]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'drm-misc-next-fixes-2017-05-05' of git://anongit.freedesktop.org/git/drm...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142 int nr;
143 u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
148 bool registered;
149 struct kvm_shared_msr_values {
150 u64 host;
151 u64 curr;
152 } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
197 { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206 int i;
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213 unsigned slot;
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
217 unsigned long flags;
218
219 /*
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
222 */
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
227 }
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
234 }
235 }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240 u64 value;
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
248 return;
249 }
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266 unsigned i;
267
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276 int err;
277
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 return 0;
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282 if (err)
283 return 1;
284
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
289 }
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324 old_state == 0)))
325 return 1;
326
327 kvm_lapic_set_base(vcpu, msr_info->data);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334 /* Fault while not rebooting. We want the trace. */
335 BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
341 #define EXCPT_PF 2
342
343 static int exception_class(int vector)
344 {
345 switch (vector) {
346 case PF_VECTOR:
347 return EXCPT_PF;
348 case DE_VECTOR:
349 case TS_VECTOR:
350 case NP_VECTOR:
351 case SS_VECTOR:
352 case GP_VECTOR:
353 return EXCPT_CONTRIBUTORY;
354 default:
355 break;
356 }
357 return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT 0
361 #define EXCPT_TRAP 1
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
364
365 static int exception_type(int vector)
366 {
367 unsigned int mask;
368
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
371
372 mask = 1 << vector;
373
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376 return EXCPT_TRAP;
377
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379 return EXCPT_ABORT;
380
381 /* Reserved exceptions will result in fault */
382 return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
387 bool reinject)
388 {
389 u32 prev_nr;
390 int class1, class2;
391
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394 if (!vcpu->arch.exception.pending) {
395 queue:
396 if (has_error && !is_protmode(vcpu))
397 has_error = false;
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
403 return;
404 }
405
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411 return;
412 }
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
422 } else
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
425 exception */
426 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443 if (err)
444 kvm_inject_gp(vcpu, 0);
445 else
446 return kvm_skip_emulated_instruction(vcpu);
447
448 return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 else
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467 return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
492 */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 return true;
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498 return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505 return true;
506
507 kvm_queue_exception(vcpu, UD_VECTOR);
508 return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
516 */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
519 u32 access)
520 {
521 struct x86_exception exception;
522 gfn_t real_gfn;
523 gpa_t ngpa;
524
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
528 return -EFAULT;
529
530 real_gfn = gpa_to_gfn(real_gfn);
531
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
538 {
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
541 }
542
543 /*
544 * Load the pae pdptrs. Return true is they are all valid.
545 */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550 int i;
551 int ret;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
557 if (ret < 0) {
558 ret = 0;
559 goto out;
560 }
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 (pdpte[i] &
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565 ret = 0;
566 goto out;
567 }
568 }
569 ret = 1;
570
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578 return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585 bool changed = true;
586 int offset;
587 gfn_t gfn;
588 int r;
589
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
591 return false;
592
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
595 return true;
596
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
601 if (r < 0)
602 goto out;
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606 return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615 cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618 if (cr0 & 0xffffffff00000000UL)
619 return 1;
620 #endif
621
622 cr0 &= ~CR0_RESERVED_BITS;
623
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625 return 1;
626
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628 return 1;
629
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632 if ((vcpu->arch.efer & EFER_LME)) {
633 int cs_db, cs_l;
634
635 if (!is_pae(vcpu))
636 return 1;
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638 if (cs_l)
639 return 1;
640 } else
641 #endif
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643 kvm_read_cr3(vcpu)))
644 return 1;
645 }
646
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648 return 1;
649
650 kvm_x86_ops->set_cr0(vcpu, cr0);
651
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
655 }
656
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
659
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
682 }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
691 }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696 u64 xcr0 = xcr;
697 u64 old_xcr0 = vcpu->arch.xcr0;
698 u64 valid_bits;
699
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
702 return 1;
703 if (!(xcr0 & XFEATURE_MASK_FP))
704 return 1;
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706 return 1;
707
708 /*
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
712 */
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
715 return 1;
716
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719 return 1;
720
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
723 return 1;
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725 return 1;
726 }
727 vcpu->arch.xcr0 = xcr0;
728
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
731 return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
739 return 1;
740 }
741 return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751 if (cr4 & CR4_RESERVED_BITS)
752 return 1;
753
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755 return 1;
756
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758 return 1;
759
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761 return 1;
762
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764 return 1;
765
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767 return 1;
768
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
771 return 1;
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 kvm_read_cr3(vcpu)))
776 return 1;
777
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
780 return 1;
781
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784 return 1;
785 }
786
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
788 return 1;
789
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
793
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804 cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810 return 0;
811 }
812
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 return 1;
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818 return 1;
819
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829 if (cr8 & CR8_RESERVED_BITS)
830 return 1;
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
833 else
834 vcpu->arch.cr8 = cr8;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
843 else
844 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850 int i;
851
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856 }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867 unsigned long dr7;
868
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
871 else
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881 u64 fixed = DR6_FIXED_1;
882
883 if (!guest_cpuid_has_rtm(vcpu))
884 fixed |= DR6_RTM;
885 return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 switch (dr) {
891 case 0 ... 3:
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
895 break;
896 case 4:
897 /* fall through */
898 case 6:
899 if (val & 0xffffffff00000000ULL)
900 return -1; /* #GP */
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
903 break;
904 case 5:
905 /* fall through */
906 default: /* 7 */
907 if (val & 0xffffffff00000000ULL)
908 return -1; /* #GP */
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
911 break;
912 }
913
914 return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
921 return 1;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 *val = vcpu->arch.db[dr];
932 break;
933 case 4:
934 /* fall through */
935 case 6:
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
938 else
939 *val = kvm_x86_ops->get_dr6(vcpu);
940 break;
941 case 5:
942 /* fall through */
943 default: /* 7 */
944 *val = vcpu->arch.dr7;
945 break;
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954 u64 data;
955 int err;
956
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958 if (err)
959 return err;
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 *
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
974 */
975
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978 MSR_STAR,
979 #ifdef CONFIG_X86_64
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995 HV_X64_MSR_RESET,
996 HV_X64_MSR_VP_INDEX,
997 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_SCONTROL,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001 MSR_KVM_PV_EOI_EN,
1002
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_CTL,
1008 MSR_IA32_MCG_EXT_CTL,
1009 MSR_IA32_SMBASE,
1010 MSR_PLATFORM_INFO,
1011 MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018 if (efer & efer_reserved_bits)
1019 return false;
1020
1021 if (efer & EFER_FFXSR) {
1022 struct kvm_cpuid_entry2 *feat;
1023
1024 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026 return false;
1027 }
1028
1029 if (efer & EFER_SVME) {
1030 struct kvm_cpuid_entry2 *feat;
1031
1032 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034 return false;
1035 }
1036
1037 return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043 u64 old_efer = vcpu->arch.efer;
1044
1045 if (!kvm_valid_efer(vcpu, efer))
1046 return 1;
1047
1048 if (is_paging(vcpu)
1049 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050 return 1;
1051
1052 efer &= ~EFER_LMA;
1053 efer |= vcpu->arch.efer & EFER_LMA;
1054
1055 kvm_x86_ops->set_efer(vcpu, efer);
1056
1057 /* Update reserved bits */
1058 if ((efer ^ old_efer) & EFER_NX)
1059 kvm_mmu_reset_context(vcpu);
1060
1061 return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066 efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071 * Writes msr value into into the appropriate "register".
1072 * Returns 0 on success, non-0 otherwise.
1073 * Assumes vcpu_load() was already called.
1074 */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077 switch (msr->index) {
1078 case MSR_FS_BASE:
1079 case MSR_GS_BASE:
1080 case MSR_KERNEL_GS_BASE:
1081 case MSR_CSTAR:
1082 case MSR_LSTAR:
1083 if (is_noncanonical_address(msr->data))
1084 return 1;
1085 break;
1086 case MSR_IA32_SYSENTER_EIP:
1087 case MSR_IA32_SYSENTER_ESP:
1088 /*
1089 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090 * non-canonical address is written on Intel but not on
1091 * AMD (which ignores the top 32-bits, because it does
1092 * not implement 64-bit SYSENTER).
1093 *
1094 * 64-bit code should hence be able to write a non-canonical
1095 * value on AMD. Making the address canonical ensures that
1096 * vmentry does not fail on Intel after writing a non-canonical
1097 * value, and that something deterministic happens if the guest
1098 * invokes 64-bit SYSENTER.
