]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32 __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64 __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "req_event", VCPU_STAT(req_event) },
184 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
186 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188 { "mmu_flooded", VM_STAT(mmu_flooded) },
189 { "mmu_recycled", VM_STAT(mmu_recycled) },
190 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191 { "mmu_unsync", VM_STAT(mmu_unsync) },
192 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193 { "largepages", VM_STAT(lpages) },
194 { "max_mmu_page_hash_collisions",
195 VM_STAT(max_mmu_page_hash_collisions) },
196 { NULL }
197 };
198
199 u64 __read_mostly host_xcr0;
200
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
202
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
204 {
205 int i;
206 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207 vcpu->arch.apf.gfns[i] = ~0;
208 }
209
210 static void kvm_on_user_return(struct user_return_notifier *urn)
211 {
212 unsigned slot;
213 struct kvm_shared_msrs *locals
214 = container_of(urn, struct kvm_shared_msrs, urn);
215 struct kvm_shared_msr_values *values;
216 unsigned long flags;
217
218 /*
219 * Disabling irqs at this point since the following code could be
220 * interrupted and executed through kvm_arch_hardware_disable()
221 */
222 local_irq_save(flags);
223 if (locals->registered) {
224 locals->registered = false;
225 user_return_notifier_unregister(urn);
226 }
227 local_irq_restore(flags);
228 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229 values = &locals->values[slot];
230 if (values->host != values->curr) {
231 wrmsrl(shared_msrs_global.msrs[slot], values->host);
232 values->curr = values->host;
233 }
234 }
235 }
236
237 static void shared_msr_update(unsigned slot, u32 msr)
238 {
239 u64 value;
240 unsigned int cpu = smp_processor_id();
241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242
243 /* only read, and nobody should modify it at this time,
244 * so don't need lock */
245 if (slot >= shared_msrs_global.nr) {
246 printk(KERN_ERR "kvm: invalid MSR slot!");
247 return;
248 }
249 rdmsrl_safe(msr, &value);
250 smsr->values[slot].host = value;
251 smsr->values[slot].curr = value;
252 }
253
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
255 {
256 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257 shared_msrs_global.msrs[slot] = msr;
258 if (slot >= shared_msrs_global.nr)
259 shared_msrs_global.nr = slot + 1;
260 }
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
262
263 static void kvm_shared_msr_cpu_online(void)
264 {
265 unsigned i;
266
267 for (i = 0; i < shared_msrs_global.nr; ++i)
268 shared_msr_update(i, shared_msrs_global.msrs[i]);
269 }
270
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
272 {
273 unsigned int cpu = smp_processor_id();
274 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
275 int err;
276
277 if (((value ^ smsr->values[slot].curr) & mask) == 0)
278 return 0;
279 smsr->values[slot].curr = value;
280 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
281 if (err)
282 return 1;
283
284 if (!smsr->registered) {
285 smsr->urn.on_user_return = kvm_on_user_return;
286 user_return_notifier_register(&smsr->urn);
287 smsr->registered = true;
288 }
289 return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
292
293 static void drop_user_return_notifiers(void)
294 {
295 unsigned int cpu = smp_processor_id();
296 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297
298 if (smsr->registered)
299 kvm_on_user_return(&smsr->urn);
300 }
301
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
303 {
304 return vcpu->arch.apic_base;
305 }
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
307
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
309 {
310 u64 old_state = vcpu->arch.apic_base &
311 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312 u64 new_state = msr_info->data &
313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
315 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
316
317 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
318 return 1;
319 if (!msr_info->host_initiated &&
320 ((new_state == MSR_IA32_APICBASE_ENABLE &&
321 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
323 old_state == 0)))
324 return 1;
325
326 kvm_lapic_set_base(vcpu, msr_info->data);
327 return 0;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
330
331 asmlinkage __visible void kvm_spurious_fault(void)
332 {
333 /* Fault while not rebooting. We want the trace. */
334 BUG();
335 }
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
337
338 #define EXCPT_BENIGN 0
339 #define EXCPT_CONTRIBUTORY 1
340 #define EXCPT_PF 2
341
342 static int exception_class(int vector)
343 {
344 switch (vector) {
345 case PF_VECTOR:
346 return EXCPT_PF;
347 case DE_VECTOR:
348 case TS_VECTOR:
349 case NP_VECTOR:
350 case SS_VECTOR:
351 case GP_VECTOR:
352 return EXCPT_CONTRIBUTORY;
353 default:
354 break;
355 }
356 return EXCPT_BENIGN;
357 }
358
359 #define EXCPT_FAULT 0
360 #define EXCPT_TRAP 1
361 #define EXCPT_ABORT 2
362 #define EXCPT_INTERRUPT 3
363
364 static int exception_type(int vector)
365 {
366 unsigned int mask;
367
368 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369 return EXCPT_INTERRUPT;
370
371 mask = 1 << vector;
372
373 /* #DB is trap, as instruction watchpoints are handled elsewhere */
374 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
375 return EXCPT_TRAP;
376
377 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
378 return EXCPT_ABORT;
379
380 /* Reserved exceptions will result in fault */
381 return EXCPT_FAULT;
382 }
383
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385 unsigned nr, bool has_error, u32 error_code,
386 bool reinject)
387 {
388 u32 prev_nr;
389 int class1, class2;
390
391 kvm_make_request(KVM_REQ_EVENT, vcpu);
392
393 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
394 queue:
395 if (has_error && !is_protmode(vcpu))
396 has_error = false;
397 if (reinject) {
398 /*
399 * On vmentry, vcpu->arch.exception.pending is only
400 * true if an event injection was blocked by
401 * nested_run_pending. In that case, however,
402 * vcpu_enter_guest requests an immediate exit,
403 * and the guest shouldn't proceed far enough to
404 * need reinjection.
405 */
406 WARN_ON_ONCE(vcpu->arch.exception.pending);
407 vcpu->arch.exception.injected = true;
408 } else {
409 vcpu->arch.exception.pending = true;
410 vcpu->arch.exception.injected = false;
411 }
412 vcpu->arch.exception.has_error_code = has_error;
413 vcpu->arch.exception.nr = nr;
414 vcpu->arch.exception.error_code = error_code;
415 return;
416 }
417
418 /* to check exception */
419 prev_nr = vcpu->arch.exception.nr;
420 if (prev_nr == DF_VECTOR) {
421 /* triple fault -> shutdown */
422 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
423 return;
424 }
425 class1 = exception_class(prev_nr);
426 class2 = exception_class(nr);
427 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
428 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
429 /*
430 * Generate double fault per SDM Table 5-5. Set
431 * exception.pending = true so that the double fault
432 * can trigger a nested vmexit.
433 */
434 vcpu->arch.exception.pending = true;
435 vcpu->arch.exception.injected = false;
436 vcpu->arch.exception.has_error_code = true;
437 vcpu->arch.exception.nr = DF_VECTOR;
438 vcpu->arch.exception.error_code = 0;
439 } else
440 /* replace previous exception with a new one in a hope
441 that instruction re-execution will regenerate lost
442 exception */
443 goto queue;
444 }
445
446 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
447 {
448 kvm_multiple_exception(vcpu, nr, false, 0, false);
449 }
450 EXPORT_SYMBOL_GPL(kvm_queue_exception);
451
452 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
453 {
454 kvm_multiple_exception(vcpu, nr, false, 0, true);
455 }
456 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
457
458 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
459 {
460 if (err)
461 kvm_inject_gp(vcpu, 0);
462 else
463 return kvm_skip_emulated_instruction(vcpu);
464
465 return 1;
466 }
467 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
468
469 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
470 {
471 ++vcpu->stat.pf_guest;
472 vcpu->arch.exception.nested_apf =
473 is_guest_mode(vcpu) && fault->async_page_fault;
474 if (vcpu->arch.exception.nested_apf)
475 vcpu->arch.apf.nested_apf_token = fault->address;
476 else
477 vcpu->arch.cr2 = fault->address;
478 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
479 }
480 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
481
482 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
485 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
486 else
487 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
488
489 return fault->nested_page_fault;
490 }
491
492 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
493 {
494 atomic_inc(&vcpu->arch.nmi_queued);
495 kvm_make_request(KVM_REQ_NMI, vcpu);
496 }
497 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
498
499 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
500 {
501 kvm_multiple_exception(vcpu, nr, true, error_code, false);
502 }
503 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
504
505 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
506 {
507 kvm_multiple_exception(vcpu, nr, true, error_code, true);
508 }
509 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
510
511 /*
512 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
513 * a #GP and return false.
514 */
515 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
516 {
517 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
518 return true;
519 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
520 return false;
521 }
522 EXPORT_SYMBOL_GPL(kvm_require_cpl);
523
524 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
525 {
526 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
527 return true;
528
529 kvm_queue_exception(vcpu, UD_VECTOR);
530 return false;
531 }
532 EXPORT_SYMBOL_GPL(kvm_require_dr);
533
534 /*
535 * This function will be used to read from the physical memory of the currently
536 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
537 * can read from guest physical or from the guest's guest physical memory.
538 */
539 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
540 gfn_t ngfn, void *data, int offset, int len,
541 u32 access)
542 {
543 struct x86_exception exception;
544 gfn_t real_gfn;
545 gpa_t ngpa;
546
547 ngpa = gfn_to_gpa(ngfn);
548 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
549 if (real_gfn == UNMAPPED_GVA)
550 return -EFAULT;
551
552 real_gfn = gpa_to_gfn(real_gfn);
553
554 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
555 }
556 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
557
558 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
559 void *data, int offset, int len, u32 access)
560 {
561 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
562 data, offset, len, access);
563 }
564
565 /*
566 * Load the pae pdptrs. Return true is they are all valid.
567 */
568 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
569 {
570 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
571 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
572 int i;
573 int ret;
574 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
575
576 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
577 offset * sizeof(u64), sizeof(pdpte),
578 PFERR_USER_MASK|PFERR_WRITE_MASK);
579 if (ret < 0) {
580 ret = 0;
581 goto out;
582 }
583 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
584 if ((pdpte[i] & PT_PRESENT_MASK) &&
585 (pdpte[i] &
586 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
587 ret = 0;
588 goto out;
589 }
590 }
591 ret = 1;
592
593 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
594 __set_bit(VCPU_EXREG_PDPTR,
595 (unsigned long *)&vcpu->arch.regs_avail);
596 __set_bit(VCPU_EXREG_PDPTR,
597 (unsigned long *)&vcpu->arch.regs_dirty);
598 out:
599
600 return ret;
601 }
602 EXPORT_SYMBOL_GPL(load_pdptrs);
603
604 bool pdptrs_changed(struct kvm_vcpu *vcpu)
605 {
606 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
607 bool changed = true;
608 int offset;
609 gfn_t gfn;
610 int r;
611
612 if (is_long_mode(vcpu) || !is_pae(vcpu))
613 return false;
614
615 if (!test_bit(VCPU_EXREG_PDPTR,
616 (unsigned long *)&vcpu->arch.regs_avail))
617 return true;
618
619 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
620 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
621 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
622 PFERR_USER_MASK | PFERR_WRITE_MASK);
623 if (r < 0)
624 goto out;
625 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
626 out:
627
628 return changed;
629 }
630 EXPORT_SYMBOL_GPL(pdptrs_changed);
631
632 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
633 {
634 unsigned long old_cr0 = kvm_read_cr0(vcpu);
635 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
636
637 cr0 |= X86_CR0_ET;
638
639 #ifdef CONFIG_X86_64
640 if (cr0 & 0xffffffff00000000UL)
641 return 1;
642 #endif
643
644 cr0 &= ~CR0_RESERVED_BITS;
645
646 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
647 return 1;
648
649 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
650 return 1;
651
652 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
653 #ifdef CONFIG_X86_64
654 if ((vcpu->arch.efer & EFER_LME)) {
655 int cs_db, cs_l;
656
657 if (!is_pae(vcpu))
658 return 1;
659 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
660 if (cs_l)
661 return 1;
662 } else
663 #endif
664 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
665 kvm_read_cr3(vcpu)))
666 return 1;
667 }
668
669 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
670 return 1;
671
672 kvm_x86_ops->set_cr0(vcpu, cr0);
673
674 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
675 kvm_clear_async_pf_completion_queue(vcpu);
676 kvm_async_pf_hash_reset(vcpu);
677 }
678
679 if ((cr0 ^ old_cr0) & update_bits)
680 kvm_mmu_reset_context(vcpu);
681
682 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
683 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
684 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
685 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
686
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr0);
690
691 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
692 {
693 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
694 }
695 EXPORT_SYMBOL_GPL(kvm_lmsw);
696
697 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
698 {
699 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
700 !vcpu->guest_xcr0_loaded) {
701 /* kvm_set_xcr() also depends on this */
702 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
703 vcpu->guest_xcr0_loaded = 1;
704 }
705 }
706
707 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
708 {
709 if (vcpu->guest_xcr0_loaded) {
710 if (vcpu->arch.xcr0 != host_xcr0)
711 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
712 vcpu->guest_xcr0_loaded = 0;
713 }
714 }
715
716 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
717 {
718 u64 xcr0 = xcr;
719 u64 old_xcr0 = vcpu->arch.xcr0;
720 u64 valid_bits;
721
722 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
723 if (index != XCR_XFEATURE_ENABLED_MASK)
724 return 1;
725 if (!(xcr0 & XFEATURE_MASK_FP))
726 return 1;
727 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
728 return 1;
729
730 /*
731 * Do not allow the guest to set bits that we do not support
732 * saving. However, xcr0 bit 0 is always set, even if the
733 * emulated CPU does not support XSAVE (see fx_init).
734 */
735 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
736 if (xcr0 & ~valid_bits)
737 return 1;
738
739 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
740 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
741 return 1;
742
743 if (xcr0 & XFEATURE_MASK_AVX512) {
744 if (!(xcr0 & XFEATURE_MASK_YMM))
745 return 1;
746 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
747 return 1;
748 }
749 vcpu->arch.xcr0 = xcr0;
750
751 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
752 kvm_update_cpuid(vcpu);
753 return 0;
754 }
755
756 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
757 {
758 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
759 __kvm_set_xcr(vcpu, index, xcr)) {
760 kvm_inject_gp(vcpu, 0);
761 return 1;
762 }
763 return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_xcr);
766
767 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
768 {
769 unsigned long old_cr4 = kvm_read_cr4(vcpu);
770 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
771 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
772
773 if (cr4 & CR4_RESERVED_BITS)
774 return 1;
775
776 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
777 return 1;
778
779 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
780 return 1;
781
782 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
783 return 1;
784
785 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
786 return 1;
787
788 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
789 return 1;
790
791 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
792 return 1;
793
794 if (is_long_mode(vcpu)) {
795 if (!(cr4 & X86_CR4_PAE))
796 return 1;
797 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
798 && ((cr4 ^ old_cr4) & pdptr_bits)
799 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
800 kvm_read_cr3(vcpu)))
801 return 1;
802
803 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
804 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
805 return 1;
806
807 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
808 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
809 return 1;
810 }
811
812 if (kvm_x86_ops->set_cr4(vcpu, cr4))
813 return 1;
814
815 if (((cr4 ^ old_cr4) & pdptr_bits) ||
816 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
817 kvm_mmu_reset_context(vcpu);
818
819 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
820 kvm_update_cpuid(vcpu);
821
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr4);
825
826 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
827 {
828 #ifdef CONFIG_X86_64
829 cr3 &= ~CR3_PCID_INVD;
830 #endif
831
832 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
833 kvm_mmu_sync_roots(vcpu);
834 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
835 return 0;
836 }
837
838 if (is_long_mode(vcpu) &&
839 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
840 return 1;
841 else if (is_pae(vcpu) && is_paging(vcpu) &&
842 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
843 return 1;
844
845 vcpu->arch.cr3 = cr3;
846 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
847 kvm_mmu_new_cr3(vcpu);
848 return 0;
849 }
850 EXPORT_SYMBOL_GPL(kvm_set_cr3);
851
852 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
853 {
854 if (cr8 & CR8_RESERVED_BITS)
855 return 1;
856 if (lapic_in_kernel(vcpu))
857 kvm_lapic_set_tpr(vcpu, cr8);
858 else
859 vcpu->arch.cr8 = cr8;
860 return 0;
861 }
862 EXPORT_SYMBOL_GPL(kvm_set_cr8);
863
864 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
865 {
866 if (lapic_in_kernel(vcpu))
867 return kvm_lapic_get_cr8(vcpu);
868 else
869 return vcpu->arch.cr8;
870 }
871 EXPORT_SYMBOL_GPL(kvm_get_cr8);
872
873 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
874 {
875 int i;
876
877 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
878 for (i = 0; i < KVM_NR_DB_REGS; i++)
879 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
880 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
881 }
882 }
883
884 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
885 {
886 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
887 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
888 }
889
890 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
891 {
892 unsigned long dr7;
893
894 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
895 dr7 = vcpu->arch.guest_debug_dr7;
896 else
897 dr7 = vcpu->arch.dr7;
898 kvm_x86_ops->set_dr7(vcpu, dr7);
899 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
900 if (dr7 & DR7_BP_EN_MASK)
901 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
902 }
903
904 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
905 {
906 u64 fixed = DR6_FIXED_1;
907
908 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
909 fixed |= DR6_RTM;
910 return fixed;
911 }
912
913 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 switch (dr) {
916 case 0 ... 3:
917 vcpu->arch.db[dr] = val;
918 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 vcpu->arch.eff_db[dr] = val;
920 break;
921 case 4:
922 /* fall through */
923 case 6:
924 if (val & 0xffffffff00000000ULL)
925 return -1; /* #GP */
926 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
927 kvm_update_dr6(vcpu);
928 break;
929 case 5:
930 /* fall through */
931 default: /* 7 */
932 if (val & 0xffffffff00000000ULL)
933 return -1; /* #GP */
934 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
935 kvm_update_dr7(vcpu);
936 break;
937 }
938
939 return 0;
940 }
941
942 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
943 {
944 if (__kvm_set_dr(vcpu, dr, val)) {
945 kvm_inject_gp(vcpu, 0);
946 return 1;
947 }
948 return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_dr);
951
952 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
953 {
954 switch (dr) {
955 case 0 ... 3:
956 *val = vcpu->arch.db[dr];
957 break;
958 case 4:
959 /* fall through */
960 case 6:
961 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
962 *val = vcpu->arch.dr6;
963 else
964 *val = kvm_x86_ops->get_dr6(vcpu);
965 break;
966 case 5:
967 /* fall through */
968 default: /* 7 */
969 *val = vcpu->arch.dr7;
970 break;
971 }
972 return 0;
973 }
974 EXPORT_SYMBOL_GPL(kvm_get_dr);
975
976 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
977 {
978 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
979 u64 data;
980 int err;
981
982 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
983 if (err)
984 return err;
985 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
986 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
987 return err;
988 }
989 EXPORT_SYMBOL_GPL(kvm_rdpmc);
990
991 /*
992 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
993 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
994 *
995 * This list is modified at module load time to reflect the
996 * capabilities of the host cpu. This capabilities test skips MSRs that are
997 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
998 * may depend on host virtualization features rather than host cpu features.
999 */
1000
1001 static u32 msrs_to_save[] = {
1002 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1003 MSR_STAR,
1004 #ifdef CONFIG_X86_64
1005 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1006 #endif
1007 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1008 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1009 };
1010
1011 static unsigned num_msrs_to_save;
1012
1013 static u32 emulated_msrs[] = {
1014 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1015 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1016 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1017 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1018 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1019 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1020 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1021 HV_X64_MSR_RESET,
1022 HV_X64_MSR_VP_INDEX,
1023 HV_X64_MSR_VP_RUNTIME,
1024 HV_X64_MSR_SCONTROL,
1025 HV_X64_MSR_STIMER0_CONFIG,
1026 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1027 MSR_KVM_PV_EOI_EN,
1028
1029 MSR_IA32_TSC_ADJUST,
1030 MSR_IA32_TSCDEADLINE,
1031 MSR_IA32_MISC_ENABLE,
1032 MSR_IA32_MCG_STATUS,
1033 MSR_IA32_MCG_CTL,
1034 MSR_IA32_MCG_EXT_CTL,
1035 MSR_IA32_SMBASE,
1036 MSR_PLATFORM_INFO,
1037 MSR_MISC_FEATURES_ENABLES,
1038 };
1039
1040 static unsigned num_emulated_msrs;
1041
1042 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1043 {
1044 if (efer & efer_reserved_bits)
1045 return false;
1046
1047 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1048 return false;
1049
1050 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1051 return false;
1052
1053 return true;
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1056
1057 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1058 {
1059 u64 old_efer = vcpu->arch.efer;
1060
1061 if (!kvm_valid_efer(vcpu, efer))
1062 return 1;
1063
1064 if (is_paging(vcpu)
1065 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1066 return 1;
1067
1068 efer &= ~EFER_LMA;
1069 efer |= vcpu->arch.efer & EFER_LMA;
1070
1071 kvm_x86_ops->set_efer(vcpu, efer);
1072
1073 /* Update reserved bits */
1074 if ((efer ^ old_efer) & EFER_NX)
1075 kvm_mmu_reset_context(vcpu);
1076
1077 return 0;
1078 }
1079
1080 void kvm_enable_efer_bits(u64 mask)
1081 {
1082 efer_reserved_bits &= ~mask;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1085
1086 /*
1087 * Writes msr value into into the appropriate "register".
1088 * Returns 0 on success, non-0 otherwise.
1089 * Assumes vcpu_load() was already called.
1090 */
1091 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1092 {
1093 switch (msr->index) {
1094 case MSR_FS_BASE:
1095 case MSR_GS_BASE:
1096 case MSR_KERNEL_GS_BASE:
1097 case MSR_CSTAR:
1098 case MSR_LSTAR:
1099 if (is_noncanonical_address(msr->data, vcpu))
1100 return 1;
1101 break;
1102 case MSR_IA32_SYSENTER_EIP:
1103 case MSR_IA32_SYSENTER_ESP:
1104 /*
1105 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1106 * non-canonical address is written on Intel but not on
1107 * AMD (which ignores the top 32-bits, because it does
1108 * not implement 64-bit SYSENTER).
1109 *
1110 * 64-bit code should hence be able to write a non-canonical
1111 * value on AMD. Making the address canonical ensures that
1112 * vmentry does not fail on Intel after writing a non-canonical
1113 * value, and that something deterministic happens if the guest
1114 * invokes 64-bit SYSENTER.
1115 */
1116 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1117 }
1118 return kvm_x86_ops->set_msr(vcpu, msr);
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_set_msr);
1121
1122 /*
1123 * Adapt set_msr() to msr_io()'s calling convention
1124 */
1125 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1126 {
1127 struct msr_data msr;
1128 int r;
1129
1130 msr.index = index;
1131 msr.host_initiated = true;
1132 r = kvm_get_msr(vcpu, &msr);
1133 if (r)
1134 return r;
1135
1136 *data = msr.data;
1137 return 0;
1138 }
1139
1140 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1141 {
1142 struct msr_data msr;
1143
1144 msr.data = *data;
1145 msr.index = index;
1146 msr.host_initiated = true;
1147 return kvm_set_msr(vcpu, &msr);
1148 }
1149
1150 #ifdef CONFIG_X86_64
1151 struct pvclock_gtod_data {
1152 seqcount_t seq;
1153
1154 struct { /* extract of a clocksource struct */
1155 int vclock_mode;
1156 u64 cycle_last;
1157 u64 mask;
1158 u32 mult;
1159 u32 shift;
1160 } clock;
1161
1162 u64 boot_ns;
1163 u64 nsec_base;
1164 u64 wall_time_sec;
1165 };
1166
1167 static struct pvclock_gtod_data pvclock_gtod_data;
1168
1169 static void update_pvclock_gtod(struct timekeeper *tk)
1170 {
1171 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1172 u64 boot_ns;
1173
1174 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1175
1176 write_seqcount_begin(&vdata->seq);
1177
1178 /* copy pvclock gtod data */
1179 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1180 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1181 vdata->clock.mask = tk->tkr_mono.mask;
1182 vdata->clock.mult = tk->tkr_mono.mult;
1183 vdata->clock.shift = tk->tkr_mono.shift;
1184
1185 vdata->boot_ns = boot_ns;
1186 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1187
1188 vdata->wall_time_sec = tk->xtime_sec;
1189
1190 write_seqcount_end(&vdata->seq);
1191 }
1192 #endif
1193
1194 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1195 {
1196 /*
1197 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1198 * vcpu_enter_guest. This function is only called from
1199 * the physical CPU that is running vcpu.
1200 */
1201 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1202 }
1203
1204 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1205 {
1206 int version;
1207 int r;
1208 struct pvclock_wall_clock wc;
1209 struct timespec64 boot;
1210
1211 if (!wall_clock)
1212 return;
1213
1214 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1215 if (r)
1216 return;
1217
1218 if (version & 1)
1219 ++version; /* first time write, random junk */
1220
1221 ++version;
1222
1223 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1224 return;
1225
1226 /*
1227 * The guest calculates current wall clock time by adding
1228 * system time (updated by kvm_guest_time_update below) to the
1229 * wall clock specified here. guest system time equals host
1230 * system time for us, thus we must fill in host boot time here.
1231 */
1232 getboottime64(&boot);
1233
1234 if (kvm->arch.kvmclock_offset) {
1235 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1236 boot = timespec64_sub(boot, ts);
1237 }
1238 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1239 wc.nsec = boot.tv_nsec;
1240 wc.version = version;
1241
1242 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1243
1244 version++;
1245 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246 }
1247
1248 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1249 {
1250 do_shl32_div32(dividend, divisor);
1251 return dividend;
1252 }
1253
1254 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1255 s8 *pshift, u32 *pmultiplier)
1256 {
1257 uint64_t scaled64;
1258 int32_t shift = 0;
1259 uint64_t tps64;
1260 uint32_t tps32;
1261
1262 tps64 = base_hz;
1263 scaled64 = scaled_hz;
1264 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1265 tps64 >>= 1;
1266 shift--;
1267 }
1268
1269 tps32 = (uint32_t)tps64;
1270 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1271 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1272 scaled64 >>= 1;
1273 else
1274 tps32 <<= 1;
1275 shift++;
1276 }
1277
1278 *pshift = shift;
1279 *pmultiplier = div_frac(scaled64, tps32);
1280
1281 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1282 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1283 }
1284
1285 #ifdef CONFIG_X86_64
1286 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1287 #endif
1288
1289 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1290 static unsigned long max_tsc_khz;
1291
1292 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1293 {
1294 u64 v = (u64)khz * (1000000 + ppm);
1295 do_div(v, 1000000);
1296 return v;
1297 }
1298
1299 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1300 {
1301 u64 ratio;
1302
1303 /* Guest TSC same frequency as host TSC? */
1304 if (!scale) {
1305 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1306 return 0;
1307 }
1308
1309 /* TSC scaling supported? */
1310 if (!kvm_has_tsc_control) {
1311 if (user_tsc_khz > tsc_khz) {
1312 vcpu->arch.tsc_catchup = 1;
1313 vcpu->arch.tsc_always_catchup = 1;
1314 return 0;
1315 } else {
1316 WARN(1, "user requested TSC rate below hardware speed\n");
1317 return -1;
1318 }
1319 }
1320
1321 /* TSC scaling required - calculate ratio */
1322 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1323 user_tsc_khz, tsc_khz);
1324
1325 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1326 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1327 user_tsc_khz);
1328 return -1;
1329 }
1330
1331 vcpu->arch.tsc_scaling_ratio = ratio;
1332 return 0;
1333 }
1334
1335 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1336 {
1337 u32 thresh_lo, thresh_hi;
1338 int use_scaling = 0;
1339
1340 /* tsc_khz can be zero if TSC calibration fails */
1341 if (user_tsc_khz == 0) {
1342 /* set tsc_scaling_ratio to a safe value */
1343 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1344 return -1;
1345 }
1346
1347 /* Compute a scale to convert nanoseconds in TSC cycles */
1348 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1349 &vcpu->arch.virtual_tsc_shift,
1350 &vcpu->arch.virtual_tsc_mult);
1351 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1352
1353 /*
1354 * Compute the variation in TSC rate which is acceptable
1355 * within the range of tolerance and decide if the
1356 * rate being applied is within that bounds of the hardware
1357 * rate. If so, no scaling or compensation need be done.
1358 */
1359 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1360 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1361 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1362 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1363 use_scaling = 1;
1364 }
1365 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1366 }
1367
1368 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1369 {
1370 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1371 vcpu->arch.virtual_tsc_mult,
1372 vcpu->arch.virtual_tsc_shift);
1373 tsc += vcpu->arch.this_tsc_write;
1374 return tsc;
1375 }
1376
1377 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1378 {
1379 #ifdef CONFIG_X86_64
1380 bool vcpus_matched;
1381 struct kvm_arch *ka = &vcpu->kvm->arch;
1382 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383
1384 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385 atomic_read(&vcpu->kvm->online_vcpus));
1386
1387 /*
1388 * Once the masterclock is enabled, always perform request in
1389 * order to update it.
1390 *
1391 * In order to enable masterclock, the host clocksource must be TSC
1392 * and the vcpus need to have matched TSCs. When that happens,
1393 * perform request to enable masterclock.
