guest_xcr0(vcpu);
6905
6906 if (req_immediate_exit) {
6907 kvm_make_request(KVM_REQ_EVENT, vcpu);
6908 smp_send_reschedule(vcpu->cpu);
6909 }
6910
6911 trace_kvm_entry(vcpu->vcpu_id);
6912 wait_lapic_expire(vcpu);
6913 guest_enter_irqoff();
6914
6915 if (unlikely(vcpu->arch.switch_db_regs)) {
6916 set_debugreg(0, 7);
6917 set_debugreg(vcpu->arch.eff_db[0], 0);
6918 set_debugreg(vcpu->arch.eff_db[1], 1);
6919 set_debugreg(vcpu->arch.eff_db[2], 2);
6920 set_debugreg(vcpu->arch.eff_db[3], 3);
6921 set_debugreg(vcpu->arch.dr6, 6);
6922 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6923 }
6924
6925 kvm_x86_ops->run(vcpu);
6926
6927 /*
6928 * Do this here before restoring debug registers on the host. And
6929 * since we do this before handling the vmexit, a DR access vmexit
6930 * can (a) read the correct value of the debug registers, (b) set
6931 * KVM_DEBUGREG_WONT_EXIT again.
6932 */
6933 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6934 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6935 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6936 kvm_update_dr0123(vcpu);
6937 kvm_update_dr6(vcpu);
6938 kvm_update_dr7(vcpu);
6939 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6940 }
6941
6942 /*
6943 * If the guest has used debug registers, at least dr7
6944 * will be disabled while returning to the host.
6945 * If we don't have active breakpoints in the host, we don't
6946 * care about the messed up debug address registers. But if
6947 * we have some of them active, restore the old state.
6948 */
6949 if (hw_breakpoint_active())
6950 hw_breakpoint_restore();
6951
6952 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6953
6954 vcpu->mode = OUTSIDE_GUEST_MODE;
6955 smp_wmb();
6956
6957 kvm_put_guest_xcr0(vcpu);
6958
6959 kvm_x86_ops->handle_external_intr(vcpu);
6960
6961 ++vcpu->stat.exits;
6962
6963 guest_exit_irqoff();
6964
6965 local_irq_enable();
6966 preempt_enable();
6967
6968 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6969
6970 /*
6971 * Profile KVM exit RIPs:
6972 */
6973 if (unlikely(prof_on == KVM_PROFILING)) {
6974 unsigned long rip = kvm_rip_read(vcpu);
6975 profile_hit(KVM_PROFILING, (void *)rip);
6976 }
6977
6978 if (unlikely(vcpu->arch.tsc_always_catchup))
6979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6980
6981 if (vcpu->arch.apic_attention)
6982 kvm_lapic_sync_from_vapic(vcpu);
6983
6984 r = kvm_x86_ops->handle_exit(vcpu);
6985 return r;
6986
6987 cancel_injection:
6988 kvm_x86_ops->cancel_injection(vcpu);
6989 if (unlikely(vcpu->arch.apic_attention))
6990 kvm_lapic_sync_from_vapic(vcpu);
6991 out:
6992 return r;
6993 }
6994
6995 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6996 {
6997 if (!kvm_arch_vcpu_runnable(vcpu) &&
6998 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6999 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7000 kvm_vcpu_block(vcpu);
7001 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7002
7003 if (kvm_x86_ops->post_block)
7004 kvm_x86_ops->post_block(vcpu);
7005
7006 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7007 return 1;
7008 }
7009
7010 kvm_apic_accept_events(vcpu);
7011 switch(vcpu->arch.mp_state) {
7012 case KVM_MP_STATE_HALTED:
7013 vcpu->arch.pv.pv_unhalted = false;
7014 vcpu->arch.mp_state =
7015 KVM_MP_STATE_RUNNABLE;
7016 case KVM_MP_STATE_RUNNABLE:
7017 vcpu->arch.apf.halted = false;
7018 break;
7019 case KVM_MP_STATE_INIT_RECEIVED:
7020 break;
7021 default:
7022 return -EINTR;
7023 break;
7024 }
7025 return 1;
7026 }
7027
7028 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7029 {
7030 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7031 kvm_x86_ops->check_nested_events(vcpu, false);
7032
7033 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7034 !vcpu->arch.apf.halted);
7035 }
7036
7037 static int vcpu_run(struct kvm_vcpu *vcpu)
7038 {
7039 int r;
7040 struct kvm *kvm = vcpu->kvm;
7041
7042 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7043
7044 for (;;) {
7045 if (kvm_vcpu_running(vcpu)) {
7046 r = vcpu_enter_guest(vcpu);
7047 } else {
7048 r = vcpu_block(kvm, vcpu);
7049 }
7050
7051 if (r <= 0)
7052 break;
7053
7054 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7055 if (kvm_cpu_has_pending_timer(vcpu))
7056 kvm_inject_pending_timer_irqs(vcpu);
7057
7058 if (dm_request_for_irq_injection(vcpu) &&
7059 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7060 r = 0;
7061 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7062 ++vcpu->stat.request_irq_exits;
7063 break;
7064 }
7065
7066 kvm_check_async_pf_completion(vcpu);
7067
7068 if (signal_pending(current)) {
7069 r = -EINTR;
7070 vcpu->run->exit_reason = KVM_EXIT_INTR;
7071 ++vcpu->stat.signal_exits;
7072 break;
7073 }
7074 if (need_resched()) {
7075 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7076 cond_resched();
7077 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7078 }
7079 }
7080
7081 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7082
7083 return r;
7084 }
7085
7086 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7087 {
7088 int r;
7089 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7090 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7091 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7092 if (r != EMULATE_DONE)
7093 return 0;
7094 return 1;
7095 }
7096
7097 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7098 {
7099 BUG_ON(!vcpu->arch.pio.count);
7100
7101 return complete_emulated_io(vcpu);
7102 }
7103
7104 /*
7105 * Implements the following, as a state machine:
7106 *
7107 * read:
7108 * for each fragment
7109 * for each mmio piece in the fragment
7110 * write gpa, len
7111 * exit
7112 * copy data
7113 * execute insn
7114 *
7115 * write:
7116 * for each fragment
7117 * for each mmio piece in the fragment
7118 * write gpa, len
7119 * copy data
7120 * exit
7121 */
7122 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7123 {
7124 struct kvm_run *run = vcpu->run;
7125 struct kvm_mmio_fragment *frag;
7126 unsigned len;
7127
7128 BUG_ON(!vcpu->mmio_needed);
7129
7130 /* Complete previous fragment */
7131 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7132 len = min(8u, frag->len);
7133 if (!vcpu->mmio_is_write)
7134 memcpy(frag->data, run->mmio.data, len);
7135
7136 if (frag->len <= 8) {
7137 /* Switch to the next fragment. */
7138 frag++;
7139 vcpu->mmio_cur_fragment++;
7140 } else {
7141 /* Go forward to the next mmio piece. */
7142 frag->data += len;
7143 frag->gpa += len;
7144 frag->len -= len;
7145 }
7146
7147 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7148 vcpu->mmio_needed = 0;
7149
7150 /* FIXME: return into emulator if single-stepping. */
7151 if (vcpu->mmio_is_write)
7152 return 1;
7153 vcpu->mmio_read_completed = 1;
7154 return complete_emulated_io(vcpu);
7155 }
7156
7157 run->exit_reason = KVM_EXIT_MMIO;
7158 run->mmio.phys_addr = frag->gpa;
7159 if (vcpu->mmio_is_write)
7160 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7161 run->mmio.len = min(8u, frag->len);