1099 */
1100 msr->data = get_canonical(msr->data);
1101 }
1102 return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107 * Adapt set_msr() to msr_io()'s calling convention
1108 */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111 struct msr_data msr;
1112 int r;
1113
1114 msr.index = index;
1115 msr.host_initiated = true;
1116 r = kvm_get_msr(vcpu, &msr);
1117 if (r)
1118 return r;
1119
1120 *data = msr.data;
1121 return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126 struct msr_data msr;
1127
1128 msr.data = *data;
1129 msr.index = index;
1130 msr.host_initiated = true;
1131 return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136 seqcount_t seq;
1137
1138 struct { /* extract of a clocksource struct */
1139 int vclock_mode;
1140 u64 cycle_last;
1141 u64 mask;
1142 u32 mult;
1143 u32 shift;
1144 } clock;
1145
1146 u64 boot_ns;
1147 u64 nsec_base;
1148 u64 wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156 u64 boot_ns;
1157
1158 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160 write_seqcount_begin(&vdata->seq);
1161
1162 /* copy pvclock gtod data */
1163 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1164 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1165 vdata->clock.mask = tk->tkr_mono.mask;
1166 vdata->clock.mult = tk->tkr_mono.mult;
1167 vdata->clock.shift = tk->tkr_mono.shift;
1168
1169 vdata->boot_ns = boot_ns;
1170 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1171
1172 vdata->wall_time_sec = tk->xtime_sec;
1173
1174 write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180 /*
1181 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182 * vcpu_enter_guest. This function is only called from
1183 * the physical CPU that is running vcpu.
1184 */
1185 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190 int version;
1191 int r;
1192 struct pvclock_wall_clock wc;
1193 struct timespec64 boot;
1194
1195 if (!wall_clock)
1196 return;
1197
1198 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199 if (r)
1200 return;
1201
1202 if (version & 1)
1203 ++version; /* first time write, random junk */
1204
1205 ++version;
1206
1207 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208 return;
1209
1210 /*
1211 * The guest calculates current wall clock time by adding
1212 * system time (updated by kvm_guest_time_update below) to the
1213 * wall clock specified here. guest system time equals host
1214 * system time for us, thus we must fill in host boot time here.
1215 */
1216 getboottime64(&boot);
1217
1218 if (kvm->arch.kvmclock_offset) {
1219 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220 boot = timespec64_sub(boot, ts);
1221 }
1222 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223 wc.nsec = boot.tv_nsec;
1224 wc.version = version;
1225
1226 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228 version++;
1229 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234 do_shl32_div32(dividend, divisor);
1235 return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239 s8 *pshift, u32 *pmultiplier)
1240 {
1241 uint64_t scaled64;
1242 int32_t shift = 0;
1243 uint64_t tps64;
1244 uint32_t tps32;
1245
1246 tps64 = base_hz;
1247 scaled64 = scaled_hz;
1248 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249 tps64 >>= 1;
1250 shift--;
1251 }
1252
1253 tps32 = (uint32_t)tps64;
1254 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256 scaled64 >>= 1;
1257 else
1258 tps32 <<= 1;
1259 shift++;
1260 }
1261
1262 *pshift = shift;
1263 *pmultiplier = div_frac(scaled64, tps32);
1264
1265 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278 u64 v = (u64)khz * (1000000 + ppm);
1279 do_div(v, 1000000);
1280 return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285 u64 ratio;
1286
1287 /* Guest TSC same frequency as host TSC? */
1288 if (!scale) {
1289 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290 return 0;
1291 }
1292
1293 /* TSC scaling supported? */
1294 if (!kvm_has_tsc_control) {
1295 if (user_tsc_khz > tsc_khz) {
1296 vcpu->arch.tsc_catchup = 1;
1297 vcpu->arch.tsc_always_catchup = 1;
1298 return 0;
1299 } else {
1300 WARN(1, "user requested TSC rate below hardware speed\n");
1301 return -1;
1302 }
1303 }
1304
1305 /* TSC scaling required - calculate ratio */
1306 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307 user_tsc_khz, tsc_khz);
1308
1309 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311 user_tsc_khz);
1312 return -1;
1313 }
1314
1315 vcpu->arch.tsc_scaling_ratio = ratio;
1316 return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321 u32 thresh_lo, thresh_hi;
1322 int use_scaling = 0;
1323
1324 /* tsc_khz can be zero if TSC calibration fails */
1325 if (user_tsc_khz == 0) {
1326 /* set tsc_scaling_ratio to a safe value */
1327 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328 return -1;
1329 }
1330
1331 /* Compute a scale to convert nanoseconds in TSC cycles */
1332 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333 &vcpu->arch.virtual_tsc_shift,
1334 &vcpu->arch.virtual_tsc_mult);
1335 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337 /*
1338 * Compute the variation in TSC rate which is acceptable
1339 * within the range of tolerance and decide if the
1340 * rate being applied is within that bounds of the hardware
1341 * rate. If so, no scaling or compensation need be done.
1342 */
1343 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347 use_scaling = 1;
1348 }
1349 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355 vcpu->arch.virtual_tsc_mult,
1356 vcpu->arch.virtual_tsc_shift);
1357 tsc += vcpu->arch.this_tsc_write;
1358 return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364 bool vcpus_matched;
1365 struct kvm_arch *ka = &vcpu->kvm->arch;
1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369 atomic_read(&vcpu->kvm->online_vcpus));
1370
1371 /*
1372 * Once the masterclock is enabled, always perform request in
1373 * order to update it.
1374 *
1375 * In order to enable masterclock, the host clocksource must be TSC
1376 * and the vcpus need to have matched TSCs. When that happens,
1377 * perform request to enable masterclock.
1378 */
1379 if (ka->use_master_clock ||
1380 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384 atomic_read(&vcpu->kvm->online_vcpus),
1385 ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391 u64 curr_offset = vcpu->arch.tsc_offset;
1392 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396 * Multiply tsc by a fixed point number represented by ratio.
1397 *
1398 * The most significant 64-N bits (mult) of ratio represent the
1399 * integral part of the fixed point number; the remaining N bits
1400 * (frac) represent the fractional part, ie. ratio represents a fixed
1401 * point number (mult + frac * 2^(-N)).
1402 *
1403 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404 */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412 u64 _tsc = tsc;
1413 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415 if (ratio != kvm_default_tsc_scaling_ratio)
1416 _tsc = __scale_tsc(ratio, tsc);
1417
1418 return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424 u64 tsc;
1425
1426 tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428 return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440 vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445 struct kvm *kvm = vcpu->kvm;
1446 u64 offset, ns, elapsed;
1447 unsigned long flags;
1448 bool matched;
1449 bool already_matched;
1450 u64 data = msr->data;
1451 bool synchronizing = false;
1452
1453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454 offset = kvm_compute_tsc_offset(vcpu, data);
1455 ns = ktime_get_boot_ns();
1456 elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458 if (vcpu->arch.virtual_tsc_khz) {
1459 if (data == 0 && msr->host_initiated) {
1460 /*
1461 * detection of vcpu initialization -- need to sync
1462 * with other vCPUs. This particularly helps to keep
1463 * kvm_clock stable after CPU hotplug
1464 */
1465 synchronizing = true;
1466 } else {
1467 u64 tsc_exp = kvm->arch.last_tsc_write +
1468 nsec_to_cycles(vcpu, elapsed);
1469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470 /*
1471 * Special case: TSC write with a small delta (1 second)
1472 * of virtual cycle time against real time is
1473 * interpreted as an attempt to synchronize the CPU.
1474 */
1475 synchronizing = data < tsc_exp + tsc_hz &&
1476 data + tsc_hz > tsc_exp;
1477 }
1478 }
1479
1480 /*
1481 * For a reliable TSC, we can match TSC offsets, and for an unstable
1482 * TSC, we add elapsed time in this computation. We could let the
1483 * compensation code attempt to catch up if we fall behind, but
1484 * it's better to try to match offsets from the beginning.
1485 */
1486 if (synchronizing &&
1487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488 if (!check_tsc_unstable()) {
1489 offset = kvm->arch.cur_tsc_offset;
1490 pr_debug("kvm: matched tsc offset for %llu\n", data);
1491 } else {
1492 u64 delta = nsec_to_cycles(vcpu, elapsed);
1493 data += delta;
1494 offset = kvm_compute_tsc_offset(vcpu, data);
1495 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496 }
1497 matched = true;
1498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499 } else {
1500 /*
1501 * We split periods of matched TSC writes into generations.
1502 * For each generation, we track the original measured
1503 * nanosecond time, offset, and write, so if TSCs are in
1504 * sync, we can match exact offset, and if not, we can match
1505 * exact software computation in compute_guest_tsc()
1506 *
1507 * These values are tracked in kvm->arch.cur_xxx variables.
1508 */
1509 kvm->arch.cur_tsc_generation++;
1510 kvm->arch.cur_tsc_nsec = ns;
1511 kvm->arch.cur_tsc_write = data;
1512 kvm->arch.cur_tsc_offset = offset;
1513 matched = false;
1514 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515 kvm->arch.cur_tsc_generation, data);
1516 }
1517
1518 /*
1519 * We also track th most recent recorded KHZ, write and time to
1520 * allow the matching interval to be extended at each write.