1394 */
1395 if (ka->use_master_clock ||
1396 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1397 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1398
1399 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1400 atomic_read(&vcpu->kvm->online_vcpus),
1401 ka->use_master_clock, gtod->clock.vclock_mode);
1402 #endif
1403 }
1404
1405 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1406 {
1407 u64 curr_offset = vcpu->arch.tsc_offset;
1408 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1409 }
1410
1411 /*
1412 * Multiply tsc by a fixed point number represented by ratio.
1413 *
1414 * The most significant 64-N bits (mult) of ratio represent the
1415 * integral part of the fixed point number; the remaining N bits
1416 * (frac) represent the fractional part, ie. ratio represents a fixed
1417 * point number (mult + frac * 2^(-N)).
1418 *
1419 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1420 */
1421 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1422 {
1423 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1424 }
1425
1426 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1427 {
1428 u64 _tsc = tsc;
1429 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1430
1431 if (ratio != kvm_default_tsc_scaling_ratio)
1432 _tsc = __scale_tsc(ratio, tsc);
1433
1434 return _tsc;
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1437
1438 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1439 {
1440 u64 tsc;
1441
1442 tsc = kvm_scale_tsc(vcpu, rdtsc());
1443
1444 return target_tsc - tsc;
1445 }
1446
1447 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1448 {
1449 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1452
1453 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1454 {
1455 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1456 vcpu->arch.tsc_offset = offset;
1457 }
1458
1459 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1460 {
1461 struct kvm *kvm = vcpu->kvm;
1462 u64 offset, ns, elapsed;
1463 unsigned long flags;
1464 bool matched;
1465 bool already_matched;
1466 u64 data = msr->data;
1467 bool synchronizing = false;
1468
1469 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1470 offset = kvm_compute_tsc_offset(vcpu, data);
1471 ns = ktime_get_boot_ns();
1472 elapsed = ns - kvm->arch.last_tsc_nsec;
1473
1474 if (vcpu->arch.virtual_tsc_khz) {
1475 if (data == 0 && msr->host_initiated) {
1476 /*
1477 * detection of vcpu initialization -- need to sync
1478 * with other vCPUs. This particularly helps to keep
1479 * kvm_clock stable after CPU hotplug
1480 */
1481 synchronizing = true;
1482 } else {
1483 u64 tsc_exp = kvm->arch.last_tsc_write +
1484 nsec_to_cycles(vcpu, elapsed);
1485 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1486 /*
1487 * Special case: TSC write with a small delta (1 second)
1488 * of virtual cycle time against real time is
1489 * interpreted as an attempt to synchronize the CPU.
1490 */
1491 synchronizing = data < tsc_exp + tsc_hz &&
1492 data + tsc_hz > tsc_exp;
1493 }
1494 }
1495
1496 /*
1497 * For a reliable TSC, we can match TSC offsets, and for an unstable
1498 * TSC, we add elapsed time in this computation. We could let the
1499 * compensation code attempt to catch up if we fall behind, but
1500 * it's better to try to match offsets from the beginning.
1501 */
1502 if (synchronizing &&
1503 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504 if (!check_tsc_unstable()) {
1505 offset = kvm->arch.cur_tsc_offset;
1506 pr_debug("kvm: matched tsc offset for %llu\n", data);
1507 } else {
1508 u64 delta = nsec_to_cycles(vcpu, elapsed);
1509 data += delta;
1510 offset = kvm_compute_tsc_offset(vcpu, data);
1511 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512 }
1513 matched = true;
1514 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515 } else {
1516 /*
1517 * We split periods of matched TSC writes into generations.
1518 * For each generation, we track the original measured
1519 * nanosecond time, offset, and write, so if TSCs are in
1520 * sync, we can match exact offset, and if not, we can match
1521 * exact software computation in compute_guest_tsc()
1522 *
1523 * These values are tracked in kvm->arch.cur_xxx variables.
1524 */
1525 kvm->arch.cur_tsc_generation++;
1526 kvm->arch.cur_tsc_nsec = ns;
1527 kvm->arch.cur_tsc_write = data;
1528 kvm->arch.cur_tsc_offset = offset;
1529 matched = false;
1530 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531 kvm->arch.cur_tsc_generation, data);
1532 }
1533
1534 /*
1535 * We also track th most recent recorded KHZ, write and time to
1536 * allow the matching interval to be extended at each write.
1537 */
1538 kvm->arch.last_tsc_nsec = ns;
1539 kvm->arch.last_tsc_write = data;
1540 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541
1542 vcpu->arch.last_guest_tsc = data;
1543
1544 /* Keep track of which generation this VCPU has synchronized to */
1545 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548
1549 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1550 update_ia32_tsc_adjust_msr(vcpu, offset);
1551
1552 kvm_vcpu_write_tsc_offset(vcpu, offset);
1553 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1554
1555 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1556 if (!matched) {
1557 kvm->arch.nr_vcpus_matched_tsc = 0;
1558 } else if (!already_matched) {
1559 kvm->arch.nr_vcpus_matched_tsc++;
1560 }
1561
1562 kvm_track_tsc_matching(vcpu);
1563 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1564 }
1565
1566 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1567
1568 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1569 s64 adjustment)
1570 {
1571 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1572 }
1573
1574 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1575 {
1576 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1577 WARN_ON(adjustment < 0);
1578 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1579 adjust_tsc_offset_guest(vcpu, adjustment);
1580 }
1581
1582 #ifdef CONFIG_X86_64
1583
1584 static u64 read_tsc(void)
1585 {
1586 u64 ret = (u64)rdtsc_ordered();
1587 u64 last = pvclock_gtod_data.clock.cycle_last;
1588
1589 if (likely(ret >= last))
1590 return ret;
1591
1592 /*
1593 * GCC likes to generate cmov here, but this branch is extremely
1594 * predictable (it's just a function of time and the likely is
1595 * very likely) and there's a data dependence, so force GCC
1596 * to generate a branch instead. I don't barrier() because
1597 * we don't actually need a barrier, and if this function
1598 * ever gets inlined it will generate worse code.
1599 */
1600 asm volatile ("");
1601 return last;
1602 }
1603
1604 static inline u64 vgettsc(u64 *cycle_now)
1605 {
1606 long v;
1607 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1608
1609 *cycle_now = read_tsc();
1610
1611 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1612 return v * gtod->clock.mult;
1613 }
1614
1615 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1616 {
1617 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1618 unsigned long seq;
1619 int mode;
1620 u64 ns;
1621
1622 do {
1623 seq = read_seqcount_begin(&gtod->seq);
1624 mode = gtod->clock.vclock_mode;
1625 ns = gtod->nsec_base;
1626 ns += vgettsc(cycle_now);
1627 ns >>= gtod->clock.shift;
1628 ns += gtod->boot_ns;
1629 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1630 *t = ns;
1631
1632 return mode;
1633 }
1634
1635 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1636 {
1637 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1638 unsigned long seq;
1639 int mode;
1640 u64 ns;
1641
1642 do {
1643 seq = read_seqcount_begin(&gtod->seq);
1644 mode = gtod->clock.vclock_mode;
1645 ts->tv_sec = gtod->wall_time_sec;
1646 ns = gtod->nsec_base;
1647 ns += vgettsc(cycle_now);
1648 ns >>= gtod->clock.shift;
1649 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1650
1651 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1652 ts->tv_nsec = ns;
1653
1654 return mode;
1655 }
1656
1657 /* returns true if host is using tsc clocksource */
1658 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1659 {
1660 /* checked again under seqlock below */
1661 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1662 return false;
1663
1664 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1665 }
1666
1667 /* returns true if host is using tsc clocksource */
1668 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1669 u64 *cycle_now)
1670 {
1671 /* checked again under seqlock below */
1672 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1673 return false;
1674
1675 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1676 }
1677 #endif
1678
1679 /*
1680 *
1681 * Assuming a stable TSC across physical CPUS, and a stable TSC
1682 * across virtual CPUs, the following condition is possible.
1683 * Each numbered line represents an event visible to both
1684 * CPUs at the next numbered event.
1685 *
1686 * "timespecX" represents host monotonic time. "tscX" represents
1687 * RDTSC value.
1688 *
1689 * VCPU0 on CPU0 | VCPU1 on CPU1
1690 *
1691 * 1. read timespec0,tsc0
1692 * 2. | timespec1 = timespec0 + N
1693 * | tsc1 = tsc0 + M
1694 * 3. transition to guest | transition to guest
1695 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1696 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1697 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1698 *
1699 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1700 *
1701 * - ret0 < ret1
1702 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1703 * ...
1704 * - 0 < N - M => M < N
1705 *
1706 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1707 * always the case (the difference between two distinct xtime instances
1708 * might be smaller then the difference between corresponding TSC reads,
1709 * when updating guest vcpus pvclock areas).
1710 *
1711 * To avoid that problem, do not allow visibility of distinct
1712 * system_timestamp/tsc_timestamp values simultaneously: use a master
1713 * copy of host monotonic time values. Update that master copy
1714 * in lockstep.
1715 *
1716 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1717 *
1718 */
1719
1720 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1721 {
1722 #ifdef CONFIG_X86_64
1723 struct kvm_arch *ka = &kvm->arch;
1724 int vclock_mode;
1725 bool host_tsc_clocksource, vcpus_matched;
1726
1727 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1728 atomic_read(&kvm->online_vcpus));
1729
1730 /*
1731 * If the host uses TSC clock, then passthrough TSC as stable
1732 * to the guest.
1733 */
1734 host_tsc_clocksource = kvm_get_time_and_clockread(
1735 &ka->master_kernel_ns,
1736 &ka->master_cycle_now);
1737
1738 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1739 && !ka->backwards_tsc_observed
1740 && !ka->boot_vcpu_runs_old_kvmclock;
1741
1742 if (ka->use_master_clock)
1743 atomic_set(&kvm_guest_has_master_clock, 1);
1744
1745 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1746 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1747 vcpus_matched);
1748 #endif
1749 }
1750
1751 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1752 {
1753 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1754 }
1755
1756 static void kvm_gen_update_masterclock(struct kvm *kvm)
1757 {
1758 #ifdef CONFIG_X86_64
1759 int i;
1760 struct kvm_vcpu *vcpu;
1761 struct kvm_arch *ka = &kvm->arch;
1762
1763 spin_lock(&ka->pvclock_gtod_sync_lock);
1764 kvm_make_mclock_inprogress_request(kvm);
1765 /* no guest entries from this point */
1766 pvclock_update_vm_gtod_copy(kvm);
1767
1768 kvm_for_each_vcpu(i, vcpu, kvm)
1769 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1770
1771 /* guest entries allowed */
1772 kvm_for_each_vcpu(i, vcpu, kvm)
1773 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1774
1775 spin_unlock(&ka->pvclock_gtod_sync_lock);
1776 #endif
1777 }
1778
1779 u64 get_kvmclock_ns(struct kvm *kvm)
1780 {
1781 struct kvm_arch *ka = &kvm->arch;
1782 struct pvclock_vcpu_time_info hv_clock;
1783 u64 ret;
1784
1785 spin_lock(&ka->pvclock_gtod_sync_lock);
1786 if (!ka->use_master_clock) {
1787 spin_unlock(&ka->pvclock_gtod_sync_lock);
1788 return ktime_get_boot_ns() + ka->kvmclock_offset;
1789 }
1790
1791 hv_clock.tsc_timestamp = ka->master_cycle_now;
1792 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1793 spin_unlock(&ka->pvclock_gtod_sync_lock);
1794
1795 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1796 get_cpu();
1797
1798 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1799 &hv_clock.tsc_shift,
1800 &hv_clock.tsc_to_system_mul);
1801 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1802
1803 put_cpu();
1804
1805 return ret;
1806 }
1807
1808 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1809 {
1810 struct kvm_vcpu_arch *vcpu = &v->arch;
1811 struct pvclock_vcpu_time_info guest_hv_clock;
1812
1813 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1814 &guest_hv_clock, sizeof(guest_hv_clock))))
1815 return;
1816
1817 /* This VCPU is paused, but it's legal for a guest to read another
1818 * VCPU's kvmclock, so we really have to follow the specification where
1819 * it says that version is odd if data is being modified, and even after
1820 * it is consistent.
1821 *
1822 * Version field updates must be kept separate. This is because
1823 * kvm_write_guest_cached might use a "rep movs" instruction, and
1824 * writes within a string instruction are weakly ordered. So there
1825 * are three writes overall.
1826 *
1827 * As a small optimization, only write the version field in the first
1828 * and third write. The vcpu->pv_time cache is still valid, because the
1829 * version field is the first in the struct.
1830 */
1831 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1832
1833 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1834 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835 &vcpu->hv_clock,
1836 sizeof(vcpu->hv_clock.version));
1837
1838 smp_wmb();
1839
1840 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1841 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1842
1843 if (vcpu->pvclock_set_guest_stopped_request) {
1844 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1845 vcpu->pvclock_set_guest_stopped_request = false;
1846 }
1847
1848 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1849
1850 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1851 &vcpu->hv_clock,
1852 sizeof(vcpu->hv_clock));
1853
1854 smp_wmb();
1855
1856 vcpu->hv_clock.version++;
1857 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1858 &vcpu->hv_clock,
1859 sizeof(vcpu->hv_clock.version));
1860 }
1861
1862 static int kvm_guest_time_update(struct kvm_vcpu *v)
1863 {
1864 unsigned long flags, tgt_tsc_khz;
1865 struct kvm_vcpu_arch *vcpu = &v->arch;
1866 struct kvm_arch *ka = &v->kvm->arch;
1867 s64 kernel_ns;
1868 u64 tsc_timestamp, host_tsc;
1869 u8 pvclock_flags;
1870 bool use_master_clock;
1871
1872 kernel_ns = 0;
1873 host_tsc = 0;
1874
1875 /*
1876 * If the host uses TSC clock, then passthrough TSC as stable
1877 * to the guest.
1878 */
1879 spin_lock(&ka->pvclock_gtod_sync_lock);
1880 use_master_clock = ka->use_master_clock;
1881 if (use_master_clock) {
1882 host_tsc = ka->master_cycle_now;
1883 kernel_ns = ka->master_kernel_ns;
1884 }
1885 spin_unlock(&ka->pvclock_gtod_sync_lock);
1886
1887 /* Keep irq disabled to prevent changes to the clock */
1888 local_irq_save(flags);
1889 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1890 if (unlikely(tgt_tsc_khz == 0)) {
1891 local_irq_restore(flags);
1892 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1893 return 1;
1894 }
1895 if (!use_master_clock) {
1896 host_tsc = rdtsc();
1897 kernel_ns = ktime_get_boot_ns();
1898 }
1899
1900 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1901
1902 /*
1903 * We may have to catch up the TSC to match elapsed wall clock
1904 * time for two reasons, even if kvmclock is used.
1905 * 1) CPU could have been running below the maximum TSC rate
1906 * 2) Broken TSC compensation resets the base at each VCPU
1907 * entry to avoid unknown leaps of TSC even when running
1908 * again on the same CPU. This may cause apparent elapsed
1909 * time to disappear, and the guest to stand still or run
1910 * very slowly.
1911 */
1912 if (vcpu->tsc_catchup) {
1913 u64 tsc = compute_guest_tsc(v, kernel_ns);
1914 if (tsc > tsc_timestamp) {
1915 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1916 tsc_timestamp = tsc;
1917 }
1918 }
1919
1920 local_irq_restore(flags);
1921
1922 /* With all the info we got, fill in the values */
1923
1924 if (kvm_has_tsc_control)
1925 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1926
1927 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1928 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1929 &vcpu->hv_clock.tsc_shift,
1930 &vcpu->hv_clock.tsc_to_system_mul);
1931 vcpu->hw_tsc_khz = tgt_tsc_khz;
1932 }
1933
1934 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1935 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1936 vcpu->last_guest_tsc = tsc_timestamp;
1937
1938 /* If the host uses TSC clocksource, then it is stable */
1939 pvclock_flags = 0;
1940 if (use_master_clock)
1941 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1942
1943 vcpu->hv_clock.flags = pvclock_flags;
1944
1945 if (vcpu->pv_time_enabled)
1946 kvm_setup_pvclock_page(v);
1947 if (v == kvm_get_vcpu(v->kvm, 0))
1948 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1949 return 0;
1950 }
1951
1952 /*
1953 * kvmclock updates which are isolated to a given vcpu, such as
1954 * vcpu->cpu migration, should not allow system_timestamp from
1955 * the rest of the vcpus to remain static. Otherwise ntp frequency
1956 * correction applies to one vcpu's system_timestamp but not
1957 * the others.
1958 *
1959 * So in those cases, request a kvmclock update for all vcpus.
1960 * We need to rate-limit these requests though, as they can
1961 * considerably slow guests that have a large number of vcpus.
1962 * The time for a remote vcpu to update its kvmclock is bound
1963 * by the delay we use to rate-limit the updates.
1964 */
1965
1966 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1967
1968 static void kvmclock_update_fn(struct work_struct *work)
1969 {
1970 int i;
1971 struct delayed_work *dwork = to_delayed_work(work);
1972 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973 kvmclock_update_work);
1974 struct kvm *kvm = container_of(ka, struct kvm, arch);
1975 struct kvm_vcpu *vcpu;
1976
1977 kvm_for_each_vcpu(i, vcpu, kvm) {
1978 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1979 kvm_vcpu_kick(vcpu);
1980 }
1981 }
1982
1983 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1984 {
1985 struct kvm *kvm = v->kvm;
1986
1987 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1988 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1989 KVMCLOCK_UPDATE_DELAY);
1990 }
1991
1992 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1993
1994 static void kvmclock_sync_fn(struct work_struct *work)
1995 {
1996 struct delayed_work *dwork = to_delayed_work(work);
1997 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1998 kvmclock_sync_work);
1999 struct kvm *kvm = container_of(ka, struct kvm, arch);
2000
2001 if (!kvmclock_periodic_sync)
2002 return;
2003
2004 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2005 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2006 KVMCLOCK_SYNC_PERIOD);
2007 }
2008
2009 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2010 {
2011 u64 mcg_cap = vcpu->arch.mcg_cap;
2012 unsigned bank_num = mcg_cap & 0xff;
2013 u32 msr = msr_info->index;
2014 u64 data = msr_info->data;
2015
2016 switch (msr) {
2017 case MSR_IA32_MCG_STATUS:
2018 vcpu->arch.mcg_status = data;
2019 break;
2020 case MSR_IA32_MCG_CTL:
2021 if (!(mcg_cap & MCG_CTL_P))
2022 return 1;
2023 if (data != 0 && data != ~(u64)0)
2024 return -1;
2025 vcpu->arch.mcg_ctl = data;
2026 break;
2027 default:
2028 if (msr >= MSR_IA32_MC0_CTL &&
2029 msr < MSR_IA32_MCx_CTL(bank_num)) {
2030 u32 offset = msr - MSR_IA32_MC0_CTL;
2031 /* only 0 or all 1s can be written to IA32_MCi_CTL
2032 * some Linux kernels though clear bit 10 in bank 4 to
2033 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2034 * this to avoid an uncatched #GP in the guest
2035 */
2036 if ((offset & 0x3) == 0 &&
2037 data != 0 && (data | (1 << 10)) != ~(u64)0)
2038 return -1;
2039 if (!msr_info->host_initiated &&
2040 (offset & 0x3) == 1 && data != 0)
2041 return -1;
2042 vcpu->arch.mce_banks[offset] = data;
2043 break;
2044 }
2045 return 1;
2046 }
2047 return 0;
2048 }
2049
2050 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2051 {
2052 struct kvm *kvm = vcpu->kvm;
2053 int lm = is_long_mode(vcpu);
2054 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2055 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2056 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2057 : kvm->arch.xen_hvm_config.blob_size_32;
2058 u32 page_num = data & ~PAGE_MASK;
2059 u64 page_addr = data & PAGE_MASK;
2060 u8 *page;
2061 int r;
2062
2063 r = -E2BIG;
2064 if (page_num >= blob_size)
2065 goto out;
2066 r = -ENOMEM;
2067 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2068 if (IS_ERR(page)) {
2069 r = PTR_ERR(page);
2070 goto out;
2071 }
2072 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2073 goto out_free;
2074 r = 0;
2075 out_free:
2076 kfree(page);
2077 out:
2078 return r;
2079 }
2080
2081 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2082 {
2083 gpa_t gpa = data & ~0x3f;
2084
2085 /* Bits 3:5 are reserved, Should be zero */
2086 if (data & 0x38)
2087 return 1;
2088
2089 vcpu->arch.apf.msr_val = data;
2090
2091 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2092 kvm_clear_async_pf_completion_queue(vcpu);
2093 kvm_async_pf_hash_reset(vcpu);
2094 return 0;
2095 }
2096
2097 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2098 sizeof(u32)))
2099 return 1;
2100
2101 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2102 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2103 kvm_async_pf_wakeup_all(vcpu);
2104 return 0;
2105 }
2106
2107 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2108 {
2109 vcpu->arch.pv_time_enabled = false;
2110 }
2111
2112 static void record_steal_time(struct kvm_vcpu *vcpu)
2113 {
2114 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2115 return;
2116
2117 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2118 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2119 return;
2120
2121 vcpu->arch.st.steal.preempted = 0;
2122
2123 if (vcpu->arch.st.steal.version & 1)
2124 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2125
2126 vcpu->arch.st.steal.version += 1;
2127
2128 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2129 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2130
2131 smp_wmb();
2132
2133 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2134 vcpu->arch.st.last_steal;
2135 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2136
2137 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2138 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2139
2140 smp_wmb();
2141
2142 vcpu->arch.st.steal.version += 1;
2143
2144 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2145 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2146 }
2147
2148 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2149 {
2150 bool pr = false;
2151 u32 msr = msr_info->index;
2152 u64 data = msr_info->data;
2153
2154 switch (msr) {
2155 case MSR_AMD64_NB_CFG:
2156 case MSR_IA32_UCODE_REV:
2157 case MSR_IA32_UCODE_WRITE:
2158 case MSR_VM_HSAVE_PA:
2159 case MSR_AMD64_PATCH_LOADER:
2160 case MSR_AMD64_BU_CFG2:
2161 case MSR_AMD64_DC_CFG:
2162 break;
2163
2164 case MSR_EFER:
2165 return set_efer(vcpu, data);
2166 case MSR_K7_HWCR:
2167 data &= ~(u64)0x40; /* ignore flush filter disable */
2168 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2169 data &= ~(u64)0x8; /* ignore TLB cache disable */
2170 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2171 if (data != 0) {
2172 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2173 data);
2174 return 1;
2175 }
2176 break;
2177 case MSR_FAM10H_MMIO_CONF_BASE:
2178 if (data != 0) {
2179 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2180 "0x%llx\n", data);
2181 return 1;
2182 }
2183 break;
2184 case MSR_IA32_DEBUGCTLMSR:
2185 if (!data) {
2186 /* We support the non-activated case already */
2187 break;
2188 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2189 /* Values other than LBR and BTF are vendor-specific,
2190 thus reserved and should throw a #GP */
2191 return 1;
2192 }
2193 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2194 __func__, data);
2195 break;
2196 case 0x200 ... 0x2ff:
2197 return kvm_mtrr_set_msr(vcpu, msr, data);
2198 case MSR_IA32_APICBASE:
2199 return kvm_set_apic_base(vcpu, msr_info);
2200 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2201 return kvm_x2apic_msr_write(vcpu, msr, data);
2202 case MSR_IA32_TSCDEADLINE:
2203 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2204 break;
2205 case MSR_IA32_TSC_ADJUST:
2206 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2207 if (!msr_info->host_initiated) {
2208 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2209 adjust_tsc_offset_guest(vcpu, adj);
2210 }
2211 vcpu->arch.ia32_tsc_adjust_msr = data;
2212 }
2213 break;
2214 case MSR_IA32_MISC_ENABLE:
2215 vcpu->arch.ia32_misc_enable_msr = data;
2216 break;
2217 case MSR_IA32_SMBASE:
2218 if (!msr_info->host_initiated)
2219 return 1;
2220 vcpu->arch.smbase = data;
2221 break;
2222 case MSR_KVM_WALL_CLOCK_NEW:
2223 case MSR_KVM_WALL_CLOCK:
2224 vcpu->kvm->arch.wall_clock = data;
2225 kvm_write_wall_clock(vcpu->kvm, data);
2226 break;
2227 case MSR_KVM_SYSTEM_TIME_NEW:
2228 case MSR_KVM_SYSTEM_TIME: {
2229 struct kvm_arch *ka = &vcpu->kvm->arch;
2230
2231 kvmclock_reset(vcpu);
2232
2233 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2234 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2235
2236 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2237 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2238
2239 ka->boot_vcpu_runs_old_kvmclock = tmp;
2240 }
2241
2242 vcpu->arch.time = data;
2243 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2244
2245 /* we verify if the enable bit is set... */
2246 if (!(data & 1))
2247 break;
2248
2249 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2250 &vcpu->arch.pv_time, data & ~1ULL,
2251 sizeof(struct pvclock_vcpu_time_info)))
2252 vcpu->arch.pv_time_enabled = false;
2253 else
2254 vcpu->arch.pv_time_enabled = true;
2255
2256 break;
2257 }
2258 case MSR_KVM_ASYNC_PF_EN:
2259 if (kvm_pv_enable_async_pf(vcpu, data))
2260 return 1;
2261 break;
2262 case MSR_KVM_STEAL_TIME:
2263
2264 if (unlikely(!sched_info_on()))
2265 return 1;
2266
2267 if (data & KVM_STEAL_RESERVED_MASK)
2268 return 1;
2269
2270 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2271 data & KVM_STEAL_VALID_BITS,
2272 sizeof(struct kvm_steal_time)))
2273 return 1;
2274
2275 vcpu->arch.st.msr_val = data;
2276
2277 if (!(data & KVM_MSR_ENABLED))
2278 break;
2279
2280 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2281
2282 break;
2283 case MSR_KVM_PV_EOI_EN:
2284 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2285 return 1;
2286 break;
2287
2288 case MSR_IA32_MCG_CTL:
2289 case MSR_IA32_MCG_STATUS:
2290 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2291 return set_msr_mce(vcpu, msr_info);
2292
2293 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2294 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2295 pr = true; /* fall through */
2296 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2297 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2298 if (kvm_pmu_is_valid_msr(vcpu, msr))
2299 return kvm_pmu_set_msr(vcpu, msr_info);
2300
2301 if (pr || data != 0)
2302 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2303 "0x%x data 0x%llx\n", msr, data);
2304 break;
2305 case MSR_K7_CLK_CTL:
2306 /*
2307 * Ignore all writes to this no longer documented MSR.
2308 * Writes are only relevant for old K7 processors,
2309 * all pre-dating SVM, but a recommended workaround from
2310 * AMD for these chips. It is possible to specify the
2311 * affected processor models on the command line, hence
2312 * the need to ignore the workaround.
2313 */
2314 break;
2315 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2316 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2317 case HV_X64_MSR_CRASH_CTL:
2318 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2319 return kvm_hv_set_msr_common(vcpu, msr, data,
2320 msr_info->host_initiated);
2321 case MSR_IA32_BBL_CR_CTL3:
2322 /* Drop writes to this legacy MSR -- see rdmsr
2323 * counterpart for further detail.
2324 */
2325 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2326 break;
2327 case MSR_AMD64_OSVW_ID_LENGTH:
2328 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2329 return 1;
2330 vcpu->arch.osvw.length = data;
2331 break;
2332 case MSR_AMD64_OSVW_STATUS:
2333 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2334 return 1;
2335 vcpu->arch.osvw.status = data;
2336 break;
2337 case MSR_PLATFORM_INFO:
2338 if (!msr_info->host_initiated ||
2339 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2340 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2341 cpuid_fault_enabled(vcpu)))
2342 return 1;
2343 vcpu->arch.msr_platform_info = data;
2344 break;
2345 case MSR_MISC_FEATURES_ENABLES:
2346 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2347 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2348 !supports_cpuid_fault(vcpu)))
2349 return 1;
2350 vcpu->arch.msr_misc_features_enables = data;
2351 break;
2352 default:
2353 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2354 return xen_hvm_config(vcpu, data);
2355 if (kvm_pmu_is_valid_msr(vcpu, msr))
2356 return kvm_pmu_set_msr(vcpu, msr_info);
2357 if (!ignore_msrs) {
2358 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2359 msr, data);
2360 return 1;
2361 } else {
2362 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2363 msr, data);
2364 break;
2365 }
2366 }
2367 return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2370
2371
2372 /*
2373 * Reads an msr value (of 'msr_index') into 'pdata'.
2374 * Returns 0 on success, non-0 otherwise.
2375 * Assumes vcpu_load() was already called.
