]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: const-ify all relevant uses of struct kvm_memory_slot
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, lpages),
237 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
238 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
239 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
240 };
241 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
242 sizeof(struct kvm_vm_stat) / sizeof(u64));
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
283 sizeof(struct kvm_vcpu_stat) / sizeof(u64));
284
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286 .name_size = KVM_STATS_NAME_SIZE,
287 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288 .id_offset = sizeof(struct kvm_stats_header),
289 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291 sizeof(kvm_vcpu_stats_desc),
292 };
293
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297
298 static struct kmem_cache *x86_fpu_cache;
299
300 static struct kmem_cache *x86_emulator_cache;
301
302 /*
303 * When called, it means the previous get/set msr reached an invalid msr.
304 * Return true if we want to ignore/silent this failed msr access.
305 */
306 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
307 {
308 const char *op = write ? "wrmsr" : "rdmsr";
309
310 if (ignore_msrs) {
311 if (report_ignored_msrs)
312 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
313 op, msr, data);
314 /* Mask the error */
315 return true;
316 } else {
317 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
318 op, msr, data);
319 return false;
320 }
321 }
322
323 static struct kmem_cache *kvm_alloc_emulator_cache(void)
324 {
325 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
326 unsigned int size = sizeof(struct x86_emulate_ctxt);
327
328 return kmem_cache_create_usercopy("x86_emulator", size,
329 __alignof__(struct x86_emulate_ctxt),
330 SLAB_ACCOUNT, useroffset,
331 size - useroffset, NULL);
332 }
333
334 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
335
336 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
337 {
338 int i;
339 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
340 vcpu->arch.apf.gfns[i] = ~0;
341 }
342
343 static void kvm_on_user_return(struct user_return_notifier *urn)
344 {
345 unsigned slot;
346 struct kvm_user_return_msrs *msrs
347 = container_of(urn, struct kvm_user_return_msrs, urn);
348 struct kvm_user_return_msr_values *values;
349 unsigned long flags;
350
351 /*
352 * Disabling irqs at this point since the following code could be
353 * interrupted and executed through kvm_arch_hardware_disable()
354 */
355 local_irq_save(flags);
356 if (msrs->registered) {
357 msrs->registered = false;
358 user_return_notifier_unregister(urn);
359 }
360 local_irq_restore(flags);
361 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
362 values = &msrs->values[slot];
363 if (values->host != values->curr) {
364 wrmsrl(kvm_uret_msrs_list[slot], values->host);
365 values->curr = values->host;
366 }
367 }
368 }
369
370 static int kvm_probe_user_return_msr(u32 msr)
371 {
372 u64 val;
373 int ret;
374
375 preempt_disable();
376 ret = rdmsrl_safe(msr, &val);
377 if (ret)
378 goto out;
379 ret = wrmsrl_safe(msr, val);
380 out:
381 preempt_enable();
382 return ret;
383 }
384
385 int kvm_add_user_return_msr(u32 msr)
386 {
387 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
388
389 if (kvm_probe_user_return_msr(msr))
390 return -1;
391
392 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
393 return kvm_nr_uret_msrs++;
394 }
395 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
396
397 int kvm_find_user_return_msr(u32 msr)
398 {
399 int i;
400
401 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
402 if (kvm_uret_msrs_list[i] == msr)
403 return i;
404 }
405 return -1;
406 }
407 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
408
409 static void kvm_user_return_msr_cpu_online(void)
410 {
411 unsigned int cpu = smp_processor_id();
412 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
413 u64 value;
414 int i;
415
416 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
418 msrs->values[i].host = value;
419 msrs->values[i].curr = value;
420 }
421 }
422
423 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
424 {
425 unsigned int cpu = smp_processor_id();
426 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
427 int err;
428
429 value = (value & mask) | (msrs->values[slot].host & ~mask);
430 if (value == msrs->values[slot].curr)
431 return 0;
432 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
433 if (err)
434 return 1;
435
436 msrs->values[slot].curr = value;
437 if (!msrs->registered) {
438 msrs->urn.on_user_return = kvm_on_user_return;
439 user_return_notifier_register(&msrs->urn);
440 msrs->registered = true;
441 }
442 return 0;
443 }
444 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
445
446 static void drop_user_return_notifiers(void)
447 {
448 unsigned int cpu = smp_processor_id();
449 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
450
451 if (msrs->registered)
452 kvm_on_user_return(&msrs->urn);
453 }
454
455 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
456 {
457 return vcpu->arch.apic_base;
458 }
459 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
460
461 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
462 {
463 return kvm_apic_mode(kvm_get_apic_base(vcpu));
464 }
465 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
466
467 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
468 {
469 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
470 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
471 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
472 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
473
474 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
475 return 1;
476 if (!msr_info->host_initiated) {
477 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
478 return 1;
479 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
480 return 1;
481 }
482
483 kvm_lapic_set_base(vcpu, msr_info->data);
484 kvm_recalculate_apic_map(vcpu->kvm);
485 return 0;
486 }
487 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
488
489 asmlinkage __visible noinstr void kvm_spurious_fault(void)
490 {
491 /* Fault while not rebooting. We want the trace. */
492 BUG_ON(!kvm_rebooting);
493 }
494 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
495
496 #define EXCPT_BENIGN 0
497 #define EXCPT_CONTRIBUTORY 1
498 #define EXCPT_PF 2
499
500 static int exception_class(int vector)
501 {
502 switch (vector) {
503 case PF_VECTOR:
504 return EXCPT_PF;
505 case DE_VECTOR:
506 case TS_VECTOR:
507 case NP_VECTOR:
508 case SS_VECTOR:
509 case GP_VECTOR:
510 return EXCPT_CONTRIBUTORY;
511 default:
512 break;
513 }
514 return EXCPT_BENIGN;
515 }
516
517 #define EXCPT_FAULT 0
518 #define EXCPT_TRAP 1
519 #define EXCPT_ABORT 2
520 #define EXCPT_INTERRUPT 3
521
522 static int exception_type(int vector)
523 {
524 unsigned int mask;
525
526 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
527 return EXCPT_INTERRUPT;
528
529 mask = 1 << vector;
530
531 /* #DB is trap, as instruction watchpoints are handled elsewhere */
532 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
533 return EXCPT_TRAP;
534
535 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
536 return EXCPT_ABORT;
537
538 /* Reserved exceptions will result in fault */
539 return EXCPT_FAULT;
540 }
541
542 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
543 {
544 unsigned nr = vcpu->arch.exception.nr;
545 bool has_payload = vcpu->arch.exception.has_payload;
546 unsigned long payload = vcpu->arch.exception.payload;
547
548 if (!has_payload)
549 return;
550
551 switch (nr) {
552 case DB_VECTOR:
553 /*
554 * "Certain debug exceptions may clear bit 0-3. The
555 * remaining contents of the DR6 register are never
556 * cleared by the processor".
557 */
558 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
559 /*
560 * In order to reflect the #DB exception payload in guest
561 * dr6, three components need to be considered: active low
562 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
563 * DR6_BS and DR6_BT)
564 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
565 * In the target guest dr6:
566 * FIXED_1 bits should always be set.
567 * Active low bits should be cleared if 1-setting in payload.
568 * Active high bits should be set if 1-setting in payload.
569 *
570 * Note, the payload is compatible with the pending debug
571 * exceptions/exit qualification under VMX, that active_low bits
572 * are active high in payload.
573 * So they need to be flipped for DR6.
574 */
575 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
576 vcpu->arch.dr6 |= payload;
577 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
578
579 /*
580 * The #DB payload is defined as compatible with the 'pending
581 * debug exceptions' field under VMX, not DR6. While bit 12 is
582 * defined in the 'pending debug exceptions' field (enabled
583 * breakpoint), it is reserved and must be zero in DR6.
584 */
585 vcpu->arch.dr6 &= ~BIT(12);
586 break;
587 case PF_VECTOR:
588 vcpu->arch.cr2 = payload;
589 break;
590 }
591
592 vcpu->arch.exception.has_payload = false;
593 vcpu->arch.exception.payload = 0;
594 }
595 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
596
597 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
598 unsigned nr, bool has_error, u32 error_code,
599 bool has_payload, unsigned long payload, bool reinject)
600 {
601 u32 prev_nr;
602 int class1, class2;
603
604 kvm_make_request(KVM_REQ_EVENT, vcpu);
605
606 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
607 queue:
608 if (reinject) {
609 /*
610 * On vmentry, vcpu->arch.exception.pending is only
611 * true if an event injection was blocked by
612 * nested_run_pending. In that case, however,
613 * vcpu_enter_guest requests an immediate exit,
614 * and the guest shouldn't proceed far enough to
615 * need reinjection.
616 */
617 WARN_ON_ONCE(vcpu->arch.exception.pending);
618 vcpu->arch.exception.injected = true;
619 if (WARN_ON_ONCE(has_payload)) {
620 /*
621 * A reinjected event has already
622 * delivered its payload.
623 */
624 has_payload = false;
625 payload = 0;
626 }
627 } else {
628 vcpu->arch.exception.pending = true;
629 vcpu->arch.exception.injected = false;
630 }
631 vcpu->arch.exception.has_error_code = has_error;
632 vcpu->arch.exception.nr = nr;
633 vcpu->arch.exception.error_code = error_code;
634 vcpu->arch.exception.has_payload = has_payload;
635 vcpu->arch.exception.payload = payload;
636 if (!is_guest_mode(vcpu))
637 kvm_deliver_exception_payload(vcpu);
638 return;
639 }
640
641 /* to check exception */
642 prev_nr = vcpu->arch.exception.nr;
643 if (prev_nr == DF_VECTOR) {
644 /* triple fault -> shutdown */
645 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
646 return;
647 }
648 class1 = exception_class(prev_nr);
649 class2 = exception_class(nr);
650 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
651 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
652 /*
653 * Generate double fault per SDM Table 5-5. Set
654 * exception.pending = true so that the double fault
655 * can trigger a nested vmexit.
656 */
657 vcpu->arch.exception.pending = true;
658 vcpu->arch.exception.injected = false;
659 vcpu->arch.exception.has_error_code = true;
660 vcpu->arch.exception.nr = DF_VECTOR;
661 vcpu->arch.exception.error_code = 0;
662 vcpu->arch.exception.has_payload = false;
663 vcpu->arch.exception.payload = 0;
664 } else
665 /* replace previous exception with a new one in a hope
666 that instruction re-execution will regenerate lost
667 exception */
668 goto queue;
669 }
670
671 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
672 {
673 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
674 }
675 EXPORT_SYMBOL_GPL(kvm_queue_exception);
676
677 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
678 {
679 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
680 }
681 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
682
683 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
684 unsigned long payload)
685 {
686 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
687 }
688 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
689
690 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
691 u32 error_code, unsigned long payload)
692 {
693 kvm_multiple_exception(vcpu, nr, true, error_code,
694 true, payload, false);
695 }
696
697 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
698 {
699 if (err)
700 kvm_inject_gp(vcpu, 0);
701 else
702 return kvm_skip_emulated_instruction(vcpu);
703
704 return 1;
705 }
706 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
707
708 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
709 {
710 ++vcpu->stat.pf_guest;
711 vcpu->arch.exception.nested_apf =
712 is_guest_mode(vcpu) && fault->async_page_fault;
713 if (vcpu->arch.exception.nested_apf) {
714 vcpu->arch.apf.nested_apf_token = fault->address;
715 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
716 } else {
717 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
718 fault->address);
719 }
720 }
721 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
722
723 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
724 struct x86_exception *fault)
725 {
726 struct kvm_mmu *fault_mmu;
727 WARN_ON_ONCE(fault->vector != PF_VECTOR);
728
729 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
730 vcpu->arch.walk_mmu;
731
732 /*
733 * Invalidate the TLB entry for the faulting address, if it exists,
734 * else the access will fault indefinitely (and to emulate hardware).
735 */
736 if ((fault->error_code & PFERR_PRESENT_MASK) &&
737 !(fault->error_code & PFERR_RSVD_MASK))
738 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
739 fault_mmu->root_hpa);
740
741 fault_mmu->inject_page_fault(vcpu, fault);
742 return fault->nested_page_fault;
743 }
744 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
745
746 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
747 {
748 atomic_inc(&vcpu->arch.nmi_queued);
749 kvm_make_request(KVM_REQ_NMI, vcpu);
750 }
751 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
752
753 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
754 {
755 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
756 }
757 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
758
759 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
760 {
761 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
762 }
763 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
764
765 /*
766 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
767 * a #GP and return false.
768 */
769 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
770 {
771 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
772 return true;
773 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
774 return false;
775 }
776 EXPORT_SYMBOL_GPL(kvm_require_cpl);
777
778 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
779 {
780 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
781 return true;
782
783 kvm_queue_exception(vcpu, UD_VECTOR);
784 return false;
785 }
786 EXPORT_SYMBOL_GPL(kvm_require_dr);
787
788 /*
789 * This function will be used to read from the physical memory of the currently
790 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
791 * can read from guest physical or from the guest's guest physical memory.
792 */
793 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
794 gfn_t ngfn, void *data, int offset, int len,
795 u32 access)
796 {
797 struct x86_exception exception;
798 gfn_t real_gfn;
799 gpa_t ngpa;
800
801 ngpa = gfn_to_gpa(ngfn);
802 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
803 if (real_gfn == UNMAPPED_GVA)
804 return -EFAULT;
805
806 real_gfn = gpa_to_gfn(real_gfn);
807
808 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
809 }
810 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
811
812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
813 {
814 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
815 }
816
817 /*
818 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
819 */
820 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
821 {
822 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
823 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
824 int i;
825 int ret;
826 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
827
828 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
829 offset * sizeof(u64), sizeof(pdpte),
830 PFERR_USER_MASK|PFERR_WRITE_MASK);
831 if (ret < 0) {
832 ret = 0;
833 goto out;
834 }
835 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
836 if ((pdpte[i] & PT_PRESENT_MASK) &&
837 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
838 ret = 0;
839 goto out;
840 }
841 }
842 ret = 1;
843
844 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
845 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
846 vcpu->arch.pdptrs_from_userspace = false;
847
848 out:
849
850 return ret;
851 }
852 EXPORT_SYMBOL_GPL(load_pdptrs);
853
854 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
855 {
856 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
857 kvm_clear_async_pf_completion_queue(vcpu);
858 kvm_async_pf_hash_reset(vcpu);
859 }
860
861 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
862 kvm_mmu_reset_context(vcpu);
863
864 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
865 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
866 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
867 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
868 }
869 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
870
871 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
872 {
873 unsigned long old_cr0 = kvm_read_cr0(vcpu);
874 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
875
876 cr0 |= X86_CR0_ET;
877
878 #ifdef CONFIG_X86_64
879 if (cr0 & 0xffffffff00000000UL)
880 return 1;
881 #endif
882
883 cr0 &= ~CR0_RESERVED_BITS;
884
885 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
886 return 1;
887
888 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
889 return 1;
890
891 #ifdef CONFIG_X86_64
892 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
893 (cr0 & X86_CR0_PG)) {
894 int cs_db, cs_l;
895
896 if (!is_pae(vcpu))
897 return 1;
898 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
899 if (cs_l)
900 return 1;
901 }
902 #endif
903 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
904 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
905 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
906 return 1;
907
908 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
909 return 1;
910
911 static_call(kvm_x86_set_cr0)(vcpu, cr0);
912
913 kvm_post_set_cr0(vcpu, old_cr0, cr0);
914
915 return 0;
916 }
917 EXPORT_SYMBOL_GPL(kvm_set_cr0);
918
919 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
920 {
921 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
922 }
923 EXPORT_SYMBOL_GPL(kvm_lmsw);
924
925 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
926 {
927 if (vcpu->arch.guest_state_protected)
928 return;
929
930 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
931
932 if (vcpu->arch.xcr0 != host_xcr0)
933 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
934
935 if (vcpu->arch.xsaves_enabled &&
936 vcpu->arch.ia32_xss != host_xss)
937 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
938 }
939
940 if (static_cpu_has(X86_FEATURE_PKU) &&
941 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
942 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
943 vcpu->arch.pkru != vcpu->arch.host_pkru)
944 write_pkru(vcpu->arch.pkru);
945 }
946 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
947
948 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
949 {
950 if (vcpu->arch.guest_state_protected)
951 return;
952
953 if (static_cpu_has(X86_FEATURE_PKU) &&
954 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
955 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
956 vcpu->arch.pkru = rdpkru();
957 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
958 write_pkru(vcpu->arch.host_pkru);
959 }
960
961 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
962
963 if (vcpu->arch.xcr0 != host_xcr0)
964 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
965
966 if (vcpu->arch.xsaves_enabled &&
967 vcpu->arch.ia32_xss != host_xss)
968 wrmsrl(MSR_IA32_XSS, host_xss);
969 }
970
971 }
972 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
973
974 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
975 {
976 u64 xcr0 = xcr;
977 u64 old_xcr0 = vcpu->arch.xcr0;
978 u64 valid_bits;
979
980 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
981 if (index != XCR_XFEATURE_ENABLED_MASK)
982 return 1;
983 if (!(xcr0 & XFEATURE_MASK_FP))
984 return 1;
985 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
986 return 1;
987
988 /*
989 * Do not allow the guest to set bits that we do not support
990 * saving. However, xcr0 bit 0 is always set, even if the
991 * emulated CPU does not support XSAVE (see fx_init).
992 */
993 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
994 if (xcr0 & ~valid_bits)
995 return 1;
996
997 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
998 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
999 return 1;
1000
1001 if (xcr0 & XFEATURE_MASK_AVX512) {
1002 if (!(xcr0 & XFEATURE_MASK_YMM))
1003 return 1;
1004 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1005 return 1;
1006 }
1007 vcpu->arch.xcr0 = xcr0;
1008
1009 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1010 kvm_update_cpuid_runtime(vcpu);
1011 return 0;
1012 }
1013
1014 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1015 {
1016 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1017 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1018 kvm_inject_gp(vcpu, 0);
1019 return 1;
1020 }
1021
1022 return kvm_skip_emulated_instruction(vcpu);
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1025
1026 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1027 {
1028 if (cr4 & cr4_reserved_bits)
1029 return false;
1030
1031 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1032 return false;
1033
1034 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1037
1038 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1039 {
1040 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1041 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1042 kvm_mmu_reset_context(vcpu);
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1045
1046 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1047 {
1048 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1049 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1050 X86_CR4_SMEP;
1051
1052 if (!kvm_is_valid_cr4(vcpu, cr4))
1053 return 1;
1054
1055 if (is_long_mode(vcpu)) {
1056 if (!(cr4 & X86_CR4_PAE))
1057 return 1;
1058 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1059 return 1;
1060 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1061 && ((cr4 ^ old_cr4) & pdptr_bits)
1062 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1063 kvm_read_cr3(vcpu)))
1064 return 1;
1065
1066 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1067 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1068 return 1;
1069
1070 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1071 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1072 return 1;
1073 }
1074
1075 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1076
1077 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1078
1079 return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1082
1083 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1084 {
1085 struct kvm_mmu *mmu = vcpu->arch.mmu;
1086 unsigned long roots_to_free = 0;
1087 int i;
1088
1089 /*
1090 * If neither the current CR3 nor any of the prev_roots use the given
1091 * PCID, then nothing needs to be done here because a resync will
1092 * happen anyway before switching to any other CR3.
1093 */
1094 if (kvm_get_active_pcid(vcpu) == pcid) {
1095 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1096 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1097 }
1098
1099 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1100 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1101 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1102
1103 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1104 }
1105
1106 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1107 {
1108 bool skip_tlb_flush = false;
1109 unsigned long pcid = 0;
1110 #ifdef CONFIG_X86_64
1111 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1112
1113 if (pcid_enabled) {
1114 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1115 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1116 pcid = cr3 & X86_CR3_PCID_MASK;
1117 }
1118 #endif
1119
1120 /* PDPTRs are always reloaded for PAE paging. */
1121 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1122 goto handle_tlb_flush;
1123
1124 /*
1125 * Do not condition the GPA check on long mode, this helper is used to
1126 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1127 * the current vCPU mode is accurate.
1128 */
1129 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1130 return 1;
1131
1132 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1133 return 1;
1134
1135 if (cr3 != kvm_read_cr3(vcpu))
1136 kvm_mmu_new_pgd(vcpu, cr3);
1137
1138 vcpu->arch.cr3 = cr3;
1139 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1140
1141 handle_tlb_flush:
1142 /*
1143 * A load of CR3 that flushes the TLB flushes only the current PCID,
1144 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1145 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1146 * and it's impossible to use a non-zero PCID when PCID is disabled,
1147 * i.e. only PCID=0 can be relevant.
1148 */
1149 if (!skip_tlb_flush)
1150 kvm_invalidate_pcid(vcpu, pcid);
1151
1152 return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1155
1156 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1157 {
1158 if (cr8 & CR8_RESERVED_BITS)
1159 return 1;
1160 if (lapic_in_kernel(vcpu))
1161 kvm_lapic_set_tpr(vcpu, cr8);
1162 else
1163 vcpu->arch.cr8 = cr8;
1164 return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1167
1168 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1169 {
1170 if (lapic_in_kernel(vcpu))
1171 return kvm_lapic_get_cr8(vcpu);
1172 else
1173 return vcpu->arch.cr8;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1176
1177 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1178 {
1179 int i;
1180
1181 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1182 for (i = 0; i < KVM_NR_DB_REGS; i++)
1183 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1184 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1185 }
1186 }
1187
1188 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1189 {
1190 unsigned long dr7;
1191
1192 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1193 dr7 = vcpu->arch.guest_debug_dr7;
1194 else
1195 dr7 = vcpu->arch.dr7;
1196 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1197 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1198 if (dr7 & DR7_BP_EN_MASK)
1199 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1202
1203 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1204 {
1205 u64 fixed = DR6_FIXED_1;
1206
1207 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1208 fixed |= DR6_RTM;
1209
1210 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1211 fixed |= DR6_BUS_LOCK;
1212 return fixed;
1213 }
1214
1215 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1216 {
1217 size_t size = ARRAY_SIZE(vcpu->arch.db);
1218
1219 switch (dr) {
1220 case 0 ... 3:
1221 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1222 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1223 vcpu->arch.eff_db[dr] = val;
1224 break;
1225 case 4:
1226 case 6:
1227 if (!kvm_dr6_valid(val))
1228 return 1; /* #GP */
1229 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1230 break;
1231 case 5:
1232 default: /* 7 */
1233 if (!kvm_dr7_valid(val))
1234 return 1; /* #GP */
1235 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1236 kvm_update_dr7(vcpu);
1237 break;
1238 }
1239
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_set_dr);
1243
1244 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1245 {
1246 size_t size = ARRAY_SIZE(vcpu->arch.db);
1247
1248 switch (dr) {
1249 case 0 ... 3:
1250 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1251 break;
1252 case 4:
1253 case 6:
1254 *val = vcpu->arch.dr6;
1255 break;
1256 case 5:
1257 default: /* 7 */
1258 *val = vcpu->arch.dr7;
1259 break;
1260 }
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_get_dr);
1263
1264 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1265 {
1266 u32 ecx = kvm_rcx_read(vcpu);
1267 u64 data;
1268
1269 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1270 kvm_inject_gp(vcpu, 0);
1271 return 1;
1272 }
1273
1274 kvm_rax_write(vcpu, (u32)data);
1275 kvm_rdx_write(vcpu, data >> 32);
1276 return kvm_skip_emulated_instruction(vcpu);
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1279
1280 /*
1281 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1282 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1283 *
1284 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1285 * extract the supported MSRs from the related const lists.
1286 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1287 * capabilities of the host cpu. This capabilities test skips MSRs that are
1288 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1289 * may depend on host virtualization features rather than host cpu features.
1290 */
1291
1292 static const u32 msrs_to_save_all[] = {
1293 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1294 MSR_STAR,
1295 #ifdef CONFIG_X86_64
1296 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1297 #endif
1298 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1299 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1300 MSR_IA32_SPEC_CTRL,
1301 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1302 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1303 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1304 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1305 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1306 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1307 MSR_IA32_UMWAIT_CONTROL,
1308
1309 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1310 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1311 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1312 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1313 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1314 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1315 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1316 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1317 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1322 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1323 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1324 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1325 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1326 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1331 };
1332
1333 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1334 static unsigned num_msrs_to_save;
1335
1336 static const u32 emulated_msrs_all[] = {
1337 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1338 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1339 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1340 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1341 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1342 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1343 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1344 HV_X64_MSR_RESET,
1345 HV_X64_MSR_VP_INDEX,
1346 HV_X64_MSR_VP_RUNTIME,
1347 HV_X64_MSR_SCONTROL,
1348 HV_X64_MSR_STIMER0_CONFIG,
1349 HV_X64_MSR_VP_ASSIST_PAGE,
1350 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1351 HV_X64_MSR_TSC_EMULATION_STATUS,
1352 HV_X64_MSR_SYNDBG_OPTIONS,
1353 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1354 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1355 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1356
1357 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1358 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1359
1360 MSR_IA32_TSC_ADJUST,
1361 MSR_IA32_TSC_DEADLINE,
1362 MSR_IA32_ARCH_CAPABILITIES,
1363 MSR_IA32_PERF_CAPABILITIES,
1364 MSR_IA32_MISC_ENABLE,
1365 MSR_IA32_MCG_STATUS,
1366 MSR_IA32_MCG_CTL,
1367 MSR_IA32_MCG_EXT_CTL,
1368 MSR_IA32_SMBASE,
1369 MSR_SMI_COUNT,
1370 MSR_PLATFORM_INFO,
1371 MSR_MISC_FEATURES_ENABLES,
1372 MSR_AMD64_VIRT_SPEC_CTRL,
1373 MSR_IA32_POWER_CTL,
1374 MSR_IA32_UCODE_REV,
1375
1376 /*
1377 * The following list leaves out MSRs whose values are determined
1378 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1379 * We always support the "true" VMX control MSRs, even if the host
1380 * processor does not, so I am putting these registers here rather
1381 * than in msrs_to_save_all.
1382 */
1383 MSR_IA32_VMX_BASIC,
1384 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1385 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1386 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1387 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1388 MSR_IA32_VMX_MISC,
1389 MSR_IA32_VMX_CR0_FIXED0,
1390 MSR_IA32_VMX_CR4_FIXED0,
1391 MSR_IA32_VMX_VMCS_ENUM,
1392 MSR_IA32_VMX_PROCBASED_CTLS2,
1393 MSR_IA32_VMX_EPT_VPID_CAP,
1394 MSR_IA32_VMX_VMFUNC,
1395
1396 MSR_K7_HWCR,
1397 MSR_KVM_POLL_CONTROL,
1398 };
1399
1400 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1401 static unsigned num_emulated_msrs;
1402
1403 /*
1404 * List of msr numbers which are used to expose MSR-based features that
1405 * can be used by a hypervisor to validate requested CPU features.
1406 */
1407 static const u32 msr_based_features_all[] = {
1408 MSR_IA32_VMX_BASIC,
1409 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1410 MSR_IA32_VMX_PINBASED_CTLS,
1411 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1412 MSR_IA32_VMX_PROCBASED_CTLS,
1413 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1414 MSR_IA32_VMX_EXIT_CTLS,
1415 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1416 MSR_IA32_VMX_ENTRY_CTLS,
1417 MSR_IA32_VMX_MISC,
1418 MSR_IA32_VMX_CR0_FIXED0,
1419 MSR_IA32_VMX_CR0_FIXED1,
1420 MSR_IA32_VMX_CR4_FIXED0,
1421 MSR_IA32_VMX_CR4_FIXED1,
1422 MSR_IA32_VMX_VMCS_ENUM,
1423 MSR_IA32_VMX_PROCBASED_CTLS2,
1424 MSR_IA32_VMX_EPT_VPID_CAP,
1425 MSR_IA32_VMX_VMFUNC,
1426
1427 MSR_F10H_DECFG,
1428 MSR_IA32_UCODE_REV,
1429 MSR_IA32_ARCH_CAPABILITIES,
1430 MSR_IA32_PERF_CAPABILITIES,
1431 };
1432
1433 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1434 static unsigned int num_msr_based_features;
1435
1436 static u64 kvm_get_arch_capabilities(void)
1437 {
1438 u64 data = 0;
1439
1440 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1441 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1442
1443 /*
1444 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1445 * the nested hypervisor runs with NX huge pages. If it is not,
1446 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1447 * L1 guests, so it need not worry about its own (L2) guests.
1448 */
1449 data |= ARCH_CAP_PSCHANGE_MC_NO;
1450
1451 /*
1452 * If we're doing cache flushes (either "always" or "cond")
1453 * we will do one whenever the guest does a vmlaunch/vmresume.
1454 * If an outer hypervisor is doing the cache flush for us
1455 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1456 * capability to the guest too, and if EPT is disabled we're not
1457 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1458 * require a nested hypervisor to do a flush of its own.
1459 */
1460 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1461 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1462
1463 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1464 data |= ARCH_CAP_RDCL_NO;
1465 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1466 data |= ARCH_CAP_SSB_NO;
1467 if (!boot_cpu_has_bug(X86_BUG_MDS))
1468 data |= ARCH_CAP_MDS_NO;
1469
1470 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1471 /*
1472 * If RTM=0 because the kernel has disabled TSX, the host might
1473 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1474 * and therefore knows that there cannot be TAA) but keep
1475 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1476 * and we want to allow migrating those guests to tsx=off hosts.
1477 */
1478 data &= ~ARCH_CAP_TAA_NO;
1479 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1480 data |= ARCH_CAP_TAA_NO;
1481 } else {
1482 /*
1483 * Nothing to do here; we emulate TSX_CTRL if present on the
1484 * host so the guest can choose between disabling TSX or
1485 * using VERW to clear CPU buffers.
1486 */
1487 }
1488
1489 return data;
1490 }
1491
1492 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1493 {
1494 switch (msr->index) {
1495 case MSR_IA32_ARCH_CAPABILITIES:
1496 msr->data = kvm_get_arch_capabilities();
1497 break;
1498 case MSR_IA32_UCODE_REV:
1499 rdmsrl_safe(msr->index, &msr->data);
1500 break;
1501 default:
1502 return static_call(kvm_x86_get_msr_feature)(msr);
1503 }
1504 return 0;
1505 }
1506
1507 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1508 {
1509 struct kvm_msr_entry msr;
1510 int r;
1511
1512 msr.index = index;
1513 r = kvm_get_msr_feature(&msr);
1514
1515 if (r == KVM_MSR_RET_INVALID) {
1516 /* Unconditionally clear the output for simplicity */
1517 *data = 0;
1518 if (kvm_msr_ignored_check(index, 0, false))
1519 r = 0;
1520 }
1521
1522 if (r)
1523 return r;
1524
1525 *data = msr.data;
1526
1527 return 0;
1528 }
1529
1530 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1531 {
1532 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1533 return false;
1534
1535 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1536 return false;
1537
1538 if (efer & (EFER_LME | EFER_LMA) &&
1539 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1540 return false;
1541
1542 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1543 return false;
1544
1545 return true;
1546
1547 }
1548 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1549 {
1550 if (efer & efer_reserved_bits)
1551 return false;
1552
1553 return __kvm_valid_efer(vcpu, efer);
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1556
1557 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1558 {
1559 u64 old_efer = vcpu->arch.efer;
1560 u64 efer = msr_info->data;
1561 int r;
1562
1563 if (efer & efer_reserved_bits)
1564 return 1;
1565
1566 if (!msr_info->host_initiated) {
1567 if (!__kvm_valid_efer(vcpu, efer))
1568 return 1;
1569
1570 if (is_paging(vcpu) &&
1571 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1572 return 1;
1573 }
1574
1575 efer &= ~EFER_LMA;
1576 efer |= vcpu->arch.efer & EFER_LMA;
1577
1578 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1579 if (r) {
1580 WARN_ON(r > 0);
1581 return r;
1582 }
1583
1584 /* Update reserved bits */
1585 if ((efer ^ old_efer) & EFER_NX)
1586 kvm_mmu_reset_context(vcpu);
1587
1588 return 0;
1589 }
1590
1591 void kvm_enable_efer_bits(u64 mask)
1592 {
1593 efer_reserved_bits &= ~mask;
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1596
1597 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1598 {
1599 struct kvm_x86_msr_filter *msr_filter;
1600 struct msr_bitmap_range *ranges;
1601 struct kvm *kvm = vcpu->kvm;
1602 bool allowed;
1603 int idx;
1604 u32 i;
1605
1606 /* x2APIC MSRs do not support filtering. */
1607 if (index >= 0x800 && index <= 0x8ff)
1608 return true;
1609
1610 idx = srcu_read_lock(&kvm->srcu);
1611
1612 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1613 if (!msr_filter) {
1614 allowed = true;
1615 goto out;
1616 }
1617
1618 allowed = msr_filter->default_allow;
1619 ranges = msr_filter->ranges;
1620
1621 for (i = 0; i < msr_filter->count; i++) {
1622 u32 start = ranges[i].base;
1623 u32 end = start + ranges[i].nmsrs;
1624 u32 flags = ranges[i].flags;
1625 unsigned long *bitmap = ranges[i].bitmap;
1626
1627 if ((index >= start) && (index < end) && (flags & type)) {
1628 allowed = !!test_bit(index - start, bitmap);
1629 break;
1630 }
1631 }
1632
1633 out:
1634 srcu_read_unlock(&kvm->srcu, idx);
1635
1636 return allowed;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1639
1640 /*
1641 * Write @data into the MSR specified by @index. Select MSR specific fault
1642 * checks are bypassed if @host_initiated is %true.
1643 * Returns 0 on success, non-0 otherwise.
1644 * Assumes vcpu_load() was already called.
1645 */
1646 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1647 bool host_initiated)
1648 {
1649 struct msr_data msr;
1650
1651 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1652 return KVM_MSR_RET_FILTERED;
1653
1654 switch (index) {
1655 case MSR_FS_BASE:
1656 case MSR_GS_BASE:
1657 case MSR_KERNEL_GS_BASE:
1658 case MSR_CSTAR:
1659 case MSR_LSTAR:
1660 if (is_noncanonical_address(data, vcpu))
1661 return 1;
1662 break;
1663 case MSR_IA32_SYSENTER_EIP:
1664 case MSR_IA32_SYSENTER_ESP:
1665 /*
1666 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1667 * non-canonical address is written on Intel but not on
1668 * AMD (which ignores the top 32-bits, because it does
1669 * not implement 64-bit SYSENTER).
1670 *
1671 * 64-bit code should hence be able to write a non-canonical
1672 * value on AMD. Making the address canonical ensures that
1673 * vmentry does not fail on Intel after writing a non-canonical
1674 * value, and that something deterministic happens if the guest
1675 * invokes 64-bit SYSENTER.
1676 */
1677 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1678 break;
1679 case MSR_TSC_AUX:
1680 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1681 return 1;
1682
1683 if (!host_initiated &&
1684 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1685 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1686 return 1;
1687
1688 /*
1689 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1690 * incomplete and conflicting architectural behavior. Current
1691 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1692 * reserved and always read as zeros. Enforce Intel's reserved
1693 * bits check if and only if the guest CPU is Intel, and clear
1694 * the bits in all other cases. This ensures cross-vendor
1695 * migration will provide consistent behavior for the guest.
1696 */
1697 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1698 return 1;
1699
1700 data = (u32)data;
1701 break;
1702 }
1703
1704 msr.data = data;
1705 msr.index = index;
1706 msr.host_initiated = host_initiated;
1707
1708 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1709 }
1710
1711 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1712 u32 index, u64 data, bool host_initiated)
1713 {
1714 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1715
1716 if (ret == KVM_MSR_RET_INVALID)
1717 if (kvm_msr_ignored_check(index, data, true))
1718 ret = 0;
1719
1720 return ret;
1721 }
1722
1723 /*
1724 * Read the MSR specified by @index into @data. Select MSR specific fault
1725 * checks are bypassed if @host_initiated is %true.
1726 * Returns 0 on success, non-0 otherwise.
1727 * Assumes vcpu_load() was already called.
1728 */
1729 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1730 bool host_initiated)
1731 {
1732 struct msr_data msr;
1733 int ret;
1734
1735 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1736 return KVM_MSR_RET_FILTERED;
1737
1738 switch (index) {
1739 case MSR_TSC_AUX:
1740 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1741 return 1;
1742
1743 if (!host_initiated &&
1744 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1745 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1746 return 1;
1747 break;
1748 }
1749
1750 msr.index = index;
1751 msr.host_initiated = host_initiated;
1752
1753 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1754 if (!ret)
1755 *data = msr.data;
1756 return ret;
1757 }
1758
1759 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1760 u32 index, u64 *data, bool host_initiated)
1761 {
1762 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1763
1764 if (ret == KVM_MSR_RET_INVALID) {
1765 /* Unconditionally clear *data for simplicity */
1766 *data = 0;
1767 if (kvm_msr_ignored_check(index, 0, false))
1768 ret = 0;
1769 }
1770
1771 return ret;
1772 }
1773
1774 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1775 {
1776 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_get_msr);
1779
1780 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1781 {
1782 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_set_msr);
1785
1786 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1787 {
1788 int err = vcpu->run->msr.error;
1789 if (!err) {
1790 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1791 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1792 }
1793
1794 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1795 }
1796
1797 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1798 {
1799 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1800 }
1801
1802 static u64 kvm_msr_reason(int r)
1803 {
1804 switch (r) {
1805 case KVM_MSR_RET_INVALID:
1806 return KVM_MSR_EXIT_REASON_UNKNOWN;
1807 case KVM_MSR_RET_FILTERED:
1808 return KVM_MSR_EXIT_REASON_FILTER;
1809 default:
1810 return KVM_MSR_EXIT_REASON_INVAL;
1811 }
1812 }
1813
1814 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1815 u32 exit_reason, u64 data,
1816 int (*completion)(struct kvm_vcpu *vcpu),
1817 int r)
1818 {
1819 u64 msr_reason = kvm_msr_reason(r);
1820
1821 /* Check if the user wanted to know about this MSR fault */
1822 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1823 return 0;
1824
1825 vcpu->run->exit_reason = exit_reason;
1826 vcpu->run->msr.error = 0;
1827 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1828 vcpu->run->msr.reason = msr_reason;
1829 vcpu->run->msr.index = index;
1830 vcpu->run->msr.data = data;
1831 vcpu->arch.complete_userspace_io = completion;
1832
1833 return 1;
1834 }
1835
1836 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1837 {
1838 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1839 complete_emulated_rdmsr, r);
1840 }
1841
1842 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1843 {
1844 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1845 complete_emulated_wrmsr, r);
1846 }
1847
1848 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1849 {
1850 u32 ecx = kvm_rcx_read(vcpu);
1851 u64 data;
1852 int r;
1853
1854 r = kvm_get_msr(vcpu, ecx, &data);
1855
1856 /* MSR read failed? See if we should ask user space */
1857 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1858 /* Bounce to user space */
1859 return 0;
1860 }
1861
1862 if (!r) {
1863 trace_kvm_msr_read(ecx, data);
1864
1865 kvm_rax_write(vcpu, data & -1u);
1866 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1867 } else {
1868 trace_kvm_msr_read_ex(ecx);
1869 }
1870
1871 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1874
1875 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1876 {
1877 u32 ecx = kvm_rcx_read(vcpu);
1878 u64 data = kvm_read_edx_eax(vcpu);
1879 int r;
1880
1881 r = kvm_set_msr(vcpu, ecx, data);
1882
1883 /* MSR write failed? See if we should ask user space */
1884 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1885 /* Bounce to user space */
1886 return 0;
1887
1888 /* Signal all other negative errors to userspace */
1889 if (r < 0)
1890 return r;
1891
1892 if (!r)
1893 trace_kvm_msr_write(ecx, data);
1894 else
1895 trace_kvm_msr_write_ex(ecx, data);
1896
1897 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1900
1901 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1902 {
1903 return kvm_skip_emulated_instruction(vcpu);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1906
1907 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1908 {
1909 /* Treat an INVD instruction as a NOP and just skip it. */
1910 return kvm_emulate_as_nop(vcpu);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1913
1914 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1915 {
1916 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1917 return kvm_emulate_as_nop(vcpu);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1920
1921 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1922 {
1923 kvm_queue_exception(vcpu, UD_VECTOR);
1924 return 1;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1927
1928 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1929 {
1930 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1931 return kvm_emulate_as_nop(vcpu);
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1934
1935 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1936 {
1937 xfer_to_guest_mode_prepare();
1938 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1939 xfer_to_guest_mode_work_pending();
1940 }
1941
1942 /*
1943 * The fast path for frequent and performance sensitive wrmsr emulation,
1944 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1945 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1946 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1947 * other cases which must be called after interrupts are enabled on the host.