7162 run->mmio.is_write = vcpu->mmio_is_write;
7163 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7164 return 0;
7165 }
7166
7167
7168 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7169 {
7170 struct fpu *fpu = &current->thread.fpu;
7171 int r;
7172 sigset_t sigsaved;
7173
7174 fpu__activate_curr(fpu);
7175
7176 if (vcpu->sigset_active)
7177 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7178
7179 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7180 kvm_vcpu_block(vcpu);
7181 kvm_apic_accept_events(vcpu);
7182 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7183 r = -EAGAIN;
7184 goto out;
7185 }
7186
7187 /* re-sync apic's tpr */
7188 if (!lapic_in_kernel(vcpu)) {
7189 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7190 r = -EINVAL;
7191 goto out;
7192 }
7193 }
7194
7195 if (unlikely(vcpu->arch.complete_userspace_io)) {
7196 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7197 vcpu->arch.complete_userspace_io = NULL;
7198 r = cui(vcpu);
7199 if (r <= 0)
7200 goto out;
7201 } else
7202 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7203
7204 if (kvm_run->immediate_exit)
7205 r = -EINTR;
7206 else
7207 r = vcpu_run(vcpu);
7208
7209 out:
7210 post_kvm_run_save(vcpu);
7211 if (vcpu->sigset_active)
7212 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7213
7214 return r;
7215 }
7216
7217 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7218 {
7219 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7220 /*
7221 * We are here if userspace calls get_regs() in the middle of
7222 * instruction emulation. Registers state needs to be copied
7223 * back from emulation context to vcpu. Userspace shouldn't do
7224 * that usually, but some bad designed PV devices (vmware
7225 * backdoor interface) need this to work
7226 */
7227 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7228 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7229 }
7230 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7231 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7232 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7233 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7234 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7235 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7236 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7237 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7238 #ifdef CONFIG_X86_64
7239 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7240 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7241 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7242 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7243 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7244 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7245 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7246 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7247 #endif
7248
7249 regs->rip = kvm_rip_read(vcpu);
7250 regs->rflags = kvm_get_rflags(vcpu);
7251
7252 return 0;
7253 }
7254
7255 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7256 {
7257 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7258 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7259
7260 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7261 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7262 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7263 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7264 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7265 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7266 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7267 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7268 #ifdef CONFIG_X86_64
7269 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7270 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7271 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7272 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7273 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7274 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7275 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7276 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7277 #endif
7278
7279 kvm_rip_write(vcpu, regs->rip);
7280 kvm_set_rflags(vcpu, regs->rflags);
7281
7282 vcpu->arch.exception.pending = false;
7283
7284 kvm_make_request(KVM_REQ_EVENT, vcpu);
7285
7286 return 0;
7287 }
7288
7289 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7290 {
7291 struct kvm_segment cs;
7292
7293 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7294 *db = cs.db;
7295 *l = cs.l;
7296 }
7297 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7298
7299 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7300 struct kvm_sregs *sregs)
7301 {
7302 struct desc_ptr dt;
7303
7304 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7305 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7306 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7307 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7308 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7309 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7310
7311 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7312 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7313
7314 kvm_x86_ops->get_idt(vcpu, &dt);
7315 sregs->idt.limit = dt.size;
7316 sregs->idt.base = dt.address;
7317 kvm_x86_ops->get_gdt(vcpu, &dt);
7318 sregs->gdt.limit = dt.size;
7319 sregs->gdt.base = dt.address;
7320
7321 sregs->cr0 = kvm_read_cr0(vcpu);
7322 sregs->cr2 = vcpu->arch.cr2;
7323 sregs->cr3 = kvm_read_cr3(vcpu);
7324 sregs->cr4 = kvm_read_cr4(vcpu);
7325 sregs->cr8 = kvm_get_cr8(vcpu);
7326 sregs->efer = vcpu->arch.efer;
7327 sregs->apic_base = kvm_get_apic_base(vcpu);
7328
7329 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7330
7331 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7332 set_bit(vcpu->arch.interrupt.nr,
7333 (unsigned long *)sregs->interrupt_bitmap);
7334
7335 return 0;
7336 }
7337
7338 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7339 struct kvm_mp_state *mp_state)
7340 {
7341 kvm_apic_accept_events(vcpu);
7342 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7343 vcpu->arch.pv.pv_unhalted)
7344 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7345 else
7346 mp_state->mp_state = vcpu->arch.mp_state;
7347
7348 return 0;
7349 }
7350
7351 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7352 struct kvm_mp_state *mp_state)
7353 {
7354 if (!lapic_in_kernel(vcpu) &&
7355 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7356 return -EINVAL;
7357
7358 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7359 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7360 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7361 } else
7362 vcpu->arch.mp_state = mp_state->mp_state;
7363 kvm_make_request(KVM_REQ_EVENT, vcpu);
7364 return 0;
7365 }
7366
7367 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7368 int reason, bool has_error_code, u32 error_code)
7369 {