2376 */
2377 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2378 {
2379 return kvm_x86_ops->get_msr(vcpu, msr);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_get_msr);
2382
2383 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2384 {
2385 u64 data;
2386 u64 mcg_cap = vcpu->arch.mcg_cap;
2387 unsigned bank_num = mcg_cap & 0xff;
2388
2389 switch (msr) {
2390 case MSR_IA32_P5_MC_ADDR:
2391 case MSR_IA32_P5_MC_TYPE:
2392 data = 0;
2393 break;
2394 case MSR_IA32_MCG_CAP:
2395 data = vcpu->arch.mcg_cap;
2396 break;
2397 case MSR_IA32_MCG_CTL:
2398 if (!(mcg_cap & MCG_CTL_P))
2399 return 1;
2400 data = vcpu->arch.mcg_ctl;
2401 break;
2402 case MSR_IA32_MCG_STATUS:
2403 data = vcpu->arch.mcg_status;
2404 break;
2405 default:
2406 if (msr >= MSR_IA32_MC0_CTL &&
2407 msr < MSR_IA32_MCx_CTL(bank_num)) {
2408 u32 offset = msr - MSR_IA32_MC0_CTL;
2409 data = vcpu->arch.mce_banks[offset];
2410 break;
2411 }
2412 return 1;
2413 }
2414 *pdata = data;
2415 return 0;
2416 }
2417
2418 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2419 {
2420 switch (msr_info->index) {
2421 case MSR_IA32_PLATFORM_ID:
2422 case MSR_IA32_EBL_CR_POWERON:
2423 case MSR_IA32_DEBUGCTLMSR:
2424 case MSR_IA32_LASTBRANCHFROMIP:
2425 case MSR_IA32_LASTBRANCHTOIP:
2426 case MSR_IA32_LASTINTFROMIP:
2427 case MSR_IA32_LASTINTTOIP:
2428 case MSR_K8_SYSCFG:
2429 case MSR_K8_TSEG_ADDR:
2430 case MSR_K8_TSEG_MASK:
2431 case MSR_K7_HWCR:
2432 case MSR_VM_HSAVE_PA:
2433 case MSR_K8_INT_PENDING_MSG:
2434 case MSR_AMD64_NB_CFG:
2435 case MSR_FAM10H_MMIO_CONF_BASE:
2436 case MSR_AMD64_BU_CFG2:
2437 case MSR_IA32_PERF_CTL:
2438 case MSR_AMD64_DC_CFG:
2439 msr_info->data = 0;
2440 break;
2441 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2442 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2443 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2444 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2445 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2446 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2447 msr_info->data = 0;
2448 break;
2449 case MSR_IA32_UCODE_REV:
2450 msr_info->data = 0x100000000ULL;
2451 break;
2452 case MSR_MTRRcap:
2453 case 0x200 ... 0x2ff:
2454 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2455 case 0xcd: /* fsb frequency */
2456 msr_info->data = 3;
2457 break;
2458 /*
2459 * MSR_EBC_FREQUENCY_ID
2460 * Conservative value valid for even the basic CPU models.
2461 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2462 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2463 * and 266MHz for model 3, or 4. Set Core Clock
2464 * Frequency to System Bus Frequency Ratio to 1 (bits
2465 * 31:24) even though these are only valid for CPU
2466 * models > 2, however guests may end up dividing or
2467 * multiplying by zero otherwise.
2468 */
2469 case MSR_EBC_FREQUENCY_ID:
2470 msr_info->data = 1 << 24;
2471 break;
2472 case MSR_IA32_APICBASE:
2473 msr_info->data = kvm_get_apic_base(vcpu);
2474 break;
2475 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2476 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2477 break;
2478 case MSR_IA32_TSCDEADLINE:
2479 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2480 break;
2481 case MSR_IA32_TSC_ADJUST:
2482 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2483 break;
2484 case MSR_IA32_MISC_ENABLE:
2485 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2486 break;
2487 case MSR_IA32_SMBASE:
2488 if (!msr_info->host_initiated)
2489 return 1;
2490 msr_info->data = vcpu->arch.smbase;
2491 break;
2492 case MSR_IA32_PERF_STATUS:
2493 /* TSC increment by tick */
2494 msr_info->data = 1000ULL;
2495 /* CPU multiplier */
2496 msr_info->data |= (((uint64_t)4ULL) << 40);
2497 break;
2498 case MSR_EFER:
2499 msr_info->data = vcpu->arch.efer;
2500 break;
2501 case MSR_KVM_WALL_CLOCK:
2502 case MSR_KVM_WALL_CLOCK_NEW:
2503 msr_info->data = vcpu->kvm->arch.wall_clock;
2504 break;
2505 case MSR_KVM_SYSTEM_TIME:
2506 case MSR_KVM_SYSTEM_TIME_NEW:
2507 msr_info->data = vcpu->arch.time;
2508 break;
2509 case MSR_KVM_ASYNC_PF_EN:
2510 msr_info->data = vcpu->arch.apf.msr_val;
2511 break;
2512 case MSR_KVM_STEAL_TIME:
2513 msr_info->data = vcpu->arch.st.msr_val;
2514 break;
2515 case MSR_KVM_PV_EOI_EN:
2516 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2517 break;
2518 case MSR_IA32_P5_MC_ADDR:
2519 case MSR_IA32_P5_MC_TYPE:
2520 case MSR_IA32_MCG_CAP:
2521 case MSR_IA32_MCG_CTL:
2522 case MSR_IA32_MCG_STATUS:
2523 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2524 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2525 case MSR_K7_CLK_CTL:
2526 /*
2527 * Provide expected ramp-up count for K7. All other
2528 * are set to zero, indicating minimum divisors for
2529 * every field.
2530 *
2531 * This prevents guest kernels on AMD host with CPU
2532 * type 6, model 8 and higher from exploding due to
2533 * the rdmsr failing.
2534 */
2535 msr_info->data = 0x20000000;
2536 break;
2537 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2538 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2539 case HV_X64_MSR_CRASH_CTL:
2540 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2541 return kvm_hv_get_msr_common(vcpu,
2542 msr_info->index, &msr_info->data);
2543 break;
2544 case MSR_IA32_BBL_CR_CTL3:
2545 /* This legacy MSR exists but isn't fully documented in current
2546 * silicon. It is however accessed by winxp in very narrow
2547 * scenarios where it sets bit #19, itself documented as
2548 * a "reserved" bit. Best effort attempt to source coherent
2549 * read data here should the balance of the register be
2550 * interpreted by the guest:
2551 *
2552 * L2 cache control register 3: 64GB range, 256KB size,
2553 * enabled, latency 0x1, configured
2554 */
2555 msr_info->data = 0xbe702111;
2556 break;
2557 case MSR_AMD64_OSVW_ID_LENGTH:
2558 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2559 return 1;
2560 msr_info->data = vcpu->arch.osvw.length;
2561 break;
2562 case MSR_AMD64_OSVW_STATUS:
2563 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2564 return 1;
2565 msr_info->data = vcpu->arch.osvw.status;
2566 break;
2567 case MSR_PLATFORM_INFO:
2568 msr_info->data = vcpu->arch.msr_platform_info;
2569 break;
2570 case MSR_MISC_FEATURES_ENABLES:
2571 msr_info->data = vcpu->arch.msr_misc_features_enables;
2572 break;
2573 default:
2574 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2575 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2576 if (!ignore_msrs) {
2577 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2578 msr_info->index);
2579 return 1;
2580 } else {
2581 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2582 msr_info->data = 0;
2583 }
2584 break;
2585 }
2586 return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2589
2590 /*
2591 * Read or write a bunch of msrs. All parameters are kernel addresses.
2592 *
2593 * @return number of msrs set successfully.
2594 */
2595 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2596 struct kvm_msr_entry *entries,
2597 int (*do_msr)(struct kvm_vcpu *vcpu,
2598 unsigned index, u64 *data))
2599 {
2600 int i, idx;
2601
2602 idx = srcu_read_lock(&vcpu->kvm->srcu);
2603 for (i = 0; i < msrs->nmsrs; ++i)
2604 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2605 break;
2606 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2607
2608 return i;
2609 }
2610
2611 /*
2612 * Read or write a bunch of msrs. Parameters are user addresses.
2613 *
2614 * @return number of msrs set successfully.
2615 */
2616 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2617 int (*do_msr)(struct kvm_vcpu *vcpu,
2618 unsigned index, u64 *data),
2619 int writeback)
2620 {
2621 struct kvm_msrs msrs;
2622 struct kvm_msr_entry *entries;
2623 int r, n;
2624 unsigned size;
2625
2626 r = -EFAULT;
2627 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2628 goto out;
2629
2630 r = -E2BIG;
2631 if (msrs.nmsrs >= MAX_IO_MSRS)
2632 goto out;
2633
2634 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2635 entries = memdup_user(user_msrs->entries, size);
2636 if (IS_ERR(entries)) {
2637 r = PTR_ERR(entries);
2638 goto out;
2639 }
2640
2641 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2642 if (r < 0)
2643 goto out_free;
2644
2645 r = -EFAULT;
2646 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2647 goto out_free;
2648
2649 r = n;
2650
2651 out_free:
2652 kfree(entries);
2653 out:
2654 return r;
2655 }
2656
2657 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2658 {
2659 int r;
2660
2661 switch (ext) {
2662 case KVM_CAP_IRQCHIP:
2663 case KVM_CAP_HLT:
2664 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2665 case KVM_CAP_SET_TSS_ADDR:
2666 case KVM_CAP_EXT_CPUID:
2667 case KVM_CAP_EXT_EMUL_CPUID:
2668 case KVM_CAP_CLOCKSOURCE:
2669 case KVM_CAP_PIT:
2670 case KVM_CAP_NOP_IO_DELAY:
2671 case KVM_CAP_MP_STATE:
2672 case KVM_CAP_SYNC_MMU:
2673 case KVM_CAP_USER_NMI:
2674 case KVM_CAP_REINJECT_CONTROL:
2675 case KVM_CAP_IRQ_INJECT_STATUS:
2676 case KVM_CAP_IOEVENTFD:
2677 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2678 case KVM_CAP_PIT2:
2679 case KVM_CAP_PIT_STATE2:
2680 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2681 case KVM_CAP_XEN_HVM:
2682 case KVM_CAP_VCPU_EVENTS:
2683 case KVM_CAP_HYPERV:
2684 case KVM_CAP_HYPERV_VAPIC:
2685 case KVM_CAP_HYPERV_SPIN:
2686 case KVM_CAP_HYPERV_SYNIC:
2687 case KVM_CAP_HYPERV_SYNIC2:
2688 case KVM_CAP_HYPERV_VP_INDEX:
2689 case KVM_CAP_PCI_SEGMENT:
2690 case KVM_CAP_DEBUGREGS:
2691 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2692 case KVM_CAP_XSAVE:
2693 case KVM_CAP_ASYNC_PF:
2694 case KVM_CAP_GET_TSC_KHZ:
2695 case KVM_CAP_KVMCLOCK_CTRL:
2696 case KVM_CAP_READONLY_MEM:
2697 case KVM_CAP_HYPERV_TIME:
2698 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2699 case KVM_CAP_TSC_DEADLINE_TIMER:
2700 case KVM_CAP_ENABLE_CAP_VM:
2701 case KVM_CAP_DISABLE_QUIRKS:
2702 case KVM_CAP_SET_BOOT_CPU_ID:
2703 case KVM_CAP_SPLIT_IRQCHIP:
2704 case KVM_CAP_IMMEDIATE_EXIT:
2705 r = 1;
2706 break;
2707 case KVM_CAP_ADJUST_CLOCK:
2708 r = KVM_CLOCK_TSC_STABLE;
2709 break;
2710 case KVM_CAP_X86_GUEST_MWAIT:
2711 r = kvm_mwait_in_guest();
2712 break;
2713 case KVM_CAP_X86_SMM:
2714 /* SMBASE is usually relocated above 1M on modern chipsets,
2715 * and SMM handlers might indeed rely on 4G segment limits,
2716 * so do not report SMM to be available if real mode is
2717 * emulated via vm86 mode. Still, do not go to great lengths
2718 * to avoid userspace's usage of the feature, because it is a
2719 * fringe case that is not enabled except via specific settings
2720 * of the module parameters.
2721 */
2722 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2723 break;
2724 case KVM_CAP_VAPIC:
2725 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2726 break;
2727 case KVM_CAP_NR_VCPUS:
2728 r = KVM_SOFT_MAX_VCPUS;
2729 break;
2730 case KVM_CAP_MAX_VCPUS:
2731 r = KVM_MAX_VCPUS;
2732 break;
2733 case KVM_CAP_NR_MEMSLOTS:
2734 r = KVM_USER_MEM_SLOTS;
2735 break;
2736 case KVM_CAP_PV_MMU: /* obsolete */
2737 r = 0;
2738 break;
2739 case KVM_CAP_MCE:
2740 r = KVM_MAX_MCE_BANKS;
2741 break;
2742 case KVM_CAP_XCRS:
2743 r = boot_cpu_has(X86_FEATURE_XSAVE);
2744 break;
2745 case KVM_CAP_TSC_CONTROL:
2746 r = kvm_has_tsc_control;
2747 break;
2748 case KVM_CAP_X2APIC_API:
2749 r = KVM_X2APIC_API_VALID_FLAGS;
2750 break;
2751 default:
2752 r = 0;
2753 break;
2754 }
2755 return r;
2756
2757 }
2758
2759 long kvm_arch_dev_ioctl(struct file *filp,
2760 unsigned int ioctl, unsigned long arg)
2761 {
2762 void __user *argp = (void __user *)arg;
2763 long r;
2764
2765 switch (ioctl) {
2766 case KVM_GET_MSR_INDEX_LIST: {
2767 struct kvm_msr_list __user *user_msr_list = argp;
2768 struct kvm_msr_list msr_list;
2769 unsigned n;
2770
2771 r = -EFAULT;
2772 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2773 goto out;
2774 n = msr_list.nmsrs;
2775 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2776 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2777 goto out;
2778 r = -E2BIG;
2779 if (n < msr_list.nmsrs)
2780 goto out;
2781 r = -EFAULT;
2782 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2783 num_msrs_to_save * sizeof(u32)))
2784 goto out;
2785 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2786 &emulated_msrs,
2787 num_emulated_msrs * sizeof(u32)))
2788 goto out;
2789 r = 0;
2790 break;
2791 }
2792 case KVM_GET_SUPPORTED_CPUID:
2793 case KVM_GET_EMULATED_CPUID: {
2794 struct kvm_cpuid2 __user *cpuid_arg = argp;
2795 struct kvm_cpuid2 cpuid;
2796
2797 r = -EFAULT;
2798 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2799 goto out;
2800
2801 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2802 ioctl);
2803 if (r)
2804 goto out;
2805
2806 r = -EFAULT;
2807 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2808 goto out;
2809 r = 0;
2810 break;
2811 }
2812 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2813 r = -EFAULT;
2814 if (copy_to_user(argp, &kvm_mce_cap_supported,
2815 sizeof(kvm_mce_cap_supported)))
2816 goto out;
2817 r = 0;
2818 break;
2819 }
2820 default:
2821 r = -EINVAL;
2822 }
2823 out:
2824 return r;
2825 }
2826
2827 static void wbinvd_ipi(void *garbage)
2828 {
2829 wbinvd();
2830 }
2831
2832 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2833 {
2834 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2835 }
2836
2837 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2838 {
2839 /* Address WBINVD may be executed by guest */
2840 if (need_emulate_wbinvd(vcpu)) {
2841 if (kvm_x86_ops->has_wbinvd_exit())
2842 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2843 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2844 smp_call_function_single(vcpu->cpu,
2845 wbinvd_ipi, NULL, 1);
2846 }
2847
2848 kvm_x86_ops->vcpu_load(vcpu, cpu);
2849
2850 /* Apply any externally detected TSC adjustments (due to suspend) */
2851 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2852 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2853 vcpu->arch.tsc_offset_adjustment = 0;
2854 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2855 }
2856
2857 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2858 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2859 rdtsc() - vcpu->arch.last_host_tsc;
2860 if (tsc_delta < 0)
2861 mark_tsc_unstable("KVM discovered backwards TSC");
2862
2863 if (check_tsc_unstable()) {
2864 u64 offset = kvm_compute_tsc_offset(vcpu,
2865 vcpu->arch.last_guest_tsc);
2866 kvm_vcpu_write_tsc_offset(vcpu, offset);
2867 vcpu->arch.tsc_catchup = 1;
2868 }
2869
2870 if (kvm_lapic_hv_timer_in_use(vcpu))
2871 kvm_lapic_restart_hv_timer(vcpu);
2872
2873 /*
2874 * On a host with synchronized TSC, there is no need to update
2875 * kvmclock on vcpu->cpu migration
2876 */
2877 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2878 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2879 if (vcpu->cpu != cpu)
2880 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2881 vcpu->cpu = cpu;
2882 }
2883
2884 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2885 }
2886
2887 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2888 {
2889 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2890 return;
2891
2892 vcpu->arch.st.steal.preempted = 1;
2893
2894 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2895 &vcpu->arch.st.steal.preempted,
2896 offsetof(struct kvm_steal_time, preempted),
2897 sizeof(vcpu->arch.st.steal.preempted));
2898 }
2899
2900 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2901 {
2902 int idx;
2903
2904 if (vcpu->preempted)
2905 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2906
2907 /*
2908 * Disable page faults because we're in atomic context here.
2909 * kvm_write_guest_offset_cached() would call might_fault()
2910 * that relies on pagefault_disable() to tell if there's a
2911 * bug. NOTE: the write to guest memory may not go through if
2912 * during postcopy live migration or if there's heavy guest
2913 * paging.
2914 */
2915 pagefault_disable();
2916 /*
2917 * kvm_memslots() will be called by
2918 * kvm_write_guest_offset_cached() so take the srcu lock.
2919 */
2920 idx = srcu_read_lock(&vcpu->kvm->srcu);
2921 kvm_steal_time_set_preempted(vcpu);
2922 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2923 pagefault_enable();
2924 kvm_x86_ops->vcpu_put(vcpu);
2925 kvm_put_guest_fpu(vcpu);
2926 vcpu->arch.last_host_tsc = rdtsc();
2927 }
2928
2929 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2930 struct kvm_lapic_state *s)
2931 {
2932 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2933 kvm_x86_ops->sync_pir_to_irr(vcpu);
2934
2935 return kvm_apic_get_state(vcpu, s);
2936 }
2937
2938 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2939 struct kvm_lapic_state *s)
2940 {
2941 int r;
2942
2943 r = kvm_apic_set_state(vcpu, s);
2944 if (r)
2945 return r;
2946 update_cr8_intercept(vcpu);
2947
2948 return 0;
2949 }
2950
2951 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2952 {
2953 return (!lapic_in_kernel(vcpu) ||
2954 kvm_apic_accept_pic_intr(vcpu));
2955 }
2956
2957 /*
2958 * if userspace requested an interrupt window, check that the
2959 * interrupt window is open.
2960 *
2961 * No need to exit to userspace if we already have an interrupt queued.
2962 */
2963 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2964 {
2965 return kvm_arch_interrupt_allowed(vcpu) &&
2966 !kvm_cpu_has_interrupt(vcpu) &&
2967 !kvm_event_needs_reinjection(vcpu) &&
2968 kvm_cpu_accept_dm_intr(vcpu);
2969 }
2970
2971 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2972 struct kvm_interrupt *irq)
2973 {
2974 if (irq->irq >= KVM_NR_INTERRUPTS)
2975 return -EINVAL;
2976
2977 if (!irqchip_in_kernel(vcpu->kvm)) {
2978 kvm_queue_interrupt(vcpu, irq->irq, false);
2979 kvm_make_request(KVM_REQ_EVENT, vcpu);
2980 return 0;
2981 }
2982
2983 /*
2984 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2985 * fail for in-kernel 8259.
2986 */
2987 if (pic_in_kernel(vcpu->kvm))
2988 return -ENXIO;
2989
2990 if (vcpu->arch.pending_external_vector != -1)
2991 return -EEXIST;
2992
2993 vcpu->arch.pending_external_vector = irq->irq;
2994 kvm_make_request(KVM_REQ_EVENT, vcpu);
2995 return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2999 {
3000 kvm_inject_nmi(vcpu);
3001
3002 return 0;
3003 }
3004
3005 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3006 {
3007 kvm_make_request(KVM_REQ_SMI, vcpu);
3008
3009 return 0;
3010 }
3011
3012 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3013 struct kvm_tpr_access_ctl *tac)
3014 {
3015 if (tac->flags)
3016 return -EINVAL;
3017 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3018 return 0;
3019 }
3020
3021 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3022 u64 mcg_cap)
3023 {
3024 int r;
3025 unsigned bank_num = mcg_cap & 0xff, bank;
3026
3027 r = -EINVAL;
3028 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3029 goto out;
3030 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3031 goto out;
3032 r = 0;
3033 vcpu->arch.mcg_cap = mcg_cap;
3034 /* Init IA32_MCG_CTL to all 1s */
3035 if (mcg_cap & MCG_CTL_P)
3036 vcpu->arch.mcg_ctl = ~(u64)0;
3037 /* Init IA32_MCi_CTL to all 1s */
3038 for (bank = 0; bank < bank_num; bank++)
3039 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3040
3041 if (kvm_x86_ops->setup_mce)
3042 kvm_x86_ops->setup_mce(vcpu);
3043 out:
3044 return r;
3045 }
3046
3047 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3048 struct kvm_x86_mce *mce)
3049 {
3050 u64 mcg_cap = vcpu->arch.mcg_cap;
3051 unsigned bank_num = mcg_cap & 0xff;
3052 u64 *banks = vcpu->arch.mce_banks;
3053
3054 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3055 return -EINVAL;
3056 /*
3057 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3058 * reporting is disabled
3059 */
3060 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3061 vcpu->arch.mcg_ctl != ~(u64)0)
3062 return 0;
3063 banks += 4 * mce->bank;
3064 /*
3065 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3066 * reporting is disabled for the bank
3067 */
3068 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3069 return 0;
3070 if (mce->status & MCI_STATUS_UC) {
3071 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3072 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3073 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3074 return 0;
3075 }
3076 if (banks[1] & MCI_STATUS_VAL)
3077 mce->status |= MCI_STATUS_OVER;
3078 banks[2] = mce->addr;
3079 banks[3] = mce->misc;
3080 vcpu->arch.mcg_status = mce->mcg_status;
3081 banks[1] = mce->status;
3082 kvm_queue_exception(vcpu, MC_VECTOR);
3083 } else if (!(banks[1] & MCI_STATUS_VAL)
3084 || !(banks[1] & MCI_STATUS_UC)) {
3085 if (banks[1] & MCI_STATUS_VAL)
3086 mce->status |= MCI_STATUS_OVER;
3087 banks[2] = mce->addr;
3088 banks[3] = mce->misc;
3089 banks[1] = mce->status;
3090 } else
3091 banks[1] |= MCI_STATUS_OVER;
3092 return 0;
3093 }
3094
3095 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3096 struct kvm_vcpu_events *events)
3097 {
3098 process_nmi(vcpu);
3099 /*
3100 * FIXME: pass injected and pending separately. This is only
3101 * needed for nested virtualization, whose state cannot be
3102 * migrated yet. For now we can combine them.
3103 */
3104 events->exception.injected =
3105 (vcpu->arch.exception.pending ||
3106 vcpu->arch.exception.injected) &&
3107 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3108 events->exception.nr = vcpu->arch.exception.nr;
3109 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3110 events->exception.pad = 0;
3111 events->exception.error_code = vcpu->arch.exception.error_code;
3112
3113 events->interrupt.injected =
3114 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3115 events->interrupt.nr = vcpu->arch.interrupt.nr;
3116 events->interrupt.soft = 0;
3117 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3118
3119 events->nmi.injected = vcpu->arch.nmi_injected;
3120 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3121 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3122 events->nmi.pad = 0;
3123
3124 events->sipi_vector = 0; /* never valid when reporting to user space */
3125
3126 events->smi.smm = is_smm(vcpu);
3127 events->smi.pending = vcpu->arch.smi_pending;
3128 events->smi.smm_inside_nmi =
3129 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3130 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3131
3132 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3133 | KVM_VCPUEVENT_VALID_SHADOW
3134 | KVM_VCPUEVENT_VALID_SMM);
3135 memset(&events->reserved, 0, sizeof(events->reserved));
3136 }
3137
3138 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3139
3140 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3141 struct kvm_vcpu_events *events)
3142 {
3143 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3144 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3145 | KVM_VCPUEVENT_VALID_SHADOW
3146 | KVM_VCPUEVENT_VALID_SMM))
3147 return -EINVAL;
3148
3149 if (events->exception.injected &&
3150 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3151 is_guest_mode(vcpu)))
3152 return -EINVAL;
3153
3154 /* INITs are latched while in SMM */
3155 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3156 (events->smi.smm || events->smi.pending) &&
3157 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3158 return -EINVAL;
3159
3160 process_nmi(vcpu);
3161 vcpu->arch.exception.injected = false;
3162 vcpu->arch.exception.pending = events->exception.injected;
3163 vcpu->arch.exception.nr = events->exception.nr;
3164 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3165 vcpu->arch.exception.error_code = events->exception.error_code;
3166
3167 vcpu->arch.interrupt.pending = events->interrupt.injected;
3168 vcpu->arch.interrupt.nr = events->interrupt.nr;
3169 vcpu->arch.interrupt.soft = events->interrupt.soft;
3170 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3171 kvm_x86_ops->set_interrupt_shadow(vcpu,
3172 events->interrupt.shadow);
3173
3174 vcpu->arch.nmi_injected = events->nmi.injected;
3175 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3176 vcpu->arch.nmi_pending = events->nmi.pending;
3177 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3178
3179 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3180 lapic_in_kernel(vcpu))
3181 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3182
3183 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3184 u32 hflags = vcpu->arch.hflags;
3185 if (events->smi.smm)
3186 hflags |= HF_SMM_MASK;
3187 else
3188 hflags &= ~HF_SMM_MASK;
3189 kvm_set_hflags(vcpu, hflags);
3190
3191 vcpu->arch.smi_pending = events->smi.pending;
3192
3193 if (events->smi.smm) {
3194 if (events->smi.smm_inside_nmi)
3195 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3196 else
3197 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3198 if (lapic_in_kernel(vcpu)) {
3199 if (events->smi.latched_init)
3200 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3201 else
3202 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3203 }
3204 }
3205 }
3206
3207 kvm_make_request(KVM_REQ_EVENT, vcpu);
3208
3209 return 0;
3210 }
3211
3212 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3213 struct kvm_debugregs *dbgregs)
3214 {
3215 unsigned long val;
3216
3217 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3218 kvm_get_dr(vcpu, 6, &val);
3219 dbgregs->dr6 = val;
3220 dbgregs->dr7 = vcpu->arch.dr7;
3221 dbgregs->flags = 0;
3222 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3223 }
3224
3225 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3226 struct kvm_debugregs *dbgregs)
3227 {
3228 if (dbgregs->flags)
3229 return -EINVAL;
3230
3231 if (dbgregs->dr6 & ~0xffffffffull)
3232 return -EINVAL;
3233 if (dbgregs->dr7 & ~0xffffffffull)
3234 return -EINVAL;
3235
3236 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3237 kvm_update_dr0123(vcpu);
3238 vcpu->arch.dr6 = dbgregs->dr6;
3239 kvm_update_dr6(vcpu);
3240 vcpu->arch.dr7 = dbgregs->dr7;
3241 kvm_update_dr7(vcpu);
3242
3243 return 0;
3244 }
3245
3246 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3247
3248 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3249 {
3250 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3251 u64 xstate_bv = xsave->header.xfeatures;
3252 u64 valid;
3253
3254 /*
3255 * Copy legacy XSAVE area, to avoid complications with CPUID
3256 * leaves 0 and 1 in the loop below.
3257 */
3258 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3259
3260 /* Set XSTATE_BV */
3261 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3262 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3263
3264 /*
3265 * Copy each region from the possibly compacted offset to the
3266 * non-compacted offset.
3267 */
3268 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3269 while (valid) {
3270 u64 feature = valid & -valid;
3271 int index = fls64(feature) - 1;
3272 void *src = get_xsave_addr(xsave, feature);
3273
3274 if (src) {
3275 u32 size, offset, ecx, edx;
3276 cpuid_count(XSTATE_CPUID, index,
3277 &size, &offset, &ecx, &edx);
3278 if (feature == XFEATURE_MASK_PKRU)
3279 memcpy(dest + offset, &vcpu->arch.pkru,
3280 sizeof(vcpu->arch.pkru));
3281 else
3282 memcpy(dest + offset, src, size);
3283
3284 }
3285
3286 valid -= feature;
3287 }
3288 }
3289
3290 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3291 {
3292 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3293 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3294 u64 valid;
3295
3296 /*
3297 * Copy legacy XSAVE area, to avoid complications with CPUID
3298 * leaves 0 and 1 in the loop below.
3299 */
3300 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3301
3302 /* Set XSTATE_BV and possibly XCOMP_BV. */
3303 xsave->header.xfeatures = xstate_bv;
3304 if (boot_cpu_has(X86_FEATURE_XSAVES))
3305 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3306
3307 /*
3308 * Copy each region from the non-compacted offset to the
3309 * possibly compacted offset.
3310 */
3311 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3312 while (valid) {
3313 u64 feature = valid & -valid;
3314 int index = fls64(feature) - 1;
3315 void *dest = get_xsave_addr(xsave, feature);
3316
3317 if (dest) {
3318 u32 size, offset, ecx, edx;
3319 cpuid_count(XSTATE_CPUID, index,
3320 &size, &offset, &ecx, &edx);
3321 if (feature == XFEATURE_MASK_PKRU)
3322 memcpy(&vcpu->arch.pkru, src + offset,
3323 sizeof(vcpu->arch.pkru));
3324 else
3325 memcpy(dest, src + offset, size);
3326 }
3327
3328 valid -= feature;
3329 }
3330 }
3331
3332 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3333 struct kvm_xsave *guest_xsave)
3334 {
3335 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3336 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3337 fill_xsave((u8 *) guest_xsave->region, vcpu);
3338 } else {
3339 memcpy(guest_xsave->region,
3340 &vcpu->arch.guest_fpu.state.fxsave,
3341 sizeof(struct fxregs_state));
3342 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3343 XFEATURE_MASK_FPSSE;
3344 }
3345 }
3346
3347 #define XSAVE_MXCSR_OFFSET 24
3348
3349 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3350 struct kvm_xsave *guest_xsave)
3351 {
3352 u64 xstate_bv =
3353 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3354 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3355
3356 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3357 /*
3358 * Here we allow setting states that are not present in
3359 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3360 * with old userspace.
