]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge branch 'topic/lx6464es' into for-linus
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
61 */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits) },
95 { "irq_exits", VCPU_STAT(irq_exits) },
96 { "host_state_reload", VCPU_STAT(host_state_reload) },
97 { "efer_reload", VCPU_STAT(efer_reload) },
98 { "fpu_reload", VCPU_STAT(fpu_reload) },
99 { "insn_emulation", VCPU_STAT(insn_emulation) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101 { "irq_injections", VCPU_STAT(irq_injections) },
102 { "nmi_injections", VCPU_STAT(nmi_injections) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107 { "mmu_flooded", VM_STAT(mmu_flooded) },
108 { "mmu_recycled", VM_STAT(mmu_recycled) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110 { "mmu_unsync", VM_STAT(mmu_unsync) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113 { "largepages", VM_STAT(lpages) },
114 { NULL }
115 };
116
117 unsigned long segment_base(u16 selector)
118 {
119 struct descriptor_table gdt;
120 struct desc_struct *d;
121 unsigned long table_base;
122 unsigned long v;
123
124 if (selector == 0)
125 return 0;
126
127 asm("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
129
130 if (selector & 4) { /* from ldt */
131 u16 ldt_selector;
132
133 asm("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
135 }
136 d = (struct desc_struct *)(table_base + (selector & ~7));
137 v = d->base0 | ((unsigned long)d->base1 << 16) |
138 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143 return v;
144 }
145 EXPORT_SYMBOL_GPL(segment_base);
146
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 {
149 if (irqchip_in_kernel(vcpu->kvm))
150 return vcpu->arch.apic_base;
151 else
152 return vcpu->arch.apic_base;
153 }
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 {
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu->kvm))
160 kvm_lapic_set_base(vcpu, data);
161 else
162 vcpu->arch.apic_base = data;
163 }
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 {
168 WARN_ON(vcpu->arch.exception.pending);
169 vcpu->arch.exception.pending = true;
170 vcpu->arch.exception.has_error_code = false;
171 vcpu->arch.exception.nr = nr;
172 }
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176 u32 error_code)
177 {
178 ++vcpu->stat.pf_guest;
179
180 if (vcpu->arch.exception.pending) {
181 if (vcpu->arch.exception.nr == PF_VECTOR) {
182 printk(KERN_DEBUG "kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr);
184 vcpu->arch.exception.nr = DF_VECTOR;
185 vcpu->arch.exception.error_code = 0;
186 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189 }
190 return;
191 }
192 vcpu->arch.cr2 = addr;
193 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 }
195
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 {
198 vcpu->arch.nmi_pending = 1;
199 }
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 {
204 WARN_ON(vcpu->arch.exception.pending);
205 vcpu->arch.exception.pending = true;
206 vcpu->arch.exception.has_error_code = true;
207 vcpu->arch.exception.nr = nr;
208 vcpu->arch.exception.error_code = error_code;
209 }
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211
212 static void __queue_exception(struct kvm_vcpu *vcpu)
213 {
214 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215 vcpu->arch.exception.has_error_code,
216 vcpu->arch.exception.error_code);
217 }
218
219 /*
220 * Load the pae pdptrs. Return true is they are all valid.
221 */
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 {
224 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226 int i;
227 int ret;
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229
230 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231 offset * sizeof(u64), sizeof(pdpte));
232 if (ret < 0) {
233 ret = 0;
234 goto out;
235 }
236 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
238 ret = 0;
239 goto out;
240 }
241 }
242 ret = 1;
243
244 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
246
247 return ret;
248 }
249 EXPORT_SYMBOL_GPL(load_pdptrs);
250
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 {
253 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254 bool changed = true;
255 int r;
256
257 if (is_long_mode(vcpu) || !is_pae(vcpu))
258 return false;
259
260 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261 if (r < 0)
262 goto out;
263 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
265
266 return changed;
267 }
268
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 {
271 if (cr0 & CR0_RESERVED_BITS) {
272 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0, vcpu->arch.cr0);
274 kvm_inject_gp(vcpu, 0);
275 return;
276 }
277
278 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu, 0);
281 return;
282 }
283
284 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu, 0);
288 return;
289 }
290
291 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294 int cs_db, cs_l;
295
296 if (!is_pae(vcpu)) {
297 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu, 0);
300 return;
301 }
302 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303 if (cs_l) {
304 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu, 0);
307 return;
308
309 }
310 } else
311 #endif
312 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314 "reserved bits\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
317 }
318
319 }
320
321 kvm_x86_ops->set_cr0(vcpu, cr0);
322 vcpu->arch.cr0 = cr0;
323
324 kvm_mmu_sync_global(vcpu);
325 kvm_mmu_reset_context(vcpu);
326 return;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
329
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
331 {
332 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333 KVMTRACE_1D(LMSW, vcpu,
334 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335 handler);
336 }
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
338
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
340 {
341 unsigned long old_cr4 = vcpu->arch.cr4;
342 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
343
344 if (cr4 & CR4_RESERVED_BITS) {
345 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu, 0);
347 return;
348 }
349
350 if (is_long_mode(vcpu)) {
351 if (!(cr4 & X86_CR4_PAE)) {
352 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
353 "in long mode\n");
354 kvm_inject_gp(vcpu, 0);
355 return;
356 }
357 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
358 && ((cr4 ^ old_cr4) & pdptr_bits)
359 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
360 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
361 kvm_inject_gp(vcpu, 0);
362 return;
363 }
364
365 if (cr4 & X86_CR4_VMXE) {
366 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
367 kvm_inject_gp(vcpu, 0);
368 return;
369 }
370 kvm_x86_ops->set_cr4(vcpu, cr4);
371 vcpu->arch.cr4 = cr4;
372 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
373 kvm_mmu_sync_global(vcpu);
374 kvm_mmu_reset_context(vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_set_cr4);
377
378 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
379 {
380 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
381 kvm_mmu_sync_roots(vcpu);
382 kvm_mmu_flush_tlb(vcpu);
383 return;
384 }
385
386 if (is_long_mode(vcpu)) {
387 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
388 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu, 0);
390 return;
391 }
392 } else {
393 if (is_pae(vcpu)) {
394 if (cr3 & CR3_PAE_RESERVED_BITS) {
395 printk(KERN_DEBUG
396 "set_cr3: #GP, reserved bits\n");
397 kvm_inject_gp(vcpu, 0);
398 return;
399 }
400 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
401 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
402 "reserved bits\n");
403 kvm_inject_gp(vcpu, 0);
404 return;
405 }
406 }
407 /*
408 * We don't check reserved bits in nonpae mode, because
409 * this isn't enforced, and VMware depends on this.
410 */
411 }
412
413 /*
414 * Does the new cr3 value map to physical memory? (Note, we
415 * catch an invalid cr3 even in real-mode, because it would
416 * cause trouble later on when we turn on paging anyway.)
417 *
418 * A real CPU would silently accept an invalid cr3 and would
419 * attempt to use it - with largely undefined (and often hard
420 * to debug) behavior on the guest side.
421 */
422 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
423 kvm_inject_gp(vcpu, 0);
424 else {
425 vcpu->arch.cr3 = cr3;
426 vcpu->arch.mmu.new_cr3(vcpu);
427 }
428 }
429 EXPORT_SYMBOL_GPL(kvm_set_cr3);
430
431 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
432 {
433 if (cr8 & CR8_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
435 kvm_inject_gp(vcpu, 0);
436 return;
437 }
438 if (irqchip_in_kernel(vcpu->kvm))
439 kvm_lapic_set_tpr(vcpu, cr8);
440 else
441 vcpu->arch.cr8 = cr8;
442 }
443 EXPORT_SYMBOL_GPL(kvm_set_cr8);
444
445 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
446 {
447 if (irqchip_in_kernel(vcpu->kvm))
448 return kvm_lapic_get_cr8(vcpu);
449 else
450 return vcpu->arch.cr8;
451 }
452 EXPORT_SYMBOL_GPL(kvm_get_cr8);
453
454 static inline u32 bit(int bitno)
455 {
456 return 1 << (bitno & 31);
457 }
458
459 /*
460 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
462 *
463 * This list is modified at module load time to reflect the
464 * capabilities of the host cpu.
465 */
466 static u32 msrs_to_save[] = {
467 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
468 MSR_K6_STAR,
469 #ifdef CONFIG_X86_64
470 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
471 #endif
472 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
473 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
474 };
475
476 static unsigned num_msrs_to_save;
477
478 static u32 emulated_msrs[] = {
479 MSR_IA32_MISC_ENABLE,
480 };
481
482 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
483 {
484 if (efer & efer_reserved_bits) {
485 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
486 efer);
487 kvm_inject_gp(vcpu, 0);
488 return;
489 }
490
491 if (is_paging(vcpu)
492 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
493 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
494 kvm_inject_gp(vcpu, 0);
495 return;
496 }
497
498 if (efer & EFER_FFXSR) {
499 struct kvm_cpuid_entry2 *feat;
500
501 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
502 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
503 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504 kvm_inject_gp(vcpu, 0);
505 return;
506 }
507 }
508
509 if (efer & EFER_SVME) {
510 struct kvm_cpuid_entry2 *feat;
511
512 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
513 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
514 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
515 kvm_inject_gp(vcpu, 0);
516 return;
517 }
518 }
519
520 kvm_x86_ops->set_efer(vcpu, efer);
521
522 efer &= ~EFER_LMA;
523 efer |= vcpu->arch.shadow_efer & EFER_LMA;
524
525 vcpu->arch.shadow_efer = efer;
526 }
527
528 void kvm_enable_efer_bits(u64 mask)
529 {
530 efer_reserved_bits &= ~mask;
531 }
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533
534
535 /*
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
539 */
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
541 {
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 }
544
545 /*
546 * Adapt set_msr() to msr_io()'s calling convention
547 */
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
549 {
550 return kvm_set_msr(vcpu, index, *data);
551 }
552
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
554 {
555 static int version;
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
558
559 if (!wall_clock)
560 return;
561
562 version++;
563
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
565
566 /*
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
571 */
572 now = current_kernel_time();
573 ktime_get_ts(&sys);
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
575
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
579
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
581
582 version++;
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
584 }
585
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
587 {
588 uint32_t quotient, remainder;
589
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
592 __asm__ ( "divl %4"
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
595 return quotient;
596 }
597
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
599 {
600 uint64_t nsecs = 1000000000LL;
601 int32_t shift = 0;
602 uint64_t tps64;
603 uint32_t tps32;
604
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
607 tps64 >>= 1;
608 shift--;
609 }
610
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
613 tps32 <<= 1;
614 shift++;
615 }
616
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
619
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
623 }
624
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
626
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
628 {
629 struct timespec ts;
630 unsigned long flags;
631 struct kvm_vcpu_arch *vcpu = &v->arch;
632 void *shared_kaddr;
633
634 if ((!vcpu->time_page))
635 return;
636
637 if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
638 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
639 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
640 }
641
642 /* Keep irq disabled to prevent changes to the clock */
643 local_irq_save(flags);
644 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
645 &vcpu->hv_clock.tsc_timestamp);
646 ktime_get_ts(&ts);
647 local_irq_restore(flags);
648
649 /* With all the info we got, fill in the values */
650
651 vcpu->hv_clock.system_time = ts.tv_nsec +
652 (NSEC_PER_SEC * (u64)ts.tv_sec);
653 /*
654 * The interface expects us to write an even number signaling that the
655 * update is finished. Since the guest won't see the intermediate
656 * state, we just increase by 2 at the end.
657 */
658 vcpu->hv_clock.version += 2;
659
660 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
661
662 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
663 sizeof(vcpu->hv_clock));
664
665 kunmap_atomic(shared_kaddr, KM_USER0);
666
667 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
668 }
669
670 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
671 {
672 struct kvm_vcpu_arch *vcpu = &v->arch;
673
674 if (!vcpu->time_page)
675 return 0;
676 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
677 return 1;
678 }
679
680 static bool msr_mtrr_valid(unsigned msr)
681 {
682 switch (msr) {
683 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
684 case MSR_MTRRfix64K_00000:
685 case MSR_MTRRfix16K_80000:
686 case MSR_MTRRfix16K_A0000:
687 case MSR_MTRRfix4K_C0000:
688 case MSR_MTRRfix4K_C8000:
689 case MSR_MTRRfix4K_D0000:
690 case MSR_MTRRfix4K_D8000:
691 case MSR_MTRRfix4K_E0000:
692 case MSR_MTRRfix4K_E8000:
693 case MSR_MTRRfix4K_F0000:
694 case MSR_MTRRfix4K_F8000:
695 case MSR_MTRRdefType:
696 case MSR_IA32_CR_PAT:
697 return true;
698 case 0x2f8:
699 return true;
700 }
701 return false;
702 }
703
704 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
705 {
706 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
707
708 if (!msr_mtrr_valid(msr))
709 return 1;
710
711 if (msr == MSR_MTRRdefType) {
712 vcpu->arch.mtrr_state.def_type = data;
713 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
714 } else if (msr == MSR_MTRRfix64K_00000)
715 p[0] = data;
716 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
717 p[1 + msr - MSR_MTRRfix16K_80000] = data;
718 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
719 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
720 else if (msr == MSR_IA32_CR_PAT)
721 vcpu->arch.pat = data;
722 else { /* Variable MTRRs */
723 int idx, is_mtrr_mask;
724 u64 *pt;
725
726 idx = (msr - 0x200) / 2;
727 is_mtrr_mask = msr - 0x200 - 2 * idx;
728 if (!is_mtrr_mask)
729 pt =
730 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
731 else
732 pt =
733 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
734 *pt = data;
735 }
736
737 kvm_mmu_reset_context(vcpu);
738 return 0;
739 }
740
741 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
742 {
743 switch (msr) {
744 case MSR_EFER:
745 set_efer(vcpu, data);
746 break;
747 case MSR_IA32_MC0_STATUS:
748 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
749 __func__, data);
750 break;
751 case MSR_IA32_MCG_STATUS:
752 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
753 __func__, data);
754 break;
755 case MSR_IA32_MCG_CTL:
756 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
757 __func__, data);
758 break;
759 case MSR_IA32_DEBUGCTLMSR:
760 if (!data) {
761 /* We support the non-activated case already */
762 break;
763 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
764 /* Values other than LBR and BTF are vendor-specific,
765 thus reserved and should throw a #GP */
766 return 1;
767 }
768 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
769 __func__, data);
770 break;
771 case MSR_IA32_UCODE_REV:
772 case MSR_IA32_UCODE_WRITE:
773 case MSR_VM_HSAVE_PA:
774 break;
775 case 0x200 ... 0x2ff:
776 return set_msr_mtrr(vcpu, msr, data);
777 case MSR_IA32_APICBASE:
778 kvm_set_apic_base(vcpu, data);
779 break;
780 case MSR_IA32_MISC_ENABLE:
781 vcpu->arch.ia32_misc_enable_msr = data;
782 break;
783 case MSR_KVM_WALL_CLOCK:
784 vcpu->kvm->arch.wall_clock = data;
785 kvm_write_wall_clock(vcpu->kvm, data);
786 break;
787 case MSR_KVM_SYSTEM_TIME: {
788 if (vcpu->arch.time_page) {
789 kvm_release_page_dirty(vcpu->arch.time_page);
790 vcpu->arch.time_page = NULL;
791 }
792
793 vcpu->arch.time = data;
794
795 /* we verify if the enable bit is set... */
796 if (!(data & 1))
797 break;
798
799 /* ...but clean it before doing the actual write */
800 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
801
802 vcpu->arch.time_page =
803 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
804
805 if (is_error_page(vcpu->arch.time_page)) {
806 kvm_release_page_clean(vcpu->arch.time_page);
807 vcpu->arch.time_page = NULL;
808 }
809
810 kvm_request_guest_time_update(vcpu);
811 break;
812 }
813 default:
814 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
815 return 1;
816 }
817 return 0;
818 }
819 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
820
821
822 /*
823 * Reads an msr value (of 'msr_index') into 'pdata'.