1521 */
1522 kvm->arch.last_tsc_nsec = ns;
1523 kvm->arch.last_tsc_write = data;
1524 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526 vcpu->arch.last_guest_tsc = data;
1527
1528 /* Keep track of which generation this VCPU has synchronized to */
1529 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534 update_ia32_tsc_adjust_msr(vcpu, offset);
1535 kvm_vcpu_write_tsc_offset(vcpu, offset);
1536 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539 if (!matched) {
1540 kvm->arch.nr_vcpus_matched_tsc = 0;
1541 } else if (!already_matched) {
1542 kvm->arch.nr_vcpus_matched_tsc++;
1543 }
1544
1545 kvm_track_tsc_matching(vcpu);
1546 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552 s64 adjustment)
1553 {
1554 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560 WARN_ON(adjustment < 0);
1561 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562 adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569 u64 ret = (u64)rdtsc_ordered();
1570 u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572 if (likely(ret >= last))
1573 return ret;
1574
1575 /*
1576 * GCC likes to generate cmov here, but this branch is extremely
1577 * predictable (it's just a function of time and the likely is
1578 * very likely) and there's a data dependence, so force GCC
1579 * to generate a branch instead. I don't barrier() because
1580 * we don't actually need a barrier, and if this function
1581 * ever gets inlined it will generate worse code.
1582 */
1583 asm volatile ("");
1584 return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589 long v;
1590 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592 *cycle_now = read_tsc();
1593
1594 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595 return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601 unsigned long seq;
1602 int mode;
1603 u64 ns;
1604
1605 do {
1606 seq = read_seqcount_begin(&gtod->seq);
1607 mode = gtod->clock.vclock_mode;
1608 ns = gtod->nsec_base;
1609 ns += vgettsc(cycle_now);
1610 ns >>= gtod->clock.shift;
1611 ns += gtod->boot_ns;
1612 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613 *t = ns;
1614
1615 return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621 unsigned long seq;
1622 int mode;
1623 u64 ns;
1624
1625 do {
1626 seq = read_seqcount_begin(&gtod->seq);
1627 mode = gtod->clock.vclock_mode;
1628 ts->tv_sec = gtod->wall_time_sec;
1629 ns = gtod->nsec_base;
1630 ns += vgettsc(cycle_now);
1631 ns >>= gtod->clock.shift;
1632 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635 ts->tv_nsec = ns;
1636
1637 return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643 /* checked again under seqlock below */
1644 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645 return false;
1646
1647 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652 u64 *cycle_now)
1653 {
1654 /* checked again under seqlock below */
1655 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656 return false;
1657
1658 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663 *
1664 * Assuming a stable TSC across physical CPUS, and a stable TSC
1665 * across virtual CPUs, the following condition is possible.
1666 * Each numbered line represents an event visible to both
1667 * CPUs at the next numbered event.
1668 *
1669 * "timespecX" represents host monotonic time. "tscX" represents
1670 * RDTSC value.
1671 *
1672 * VCPU0 on CPU0 | VCPU1 on CPU1
1673 *
1674 * 1. read timespec0,tsc0
1675 * 2. | timespec1 = timespec0 + N
1676 * | tsc1 = tsc0 + M
1677 * 3. transition to guest | transition to guest
1678 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1680 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681 *
1682 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683 *
1684 * - ret0 < ret1
1685 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686 * ...
1687 * - 0 < N - M => M < N
1688 *
1689 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690 * always the case (the difference between two distinct xtime instances
1691 * might be smaller then the difference between corresponding TSC reads,
1692 * when updating guest vcpus pvclock areas).
1693 *
1694 * To avoid that problem, do not allow visibility of distinct
1695 * system_timestamp/tsc_timestamp values simultaneously: use a master
1696 * copy of host monotonic time values. Update that master copy
1697 * in lockstep.
1698 *
1699 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700 *
1701 */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706 struct kvm_arch *ka = &kvm->arch;
1707 int vclock_mode;
1708 bool host_tsc_clocksource, vcpus_matched;
1709
1710 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711 atomic_read(&kvm->online_vcpus));
1712
1713 /*
1714 * If the host uses TSC clock, then passthrough TSC as stable
1715 * to the guest.
1716 */
1717 host_tsc_clocksource = kvm_get_time_and_clockread(
1718 &ka->master_kernel_ns,
1719 &ka->master_cycle_now);
1720
1721 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722 && !backwards_tsc_observed
1723 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725 if (ka->use_master_clock)
1726 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730 vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742 int i;
1743 struct kvm_vcpu *vcpu;
1744 struct kvm_arch *ka = &kvm->arch;
1745
1746 spin_lock(&ka->pvclock_gtod_sync_lock);
1747 kvm_make_mclock_inprogress_request(kvm);
1748 /* no guest entries from this point */
1749 pvclock_update_vm_gtod_copy(kvm);
1750
1751 kvm_for_each_vcpu(i, vcpu, kvm)
1752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754 /* guest entries allowed */
1755 kvm_for_each_vcpu(i, vcpu, kvm)
1756 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1757
1758 spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1763 {
1764 struct kvm_arch *ka = &kvm->arch;
1765 struct pvclock_vcpu_time_info hv_clock;
1766
1767 spin_lock(&ka->pvclock_gtod_sync_lock);
1768 if (!ka->use_master_clock) {
1769 spin_unlock(&ka->pvclock_gtod_sync_lock);
1770 return ktime_get_boot_ns() + ka->kvmclock_offset;
1771 }
1772
1773 hv_clock.tsc_timestamp = ka->master_cycle_now;
1774 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1775 spin_unlock(&ka->pvclock_gtod_sync_lock);
1776
1777 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1778 &hv_clock.tsc_shift,
1779 &hv_clock.tsc_to_system_mul);
1780 return __pvclock_read_cycles(&hv_clock, rdtsc());
1781 }
1782
1783 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1784 {
1785 struct kvm_vcpu_arch *vcpu = &v->arch;
1786 struct pvclock_vcpu_time_info guest_hv_clock;
1787
1788 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1789 &guest_hv_clock, sizeof(guest_hv_clock))))
1790 return;
1791
1792 /* This VCPU is paused, but it's legal for a guest to read another
1793 * VCPU's kvmclock, so we really have to follow the specification where
1794 * it says that version is odd if data is being modified, and even after
1795 * it is consistent.
1796 *
1797 * Version field updates must be kept separate. This is because
1798 * kvm_write_guest_cached might use a "rep movs" instruction, and
1799 * writes within a string instruction are weakly ordered. So there
1800 * are three writes overall.
1801 *
1802 * As a small optimization, only write the version field in the first
1803 * and third write. The vcpu->pv_time cache is still valid, because the
1804 * version field is the first in the struct.
1805 */
1806 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1807
1808 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1809 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1810 &vcpu->hv_clock,
1811 sizeof(vcpu->hv_clock.version));
1812
1813 smp_wmb();
1814
1815 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1816 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1817
1818 if (vcpu->pvclock_set_guest_stopped_request) {
1819 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1820 vcpu->pvclock_set_guest_stopped_request = false;
1821 }
1822
1823 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1824
1825 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1826 &vcpu->hv_clock,
1827 sizeof(vcpu->hv_clock));
1828
1829 smp_wmb();
1830
1831 vcpu->hv_clock.version++;
1832 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1833 &vcpu->hv_clock,
1834 sizeof(vcpu->hv_clock.version));
1835 }
1836
1837 static int kvm_guest_time_update(struct kvm_vcpu *v)
1838 {
1839 unsigned long flags, tgt_tsc_khz;
1840 struct kvm_vcpu_arch *vcpu = &v->arch;
1841 struct kvm_arch *ka = &v->kvm->arch;
1842 s64 kernel_ns;
1843 u64 tsc_timestamp, host_tsc;
1844 u8 pvclock_flags;
1845 bool use_master_clock;
1846
1847 kernel_ns = 0;
1848 host_tsc = 0;
1849
1850 /*
1851 * If the host uses TSC clock, then passthrough TSC as stable
1852 * to the guest.
1853 */
1854 spin_lock(&ka->pvclock_gtod_sync_lock);
1855 use_master_clock = ka->use_master_clock;
1856 if (use_master_clock) {
1857 host_tsc = ka->master_cycle_now;
1858 kernel_ns = ka->master_kernel_ns;
1859 }
1860 spin_unlock(&ka->pvclock_gtod_sync_lock);
1861
1862 /* Keep irq disabled to prevent changes to the clock */
1863 local_irq_save(flags);
1864 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1865 if (unlikely(tgt_tsc_khz == 0)) {
1866 local_irq_restore(flags);
1867 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1868 return 1;
1869 }
1870 if (!use_master_clock) {
1871 host_tsc = rdtsc();
1872 kernel_ns = ktime_get_boot_ns();
1873 }
1874
1875 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1876
1877 /*
1878 * We may have to catch up the TSC to match elapsed wall clock
1879 * time for two reasons, even if kvmclock is used.
1880 * 1) CPU could have been running below the maximum TSC rate
1881 * 2) Broken TSC compensation resets the base at each VCPU
1882 * entry to avoid unknown leaps of TSC even when running
1883 * again on the same CPU. This may cause apparent elapsed
1884 * time to disappear, and the guest to stand still or run
1885 * very slowly.