7370 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7371 int ret;
7372
7373 init_emulate_ctxt(vcpu);
7374
7375 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7376 has_error_code, error_code);
7377
7378 if (ret)
7379 return EMULATE_FAIL;
7380
7381 kvm_rip_write(vcpu, ctxt->eip);
7382 kvm_set_rflags(vcpu, ctxt->eflags);
7383 kvm_make_request(KVM_REQ_EVENT, vcpu);
7384 return EMULATE_DONE;
7385 }
7386 EXPORT_SYMBOL_GPL(kvm_task_switch);
7387
7388 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7389 struct kvm_sregs *sregs)
7390 {
7391 struct msr_data apic_base_msr;
7392 int mmu_reset_needed = 0;
7393 int pending_vec, max_bits, idx;
7394 struct desc_ptr dt;
7395
7396 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7397 return -EINVAL;
7398
7399 dt.size = sregs->idt.limit;
7400 dt.address = sregs->idt.base;
7401 kvm_x86_ops->set_idt(vcpu, &dt);
7402 dt.size = sregs->gdt.limit;
7403 dt.address = sregs->gdt.base;
7404 kvm_x86_ops->set_gdt(vcpu, &dt);
7405
7406 vcpu->arch.cr2 = sregs->cr2;
7407 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7408 vcpu->arch.cr3 = sregs->cr3;
7409 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7410
7411 kvm_set_cr8(vcpu, sregs->cr8);
7412
7413 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7414 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7415 apic_base_msr.data = sregs->apic_base;
7416 apic_base_msr.host_initiated = true;
7417 kvm_set_apic_base(vcpu, &apic_base_msr);
7418
7419 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7420 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7421 vcpu->arch.cr0 = sregs->cr0;
7422
7423 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7424 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7425 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7426 kvm_update_cpuid(vcpu);
7427
7428 idx = srcu_read_lock(&vcpu->kvm->srcu);
7429 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7430 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7431 mmu_reset_needed = 1;
7432 }
7433 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7434
7435 if (mmu_reset_needed)
7436 kvm_mmu_reset_context(vcpu);
7437
7438 max_bits = KVM_NR_INTERRUPTS;
7439 pending_vec = find_first_bit(
7440 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7441 if (pending_vec < max_bits) {
7442 kvm_queue_interrupt(vcpu, pending_vec, false);
7443 pr_debug("Set back pending irq %d\n", pending_vec);
7444 }
7445
7446 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7447 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7448 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7449 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7450 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7451 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7452
7453 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7454 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7455
7456 update_cr8_intercept(vcpu);
7457
7458 /* Older userspace won't unhalt the vcpu on reset. */
7459 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7460 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7461 !is_protmode(vcpu))
7462 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7463
7464 kvm_make_request(KVM_REQ_EVENT, vcpu);
7465
7466 return 0;
7467 }
7468
7469 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7470 struct kvm_guest_debug *dbg)
7471 {
7472 unsigned long rflags;
7473 int i, r;
7474
7475 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7476 r = -EBUSY;
7477 if (vcpu->arch.exception.pending)
7478 goto out;
7479 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7480 kvm_queue_exception(vcpu, DB_VECTOR);
7481 else
7482 kvm_queue_exception(vcpu, BP_VECTOR);
7483 }
7484
7485 /*
7486 * Read rflags as long as potentially injected trace flags are still
7487 * filtered out.
7488 */
7489 rflags = kvm_get_rflags(vcpu);
7490
7491 vcpu->guest_debug = dbg->control;
7492 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7493 vcpu->guest_debug = 0;
7494
7495 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7496 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7497 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7498 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7499 } else {
7500 for (i = 0; i < KVM_NR_DB_REGS; i++)
7501 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7502 }
7503 kvm_update_dr7(vcpu);
7504
7505 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7506 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7507 get_segment_base(vcpu, VCPU_SREG_CS);
7508
7509 /*
7510 * Trigger an rflags update that will inject or remove the trace
7511 * flags.
7512 */
7513 kvm_set_rflags(vcpu, rflags);
7514
7515 kvm_x86_ops->update_bp_intercept(vcpu);
7516
7517 r = 0;
7518
7519 out:
7520
7521 return r;
7522 }
7523
7524 /*
7525 * Translate a guest virtual address to a guest physical address.
7526 */
7527 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7528 struct kvm_translation *tr)
7529 {
7530 unsigned long vaddr = tr->linear_address;
7531 gpa_t gpa;
7532 int idx;
7533
7534 idx = srcu_read_lock(&vcpu->kvm->srcu);
7535 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7536 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7537 tr->physical_address = gpa;
7538 tr->valid = gpa != UNMAPPED_GVA;
7539 tr->writeable = 1;
7540 tr->usermode = 0;
7541
7542 return 0;
7543 }
7544
7545 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7546 {
7547 struct fxregs_state *fxsave =
7548 &vcpu->arch.guest_fpu.state.fxsave;
7549
7550 memcpy(fpu->fpr, fxsave->st_space, 128);
7551 fpu->fcw = fxsave->cwd;
7552 fpu->fsw = fxsave->swd;
7553 fpu->ftwx = fxsave->twd;
7554 fpu->last_opcode = fxsave->fop;
7555 fpu->last_ip = fxsave->rip;
7556 fpu->last_dp = fxsave->rdp;
7557 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7558
7559 return 0;
7560 }
7561
7562 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7563 {
7564 struct fxregs_state *fxsave =
7565 &vcpu->arch.guest_fpu.state.fxsave;
7566
7567 memcpy(fxsave->st_space, fpu->fpr, 128);
7568 fxsave->cwd = fpu->fcw;
7569 fxsave->swd = fpu->fsw;
7570 fxsave->twd = fpu->ftwx;
7571 fxsave->fop = fpu->last_opcode;
7572 fxsave->rip = fpu->last_ip;
7573 fxsave->rdp = fpu->last_dp;
7574 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7575
7576 return 0;
7577 }
7578
7579 static void fx_init(struct kvm_vcpu *vcpu)
7580 {
7581 fpstate_init(&vcpu->arch.guest_fpu.state);
7582 if (boot_cpu_has(X86_FEATURE_XSAVES))
7583 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7584 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7585
7586 /*
7587 * Ensure guest xcr0 is valid for loading
7588 */
7589 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7590
7591 vcpu->arch.cr0 |= X86_CR0_ET;
7592 }
7593
7594 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7595 {
7596 if (vcpu->guest_fpu_loaded)
7597 return;
7598
7599 /*
7600 * Restore all possible states in the guest,
7601 * and assume host would use all available bits.