824 * Returns 0 on success, non-0 otherwise.
825 * Assumes vcpu_load() was already called.
826 */
827 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
828 {
829 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
830 }
831
832 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
833 {
834 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
835
836 if (!msr_mtrr_valid(msr))
837 return 1;
838
839 if (msr == MSR_MTRRdefType)
840 *pdata = vcpu->arch.mtrr_state.def_type +
841 (vcpu->arch.mtrr_state.enabled << 10);
842 else if (msr == MSR_MTRRfix64K_00000)
843 *pdata = p[0];
844 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
845 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
846 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
847 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
848 else if (msr == MSR_IA32_CR_PAT)
849 *pdata = vcpu->arch.pat;
850 else { /* Variable MTRRs */
851 int idx, is_mtrr_mask;
852 u64 *pt;
853
854 idx = (msr - 0x200) / 2;
855 is_mtrr_mask = msr - 0x200 - 2 * idx;
856 if (!is_mtrr_mask)
857 pt =
858 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
859 else
860 pt =
861 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
862 *pdata = *pt;
863 }
864
865 return 0;
866 }
867
868 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
869 {
870 u64 data;
871
872 switch (msr) {
873 case 0xc0010010: /* SYSCFG */
874 case 0xc0010015: /* HWCR */
875 case MSR_IA32_PLATFORM_ID:
876 case MSR_IA32_P5_MC_ADDR:
877 case MSR_IA32_P5_MC_TYPE:
878 case MSR_IA32_MC0_CTL:
879 case MSR_IA32_MCG_STATUS:
880 case MSR_IA32_MCG_CAP:
881 case MSR_IA32_MCG_CTL:
882 case MSR_IA32_MC0_MISC:
883 case MSR_IA32_MC0_MISC+4:
884 case MSR_IA32_MC0_MISC+8:
885 case MSR_IA32_MC0_MISC+12:
886 case MSR_IA32_MC0_MISC+16:
887 case MSR_IA32_MC0_MISC+20:
888 case MSR_IA32_UCODE_REV:
889 case MSR_IA32_EBL_CR_POWERON:
890 case MSR_IA32_DEBUGCTLMSR:
891 case MSR_IA32_LASTBRANCHFROMIP:
892 case MSR_IA32_LASTBRANCHTOIP:
893 case MSR_IA32_LASTINTFROMIP:
894 case MSR_IA32_LASTINTTOIP:
895 case MSR_VM_HSAVE_PA:
896 data = 0;
897 break;
898 case MSR_MTRRcap:
899 data = 0x500 | KVM_NR_VAR_MTRR;
900 break;
901 case 0x200 ... 0x2ff:
902 return get_msr_mtrr(vcpu, msr, pdata);
903 case 0xcd: /* fsb frequency */
904 data = 3;
905 break;
906 case MSR_IA32_APICBASE:
907 data = kvm_get_apic_base(vcpu);
908 break;
909 case MSR_IA32_MISC_ENABLE:
910 data = vcpu->arch.ia32_misc_enable_msr;
911 break;
912 case MSR_IA32_PERF_STATUS:
913 /* TSC increment by tick */
914 data = 1000ULL;
915 /* CPU multiplier */
916 data |= (((uint64_t)4ULL) << 40);
917 break;
918 case MSR_EFER:
919 data = vcpu->arch.shadow_efer;
920 break;
921 case MSR_KVM_WALL_CLOCK:
922 data = vcpu->kvm->arch.wall_clock;
923 break;
924 case MSR_KVM_SYSTEM_TIME:
925 data = vcpu->arch.time;
926 break;
927 default:
928 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
929 return 1;
930 }
931 *pdata = data;
932 return 0;
933 }
934 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
935
936 /*
937 * Read or write a bunch of msrs. All parameters are kernel addresses.
938 *
939 * @return number of msrs set successfully.
940 */
941 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
942 struct kvm_msr_entry *entries,
943 int (*do_msr)(struct kvm_vcpu *vcpu,
944 unsigned index, u64 *data))
945 {
946 int i;
947
948 vcpu_load(vcpu);
949
950 down_read(&vcpu->kvm->slots_lock);
951 for (i = 0; i < msrs->nmsrs; ++i)
952 if (do_msr(vcpu, entries[i].index, &entries[i].data))
953 break;
954 up_read(&vcpu->kvm->slots_lock);
955
956 vcpu_put(vcpu);
957
958 return i;
959 }
960
961 /*
962 * Read or write a bunch of msrs. Parameters are user addresses.
963 *
964 * @return number of msrs set successfully.
965 */
966 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
967 int (*do_msr)(struct kvm_vcpu *vcpu,
968 unsigned index, u64 *data),
969 int writeback)
970 {
971 struct kvm_msrs msrs;
972 struct kvm_msr_entry *entries;
973 int r, n;
974 unsigned size;
975
976 r = -EFAULT;
977 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
978 goto out;
979
980 r = -E2BIG;
981 if (msrs.nmsrs >= MAX_IO_MSRS)
982 goto out;
983
984 r = -ENOMEM;
985 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
986 entries = vmalloc(size);
987 if (!entries)
988 goto out;
989
990 r = -EFAULT;
991 if (copy_from_user(entries, user_msrs->entries, size))
992 goto out_free;
993
994 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
995 if (r < 0)
996 goto out_free;
997
998 r = -EFAULT;
999 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1000 goto out_free;
1001
1002 r = n;
1003
1004 out_free:
1005 vfree(entries);
1006 out:
1007 return r;
1008 }
1009
1010 int kvm_dev_ioctl_check_extension(long ext)
1011 {
1012 int r;
1013
1014 switch (ext) {
1015 case KVM_CAP_IRQCHIP:
1016 case KVM_CAP_HLT:
1017 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1018 case KVM_CAP_SET_TSS_ADDR:
1019 case KVM_CAP_EXT_CPUID:
1020 case KVM_CAP_CLOCKSOURCE:
1021 case KVM_CAP_PIT:
1022 case KVM_CAP_NOP_IO_DELAY:
1023 case KVM_CAP_MP_STATE:
1024 case KVM_CAP_SYNC_MMU:
1025 case KVM_CAP_REINJECT_CONTROL:
1026 case KVM_CAP_IRQ_INJECT_STATUS:
1027 r = 1;
1028 break;
1029 case KVM_CAP_COALESCED_MMIO:
1030 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1031 break;
1032 case KVM_CAP_VAPIC:
1033 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1034 break;
1035 case KVM_CAP_NR_VCPUS:
1036 r = KVM_MAX_VCPUS;
1037 break;
1038 case KVM_CAP_NR_MEMSLOTS:
1039 r = KVM_MEMORY_SLOTS;
1040 break;
1041 case KVM_CAP_PV_MMU:
1042 r = !tdp_enabled;
1043 break;
1044 case KVM_CAP_IOMMU:
1045 r = iommu_found();
1046 break;
1047 default:
1048 r = 0;
1049 break;
1050 }
1051 return r;
1052
1053 }
1054
1055 long kvm_arch_dev_ioctl(struct file *filp,
1056 unsigned int ioctl, unsigned long arg)
1057 {
1058 void __user *argp = (void __user *)arg;
1059 long r;
1060
1061 switch (ioctl) {
1062 case KVM_GET_MSR_INDEX_LIST: {
1063 struct kvm_msr_list __user *user_msr_list = argp;
1064 struct kvm_msr_list msr_list;
1065 unsigned n;
1066
1067 r = -EFAULT;
1068 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1069 goto out;
1070 n = msr_list.nmsrs;
1071 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1072 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1073 goto out;
1074 r = -E2BIG;
1075 if (n < num_msrs_to_save)
1076 goto out;
1077 r = -EFAULT;
1078 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1079 num_msrs_to_save * sizeof(u32)))
1080 goto out;
1081 if (copy_to_user(user_msr_list->indices
1082 + num_msrs_to_save * sizeof(u32),
1083 &emulated_msrs,
1084 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1085 goto out;
1086 r = 0;
1087 break;
1088 }
1089 case KVM_GET_SUPPORTED_CPUID: {
1090 struct kvm_cpuid2 __user *cpuid_arg = argp;
1091 struct kvm_cpuid2 cpuid;
1092
1093 r = -EFAULT;
1094 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1095 goto out;
1096 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1097 cpuid_arg->entries);
1098 if (r)
1099 goto out;
1100
1101 r = -EFAULT;
1102 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1103 goto out;
1104 r = 0;
1105 break;
1106 }
1107 default:
1108 r = -EINVAL;
1109 }
1110 out:
1111 return r;
1112 }
1113
1114 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1115 {
1116 kvm_x86_ops->vcpu_load(vcpu, cpu);
1117 kvm_request_guest_time_update(vcpu);
1118 }
1119
1120 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1121 {
1122 kvm_x86_ops->vcpu_put(vcpu);
1123 kvm_put_guest_fpu(vcpu);
1124 }
1125
1126 static int is_efer_nx(void)
1127 {
1128 unsigned long long efer = 0;
1129
1130 rdmsrl_safe(MSR_EFER, &efer);
1131 return efer & EFER_NX;
1132 }
1133
1134 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1135 {
1136 int i;
1137 struct kvm_cpuid_entry2 *e, *entry;
1138
1139 entry = NULL;
1140 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1141 e = &vcpu->arch.cpuid_entries[i];
1142 if (e->function == 0x80000001) {
1143 entry = e;
1144 break;
1145 }
1146 }
1147 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1148 entry->edx &= ~(1 << 20);
1149 printk(KERN_INFO "kvm: guest NX capability removed\n");
1150 }
1151 }
1152
1153 /* when an old userspace process fills a new kernel module */
1154 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1155 struct kvm_cpuid *cpuid,
1156 struct kvm_cpuid_entry __user *entries)
1157 {
1158 int r, i;
1159 struct kvm_cpuid_entry *cpuid_entries;
1160
1161 r = -E2BIG;
1162 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1163 goto out;
1164 r = -ENOMEM;
1165 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1166 if (!cpuid_entries)
1167 goto out;
1168 r = -EFAULT;
1169 if (copy_from_user(cpuid_entries, entries,
1170 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1171 goto out_free;
1172 for (i = 0; i < cpuid->nent; i++) {
1173 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1174 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1175 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1176 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1177 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1178 vcpu->arch.cpuid_entries[i].index = 0;
1179 vcpu->arch.cpuid_entries[i].flags = 0;
1180 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1181 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1182 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1183 }
1184 vcpu->arch.cpuid_nent = cpuid->nent;
1185 cpuid_fix_nx_cap(vcpu);
1186 r = 0;
1187
1188 out_free:
1189 vfree(cpuid_entries);
1190 out:
1191 return r;
1192 }
1193
1194 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1195 struct kvm_cpuid2 *cpuid,
1196 struct kvm_cpuid_entry2 __user *entries)
1197 {
1198 int r;
1199
1200 r = -E2BIG;
1201 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1202 goto out;
1203 r = -EFAULT;
1204 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1205 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1206 goto out;
1207 vcpu->arch.cpuid_nent = cpuid->nent;
1208 return 0;
1209
1210 out:
1211 return r;
1212 }
1213
1214 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1215 struct kvm_cpuid2 *cpuid,
1216 struct kvm_cpuid_entry2 __user *entries)
1217 {
1218 int r;
1219
1220 r = -E2BIG;
1221 if (cpuid->nent < vcpu->arch.cpuid_nent)
1222 goto out;
1223 r = -EFAULT;
1224 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1225 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1226 goto out;
1227 return 0;
1228
1229 out:
1230 cpuid->nent = vcpu->arch.cpuid_nent;
1231 return r;
1232 }
1233
1234 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1235 u32 index)
1236 {
1237 entry->function = function;
1238 entry->index = index;
1239 cpuid_count(entry->function, entry->index,
1240 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1241 entry->flags = 0;
1242 }
1243
1244 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1245 u32 index, int *nent, int maxnent)
1246 {
1247 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1248 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1249 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1250 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1251 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1252 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1253 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1254 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1255 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1256 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1257 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1258 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1259 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1260 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1261 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1262 bit(X86_FEATURE_PGE) |
1263 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1264 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1265 bit(X86_FEATURE_SYSCALL) |
1266 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1267 #ifdef CONFIG_X86_64
1268 bit(X86_FEATURE_LM) |
1269 #endif
1270 bit(X86_FEATURE_FXSR_OPT) |
1271 bit(X86_FEATURE_MMXEXT) |
1272 bit(X86_FEATURE_3DNOWEXT) |
1273 bit(X86_FEATURE_3DNOW);
1274 const u32 kvm_supported_word3_x86_features =
1275 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1276 const u32 kvm_supported_word6_x86_features =
1277 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1278 bit(X86_FEATURE_SVM);
1279
1280 /* all calls to cpuid_count() should be made on the same cpu */
1281 get_cpu();
1282 do_cpuid_1_ent(entry, function, index);
1283 ++*nent;
1284
1285 switch (function) {
1286 case 0:
1287 entry->eax = min(entry->eax, (u32)0xb);
1288 break;
1289 case 1:
1290 entry->edx &= kvm_supported_word0_x86_features;
1291 entry->ecx &= kvm_supported_word3_x86_features;
1292 break;
1293 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1294 * may return different values. This forces us to get_cpu() before
1295 * issuing the first command, and also to emulate this annoying behavior