1948 */
1949 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1950 {
1951 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1952 return 1;
1953
1954 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1955 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1956 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1957 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1958
1959 data &= ~(1 << 12);
1960 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1961 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1962 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1963 trace_kvm_apic_write(APIC_ICR, (u32)data);
1964 return 0;
1965 }
1966
1967 return 1;
1968 }
1969
1970 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1971 {
1972 if (!kvm_can_use_hv_timer(vcpu))
1973 return 1;
1974
1975 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1976 return 0;
1977 }
1978
1979 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1980 {
1981 u32 msr = kvm_rcx_read(vcpu);
1982 u64 data;
1983 fastpath_t ret = EXIT_FASTPATH_NONE;
1984
1985 switch (msr) {
1986 case APIC_BASE_MSR + (APIC_ICR >> 4):
1987 data = kvm_read_edx_eax(vcpu);
1988 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1989 kvm_skip_emulated_instruction(vcpu);
1990 ret = EXIT_FASTPATH_EXIT_HANDLED;
1991 }
1992 break;
1993 case MSR_IA32_TSC_DEADLINE:
1994 data = kvm_read_edx_eax(vcpu);
1995 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1996 kvm_skip_emulated_instruction(vcpu);
1997 ret = EXIT_FASTPATH_REENTER_GUEST;
1998 }
1999 break;
2000 default:
2001 break;
2002 }
2003
2004 if (ret != EXIT_FASTPATH_NONE)
2005 trace_kvm_msr_write(msr, data);
2006
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2010
2011 /*
2012 * Adapt set_msr() to msr_io()'s calling convention
2013 */
2014 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2015 {
2016 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2017 }
2018
2019 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2020 {
2021 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2022 }
2023
2024 #ifdef CONFIG_X86_64
2025 struct pvclock_clock {
2026 int vclock_mode;
2027 u64 cycle_last;
2028 u64 mask;
2029 u32 mult;
2030 u32 shift;
2031 u64 base_cycles;
2032 u64 offset;
2033 };
2034
2035 struct pvclock_gtod_data {
2036 seqcount_t seq;
2037
2038 struct pvclock_clock clock; /* extract of a clocksource struct */
2039 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2040
2041 ktime_t offs_boot;
2042 u64 wall_time_sec;
2043 };
2044
2045 static struct pvclock_gtod_data pvclock_gtod_data;
2046
2047 static void update_pvclock_gtod(struct timekeeper *tk)
2048 {
2049 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2050
2051 write_seqcount_begin(&vdata->seq);
2052
2053 /* copy pvclock gtod data */
2054 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2055 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2056 vdata->clock.mask = tk->tkr_mono.mask;
2057 vdata->clock.mult = tk->tkr_mono.mult;
2058 vdata->clock.shift = tk->tkr_mono.shift;
2059 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2060 vdata->clock.offset = tk->tkr_mono.base;
2061
2062 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2063 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2064 vdata->raw_clock.mask = tk->tkr_raw.mask;
2065 vdata->raw_clock.mult = tk->tkr_raw.mult;
2066 vdata->raw_clock.shift = tk->tkr_raw.shift;
2067 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2068 vdata->raw_clock.offset = tk->tkr_raw.base;
2069
2070 vdata->wall_time_sec = tk->xtime_sec;
2071
2072 vdata->offs_boot = tk->offs_boot;
2073
2074 write_seqcount_end(&vdata->seq);
2075 }
2076
2077 static s64 get_kvmclock_base_ns(void)
2078 {
2079 /* Count up from boot time, but with the frequency of the raw clock. */
2080 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2081 }
2082 #else
2083 static s64 get_kvmclock_base_ns(void)
2084 {
2085 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2086 return ktime_get_boottime_ns();
2087 }
2088 #endif
2089
2090 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2091 {
2092 int version;
2093 int r;
2094 struct pvclock_wall_clock wc;
2095 u32 wc_sec_hi;
2096 u64 wall_nsec;
2097
2098 if (!wall_clock)
2099 return;
2100
2101 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2102 if (r)
2103 return;
2104
2105 if (version & 1)
2106 ++version; /* first time write, random junk */
2107
2108 ++version;
2109
2110 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2111 return;
2112
2113 /*
2114 * The guest calculates current wall clock time by adding
2115 * system time (updated by kvm_guest_time_update below) to the
2116 * wall clock specified here. We do the reverse here.
2117 */
2118 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2119
2120 wc.nsec = do_div(wall_nsec, 1000000000);
2121 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2122 wc.version = version;
2123
2124 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2125
2126 if (sec_hi_ofs) {
2127 wc_sec_hi = wall_nsec >> 32;
2128 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2129 &wc_sec_hi, sizeof(wc_sec_hi));
2130 }
2131
2132 version++;
2133 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2134 }
2135
2136 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2137 bool old_msr, bool host_initiated)
2138 {
2139 struct kvm_arch *ka = &vcpu->kvm->arch;
2140
2141 if (vcpu->vcpu_id == 0 && !host_initiated) {
2142 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2143 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2144
2145 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2146 }
2147
2148 vcpu->arch.time = system_time;
2149 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2150
2151 /* we verify if the enable bit is set... */
2152 vcpu->arch.pv_time_enabled = false;
2153 if (!(system_time & 1))
2154 return;
2155
2156 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2157 &vcpu->arch.pv_time, system_time & ~1ULL,
2158 sizeof(struct pvclock_vcpu_time_info)))
2159 vcpu->arch.pv_time_enabled = true;
2160
2161 return;
2162 }
2163
2164 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2165 {
2166 do_shl32_div32(dividend, divisor);
2167 return dividend;
2168 }
2169
2170 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2171 s8 *pshift, u32 *pmultiplier)
2172 {
2173 uint64_t scaled64;
2174 int32_t shift = 0;
2175 uint64_t tps64;
2176 uint32_t tps32;
2177
2178 tps64 = base_hz;
2179 scaled64 = scaled_hz;
2180 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2181 tps64 >>= 1;
2182 shift--;
2183 }
2184
2185 tps32 = (uint32_t)tps64;
2186 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2187 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2188 scaled64 >>= 1;
2189 else
2190 tps32 <<= 1;
2191 shift++;
2192 }
2193
2194 *pshift = shift;
2195 *pmultiplier = div_frac(scaled64, tps32);
2196 }
2197
2198 #ifdef CONFIG_X86_64
2199 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2200 #endif
2201
2202 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2203 static unsigned long max_tsc_khz;
2204
2205 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2206 {
2207 u64 v = (u64)khz * (1000000 + ppm);
2208 do_div(v, 1000000);
2209 return v;
2210 }
2211
2212 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2213
2214 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2215 {
2216 u64 ratio;
2217
2218 /* Guest TSC same frequency as host TSC? */
2219 if (!scale) {
2220 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2221 return 0;
2222 }
2223
2224 /* TSC scaling supported? */
2225 if (!kvm_has_tsc_control) {
2226 if (user_tsc_khz > tsc_khz) {
2227 vcpu->arch.tsc_catchup = 1;
2228 vcpu->arch.tsc_always_catchup = 1;
2229 return 0;
2230 } else {
2231 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2232 return -1;
2233 }
2234 }
2235
2236 /* TSC scaling required - calculate ratio */
2237 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2238 user_tsc_khz, tsc_khz);
2239
2240 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2241 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2242 user_tsc_khz);
2243 return -1;
2244 }
2245
2246 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2247 return 0;
2248 }
2249
2250 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2251 {
2252 u32 thresh_lo, thresh_hi;
2253 int use_scaling = 0;
2254
2255 /* tsc_khz can be zero if TSC calibration fails */
2256 if (user_tsc_khz == 0) {
2257 /* set tsc_scaling_ratio to a safe value */
2258 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2259 return -1;
2260 }
2261
2262 /* Compute a scale to convert nanoseconds in TSC cycles */
2263 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2264 &vcpu->arch.virtual_tsc_shift,
2265 &vcpu->arch.virtual_tsc_mult);
2266 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2267
2268 /*
2269 * Compute the variation in TSC rate which is acceptable
2270 * within the range of tolerance and decide if the
2271 * rate being applied is within that bounds of the hardware
2272 * rate. If so, no scaling or compensation need be done.
2273 */
2274 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2275 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2276 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2277 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2278 use_scaling = 1;
2279 }
2280 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2281 }
2282
2283 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2284 {
2285 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2286 vcpu->arch.virtual_tsc_mult,
2287 vcpu->arch.virtual_tsc_shift);
2288 tsc += vcpu->arch.this_tsc_write;
2289 return tsc;
2290 }
2291
2292 static inline int gtod_is_based_on_tsc(int mode)
2293 {
2294 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2295 }
2296
2297 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2298 {
2299 #ifdef CONFIG_X86_64
2300 bool vcpus_matched;
2301 struct kvm_arch *ka = &vcpu->kvm->arch;
2302 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2303
2304 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2305 atomic_read(&vcpu->kvm->online_vcpus));
2306
2307 /*
2308 * Once the masterclock is enabled, always perform request in
2309 * order to update it.
2310 *
2311 * In order to enable masterclock, the host clocksource must be TSC
2312 * and the vcpus need to have matched TSCs. When that happens,
2313 * perform request to enable masterclock.
2314 */
2315 if (ka->use_master_clock ||
2316 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2317 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2318
2319 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2320 atomic_read(&vcpu->kvm->online_vcpus),
2321 ka->use_master_clock, gtod->clock.vclock_mode);
2322 #endif
2323 }
2324
2325 /*
2326 * Multiply tsc by a fixed point number represented by ratio.
2327 *
2328 * The most significant 64-N bits (mult) of ratio represent the
2329 * integral part of the fixed point number; the remaining N bits
2330 * (frac) represent the fractional part, ie. ratio represents a fixed
2331 * point number (mult + frac * 2^(-N)).
2332 *
2333 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2334 */
2335 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2336 {
2337 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2338 }
2339
2340 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2341 {
2342 u64 _tsc = tsc;
2343
2344 if (ratio != kvm_default_tsc_scaling_ratio)
2345 _tsc = __scale_tsc(ratio, tsc);
2346
2347 return _tsc;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2350
2351 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2352 {
2353 u64 tsc;
2354
2355 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2356
2357 return target_tsc - tsc;
2358 }
2359
2360 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2361 {
2362 return vcpu->arch.l1_tsc_offset +
2363 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2364 }
2365 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2366
2367 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2368 {
2369 u64 nested_offset;
2370
2371 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2372 nested_offset = l1_offset;
2373 else
2374 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2375 kvm_tsc_scaling_ratio_frac_bits);
2376
2377 nested_offset += l2_offset;
2378 return nested_offset;
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2381
2382 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2383 {
2384 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2385 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 return l1_multiplier;
2389 }
2390 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2391
2392 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2393 {
2394 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2395 vcpu->arch.l1_tsc_offset,
2396 l1_offset);
2397
2398 vcpu->arch.l1_tsc_offset = l1_offset;
2399
2400 /*
2401 * If we are here because L1 chose not to trap WRMSR to TSC then
2402 * according to the spec this should set L1's TSC (as opposed to
2403 * setting L1's offset for L2).
2404 */
2405 if (is_guest_mode(vcpu))
2406 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2407 l1_offset,
2408 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2409 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2410 else
2411 vcpu->arch.tsc_offset = l1_offset;
2412
2413 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2414 }
2415
2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2417 {
2418 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2419
2420 /* Userspace is changing the multiplier while L2 is active */
2421 if (is_guest_mode(vcpu))
2422 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2423 l1_multiplier,
2424 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2425 else
2426 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2427
2428 if (kvm_has_tsc_control)
2429 static_call(kvm_x86_write_tsc_multiplier)(
2430 vcpu, vcpu->arch.tsc_scaling_ratio);
2431 }
2432
2433 static inline bool kvm_check_tsc_unstable(void)
2434 {
2435 #ifdef CONFIG_X86_64
2436 /*
2437 * TSC is marked unstable when we're running on Hyper-V,
2438 * 'TSC page' clocksource is good.
2439 */
2440 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2441 return false;
2442 #endif
2443 return check_tsc_unstable();
2444 }
2445
2446 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2447 {
2448 struct kvm *kvm = vcpu->kvm;
2449 u64 offset, ns, elapsed;
2450 unsigned long flags;
2451 bool matched;
2452 bool already_matched;
2453 bool synchronizing = false;
2454
2455 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2456 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2457 ns = get_kvmclock_base_ns();
2458 elapsed = ns - kvm->arch.last_tsc_nsec;
2459
2460 if (vcpu->arch.virtual_tsc_khz) {
2461 if (data == 0) {
2462 /*
2463 * detection of vcpu initialization -- need to sync
2464 * with other vCPUs. This particularly helps to keep
2465 * kvm_clock stable after CPU hotplug
2466 */
2467 synchronizing = true;
2468 } else {
2469 u64 tsc_exp = kvm->arch.last_tsc_write +
2470 nsec_to_cycles(vcpu, elapsed);
2471 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2472 /*
2473 * Special case: TSC write with a small delta (1 second)
2474 * of virtual cycle time against real time is
2475 * interpreted as an attempt to synchronize the CPU.
2476 */
2477 synchronizing = data < tsc_exp + tsc_hz &&
2478 data + tsc_hz > tsc_exp;
2479 }
2480 }
2481
2482 /*
2483 * For a reliable TSC, we can match TSC offsets, and for an unstable
2484 * TSC, we add elapsed time in this computation. We could let the
2485 * compensation code attempt to catch up if we fall behind, but
2486 * it's better to try to match offsets from the beginning.
2487 */
2488 if (synchronizing &&
2489 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2490 if (!kvm_check_tsc_unstable()) {
2491 offset = kvm->arch.cur_tsc_offset;
2492 } else {
2493 u64 delta = nsec_to_cycles(vcpu, elapsed);
2494 data += delta;
2495 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2496 }
2497 matched = true;
2498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2499 } else {
2500 /*
2501 * We split periods of matched TSC writes into generations.
2502 * For each generation, we track the original measured
2503 * nanosecond time, offset, and write, so if TSCs are in
2504 * sync, we can match exact offset, and if not, we can match
2505 * exact software computation in compute_guest_tsc()
2506 *
2507 * These values are tracked in kvm->arch.cur_xxx variables.
2508 */
2509 kvm->arch.cur_tsc_generation++;
2510 kvm->arch.cur_tsc_nsec = ns;
2511 kvm->arch.cur_tsc_write = data;
2512 kvm->arch.cur_tsc_offset = offset;
2513 matched = false;
2514 }
2515
2516 /*
2517 * We also track th most recent recorded KHZ, write and time to
2518 * allow the matching interval to be extended at each write.
2519 */
2520 kvm->arch.last_tsc_nsec = ns;
2521 kvm->arch.last_tsc_write = data;
2522 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2523
2524 vcpu->arch.last_guest_tsc = data;
2525
2526 /* Keep track of which generation this VCPU has synchronized to */
2527 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2528 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2529 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2530
2531 kvm_vcpu_write_tsc_offset(vcpu, offset);
2532 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2533
2534 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2535 if (!matched) {
2536 kvm->arch.nr_vcpus_matched_tsc = 0;
2537 } else if (!already_matched) {
2538 kvm->arch.nr_vcpus_matched_tsc++;
2539 }
2540
2541 kvm_track_tsc_matching(vcpu);
2542 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2543 }
2544
2545 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2546 s64 adjustment)
2547 {
2548 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2549 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2550 }
2551
2552 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2553 {
2554 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2555 WARN_ON(adjustment < 0);
2556 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2557 vcpu->arch.l1_tsc_scaling_ratio);
2558 adjust_tsc_offset_guest(vcpu, adjustment);
2559 }
2560
2561 #ifdef CONFIG_X86_64
2562
2563 static u64 read_tsc(void)
2564 {
2565 u64 ret = (u64)rdtsc_ordered();
2566 u64 last = pvclock_gtod_data.clock.cycle_last;
2567
2568 if (likely(ret >= last))
2569 return ret;
2570
2571 /*
2572 * GCC likes to generate cmov here, but this branch is extremely
2573 * predictable (it's just a function of time and the likely is
2574 * very likely) and there's a data dependence, so force GCC
2575 * to generate a branch instead. I don't barrier() because
2576 * we don't actually need a barrier, and if this function
2577 * ever gets inlined it will generate worse code.
2578 */
2579 asm volatile ("");
2580 return last;
2581 }
2582
2583 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2584 int *mode)
2585 {
2586 long v;
2587 u64 tsc_pg_val;
2588
2589 switch (clock->vclock_mode) {
2590 case VDSO_CLOCKMODE_HVCLOCK:
2591 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2592 tsc_timestamp);
2593 if (tsc_pg_val != U64_MAX) {
2594 /* TSC page valid */
2595 *mode = VDSO_CLOCKMODE_HVCLOCK;
2596 v = (tsc_pg_val - clock->cycle_last) &
2597 clock->mask;
2598 } else {
2599 /* TSC page invalid */
2600 *mode = VDSO_CLOCKMODE_NONE;
2601 }
2602 break;
2603 case VDSO_CLOCKMODE_TSC:
2604 *mode = VDSO_CLOCKMODE_TSC;
2605 *tsc_timestamp = read_tsc();
2606 v = (*tsc_timestamp - clock->cycle_last) &
2607 clock->mask;
2608 break;
2609 default:
2610 *mode = VDSO_CLOCKMODE_NONE;
2611 }
2612
2613 if (*mode == VDSO_CLOCKMODE_NONE)
2614 *tsc_timestamp = v = 0;
2615
2616 return v * clock->mult;
2617 }
2618
2619 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2620 {
2621 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2622 unsigned long seq;
2623 int mode;
2624 u64 ns;
2625
2626 do {
2627 seq = read_seqcount_begin(&gtod->seq);
2628 ns = gtod->raw_clock.base_cycles;
2629 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2630 ns >>= gtod->raw_clock.shift;
2631 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2632 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2633 *t = ns;
2634
2635 return mode;
2636 }
2637
2638 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2639 {
2640 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2641 unsigned long seq;
2642 int mode;
2643 u64 ns;
2644
2645 do {
2646 seq = read_seqcount_begin(&gtod->seq);
2647 ts->tv_sec = gtod->wall_time_sec;
2648 ns = gtod->clock.base_cycles;
2649 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2650 ns >>= gtod->clock.shift;
2651 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2652
2653 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2654 ts->tv_nsec = ns;
2655
2656 return mode;
2657 }
2658
2659 /* returns true if host is using TSC based clocksource */
2660 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2661 {
2662 /* checked again under seqlock below */
2663 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2664 return false;
2665
2666 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2667 tsc_timestamp));
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2672 u64 *tsc_timestamp)
2673 {
2674 /* checked again under seqlock below */
2675 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2676 return false;
2677
2678 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2679 }
2680 #endif
2681
2682 /*
2683 *
2684 * Assuming a stable TSC across physical CPUS, and a stable TSC
2685 * across virtual CPUs, the following condition is possible.
2686 * Each numbered line represents an event visible to both
2687 * CPUs at the next numbered event.
2688 *
2689 * "timespecX" represents host monotonic time. "tscX" represents
2690 * RDTSC value.
2691 *
2692 * VCPU0 on CPU0 | VCPU1 on CPU1
2693 *
2694 * 1. read timespec0,tsc0
2695 * 2. | timespec1 = timespec0 + N
2696 * | tsc1 = tsc0 + M
2697 * 3. transition to guest | transition to guest
2698 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2699 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2700 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2701 *
2702 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2703 *
2704 * - ret0 < ret1
2705 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2706 * ...
2707 * - 0 < N - M => M < N
2708 *
2709 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2710 * always the case (the difference between two distinct xtime instances
2711 * might be smaller then the difference between corresponding TSC reads,
2712 * when updating guest vcpus pvclock areas).
2713 *
2714 * To avoid that problem, do not allow visibility of distinct
2715 * system_timestamp/tsc_timestamp values simultaneously: use a master
2716 * copy of host monotonic time values. Update that master copy
2717 * in lockstep.
2718 *
2719 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2720 *
2721 */
2722
2723 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2724 {
2725 #ifdef CONFIG_X86_64
2726 struct kvm_arch *ka = &kvm->arch;
2727 int vclock_mode;
2728 bool host_tsc_clocksource, vcpus_matched;
2729
2730 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2731 atomic_read(&kvm->online_vcpus));
2732
2733 /*
2734 * If the host uses TSC clock, then passthrough TSC as stable
2735 * to the guest.
2736 */
2737 host_tsc_clocksource = kvm_get_time_and_clockread(
2738 &ka->master_kernel_ns,
2739 &ka->master_cycle_now);
2740
2741 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2742 && !ka->backwards_tsc_observed
2743 && !ka->boot_vcpu_runs_old_kvmclock;
2744
2745 if (ka->use_master_clock)
2746 atomic_set(&kvm_guest_has_master_clock, 1);
2747
2748 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2749 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2750 vcpus_matched);
2751 #endif
2752 }
2753
2754 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2755 {
2756 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2757 }
2758
2759 static void kvm_gen_update_masterclock(struct kvm *kvm)
2760 {
2761 #ifdef CONFIG_X86_64
2762 int i;
2763 struct kvm_vcpu *vcpu;
2764 struct kvm_arch *ka = &kvm->arch;
2765 unsigned long flags;
2766
2767 kvm_hv_invalidate_tsc_page(kvm);
2768
2769 kvm_make_mclock_inprogress_request(kvm);
2770
2771 /* no guest entries from this point */
2772 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2773 pvclock_update_vm_gtod_copy(kvm);
2774 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2775
2776 kvm_for_each_vcpu(i, vcpu, kvm)
2777 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2778
2779 /* guest entries allowed */
2780 kvm_for_each_vcpu(i, vcpu, kvm)
2781 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2782 #endif
2783 }
2784
2785 u64 get_kvmclock_ns(struct kvm *kvm)
2786 {
2787 struct kvm_arch *ka = &kvm->arch;
2788 struct pvclock_vcpu_time_info hv_clock;
2789 unsigned long flags;
2790 u64 ret;
2791
2792 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2793 if (!ka->use_master_clock) {
2794 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2795 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2796 }
2797
2798 hv_clock.tsc_timestamp = ka->master_cycle_now;
2799 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2800 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2801
2802 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2803 get_cpu();
2804
2805 if (__this_cpu_read(cpu_tsc_khz)) {
2806 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2807 &hv_clock.tsc_shift,
2808 &hv_clock.tsc_to_system_mul);
2809 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2810 } else
2811 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2812
2813 put_cpu();
2814
2815 return ret;
2816 }
2817
2818 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2819 struct gfn_to_hva_cache *cache,
2820 unsigned int offset)
2821 {
2822 struct kvm_vcpu_arch *vcpu = &v->arch;
2823 struct pvclock_vcpu_time_info guest_hv_clock;
2824
2825 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2826 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2827 return;
2828
2829 /* This VCPU is paused, but it's legal for a guest to read another
2830 * VCPU's kvmclock, so we really have to follow the specification where
2831 * it says that version is odd if data is being modified, and even after
2832 * it is consistent.
2833 *
2834 * Version field updates must be kept separate. This is because
2835 * kvm_write_guest_cached might use a "rep movs" instruction, and
2836 * writes within a string instruction are weakly ordered. So there
2837 * are three writes overall.
2838 *
2839 * As a small optimization, only write the version field in the first
2840 * and third write. The vcpu->pv_time cache is still valid, because the
2841 * version field is the first in the struct.
2842 */
2843 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2844
2845 if (guest_hv_clock.version & 1)
2846 ++guest_hv_clock.version; /* first time write, random junk */
2847
2848 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2849 kvm_write_guest_offset_cached(v->kvm, cache,
2850 &vcpu->hv_clock, offset,
2851 sizeof(vcpu->hv_clock.version));
2852
2853 smp_wmb();
2854
2855 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2856 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2857
2858 if (vcpu->pvclock_set_guest_stopped_request) {
2859 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2860 vcpu->pvclock_set_guest_stopped_request = false;
2861 }
2862
2863 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2864
2865 kvm_write_guest_offset_cached(v->kvm, cache,
2866 &vcpu->hv_clock, offset,
2867 sizeof(vcpu->hv_clock));
2868
2869 smp_wmb();
2870
2871 vcpu->hv_clock.version++;
2872 kvm_write_guest_offset_cached(v->kvm, cache,
2873 &vcpu->hv_clock, offset,
2874 sizeof(vcpu->hv_clock.version));
2875 }
2876
2877 static int kvm_guest_time_update(struct kvm_vcpu *v)
2878 {
2879 unsigned long flags, tgt_tsc_khz;
2880 struct kvm_vcpu_arch *vcpu = &v->arch;
2881 struct kvm_arch *ka = &v->kvm->arch;
2882 s64 kernel_ns;
2883 u64 tsc_timestamp, host_tsc;
2884 u8 pvclock_flags;
2885 bool use_master_clock;
2886
2887 kernel_ns = 0;
2888 host_tsc = 0;
2889
2890 /*
2891 * If the host uses TSC clock, then passthrough TSC as stable
2892 * to the guest.
2893 */
2894 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2895 use_master_clock = ka->use_master_clock;
2896 if (use_master_clock) {
2897 host_tsc = ka->master_cycle_now;
2898 kernel_ns = ka->master_kernel_ns;
2899 }
2900 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2901
2902 /* Keep irq disabled to prevent changes to the clock */
2903 local_irq_save(flags);
2904 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2905 if (unlikely(tgt_tsc_khz == 0)) {
2906 local_irq_restore(flags);
2907 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2908 return 1;
2909 }
2910 if (!use_master_clock) {
2911 host_tsc = rdtsc();
2912 kernel_ns = get_kvmclock_base_ns();
2913 }
2914
2915 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2916
2917 /*
2918 * We may have to catch up the TSC to match elapsed wall clock
2919 * time for two reasons, even if kvmclock is used.
2920 * 1) CPU could have been running below the maximum TSC rate
2921 * 2) Broken TSC compensation resets the base at each VCPU
2922 * entry to avoid unknown leaps of TSC even when running
2923 * again on the same CPU. This may cause apparent elapsed
2924 * time to disappear, and the guest to stand still or run
2925 * very slowly.
2926 */
2927 if (vcpu->tsc_catchup) {
2928 u64 tsc = compute_guest_tsc(v, kernel_ns);
2929 if (tsc > tsc_timestamp) {
2930 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2931 tsc_timestamp = tsc;
2932 }
2933 }
2934
2935 local_irq_restore(flags);
2936
2937 /* With all the info we got, fill in the values */
2938
2939 if (kvm_has_tsc_control)
2940 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2941 v->arch.l1_tsc_scaling_ratio);
2942
2943 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2944 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2945 &vcpu->hv_clock.tsc_shift,
2946 &vcpu->hv_clock.tsc_to_system_mul);
2947 vcpu->hw_tsc_khz = tgt_tsc_khz;
2948 }
2949
2950 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2951 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2952 vcpu->last_guest_tsc = tsc_timestamp;
2953
2954 /* If the host uses TSC clocksource, then it is stable */
2955 pvclock_flags = 0;
2956 if (use_master_clock)
2957 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2958
2959 vcpu->hv_clock.flags = pvclock_flags;
2960
2961 if (vcpu->pv_time_enabled)
2962 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2963 if (vcpu->xen.vcpu_info_set)
2964 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2965 offsetof(struct compat_vcpu_info, time));
2966 if (vcpu->xen.vcpu_time_info_set)
2967 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2968 if (v == kvm_get_vcpu(v->kvm, 0))
2969 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2970 return 0;
2971 }
2972
2973 /*
2974 * kvmclock updates which are isolated to a given vcpu, such as
2975 * vcpu->cpu migration, should not allow system_timestamp from
2976 * the rest of the vcpus to remain static. Otherwise ntp frequency
2977 * correction applies to one vcpu's system_timestamp but not
2978 * the others.
2979 *
2980 * So in those cases, request a kvmclock update for all vcpus.
2981 * We need to rate-limit these requests though, as they can
2982 * considerably slow guests that have a large number of vcpus.
2983 * The time for a remote vcpu to update its kvmclock is bound
2984 * by the delay we use to rate-limit the updates.
2985 */
2986
2987 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2988
2989 static void kvmclock_update_fn(struct work_struct *work)
2990 {
2991 int i;
2992 struct delayed_work *dwork = to_delayed_work(work);
2993 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2994 kvmclock_update_work);
2995 struct kvm *kvm = container_of(ka, struct kvm, arch);
2996 struct kvm_vcpu *vcpu;
2997
2998 kvm_for_each_vcpu(i, vcpu, kvm) {
2999 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3000 kvm_vcpu_kick(vcpu);
3001 }
3002 }
3003
3004 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3005 {
3006 struct kvm *kvm = v->kvm;
3007
3008 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3009 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3010 KVMCLOCK_UPDATE_DELAY);
3011 }
3012
3013 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3014
3015 static void kvmclock_sync_fn(struct work_struct *work)
3016 {
3017 struct delayed_work *dwork = to_delayed_work(work);
3018 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3019 kvmclock_sync_work);
3020 struct kvm *kvm = container_of(ka, struct kvm, arch);
3021
3022 if (!kvmclock_periodic_sync)
3023 return;
3024
3025 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3026 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3027 KVMCLOCK_SYNC_PERIOD);
3028 }
3029
3030 /*
3031 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3032 */
3033 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3034 {
3035 /* McStatusWrEn enabled? */
3036 if (guest_cpuid_is_amd_or_hygon(vcpu))
3037 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3038
3039 return false;
3040 }
3041
3042 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3043 {
3044 u64 mcg_cap = vcpu->arch.mcg_cap;
3045 unsigned bank_num = mcg_cap & 0xff;
3046 u32 msr = msr_info->index;
3047 u64 data = msr_info->data;
3048
3049 switch (msr) {
3050 case MSR_IA32_MCG_STATUS:
3051 vcpu->arch.mcg_status = data;
3052 break;
3053 case MSR_IA32_MCG_CTL:
3054 if (!(mcg_cap & MCG_CTL_P) &&
3055 (data || !msr_info->host_initiated))
3056 return 1;
3057 if (data != 0 && data != ~(u64)0)
3058 return 1;
3059 vcpu->arch.mcg_ctl = data;
3060 break;
3061 default:
3062 if (msr >= MSR_IA32_MC0_CTL &&
3063 msr < MSR_IA32_MCx_CTL(bank_num)) {
3064 u32 offset = array_index_nospec(
3065 msr - MSR_IA32_MC0_CTL,
3066 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3067
3068 /* only 0 or all 1s can be written to IA32_MCi_CTL
3069 * some Linux kernels though clear bit 10 in bank 4 to
3070 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3071 * this to avoid an uncatched #GP in the guest
3072 */
3073 if ((offset & 0x3) == 0 &&
3074 data != 0 && (data | (1 << 10)) != ~(u64)0)
3075 return -1;
3076
3077 /* MCi_STATUS */
3078 if (!msr_info->host_initiated &&
3079 (offset & 0x3) == 1 && data != 0) {
3080 if (!can_set_mci_status(vcpu))
3081 return -1;
3082 }
3083
3084 vcpu->arch.mce_banks[offset] = data;
3085 break;
3086 }
3087 return 1;
3088 }
3089 return 0;
3090 }
3091
3092 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3093 {
3094 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3095
3096 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3097 }
3098
3099 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3100 {
3101 gpa_t gpa = data & ~0x3f;
3102
3103 /* Bits 4:5 are reserved, Should be zero */
3104 if (data & 0x30)
3105 return 1;
3106
3107 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3108 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3109 return 1;
3110
3111 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3112 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3113 return 1;
3114
3115 if (!lapic_in_kernel(vcpu))
3116 return data ? 1 : 0;
3117
3118 vcpu->arch.apf.msr_en_val = data;
3119
3120 if (!kvm_pv_async_pf_enabled(vcpu)) {
3121 kvm_clear_async_pf_completion_queue(vcpu);
3122 kvm_async_pf_hash_reset(vcpu);
3123 return 0;
3124 }
3125
3126 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3127 sizeof(u64)))
3128 return 1;
3129
3130 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3131 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3132
3133 kvm_async_pf_wakeup_all(vcpu);
3134
3135 return 0;
3136 }
3137
3138 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3139 {
3140 /* Bits 8-63 are reserved */
3141 if (data >> 8)
3142 return 1;
3143
3144 if (!lapic_in_kernel(vcpu))
3145 return 1;
3146
3147 vcpu->arch.apf.msr_int_val = data;
3148
3149 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3150
3151 return 0;
3152 }
3153
3154 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3155 {
3156 vcpu->arch.pv_time_enabled = false;
3157 vcpu->arch.time = 0;
3158 }
3159
3160 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3161 {
3162 ++vcpu->stat.tlb_flush;
3163 static_call(kvm_x86_tlb_flush_all)(vcpu);
3164 }
3165
3166 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3167 {
3168 ++vcpu->stat.tlb_flush;
3169
3170 if (!tdp_enabled) {
3171 /*
3172 * A TLB flush on behalf of the guest is equivalent to
3173 * INVPCID(all), toggling CR4.PGE, etc., which requires
3174 * a forced sync of the shadow page tables. Unload the
3175 * entire MMU here and the subsequent load will sync the
3176 * shadow page tables, and also flush the TLB.
3177 */
3178 kvm_mmu_unload(vcpu);
3179 return;
3180 }
3181
3182 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3183 }
3184
3185 static void record_steal_time(struct kvm_vcpu *vcpu)
3186 {
3187 struct kvm_host_map map;
3188 struct kvm_steal_time *st;
3189
3190 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3191 kvm_xen_runstate_set_running(vcpu);
3192 return;
3193 }
3194
3195 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3196 return;
3197
3198 /* -EAGAIN is returned in atomic context so we can just return. */
3199 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3200 &map, &vcpu->arch.st.cache, false))
3201 return;
3202
3203 st = map.hva +
3204 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3205
3206 /*
3207 * Doing a TLB flush here, on the guest's behalf, can avoid
3208 * expensive IPIs.
3209 */
3210 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3211 u8 st_preempted = xchg(&st->preempted, 0);
3212
3213 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3214 st_preempted & KVM_VCPU_FLUSH_TLB);
3215 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3216 kvm_vcpu_flush_tlb_guest(vcpu);
3217 } else {
3218 st->preempted = 0;
3219 }
3220
3221 vcpu->arch.st.preempted = 0;
3222
3223 if (st->version & 1)
3224 st->version += 1; /* first time write, random junk */
3225
3226 st->version += 1;
3227
3228 smp_wmb();
3229
3230 st->steal += current->sched_info.run_delay -
3231 vcpu->arch.st.last_steal;
3232 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3233
3234 smp_wmb();
3235
3236 st->version += 1;
3237
3238 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3239 }
3240
3241 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3242 {
3243 bool pr = false;
3244 u32 msr = msr_info->index;
3245 u64 data = msr_info->data;
3246
3247 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3248 return kvm_xen_write_hypercall_page(vcpu, data);
3249
3250 switch (msr) {
3251 case MSR_AMD64_NB_CFG:
3252 case MSR_IA32_UCODE_WRITE:
3253 case MSR_VM_HSAVE_PA:
3254 case MSR_AMD64_PATCH_LOADER:
3255 case MSR_AMD64_BU_CFG2:
3256 case MSR_AMD64_DC_CFG:
3257 case MSR_F15H_EX_CFG:
3258 break;
3259
3260 case MSR_IA32_UCODE_REV:
3261 if (msr_info->host_initiated)
3262 vcpu->arch.microcode_version = data;
3263 break;
3264 case MSR_IA32_ARCH_CAPABILITIES:
3265 if (!msr_info->host_initiated)
3266 return 1;
3267 vcpu->arch.arch_capabilities = data;
3268 break;
3269 case MSR_IA32_PERF_CAPABILITIES: {
3270 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3271
3272 if (!msr_info->host_initiated)
3273 return 1;
3274 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3275 return 1;
3276 if (data & ~msr_ent.data)
3277 return 1;
3278
3279 vcpu->arch.perf_capabilities = data;
3280
3281 return 0;
3282 }
3283 case MSR_EFER:
3284 return set_efer(vcpu, msr_info);
3285 case MSR_K7_HWCR:
3286 data &= ~(u64)0x40; /* ignore flush filter disable */
3287 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3288 data &= ~(u64)0x8; /* ignore TLB cache disable */
3289
3290 /* Handle McStatusWrEn */
3291 if (data == BIT_ULL(18)) {
3292 vcpu->arch.msr_hwcr = data;
3293 } else if (data != 0) {
3294 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3295 data);
3296 return 1;
3297 }
3298 break;
3299 case MSR_FAM10H_MMIO_CONF_BASE:
3300 if (data != 0) {
3301 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3302 "0x%llx\n", data);
3303 return 1;
3304 }
3305 break;
3306 case 0x200 ... 0x2ff:
3307 return kvm_mtrr_set_msr(vcpu, msr, data);
3308 case MSR_IA32_APICBASE:
3309 return kvm_set_apic_base(vcpu, msr_info);
3310 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3311 return kvm_x2apic_msr_write(vcpu, msr, data);
3312 case MSR_IA32_TSC_DEADLINE:
3313 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3314 break;
3315 case MSR_IA32_TSC_ADJUST:
3316 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3317 if (!msr_info->host_initiated) {
3318 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3319 adjust_tsc_offset_guest(vcpu, adj);
3320 }
3321 vcpu->arch.ia32_tsc_adjust_msr = data;
3322 }
3323 break;
3324 case MSR_IA32_MISC_ENABLE:
3325 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3326 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3327 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3328 return 1;
3329 vcpu->arch.ia32_misc_enable_msr = data;
3330 kvm_update_cpuid_runtime(vcpu);
3331 } else {
3332 vcpu->arch.ia32_misc_enable_msr = data;
3333 }
3334 break;
3335 case MSR_IA32_SMBASE:
3336 if (!msr_info->host_initiated)
3337 return 1;
3338 vcpu->arch.smbase = data;
3339 break;
3340 case MSR_IA32_POWER_CTL:
3341 vcpu->arch.msr_ia32_power_ctl = data;
3342 break;
3343 case MSR_IA32_TSC:
3344 if (msr_info->host_initiated) {
3345 kvm_synchronize_tsc(vcpu, data);
3346 } else {
3347 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3348 adjust_tsc_offset_guest(vcpu, adj);
3349 vcpu->arch.ia32_tsc_adjust_msr += adj;
3350 }
3351 break;
3352 case MSR_IA32_XSS:
3353 if (!msr_info->host_initiated &&
3354 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3355 return 1;
3356 /*
3357 * KVM supports exposing PT to the guest, but does not support
3358 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3359 * XSAVES/XRSTORS to save/restore PT MSRs.
3360 */
3361 if (data & ~supported_xss)
3362 return 1;
3363 vcpu->arch.ia32_xss = data;
3364 break;
3365 case MSR_SMI_COUNT:
3366 if (!msr_info->host_initiated)
3367 return 1;
3368 vcpu->arch.smi_count = data;
3369 break;
3370 case MSR_KVM_WALL_CLOCK_NEW:
3371 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3372 return 1;
3373
3374 vcpu->kvm->arch.wall_clock = data;
3375 kvm_write_wall_clock(vcpu->kvm, data, 0);
3376 break;
3377 case MSR_KVM_WALL_CLOCK:
3378 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3379 return 1;
3380
3381 vcpu->kvm->arch.wall_clock = data;
3382 kvm_write_wall_clock(vcpu->kvm, data, 0);
3383 break;
3384 case MSR_KVM_SYSTEM_TIME_NEW:
3385 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3386 return 1;
3387
3388 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3389 break;
3390 case MSR_KVM_SYSTEM_TIME:
3391 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3392 return 1;
3393
3394 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3395 break;
3396 case MSR_KVM_ASYNC_PF_EN:
3397 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3398 return 1;
3399
3400 if (kvm_pv_enable_async_pf(vcpu, data))
3401 return 1;
3402 break;
3403 case MSR_KVM_ASYNC_PF_INT:
3404 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3405 return 1;
3406
3407 if (kvm_pv_enable_async_pf_int(vcpu, data))
3408 return 1;
3409 break;
3410 case MSR_KVM_ASYNC_PF_ACK:
3411 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3412 return 1;
3413 if (data & 0x1) {
3414 vcpu->arch.apf.pageready_pending = false;
3415 kvm_check_async_pf_completion(vcpu);
3416 }
3417 break;
3418 case MSR_KVM_STEAL_TIME:
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3420 return 1;
3421
3422 if (unlikely(!sched_info_on()))
3423 return 1;
3424
3425 if (data & KVM_STEAL_RESERVED_MASK)
3426 return 1;
3427
3428 vcpu->arch.st.msr_val = data;
3429
3430 if (!(data & KVM_MSR_ENABLED))
3431 break;
3432
3433 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3434
3435 break;
3436 case MSR_KVM_PV_EOI_EN:
3437 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3438 return 1;
3439
3440 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3441 return 1;
3442 break;
3443
3444 case MSR_KVM_POLL_CONTROL:
3445 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3446 return 1;
3447
3448 /* only enable bit supported */
3449 if (data & (-1ULL << 1))
3450 return 1;
3451
3452 vcpu->arch.msr_kvm_poll_control = data;
3453 break;
3454
3455 case MSR_IA32_MCG_CTL:
3456 case MSR_IA32_MCG_STATUS:
3457 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3458 return set_msr_mce(vcpu, msr_info);
3459
3460 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3461 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3462 pr = true;
3463 fallthrough;
3464 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3465 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3466 if (kvm_pmu_is_valid_msr(vcpu, msr))
3467 return kvm_pmu_set_msr(vcpu, msr_info);
3468
3469 if (pr || data != 0)
3470 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3471 "0x%x data 0x%llx\n", msr, data);
3472 break;
3473 case MSR_K7_CLK_CTL:
3474 /*
3475 * Ignore all writes to this no longer documented MSR.