7602 * Guest xcr0 would be loaded later.
7603 */
7604 vcpu->guest_fpu_loaded = 1;
7605 __kernel_fpu_begin();
7606 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7607 trace_kvm_fpu(1);
7608 }
7609
7610 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7611 {
7612 if (!vcpu->guest_fpu_loaded)
7613 return;
7614
7615 vcpu->guest_fpu_loaded = 0;
7616 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7617 __kernel_fpu_end();
7618 ++vcpu->stat.fpu_reload;
7619 trace_kvm_fpu(0);
7620 }
7621
7622 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7623 {
7624 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7625
7626 kvmclock_reset(vcpu);
7627
7628 kvm_x86_ops->vcpu_free(vcpu);
7629 free_cpumask_var(wbinvd_dirty_mask);
7630 }
7631
7632 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7633 unsigned int id)
7634 {
7635 struct kvm_vcpu *vcpu;
7636
7637 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7638 printk_once(KERN_WARNING
7639 "kvm: SMP vm created on host with unstable TSC; "
7640 "guest TSC will not be reliable\n");
7641
7642 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7643
7644 return vcpu;
7645 }
7646
7647 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7648 {
7649 int r;
7650
7651 kvm_vcpu_mtrr_init(vcpu);
7652 r = vcpu_load(vcpu);
7653 if (r)
7654 return r;
7655 kvm_vcpu_reset(vcpu, false);
7656 kvm_mmu_setup(vcpu);
7657 vcpu_put(vcpu);
7658 return r;
7659 }
7660
7661 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7662 {
7663 struct msr_data msr;
7664 struct kvm *kvm = vcpu->kvm;
7665
7666 if (vcpu_load(vcpu))
7667 return;
7668 msr.data = 0x0;
7669 msr.index = MSR_IA32_TSC;
7670 msr.host_initiated = true;
7671 kvm_write_tsc(vcpu, &msr);
7672 vcpu_put(vcpu);
7673
7674 if (!kvmclock_periodic_sync)
7675 return;
7676
7677 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7678 KVMCLOCK_SYNC_PERIOD);
7679 }
7680
7681 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7682 {
7683 int r;
7684 vcpu->arch.apf.msr_val = 0;
7685
7686 r = vcpu_load(vcpu);
7687 BUG_ON(r);
7688 kvm_mmu_unload(vcpu);
7689 vcpu_put(vcpu);
7690
7691 kvm_x86_ops->vcpu_free(vcpu);
7692 }
7693
7694 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7695 {
7696 vcpu->arch.hflags = 0;
7697
7698 vcpu->arch.smi_pending = 0;
7699 atomic_set(&vcpu->arch.nmi_queued, 0);
7700 vcpu->arch.nmi_pending = 0;
7701 vcpu->arch.nmi_injected = false;
7702 kvm_clear_interrupt_queue(vcpu);
7703 kvm_clear_exception_queue(vcpu);
7704
7705 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7706 kvm_update_dr0123(vcpu);
7707 vcpu->arch.dr6 = DR6_INIT;
7708 kvm_update_dr6(vcpu);
7709 vcpu->arch.dr7 = DR7_FIXED_1;
7710 kvm_update_dr7(vcpu);
7711
7712 vcpu->arch.cr2 = 0;
7713
7714 kvm_make_request(KVM_REQ_EVENT, vcpu);
7715 vcpu->arch.apf.msr_val = 0;
7716 vcpu->arch.st.msr_val = 0;
7717
7718 kvmclock_reset(vcpu);
7719
7720 kvm_clear_async_pf_completion_queue(vcpu);
7721 kvm_async_pf_hash_reset(vcpu);
7722 vcpu->arch.apf.halted = false;
7723
7724 if (!init_event) {
7725 kvm_pmu_reset(vcpu);
7726 vcpu->arch.smbase = 0x30000;
7727 }
7728
7729 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7730 vcpu->arch.regs_avail = ~0;
7731 vcpu->arch.regs_dirty = ~0;
7732
7733 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7734 }
7735
7736 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7737 {
7738 struct kvm_segment cs;
7739
7740 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7741 cs.selector = vector << 8;
7742 cs.base = vector << 12;
7743 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7744 kvm_rip_write(vcpu, 0);
7745 }
7746
7747 int kvm_arch_hardware_enable(void)
7748 {
7749 struct kvm *kvm;
7750 struct kvm_vcpu *vcpu;
7751 int i;
7752 int ret;
7753 u64 local_tsc;
7754 u64 max_tsc = 0;
7755 bool stable, backwards_tsc = false;
7756
7757 kvm_shared_msr_cpu_online();
7758 ret = kvm_x86_ops->hardware_enable();
7759 if (ret != 0)
7760 return ret;
7761
7762 local_tsc = rdtsc();
7763 stable = !check_tsc_unstable();
7764 list_for_each_entry(kvm, &vm_list, vm_list) {
7765 kvm_for_each_vcpu(i, vcpu, kvm) {
7766 if (!stable && vcpu->cpu == smp_processor_id())
7767 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7768 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7769 backwards_tsc = true;
7770 if (vcpu->arch.last_host_tsc > max_tsc)
7771 max_tsc = vcpu->arch.last_host_tsc;
7772 }
7773 }
7774 }
7775
7776 /*
7777 * Sometimes, even reliable TSCs go backwards. This happens on
7778 * platforms that reset TSC during suspend or hibernate actions, but
7779 * maintain synchronization. We must compensate. Fortunately, we can
7780 * detect that condition here, which happens early in CPU bringup,
7781 * before any KVM threads can be running. Unfortunately, we can't
7782 * bring the TSCs fully up to date with real time, as we aren't yet far
7783 * enough into CPU bringup that we know how much real time has actually
7784 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7785 * variables that haven't been updated yet.