3361 */
3362 if (xstate_bv & ~kvm_supported_xcr0() ||
3363 mxcsr & ~mxcsr_feature_mask)
3364 return -EINVAL;
3365 load_xsave(vcpu, (u8 *)guest_xsave->region);
3366 } else {
3367 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3368 mxcsr & ~mxcsr_feature_mask)
3369 return -EINVAL;
3370 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3371 guest_xsave->region, sizeof(struct fxregs_state));
3372 }
3373 return 0;
3374 }
3375
3376 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3377 struct kvm_xcrs *guest_xcrs)
3378 {
3379 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3380 guest_xcrs->nr_xcrs = 0;
3381 return;
3382 }
3383
3384 guest_xcrs->nr_xcrs = 1;
3385 guest_xcrs->flags = 0;
3386 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3387 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3388 }
3389
3390 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3391 struct kvm_xcrs *guest_xcrs)
3392 {
3393 int i, r = 0;
3394
3395 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3396 return -EINVAL;
3397
3398 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3399 return -EINVAL;
3400
3401 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3402 /* Only support XCR0 currently */
3403 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3404 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3405 guest_xcrs->xcrs[i].value);
3406 break;
3407 }
3408 if (r)
3409 r = -EINVAL;
3410 return r;
3411 }
3412
3413 /*
3414 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3415 * stopped by the hypervisor. This function will be called from the host only.
3416 * EINVAL is returned when the host attempts to set the flag for a guest that
3417 * does not support pv clocks.
3418 */
3419 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3420 {
3421 if (!vcpu->arch.pv_time_enabled)
3422 return -EINVAL;
3423 vcpu->arch.pvclock_set_guest_stopped_request = true;
3424 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3425 return 0;
3426 }
3427
3428 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3429 struct kvm_enable_cap *cap)
3430 {
3431 if (cap->flags)
3432 return -EINVAL;
3433
3434 switch (cap->cap) {
3435 case KVM_CAP_HYPERV_SYNIC2:
3436 if (cap->args[0])
3437 return -EINVAL;
3438 case KVM_CAP_HYPERV_SYNIC:
3439 if (!irqchip_in_kernel(vcpu->kvm))
3440 return -EINVAL;
3441 return kvm_hv_activate_synic(vcpu, cap->cap ==
3442 KVM_CAP_HYPERV_SYNIC2);
3443 default:
3444 return -EINVAL;
3445 }
3446 }
3447
3448 long kvm_arch_vcpu_ioctl(struct file *filp,
3449 unsigned int ioctl, unsigned long arg)
3450 {
3451 struct kvm_vcpu *vcpu = filp->private_data;
3452 void __user *argp = (void __user *)arg;
3453 int r;
3454 union {
3455 struct kvm_lapic_state *lapic;
3456 struct kvm_xsave *xsave;
3457 struct kvm_xcrs *xcrs;
3458 void *buffer;
3459 } u;
3460
3461 u.buffer = NULL;
3462 switch (ioctl) {
3463 case KVM_GET_LAPIC: {
3464 r = -EINVAL;
3465 if (!lapic_in_kernel(vcpu))
3466 goto out;
3467 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3468
3469 r = -ENOMEM;
3470 if (!u.lapic)
3471 goto out;
3472 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3473 if (r)
3474 goto out;
3475 r = -EFAULT;
3476 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3477 goto out;
3478 r = 0;
3479 break;
3480 }
3481 case KVM_SET_LAPIC: {
3482 r = -EINVAL;
3483 if (!lapic_in_kernel(vcpu))
3484 goto out;
3485 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3486 if (IS_ERR(u.lapic))
3487 return PTR_ERR(u.lapic);
3488
3489 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3490 break;
3491 }
3492 case KVM_INTERRUPT: {
3493 struct kvm_interrupt irq;
3494
3495 r = -EFAULT;
3496 if (copy_from_user(&irq, argp, sizeof irq))
3497 goto out;
3498 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3499 break;
3500 }
3501 case KVM_NMI: {
3502 r = kvm_vcpu_ioctl_nmi(vcpu);
3503 break;
3504 }
3505 case KVM_SMI: {
3506 r = kvm_vcpu_ioctl_smi(vcpu);
3507 break;
3508 }
3509 case KVM_SET_CPUID: {
3510 struct kvm_cpuid __user *cpuid_arg = argp;
3511 struct kvm_cpuid cpuid;
3512
3513 r = -EFAULT;
3514 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3515 goto out;
3516 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3517 break;
3518 }
3519 case KVM_SET_CPUID2: {
3520 struct kvm_cpuid2 __user *cpuid_arg = argp;
3521 struct kvm_cpuid2 cpuid;
3522
3523 r = -EFAULT;
3524 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3525 goto out;
3526 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3527 cpuid_arg->entries);
3528 break;
3529 }
3530 case KVM_GET_CPUID2: {
3531 struct kvm_cpuid2 __user *cpuid_arg = argp;
3532 struct kvm_cpuid2 cpuid;
3533
3534 r = -EFAULT;
3535 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3536 goto out;
3537 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3538 cpuid_arg->entries);
3539 if (r)
3540 goto out;
3541 r = -EFAULT;
3542 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3543 goto out;
3544 r = 0;
3545 break;
3546 }
3547 case KVM_GET_MSRS:
3548 r = msr_io(vcpu, argp, do_get_msr, 1);
3549 break;
3550 case KVM_SET_MSRS:
3551 r = msr_io(vcpu, argp, do_set_msr, 0);
3552 break;
3553 case KVM_TPR_ACCESS_REPORTING: {
3554 struct kvm_tpr_access_ctl tac;
3555
3556 r = -EFAULT;
3557 if (copy_from_user(&tac, argp, sizeof tac))
3558 goto out;
3559 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3560 if (r)
3561 goto out;
3562 r = -EFAULT;
3563 if (copy_to_user(argp, &tac, sizeof tac))
3564 goto out;
3565 r = 0;
3566 break;
3567 };
3568 case KVM_SET_VAPIC_ADDR: {
3569 struct kvm_vapic_addr va;
3570 int idx;
3571
3572 r = -EINVAL;
3573 if (!lapic_in_kernel(vcpu))
3574 goto out;
3575 r = -EFAULT;
3576 if (copy_from_user(&va, argp, sizeof va))
3577 goto out;
3578 idx = srcu_read_lock(&vcpu->kvm->srcu);
3579 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3580 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3581 break;
3582 }
3583 case KVM_X86_SETUP_MCE: {
3584 u64 mcg_cap;
3585
3586 r = -EFAULT;
3587 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3588 goto out;
3589 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3590 break;
3591 }
3592 case KVM_X86_SET_MCE: {
3593 struct kvm_x86_mce mce;
3594
3595 r = -EFAULT;
3596 if (copy_from_user(&mce, argp, sizeof mce))
3597 goto out;
3598 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3599 break;
3600 }
3601 case KVM_GET_VCPU_EVENTS: {
3602 struct kvm_vcpu_events events;
3603
3604 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3605
3606 r = -EFAULT;
3607 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3608 break;
3609 r = 0;
3610 break;
3611 }
3612 case KVM_SET_VCPU_EVENTS: {
3613 struct kvm_vcpu_events events;
3614
3615 r = -EFAULT;
3616 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3617 break;
3618
3619 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3620 break;
3621 }
3622 case KVM_GET_DEBUGREGS: {
3623 struct kvm_debugregs dbgregs;
3624
3625 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3626
3627 r = -EFAULT;
3628 if (copy_to_user(argp, &dbgregs,
3629 sizeof(struct kvm_debugregs)))
3630 break;
3631 r = 0;
3632 break;
3633 }
3634 case KVM_SET_DEBUGREGS: {
3635 struct kvm_debugregs dbgregs;
3636
3637 r = -EFAULT;
3638 if (copy_from_user(&dbgregs, argp,
3639 sizeof(struct kvm_debugregs)))
3640 break;
3641
3642 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3643 break;
3644 }
3645 case KVM_GET_XSAVE: {
3646 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3647 r = -ENOMEM;
3648 if (!u.xsave)
3649 break;
3650
3651 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3652
3653 r = -EFAULT;
3654 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3655 break;
3656 r = 0;
3657 break;
3658 }
3659 case KVM_SET_XSAVE: {
3660 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3661 if (IS_ERR(u.xsave))
3662 return PTR_ERR(u.xsave);
3663
3664 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3665 break;
3666 }
3667 case KVM_GET_XCRS: {
3668 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3669 r = -ENOMEM;
3670 if (!u.xcrs)
3671 break;
3672
3673 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3674
3675 r = -EFAULT;
3676 if (copy_to_user(argp, u.xcrs,
3677 sizeof(struct kvm_xcrs)))
3678 break;
3679 r = 0;
3680 break;
3681 }
3682 case KVM_SET_XCRS: {
3683 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3684 if (IS_ERR(u.xcrs))
3685 return PTR_ERR(u.xcrs);
3686
3687 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3688 break;
3689 }
3690 case KVM_SET_TSC_KHZ: {
3691 u32 user_tsc_khz;
3692
3693 r = -EINVAL;
3694 user_tsc_khz = (u32)arg;
3695
3696 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3697 goto out;
3698
3699 if (user_tsc_khz == 0)
3700 user_tsc_khz = tsc_khz;
3701
3702 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3703 r = 0;
3704
3705 goto out;
3706 }
3707 case KVM_GET_TSC_KHZ: {
3708 r = vcpu->arch.virtual_tsc_khz;
3709 goto out;
3710 }
3711 case KVM_KVMCLOCK_CTRL: {
3712 r = kvm_set_guest_paused(vcpu);
3713 goto out;
3714 }
3715 case KVM_ENABLE_CAP: {
3716 struct kvm_enable_cap cap;
3717
3718 r = -EFAULT;
3719 if (copy_from_user(&cap, argp, sizeof(cap)))
3720 goto out;
3721 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3722 break;
3723 }
3724 default:
3725 r = -EINVAL;
3726 }
3727 out:
3728 kfree(u.buffer);
3729 return r;
3730 }
3731
3732 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3733 {
3734 return VM_FAULT_SIGBUS;
3735 }
3736
3737 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3738 {
3739 int ret;
3740
3741 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3742 return -EINVAL;
3743 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3744 return ret;
3745 }
3746
3747 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3748 u64 ident_addr)
3749 {
3750 kvm->arch.ept_identity_map_addr = ident_addr;
3751 return 0;
3752 }
3753
3754 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3755 u32 kvm_nr_mmu_pages)
3756 {
3757 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3758 return -EINVAL;
3759
3760 mutex_lock(&kvm->slots_lock);
3761
3762 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3763 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3764
3765 mutex_unlock(&kvm->slots_lock);
3766 return 0;
3767 }
3768
3769 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3770 {
3771 return kvm->arch.n_max_mmu_pages;
3772 }
3773
3774 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3775 {
3776 struct kvm_pic *pic = kvm->arch.vpic;
3777 int r;
3778
3779 r = 0;
3780 switch (chip->chip_id) {
3781 case KVM_IRQCHIP_PIC_MASTER:
3782 memcpy(&chip->chip.pic, &pic->pics[0],
3783 sizeof(struct kvm_pic_state));
3784 break;
3785 case KVM_IRQCHIP_PIC_SLAVE:
3786 memcpy(&chip->chip.pic, &pic->pics[1],
3787 sizeof(struct kvm_pic_state));
3788 break;
3789 case KVM_IRQCHIP_IOAPIC:
3790 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3791 break;
3792 default:
3793 r = -EINVAL;
3794 break;
3795 }
3796 return r;
3797 }
3798
3799 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3800 {
3801 struct kvm_pic *pic = kvm->arch.vpic;
3802 int r;
3803
3804 r = 0;
3805 switch (chip->chip_id) {
3806 case KVM_IRQCHIP_PIC_MASTER:
3807 spin_lock(&pic->lock);
3808 memcpy(&pic->pics[0], &chip->chip.pic,
3809 sizeof(struct kvm_pic_state));
3810 spin_unlock(&pic->lock);
3811 break;
3812 case KVM_IRQCHIP_PIC_SLAVE:
3813 spin_lock(&pic->lock);
3814 memcpy(&pic->pics[1], &chip->chip.pic,
3815 sizeof(struct kvm_pic_state));
3816 spin_unlock(&pic->lock);
3817 break;
3818 case KVM_IRQCHIP_IOAPIC:
3819 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3820 break;
3821 default:
3822 r = -EINVAL;
3823 break;
3824 }
3825 kvm_pic_update_irq(pic);
3826 return r;
3827 }
3828
3829 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3830 {
3831 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3832
3833 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3834
3835 mutex_lock(&kps->lock);
3836 memcpy(ps, &kps->channels, sizeof(*ps));
3837 mutex_unlock(&kps->lock);
3838 return 0;
3839 }
3840
3841 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3842 {
3843 int i;
3844 struct kvm_pit *pit = kvm->arch.vpit;
3845
3846 mutex_lock(&pit->pit_state.lock);
3847 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3848 for (i = 0; i < 3; i++)
3849 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3850 mutex_unlock(&pit->pit_state.lock);
3851 return 0;
3852 }
3853
3854 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3855 {
3856 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3857 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3858 sizeof(ps->channels));
3859 ps->flags = kvm->arch.vpit->pit_state.flags;
3860 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3861 memset(&ps->reserved, 0, sizeof(ps->reserved));
3862 return 0;
3863 }
3864
3865 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3866 {
3867 int start = 0;
3868 int i;
3869 u32 prev_legacy, cur_legacy;
3870 struct kvm_pit *pit = kvm->arch.vpit;
3871
3872 mutex_lock(&pit->pit_state.lock);
3873 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3874 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3875 if (!prev_legacy && cur_legacy)
3876 start = 1;
3877 memcpy(&pit->pit_state.channels, &ps->channels,
3878 sizeof(pit->pit_state.channels));
3879 pit->pit_state.flags = ps->flags;
3880 for (i = 0; i < 3; i++)
3881 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3882 start && i == 0);
3883 mutex_unlock(&pit->pit_state.lock);
3884 return 0;
3885 }
3886
3887 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3888 struct kvm_reinject_control *control)
3889 {
3890 struct kvm_pit *pit = kvm->arch.vpit;
3891
3892 if (!pit)
3893 return -ENXIO;
3894
3895 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3896 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3897 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3898 */
3899 mutex_lock(&pit->pit_state.lock);
3900 kvm_pit_set_reinject(pit, control->pit_reinject);
3901 mutex_unlock(&pit->pit_state.lock);
3902
3903 return 0;
3904 }
3905
3906 /**
3907 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3908 * @kvm: kvm instance
3909 * @log: slot id and address to which we copy the log
3910 *
3911 * Steps 1-4 below provide general overview of dirty page logging. See
3912 * kvm_get_dirty_log_protect() function description for additional details.
3913 *
3914 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3915 * always flush the TLB (step 4) even if previous step failed and the dirty
3916 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3917 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3918 * writes will be marked dirty for next log read.
3919 *
3920 * 1. Take a snapshot of the bit and clear it if needed.
3921 * 2. Write protect the corresponding page.
3922 * 3. Copy the snapshot to the userspace.
3923 * 4. Flush TLB's if needed.
3924 */
3925 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3926 {
3927 bool is_dirty = false;
3928 int r;
3929
3930 mutex_lock(&kvm->slots_lock);
3931
3932 /*
3933 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3934 */
3935 if (kvm_x86_ops->flush_log_dirty)
3936 kvm_x86_ops->flush_log_dirty(kvm);
3937
3938 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3939
3940 /*
3941 * All the TLBs can be flushed out of mmu lock, see the comments in
3942 * kvm_mmu_slot_remove_write_access().
3943 */
3944 lockdep_assert_held(&kvm->slots_lock);
3945 if (is_dirty)
3946 kvm_flush_remote_tlbs(kvm);
3947
3948 mutex_unlock(&kvm->slots_lock);
3949 return r;
3950 }
3951
3952 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3953 bool line_status)
3954 {
3955 if (!irqchip_in_kernel(kvm))
3956 return -ENXIO;
3957
3958 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3959 irq_event->irq, irq_event->level,
3960 line_status);
3961 return 0;
3962 }
3963
3964 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3965 struct kvm_enable_cap *cap)
3966 {
3967 int r;
3968
3969 if (cap->flags)
3970 return -EINVAL;
3971
3972 switch (cap->cap) {
3973 case KVM_CAP_DISABLE_QUIRKS:
3974 kvm->arch.disabled_quirks = cap->args[0];
3975 r = 0;
3976 break;
3977 case KVM_CAP_SPLIT_IRQCHIP: {
3978 mutex_lock(&kvm->lock);
3979 r = -EINVAL;
3980 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3981 goto split_irqchip_unlock;
3982 r = -EEXIST;
3983 if (irqchip_in_kernel(kvm))
3984 goto split_irqchip_unlock;
3985 if (kvm->created_vcpus)
3986 goto split_irqchip_unlock;
3987 r = kvm_setup_empty_irq_routing(kvm);
3988 if (r)
3989 goto split_irqchip_unlock;
3990 /* Pairs with irqchip_in_kernel. */
3991 smp_wmb();
3992 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3993 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3994 r = 0;
3995 split_irqchip_unlock:
3996 mutex_unlock(&kvm->lock);
3997 break;
3998 }
3999 case KVM_CAP_X2APIC_API:
4000 r = -EINVAL;
4001 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4002 break;
4003
4004 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4005 kvm->arch.x2apic_format = true;
4006 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4007 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4008
4009 r = 0;
4010 break;
4011 default:
4012 r = -EINVAL;
4013 break;
4014 }
4015 return r;
4016 }
4017
4018 long kvm_arch_vm_ioctl(struct file *filp,
4019 unsigned int ioctl, unsigned long arg)
4020 {
4021 struct kvm *kvm = filp->private_data;
4022 void __user *argp = (void __user *)arg;
4023 int r = -ENOTTY;
4024 /*
4025 * This union makes it completely explicit to gcc-3.x
4026 * that these two variables' stack usage should be
4027 * combined, not added together.
4028 */
4029 union {
4030 struct kvm_pit_state ps;
4031 struct kvm_pit_state2 ps2;
4032 struct kvm_pit_config pit_config;
4033 } u;
4034
4035 switch (ioctl) {
4036 case KVM_SET_TSS_ADDR:
4037 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4038 break;
4039 case KVM_SET_IDENTITY_MAP_ADDR: {
4040 u64 ident_addr;
4041
4042 mutex_lock(&kvm->lock);
4043 r = -EINVAL;
4044 if (kvm->created_vcpus)
4045 goto set_identity_unlock;
4046 r = -EFAULT;
4047 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4048 goto set_identity_unlock;
4049 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4050 set_identity_unlock:
4051 mutex_unlock(&kvm->lock);
4052 break;
4053 }
4054 case KVM_SET_NR_MMU_PAGES:
4055 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4056 break;
4057 case KVM_GET_NR_MMU_PAGES:
4058 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4059 break;
4060 case KVM_CREATE_IRQCHIP: {
4061 mutex_lock(&kvm->lock);
4062
4063 r = -EEXIST;
4064 if (irqchip_in_kernel(kvm))
4065 goto create_irqchip_unlock;
4066
4067 r = -EINVAL;
4068 if (kvm->created_vcpus)
4069 goto create_irqchip_unlock;
4070
4071 r = kvm_pic_init(kvm);
4072 if (r)
4073 goto create_irqchip_unlock;
4074
4075 r = kvm_ioapic_init(kvm);
4076 if (r) {
4077 kvm_pic_destroy(kvm);
4078 goto create_irqchip_unlock;
4079 }
4080
4081 r = kvm_setup_default_irq_routing(kvm);
4082 if (r) {
4083 kvm_ioapic_destroy(kvm);
4084 kvm_pic_destroy(kvm);
4085 goto create_irqchip_unlock;
4086 }
4087 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4088 smp_wmb();
4089 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4090 create_irqchip_unlock:
4091 mutex_unlock(&kvm->lock);
4092 break;
4093 }
4094 case KVM_CREATE_PIT:
4095 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4096 goto create_pit;
4097 case KVM_CREATE_PIT2:
4098 r = -EFAULT;
4099 if (copy_from_user(&u.pit_config, argp,
4100 sizeof(struct kvm_pit_config)))
4101 goto out;
4102 create_pit:
4103 mutex_lock(&kvm->lock);
4104 r = -EEXIST;
4105 if (kvm->arch.vpit)
4106 goto create_pit_unlock;
4107 r = -ENOMEM;
4108 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4109 if (kvm->arch.vpit)
4110 r = 0;
4111 create_pit_unlock:
4112 mutex_unlock(&kvm->lock);
4113 break;
4114 case KVM_GET_IRQCHIP: {
4115 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4116 struct kvm_irqchip *chip;
4117
4118 chip = memdup_user(argp, sizeof(*chip));
4119 if (IS_ERR(chip)) {
4120 r = PTR_ERR(chip);
4121 goto out;
4122 }
4123
4124 r = -ENXIO;
4125 if (!irqchip_kernel(kvm))
4126 goto get_irqchip_out;
4127 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4128 if (r)
4129 goto get_irqchip_out;
4130 r = -EFAULT;
4131 if (copy_to_user(argp, chip, sizeof *chip))
4132 goto get_irqchip_out;
4133 r = 0;
4134 get_irqchip_out:
4135 kfree(chip);
4136 break;
4137 }
4138 case KVM_SET_IRQCHIP: {
4139 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4140 struct kvm_irqchip *chip;
4141
4142 chip = memdup_user(argp, sizeof(*chip));
4143 if (IS_ERR(chip)) {
4144 r = PTR_ERR(chip);
4145 goto out;
4146 }
4147
4148 r = -ENXIO;
4149 if (!irqchip_kernel(kvm))
4150 goto set_irqchip_out;
4151 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4152 if (r)
4153 goto set_irqchip_out;
4154 r = 0;
4155 set_irqchip_out:
4156 kfree(chip);
4157 break;
4158 }
4159 case KVM_GET_PIT: {
4160 r = -EFAULT;
4161 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4162 goto out;
4163 r = -ENXIO;
4164 if (!kvm->arch.vpit)
4165 goto out;
4166 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4167 if (r)
4168 goto out;
4169 r = -EFAULT;
4170 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4171 goto out;
4172 r = 0;
4173 break;
4174 }
4175 case KVM_SET_PIT: {
4176 r = -EFAULT;
4177 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4178 goto out;
4179 r = -ENXIO;
4180 if (!kvm->arch.vpit)
4181 goto out;
4182 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4183 break;
4184 }
4185 case KVM_GET_PIT2: {
4186 r = -ENXIO;
4187 if (!kvm->arch.vpit)
4188 goto out;
4189 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4190 if (r)
4191 goto out;
4192 r = -EFAULT;
4193 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4194 goto out;
4195 r = 0;
4196 break;
4197 }
4198 case KVM_SET_PIT2: {
4199 r = -EFAULT;
4200 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4201 goto out;
4202 r = -ENXIO;
4203 if (!kvm->arch.vpit)
4204 goto out;
4205 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4206 break;
4207 }
4208 case KVM_REINJECT_CONTROL: {
4209 struct kvm_reinject_control control;
4210 r = -EFAULT;
4211 if (copy_from_user(&control, argp, sizeof(control)))
4212 goto out;
4213 r = kvm_vm_ioctl_reinject(kvm, &control);
4214 break;
4215 }
4216 case KVM_SET_BOOT_CPU_ID:
4217 r = 0;
4218 mutex_lock(&kvm->lock);
4219 if (kvm->created_vcpus)
4220 r = -EBUSY;
4221 else
4222 kvm->arch.bsp_vcpu_id = arg;
4223 mutex_unlock(&kvm->lock);
4224 break;
4225 case KVM_XEN_HVM_CONFIG: {
4226 r = -EFAULT;
4227 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4228 sizeof(struct kvm_xen_hvm_config)))
4229 goto out;
4230 r = -EINVAL;
4231 if (kvm->arch.xen_hvm_config.flags)
4232 goto out;
4233 r = 0;
4234 break;
4235 }
4236 case KVM_SET_CLOCK: {
4237 struct kvm_clock_data user_ns;
4238 u64 now_ns;
4239
4240 r = -EFAULT;
4241 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4242 goto out;
4243
4244 r = -EINVAL;
4245 if (user_ns.flags)
4246 goto out;
4247
4248 r = 0;
4249 /*
4250 * TODO: userspace has to take care of races with VCPU_RUN, so
4251 * kvm_gen_update_masterclock() can be cut down to locked
4252 * pvclock_update_vm_gtod_copy().
4253 */
4254 kvm_gen_update_masterclock(kvm);
4255 now_ns = get_kvmclock_ns(kvm);
4256 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4257 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4258 break;
4259 }
4260 case KVM_GET_CLOCK: {
4261 struct kvm_clock_data user_ns;
4262 u64 now_ns;
4263
4264 now_ns = get_kvmclock_ns(kvm);
4265 user_ns.clock = now_ns;
4266 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4267 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4268
4269 r = -EFAULT;
4270 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4271 goto out;
4272 r = 0;
4273 break;
4274 }
4275 case KVM_ENABLE_CAP: {
4276 struct kvm_enable_cap cap;
4277
4278 r = -EFAULT;
4279 if (copy_from_user(&cap, argp, sizeof(cap)))
4280 goto out;
4281 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4282 break;
4283 }
4284 default:
4285 r = -ENOTTY;
4286 }
4287 out:
4288 return r;
4289 }
4290
4291 static void kvm_init_msr_list(void)
4292 {
4293 u32 dummy[2];
4294 unsigned i, j;
4295
4296 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4297 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4298 continue;
4299
4300 /*
4301 * Even MSRs that are valid in the host may not be exposed
4302 * to the guests in some cases.