3476 * Writes are only relevant for old K7 processors,
3477 * all pre-dating SVM, but a recommended workaround from
3478 * AMD for these chips. It is possible to specify the
3479 * affected processor models on the command line, hence
3480 * the need to ignore the workaround.
3481 */
3482 break;
3483 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3484 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3485 case HV_X64_MSR_SYNDBG_OPTIONS:
3486 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3487 case HV_X64_MSR_CRASH_CTL:
3488 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3489 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3490 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3491 case HV_X64_MSR_TSC_EMULATION_STATUS:
3492 return kvm_hv_set_msr_common(vcpu, msr, data,
3493 msr_info->host_initiated);
3494 case MSR_IA32_BBL_CR_CTL3:
3495 /* Drop writes to this legacy MSR -- see rdmsr
3496 * counterpart for further detail.
3497 */
3498 if (report_ignored_msrs)
3499 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3500 msr, data);
3501 break;
3502 case MSR_AMD64_OSVW_ID_LENGTH:
3503 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3504 return 1;
3505 vcpu->arch.osvw.length = data;
3506 break;
3507 case MSR_AMD64_OSVW_STATUS:
3508 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3509 return 1;
3510 vcpu->arch.osvw.status = data;
3511 break;
3512 case MSR_PLATFORM_INFO:
3513 if (!msr_info->host_initiated ||
3514 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3515 cpuid_fault_enabled(vcpu)))
3516 return 1;
3517 vcpu->arch.msr_platform_info = data;
3518 break;
3519 case MSR_MISC_FEATURES_ENABLES:
3520 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3521 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3522 !supports_cpuid_fault(vcpu)))
3523 return 1;
3524 vcpu->arch.msr_misc_features_enables = data;
3525 break;
3526 default:
3527 if (kvm_pmu_is_valid_msr(vcpu, msr))
3528 return kvm_pmu_set_msr(vcpu, msr_info);
3529 return KVM_MSR_RET_INVALID;
3530 }
3531 return 0;
3532 }
3533 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3534
3535 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3536 {
3537 u64 data;
3538 u64 mcg_cap = vcpu->arch.mcg_cap;
3539 unsigned bank_num = mcg_cap & 0xff;
3540
3541 switch (msr) {
3542 case MSR_IA32_P5_MC_ADDR:
3543 case MSR_IA32_P5_MC_TYPE:
3544 data = 0;
3545 break;
3546 case MSR_IA32_MCG_CAP:
3547 data = vcpu->arch.mcg_cap;
3548 break;
3549 case MSR_IA32_MCG_CTL:
3550 if (!(mcg_cap & MCG_CTL_P) && !host)
3551 return 1;
3552 data = vcpu->arch.mcg_ctl;
3553 break;
3554 case MSR_IA32_MCG_STATUS:
3555 data = vcpu->arch.mcg_status;
3556 break;
3557 default:
3558 if (msr >= MSR_IA32_MC0_CTL &&
3559 msr < MSR_IA32_MCx_CTL(bank_num)) {
3560 u32 offset = array_index_nospec(
3561 msr - MSR_IA32_MC0_CTL,
3562 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3563
3564 data = vcpu->arch.mce_banks[offset];
3565 break;
3566 }
3567 return 1;
3568 }
3569 *pdata = data;
3570 return 0;
3571 }
3572
3573 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3574 {
3575 switch (msr_info->index) {
3576 case MSR_IA32_PLATFORM_ID:
3577 case MSR_IA32_EBL_CR_POWERON:
3578 case MSR_IA32_LASTBRANCHFROMIP:
3579 case MSR_IA32_LASTBRANCHTOIP:
3580 case MSR_IA32_LASTINTFROMIP:
3581 case MSR_IA32_LASTINTTOIP:
3582 case MSR_AMD64_SYSCFG:
3583 case MSR_K8_TSEG_ADDR:
3584 case MSR_K8_TSEG_MASK:
3585 case MSR_VM_HSAVE_PA:
3586 case MSR_K8_INT_PENDING_MSG:
3587 case MSR_AMD64_NB_CFG:
3588 case MSR_FAM10H_MMIO_CONF_BASE:
3589 case MSR_AMD64_BU_CFG2:
3590 case MSR_IA32_PERF_CTL:
3591 case MSR_AMD64_DC_CFG:
3592 case MSR_F15H_EX_CFG:
3593 /*
3594 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3595 * limit) MSRs. Just return 0, as we do not want to expose the host
3596 * data here. Do not conditionalize this on CPUID, as KVM does not do
3597 * so for existing CPU-specific MSRs.
3598 */
3599 case MSR_RAPL_POWER_UNIT:
3600 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3601 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3602 case MSR_PKG_ENERGY_STATUS: /* Total package */
3603 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3604 msr_info->data = 0;
3605 break;
3606 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3607 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3608 return kvm_pmu_get_msr(vcpu, msr_info);
3609 if (!msr_info->host_initiated)
3610 return 1;
3611 msr_info->data = 0;
3612 break;
3613 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3614 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3615 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3616 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3617 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3618 return kvm_pmu_get_msr(vcpu, msr_info);
3619 msr_info->data = 0;
3620 break;
3621 case MSR_IA32_UCODE_REV:
3622 msr_info->data = vcpu->arch.microcode_version;
3623 break;
3624 case MSR_IA32_ARCH_CAPABILITIES:
3625 if (!msr_info->host_initiated &&
3626 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3627 return 1;
3628 msr_info->data = vcpu->arch.arch_capabilities;
3629 break;
3630 case MSR_IA32_PERF_CAPABILITIES:
3631 if (!msr_info->host_initiated &&
3632 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3633 return 1;
3634 msr_info->data = vcpu->arch.perf_capabilities;
3635 break;
3636 case MSR_IA32_POWER_CTL:
3637 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3638 break;
3639 case MSR_IA32_TSC: {
3640 /*
3641 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3642 * even when not intercepted. AMD manual doesn't explicitly
3643 * state this but appears to behave the same.
3644 *
3645 * On userspace reads and writes, however, we unconditionally
3646 * return L1's TSC value to ensure backwards-compatible
3647 * behavior for migration.
3648 */
3649 u64 offset, ratio;
3650
3651 if (msr_info->host_initiated) {
3652 offset = vcpu->arch.l1_tsc_offset;
3653 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3654 } else {
3655 offset = vcpu->arch.tsc_offset;
3656 ratio = vcpu->arch.tsc_scaling_ratio;
3657 }
3658
3659 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3660 break;
3661 }
3662 case MSR_MTRRcap:
3663 case 0x200 ... 0x2ff:
3664 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3665 case 0xcd: /* fsb frequency */
3666 msr_info->data = 3;
3667 break;
3668 /*
3669 * MSR_EBC_FREQUENCY_ID
3670 * Conservative value valid for even the basic CPU models.
3671 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3672 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3673 * and 266MHz for model 3, or 4. Set Core Clock
3674 * Frequency to System Bus Frequency Ratio to 1 (bits
3675 * 31:24) even though these are only valid for CPU
3676 * models > 2, however guests may end up dividing or
3677 * multiplying by zero otherwise.
3678 */
3679 case MSR_EBC_FREQUENCY_ID:
3680 msr_info->data = 1 << 24;
3681 break;
3682 case MSR_IA32_APICBASE:
3683 msr_info->data = kvm_get_apic_base(vcpu);
3684 break;
3685 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3686 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3687 case MSR_IA32_TSC_DEADLINE:
3688 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3689 break;
3690 case MSR_IA32_TSC_ADJUST:
3691 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3692 break;
3693 case MSR_IA32_MISC_ENABLE:
3694 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3695 break;
3696 case MSR_IA32_SMBASE:
3697 if (!msr_info->host_initiated)
3698 return 1;
3699 msr_info->data = vcpu->arch.smbase;
3700 break;
3701 case MSR_SMI_COUNT:
3702 msr_info->data = vcpu->arch.smi_count;
3703 break;
3704 case MSR_IA32_PERF_STATUS:
3705 /* TSC increment by tick */
3706 msr_info->data = 1000ULL;
3707 /* CPU multiplier */
3708 msr_info->data |= (((uint64_t)4ULL) << 40);
3709 break;
3710 case MSR_EFER:
3711 msr_info->data = vcpu->arch.efer;
3712 break;
3713 case MSR_KVM_WALL_CLOCK:
3714 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3715 return 1;
3716
3717 msr_info->data = vcpu->kvm->arch.wall_clock;
3718 break;
3719 case MSR_KVM_WALL_CLOCK_NEW:
3720 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3721 return 1;
3722
3723 msr_info->data = vcpu->kvm->arch.wall_clock;
3724 break;
3725 case MSR_KVM_SYSTEM_TIME:
3726 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3727 return 1;
3728
3729 msr_info->data = vcpu->arch.time;
3730 break;
3731 case MSR_KVM_SYSTEM_TIME_NEW:
3732 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3733 return 1;
3734
3735 msr_info->data = vcpu->arch.time;
3736 break;
3737 case MSR_KVM_ASYNC_PF_EN:
3738 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3739 return 1;
3740
3741 msr_info->data = vcpu->arch.apf.msr_en_val;
3742 break;
3743 case MSR_KVM_ASYNC_PF_INT:
3744 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3745 return 1;
3746
3747 msr_info->data = vcpu->arch.apf.msr_int_val;
3748 break;
3749 case MSR_KVM_ASYNC_PF_ACK:
3750 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3751 return 1;
3752
3753 msr_info->data = 0;
3754 break;
3755 case MSR_KVM_STEAL_TIME:
3756 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3757 return 1;
3758
3759 msr_info->data = vcpu->arch.st.msr_val;
3760 break;
3761 case MSR_KVM_PV_EOI_EN:
3762 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3763 return 1;
3764
3765 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3766 break;
3767 case MSR_KVM_POLL_CONTROL:
3768 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3769 return 1;
3770
3771 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3772 break;
3773 case MSR_IA32_P5_MC_ADDR:
3774 case MSR_IA32_P5_MC_TYPE:
3775 case MSR_IA32_MCG_CAP:
3776 case MSR_IA32_MCG_CTL:
3777 case MSR_IA32_MCG_STATUS:
3778 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3779 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3780 msr_info->host_initiated);
3781 case MSR_IA32_XSS:
3782 if (!msr_info->host_initiated &&
3783 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3784 return 1;
3785 msr_info->data = vcpu->arch.ia32_xss;
3786 break;
3787 case MSR_K7_CLK_CTL:
3788 /*
3789 * Provide expected ramp-up count for K7. All other
3790 * are set to zero, indicating minimum divisors for
3791 * every field.
3792 *
3793 * This prevents guest kernels on AMD host with CPU
3794 * type 6, model 8 and higher from exploding due to
3795 * the rdmsr failing.
3796 */
3797 msr_info->data = 0x20000000;
3798 break;
3799 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3800 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3801 case HV_X64_MSR_SYNDBG_OPTIONS:
3802 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3803 case HV_X64_MSR_CRASH_CTL:
3804 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3805 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3806 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3807 case HV_X64_MSR_TSC_EMULATION_STATUS:
3808 return kvm_hv_get_msr_common(vcpu,
3809 msr_info->index, &msr_info->data,
3810 msr_info->host_initiated);
3811 case MSR_IA32_BBL_CR_CTL3:
3812 /* This legacy MSR exists but isn't fully documented in current
3813 * silicon. It is however accessed by winxp in very narrow
3814 * scenarios where it sets bit #19, itself documented as
3815 * a "reserved" bit. Best effort attempt to source coherent
3816 * read data here should the balance of the register be
3817 * interpreted by the guest:
3818 *
3819 * L2 cache control register 3: 64GB range, 256KB size,
3820 * enabled, latency 0x1, configured
3821 */
3822 msr_info->data = 0xbe702111;
3823 break;
3824 case MSR_AMD64_OSVW_ID_LENGTH:
3825 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3826 return 1;
3827 msr_info->data = vcpu->arch.osvw.length;
3828 break;
3829 case MSR_AMD64_OSVW_STATUS:
3830 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3831 return 1;
3832 msr_info->data = vcpu->arch.osvw.status;
3833 break;
3834 case MSR_PLATFORM_INFO:
3835 if (!msr_info->host_initiated &&
3836 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3837 return 1;
3838 msr_info->data = vcpu->arch.msr_platform_info;
3839 break;
3840 case MSR_MISC_FEATURES_ENABLES:
3841 msr_info->data = vcpu->arch.msr_misc_features_enables;
3842 break;
3843 case MSR_K7_HWCR:
3844 msr_info->data = vcpu->arch.msr_hwcr;
3845 break;
3846 default:
3847 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3848 return kvm_pmu_get_msr(vcpu, msr_info);
3849 return KVM_MSR_RET_INVALID;
3850 }
3851 return 0;
3852 }
3853 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3854
3855 /*
3856 * Read or write a bunch of msrs. All parameters are kernel addresses.
3857 *
3858 * @return number of msrs set successfully.
3859 */
3860 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3861 struct kvm_msr_entry *entries,
3862 int (*do_msr)(struct kvm_vcpu *vcpu,
3863 unsigned index, u64 *data))
3864 {
3865 int i;
3866
3867 for (i = 0; i < msrs->nmsrs; ++i)
3868 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3869 break;
3870
3871 return i;
3872 }
3873
3874 /*
3875 * Read or write a bunch of msrs. Parameters are user addresses.
3876 *
3877 * @return number of msrs set successfully.
3878 */
3879 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3880 int (*do_msr)(struct kvm_vcpu *vcpu,
3881 unsigned index, u64 *data),
3882 int writeback)
3883 {
3884 struct kvm_msrs msrs;
3885 struct kvm_msr_entry *entries;
3886 int r, n;
3887 unsigned size;
3888
3889 r = -EFAULT;
3890 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3891 goto out;
3892
3893 r = -E2BIG;
3894 if (msrs.nmsrs >= MAX_IO_MSRS)
3895 goto out;
3896
3897 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3898 entries = memdup_user(user_msrs->entries, size);
3899 if (IS_ERR(entries)) {
3900 r = PTR_ERR(entries);
3901 goto out;
3902 }
3903
3904 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3905 if (r < 0)
3906 goto out_free;
3907
3908 r = -EFAULT;
3909 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3910 goto out_free;
3911
3912 r = n;
3913
3914 out_free:
3915 kfree(entries);
3916 out:
3917 return r;
3918 }
3919
3920 static inline bool kvm_can_mwait_in_guest(void)
3921 {
3922 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3923 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3924 boot_cpu_has(X86_FEATURE_ARAT);
3925 }
3926
3927 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3928 struct kvm_cpuid2 __user *cpuid_arg)
3929 {
3930 struct kvm_cpuid2 cpuid;
3931 int r;
3932
3933 r = -EFAULT;
3934 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3935 return r;
3936
3937 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3938 if (r)
3939 return r;
3940
3941 r = -EFAULT;
3942 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3943 return r;
3944
3945 return 0;
3946 }
3947
3948 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3949 {
3950 int r = 0;
3951
3952 switch (ext) {
3953 case KVM_CAP_IRQCHIP:
3954 case KVM_CAP_HLT:
3955 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3956 case KVM_CAP_SET_TSS_ADDR:
3957 case KVM_CAP_EXT_CPUID:
3958 case KVM_CAP_EXT_EMUL_CPUID:
3959 case KVM_CAP_CLOCKSOURCE:
3960 case KVM_CAP_PIT:
3961 case KVM_CAP_NOP_IO_DELAY:
3962 case KVM_CAP_MP_STATE:
3963 case KVM_CAP_SYNC_MMU:
3964 case KVM_CAP_USER_NMI:
3965 case KVM_CAP_REINJECT_CONTROL:
3966 case KVM_CAP_IRQ_INJECT_STATUS:
3967 case KVM_CAP_IOEVENTFD:
3968 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3969 case KVM_CAP_PIT2:
3970 case KVM_CAP_PIT_STATE2:
3971 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3972 case KVM_CAP_VCPU_EVENTS:
3973 case KVM_CAP_HYPERV:
3974 case KVM_CAP_HYPERV_VAPIC:
3975 case KVM_CAP_HYPERV_SPIN:
3976 case KVM_CAP_HYPERV_SYNIC:
3977 case KVM_CAP_HYPERV_SYNIC2:
3978 case KVM_CAP_HYPERV_VP_INDEX:
3979 case KVM_CAP_HYPERV_EVENTFD:
3980 case KVM_CAP_HYPERV_TLBFLUSH:
3981 case KVM_CAP_HYPERV_SEND_IPI:
3982 case KVM_CAP_HYPERV_CPUID:
3983 case KVM_CAP_HYPERV_ENFORCE_CPUID:
3984 case KVM_CAP_SYS_HYPERV_CPUID:
3985 case KVM_CAP_PCI_SEGMENT:
3986 case KVM_CAP_DEBUGREGS:
3987 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3988 case KVM_CAP_XSAVE:
3989 case KVM_CAP_ASYNC_PF:
3990 case KVM_CAP_ASYNC_PF_INT:
3991 case KVM_CAP_GET_TSC_KHZ:
3992 case KVM_CAP_KVMCLOCK_CTRL:
3993 case KVM_CAP_READONLY_MEM:
3994 case KVM_CAP_HYPERV_TIME:
3995 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3996 case KVM_CAP_TSC_DEADLINE_TIMER:
3997 case KVM_CAP_DISABLE_QUIRKS:
3998 case KVM_CAP_SET_BOOT_CPU_ID:
3999 case KVM_CAP_SPLIT_IRQCHIP:
4000 case KVM_CAP_IMMEDIATE_EXIT:
4001 case KVM_CAP_PMU_EVENT_FILTER:
4002 case KVM_CAP_GET_MSR_FEATURES:
4003 case KVM_CAP_MSR_PLATFORM_INFO:
4004 case KVM_CAP_EXCEPTION_PAYLOAD:
4005 case KVM_CAP_SET_GUEST_DEBUG:
4006 case KVM_CAP_LAST_CPU:
4007 case KVM_CAP_X86_USER_SPACE_MSR:
4008 case KVM_CAP_X86_MSR_FILTER:
4009 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4010 #ifdef CONFIG_X86_SGX_KVM
4011 case KVM_CAP_SGX_ATTRIBUTE:
4012 #endif
4013 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4014 case KVM_CAP_SREGS2:
4015 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4016 r = 1;
4017 break;
4018 case KVM_CAP_EXIT_HYPERCALL:
4019 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4020 break;
4021 case KVM_CAP_SET_GUEST_DEBUG2:
4022 return KVM_GUESTDBG_VALID_MASK;
4023 #ifdef CONFIG_KVM_XEN
4024 case KVM_CAP_XEN_HVM:
4025 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4026 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4027 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4028 if (sched_info_on())
4029 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4030 break;
4031 #endif
4032 case KVM_CAP_SYNC_REGS:
4033 r = KVM_SYNC_X86_VALID_FIELDS;
4034 break;
4035 case KVM_CAP_ADJUST_CLOCK:
4036 r = KVM_CLOCK_TSC_STABLE;
4037 break;
4038 case KVM_CAP_X86_DISABLE_EXITS:
4039 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4040 KVM_X86_DISABLE_EXITS_CSTATE;
4041 if(kvm_can_mwait_in_guest())
4042 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4043 break;
4044 case KVM_CAP_X86_SMM:
4045 /* SMBASE is usually relocated above 1M on modern chipsets,
4046 * and SMM handlers might indeed rely on 4G segment limits,
4047 * so do not report SMM to be available if real mode is
4048 * emulated via vm86 mode. Still, do not go to great lengths
4049 * to avoid userspace's usage of the feature, because it is a
4050 * fringe case that is not enabled except via specific settings
4051 * of the module parameters.
4052 */
4053 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4054 break;
4055 case KVM_CAP_VAPIC:
4056 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4057 break;
4058 case KVM_CAP_NR_VCPUS:
4059 r = KVM_SOFT_MAX_VCPUS;
4060 break;
4061 case KVM_CAP_MAX_VCPUS:
4062 r = KVM_MAX_VCPUS;
4063 break;
4064 case KVM_CAP_MAX_VCPU_ID:
4065 r = KVM_MAX_VCPU_ID;
4066 break;
4067 case KVM_CAP_PV_MMU: /* obsolete */
4068 r = 0;
4069 break;
4070 case KVM_CAP_MCE:
4071 r = KVM_MAX_MCE_BANKS;
4072 break;
4073 case KVM_CAP_XCRS:
4074 r = boot_cpu_has(X86_FEATURE_XSAVE);
4075 break;
4076 case KVM_CAP_TSC_CONTROL:
4077 r = kvm_has_tsc_control;
4078 break;
4079 case KVM_CAP_X2APIC_API:
4080 r = KVM_X2APIC_API_VALID_FLAGS;
4081 break;
4082 case KVM_CAP_NESTED_STATE:
4083 r = kvm_x86_ops.nested_ops->get_state ?
4084 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4085 break;
4086 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4087 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4088 break;
4089 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4090 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4091 break;
4092 case KVM_CAP_SMALLER_MAXPHYADDR:
4093 r = (int) allow_smaller_maxphyaddr;
4094 break;
4095 case KVM_CAP_STEAL_TIME:
4096 r = sched_info_on();
4097 break;
4098 case KVM_CAP_X86_BUS_LOCK_EXIT:
4099 if (kvm_has_bus_lock_exit)
4100 r = KVM_BUS_LOCK_DETECTION_OFF |
4101 KVM_BUS_LOCK_DETECTION_EXIT;
4102 else
4103 r = 0;
4104 break;
4105 default:
4106 break;
4107 }
4108 return r;
4109
4110 }
4111
4112 long kvm_arch_dev_ioctl(struct file *filp,
4113 unsigned int ioctl, unsigned long arg)
4114 {
4115 void __user *argp = (void __user *)arg;
4116 long r;
4117
4118 switch (ioctl) {
4119 case KVM_GET_MSR_INDEX_LIST: {
4120 struct kvm_msr_list __user *user_msr_list = argp;
4121 struct kvm_msr_list msr_list;
4122 unsigned n;
4123
4124 r = -EFAULT;
4125 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4126 goto out;
4127 n = msr_list.nmsrs;
4128 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4129 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4130 goto out;
4131 r = -E2BIG;
4132 if (n < msr_list.nmsrs)
4133 goto out;
4134 r = -EFAULT;
4135 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4136 num_msrs_to_save * sizeof(u32)))
4137 goto out;
4138 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4139 &emulated_msrs,
4140 num_emulated_msrs * sizeof(u32)))
4141 goto out;
4142 r = 0;
4143 break;
4144 }
4145 case KVM_GET_SUPPORTED_CPUID:
4146 case KVM_GET_EMULATED_CPUID: {
4147 struct kvm_cpuid2 __user *cpuid_arg = argp;
4148 struct kvm_cpuid2 cpuid;
4149
4150 r = -EFAULT;
4151 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4152 goto out;
4153
4154 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4155 ioctl);
4156 if (r)
4157 goto out;
4158
4159 r = -EFAULT;
4160 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4161 goto out;
4162 r = 0;
4163 break;
4164 }
4165 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4166 r = -EFAULT;
4167 if (copy_to_user(argp, &kvm_mce_cap_supported,
4168 sizeof(kvm_mce_cap_supported)))
4169 goto out;
4170 r = 0;
4171 break;
4172 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4173 struct kvm_msr_list __user *user_msr_list = argp;
4174 struct kvm_msr_list msr_list;
4175 unsigned int n;
4176
4177 r = -EFAULT;
4178 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4179 goto out;
4180 n = msr_list.nmsrs;
4181 msr_list.nmsrs = num_msr_based_features;
4182 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4183 goto out;
4184 r = -E2BIG;
4185 if (n < msr_list.nmsrs)
4186 goto out;
4187 r = -EFAULT;
4188 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4189 num_msr_based_features * sizeof(u32)))
4190 goto out;
4191 r = 0;
4192 break;
4193 }
4194 case KVM_GET_MSRS:
4195 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4196 break;
4197 case KVM_GET_SUPPORTED_HV_CPUID:
4198 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4199 break;
4200 default:
4201 r = -EINVAL;
4202 break;
4203 }
4204 out:
4205 return r;
4206 }
4207
4208 static void wbinvd_ipi(void *garbage)
4209 {
4210 wbinvd();
4211 }
4212
4213 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4214 {
4215 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4216 }
4217
4218 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4219 {
4220 /* Address WBINVD may be executed by guest */
4221 if (need_emulate_wbinvd(vcpu)) {
4222 if (static_call(kvm_x86_has_wbinvd_exit)())
4223 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4224 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4225 smp_call_function_single(vcpu->cpu,
4226 wbinvd_ipi, NULL, 1);
4227 }
4228
4229 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4230
4231 /* Save host pkru register if supported */
4232 vcpu->arch.host_pkru = read_pkru();
4233
4234 /* Apply any externally detected TSC adjustments (due to suspend) */
4235 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4236 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4237 vcpu->arch.tsc_offset_adjustment = 0;
4238 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4239 }
4240
4241 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4242 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4243 rdtsc() - vcpu->arch.last_host_tsc;
4244 if (tsc_delta < 0)
4245 mark_tsc_unstable("KVM discovered backwards TSC");
4246
4247 if (kvm_check_tsc_unstable()) {
4248 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4249 vcpu->arch.last_guest_tsc);
4250 kvm_vcpu_write_tsc_offset(vcpu, offset);
4251 vcpu->arch.tsc_catchup = 1;
4252 }
4253
4254 if (kvm_lapic_hv_timer_in_use(vcpu))
4255 kvm_lapic_restart_hv_timer(vcpu);
4256
4257 /*
4258 * On a host with synchronized TSC, there is no need to update
4259 * kvmclock on vcpu->cpu migration
4260 */
4261 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4262 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4263 if (vcpu->cpu != cpu)
4264 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4265 vcpu->cpu = cpu;
4266 }
4267
4268 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4269 }
4270
4271 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4272 {
4273 struct kvm_host_map map;
4274 struct kvm_steal_time *st;
4275
4276 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4277 return;
4278
4279 if (vcpu->arch.st.preempted)
4280 return;
4281
4282 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4283 &vcpu->arch.st.cache, true))
4284 return;
4285
4286 st = map.hva +
4287 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4288
4289 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4290
4291 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4292 }
4293
4294 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4295 {
4296 int idx;
4297
4298 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4299 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4300
4301 /*
4302 * Take the srcu lock as memslots will be accessed to check the gfn
4303 * cache generation against the memslots generation.
4304 */
4305 idx = srcu_read_lock(&vcpu->kvm->srcu);
4306 if (kvm_xen_msr_enabled(vcpu->kvm))
4307 kvm_xen_runstate_set_preempted(vcpu);
4308 else
4309 kvm_steal_time_set_preempted(vcpu);
4310 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4311
4312 static_call(kvm_x86_vcpu_put)(vcpu);
4313 vcpu->arch.last_host_tsc = rdtsc();
4314 /*
4315 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4316 * on every vmexit, but if not, we might have a stale dr6 from the
4317 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4318 */
4319 set_debugreg(0, 6);
4320 }
4321
4322 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4323 struct kvm_lapic_state *s)
4324 {
4325 if (vcpu->arch.apicv_active)
4326 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4327
4328 return kvm_apic_get_state(vcpu, s);
4329 }
4330
4331 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4332 struct kvm_lapic_state *s)
4333 {
4334 int r;
4335
4336 r = kvm_apic_set_state(vcpu, s);
4337 if (r)
4338 return r;
4339 update_cr8_intercept(vcpu);
4340
4341 return 0;
4342 }
4343
4344 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4345 {
4346 /*
4347 * We can accept userspace's request for interrupt injection
4348 * as long as we have a place to store the interrupt number.
4349 * The actual injection will happen when the CPU is able to
4350 * deliver the interrupt.
4351 */
4352 if (kvm_cpu_has_extint(vcpu))
4353 return false;
4354
4355 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4356 return (!lapic_in_kernel(vcpu) ||
4357 kvm_apic_accept_pic_intr(vcpu));
4358 }
4359
4360 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4361 {
4362 /*
4363 * Do not cause an interrupt window exit if an exception
4364 * is pending or an event needs reinjection; userspace
4365 * might want to inject the interrupt manually using KVM_SET_REGS
4366 * or KVM_SET_SREGS. For that to work, we must be at an
4367 * instruction boundary and with no events half-injected.
4368 */
4369 return (kvm_arch_interrupt_allowed(vcpu) &&
4370 kvm_cpu_accept_dm_intr(vcpu) &&
4371 !kvm_event_needs_reinjection(vcpu) &&
4372 !vcpu->arch.exception.pending);
4373 }
4374
4375 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4376 struct kvm_interrupt *irq)
4377 {
4378 if (irq->irq >= KVM_NR_INTERRUPTS)
4379 return -EINVAL;
4380
4381 if (!irqchip_in_kernel(vcpu->kvm)) {
4382 kvm_queue_interrupt(vcpu, irq->irq, false);
4383 kvm_make_request(KVM_REQ_EVENT, vcpu);
4384 return 0;
4385 }
4386
4387 /*
4388 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4389 * fail for in-kernel 8259.
4390 */
4391 if (pic_in_kernel(vcpu->kvm))
4392 return -ENXIO;
4393
4394 if (vcpu->arch.pending_external_vector != -1)
4395 return -EEXIST;
4396
4397 vcpu->arch.pending_external_vector = irq->irq;
4398 kvm_make_request(KVM_REQ_EVENT, vcpu);
4399 return 0;
4400 }
4401
4402 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4403 {
4404 kvm_inject_nmi(vcpu);
4405
4406 return 0;
4407 }
4408
4409 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4410 {
4411 kvm_make_request(KVM_REQ_SMI, vcpu);
4412
4413 return 0;
4414 }
4415
4416 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4417 struct kvm_tpr_access_ctl *tac)
4418 {
4419 if (tac->flags)
4420 return -EINVAL;
4421 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4422 return 0;
4423 }
4424
4425 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4426 u64 mcg_cap)
4427 {
4428 int r;
4429 unsigned bank_num = mcg_cap & 0xff, bank;
4430
4431 r = -EINVAL;
4432 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4433 goto out;
4434 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4435 goto out;
4436 r = 0;
4437 vcpu->arch.mcg_cap = mcg_cap;
4438 /* Init IA32_MCG_CTL to all 1s */
4439 if (mcg_cap & MCG_CTL_P)
4440 vcpu->arch.mcg_ctl = ~(u64)0;
4441 /* Init IA32_MCi_CTL to all 1s */
4442 for (bank = 0; bank < bank_num; bank++)
4443 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4444
4445 static_call(kvm_x86_setup_mce)(vcpu);
4446 out:
4447 return r;
4448 }
4449
4450 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4451 struct kvm_x86_mce *mce)
4452 {
4453 u64 mcg_cap = vcpu->arch.mcg_cap;
4454 unsigned bank_num = mcg_cap & 0xff;
4455 u64 *banks = vcpu->arch.mce_banks;
4456
4457 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4458 return -EINVAL;
4459 /*
4460 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4461 * reporting is disabled
4462 */
4463 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4464 vcpu->arch.mcg_ctl != ~(u64)0)
4465 return 0;
4466 banks += 4 * mce->bank;
4467 /*
4468 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4469 * reporting is disabled for the bank
4470 */
4471 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4472 return 0;
4473 if (mce->status & MCI_STATUS_UC) {
4474 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4475 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4477 return 0;
4478 }
4479 if (banks[1] & MCI_STATUS_VAL)
4480 mce->status |= MCI_STATUS_OVER;
4481 banks[2] = mce->addr;
4482 banks[3] = mce->misc;
4483 vcpu->arch.mcg_status = mce->mcg_status;
4484 banks[1] = mce->status;
4485 kvm_queue_exception(vcpu, MC_VECTOR);
4486 } else if (!(banks[1] & MCI_STATUS_VAL)
4487 || !(banks[1] & MCI_STATUS_UC)) {
4488 if (banks[1] & MCI_STATUS_VAL)
4489 mce->status |= MCI_STATUS_OVER;
4490 banks[2] = mce->addr;
4491 banks[3] = mce->misc;
4492 banks[1] = mce->status;
4493 } else
4494 banks[1] |= MCI_STATUS_OVER;
4495 return 0;
4496 }
4497
4498 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4499 struct kvm_vcpu_events *events)
4500 {
4501 process_nmi(vcpu);
4502
4503 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4504 process_smi(vcpu);
4505
4506 /*
4507 * In guest mode, payload delivery should be deferred,
4508 * so that the L1 hypervisor can intercept #PF before
4509 * CR2 is modified (or intercept #DB before DR6 is
4510 * modified under nVMX). Unless the per-VM capability,
4511 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4512 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4513 * opportunistically defer the exception payload, deliver it if the
4514 * capability hasn't been requested before processing a
4515 * KVM_GET_VCPU_EVENTS.
4516 */
4517 if (!vcpu->kvm->arch.exception_payload_enabled &&
4518 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4519 kvm_deliver_exception_payload(vcpu);
4520
4521 /*
4522 * The API doesn't provide the instruction length for software
4523 * exceptions, so don't report them. As long as the guest RIP
4524 * isn't advanced, we should expect to encounter the exception
4525 * again.
4526 */
4527 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4528 events->exception.injected = 0;
4529 events->exception.pending = 0;
4530 } else {
4531 events->exception.injected = vcpu->arch.exception.injected;
4532 events->exception.pending = vcpu->arch.exception.pending;
4533 /*
4534 * For ABI compatibility, deliberately conflate
4535 * pending and injected exceptions when
4536 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4537 */
4538 if (!vcpu->kvm->arch.exception_payload_enabled)
4539 events->exception.injected |=
4540 vcpu->arch.exception.pending;
4541 }
4542 events->exception.nr = vcpu->arch.exception.nr;
4543 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4544 events->exception.error_code = vcpu->arch.exception.error_code;
4545 events->exception_has_payload = vcpu->arch.exception.has_payload;
4546 events->exception_payload = vcpu->arch.exception.payload;
4547
4548 events->interrupt.injected =
4549 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4550 events->interrupt.nr = vcpu->arch.interrupt.nr;
4551 events->interrupt.soft = 0;
4552 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4553
4554 events->nmi.injected = vcpu->arch.nmi_injected;
4555 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4556 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4557 events->nmi.pad = 0;
4558
4559 events->sipi_vector = 0; /* never valid when reporting to user space */
4560
4561 events->smi.smm = is_smm(vcpu);
4562 events->smi.pending = vcpu->arch.smi_pending;
4563 events->smi.smm_inside_nmi =
4564 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4565 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4566
4567 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4568 | KVM_VCPUEVENT_VALID_SHADOW
4569 | KVM_VCPUEVENT_VALID_SMM);
4570 if (vcpu->kvm->arch.exception_payload_enabled)
4571 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4572
4573 memset(&events->reserved, 0, sizeof(events->reserved));
4574 }
4575
4576 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4577
4578 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4579 struct kvm_vcpu_events *events)
4580 {
4581 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4582 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4583 | KVM_VCPUEVENT_VALID_SHADOW
4584 | KVM_VCPUEVENT_VALID_SMM
4585 | KVM_VCPUEVENT_VALID_PAYLOAD))
4586 return -EINVAL;
4587
4588 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4589 if (!vcpu->kvm->arch.exception_payload_enabled)
4590 return -EINVAL;
4591 if (events->exception.pending)
4592 events->exception.injected = 0;
4593 else
4594 events->exception_has_payload = 0;
4595 } else {
4596 events->exception.pending = 0;
4597 events->exception_has_payload = 0;
4598 }
4599
4600 if ((events->exception.injected || events->exception.pending) &&
4601 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4602 return -EINVAL;
4603
4604 /* INITs are latched while in SMM */
4605 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4606 (events->smi.smm || events->smi.pending) &&
4607 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4608 return -EINVAL;
4609
4610 process_nmi(vcpu);
4611 vcpu->arch.exception.injected = events->exception.injected;
4612 vcpu->arch.exception.pending = events->exception.pending;
4613 vcpu->arch.exception.nr = events->exception.nr;
4614 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4615 vcpu->arch.exception.error_code = events->exception.error_code;
4616 vcpu->arch.exception.has_payload = events->exception_has_payload;
4617 vcpu->arch.exception.payload = events->exception_payload;
4618
4619 vcpu->arch.interrupt.injected = events->interrupt.injected;
4620 vcpu->arch.interrupt.nr = events->interrupt.nr;
4621 vcpu->arch.interrupt.soft = events->interrupt.soft;
4622 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4623 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4624 events->interrupt.shadow);
4625
4626 vcpu->arch.nmi_injected = events->nmi.injected;
4627 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4628 vcpu->arch.nmi_pending = events->nmi.pending;
4629 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4630
4631 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4632 lapic_in_kernel(vcpu))
4633 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4634
4635 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4636 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4637 kvm_smm_changed(vcpu, events->smi.smm);
4638
4639 vcpu->arch.smi_pending = events->smi.pending;
4640
4641 if (events->smi.smm) {
4642 if (events->smi.smm_inside_nmi)
4643 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4644 else
4645 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4646 }
4647
4648 if (lapic_in_kernel(vcpu)) {
4649 if (events->smi.latched_init)
4650 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4651 else
4652 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4653 }
4654 }
4655
4656 kvm_make_request(KVM_REQ_EVENT, vcpu);
4657
4658 return 0;
4659 }
4660
4661 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4662 struct kvm_debugregs *dbgregs)
4663 {
4664 unsigned long val;
4665
4666 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4667 kvm_get_dr(vcpu, 6, &val);
4668 dbgregs->dr6 = val;
4669 dbgregs->dr7 = vcpu->arch.dr7;
4670 dbgregs->flags = 0;
4671 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4672 }
4673
4674 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4675 struct kvm_debugregs *dbgregs)
4676 {
4677 if (dbgregs->flags)
4678 return -EINVAL;
4679
4680 if (!kvm_dr6_valid(dbgregs->dr6))
4681 return -EINVAL;
4682 if (!kvm_dr7_valid(dbgregs->dr7))
4683 return -EINVAL;
4684
4685 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4686 kvm_update_dr0123(vcpu);
4687 vcpu->arch.dr6 = dbgregs->dr6;
4688 vcpu->arch.dr7 = dbgregs->dr7;
4689 kvm_update_dr7(vcpu);
4690
4691 return 0;
4692 }
4693
4694 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4695
4696 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4697 {
4698 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4699 u64 xstate_bv = xsave->header.xfeatures;
4700 u64 valid;
4701
4702 /*
4703 * Copy legacy XSAVE area, to avoid complications with CPUID
4704 * leaves 0 and 1 in the loop below.
4705 */
4706 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4707
4708 /* Set XSTATE_BV */
4709 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4710 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4711
4712 /*
4713 * Copy each region from the possibly compacted offset to the
4714 * non-compacted offset.
4715 */
4716 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4717 while (valid) {
4718 u32 size, offset, ecx, edx;
4719 u64 xfeature_mask = valid & -valid;
4720 int xfeature_nr = fls64(xfeature_mask) - 1;
4721 void *src;
4722
4723 cpuid_count(XSTATE_CPUID, xfeature_nr,
4724 &size, &offset, &ecx, &edx);
4725
4726 if (xfeature_nr == XFEATURE_PKRU) {
4727 memcpy(dest + offset, &vcpu->arch.pkru,
4728 sizeof(vcpu->arch.pkru));
4729 } else {
4730 src = get_xsave_addr(xsave, xfeature_nr);
4731 if (src)
4732 memcpy(dest + offset, src, size);
4733 }
4734
4735 valid -= xfeature_mask;
4736 }
4737 }
4738
4739 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4740 {
4741 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4742 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4743 u64 valid;
4744
4745 /*
4746 * Copy legacy XSAVE area, to avoid complications with CPUID
4747 * leaves 0 and 1 in the loop below.