7786 *
7787 * So we simply find the maximum observed TSC above, then record the
7788 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7789 * the adjustment will be applied. Note that we accumulate
7790 * adjustments, in case multiple suspend cycles happen before some VCPU
7791 * gets a chance to run again. In the event that no KVM threads get a
7792 * chance to run, we will miss the entire elapsed period, as we'll have
7793 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7794 * loose cycle time. This isn't too big a deal, since the loss will be
7795 * uniform across all VCPUs (not to mention the scenario is extremely
7796 * unlikely). It is possible that a second hibernate recovery happens
7797 * much faster than a first, causing the observed TSC here to be
7798 * smaller; this would require additional padding adjustment, which is
7799 * why we set last_host_tsc to the local tsc observed here.
7800 *
7801 * N.B. - this code below runs only on platforms with reliable TSC,
7802 * as that is the only way backwards_tsc is set above. Also note
7803 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7804 * have the same delta_cyc adjustment applied if backwards_tsc
7805 * is detected. Note further, this adjustment is only done once,
7806 * as we reset last_host_tsc on all VCPUs to stop this from being
7807 * called multiple times (one for each physical CPU bringup).
7808 *
7809 * Platforms with unreliable TSCs don't have to deal with this, they
7810 * will be compensated by the logic in vcpu_load, which sets the TSC to
7811 * catchup mode. This will catchup all VCPUs to real time, but cannot
7812 * guarantee that they stay in perfect synchronization.
7813 */
7814 if (backwards_tsc) {
7815 u64 delta_cyc = max_tsc - local_tsc;
7816 backwards_tsc_observed = true;
7817 list_for_each_entry(kvm, &vm_list, vm_list) {
7818 kvm_for_each_vcpu(i, vcpu, kvm) {
7819 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7820 vcpu->arch.last_host_tsc = local_tsc;
7821 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7822 }
7823
7824 /*
7825 * We have to disable TSC offset matching.. if you were
7826 * booting a VM while issuing an S4 host suspend....
7827 * you may have some problem. Solving this issue is
7828 * left as an exercise to the reader.
7829 */
7830 kvm->arch.last_tsc_nsec = 0;
7831 kvm->arch.last_tsc_write = 0;
7832 }
7833
7834 }
7835 return 0;
7836 }
7837
7838 void kvm_arch_hardware_disable(void)
7839 {
7840 kvm_x86_ops->hardware_disable();
7841 drop_user_return_notifiers();
7842 }
7843
7844 int kvm_arch_hardware_setup(void)
7845 {
7846 int r;
7847
7848 r = kvm_x86_ops->hardware_setup();
7849 if (r != 0)
7850 return r;
7851
7852 if (kvm_has_tsc_control) {
7853 /*
7854 * Make sure the user can only configure tsc_khz values that
7855 * fit into a signed integer.
7856 * A min value is not calculated needed because it will always
7857 * be 1 on all machines.
7858 */
7859 u64 max = min(0x7fffffffULL,
7860 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7861 kvm_max_guest_tsc_khz = max;
7862
7863 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7864 }
7865
7866 kvm_init_msr_list();
7867 return 0;
7868 }
7869
7870 void kvm_arch_hardware_unsetup(void)
7871 {
7872 kvm_x86_ops->hardware_unsetup();
7873 }
7874
7875 void kvm_arch_check_processor_compat(void *rtn)
7876 {
7877 kvm_x86_ops->check_processor_compatibility(rtn);
7878 }
7879
7880 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7881 {
7882 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7883 }
7884 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7885
7886 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7887 {
7888 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7889 }
7890
7891 struct static_key kvm_no_apic_vcpu __read_mostly;
7892 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7893
7894 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7895 {
7896 struct page *page;
7897 struct kvm *kvm;
7898 int r;
7899
7900 BUG_ON(vcpu->kvm == NULL);
7901 kvm = vcpu->kvm;
7902
7903 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7904 vcpu->arch.pv.pv_unhalted = false;
7905 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7906 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7907 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7908 else
7909 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7910
7911 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7912 if (!page) {
7913 r = -ENOMEM;
7914 goto fail;
7915 }
7916 vcpu->arch.pio_data = page_address(page);
7917
7918 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7919
7920 r = kvm_mmu_create(vcpu);
7921 if (r < 0)
7922 goto fail_free_pio_data;
7923
7924 if (irqchip_in_kernel(kvm)) {
7925 r = kvm_create_lapic(vcpu);
7926 if (r < 0)
7927 goto fail_mmu_destroy;
7928 } else
7929 static_key_slow_inc(&kvm_no_apic_vcpu);
7930
7931 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7932 GFP_KERNEL);
7933 if (!vcpu->arch.mce_banks) {
7934 r = -ENOMEM;
7935 goto fail_free_lapic;
7936 }
7937 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7938
7939 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7940 r = -ENOMEM;
7941 goto fail_free_mce_banks;
7942 }
7943
7944 fx_init(vcpu);
7945
7946 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7947 vcpu->arch.pv_time_enabled = false;
7948
7949 vcpu->arch.guest_supported_xcr0 = 0;
7950 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7951
7952 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7953
7954 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7955
7956 kvm_async_pf_hash_reset(vcpu);
7957 kvm_pmu_init(vcpu);
7958
7959 vcpu->arch.pending_external_vector = -1;
7960
7961 kvm_hv_vcpu_init(vcpu);
7962
7963 return 0;
7964
7965 fail_free_mce_banks:
7966 kfree(vcpu->arch.mce_banks);
7967 fail_free_lapic:
7968 kvm_free_lapic(vcpu);
7969 fail_mmu_destroy:
7970 kvm_mmu_destroy(vcpu);
7971 fail_free_pio_data:
7972 free_page((unsigned long)vcpu->arch.pio_data);
7973 fail:
7974 return r;
7975 }
7976
7977 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7978 {
7979 int idx;
7980
7981 kvm_hv_vcpu_uninit(vcpu);
7982 kvm_pmu_destroy(vcpu);
7983 kfree(vcpu->arch.mce_banks);
7984 kvm_free_lapic(vcpu);
7985 idx = srcu_read_lock(&vcpu->kvm->srcu);
7986 kvm_mmu_destroy(vcpu);
7987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7988 free_page((unsigned long)vcpu->arch.pio_data);
7989 if (!lapic_in_kernel(vcpu))
7990 static_key_slow_dec(&kvm_no_apic_vcpu);
7991 }
7992
7993 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7994 {
7995 kvm_x86_ops->sched_in(vcpu, cpu);
7996 }
7997
7998 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7999 {
8000 if (type)
8001 return -EINVAL;
8002
8003 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8004 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8005 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8006 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8007 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8008
8009 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8010 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8011 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8012 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8013 &kvm->arch.irq_sources_bitmap);
8014
8015 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8016 mutex_init(&kvm->arch.apic_map_lock);
8017 mutex_init(&kvm->arch.hyperv.hv_lock);
8018 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8019
8020 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8021 pvclock_update_vm_gtod_copy(kvm);
8022
8023 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8024 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8025
8026 kvm_page_track_init(kvm);
8027 kvm_mmu_init_vm(kvm);
8028
8029 if (kvm_x86_ops->vm_init)
8030 return kvm_x86_ops->vm_init(kvm);
8031
8032 return 0;
8033 }
8034
8035 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8036 {
8037 int r;
8038 r = vcpu_load(vcpu);
8039 BUG_ON(r);
8040 kvm_mmu_unload(vcpu);
8041 vcpu_put(vcpu);
8042 }
8043
8044 static void kvm_free_vcpus(struct kvm *kvm)
8045 {
8046 unsigned int i;
8047 struct kvm_vcpu *vcpu;
8048
8049 /*
8050 * Unpin any mmu pages first.