1296 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1297 case 2: {
1298 int t, times = entry->eax & 0xff;
1299
1300 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1301 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1302 for (t = 1; t < times && *nent < maxnent; ++t) {
1303 do_cpuid_1_ent(&entry[t], function, 0);
1304 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1305 ++*nent;
1306 }
1307 break;
1308 }
1309 /* function 4 and 0xb have additional index. */
1310 case 4: {
1311 int i, cache_type;
1312
1313 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1314 /* read more entries until cache_type is zero */
1315 for (i = 1; *nent < maxnent; ++i) {
1316 cache_type = entry[i - 1].eax & 0x1f;
1317 if (!cache_type)
1318 break;
1319 do_cpuid_1_ent(&entry[i], function, i);
1320 entry[i].flags |=
1321 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1322 ++*nent;
1323 }
1324 break;
1325 }
1326 case 0xb: {
1327 int i, level_type;
1328
1329 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1330 /* read more entries until level_type is zero */
1331 for (i = 1; *nent < maxnent; ++i) {
1332 level_type = entry[i - 1].ecx & 0xff00;
1333 if (!level_type)
1334 break;
1335 do_cpuid_1_ent(&entry[i], function, i);
1336 entry[i].flags |=
1337 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1338 ++*nent;
1339 }
1340 break;
1341 }
1342 case 0x80000000:
1343 entry->eax = min(entry->eax, 0x8000001a);
1344 break;
1345 case 0x80000001:
1346 entry->edx &= kvm_supported_word1_x86_features;
1347 entry->ecx &= kvm_supported_word6_x86_features;
1348 break;
1349 }
1350 put_cpu();
1351 }
1352
1353 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1354 struct kvm_cpuid_entry2 __user *entries)
1355 {
1356 struct kvm_cpuid_entry2 *cpuid_entries;
1357 int limit, nent = 0, r = -E2BIG;
1358 u32 func;
1359
1360 if (cpuid->nent < 1)
1361 goto out;
1362 r = -ENOMEM;
1363 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1364 if (!cpuid_entries)
1365 goto out;
1366
1367 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1368 limit = cpuid_entries[0].eax;
1369 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1370 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1371 &nent, cpuid->nent);
1372 r = -E2BIG;
1373 if (nent >= cpuid->nent)
1374 goto out_free;
1375
1376 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1377 limit = cpuid_entries[nent - 1].eax;
1378 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1379 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1380 &nent, cpuid->nent);
1381 r = -EFAULT;
1382 if (copy_to_user(entries, cpuid_entries,
1383 nent * sizeof(struct kvm_cpuid_entry2)))
1384 goto out_free;
1385 cpuid->nent = nent;
1386 r = 0;
1387
1388 out_free:
1389 vfree(cpuid_entries);
1390 out:
1391 return r;
1392 }
1393
1394 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1395 struct kvm_lapic_state *s)
1396 {
1397 vcpu_load(vcpu);
1398 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1399 vcpu_put(vcpu);
1400
1401 return 0;
1402 }
1403
1404 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1405 struct kvm_lapic_state *s)
1406 {
1407 vcpu_load(vcpu);
1408 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1409 kvm_apic_post_state_restore(vcpu);
1410 vcpu_put(vcpu);
1411
1412 return 0;
1413 }
1414
1415 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1416 struct kvm_interrupt *irq)
1417 {
1418 if (irq->irq < 0 || irq->irq >= 256)
1419 return -EINVAL;
1420 if (irqchip_in_kernel(vcpu->kvm))
1421 return -ENXIO;
1422 vcpu_load(vcpu);
1423
1424 set_bit(irq->irq, vcpu->arch.irq_pending);
1425 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1426
1427 vcpu_put(vcpu);
1428
1429 return 0;
1430 }
1431
1432 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1433 {
1434 vcpu_load(vcpu);
1435 kvm_inject_nmi(vcpu);
1436 vcpu_put(vcpu);
1437
1438 return 0;
1439 }
1440
1441 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1442 struct kvm_tpr_access_ctl *tac)
1443 {
1444 if (tac->flags)
1445 return -EINVAL;
1446 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1447 return 0;
1448 }
1449
1450 long kvm_arch_vcpu_ioctl(struct file *filp,
1451 unsigned int ioctl, unsigned long arg)
1452 {
1453 struct kvm_vcpu *vcpu = filp->private_data;
1454 void __user *argp = (void __user *)arg;
1455 int r;
1456 struct kvm_lapic_state *lapic = NULL;
1457
1458 switch (ioctl) {
1459 case KVM_GET_LAPIC: {
1460 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1461
1462 r = -ENOMEM;
1463 if (!lapic)
1464 goto out;
1465 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1466 if (r)
1467 goto out;
1468 r = -EFAULT;
1469 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1470 goto out;
1471 r = 0;
1472 break;
1473 }
1474 case KVM_SET_LAPIC: {
1475 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1476 r = -ENOMEM;
1477 if (!lapic)
1478 goto out;
1479 r = -EFAULT;
1480 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1481 goto out;
1482 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1483 if (r)
1484 goto out;
1485 r = 0;
1486 break;
1487 }
1488 case KVM_INTERRUPT: {
1489 struct kvm_interrupt irq;
1490
1491 r = -EFAULT;
1492 if (copy_from_user(&irq, argp, sizeof irq))
1493 goto out;
1494 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1495 if (r)
1496 goto out;
1497 r = 0;
1498 break;
1499 }
1500 case KVM_NMI: {
1501 r = kvm_vcpu_ioctl_nmi(vcpu);
1502 if (r)
1503 goto out;
1504 r = 0;
1505 break;
1506 }
1507 case KVM_SET_CPUID: {
1508 struct kvm_cpuid __user *cpuid_arg = argp;
1509 struct kvm_cpuid cpuid;
1510
1511 r = -EFAULT;
1512 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1513 goto out;
1514 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1515 if (r)
1516 goto out;
1517 break;
1518 }
1519 case KVM_SET_CPUID2: {
1520 struct kvm_cpuid2 __user *cpuid_arg = argp;
1521 struct kvm_cpuid2 cpuid;
1522
1523 r = -EFAULT;
1524 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1525 goto out;
1526 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1527 cpuid_arg->entries);
1528 if (r)
1529 goto out;
1530 break;
1531 }
1532 case KVM_GET_CPUID2: {
1533 struct kvm_cpuid2 __user *cpuid_arg = argp;
1534 struct kvm_cpuid2 cpuid;
1535
1536 r = -EFAULT;
1537 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1538 goto out;
1539 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1540 cpuid_arg->entries);
1541 if (r)
1542 goto out;
1543 r = -EFAULT;
1544 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1545 goto out;
1546 r = 0;
1547 break;
1548 }
1549 case KVM_GET_MSRS:
1550 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1551 break;
1552 case KVM_SET_MSRS:
1553 r = msr_io(vcpu, argp, do_set_msr, 0);
1554 break;
1555 case KVM_TPR_ACCESS_REPORTING: {
1556 struct kvm_tpr_access_ctl tac;
1557
1558 r = -EFAULT;
1559 if (copy_from_user(&tac, argp, sizeof tac))
1560 goto out;
1561 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1562 if (r)
1563 goto out;
1564 r = -EFAULT;
1565 if (copy_to_user(argp, &tac, sizeof tac))
1566 goto out;
1567 r = 0;
1568 break;
1569 };
1570 case KVM_SET_VAPIC_ADDR: {
1571 struct kvm_vapic_addr va;
1572
1573 r = -EINVAL;
1574 if (!irqchip_in_kernel(vcpu->kvm))
1575 goto out;
1576 r = -EFAULT;
1577 if (copy_from_user(&va, argp, sizeof va))
1578 goto out;
1579 r = 0;
1580 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1581 break;
1582 }
1583 default:
1584 r = -EINVAL;
1585 }
1586 out:
1587 if (lapic)
1588 kfree(lapic);
1589 return r;
1590 }
1591
1592 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1593 {
1594 int ret;
1595
1596 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1597 return -1;
1598 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1599 return ret;
1600 }
1601
1602 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1603 u32 kvm_nr_mmu_pages)
1604 {
1605 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1606 return -EINVAL;
1607
1608 down_write(&kvm->slots_lock);
1609
1610 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1611 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1612
1613 up_write(&kvm->slots_lock);
1614 return 0;
1615 }
1616
1617 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1618 {
1619 return kvm->arch.n_alloc_mmu_pages;
1620 }
1621
1622 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1623 {
1624 int i;
1625 struct kvm_mem_alias *alias;
1626
1627 for (i = 0; i < kvm->arch.naliases; ++i) {
1628 alias = &kvm->arch.aliases[i];
1629 if (gfn >= alias->base_gfn
1630 && gfn < alias->base_gfn + alias->npages)
1631 return alias->target_gfn + gfn - alias->base_gfn;
1632 }
1633 return gfn;
1634 }
1635
1636 /*
1637 * Set a new alias region. Aliases map a portion of physical memory into
1638 * another portion. This is useful for memory windows, for example the PC
1639 * VGA region.
1640 */
1641 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1642 struct kvm_memory_alias *alias)
1643 {
1644 int r, n;
1645 struct kvm_mem_alias *p;
1646
1647 r = -EINVAL;
1648 /* General sanity checks */
1649 if (alias->memory_size & (PAGE_SIZE - 1))
1650 goto out;
1651 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1652 goto out;
1653 if (alias->slot >= KVM_ALIAS_SLOTS)
1654 goto out;
1655 if (alias->guest_phys_addr + alias->memory_size
1656 < alias->guest_phys_addr)
1657 goto out;
1658 if (alias->target_phys_addr + alias->memory_size
1659 < alias->target_phys_addr)
1660 goto out;
1661
1662 down_write(&kvm->slots_lock);
1663 spin_lock(&kvm->mmu_lock);
1664
1665 p = &kvm->arch.aliases[alias->slot];
1666 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1667 p->npages = alias->memory_size >> PAGE_SHIFT;
1668 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1669
1670 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1671 if (kvm->arch.aliases[n - 1].npages)
1672 break;
1673 kvm->arch.naliases = n;
1674
1675 spin_unlock(&kvm->mmu_lock);
1676 kvm_mmu_zap_all(kvm);
1677
1678 up_write(&kvm->slots_lock);
1679
1680 return 0;
1681
1682 out:
1683 return r;
1684 }
1685
1686 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1687 {
1688 int r;
1689
1690 r = 0;
1691 switch (chip->chip_id) {
1692 case KVM_IRQCHIP_PIC_MASTER:
1693 memcpy(&chip->chip.pic,
1694 &pic_irqchip(kvm)->pics[0],
1695 sizeof(struct kvm_pic_state));
1696 break;
1697 case KVM_IRQCHIP_PIC_SLAVE:
1698 memcpy(&chip->chip.pic,
1699 &pic_irqchip(kvm)->pics[1],
1700 sizeof(struct kvm_pic_state));
1701 break;
1702 case KVM_IRQCHIP_IOAPIC:
1703 memcpy(&chip->chip.ioapic,
1704 ioapic_irqchip(kvm),
1705 sizeof(struct kvm_ioapic_state));
1706 break;
1707 default:
1708 r = -EINVAL;
1709 break;
1710 }
1711 return r;
1712 }
1713
1714 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1715 {
1716 int r;
1717
1718 r = 0;
1719 switch (chip->chip_id) {
1720 case KVM_IRQCHIP_PIC_MASTER:
1721 memcpy(&pic_irqchip(kvm)->pics[0],
1722 &chip->chip.pic,
1723 sizeof(struct kvm_pic_state));
1724 break;
1725 case KVM_IRQCHIP_PIC_SLAVE:
1726 memcpy(&pic_irqchip(kvm)->pics[1],
1727 &chip->chip.pic,
1728 sizeof(struct kvm_pic_state));
1729 break;
1730 case KVM_IRQCHIP_IOAPIC:
1731 memcpy(ioapic_irqchip(kvm),
1732 &chip->chip.ioapic,
1733 sizeof(struct kvm_ioapic_state));
1734 break;
1735 default:
1736 r = -EINVAL;
1737 break;
1738 }
1739 kvm_pic_update_irq(pic_irqchip(kvm));
1740 return r;
1741 }
1742
1743 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1744 {
1745 int r = 0;
1746
1747 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1748 return r;
1749 }
1750
1751 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1752 {
1753 int r = 0;
1754
1755 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1756 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1757 return r;
1758 }
1759
1760 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1761 struct kvm_reinject_control *control)
1762 {
1763 if (!kvm->arch.vpit)
1764 return -ENXIO;
1765 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1766 return 0;
1767 }
1768
1769 /*
1770 * Get (and clear) the dirty memory log for a memory slot.
1771 */
1772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1773 struct kvm_dirty_log *log)
1774 {
1775 int r;
1776 int n;
1777 struct kvm_memory_slot *memslot;
1778 int is_dirty = 0;
1779
1780 down_write(&kvm->slots_lock);
1781
1782 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1783 if (r)
1784 goto out;
1785
1786 /* If nothing is dirty, don't bother messing with page tables. */
1787 if (is_dirty) {
1788 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1789 kvm_flush_remote_tlbs(kvm);
1790 memslot = &kvm->memslots[log->slot];
1791 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1792 memset(memslot->dirty_bitmap, 0, n);
1793 }
1794 r = 0;
1795 out:
1796 up_write(&kvm->slots_lock);
1797 return r;
1798 }
1799
1800 long kvm_arch_vm_ioctl(struct file *filp,
1801 unsigned int ioctl, unsigned long arg)
1802 {
1803 struct kvm *kvm = filp->private_data;
1804 void __user *argp = (void __user *)arg;
1805 int r = -EINVAL;
1806 /*
1807 * This union makes it completely explicit to gcc-3.x
1808 * that these two variables' stack usage should be
1809 * combined, not added together.