4748 */
4749 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4750
4751 /* Set XSTATE_BV and possibly XCOMP_BV. */
4752 xsave->header.xfeatures = xstate_bv;
4753 if (boot_cpu_has(X86_FEATURE_XSAVES))
4754 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4755
4756 /*
4757 * Copy each region from the non-compacted offset to the
4758 * possibly compacted offset.
4759 */
4760 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4761 while (valid) {
4762 u32 size, offset, ecx, edx;
4763 u64 xfeature_mask = valid & -valid;
4764 int xfeature_nr = fls64(xfeature_mask) - 1;
4765
4766 cpuid_count(XSTATE_CPUID, xfeature_nr,
4767 &size, &offset, &ecx, &edx);
4768
4769 if (xfeature_nr == XFEATURE_PKRU) {
4770 memcpy(&vcpu->arch.pkru, src + offset,
4771 sizeof(vcpu->arch.pkru));
4772 } else {
4773 void *dest = get_xsave_addr(xsave, xfeature_nr);
4774
4775 if (dest)
4776 memcpy(dest, src + offset, size);
4777 }
4778
4779 valid -= xfeature_mask;
4780 }
4781 }
4782
4783 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4784 struct kvm_xsave *guest_xsave)
4785 {
4786 if (!vcpu->arch.guest_fpu)
4787 return;
4788
4789 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4790 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4791 fill_xsave((u8 *) guest_xsave->region, vcpu);
4792 } else {
4793 memcpy(guest_xsave->region,
4794 &vcpu->arch.guest_fpu->state.fxsave,
4795 sizeof(struct fxregs_state));
4796 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4797 XFEATURE_MASK_FPSSE;
4798 }
4799 }
4800
4801 #define XSAVE_MXCSR_OFFSET 24
4802
4803 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4804 struct kvm_xsave *guest_xsave)
4805 {
4806 u64 xstate_bv;
4807 u32 mxcsr;
4808
4809 if (!vcpu->arch.guest_fpu)
4810 return 0;
4811
4812 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4813 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4814
4815 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4816 /*
4817 * Here we allow setting states that are not present in
4818 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4819 * with old userspace.
4820 */
4821 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4822 return -EINVAL;
4823 load_xsave(vcpu, (u8 *)guest_xsave->region);
4824 } else {
4825 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4826 mxcsr & ~mxcsr_feature_mask)
4827 return -EINVAL;
4828 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4829 guest_xsave->region, sizeof(struct fxregs_state));
4830 }
4831 return 0;
4832 }
4833
4834 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4835 struct kvm_xcrs *guest_xcrs)
4836 {
4837 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4838 guest_xcrs->nr_xcrs = 0;
4839 return;
4840 }
4841
4842 guest_xcrs->nr_xcrs = 1;
4843 guest_xcrs->flags = 0;
4844 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4845 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4846 }
4847
4848 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4849 struct kvm_xcrs *guest_xcrs)
4850 {
4851 int i, r = 0;
4852
4853 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4854 return -EINVAL;
4855
4856 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4857 return -EINVAL;
4858
4859 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4860 /* Only support XCR0 currently */
4861 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4862 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4863 guest_xcrs->xcrs[i].value);
4864 break;
4865 }
4866 if (r)
4867 r = -EINVAL;
4868 return r;
4869 }
4870
4871 /*
4872 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4873 * stopped by the hypervisor. This function will be called from the host only.
4874 * EINVAL is returned when the host attempts to set the flag for a guest that
4875 * does not support pv clocks.
4876 */
4877 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4878 {
4879 if (!vcpu->arch.pv_time_enabled)
4880 return -EINVAL;
4881 vcpu->arch.pvclock_set_guest_stopped_request = true;
4882 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4883 return 0;
4884 }
4885
4886 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4887 struct kvm_enable_cap *cap)
4888 {
4889 int r;
4890 uint16_t vmcs_version;
4891 void __user *user_ptr;
4892
4893 if (cap->flags)
4894 return -EINVAL;
4895
4896 switch (cap->cap) {
4897 case KVM_CAP_HYPERV_SYNIC2:
4898 if (cap->args[0])
4899 return -EINVAL;
4900 fallthrough;
4901
4902 case KVM_CAP_HYPERV_SYNIC:
4903 if (!irqchip_in_kernel(vcpu->kvm))
4904 return -EINVAL;
4905 return kvm_hv_activate_synic(vcpu, cap->cap ==
4906 KVM_CAP_HYPERV_SYNIC2);
4907 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4908 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4909 return -ENOTTY;
4910 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4911 if (!r) {
4912 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4913 if (copy_to_user(user_ptr, &vmcs_version,
4914 sizeof(vmcs_version)))
4915 r = -EFAULT;
4916 }
4917 return r;
4918 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4919 if (!kvm_x86_ops.enable_direct_tlbflush)
4920 return -ENOTTY;
4921
4922 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4923
4924 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4925 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4926
4927 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4928 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4929 if (vcpu->arch.pv_cpuid.enforce)
4930 kvm_update_pv_runtime(vcpu);
4931
4932 return 0;
4933 default:
4934 return -EINVAL;
4935 }
4936 }
4937
4938 long kvm_arch_vcpu_ioctl(struct file *filp,
4939 unsigned int ioctl, unsigned long arg)
4940 {
4941 struct kvm_vcpu *vcpu = filp->private_data;
4942 void __user *argp = (void __user *)arg;
4943 int r;
4944 union {
4945 struct kvm_sregs2 *sregs2;
4946 struct kvm_lapic_state *lapic;
4947 struct kvm_xsave *xsave;
4948 struct kvm_xcrs *xcrs;
4949 void *buffer;
4950 } u;
4951
4952 vcpu_load(vcpu);
4953
4954 u.buffer = NULL;
4955 switch (ioctl) {
4956 case KVM_GET_LAPIC: {
4957 r = -EINVAL;
4958 if (!lapic_in_kernel(vcpu))
4959 goto out;
4960 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4961 GFP_KERNEL_ACCOUNT);
4962
4963 r = -ENOMEM;
4964 if (!u.lapic)
4965 goto out;
4966 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4967 if (r)
4968 goto out;
4969 r = -EFAULT;
4970 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4971 goto out;
4972 r = 0;
4973 break;
4974 }
4975 case KVM_SET_LAPIC: {
4976 r = -EINVAL;
4977 if (!lapic_in_kernel(vcpu))
4978 goto out;
4979 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4980 if (IS_ERR(u.lapic)) {
4981 r = PTR_ERR(u.lapic);
4982 goto out_nofree;
4983 }
4984
4985 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4986 break;
4987 }
4988 case KVM_INTERRUPT: {
4989 struct kvm_interrupt irq;
4990
4991 r = -EFAULT;
4992 if (copy_from_user(&irq, argp, sizeof(irq)))
4993 goto out;
4994 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4995 break;
4996 }
4997 case KVM_NMI: {
4998 r = kvm_vcpu_ioctl_nmi(vcpu);
4999 break;
5000 }
5001 case KVM_SMI: {
5002 r = kvm_vcpu_ioctl_smi(vcpu);
5003 break;
5004 }
5005 case KVM_SET_CPUID: {
5006 struct kvm_cpuid __user *cpuid_arg = argp;
5007 struct kvm_cpuid cpuid;
5008
5009 r = -EFAULT;
5010 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5011 goto out;
5012 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5013 break;
5014 }
5015 case KVM_SET_CPUID2: {
5016 struct kvm_cpuid2 __user *cpuid_arg = argp;
5017 struct kvm_cpuid2 cpuid;
5018
5019 r = -EFAULT;
5020 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5021 goto out;
5022 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5023 cpuid_arg->entries);
5024 break;
5025 }
5026 case KVM_GET_CPUID2: {
5027 struct kvm_cpuid2 __user *cpuid_arg = argp;
5028 struct kvm_cpuid2 cpuid;
5029
5030 r = -EFAULT;
5031 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5032 goto out;
5033 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5034 cpuid_arg->entries);
5035 if (r)
5036 goto out;
5037 r = -EFAULT;
5038 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5039 goto out;
5040 r = 0;
5041 break;
5042 }
5043 case KVM_GET_MSRS: {
5044 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5045 r = msr_io(vcpu, argp, do_get_msr, 1);
5046 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5047 break;
5048 }
5049 case KVM_SET_MSRS: {
5050 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5051 r = msr_io(vcpu, argp, do_set_msr, 0);
5052 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5053 break;
5054 }
5055 case KVM_TPR_ACCESS_REPORTING: {
5056 struct kvm_tpr_access_ctl tac;
5057
5058 r = -EFAULT;
5059 if (copy_from_user(&tac, argp, sizeof(tac)))
5060 goto out;
5061 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5062 if (r)
5063 goto out;
5064 r = -EFAULT;
5065 if (copy_to_user(argp, &tac, sizeof(tac)))
5066 goto out;
5067 r = 0;
5068 break;
5069 };
5070 case KVM_SET_VAPIC_ADDR: {
5071 struct kvm_vapic_addr va;
5072 int idx;
5073
5074 r = -EINVAL;
5075 if (!lapic_in_kernel(vcpu))
5076 goto out;
5077 r = -EFAULT;
5078 if (copy_from_user(&va, argp, sizeof(va)))
5079 goto out;
5080 idx = srcu_read_lock(&vcpu->kvm->srcu);
5081 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5082 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5083 break;
5084 }
5085 case KVM_X86_SETUP_MCE: {
5086 u64 mcg_cap;
5087
5088 r = -EFAULT;
5089 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5090 goto out;
5091 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5092 break;
5093 }
5094 case KVM_X86_SET_MCE: {
5095 struct kvm_x86_mce mce;
5096
5097 r = -EFAULT;
5098 if (copy_from_user(&mce, argp, sizeof(mce)))
5099 goto out;
5100 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5101 break;
5102 }
5103 case KVM_GET_VCPU_EVENTS: {
5104 struct kvm_vcpu_events events;
5105
5106 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5107
5108 r = -EFAULT;
5109 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5110 break;
5111 r = 0;
5112 break;
5113 }
5114 case KVM_SET_VCPU_EVENTS: {
5115 struct kvm_vcpu_events events;
5116
5117 r = -EFAULT;
5118 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5119 break;
5120
5121 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5122 break;
5123 }
5124 case KVM_GET_DEBUGREGS: {
5125 struct kvm_debugregs dbgregs;
5126
5127 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5128
5129 r = -EFAULT;
5130 if (copy_to_user(argp, &dbgregs,
5131 sizeof(struct kvm_debugregs)))
5132 break;
5133 r = 0;
5134 break;
5135 }
5136 case KVM_SET_DEBUGREGS: {
5137 struct kvm_debugregs dbgregs;
5138
5139 r = -EFAULT;
5140 if (copy_from_user(&dbgregs, argp,
5141 sizeof(struct kvm_debugregs)))
5142 break;
5143
5144 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5145 break;
5146 }
5147 case KVM_GET_XSAVE: {
5148 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5149 r = -ENOMEM;
5150 if (!u.xsave)
5151 break;
5152
5153 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5154
5155 r = -EFAULT;
5156 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5157 break;
5158 r = 0;
5159 break;
5160 }
5161 case KVM_SET_XSAVE: {
5162 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5163 if (IS_ERR(u.xsave)) {
5164 r = PTR_ERR(u.xsave);
5165 goto out_nofree;
5166 }
5167
5168 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5169 break;
5170 }
5171 case KVM_GET_XCRS: {
5172 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5173 r = -ENOMEM;
5174 if (!u.xcrs)
5175 break;
5176
5177 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5178
5179 r = -EFAULT;
5180 if (copy_to_user(argp, u.xcrs,
5181 sizeof(struct kvm_xcrs)))
5182 break;
5183 r = 0;
5184 break;
5185 }
5186 case KVM_SET_XCRS: {
5187 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5188 if (IS_ERR(u.xcrs)) {
5189 r = PTR_ERR(u.xcrs);
5190 goto out_nofree;
5191 }
5192
5193 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5194 break;
5195 }
5196 case KVM_SET_TSC_KHZ: {
5197 u32 user_tsc_khz;
5198
5199 r = -EINVAL;
5200 user_tsc_khz = (u32)arg;
5201
5202 if (kvm_has_tsc_control &&
5203 user_tsc_khz >= kvm_max_guest_tsc_khz)
5204 goto out;
5205
5206 if (user_tsc_khz == 0)
5207 user_tsc_khz = tsc_khz;
5208
5209 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5210 r = 0;
5211
5212 goto out;
5213 }
5214 case KVM_GET_TSC_KHZ: {
5215 r = vcpu->arch.virtual_tsc_khz;
5216 goto out;
5217 }
5218 case KVM_KVMCLOCK_CTRL: {
5219 r = kvm_set_guest_paused(vcpu);
5220 goto out;
5221 }
5222 case KVM_ENABLE_CAP: {
5223 struct kvm_enable_cap cap;
5224
5225 r = -EFAULT;
5226 if (copy_from_user(&cap, argp, sizeof(cap)))
5227 goto out;
5228 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5229 break;
5230 }
5231 case KVM_GET_NESTED_STATE: {
5232 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5233 u32 user_data_size;
5234
5235 r = -EINVAL;
5236 if (!kvm_x86_ops.nested_ops->get_state)
5237 break;
5238
5239 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5240 r = -EFAULT;
5241 if (get_user(user_data_size, &user_kvm_nested_state->size))
5242 break;
5243
5244 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5245 user_data_size);
5246 if (r < 0)
5247 break;
5248
5249 if (r > user_data_size) {
5250 if (put_user(r, &user_kvm_nested_state->size))
5251 r = -EFAULT;
5252 else
5253 r = -E2BIG;
5254 break;
5255 }
5256
5257 r = 0;
5258 break;
5259 }
5260 case KVM_SET_NESTED_STATE: {
5261 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5262 struct kvm_nested_state kvm_state;
5263 int idx;
5264
5265 r = -EINVAL;
5266 if (!kvm_x86_ops.nested_ops->set_state)
5267 break;
5268
5269 r = -EFAULT;
5270 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5271 break;
5272
5273 r = -EINVAL;
5274 if (kvm_state.size < sizeof(kvm_state))
5275 break;
5276
5277 if (kvm_state.flags &
5278 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5279 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5280 | KVM_STATE_NESTED_GIF_SET))
5281 break;
5282
5283 /* nested_run_pending implies guest_mode. */
5284 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5285 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5286 break;
5287
5288 idx = srcu_read_lock(&vcpu->kvm->srcu);
5289 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5290 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5291 break;
5292 }
5293 case KVM_GET_SUPPORTED_HV_CPUID:
5294 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5295 break;
5296 #ifdef CONFIG_KVM_XEN
5297 case KVM_XEN_VCPU_GET_ATTR: {
5298 struct kvm_xen_vcpu_attr xva;
5299
5300 r = -EFAULT;
5301 if (copy_from_user(&xva, argp, sizeof(xva)))
5302 goto out;
5303 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5304 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5305 r = -EFAULT;
5306 break;
5307 }
5308 case KVM_XEN_VCPU_SET_ATTR: {
5309 struct kvm_xen_vcpu_attr xva;
5310
5311 r = -EFAULT;
5312 if (copy_from_user(&xva, argp, sizeof(xva)))
5313 goto out;
5314 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5315 break;
5316 }
5317 #endif
5318 case KVM_GET_SREGS2: {
5319 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5320 r = -ENOMEM;
5321 if (!u.sregs2)
5322 goto out;
5323 __get_sregs2(vcpu, u.sregs2);
5324 r = -EFAULT;
5325 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5326 goto out;
5327 r = 0;
5328 break;
5329 }
5330 case KVM_SET_SREGS2: {
5331 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5332 if (IS_ERR(u.sregs2)) {
5333 r = PTR_ERR(u.sregs2);
5334 u.sregs2 = NULL;
5335 goto out;
5336 }
5337 r = __set_sregs2(vcpu, u.sregs2);
5338 break;
5339 }
5340 default:
5341 r = -EINVAL;
5342 }
5343 out:
5344 kfree(u.buffer);
5345 out_nofree:
5346 vcpu_put(vcpu);
5347 return r;
5348 }
5349
5350 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5351 {
5352 return VM_FAULT_SIGBUS;
5353 }
5354
5355 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5356 {
5357 int ret;
5358
5359 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5360 return -EINVAL;
5361 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5362 return ret;
5363 }
5364
5365 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5366 u64 ident_addr)
5367 {
5368 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5369 }
5370
5371 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5372 unsigned long kvm_nr_mmu_pages)
5373 {
5374 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5375 return -EINVAL;
5376
5377 mutex_lock(&kvm->slots_lock);
5378
5379 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5380 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5381
5382 mutex_unlock(&kvm->slots_lock);
5383 return 0;
5384 }
5385
5386 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5387 {
5388 return kvm->arch.n_max_mmu_pages;
5389 }
5390
5391 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5392 {
5393 struct kvm_pic *pic = kvm->arch.vpic;
5394 int r;
5395
5396 r = 0;
5397 switch (chip->chip_id) {
5398 case KVM_IRQCHIP_PIC_MASTER:
5399 memcpy(&chip->chip.pic, &pic->pics[0],
5400 sizeof(struct kvm_pic_state));
5401 break;
5402 case KVM_IRQCHIP_PIC_SLAVE:
5403 memcpy(&chip->chip.pic, &pic->pics[1],
5404 sizeof(struct kvm_pic_state));
5405 break;
5406 case KVM_IRQCHIP_IOAPIC:
5407 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5408 break;
5409 default:
5410 r = -EINVAL;
5411 break;
5412 }
5413 return r;
5414 }
5415
5416 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5417 {
5418 struct kvm_pic *pic = kvm->arch.vpic;
5419 int r;
5420
5421 r = 0;
5422 switch (chip->chip_id) {
5423 case KVM_IRQCHIP_PIC_MASTER:
5424 spin_lock(&pic->lock);
5425 memcpy(&pic->pics[0], &chip->chip.pic,
5426 sizeof(struct kvm_pic_state));
5427 spin_unlock(&pic->lock);
5428 break;
5429 case KVM_IRQCHIP_PIC_SLAVE:
5430 spin_lock(&pic->lock);
5431 memcpy(&pic->pics[1], &chip->chip.pic,
5432 sizeof(struct kvm_pic_state));
5433 spin_unlock(&pic->lock);
5434 break;
5435 case KVM_IRQCHIP_IOAPIC:
5436 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5437 break;
5438 default:
5439 r = -EINVAL;
5440 break;
5441 }
5442 kvm_pic_update_irq(pic);
5443 return r;
5444 }
5445
5446 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5447 {
5448 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5449
5450 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5451
5452 mutex_lock(&kps->lock);
5453 memcpy(ps, &kps->channels, sizeof(*ps));
5454 mutex_unlock(&kps->lock);
5455 return 0;
5456 }
5457
5458 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5459 {
5460 int i;
5461 struct kvm_pit *pit = kvm->arch.vpit;
5462
5463 mutex_lock(&pit->pit_state.lock);
5464 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5465 for (i = 0; i < 3; i++)
5466 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5467 mutex_unlock(&pit->pit_state.lock);
5468 return 0;
5469 }
5470
5471 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5472 {
5473 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5474 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5475 sizeof(ps->channels));
5476 ps->flags = kvm->arch.vpit->pit_state.flags;
5477 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5478 memset(&ps->reserved, 0, sizeof(ps->reserved));
5479 return 0;
5480 }
5481
5482 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5483 {
5484 int start = 0;
5485 int i;
5486 u32 prev_legacy, cur_legacy;
5487 struct kvm_pit *pit = kvm->arch.vpit;
5488
5489 mutex_lock(&pit->pit_state.lock);
5490 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5491 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5492 if (!prev_legacy && cur_legacy)
5493 start = 1;
5494 memcpy(&pit->pit_state.channels, &ps->channels,
5495 sizeof(pit->pit_state.channels));
5496 pit->pit_state.flags = ps->flags;
5497 for (i = 0; i < 3; i++)
5498 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5499 start && i == 0);
5500 mutex_unlock(&pit->pit_state.lock);
5501 return 0;
5502 }
5503
5504 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5505 struct kvm_reinject_control *control)
5506 {
5507 struct kvm_pit *pit = kvm->arch.vpit;
5508
5509 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5510 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5511 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5512 */
5513 mutex_lock(&pit->pit_state.lock);
5514 kvm_pit_set_reinject(pit, control->pit_reinject);
5515 mutex_unlock(&pit->pit_state.lock);
5516
5517 return 0;
5518 }
5519
5520 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5521 {
5522
5523 /*
5524 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5525 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5526 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5527 * VM-Exit.
5528 */
5529 struct kvm_vcpu *vcpu;
5530 int i;
5531
5532 kvm_for_each_vcpu(i, vcpu, kvm)
5533 kvm_vcpu_kick(vcpu);
5534 }
5535
5536 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5537 bool line_status)
5538 {
5539 if (!irqchip_in_kernel(kvm))
5540 return -ENXIO;
5541
5542 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5543 irq_event->irq, irq_event->level,
5544 line_status);
5545 return 0;
5546 }
5547
5548 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5549 struct kvm_enable_cap *cap)
5550 {
5551 int r;
5552
5553 if (cap->flags)
5554 return -EINVAL;
5555
5556 switch (cap->cap) {
5557 case KVM_CAP_DISABLE_QUIRKS:
5558 kvm->arch.disabled_quirks = cap->args[0];
5559 r = 0;
5560 break;
5561 case KVM_CAP_SPLIT_IRQCHIP: {
5562 mutex_lock(&kvm->lock);
5563 r = -EINVAL;
5564 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5565 goto split_irqchip_unlock;
5566 r = -EEXIST;
5567 if (irqchip_in_kernel(kvm))
5568 goto split_irqchip_unlock;
5569 if (kvm->created_vcpus)
5570 goto split_irqchip_unlock;
5571 r = kvm_setup_empty_irq_routing(kvm);
5572 if (r)
5573 goto split_irqchip_unlock;
5574 /* Pairs with irqchip_in_kernel. */
5575 smp_wmb();
5576 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5577 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5578 r = 0;
5579 split_irqchip_unlock:
5580 mutex_unlock(&kvm->lock);
5581 break;
5582 }
5583 case KVM_CAP_X2APIC_API:
5584 r = -EINVAL;
5585 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5586 break;
5587
5588 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5589 kvm->arch.x2apic_format = true;
5590 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5591 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5592
5593 r = 0;
5594 break;
5595 case KVM_CAP_X86_DISABLE_EXITS:
5596 r = -EINVAL;
5597 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5598 break;
5599
5600 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5601 kvm_can_mwait_in_guest())
5602 kvm->arch.mwait_in_guest = true;
5603 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5604 kvm->arch.hlt_in_guest = true;
5605 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5606 kvm->arch.pause_in_guest = true;
5607 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5608 kvm->arch.cstate_in_guest = true;
5609 r = 0;
5610 break;
5611 case KVM_CAP_MSR_PLATFORM_INFO:
5612 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5613 r = 0;
5614 break;
5615 case KVM_CAP_EXCEPTION_PAYLOAD:
5616 kvm->arch.exception_payload_enabled = cap->args[0];
5617 r = 0;
5618 break;
5619 case KVM_CAP_X86_USER_SPACE_MSR:
5620 kvm->arch.user_space_msr_mask = cap->args[0];
5621 r = 0;
5622 break;
5623 case KVM_CAP_X86_BUS_LOCK_EXIT:
5624 r = -EINVAL;
5625 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5626 break;
5627
5628 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5629 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5630 break;
5631
5632 if (kvm_has_bus_lock_exit &&
5633 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5634 kvm->arch.bus_lock_detection_enabled = true;
5635 r = 0;
5636 break;
5637 #ifdef CONFIG_X86_SGX_KVM
5638 case KVM_CAP_SGX_ATTRIBUTE: {
5639 unsigned long allowed_attributes = 0;
5640
5641 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5642 if (r)
5643 break;
5644
5645 /* KVM only supports the PROVISIONKEY privileged attribute. */
5646 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5647 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5648 kvm->arch.sgx_provisioning_allowed = true;
5649 else
5650 r = -EINVAL;
5651 break;
5652 }
5653 #endif
5654 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5655 r = -EINVAL;
5656 if (kvm_x86_ops.vm_copy_enc_context_from)
5657 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5658 return r;
5659 case KVM_CAP_EXIT_HYPERCALL:
5660 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5661 r = -EINVAL;
5662 break;
5663 }
5664 kvm->arch.hypercall_exit_enabled = cap->args[0];
5665 r = 0;
5666 break;
5667 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5668 r = -EINVAL;
5669 if (cap->args[0] & ~1)
5670 break;
5671 kvm->arch.exit_on_emulation_error = cap->args[0];
5672 r = 0;
5673 break;
5674 default:
5675 r = -EINVAL;
5676 break;
5677 }
5678 return r;
5679 }
5680
5681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5682 {
5683 struct kvm_x86_msr_filter *msr_filter;
5684
5685 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5686 if (!msr_filter)
5687 return NULL;
5688
5689 msr_filter->default_allow = default_allow;
5690 return msr_filter;
5691 }
5692
5693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5694 {
5695 u32 i;
5696
5697 if (!msr_filter)
5698 return;
5699
5700 for (i = 0; i < msr_filter->count; i++)
5701 kfree(msr_filter->ranges[i].bitmap);
5702
5703 kfree(msr_filter);
5704 }
5705
5706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5707 struct kvm_msr_filter_range *user_range)
5708 {
5709 unsigned long *bitmap = NULL;
5710 size_t bitmap_size;
5711
5712 if (!user_range->nmsrs)
5713 return 0;
5714
5715 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5716 return -EINVAL;
5717
5718 if (!user_range->flags)
5719 return -EINVAL;
5720
5721 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5722 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5723 return -EINVAL;
5724
5725 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5726 if (IS_ERR(bitmap))
5727 return PTR_ERR(bitmap);
5728
5729 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5730 .flags = user_range->flags,
5731 .base = user_range->base,
5732 .nmsrs = user_range->nmsrs,
5733 .bitmap = bitmap,
5734 };
5735
5736 msr_filter->count++;
5737 return 0;
5738 }
5739
5740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5741 {
5742 struct kvm_msr_filter __user *user_msr_filter = argp;
5743 struct kvm_x86_msr_filter *new_filter, *old_filter;
5744 struct kvm_msr_filter filter;
5745 bool default_allow;
5746 bool empty = true;
5747 int r = 0;
5748 u32 i;
5749
5750 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5751 return -EFAULT;
5752
5753 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5754 empty &= !filter.ranges[i].nmsrs;
5755
5756 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5757 if (empty && !default_allow)
5758 return -EINVAL;
5759
5760 new_filter = kvm_alloc_msr_filter(default_allow);
5761 if (!new_filter)
5762 return -ENOMEM;
5763
5764 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5765 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5766 if (r) {
5767 kvm_free_msr_filter(new_filter);
5768 return r;
5769 }
5770 }
5771
5772 mutex_lock(&kvm->lock);
5773
5774 /* The per-VM filter is protected by kvm->lock... */
5775 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5776
5777 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5778 synchronize_srcu(&kvm->srcu);
5779
5780 kvm_free_msr_filter(old_filter);
5781
5782 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5783 mutex_unlock(&kvm->lock);
5784
5785 return 0;
5786 }
5787
5788 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5789 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5790 {
5791 struct kvm_vcpu *vcpu;
5792 int i, ret = 0;
5793
5794 mutex_lock(&kvm->lock);
5795 kvm_for_each_vcpu(i, vcpu, kvm) {
5796 if (!vcpu->arch.pv_time_enabled)
5797 continue;
5798
5799 ret = kvm_set_guest_paused(vcpu);
5800 if (ret) {
5801 kvm_err("Failed to pause guest VCPU%d: %d\n",
5802 vcpu->vcpu_id, ret);
5803 break;
5804 }
5805 }
5806 mutex_unlock(&kvm->lock);
5807
5808 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5809 }
5810
5811 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5812 {
5813 switch (state) {
5814 case PM_HIBERNATION_PREPARE:
5815 case PM_SUSPEND_PREPARE:
5816 return kvm_arch_suspend_notifier(kvm);
5817 }
5818
5819 return NOTIFY_DONE;
5820 }
5821 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5822
5823 long kvm_arch_vm_ioctl(struct file *filp,
5824 unsigned int ioctl, unsigned long arg)
5825 {
5826 struct kvm *kvm = filp->private_data;
5827 void __user *argp = (void __user *)arg;
5828 int r = -ENOTTY;
5829 /*
5830 * This union makes it completely explicit to gcc-3.x
5831 * that these two variables' stack usage should be
5832 * combined, not added together.
5833 */
5834 union {
5835 struct kvm_pit_state ps;
5836 struct kvm_pit_state2 ps2;
5837 struct kvm_pit_config pit_config;
5838 } u;
5839
5840 switch (ioctl) {
5841 case KVM_SET_TSS_ADDR:
5842 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5843 break;
5844 case KVM_SET_IDENTITY_MAP_ADDR: {
5845 u64 ident_addr;
5846
5847 mutex_lock(&kvm->lock);
5848 r = -EINVAL;
5849 if (kvm->created_vcpus)
5850 goto set_identity_unlock;
5851 r = -EFAULT;
5852 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5853 goto set_identity_unlock;
5854 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5855 set_identity_unlock:
5856 mutex_unlock(&kvm->lock);
5857 break;
5858 }
5859 case KVM_SET_NR_MMU_PAGES:
5860 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5861 break;
5862 case KVM_GET_NR_MMU_PAGES:
5863 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5864 break;
5865 case KVM_CREATE_IRQCHIP: {
5866 mutex_lock(&kvm->lock);
5867
5868 r = -EEXIST;
5869 if (irqchip_in_kernel(kvm))
5870 goto create_irqchip_unlock;
5871
5872 r = -EINVAL;
5873 if (kvm->created_vcpus)
5874 goto create_irqchip_unlock;
5875
5876 r = kvm_pic_init(kvm);
5877 if (r)
5878 goto create_irqchip_unlock;
5879
5880 r = kvm_ioapic_init(kvm);
5881 if (r) {
5882 kvm_pic_destroy(kvm);
5883 goto create_irqchip_unlock;
5884 }
5885
5886 r = kvm_setup_default_irq_routing(kvm);
5887 if (r) {
5888 kvm_ioapic_destroy(kvm);
5889 kvm_pic_destroy(kvm);
5890 goto create_irqchip_unlock;
5891 }
5892 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5893 smp_wmb();
5894 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5895 create_irqchip_unlock:
5896 mutex_unlock(&kvm->lock);
5897 break;
5898 }
5899 case KVM_CREATE_PIT:
5900 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5901 goto create_pit;
5902 case KVM_CREATE_PIT2:
5903 r = -EFAULT;
5904 if (copy_from_user(&u.pit_config, argp,
5905 sizeof(struct kvm_pit_config)))
5906 goto out;
5907 create_pit:
5908 mutex_lock(&kvm->lock);
5909 r = -EEXIST;
5910 if (kvm->arch.vpit)
5911 goto create_pit_unlock;
5912 r = -ENOMEM;
5913 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5914 if (kvm->arch.vpit)
5915 r = 0;
5916 create_pit_unlock:
5917 mutex_unlock(&kvm->lock);
5918 break;
5919 case KVM_GET_IRQCHIP: {
5920 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5921 struct kvm_irqchip *chip;
5922
5923 chip = memdup_user(argp, sizeof(*chip));
5924 if (IS_ERR(chip)) {
5925 r = PTR_ERR(chip);
5926 goto out;
5927 }
5928
5929 r = -ENXIO;
5930 if (!irqchip_kernel(kvm))
5931 goto get_irqchip_out;
5932 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5933 if (r)
5934 goto get_irqchip_out;
5935 r = -EFAULT;
5936 if (copy_to_user(argp, chip, sizeof(*chip)))
5937 goto get_irqchip_out;
5938 r = 0;
5939 get_irqchip_out:
5940 kfree(chip);
5941 break;
5942 }
5943 case KVM_SET_IRQCHIP: {
5944 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5945 struct kvm_irqchip *chip;
5946
5947 chip = memdup_user(argp, sizeof(*chip));
5948 if (IS_ERR(chip)) {
5949 r = PTR_ERR(chip);
5950 goto out;
5951 }
5952
5953 r = -ENXIO;
5954 if (!irqchip_kernel(kvm))
5955 goto set_irqchip_out;
5956 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5957 set_irqchip_out:
5958 kfree(chip);
5959 break;
5960 }
5961 case KVM_GET_PIT: {
5962 r = -EFAULT;
5963 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5964 goto out;
5965 r = -ENXIO;
5966 if (!kvm->arch.vpit)
5967 goto out;
5968 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5969 if (r)
5970 goto out;
5971 r = -EFAULT;
5972 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5973 goto out;
5974 r = 0;
5975 break;
5976 }
5977 case KVM_SET_PIT: {
5978 r = -EFAULT;
5979 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5980 goto out;
5981 mutex_lock(&kvm->lock);
5982 r = -ENXIO;
5983 if (!kvm->arch.vpit)
5984 goto set_pit_out;
5985 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5986 set_pit_out:
5987 mutex_unlock(&kvm->lock);
5988 break;
5989 }
5990 case KVM_GET_PIT2: {
5991 r = -ENXIO;
5992 if (!kvm->arch.vpit)
5993 goto out;
5994 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5995 if (r)
5996 goto out;
5997 r = -EFAULT;
5998 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5999 goto out;
6000 r = 0;
6001 break;
6002 }
6003 case KVM_SET_PIT2: {
6004 r = -EFAULT;
6005 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6006 goto out;
6007 mutex_lock(&kvm->lock);
6008 r = -ENXIO;
6009 if (!kvm->arch.vpit)
6010 goto set_pit2_out;
6011 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6012 set_pit2_out:
6013 mutex_unlock(&kvm->lock);
6014 break;
6015 }
6016 case KVM_REINJECT_CONTROL: {
6017 struct kvm_reinject_control control;
6018 r = -EFAULT;
6019 if (copy_from_user(&control, argp, sizeof(control)))
6020 goto out;
6021 r = -ENXIO;
6022 if (!kvm->arch.vpit)
6023 goto out;
6024 r = kvm_vm_ioctl_reinject(kvm, &control);
6025 break;
6026 }
6027 case KVM_SET_BOOT_CPU_ID:
6028 r = 0;
6029 mutex_lock(&kvm->lock);
6030 if (kvm->created_vcpus)
6031 r = -EBUSY;
6032 else
6033 kvm->arch.bsp_vcpu_id = arg;
6034 mutex_unlock(&kvm->lock);
6035 break;
6036 #ifdef CONFIG_KVM_XEN
6037 case KVM_XEN_HVM_CONFIG: {
6038 struct kvm_xen_hvm_config xhc;
6039 r = -EFAULT;
6040 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6041 goto out;
6042 r = kvm_xen_hvm_config(kvm, &xhc);
6043 break;
6044 }
6045 case KVM_XEN_HVM_GET_ATTR: {
6046 struct kvm_xen_hvm_attr xha;
6047
6048 r = -EFAULT;
6049 if (copy_from_user(&xha, argp, sizeof(xha)))
6050 goto out;
6051 r = kvm_xen_hvm_get_attr(kvm, &xha);
6052 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6053 r = -EFAULT;
6054 break;
6055 }
6056 case KVM_XEN_HVM_SET_ATTR: {
6057 struct kvm_xen_hvm_attr xha;
6058
6059 r = -EFAULT;
6060 if (copy_from_user(&xha, argp, sizeof(xha)))
6061 goto out;
6062 r = kvm_xen_hvm_set_attr(kvm, &xha);
6063 break;
6064 }
6065 #endif
6066 case KVM_SET_CLOCK: {
6067 struct kvm_arch *ka = &kvm->arch;
6068 struct kvm_clock_data user_ns;
6069 u64 now_ns;
6070
6071 r = -EFAULT;
6072 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6073 goto out;
6074
6075 r = -EINVAL;
6076 if (user_ns.flags)
6077 goto out;
6078
6079 r = 0;
6080 /*
6081 * TODO: userspace has to take care of races with VCPU_RUN, so
6082 * kvm_gen_update_masterclock() can be cut down to locked
6083 * pvclock_update_vm_gtod_copy().
6084 */
6085 kvm_gen_update_masterclock(kvm);
6086
6087 /*
6088 * This pairs with kvm_guest_time_update(): when masterclock is
6089 * in use, we use master_kernel_ns + kvmclock_offset to set
6090 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6091 * is slightly ahead) here we risk going negative on unsigned
6092 * 'system_time' when 'user_ns.clock' is very small.
6093 */
6094 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6095 if (kvm->arch.use_master_clock)
6096 now_ns = ka->master_kernel_ns;
6097 else
6098 now_ns = get_kvmclock_base_ns();
6099 ka->kvmclock_offset = user_ns.clock - now_ns;
6100 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6101
6102 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6103 break;
6104 }
6105 case KVM_GET_CLOCK: {
6106 struct kvm_clock_data user_ns;
6107 u64 now_ns;
6108
6109 now_ns = get_kvmclock_ns(kvm);
6110 user_ns.clock = now_ns;
6111 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6112 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6113
6114 r = -EFAULT;
6115 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6116 goto out;
6117 r = 0;
6118 break;
6119 }
6120 case KVM_MEMORY_ENCRYPT_OP: {
6121 r = -ENOTTY;
6122 if (kvm_x86_ops.mem_enc_op)
6123 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6124 break;
6125 }
6126 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6127 struct kvm_enc_region region;
6128
6129 r = -EFAULT;
6130 if (copy_from_user(&region, argp, sizeof(region)))
6131 goto out;
6132
6133 r = -ENOTTY;
6134 if (kvm_x86_ops.mem_enc_reg_region)
6135 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6136 break;
6137 }
6138 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6139 struct kvm_enc_region region;
6140
6141 r = -EFAULT;
6142 if (copy_from_user(&region, argp, sizeof(region)))
6143 goto out;
6144
6145 r = -ENOTTY;
6146 if (kvm_x86_ops.mem_enc_unreg_region)
6147 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6148 break;
6149 }
6150 case KVM_HYPERV_EVENTFD: {
6151 struct kvm_hyperv_eventfd hvevfd;
6152
6153 r = -EFAULT;
6154 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6155 goto out;
6156 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6157 break;
6158 }
6159 case KVM_SET_PMU_EVENT_FILTER:
6160 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6161 break;
6162 case KVM_X86_SET_MSR_FILTER:
6163 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6164 break;
6165 default:
6166 r = -ENOTTY;
6167 }
6168 out:
6169 return r;
6170 }
6171
6172 static void kvm_init_msr_list(void)
6173 {
6174 struct x86_pmu_capability x86_pmu;
6175 u32 dummy[2];
6176 unsigned i;
6177
6178 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6179 "Please update the fixed PMCs in msrs_to_saved_all[]");
6180
6181 perf_get_x86_pmu_capability(&x86_pmu);
6182
6183 num_msrs_to_save = 0;
6184 num_emulated_msrs = 0;
6185 num_msr_based_features = 0;
6186
6187 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6188 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6189 continue;
6190
6191 /*
6192 * Even MSRs that are valid in the host may not be exposed
6193 * to the guests in some cases.