8051 */
8052 kvm_for_each_vcpu(i, vcpu, kvm) {
8053 kvm_clear_async_pf_completion_queue(vcpu);
8054 kvm_unload_vcpu_mmu(vcpu);
8055 }
8056 kvm_for_each_vcpu(i, vcpu, kvm)
8057 kvm_arch_vcpu_free(vcpu);
8058
8059 mutex_lock(&kvm->lock);
8060 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8061 kvm->vcpus[i] = NULL;
8062
8063 atomic_set(&kvm->online_vcpus, 0);
8064 mutex_unlock(&kvm->lock);
8065 }
8066
8067 void kvm_arch_sync_events(struct kvm *kvm)
8068 {
8069 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8070 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8071 kvm_free_all_assigned_devices(kvm);
8072 kvm_free_pit(kvm);
8073 }
8074
8075 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8076 {
8077 int i, r;
8078 unsigned long hva;
8079 struct kvm_memslots *slots = kvm_memslots(kvm);
8080 struct kvm_memory_slot *slot, old;
8081
8082 /* Called with kvm->slots_lock held. */
8083 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8084 return -EINVAL;
8085
8086 slot = id_to_memslot(slots, id);
8087 if (size) {
8088 if (slot->npages)
8089 return -EEXIST;
8090
8091 /*
8092 * MAP_SHARED to prevent internal slot pages from being moved
8093 * by fork()/COW.
8094 */
8095 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8096 MAP_SHARED | MAP_ANONYMOUS, 0);
8097 if (IS_ERR((void *)hva))
8098 return PTR_ERR((void *)hva);
8099 } else {
8100 if (!slot->npages)
8101 return 0;
8102
8103 hva = 0;
8104 }
8105
8106 old = *slot;
8107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8108 struct kvm_userspace_memory_region m;
8109
8110 m.slot = id | (i << 16);
8111 m.flags = 0;
8112 m.guest_phys_addr = gpa;
8113 m.userspace_addr = hva;
8114 m.memory_size = size;
8115 r = __kvm_set_memory_region(kvm, &m);
8116 if (r < 0)
8117 return r;
8118 }
8119
8120 if (!size) {
8121 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8122 WARN_ON(r < 0);
8123 }
8124
8125 return 0;
8126 }
8127 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8128
8129 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8130 {
8131 int r;
8132
8133 mutex_lock(&kvm->slots_lock);
8134 r = __x86_set_memory_region(kvm, id, gpa, size);
8135 mutex_unlock(&kvm->slots_lock);
8136
8137 return r;
8138 }
8139 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8140
8141 void kvm_arch_destroy_vm(struct kvm *kvm)
8142 {
8143 if (current->mm == kvm->mm) {
8144 /*
8145 * Free memory regions allocated on behalf of userspace,
8146 * unless the the memory map has changed due to process exit
8147 * or fd copying.
8148 */
8149 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8150 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8151 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8152 }
8153 if (kvm_x86_ops->vm_destroy)
8154 kvm_x86_ops->vm_destroy(kvm);
8155 kvm_iommu_unmap_guest(kvm);
8156 kfree(kvm->arch.vpic);
8157 kfree(kvm->arch.vioapic);
8158 kvm_free_vcpus(kvm);
8159 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8160 kvm_mmu_uninit_vm(kvm);
8161 }
8162
8163 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8164 struct kvm_memory_slot *dont)
8165 {
8166 int i;
8167
8168 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8169 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8170 kvfree(free->arch.rmap[i]);
8171 free->arch.rmap[i] = NULL;
8172 }
8173 if (i == 0)
8174 continue;
8175
8176 if (!dont || free->arch.lpage_info[i - 1] !=
8177 dont->arch.lpage_info[i - 1]) {
8178 kvfree(free->arch.lpage_info[i - 1]);
8179 free->arch.lpage_info[i - 1] = NULL;
8180 }
8181 }
8182
8183 kvm_page_track_free_memslot(free, dont);
8184 }
8185
8186 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8187 unsigned long npages)
8188 {
8189 int i;
8190
8191 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8192 struct kvm_lpage_info *linfo;
8193 unsigned long ugfn;
8194 int lpages;
8195 int level = i + 1;
8196
8197 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8198 slot->base_gfn, level) + 1;
8199
8200 slot->arch.rmap[i] =
8201 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8202 if (!slot->arch.rmap[i])
8203 goto out_free;
8204 if (i == 0)
8205 continue;
8206
8207 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8208 if (!linfo)
8209 goto out_free;
8210
8211 slot->arch.lpage_info[i - 1] = linfo;
8212
8213 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8214 linfo[0].disallow_lpage = 1;
8215 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8216 linfo[lpages - 1].disallow_lpage = 1;
8217 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8218 /*
8219 * If the gfn and userspace address are not aligned wrt each
8220 * other, or if explicitly asked to, disable large page
8221 * support for this slot
8222 */
8223 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8224 !kvm_largepages_enabled()) {
8225 unsigned long j;
8226
8227 for (j = 0; j < lpages; ++j)
8228 linfo[j].disallow_lpage = 1;
8229 }
8230 }
8231
8232 if (kvm_page_track_create_memslot(slot, npages))
8233 goto out_free;
8234
8235 return 0;
8236
8237 out_free:
8238 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8239 kvfree(slot->arch.rmap[i]);
8240 slot->arch.rmap[i] = NULL;
8241 if (i == 0)
8242 continue;
8243
8244 kvfree(slot->arch.lpage_info[i - 1]);
8245 slot->arch.lpage_info[i - 1] = NULL;
8246 }
8247 return -ENOMEM;
8248 }
8249
8250 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8251 {
8252 /*
8253 * memslots->generation has been incremented.