4303 */
4304 switch (msrs_to_save[i]) {
4305 case MSR_IA32_BNDCFGS:
4306 if (!kvm_x86_ops->mpx_supported())
4307 continue;
4308 break;
4309 case MSR_TSC_AUX:
4310 if (!kvm_x86_ops->rdtscp_supported())
4311 continue;
4312 break;
4313 default:
4314 break;
4315 }
4316
4317 if (j < i)
4318 msrs_to_save[j] = msrs_to_save[i];
4319 j++;
4320 }
4321 num_msrs_to_save = j;
4322
4323 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4324 switch (emulated_msrs[i]) {
4325 case MSR_IA32_SMBASE:
4326 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4327 continue;
4328 break;
4329 default:
4330 break;
4331 }
4332
4333 if (j < i)
4334 emulated_msrs[j] = emulated_msrs[i];
4335 j++;
4336 }
4337 num_emulated_msrs = j;
4338 }
4339
4340 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4341 const void *v)
4342 {
4343 int handled = 0;
4344 int n;
4345
4346 do {
4347 n = min(len, 8);
4348 if (!(lapic_in_kernel(vcpu) &&
4349 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4350 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4351 break;
4352 handled += n;
4353 addr += n;
4354 len -= n;
4355 v += n;
4356 } while (len);
4357
4358 return handled;
4359 }
4360
4361 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4362 {
4363 int handled = 0;
4364 int n;
4365
4366 do {
4367 n = min(len, 8);
4368 if (!(lapic_in_kernel(vcpu) &&
4369 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4370 addr, n, v))
4371 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4372 break;
4373 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4374 handled += n;
4375 addr += n;
4376 len -= n;
4377 v += n;
4378 } while (len);
4379
4380 return handled;
4381 }
4382
4383 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4384 struct kvm_segment *var, int seg)
4385 {
4386 kvm_x86_ops->set_segment(vcpu, var, seg);
4387 }
4388
4389 void kvm_get_segment(struct kvm_vcpu *vcpu,
4390 struct kvm_segment *var, int seg)
4391 {
4392 kvm_x86_ops->get_segment(vcpu, var, seg);
4393 }
4394
4395 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4396 struct x86_exception *exception)
4397 {
4398 gpa_t t_gpa;
4399
4400 BUG_ON(!mmu_is_nested(vcpu));
4401
4402 /* NPT walks are always user-walks */
4403 access |= PFERR_USER_MASK;
4404 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4405
4406 return t_gpa;
4407 }
4408
4409 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4410 struct x86_exception *exception)
4411 {
4412 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4413 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4414 }
4415
4416 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4417 struct x86_exception *exception)
4418 {
4419 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4420 access |= PFERR_FETCH_MASK;
4421 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4422 }
4423
4424 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4425 struct x86_exception *exception)
4426 {
4427 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4428 access |= PFERR_WRITE_MASK;
4429 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4430 }
4431
4432 /* uses this to access any guest's mapped memory without checking CPL */
4433 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4434 struct x86_exception *exception)
4435 {
4436 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4437 }
4438
4439 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4440 struct kvm_vcpu *vcpu, u32 access,
4441 struct x86_exception *exception)
4442 {
4443 void *data = val;
4444 int r = X86EMUL_CONTINUE;
4445
4446 while (bytes) {
4447 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4448 exception);
4449 unsigned offset = addr & (PAGE_SIZE-1);
4450 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4451 int ret;
4452
4453 if (gpa == UNMAPPED_GVA)
4454 return X86EMUL_PROPAGATE_FAULT;
4455 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4456 offset, toread);
4457 if (ret < 0) {
4458 r = X86EMUL_IO_NEEDED;
4459 goto out;
4460 }
4461
4462 bytes -= toread;
4463 data += toread;
4464 addr += toread;
4465 }
4466 out:
4467 return r;
4468 }
4469
4470 /* used for instruction fetching */
4471 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4472 gva_t addr, void *val, unsigned int bytes,
4473 struct x86_exception *exception)
4474 {
4475 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4477 unsigned offset;
4478 int ret;
4479
4480 /* Inline kvm_read_guest_virt_helper for speed. */
4481 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4482 exception);
4483 if (unlikely(gpa == UNMAPPED_GVA))
4484 return X86EMUL_PROPAGATE_FAULT;
4485
4486 offset = addr & (PAGE_SIZE-1);
4487 if (WARN_ON(offset + bytes > PAGE_SIZE))
4488 bytes = (unsigned)PAGE_SIZE - offset;
4489 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4490 offset, bytes);
4491 if (unlikely(ret < 0))
4492 return X86EMUL_IO_NEEDED;
4493
4494 return X86EMUL_CONTINUE;
4495 }
4496
4497 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4498 gva_t addr, void *val, unsigned int bytes,
4499 struct x86_exception *exception)
4500 {
4501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4502 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4503
4504 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4505 exception);
4506 }
4507 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4508
4509 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4510 gva_t addr, void *val, unsigned int bytes,
4511 struct x86_exception *exception)
4512 {
4513 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4514 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4515 }
4516
4517 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4518 unsigned long addr, void *val, unsigned int bytes)
4519 {
4520 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4522
4523 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4524 }
4525
4526 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4527 gva_t addr, void *val,
4528 unsigned int bytes,
4529 struct x86_exception *exception)
4530 {
4531 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4532 void *data = val;
4533 int r = X86EMUL_CONTINUE;
4534
4535 while (bytes) {
4536 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4537 PFERR_WRITE_MASK,
4538 exception);
4539 unsigned offset = addr & (PAGE_SIZE-1);
4540 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4541 int ret;
4542
4543 if (gpa == UNMAPPED_GVA)
4544 return X86EMUL_PROPAGATE_FAULT;
4545 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4546 if (ret < 0) {
4547 r = X86EMUL_IO_NEEDED;
4548 goto out;
4549 }
4550
4551 bytes -= towrite;
4552 data += towrite;
4553 addr += towrite;
4554 }
4555 out:
4556 return r;
4557 }
4558 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4559
4560 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4561 gpa_t gpa, bool write)
4562 {
4563 /* For APIC access vmexit */
4564 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4565 return 1;
4566
4567 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4568 trace_vcpu_match_mmio(gva, gpa, write, true);
4569 return 1;
4570 }
4571
4572 return 0;
4573 }
4574
4575 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4576 gpa_t *gpa, struct x86_exception *exception,
4577 bool write)
4578 {
4579 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4580 | (write ? PFERR_WRITE_MASK : 0);
4581
4582 /*
4583 * currently PKRU is only applied to ept enabled guest so
4584 * there is no pkey in EPT page table for L1 guest or EPT
4585 * shadow page table for L2 guest.
4586 */
4587 if (vcpu_match_mmio_gva(vcpu, gva)
4588 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4589 vcpu->arch.access, 0, access)) {
4590 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4591 (gva & (PAGE_SIZE - 1));
4592 trace_vcpu_match_mmio(gva, *gpa, write, false);
4593 return 1;
4594 }
4595
4596 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4597
4598 if (*gpa == UNMAPPED_GVA)
4599 return -1;
4600
4601 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4602 }
4603
4604 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4605 const void *val, int bytes)
4606 {
4607 int ret;
4608
4609 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4610 if (ret < 0)
4611 return 0;
4612 kvm_page_track_write(vcpu, gpa, val, bytes);
4613 return 1;
4614 }
4615
4616 struct read_write_emulator_ops {
4617 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4618 int bytes);
4619 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4620 void *val, int bytes);
4621 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4622 int bytes, void *val);
4623 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4624 void *val, int bytes);
4625 bool write;
4626 };
4627
4628 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4629 {
4630 if (vcpu->mmio_read_completed) {
4631 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4632 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4633 vcpu->mmio_read_completed = 0;
4634 return 1;
4635 }
4636
4637 return 0;
4638 }
4639
4640 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4641 void *val, int bytes)
4642 {
4643 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4644 }
4645
4646 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4647 void *val, int bytes)
4648 {
4649 return emulator_write_phys(vcpu, gpa, val, bytes);
4650 }
4651
4652 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4653 {
4654 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4655 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4656 }
4657
4658 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4659 void *val, int bytes)
4660 {
4661 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4662 return X86EMUL_IO_NEEDED;
4663 }
4664
4665 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4666 void *val, int bytes)
4667 {
4668 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4669
4670 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4671 return X86EMUL_CONTINUE;
4672 }
4673
4674 static const struct read_write_emulator_ops read_emultor = {
4675 .read_write_prepare = read_prepare,
4676 .read_write_emulate = read_emulate,
4677 .read_write_mmio = vcpu_mmio_read,
4678 .read_write_exit_mmio = read_exit_mmio,
4679 };
4680
4681 static const struct read_write_emulator_ops write_emultor = {
4682 .read_write_emulate = write_emulate,
4683 .read_write_mmio = write_mmio,
4684 .read_write_exit_mmio = write_exit_mmio,
4685 .write = true,
4686 };
4687
4688 static int emulator_read_write_onepage(unsigned long addr, void *val,
4689 unsigned int bytes,
4690 struct x86_exception *exception,
4691 struct kvm_vcpu *vcpu,
4692 const struct read_write_emulator_ops *ops)
4693 {
4694 gpa_t gpa;
4695 int handled, ret;
4696 bool write = ops->write;
4697 struct kvm_mmio_fragment *frag;
4698 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4699
4700 /*
4701 * If the exit was due to a NPF we may already have a GPA.
4702 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4703 * Note, this cannot be used on string operations since string
4704 * operation using rep will only have the initial GPA from the NPF
4705 * occurred.
4706 */
4707 if (vcpu->arch.gpa_available &&
4708 emulator_can_use_gpa(ctxt) &&
4709 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4710 gpa = vcpu->arch.gpa_val;
4711 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4712 } else {
4713 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4714 if (ret < 0)
4715 return X86EMUL_PROPAGATE_FAULT;
4716 }
4717
4718 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4719 return X86EMUL_CONTINUE;
4720
4721 /*
4722 * Is this MMIO handled locally?
4723 */
4724 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4725 if (handled == bytes)
4726 return X86EMUL_CONTINUE;
4727
4728 gpa += handled;
4729 bytes -= handled;
4730 val += handled;
4731
4732 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4733 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4734 frag->gpa = gpa;
4735 frag->data = val;
4736 frag->len = bytes;
4737 return X86EMUL_CONTINUE;
4738 }
4739
4740 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4741 unsigned long addr,
4742 void *val, unsigned int bytes,
4743 struct x86_exception *exception,
4744 const struct read_write_emulator_ops *ops)
4745 {
4746 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4747 gpa_t gpa;
4748 int rc;
4749
4750 if (ops->read_write_prepare &&
4751 ops->read_write_prepare(vcpu, val, bytes))
4752 return X86EMUL_CONTINUE;
4753
4754 vcpu->mmio_nr_fragments = 0;
4755
4756 /* Crossing a page boundary? */
4757 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4758 int now;
4759
4760 now = -addr & ~PAGE_MASK;
4761 rc = emulator_read_write_onepage(addr, val, now, exception,
4762 vcpu, ops);
4763
4764 if (rc != X86EMUL_CONTINUE)
4765 return rc;
4766 addr += now;
4767 if (ctxt->mode != X86EMUL_MODE_PROT64)
4768 addr = (u32)addr;
4769 val += now;
4770 bytes -= now;
4771 }
4772
4773 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4774 vcpu, ops);
4775 if (rc != X86EMUL_CONTINUE)
4776 return rc;
4777
4778 if (!vcpu->mmio_nr_fragments)
4779 return rc;
4780
4781 gpa = vcpu->mmio_fragments[0].gpa;
4782
4783 vcpu->mmio_needed = 1;
4784 vcpu->mmio_cur_fragment = 0;
4785
4786 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4787 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4788 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4789 vcpu->run->mmio.phys_addr = gpa;
4790
4791 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4792 }
4793
4794 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4795 unsigned long addr,
4796 void *val,
4797 unsigned int bytes,
4798 struct x86_exception *exception)
4799 {
4800 return emulator_read_write(ctxt, addr, val, bytes,
4801 exception, &read_emultor);
4802 }
4803
4804 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4805 unsigned long addr,
4806 const void *val,
4807 unsigned int bytes,
4808 struct x86_exception *exception)
4809 {
4810 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4811 exception, &write_emultor);
4812 }
4813
4814 #define CMPXCHG_TYPE(t, ptr, old, new) \
4815 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4816
4817 #ifdef CONFIG_X86_64
4818 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4819 #else
4820 # define CMPXCHG64(ptr, old, new) \
4821 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4822 #endif
4823
4824 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4825 unsigned long addr,
4826 const void *old,
4827 const void *new,
4828 unsigned int bytes,
4829 struct x86_exception *exception)
4830 {
4831 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4832 gpa_t gpa;
4833 struct page *page;
4834 char *kaddr;
4835 bool exchanged;
4836
4837 /* guests cmpxchg8b have to be emulated atomically */
4838 if (bytes > 8 || (bytes & (bytes - 1)))
4839 goto emul_write;
4840
4841 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4842
4843 if (gpa == UNMAPPED_GVA ||
4844 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4845 goto emul_write;
4846
4847 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4848 goto emul_write;
4849
4850 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4851 if (is_error_page(page))
4852 goto emul_write;
4853
4854 kaddr = kmap_atomic(page);
4855 kaddr += offset_in_page(gpa);
4856 switch (bytes) {
4857 case 1:
4858 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4859 break;
4860 case 2:
4861 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4862 break;
4863 case 4:
4864 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4865 break;
4866 case 8:
4867 exchanged = CMPXCHG64(kaddr, old, new);
4868 break;
4869 default:
4870 BUG();
4871 }
4872 kunmap_atomic(kaddr);
4873 kvm_release_page_dirty(page);
4874
4875 if (!exchanged)
4876 return X86EMUL_CMPXCHG_FAILED;
4877
4878 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4879 kvm_page_track_write(vcpu, gpa, new, bytes);
4880
4881 return X86EMUL_CONTINUE;
4882
4883 emul_write:
4884 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4885
4886 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4887 }
4888
4889 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4890 {
4891 int r = 0, i;
4892
4893 for (i = 0; i < vcpu->arch.pio.count; i++) {
4894 if (vcpu->arch.pio.in)
4895 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4896 vcpu->arch.pio.size, pd);
4897 else
4898 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4899 vcpu->arch.pio.port, vcpu->arch.pio.size,
4900 pd);
4901 if (r)
4902 break;
4903 pd += vcpu->arch.pio.size;
4904 }
4905 return r;
4906 }
4907
4908 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4909 unsigned short port, void *val,
4910 unsigned int count, bool in)
4911 {
4912 vcpu->arch.pio.port = port;
4913 vcpu->arch.pio.in = in;
4914 vcpu->arch.pio.count = count;
4915 vcpu->arch.pio.size = size;
4916
4917 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4918 vcpu->arch.pio.count = 0;
4919 return 1;
4920 }
4921
4922 vcpu->run->exit_reason = KVM_EXIT_IO;
4923 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4924 vcpu->run->io.size = size;
4925 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4926 vcpu->run->io.count = count;
4927 vcpu->run->io.port = port;
4928
4929 return 0;
4930 }
4931
4932 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4933 int size, unsigned short port, void *val,
4934 unsigned int count)
4935 {
4936 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4937 int ret;
4938
4939 if (vcpu->arch.pio.count)
4940 goto data_avail;
4941
4942 memset(vcpu->arch.pio_data, 0, size * count);
4943
4944 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4945 if (ret) {
4946 data_avail:
4947 memcpy(val, vcpu->arch.pio_data, size * count);
4948 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4949 vcpu->arch.pio.count = 0;
4950 return 1;
4951 }
4952
4953 return 0;
4954 }
4955
4956 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4957 int size, unsigned short port,
4958 const void *val, unsigned int count)
4959 {
4960 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961
4962 memcpy(vcpu->arch.pio_data, val, size * count);
4963 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4964 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4965 }
4966
4967 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4968 {
4969 return kvm_x86_ops->get_segment_base(vcpu, seg);
4970 }
4971
4972 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4973 {
4974 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4975 }
4976
4977 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4978 {
4979 if (!need_emulate_wbinvd(vcpu))
4980 return X86EMUL_CONTINUE;
4981
4982 if (kvm_x86_ops->has_wbinvd_exit()) {
4983 int cpu = get_cpu();
4984
4985 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4986 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4987 wbinvd_ipi, NULL, 1);
4988 put_cpu();
4989 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4990 } else
4991 wbinvd();
4992 return X86EMUL_CONTINUE;
4993 }
4994
4995 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4996 {
4997 kvm_emulate_wbinvd_noskip(vcpu);
4998 return kvm_skip_emulated_instruction(vcpu);
4999 }
5000 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5001
5002
5003
5004 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5005 {
5006 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5007 }
5008
5009 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5010 unsigned long *dest)
5011 {
5012 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5013 }
5014
5015 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5016 unsigned long value)
5017 {
5018
5019 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5020 }
5021
5022 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5023 {
5024 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5025 }
5026
5027 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5028 {
5029 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5030 unsigned long value;
5031
5032 switch (cr) {
5033 case 0:
5034 value = kvm_read_cr0(vcpu);
5035 break;
5036 case 2:
5037 value = vcpu->arch.cr2;
5038 break;
5039 case 3:
5040 value = kvm_read_cr3(vcpu);
5041 break;
5042 case 4:
5043 value = kvm_read_cr4(vcpu);
5044 break;
5045 case 8:
5046 value = kvm_get_cr8(vcpu);
5047 break;
5048 default:
5049 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5050 return 0;
5051 }
5052
5053 return value;
5054 }
5055
5056 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5057 {
5058 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5059 int res = 0;
5060
5061 switch (cr) {
5062 case 0:
5063 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5064 break;
5065 case 2:
5066 vcpu->arch.cr2 = val;
5067 break;
5068 case 3:
5069 res = kvm_set_cr3(vcpu, val);
5070 break;
5071 case 4:
5072 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5073 break;
5074 case 8:
5075 res = kvm_set_cr8(vcpu, val);
5076 break;
5077 default:
5078 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5079 res = -1;
5080 }
5081
5082 return res;
5083 }
5084
5085 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5086 {
5087 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5088 }
5089
5090 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5091 {
5092 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5093 }
5094
5095 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5096 {
5097 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5098 }
5099
5100 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5101 {
5102 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5103 }
5104
5105 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5106 {
5107 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5108 }
5109
5110 static unsigned long emulator_get_cached_segment_base(
5111 struct x86_emulate_ctxt *ctxt, int seg)
5112 {
5113 return get_segment_base(emul_to_vcpu(ctxt), seg);
5114 }
5115
5116 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5117 struct desc_struct *desc, u32 *base3,
5118 int seg)
5119 {
5120 struct kvm_segment var;
5121
5122 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5123 *selector = var.selector;
5124
5125 if (var.unusable) {
5126 memset(desc, 0, sizeof(*desc));
5127 if (base3)
5128 *base3 = 0;
5129 return false;
5130 }
5131
5132 if (var.g)
5133 var.limit >>= 12;
5134 set_desc_limit(desc, var.limit);
5135 set_desc_base(desc, (unsigned long)var.base);
5136 #ifdef CONFIG_X86_64
5137 if (base3)
5138 *base3 = var.base >> 32;
5139 #endif
5140 desc->type = var.type;
5141 desc->s = var.s;
5142 desc->dpl = var.dpl;
5143 desc->p = var.present;
5144 desc->avl = var.avl;
5145 desc->l = var.l;
5146 desc->d = var.db;
5147 desc->g = var.g;
5148
5149 return true;
5150 }
5151
5152 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5153 struct desc_struct *desc, u32 base3,
5154 int seg)
5155 {
5156 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5157 struct kvm_segment var;
5158
5159 var.selector = selector;
5160 var.base = get_desc_base(desc);
5161 #ifdef CONFIG_X86_64
5162 var.base |= ((u64)base3) << 32;
5163 #endif
5164 var.limit = get_desc_limit(desc);
5165 if (desc->g)
5166 var.limit = (var.limit << 12) | 0xfff;
5167 var.type = desc->type;
5168 var.dpl = desc->dpl;
5169 var.db = desc->d;
5170 var.s = desc->s;
5171 var.l = desc->l;
5172 var.g = desc->g;
5173 var.avl = desc->avl;
5174 var.present = desc->p;
5175 var.unusable = !var.present;
5176 var.padding = 0;
5177
5178 kvm_set_segment(vcpu, &var, seg);
5179 return;
5180 }
5181
5182 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5183 u32 msr_index, u64 *pdata)
5184 {
5185 struct msr_data msr;
5186 int r;
5187
5188 msr.index = msr_index;
5189 msr.host_initiated = false;
5190 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5191 if (r)
5192 return r;
5193
5194 *pdata = msr.data;
5195 return 0;
5196 }
5197
5198 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5199 u32 msr_index, u64 data)
5200 {
5201 struct msr_data msr;
5202
5203 msr.data = data;
5204 msr.index = msr_index;
5205 msr.host_initiated = false;
5206 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5207 }
5208
5209 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5210 {
5211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5212
5213 return vcpu->arch.smbase;
5214 }
5215
5216 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5217 {
5218 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5219
5220 vcpu->arch.smbase = smbase;
5221 }
5222
5223 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5224 u32 pmc)
5225 {
5226 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5227 }
5228
5229 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5230 u32 pmc, u64 *pdata)
5231 {
5232 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5233 }
5234
5235 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5236 {
5237 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5238 }
5239
5240 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5241 {
5242 preempt_disable();
5243 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5244 }
5245
5246 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5247 {
5248 preempt_enable();
5249 }
5250
5251 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5252 struct x86_instruction_info *info,
5253 enum x86_intercept_stage stage)
5254 {
5255 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5256 }
5257
5258 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5259 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5260 {
5261 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5262 }
5263
5264 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5265 {
5266 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5267 }
5268
5269 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5270 {
5271 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5272 }
5273
5274 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5275 {
5276 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5277 }
5278
5279 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5280 {
5281 return emul_to_vcpu(ctxt)->arch.hflags;
5282 }
5283
5284 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5285 {
5286 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5287 }
5288
5289 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5290 {
5291 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5292 }
5293
5294 static const struct x86_emulate_ops emulate_ops = {
5295 .read_gpr = emulator_read_gpr,
5296 .write_gpr = emulator_write_gpr,
5297 .read_std = kvm_read_guest_virt_system,
5298 .write_std = kvm_write_guest_virt_system,
5299 .read_phys = kvm_read_guest_phys_system,
5300 .fetch = kvm_fetch_guest_virt,
5301 .read_emulated = emulator_read_emulated,
5302 .write_emulated = emulator_write_emulated,
5303 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5304 .invlpg = emulator_invlpg,
5305 .pio_in_emulated = emulator_pio_in_emulated,
5306 .pio_out_emulated = emulator_pio_out_emulated,
5307 .get_segment = emulator_get_segment,
5308 .set_segment = emulator_set_segment,
5309 .get_cached_segment_base = emulator_get_cached_segment_base,
5310 .get_gdt = emulator_get_gdt,
5311 .get_idt = emulator_get_idt,
5312 .set_gdt = emulator_set_gdt,
5313 .set_idt = emulator_set_idt,
5314 .get_cr = emulator_get_cr,
5315 .set_cr = emulator_set_cr,
5316 .cpl = emulator_get_cpl,
5317 .get_dr = emulator_get_dr,
5318 .set_dr = emulator_set_dr,
5319 .get_smbase = emulator_get_smbase,
5320 .set_smbase = emulator_set_smbase,
5321 .set_msr = emulator_set_msr,
5322 .get_msr = emulator_get_msr,
5323 .check_pmc = emulator_check_pmc,
5324 .read_pmc = emulator_read_pmc,
5325 .halt = emulator_halt,
5326 .wbinvd = emulator_wbinvd,
5327 .fix_hypercall = emulator_fix_hypercall,
5328 .get_fpu = emulator_get_fpu,
5329 .put_fpu = emulator_put_fpu,
5330 .intercept = emulator_intercept,
5331 .get_cpuid = emulator_get_cpuid,
5332 .set_nmi_mask = emulator_set_nmi_mask,
5333 .get_hflags = emulator_get_hflags,
5334 .set_hflags = emulator_set_hflags,
5335 .pre_leave_smm = emulator_pre_leave_smm,
5336 };
5337
5338 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5339 {
5340 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5341 /*
5342 * an sti; sti; sequence only disable interrupts for the first
5343 * instruction. So, if the last instruction, be it emulated or
5344 * not, left the system with the INT_STI flag enabled, it
5345 * means that the last instruction is an sti. We should not
5346 * leave the flag on in this case. The same goes for mov ss
5347 */
5348 if (int_shadow & mask)
5349 mask = 0;
5350 if (unlikely(int_shadow || mask)) {
5351 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5352 if (!mask)
5353 kvm_make_request(KVM_REQ_EVENT, vcpu);
5354 }
5355 }
5356
5357 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5358 {
5359 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5360 if (ctxt->exception.vector == PF_VECTOR)
5361 return kvm_propagate_fault(vcpu, &ctxt->exception);
5362
5363 if (ctxt->exception.error_code_valid)
5364 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5365 ctxt->exception.error_code);
5366 else
5367 kvm_queue_exception(vcpu, ctxt->exception.vector);
5368 return false;
5369 }
5370
5371 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5372 {
5373 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5374 int cs_db, cs_l;
5375
5376 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5377
5378 ctxt->eflags = kvm_get_rflags(vcpu);
5379 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5380
5381 ctxt->eip = kvm_rip_read(vcpu);
5382 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5383 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5384 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5385 cs_db ? X86EMUL_MODE_PROT32 :
5386 X86EMUL_MODE_PROT16;
5387 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5388 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5389 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5390
5391 init_decode_cache(ctxt);
5392 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5393 }
5394
5395 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5396 {
5397 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5398 int ret;
5399
5400 init_emulate_ctxt(vcpu);
5401
5402 ctxt->op_bytes = 2;
5403 ctxt->ad_bytes = 2;
5404 ctxt->_eip = ctxt->eip + inc_eip;
5405 ret = emulate_int_real(ctxt, irq);
5406
5407 if (ret != X86EMUL_CONTINUE)
5408 return EMULATE_FAIL;
5409
5410 ctxt->eip = ctxt->_eip;
5411 kvm_rip_write(vcpu, ctxt->eip);
5412 kvm_set_rflags(vcpu, ctxt->eflags);
5413
5414 if (irq == NMI_VECTOR)
5415 vcpu->arch.nmi_pending = 0;
5416 else
5417 vcpu->arch.interrupt.pending = false;
5418
5419 return EMULATE_DONE;
5420 }
5421 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5422
5423 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5424 {
5425 int r = EMULATE_DONE;
5426
5427 ++vcpu->stat.insn_emulation_fail;
5428 trace_kvm_emulate_insn_failed(vcpu);
5429 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5430 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5431 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5432 vcpu->run->internal.ndata = 0;
5433 r = EMULATE_FAIL;
5434 }
5435 kvm_queue_exception(vcpu, UD_VECTOR);
5436
5437 return r;
5438 }
5439
5440 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5441 bool write_fault_to_shadow_pgtable,
5442 int emulation_type)
5443 {
5444 gpa_t gpa = cr2;
5445 kvm_pfn_t pfn;
5446
5447 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5448 return false;
5449
5450 if (!vcpu->arch.mmu.direct_map) {
5451 /*
5452 * Write permission should be allowed since only
5453 * write access need to be emulated.
5454 */
5455 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5456
5457 /*
5458 * If the mapping is invalid in guest, let cpu retry
5459 * it to generate fault.
5460 */
5461 if (gpa == UNMAPPED_GVA)
5462 return true;
5463 }
5464
5465 /*
5466 * Do not retry the unhandleable instruction if it faults on the
5467 * readonly host memory, otherwise it will goto a infinite loop:
5468 * retry instruction -> write #PF -> emulation fail -> retry
5469 * instruction -> ...
5470 */
5471 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5472
5473 /*
5474 * If the instruction failed on the error pfn, it can not be fixed,
5475 * report the error to userspace.
5476 */
5477 if (is_error_noslot_pfn(pfn))
5478 return false;
5479
5480 kvm_release_pfn_clean(pfn);
5481
5482 /* The instructions are well-emulated on direct mmu. */
5483 if (vcpu->arch.mmu.direct_map) {
5484 unsigned int indirect_shadow_pages;
5485
5486 spin_lock(&vcpu->kvm->mmu_lock);
5487 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5488 spin_unlock(&vcpu->kvm->mmu_lock);
5489
5490 if (indirect_shadow_pages)
5491 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5492
5493 return true;
5494 }
5495
5496 /*
5497 * if emulation was due to access to shadowed page table
5498 * and it failed try to unshadow page and re-enter the
5499 * guest to let CPU execute the instruction.
5500 */
5501 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5502
5503 /*
5504 * If the access faults on its page table, it can not
5505 * be fixed by unprotecting shadow page and it should
5506 * be reported to userspace.
5507 */
5508 return !write_fault_to_shadow_pgtable;
5509 }
5510
5511 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5512 unsigned long cr2, int emulation_type)
5513 {
5514 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5515 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5516
5517 last_retry_eip = vcpu->arch.last_retry_eip;
5518 last_retry_addr = vcpu->arch.last_retry_addr;
5519
5520 /*
5521 * If the emulation is caused by #PF and it is non-page_table
5522 * writing instruction, it means the VM-EXIT is caused by shadow
5523 * page protected, we can zap the shadow page and retry this
5524 * instruction directly.
5525 *
5526 * Note: if the guest uses a non-page-table modifying instruction
5527 * on the PDE that points to the instruction, then we will unmap
5528 * the instruction and go to an infinite loop. So, we cache the
5529 * last retried eip and the last fault address, if we meet the eip
5530 * and the address again, we can break out of the potential infinite
5531 * loop.
5532 */
5533 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5534
5535 if (!(emulation_type & EMULTYPE_RETRY))
5536 return false;
5537
5538 if (x86_page_table_writing_insn(ctxt))
5539 return false;
5540
5541 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5542 return false;
5543
5544 vcpu->arch.last_retry_eip = ctxt->eip;
5545 vcpu->arch.last_retry_addr = cr2;
5546
5547 if (!vcpu->arch.mmu.direct_map)
5548 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5549
5550 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5551
5552 return true;
5553 }
5554
5555 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5556 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5557
5558 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5559 {
5560 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5561 /* This is a good place to trace that we are exiting SMM. */
5562 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5563
5564 /* Process a latched INIT or SMI, if any. */
5565 kvm_make_request(KVM_REQ_EVENT, vcpu);
5566 }
5567
5568 kvm_mmu_reset_context(vcpu);
5569 }
5570
5571 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5572 {
5573 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5574
5575 vcpu->arch.hflags = emul_flags;
5576
5577 if (changed & HF_SMM_MASK)
5578 kvm_smm_changed(vcpu);
5579 }
5580
5581 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5582 unsigned long *db)
5583 {
5584 u32 dr6 = 0;
5585 int i;
5586 u32 enable, rwlen;
5587
5588 enable = dr7;
5589 rwlen = dr7 >> 16;
5590 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5591 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5592 dr6 |= (1 << i);
5593 return dr6;
5594 }
5595
5596 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5597 {
5598 struct kvm_run *kvm_run = vcpu->run;
5599
5600 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5601 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5602 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5603 kvm_run->debug.arch.exception = DB_VECTOR;
5604 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5605 *r = EMULATE_USER_EXIT;
5606 } else {
5607 /*
5608 * "Certain debug exceptions may clear bit 0-3. The
5609 * remaining contents of the DR6 register are never
5610 * cleared by the processor".
5611 */
5612 vcpu->arch.dr6 &= ~15;
5613 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5614 kvm_queue_exception(vcpu, DB_VECTOR);
5615 }
5616 }
5617
5618 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5619 {
5620 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5621 int r = EMULATE_DONE;
5622
5623 kvm_x86_ops->skip_emulated_instruction(vcpu);
5624
5625 /*
5626 * rflags is the old, "raw" value of the flags. The new value has
5627 * not been saved yet.
5628 *
5629 * This is correct even for TF set by the guest, because "the
5630 * processor will not generate this exception after the instruction
5631 * that sets the TF flag".