1810 */
1811 union {
1812 struct kvm_pit_state ps;
1813 struct kvm_memory_alias alias;
1814 } u;
1815
1816 switch (ioctl) {
1817 case KVM_SET_TSS_ADDR:
1818 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1819 if (r < 0)
1820 goto out;
1821 break;
1822 case KVM_SET_MEMORY_REGION: {
1823 struct kvm_memory_region kvm_mem;
1824 struct kvm_userspace_memory_region kvm_userspace_mem;
1825
1826 r = -EFAULT;
1827 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1828 goto out;
1829 kvm_userspace_mem.slot = kvm_mem.slot;
1830 kvm_userspace_mem.flags = kvm_mem.flags;
1831 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1832 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1833 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1834 if (r)
1835 goto out;
1836 break;
1837 }
1838 case KVM_SET_NR_MMU_PAGES:
1839 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1840 if (r)
1841 goto out;
1842 break;
1843 case KVM_GET_NR_MMU_PAGES:
1844 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1845 break;
1846 case KVM_SET_MEMORY_ALIAS:
1847 r = -EFAULT;
1848 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1849 goto out;
1850 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1851 if (r)
1852 goto out;
1853 break;
1854 case KVM_CREATE_IRQCHIP:
1855 r = -ENOMEM;
1856 kvm->arch.vpic = kvm_create_pic(kvm);
1857 if (kvm->arch.vpic) {
1858 r = kvm_ioapic_init(kvm);
1859 if (r) {
1860 kfree(kvm->arch.vpic);
1861 kvm->arch.vpic = NULL;
1862 goto out;
1863 }
1864 } else
1865 goto out;
1866 r = kvm_setup_default_irq_routing(kvm);
1867 if (r) {
1868 kfree(kvm->arch.vpic);
1869 kfree(kvm->arch.vioapic);
1870 goto out;
1871 }
1872 break;
1873 case KVM_CREATE_PIT:
1874 mutex_lock(&kvm->lock);
1875 r = -EEXIST;
1876 if (kvm->arch.vpit)
1877 goto create_pit_unlock;
1878 r = -ENOMEM;
1879 kvm->arch.vpit = kvm_create_pit(kvm);
1880 if (kvm->arch.vpit)
1881 r = 0;
1882 create_pit_unlock:
1883 mutex_unlock(&kvm->lock);
1884 break;
1885 case KVM_IRQ_LINE_STATUS:
1886 case KVM_IRQ_LINE: {
1887 struct kvm_irq_level irq_event;
1888
1889 r = -EFAULT;
1890 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1891 goto out;
1892 if (irqchip_in_kernel(kvm)) {
1893 __s32 status;
1894 mutex_lock(&kvm->lock);
1895 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1896 irq_event.irq, irq_event.level);
1897 mutex_unlock(&kvm->lock);
1898 if (ioctl == KVM_IRQ_LINE_STATUS) {
1899 irq_event.status = status;
1900 if (copy_to_user(argp, &irq_event,
1901 sizeof irq_event))
1902 goto out;
1903 }
1904 r = 0;
1905 }
1906 break;
1907 }
1908 case KVM_GET_IRQCHIP: {
1909 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1910 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1911
1912 r = -ENOMEM;
1913 if (!chip)
1914 goto out;
1915 r = -EFAULT;
1916 if (copy_from_user(chip, argp, sizeof *chip))
1917 goto get_irqchip_out;
1918 r = -ENXIO;
1919 if (!irqchip_in_kernel(kvm))
1920 goto get_irqchip_out;
1921 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1922 if (r)
1923 goto get_irqchip_out;
1924 r = -EFAULT;
1925 if (copy_to_user(argp, chip, sizeof *chip))
1926 goto get_irqchip_out;
1927 r = 0;
1928 get_irqchip_out:
1929 kfree(chip);
1930 if (r)
1931 goto out;
1932 break;
1933 }
1934 case KVM_SET_IRQCHIP: {
1935 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1936 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1937
1938 r = -ENOMEM;
1939 if (!chip)
1940 goto out;
1941 r = -EFAULT;
1942 if (copy_from_user(chip, argp, sizeof *chip))
1943 goto set_irqchip_out;
1944 r = -ENXIO;
1945 if (!irqchip_in_kernel(kvm))
1946 goto set_irqchip_out;
1947 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1948 if (r)
1949 goto set_irqchip_out;
1950 r = 0;
1951 set_irqchip_out:
1952 kfree(chip);
1953 if (r)
1954 goto out;
1955 break;
1956 }
1957 case KVM_GET_PIT: {
1958 r = -EFAULT;
1959 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1960 goto out;
1961 r = -ENXIO;
1962 if (!kvm->arch.vpit)
1963 goto out;
1964 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1965 if (r)
1966 goto out;
1967 r = -EFAULT;
1968 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1969 goto out;
1970 r = 0;
1971 break;
1972 }
1973 case KVM_SET_PIT: {
1974 r = -EFAULT;
1975 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1976 goto out;
1977 r = -ENXIO;
1978 if (!kvm->arch.vpit)
1979 goto out;
1980 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1981 if (r)
1982 goto out;
1983 r = 0;
1984 break;
1985 }
1986 case KVM_REINJECT_CONTROL: {
1987 struct kvm_reinject_control control;
1988 r = -EFAULT;
1989 if (copy_from_user(&control, argp, sizeof(control)))
1990 goto out;
1991 r = kvm_vm_ioctl_reinject(kvm, &control);
1992 if (r)
1993 goto out;
1994 r = 0;
1995 break;
1996 }
1997 default:
1998 ;
1999 }
2000 out:
2001 return r;
2002 }
2003
2004 static void kvm_init_msr_list(void)
2005 {
2006 u32 dummy[2];
2007 unsigned i, j;
2008
2009 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2010 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2011 continue;
2012 if (j < i)
2013 msrs_to_save[j] = msrs_to_save[i];
2014 j++;
2015 }
2016 num_msrs_to_save = j;
2017 }
2018
2019 /*
2020 * Only apic need an MMIO device hook, so shortcut now..
2021 */
2022 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2023 gpa_t addr, int len,
2024 int is_write)
2025 {
2026 struct kvm_io_device *dev;
2027
2028 if (vcpu->arch.apic) {
2029 dev = &vcpu->arch.apic->dev;
2030 if (dev->in_range(dev, addr, len, is_write))
2031 return dev;
2032 }
2033 return NULL;
2034 }
2035
2036
2037 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2038 gpa_t addr, int len,
2039 int is_write)
2040 {
2041 struct kvm_io_device *dev;
2042
2043 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2044 if (dev == NULL)
2045 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2046 is_write);
2047 return dev;
2048 }
2049
2050 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2051 struct kvm_vcpu *vcpu)
2052 {
2053 void *data = val;
2054 int r = X86EMUL_CONTINUE;
2055
2056 while (bytes) {
2057 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2058 unsigned offset = addr & (PAGE_SIZE-1);
2059 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2060 int ret;
2061
2062 if (gpa == UNMAPPED_GVA) {
2063 r = X86EMUL_PROPAGATE_FAULT;
2064 goto out;
2065 }
2066 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2067 if (ret < 0) {
2068 r = X86EMUL_UNHANDLEABLE;
2069 goto out;
2070 }
2071
2072 bytes -= toread;
2073 data += toread;
2074 addr += toread;
2075 }
2076 out:
2077 return r;
2078 }
2079
2080 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2081 struct kvm_vcpu *vcpu)
2082 {
2083 void *data = val;
2084 int r = X86EMUL_CONTINUE;
2085
2086 while (bytes) {
2087 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2088 unsigned offset = addr & (PAGE_SIZE-1);
2089 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2090 int ret;
2091
2092 if (gpa == UNMAPPED_GVA) {
2093 r = X86EMUL_PROPAGATE_FAULT;
2094 goto out;
2095 }
2096 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2097 if (ret < 0) {
2098 r = X86EMUL_UNHANDLEABLE;
2099 goto out;
2100 }
2101
2102 bytes -= towrite;
2103 data += towrite;
2104 addr += towrite;
2105 }
2106 out:
2107 return r;
2108 }
2109
2110
2111 static int emulator_read_emulated(unsigned long addr,
2112 void *val,
2113 unsigned int bytes,
2114 struct kvm_vcpu *vcpu)
2115 {
2116 struct kvm_io_device *mmio_dev;
2117 gpa_t gpa;
2118
2119 if (vcpu->mmio_read_completed) {
2120 memcpy(val, vcpu->mmio_data, bytes);
2121 vcpu->mmio_read_completed = 0;
2122 return X86EMUL_CONTINUE;
2123 }
2124
2125 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2126
2127 /* For APIC access vmexit */
2128 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2129 goto mmio;
2130
2131 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2132 == X86EMUL_CONTINUE)
2133 return X86EMUL_CONTINUE;
2134 if (gpa == UNMAPPED_GVA)
2135 return X86EMUL_PROPAGATE_FAULT;
2136
2137 mmio:
2138 /*
2139 * Is this MMIO handled locally?
2140 */
2141 mutex_lock(&vcpu->kvm->lock);
2142 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2143 if (mmio_dev) {
2144 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2145 mutex_unlock(&vcpu->kvm->lock);
2146 return X86EMUL_CONTINUE;
2147 }
2148 mutex_unlock(&vcpu->kvm->lock);
2149
2150 vcpu->mmio_needed = 1;
2151 vcpu->mmio_phys_addr = gpa;
2152 vcpu->mmio_size = bytes;
2153 vcpu->mmio_is_write = 0;
2154
2155 return X86EMUL_UNHANDLEABLE;
2156 }
2157
2158 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2159 const void *val, int bytes)
2160 {
2161 int ret;
2162
2163 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2164 if (ret < 0)
2165 return 0;
2166 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2167 return 1;
2168 }
2169
2170 static int emulator_write_emulated_onepage(unsigned long addr,
2171 const void *val,
2172 unsigned int bytes,
2173 struct kvm_vcpu *vcpu)
2174 {
2175 struct kvm_io_device *mmio_dev;
2176 gpa_t gpa;
2177
2178 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2179
2180 if (gpa == UNMAPPED_GVA) {
2181 kvm_inject_page_fault(vcpu, addr, 2);
2182 return X86EMUL_PROPAGATE_FAULT;
2183 }
2184
2185 /* For APIC access vmexit */
2186 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2187 goto mmio;
2188
2189 if (emulator_write_phys(vcpu, gpa, val, bytes))
2190 return X86EMUL_CONTINUE;
2191
2192 mmio:
2193 /*
2194 * Is this MMIO handled locally?
2195 */
2196 mutex_lock(&vcpu->kvm->lock);
2197 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2198 if (mmio_dev) {
2199 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2200 mutex_unlock(&vcpu->kvm->lock);
2201 return X86EMUL_CONTINUE;
2202 }
2203 mutex_unlock(&vcpu->kvm->lock);
2204
2205 vcpu->mmio_needed = 1;
2206 vcpu->mmio_phys_addr = gpa;
2207 vcpu->mmio_size = bytes;
2208 vcpu->mmio_is_write = 1;
2209 memcpy(vcpu->mmio_data, val, bytes);
2210
2211 return X86EMUL_CONTINUE;
2212 }
2213
2214 int emulator_write_emulated(unsigned long addr,
2215 const void *val,
2216 unsigned int bytes,
2217 struct kvm_vcpu *vcpu)
2218 {
2219 /* Crossing a page boundary? */
2220 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2221 int rc, now;
2222
2223 now = -addr & ~PAGE_MASK;
2224 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2225 if (rc != X86EMUL_CONTINUE)
2226 return rc;
2227 addr += now;
2228 val += now;
2229 bytes -= now;
2230 }
2231 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2232 }
2233 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2234
2235 static int emulator_cmpxchg_emulated(unsigned long addr,
2236 const void *old,
2237 const void *new,
2238 unsigned int bytes,
2239 struct kvm_vcpu *vcpu)
2240 {
2241 static int reported;
2242
2243 if (!reported) {
2244 reported = 1;
2245 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2246 }
2247 #ifndef CONFIG_X86_64
2248 /* guests cmpxchg8b have to be emulated atomically */
2249 if (bytes == 8) {
2250 gpa_t gpa;
2251 struct page *page;
2252 char *kaddr;
2253 u64 val;
2254
2255 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2256
2257 if (gpa == UNMAPPED_GVA ||
2258 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2259 goto emul_write;
2260
2261 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2262 goto emul_write;
2263
2264 val = *(u64 *)new;
2265
2266 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2267
2268 kaddr = kmap_atomic(page, KM_USER0);
2269 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2270 kunmap_atomic(kaddr, KM_USER0);
2271 kvm_release_page_dirty(page);
2272 }
2273 emul_write:
2274 #endif
2275
2276 return emulator_write_emulated(addr, new, bytes, vcpu);
2277 }
2278
2279 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2280 {
2281 return kvm_x86_ops->get_segment_base(vcpu, seg);
2282 }
2283
2284 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2285 {
2286 kvm_mmu_invlpg(vcpu, address);
2287 return X86EMUL_CONTINUE;
2288 }
2289
2290 int emulate_clts(struct kvm_vcpu *vcpu)
2291 {
2292 KVMTRACE_0D(CLTS, vcpu, handler);
2293 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2294 return X86EMUL_CONTINUE;
2295 }
2296
2297 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2298 {
2299 struct kvm_vcpu *vcpu = ctxt->vcpu;
2300
2301 switch (dr) {
2302 case 0 ... 3:
2303 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2304 return X86EMUL_CONTINUE;
2305 default:
2306 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2307 return X86EMUL_UNHANDLEABLE;
2308 }
2309 }
2310
2311 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2312 {
2313 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2314 int exception;
2315
2316 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2317 if (exception) {
2318 /* FIXME: better handling */
2319 return X86EMUL_UNHANDLEABLE;
2320 }
2321 return X86EMUL_CONTINUE;
2322 }
2323
2324 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2325 {
2326 u8 opcodes[4];
2327 unsigned long rip = kvm_rip_read(vcpu);
2328 unsigned long rip_linear;
2329
2330 if (!printk_ratelimit())
2331 return;
2332
2333 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2334
2335 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2336
2337 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2338 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2339 }
2340 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2341
2342 static struct x86_emulate_ops emulate_ops = {
2343 .read_std = kvm_read_guest_virt,
2344 .read_emulated = emulator_read_emulated,
2345 .write_emulated = emulator_write_emulated,
2346 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2347 };
2348
2349 static void cache_all_regs(struct kvm_vcpu *vcpu)
2350 {
2351 kvm_register_read(vcpu, VCPU_REGS_RAX);
2352 kvm_register_read(vcpu, VCPU_REGS_RSP);
2353 kvm_register_read(vcpu, VCPU_REGS_RIP);
2354 vcpu->arch.regs_dirty = ~0;
2355 }
2356
2357 int emulate_instruction(struct kvm_vcpu *vcpu,
2358 struct kvm_run *run,
2359 unsigned long cr2,
2360 u16 error_code,
2361 int emulation_type)
2362 {
2363 int r;
2364 struct decode_cache *c;
2365
2366 kvm_clear_exception_queue(vcpu);
2367 vcpu->arch.mmio_fault_cr2 = cr2;
2368 /*
2369 * TODO: fix x86_emulate.c to use guest_read/write_register
2370 * instead of direct ->regs accesses, can save hundred cycles
2371 * on Intel for instructions that don't read/change RSP, for
2372 * for example.