6194 */
6195 switch (msrs_to_save_all[i]) {
6196 case MSR_IA32_BNDCFGS:
6197 if (!kvm_mpx_supported())
6198 continue;
6199 break;
6200 case MSR_TSC_AUX:
6201 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6202 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6203 continue;
6204 break;
6205 case MSR_IA32_UMWAIT_CONTROL:
6206 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6207 continue;
6208 break;
6209 case MSR_IA32_RTIT_CTL:
6210 case MSR_IA32_RTIT_STATUS:
6211 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6212 continue;
6213 break;
6214 case MSR_IA32_RTIT_CR3_MATCH:
6215 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6216 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6217 continue;
6218 break;
6219 case MSR_IA32_RTIT_OUTPUT_BASE:
6220 case MSR_IA32_RTIT_OUTPUT_MASK:
6221 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6222 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6223 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6224 continue;
6225 break;
6226 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6227 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6228 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6229 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6230 continue;
6231 break;
6232 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6233 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6234 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6235 continue;
6236 break;
6237 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6238 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6239 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6240 continue;
6241 break;
6242 default:
6243 break;
6244 }
6245
6246 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6247 }
6248
6249 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6250 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6251 continue;
6252
6253 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6254 }
6255
6256 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6257 struct kvm_msr_entry msr;
6258
6259 msr.index = msr_based_features_all[i];
6260 if (kvm_get_msr_feature(&msr))
6261 continue;
6262
6263 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6264 }
6265 }
6266
6267 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6268 const void *v)
6269 {
6270 int handled = 0;
6271 int n;
6272
6273 do {
6274 n = min(len, 8);
6275 if (!(lapic_in_kernel(vcpu) &&
6276 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6277 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6278 break;
6279 handled += n;
6280 addr += n;
6281 len -= n;
6282 v += n;
6283 } while (len);
6284
6285 return handled;
6286 }
6287
6288 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6289 {
6290 int handled = 0;
6291 int n;
6292
6293 do {
6294 n = min(len, 8);
6295 if (!(lapic_in_kernel(vcpu) &&
6296 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6297 addr, n, v))
6298 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6299 break;
6300 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6301 handled += n;
6302 addr += n;
6303 len -= n;
6304 v += n;
6305 } while (len);
6306
6307 return handled;
6308 }
6309
6310 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6311 struct kvm_segment *var, int seg)
6312 {
6313 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6314 }
6315
6316 void kvm_get_segment(struct kvm_vcpu *vcpu,
6317 struct kvm_segment *var, int seg)
6318 {
6319 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6320 }
6321
6322 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6323 struct x86_exception *exception)
6324 {
6325 gpa_t t_gpa;
6326
6327 BUG_ON(!mmu_is_nested(vcpu));
6328
6329 /* NPT walks are always user-walks */
6330 access |= PFERR_USER_MASK;
6331 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6332
6333 return t_gpa;
6334 }
6335
6336 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6337 struct x86_exception *exception)
6338 {
6339 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6340 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6341 }
6342 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6343
6344 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6345 struct x86_exception *exception)
6346 {
6347 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6348 access |= PFERR_FETCH_MASK;
6349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6350 }
6351
6352 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6353 struct x86_exception *exception)
6354 {
6355 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6356 access |= PFERR_WRITE_MASK;
6357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6358 }
6359 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6360
6361 /* uses this to access any guest's mapped memory without checking CPL */
6362 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6363 struct x86_exception *exception)
6364 {
6365 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6366 }
6367
6368 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6369 struct kvm_vcpu *vcpu, u32 access,
6370 struct x86_exception *exception)
6371 {
6372 void *data = val;
6373 int r = X86EMUL_CONTINUE;
6374
6375 while (bytes) {
6376 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6377 exception);
6378 unsigned offset = addr & (PAGE_SIZE-1);
6379 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6380 int ret;
6381
6382 if (gpa == UNMAPPED_GVA)
6383 return X86EMUL_PROPAGATE_FAULT;
6384 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6385 offset, toread);
6386 if (ret < 0) {
6387 r = X86EMUL_IO_NEEDED;
6388 goto out;
6389 }
6390
6391 bytes -= toread;
6392 data += toread;
6393 addr += toread;
6394 }
6395 out:
6396 return r;
6397 }
6398
6399 /* used for instruction fetching */
6400 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6401 gva_t addr, void *val, unsigned int bytes,
6402 struct x86_exception *exception)
6403 {
6404 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6405 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6406 unsigned offset;
6407 int ret;
6408
6409 /* Inline kvm_read_guest_virt_helper for speed. */
6410 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6411 exception);
6412 if (unlikely(gpa == UNMAPPED_GVA))
6413 return X86EMUL_PROPAGATE_FAULT;
6414
6415 offset = addr & (PAGE_SIZE-1);
6416 if (WARN_ON(offset + bytes > PAGE_SIZE))
6417 bytes = (unsigned)PAGE_SIZE - offset;
6418 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6419 offset, bytes);
6420 if (unlikely(ret < 0))
6421 return X86EMUL_IO_NEEDED;
6422
6423 return X86EMUL_CONTINUE;
6424 }
6425
6426 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6427 gva_t addr, void *val, unsigned int bytes,
6428 struct x86_exception *exception)
6429 {
6430 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6431
6432 /*
6433 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6434 * is returned, but our callers are not ready for that and they blindly
6435 * call kvm_inject_page_fault. Ensure that they at least do not leak
6436 * uninitialized kernel stack memory into cr2 and error code.
6437 */
6438 memset(exception, 0, sizeof(*exception));
6439 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6440 exception);
6441 }
6442 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6443
6444 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6445 gva_t addr, void *val, unsigned int bytes,
6446 struct x86_exception *exception, bool system)
6447 {
6448 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6449 u32 access = 0;
6450
6451 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6452 access |= PFERR_USER_MASK;
6453
6454 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6455 }
6456
6457 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6458 unsigned long addr, void *val, unsigned int bytes)
6459 {
6460 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6461 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6462
6463 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6464 }
6465
6466 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6467 struct kvm_vcpu *vcpu, u32 access,
6468 struct x86_exception *exception)
6469 {
6470 void *data = val;
6471 int r = X86EMUL_CONTINUE;
6472
6473 while (bytes) {
6474 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6475 access,
6476 exception);
6477 unsigned offset = addr & (PAGE_SIZE-1);
6478 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6479 int ret;
6480
6481 if (gpa == UNMAPPED_GVA)
6482 return X86EMUL_PROPAGATE_FAULT;
6483 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6484 if (ret < 0) {
6485 r = X86EMUL_IO_NEEDED;
6486 goto out;
6487 }
6488
6489 bytes -= towrite;
6490 data += towrite;
6491 addr += towrite;
6492 }
6493 out:
6494 return r;
6495 }
6496
6497 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6498 unsigned int bytes, struct x86_exception *exception,
6499 bool system)
6500 {
6501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6502 u32 access = PFERR_WRITE_MASK;
6503
6504 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6505 access |= PFERR_USER_MASK;
6506
6507 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6508 access, exception);
6509 }
6510
6511 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6512 unsigned int bytes, struct x86_exception *exception)
6513 {
6514 /* kvm_write_guest_virt_system can pull in tons of pages. */
6515 vcpu->arch.l1tf_flush_l1d = true;
6516
6517 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6518 PFERR_WRITE_MASK, exception);
6519 }
6520 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6521
6522 int handle_ud(struct kvm_vcpu *vcpu)
6523 {
6524 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6525 int emul_type = EMULTYPE_TRAP_UD;
6526 char sig[5]; /* ud2; .ascii "kvm" */
6527 struct x86_exception e;
6528
6529 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6530 return 1;
6531
6532 if (force_emulation_prefix &&
6533 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6534 sig, sizeof(sig), &e) == 0 &&
6535 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6536 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6537 emul_type = EMULTYPE_TRAP_UD_FORCED;
6538 }
6539
6540 return kvm_emulate_instruction(vcpu, emul_type);
6541 }
6542 EXPORT_SYMBOL_GPL(handle_ud);
6543
6544 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6545 gpa_t gpa, bool write)
6546 {
6547 /* For APIC access vmexit */
6548 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6549 return 1;
6550
6551 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6552 trace_vcpu_match_mmio(gva, gpa, write, true);
6553 return 1;
6554 }
6555
6556 return 0;
6557 }
6558
6559 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6560 gpa_t *gpa, struct x86_exception *exception,
6561 bool write)
6562 {
6563 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6564 | (write ? PFERR_WRITE_MASK : 0);
6565
6566 /*
6567 * currently PKRU is only applied to ept enabled guest so
6568 * there is no pkey in EPT page table for L1 guest or EPT
6569 * shadow page table for L2 guest.
6570 */
6571 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6572 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6573 vcpu->arch.mmio_access, 0, access))) {
6574 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6575 (gva & (PAGE_SIZE - 1));
6576 trace_vcpu_match_mmio(gva, *gpa, write, false);
6577 return 1;
6578 }
6579
6580 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6581
6582 if (*gpa == UNMAPPED_GVA)
6583 return -1;
6584
6585 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6586 }
6587
6588 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6589 const void *val, int bytes)
6590 {
6591 int ret;
6592
6593 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6594 if (ret < 0)
6595 return 0;
6596 kvm_page_track_write(vcpu, gpa, val, bytes);
6597 return 1;
6598 }
6599
6600 struct read_write_emulator_ops {
6601 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6602 int bytes);
6603 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6604 void *val, int bytes);
6605 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6606 int bytes, void *val);
6607 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6608 void *val, int bytes);
6609 bool write;
6610 };
6611
6612 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6613 {
6614 if (vcpu->mmio_read_completed) {
6615 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6616 vcpu->mmio_fragments[0].gpa, val);
6617 vcpu->mmio_read_completed = 0;
6618 return 1;
6619 }
6620
6621 return 0;
6622 }
6623
6624 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6625 void *val, int bytes)
6626 {
6627 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6628 }
6629
6630 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6631 void *val, int bytes)
6632 {
6633 return emulator_write_phys(vcpu, gpa, val, bytes);
6634 }
6635
6636 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6637 {
6638 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6639 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6640 }
6641
6642 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6643 void *val, int bytes)
6644 {
6645 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6646 return X86EMUL_IO_NEEDED;
6647 }
6648
6649 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6650 void *val, int bytes)
6651 {
6652 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6653
6654 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6655 return X86EMUL_CONTINUE;
6656 }
6657
6658 static const struct read_write_emulator_ops read_emultor = {
6659 .read_write_prepare = read_prepare,
6660 .read_write_emulate = read_emulate,
6661 .read_write_mmio = vcpu_mmio_read,
6662 .read_write_exit_mmio = read_exit_mmio,
6663 };
6664
6665 static const struct read_write_emulator_ops write_emultor = {
6666 .read_write_emulate = write_emulate,
6667 .read_write_mmio = write_mmio,
6668 .read_write_exit_mmio = write_exit_mmio,
6669 .write = true,
6670 };
6671
6672 static int emulator_read_write_onepage(unsigned long addr, void *val,
6673 unsigned int bytes,
6674 struct x86_exception *exception,
6675 struct kvm_vcpu *vcpu,
6676 const struct read_write_emulator_ops *ops)
6677 {
6678 gpa_t gpa;
6679 int handled, ret;
6680 bool write = ops->write;
6681 struct kvm_mmio_fragment *frag;
6682 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6683
6684 /*
6685 * If the exit was due to a NPF we may already have a GPA.
6686 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6687 * Note, this cannot be used on string operations since string
6688 * operation using rep will only have the initial GPA from the NPF
6689 * occurred.
6690 */
6691 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6692 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6693 gpa = ctxt->gpa_val;
6694 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6695 } else {
6696 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6697 if (ret < 0)
6698 return X86EMUL_PROPAGATE_FAULT;
6699 }
6700
6701 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6702 return X86EMUL_CONTINUE;
6703
6704 /*
6705 * Is this MMIO handled locally?
6706 */
6707 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6708 if (handled == bytes)
6709 return X86EMUL_CONTINUE;
6710
6711 gpa += handled;
6712 bytes -= handled;
6713 val += handled;
6714
6715 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6716 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6717 frag->gpa = gpa;
6718 frag->data = val;
6719 frag->len = bytes;
6720 return X86EMUL_CONTINUE;
6721 }
6722
6723 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6724 unsigned long addr,
6725 void *val, unsigned int bytes,
6726 struct x86_exception *exception,
6727 const struct read_write_emulator_ops *ops)
6728 {
6729 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6730 gpa_t gpa;
6731 int rc;
6732
6733 if (ops->read_write_prepare &&
6734 ops->read_write_prepare(vcpu, val, bytes))
6735 return X86EMUL_CONTINUE;
6736
6737 vcpu->mmio_nr_fragments = 0;
6738
6739 /* Crossing a page boundary? */
6740 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6741 int now;
6742
6743 now = -addr & ~PAGE_MASK;
6744 rc = emulator_read_write_onepage(addr, val, now, exception,
6745 vcpu, ops);
6746
6747 if (rc != X86EMUL_CONTINUE)
6748 return rc;
6749 addr += now;
6750 if (ctxt->mode != X86EMUL_MODE_PROT64)
6751 addr = (u32)addr;
6752 val += now;
6753 bytes -= now;
6754 }
6755
6756 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6757 vcpu, ops);
6758 if (rc != X86EMUL_CONTINUE)
6759 return rc;
6760
6761 if (!vcpu->mmio_nr_fragments)
6762 return rc;
6763
6764 gpa = vcpu->mmio_fragments[0].gpa;
6765
6766 vcpu->mmio_needed = 1;
6767 vcpu->mmio_cur_fragment = 0;
6768
6769 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6770 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6771 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6772 vcpu->run->mmio.phys_addr = gpa;
6773
6774 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6775 }
6776
6777 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6778 unsigned long addr,
6779 void *val,
6780 unsigned int bytes,
6781 struct x86_exception *exception)
6782 {
6783 return emulator_read_write(ctxt, addr, val, bytes,
6784 exception, &read_emultor);
6785 }
6786
6787 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6788 unsigned long addr,
6789 const void *val,
6790 unsigned int bytes,
6791 struct x86_exception *exception)
6792 {
6793 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6794 exception, &write_emultor);
6795 }
6796
6797 #define CMPXCHG_TYPE(t, ptr, old, new) \
6798 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6799
6800 #ifdef CONFIG_X86_64
6801 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6802 #else
6803 # define CMPXCHG64(ptr, old, new) \
6804 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6805 #endif
6806
6807 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6808 unsigned long addr,
6809 const void *old,
6810 const void *new,
6811 unsigned int bytes,
6812 struct x86_exception *exception)
6813 {
6814 struct kvm_host_map map;
6815 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6816 u64 page_line_mask;
6817 gpa_t gpa;
6818 char *kaddr;
6819 bool exchanged;
6820
6821 /* guests cmpxchg8b have to be emulated atomically */
6822 if (bytes > 8 || (bytes & (bytes - 1)))
6823 goto emul_write;
6824
6825 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6826
6827 if (gpa == UNMAPPED_GVA ||
6828 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6829 goto emul_write;
6830
6831 /*
6832 * Emulate the atomic as a straight write to avoid #AC if SLD is
6833 * enabled in the host and the access splits a cache line.
6834 */
6835 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6836 page_line_mask = ~(cache_line_size() - 1);
6837 else
6838 page_line_mask = PAGE_MASK;
6839
6840 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6841 goto emul_write;
6842
6843 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6844 goto emul_write;
6845
6846 kaddr = map.hva + offset_in_page(gpa);
6847
6848 switch (bytes) {
6849 case 1:
6850 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6851 break;
6852 case 2:
6853 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6854 break;
6855 case 4:
6856 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6857 break;
6858 case 8:
6859 exchanged = CMPXCHG64(kaddr, old, new);
6860 break;
6861 default:
6862 BUG();
6863 }
6864
6865 kvm_vcpu_unmap(vcpu, &map, true);
6866
6867 if (!exchanged)
6868 return X86EMUL_CMPXCHG_FAILED;
6869
6870 kvm_page_track_write(vcpu, gpa, new, bytes);
6871
6872 return X86EMUL_CONTINUE;
6873
6874 emul_write:
6875 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6876
6877 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6878 }
6879
6880 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6881 {
6882 int r = 0, i;
6883
6884 for (i = 0; i < vcpu->arch.pio.count; i++) {
6885 if (vcpu->arch.pio.in)
6886 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6887 vcpu->arch.pio.size, pd);
6888 else
6889 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6890 vcpu->arch.pio.port, vcpu->arch.pio.size,
6891 pd);
6892 if (r)
6893 break;
6894 pd += vcpu->arch.pio.size;
6895 }
6896 return r;
6897 }
6898
6899 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6900 unsigned short port, void *val,
6901 unsigned int count, bool in)
6902 {
6903 vcpu->arch.pio.port = port;
6904 vcpu->arch.pio.in = in;
6905 vcpu->arch.pio.count = count;
6906 vcpu->arch.pio.size = size;
6907
6908 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6909 vcpu->arch.pio.count = 0;
6910 return 1;
6911 }
6912
6913 vcpu->run->exit_reason = KVM_EXIT_IO;
6914 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6915 vcpu->run->io.size = size;
6916 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6917 vcpu->run->io.count = count;
6918 vcpu->run->io.port = port;
6919
6920 return 0;
6921 }
6922
6923 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6924 unsigned short port, void *val, unsigned int count)
6925 {
6926 int ret;
6927
6928 if (vcpu->arch.pio.count)
6929 goto data_avail;
6930
6931 memset(vcpu->arch.pio_data, 0, size * count);
6932
6933 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6934 if (ret) {
6935 data_avail:
6936 memcpy(val, vcpu->arch.pio_data, size * count);
6937 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6938 vcpu->arch.pio.count = 0;
6939 return 1;
6940 }
6941
6942 return 0;
6943 }
6944
6945 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6946 int size, unsigned short port, void *val,
6947 unsigned int count)
6948 {
6949 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6950
6951 }
6952
6953 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6954 unsigned short port, const void *val,
6955 unsigned int count)
6956 {
6957 memcpy(vcpu->arch.pio_data, val, size * count);
6958 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6959 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6960 }
6961
6962 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6963 int size, unsigned short port,
6964 const void *val, unsigned int count)
6965 {
6966 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6967 }
6968
6969 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6970 {
6971 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6972 }
6973
6974 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6975 {
6976 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6977 }
6978
6979 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6980 {
6981 if (!need_emulate_wbinvd(vcpu))
6982 return X86EMUL_CONTINUE;
6983
6984 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6985 int cpu = get_cpu();
6986
6987 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6988 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6989 wbinvd_ipi, NULL, 1);
6990 put_cpu();
6991 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6992 } else
6993 wbinvd();
6994 return X86EMUL_CONTINUE;
6995 }
6996
6997 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6998 {
6999 kvm_emulate_wbinvd_noskip(vcpu);
7000 return kvm_skip_emulated_instruction(vcpu);
7001 }
7002 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7003
7004
7005
7006 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7007 {
7008 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7009 }
7010
7011 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7012 unsigned long *dest)
7013 {
7014 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7015 }
7016
7017 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7018 unsigned long value)
7019 {
7020
7021 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7022 }
7023
7024 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7025 {
7026 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7027 }
7028
7029 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7030 {
7031 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7032 unsigned long value;
7033
7034 switch (cr) {
7035 case 0:
7036 value = kvm_read_cr0(vcpu);
7037 break;
7038 case 2:
7039 value = vcpu->arch.cr2;
7040 break;
7041 case 3:
7042 value = kvm_read_cr3(vcpu);
7043 break;
7044 case 4:
7045 value = kvm_read_cr4(vcpu);
7046 break;
7047 case 8:
7048 value = kvm_get_cr8(vcpu);
7049 break;
7050 default:
7051 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7052 return 0;
7053 }
7054
7055 return value;
7056 }
7057
7058 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7059 {
7060 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7061 int res = 0;
7062
7063 switch (cr) {
7064 case 0:
7065 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7066 break;
7067 case 2:
7068 vcpu->arch.cr2 = val;
7069 break;
7070 case 3:
7071 res = kvm_set_cr3(vcpu, val);
7072 break;
7073 case 4:
7074 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7075 break;
7076 case 8:
7077 res = kvm_set_cr8(vcpu, val);
7078 break;
7079 default:
7080 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7081 res = -1;
7082 }
7083
7084 return res;
7085 }
7086
7087 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7088 {
7089 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7090 }
7091
7092 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7093 {
7094 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7095 }
7096
7097 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7098 {
7099 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7100 }
7101
7102 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7103 {
7104 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7105 }
7106
7107 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7108 {
7109 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7110 }
7111
7112 static unsigned long emulator_get_cached_segment_base(
7113 struct x86_emulate_ctxt *ctxt, int seg)
7114 {
7115 return get_segment_base(emul_to_vcpu(ctxt), seg);
7116 }
7117
7118 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7119 struct desc_struct *desc, u32 *base3,
7120 int seg)
7121 {
7122 struct kvm_segment var;
7123
7124 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7125 *selector = var.selector;
7126
7127 if (var.unusable) {
7128 memset(desc, 0, sizeof(*desc));
7129 if (base3)
7130 *base3 = 0;
7131 return false;
7132 }
7133
7134 if (var.g)
7135 var.limit >>= 12;
7136 set_desc_limit(desc, var.limit);
7137 set_desc_base(desc, (unsigned long)var.base);
7138 #ifdef CONFIG_X86_64
7139 if (base3)
7140 *base3 = var.base >> 32;
7141 #endif
7142 desc->type = var.type;
7143 desc->s = var.s;
7144 desc->dpl = var.dpl;
7145 desc->p = var.present;
7146 desc->avl = var.avl;
7147 desc->l = var.l;
7148 desc->d = var.db;
7149 desc->g = var.g;
7150
7151 return true;
7152 }
7153
7154 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7155 struct desc_struct *desc, u32 base3,
7156 int seg)
7157 {
7158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7159 struct kvm_segment var;
7160
7161 var.selector = selector;
7162 var.base = get_desc_base(desc);
7163 #ifdef CONFIG_X86_64
7164 var.base |= ((u64)base3) << 32;
7165 #endif
7166 var.limit = get_desc_limit(desc);
7167 if (desc->g)
7168 var.limit = (var.limit << 12) | 0xfff;
7169 var.type = desc->type;
7170 var.dpl = desc->dpl;
7171 var.db = desc->d;
7172 var.s = desc->s;
7173 var.l = desc->l;
7174 var.g = desc->g;
7175 var.avl = desc->avl;
7176 var.present = desc->p;
7177 var.unusable = !var.present;
7178 var.padding = 0;
7179
7180 kvm_set_segment(vcpu, &var, seg);
7181 return;
7182 }
7183
7184 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7185 u32 msr_index, u64 *pdata)
7186 {
7187 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7188 int r;
7189
7190 r = kvm_get_msr(vcpu, msr_index, pdata);
7191
7192 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7193 /* Bounce to user space */
7194 return X86EMUL_IO_NEEDED;
7195 }
7196
7197 return r;
7198 }
7199
7200 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7201 u32 msr_index, u64 data)
7202 {
7203 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7204 int r;
7205
7206 r = kvm_set_msr(vcpu, msr_index, data);
7207
7208 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7209 /* Bounce to user space */
7210 return X86EMUL_IO_NEEDED;
7211 }
7212
7213 return r;
7214 }
7215
7216 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7217 {
7218 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7219
7220 return vcpu->arch.smbase;
7221 }
7222
7223 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7224 {
7225 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7226
7227 vcpu->arch.smbase = smbase;
7228 }
7229
7230 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7231 u32 pmc)
7232 {
7233 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7234 }
7235
7236 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7237 u32 pmc, u64 *pdata)
7238 {
7239 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7240 }
7241
7242 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7243 {
7244 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7245 }
7246
7247 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7248 struct x86_instruction_info *info,
7249 enum x86_intercept_stage stage)
7250 {
7251 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7252 &ctxt->exception);
7253 }
7254
7255 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7256 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7257 bool exact_only)
7258 {
7259 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7260 }
7261
7262 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7263 {
7264 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7265 }
7266
7267 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7268 {
7269 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7270 }
7271
7272 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7273 {
7274 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7275 }
7276
7277 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7278 {
7279 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7280 }
7281
7282 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7283 {
7284 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7285 }
7286
7287 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7288 {
7289 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7290 }
7291
7292 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7293 {
7294 return emul_to_vcpu(ctxt)->arch.hflags;
7295 }
7296
7297 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7298 {
7299 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7300
7301 kvm_smm_changed(vcpu, false);
7302 }
7303
7304 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7305 const char *smstate)
7306 {
7307 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7308 }
7309
7310 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7311 {
7312 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7313 }
7314
7315 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7316 {
7317 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7318 }
7319
7320 static const struct x86_emulate_ops emulate_ops = {
7321 .read_gpr = emulator_read_gpr,
7322 .write_gpr = emulator_write_gpr,
7323 .read_std = emulator_read_std,
7324 .write_std = emulator_write_std,
7325 .read_phys = kvm_read_guest_phys_system,
7326 .fetch = kvm_fetch_guest_virt,
7327 .read_emulated = emulator_read_emulated,
7328 .write_emulated = emulator_write_emulated,
7329 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7330 .invlpg = emulator_invlpg,
7331 .pio_in_emulated = emulator_pio_in_emulated,
7332 .pio_out_emulated = emulator_pio_out_emulated,
7333 .get_segment = emulator_get_segment,
7334 .set_segment = emulator_set_segment,
7335 .get_cached_segment_base = emulator_get_cached_segment_base,
7336 .get_gdt = emulator_get_gdt,
7337 .get_idt = emulator_get_idt,
7338 .set_gdt = emulator_set_gdt,
7339 .set_idt = emulator_set_idt,
7340 .get_cr = emulator_get_cr,
7341 .set_cr = emulator_set_cr,
7342 .cpl = emulator_get_cpl,
7343 .get_dr = emulator_get_dr,
7344 .set_dr = emulator_set_dr,
7345 .get_smbase = emulator_get_smbase,
7346 .set_smbase = emulator_set_smbase,
7347 .set_msr = emulator_set_msr,
7348 .get_msr = emulator_get_msr,
7349 .check_pmc = emulator_check_pmc,
7350 .read_pmc = emulator_read_pmc,
7351 .halt = emulator_halt,
7352 .wbinvd = emulator_wbinvd,
7353 .fix_hypercall = emulator_fix_hypercall,
7354 .intercept = emulator_intercept,
7355 .get_cpuid = emulator_get_cpuid,
7356 .guest_has_long_mode = emulator_guest_has_long_mode,
7357 .guest_has_movbe = emulator_guest_has_movbe,
7358 .guest_has_fxsr = emulator_guest_has_fxsr,
7359 .set_nmi_mask = emulator_set_nmi_mask,
7360 .get_hflags = emulator_get_hflags,
7361 .exiting_smm = emulator_exiting_smm,
7362 .leave_smm = emulator_leave_smm,
7363 .triple_fault = emulator_triple_fault,
7364 .set_xcr = emulator_set_xcr,
7365 };
7366
7367 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7368 {
7369 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7370 /*
7371 * an sti; sti; sequence only disable interrupts for the first
7372 * instruction. So, if the last instruction, be it emulated or
7373 * not, left the system with the INT_STI flag enabled, it
7374 * means that the last instruction is an sti. We should not
7375 * leave the flag on in this case. The same goes for mov ss
7376 */
7377 if (int_shadow & mask)
7378 mask = 0;
7379 if (unlikely(int_shadow || mask)) {
7380 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7381 if (!mask)
7382 kvm_make_request(KVM_REQ_EVENT, vcpu);
7383 }
7384 }
7385
7386 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7387 {
7388 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7389 if (ctxt->exception.vector == PF_VECTOR)
7390 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7391
7392 if (ctxt->exception.error_code_valid)
7393 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7394 ctxt->exception.error_code);
7395 else
7396 kvm_queue_exception(vcpu, ctxt->exception.vector);
7397 return false;
7398 }
7399
7400 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7401 {
7402 struct x86_emulate_ctxt *ctxt;
7403
7404 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7405 if (!ctxt) {
7406 pr_err("kvm: failed to allocate vcpu's emulator\n");
7407 return NULL;
7408 }
7409
7410 ctxt->vcpu = vcpu;
7411 ctxt->ops = &emulate_ops;
7412 vcpu->arch.emulate_ctxt = ctxt;
7413
7414 return ctxt;
7415 }
7416
7417 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7418 {
7419 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7420 int cs_db, cs_l;
7421
7422 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7423
7424 ctxt->gpa_available = false;
7425 ctxt->eflags = kvm_get_rflags(vcpu);
7426 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7427
7428 ctxt->eip = kvm_rip_read(vcpu);
7429 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7430 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7431 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7432 cs_db ? X86EMUL_MODE_PROT32 :
7433 X86EMUL_MODE_PROT16;
7434 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7435 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7436 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7437
7438 ctxt->interruptibility = 0;
7439 ctxt->have_exception = false;
7440 ctxt->exception.vector = -1;
7441 ctxt->perm_ok = false;
7442
7443 init_decode_cache(ctxt);
7444 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7445 }
7446
7447 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7448 {
7449 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7450 int ret;
7451
7452 init_emulate_ctxt(vcpu);
7453
7454 ctxt->op_bytes = 2;
7455 ctxt->ad_bytes = 2;
7456 ctxt->_eip = ctxt->eip + inc_eip;
7457 ret = emulate_int_real(ctxt, irq);
7458
7459 if (ret != X86EMUL_CONTINUE) {
7460 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7461 } else {
7462 ctxt->eip = ctxt->_eip;
7463 kvm_rip_write(vcpu, ctxt->eip);
7464 kvm_set_rflags(vcpu, ctxt->eflags);
7465 }
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7468
7469 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7470 {
7471 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7472 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7473 struct kvm_run *run = vcpu->run;
7474
7475 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7476 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7477 run->emulation_failure.ndata = 0;
7478 run->emulation_failure.flags = 0;
7479
7480 if (insn_size) {
7481 run->emulation_failure.ndata = 3;
7482 run->emulation_failure.flags |=
7483 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7484 run->emulation_failure.insn_size = insn_size;
7485 memset(run->emulation_failure.insn_bytes, 0x90,
7486 sizeof(run->emulation_failure.insn_bytes));
7487 memcpy(run->emulation_failure.insn_bytes,
7488 ctxt->fetch.data, insn_size);
7489 }
7490 }
7491
7492 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7493 {
7494 struct kvm *kvm = vcpu->kvm;
7495
7496 ++vcpu->stat.insn_emulation_fail;
7497 trace_kvm_emulate_insn_failed(vcpu);
7498
7499 if (emulation_type & EMULTYPE_VMWARE_GP) {
7500 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7501 return 1;
7502 }
7503
7504 if (kvm->arch.exit_on_emulation_error ||
7505 (emulation_type & EMULTYPE_SKIP)) {
7506 prepare_emulation_failure_exit(vcpu);
7507 return 0;
7508 }
7509
7510 kvm_queue_exception(vcpu, UD_VECTOR);
7511
7512 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7513 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7514 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7515 vcpu->run->internal.ndata = 0;
7516 return 0;
7517 }
7518
7519 return 1;
7520 }
7521
7522 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7523 bool write_fault_to_shadow_pgtable,
7524 int emulation_type)
7525 {
7526 gpa_t gpa = cr2_or_gpa;
7527 kvm_pfn_t pfn;
7528
7529 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7530 return false;
7531
7532 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7533 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7534 return false;
7535
7536 if (!vcpu->arch.mmu->direct_map) {
7537 /*
7538 * Write permission should be allowed since only
7539 * write access need to be emulated.
7540 */
7541 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7542
7543 /*
7544 * If the mapping is invalid in guest, let cpu retry
7545 * it to generate fault.
7546 */
7547 if (gpa == UNMAPPED_GVA)
7548 return true;
7549 }
7550
7551 /*
7552 * Do not retry the unhandleable instruction if it faults on the
7553 * readonly host memory, otherwise it will goto a infinite loop:
7554 * retry instruction -> write #PF -> emulation fail -> retry
7555 * instruction -> ...
7556 */
7557 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7558
7559 /*
7560 * If the instruction failed on the error pfn, it can not be fixed,
7561 * report the error to userspace.
7562 */
7563 if (is_error_noslot_pfn(pfn))
7564 return false;
7565
7566 kvm_release_pfn_clean(pfn);
7567
7568 /* The instructions are well-emulated on direct mmu. */
7569 if (vcpu->arch.mmu->direct_map) {
7570 unsigned int indirect_shadow_pages;
7571
7572 write_lock(&vcpu->kvm->mmu_lock);
7573 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7574 write_unlock(&vcpu->kvm->mmu_lock);
7575
7576 if (indirect_shadow_pages)
7577 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7578
7579 return true;
7580 }
7581
7582 /*
7583 * if emulation was due to access to shadowed page table
7584 * and it failed try to unshadow page and re-enter the
7585 * guest to let CPU execute the instruction.
7586 */
7587 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7588
7589 /*
7590 * If the access faults on its page table, it can not
7591 * be fixed by unprotecting shadow page and it should
7592 * be reported to userspace.
7593 */
7594 return !write_fault_to_shadow_pgtable;
7595 }
7596
7597 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7598 gpa_t cr2_or_gpa, int emulation_type)
7599 {
7600 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7601 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7602
7603 last_retry_eip = vcpu->arch.last_retry_eip;
7604 last_retry_addr = vcpu->arch.last_retry_addr;
7605
7606 /*
7607 * If the emulation is caused by #PF and it is non-page_table
7608 * writing instruction, it means the VM-EXIT is caused by shadow
7609 * page protected, we can zap the shadow page and retry this
7610 * instruction directly.
7611 *
7612 * Note: if the guest uses a non-page-table modifying instruction
7613 * on the PDE that points to the instruction, then we will unmap
7614 * the instruction and go to an infinite loop. So, we cache the
7615 * last retried eip and the last fault address, if we meet the eip
7616 * and the address again, we can break out of the potential infinite
7617 * loop.
7618 */
7619 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7620
7621 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7622 return false;
7623
7624 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7625 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7626 return false;
7627
7628 if (x86_page_table_writing_insn(ctxt))
7629 return false;
7630
7631 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7632 return false;
7633
7634 vcpu->arch.last_retry_eip = ctxt->eip;
7635 vcpu->arch.last_retry_addr = cr2_or_gpa;
7636
7637 if (!vcpu->arch.mmu->direct_map)
7638 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7639
7640 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7641
7642 return true;
7643 }
7644
7645 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7646 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7647
7648 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7649 {
7650 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7651
7652 if (entering_smm) {
7653 vcpu->arch.hflags |= HF_SMM_MASK;
7654 } else {
7655 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7656
7657 /* Process a latched INIT or SMI, if any. */
7658 kvm_make_request(KVM_REQ_EVENT, vcpu);
7659 }
7660
7661 kvm_mmu_reset_context(vcpu);
7662 }
7663
7664 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7665 unsigned long *db)
7666 {
7667 u32 dr6 = 0;
7668 int i;
7669 u32 enable, rwlen;
7670
7671 enable = dr7;
7672 rwlen = dr7 >> 16;
7673 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7674 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7675 dr6 |= (1 << i);
7676 return dr6;
7677 }
7678
7679 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7680 {
7681 struct kvm_run *kvm_run = vcpu->run;
7682
7683 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7684 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7685 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7686 kvm_run->debug.arch.exception = DB_VECTOR;
7687 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7688 return 0;
7689 }
7690 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7691 return 1;
7692 }
7693
7694 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7695 {
7696 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7697 int r;
7698
7699 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7700 if (unlikely(!r))
7701 return 0;
7702
7703 /*
7704 * rflags is the old, "raw" value of the flags. The new value has
7705 * not been saved yet.
7706 *
7707 * This is correct even for TF set by the guest, because "the
7708 * processor will not generate this exception after the instruction
7709 * that sets the TF flag".
7710 */
7711 if (unlikely(rflags & X86_EFLAGS_TF))
7712 r = kvm_vcpu_do_singlestep(vcpu);
7713 return r;
7714 }
7715 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7716
7717 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7718 {
7719 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7720 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7721 struct kvm_run *kvm_run = vcpu->run;
7722 unsigned long eip = kvm_get_linear_rip(vcpu);
7723 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7724 vcpu->arch.guest_debug_dr7,
7725 vcpu->arch.eff_db);
7726
7727 if (dr6 != 0) {
7728 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7729 kvm_run->debug.arch.pc = eip;
7730 kvm_run->debug.arch.exception = DB_VECTOR;
7731 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7732 *r = 0;
7733 return true;
7734 }
7735 }
7736
7737 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7738 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7739 unsigned long eip = kvm_get_linear_rip(vcpu);
7740 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7741 vcpu->arch.dr7,
7742 vcpu->arch.db);
7743
7744 if (dr6 != 0) {
7745 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7746 *r = 1;
7747 return true;
7748 }
7749 }
7750
7751 return false;
7752 }
7753
7754 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7755 {
7756 switch (ctxt->opcode_len) {
7757 case 1:
7758 switch (ctxt->b) {
7759 case 0xe4: /* IN */
7760 case 0xe5:
7761 case 0xec:
7762 case 0xed:
7763 case 0xe6: /* OUT */
7764 case 0xe7:
7765 case 0xee:
7766 case 0xef:
7767 case 0x6c: /* INS */
7768 case 0x6d:
7769 case 0x6e: /* OUTS */
7770 case 0x6f:
7771 return true;
7772 }
7773 break;
7774 case 2:
7775 switch (ctxt->b) {
7776 case 0x33: /* RDPMC */
7777 return true;
7778 }
7779 break;
7780 }
7781
7782 return false;
7783 }
7784
7785 /*
7786 * Decode to be emulated instruction. Return EMULATION_OK if success.
7787 */
7788 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7789 void *insn, int insn_len)
7790 {
7791 int r = EMULATION_OK;
7792 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7793
7794 init_emulate_ctxt(vcpu);
7795
7796 /*
7797 * We will reenter on the same instruction since we do not set
7798 * complete_userspace_io. This does not handle watchpoints yet,
7799 * those would be handled in the emulate_ops.
7800 */
7801 if (!(emulation_type & EMULTYPE_SKIP) &&
7802 kvm_vcpu_check_breakpoint(vcpu, &r))
7803 return r;
7804
7805 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7806
7807 trace_kvm_emulate_insn_start(vcpu);
7808 ++vcpu->stat.insn_emulation;
7809
7810 return r;
7811 }
7812 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7813
7814 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7815 int emulation_type, void *insn, int insn_len)
7816 {
7817 int r;
7818 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7819 bool writeback = true;
7820 bool write_fault_to_spt;
7821
7822 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7823 return 1;
7824
7825 vcpu->arch.l1tf_flush_l1d = true;
7826
7827 /*
7828 * Clear write_fault_to_shadow_pgtable here to ensure it is
7829 * never reused.
7830 */
7831 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7832 vcpu->arch.write_fault_to_shadow_pgtable = false;
7833
7834 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7835 kvm_clear_exception_queue(vcpu);
7836
7837 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7838 insn, insn_len);
7839 if (r != EMULATION_OK) {
7840 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7841 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7842 kvm_queue_exception(vcpu, UD_VECTOR);
7843 return 1;
7844 }
7845 if (reexecute_instruction(vcpu, cr2_or_gpa,
7846 write_fault_to_spt,
7847 emulation_type))
7848 return 1;
7849 if (ctxt->have_exception) {
7850 /*
7851 * #UD should result in just EMULATION_FAILED, and trap-like
7852 * exception should not be encountered during decode.
7853 */
7854 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7855 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7856 inject_emulated_exception(vcpu);
7857 return 1;
7858 }
7859 return handle_emulation_failure(vcpu, emulation_type);
7860 }
7861 }
7862
7863 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7864 !is_vmware_backdoor_opcode(ctxt)) {
7865 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7866 return 1;
7867 }
7868
7869 /*
7870 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7871 * for kvm_skip_emulated_instruction(). The caller is responsible for
7872 * updating interruptibility state and injecting single-step #DBs.
7873 */
7874 if (emulation_type & EMULTYPE_SKIP) {
7875 kvm_rip_write(vcpu, ctxt->_eip);
7876 if (ctxt->eflags & X86_EFLAGS_RF)
7877 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7878 return 1;
7879 }
7880
7881 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7882 return 1;
7883
7884 /* this is needed for vmware backdoor interface to work since it
7885 changes registers values during IO operation */
7886 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7887 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7888 emulator_invalidate_register_cache(ctxt);
7889 }
7890
7891 restart:
7892 if (emulation_type & EMULTYPE_PF) {
7893 /* Save the faulting GPA (cr2) in the address field */
7894 ctxt->exception.address = cr2_or_gpa;
7895
7896 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7897 if (vcpu->arch.mmu->direct_map) {
7898 ctxt->gpa_available = true;
7899 ctxt->gpa_val = cr2_or_gpa;
7900 }
7901 } else {
7902 /* Sanitize the address out of an abundance of paranoia. */
7903 ctxt->exception.address = 0;
7904 }
7905
7906 r = x86_emulate_insn(ctxt);
7907
7908 if (r == EMULATION_INTERCEPTED)
7909 return 1;
7910
7911 if (r == EMULATION_FAILED) {
7912 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7913 emulation_type))
7914 return 1;
7915
7916 return handle_emulation_failure(vcpu, emulation_type);
7917 }
7918
7919 if (ctxt->have_exception) {
7920 r = 1;
7921 if (inject_emulated_exception(vcpu))
7922 return r;
7923 } else if (vcpu->arch.pio.count) {
7924 if (!vcpu->arch.pio.in) {
7925 /* FIXME: return into emulator if single-stepping. */
7926 vcpu->arch.pio.count = 0;
7927 } else {
7928 writeback = false;
7929 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7930 }
7931 r = 0;
7932 } else if (vcpu->mmio_needed) {
7933 ++vcpu->stat.mmio_exits;
7934
7935 if (!vcpu->mmio_is_write)
7936 writeback = false;
7937 r = 0;
7938 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7939 } else if (r == EMULATION_RESTART)
7940 goto restart;
7941 else
7942 r = 1;
7943
7944 if (writeback) {
7945 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7946 toggle_interruptibility(vcpu, ctxt->interruptibility);
7947 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7948 if (!ctxt->have_exception ||
7949 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7950 kvm_rip_write(vcpu, ctxt->eip);
7951 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7952 r = kvm_vcpu_do_singlestep(vcpu);
7953 if (kvm_x86_ops.update_emulated_instruction)
7954 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7955 __kvm_set_rflags(vcpu, ctxt->eflags);
7956 }
7957
7958 /*
7959 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7960 * do nothing, and it will be requested again as soon as
7961 * the shadow expires. But we still need to check here,
7962 * because POPF has no interrupt shadow.