8254 * mmio generation may have reached its maximum value.
8255 */
8256 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8257 }
8258
8259 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8260 struct kvm_memory_slot *memslot,
8261 const struct kvm_userspace_memory_region *mem,
8262 enum kvm_mr_change change)
8263 {
8264 return 0;
8265 }
8266
8267 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8268 struct kvm_memory_slot *new)
8269 {
8270 /* Still write protect RO slot */
8271 if (new->flags & KVM_MEM_READONLY) {
8272 kvm_mmu_slot_remove_write_access(kvm, new);
8273 return;
8274 }
8275
8276 /*
8277 * Call kvm_x86_ops dirty logging hooks when they are valid.
8278 *
8279 * kvm_x86_ops->slot_disable_log_dirty is called when:
8280 *
8281 * - KVM_MR_CREATE with dirty logging is disabled
8282 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8283 *
8284 * The reason is, in case of PML, we need to set D-bit for any slots
8285 * with dirty logging disabled in order to eliminate unnecessary GPA
8286 * logging in PML buffer (and potential PML buffer full VMEXT). This
8287 * guarantees leaving PML enabled during guest's lifetime won't have
8288 * any additonal overhead from PML when guest is running with dirty
8289 * logging disabled for memory slots.
8290 *
8291 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8292 * to dirty logging mode.
8293 *
8294 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8295 *
8296 * In case of write protect:
8297 *
8298 * Write protect all pages for dirty logging.
8299 *
8300 * All the sptes including the large sptes which point to this
8301 * slot are set to readonly. We can not create any new large
8302 * spte on this slot until the end of the logging.
8303 *
8304 * See the comments in fast_page_fault().
8305 */
8306 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8307 if (kvm_x86_ops->slot_enable_log_dirty)
8308 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8309 else
8310 kvm_mmu_slot_remove_write_access(kvm, new);
8311 } else {
8312 if (kvm_x86_ops->slot_disable_log_dirty)
8313 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8314 }
8315 }
8316
8317 void kvm_arch_commit_memory_region(struct kvm *kvm,
8318 const struct kvm_userspace_memory_region *mem,
8319 const struct kvm_memory_slot *old,
8320 const struct kvm_memory_slot *new,
8321 enum kvm_mr_change change)
8322 {
8323 int nr_mmu_pages = 0;
8324
8325 if (!kvm->arch.n_requested_mmu_pages)
8326 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8327
8328 if (nr_mmu_pages)
8329 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8330
8331 /*
8332 * Dirty logging tracks sptes in 4k granularity, meaning that large
8333 * sptes have to be split. If live migration is successful, the guest
8334 * in the source machine will be destroyed and large sptes will be
8335 * created in the destination. However, if the guest continues to run
8336 * in the source machine (for example if live migration fails), small
8337 * sptes will remain around and cause bad performance.
8338 *
8339 * Scan sptes if dirty logging has been stopped, dropping those
8340 * which can be collapsed into a single large-page spte. Later
8341 * page faults will create the large-page sptes.
8342 */
8343 if ((change != KVM_MR_DELETE) &&
8344 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8345 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8346 kvm_mmu_zap_collapsible_sptes(kvm, new);
8347
8348 /*
8349 * Set up write protection and/or dirty logging for the new slot.
8350 *
8351 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8352 * been zapped so no dirty logging staff is needed for old slot. For
8353 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8354 * new and it's also covered when dealing with the new slot.
8355 *
8356 * FIXME: const-ify all uses of struct kvm_memory_slot.