2373 */
2374 cache_all_regs(vcpu);
2375
2376 vcpu->mmio_is_write = 0;
2377 vcpu->arch.pio.string = 0;
2378
2379 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2380 int cs_db, cs_l;
2381 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2382
2383 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2384 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2385 vcpu->arch.emulate_ctxt.mode =
2386 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2387 ? X86EMUL_MODE_REAL : cs_l
2388 ? X86EMUL_MODE_PROT64 : cs_db
2389 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2390
2391 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2392
2393 /* Reject the instructions other than VMCALL/VMMCALL when
2394 * try to emulate invalid opcode */
2395 c = &vcpu->arch.emulate_ctxt.decode;
2396 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2397 (!(c->twobyte && c->b == 0x01 &&
2398 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2399 c->modrm_mod == 3 && c->modrm_rm == 1)))
2400 return EMULATE_FAIL;
2401
2402 ++vcpu->stat.insn_emulation;
2403 if (r) {
2404 ++vcpu->stat.insn_emulation_fail;
2405 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2406 return EMULATE_DONE;
2407 return EMULATE_FAIL;
2408 }
2409 }
2410
2411 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2412
2413 if (vcpu->arch.pio.string)
2414 return EMULATE_DO_MMIO;
2415
2416 if ((r || vcpu->mmio_is_write) && run) {
2417 run->exit_reason = KVM_EXIT_MMIO;
2418 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2419 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2420 run->mmio.len = vcpu->mmio_size;
2421 run->mmio.is_write = vcpu->mmio_is_write;
2422 }
2423
2424 if (r) {
2425 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2426 return EMULATE_DONE;
2427 if (!vcpu->mmio_needed) {
2428 kvm_report_emulation_failure(vcpu, "mmio");
2429 return EMULATE_FAIL;
2430 }
2431 return EMULATE_DO_MMIO;
2432 }
2433
2434 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2435
2436 if (vcpu->mmio_is_write) {
2437 vcpu->mmio_needed = 0;
2438 return EMULATE_DO_MMIO;
2439 }
2440
2441 return EMULATE_DONE;
2442 }
2443 EXPORT_SYMBOL_GPL(emulate_instruction);
2444
2445 static int pio_copy_data(struct kvm_vcpu *vcpu)
2446 {
2447 void *p = vcpu->arch.pio_data;
2448 gva_t q = vcpu->arch.pio.guest_gva;
2449 unsigned bytes;
2450 int ret;
2451
2452 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2453 if (vcpu->arch.pio.in)
2454 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2455 else
2456 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2457 return ret;
2458 }
2459
2460 int complete_pio(struct kvm_vcpu *vcpu)
2461 {
2462 struct kvm_pio_request *io = &vcpu->arch.pio;
2463 long delta;
2464 int r;
2465 unsigned long val;
2466
2467 if (!io->string) {
2468 if (io->in) {
2469 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2470 memcpy(&val, vcpu->arch.pio_data, io->size);
2471 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2472 }
2473 } else {
2474 if (io->in) {
2475 r = pio_copy_data(vcpu);
2476 if (r)
2477 return r;
2478 }
2479
2480 delta = 1;
2481 if (io->rep) {
2482 delta *= io->cur_count;
2483 /*
2484 * The size of the register should really depend on
2485 * current address size.
2486 */
2487 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2488 val -= delta;
2489 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2490 }
2491 if (io->down)
2492 delta = -delta;
2493 delta *= io->size;
2494 if (io->in) {
2495 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2496 val += delta;
2497 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2498 } else {
2499 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2500 val += delta;
2501 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2502 }
2503 }
2504
2505 io->count -= io->cur_count;
2506 io->cur_count = 0;
2507
2508 return 0;
2509 }
2510
2511 static void kernel_pio(struct kvm_io_device *pio_dev,
2512 struct kvm_vcpu *vcpu,
2513 void *pd)
2514 {
2515 /* TODO: String I/O for in kernel device */
2516
2517 mutex_lock(&vcpu->kvm->lock);
2518 if (vcpu->arch.pio.in)
2519 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2520 vcpu->arch.pio.size,
2521 pd);
2522 else
2523 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2524 vcpu->arch.pio.size,
2525 pd);
2526 mutex_unlock(&vcpu->kvm->lock);
2527 }
2528
2529 static void pio_string_write(struct kvm_io_device *pio_dev,
2530 struct kvm_vcpu *vcpu)
2531 {
2532 struct kvm_pio_request *io = &vcpu->arch.pio;
2533 void *pd = vcpu->arch.pio_data;
2534 int i;
2535
2536 mutex_lock(&vcpu->kvm->lock);
2537 for (i = 0; i < io->cur_count; i++) {
2538 kvm_iodevice_write(pio_dev, io->port,
2539 io->size,
2540 pd);
2541 pd += io->size;
2542 }
2543 mutex_unlock(&vcpu->kvm->lock);
2544 }
2545
2546 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2547 gpa_t addr, int len,
2548 int is_write)
2549 {
2550 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2551 }
2552
2553 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2554 int size, unsigned port)
2555 {
2556 struct kvm_io_device *pio_dev;
2557 unsigned long val;
2558
2559 vcpu->run->exit_reason = KVM_EXIT_IO;
2560 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2561 vcpu->run->io.size = vcpu->arch.pio.size = size;
2562 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2563 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2564 vcpu->run->io.port = vcpu->arch.pio.port = port;
2565 vcpu->arch.pio.in = in;
2566 vcpu->arch.pio.string = 0;
2567 vcpu->arch.pio.down = 0;
2568 vcpu->arch.pio.rep = 0;
2569
2570 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2571 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2572 handler);
2573 else
2574 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2575 handler);
2576
2577 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2578 memcpy(vcpu->arch.pio_data, &val, 4);
2579
2580 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2581 if (pio_dev) {
2582 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2583 complete_pio(vcpu);
2584 return 1;
2585 }
2586 return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2589
2590 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2591 int size, unsigned long count, int down,
2592 gva_t address, int rep, unsigned port)
2593 {
2594 unsigned now, in_page;
2595 int ret = 0;
2596 struct kvm_io_device *pio_dev;
2597
2598 vcpu->run->exit_reason = KVM_EXIT_IO;
2599 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2600 vcpu->run->io.size = vcpu->arch.pio.size = size;
2601 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2602 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2603 vcpu->run->io.port = vcpu->arch.pio.port = port;
2604 vcpu->arch.pio.in = in;
2605 vcpu->arch.pio.string = 1;
2606 vcpu->arch.pio.down = down;
2607 vcpu->arch.pio.rep = rep;
2608
2609 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2610 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2611 handler);
2612 else
2613 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2614 handler);
2615
2616 if (!count) {
2617 kvm_x86_ops->skip_emulated_instruction(vcpu);
2618 return 1;
2619 }
2620
2621 if (!down)
2622 in_page = PAGE_SIZE - offset_in_page(address);
2623 else
2624 in_page = offset_in_page(address) + size;
2625 now = min(count, (unsigned long)in_page / size);
2626 if (!now)
2627 now = 1;
2628 if (down) {
2629 /*
2630 * String I/O in reverse. Yuck. Kill the guest, fix later.
2631 */
2632 pr_unimpl(vcpu, "guest string pio down\n");
2633 kvm_inject_gp(vcpu, 0);
2634 return 1;
2635 }
2636 vcpu->run->io.count = now;
2637 vcpu->arch.pio.cur_count = now;
2638
2639 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2640 kvm_x86_ops->skip_emulated_instruction(vcpu);
2641
2642 vcpu->arch.pio.guest_gva = address;
2643
2644 pio_dev = vcpu_find_pio_dev(vcpu, port,
2645 vcpu->arch.pio.cur_count,
2646 !vcpu->arch.pio.in);
2647 if (!vcpu->arch.pio.in) {
2648 /* string PIO write */
2649 ret = pio_copy_data(vcpu);
2650 if (ret == X86EMUL_PROPAGATE_FAULT) {
2651 kvm_inject_gp(vcpu, 0);
2652 return 1;
2653 }
2654 if (ret == 0 && pio_dev) {
2655 pio_string_write(pio_dev, vcpu);
2656 complete_pio(vcpu);
2657 if (vcpu->arch.pio.count == 0)
2658 ret = 1;
2659 }
2660 } else if (pio_dev)
2661 pr_unimpl(vcpu, "no string pio read support yet, "
2662 "port %x size %d count %ld\n",
2663 port, size, count);
2664
2665 return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2668
2669 static void bounce_off(void *info)
2670 {
2671 /* nothing */
2672 }
2673
2674 static unsigned int ref_freq;
2675 static unsigned long tsc_khz_ref;
2676
2677 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2678 void *data)
2679 {
2680 struct cpufreq_freqs *freq = data;
2681 struct kvm *kvm;
2682 struct kvm_vcpu *vcpu;
2683 int i, send_ipi = 0;
2684
2685 if (!ref_freq)
2686 ref_freq = freq->old;
2687
2688 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2689 return 0;
2690 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2691 return 0;
2692 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2693
2694 spin_lock(&kvm_lock);
2695 list_for_each_entry(kvm, &vm_list, vm_list) {
2696 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2697 vcpu = kvm->vcpus[i];
2698 if (!vcpu)
2699 continue;
2700 if (vcpu->cpu != freq->cpu)
2701 continue;
2702 if (!kvm_request_guest_time_update(vcpu))
2703 continue;
2704 if (vcpu->cpu != smp_processor_id())
2705 send_ipi++;
2706 }
2707 }
2708 spin_unlock(&kvm_lock);
2709
2710 if (freq->old < freq->new && send_ipi) {
2711 /*
2712 * We upscale the frequency. Must make the guest
2713 * doesn't see old kvmclock values while running with
2714 * the new frequency, otherwise we risk the guest sees
2715 * time go backwards.
2716 *
2717 * In case we update the frequency for another cpu
2718 * (which might be in guest context) send an interrupt
2719 * to kick the cpu out of guest context. Next time
2720 * guest context is entered kvmclock will be updated,
2721 * so the guest will not see stale values.
2722 */
2723 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2724 }
2725 return 0;
2726 }
2727
2728 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2729 .notifier_call = kvmclock_cpufreq_notifier
2730 };
2731
2732 int kvm_arch_init(void *opaque)
2733 {
2734 int r, cpu;
2735 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2736
2737 if (kvm_x86_ops) {
2738 printk(KERN_ERR "kvm: already loaded the other module\n");
2739 r = -EEXIST;
2740 goto out;
2741 }
2742
2743 if (!ops->cpu_has_kvm_support()) {
2744 printk(KERN_ERR "kvm: no hardware support\n");
2745 r = -EOPNOTSUPP;
2746 goto out;
2747 }
2748 if (ops->disabled_by_bios()) {
2749 printk(KERN_ERR "kvm: disabled by bios\n");
2750 r = -EOPNOTSUPP;
2751 goto out;
2752 }
2753
2754 r = kvm_mmu_module_init();
2755 if (r)
2756 goto out;
2757
2758 kvm_init_msr_list();
2759
2760 kvm_x86_ops = ops;
2761 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2762 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2763 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2764 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2765
2766 for_each_possible_cpu(cpu)
2767 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2768 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2769 tsc_khz_ref = tsc_khz;
2770 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2771 CPUFREQ_TRANSITION_NOTIFIER);
2772 }
2773
2774 return 0;
2775
2776 out:
2777 return r;
2778 }
2779
2780 void kvm_arch_exit(void)
2781 {
2782 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2783 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2784 CPUFREQ_TRANSITION_NOTIFIER);
2785 kvm_x86_ops = NULL;
2786 kvm_mmu_module_exit();
2787 }
2788
2789 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2790 {
2791 ++vcpu->stat.halt_exits;
2792 KVMTRACE_0D(HLT, vcpu, handler);
2793 if (irqchip_in_kernel(vcpu->kvm)) {
2794 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2795 return 1;
2796 } else {
2797 vcpu->run->exit_reason = KVM_EXIT_HLT;
2798 return 0;
2799 }
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2802
2803 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2804 unsigned long a1)
2805 {
2806 if (is_long_mode(vcpu))
2807 return a0;
2808 else
2809 return a0 | ((gpa_t)a1 << 32);
2810 }
2811
2812 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2813 {
2814 unsigned long nr, a0, a1, a2, a3, ret;
2815 int r = 1;
2816
2817 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2818 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2819 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2820 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2821 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2822
2823 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2824
2825 if (!is_long_mode(vcpu)) {
2826 nr &= 0xFFFFFFFF;
2827 a0 &= 0xFFFFFFFF;
2828 a1 &= 0xFFFFFFFF;
2829 a2 &= 0xFFFFFFFF;
2830 a3 &= 0xFFFFFFFF;
2831 }
2832
2833 switch (nr) {
2834 case KVM_HC_VAPIC_POLL_IRQ:
2835 ret = 0;
2836 break;
2837 case KVM_HC_MMU_OP:
2838 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2839 break;
2840 default:
2841 ret = -KVM_ENOSYS;
2842 break;
2843 }
2844 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2845 ++vcpu->stat.hypercalls;
2846 return r;
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2849
2850 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2851 {
2852 char instruction[3];
2853 int ret = 0;
2854 unsigned long rip = kvm_rip_read(vcpu);
2855
2856
2857 /*
2858 * Blow out the MMU to ensure that no other VCPU has an active mapping
2859 * to ensure that the updated hypercall appears atomically across all
2860 * VCPUs.