5632 */
5633 if (unlikely(rflags & X86_EFLAGS_TF))
5634 kvm_vcpu_do_singlestep(vcpu, &r);
5635 return r == EMULATE_DONE;
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5638
5639 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5640 {
5641 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5642 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5643 struct kvm_run *kvm_run = vcpu->run;
5644 unsigned long eip = kvm_get_linear_rip(vcpu);
5645 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5646 vcpu->arch.guest_debug_dr7,
5647 vcpu->arch.eff_db);
5648
5649 if (dr6 != 0) {
5650 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5651 kvm_run->debug.arch.pc = eip;
5652 kvm_run->debug.arch.exception = DB_VECTOR;
5653 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5654 *r = EMULATE_USER_EXIT;
5655 return true;
5656 }
5657 }
5658
5659 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5660 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5661 unsigned long eip = kvm_get_linear_rip(vcpu);
5662 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5663 vcpu->arch.dr7,
5664 vcpu->arch.db);
5665
5666 if (dr6 != 0) {
5667 vcpu->arch.dr6 &= ~15;
5668 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5669 kvm_queue_exception(vcpu, DB_VECTOR);
5670 *r = EMULATE_DONE;
5671 return true;
5672 }
5673 }
5674
5675 return false;
5676 }
5677
5678 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5679 unsigned long cr2,
5680 int emulation_type,
5681 void *insn,
5682 int insn_len)
5683 {
5684 int r;
5685 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5686 bool writeback = true;
5687 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5688
5689 /*
5690 * Clear write_fault_to_shadow_pgtable here to ensure it is
5691 * never reused.
5692 */
5693 vcpu->arch.write_fault_to_shadow_pgtable = false;
5694 kvm_clear_exception_queue(vcpu);
5695
5696 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5697 init_emulate_ctxt(vcpu);
5698
5699 /*
5700 * We will reenter on the same instruction since
5701 * we do not set complete_userspace_io. This does not
5702 * handle watchpoints yet, those would be handled in
5703 * the emulate_ops.
5704 */
5705 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5706 return r;
5707
5708 ctxt->interruptibility = 0;
5709 ctxt->have_exception = false;
5710 ctxt->exception.vector = -1;
5711 ctxt->perm_ok = false;
5712
5713 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5714
5715 r = x86_decode_insn(ctxt, insn, insn_len);
5716
5717 trace_kvm_emulate_insn_start(vcpu);
5718 ++vcpu->stat.insn_emulation;
5719 if (r != EMULATION_OK) {
5720 if (emulation_type & EMULTYPE_TRAP_UD)
5721 return EMULATE_FAIL;
5722 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5723 emulation_type))
5724 return EMULATE_DONE;
5725 if (emulation_type & EMULTYPE_SKIP)
5726 return EMULATE_FAIL;
5727 return handle_emulation_failure(vcpu);
5728 }
5729 }
5730
5731 if (emulation_type & EMULTYPE_SKIP) {
5732 kvm_rip_write(vcpu, ctxt->_eip);
5733 if (ctxt->eflags & X86_EFLAGS_RF)
5734 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5735 return EMULATE_DONE;
5736 }
5737
5738 if (retry_instruction(ctxt, cr2, emulation_type))
5739 return EMULATE_DONE;
5740
5741 /* this is needed for vmware backdoor interface to work since it
5742 changes registers values during IO operation */
5743 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5744 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5745 emulator_invalidate_register_cache(ctxt);
5746 }
5747
5748 restart:
5749 /* Save the faulting GPA (cr2) in the address field */
5750 ctxt->exception.address = cr2;
5751
5752 r = x86_emulate_insn(ctxt);
5753
5754 if (r == EMULATION_INTERCEPTED)
5755 return EMULATE_DONE;
5756
5757 if (r == EMULATION_FAILED) {
5758 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5759 emulation_type))
5760 return EMULATE_DONE;
5761
5762 return handle_emulation_failure(vcpu);
5763 }
5764
5765 if (ctxt->have_exception) {
5766 r = EMULATE_DONE;
5767 if (inject_emulated_exception(vcpu))
5768 return r;
5769 } else if (vcpu->arch.pio.count) {
5770 if (!vcpu->arch.pio.in) {
5771 /* FIXME: return into emulator if single-stepping. */
5772 vcpu->arch.pio.count = 0;
5773 } else {
5774 writeback = false;
5775 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5776 }
5777 r = EMULATE_USER_EXIT;
5778 } else if (vcpu->mmio_needed) {
5779 if (!vcpu->mmio_is_write)
5780 writeback = false;
5781 r = EMULATE_USER_EXIT;
5782 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5783 } else if (r == EMULATION_RESTART)
5784 goto restart;
5785 else
5786 r = EMULATE_DONE;
5787
5788 if (writeback) {
5789 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5790 toggle_interruptibility(vcpu, ctxt->interruptibility);
5791 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5792 kvm_rip_write(vcpu, ctxt->eip);
5793 if (r == EMULATE_DONE &&
5794 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5795 kvm_vcpu_do_singlestep(vcpu, &r);
5796 if (!ctxt->have_exception ||
5797 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5798 __kvm_set_rflags(vcpu, ctxt->eflags);
5799
5800 /*
5801 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5802 * do nothing, and it will be requested again as soon as
5803 * the shadow expires. But we still need to check here,
5804 * because POPF has no interrupt shadow.
5805 */
5806 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5807 kvm_make_request(KVM_REQ_EVENT, vcpu);
5808 } else
5809 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5810
5811 return r;
5812 }
5813 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5814
5815 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5816 {
5817 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5818 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5819 size, port, &val, 1);
5820 /* do not return to emulator after return from userspace */
5821 vcpu->arch.pio.count = 0;
5822 return ret;
5823 }
5824 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5825
5826 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5827 {
5828 unsigned long val;
5829
5830 /* We should only ever be called with arch.pio.count equal to 1 */
5831 BUG_ON(vcpu->arch.pio.count != 1);
5832
5833 /* For size less than 4 we merge, else we zero extend */
5834 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5835 : 0;
5836
5837 /*
5838 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5839 * the copy and tracing
5840 */
5841 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5842 vcpu->arch.pio.port, &val, 1);
5843 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5844
5845 return 1;
5846 }
5847
5848 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5849 {
5850 unsigned long val;
5851 int ret;
5852
5853 /* For size less than 4 we merge, else we zero extend */
5854 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5855
5856 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5857 &val, 1);
5858 if (ret) {
5859 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5860 return ret;
5861 }
5862
5863 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5864
5865 return 0;
5866 }
5867 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5868
5869 static int kvmclock_cpu_down_prep(unsigned int cpu)
5870 {
5871 __this_cpu_write(cpu_tsc_khz, 0);
5872 return 0;
5873 }
5874
5875 static void tsc_khz_changed(void *data)
5876 {
5877 struct cpufreq_freqs *freq = data;
5878 unsigned long khz = 0;
5879
5880 if (data)
5881 khz = freq->new;
5882 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5883 khz = cpufreq_quick_get(raw_smp_processor_id());
5884 if (!khz)
5885 khz = tsc_khz;
5886 __this_cpu_write(cpu_tsc_khz, khz);
5887 }
5888
5889 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5890 void *data)
5891 {
5892 struct cpufreq_freqs *freq = data;
5893 struct kvm *kvm;
5894 struct kvm_vcpu *vcpu;
5895 int i, send_ipi = 0;
5896
5897 /*
5898 * We allow guests to temporarily run on slowing clocks,
5899 * provided we notify them after, or to run on accelerating
5900 * clocks, provided we notify them before. Thus time never
5901 * goes backwards.
5902 *
5903 * However, we have a problem. We can't atomically update
5904 * the frequency of a given CPU from this function; it is
5905 * merely a notifier, which can be called from any CPU.
5906 * Changing the TSC frequency at arbitrary points in time
5907 * requires a recomputation of local variables related to
5908 * the TSC for each VCPU. We must flag these local variables
5909 * to be updated and be sure the update takes place with the
5910 * new frequency before any guests proceed.
5911 *
5912 * Unfortunately, the combination of hotplug CPU and frequency
5913 * change creates an intractable locking scenario; the order
5914 * of when these callouts happen is undefined with respect to
5915 * CPU hotplug, and they can race with each other. As such,
5916 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5917 * undefined; you can actually have a CPU frequency change take
5918 * place in between the computation of X and the setting of the
5919 * variable. To protect against this problem, all updates of
5920 * the per_cpu tsc_khz variable are done in an interrupt
5921 * protected IPI, and all callers wishing to update the value
5922 * must wait for a synchronous IPI to complete (which is trivial
5923 * if the caller is on the CPU already). This establishes the
5924 * necessary total order on variable updates.
5925 *
5926 * Note that because a guest time update may take place
5927 * anytime after the setting of the VCPU's request bit, the
5928 * correct TSC value must be set before the request. However,
5929 * to ensure the update actually makes it to any guest which
5930 * starts running in hardware virtualization between the set
5931 * and the acquisition of the spinlock, we must also ping the
5932 * CPU after setting the request bit.
5933 *
5934 */
5935
5936 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5937 return 0;
5938 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5939 return 0;
5940
5941 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5942
5943 spin_lock(&kvm_lock);
5944 list_for_each_entry(kvm, &vm_list, vm_list) {
5945 kvm_for_each_vcpu(i, vcpu, kvm) {
5946 if (vcpu->cpu != freq->cpu)
5947 continue;
5948 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5949 if (vcpu->cpu != smp_processor_id())
5950 send_ipi = 1;
5951 }
5952 }
5953 spin_unlock(&kvm_lock);
5954
5955 if (freq->old < freq->new && send_ipi) {
5956 /*
5957 * We upscale the frequency. Must make the guest
5958 * doesn't see old kvmclock values while running with
5959 * the new frequency, otherwise we risk the guest sees
5960 * time go backwards.
5961 *
5962 * In case we update the frequency for another cpu
5963 * (which might be in guest context) send an interrupt
5964 * to kick the cpu out of guest context. Next time
5965 * guest context is entered kvmclock will be updated,
5966 * so the guest will not see stale values.
5967 */
5968 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5969 }
5970 return 0;
5971 }
5972
5973 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5974 .notifier_call = kvmclock_cpufreq_notifier
5975 };
5976
5977 static int kvmclock_cpu_online(unsigned int cpu)
5978 {
5979 tsc_khz_changed(NULL);
5980 return 0;
5981 }
5982
5983 static void kvm_timer_init(void)
5984 {
5985 max_tsc_khz = tsc_khz;
5986
5987 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5988 #ifdef CONFIG_CPU_FREQ
5989 struct cpufreq_policy policy;
5990 int cpu;
5991
5992 memset(&policy, 0, sizeof(policy));
5993 cpu = get_cpu();
5994 cpufreq_get_policy(&policy, cpu);
5995 if (policy.cpuinfo.max_freq)
5996 max_tsc_khz = policy.cpuinfo.max_freq;
5997 put_cpu();
5998 #endif
5999 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6000 CPUFREQ_TRANSITION_NOTIFIER);
6001 }
6002 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6003
6004 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6005 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6006 }
6007
6008 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6009
6010 int kvm_is_in_guest(void)
6011 {
6012 return __this_cpu_read(current_vcpu) != NULL;
6013 }
6014
6015 static int kvm_is_user_mode(void)
6016 {
6017 int user_mode = 3;
6018
6019 if (__this_cpu_read(current_vcpu))
6020 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6021
6022 return user_mode != 0;
6023 }
6024
6025 static unsigned long kvm_get_guest_ip(void)
6026 {
6027 unsigned long ip = 0;
6028
6029 if (__this_cpu_read(current_vcpu))
6030 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6031
6032 return ip;
6033 }
6034
6035 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6036 .is_in_guest = kvm_is_in_guest,
6037 .is_user_mode = kvm_is_user_mode,
6038 .get_guest_ip = kvm_get_guest_ip,
6039 };
6040
6041 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6042 {
6043 __this_cpu_write(current_vcpu, vcpu);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6046
6047 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6048 {
6049 __this_cpu_write(current_vcpu, NULL);
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6052
6053 static void kvm_set_mmio_spte_mask(void)
6054 {
6055 u64 mask;
6056 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6057
6058 /*
6059 * Set the reserved bits and the present bit of an paging-structure
6060 * entry to generate page fault with PFER.RSV = 1.
6061 */
6062 /* Mask the reserved physical address bits. */
6063 mask = rsvd_bits(maxphyaddr, 51);
6064
6065 /* Set the present bit. */
6066 mask |= 1ull;
6067
6068 #ifdef CONFIG_X86_64
6069 /*
6070 * If reserved bit is not supported, clear the present bit to disable
6071 * mmio page fault.
6072 */
6073 if (maxphyaddr == 52)
6074 mask &= ~1ull;
6075 #endif
6076
6077 kvm_mmu_set_mmio_spte_mask(mask, mask);
6078 }
6079
6080 #ifdef CONFIG_X86_64
6081 static void pvclock_gtod_update_fn(struct work_struct *work)
6082 {
6083 struct kvm *kvm;
6084
6085 struct kvm_vcpu *vcpu;
6086 int i;
6087
6088 spin_lock(&kvm_lock);
6089 list_for_each_entry(kvm, &vm_list, vm_list)
6090 kvm_for_each_vcpu(i, vcpu, kvm)
6091 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6092 atomic_set(&kvm_guest_has_master_clock, 0);
6093 spin_unlock(&kvm_lock);
6094 }
6095
6096 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6097
6098 /*
6099 * Notification about pvclock gtod data update.
6100 */
6101 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6102 void *priv)
6103 {
6104 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6105 struct timekeeper *tk = priv;
6106
6107 update_pvclock_gtod(tk);
6108
6109 /* disable master clock if host does not trust, or does not
6110 * use, TSC clocksource
6111 */
6112 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6113 atomic_read(&kvm_guest_has_master_clock) != 0)
6114 queue_work(system_long_wq, &pvclock_gtod_work);
6115
6116 return 0;
6117 }
6118
6119 static struct notifier_block pvclock_gtod_notifier = {
6120 .notifier_call = pvclock_gtod_notify,
6121 };
6122 #endif
6123
6124 int kvm_arch_init(void *opaque)
6125 {
6126 int r;
6127 struct kvm_x86_ops *ops = opaque;
6128
6129 if (kvm_x86_ops) {
6130 printk(KERN_ERR "kvm: already loaded the other module\n");
6131 r = -EEXIST;
6132 goto out;
6133 }
6134
6135 if (!ops->cpu_has_kvm_support()) {
6136 printk(KERN_ERR "kvm: no hardware support\n");
6137 r = -EOPNOTSUPP;
6138 goto out;
6139 }
6140 if (ops->disabled_by_bios()) {
6141 printk(KERN_ERR "kvm: disabled by bios\n");
6142 r = -EOPNOTSUPP;
6143 goto out;
6144 }
6145
6146 r = -ENOMEM;
6147 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6148 if (!shared_msrs) {
6149 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6150 goto out;
6151 }
6152
6153 r = kvm_mmu_module_init();
6154 if (r)
6155 goto out_free_percpu;
6156
6157 kvm_set_mmio_spte_mask();
6158
6159 kvm_x86_ops = ops;
6160
6161 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6162 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6163 PT_PRESENT_MASK, 0, sme_me_mask);
6164 kvm_timer_init();
6165
6166 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6167
6168 if (boot_cpu_has(X86_FEATURE_XSAVE))
6169 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6170
6171 kvm_lapic_init();
6172 #ifdef CONFIG_X86_64
6173 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6174 #endif
6175
6176 return 0;
6177
6178 out_free_percpu:
6179 free_percpu(shared_msrs);
6180 out:
6181 return r;
6182 }
6183
6184 void kvm_arch_exit(void)
6185 {
6186 kvm_lapic_exit();
6187 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6188
6189 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6190 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6191 CPUFREQ_TRANSITION_NOTIFIER);
6192 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6193 #ifdef CONFIG_X86_64
6194 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6195 #endif
6196 kvm_x86_ops = NULL;
6197 kvm_mmu_module_exit();
6198 free_percpu(shared_msrs);
6199 }
6200
6201 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6202 {
6203 ++vcpu->stat.halt_exits;
6204 if (lapic_in_kernel(vcpu)) {
6205 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6206 return 1;
6207 } else {
6208 vcpu->run->exit_reason = KVM_EXIT_HLT;
6209 return 0;
6210 }
6211 }
6212 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6213
6214 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6215 {
6216 int ret = kvm_skip_emulated_instruction(vcpu);
6217 /*
6218 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6219 * KVM_EXIT_DEBUG here.
6220 */
6221 return kvm_vcpu_halt(vcpu) && ret;
6222 }
6223 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6224
6225 #ifdef CONFIG_X86_64
6226 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6227 unsigned long clock_type)
6228 {
6229 struct kvm_clock_pairing clock_pairing;
6230 struct timespec ts;
6231 u64 cycle;
6232 int ret;
6233
6234 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6235 return -KVM_EOPNOTSUPP;
6236
6237 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6238 return -KVM_EOPNOTSUPP;
6239
6240 clock_pairing.sec = ts.tv_sec;
6241 clock_pairing.nsec = ts.tv_nsec;
6242 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6243 clock_pairing.flags = 0;
6244
6245 ret = 0;
6246 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6247 sizeof(struct kvm_clock_pairing)))
6248 ret = -KVM_EFAULT;
6249
6250 return ret;
6251 }
6252 #endif
6253
6254 /*
6255 * kvm_pv_kick_cpu_op: Kick a vcpu.
6256 *
6257 * @apicid - apicid of vcpu to be kicked.
6258 */
6259 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6260 {
6261 struct kvm_lapic_irq lapic_irq;
6262
6263 lapic_irq.shorthand = 0;
6264 lapic_irq.dest_mode = 0;
6265 lapic_irq.level = 0;
6266 lapic_irq.dest_id = apicid;
6267 lapic_irq.msi_redir_hint = false;
6268
6269 lapic_irq.delivery_mode = APIC_DM_REMRD;
6270 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6271 }
6272
6273 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6274 {
6275 vcpu->arch.apicv_active = false;
6276 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6277 }
6278
6279 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6280 {
6281 unsigned long nr, a0, a1, a2, a3, ret;
6282 int op_64_bit, r;
6283
6284 r = kvm_skip_emulated_instruction(vcpu);
6285
6286 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6287 return kvm_hv_hypercall(vcpu);
6288
6289 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6290 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6291 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6292 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6293 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6294
6295 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6296
6297 op_64_bit = is_64_bit_mode(vcpu);
6298 if (!op_64_bit) {
6299 nr &= 0xFFFFFFFF;
6300 a0 &= 0xFFFFFFFF;
6301 a1 &= 0xFFFFFFFF;
6302 a2 &= 0xFFFFFFFF;
6303 a3 &= 0xFFFFFFFF;
6304 }
6305
6306 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6307 ret = -KVM_EPERM;
6308 goto out;
6309 }
6310
6311 switch (nr) {
6312 case KVM_HC_VAPIC_POLL_IRQ:
6313 ret = 0;
6314 break;
6315 case KVM_HC_KICK_CPU:
6316 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6317 ret = 0;
6318 break;
6319 #ifdef CONFIG_X86_64
6320 case KVM_HC_CLOCK_PAIRING:
6321 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6322 break;
6323 #endif
6324 default:
6325 ret = -KVM_ENOSYS;
6326 break;
6327 }
6328 out:
6329 if (!op_64_bit)
6330 ret = (u32)ret;
6331 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6332 ++vcpu->stat.hypercalls;
6333 return r;
6334 }
6335 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6336
6337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6338 {
6339 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6340 char instruction[3];
6341 unsigned long rip = kvm_rip_read(vcpu);
6342
6343 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6344
6345 return emulator_write_emulated(ctxt, rip, instruction, 3,
6346 &ctxt->exception);
6347 }
6348
6349 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6350 {
6351 return vcpu->run->request_interrupt_window &&
6352 likely(!pic_in_kernel(vcpu->kvm));
6353 }
6354
6355 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6356 {
6357 struct kvm_run *kvm_run = vcpu->run;
6358
6359 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6360 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6361 kvm_run->cr8 = kvm_get_cr8(vcpu);
6362 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6363 kvm_run->ready_for_interrupt_injection =
6364 pic_in_kernel(vcpu->kvm) ||
6365 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6366 }
6367
6368 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6369 {
6370 int max_irr, tpr;
6371
6372 if (!kvm_x86_ops->update_cr8_intercept)
6373 return;
6374
6375 if (!lapic_in_kernel(vcpu))
6376 return;
6377
6378 if (vcpu->arch.apicv_active)
6379 return;
6380
6381 if (!vcpu->arch.apic->vapic_addr)
6382 max_irr = kvm_lapic_find_highest_irr(vcpu);
6383 else
6384 max_irr = -1;
6385
6386 if (max_irr != -1)
6387 max_irr >>= 4;
6388
6389 tpr = kvm_lapic_get_cr8(vcpu);
6390
6391 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6392 }
6393
6394 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6395 {
6396 int r;
6397
6398 /* try to reinject previous events if any */
6399 if (vcpu->arch.exception.injected) {
6400 kvm_x86_ops->queue_exception(vcpu);
6401 return 0;
6402 }
6403
6404 /*
6405 * Exceptions must be injected immediately, or the exception
6406 * frame will have the address of the NMI or interrupt handler.
6407 */
6408 if (!vcpu->arch.exception.pending) {
6409 if (vcpu->arch.nmi_injected) {
6410 kvm_x86_ops->set_nmi(vcpu);
6411 return 0;
6412 }
6413
6414 if (vcpu->arch.interrupt.pending) {
6415 kvm_x86_ops->set_irq(vcpu);
6416 return 0;
6417 }
6418 }
6419
6420 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6421 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6422 if (r != 0)
6423 return r;
6424 }
6425
6426 /* try to inject new event if pending */
6427 if (vcpu->arch.exception.pending) {
6428 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6429 vcpu->arch.exception.has_error_code,
6430 vcpu->arch.exception.error_code);
6431
6432 vcpu->arch.exception.pending = false;
6433 vcpu->arch.exception.injected = true;
6434
6435 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6436 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6437 X86_EFLAGS_RF);
6438
6439 if (vcpu->arch.exception.nr == DB_VECTOR &&
6440 (vcpu->arch.dr7 & DR7_GD)) {
6441 vcpu->arch.dr7 &= ~DR7_GD;
6442 kvm_update_dr7(vcpu);
6443 }
6444
6445 kvm_x86_ops->queue_exception(vcpu);
6446 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6447 vcpu->arch.smi_pending = false;
6448 enter_smm(vcpu);
6449 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6450 --vcpu->arch.nmi_pending;
6451 vcpu->arch.nmi_injected = true;
6452 kvm_x86_ops->set_nmi(vcpu);
6453 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6454 /*
6455 * Because interrupts can be injected asynchronously, we are
6456 * calling check_nested_events again here to avoid a race condition.
6457 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6458 * proposal and current concerns. Perhaps we should be setting
6459 * KVM_REQ_EVENT only on certain events and not unconditionally?
6460 */
6461 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6462 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6463 if (r != 0)
6464 return r;
6465 }
6466 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6467 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6468 false);
6469 kvm_x86_ops->set_irq(vcpu);
6470 }
6471 }
6472
6473 return 0;
6474 }
6475
6476 static void process_nmi(struct kvm_vcpu *vcpu)
6477 {
6478 unsigned limit = 2;
6479
6480 /*
6481 * x86 is limited to one NMI running, and one NMI pending after it.
6482 * If an NMI is already in progress, limit further NMIs to just one.
6483 * Otherwise, allow two (and we'll inject the first one immediately).
6484 */
6485 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6486 limit = 1;
6487
6488 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6489 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6490 kvm_make_request(KVM_REQ_EVENT, vcpu);
6491 }
6492
6493 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6494 {
6495 u32 flags = 0;
6496 flags |= seg->g << 23;
6497 flags |= seg->db << 22;
6498 flags |= seg->l << 21;
6499 flags |= seg->avl << 20;
6500 flags |= seg->present << 15;
6501 flags |= seg->dpl << 13;
6502 flags |= seg->s << 12;
6503 flags |= seg->type << 8;
6504 return flags;
6505 }
6506
6507 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6508 {
6509 struct kvm_segment seg;
6510 int offset;
6511
6512 kvm_get_segment(vcpu, &seg, n);
6513 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6514
6515 if (n < 3)
6516 offset = 0x7f84 + n * 12;
6517 else
6518 offset = 0x7f2c + (n - 3) * 12;
6519
6520 put_smstate(u32, buf, offset + 8, seg.base);
6521 put_smstate(u32, buf, offset + 4, seg.limit);
6522 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6523 }
6524
6525 #ifdef CONFIG_X86_64
6526 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6527 {
6528 struct kvm_segment seg;
6529 int offset;
6530 u16 flags;
6531
6532 kvm_get_segment(vcpu, &seg, n);
6533 offset = 0x7e00 + n * 16;
6534
6535 flags = enter_smm_get_segment_flags(&seg) >> 8;
6536 put_smstate(u16, buf, offset, seg.selector);
6537 put_smstate(u16, buf, offset + 2, flags);
6538 put_smstate(u32, buf, offset + 4, seg.limit);
6539 put_smstate(u64, buf, offset + 8, seg.base);
6540 }
6541 #endif
6542
6543 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6544 {
6545 struct desc_ptr dt;
6546 struct kvm_segment seg;
6547 unsigned long val;
6548 int i;
6549
6550 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6551 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6552 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6553 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6554
6555 for (i = 0; i < 8; i++)
6556 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6557
6558 kvm_get_dr(vcpu, 6, &val);
6559 put_smstate(u32, buf, 0x7fcc, (u32)val);
6560 kvm_get_dr(vcpu, 7, &val);
6561 put_smstate(u32, buf, 0x7fc8, (u32)val);
6562
6563 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6564 put_smstate(u32, buf, 0x7fc4, seg.selector);
6565 put_smstate(u32, buf, 0x7f64, seg.base);
6566 put_smstate(u32, buf, 0x7f60, seg.limit);
6567 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6568
6569 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6570 put_smstate(u32, buf, 0x7fc0, seg.selector);
6571 put_smstate(u32, buf, 0x7f80, seg.base);
6572 put_smstate(u32, buf, 0x7f7c, seg.limit);
6573 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6574
6575 kvm_x86_ops->get_gdt(vcpu, &dt);
6576 put_smstate(u32, buf, 0x7f74, dt.address);
6577 put_smstate(u32, buf, 0x7f70, dt.size);
6578
6579 kvm_x86_ops->get_idt(vcpu, &dt);
6580 put_smstate(u32, buf, 0x7f58, dt.address);
6581 put_smstate(u32, buf, 0x7f54, dt.size);
6582
6583 for (i = 0; i < 6; i++)
6584 enter_smm_save_seg_32(vcpu, buf, i);
6585
6586 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6587
6588 /* revision id */
6589 put_smstate(u32, buf, 0x7efc, 0x00020000);
6590 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6591 }
6592
6593 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6594 {
6595 #ifdef CONFIG_X86_64
6596 struct desc_ptr dt;
6597 struct kvm_segment seg;
6598 unsigned long val;
6599 int i;
6600
6601 for (i = 0; i < 16; i++)
6602 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6603
6604 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6605 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6606
6607 kvm_get_dr(vcpu, 6, &val);
6608 put_smstate(u64, buf, 0x7f68, val);
6609 kvm_get_dr(vcpu, 7, &val);
6610 put_smstate(u64, buf, 0x7f60, val);
6611
6612 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6613 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6614 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6615
6616 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6617
6618 /* revision id */
6619 put_smstate(u32, buf, 0x7efc, 0x00020064);
6620
6621 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6622
6623 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6624 put_smstate(u16, buf, 0x7e90, seg.selector);
6625 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6626 put_smstate(u32, buf, 0x7e94, seg.limit);
6627 put_smstate(u64, buf, 0x7e98, seg.base);
6628
6629 kvm_x86_ops->get_idt(vcpu, &dt);
6630 put_smstate(u32, buf, 0x7e84, dt.size);
6631 put_smstate(u64, buf, 0x7e88, dt.address);
6632
6633 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6634 put_smstate(u16, buf, 0x7e70, seg.selector);
6635 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6636 put_smstate(u32, buf, 0x7e74, seg.limit);
6637 put_smstate(u64, buf, 0x7e78, seg.base);
6638
6639 kvm_x86_ops->get_gdt(vcpu, &dt);
6640 put_smstate(u32, buf, 0x7e64, dt.size);
6641 put_smstate(u64, buf, 0x7e68, dt.address);
6642
6643 for (i = 0; i < 6; i++)
6644 enter_smm_save_seg_64(vcpu, buf, i);
6645 #else
6646 WARN_ON_ONCE(1);
6647 #endif
6648 }
6649
6650 static void enter_smm(struct kvm_vcpu *vcpu)
6651 {
6652 struct kvm_segment cs, ds;
6653 struct desc_ptr dt;
6654 char buf[512];
6655 u32 cr0;
6656
6657 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6658 memset(buf, 0, 512);
6659 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6660 enter_smm_save_state_64(vcpu, buf);
6661 else
6662 enter_smm_save_state_32(vcpu, buf);
6663
6664 /*
6665 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6666 * vCPU state (e.g. leave guest mode) after we've saved the state into
6667 * the SMM state-save area.