1886 */
1887 if (vcpu->tsc_catchup) {
1888 u64 tsc = compute_guest_tsc(v, kernel_ns);
1889 if (tsc > tsc_timestamp) {
1890 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1891 tsc_timestamp = tsc;
1892 }
1893 }
1894
1895 local_irq_restore(flags);
1896
1897 /* With all the info we got, fill in the values */
1898
1899 if (kvm_has_tsc_control)
1900 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1901
1902 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1903 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1904 &vcpu->hv_clock.tsc_shift,
1905 &vcpu->hv_clock.tsc_to_system_mul);
1906 vcpu->hw_tsc_khz = tgt_tsc_khz;
1907 }
1908
1909 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1910 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1911 vcpu->last_guest_tsc = tsc_timestamp;
1912
1913 /* If the host uses TSC clocksource, then it is stable */
1914 pvclock_flags = 0;
1915 if (use_master_clock)
1916 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1917
1918 vcpu->hv_clock.flags = pvclock_flags;
1919
1920 if (vcpu->pv_time_enabled)
1921 kvm_setup_pvclock_page(v);
1922 if (v == kvm_get_vcpu(v->kvm, 0))
1923 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1924 return 0;
1925 }
1926
1927 /*
1928 * kvmclock updates which are isolated to a given vcpu, such as
1929 * vcpu->cpu migration, should not allow system_timestamp from
1930 * the rest of the vcpus to remain static. Otherwise ntp frequency
1931 * correction applies to one vcpu's system_timestamp but not
1932 * the others.
1933 *
1934 * So in those cases, request a kvmclock update for all vcpus.
1935 * We need to rate-limit these requests though, as they can
1936 * considerably slow guests that have a large number of vcpus.
1937 * The time for a remote vcpu to update its kvmclock is bound
1938 * by the delay we use to rate-limit the updates.
1939 */
1940
1941 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1942
1943 static void kvmclock_update_fn(struct work_struct *work)
1944 {
1945 int i;
1946 struct delayed_work *dwork = to_delayed_work(work);
1947 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1948 kvmclock_update_work);
1949 struct kvm *kvm = container_of(ka, struct kvm, arch);
1950 struct kvm_vcpu *vcpu;
1951
1952 kvm_for_each_vcpu(i, vcpu, kvm) {
1953 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1954 kvm_vcpu_kick(vcpu);
1955 }
1956 }
1957
1958 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1959 {
1960 struct kvm *kvm = v->kvm;
1961
1962 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1963 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1964 KVMCLOCK_UPDATE_DELAY);
1965 }
1966
1967 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1968
1969 static void kvmclock_sync_fn(struct work_struct *work)
1970 {
1971 struct delayed_work *dwork = to_delayed_work(work);
1972 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973 kvmclock_sync_work);
1974 struct kvm *kvm = container_of(ka, struct kvm, arch);
1975
1976 if (!kvmclock_periodic_sync)
1977 return;
1978
1979 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1980 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1981 KVMCLOCK_SYNC_PERIOD);
1982 }
1983
1984 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1985 {
1986 u64 mcg_cap = vcpu->arch.mcg_cap;
1987 unsigned bank_num = mcg_cap & 0xff;
1988
1989 switch (msr) {
1990 case MSR_IA32_MCG_STATUS:
1991 vcpu->arch.mcg_status = data;
1992 break;
1993 case MSR_IA32_MCG_CTL:
1994 if (!(mcg_cap & MCG_CTL_P))
1995 return 1;
1996 if (data != 0 && data != ~(u64)0)
1997 return -1;
1998 vcpu->arch.mcg_ctl = data;
1999 break;
2000 default:
2001 if (msr >= MSR_IA32_MC0_CTL &&
2002 msr < MSR_IA32_MCx_CTL(bank_num)) {
2003 u32 offset = msr - MSR_IA32_MC0_CTL;
2004 /* only 0 or all 1s can be written to IA32_MCi_CTL
2005 * some Linux kernels though clear bit 10 in bank 4 to
2006 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2007 * this to avoid an uncatched #GP in the guest
2008 */
2009 if ((offset & 0x3) == 0 &&
2010 data != 0 && (data | (1 << 10)) != ~(u64)0)
2011 return -1;
2012 vcpu->arch.mce_banks[offset] = data;
2013 break;
2014 }
2015 return 1;
2016 }
2017 return 0;
2018 }
2019
2020 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022 struct kvm *kvm = vcpu->kvm;
2023 int lm = is_long_mode(vcpu);
2024 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2025 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2026 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2027 : kvm->arch.xen_hvm_config.blob_size_32;
2028 u32 page_num = data & ~PAGE_MASK;
2029 u64 page_addr = data & PAGE_MASK;
2030 u8 *page;
2031 int r;
2032
2033 r = -E2BIG;
2034 if (page_num >= blob_size)
2035 goto out;
2036 r = -ENOMEM;
2037 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2038 if (IS_ERR(page)) {
2039 r = PTR_ERR(page);
2040 goto out;
2041 }
2042 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2043 goto out_free;
2044 r = 0;
2045 out_free:
2046 kfree(page);
2047 out:
2048 return r;
2049 }
2050
2051 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2052 {
2053 gpa_t gpa = data & ~0x3f;
2054
2055 /* Bits 2:5 are reserved, Should be zero */
2056 if (data & 0x3c)
2057 return 1;
2058
2059 vcpu->arch.apf.msr_val = data;
2060
2061 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2062 kvm_clear_async_pf_completion_queue(vcpu);
2063 kvm_async_pf_hash_reset(vcpu);
2064 return 0;
2065 }
2066
2067 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2068 sizeof(u32)))
2069 return 1;
2070
2071 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2072 kvm_async_pf_wakeup_all(vcpu);
2073 return 0;
2074 }
2075
2076 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2077 {
2078 vcpu->arch.pv_time_enabled = false;
2079 }
2080
2081 static void record_steal_time(struct kvm_vcpu *vcpu)
2082 {
2083 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2084 return;
2085
2086 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2087 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2088 return;
2089
2090 vcpu->arch.st.steal.preempted = 0;
2091
2092 if (vcpu->arch.st.steal.version & 1)
2093 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2094
2095 vcpu->arch.st.steal.version += 1;
2096
2097 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2098 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2099
2100 smp_wmb();
2101
2102 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2103 vcpu->arch.st.last_steal;
2104 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2105
2106 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2107 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2108
2109 smp_wmb();
2110
2111 vcpu->arch.st.steal.version += 1;
2112
2113 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2114 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2115 }
2116
2117 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2118 {
2119 bool pr = false;
2120 u32 msr = msr_info->index;
2121 u64 data = msr_info->data;
2122
2123 switch (msr) {
2124 case MSR_AMD64_NB_CFG:
2125 case MSR_IA32_UCODE_REV:
2126 case MSR_IA32_UCODE_WRITE:
2127 case MSR_VM_HSAVE_PA:
2128 case MSR_AMD64_PATCH_LOADER:
2129 case MSR_AMD64_BU_CFG2:
2130 case MSR_AMD64_DC_CFG:
2131 break;
2132
2133 case MSR_EFER:
2134 return set_efer(vcpu, data);
2135 case MSR_K7_HWCR:
2136 data &= ~(u64)0x40; /* ignore flush filter disable */
2137 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2138 data &= ~(u64)0x8; /* ignore TLB cache disable */
2139 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2140 if (data != 0) {
2141 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2142 data);
2143 return 1;
2144 }
2145 break;
2146 case MSR_FAM10H_MMIO_CONF_BASE:
2147 if (data != 0) {
2148 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2149 "0x%llx\n", data);
2150 return 1;
2151 }
2152 break;
2153 case MSR_IA32_DEBUGCTLMSR:
2154 if (!data) {
2155 /* We support the non-activated case already */
2156 break;
2157 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2158 /* Values other than LBR and BTF are vendor-specific,
2159 thus reserved and should throw a #GP */
2160 return 1;
2161 }
2162 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2163 __func__, data);
2164 break;
2165 case 0x200 ... 0x2ff:
2166 return kvm_mtrr_set_msr(vcpu, msr, data);
2167 case MSR_IA32_APICBASE:
2168 return kvm_set_apic_base(vcpu, msr_info);
2169 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2170 return kvm_x2apic_msr_write(vcpu, msr, data);
2171 case MSR_IA32_TSCDEADLINE:
2172 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2173 break;
2174 case MSR_IA32_TSC_ADJUST:
2175 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2176 if (!msr_info->host_initiated) {
2177 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2178 adjust_tsc_offset_guest(vcpu, adj);
2179 }
2180 vcpu->arch.ia32_tsc_adjust_msr = data;
2181 }
2182 break;
2183 case MSR_IA32_MISC_ENABLE:
2184 vcpu->arch.ia32_misc_enable_msr = data;
2185 break;
2186 case MSR_IA32_SMBASE:
2187 if (!msr_info->host_initiated)
2188 return 1;
2189 vcpu->arch.smbase = data;
2190 break;
2191 case MSR_KVM_WALL_CLOCK_NEW:
2192 case MSR_KVM_WALL_CLOCK:
2193 vcpu->kvm->arch.wall_clock = data;
2194 kvm_write_wall_clock(vcpu->kvm, data);
2195 break;
2196 case MSR_KVM_SYSTEM_TIME_NEW:
2197 case MSR_KVM_SYSTEM_TIME: {
2198 struct kvm_arch *ka = &vcpu->kvm->arch;
2199
2200 kvmclock_reset(vcpu);
2201
2202 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2203 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2204
2205 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2206 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2207
2208 ka->boot_vcpu_runs_old_kvmclock = tmp;
2209 }
2210
2211 vcpu->arch.time = data;
2212 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2213
2214 /* we verify if the enable bit is set... */
2215 if (!(data & 1))
2216 break;
2217
2218 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2219 &vcpu->arch.pv_time, data & ~1ULL,
2220 sizeof(struct pvclock_vcpu_time_info)))
2221 vcpu->arch.pv_time_enabled = false;
2222 else
2223 vcpu->arch.pv_time_enabled = true;
2224
2225 break;
2226 }
2227 case MSR_KVM_ASYNC_PF_EN:
2228 if (kvm_pv_enable_async_pf(vcpu, data))
2229 return 1;
2230 break;
2231 case MSR_KVM_STEAL_TIME:
2232
2233 if (unlikely(!sched_info_on()))
2234 return 1;
2235
2236 if (data & KVM_STEAL_RESERVED_MASK)
2237 return 1;
2238
2239 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2240 data & KVM_STEAL_VALID_BITS,
2241 sizeof(struct kvm_steal_time)))
2242 return 1;
2243
2244 vcpu->arch.st.msr_val = data;
2245
2246 if (!(data & KVM_MSR_ENABLED))
2247 break;
2248
2249 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2250
2251 break;
2252 case MSR_KVM_PV_EOI_EN:
2253 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2254 return 1;
2255 break;
2256
2257 case MSR_IA32_MCG_CTL:
2258 case MSR_IA32_MCG_STATUS:
2259 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2260 return set_msr_mce(vcpu, msr, data);
2261
2262 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2263 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2264 pr = true; /* fall through */
2265 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2266 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2267 if (kvm_pmu_is_valid_msr(vcpu, msr))
2268 return kvm_pmu_set_msr(vcpu, msr_info);
2269
2270 if (pr || data != 0)
2271 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2272 "0x%x data 0x%llx\n", msr, data);
2273 break;
2274 case MSR_K7_CLK_CTL:
2275 /*
2276 * Ignore all writes to this no longer documented MSR.