2861 */
2862 kvm_mmu_zap_all(vcpu->kvm);
2863
2864 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2865 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2866 != X86EMUL_CONTINUE)
2867 ret = -EFAULT;
2868
2869 return ret;
2870 }
2871
2872 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2873 {
2874 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2875 }
2876
2877 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2878 {
2879 struct descriptor_table dt = { limit, base };
2880
2881 kvm_x86_ops->set_gdt(vcpu, &dt);
2882 }
2883
2884 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2885 {
2886 struct descriptor_table dt = { limit, base };
2887
2888 kvm_x86_ops->set_idt(vcpu, &dt);
2889 }
2890
2891 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2892 unsigned long *rflags)
2893 {
2894 kvm_lmsw(vcpu, msw);
2895 *rflags = kvm_x86_ops->get_rflags(vcpu);
2896 }
2897
2898 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2899 {
2900 unsigned long value;
2901
2902 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2903 switch (cr) {
2904 case 0:
2905 value = vcpu->arch.cr0;
2906 break;
2907 case 2:
2908 value = vcpu->arch.cr2;
2909 break;
2910 case 3:
2911 value = vcpu->arch.cr3;
2912 break;
2913 case 4:
2914 value = vcpu->arch.cr4;
2915 break;
2916 case 8:
2917 value = kvm_get_cr8(vcpu);
2918 break;
2919 default:
2920 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2921 return 0;
2922 }
2923 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2924 (u32)((u64)value >> 32), handler);
2925
2926 return value;
2927 }
2928
2929 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2930 unsigned long *rflags)
2931 {
2932 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2933 (u32)((u64)val >> 32), handler);
2934
2935 switch (cr) {
2936 case 0:
2937 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2938 *rflags = kvm_x86_ops->get_rflags(vcpu);
2939 break;
2940 case 2:
2941 vcpu->arch.cr2 = val;
2942 break;
2943 case 3:
2944 kvm_set_cr3(vcpu, val);
2945 break;
2946 case 4:
2947 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2948 break;
2949 case 8:
2950 kvm_set_cr8(vcpu, val & 0xfUL);
2951 break;
2952 default:
2953 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2954 }
2955 }
2956
2957 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2958 {
2959 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2960 int j, nent = vcpu->arch.cpuid_nent;
2961
2962 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2963 /* when no next entry is found, the current entry[i] is reselected */
2964 for (j = i + 1; ; j = (j + 1) % nent) {
2965 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2966 if (ej->function == e->function) {
2967 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2968 return j;
2969 }
2970 }
2971 return 0; /* silence gcc, even though control never reaches here */
2972 }
2973
2974 /* find an entry with matching function, matching index (if needed), and that
2975 * should be read next (if it's stateful) */
2976 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2977 u32 function, u32 index)
2978 {
2979 if (e->function != function)
2980 return 0;
2981 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2982 return 0;
2983 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2984 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2985 return 0;
2986 return 1;
2987 }
2988
2989 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2990 u32 function, u32 index)
2991 {
2992 int i;
2993 struct kvm_cpuid_entry2 *best = NULL;
2994
2995 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2996 struct kvm_cpuid_entry2 *e;
2997
2998 e = &vcpu->arch.cpuid_entries[i];
2999 if (is_matching_cpuid_entry(e, function, index)) {
3000 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3001 move_to_next_stateful_cpuid_entry(vcpu, i);
3002 best = e;
3003 break;
3004 }
3005 /*
3006 * Both basic or both extended?
3007 */
3008 if (((e->function ^ function) & 0x80000000) == 0)
3009 if (!best || e->function > best->function)
3010 best = e;
3011 }
3012 return best;
3013 }
3014
3015 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3016 {
3017 u32 function, index;
3018 struct kvm_cpuid_entry2 *best;
3019
3020 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3021 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3022 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3023 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3024 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3025 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3026 best = kvm_find_cpuid_entry(vcpu, function, index);
3027 if (best) {
3028 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3029 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3030 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3031 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3032 }
3033 kvm_x86_ops->skip_emulated_instruction(vcpu);
3034 KVMTRACE_5D(CPUID, vcpu, function,
3035 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3036 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3037 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3038 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3041
3042 /*
3043 * Check if userspace requested an interrupt window, and that the
3044 * interrupt window is open.
3045 *
3046 * No need to exit to userspace if we already have an interrupt queued.
3047 */
3048 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3049 struct kvm_run *kvm_run)
3050 {
3051 return (!vcpu->arch.irq_summary &&
3052 kvm_run->request_interrupt_window &&
3053 vcpu->arch.interrupt_window_open &&
3054 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3055 }
3056
3057 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3058 struct kvm_run *kvm_run)
3059 {
3060 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3061 kvm_run->cr8 = kvm_get_cr8(vcpu);
3062 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3063 if (irqchip_in_kernel(vcpu->kvm))
3064 kvm_run->ready_for_interrupt_injection = 1;
3065 else
3066 kvm_run->ready_for_interrupt_injection =
3067 (vcpu->arch.interrupt_window_open &&
3068 vcpu->arch.irq_summary == 0);
3069 }
3070
3071 static void vapic_enter(struct kvm_vcpu *vcpu)
3072 {
3073 struct kvm_lapic *apic = vcpu->arch.apic;
3074 struct page *page;
3075
3076 if (!apic || !apic->vapic_addr)
3077 return;
3078
3079 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3080
3081 vcpu->arch.apic->vapic_page = page;
3082 }
3083
3084 static void vapic_exit(struct kvm_vcpu *vcpu)
3085 {
3086 struct kvm_lapic *apic = vcpu->arch.apic;
3087
3088 if (!apic || !apic->vapic_addr)
3089 return;
3090
3091 down_read(&vcpu->kvm->slots_lock);
3092 kvm_release_page_dirty(apic->vapic_page);
3093 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3094 up_read(&vcpu->kvm->slots_lock);
3095 }
3096
3097 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3098 {
3099 int r;
3100
3101 if (vcpu->requests)
3102 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3103 kvm_mmu_unload(vcpu);
3104
3105 r = kvm_mmu_reload(vcpu);
3106 if (unlikely(r))
3107 goto out;
3108
3109 if (vcpu->requests) {
3110 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3111 __kvm_migrate_timers(vcpu);
3112 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3113 kvm_write_guest_time(vcpu);
3114 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3115 kvm_mmu_sync_roots(vcpu);
3116 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3117 kvm_x86_ops->tlb_flush(vcpu);
3118 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3119 &vcpu->requests)) {
3120 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3121 r = 0;
3122 goto out;
3123 }
3124 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3125 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3126 r = 0;
3127 goto out;
3128 }
3129 }
3130
3131 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3132 kvm_inject_pending_timer_irqs(vcpu);
3133
3134 preempt_disable();
3135
3136 kvm_x86_ops->prepare_guest_switch(vcpu);
3137 kvm_load_guest_fpu(vcpu);
3138
3139 local_irq_disable();
3140
3141 if (vcpu->requests || need_resched() || signal_pending(current)) {
3142 local_irq_enable();
3143 preempt_enable();
3144 r = 1;
3145 goto out;
3146 }
3147
3148 vcpu->guest_mode = 1;
3149 /*
3150 * Make sure that guest_mode assignment won't happen after
3151 * testing the pending IRQ vector bitmap.
3152 */
3153 smp_wmb();
3154
3155 if (vcpu->arch.exception.pending)
3156 __queue_exception(vcpu);
3157 else if (irqchip_in_kernel(vcpu->kvm))
3158 kvm_x86_ops->inject_pending_irq(vcpu);
3159 else
3160 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3161
3162 kvm_lapic_sync_to_vapic(vcpu);
3163
3164 up_read(&vcpu->kvm->slots_lock);
3165
3166 kvm_guest_enter();
3167
3168 get_debugreg(vcpu->arch.host_dr6, 6);
3169 get_debugreg(vcpu->arch.host_dr7, 7);
3170 if (unlikely(vcpu->arch.switch_db_regs)) {
3171 get_debugreg(vcpu->arch.host_db[0], 0);
3172 get_debugreg(vcpu->arch.host_db[1], 1);
3173 get_debugreg(vcpu->arch.host_db[2], 2);
3174 get_debugreg(vcpu->arch.host_db[3], 3);
3175
3176 set_debugreg(0, 7);
3177 set_debugreg(vcpu->arch.eff_db[0], 0);
3178 set_debugreg(vcpu->arch.eff_db[1], 1);
3179 set_debugreg(vcpu->arch.eff_db[2], 2);
3180 set_debugreg(vcpu->arch.eff_db[3], 3);
3181 }
3182
3183 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3184 kvm_x86_ops->run(vcpu, kvm_run);
3185
3186 if (unlikely(vcpu->arch.switch_db_regs)) {
3187 set_debugreg(0, 7);
3188 set_debugreg(vcpu->arch.host_db[0], 0);
3189 set_debugreg(vcpu->arch.host_db[1], 1);
3190 set_debugreg(vcpu->arch.host_db[2], 2);
3191 set_debugreg(vcpu->arch.host_db[3], 3);
3192 }
3193 set_debugreg(vcpu->arch.host_dr6, 6);
3194 set_debugreg(vcpu->arch.host_dr7, 7);
3195
3196 vcpu->guest_mode = 0;
3197 local_irq_enable();
3198
3199 ++vcpu->stat.exits;
3200
3201 /*
3202 * We must have an instruction between local_irq_enable() and
3203 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3204 * the interrupt shadow. The stat.exits increment will do nicely.
3205 * But we need to prevent reordering, hence this barrier():
3206 */
3207 barrier();
3208
3209 kvm_guest_exit();
3210
3211 preempt_enable();
3212
3213 down_read(&vcpu->kvm->slots_lock);
3214
3215 /*
3216 * Profile KVM exit RIPs:
3217 */
3218 if (unlikely(prof_on == KVM_PROFILING)) {
3219 unsigned long rip = kvm_rip_read(vcpu);
3220 profile_hit(KVM_PROFILING, (void *)rip);
3221 }
3222
3223 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3224 vcpu->arch.exception.pending = false;
3225
3226 kvm_lapic_sync_from_vapic(vcpu);
3227
3228 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3229 out:
3230 return r;
3231 }
3232
3233 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3234 {
3235 int r;
3236
3237 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3238 pr_debug("vcpu %d received sipi with vector # %x\n",
3239 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3240 kvm_lapic_reset(vcpu);
3241 r = kvm_arch_vcpu_reset(vcpu);
3242 if (r)
3243 return r;
3244 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3245 }
3246
3247 down_read(&vcpu->kvm->slots_lock);
3248 vapic_enter(vcpu);
3249
3250 r = 1;
3251 while (r > 0) {
3252 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3253 r = vcpu_enter_guest(vcpu, kvm_run);
3254 else {
3255 up_read(&vcpu->kvm->slots_lock);
3256 kvm_vcpu_block(vcpu);
3257 down_read(&vcpu->kvm->slots_lock);
3258 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3259 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3260 vcpu->arch.mp_state =
3261 KVM_MP_STATE_RUNNABLE;
3262 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3263 r = -EINTR;
3264 }
3265
3266 if (r > 0) {
3267 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3268 r = -EINTR;
3269 kvm_run->exit_reason = KVM_EXIT_INTR;
3270 ++vcpu->stat.request_irq_exits;
3271 }
3272 if (signal_pending(current)) {
3273 r = -EINTR;
3274 kvm_run->exit_reason = KVM_EXIT_INTR;
3275 ++vcpu->stat.signal_exits;
3276 }
3277 if (need_resched()) {
3278 up_read(&vcpu->kvm->slots_lock);
3279 kvm_resched(vcpu);
3280 down_read(&vcpu->kvm->slots_lock);
3281 }
3282 }
3283 }
3284
3285 up_read(&vcpu->kvm->slots_lock);
3286 post_kvm_run_save(vcpu, kvm_run);
3287
3288 vapic_exit(vcpu);
3289
3290 return r;
3291 }
3292
3293 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3294 {
3295 int r;
3296 sigset_t sigsaved;
3297
3298 vcpu_load(vcpu);
3299
3300 if (vcpu->sigset_active)
3301 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3302
3303 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3304 kvm_vcpu_block(vcpu);
3305 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3306 r = -EAGAIN;
3307 goto out;
3308 }
3309
3310 /* re-sync apic's tpr */
3311 if (!irqchip_in_kernel(vcpu->kvm))
3312 kvm_set_cr8(vcpu, kvm_run->cr8);
3313
3314 if (vcpu->arch.pio.cur_count) {
3315 r = complete_pio(vcpu);
3316 if (r)
3317 goto out;
3318 }
3319 #if CONFIG_HAS_IOMEM
3320 if (vcpu->mmio_needed) {
3321 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3322 vcpu->mmio_read_completed = 1;
3323 vcpu->mmio_needed = 0;
3324
3325 down_read(&vcpu->kvm->slots_lock);
3326 r = emulate_instruction(vcpu, kvm_run,
3327 vcpu->arch.mmio_fault_cr2, 0,
3328 EMULTYPE_NO_DECODE);
3329 up_read(&vcpu->kvm->slots_lock);
3330 if (r == EMULATE_DO_MMIO) {
3331 /*
3332 * Read-modify-write. Back to userspace.