6668 */
6669 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6670
6671 vcpu->arch.hflags |= HF_SMM_MASK;
6672 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6673
6674 if (kvm_x86_ops->get_nmi_mask(vcpu))
6675 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6676 else
6677 kvm_x86_ops->set_nmi_mask(vcpu, true);
6678
6679 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6680 kvm_rip_write(vcpu, 0x8000);
6681
6682 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6683 kvm_x86_ops->set_cr0(vcpu, cr0);
6684 vcpu->arch.cr0 = cr0;
6685
6686 kvm_x86_ops->set_cr4(vcpu, 0);
6687
6688 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6689 dt.address = dt.size = 0;
6690 kvm_x86_ops->set_idt(vcpu, &dt);
6691
6692 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6693
6694 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6695 cs.base = vcpu->arch.smbase;
6696
6697 ds.selector = 0;
6698 ds.base = 0;
6699
6700 cs.limit = ds.limit = 0xffffffff;
6701 cs.type = ds.type = 0x3;
6702 cs.dpl = ds.dpl = 0;
6703 cs.db = ds.db = 0;
6704 cs.s = ds.s = 1;
6705 cs.l = ds.l = 0;
6706 cs.g = ds.g = 1;
6707 cs.avl = ds.avl = 0;
6708 cs.present = ds.present = 1;
6709 cs.unusable = ds.unusable = 0;
6710 cs.padding = ds.padding = 0;
6711
6712 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6713 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6714 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6715 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6716 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6717 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6718
6719 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6720 kvm_x86_ops->set_efer(vcpu, 0);
6721
6722 kvm_update_cpuid(vcpu);
6723 kvm_mmu_reset_context(vcpu);
6724 }
6725
6726 static void process_smi(struct kvm_vcpu *vcpu)
6727 {
6728 vcpu->arch.smi_pending = true;
6729 kvm_make_request(KVM_REQ_EVENT, vcpu);
6730 }
6731
6732 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6733 {
6734 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6735 }
6736
6737 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6738 {
6739 u64 eoi_exit_bitmap[4];
6740
6741 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6742 return;
6743
6744 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6745
6746 if (irqchip_split(vcpu->kvm))
6747 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6748 else {
6749 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6750 kvm_x86_ops->sync_pir_to_irr(vcpu);
6751 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6752 }
6753 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6754 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6755 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6756 }
6757
6758 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6759 {
6760 ++vcpu->stat.tlb_flush;
6761 kvm_x86_ops->tlb_flush(vcpu);
6762 }
6763
6764 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6765 {
6766 struct page *page = NULL;
6767
6768 if (!lapic_in_kernel(vcpu))
6769 return;
6770
6771 if (!kvm_x86_ops->set_apic_access_page_addr)
6772 return;
6773
6774 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6775 if (is_error_page(page))
6776 return;
6777 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6778
6779 /*
6780 * Do not pin apic access page in memory, the MMU notifier
6781 * will call us again if it is migrated or swapped out.
6782 */
6783 put_page(page);
6784 }
6785 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6786
6787 /*
6788 * Returns 1 to let vcpu_run() continue the guest execution loop without
6789 * exiting to the userspace. Otherwise, the value will be returned to the
6790 * userspace.
6791 */
6792 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6793 {
6794 int r;
6795 bool req_int_win =
6796 dm_request_for_irq_injection(vcpu) &&
6797 kvm_cpu_accept_dm_intr(vcpu);
6798
6799 bool req_immediate_exit = false;
6800
6801 if (kvm_request_pending(vcpu)) {
6802 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6803 kvm_mmu_unload(vcpu);
6804 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6805 __kvm_migrate_timers(vcpu);
6806 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6807 kvm_gen_update_masterclock(vcpu->kvm);
6808 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6809 kvm_gen_kvmclock_update(vcpu);
6810 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6811 r = kvm_guest_time_update(vcpu);
6812 if (unlikely(r))
6813 goto out;
6814 }
6815 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6816 kvm_mmu_sync_roots(vcpu);
6817 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6818 kvm_vcpu_flush_tlb(vcpu);
6819 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6820 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6821 r = 0;
6822 goto out;
6823 }
6824 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6825 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6826 vcpu->mmio_needed = 0;
6827 r = 0;
6828 goto out;
6829 }
6830 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6831 /* Page is swapped out. Do synthetic halt */
6832 vcpu->arch.apf.halted = true;
6833 r = 1;
6834 goto out;
6835 }
6836 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6837 record_steal_time(vcpu);
6838 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6839 process_smi(vcpu);
6840 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6841 process_nmi(vcpu);
6842 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6843 kvm_pmu_handle_event(vcpu);
6844 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6845 kvm_pmu_deliver_pmi(vcpu);
6846 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6847 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6848 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6849 vcpu->arch.ioapic_handled_vectors)) {
6850 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6851 vcpu->run->eoi.vector =
6852 vcpu->arch.pending_ioapic_eoi;
6853 r = 0;
6854 goto out;
6855 }
6856 }
6857 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6858 vcpu_scan_ioapic(vcpu);
6859 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6860 kvm_vcpu_reload_apic_access_page(vcpu);
6861 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6862 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6863 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6864 r = 0;
6865 goto out;
6866 }
6867 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6868 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6869 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6870 r = 0;
6871 goto out;
6872 }
6873 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6874 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6875 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6876 r = 0;
6877 goto out;
6878 }
6879
6880 /*
6881 * KVM_REQ_HV_STIMER has to be processed after
6882 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6883 * depend on the guest clock being up-to-date
6884 */
6885 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6886 kvm_hv_process_stimers(vcpu);
6887 }
6888
6889 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6890 ++vcpu->stat.req_event;
6891 kvm_apic_accept_events(vcpu);
6892 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6893 r = 1;
6894 goto out;
6895 }
6896
6897 if (inject_pending_event(vcpu, req_int_win) != 0)
6898 req_immediate_exit = true;
6899 else {
6900 /* Enable SMI/NMI/IRQ window open exits if needed.
6901 *
6902 * SMIs have three cases:
6903 * 1) They can be nested, and then there is nothing to
6904 * do here because RSM will cause a vmexit anyway.
6905 * 2) There is an ISA-specific reason why SMI cannot be
6906 * injected, and the moment when this changes can be
6907 * intercepted.
6908 * 3) Or the SMI can be pending because
6909 * inject_pending_event has completed the injection
6910 * of an IRQ or NMI from the previous vmexit, and
6911 * then we request an immediate exit to inject the
6912 * SMI.
6913 */
6914 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6915 if (!kvm_x86_ops->enable_smi_window(vcpu))
6916 req_immediate_exit = true;
6917 if (vcpu->arch.nmi_pending)
6918 kvm_x86_ops->enable_nmi_window(vcpu);
6919 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6920 kvm_x86_ops->enable_irq_window(vcpu);
6921 WARN_ON(vcpu->arch.exception.pending);
6922 }
6923
6924 if (kvm_lapic_enabled(vcpu)) {
6925 update_cr8_intercept(vcpu);
6926 kvm_lapic_sync_to_vapic(vcpu);
6927 }
6928 }
6929
6930 r = kvm_mmu_reload(vcpu);
6931 if (unlikely(r)) {
6932 goto cancel_injection;
6933 }
6934
6935 preempt_disable();
6936
6937 kvm_x86_ops->prepare_guest_switch(vcpu);
6938 kvm_load_guest_fpu(vcpu);
6939
6940 /*
6941 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6942 * IPI are then delayed after guest entry, which ensures that they
6943 * result in virtual interrupt delivery.
6944 */
6945 local_irq_disable();
6946 vcpu->mode = IN_GUEST_MODE;
6947
6948 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6949
6950 /*
6951 * 1) We should set ->mode before checking ->requests. Please see
6952 * the comment in kvm_vcpu_exiting_guest_mode().
6953 *
6954 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6955 * pairs with the memory barrier implicit in pi_test_and_set_on
6956 * (see vmx_deliver_posted_interrupt).
6957 *
6958 * 3) This also orders the write to mode from any reads to the page
6959 * tables done while the VCPU is running. Please see the comment
6960 * in kvm_flush_remote_tlbs.
6961 */
6962 smp_mb__after_srcu_read_unlock();
6963
6964 /*
6965 * This handles the case where a posted interrupt was
6966 * notified with kvm_vcpu_kick.
6967 */
6968 if (kvm_lapic_enabled(vcpu)) {
6969 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6970 kvm_x86_ops->sync_pir_to_irr(vcpu);
6971 }
6972
6973 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6974 || need_resched() || signal_pending(current)) {
6975 vcpu->mode = OUTSIDE_GUEST_MODE;
6976 smp_wmb();
6977 local_irq_enable();
6978 preempt_enable();
6979 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6980 r = 1;
6981 goto cancel_injection;
6982 }
6983
6984 kvm_load_guest_xcr0(vcpu);
6985
6986 if (req_immediate_exit) {
6987 kvm_make_request(KVM_REQ_EVENT, vcpu);
6988 smp_send_reschedule(vcpu->cpu);
6989 }
6990
6991 trace_kvm_entry(vcpu->vcpu_id);
6992 wait_lapic_expire(vcpu);
6993 guest_enter_irqoff();
6994
6995 if (unlikely(vcpu->arch.switch_db_regs)) {
6996 set_debugreg(0, 7);
6997 set_debugreg(vcpu->arch.eff_db[0], 0);
6998 set_debugreg(vcpu->arch.eff_db[1], 1);
6999 set_debugreg(vcpu->arch.eff_db[2], 2);
7000 set_debugreg(vcpu->arch.eff_db[3], 3);
7001 set_debugreg(vcpu->arch.dr6, 6);
7002 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7003 }
7004
7005 kvm_x86_ops->run(vcpu);
7006
7007 /*
7008 * Do this here before restoring debug registers on the host. And
7009 * since we do this before handling the vmexit, a DR access vmexit
7010 * can (a) read the correct value of the debug registers, (b) set
7011 * KVM_DEBUGREG_WONT_EXIT again.
7012 */
7013 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7014 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7015 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7016 kvm_update_dr0123(vcpu);
7017 kvm_update_dr6(vcpu);
7018 kvm_update_dr7(vcpu);
7019 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7020 }
7021
7022 /*
7023 * If the guest has used debug registers, at least dr7
7024 * will be disabled while returning to the host.
7025 * If we don't have active breakpoints in the host, we don't
7026 * care about the messed up debug address registers. But if
7027 * we have some of them active, restore the old state.
7028 */
7029 if (hw_breakpoint_active())
7030 hw_breakpoint_restore();
7031
7032 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7033
7034 vcpu->mode = OUTSIDE_GUEST_MODE;
7035 smp_wmb();
7036
7037 kvm_put_guest_xcr0(vcpu);
7038
7039 kvm_x86_ops->handle_external_intr(vcpu);
7040
7041 ++vcpu->stat.exits;
7042
7043 guest_exit_irqoff();
7044
7045 local_irq_enable();
7046 preempt_enable();
7047
7048 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7049
7050 /*
7051 * Profile KVM exit RIPs:
7052 */
7053 if (unlikely(prof_on == KVM_PROFILING)) {
7054 unsigned long rip = kvm_rip_read(vcpu);
7055 profile_hit(KVM_PROFILING, (void *)rip);
7056 }
7057
7058 if (unlikely(vcpu->arch.tsc_always_catchup))
7059 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7060
7061 if (vcpu->arch.apic_attention)
7062 kvm_lapic_sync_from_vapic(vcpu);
7063
7064 vcpu->arch.gpa_available = false;
7065 r = kvm_x86_ops->handle_exit(vcpu);
7066 return r;
7067
7068 cancel_injection:
7069 kvm_x86_ops->cancel_injection(vcpu);
7070 if (unlikely(vcpu->arch.apic_attention))
7071 kvm_lapic_sync_from_vapic(vcpu);
7072 out:
7073 return r;
7074 }
7075
7076 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7077 {
7078 if (!kvm_arch_vcpu_runnable(vcpu) &&
7079 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7080 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7081 kvm_vcpu_block(vcpu);
7082 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7083
7084 if (kvm_x86_ops->post_block)
7085 kvm_x86_ops->post_block(vcpu);
7086
7087 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7088 return 1;
7089 }
7090
7091 kvm_apic_accept_events(vcpu);
7092 switch(vcpu->arch.mp_state) {
7093 case KVM_MP_STATE_HALTED:
7094 vcpu->arch.pv.pv_unhalted = false;
7095 vcpu->arch.mp_state =
7096 KVM_MP_STATE_RUNNABLE;
7097 case KVM_MP_STATE_RUNNABLE:
7098 vcpu->arch.apf.halted = false;
7099 break;
7100 case KVM_MP_STATE_INIT_RECEIVED:
7101 break;
7102 default:
7103 return -EINTR;
7104 break;
7105 }
7106 return 1;
7107 }
7108
7109 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7110 {
7111 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7112 kvm_x86_ops->check_nested_events(vcpu, false);
7113
7114 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7115 !vcpu->arch.apf.halted);
7116 }
7117
7118 static int vcpu_run(struct kvm_vcpu *vcpu)
7119 {
7120 int r;
7121 struct kvm *kvm = vcpu->kvm;
7122
7123 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7124
7125 for (;;) {
7126 if (kvm_vcpu_running(vcpu)) {
7127 r = vcpu_enter_guest(vcpu);
7128 } else {
7129 r = vcpu_block(kvm, vcpu);
7130 }
7131
7132 if (r <= 0)
7133 break;
7134
7135 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7136 if (kvm_cpu_has_pending_timer(vcpu))
7137 kvm_inject_pending_timer_irqs(vcpu);
7138
7139 if (dm_request_for_irq_injection(vcpu) &&
7140 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7141 r = 0;
7142 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7143 ++vcpu->stat.request_irq_exits;
7144 break;
7145 }
7146
7147 kvm_check_async_pf_completion(vcpu);
7148
7149 if (signal_pending(current)) {
7150 r = -EINTR;
7151 vcpu->run->exit_reason = KVM_EXIT_INTR;
7152 ++vcpu->stat.signal_exits;
7153 break;
7154 }
7155 if (need_resched()) {
7156 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7157 cond_resched();
7158 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7159 }
7160 }
7161
7162 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7163
7164 return r;
7165 }
7166
7167 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7168 {
7169 int r;
7170 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7171 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7172 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7173 if (r != EMULATE_DONE)
7174 return 0;
7175 return 1;
7176 }
7177
7178 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7179 {
7180 BUG_ON(!vcpu->arch.pio.count);
7181
7182 return complete_emulated_io(vcpu);
7183 }
7184
7185 /*
7186 * Implements the following, as a state machine:
7187 *
7188 * read:
7189 * for each fragment
7190 * for each mmio piece in the fragment
7191 * write gpa, len
7192 * exit
7193 * copy data
7194 * execute insn
7195 *
7196 * write:
7197 * for each fragment
7198 * for each mmio piece in the fragment
7199 * write gpa, len
7200 * copy data
7201 * exit
7202 */
7203 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7204 {
7205 struct kvm_run *run = vcpu->run;
7206 struct kvm_mmio_fragment *frag;
7207 unsigned len;
7208
7209 BUG_ON(!vcpu->mmio_needed);
7210
7211 /* Complete previous fragment */
7212 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7213 len = min(8u, frag->len);
7214 if (!vcpu->mmio_is_write)
7215 memcpy(frag->data, run->mmio.data, len);
7216
7217 if (frag->len <= 8) {
7218 /* Switch to the next fragment. */
7219 frag++;
7220 vcpu->mmio_cur_fragment++;
7221 } else {
7222 /* Go forward to the next mmio piece. */
7223 frag->data += len;
7224 frag->gpa += len;
7225 frag->len -= len;
7226 }
7227
7228 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7229 vcpu->mmio_needed = 0;
7230
7231 /* FIXME: return into emulator if single-stepping. */
7232 if (vcpu->mmio_is_write)
7233 return 1;
7234 vcpu->mmio_read_completed = 1;
7235 return complete_emulated_io(vcpu);
7236 }
7237
7238 run->exit_reason = KVM_EXIT_MMIO;
7239 run->mmio.phys_addr = frag->gpa;
7240 if (vcpu->mmio_is_write)
7241 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7242 run->mmio.len = min(8u, frag->len);
7243 run->mmio.is_write = vcpu->mmio_is_write;
7244 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7245 return 0;
7246 }
7247
7248
7249 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7250 {
7251 struct fpu *fpu = &current->thread.fpu;
7252 int r;
7253 sigset_t sigsaved;
7254
7255 fpu__initialize(fpu);
7256
7257 if (vcpu->sigset_active)
7258 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7259
7260 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7261 if (kvm_run->immediate_exit) {
7262 r = -EINTR;
7263 goto out;
7264 }
7265 kvm_vcpu_block(vcpu);
7266 kvm_apic_accept_events(vcpu);
7267 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7268 r = -EAGAIN;
7269 if (signal_pending(current)) {
7270 r = -EINTR;
7271 vcpu->run->exit_reason = KVM_EXIT_INTR;
7272 ++vcpu->stat.signal_exits;
7273 }
7274 goto out;
7275 }
7276
7277 /* re-sync apic's tpr */
7278 if (!lapic_in_kernel(vcpu)) {
7279 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7280 r = -EINVAL;
7281 goto out;
7282 }
7283 }
7284
7285 if (unlikely(vcpu->arch.complete_userspace_io)) {
7286 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7287 vcpu->arch.complete_userspace_io = NULL;
7288 r = cui(vcpu);
7289 if (r <= 0)
7290 goto out;
7291 } else
7292 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7293
7294 if (kvm_run->immediate_exit)
7295 r = -EINTR;
7296 else
7297 r = vcpu_run(vcpu);
7298
7299 out:
7300 post_kvm_run_save(vcpu);
7301 if (vcpu->sigset_active)
7302 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7303
7304 return r;
7305 }
7306
7307 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7308 {
7309 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7310 /*
7311 * We are here if userspace calls get_regs() in the middle of
7312 * instruction emulation. Registers state needs to be copied
7313 * back from emulation context to vcpu. Userspace shouldn't do
7314 * that usually, but some bad designed PV devices (vmware
7315 * backdoor interface) need this to work
7316 */
7317 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7318 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7319 }
7320 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7321 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7322 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7323 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7324 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7325 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7326 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7327 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7328 #ifdef CONFIG_X86_64
7329 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7330 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7331 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7332 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7333 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7334 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7335 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7336 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7337 #endif
7338
7339 regs->rip = kvm_rip_read(vcpu);
7340 regs->rflags = kvm_get_rflags(vcpu);
7341
7342 return 0;
7343 }
7344
7345 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7346 {
7347 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7348 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7349
7350 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7351 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7352 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7353 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7354 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7355 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7356 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7357 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7358 #ifdef CONFIG_X86_64
7359 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7360 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7361 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7362 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7363 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7364 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7365 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7366 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7367 #endif
7368
7369 kvm_rip_write(vcpu, regs->rip);
7370 kvm_set_rflags(vcpu, regs->rflags);
7371
7372 vcpu->arch.exception.pending = false;
7373
7374 kvm_make_request(KVM_REQ_EVENT, vcpu);
7375
7376 return 0;
7377 }
7378
7379 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7380 {
7381 struct kvm_segment cs;
7382
7383 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7384 *db = cs.db;
7385 *l = cs.l;
7386 }
7387 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7388
7389 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7390 struct kvm_sregs *sregs)
7391 {
7392 struct desc_ptr dt;
7393
7394 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7395 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7396 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7397 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7398 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7399 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7400
7401 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7402 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7403
7404 kvm_x86_ops->get_idt(vcpu, &dt);
7405 sregs->idt.limit = dt.size;
7406 sregs->idt.base = dt.address;
7407 kvm_x86_ops->get_gdt(vcpu, &dt);
7408 sregs->gdt.limit = dt.size;
7409 sregs->gdt.base = dt.address;
7410
7411 sregs->cr0 = kvm_read_cr0(vcpu);
7412 sregs->cr2 = vcpu->arch.cr2;
7413 sregs->cr3 = kvm_read_cr3(vcpu);
7414 sregs->cr4 = kvm_read_cr4(vcpu);
7415 sregs->cr8 = kvm_get_cr8(vcpu);
7416 sregs->efer = vcpu->arch.efer;
7417 sregs->apic_base = kvm_get_apic_base(vcpu);
7418
7419 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7420
7421 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7422 set_bit(vcpu->arch.interrupt.nr,
7423 (unsigned long *)sregs->interrupt_bitmap);
7424
7425 return 0;
7426 }
7427
7428 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7429 struct kvm_mp_state *mp_state)
7430 {
7431 kvm_apic_accept_events(vcpu);
7432 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7433 vcpu->arch.pv.pv_unhalted)
7434 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7435 else
7436 mp_state->mp_state = vcpu->arch.mp_state;
7437
7438 return 0;
7439 }
7440
7441 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7442 struct kvm_mp_state *mp_state)
7443 {
7444 if (!lapic_in_kernel(vcpu) &&
7445 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7446 return -EINVAL;
7447
7448 /* INITs are latched while in SMM */
7449 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7450 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7451 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7452 return -EINVAL;
7453
7454 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7455 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7456 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7457 } else
7458 vcpu->arch.mp_state = mp_state->mp_state;
7459 kvm_make_request(KVM_REQ_EVENT, vcpu);
7460 return 0;
7461 }
7462
7463 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7464 int reason, bool has_error_code, u32 error_code)
7465 {
7466 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7467 int ret;
7468
7469 init_emulate_ctxt(vcpu);
7470
7471 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7472 has_error_code, error_code);
7473
7474 if (ret)
7475 return EMULATE_FAIL;
7476
7477 kvm_rip_write(vcpu, ctxt->eip);
7478 kvm_set_rflags(vcpu, ctxt->eflags);
7479 kvm_make_request(KVM_REQ_EVENT, vcpu);
7480 return EMULATE_DONE;
7481 }
7482 EXPORT_SYMBOL_GPL(kvm_task_switch);
7483
7484 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7485 struct kvm_sregs *sregs)
7486 {
7487 struct msr_data apic_base_msr;
7488 int mmu_reset_needed = 0;
7489 int pending_vec, max_bits, idx;
7490 struct desc_ptr dt;
7491
7492 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7493 (sregs->cr4 & X86_CR4_OSXSAVE))
7494 return -EINVAL;
7495
7496 apic_base_msr.data = sregs->apic_base;
7497 apic_base_msr.host_initiated = true;
7498 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7499 return -EINVAL;
7500
7501 dt.size = sregs->idt.limit;
7502 dt.address = sregs->idt.base;
7503 kvm_x86_ops->set_idt(vcpu, &dt);
7504 dt.size = sregs->gdt.limit;
7505 dt.address = sregs->gdt.base;
7506 kvm_x86_ops->set_gdt(vcpu, &dt);
7507
7508 vcpu->arch.cr2 = sregs->cr2;
7509 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7510 vcpu->arch.cr3 = sregs->cr3;
7511 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7512
7513 kvm_set_cr8(vcpu, sregs->cr8);
7514
7515 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7516 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7517
7518 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7519 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7520 vcpu->arch.cr0 = sregs->cr0;
7521
7522 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7523 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7524 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7525 kvm_update_cpuid(vcpu);
7526
7527 idx = srcu_read_lock(&vcpu->kvm->srcu);
7528 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7529 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7530 mmu_reset_needed = 1;
7531 }
7532 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7533
7534 if (mmu_reset_needed)
7535 kvm_mmu_reset_context(vcpu);
7536
7537 max_bits = KVM_NR_INTERRUPTS;
7538 pending_vec = find_first_bit(
7539 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7540 if (pending_vec < max_bits) {
7541 kvm_queue_interrupt(vcpu, pending_vec, false);
7542 pr_debug("Set back pending irq %d\n", pending_vec);
7543 }
7544
7545 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7546 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7547 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7548 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7549 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7550 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7551
7552 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7553 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7554
7555 update_cr8_intercept(vcpu);
7556
7557 /* Older userspace won't unhalt the vcpu on reset. */
7558 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7559 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7560 !is_protmode(vcpu))
7561 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7562
7563 kvm_make_request(KVM_REQ_EVENT, vcpu);
7564
7565 return 0;
7566 }
7567
7568 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7569 struct kvm_guest_debug *dbg)
7570 {
7571 unsigned long rflags;
7572 int i, r;
7573
7574 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7575 r = -EBUSY;
7576 if (vcpu->arch.exception.pending)
7577 goto out;
7578 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7579 kvm_queue_exception(vcpu, DB_VECTOR);
7580 else
7581 kvm_queue_exception(vcpu, BP_VECTOR);
7582 }
7583
7584 /*
7585 * Read rflags as long as potentially injected trace flags are still
7586 * filtered out.
7587 */
7588 rflags = kvm_get_rflags(vcpu);
7589
7590 vcpu->guest_debug = dbg->control;
7591 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7592 vcpu->guest_debug = 0;
7593
7594 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7595 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7596 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7597 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7598 } else {
7599 for (i = 0; i < KVM_NR_DB_REGS; i++)
7600 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7601 }
7602 kvm_update_dr7(vcpu);
7603
7604 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7605 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7606 get_segment_base(vcpu, VCPU_SREG_CS);
7607
7608 /*
7609 * Trigger an rflags update that will inject or remove the trace
7610 * flags.
7611 */
7612 kvm_set_rflags(vcpu, rflags);
7613
7614 kvm_x86_ops->update_bp_intercept(vcpu);
7615
7616 r = 0;
7617
7618 out:
7619
7620 return r;
7621 }
7622
7623 /*
7624 * Translate a guest virtual address to a guest physical address.
7625 */
7626 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7627 struct kvm_translation *tr)
7628 {
7629 unsigned long vaddr = tr->linear_address;
7630 gpa_t gpa;
7631 int idx;
7632
7633 idx = srcu_read_lock(&vcpu->kvm->srcu);
7634 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7635 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7636 tr->physical_address = gpa;
7637 tr->valid = gpa != UNMAPPED_GVA;
7638 tr->writeable = 1;
7639 tr->usermode = 0;
7640
7641 return 0;
7642 }
7643
7644 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7645 {
7646 struct fxregs_state *fxsave =
7647 &vcpu->arch.guest_fpu.state.fxsave;
7648
7649 memcpy(fpu->fpr, fxsave->st_space, 128);
7650 fpu->fcw = fxsave->cwd;
7651 fpu->fsw = fxsave->swd;
7652 fpu->ftwx = fxsave->twd;
7653 fpu->last_opcode = fxsave->fop;
7654 fpu->last_ip = fxsave->rip;
7655 fpu->last_dp = fxsave->rdp;
7656 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7657
7658 return 0;
7659 }
7660
7661 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7662 {
7663 struct fxregs_state *fxsave =
7664 &vcpu->arch.guest_fpu.state.fxsave;
7665
7666 memcpy(fxsave->st_space, fpu->fpr, 128);
7667 fxsave->cwd = fpu->fcw;
7668 fxsave->swd = fpu->fsw;
7669 fxsave->twd = fpu->ftwx;
7670 fxsave->fop = fpu->last_opcode;
7671 fxsave->rip = fpu->last_ip;
7672 fxsave->rdp = fpu->last_dp;
7673 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7674
7675 return 0;
7676 }
7677
7678 static void fx_init(struct kvm_vcpu *vcpu)
7679 {
7680 fpstate_init(&vcpu->arch.guest_fpu.state);
7681 if (boot_cpu_has(X86_FEATURE_XSAVES))
7682 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7683 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7684
7685 /*
7686 * Ensure guest xcr0 is valid for loading
7687 */
7688 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7689
7690 vcpu->arch.cr0 |= X86_CR0_ET;
7691 }
7692
7693 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7694 {
7695 if (vcpu->guest_fpu_loaded)
7696 return;
7697
7698 /*
7699 * Restore all possible states in the guest,
7700 * and assume host would use all available bits.
7701 * Guest xcr0 would be loaded later.