2277 * Writes are only relevant for old K7 processors,
2278 * all pre-dating SVM, but a recommended workaround from
2279 * AMD for these chips. It is possible to specify the
2280 * affected processor models on the command line, hence
2281 * the need to ignore the workaround.
2282 */
2283 break;
2284 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2285 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2286 case HV_X64_MSR_CRASH_CTL:
2287 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2288 return kvm_hv_set_msr_common(vcpu, msr, data,
2289 msr_info->host_initiated);
2290 case MSR_IA32_BBL_CR_CTL3:
2291 /* Drop writes to this legacy MSR -- see rdmsr
2292 * counterpart for further detail.
2293 */
2294 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2295 break;
2296 case MSR_AMD64_OSVW_ID_LENGTH:
2297 if (!guest_cpuid_has_osvw(vcpu))
2298 return 1;
2299 vcpu->arch.osvw.length = data;
2300 break;
2301 case MSR_AMD64_OSVW_STATUS:
2302 if (!guest_cpuid_has_osvw(vcpu))
2303 return 1;
2304 vcpu->arch.osvw.status = data;
2305 break;
2306 case MSR_PLATFORM_INFO:
2307 if (!msr_info->host_initiated ||
2308 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2309 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2310 cpuid_fault_enabled(vcpu)))
2311 return 1;
2312 vcpu->arch.msr_platform_info = data;
2313 break;
2314 case MSR_MISC_FEATURES_ENABLES:
2315 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2316 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2317 !supports_cpuid_fault(vcpu)))
2318 return 1;
2319 vcpu->arch.msr_misc_features_enables = data;
2320 break;
2321 default:
2322 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2323 return xen_hvm_config(vcpu, data);
2324 if (kvm_pmu_is_valid_msr(vcpu, msr))
2325 return kvm_pmu_set_msr(vcpu, msr_info);
2326 if (!ignore_msrs) {
2327 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2328 msr, data);
2329 return 1;
2330 } else {
2331 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2332 msr, data);
2333 break;
2334 }
2335 }
2336 return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2339
2340
2341 /*
2342 * Reads an msr value (of 'msr_index') into 'pdata'.
2343 * Returns 0 on success, non-0 otherwise.
2344 * Assumes vcpu_load() was already called.
2345 */
2346 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2347 {
2348 return kvm_x86_ops->get_msr(vcpu, msr);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_get_msr);
2351
2352 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2353 {
2354 u64 data;
2355 u64 mcg_cap = vcpu->arch.mcg_cap;
2356 unsigned bank_num = mcg_cap & 0xff;
2357
2358 switch (msr) {
2359 case MSR_IA32_P5_MC_ADDR:
2360 case MSR_IA32_P5_MC_TYPE:
2361 data = 0;
2362 break;
2363 case MSR_IA32_MCG_CAP:
2364 data = vcpu->arch.mcg_cap;
2365 break;
2366 case MSR_IA32_MCG_CTL:
2367 if (!(mcg_cap & MCG_CTL_P))
2368 return 1;
2369 data = vcpu->arch.mcg_ctl;
2370 break;
2371 case MSR_IA32_MCG_STATUS:
2372 data = vcpu->arch.mcg_status;
2373 break;
2374 default:
2375 if (msr >= MSR_IA32_MC0_CTL &&
2376 msr < MSR_IA32_MCx_CTL(bank_num)) {
2377 u32 offset = msr - MSR_IA32_MC0_CTL;
2378 data = vcpu->arch.mce_banks[offset];
2379 break;
2380 }
2381 return 1;
2382 }
2383 *pdata = data;
2384 return 0;
2385 }
2386
2387 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2388 {
2389 switch (msr_info->index) {
2390 case MSR_IA32_PLATFORM_ID:
2391 case MSR_IA32_EBL_CR_POWERON:
2392 case MSR_IA32_DEBUGCTLMSR:
2393 case MSR_IA32_LASTBRANCHFROMIP:
2394 case MSR_IA32_LASTBRANCHTOIP:
2395 case MSR_IA32_LASTINTFROMIP:
2396 case MSR_IA32_LASTINTTOIP:
2397 case MSR_K8_SYSCFG:
2398 case MSR_K8_TSEG_ADDR:
2399 case MSR_K8_TSEG_MASK:
2400 case MSR_K7_HWCR:
2401 case MSR_VM_HSAVE_PA:
2402 case MSR_K8_INT_PENDING_MSG:
2403 case MSR_AMD64_NB_CFG:
2404 case MSR_FAM10H_MMIO_CONF_BASE:
2405 case MSR_AMD64_BU_CFG2:
2406 case MSR_IA32_PERF_CTL:
2407 case MSR_AMD64_DC_CFG:
2408 msr_info->data = 0;
2409 break;
2410 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2411 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2412 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2413 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2414 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2415 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2416 msr_info->data = 0;
2417 break;
2418 case MSR_IA32_UCODE_REV:
2419 msr_info->data = 0x100000000ULL;
2420 break;
2421 case MSR_MTRRcap:
2422 case 0x200 ... 0x2ff:
2423 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2424 case 0xcd: /* fsb frequency */
2425 msr_info->data = 3;
2426 break;
2427 /*
2428 * MSR_EBC_FREQUENCY_ID
2429 * Conservative value valid for even the basic CPU models.
2430 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2431 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2432 * and 266MHz for model 3, or 4. Set Core Clock
2433 * Frequency to System Bus Frequency Ratio to 1 (bits
2434 * 31:24) even though these are only valid for CPU
2435 * models > 2, however guests may end up dividing or
2436 * multiplying by zero otherwise.
2437 */
2438 case MSR_EBC_FREQUENCY_ID:
2439 msr_info->data = 1 << 24;
2440 break;
2441 case MSR_IA32_APICBASE:
2442 msr_info->data = kvm_get_apic_base(vcpu);
2443 break;
2444 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2445 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2446 break;
2447 case MSR_IA32_TSCDEADLINE:
2448 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2449 break;
2450 case MSR_IA32_TSC_ADJUST:
2451 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2452 break;
2453 case MSR_IA32_MISC_ENABLE:
2454 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2455 break;
2456 case MSR_IA32_SMBASE:
2457 if (!msr_info->host_initiated)
2458 return 1;
2459 msr_info->data = vcpu->arch.smbase;
2460 break;
2461 case MSR_IA32_PERF_STATUS:
2462 /* TSC increment by tick */
2463 msr_info->data = 1000ULL;
2464 /* CPU multiplier */
2465 msr_info->data |= (((uint64_t)4ULL) << 40);
2466 break;
2467 case MSR_EFER:
2468 msr_info->data = vcpu->arch.efer;
2469 break;
2470 case MSR_KVM_WALL_CLOCK:
2471 case MSR_KVM_WALL_CLOCK_NEW:
2472 msr_info->data = vcpu->kvm->arch.wall_clock;
2473 break;
2474 case MSR_KVM_SYSTEM_TIME:
2475 case MSR_KVM_SYSTEM_TIME_NEW:
2476 msr_info->data = vcpu->arch.time;
2477 break;
2478 case MSR_KVM_ASYNC_PF_EN:
2479 msr_info->data = vcpu->arch.apf.msr_val;
2480 break;
2481 case MSR_KVM_STEAL_TIME:
2482 msr_info->data = vcpu->arch.st.msr_val;
2483 break;
2484 case MSR_KVM_PV_EOI_EN:
2485 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2486 break;
2487 case MSR_IA32_P5_MC_ADDR:
2488 case MSR_IA32_P5_MC_TYPE:
2489 case MSR_IA32_MCG_CAP:
2490 case MSR_IA32_MCG_CTL:
2491 case MSR_IA32_MCG_STATUS:
2492 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2493 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2494 case MSR_K7_CLK_CTL:
2495 /*
2496 * Provide expected ramp-up count for K7. All other
2497 * are set to zero, indicating minimum divisors for
2498 * every field.