3333 */
3334 r = 0;
3335 goto out;
3336 }
3337 }
3338 #endif
3339 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3340 kvm_register_write(vcpu, VCPU_REGS_RAX,
3341 kvm_run->hypercall.ret);
3342
3343 r = __vcpu_run(vcpu, kvm_run);
3344
3345 out:
3346 if (vcpu->sigset_active)
3347 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3348
3349 vcpu_put(vcpu);
3350 return r;
3351 }
3352
3353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3354 {
3355 vcpu_load(vcpu);
3356
3357 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3358 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3359 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3360 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3361 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3362 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3363 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3364 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3365 #ifdef CONFIG_X86_64
3366 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3367 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3368 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3369 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3370 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3371 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3372 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3373 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3374 #endif
3375
3376 regs->rip = kvm_rip_read(vcpu);
3377 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3378
3379 /*
3380 * Don't leak debug flags in case they were set for guest debugging
3381 */
3382 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3383 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3384
3385 vcpu_put(vcpu);
3386
3387 return 0;
3388 }
3389
3390 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3391 {
3392 vcpu_load(vcpu);
3393
3394 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3395 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3396 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3397 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3398 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3399 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3400 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3401 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3402 #ifdef CONFIG_X86_64
3403 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3404 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3405 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3406 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3407 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3408 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3409 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3410 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3411
3412 #endif
3413
3414 kvm_rip_write(vcpu, regs->rip);
3415 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3416
3417
3418 vcpu->arch.exception.pending = false;
3419
3420 vcpu_put(vcpu);
3421
3422 return 0;
3423 }
3424
3425 void kvm_get_segment(struct kvm_vcpu *vcpu,
3426 struct kvm_segment *var, int seg)
3427 {
3428 kvm_x86_ops->get_segment(vcpu, var, seg);
3429 }
3430
3431 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3432 {
3433 struct kvm_segment cs;
3434
3435 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3436 *db = cs.db;
3437 *l = cs.l;
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3440
3441 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3442 struct kvm_sregs *sregs)
3443 {
3444 struct descriptor_table dt;
3445 int pending_vec;
3446
3447 vcpu_load(vcpu);
3448
3449 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3450 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3451 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3452 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3453 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3454 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3455
3456 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3457 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3458
3459 kvm_x86_ops->get_idt(vcpu, &dt);
3460 sregs->idt.limit = dt.limit;
3461 sregs->idt.base = dt.base;
3462 kvm_x86_ops->get_gdt(vcpu, &dt);
3463 sregs->gdt.limit = dt.limit;
3464 sregs->gdt.base = dt.base;
3465
3466 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3467 sregs->cr0 = vcpu->arch.cr0;
3468 sregs->cr2 = vcpu->arch.cr2;
3469 sregs->cr3 = vcpu->arch.cr3;
3470 sregs->cr4 = vcpu->arch.cr4;
3471 sregs->cr8 = kvm_get_cr8(vcpu);
3472 sregs->efer = vcpu->arch.shadow_efer;
3473 sregs->apic_base = kvm_get_apic_base(vcpu);
3474
3475 if (irqchip_in_kernel(vcpu->kvm)) {
3476 memset(sregs->interrupt_bitmap, 0,
3477 sizeof sregs->interrupt_bitmap);
3478 pending_vec = kvm_x86_ops->get_irq(vcpu);
3479 if (pending_vec >= 0)
3480 set_bit(pending_vec,
3481 (unsigned long *)sregs->interrupt_bitmap);
3482 } else
3483 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3484 sizeof sregs->interrupt_bitmap);
3485
3486 vcpu_put(vcpu);
3487
3488 return 0;
3489 }
3490
3491 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3492 struct kvm_mp_state *mp_state)
3493 {
3494 vcpu_load(vcpu);
3495 mp_state->mp_state = vcpu->arch.mp_state;
3496 vcpu_put(vcpu);
3497 return 0;
3498 }
3499
3500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3501 struct kvm_mp_state *mp_state)
3502 {
3503 vcpu_load(vcpu);
3504 vcpu->arch.mp_state = mp_state->mp_state;
3505 vcpu_put(vcpu);
3506 return 0;
3507 }
3508
3509 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3510 struct kvm_segment *var, int seg)
3511 {
3512 kvm_x86_ops->set_segment(vcpu, var, seg);
3513 }
3514
3515 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3516 struct kvm_segment *kvm_desct)
3517 {
3518 kvm_desct->base = seg_desc->base0;
3519 kvm_desct->base |= seg_desc->base1 << 16;
3520 kvm_desct->base |= seg_desc->base2 << 24;
3521 kvm_desct->limit = seg_desc->limit0;
3522 kvm_desct->limit |= seg_desc->limit << 16;
3523 if (seg_desc->g) {
3524 kvm_desct->limit <<= 12;
3525 kvm_desct->limit |= 0xfff;
3526 }
3527 kvm_desct->selector = selector;
3528 kvm_desct->type = seg_desc->type;
3529 kvm_desct->present = seg_desc->p;
3530 kvm_desct->dpl = seg_desc->dpl;
3531 kvm_desct->db = seg_desc->d;
3532 kvm_desct->s = seg_desc->s;
3533 kvm_desct->l = seg_desc->l;
3534 kvm_desct->g = seg_desc->g;
3535 kvm_desct->avl = seg_desc->avl;
3536 if (!selector)
3537 kvm_desct->unusable = 1;
3538 else
3539 kvm_desct->unusable = 0;
3540 kvm_desct->padding = 0;
3541 }
3542
3543 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3544 u16 selector,
3545 struct descriptor_table *dtable)
3546 {
3547 if (selector & 1 << 2) {
3548 struct kvm_segment kvm_seg;
3549
3550 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3551
3552 if (kvm_seg.unusable)
3553 dtable->limit = 0;
3554 else
3555 dtable->limit = kvm_seg.limit;
3556 dtable->base = kvm_seg.base;
3557 }
3558 else
3559 kvm_x86_ops->get_gdt(vcpu, dtable);
3560 }
3561
3562 /* allowed just for 8 bytes segments */
3563 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3564 struct desc_struct *seg_desc)
3565 {
3566 gpa_t gpa;
3567 struct descriptor_table dtable;
3568 u16 index = selector >> 3;
3569
3570 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3571
3572 if (dtable.limit < index * 8 + 7) {
3573 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3574 return 1;
3575 }
3576 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3577 gpa += index * 8;
3578 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3579 }
3580
3581 /* allowed just for 8 bytes segments */
3582 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3583 struct desc_struct *seg_desc)
3584 {
3585 gpa_t gpa;
3586 struct descriptor_table dtable;
3587 u16 index = selector >> 3;
3588
3589 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3590
3591 if (dtable.limit < index * 8 + 7)
3592 return 1;
3593 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3594 gpa += index * 8;
3595 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3596 }
3597
3598 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3599 struct desc_struct *seg_desc)
3600 {
3601 u32 base_addr;
3602
3603 base_addr = seg_desc->base0;
3604 base_addr |= (seg_desc->base1 << 16);
3605 base_addr |= (seg_desc->base2 << 24);
3606
3607 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3608 }
3609
3610 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3611 {
3612 struct kvm_segment kvm_seg;
3613
3614 kvm_get_segment(vcpu, &kvm_seg, seg);
3615 return kvm_seg.selector;
3616 }
3617
3618 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3619 u16 selector,
3620 struct kvm_segment *kvm_seg)
3621 {
3622 struct desc_struct seg_desc;
3623
3624 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3625 return 1;
3626 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3627 return 0;
3628 }
3629
3630 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3631 {
3632 struct kvm_segment segvar = {
3633 .base = selector << 4,
3634 .limit = 0xffff,
3635 .selector = selector,
3636 .type = 3,
3637 .present = 1,
3638 .dpl = 3,
3639 .db = 0,
3640 .s = 1,
3641 .l = 0,
3642 .g = 0,
3643 .avl = 0,
3644 .unusable = 0,
3645 };
3646 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3647 return 0;
3648 }
3649
3650 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3651 int type_bits, int seg)
3652 {
3653 struct kvm_segment kvm_seg;
3654
3655 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3656 return kvm_load_realmode_segment(vcpu, selector, seg);
3657 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3658 return 1;
3659 kvm_seg.type |= type_bits;
3660
3661 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3662 seg != VCPU_SREG_LDTR)
3663 if (!kvm_seg.s)
3664 kvm_seg.unusable = 1;
3665
3666 kvm_set_segment(vcpu, &kvm_seg, seg);
3667 return 0;
3668 }
3669
3670 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3671 struct tss_segment_32 *tss)
3672 {
3673 tss->cr3 = vcpu->arch.cr3;
3674 tss->eip = kvm_rip_read(vcpu);
3675 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3676 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3677 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3678 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3679 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3680 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3681 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3682 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3683 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3684 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3685 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3686 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3687 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3688 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3689 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3690 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3691 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3692 }
3693
3694 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3695 struct tss_segment_32 *tss)
3696 {
3697 kvm_set_cr3(vcpu, tss->cr3);
3698
3699 kvm_rip_write(vcpu, tss->eip);
3700 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3701
3702 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3703 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3704 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3705 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3706 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3707 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3708 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3709 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3710
3711 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3712 return 1;
3713
3714 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3715 return 1;
3716
3717 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3718 return 1;
3719
3720 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3721 return 1;
3722
3723 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3724 return 1;
3725
3726 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3727 return 1;
3728
3729 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3730 return 1;
3731 return 0;
3732 }
3733
3734 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3735 struct tss_segment_16 *tss)
3736 {
3737 tss->ip = kvm_rip_read(vcpu);
3738 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3739 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3740 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3741 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3742 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3743 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3744 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3745 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3746 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3747
3748 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3749 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3750 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3751 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3752 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3753 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3754 }
3755
3756 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3757 struct tss_segment_16 *tss)
3758 {
3759 kvm_rip_write(vcpu, tss->ip);
3760 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3761 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3762 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3763 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3764 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3765 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3766 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3767 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3768 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3769
3770 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3771 return 1;
3772
3773 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3774 return 1;
3775
3776 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3777 return 1;
3778
3779 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3780 return 1;
3781
3782 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3783 return 1;
3784 return 0;
3785 }
3786
3787 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3788 u32 old_tss_base,
3789 struct desc_struct *nseg_desc)
3790 {
3791 struct tss_segment_16 tss_segment_16;
3792 int ret = 0;
3793
3794 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3795 sizeof tss_segment_16))
3796 goto out;
3797
3798 save_state_to_tss16(vcpu, &tss_segment_16);
3799
3800 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3801 sizeof tss_segment_16))
3802 goto out;
3803
3804 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3805 &tss_segment_16, sizeof tss_segment_16))
3806 goto out;
3807
3808 if (load_state_from_tss16(vcpu, &tss_segment_16))
3809 goto out;
3810
3811 ret = 1;
3812 out:
3813 return ret;
3814 }
3815
3816 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3817 u32 old_tss_base,
3818 struct desc_struct *nseg_desc)
3819 {
3820 struct tss_segment_32 tss_segment_32;
3821 int ret = 0;
3822
3823 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3824 sizeof tss_segment_32))
3825 goto out;
3826
3827 save_state_to_tss32(vcpu, &tss_segment_32);
3828
3829 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3830 sizeof tss_segment_32))
3831 goto out;
3832
3833 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3834 &tss_segment_32, sizeof tss_segment_32))
3835 goto out;
3836
3837 if (load_state_from_tss32(vcpu, &tss_segment_32))
3838 goto out;
3839
3840 ret = 1;
3841 out:
3842 return ret;
3843 }
3844
3845 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3846 {
3847 struct kvm_segment tr_seg;
3848 struct desc_struct cseg_desc;
3849 struct desc_struct nseg_desc;
3850 int ret = 0;
3851 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3852 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3853
3854 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3855
3856 /* FIXME: Handle errors. Failure to read either TSS or their
3857 * descriptors should generate a pagefault.
3858 */
3859 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3860 goto out;
3861
3862 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3863 goto out;
3864
3865 if (reason != TASK_SWITCH_IRET) {
3866 int cpl;
3867
3868 cpl = kvm_x86_ops->get_cpl(vcpu);
3869 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3870 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3871 return 1;
3872 }
3873 }
3874
3875 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3876 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3877 return 1;
3878 }
3879
3880 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3881 cseg_desc.type &= ~(1 << 1); //clear the B flag
3882 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3883 }
3884
3885 if (reason == TASK_SWITCH_IRET) {
3886 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3887 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3888 }
3889
3890 kvm_x86_ops->skip_emulated_instruction(vcpu);
3891
3892 if (nseg_desc.type & 8)
3893 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3894 &nseg_desc);
3895 else
3896 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3897 &nseg_desc);
3898
3899 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3900 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3901 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3902 }
3903
3904 if (reason != TASK_SWITCH_IRET) {
3905 nseg_desc.type |= (1 << 1);
3906 save_guest_segment_descriptor(vcpu, tss_selector,
3907 &nseg_desc);
3908 }
3909
3910 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3911 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3912 tr_seg.type = 11;
3913 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3914 out:
3915 return ret;
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_task_switch);
3918
3919 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3920 struct kvm_sregs *sregs)
3921 {
3922 int mmu_reset_needed = 0;
3923 int i, pending_vec, max_bits;
3924 struct descriptor_table dt;
3925
3926 vcpu_load(vcpu);
3927
3928 dt.limit = sregs->idt.limit;
3929 dt.base = sregs->idt.base;
3930 kvm_x86_ops->set_idt(vcpu, &dt);
3931 dt.limit = sregs->gdt.limit;
3932 dt.base = sregs->gdt.base;
3933 kvm_x86_ops->set_gdt(vcpu, &dt);
3934
3935 vcpu->arch.cr2 = sregs->cr2;
3936 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3937 vcpu->arch.cr3 = sregs->cr3;
3938
3939 kvm_set_cr8(vcpu, sregs->cr8);
3940
3941 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3942 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3943 kvm_set_apic_base(vcpu, sregs->apic_base);
3944
3945 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3946
3947 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3948 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3949 vcpu->arch.cr0 = sregs->cr0;
3950
3951 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3952 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3953 if (!is_long_mode(vcpu) && is_pae(vcpu))
3954 load_pdptrs(vcpu, vcpu->arch.cr3);
3955
3956 if (mmu_reset_needed)
3957 kvm_mmu_reset_context(vcpu);
3958
3959 if (!irqchip_in_kernel(vcpu->kvm)) {
3960 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3961 sizeof vcpu->arch.irq_pending);
3962 vcpu->arch.irq_summary = 0;
3963 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3964 if (vcpu->arch.irq_pending[i])
3965 __set_bit(i, &vcpu->arch.irq_summary);
3966 } else {
3967 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3968 pending_vec = find_first_bit(
3969 (const unsigned long *)sregs->interrupt_bitmap,
3970 max_bits);
3971 /* Only pending external irq is handled here */
3972 if (pending_vec < max_bits) {
3973 kvm_x86_ops->set_irq(vcpu, pending_vec);
3974 pr_debug("Set back pending irq %d\n",
3975 pending_vec);
3976 }
3977 kvm_pic_clear_isr_ack(vcpu->kvm);
3978 }
3979
3980 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3981 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3982 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3983 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3984 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3985 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3986
3987 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3988 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3989
3990 /* Older userspace won't unhalt the vcpu on reset. */
3991 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3992 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3993 !(vcpu->arch.cr0 & X86_CR0_PE))
3994 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3995
3996 vcpu_put(vcpu);
3997
3998 return 0;
3999 }
4000
4001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4002 struct kvm_guest_debug *dbg)
4003 {
4004 int i, r;
4005
4006 vcpu_load(vcpu);
4007
4008 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4009 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4010 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4011 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4012 vcpu->arch.switch_db_regs =
4013 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4014 } else {
4015 for (i = 0; i < KVM_NR_DB_REGS; i++)
4016 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4017 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4018 }
4019
4020 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4021
4022 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4023 kvm_queue_exception(vcpu, DB_VECTOR);
4024 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4025 kvm_queue_exception(vcpu, BP_VECTOR);
4026
4027 vcpu_put(vcpu);
4028
4029 return r;
4030 }
4031
4032 /*
4033 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4034 * we have asm/x86/processor.h
4035 */
4036 struct fxsave {
4037 u16 cwd;
4038 u16 swd;
4039 u16 twd;
4040 u16 fop;
4041 u64 rip;
4042 u64 rdp;
4043 u32 mxcsr;
4044 u32 mxcsr_mask;
4045 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4046 #ifdef CONFIG_X86_64
4047 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4048 #else
4049 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4050 #endif
4051 };
4052
4053 /*
4054 * Translate a guest virtual address to a guest physical address.