7963 */
7964 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7965 kvm_make_request(KVM_REQ_EVENT, vcpu);
7966 } else
7967 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7968
7969 return r;
7970 }
7971
7972 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7973 {
7974 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7975 }
7976 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7977
7978 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7979 void *insn, int insn_len)
7980 {
7981 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7982 }
7983 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7984
7985 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7986 {
7987 vcpu->arch.pio.count = 0;
7988 return 1;
7989 }
7990
7991 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7992 {
7993 vcpu->arch.pio.count = 0;
7994
7995 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7996 return 1;
7997
7998 return kvm_skip_emulated_instruction(vcpu);
7999 }
8000
8001 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8002 unsigned short port)
8003 {
8004 unsigned long val = kvm_rax_read(vcpu);
8005 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8006
8007 if (ret)
8008 return ret;
8009
8010 /*
8011 * Workaround userspace that relies on old KVM behavior of %rip being
8012 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8013 */
8014 if (port == 0x7e &&
8015 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8016 vcpu->arch.complete_userspace_io =
8017 complete_fast_pio_out_port_0x7e;
8018 kvm_skip_emulated_instruction(vcpu);
8019 } else {
8020 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8021 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8022 }
8023 return 0;
8024 }
8025
8026 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8027 {
8028 unsigned long val;
8029
8030 /* We should only ever be called with arch.pio.count equal to 1 */
8031 BUG_ON(vcpu->arch.pio.count != 1);
8032
8033 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8034 vcpu->arch.pio.count = 0;
8035 return 1;
8036 }
8037
8038 /* For size less than 4 we merge, else we zero extend */
8039 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8040
8041 /*
8042 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8043 * the copy and tracing
8044 */
8045 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8046 kvm_rax_write(vcpu, val);
8047
8048 return kvm_skip_emulated_instruction(vcpu);
8049 }
8050
8051 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8052 unsigned short port)
8053 {
8054 unsigned long val;
8055 int ret;
8056
8057 /* For size less than 4 we merge, else we zero extend */
8058 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8059
8060 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8061 if (ret) {
8062 kvm_rax_write(vcpu, val);
8063 return ret;
8064 }
8065
8066 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8067 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8068
8069 return 0;
8070 }
8071
8072 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8073 {
8074 int ret;
8075
8076 if (in)
8077 ret = kvm_fast_pio_in(vcpu, size, port);
8078 else
8079 ret = kvm_fast_pio_out(vcpu, size, port);
8080 return ret && kvm_skip_emulated_instruction(vcpu);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8083
8084 static int kvmclock_cpu_down_prep(unsigned int cpu)
8085 {
8086 __this_cpu_write(cpu_tsc_khz, 0);
8087 return 0;
8088 }
8089
8090 static void tsc_khz_changed(void *data)
8091 {
8092 struct cpufreq_freqs *freq = data;
8093 unsigned long khz = 0;
8094
8095 if (data)
8096 khz = freq->new;
8097 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8098 khz = cpufreq_quick_get(raw_smp_processor_id());
8099 if (!khz)
8100 khz = tsc_khz;
8101 __this_cpu_write(cpu_tsc_khz, khz);
8102 }
8103
8104 #ifdef CONFIG_X86_64
8105 static void kvm_hyperv_tsc_notifier(void)
8106 {
8107 struct kvm *kvm;
8108 struct kvm_vcpu *vcpu;
8109 int cpu;
8110 unsigned long flags;
8111
8112 mutex_lock(&kvm_lock);
8113 list_for_each_entry(kvm, &vm_list, vm_list)
8114 kvm_make_mclock_inprogress_request(kvm);
8115
8116 hyperv_stop_tsc_emulation();
8117
8118 /* TSC frequency always matches when on Hyper-V */
8119 for_each_present_cpu(cpu)
8120 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8121 kvm_max_guest_tsc_khz = tsc_khz;
8122
8123 list_for_each_entry(kvm, &vm_list, vm_list) {
8124 struct kvm_arch *ka = &kvm->arch;
8125
8126 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8127 pvclock_update_vm_gtod_copy(kvm);
8128 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8129
8130 kvm_for_each_vcpu(cpu, vcpu, kvm)
8131 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8132
8133 kvm_for_each_vcpu(cpu, vcpu, kvm)
8134 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8135 }
8136 mutex_unlock(&kvm_lock);
8137 }
8138 #endif
8139
8140 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8141 {
8142 struct kvm *kvm;
8143 struct kvm_vcpu *vcpu;
8144 int i, send_ipi = 0;
8145
8146 /*
8147 * We allow guests to temporarily run on slowing clocks,
8148 * provided we notify them after, or to run on accelerating
8149 * clocks, provided we notify them before. Thus time never
8150 * goes backwards.
8151 *
8152 * However, we have a problem. We can't atomically update
8153 * the frequency of a given CPU from this function; it is
8154 * merely a notifier, which can be called from any CPU.
8155 * Changing the TSC frequency at arbitrary points in time
8156 * requires a recomputation of local variables related to
8157 * the TSC for each VCPU. We must flag these local variables
8158 * to be updated and be sure the update takes place with the
8159 * new frequency before any guests proceed.
8160 *
8161 * Unfortunately, the combination of hotplug CPU and frequency
8162 * change creates an intractable locking scenario; the order
8163 * of when these callouts happen is undefined with respect to
8164 * CPU hotplug, and they can race with each other. As such,
8165 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8166 * undefined; you can actually have a CPU frequency change take
8167 * place in between the computation of X and the setting of the
8168 * variable. To protect against this problem, all updates of
8169 * the per_cpu tsc_khz variable are done in an interrupt
8170 * protected IPI, and all callers wishing to update the value
8171 * must wait for a synchronous IPI to complete (which is trivial
8172 * if the caller is on the CPU already). This establishes the
8173 * necessary total order on variable updates.
8174 *
8175 * Note that because a guest time update may take place
8176 * anytime after the setting of the VCPU's request bit, the
8177 * correct TSC value must be set before the request. However,
8178 * to ensure the update actually makes it to any guest which
8179 * starts running in hardware virtualization between the set
8180 * and the acquisition of the spinlock, we must also ping the
8181 * CPU after setting the request bit.
8182 *
8183 */
8184
8185 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8186
8187 mutex_lock(&kvm_lock);
8188 list_for_each_entry(kvm, &vm_list, vm_list) {
8189 kvm_for_each_vcpu(i, vcpu, kvm) {
8190 if (vcpu->cpu != cpu)
8191 continue;
8192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8193 if (vcpu->cpu != raw_smp_processor_id())
8194 send_ipi = 1;
8195 }
8196 }
8197 mutex_unlock(&kvm_lock);
8198
8199 if (freq->old < freq->new && send_ipi) {
8200 /*
8201 * We upscale the frequency. Must make the guest
8202 * doesn't see old kvmclock values while running with
8203 * the new frequency, otherwise we risk the guest sees
8204 * time go backwards.
8205 *
8206 * In case we update the frequency for another cpu
8207 * (which might be in guest context) send an interrupt
8208 * to kick the cpu out of guest context. Next time
8209 * guest context is entered kvmclock will be updated,
8210 * so the guest will not see stale values.
8211 */
8212 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8213 }
8214 }
8215
8216 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8217 void *data)
8218 {
8219 struct cpufreq_freqs *freq = data;
8220 int cpu;
8221
8222 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8223 return 0;
8224 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8225 return 0;
8226
8227 for_each_cpu(cpu, freq->policy->cpus)
8228 __kvmclock_cpufreq_notifier(freq, cpu);
8229
8230 return 0;
8231 }
8232
8233 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8234 .notifier_call = kvmclock_cpufreq_notifier
8235 };
8236
8237 static int kvmclock_cpu_online(unsigned int cpu)
8238 {
8239 tsc_khz_changed(NULL);
8240 return 0;
8241 }
8242
8243 static void kvm_timer_init(void)
8244 {
8245 max_tsc_khz = tsc_khz;
8246
8247 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8248 #ifdef CONFIG_CPU_FREQ
8249 struct cpufreq_policy *policy;
8250 int cpu;
8251
8252 cpu = get_cpu();
8253 policy = cpufreq_cpu_get(cpu);
8254 if (policy) {
8255 if (policy->cpuinfo.max_freq)
8256 max_tsc_khz = policy->cpuinfo.max_freq;
8257 cpufreq_cpu_put(policy);
8258 }
8259 put_cpu();
8260 #endif
8261 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8262 CPUFREQ_TRANSITION_NOTIFIER);
8263 }
8264
8265 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8266 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8267 }
8268
8269 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8270 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8271
8272 int kvm_is_in_guest(void)
8273 {
8274 return __this_cpu_read(current_vcpu) != NULL;
8275 }
8276
8277 static int kvm_is_user_mode(void)
8278 {
8279 int user_mode = 3;
8280
8281 if (__this_cpu_read(current_vcpu))
8282 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8283
8284 return user_mode != 0;
8285 }
8286
8287 static unsigned long kvm_get_guest_ip(void)
8288 {
8289 unsigned long ip = 0;
8290
8291 if (__this_cpu_read(current_vcpu))
8292 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8293
8294 return ip;
8295 }
8296
8297 static void kvm_handle_intel_pt_intr(void)
8298 {
8299 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8300
8301 kvm_make_request(KVM_REQ_PMI, vcpu);
8302 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8303 (unsigned long *)&vcpu->arch.pmu.global_status);
8304 }
8305
8306 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8307 .is_in_guest = kvm_is_in_guest,
8308 .is_user_mode = kvm_is_user_mode,
8309 .get_guest_ip = kvm_get_guest_ip,
8310 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8311 };
8312
8313 #ifdef CONFIG_X86_64
8314 static void pvclock_gtod_update_fn(struct work_struct *work)
8315 {
8316 struct kvm *kvm;
8317
8318 struct kvm_vcpu *vcpu;
8319 int i;
8320
8321 mutex_lock(&kvm_lock);
8322 list_for_each_entry(kvm, &vm_list, vm_list)
8323 kvm_for_each_vcpu(i, vcpu, kvm)
8324 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8325 atomic_set(&kvm_guest_has_master_clock, 0);
8326 mutex_unlock(&kvm_lock);
8327 }
8328
8329 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8330
8331 /*
8332 * Indirection to move queue_work() out of the tk_core.seq write held
8333 * region to prevent possible deadlocks against time accessors which
8334 * are invoked with work related locks held.
8335 */
8336 static void pvclock_irq_work_fn(struct irq_work *w)
8337 {
8338 queue_work(system_long_wq, &pvclock_gtod_work);
8339 }
8340
8341 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8342
8343 /*
8344 * Notification about pvclock gtod data update.
8345 */
8346 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8347 void *priv)
8348 {
8349 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8350 struct timekeeper *tk = priv;
8351
8352 update_pvclock_gtod(tk);
8353
8354 /*
8355 * Disable master clock if host does not trust, or does not use,
8356 * TSC based clocksource. Delegate queue_work() to irq_work as
8357 * this is invoked with tk_core.seq write held.
8358 */
8359 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8360 atomic_read(&kvm_guest_has_master_clock) != 0)
8361 irq_work_queue(&pvclock_irq_work);
8362 return 0;
8363 }
8364
8365 static struct notifier_block pvclock_gtod_notifier = {
8366 .notifier_call = pvclock_gtod_notify,
8367 };
8368 #endif
8369
8370 int kvm_arch_init(void *opaque)
8371 {
8372 struct kvm_x86_init_ops *ops = opaque;
8373 int r;
8374
8375 if (kvm_x86_ops.hardware_enable) {
8376 printk(KERN_ERR "kvm: already loaded the other module\n");
8377 r = -EEXIST;
8378 goto out;
8379 }
8380
8381 if (!ops->cpu_has_kvm_support()) {
8382 pr_err_ratelimited("kvm: no hardware support\n");
8383 r = -EOPNOTSUPP;
8384 goto out;
8385 }
8386 if (ops->disabled_by_bios()) {
8387 pr_err_ratelimited("kvm: disabled by bios\n");
8388 r = -EOPNOTSUPP;
8389 goto out;
8390 }
8391
8392 /*
8393 * KVM explicitly assumes that the guest has an FPU and
8394 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8395 * vCPU's FPU state as a fxregs_state struct.
8396 */
8397 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8398 printk(KERN_ERR "kvm: inadequate fpu\n");
8399 r = -EOPNOTSUPP;
8400 goto out;
8401 }
8402
8403 r = -ENOMEM;
8404 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8405 __alignof__(struct fpu), SLAB_ACCOUNT,
8406 NULL);
8407 if (!x86_fpu_cache) {
8408 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8409 goto out;
8410 }
8411
8412 x86_emulator_cache = kvm_alloc_emulator_cache();
8413 if (!x86_emulator_cache) {
8414 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8415 goto out_free_x86_fpu_cache;
8416 }
8417
8418 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8419 if (!user_return_msrs) {
8420 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8421 goto out_free_x86_emulator_cache;
8422 }
8423 kvm_nr_uret_msrs = 0;
8424
8425 r = kvm_mmu_module_init();
8426 if (r)
8427 goto out_free_percpu;
8428
8429 kvm_timer_init();
8430
8431 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8432
8433 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8434 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8435 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8436 }
8437
8438 if (pi_inject_timer == -1)
8439 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8440 #ifdef CONFIG_X86_64
8441 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8442
8443 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8444 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8445 #endif
8446
8447 return 0;
8448
8449 out_free_percpu:
8450 free_percpu(user_return_msrs);
8451 out_free_x86_emulator_cache:
8452 kmem_cache_destroy(x86_emulator_cache);
8453 out_free_x86_fpu_cache:
8454 kmem_cache_destroy(x86_fpu_cache);
8455 out:
8456 return r;
8457 }
8458
8459 void kvm_arch_exit(void)
8460 {
8461 #ifdef CONFIG_X86_64
8462 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8463 clear_hv_tscchange_cb();
8464 #endif
8465 kvm_lapic_exit();
8466 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8467
8468 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8469 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8470 CPUFREQ_TRANSITION_NOTIFIER);
8471 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8472 #ifdef CONFIG_X86_64
8473 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8474 irq_work_sync(&pvclock_irq_work);
8475 cancel_work_sync(&pvclock_gtod_work);
8476 #endif
8477 kvm_x86_ops.hardware_enable = NULL;
8478 kvm_mmu_module_exit();
8479 free_percpu(user_return_msrs);
8480 kmem_cache_destroy(x86_emulator_cache);
8481 kmem_cache_destroy(x86_fpu_cache);
8482 #ifdef CONFIG_KVM_XEN
8483 static_key_deferred_flush(&kvm_xen_enabled);
8484 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8485 #endif
8486 }
8487
8488 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8489 {
8490 ++vcpu->stat.halt_exits;
8491 if (lapic_in_kernel(vcpu)) {
8492 vcpu->arch.mp_state = state;
8493 return 1;
8494 } else {
8495 vcpu->run->exit_reason = reason;
8496 return 0;
8497 }
8498 }
8499
8500 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8501 {
8502 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8503 }
8504 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8505
8506 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8507 {
8508 int ret = kvm_skip_emulated_instruction(vcpu);
8509 /*
8510 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8511 * KVM_EXIT_DEBUG here.
8512 */
8513 return kvm_vcpu_halt(vcpu) && ret;
8514 }
8515 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8516
8517 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8518 {
8519 int ret = kvm_skip_emulated_instruction(vcpu);
8520
8521 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8522 }
8523 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8524
8525 #ifdef CONFIG_X86_64
8526 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8527 unsigned long clock_type)
8528 {
8529 struct kvm_clock_pairing clock_pairing;
8530 struct timespec64 ts;
8531 u64 cycle;
8532 int ret;
8533
8534 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8535 return -KVM_EOPNOTSUPP;
8536
8537 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8538 return -KVM_EOPNOTSUPP;
8539
8540 clock_pairing.sec = ts.tv_sec;
8541 clock_pairing.nsec = ts.tv_nsec;
8542 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8543 clock_pairing.flags = 0;
8544 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8545
8546 ret = 0;
8547 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8548 sizeof(struct kvm_clock_pairing)))
8549 ret = -KVM_EFAULT;
8550
8551 return ret;
8552 }
8553 #endif
8554
8555 /*
8556 * kvm_pv_kick_cpu_op: Kick a vcpu.
8557 *
8558 * @apicid - apicid of vcpu to be kicked.
8559 */
8560 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8561 {
8562 struct kvm_lapic_irq lapic_irq;
8563
8564 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8565 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8566 lapic_irq.level = 0;
8567 lapic_irq.dest_id = apicid;
8568 lapic_irq.msi_redir_hint = false;
8569
8570 lapic_irq.delivery_mode = APIC_DM_REMRD;
8571 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8572 }
8573
8574 bool kvm_apicv_activated(struct kvm *kvm)
8575 {
8576 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8577 }
8578 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8579
8580 static void kvm_apicv_init(struct kvm *kvm)
8581 {
8582 if (enable_apicv)
8583 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8584 &kvm->arch.apicv_inhibit_reasons);
8585 else
8586 set_bit(APICV_INHIBIT_REASON_DISABLE,
8587 &kvm->arch.apicv_inhibit_reasons);
8588 }
8589
8590 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8591 {
8592 struct kvm_vcpu *target = NULL;
8593 struct kvm_apic_map *map;
8594
8595 vcpu->stat.directed_yield_attempted++;
8596
8597 if (single_task_running())
8598 goto no_yield;
8599
8600 rcu_read_lock();
8601 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8602
8603 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8604 target = map->phys_map[dest_id]->vcpu;
8605
8606 rcu_read_unlock();
8607
8608 if (!target || !READ_ONCE(target->ready))
8609 goto no_yield;
8610
8611 /* Ignore requests to yield to self */
8612 if (vcpu == target)
8613 goto no_yield;
8614
8615 if (kvm_vcpu_yield_to(target) <= 0)
8616 goto no_yield;
8617
8618 vcpu->stat.directed_yield_successful++;
8619
8620 no_yield:
8621 return;
8622 }
8623
8624 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8625 {
8626 u64 ret = vcpu->run->hypercall.ret;
8627
8628 if (!is_64_bit_mode(vcpu))
8629 ret = (u32)ret;
8630 kvm_rax_write(vcpu, ret);
8631 ++vcpu->stat.hypercalls;
8632 return kvm_skip_emulated_instruction(vcpu);
8633 }
8634
8635 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8636 {
8637 unsigned long nr, a0, a1, a2, a3, ret;
8638 int op_64_bit;
8639
8640 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8641 return kvm_xen_hypercall(vcpu);
8642
8643 if (kvm_hv_hypercall_enabled(vcpu))
8644 return kvm_hv_hypercall(vcpu);
8645
8646 nr = kvm_rax_read(vcpu);
8647 a0 = kvm_rbx_read(vcpu);
8648 a1 = kvm_rcx_read(vcpu);
8649 a2 = kvm_rdx_read(vcpu);
8650 a3 = kvm_rsi_read(vcpu);
8651
8652 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8653
8654 op_64_bit = is_64_bit_mode(vcpu);
8655 if (!op_64_bit) {
8656 nr &= 0xFFFFFFFF;
8657 a0 &= 0xFFFFFFFF;
8658 a1 &= 0xFFFFFFFF;
8659 a2 &= 0xFFFFFFFF;
8660 a3 &= 0xFFFFFFFF;
8661 }
8662
8663 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8664 ret = -KVM_EPERM;
8665 goto out;
8666 }
8667
8668 ret = -KVM_ENOSYS;
8669
8670 switch (nr) {
8671 case KVM_HC_VAPIC_POLL_IRQ:
8672 ret = 0;
8673 break;
8674 case KVM_HC_KICK_CPU:
8675 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8676 break;
8677
8678 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8679 kvm_sched_yield(vcpu, a1);
8680 ret = 0;
8681 break;
8682 #ifdef CONFIG_X86_64
8683 case KVM_HC_CLOCK_PAIRING:
8684 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8685 break;
8686 #endif
8687 case KVM_HC_SEND_IPI:
8688 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8689 break;
8690
8691 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8692 break;
8693 case KVM_HC_SCHED_YIELD:
8694 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8695 break;
8696
8697 kvm_sched_yield(vcpu, a0);
8698 ret = 0;
8699 break;
8700 case KVM_HC_MAP_GPA_RANGE: {
8701 u64 gpa = a0, npages = a1, attrs = a2;
8702
8703 ret = -KVM_ENOSYS;
8704 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8705 break;
8706
8707 if (!PAGE_ALIGNED(gpa) || !npages ||
8708 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8709 ret = -KVM_EINVAL;
8710 break;
8711 }
8712
8713 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8714 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8715 vcpu->run->hypercall.args[0] = gpa;
8716 vcpu->run->hypercall.args[1] = npages;
8717 vcpu->run->hypercall.args[2] = attrs;
8718 vcpu->run->hypercall.longmode = op_64_bit;
8719 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8720 return 0;
8721 }
8722 default:
8723 ret = -KVM_ENOSYS;
8724 break;
8725 }
8726 out:
8727 if (!op_64_bit)
8728 ret = (u32)ret;
8729 kvm_rax_write(vcpu, ret);
8730
8731 ++vcpu->stat.hypercalls;
8732 return kvm_skip_emulated_instruction(vcpu);
8733 }
8734 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8735
8736 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8737 {
8738 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8739 char instruction[3];
8740 unsigned long rip = kvm_rip_read(vcpu);
8741
8742 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8743
8744 return emulator_write_emulated(ctxt, rip, instruction, 3,
8745 &ctxt->exception);
8746 }
8747
8748 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8749 {
8750 return vcpu->run->request_interrupt_window &&
8751 likely(!pic_in_kernel(vcpu->kvm));
8752 }
8753
8754 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8755 {
8756 struct kvm_run *kvm_run = vcpu->run;
8757
8758 /*
8759 * if_flag is obsolete and useless, so do not bother
8760 * setting it for SEV-ES guests. Userspace can just
8761 * use kvm_run->ready_for_interrupt_injection.
8762 */
8763 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8764 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8765
8766 kvm_run->cr8 = kvm_get_cr8(vcpu);
8767 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8768 kvm_run->ready_for_interrupt_injection =
8769 pic_in_kernel(vcpu->kvm) ||
8770 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8771
8772 if (is_smm(vcpu))
8773 kvm_run->flags |= KVM_RUN_X86_SMM;
8774 }
8775
8776 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8777 {
8778 int max_irr, tpr;
8779
8780 if (!kvm_x86_ops.update_cr8_intercept)
8781 return;
8782
8783 if (!lapic_in_kernel(vcpu))
8784 return;
8785
8786 if (vcpu->arch.apicv_active)
8787 return;
8788
8789 if (!vcpu->arch.apic->vapic_addr)
8790 max_irr = kvm_lapic_find_highest_irr(vcpu);
8791 else
8792 max_irr = -1;
8793
8794 if (max_irr != -1)
8795 max_irr >>= 4;
8796
8797 tpr = kvm_lapic_get_cr8(vcpu);
8798
8799 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8800 }
8801
8802
8803 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8804 {
8805 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8806 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8807 return 1;
8808 }
8809
8810 return kvm_x86_ops.nested_ops->check_events(vcpu);
8811 }
8812
8813 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8814 {
8815 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8816 vcpu->arch.exception.error_code = false;
8817 static_call(kvm_x86_queue_exception)(vcpu);
8818 }
8819
8820 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8821 {
8822 int r;
8823 bool can_inject = true;
8824
8825 /* try to reinject previous events if any */
8826
8827 if (vcpu->arch.exception.injected) {
8828 kvm_inject_exception(vcpu);
8829 can_inject = false;
8830 }
8831 /*
8832 * Do not inject an NMI or interrupt if there is a pending
8833 * exception. Exceptions and interrupts are recognized at
8834 * instruction boundaries, i.e. the start of an instruction.
8835 * Trap-like exceptions, e.g. #DB, have higher priority than
8836 * NMIs and interrupts, i.e. traps are recognized before an
8837 * NMI/interrupt that's pending on the same instruction.
8838 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8839 * priority, but are only generated (pended) during instruction
8840 * execution, i.e. a pending fault-like exception means the
8841 * fault occurred on the *previous* instruction and must be
8842 * serviced prior to recognizing any new events in order to
8843 * fully complete the previous instruction.
8844 */
8845 else if (!vcpu->arch.exception.pending) {
8846 if (vcpu->arch.nmi_injected) {
8847 static_call(kvm_x86_set_nmi)(vcpu);
8848 can_inject = false;
8849 } else if (vcpu->arch.interrupt.injected) {
8850 static_call(kvm_x86_set_irq)(vcpu);
8851 can_inject = false;
8852 }
8853 }
8854
8855 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8856 vcpu->arch.exception.pending);
8857
8858 /*
8859 * Call check_nested_events() even if we reinjected a previous event
8860 * in order for caller to determine if it should require immediate-exit
8861 * from L2 to L1 due to pending L1 events which require exit
8862 * from L2 to L1.
8863 */
8864 if (is_guest_mode(vcpu)) {
8865 r = kvm_check_nested_events(vcpu);
8866 if (r < 0)
8867 goto out;
8868 }
8869
8870 /* try to inject new event if pending */
8871 if (vcpu->arch.exception.pending) {
8872 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8873 vcpu->arch.exception.has_error_code,
8874 vcpu->arch.exception.error_code);
8875
8876 vcpu->arch.exception.pending = false;
8877 vcpu->arch.exception.injected = true;
8878
8879 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8880 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8881 X86_EFLAGS_RF);
8882
8883 if (vcpu->arch.exception.nr == DB_VECTOR) {
8884 kvm_deliver_exception_payload(vcpu);
8885 if (vcpu->arch.dr7 & DR7_GD) {
8886 vcpu->arch.dr7 &= ~DR7_GD;
8887 kvm_update_dr7(vcpu);
8888 }
8889 }
8890
8891 kvm_inject_exception(vcpu);
8892 can_inject = false;
8893 }
8894
8895 /*
8896 * Finally, inject interrupt events. If an event cannot be injected
8897 * due to architectural conditions (e.g. IF=0) a window-open exit
8898 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8899 * and can architecturally be injected, but we cannot do it right now:
8900 * an interrupt could have arrived just now and we have to inject it
8901 * as a vmexit, or there could already an event in the queue, which is
8902 * indicated by can_inject. In that case we request an immediate exit
8903 * in order to make progress and get back here for another iteration.
8904 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8905 */
8906 if (vcpu->arch.smi_pending) {
8907 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8908 if (r < 0)
8909 goto out;
8910 if (r) {
8911 vcpu->arch.smi_pending = false;
8912 ++vcpu->arch.smi_count;
8913 enter_smm(vcpu);
8914 can_inject = false;
8915 } else
8916 static_call(kvm_x86_enable_smi_window)(vcpu);
8917 }
8918
8919 if (vcpu->arch.nmi_pending) {
8920 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8921 if (r < 0)
8922 goto out;
8923 if (r) {
8924 --vcpu->arch.nmi_pending;
8925 vcpu->arch.nmi_injected = true;
8926 static_call(kvm_x86_set_nmi)(vcpu);
8927 can_inject = false;
8928 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8929 }
8930 if (vcpu->arch.nmi_pending)
8931 static_call(kvm_x86_enable_nmi_window)(vcpu);
8932 }
8933
8934 if (kvm_cpu_has_injectable_intr(vcpu)) {
8935 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8936 if (r < 0)
8937 goto out;
8938 if (r) {
8939 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8940 static_call(kvm_x86_set_irq)(vcpu);
8941 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8942 }
8943 if (kvm_cpu_has_injectable_intr(vcpu))
8944 static_call(kvm_x86_enable_irq_window)(vcpu);
8945 }
8946
8947 if (is_guest_mode(vcpu) &&
8948 kvm_x86_ops.nested_ops->hv_timer_pending &&
8949 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8950 *req_immediate_exit = true;
8951
8952 WARN_ON(vcpu->arch.exception.pending);
8953 return 0;
8954
8955 out:
8956 if (r == -EBUSY) {
8957 *req_immediate_exit = true;
8958 r = 0;
8959 }
8960 return r;
8961 }
8962
8963 static void process_nmi(struct kvm_vcpu *vcpu)
8964 {
8965 unsigned limit = 2;
8966
8967 /*
8968 * x86 is limited to one NMI running, and one NMI pending after it.
8969 * If an NMI is already in progress, limit further NMIs to just one.
8970 * Otherwise, allow two (and we'll inject the first one immediately).
8971 */
8972 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8973 limit = 1;
8974
8975 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8976 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8977 kvm_make_request(KVM_REQ_EVENT, vcpu);
8978 }
8979
8980 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8981 {
8982 u32 flags = 0;
8983 flags |= seg->g << 23;
8984 flags |= seg->db << 22;
8985 flags |= seg->l << 21;
8986 flags |= seg->avl << 20;
8987 flags |= seg->present << 15;
8988 flags |= seg->dpl << 13;
8989 flags |= seg->s << 12;
8990 flags |= seg->type << 8;
8991 return flags;
8992 }
8993
8994 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8995 {
8996 struct kvm_segment seg;
8997 int offset;
8998
8999 kvm_get_segment(vcpu, &seg, n);
9000 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9001
9002 if (n < 3)
9003 offset = 0x7f84 + n * 12;
9004 else
9005 offset = 0x7f2c + (n - 3) * 12;
9006
9007 put_smstate(u32, buf, offset + 8, seg.base);
9008 put_smstate(u32, buf, offset + 4, seg.limit);
9009 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9010 }
9011
9012 #ifdef CONFIG_X86_64
9013 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9014 {
9015 struct kvm_segment seg;
9016 int offset;
9017 u16 flags;
9018
9019 kvm_get_segment(vcpu, &seg, n);
9020 offset = 0x7e00 + n * 16;
9021
9022 flags = enter_smm_get_segment_flags(&seg) >> 8;
9023 put_smstate(u16, buf, offset, seg.selector);
9024 put_smstate(u16, buf, offset + 2, flags);
9025 put_smstate(u32, buf, offset + 4, seg.limit);
9026 put_smstate(u64, buf, offset + 8, seg.base);
9027 }
9028 #endif
9029
9030 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9031 {
9032 struct desc_ptr dt;
9033 struct kvm_segment seg;
9034 unsigned long val;
9035 int i;
9036
9037 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9038 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9039 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9040 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9041
9042 for (i = 0; i < 8; i++)
9043 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9044
9045 kvm_get_dr(vcpu, 6, &val);
9046 put_smstate(u32, buf, 0x7fcc, (u32)val);
9047 kvm_get_dr(vcpu, 7, &val);
9048 put_smstate(u32, buf, 0x7fc8, (u32)val);
9049
9050 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9051 put_smstate(u32, buf, 0x7fc4, seg.selector);
9052 put_smstate(u32, buf, 0x7f64, seg.base);
9053 put_smstate(u32, buf, 0x7f60, seg.limit);
9054 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9055
9056 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9057 put_smstate(u32, buf, 0x7fc0, seg.selector);
9058 put_smstate(u32, buf, 0x7f80, seg.base);
9059 put_smstate(u32, buf, 0x7f7c, seg.limit);
9060 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9061
9062 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9063 put_smstate(u32, buf, 0x7f74, dt.address);
9064 put_smstate(u32, buf, 0x7f70, dt.size);
9065
9066 static_call(kvm_x86_get_idt)(vcpu, &dt);
9067 put_smstate(u32, buf, 0x7f58, dt.address);
9068 put_smstate(u32, buf, 0x7f54, dt.size);
9069
9070 for (i = 0; i < 6; i++)
9071 enter_smm_save_seg_32(vcpu, buf, i);
9072
9073 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9074
9075 /* revision id */
9076 put_smstate(u32, buf, 0x7efc, 0x00020000);
9077 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9078 }
9079
9080 #ifdef CONFIG_X86_64
9081 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9082 {
9083 struct desc_ptr dt;
9084 struct kvm_segment seg;
9085 unsigned long val;
9086 int i;
9087
9088 for (i = 0; i < 16; i++)
9089 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9090
9091 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9092 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9093
9094 kvm_get_dr(vcpu, 6, &val);
9095 put_smstate(u64, buf, 0x7f68, val);
9096 kvm_get_dr(vcpu, 7, &val);
9097 put_smstate(u64, buf, 0x7f60, val);
9098
9099 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9100 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9101 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9102
9103 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9104
9105 /* revision id */
9106 put_smstate(u32, buf, 0x7efc, 0x00020064);
9107
9108 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9109
9110 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9111 put_smstate(u16, buf, 0x7e90, seg.selector);
9112 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9113 put_smstate(u32, buf, 0x7e94, seg.limit);
9114 put_smstate(u64, buf, 0x7e98, seg.base);
9115
9116 static_call(kvm_x86_get_idt)(vcpu, &dt);
9117 put_smstate(u32, buf, 0x7e84, dt.size);
9118 put_smstate(u64, buf, 0x7e88, dt.address);
9119
9120 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9121 put_smstate(u16, buf, 0x7e70, seg.selector);
9122 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9123 put_smstate(u32, buf, 0x7e74, seg.limit);
9124 put_smstate(u64, buf, 0x7e78, seg.base);
9125
9126 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9127 put_smstate(u32, buf, 0x7e64, dt.size);
9128 put_smstate(u64, buf, 0x7e68, dt.address);
9129
9130 for (i = 0; i < 6; i++)
9131 enter_smm_save_seg_64(vcpu, buf, i);
9132 }
9133 #endif
9134
9135 static void enter_smm(struct kvm_vcpu *vcpu)
9136 {
9137 struct kvm_segment cs, ds;
9138 struct desc_ptr dt;
9139 unsigned long cr0;
9140 char buf[512];
9141
9142 memset(buf, 0, 512);
9143 #ifdef CONFIG_X86_64
9144 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9145 enter_smm_save_state_64(vcpu, buf);
9146 else
9147 #endif
9148 enter_smm_save_state_32(vcpu, buf);
9149
9150 /*
9151 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9152 * state (e.g. leave guest mode) after we've saved the state into the
9153 * SMM state-save area.
9154 */
9155 static_call(kvm_x86_enter_smm)(vcpu, buf);
9156
9157 kvm_smm_changed(vcpu, true);
9158 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9159
9160 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9161 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9162 else
9163 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9164
9165 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9166 kvm_rip_write(vcpu, 0x8000);
9167
9168 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9169 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9170 vcpu->arch.cr0 = cr0;
9171
9172 static_call(kvm_x86_set_cr4)(vcpu, 0);
9173
9174 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9175 dt.address = dt.size = 0;
9176 static_call(kvm_x86_set_idt)(vcpu, &dt);
9177
9178 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9179
9180 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9181 cs.base = vcpu->arch.smbase;
9182
9183 ds.selector = 0;
9184 ds.base = 0;
9185
9186 cs.limit = ds.limit = 0xffffffff;
9187 cs.type = ds.type = 0x3;
9188 cs.dpl = ds.dpl = 0;
9189 cs.db = ds.db = 0;
9190 cs.s = ds.s = 1;
9191 cs.l = ds.l = 0;
9192 cs.g = ds.g = 1;
9193 cs.avl = ds.avl = 0;
9194 cs.present = ds.present = 1;
9195 cs.unusable = ds.unusable = 0;
9196 cs.padding = ds.padding = 0;
9197
9198 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9199 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9200 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9201 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9202 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9203 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9204
9205 #ifdef CONFIG_X86_64
9206 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9207 static_call(kvm_x86_set_efer)(vcpu, 0);
9208 #endif
9209
9210 kvm_update_cpuid_runtime(vcpu);
9211 kvm_mmu_reset_context(vcpu);
9212 }
9213
9214 static void process_smi(struct kvm_vcpu *vcpu)
9215 {
9216 vcpu->arch.smi_pending = true;
9217 kvm_make_request(KVM_REQ_EVENT, vcpu);
9218 }
9219
9220 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9221 unsigned long *vcpu_bitmap)
9222 {
9223 cpumask_var_t cpus;
9224
9225 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9226
9227 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9228 NULL, vcpu_bitmap, cpus);
9229
9230 free_cpumask_var(cpus);
9231 }
9232
9233 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9234 {
9235 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9236 }
9237
9238 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9239 {
9240 if (!lapic_in_kernel(vcpu))
9241 return;
9242
9243 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9244 kvm_apic_update_apicv(vcpu);
9245 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9246
9247 /*
9248 * When APICv gets disabled, we may still have injected interrupts
9249 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9250 * still active when the interrupt got accepted. Make sure
9251 * inject_pending_event() is called to check for that.
9252 */
9253 if (!vcpu->arch.apicv_active)
9254 kvm_make_request(KVM_REQ_EVENT, vcpu);
9255 }
9256 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9257
9258 /*
9259 * NOTE: Do not hold any lock prior to calling this.
9260 *
9261 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9262 * locked, because it calls __x86_set_memory_region() which does
9263 * synchronize_srcu(&kvm->srcu).
9264 */
9265 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9266 {
9267 unsigned long old, new, expected;
9268
9269 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9270 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9271 return;
9272
9273 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9274 do {
9275 expected = new = old;
9276 if (activate)
9277 __clear_bit(bit, &new);
9278 else
9279 __set_bit(bit, &new);
9280 if (new == old)
9281 break;
9282 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9283 } while (old != expected);
9284
9285 if (!!old == !!new)
9286 return;
9287
9288 trace_kvm_apicv_update_request(activate, bit);
9289 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9290 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9291
9292 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9293 }
9294 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9295
9296 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9297 {
9298 if (!kvm_apic_present(vcpu))
9299 return;
9300
9301 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9302
9303 if (irqchip_split(vcpu->kvm))
9304 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9305 else {
9306 if (vcpu->arch.apicv_active)
9307 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9308 if (ioapic_in_kernel(vcpu->kvm))
9309 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9310 }
9311
9312 if (is_guest_mode(vcpu))
9313 vcpu->arch.load_eoi_exitmap_pending = true;
9314 else
9315 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9316 }
9317
9318 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9319 {
9320 u64 eoi_exit_bitmap[4];
9321
9322 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9323 return;
9324
9325 if (to_hv_vcpu(vcpu))
9326 bitmap_or((ulong *)eoi_exit_bitmap,
9327 vcpu->arch.ioapic_handled_vectors,
9328 to_hv_synic(vcpu)->vec_bitmap, 256);
9329
9330 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9331 }
9332
9333 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9334 unsigned long start, unsigned long end)
9335 {
9336 unsigned long apic_address;
9337
9338 /*
9339 * The physical address of apic access page is stored in the VMCS.
9340 * Update it when it becomes invalid.
9341 */
9342 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9343 if (start <= apic_address && apic_address < end)
9344 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9345 }
9346
9347 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9348 {
9349 if (!lapic_in_kernel(vcpu))
9350 return;
9351
9352 if (!kvm_x86_ops.set_apic_access_page_addr)
9353 return;
9354
9355 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9356 }
9357
9358 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9359 {
9360 smp_send_reschedule(vcpu->cpu);
9361 }
9362 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9363
9364 /*
9365 * Returns 1 to let vcpu_run() continue the guest execution loop without
9366 * exiting to the userspace. Otherwise, the value will be returned to the
9367 * userspace.