2499 *
2500 * This prevents guest kernels on AMD host with CPU
2501 * type 6, model 8 and higher from exploding due to
2502 * the rdmsr failing.
2503 */
2504 msr_info->data = 0x20000000;
2505 break;
2506 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2507 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2508 case HV_X64_MSR_CRASH_CTL:
2509 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2510 return kvm_hv_get_msr_common(vcpu,
2511 msr_info->index, &msr_info->data);
2512 break;
2513 case MSR_IA32_BBL_CR_CTL3:
2514 /* This legacy MSR exists but isn't fully documented in current
2515 * silicon. It is however accessed by winxp in very narrow
2516 * scenarios where it sets bit #19, itself documented as
2517 * a "reserved" bit. Best effort attempt to source coherent
2518 * read data here should the balance of the register be
2519 * interpreted by the guest:
2520 *
2521 * L2 cache control register 3: 64GB range, 256KB size,
2522 * enabled, latency 0x1, configured
2523 */
2524 msr_info->data = 0xbe702111;
2525 break;
2526 case MSR_AMD64_OSVW_ID_LENGTH:
2527 if (!guest_cpuid_has_osvw(vcpu))
2528 return 1;
2529 msr_info->data = vcpu->arch.osvw.length;
2530 break;
2531 case MSR_AMD64_OSVW_STATUS:
2532 if (!guest_cpuid_has_osvw(vcpu))
2533 return 1;
2534 msr_info->data = vcpu->arch.osvw.status;
2535 break;
2536 case MSR_PLATFORM_INFO:
2537 msr_info->data = vcpu->arch.msr_platform_info;
2538 break;
2539 case MSR_MISC_FEATURES_ENABLES:
2540 msr_info->data = vcpu->arch.msr_misc_features_enables;
2541 break;
2542 default:
2543 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2544 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2545 if (!ignore_msrs) {
2546 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2547 msr_info->index);
2548 return 1;
2549 } else {
2550 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2551 msr_info->data = 0;
2552 }
2553 break;
2554 }
2555 return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2558
2559 /*
2560 * Read or write a bunch of msrs. All parameters are kernel addresses.
2561 *
2562 * @return number of msrs set successfully.
2563 */
2564 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2565 struct kvm_msr_entry *entries,
2566 int (*do_msr)(struct kvm_vcpu *vcpu,
2567 unsigned index, u64 *data))
2568 {
2569 int i, idx;
2570
2571 idx = srcu_read_lock(&vcpu->kvm->srcu);
2572 for (i = 0; i < msrs->nmsrs; ++i)
2573 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2574 break;
2575 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2576
2577 return i;
2578 }
2579
2580 /*
2581 * Read or write a bunch of msrs. Parameters are user addresses.
2582 *
2583 * @return number of msrs set successfully.
2584 */
2585 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2586 int (*do_msr)(struct kvm_vcpu *vcpu,
2587 unsigned index, u64 *data),
2588 int writeback)
2589 {
2590 struct kvm_msrs msrs;
2591 struct kvm_msr_entry *entries;
2592 int r, n;
2593 unsigned size;
2594
2595 r = -EFAULT;
2596 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2597 goto out;
2598
2599 r = -E2BIG;
2600 if (msrs.nmsrs >= MAX_IO_MSRS)
2601 goto out;
2602
2603 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2604 entries = memdup_user(user_msrs->entries, size);
2605 if (IS_ERR(entries)) {
2606 r = PTR_ERR(entries);
2607 goto out;
2608 }
2609
2610 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2611 if (r < 0)
2612 goto out_free;
2613
2614 r = -EFAULT;
2615 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2616 goto out_free;
2617
2618 r = n;
2619
2620 out_free:
2621 kfree(entries);
2622 out:
2623 return r;
2624 }
2625
2626 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2627 {
2628 int r;
2629
2630 switch (ext) {
2631 case KVM_CAP_IRQCHIP:
2632 case KVM_CAP_HLT:
2633 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2634 case KVM_CAP_SET_TSS_ADDR:
2635 case KVM_CAP_EXT_CPUID:
2636 case KVM_CAP_EXT_EMUL_CPUID:
2637 case KVM_CAP_CLOCKSOURCE:
2638 case KVM_CAP_PIT:
2639 case KVM_CAP_NOP_IO_DELAY:
2640 case KVM_CAP_MP_STATE:
2641 case KVM_CAP_SYNC_MMU:
2642 case KVM_CAP_USER_NMI:
2643 case KVM_CAP_REINJECT_CONTROL:
2644 case KVM_CAP_IRQ_INJECT_STATUS:
2645 case KVM_CAP_IOEVENTFD:
2646 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2647 case KVM_CAP_PIT2:
2648 case KVM_CAP_PIT_STATE2:
2649 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2650 case KVM_CAP_XEN_HVM:
2651 case KVM_CAP_VCPU_EVENTS:
2652 case KVM_CAP_HYPERV:
2653 case KVM_CAP_HYPERV_VAPIC:
2654 case KVM_CAP_HYPERV_SPIN:
2655 case KVM_CAP_HYPERV_SYNIC:
2656 case KVM_CAP_PCI_SEGMENT:
2657 case KVM_CAP_DEBUGREGS:
2658 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2659 case KVM_CAP_XSAVE:
2660 case KVM_CAP_ASYNC_PF:
2661 case KVM_CAP_GET_TSC_KHZ:
2662 case KVM_CAP_KVMCLOCK_CTRL:
2663 case KVM_CAP_READONLY_MEM:
2664 case KVM_CAP_HYPERV_TIME:
2665 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2666 case KVM_CAP_TSC_DEADLINE_TIMER:
2667 case KVM_CAP_ENABLE_CAP_VM:
2668 case KVM_CAP_DISABLE_QUIRKS:
2669 case KVM_CAP_SET_BOOT_CPU_ID:
2670 case KVM_CAP_SPLIT_IRQCHIP:
2671 case KVM_CAP_IMMEDIATE_EXIT:
2672 r = 1;
2673 break;
2674 case KVM_CAP_ADJUST_CLOCK:
2675 r = KVM_CLOCK_TSC_STABLE;
2676 break;
2677 case KVM_CAP_X86_GUEST_MWAIT:
2678 r = kvm_mwait_in_guest();
2679 break;
2680 case KVM_CAP_X86_SMM:
2681 /* SMBASE is usually relocated above 1M on modern chipsets,
2682 * and SMM handlers might indeed rely on 4G segment limits,
2683 * so do not report SMM to be available if real mode is
2684 * emulated via vm86 mode. Still, do not go to great lengths
2685 * to avoid userspace's usage of the feature, because it is a
2686 * fringe case that is not enabled except via specific settings
2687 * of the module parameters.