7702 */
7703 vcpu->guest_fpu_loaded = 1;
7704 __kernel_fpu_begin();
7705 /* PKRU is separately restored in kvm_x86_ops->run. */
7706 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7707 ~XFEATURE_MASK_PKRU);
7708 trace_kvm_fpu(1);
7709 }
7710
7711 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7712 {
7713 if (!vcpu->guest_fpu_loaded)
7714 return;
7715
7716 vcpu->guest_fpu_loaded = 0;
7717 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7718 __kernel_fpu_end();
7719 ++vcpu->stat.fpu_reload;
7720 trace_kvm_fpu(0);
7721 }
7722
7723 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7724 {
7725 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7726
7727 kvmclock_reset(vcpu);
7728
7729 kvm_x86_ops->vcpu_free(vcpu);
7730 free_cpumask_var(wbinvd_dirty_mask);
7731 }
7732
7733 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7734 unsigned int id)
7735 {
7736 struct kvm_vcpu *vcpu;
7737
7738 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7739 printk_once(KERN_WARNING
7740 "kvm: SMP vm created on host with unstable TSC; "
7741 "guest TSC will not be reliable\n");
7742
7743 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7744
7745 return vcpu;
7746 }
7747
7748 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7749 {
7750 int r;
7751
7752 kvm_vcpu_mtrr_init(vcpu);
7753 r = vcpu_load(vcpu);
7754 if (r)
7755 return r;
7756 kvm_vcpu_reset(vcpu, false);
7757 kvm_mmu_setup(vcpu);
7758 vcpu_put(vcpu);
7759 return r;
7760 }
7761
7762 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7763 {
7764 struct msr_data msr;
7765 struct kvm *kvm = vcpu->kvm;
7766
7767 kvm_hv_vcpu_postcreate(vcpu);
7768
7769 if (vcpu_load(vcpu))
7770 return;
7771 msr.data = 0x0;
7772 msr.index = MSR_IA32_TSC;
7773 msr.host_initiated = true;
7774 kvm_write_tsc(vcpu, &msr);
7775 vcpu_put(vcpu);
7776
7777 if (!kvmclock_periodic_sync)
7778 return;
7779
7780 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7781 KVMCLOCK_SYNC_PERIOD);
7782 }
7783
7784 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7785 {
7786 int r;
7787 vcpu->arch.apf.msr_val = 0;
7788
7789 r = vcpu_load(vcpu);
7790 BUG_ON(r);
7791 kvm_mmu_unload(vcpu);
7792 vcpu_put(vcpu);
7793
7794 kvm_x86_ops->vcpu_free(vcpu);
7795 }
7796
7797 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7798 {
7799 vcpu->arch.hflags = 0;
7800
7801 vcpu->arch.smi_pending = 0;
7802 atomic_set(&vcpu->arch.nmi_queued, 0);
7803 vcpu->arch.nmi_pending = 0;
7804 vcpu->arch.nmi_injected = false;
7805 kvm_clear_interrupt_queue(vcpu);
7806 kvm_clear_exception_queue(vcpu);
7807 vcpu->arch.exception.pending = false;
7808
7809 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7810 kvm_update_dr0123(vcpu);
7811 vcpu->arch.dr6 = DR6_INIT;
7812 kvm_update_dr6(vcpu);
7813 vcpu->arch.dr7 = DR7_FIXED_1;
7814 kvm_update_dr7(vcpu);
7815
7816 vcpu->arch.cr2 = 0;
7817
7818 kvm_make_request(KVM_REQ_EVENT, vcpu);
7819 vcpu->arch.apf.msr_val = 0;
7820 vcpu->arch.st.msr_val = 0;
7821
7822 kvmclock_reset(vcpu);
7823
7824 kvm_clear_async_pf_completion_queue(vcpu);
7825 kvm_async_pf_hash_reset(vcpu);
7826 vcpu->arch.apf.halted = false;
7827
7828 if (kvm_mpx_supported()) {
7829 void *mpx_state_buffer;
7830
7831 /*
7832 * To avoid have the INIT path from kvm_apic_has_events() that be
7833 * called with loaded FPU and does not let userspace fix the state.
7834 */
7835 kvm_put_guest_fpu(vcpu);
7836 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7837 XFEATURE_MASK_BNDREGS);
7838 if (mpx_state_buffer)
7839 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7840 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7841 XFEATURE_MASK_BNDCSR);
7842 if (mpx_state_buffer)
7843 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7844 }
7845
7846 if (!init_event) {
7847 kvm_pmu_reset(vcpu);
7848 vcpu->arch.smbase = 0x30000;
7849
7850 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7851 vcpu->arch.msr_misc_features_enables = 0;
7852
7853 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7854 }
7855
7856 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7857 vcpu->arch.regs_avail = ~0;
7858 vcpu->arch.regs_dirty = ~0;
7859
7860 vcpu->arch.ia32_xss = 0;
7861
7862 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7863 }
7864
7865 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7866 {
7867 struct kvm_segment cs;
7868
7869 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7870 cs.selector = vector << 8;
7871 cs.base = vector << 12;
7872 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7873 kvm_rip_write(vcpu, 0);
7874 }
7875
7876 int kvm_arch_hardware_enable(void)
7877 {
7878 struct kvm *kvm;
7879 struct kvm_vcpu *vcpu;
7880 int i;
7881 int ret;
7882 u64 local_tsc;
7883 u64 max_tsc = 0;
7884 bool stable, backwards_tsc = false;
7885
7886 kvm_shared_msr_cpu_online();
7887 ret = kvm_x86_ops->hardware_enable();
7888 if (ret != 0)
7889 return ret;
7890
7891 local_tsc = rdtsc();
7892 stable = !check_tsc_unstable();
7893 list_for_each_entry(kvm, &vm_list, vm_list) {
7894 kvm_for_each_vcpu(i, vcpu, kvm) {
7895 if (!stable && vcpu->cpu == smp_processor_id())
7896 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7897 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7898 backwards_tsc = true;
7899 if (vcpu->arch.last_host_tsc > max_tsc)
7900 max_tsc = vcpu->arch.last_host_tsc;
7901 }
7902 }
7903 }
7904
7905 /*
7906 * Sometimes, even reliable TSCs go backwards. This happens on
7907 * platforms that reset TSC during suspend or hibernate actions, but
7908 * maintain synchronization. We must compensate. Fortunately, we can
7909 * detect that condition here, which happens early in CPU bringup,
7910 * before any KVM threads can be running. Unfortunately, we can't
7911 * bring the TSCs fully up to date with real time, as we aren't yet far
7912 * enough into CPU bringup that we know how much real time has actually
7913 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7914 * variables that haven't been updated yet.
7915 *
7916 * So we simply find the maximum observed TSC above, then record the
7917 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7918 * the adjustment will be applied. Note that we accumulate
7919 * adjustments, in case multiple suspend cycles happen before some VCPU
7920 * gets a chance to run again. In the event that no KVM threads get a
7921 * chance to run, we will miss the entire elapsed period, as we'll have
7922 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7923 * loose cycle time. This isn't too big a deal, since the loss will be
7924 * uniform across all VCPUs (not to mention the scenario is extremely
7925 * unlikely). It is possible that a second hibernate recovery happens
7926 * much faster than a first, causing the observed TSC here to be
7927 * smaller; this would require additional padding adjustment, which is
7928 * why we set last_host_tsc to the local tsc observed here.
7929 *
7930 * N.B. - this code below runs only on platforms with reliable TSC,
7931 * as that is the only way backwards_tsc is set above. Also note
7932 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7933 * have the same delta_cyc adjustment applied if backwards_tsc
7934 * is detected. Note further, this adjustment is only done once,
7935 * as we reset last_host_tsc on all VCPUs to stop this from being
7936 * called multiple times (one for each physical CPU bringup).
7937 *
7938 * Platforms with unreliable TSCs don't have to deal with this, they
7939 * will be compensated by the logic in vcpu_load, which sets the TSC to
7940 * catchup mode. This will catchup all VCPUs to real time, but cannot
7941 * guarantee that they stay in perfect synchronization.
7942 */
7943 if (backwards_tsc) {
7944 u64 delta_cyc = max_tsc - local_tsc;
7945 list_for_each_entry(kvm, &vm_list, vm_list) {
7946 kvm->arch.backwards_tsc_observed = true;
7947 kvm_for_each_vcpu(i, vcpu, kvm) {
7948 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7949 vcpu->arch.last_host_tsc = local_tsc;
7950 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7951 }
7952
7953 /*
7954 * We have to disable TSC offset matching.. if you were
7955 * booting a VM while issuing an S4 host suspend....
7956 * you may have some problem. Solving this issue is
7957 * left as an exercise to the reader.
7958 */
7959 kvm->arch.last_tsc_nsec = 0;
7960 kvm->arch.last_tsc_write = 0;
7961 }
7962
7963 }
7964 return 0;
7965 }
7966
7967 void kvm_arch_hardware_disable(void)
7968 {
7969 kvm_x86_ops->hardware_disable();
7970 drop_user_return_notifiers();
7971 }
7972
7973 int kvm_arch_hardware_setup(void)
7974 {
7975 int r;
7976
7977 r = kvm_x86_ops->hardware_setup();
7978 if (r != 0)
7979 return r;
7980
7981 if (kvm_has_tsc_control) {
7982 /*
7983 * Make sure the user can only configure tsc_khz values that
7984 * fit into a signed integer.
7985 * A min value is not calculated needed because it will always
7986 * be 1 on all machines.
7987 */
7988 u64 max = min(0x7fffffffULL,
7989 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7990 kvm_max_guest_tsc_khz = max;
7991
7992 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7993 }
7994
7995 kvm_init_msr_list();
7996 return 0;
7997 }
7998
7999 void kvm_arch_hardware_unsetup(void)
8000 {
8001 kvm_x86_ops->hardware_unsetup();
8002 }
8003
8004 void kvm_arch_check_processor_compat(void *rtn)
8005 {
8006 kvm_x86_ops->check_processor_compatibility(rtn);
8007 }
8008
8009 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8010 {
8011 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8014
8015 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8016 {
8017 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8018 }
8019
8020 struct static_key kvm_no_apic_vcpu __read_mostly;
8021 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8022
8023 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8024 {
8025 struct page *page;
8026 int r;
8027
8028 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8029 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8030 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8031 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8032 else
8033 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8034
8035 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8036 if (!page) {
8037 r = -ENOMEM;
8038 goto fail;
8039 }
8040 vcpu->arch.pio_data = page_address(page);
8041
8042 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8043
8044 r = kvm_mmu_create(vcpu);
8045 if (r < 0)
8046 goto fail_free_pio_data;
8047
8048 if (irqchip_in_kernel(vcpu->kvm)) {
8049 r = kvm_create_lapic(vcpu);
8050 if (r < 0)
8051 goto fail_mmu_destroy;
8052 } else
8053 static_key_slow_inc(&kvm_no_apic_vcpu);
8054
8055 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8056 GFP_KERNEL);
8057 if (!vcpu->arch.mce_banks) {
8058 r = -ENOMEM;
8059 goto fail_free_lapic;
8060 }
8061 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8062
8063 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8064 r = -ENOMEM;
8065 goto fail_free_mce_banks;
8066 }
8067
8068 fx_init(vcpu);
8069
8070 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8071
8072 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8073
8074 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8075
8076 kvm_async_pf_hash_reset(vcpu);
8077 kvm_pmu_init(vcpu);
8078
8079 vcpu->arch.pending_external_vector = -1;
8080 vcpu->arch.preempted_in_kernel = false;
8081
8082 kvm_hv_vcpu_init(vcpu);
8083
8084 return 0;
8085
8086 fail_free_mce_banks:
8087 kfree(vcpu->arch.mce_banks);
8088 fail_free_lapic:
8089 kvm_free_lapic(vcpu);
8090 fail_mmu_destroy:
8091 kvm_mmu_destroy(vcpu);
8092 fail_free_pio_data:
8093 free_page((unsigned long)vcpu->arch.pio_data);
8094 fail:
8095 return r;
8096 }
8097
8098 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8099 {
8100 int idx;
8101
8102 kvm_hv_vcpu_uninit(vcpu);
8103 kvm_pmu_destroy(vcpu);
8104 kfree(vcpu->arch.mce_banks);
8105 kvm_free_lapic(vcpu);
8106 idx = srcu_read_lock(&vcpu->kvm->srcu);
8107 kvm_mmu_destroy(vcpu);
8108 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8109 free_page((unsigned long)vcpu->arch.pio_data);
8110 if (!lapic_in_kernel(vcpu))
8111 static_key_slow_dec(&kvm_no_apic_vcpu);
8112 }
8113
8114 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8115 {
8116 kvm_x86_ops->sched_in(vcpu, cpu);
8117 }
8118
8119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8120 {
8121 if (type)
8122 return -EINVAL;
8123
8124 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8125 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8126 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8127 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8128 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8129
8130 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8131 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8132 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8133 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8134 &kvm->arch.irq_sources_bitmap);
8135
8136 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8137 mutex_init(&kvm->arch.apic_map_lock);
8138 mutex_init(&kvm->arch.hyperv.hv_lock);
8139 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8140
8141 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8142 pvclock_update_vm_gtod_copy(kvm);
8143
8144 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8145 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8146
8147 kvm_page_track_init(kvm);
8148 kvm_mmu_init_vm(kvm);
8149
8150 if (kvm_x86_ops->vm_init)
8151 return kvm_x86_ops->vm_init(kvm);
8152
8153 return 0;
8154 }
8155
8156 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8157 {
8158 int r;
8159 r = vcpu_load(vcpu);
8160 BUG_ON(r);
8161 kvm_mmu_unload(vcpu);
8162 vcpu_put(vcpu);
8163 }
8164
8165 static void kvm_free_vcpus(struct kvm *kvm)
8166 {
8167 unsigned int i;
8168 struct kvm_vcpu *vcpu;
8169
8170 /*
8171 * Unpin any mmu pages first.
8172 */
8173 kvm_for_each_vcpu(i, vcpu, kvm) {
8174 kvm_clear_async_pf_completion_queue(vcpu);
8175 kvm_unload_vcpu_mmu(vcpu);
8176 }
8177 kvm_for_each_vcpu(i, vcpu, kvm)
8178 kvm_arch_vcpu_free(vcpu);
8179
8180 mutex_lock(&kvm->lock);
8181 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8182 kvm->vcpus[i] = NULL;
8183
8184 atomic_set(&kvm->online_vcpus, 0);
8185 mutex_unlock(&kvm->lock);
8186 }
8187
8188 void kvm_arch_sync_events(struct kvm *kvm)
8189 {
8190 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8191 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8192 kvm_free_pit(kvm);
8193 }
8194
8195 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8196 {
8197 int i, r;
8198 unsigned long hva;
8199 struct kvm_memslots *slots = kvm_memslots(kvm);
8200 struct kvm_memory_slot *slot, old;
8201
8202 /* Called with kvm->slots_lock held. */
8203 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8204 return -EINVAL;
8205
8206 slot = id_to_memslot(slots, id);
8207 if (size) {
8208 if (slot->npages)
8209 return -EEXIST;
8210
8211 /*
8212 * MAP_SHARED to prevent internal slot pages from being moved
8213 * by fork()/COW.
8214 */
8215 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8216 MAP_SHARED | MAP_ANONYMOUS, 0);
8217 if (IS_ERR((void *)hva))
8218 return PTR_ERR((void *)hva);
8219 } else {
8220 if (!slot->npages)
8221 return 0;
8222
8223 hva = 0;
8224 }
8225
8226 old = *slot;
8227 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8228 struct kvm_userspace_memory_region m;
8229
8230 m.slot = id | (i << 16);
8231 m.flags = 0;
8232 m.guest_phys_addr = gpa;
8233 m.userspace_addr = hva;
8234 m.memory_size = size;
8235 r = __kvm_set_memory_region(kvm, &m);
8236 if (r < 0)
8237 return r;
8238 }
8239
8240 if (!size) {
8241 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8242 WARN_ON(r < 0);
8243 }
8244
8245 return 0;
8246 }
8247 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8248
8249 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8250 {
8251 int r;
8252
8253 mutex_lock(&kvm->slots_lock);
8254 r = __x86_set_memory_region(kvm, id, gpa, size);
8255 mutex_unlock(&kvm->slots_lock);
8256
8257 return r;
8258 }
8259 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8260
8261 void kvm_arch_destroy_vm(struct kvm *kvm)
8262 {
8263 if (current->mm == kvm->mm) {
8264 /*
8265 * Free memory regions allocated on behalf of userspace,
8266 * unless the the memory map has changed due to process exit
8267 * or fd copying.
8268 */
8269 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8270 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8271 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8272 }
8273 if (kvm_x86_ops->vm_destroy)
8274 kvm_x86_ops->vm_destroy(kvm);
8275 kvm_pic_destroy(kvm);
8276 kvm_ioapic_destroy(kvm);
8277 kvm_free_vcpus(kvm);
8278 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8279 kvm_mmu_uninit_vm(kvm);
8280 kvm_page_track_cleanup(kvm);
8281 }
8282
8283 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8284 struct kvm_memory_slot *dont)
8285 {
8286 int i;
8287
8288 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8289 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8290 kvfree(free->arch.rmap[i]);
8291 free->arch.rmap[i] = NULL;
8292 }
8293 if (i == 0)
8294 continue;
8295
8296 if (!dont || free->arch.lpage_info[i - 1] !=
8297 dont->arch.lpage_info[i - 1]) {
8298 kvfree(free->arch.lpage_info[i - 1]);
8299 free->arch.lpage_info[i - 1] = NULL;
8300 }
8301 }
8302
8303 kvm_page_track_free_memslot(free, dont);
8304 }
8305
8306 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8307 unsigned long npages)
8308 {
8309 int i;
8310
8311 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8312 struct kvm_lpage_info *linfo;
8313 unsigned long ugfn;
8314 int lpages;
8315 int level = i + 1;
8316
8317 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8318 slot->base_gfn, level) + 1;
8319
8320 slot->arch.rmap[i] =
8321 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8322 if (!slot->arch.rmap[i])
8323 goto out_free;
8324 if (i == 0)
8325 continue;
8326
8327 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8328 if (!linfo)
8329 goto out_free;
8330
8331 slot->arch.lpage_info[i - 1] = linfo;
8332
8333 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8334 linfo[0].disallow_lpage = 1;
8335 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8336 linfo[lpages - 1].disallow_lpage = 1;
8337 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8338 /*
8339 * If the gfn and userspace address are not aligned wrt each
8340 * other, or if explicitly asked to, disable large page
8341 * support for this slot
8342 */
8343 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8344 !kvm_largepages_enabled()) {
8345 unsigned long j;
8346
8347 for (j = 0; j < lpages; ++j)
8348 linfo[j].disallow_lpage = 1;
8349 }
8350 }
8351
8352 if (kvm_page_track_create_memslot(slot, npages))
8353 goto out_free;
8354
8355 return 0;
8356
8357 out_free:
8358 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8359 kvfree(slot->arch.rmap[i]);
8360 slot->arch.rmap[i] = NULL;
8361 if (i == 0)
8362 continue;
8363
8364 kvfree(slot->arch.lpage_info[i - 1]);
8365 slot->arch.lpage_info[i - 1] = NULL;
8366 }
8367 return -ENOMEM;
8368 }
8369
8370 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8371 {
8372 /*
8373 * memslots->generation has been incremented.
8374 * mmio generation may have reached its maximum value.
8375 */
8376 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8377 }
8378
8379 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8380 struct kvm_memory_slot *memslot,
8381 const struct kvm_userspace_memory_region *mem,
8382 enum kvm_mr_change change)
8383 {
8384 return 0;
8385 }
8386
8387 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8388 struct kvm_memory_slot *new)
8389 {
8390 /* Still write protect RO slot */
8391 if (new->flags & KVM_MEM_READONLY) {
8392 kvm_mmu_slot_remove_write_access(kvm, new);
8393 return;
8394 }
8395
8396 /*
8397 * Call kvm_x86_ops dirty logging hooks when they are valid.
8398 *
8399 * kvm_x86_ops->slot_disable_log_dirty is called when:
8400 *
8401 * - KVM_MR_CREATE with dirty logging is disabled
8402 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8403 *
8404 * The reason is, in case of PML, we need to set D-bit for any slots
8405 * with dirty logging disabled in order to eliminate unnecessary GPA
8406 * logging in PML buffer (and potential PML buffer full VMEXT). This
8407 * guarantees leaving PML enabled during guest's lifetime won't have
8408 * any additonal overhead from PML when guest is running with dirty
8409 * logging disabled for memory slots.
8410 *
8411 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8412 * to dirty logging mode.
8413 *
8414 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8415 *
8416 * In case of write protect:
8417 *
8418 * Write protect all pages for dirty logging.
8419 *
8420 * All the sptes including the large sptes which point to this
8421 * slot are set to readonly. We can not create any new large
8422 * spte on this slot until the end of the logging.
8423 *
8424 * See the comments in fast_page_fault().
8425 */
8426 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8427 if (kvm_x86_ops->slot_enable_log_dirty)
8428 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8429 else
8430 kvm_mmu_slot_remove_write_access(kvm, new);
8431 } else {
8432 if (kvm_x86_ops->slot_disable_log_dirty)
8433 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8434 }
8435 }
8436
8437 void kvm_arch_commit_memory_region(struct kvm *kvm,
8438 const struct kvm_userspace_memory_region *mem,
8439 const struct kvm_memory_slot *old,
8440 const struct kvm_memory_slot *new,
8441 enum kvm_mr_change change)
8442 {
8443 int nr_mmu_pages = 0;
8444
8445 if (!kvm->arch.n_requested_mmu_pages)
8446 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8447
8448 if (nr_mmu_pages)
8449 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8450
8451 /*
8452 * Dirty logging tracks sptes in 4k granularity, meaning that large
8453 * sptes have to be split. If live migration is successful, the guest
8454 * in the source machine will be destroyed and large sptes will be
8455 * created in the destination. However, if the guest continues to run
8456 * in the source machine (for example if live migration fails), small
8457 * sptes will remain around and cause bad performance.
8458 *
8459 * Scan sptes if dirty logging has been stopped, dropping those
8460 * which can be collapsed into a single large-page spte. Later
8461 * page faults will create the large-page sptes.
8462 */
8463 if ((change != KVM_MR_DELETE) &&
8464 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8465 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8466 kvm_mmu_zap_collapsible_sptes(kvm, new);
8467
8468 /*
8469 * Set up write protection and/or dirty logging for the new slot.
8470 *
8471 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8472 * been zapped so no dirty logging staff is needed for old slot. For
8473 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8474 * new and it's also covered when dealing with the new slot.
8475 *
8476 * FIXME: const-ify all uses of struct kvm_memory_slot.
8477 */
8478 if (change != KVM_MR_DELETE)
8479 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8480 }
8481
8482 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8483 {
8484 kvm_mmu_invalidate_zap_all_pages(kvm);
8485 }
8486
8487 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8488 struct kvm_memory_slot *slot)
8489 {
8490 kvm_page_track_flush_slot(kvm, slot);
8491 }
8492
8493 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8494 {
8495 if (!list_empty_careful(&vcpu->async_pf.done))
8496 return true;
8497
8498 if (kvm_apic_has_events(vcpu))
8499 return true;
8500
8501 if (vcpu->arch.pv.pv_unhalted)
8502 return true;
8503
8504 if (vcpu->arch.exception.pending)
8505 return true;
8506
8507 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8508 (vcpu->arch.nmi_pending &&
8509 kvm_x86_ops->nmi_allowed(vcpu)))
8510 return true;
8511
8512 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8513 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8514 return true;
8515
8516 if (kvm_arch_interrupt_allowed(vcpu) &&
8517 kvm_cpu_has_interrupt(vcpu))
8518 return true;
8519
8520 if (kvm_hv_has_stimer_pending(vcpu))
8521 return true;
8522
8523 return false;
8524 }
8525
8526 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8527 {
8528 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8529 }
8530
8531 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8532 {
8533 return vcpu->arch.preempted_in_kernel;
8534 }
8535
8536 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8537 {
8538 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8539 }
8540
8541 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8542 {
8543 return kvm_x86_ops->interrupt_allowed(vcpu);
8544 }
8545
8546 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8547 {
8548 if (is_64_bit_mode(vcpu))
8549 return kvm_rip_read(vcpu);
8550 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8551 kvm_rip_read(vcpu));
8552 }
8553 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8554
8555 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8556 {
8557 return kvm_get_linear_rip(vcpu) == linear_rip;
8558 }
8559 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8560
8561 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8562 {
8563 unsigned long rflags;
8564
8565 rflags = kvm_x86_ops->get_rflags(vcpu);
8566 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8567 rflags &= ~X86_EFLAGS_TF;
8568 return rflags;
8569 }
8570 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8571
8572 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8573 {
8574 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8575 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8576 rflags |= X86_EFLAGS_TF;
8577 kvm_x86_ops->set_rflags(vcpu, rflags);
8578 }
8579
8580 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8581 {
8582 __kvm_set_rflags(vcpu, rflags);
8583 kvm_make_request(KVM_REQ_EVENT, vcpu);
8584 }
8585 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8586
8587 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8588 {
8589 int r;
8590
8591 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8592 work->wakeup_all)
8593 return;
8594
8595 r = kvm_mmu_reload(vcpu);
8596 if (unlikely(r))
8597 return;
8598
8599 if (!vcpu->arch.mmu.direct_map &&
8600 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8601 return;
8602
8603 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8604 }
8605
8606 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8607 {
8608 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8609 }
8610
8611 static inline u32 kvm_async_pf_next_probe(u32 key)
8612 {
8613 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8614 }
8615
8616 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8617 {
8618 u32 key = kvm_async_pf_hash_fn(gfn);
8619
8620 while (vcpu->arch.apf.gfns[key] != ~0)
8621 key = kvm_async_pf_next_probe(key);
8622
8623 vcpu->arch.apf.gfns[key] = gfn;
8624 }
8625
8626 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8627 {
8628 int i;
8629 u32 key = kvm_async_pf_hash_fn(gfn);
8630
8631 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8632 (vcpu->arch.apf.gfns[key] != gfn &&
8633 vcpu->arch.apf.gfns[key] != ~0); i++)
8634 key = kvm_async_pf_next_probe(key);
8635
8636 return key;
8637 }
8638
8639 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8640 {
8641 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8642 }
8643
8644 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8645 {
8646 u32 i, j, k;
8647
8648 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8649 while (true) {
8650 vcpu->arch.apf.gfns[i] = ~0;
8651 do {
8652 j = kvm_async_pf_next_probe(j);
8653 if (vcpu->arch.apf.gfns[j] == ~0)
8654 return;
8655 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8656 /*
8657 * k lies cyclically in ]i,j]
8658 * | i.k.j |
8659 * |....j i.k.| or |.k..j i...|
8660 */
8661 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8662 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8663 i = j;
8664 }
8665 }
8666
8667 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8668 {
8669
8670 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8671 sizeof(val));
8672 }
8673
8674 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8675 {
8676
8677 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8678 sizeof(u32));
8679 }
8680
8681 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8682 struct kvm_async_pf *work)
8683 {
8684 struct x86_exception fault;
8685
8686 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8687 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8688
8689 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8690 (vcpu->arch.apf.send_user_only &&
8691 kvm_x86_ops->get_cpl(vcpu) == 0))
8692 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8693 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8694 fault.vector = PF_VECTOR;
8695 fault.error_code_valid = true;
8696 fault.error_code = 0;
8697 fault.nested_page_fault = false;
8698 fault.address = work->arch.token;
8699 fault.async_page_fault = true;
8700 kvm_inject_page_fault(vcpu, &fault);
8701 }
8702 }
8703
8704 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8705 struct kvm_async_pf *work)
8706 {
8707 struct x86_exception fault;
8708 u32 val;
8709
8710 if (work->wakeup_all)
8711 work->arch.token = ~0; /* broadcast wakeup */
8712 else
8713 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8714 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8715
8716 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8717 !apf_get_user(vcpu, &val)) {
8718 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8719 vcpu->arch.exception.pending &&
8720 vcpu->arch.exception.nr == PF_VECTOR &&
8721 !apf_put_user(vcpu, 0)) {
8722 vcpu->arch.exception.injected = false;
8723 vcpu->arch.exception.pending = false;
8724 vcpu->arch.exception.nr = 0;
8725 vcpu->arch.exception.has_error_code = false;
8726 vcpu->arch.exception.error_code = 0;
8727 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8728 fault.vector = PF_VECTOR;
8729 fault.error_code_valid = true;
8730 fault.error_code = 0;
8731 fault.nested_page_fault = false;
8732 fault.address = work->arch.token;
8733 fault.async_page_fault = true;
8734 kvm_inject_page_fault(vcpu, &fault);
8735 }
8736 }
8737 vcpu->arch.apf.halted = false;
8738 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8739 }
8740
8741 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8742 {
8743 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8744 return true;
8745 else
8746 return kvm_can_do_async_pf(vcpu);
8747 }
8748
8749 void kvm_arch_start_assignment(struct kvm *kvm)
8750 {
8751 atomic_inc(&kvm->arch.assigned_device_count);
8752 }
8753 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8754
8755 void kvm_arch_end_assignment(struct kvm *kvm)
8756 {
8757 atomic_dec(&kvm->arch.assigned_device_count);
8758 }
8759 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8760
8761 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8762 {
8763 return atomic_read(&kvm->arch.assigned_device_count);
8764 }
8765 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8766
8767 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8768 {
8769 atomic_inc(&kvm->arch.noncoherent_dma_count);
8770 }
8771 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8772
8773 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8774 {
8775 atomic_dec(&kvm->arch.noncoherent_dma_count);
8776 }
8777 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8778
8779 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8780 {
8781 return atomic_read(&kvm->arch.noncoherent_dma_count);
8782 }
8783 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8784
8785 bool kvm_arch_has_irq_bypass(void)
8786 {
8787 return kvm_x86_ops->update_pi_irte != NULL;
8788 }
8789
8790 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8791 struct irq_bypass_producer *prod)
8792 {
8793 struct kvm_kernel_irqfd *irqfd =
8794 container_of(cons, struct kvm_kernel_irqfd, consumer);
8795
8796 irqfd->producer = prod;
8797
8798 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8799 prod->irq, irqfd->gsi, 1);
8800 }
8801
8802 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8803 struct irq_bypass_producer *prod)
8804 {
8805 int ret;
8806 struct kvm_kernel_irqfd *irqfd =
8807 container_of(cons, struct kvm_kernel_irqfd, consumer);
8808
8809 WARN_ON(irqfd->producer != prod);
8810 irqfd->producer = NULL;
8811
8812 /*
8813 * When producer of consumer is unregistered, we change back to
8814 * remapped mode, so we can re-use the current implementation
8815 * when the irq is masked/disabled or the consumer side (KVM
8816 * int this case doesn't want to receive the interrupts.
8817 */
8818 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8819 if (ret)
8820 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8821 " fails: %d\n", irqfd->consumer.token, ret);
8822 }
8823
8824 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8825 uint32_t guest_irq, bool set)
8826 {
8827 if (!kvm_x86_ops->update_pi_irte)
8828 return -EINVAL;
8829
8830 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8831 }
8832
8833 bool kvm_vector_hashing_enabled(void)
8834 {
8835 return vector_hashing;
8836 }
8837 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8838
8839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);