4055 */
4056 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4057 struct kvm_translation *tr)
4058 {
4059 unsigned long vaddr = tr->linear_address;
4060 gpa_t gpa;
4061
4062 vcpu_load(vcpu);
4063 down_read(&vcpu->kvm->slots_lock);
4064 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4065 up_read(&vcpu->kvm->slots_lock);
4066 tr->physical_address = gpa;
4067 tr->valid = gpa != UNMAPPED_GVA;
4068 tr->writeable = 1;
4069 tr->usermode = 0;
4070 vcpu_put(vcpu);
4071
4072 return 0;
4073 }
4074
4075 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4076 {
4077 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4078
4079 vcpu_load(vcpu);
4080
4081 memcpy(fpu->fpr, fxsave->st_space, 128);
4082 fpu->fcw = fxsave->cwd;
4083 fpu->fsw = fxsave->swd;
4084 fpu->ftwx = fxsave->twd;
4085 fpu->last_opcode = fxsave->fop;
4086 fpu->last_ip = fxsave->rip;
4087 fpu->last_dp = fxsave->rdp;
4088 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4089
4090 vcpu_put(vcpu);
4091
4092 return 0;
4093 }
4094
4095 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4096 {
4097 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4098
4099 vcpu_load(vcpu);
4100
4101 memcpy(fxsave->st_space, fpu->fpr, 128);
4102 fxsave->cwd = fpu->fcw;
4103 fxsave->swd = fpu->fsw;
4104 fxsave->twd = fpu->ftwx;
4105 fxsave->fop = fpu->last_opcode;
4106 fxsave->rip = fpu->last_ip;
4107 fxsave->rdp = fpu->last_dp;
4108 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4109
4110 vcpu_put(vcpu);
4111
4112 return 0;
4113 }
4114
4115 void fx_init(struct kvm_vcpu *vcpu)
4116 {
4117 unsigned after_mxcsr_mask;
4118
4119 /*
4120 * Touch the fpu the first time in non atomic context as if
4121 * this is the first fpu instruction the exception handler
4122 * will fire before the instruction returns and it'll have to
4123 * allocate ram with GFP_KERNEL.
4124 */
4125 if (!used_math())
4126 kvm_fx_save(&vcpu->arch.host_fx_image);
4127
4128 /* Initialize guest FPU by resetting ours and saving into guest's */
4129 preempt_disable();
4130 kvm_fx_save(&vcpu->arch.host_fx_image);
4131 kvm_fx_finit();
4132 kvm_fx_save(&vcpu->arch.guest_fx_image);
4133 kvm_fx_restore(&vcpu->arch.host_fx_image);
4134 preempt_enable();
4135
4136 vcpu->arch.cr0 |= X86_CR0_ET;
4137 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4138 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4139 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4140 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4141 }
4142 EXPORT_SYMBOL_GPL(fx_init);
4143
4144 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4145 {
4146 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4147 return;
4148
4149 vcpu->guest_fpu_loaded = 1;
4150 kvm_fx_save(&vcpu->arch.host_fx_image);
4151 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4152 }
4153 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4154
4155 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4156 {
4157 if (!vcpu->guest_fpu_loaded)
4158 return;
4159
4160 vcpu->guest_fpu_loaded = 0;
4161 kvm_fx_save(&vcpu->arch.guest_fx_image);
4162 kvm_fx_restore(&vcpu->arch.host_fx_image);
4163 ++vcpu->stat.fpu_reload;
4164 }
4165 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4166
4167 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4168 {
4169 if (vcpu->arch.time_page) {
4170 kvm_release_page_dirty(vcpu->arch.time_page);
4171 vcpu->arch.time_page = NULL;
4172 }
4173
4174 kvm_x86_ops->vcpu_free(vcpu);
4175 }
4176
4177 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4178 unsigned int id)
4179 {
4180 return kvm_x86_ops->vcpu_create(kvm, id);
4181 }
4182
4183 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4184 {
4185 int r;
4186
4187 /* We do fxsave: this must be aligned. */
4188 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4189
4190 vcpu->arch.mtrr_state.have_fixed = 1;
4191 vcpu_load(vcpu);
4192 r = kvm_arch_vcpu_reset(vcpu);
4193 if (r == 0)
4194 r = kvm_mmu_setup(vcpu);
4195 vcpu_put(vcpu);
4196 if (r < 0)
4197 goto free_vcpu;
4198
4199 return 0;
4200 free_vcpu:
4201 kvm_x86_ops->vcpu_free(vcpu);
4202 return r;
4203 }
4204
4205 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4206 {
4207 vcpu_load(vcpu);
4208 kvm_mmu_unload(vcpu);
4209 vcpu_put(vcpu);
4210
4211 kvm_x86_ops->vcpu_free(vcpu);
4212 }
4213
4214 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4215 {
4216 vcpu->arch.nmi_pending = false;
4217 vcpu->arch.nmi_injected = false;
4218
4219 vcpu->arch.switch_db_regs = 0;
4220 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4221 vcpu->arch.dr6 = DR6_FIXED_1;
4222 vcpu->arch.dr7 = DR7_FIXED_1;
4223
4224 return kvm_x86_ops->vcpu_reset(vcpu);
4225 }
4226
4227 void kvm_arch_hardware_enable(void *garbage)
4228 {
4229 kvm_x86_ops->hardware_enable(garbage);
4230 }
4231
4232 void kvm_arch_hardware_disable(void *garbage)
4233 {
4234 kvm_x86_ops->hardware_disable(garbage);
4235 }
4236
4237 int kvm_arch_hardware_setup(void)
4238 {
4239 return kvm_x86_ops->hardware_setup();
4240 }
4241
4242 void kvm_arch_hardware_unsetup(void)
4243 {
4244 kvm_x86_ops->hardware_unsetup();
4245 }
4246
4247 void kvm_arch_check_processor_compat(void *rtn)
4248 {
4249 kvm_x86_ops->check_processor_compatibility(rtn);
4250 }
4251
4252 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4253 {
4254 struct page *page;
4255 struct kvm *kvm;
4256 int r;
4257
4258 BUG_ON(vcpu->kvm == NULL);
4259 kvm = vcpu->kvm;
4260
4261 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4262 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4263 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4264 else
4265 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4266
4267 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4268 if (!page) {
4269 r = -ENOMEM;
4270 goto fail;
4271 }
4272 vcpu->arch.pio_data = page_address(page);
4273
4274 r = kvm_mmu_create(vcpu);
4275 if (r < 0)
4276 goto fail_free_pio_data;
4277
4278 if (irqchip_in_kernel(kvm)) {
4279 r = kvm_create_lapic(vcpu);
4280 if (r < 0)
4281 goto fail_mmu_destroy;
4282 }
4283
4284 return 0;
4285
4286 fail_mmu_destroy:
4287 kvm_mmu_destroy(vcpu);
4288 fail_free_pio_data:
4289 free_page((unsigned long)vcpu->arch.pio_data);
4290 fail:
4291 return r;
4292 }
4293
4294 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4295 {
4296 kvm_free_lapic(vcpu);
4297 down_read(&vcpu->kvm->slots_lock);
4298 kvm_mmu_destroy(vcpu);
4299 up_read(&vcpu->kvm->slots_lock);
4300 free_page((unsigned long)vcpu->arch.pio_data);
4301 }
4302
4303 struct kvm *kvm_arch_create_vm(void)
4304 {
4305 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4306
4307 if (!kvm)
4308 return ERR_PTR(-ENOMEM);
4309
4310 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4311 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4312 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4313
4314 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4315 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4316
4317 rdtscll(kvm->arch.vm_init_tsc);
4318
4319 return kvm;
4320 }
4321
4322 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4323 {
4324 vcpu_load(vcpu);
4325 kvm_mmu_unload(vcpu);
4326 vcpu_put(vcpu);
4327 }
4328
4329 static void kvm_free_vcpus(struct kvm *kvm)
4330 {
4331 unsigned int i;
4332
4333 /*
4334 * Unpin any mmu pages first.
4335 */
4336 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4337 if (kvm->vcpus[i])
4338 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4339 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4340 if (kvm->vcpus[i]) {
4341 kvm_arch_vcpu_free(kvm->vcpus[i]);
4342 kvm->vcpus[i] = NULL;
4343 }
4344 }
4345
4346 }
4347
4348 void kvm_arch_sync_events(struct kvm *kvm)
4349 {
4350 kvm_free_all_assigned_devices(kvm);
4351 }
4352
4353 void kvm_arch_destroy_vm(struct kvm *kvm)
4354 {
4355 kvm_iommu_unmap_guest(kvm);
4356 kvm_free_pit(kvm);
4357 kfree(kvm->arch.vpic);
4358 kfree(kvm->arch.vioapic);
4359 kvm_free_vcpus(kvm);
4360 kvm_free_physmem(kvm);
4361 if (kvm->arch.apic_access_page)
4362 put_page(kvm->arch.apic_access_page);
4363 if (kvm->arch.ept_identity_pagetable)
4364 put_page(kvm->arch.ept_identity_pagetable);
4365 kfree(kvm);
4366 }
4367
4368 int kvm_arch_set_memory_region(struct kvm *kvm,
4369 struct kvm_userspace_memory_region *mem,
4370 struct kvm_memory_slot old,
4371 int user_alloc)
4372 {
4373 int npages = mem->memory_size >> PAGE_SHIFT;
4374 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4375
4376 /*To keep backward compatibility with older userspace,
4377 *x86 needs to hanlde !user_alloc case.
4378 */
4379 if (!user_alloc) {
4380 if (npages && !old.rmap) {
4381 unsigned long userspace_addr;
4382
4383 down_write(&current->mm->mmap_sem);
4384 userspace_addr = do_mmap(NULL, 0,
4385 npages * PAGE_SIZE,
4386 PROT_READ | PROT_WRITE,
4387 MAP_PRIVATE | MAP_ANONYMOUS,
4388 0);
4389 up_write(&current->mm->mmap_sem);
4390
4391 if (IS_ERR((void *)userspace_addr))
4392 return PTR_ERR((void *)userspace_addr);
4393
4394 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4395 spin_lock(&kvm->mmu_lock);
4396 memslot->userspace_addr = userspace_addr;
4397 spin_unlock(&kvm->mmu_lock);
4398 } else {
4399 if (!old.user_alloc && old.rmap) {
4400 int ret;
4401
4402 down_write(&current->mm->mmap_sem);
4403 ret = do_munmap(current->mm, old.userspace_addr,
4404 old.npages * PAGE_SIZE);
4405 up_write(&current->mm->mmap_sem);
4406 if (ret < 0)
4407 printk(KERN_WARNING
4408 "kvm_vm_ioctl_set_memory_region: "
4409 "failed to munmap memory\n");
4410 }
4411 }
4412 }
4413
4414 if (!kvm->arch.n_requested_mmu_pages) {
4415 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4416 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4417 }
4418
4419 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4420 kvm_flush_remote_tlbs(kvm);
4421
4422 return 0;
4423 }
4424
4425 void kvm_arch_flush_shadow(struct kvm *kvm)
4426 {
4427 kvm_mmu_zap_all(kvm);
4428 }
4429
4430 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4431 {
4432 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4433 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4434 || vcpu->arch.nmi_pending;
4435 }
4436
4437 static void vcpu_kick_intr(void *info)
4438 {
4439 #ifdef DEBUG
4440 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4441 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4442 #endif
4443 }
4444
4445 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4446 {
4447 int ipi_pcpu = vcpu->cpu;
4448 int cpu = get_cpu();
4449
4450 if (waitqueue_active(&vcpu->wq)) {
4451 wake_up_interruptible(&vcpu->wq);
4452 ++vcpu->stat.halt_wakeup;
4453 }
4454 /*
4455 * We may be called synchronously with irqs disabled in guest mode,
4456 * So need not to call smp_call_function_single() in that case.
4457 */
4458 if (vcpu->guest_mode && vcpu->cpu != cpu)
4459 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4460 put_cpu();
4461 }