8357 */
8358 if (change != KVM_MR_DELETE)
8359 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8360 }
8361
8362 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8363 {
8364 kvm_mmu_invalidate_zap_all_pages(kvm);
8365 }
8366
8367 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8368 struct kvm_memory_slot *slot)
8369 {
8370 kvm_page_track_flush_slot(kvm, slot);
8371 }
8372
8373 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8374 {
8375 if (!list_empty_careful(&vcpu->async_pf.done))
8376 return true;
8377
8378 if (kvm_apic_has_events(vcpu))
8379 return true;
8380
8381 if (vcpu->arch.pv.pv_unhalted)
8382 return true;
8383
8384 if (atomic_read(&vcpu->arch.nmi_queued))
8385 return true;
8386
8387 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8388 return true;
8389
8390 if (kvm_arch_interrupt_allowed(vcpu) &&
8391 kvm_cpu_has_interrupt(vcpu))
8392 return true;
8393
8394 if (kvm_hv_has_stimer_pending(vcpu))
8395 return true;
8396
8397 return false;
8398 }
8399
8400 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8401 {
8402 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8403 }
8404
8405 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8406 {
8407 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8408 }
8409
8410 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8411 {
8412 return kvm_x86_ops->interrupt_allowed(vcpu);
8413 }
8414
8415 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8416 {
8417 if (is_64_bit_mode(vcpu))
8418 return kvm_rip_read(vcpu);
8419 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8420 kvm_rip_read(vcpu));
8421 }
8422 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8423
8424 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8425 {
8426 return kvm_get_linear_rip(vcpu) == linear_rip;
8427 }
8428 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8429
8430 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8431 {
8432 unsigned long rflags;
8433
8434 rflags = kvm_x86_ops->get_rflags(vcpu);
8435 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8436 rflags &= ~X86_EFLAGS_TF;
8437 return rflags;
8438 }
8439 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8440
8441 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8442 {
8443 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8444 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8445 rflags |= X86_EFLAGS_TF;
8446 kvm_x86_ops->set_rflags(vcpu, rflags);
8447 }
8448
8449 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8450 {
8451 __kvm_set_rflags(vcpu, rflags);
8452 kvm_make_request(KVM_REQ_EVENT, vcpu);
8453 }
8454 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8455
8456 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8457 {
8458 int r;
8459
8460 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8461 work->wakeup_all)
8462 return;
8463
8464 r = kvm_mmu_reload(vcpu);
8465 if (unlikely(r))
8466 return;
8467
8468 if (!vcpu->arch.mmu.direct_map &&
8469 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8470 return;
8471
8472 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8473 }
8474
8475 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8476 {
8477 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8478 }
8479
8480 static inline u32 kvm_async_pf_next_probe(u32 key)
8481 {
8482 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8483 }
8484
8485 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8486 {
8487 u32 key = kvm_async_pf_hash_fn(gfn);
8488
8489 while (vcpu->arch.apf.gfns[key] != ~0)
8490 key = kvm_async_pf_next_probe(key);
8491
8492 vcpu->arch.apf.gfns[key] = gfn;
8493 }
8494
8495 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8496 {
8497 int i;
8498 u32 key = kvm_async_pf_hash_fn(gfn);
8499
8500 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8501 (vcpu->arch.apf.gfns[key] != gfn &&
8502 vcpu->arch.apf.gfns[key] != ~0); i++)
8503 key = kvm_async_pf_next_probe(key);
8504
8505 return key;
8506 }
8507
8508 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8509 {
8510 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8511 }
8512
8513 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8514 {
8515 u32 i, j, k;
8516
8517 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8518 while (true) {
8519 vcpu->arch.apf.gfns[i] = ~0;
8520 do {
8521 j = kvm_async_pf_next_probe(j);
8522 if (vcpu->arch.apf.gfns[j] == ~0)
8523 return;
8524 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8525 /*
8526 * k lies cyclically in ]i,j]
8527 * | i.k.j |
8528 * |....j i.k.| or |.k..j i...|
8529 */
8530 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8531 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8532 i = j;
8533 }
8534 }
8535
8536 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8537 {
8538 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8539 sizeof(val));
8540 }
8541
8542 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8543 struct kvm_async_pf *work)
8544 {
8545 struct x86_exception fault;
8546
8547 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8548 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8549
8550 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8551 (vcpu->arch.apf.send_user_only &&
8552 kvm_x86_ops->get_cpl(vcpu) == 0))
8553 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8554 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8555 fault.vector = PF_VECTOR;
8556 fault.error_code_valid = true;
8557 fault.error_code = 0;
8558 fault.nested_page_fault = false;
8559 fault.address = work->arch.token;
8560 kvm_inject_page_fault(vcpu, &fault);
8561 }
8562 }
8563
8564 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8565 struct kvm_async_pf *work)
8566 {
8567 struct x86_exception fault;
8568
8569 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8570 if (work->wakeup_all)
8571 work->arch.token = ~0; /* broadcast wakeup */
8572 else
8573 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8574
8575 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8576 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8577 fault.vector = PF_VECTOR;
8578 fault.error_code_valid = true;
8579 fault.error_code = 0;
8580 fault.nested_page_fault = false;
8581 fault.address = work->arch.token;
8582 kvm_inject_page_fault(vcpu, &fault);
8583 }
8584 vcpu->arch.apf.halted = false;
8585 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8586 }
8587
8588 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8589 {
8590 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8591 return true;
8592 else
8593 return !kvm_event_needs_reinjection(vcpu) &&
8594 kvm_x86_ops->interrupt_allowed(vcpu);
8595 }
8596
8597 void kvm_arch_start_assignment(struct kvm *kvm)
8598 {
8599 atomic_inc(&kvm->arch.assigned_device_count);
8600 }
8601 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8602
8603 void kvm_arch_end_assignment(struct kvm *kvm)
8604 {
8605 atomic_dec(&kvm->arch.assigned_device_count);
8606 }
8607 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8608
8609 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8610 {
8611 return atomic_read(&kvm->arch.assigned_device_count);
8612 }
8613 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8614
8615 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8616 {
8617 atomic_inc(&kvm->arch.noncoherent_dma_count);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8620
8621 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8622 {
8623 atomic_dec(&kvm->arch.noncoherent_dma_count);
8624 }
8625 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8626
8627 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8628 {
8629 return atomic_read(&kvm->arch.noncoherent_dma_count);
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8632
8633 bool kvm_arch_has_irq_bypass(void)
8634 {
8635 return kvm_x86_ops->update_pi_irte != NULL;
8636 }
8637
8638 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8639 struct irq_bypass_producer *prod)
8640 {
8641 struct kvm_kernel_irqfd *irqfd =
8642 container_of(cons, struct kvm_kernel_irqfd, consumer);
8643
8644 irqfd->producer = prod;
8645
8646 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8647 prod->irq, irqfd->gsi, 1);
8648 }
8649
8650 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8651 struct irq_bypass_producer *prod)
8652 {
8653 int ret;
8654 struct kvm_kernel_irqfd *irqfd =
8655 container_of(cons, struct kvm_kernel_irqfd, consumer);
8656
8657 WARN_ON(irqfd->producer != prod);
8658 irqfd->producer = NULL;
8659
8660 /*
8661 * When producer of consumer is unregistered, we change back to
8662 * remapped mode, so we can re-use the current implementation
8663 * when the irq is masked/disabled or the consumer side (KVM
8664 * int this case doesn't want to receive the interrupts.
8665 */
8666 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8667 if (ret)
8668 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8669 " fails: %d\n", irqfd->consumer.token, ret);
8670 }
8671
8672 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8673 uint32_t guest_irq, bool set)
8674 {
8675 if (!kvm_x86_ops->update_pi_irte)
8676 return -EINVAL;
8677
8678 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8679 }
8680
8681 bool kvm_vector_hashing_enabled(void)
8682 {
8683 return vector_hashing;
8684 }
8685 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8686
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);