2688 */
2689 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2690 break;
2691 case KVM_CAP_VAPIC:
2692 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2693 break;
2694 case KVM_CAP_NR_VCPUS:
2695 r = KVM_SOFT_MAX_VCPUS;
2696 break;
2697 case KVM_CAP_MAX_VCPUS:
2698 r = KVM_MAX_VCPUS;
2699 break;
2700 case KVM_CAP_NR_MEMSLOTS:
2701 r = KVM_USER_MEM_SLOTS;
2702 break;
2703 case KVM_CAP_PV_MMU: /* obsolete */
2704 r = 0;
2705 break;
2706 case KVM_CAP_MCE:
2707 r = KVM_MAX_MCE_BANKS;
2708 break;
2709 case KVM_CAP_XCRS:
2710 r = boot_cpu_has(X86_FEATURE_XSAVE);
2711 break;
2712 case KVM_CAP_TSC_CONTROL:
2713 r = kvm_has_tsc_control;
2714 break;
2715 case KVM_CAP_X2APIC_API:
2716 r = KVM_X2APIC_API_VALID_FLAGS;
2717 break;
2718 default:
2719 r = 0;
2720 break;
2721 }
2722 return r;
2723
2724 }
2725
2726 long kvm_arch_dev_ioctl(struct file *filp,
2727 unsigned int ioctl, unsigned long arg)
2728 {
2729 void __user *argp = (void __user *)arg;
2730 long r;
2731
2732 switch (ioctl) {
2733 case KVM_GET_MSR_INDEX_LIST: {
2734 struct kvm_msr_list __user *user_msr_list = argp;
2735 struct kvm_msr_list msr_list;
2736 unsigned n;
2737
2738 r = -EFAULT;
2739 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2740 goto out;
2741 n = msr_list.nmsrs;
2742 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2743 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2744 goto out;
2745 r = -E2BIG;
2746 if (n < msr_list.nmsrs)
2747 goto out;
2748 r = -EFAULT;
2749 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2750 num_msrs_to_save * sizeof(u32)))
2751 goto out;
2752 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2753 &emulated_msrs,
2754 num_emulated_msrs * sizeof(u32)))
2755 goto out;
2756 r = 0;
2757 break;
2758 }
2759 case KVM_GET_SUPPORTED_CPUID:
2760 case KVM_GET_EMULATED_CPUID: {
2761 struct kvm_cpuid2 __user *cpuid_arg = argp;
2762 struct kvm_cpuid2 cpuid;
2763
2764 r = -EFAULT;
2765 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2766 goto out;
2767
2768 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2769 ioctl);
2770 if (r)
2771 goto out;
2772
2773 r = -EFAULT;
2774 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2775 goto out;
2776 r = 0;
2777 break;
2778 }
2779 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2780 r = -EFAULT;
2781 if (copy_to_user(argp, &kvm_mce_cap_supported,
2782 sizeof(kvm_mce_cap_supported)))
2783 goto out;
2784 r = 0;
2785 break;
2786 }
2787 default:
2788 r = -EINVAL;
2789 }
2790 out:
2791 return r;
2792 }
2793
2794 static void wbinvd_ipi(void *garbage)
2795 {
2796 wbinvd();
2797 }
2798
2799 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2800 {
2801 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2802 }
2803
2804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2805 {
2806 /* Address WBINVD may be executed by guest */
2807 if (need_emulate_wbinvd(vcpu)) {
2808 if (kvm_x86_ops->has_wbinvd_exit())
2809 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2810 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2811 smp_call_function_single(vcpu->cpu,
2812 wbinvd_ipi, NULL, 1);
2813 }
2814
2815 kvm_x86_ops->vcpu_load(vcpu, cpu);
2816
2817 /* Apply any externally detected TSC adjustments (due to suspend) */
2818 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2819 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2820 vcpu->arch.tsc_offset_adjustment = 0;
2821 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2822 }
2823
2824 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2825 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2826 rdtsc() - vcpu->arch.last_host_tsc;
2827 if (tsc_delta < 0)
2828 mark_tsc_unstable("KVM discovered backwards TSC");
2829
2830 if (check_tsc_unstable()) {
2831 u64 offset = kvm_compute_tsc_offset(vcpu,
2832 vcpu->arch.last_guest_tsc);
2833 kvm_vcpu_write_tsc_offset(vcpu, offset);
2834 vcpu->arch.tsc_catchup = 1;
2835 }
2836 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2837 kvm_x86_ops->set_hv_timer(vcpu,
2838 kvm_get_lapic_target_expiration_tsc(vcpu)))
2839 kvm_lapic_switch_to_sw_timer(vcpu);
2840 /*
2841 * On a host with synchronized TSC, there is no need to update
2842 * kvmclock on vcpu->cpu migration
2843 */
2844 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2845 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2846 if (vcpu->cpu != cpu)
2847 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2848 vcpu->cpu = cpu;
2849 }
2850
2851 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2852 }
2853
2854 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2855 {
2856 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2857 return;
2858
2859 vcpu->arch.st.steal.preempted = 1;
2860
2861 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2862 &vcpu->arch.st.steal.preempted,
2863 offsetof(struct kvm_steal_time, preempted),
2864 sizeof(vcpu->arch.st.steal.preempted));
2865 }
2866
2867 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2868 {
2869 int idx;
2870 /*
2871 * Disable page faults because we're in atomic context here.
2872 * kvm_write_guest_offset_cached() would call might_fault()
2873 * that relies on pagefault_disable() to tell if there's a
2874 * bug. NOTE: the write to guest memory may not go through if
2875 * during postcopy live migration or if there's heavy guest
2876 * paging.
2877 */
2878 pagefault_disable();
2879 /*
2880 * kvm_memslots() will be called by
2881 * kvm_write_guest_offset_cached() so take the srcu lock.
2882 */
2883 idx = srcu_read_lock(&vcpu->kvm->srcu);
2884 kvm_steal_time_set_preempted(vcpu);
2885 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2886 pagefault_enable();
2887 kvm_x86_ops->vcpu_put(vcpu);
2888 kvm_put_guest_fpu(vcpu);
2889 vcpu->arch.last_host_tsc = rdtsc();
2890 }
2891
2892 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2893 struct kvm_lapic_state *s)
2894 {
2895 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2896 kvm_x86_ops->sync_pir_to_irr(vcpu);
2897
2898 return kvm_apic_get_state(vcpu, s);
2899 }
2900
2901 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2902 struct kvm_lapic_state *s)
2903 {
2904 int r;
2905
2906 r = kvm_apic_set_state(vcpu, s);
2907 if (r)
2908 return r;
2909 update_cr8_intercept(vcpu);
2910
2911 return 0;
2912 }
2913
2914 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2915 {
2916 return (!lapic_in_kernel(vcpu) ||
2917 kvm_apic_accept_pic_intr(vcpu));
2918 }
2919
2920 /*
2921 * if userspace requested an interrupt window, check that the
2922 * interrupt window is open.
2923 *
2924 * No need to exit to userspace if we already have an interrupt queued.
2925 */
2926 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2927 {
2928 return kvm_arch_interrupt_allowed(vcpu) &&
2929 !kvm_cpu_has_interrupt(vcpu) &&
2930 !kvm_event_needs_reinjection(vcpu) &&
2931 kvm_cpu_accept_dm_intr(vcpu);
2932 }
2933
2934 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2935 struct kvm_interrupt *irq)
2936 {
2937 if (irq->irq >= KVM_NR_INTERRUPTS)
2938 return -EINVAL;
2939
2940 if (!irqchip_in_kernel(vcpu->kvm)) {
2941 kvm_queue_interrupt(vcpu, irq->irq, false);
2942 kvm_make_request(KVM_REQ_EVENT, vcpu);
2943 return 0;
2944 }
2945
2946 /*
2947 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2948 * fail for in-kernel 8259.