9368 */
9369 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9370 {
9371 int r;
9372 bool req_int_win =
9373 dm_request_for_irq_injection(vcpu) &&
9374 kvm_cpu_accept_dm_intr(vcpu);
9375 fastpath_t exit_fastpath;
9376
9377 bool req_immediate_exit = false;
9378
9379 /* Forbid vmenter if vcpu dirty ring is soft-full */
9380 if (unlikely(vcpu->kvm->dirty_ring_size &&
9381 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9382 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9383 trace_kvm_dirty_ring_exit(vcpu);
9384 r = 0;
9385 goto out;
9386 }
9387
9388 if (kvm_request_pending(vcpu)) {
9389 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9390 r = -EIO;
9391 goto out;
9392 }
9393 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9394 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9395 r = 0;
9396 goto out;
9397 }
9398 }
9399 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9400 kvm_mmu_unload(vcpu);
9401 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9402 __kvm_migrate_timers(vcpu);
9403 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9404 kvm_gen_update_masterclock(vcpu->kvm);
9405 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9406 kvm_gen_kvmclock_update(vcpu);
9407 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9408 r = kvm_guest_time_update(vcpu);
9409 if (unlikely(r))
9410 goto out;
9411 }
9412 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9413 kvm_mmu_sync_roots(vcpu);
9414 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9415 kvm_mmu_load_pgd(vcpu);
9416 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9417 kvm_vcpu_flush_tlb_all(vcpu);
9418
9419 /* Flushing all ASIDs flushes the current ASID... */
9420 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9421 }
9422 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9423 kvm_vcpu_flush_tlb_current(vcpu);
9424 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9425 kvm_vcpu_flush_tlb_guest(vcpu);
9426
9427 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9428 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9429 r = 0;
9430 goto out;
9431 }
9432 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9433 if (is_guest_mode(vcpu)) {
9434 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9435 } else {
9436 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9437 vcpu->mmio_needed = 0;
9438 r = 0;
9439 goto out;
9440 }
9441 }
9442 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9443 /* Page is swapped out. Do synthetic halt */
9444 vcpu->arch.apf.halted = true;
9445 r = 1;
9446 goto out;
9447 }
9448 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9449 record_steal_time(vcpu);
9450 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9451 process_smi(vcpu);
9452 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9453 process_nmi(vcpu);
9454 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9455 kvm_pmu_handle_event(vcpu);
9456 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9457 kvm_pmu_deliver_pmi(vcpu);
9458 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9459 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9460 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9461 vcpu->arch.ioapic_handled_vectors)) {
9462 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9463 vcpu->run->eoi.vector =
9464 vcpu->arch.pending_ioapic_eoi;
9465 r = 0;
9466 goto out;
9467 }
9468 }
9469 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9470 vcpu_scan_ioapic(vcpu);
9471 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9472 vcpu_load_eoi_exitmap(vcpu);
9473 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9474 kvm_vcpu_reload_apic_access_page(vcpu);
9475 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9476 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9477 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9478 r = 0;
9479 goto out;
9480 }
9481 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9482 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9483 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9484 r = 0;
9485 goto out;
9486 }
9487 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9488 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9489
9490 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9491 vcpu->run->hyperv = hv_vcpu->exit;
9492 r = 0;
9493 goto out;
9494 }
9495
9496 /*
9497 * KVM_REQ_HV_STIMER has to be processed after
9498 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9499 * depend on the guest clock being up-to-date
9500 */
9501 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9502 kvm_hv_process_stimers(vcpu);
9503 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9504 kvm_vcpu_update_apicv(vcpu);
9505 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9506 kvm_check_async_pf_completion(vcpu);
9507 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9508 static_call(kvm_x86_msr_filter_changed)(vcpu);
9509
9510 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9511 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9512 }
9513
9514 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9515 kvm_xen_has_interrupt(vcpu)) {
9516 ++vcpu->stat.req_event;
9517 r = kvm_apic_accept_events(vcpu);
9518 if (r < 0) {
9519 r = 0;
9520 goto out;
9521 }
9522 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9523 r = 1;
9524 goto out;
9525 }
9526
9527 r = inject_pending_event(vcpu, &req_immediate_exit);
9528 if (r < 0) {
9529 r = 0;
9530 goto out;
9531 }
9532 if (req_int_win)
9533 static_call(kvm_x86_enable_irq_window)(vcpu);
9534
9535 if (kvm_lapic_enabled(vcpu)) {
9536 update_cr8_intercept(vcpu);
9537 kvm_lapic_sync_to_vapic(vcpu);
9538 }
9539 }
9540
9541 r = kvm_mmu_reload(vcpu);
9542 if (unlikely(r)) {
9543 goto cancel_injection;
9544 }
9545
9546 preempt_disable();
9547
9548 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9549
9550 /*
9551 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9552 * IPI are then delayed after guest entry, which ensures that they
9553 * result in virtual interrupt delivery.
9554 */
9555 local_irq_disable();
9556 vcpu->mode = IN_GUEST_MODE;
9557
9558 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9559
9560 /*
9561 * 1) We should set ->mode before checking ->requests. Please see
9562 * the comment in kvm_vcpu_exiting_guest_mode().
9563 *
9564 * 2) For APICv, we should set ->mode before checking PID.ON. This
9565 * pairs with the memory barrier implicit in pi_test_and_set_on
9566 * (see vmx_deliver_posted_interrupt).
9567 *
9568 * 3) This also orders the write to mode from any reads to the page
9569 * tables done while the VCPU is running. Please see the comment
9570 * in kvm_flush_remote_tlbs.
9571 */
9572 smp_mb__after_srcu_read_unlock();
9573
9574 /*
9575 * This handles the case where a posted interrupt was
9576 * notified with kvm_vcpu_kick.
9577 */
9578 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9579 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9580
9581 if (kvm_vcpu_exit_request(vcpu)) {
9582 vcpu->mode = OUTSIDE_GUEST_MODE;
9583 smp_wmb();
9584 local_irq_enable();
9585 preempt_enable();
9586 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9587 r = 1;
9588 goto cancel_injection;
9589 }
9590
9591 if (req_immediate_exit) {
9592 kvm_make_request(KVM_REQ_EVENT, vcpu);
9593 static_call(kvm_x86_request_immediate_exit)(vcpu);
9594 }
9595
9596 fpregs_assert_state_consistent();
9597 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9598 switch_fpu_return();
9599
9600 if (unlikely(vcpu->arch.switch_db_regs)) {
9601 set_debugreg(0, 7);
9602 set_debugreg(vcpu->arch.eff_db[0], 0);
9603 set_debugreg(vcpu->arch.eff_db[1], 1);
9604 set_debugreg(vcpu->arch.eff_db[2], 2);
9605 set_debugreg(vcpu->arch.eff_db[3], 3);
9606 set_debugreg(vcpu->arch.dr6, 6);
9607 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9608 } else if (unlikely(hw_breakpoint_active())) {
9609 set_debugreg(0, 7);
9610 }
9611
9612 for (;;) {
9613 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9614 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9615 break;
9616
9617 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9618 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9619 break;
9620 }
9621
9622 if (vcpu->arch.apicv_active)
9623 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9624 }
9625
9626 /*
9627 * Do this here before restoring debug registers on the host. And
9628 * since we do this before handling the vmexit, a DR access vmexit
9629 * can (a) read the correct value of the debug registers, (b) set
9630 * KVM_DEBUGREG_WONT_EXIT again.
9631 */
9632 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9633 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9634 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9635 kvm_update_dr0123(vcpu);
9636 kvm_update_dr7(vcpu);
9637 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9638 }
9639
9640 /*
9641 * If the guest has used debug registers, at least dr7
9642 * will be disabled while returning to the host.
9643 * If we don't have active breakpoints in the host, we don't
9644 * care about the messed up debug address registers. But if
9645 * we have some of them active, restore the old state.
9646 */
9647 if (hw_breakpoint_active())
9648 hw_breakpoint_restore();
9649
9650 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9651 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9652
9653 vcpu->mode = OUTSIDE_GUEST_MODE;
9654 smp_wmb();
9655
9656 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9657
9658 /*
9659 * Consume any pending interrupts, including the possible source of
9660 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9661 * An instruction is required after local_irq_enable() to fully unblock
9662 * interrupts on processors that implement an interrupt shadow, the
9663 * stat.exits increment will do nicely.
9664 */
9665 kvm_before_interrupt(vcpu);
9666 local_irq_enable();
9667 ++vcpu->stat.exits;
9668 local_irq_disable();
9669 kvm_after_interrupt(vcpu);
9670
9671 /*
9672 * Wait until after servicing IRQs to account guest time so that any
9673 * ticks that occurred while running the guest are properly accounted
9674 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9675 * of accounting via context tracking, but the loss of accuracy is
9676 * acceptable for all known use cases.
9677 */
9678 vtime_account_guest_exit();
9679
9680 if (lapic_in_kernel(vcpu)) {
9681 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9682 if (delta != S64_MIN) {
9683 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9684 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9685 }
9686 }
9687
9688 local_irq_enable();
9689 preempt_enable();
9690
9691 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9692
9693 /*
9694 * Profile KVM exit RIPs:
9695 */
9696 if (unlikely(prof_on == KVM_PROFILING)) {
9697 unsigned long rip = kvm_rip_read(vcpu);
9698 profile_hit(KVM_PROFILING, (void *)rip);
9699 }
9700
9701 if (unlikely(vcpu->arch.tsc_always_catchup))
9702 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9703
9704 if (vcpu->arch.apic_attention)
9705 kvm_lapic_sync_from_vapic(vcpu);
9706
9707 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9708 return r;
9709
9710 cancel_injection:
9711 if (req_immediate_exit)
9712 kvm_make_request(KVM_REQ_EVENT, vcpu);
9713 static_call(kvm_x86_cancel_injection)(vcpu);
9714 if (unlikely(vcpu->arch.apic_attention))
9715 kvm_lapic_sync_from_vapic(vcpu);
9716 out:
9717 return r;
9718 }
9719
9720 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9721 {
9722 if (!kvm_arch_vcpu_runnable(vcpu) &&
9723 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9724 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9725 kvm_vcpu_block(vcpu);
9726 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9727
9728 if (kvm_x86_ops.post_block)
9729 static_call(kvm_x86_post_block)(vcpu);
9730
9731 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9732 return 1;
9733 }
9734
9735 if (kvm_apic_accept_events(vcpu) < 0)
9736 return 0;
9737 switch(vcpu->arch.mp_state) {
9738 case KVM_MP_STATE_HALTED:
9739 case KVM_MP_STATE_AP_RESET_HOLD:
9740 vcpu->arch.pv.pv_unhalted = false;
9741 vcpu->arch.mp_state =
9742 KVM_MP_STATE_RUNNABLE;
9743 fallthrough;
9744 case KVM_MP_STATE_RUNNABLE:
9745 vcpu->arch.apf.halted = false;
9746 break;
9747 case KVM_MP_STATE_INIT_RECEIVED:
9748 break;
9749 default:
9750 return -EINTR;
9751 }
9752 return 1;
9753 }
9754
9755 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9756 {
9757 if (is_guest_mode(vcpu))
9758 kvm_check_nested_events(vcpu);
9759
9760 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9761 !vcpu->arch.apf.halted);
9762 }
9763
9764 static int vcpu_run(struct kvm_vcpu *vcpu)
9765 {
9766 int r;
9767 struct kvm *kvm = vcpu->kvm;
9768
9769 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9770 vcpu->arch.l1tf_flush_l1d = true;
9771
9772 for (;;) {
9773 if (kvm_vcpu_running(vcpu)) {
9774 r = vcpu_enter_guest(vcpu);
9775 } else {
9776 r = vcpu_block(kvm, vcpu);
9777 }
9778
9779 if (r <= 0)
9780 break;
9781
9782 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9783 if (kvm_cpu_has_pending_timer(vcpu))
9784 kvm_inject_pending_timer_irqs(vcpu);
9785
9786 if (dm_request_for_irq_injection(vcpu) &&
9787 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9788 r = 0;
9789 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9790 ++vcpu->stat.request_irq_exits;
9791 break;
9792 }
9793
9794 if (__xfer_to_guest_mode_work_pending()) {
9795 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9796 r = xfer_to_guest_mode_handle_work(vcpu);
9797 if (r)
9798 return r;
9799 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9800 }
9801 }
9802
9803 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9804
9805 return r;
9806 }
9807
9808 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9809 {
9810 int r;
9811
9812 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9813 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9814 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9815 return r;
9816 }
9817
9818 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9819 {
9820 BUG_ON(!vcpu->arch.pio.count);
9821
9822 return complete_emulated_io(vcpu);
9823 }
9824
9825 /*
9826 * Implements the following, as a state machine:
9827 *
9828 * read:
9829 * for each fragment
9830 * for each mmio piece in the fragment
9831 * write gpa, len
9832 * exit
9833 * copy data
9834 * execute insn
9835 *
9836 * write:
9837 * for each fragment
9838 * for each mmio piece in the fragment
9839 * write gpa, len
9840 * copy data
9841 * exit
9842 */
9843 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9844 {
9845 struct kvm_run *run = vcpu->run;
9846 struct kvm_mmio_fragment *frag;
9847 unsigned len;
9848
9849 BUG_ON(!vcpu->mmio_needed);
9850
9851 /* Complete previous fragment */
9852 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9853 len = min(8u, frag->len);
9854 if (!vcpu->mmio_is_write)
9855 memcpy(frag->data, run->mmio.data, len);
9856
9857 if (frag->len <= 8) {
9858 /* Switch to the next fragment. */
9859 frag++;
9860 vcpu->mmio_cur_fragment++;
9861 } else {
9862 /* Go forward to the next mmio piece. */
9863 frag->data += len;
9864 frag->gpa += len;
9865 frag->len -= len;
9866 }
9867
9868 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9869 vcpu->mmio_needed = 0;
9870
9871 /* FIXME: return into emulator if single-stepping. */
9872 if (vcpu->mmio_is_write)
9873 return 1;
9874 vcpu->mmio_read_completed = 1;
9875 return complete_emulated_io(vcpu);
9876 }
9877
9878 run->exit_reason = KVM_EXIT_MMIO;
9879 run->mmio.phys_addr = frag->gpa;
9880 if (vcpu->mmio_is_write)
9881 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9882 run->mmio.len = min(8u, frag->len);
9883 run->mmio.is_write = vcpu->mmio_is_write;
9884 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9885 return 0;
9886 }
9887
9888 static void kvm_save_current_fpu(struct fpu *fpu)
9889 {
9890 /*
9891 * If the target FPU state is not resident in the CPU registers, just
9892 * memcpy() from current, else save CPU state directly to the target.
9893 */
9894 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9895 memcpy(&fpu->state, &current->thread.fpu.state,
9896 fpu_kernel_xstate_size);
9897 else
9898 save_fpregs_to_fpstate(fpu);
9899 }
9900
9901 /* Swap (qemu) user FPU context for the guest FPU context. */
9902 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9903 {
9904 fpregs_lock();
9905
9906 kvm_save_current_fpu(vcpu->arch.user_fpu);
9907
9908 /*
9909 * Guests with protected state can't have it set by the hypervisor,
9910 * so skip trying to set it.
9911 */
9912 if (vcpu->arch.guest_fpu)
9913 /* PKRU is separately restored in kvm_x86_ops.run. */
9914 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9915 ~XFEATURE_MASK_PKRU);
9916
9917 fpregs_mark_activate();
9918 fpregs_unlock();
9919
9920 trace_kvm_fpu(1);
9921 }
9922
9923 /* When vcpu_run ends, restore user space FPU context. */
9924 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9925 {
9926 fpregs_lock();
9927
9928 /*
9929 * Guests with protected state can't have it read by the hypervisor,
9930 * so skip trying to save it.
9931 */
9932 if (vcpu->arch.guest_fpu)
9933 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9934
9935 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9936
9937 fpregs_mark_activate();
9938 fpregs_unlock();
9939
9940 ++vcpu->stat.fpu_reload;
9941 trace_kvm_fpu(0);
9942 }
9943
9944 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9945 {
9946 struct kvm_run *kvm_run = vcpu->run;
9947 int r;
9948
9949 vcpu_load(vcpu);
9950 kvm_sigset_activate(vcpu);
9951 kvm_run->flags = 0;
9952 kvm_load_guest_fpu(vcpu);
9953
9954 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9955 if (kvm_run->immediate_exit) {
9956 r = -EINTR;
9957 goto out;
9958 }
9959 kvm_vcpu_block(vcpu);
9960 if (kvm_apic_accept_events(vcpu) < 0) {
9961 r = 0;
9962 goto out;
9963 }
9964 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9965 r = -EAGAIN;
9966 if (signal_pending(current)) {
9967 r = -EINTR;
9968 kvm_run->exit_reason = KVM_EXIT_INTR;
9969 ++vcpu->stat.signal_exits;
9970 }
9971 goto out;
9972 }
9973
9974 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9975 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9976 r = -EINVAL;
9977 goto out;
9978 }
9979
9980 if (kvm_run->kvm_dirty_regs) {
9981 r = sync_regs(vcpu);
9982 if (r != 0)
9983 goto out;
9984 }
9985
9986 /* re-sync apic's tpr */
9987 if (!lapic_in_kernel(vcpu)) {
9988 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9989 r = -EINVAL;
9990 goto out;
9991 }
9992 }
9993
9994 if (unlikely(vcpu->arch.complete_userspace_io)) {
9995 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9996 vcpu->arch.complete_userspace_io = NULL;
9997 r = cui(vcpu);
9998 if (r <= 0)
9999 goto out;
10000 } else
10001 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10002
10003 if (kvm_run->immediate_exit)
10004 r = -EINTR;
10005 else
10006 r = vcpu_run(vcpu);
10007
10008 out:
10009 kvm_put_guest_fpu(vcpu);
10010 if (kvm_run->kvm_valid_regs)
10011 store_regs(vcpu);
10012 post_kvm_run_save(vcpu);
10013 kvm_sigset_deactivate(vcpu);
10014
10015 vcpu_put(vcpu);
10016 return r;
10017 }
10018
10019 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10020 {
10021 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10022 /*
10023 * We are here if userspace calls get_regs() in the middle of
10024 * instruction emulation. Registers state needs to be copied
10025 * back from emulation context to vcpu. Userspace shouldn't do
10026 * that usually, but some bad designed PV devices (vmware
10027 * backdoor interface) need this to work
10028 */
10029 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10030 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10031 }
10032 regs->rax = kvm_rax_read(vcpu);
10033 regs->rbx = kvm_rbx_read(vcpu);
10034 regs->rcx = kvm_rcx_read(vcpu);
10035 regs->rdx = kvm_rdx_read(vcpu);
10036 regs->rsi = kvm_rsi_read(vcpu);
10037 regs->rdi = kvm_rdi_read(vcpu);
10038 regs->rsp = kvm_rsp_read(vcpu);
10039 regs->rbp = kvm_rbp_read(vcpu);
10040 #ifdef CONFIG_X86_64
10041 regs->r8 = kvm_r8_read(vcpu);
10042 regs->r9 = kvm_r9_read(vcpu);
10043 regs->r10 = kvm_r10_read(vcpu);
10044 regs->r11 = kvm_r11_read(vcpu);
10045 regs->r12 = kvm_r12_read(vcpu);
10046 regs->r13 = kvm_r13_read(vcpu);
10047 regs->r14 = kvm_r14_read(vcpu);
10048 regs->r15 = kvm_r15_read(vcpu);
10049 #endif
10050
10051 regs->rip = kvm_rip_read(vcpu);
10052 regs->rflags = kvm_get_rflags(vcpu);
10053 }
10054
10055 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10056 {
10057 vcpu_load(vcpu);
10058 __get_regs(vcpu, regs);
10059 vcpu_put(vcpu);
10060 return 0;
10061 }
10062
10063 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10064 {
10065 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10066 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10067
10068 kvm_rax_write(vcpu, regs->rax);
10069 kvm_rbx_write(vcpu, regs->rbx);
10070 kvm_rcx_write(vcpu, regs->rcx);
10071 kvm_rdx_write(vcpu, regs->rdx);
10072 kvm_rsi_write(vcpu, regs->rsi);
10073 kvm_rdi_write(vcpu, regs->rdi);
10074 kvm_rsp_write(vcpu, regs->rsp);
10075 kvm_rbp_write(vcpu, regs->rbp);
10076 #ifdef CONFIG_X86_64
10077 kvm_r8_write(vcpu, regs->r8);
10078 kvm_r9_write(vcpu, regs->r9);
10079 kvm_r10_write(vcpu, regs->r10);
10080 kvm_r11_write(vcpu, regs->r11);
10081 kvm_r12_write(vcpu, regs->r12);
10082 kvm_r13_write(vcpu, regs->r13);
10083 kvm_r14_write(vcpu, regs->r14);
10084 kvm_r15_write(vcpu, regs->r15);
10085 #endif
10086
10087 kvm_rip_write(vcpu, regs->rip);
10088 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10089
10090 vcpu->arch.exception.pending = false;
10091
10092 kvm_make_request(KVM_REQ_EVENT, vcpu);
10093 }
10094
10095 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10096 {
10097 vcpu_load(vcpu);
10098 __set_regs(vcpu, regs);
10099 vcpu_put(vcpu);
10100 return 0;
10101 }
10102
10103 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10104 {
10105 struct kvm_segment cs;
10106
10107 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10108 *db = cs.db;
10109 *l = cs.l;
10110 }
10111 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10112
10113 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10114 {
10115 struct desc_ptr dt;
10116
10117 if (vcpu->arch.guest_state_protected)
10118 goto skip_protected_regs;
10119
10120 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10121 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10122 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10123 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10124 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10125 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10126
10127 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10128 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10129
10130 static_call(kvm_x86_get_idt)(vcpu, &dt);
10131 sregs->idt.limit = dt.size;
10132 sregs->idt.base = dt.address;
10133 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10134 sregs->gdt.limit = dt.size;
10135 sregs->gdt.base = dt.address;
10136
10137 sregs->cr2 = vcpu->arch.cr2;
10138 sregs->cr3 = kvm_read_cr3(vcpu);
10139
10140 skip_protected_regs:
10141 sregs->cr0 = kvm_read_cr0(vcpu);
10142 sregs->cr4 = kvm_read_cr4(vcpu);
10143 sregs->cr8 = kvm_get_cr8(vcpu);
10144 sregs->efer = vcpu->arch.efer;
10145 sregs->apic_base = kvm_get_apic_base(vcpu);
10146 }
10147
10148 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10149 {
10150 __get_sregs_common(vcpu, sregs);
10151
10152 if (vcpu->arch.guest_state_protected)
10153 return;
10154
10155 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10156 set_bit(vcpu->arch.interrupt.nr,
10157 (unsigned long *)sregs->interrupt_bitmap);
10158 }
10159
10160 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10161 {
10162 int i;
10163
10164 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10165
10166 if (vcpu->arch.guest_state_protected)
10167 return;
10168
10169 if (is_pae_paging(vcpu)) {
10170 for (i = 0 ; i < 4 ; i++)
10171 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10172 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10173 }
10174 }
10175
10176 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10177 struct kvm_sregs *sregs)
10178 {
10179 vcpu_load(vcpu);
10180 __get_sregs(vcpu, sregs);
10181 vcpu_put(vcpu);
10182 return 0;
10183 }
10184
10185 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10186 struct kvm_mp_state *mp_state)
10187 {
10188 int r;
10189
10190 vcpu_load(vcpu);
10191 if (kvm_mpx_supported())
10192 kvm_load_guest_fpu(vcpu);
10193
10194 r = kvm_apic_accept_events(vcpu);
10195 if (r < 0)
10196 goto out;
10197 r = 0;
10198
10199 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10200 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10201 vcpu->arch.pv.pv_unhalted)
10202 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10203 else
10204 mp_state->mp_state = vcpu->arch.mp_state;
10205
10206 out:
10207 if (kvm_mpx_supported())
10208 kvm_put_guest_fpu(vcpu);
10209 vcpu_put(vcpu);
10210 return r;
10211 }
10212
10213 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10214 struct kvm_mp_state *mp_state)
10215 {
10216 int ret = -EINVAL;
10217
10218 vcpu_load(vcpu);
10219
10220 if (!lapic_in_kernel(vcpu) &&
10221 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10222 goto out;
10223
10224 /*
10225 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10226 * INIT state; latched init should be reported using
10227 * KVM_SET_VCPU_EVENTS, so reject it here.
10228 */
10229 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10230 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10231 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10232 goto out;
10233
10234 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10235 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10236 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10237 } else
10238 vcpu->arch.mp_state = mp_state->mp_state;
10239 kvm_make_request(KVM_REQ_EVENT, vcpu);
10240
10241 ret = 0;
10242 out:
10243 vcpu_put(vcpu);
10244 return ret;
10245 }
10246
10247 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10248 int reason, bool has_error_code, u32 error_code)
10249 {
10250 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10251 int ret;
10252
10253 init_emulate_ctxt(vcpu);
10254
10255 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10256 has_error_code, error_code);
10257 if (ret) {
10258 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10259 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10260 vcpu->run->internal.ndata = 0;
10261 return 0;
10262 }
10263
10264 kvm_rip_write(vcpu, ctxt->eip);
10265 kvm_set_rflags(vcpu, ctxt->eflags);
10266 return 1;
10267 }
10268 EXPORT_SYMBOL_GPL(kvm_task_switch);
10269
10270 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10271 {
10272 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10273 /*
10274 * When EFER.LME and CR0.PG are set, the processor is in
10275 * 64-bit mode (though maybe in a 32-bit code segment).
10276 * CR4.PAE and EFER.LMA must be set.
10277 */
10278 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10279 return false;
10280 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10281 return false;
10282 } else {
10283 /*
10284 * Not in 64-bit mode: EFER.LMA is clear and the code
10285 * segment cannot be 64-bit.
10286 */
10287 if (sregs->efer & EFER_LMA || sregs->cs.l)
10288 return false;
10289 }
10290
10291 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10292 }
10293
10294 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10295 int *mmu_reset_needed, bool update_pdptrs)
10296 {
10297 struct msr_data apic_base_msr;
10298 int idx;
10299 struct desc_ptr dt;
10300
10301 if (!kvm_is_valid_sregs(vcpu, sregs))
10302 return -EINVAL;
10303
10304 apic_base_msr.data = sregs->apic_base;
10305 apic_base_msr.host_initiated = true;
10306 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10307 return -EINVAL;
10308
10309 if (vcpu->arch.guest_state_protected)
10310 return 0;
10311
10312 dt.size = sregs->idt.limit;
10313 dt.address = sregs->idt.base;
10314 static_call(kvm_x86_set_idt)(vcpu, &dt);
10315 dt.size = sregs->gdt.limit;
10316 dt.address = sregs->gdt.base;
10317 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10318
10319 vcpu->arch.cr2 = sregs->cr2;
10320 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10321 vcpu->arch.cr3 = sregs->cr3;
10322 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10323
10324 kvm_set_cr8(vcpu, sregs->cr8);
10325
10326 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10327 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10328
10329 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10330 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10331 vcpu->arch.cr0 = sregs->cr0;
10332
10333 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10334 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10335
10336 if (update_pdptrs) {
10337 idx = srcu_read_lock(&vcpu->kvm->srcu);
10338 if (is_pae_paging(vcpu)) {
10339 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10340 *mmu_reset_needed = 1;
10341 }
10342 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10343 }
10344
10345 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10346 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10347 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10348 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10349 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10350 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10351
10352 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10353 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10354
10355 update_cr8_intercept(vcpu);
10356
10357 /* Older userspace won't unhalt the vcpu on reset. */
10358 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10359 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10360 !is_protmode(vcpu))
10361 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10362
10363 return 0;
10364 }
10365
10366 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10367 {
10368 int pending_vec, max_bits;
10369 int mmu_reset_needed = 0;
10370 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10371
10372 if (ret)
10373 return ret;
10374
10375 if (mmu_reset_needed)
10376 kvm_mmu_reset_context(vcpu);
10377
10378 max_bits = KVM_NR_INTERRUPTS;
10379 pending_vec = find_first_bit(
10380 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10381
10382 if (pending_vec < max_bits) {
10383 kvm_queue_interrupt(vcpu, pending_vec, false);
10384 pr_debug("Set back pending irq %d\n", pending_vec);
10385 kvm_make_request(KVM_REQ_EVENT, vcpu);
10386 }
10387 return 0;
10388 }
10389
10390 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10391 {
10392 int mmu_reset_needed = 0;
10393 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10394 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10395 !(sregs2->efer & EFER_LMA);
10396 int i, ret;
10397
10398 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10399 return -EINVAL;
10400
10401 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10402 return -EINVAL;
10403
10404 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10405 &mmu_reset_needed, !valid_pdptrs);
10406 if (ret)
10407 return ret;
10408
10409 if (valid_pdptrs) {
10410 for (i = 0; i < 4 ; i++)
10411 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10412
10413 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10414 mmu_reset_needed = 1;
10415 vcpu->arch.pdptrs_from_userspace = true;
10416 }
10417 if (mmu_reset_needed)
10418 kvm_mmu_reset_context(vcpu);
10419 return 0;
10420 }
10421
10422 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10423 struct kvm_sregs *sregs)
10424 {
10425 int ret;
10426
10427 vcpu_load(vcpu);
10428 ret = __set_sregs(vcpu, sregs);
10429 vcpu_put(vcpu);
10430 return ret;
10431 }
10432
10433 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10434 struct kvm_guest_debug *dbg)
10435 {
10436 unsigned long rflags;
10437 int i, r;
10438
10439 if (vcpu->arch.guest_state_protected)
10440 return -EINVAL;
10441
10442 vcpu_load(vcpu);
10443
10444 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10445 r = -EBUSY;
10446 if (vcpu->arch.exception.pending)
10447 goto out;
10448 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10449 kvm_queue_exception(vcpu, DB_VECTOR);
10450 else
10451 kvm_queue_exception(vcpu, BP_VECTOR);
10452 }
10453
10454 /*
10455 * Read rflags as long as potentially injected trace flags are still
10456 * filtered out.
10457 */
10458 rflags = kvm_get_rflags(vcpu);
10459
10460 vcpu->guest_debug = dbg->control;
10461 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10462 vcpu->guest_debug = 0;
10463
10464 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10465 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10466 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10467 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10468 } else {
10469 for (i = 0; i < KVM_NR_DB_REGS; i++)
10470 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10471 }
10472 kvm_update_dr7(vcpu);
10473
10474 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10475 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10476
10477 /*
10478 * Trigger an rflags update that will inject or remove the trace
10479 * flags.
10480 */
10481 kvm_set_rflags(vcpu, rflags);
10482
10483 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10484
10485 r = 0;
10486
10487 out:
10488 vcpu_put(vcpu);
10489 return r;
10490 }
10491
10492 /*
10493 * Translate a guest virtual address to a guest physical address.
10494 */
10495 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10496 struct kvm_translation *tr)
10497 {
10498 unsigned long vaddr = tr->linear_address;
10499 gpa_t gpa;
10500 int idx;
10501
10502 vcpu_load(vcpu);
10503
10504 idx = srcu_read_lock(&vcpu->kvm->srcu);
10505 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10506 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10507 tr->physical_address = gpa;
10508 tr->valid = gpa != UNMAPPED_GVA;
10509 tr->writeable = 1;
10510 tr->usermode = 0;
10511
10512 vcpu_put(vcpu);
10513 return 0;
10514 }
10515
10516 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10517 {
10518 struct fxregs_state *fxsave;
10519
10520 if (!vcpu->arch.guest_fpu)
10521 return 0;
10522
10523 vcpu_load(vcpu);
10524
10525 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10526 memcpy(fpu->fpr, fxsave->st_space, 128);
10527 fpu->fcw = fxsave->cwd;
10528 fpu->fsw = fxsave->swd;
10529 fpu->ftwx = fxsave->twd;
10530 fpu->last_opcode = fxsave->fop;
10531 fpu->last_ip = fxsave->rip;
10532 fpu->last_dp = fxsave->rdp;
10533 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10534
10535 vcpu_put(vcpu);
10536 return 0;
10537 }
10538
10539 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10540 {
10541 struct fxregs_state *fxsave;
10542
10543 if (!vcpu->arch.guest_fpu)
10544 return 0;
10545
10546 vcpu_load(vcpu);
10547
10548 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10549
10550 memcpy(fxsave->st_space, fpu->fpr, 128);
10551 fxsave->cwd = fpu->fcw;
10552 fxsave->swd = fpu->fsw;
10553 fxsave->twd = fpu->ftwx;
10554 fxsave->fop = fpu->last_opcode;
10555 fxsave->rip = fpu->last_ip;
10556 fxsave->rdp = fpu->last_dp;
10557 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10558
10559 vcpu_put(vcpu);
10560 return 0;
10561 }
10562
10563 static void store_regs(struct kvm_vcpu *vcpu)
10564 {
10565 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10566
10567 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10568 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10569
10570 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10571 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10572
10573 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10574 kvm_vcpu_ioctl_x86_get_vcpu_events(
10575 vcpu, &vcpu->run->s.regs.events);
10576 }
10577
10578 static int sync_regs(struct kvm_vcpu *vcpu)
10579 {
10580 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10581 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10582 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10583 }
10584 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10585 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10586 return -EINVAL;
10587 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10588 }
10589 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10590 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10591 vcpu, &vcpu->run->s.regs.events))
10592 return -EINVAL;
10593 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10594 }
10595
10596 return 0;
10597 }
10598
10599 static void fx_init(struct kvm_vcpu *vcpu)
10600 {
10601 if (!vcpu->arch.guest_fpu)
10602 return;
10603
10604 fpstate_init(&vcpu->arch.guest_fpu->state);
10605 if (boot_cpu_has(X86_FEATURE_XSAVES))
10606 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10607 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10608
10609 /*
10610 * Ensure guest xcr0 is valid for loading
10611 */
10612 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10613
10614 vcpu->arch.cr0 |= X86_CR0_ET;
10615 }
10616
10617 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10618 {
10619 if (vcpu->arch.guest_fpu) {
10620 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10621 vcpu->arch.guest_fpu = NULL;
10622 }
10623 }
10624 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10625
10626 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10627 {
10628 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10629 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10630 "guest TSC will not be reliable\n");
10631
10632 return 0;
10633 }
10634
10635 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10636 {
10637 struct page *page;
10638 int r;
10639
10640 vcpu->arch.last_vmentry_cpu = -1;
10641
10642 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10643 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10644 else
10645 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10646
10647 r = kvm_mmu_create(vcpu);
10648 if (r < 0)
10649 return r;
10650
10651 if (irqchip_in_kernel(vcpu->kvm)) {
10652 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10653 if (r < 0)
10654 goto fail_mmu_destroy;
10655 if (kvm_apicv_activated(vcpu->kvm))
10656 vcpu->arch.apicv_active = true;
10657 } else
10658 static_branch_inc(&kvm_has_noapic_vcpu);
10659
10660 r = -ENOMEM;
10661
10662 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10663 if (!page)
10664 goto fail_free_lapic;
10665 vcpu->arch.pio_data = page_address(page);
10666
10667 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10668 GFP_KERNEL_ACCOUNT);
10669 if (!vcpu->arch.mce_banks)
10670 goto fail_free_pio_data;
10671 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10672
10673 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10674 GFP_KERNEL_ACCOUNT))
10675 goto fail_free_mce_banks;
10676
10677 if (!alloc_emulate_ctxt(vcpu))
10678 goto free_wbinvd_dirty_mask;
10679
10680 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10681 GFP_KERNEL_ACCOUNT);
10682 if (!vcpu->arch.user_fpu) {
10683 pr_err("kvm: failed to allocate userspace's fpu\n");
10684 goto free_emulate_ctxt;
10685 }
10686
10687 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10688 GFP_KERNEL_ACCOUNT);
10689 if (!vcpu->arch.guest_fpu) {
10690 pr_err("kvm: failed to allocate vcpu's fpu\n");
10691 goto free_user_fpu;
10692 }
10693 fx_init(vcpu);
10694
10695 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10696 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10697
10698 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10699
10700 kvm_async_pf_hash_reset(vcpu);
10701 kvm_pmu_init(vcpu);
10702
10703 vcpu->arch.pending_external_vector = -1;
10704 vcpu->arch.preempted_in_kernel = false;
10705
10706 #if IS_ENABLED(CONFIG_HYPERV)
10707 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10708 #endif
10709
10710 r = static_call(kvm_x86_vcpu_create)(vcpu);
10711 if (r)
10712 goto free_guest_fpu;
10713
10714 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10715 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10716 kvm_vcpu_mtrr_init(vcpu);
10717 vcpu_load(vcpu);
10718 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10719 kvm_vcpu_reset(vcpu, false);
10720 kvm_init_mmu(vcpu);
10721 vcpu_put(vcpu);
10722 return 0;
10723
10724 free_guest_fpu:
10725 kvm_free_guest_fpu(vcpu);
10726 free_user_fpu:
10727 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10728 free_emulate_ctxt:
10729 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10730 free_wbinvd_dirty_mask:
10731 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10732 fail_free_mce_banks:
10733 kfree(vcpu->arch.mce_banks);
10734 fail_free_pio_data:
10735 free_page((unsigned long)vcpu->arch.pio_data);
10736 fail_free_lapic:
10737 kvm_free_lapic(vcpu);
10738 fail_mmu_destroy:
10739 kvm_mmu_destroy(vcpu);
10740 return r;
10741 }
10742
10743 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10744 {
10745 struct kvm *kvm = vcpu->kvm;
10746
10747 if (mutex_lock_killable(&vcpu->mutex))
10748 return;
10749 vcpu_load(vcpu);
10750 kvm_synchronize_tsc(vcpu, 0);
10751 vcpu_put(vcpu);
10752
10753 /* poll control enabled by default */
10754 vcpu->arch.msr_kvm_poll_control = 1;
10755
10756 mutex_unlock(&vcpu->mutex);
10757
10758 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10759 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10760 KVMCLOCK_SYNC_PERIOD);
10761 }
10762
10763 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10764 {
10765 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10766 int idx;
10767
10768 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10769
10770 kvmclock_reset(vcpu);
10771
10772 static_call(kvm_x86_vcpu_free)(vcpu);
10773
10774 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10775 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10776 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10777 kvm_free_guest_fpu(vcpu);
10778
10779 kvm_hv_vcpu_uninit(vcpu);
10780 kvm_pmu_destroy(vcpu);
10781 kfree(vcpu->arch.mce_banks);
10782 kvm_free_lapic(vcpu);
10783 idx = srcu_read_lock(&vcpu->kvm->srcu);
10784 kvm_mmu_destroy(vcpu);
10785 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10786 free_page((unsigned long)vcpu->arch.pio_data);
10787 kvfree(vcpu->arch.cpuid_entries);
10788 if (!lapic_in_kernel(vcpu))
10789 static_branch_dec(&kvm_has_noapic_vcpu);
10790 }
10791
10792 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10793 {
10794 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10795 unsigned long new_cr0;
10796 u32 eax, dummy;
10797
10798 kvm_lapic_reset(vcpu, init_event);
10799
10800 vcpu->arch.hflags = 0;
10801
10802 vcpu->arch.smi_pending = 0;
10803 vcpu->arch.smi_count = 0;
10804 atomic_set(&vcpu->arch.nmi_queued, 0);
10805 vcpu->arch.nmi_pending = 0;
10806 vcpu->arch.nmi_injected = false;
10807 kvm_clear_interrupt_queue(vcpu);
10808 kvm_clear_exception_queue(vcpu);
10809
10810 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10811 kvm_update_dr0123(vcpu);
10812 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10813 vcpu->arch.dr7 = DR7_FIXED_1;
10814 kvm_update_dr7(vcpu);
10815
10816 vcpu->arch.cr2 = 0;
10817
10818 kvm_make_request(KVM_REQ_EVENT, vcpu);
10819 vcpu->arch.apf.msr_en_val = 0;
10820 vcpu->arch.apf.msr_int_val = 0;
10821 vcpu->arch.st.msr_val = 0;
10822
10823 kvmclock_reset(vcpu);
10824
10825 kvm_clear_async_pf_completion_queue(vcpu);
10826 kvm_async_pf_hash_reset(vcpu);
10827 vcpu->arch.apf.halted = false;
10828
10829 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10830 void *mpx_state_buffer;
10831
10832 /*
10833 * To avoid have the INIT path from kvm_apic_has_events() that be
10834 * called with loaded FPU and does not let userspace fix the state.
10835 */
10836 if (init_event)
10837 kvm_put_guest_fpu(vcpu);
10838 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10839 XFEATURE_BNDREGS);
10840 if (mpx_state_buffer)
10841 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10842 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10843 XFEATURE_BNDCSR);
10844 if (mpx_state_buffer)
10845 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10846 if (init_event)
10847 kvm_load_guest_fpu(vcpu);
10848 }
10849
10850 if (!init_event) {
10851 kvm_pmu_reset(vcpu);
10852 vcpu->arch.smbase = 0x30000;
10853
10854 vcpu->arch.msr_misc_features_enables = 0;
10855
10856 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10857 }
10858
10859 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10860 vcpu->arch.regs_avail = ~0;
10861 vcpu->arch.regs_dirty = ~0;
10862
10863 /*
10864 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10865 * if no CPUID match is found. Note, it's impossible to get a match at
10866 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10867 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10868 * But, go through the motions in case that's ever remedied.
10869 */
10870 eax = 1;
10871 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10872 eax = 0x600;
10873 kvm_rdx_write(vcpu, eax);
10874
10875 vcpu->arch.ia32_xss = 0;
10876
10877 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10878
10879 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10880 kvm_rip_write(vcpu, 0xfff0);
10881
10882 /*
10883 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10884 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10885 * (or qualify) that with a footnote stating that CD/NW are preserved.
10886 */
10887 new_cr0 = X86_CR0_ET;
10888 if (init_event)
10889 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10890 else
10891 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10892
10893 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10894 static_call(kvm_x86_set_cr4)(vcpu, 0);
10895 static_call(kvm_x86_set_efer)(vcpu, 0);
10896 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10897
10898 /*
10899 * Reset the MMU context if paging was enabled prior to INIT (which is
10900 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10901 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10902 * checked because it is unconditionally cleared on INIT and all other
10903 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10904 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10905 */
10906 if (old_cr0 & X86_CR0_PG)
10907 kvm_mmu_reset_context(vcpu);
10908
10909 /*
10910 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
10911 * APM states the TLBs are untouched by INIT, but it also states that
10912 * the TLBs are flushed on "External initialization of the processor."
10913 * Flush the guest TLB regardless of vendor, there is no meaningful
10914 * benefit in relying on the guest to flush the TLB immediately after
10915 * INIT. A spurious TLB flush is benign and likely negligible from a
10916 * performance perspective.
10917 */
10918 if (init_event)
10919 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10920 }
10921 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10922
10923 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10924 {
10925 struct kvm_segment cs;
10926
10927 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10928 cs.selector = vector << 8;
10929 cs.base = vector << 12;
10930 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10931 kvm_rip_write(vcpu, 0);
10932 }
10933 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10934
10935 int kvm_arch_hardware_enable(void)
10936 {
10937 struct kvm *kvm;
10938 struct kvm_vcpu *vcpu;
10939 int i;
10940 int ret;
10941 u64 local_tsc;
10942 u64 max_tsc = 0;
10943 bool stable, backwards_tsc = false;
10944
10945 kvm_user_return_msr_cpu_online();
10946 ret = static_call(kvm_x86_hardware_enable)();
10947 if (ret != 0)
10948 return ret;
10949
10950 local_tsc = rdtsc();
10951 stable = !kvm_check_tsc_unstable();
10952 list_for_each_entry(kvm, &vm_list, vm_list) {
10953 kvm_for_each_vcpu(i, vcpu, kvm) {
10954 if (!stable && vcpu->cpu == smp_processor_id())
10955 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10956 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10957 backwards_tsc = true;
10958 if (vcpu->arch.last_host_tsc > max_tsc)
10959 max_tsc = vcpu->arch.last_host_tsc;
10960 }
10961 }
10962 }
10963
10964 /*
10965 * Sometimes, even reliable TSCs go backwards. This happens on
10966 * platforms that reset TSC during suspend or hibernate actions, but
10967 * maintain synchronization. We must compensate. Fortunately, we can
10968 * detect that condition here, which happens early in CPU bringup,
10969 * before any KVM threads can be running. Unfortunately, we can't
10970 * bring the TSCs fully up to date with real time, as we aren't yet far
10971 * enough into CPU bringup that we know how much real time has actually
10972 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10973 * variables that haven't been updated yet.
10974 *
10975 * So we simply find the maximum observed TSC above, then record the
10976 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10977 * the adjustment will be applied. Note that we accumulate
10978 * adjustments, in case multiple suspend cycles happen before some VCPU
10979 * gets a chance to run again. In the event that no KVM threads get a
10980 * chance to run, we will miss the entire elapsed period, as we'll have
10981 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10982 * loose cycle time. This isn't too big a deal, since the loss will be
10983 * uniform across all VCPUs (not to mention the scenario is extremely
10984 * unlikely). It is possible that a second hibernate recovery happens
10985 * much faster than a first, causing the observed TSC here to be
10986 * smaller; this would require additional padding adjustment, which is
10987 * why we set last_host_tsc to the local tsc observed here.
10988 *
10989 * N.B. - this code below runs only on platforms with reliable TSC,
10990 * as that is the only way backwards_tsc is set above. Also note
10991 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10992 * have the same delta_cyc adjustment applied if backwards_tsc
10993 * is detected. Note further, this adjustment is only done once,
10994 * as we reset last_host_tsc on all VCPUs to stop this from being
10995 * called multiple times (one for each physical CPU bringup).
10996 *
10997 * Platforms with unreliable TSCs don't have to deal with this, they
10998 * will be compensated by the logic in vcpu_load, which sets the TSC to
10999 * catchup mode. This will catchup all VCPUs to real time, but cannot
11000 * guarantee that they stay in perfect synchronization.
11001 */
11002 if (backwards_tsc) {
11003 u64 delta_cyc = max_tsc - local_tsc;
11004 list_for_each_entry(kvm, &vm_list, vm_list) {
11005 kvm->arch.backwards_tsc_observed = true;
11006 kvm_for_each_vcpu(i, vcpu, kvm) {
11007 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11008 vcpu->arch.last_host_tsc = local_tsc;
11009 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11010 }
11011
11012 /*
11013 * We have to disable TSC offset matching.. if you were
11014 * booting a VM while issuing an S4 host suspend....
11015 * you may have some problem. Solving this issue is
11016 * left as an exercise to the reader.
11017 */
11018 kvm->arch.last_tsc_nsec = 0;
11019 kvm->arch.last_tsc_write = 0;
11020 }
11021
11022 }
11023 return 0;
11024 }
11025
11026 void kvm_arch_hardware_disable(void)
11027 {
11028 static_call(kvm_x86_hardware_disable)();
11029 drop_user_return_notifiers();
11030 }
11031
11032 int kvm_arch_hardware_setup(void *opaque)
11033 {
11034 struct kvm_x86_init_ops *ops = opaque;
11035 int r;
11036
11037 rdmsrl_safe(MSR_EFER, &host_efer);
11038
11039 if (boot_cpu_has(X86_FEATURE_XSAVES))
11040 rdmsrl(MSR_IA32_XSS, host_xss);
11041
11042 r = ops->hardware_setup();
11043 if (r != 0)
11044 return r;
11045
11046 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11047 kvm_ops_static_call_update();
11048
11049 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11050 supported_xss = 0;
11051
11052 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11053 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11054 #undef __kvm_cpu_cap_has
11055
11056 if (kvm_has_tsc_control) {
11057 /*
11058 * Make sure the user can only configure tsc_khz values that
11059 * fit into a signed integer.
11060 * A min value is not calculated because it will always
11061 * be 1 on all machines.
11062 */
11063 u64 max = min(0x7fffffffULL,
11064 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11065 kvm_max_guest_tsc_khz = max;
11066
11067 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11068 }
11069
11070 kvm_init_msr_list();
11071 return 0;
11072 }
11073
11074 void kvm_arch_hardware_unsetup(void)
11075 {
11076 static_call(kvm_x86_hardware_unsetup)();
11077 }
11078
11079 int kvm_arch_check_processor_compat(void *opaque)
11080 {
11081 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11082 struct kvm_x86_init_ops *ops = opaque;
11083
11084 WARN_ON(!irqs_disabled());
11085
11086 if (__cr4_reserved_bits(cpu_has, c) !=
11087 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11088 return -EIO;
11089
11090 return ops->check_processor_compatibility();
11091 }
11092
11093 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11094 {
11095 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11096 }
11097 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11098
11099 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11100 {
11101 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11102 }
11103
11104 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11105 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11106
11107 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11108 {
11109 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11110
11111 vcpu->arch.l1tf_flush_l1d = true;
11112 if (pmu->version && unlikely(pmu->event_count)) {
11113 pmu->need_cleanup = true;
11114 kvm_make_request(KVM_REQ_PMU, vcpu);
11115 }
11116 static_call(kvm_x86_sched_in)(vcpu, cpu);
11117 }
11118
11119 void kvm_arch_free_vm(struct kvm *kvm)
11120 {
11121 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11122 vfree(kvm);
11123 }
11124
11125
11126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11127 {
11128 if (type)
11129 return -EINVAL;
11130
11131 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11132 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11133 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11134 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11135 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11136 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11137
11138 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11139 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11140 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11141 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11142 &kvm->arch.irq_sources_bitmap);
11143
11144 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11145 mutex_init(&kvm->arch.apic_map_lock);
11146 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11147
11148 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11149 pvclock_update_vm_gtod_copy(kvm);
11150
11151 kvm->arch.guest_can_read_msr_platform_info = true;
11152
11153 #if IS_ENABLED(CONFIG_HYPERV)
11154 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11155 kvm->arch.hv_root_tdp = INVALID_PAGE;
11156 #endif
11157
11158 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11159 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11160
11161 kvm_apicv_init(kvm);
11162 kvm_hv_init_vm(kvm);
11163 kvm_page_track_init(kvm);
11164 kvm_mmu_init_vm(kvm);
11165
11166 return static_call(kvm_x86_vm_init)(kvm);
11167 }
11168
11169 int kvm_arch_post_init_vm(struct kvm *kvm)
11170 {
11171 return kvm_mmu_post_init_vm(kvm);
11172 }
11173
11174 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11175 {
11176 vcpu_load(vcpu);
11177 kvm_mmu_unload(vcpu);
11178 vcpu_put(vcpu);
11179 }
11180
11181 static void kvm_free_vcpus(struct kvm *kvm)
11182 {
11183 unsigned int i;
11184 struct kvm_vcpu *vcpu;
11185
11186 /*
11187 * Unpin any mmu pages first.
11188 */
11189 kvm_for_each_vcpu(i, vcpu, kvm) {
11190 kvm_clear_async_pf_completion_queue(vcpu);
11191 kvm_unload_vcpu_mmu(vcpu);
11192 }
11193 kvm_for_each_vcpu(i, vcpu, kvm)
11194 kvm_vcpu_destroy(vcpu);
11195
11196 mutex_lock(&kvm->lock);
11197 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11198 kvm->vcpus[i] = NULL;
11199
11200 atomic_set(&kvm->online_vcpus, 0);
11201 mutex_unlock(&kvm->lock);
11202 }
11203
11204 void kvm_arch_sync_events(struct kvm *kvm)
11205 {
11206 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11207 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11208 kvm_free_pit(kvm);
11209 }
11210
11211 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11212
11213 /**
11214 * __x86_set_memory_region: Setup KVM internal memory slot
11215 *
11216 * @kvm: the kvm pointer to the VM.
11217 * @id: the slot ID to setup.
11218 * @gpa: the GPA to install the slot (unused when @size == 0).
11219 * @size: the size of the slot. Set to zero to uninstall a slot.
11220 *
11221 * This function helps to setup a KVM internal memory slot. Specify
11222 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11223 * slot. The return code can be one of the following:
11224 *
11225 * HVA: on success (uninstall will return a bogus HVA)
11226 * -errno: on error
11227 *
11228 * The caller should always use IS_ERR() to check the return value
11229 * before use. Note, the KVM internal memory slots are guaranteed to
11230 * remain valid and unchanged until the VM is destroyed, i.e., the
11231 * GPA->HVA translation will not change. However, the HVA is a user
11232 * address, i.e. its accessibility is not guaranteed, and must be
11233 * accessed via __copy_{to,from}_user().
11234 */
11235 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11236 u32 size)
11237 {
11238 int i, r;
11239 unsigned long hva, old_npages;
11240 struct kvm_memslots *slots = kvm_memslots(kvm);
11241 struct kvm_memory_slot *slot;
11242
11243 /* Called with kvm->slots_lock held. */
11244 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11245 return ERR_PTR_USR(-EINVAL);
11246
11247 slot = id_to_memslot(slots, id);
11248 if (size) {
11249 if (slot && slot->npages)
11250 return ERR_PTR_USR(-EEXIST);
11251
11252 /*
11253 * MAP_SHARED to prevent internal slot pages from being moved
11254 * by fork()/COW.
11255 */
11256 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11257 MAP_SHARED | MAP_ANONYMOUS, 0);
11258 if (IS_ERR((void *)hva))
11259 return (void __user *)hva;
11260 } else {
11261 if (!slot || !slot->npages)
11262 return NULL;
11263
11264 old_npages = slot->npages;
11265 hva = slot->userspace_addr;
11266 }
11267
11268 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11269 struct kvm_userspace_memory_region m;
11270
11271 m.slot = id | (i << 16);
11272 m.flags = 0;
11273 m.guest_phys_addr = gpa;
11274 m.userspace_addr = hva;
11275 m.memory_size = size;
11276 r = __kvm_set_memory_region(kvm, &m);
11277 if (r < 0)
11278 return ERR_PTR_USR(r);
11279 }
11280
11281 if (!size)
11282 vm_munmap(hva, old_npages * PAGE_SIZE);
11283
11284 return (void __user *)hva;
11285 }
11286 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11287
11288 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11289 {
11290 kvm_mmu_pre_destroy_vm(kvm);
11291 }
11292
11293 void kvm_arch_destroy_vm(struct kvm *kvm)
11294 {
11295 if (current->mm == kvm->mm) {
11296 /*
11297 * Free memory regions allocated on behalf of userspace,
11298 * unless the the memory map has changed due to process exit
11299 * or fd copying.
11300 */
11301 mutex_lock(&kvm->slots_lock);
11302 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11303 0, 0);
11304 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11305 0, 0);
11306 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11307 mutex_unlock(&kvm->slots_lock);
11308 }
11309 static_call_cond(kvm_x86_vm_destroy)(kvm);
11310 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11311 kvm_pic_destroy(kvm);
11312 kvm_ioapic_destroy(kvm);
11313 kvm_free_vcpus(kvm);
11314 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11315 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11316 kvm_mmu_uninit_vm(kvm);
11317 kvm_page_track_cleanup(kvm);
11318 kvm_xen_destroy_vm(kvm);
11319 kvm_hv_destroy_vm(kvm);
11320 }
11321
11322 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11323 {
11324 int i;
11325
11326 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11327 kvfree(slot->arch.rmap[i]);
11328 slot->arch.rmap[i] = NULL;
11329 }
11330 }
11331
11332 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11333 {
11334 int i;
11335
11336 memslot_rmap_free(slot);
11337
11338 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11339 kvfree(slot->arch.lpage_info[i - 1]);
11340 slot->arch.lpage_info[i - 1] = NULL;
11341 }
11342
11343 kvm_page_track_free_memslot(slot);
11344 }
11345
11346 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11347 unsigned long npages)
11348 {
11349 const int sz = sizeof(*slot->arch.rmap[0]);
11350 int i;
11351
11352 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11353 int level = i + 1;
11354 int lpages = gfn_to_index(slot->base_gfn + npages - 1,
11355 slot->base_gfn, level) + 1;
11356
11357 WARN_ON(slot->arch.rmap[i]);
11358
11359 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11360 if (!slot->arch.rmap[i]) {
11361 memslot_rmap_free(slot);
11362 return -ENOMEM;
11363 }
11364 }
11365
11366 return 0;
11367 }
11368
11369 int alloc_all_memslots_rmaps(struct kvm *kvm)
11370 {
11371 struct kvm_memslots *slots;
11372 struct kvm_memory_slot *slot;
11373 int r, i;
11374
11375 /*
11376 * Check if memslots alreday have rmaps early before acquiring
11377 * the slots_arch_lock below.
11378 */
11379 if (kvm_memslots_have_rmaps(kvm))
11380 return 0;
11381
11382 mutex_lock(&kvm->slots_arch_lock);
11383
11384 /*
11385 * Read memslots_have_rmaps again, under the slots arch lock,
11386 * before allocating the rmaps
11387 */
11388 if (kvm_memslots_have_rmaps(kvm)) {
11389 mutex_unlock(&kvm->slots_arch_lock);
11390 return 0;
11391 }
11392
11393 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11394 slots = __kvm_memslots(kvm, i);
11395 kvm_for_each_memslot(slot, slots) {
11396 r = memslot_rmap_alloc(slot, slot->npages);
11397 if (r) {
11398 mutex_unlock(&kvm->slots_arch_lock);
11399 return r;
11400 }
11401 }
11402 }
11403
11404 /*
11405 * Ensure that memslots_have_rmaps becomes true strictly after
11406 * all the rmap pointers are set.
11407 */
11408 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11409 mutex_unlock(&kvm->slots_arch_lock);
11410 return 0;
11411 }
11412
11413 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11414 struct kvm_memory_slot *slot,
11415 unsigned long npages)
11416 {
11417 int i, r;
11418
11419 /*
11420 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11421 * old arrays will be freed by __kvm_set_memory_region() if installing
11422 * the new memslot is successful.
11423 */
11424 memset(&slot->arch, 0, sizeof(slot->arch));
11425
11426 if (kvm_memslots_have_rmaps(kvm)) {
11427 r = memslot_rmap_alloc(slot, npages);
11428 if (r)
11429 return r;
11430 }
11431
11432 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11433 struct kvm_lpage_info *linfo;
11434 unsigned long ugfn;
11435 int lpages;
11436 int level = i + 1;
11437
11438 lpages = gfn_to_index(slot->base_gfn + npages - 1,
11439 slot->base_gfn, level) + 1;
11440
11441 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11442 if (!linfo)
11443 goto out_free;
11444
11445 slot->arch.lpage_info[i - 1] = linfo;
11446
11447 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11448 linfo[0].disallow_lpage = 1;
11449 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11450 linfo[lpages - 1].disallow_lpage = 1;
11451 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11452 /*
11453 * If the gfn and userspace address are not aligned wrt each
11454 * other, disable large page support for this slot.
11455 */
11456 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11457 unsigned long j;
11458
11459 for (j = 0; j < lpages; ++j)
11460 linfo[j].disallow_lpage = 1;
11461 }
11462 }
11463
11464 if (kvm_page_track_create_memslot(slot, npages))
11465 goto out_free;
11466
11467 return 0;
11468
11469 out_free:
11470 memslot_rmap_free(slot);
11471
11472 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11473 kvfree(slot->arch.lpage_info[i - 1]);
11474 slot->arch.lpage_info[i - 1] = NULL;
11475 }
11476 return -ENOMEM;
11477 }
11478
11479 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11480 {
11481 struct kvm_vcpu *vcpu;
11482 int i;
11483
11484 /*
11485 * memslots->generation has been incremented.
11486 * mmio generation may have reached its maximum value.
11487 */
11488 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11489
11490 /* Force re-initialization of steal_time cache */
11491 kvm_for_each_vcpu(i, vcpu, kvm)
11492 kvm_vcpu_kick(vcpu);
11493 }
11494
11495 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11496 struct kvm_memory_slot *memslot,
11497 const struct kvm_userspace_memory_region *mem,
11498 enum kvm_mr_change change)
11499 {
11500 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11501 return kvm_alloc_memslot_metadata(kvm, memslot,
11502 mem->memory_size >> PAGE_SHIFT);
11503 return 0;
11504 }
11505
11506
11507 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11508 {
11509 struct kvm_arch *ka = &kvm->arch;
11510
11511 if (!kvm_x86_ops.cpu_dirty_log_size)
11512 return;
11513
11514 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11515 (!enable && --ka->cpu_dirty_logging_count == 0))
11516 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11517
11518 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11519 }
11520
11521 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11522 struct kvm_memory_slot *old,
11523 const struct kvm_memory_slot *new,
11524 enum kvm_mr_change change)
11525 {
11526 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11527
11528 /*
11529 * Update CPU dirty logging if dirty logging is being toggled. This
11530 * applies to all operations.
11531 */
11532 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11533 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11534
11535 /*
11536 * Nothing more to do for RO slots (which can't be dirtied and can't be
11537 * made writable) or CREATE/MOVE/DELETE of a slot.
11538 *
11539 * For a memslot with dirty logging disabled:
11540 * CREATE: No dirty mappings will already exist.
11541 * MOVE/DELETE: The old mappings will already have been cleaned up by
11542 * kvm_arch_flush_shadow_memslot()
11543 *
11544 * For a memslot with dirty logging enabled:
11545 * CREATE: No shadow pages exist, thus nothing to write-protect
11546 * and no dirty bits to clear.
11547 * MOVE/DELETE: The old mappings will already have been cleaned up by
11548 * kvm_arch_flush_shadow_memslot().
11549 */
11550 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11551 return;
11552
11553 /*
11554 * READONLY and non-flags changes were filtered out above, and the only
11555 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11556 * logging isn't being toggled on or off.
11557 */
11558 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11559 return;
11560
11561 if (!log_dirty_pages) {
11562 /*
11563 * Dirty logging tracks sptes in 4k granularity, meaning that
11564 * large sptes have to be split. If live migration succeeds,
11565 * the guest in the source machine will be destroyed and large
11566 * sptes will be created in the destination. However, if the
11567 * guest continues to run in the source machine (for example if
11568 * live migration fails), small sptes will remain around and
11569 * cause bad performance.
11570 *
11571 * Scan sptes if dirty logging has been stopped, dropping those
11572 * which can be collapsed into a single large-page spte. Later
11573 * page faults will create the large-page sptes.
11574 */
11575 kvm_mmu_zap_collapsible_sptes(kvm, new);
11576 } else {
11577 /*
11578 * Initially-all-set does not require write protecting any page,
11579 * because they're all assumed to be dirty.
11580 */
11581 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11582 return;
11583
11584 if (kvm_x86_ops.cpu_dirty_log_size) {
11585 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11586 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11587 } else {
11588 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11589 }
11590 }
11591 }
11592
11593 void kvm_arch_commit_memory_region(struct kvm *kvm,
11594 const struct kvm_userspace_memory_region *mem,
11595 struct kvm_memory_slot *old,
11596 const struct kvm_memory_slot *new,
11597 enum kvm_mr_change change)
11598 {
11599 if (!kvm->arch.n_requested_mmu_pages)
11600 kvm_mmu_change_mmu_pages(kvm,
11601 kvm_mmu_calculate_default_mmu_pages(kvm));
11602
11603 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11604
11605 /* Free the arrays associated with the old memslot. */
11606 if (change == KVM_MR_MOVE)
11607 kvm_arch_free_memslot(kvm, old);
11608 }
11609
11610 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11611 {
11612 kvm_mmu_zap_all(kvm);
11613 }
11614
11615 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11616 struct kvm_memory_slot *slot)
11617 {
11618 kvm_page_track_flush_slot(kvm, slot);
11619 }
11620
11621 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11622 {
11623 return (is_guest_mode(vcpu) &&
11624 kvm_x86_ops.guest_apic_has_interrupt &&
11625 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11626 }
11627
11628 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11629 {
11630 if (!list_empty_careful(&vcpu->async_pf.done))
11631 return true;
11632
11633 if (kvm_apic_has_events(vcpu))
11634 return true;
11635
11636 if (vcpu->arch.pv.pv_unhalted)
11637 return true;
11638
11639 if (vcpu->arch.exception.pending)
11640 return true;
11641
11642 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11643 (vcpu->arch.nmi_pending &&
11644 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11645 return true;
11646
11647 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11648 (vcpu->arch.smi_pending &&
11649 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11650 return true;
11651
11652 if (kvm_arch_interrupt_allowed(vcpu) &&
11653 (kvm_cpu_has_interrupt(vcpu) ||
11654 kvm_guest_apic_has_interrupt(vcpu)))
11655 return true;
11656
11657 if (kvm_hv_has_stimer_pending(vcpu))
11658 return true;
11659
11660 if (is_guest_mode(vcpu) &&
11661 kvm_x86_ops.nested_ops->hv_timer_pending &&
11662 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11663 return true;
11664
11665 return false;
11666 }
11667
11668 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11669 {
11670 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11671 }
11672
11673 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11674 {
11675 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11676 return true;
11677
11678 return false;
11679 }
11680
11681 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11682 {
11683 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11684 return true;
11685
11686 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11687 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11688 kvm_test_request(KVM_REQ_EVENT, vcpu))
11689 return true;
11690
11691 return kvm_arch_dy_has_pending_interrupt(vcpu);
11692 }
11693
11694 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11695 {
11696 if (vcpu->arch.guest_state_protected)
11697 return true;
11698
11699 return vcpu->arch.preempted_in_kernel;
11700 }
11701
11702 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11703 {
11704 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11705 }
11706
11707 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11708 {
11709 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11710 }
11711
11712 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11713 {
11714 /* Can't read the RIP when guest state is protected, just return 0 */
11715 if (vcpu->arch.guest_state_protected)
11716 return 0;
11717
11718 if (is_64_bit_mode(vcpu))
11719 return kvm_rip_read(vcpu);
11720 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11721 kvm_rip_read(vcpu));
11722 }
11723 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11724
11725 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11726 {
11727 return kvm_get_linear_rip(vcpu) == linear_rip;
11728 }
11729 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11730
11731 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11732 {
11733 unsigned long rflags;
11734
11735 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11736 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11737 rflags &= ~X86_EFLAGS_TF;
11738 return rflags;
11739 }
11740 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11741
11742 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11743 {
11744 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11745 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11746 rflags |= X86_EFLAGS_TF;
11747 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11748 }
11749
11750 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11751 {
11752 __kvm_set_rflags(vcpu, rflags);
11753 kvm_make_request(KVM_REQ_EVENT, vcpu);
11754 }
11755 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11756
11757 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11758 {
11759 int r;
11760
11761 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11762 work->wakeup_all)
11763 return;
11764
11765 r = kvm_mmu_reload(vcpu);
11766 if (unlikely(r))
11767 return;
11768
11769 if (!vcpu->arch.mmu->direct_map &&
11770 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11771 return;
11772
11773 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11774 }
11775
11776 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11777 {
11778 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11779
11780 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11781 }
11782
11783 static inline u32 kvm_async_pf_next_probe(u32 key)
11784 {
11785 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11786 }
11787
11788 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11789 {
11790 u32 key = kvm_async_pf_hash_fn(gfn);
11791
11792 while (vcpu->arch.apf.gfns[key] != ~0)
11793 key = kvm_async_pf_next_probe(key);
11794
11795 vcpu->arch.apf.gfns[key] = gfn;
11796 }
11797
11798 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11799 {
11800 int i;
11801 u32 key = kvm_async_pf_hash_fn(gfn);
11802
11803 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11804 (vcpu->arch.apf.gfns[key] != gfn &&
11805 vcpu->arch.apf.gfns[key] != ~0); i++)
11806 key = kvm_async_pf_next_probe(key);
11807
11808 return key;
11809 }
11810
11811 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11812 {
11813 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11814 }
11815
11816 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11817 {
11818 u32 i, j, k;
11819
11820 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11821
11822 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11823 return;
11824
11825 while (true) {
11826 vcpu->arch.apf.gfns[i] = ~0;
11827 do {
11828 j = kvm_async_pf_next_probe(j);
11829 if (vcpu->arch.apf.gfns[j] == ~0)
11830 return;
11831 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11832 /*
11833 * k lies cyclically in ]i,j]
11834 * | i.k.j |
11835 * |....j i.k.| or |.k..j i...|
11836 */
11837 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11838 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11839 i = j;
11840 }
11841 }
11842
11843 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11844 {
11845 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11846
11847 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11848 sizeof(reason));
11849 }
11850
11851 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11852 {
11853 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11854
11855 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11856 &token, offset, sizeof(token));
11857 }
11858
11859 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11860 {
11861 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11862 u32 val;
11863
11864 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11865 &val, offset, sizeof(val)))
11866 return false;
11867
11868 return !val;
11869 }
11870
11871 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11872 {
11873 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11874 return false;
11875
11876 if (!kvm_pv_async_pf_enabled(vcpu) ||
11877 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11878 return false;
11879
11880 return true;
11881 }
11882
11883 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11884 {
11885 if (unlikely(!lapic_in_kernel(vcpu) ||
11886 kvm_event_needs_reinjection(vcpu) ||
11887 vcpu->arch.exception.pending))
11888 return false;
11889
11890 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11891 return false;
11892
11893 /*
11894 * If interrupts are off we cannot even use an artificial
11895 * halt state.
11896 */
11897 return kvm_arch_interrupt_allowed(vcpu);
11898 }
11899
11900 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11901 struct kvm_async_pf *work)
11902 {
11903 struct x86_exception fault;
11904
11905 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11906 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11907
11908 if (kvm_can_deliver_async_pf(vcpu) &&
11909 !apf_put_user_notpresent(vcpu)) {
11910 fault.vector = PF_VECTOR;
11911 fault.error_code_valid = true;
11912 fault.error_code = 0;
11913 fault.nested_page_fault = false;
11914 fault.address = work->arch.token;
11915 fault.async_page_fault = true;
11916 kvm_inject_page_fault(vcpu, &fault);
11917 return true;
11918 } else {
11919 /*
11920 * It is not possible to deliver a paravirtualized asynchronous
11921 * page fault, but putting the guest in an artificial halt state
11922 * can be beneficial nevertheless: if an interrupt arrives, we
11923 * can deliver it timely and perhaps the guest will schedule
11924 * another process. When the instruction that triggered a page
11925 * fault is retried, hopefully the page will be ready in the host.
11926 */
11927 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11928 return false;
11929 }
11930 }
11931
11932 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11933 struct kvm_async_pf *work)
11934 {
11935 struct kvm_lapic_irq irq = {
11936 .delivery_mode = APIC_DM_FIXED,
11937 .vector = vcpu->arch.apf.vec
11938 };
11939
11940 if (work->wakeup_all)
11941 work->arch.token = ~0; /* broadcast wakeup */
11942 else
11943 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11944 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11945
11946 if ((work->wakeup_all || work->notpresent_injected) &&
11947 kvm_pv_async_pf_enabled(vcpu) &&
11948 !apf_put_user_ready(vcpu, work->arch.token)) {
11949 vcpu->arch.apf.pageready_pending = true;
11950 kvm_apic_set_irq(vcpu, &irq, NULL);
11951 }
11952
11953 vcpu->arch.apf.halted = false;
11954 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11955 }
11956
11957 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11958 {
11959 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11960 if (!vcpu->arch.apf.pageready_pending)
11961 kvm_vcpu_kick(vcpu);
11962 }
11963
11964 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11965 {
11966 if (!kvm_pv_async_pf_enabled(vcpu))
11967 return true;
11968 else
11969 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11970 }
11971
11972 void kvm_arch_start_assignment(struct kvm *kvm)
11973 {
11974 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11975 static_call_cond(kvm_x86_start_assignment)(kvm);
11976 }
11977 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11978
11979 void kvm_arch_end_assignment(struct kvm *kvm)
11980 {
11981 atomic_dec(&kvm->arch.assigned_device_count);
11982 }
11983 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11984
11985 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11986 {
11987 return atomic_read(&kvm->arch.assigned_device_count);
11988 }
11989 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11990
11991 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11992 {
11993 atomic_inc(&kvm->arch.noncoherent_dma_count);
11994 }
11995 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11996
11997 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11998 {
11999 atomic_dec(&kvm->arch.noncoherent_dma_count);
12000 }
12001 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12002
12003 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12004 {
12005 return atomic_read(&kvm->arch.noncoherent_dma_count);
12006 }
12007 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12008
12009 bool kvm_arch_has_irq_bypass(void)
12010 {
12011 return true;
12012 }
12013
12014 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12015 struct irq_bypass_producer *prod)
12016 {
12017 struct kvm_kernel_irqfd *irqfd =
12018 container_of(cons, struct kvm_kernel_irqfd, consumer);
12019 int ret;
12020
12021 irqfd->producer = prod;
12022 kvm_arch_start_assignment(irqfd->kvm);
12023 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12024 prod->irq, irqfd->gsi, 1);
12025
12026 if (ret)
12027 kvm_arch_end_assignment(irqfd->kvm);
12028
12029 return ret;
12030 }
12031
12032 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12033 struct irq_bypass_producer *prod)
12034 {
12035 int ret;
12036 struct kvm_kernel_irqfd *irqfd =
12037 container_of(cons, struct kvm_kernel_irqfd, consumer);
12038
12039 WARN_ON(irqfd->producer != prod);
12040 irqfd->producer = NULL;
12041
12042 /*
12043 * When producer of consumer is unregistered, we change back to
12044 * remapped mode, so we can re-use the current implementation
12045 * when the irq is masked/disabled or the consumer side (KVM
12046 * int this case doesn't want to receive the interrupts.
12047 */
12048 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12049 if (ret)
12050 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12051 " fails: %d\n", irqfd->consumer.token, ret);
12052
12053 kvm_arch_end_assignment(irqfd->kvm);
12054 }
12055
12056 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12057 uint32_t guest_irq, bool set)
12058 {
12059 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12060 }
12061
12062 bool kvm_vector_hashing_enabled(void)
12063 {
12064 return vector_hashing;
12065 }
12066
12067 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12068 {
12069 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12070 }
12071 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12072
12073
12074 int kvm_spec_ctrl_test_value(u64 value)
12075 {
12076 /*
12077 * test that setting IA32_SPEC_CTRL to given value
12078 * is allowed by the host processor
12079 */
12080
12081 u64 saved_value;
12082 unsigned long flags;
12083 int ret = 0;
12084
12085 local_irq_save(flags);
12086
12087 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12088 ret = 1;
12089 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12090 ret = 1;
12091 else
12092 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12093
12094 local_irq_restore(flags);
12095
12096 return ret;
12097 }
12098 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12099
12100 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12101 {
12102 struct x86_exception fault;
12103 u32 access = error_code &
12104 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12105
12106 if (!(error_code & PFERR_PRESENT_MASK) ||
12107 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12108 /*
12109 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12110 * tables probably do not match the TLB. Just proceed
12111 * with the error code that the processor gave.
12112 */
12113 fault.vector = PF_VECTOR;
12114 fault.error_code_valid = true;
12115 fault.error_code = error_code;
12116 fault.nested_page_fault = false;
12117 fault.address = gva;
12118 }
12119 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12120 }
12121 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12122
12123 /*
12124 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12125 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12126 * indicates whether exit to userspace is needed.
12127 */
12128 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12129 struct x86_exception *e)
12130 {
12131 if (r == X86EMUL_PROPAGATE_FAULT) {
12132 kvm_inject_emulated_page_fault(vcpu, e);
12133 return 1;
12134 }
12135
12136 /*
12137 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12138 * while handling a VMX instruction KVM could've handled the request
12139 * correctly by exiting to userspace and performing I/O but there
12140 * doesn't seem to be a real use-case behind such requests, just return
12141 * KVM_EXIT_INTERNAL_ERROR for now.
12142 */
12143 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12144 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12145 vcpu->run->internal.ndata = 0;
12146
12147 return 0;
12148 }
12149 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12150
12151 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12152 {
12153 bool pcid_enabled;
12154 struct x86_exception e;
12155 struct {
12156 u64 pcid;
12157 u64 gla;
12158 } operand;
12159 int r;
12160
12161 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12162 if (r != X86EMUL_CONTINUE)
12163 return kvm_handle_memory_failure(vcpu, r, &e);
12164
12165 if (operand.pcid >> 12 != 0) {
12166 kvm_inject_gp(vcpu, 0);
12167 return 1;
12168 }
12169
12170 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12171
12172 switch (type) {
12173 case INVPCID_TYPE_INDIV_ADDR:
12174 if ((!pcid_enabled && (operand.pcid != 0)) ||
12175 is_noncanonical_address(operand.gla, vcpu)) {
12176 kvm_inject_gp(vcpu, 0);
12177 return 1;
12178 }
12179 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12180 return kvm_skip_emulated_instruction(vcpu);
12181
12182 case INVPCID_TYPE_SINGLE_CTXT:
12183 if (!pcid_enabled && (operand.pcid != 0)) {
12184 kvm_inject_gp(vcpu, 0);
12185 return 1;
12186 }
12187
12188 kvm_invalidate_pcid(vcpu, operand.pcid);
12189 return kvm_skip_emulated_instruction(vcpu);
12190
12191 case INVPCID_TYPE_ALL_NON_GLOBAL:
12192 /*
12193 * Currently, KVM doesn't mark global entries in the shadow
12194 * page tables, so a non-global flush just degenerates to a
12195 * global flush. If needed, we could optimize this later by
12196 * keeping track of global entries in shadow page tables.
12197 */
12198
12199 fallthrough;
12200 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12201 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12202 return kvm_skip_emulated_instruction(vcpu);
12203
12204 default:
12205 BUG(); /* We have already checked above that type <= 3 */
12206 }
12207 }
12208 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12209
12210 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12211 {
12212 struct kvm_run *run = vcpu->run;
12213 struct kvm_mmio_fragment *frag;
12214 unsigned int len;
12215
12216 BUG_ON(!vcpu->mmio_needed);
12217
12218 /* Complete previous fragment */
12219 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12220 len = min(8u, frag->len);
12221 if (!vcpu->mmio_is_write)
12222 memcpy(frag->data, run->mmio.data, len);
12223
12224 if (frag->len <= 8) {
12225 /* Switch to the next fragment. */
12226 frag++;
12227 vcpu->mmio_cur_fragment++;
12228 } else {
12229 /* Go forward to the next mmio piece. */
12230 frag->data += len;
12231 frag->gpa += len;
12232 frag->len -= len;
12233 }
12234
12235 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12236 vcpu->mmio_needed = 0;
12237
12238 // VMG change, at this point, we're always done
12239 // RIP has already been advanced
12240 return 1;
12241 }
12242
12243 // More MMIO is needed
12244 run->mmio.phys_addr = frag->gpa;
12245 run->mmio.len = min(8u, frag->len);
12246 run->mmio.is_write = vcpu->mmio_is_write;
12247 if (run->mmio.is_write)
12248 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12249 run->exit_reason = KVM_EXIT_MMIO;
12250
12251 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12252
12253 return 0;
12254 }
12255
12256 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12257 void *data)
12258 {
12259 int handled;
12260 struct kvm_mmio_fragment *frag;
12261
12262 if (!data)
12263 return -EINVAL;
12264
12265 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12266 if (handled == bytes)
12267 return 1;
12268
12269 bytes -= handled;
12270 gpa += handled;
12271 data += handled;
12272
12273 /*TODO: Check if need to increment number of frags */
12274 frag = vcpu->mmio_fragments;
12275 vcpu->mmio_nr_fragments = 1;
12276 frag->len = bytes;
12277 frag->gpa = gpa;
12278 frag->data = data;
12279
12280 vcpu->mmio_needed = 1;
12281 vcpu->mmio_cur_fragment = 0;
12282
12283 vcpu->run->mmio.phys_addr = gpa;
12284 vcpu->run->mmio.len = min(8u, frag->len);
12285 vcpu->run->mmio.is_write = 1;
12286 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12287 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12288
12289 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12290
12291 return 0;
12292 }
12293 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12294
12295 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12296 void *data)
12297 {
12298 int handled;
12299 struct kvm_mmio_fragment *frag;
12300
12301 if (!data)
12302 return -EINVAL;
12303
12304 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12305 if (handled == bytes)
12306 return 1;
12307
12308 bytes -= handled;
12309 gpa += handled;
12310 data += handled;
12311
12312 /*TODO: Check if need to increment number of frags */
12313 frag = vcpu->mmio_fragments;
12314 vcpu->mmio_nr_fragments = 1;
12315 frag->len = bytes;
12316 frag->gpa = gpa;
12317 frag->data = data;
12318
12319 vcpu->mmio_needed = 1;
12320 vcpu->mmio_cur_fragment = 0;
12321
12322 vcpu->run->mmio.phys_addr = gpa;
12323 vcpu->run->mmio.len = min(8u, frag->len);
12324 vcpu->run->mmio.is_write = 0;
12325 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12326
12327 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12328
12329 return 0;
12330 }
12331 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12332
12333 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12334 {
12335 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12336 vcpu->arch.pio.count * vcpu->arch.pio.size);
12337 vcpu->arch.pio.count = 0;
12338
12339 return 1;
12340 }
12341
12342 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12343 unsigned int port, void *data, unsigned int count)
12344 {
12345 int ret;
12346
12347 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12348 data, count);
12349 if (ret)
12350 return ret;
12351
12352 vcpu->arch.pio.count = 0;
12353
12354 return 0;
12355 }
12356
12357 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12358 unsigned int port, void *data, unsigned int count)
12359 {
12360 int ret;
12361
12362 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12363 data, count);
12364 if (ret) {
12365 vcpu->arch.pio.count = 0;
12366 } else {
12367 vcpu->arch.guest_ins_data = data;
12368 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12369 }
12370
12371 return 0;
12372 }
12373
12374 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12375 unsigned int port, void *data, unsigned int count,
12376 int in)
12377 {
12378 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12379 : kvm_sev_es_outs(vcpu, size, port, data, count);
12380 }
12381 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12382
12383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);