2949 */
2950 if (pic_in_kernel(vcpu->kvm))
2951 return -ENXIO;
2952
2953 if (vcpu->arch.pending_external_vector != -1)
2954 return -EEXIST;
2955
2956 vcpu->arch.pending_external_vector = irq->irq;
2957 kvm_make_request(KVM_REQ_EVENT, vcpu);
2958 return 0;
2959 }
2960
2961 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2962 {
2963 kvm_inject_nmi(vcpu);
2964
2965 return 0;
2966 }
2967
2968 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2969 {
2970 kvm_make_request(KVM_REQ_SMI, vcpu);
2971
2972 return 0;
2973 }
2974
2975 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2976 struct kvm_tpr_access_ctl *tac)
2977 {
2978 if (tac->flags)
2979 return -EINVAL;
2980 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2981 return 0;
2982 }
2983
2984 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2985 u64 mcg_cap)
2986 {
2987 int r;
2988 unsigned bank_num = mcg_cap & 0xff, bank;
2989
2990 r = -EINVAL;
2991 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2992 goto out;
2993 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2994 goto out;
2995 r = 0;
2996 vcpu->arch.mcg_cap = mcg_cap;
2997 /* Init IA32_MCG_CTL to all 1s */
2998 if (mcg_cap & MCG_CTL_P)
2999 vcpu->arch.mcg_ctl = ~(u64)0;
3000 /* Init IA32_MCi_CTL to all 1s */
3001 for (bank = 0; bank < bank_num; bank++)
3002 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3003
3004 if (kvm_x86_ops->setup_mce)
3005 kvm_x86_ops->setup_mce(vcpu);
3006 out:
3007 return r;
3008 }
3009
3010 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3011 struct kvm_x86_mce *mce)
3012 {
3013 u64 mcg_cap = vcpu->arch.mcg_cap;
3014 unsigned bank_num = mcg_cap & 0xff;
3015 u64 *banks = vcpu->arch.mce_banks;
3016
3017 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3018 return -EINVAL;
3019 /*
3020 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3021 * reporting is disabled
3022 */
3023 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3024 vcpu->arch.mcg_ctl != ~(u64)0)
3025 return 0;
3026 banks += 4 * mce->bank;
3027 /*
3028 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3029 * reporting is disabled for the bank
3030 */
3031 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3032 return 0;
3033 if (mce->status & MCI_STATUS_UC) {
3034 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3035 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3036 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3037 return 0;
3038 }
3039 if (banks[1] & MCI_STATUS_VAL)
3040 mce->status |= MCI_STATUS_OVER;
3041 banks[2] = mce->addr;
3042 banks[3] = mce->misc;
3043 vcpu->arch.mcg_status = mce->mcg_status;
3044 banks[1] = mce->status;
3045 kvm_queue_exception(vcpu, MC_VECTOR);
3046 } else if (!(banks[1] & MCI_STATUS_VAL)
3047 || !(banks[1] & MCI_STATUS_UC)) {
3048 if (banks[1] & MCI_STATUS_VAL)
3049 mce->status |= MCI_STATUS_OVER;
3050 banks[2] = mce->addr;
3051 banks[3] = mce->misc;
3052 banks[1] = mce->status;
3053 } else
3054 banks[1] |= MCI_STATUS_OVER;
3055 return 0;
3056 }
3057
3058 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3059 struct kvm_vcpu_events *events)
3060 {
3061 process_nmi(vcpu);
3062 events->exception.injected =
3063 vcpu->arch.exception.pending &&
3064 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3065 events->exception.nr = vcpu->arch.exception.nr;
3066 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3067 events->exception.pad = 0;
3068 events->exception.error_code = vcpu->arch.exception.error_code;
3069
3070 events->interrupt.injected =
3071 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3072 events->interrupt.nr = vcpu->arch.interrupt.nr;
3073 events->interrupt.soft = 0;
3074 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3075
3076 events->nmi.injected = vcpu->arch.nmi_injected;
3077 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3078 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3079 events->nmi.pad = 0;
3080
3081 events->sipi_vector = 0; /* never valid when reporting to user space */
3082
3083 events->smi.smm = is_smm(vcpu);
3084 events->smi.pending = vcpu->arch.smi_pending;
3085 events->smi.smm_inside_nmi =
3086 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3087 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3088
3089 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3090 | KVM_VCPUEVENT_VALID_SHADOW
3091 | KVM_VCPUEVENT_VALID_SMM);
3092 memset(&events->reserved, 0, sizeof(events->reserved));
3093 }
3094
3095 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3096
3097 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3098 struct kvm_vcpu_events *events)
3099 {
3100 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3101 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3102 | KVM_VCPUEVENT_VALID_SHADOW
3103 | KVM_VCPUEVENT_VALID_SMM))
3104 return -EINVAL;
3105
3106 if (events->exception.injected &&
3107 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3108 is_guest_mode(vcpu)))
3109 return -EINVAL;
3110
3111 /* INITs are latched while in SMM */
3112 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3113 (events->smi.smm || events->smi.pending) &&
3114 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3115 return -EINVAL;
3116
3117 process_nmi(vcpu);
3118 vcpu->arch.exception.pending = events->exception.injected;
3119 vcpu->arch.exception.nr = events->exception.nr;
3120 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3121 vcpu->arch.exception.error_code = events->exception.error_code;
3122
3123 vcpu->arch.interrupt.pending = events->interrupt.injected;
3124 vcpu->arch.interrupt.nr = events->interrupt.nr;
3125 vcpu->arch.interrupt.soft = events->interrupt.soft;
3126 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3127 kvm_x86_ops->set_interrupt_shadow(vcpu,
3128 events->interrupt.shadow);
3129
3130 vcpu->arch.nmi_injected = events->nmi.injected;
3131 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3132 vcpu->arch.nmi_pending = events->nmi.pending;
3133 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3134
3135 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3136 lapic_in_kernel(vcpu))
3137 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3138
3139 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3140 u32 hflags = vcpu->arch.hflags;
3141 if (events->smi.smm)
3142 hflags |= HF_SMM_MASK;
3143 else
3144 hflags &= ~HF_SMM_MASK;
3145 kvm_set_hflags(vcpu, hflags);
3146
3147 vcpu->arch.smi_pending = events->smi.pending;
3148 if (events->smi.smm_inside_nmi)
3149 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3150 else
3151 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3152 if (lapic_in_kernel(vcpu)) {
3153 if (events->smi.latched_init)
3154 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3155 else
3156 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3157 }
3158 }
3159
3160 kvm_make_request(KVM_REQ_EVENT, vcpu);
3161
3162 return 0;
3163 }
3164
3165 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3166 struct kvm_debugregs *dbgregs)
3167 {
3168 unsigned long val;
3169
3170 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3171 kvm_get_dr(vcpu, 6, &val);
3172 dbgregs->dr6 = val;
3173 dbgregs->dr7 = vcpu->arch.dr7;
3174 dbgregs->flags = 0;
3175 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3176 }
3177
3178 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3179 struct kvm_debugregs *dbgregs)
3180 {
3181 if (dbgregs->flags)
3182 return -EINVAL;
3183
3184 if (dbgregs->dr6 & ~0xffffffffull)
3185 return -EINVAL;
3186 if (dbgregs->dr7 & ~0xffffffffull)
3187 return -EINVAL;
3188
3189 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3190 kvm_update_dr0123(vcpu);
3191 vcpu->arch.dr6 = dbgregs->dr6;
3192 kvm_update_dr6(vcpu);
3193 vcpu->arch.dr7 = dbgregs->dr7;
3194 kvm_update_dr7(vcpu);
3195
3196 return 0;
3197 }
3198
3199 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3200
3201 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3202 {
3203 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3204 u64 xstate_bv = xsave->header.xfeatures;
3205 u64 valid;
3206
3207 /*
3208 * Copy legacy XSAVE area, to avoid complications with CPUID
3209 * leaves 0 and 1 in the loop below.
3210 */
3211 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3212
3213 /* Set XSTATE_BV */
3214 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3215 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3216
3217 /*
3218 * Copy each region from the possibly compacted offset to the
3219 * non-compacted offset.
3220 */
3221 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3222 while (valid) {
3223 u64 feature = valid & -valid;
3224 int index = fls64(feature) - 1;
3225 void *src = get_xsave_addr(xsave, feature);
3226
3227 if (src) {
3228 u32 size, offset, ecx, edx;
3229 cpuid_count(XSTATE_CPUID, index,
3230 &size, &offset, &ecx, &edx);
3231 memcpy(dest + offset, src, size);
3232 }
3233
3234 valid -= feature;
3235 }
3236 }
3237
3238 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3239 {
3240 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3241 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3242 u64 valid;
3243
3244 /*
3245 * Copy legacy XSAVE area, to avoid complications with CPUID
3246 * leaves 0 and 1 in the loop below.
3247 */
3248 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3249
3250 /* Set XSTATE_BV and possibly XCOMP_BV. */
3251 xsave->header.xfeatures = xstate_bv;
3252 if (boot_cpu_has(X86_FEATURE_XSAVES))
3253 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3254
3255 /*
3256 * Copy each region from the non-compacted offset to the
3257 * possibly compacted offset.
3258 */
3259 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3260 while (valid) {
3261 u64 feature = valid & -valid;
3262 int index = fls64(feature) - 1;
3263 void *dest = get_xsave_addr(xsave, feature);
3264
3265 if (dest) {
3266 u32 size, offset, ecx, edx;
3267 cpuid_count(XSTATE_CPUID, index,
3268 &size, &offset, &ecx, &edx);
3269 memcpy(dest, src + offset, size);
3270 }
3271
3272 valid -= feature;
3273 }
3274 }
3275
3276 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3277 struct kvm_xsave *guest_xsave)
3278 {
3279 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3280 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3281 fill_xsave((u8 *) guest_xsave->region, vcpu);
3282 } else {
3283 memcpy(guest_xsave->region,
3284 &vcpu->arch.guest_fpu.state.fxsave,
3285 sizeof(struct fxregs_state));
3286 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3287 XFEATURE_MASK_FPSSE;
3288 }
3289 }
3290
3291 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3292 struct kvm_xsave *guest_xsave)
3293 {
3294 u64 xstate_bv =
3295 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3296
3297 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3298 /*
3299 * Here we allow setting states that are not present in
3300 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3301 * with old userspace.
3302 */
3303 if (xstate_bv & ~kvm_supported_xcr0())
3304 return -EINVAL;
3305 load_xsave(vcpu, (u8 *)guest_xsave->region);
3306 } else {
3307 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3308 return -EINVAL;
3309 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3310 guest_xsave->region, sizeof(struct fxregs_state));
3311 }
3312 return 0;
3313 }
3314
3315 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3316 struct kvm_xcrs *guest_xcrs)
3317 {
3318 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3319 guest_xcrs->nr_xcrs = 0;
3320 return;
3321 }
3322
3323 guest_xcrs->nr_xcrs = 1;
3324 guest_xcrs->flags = 0;
3325 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3326 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3327 }
3328
3329 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3330 struct kvm_xcrs *guest_xcrs)
3331 {
3332 int i, r = 0;
3333
3334 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3335 return -EINVAL;
3336
3337 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3338 return -EINVAL;
3339
3340 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3341 /* Only support XCR0 currently */
3342 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3343 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3344 guest_xcrs->xcrs[i].value);
3345 break;
3346 }
3347 if (r)
3348 r = -EINVAL;
3349 return r;
3350 }
3351
3352 /*
3353 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3354 * stopped by the hypervisor. This function will be called from the host only.
3355 * EINVAL is returned when the host attempts to set the flag for a guest that
3356 * does not support pv clocks.
3357 */
3358 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3359 {
3360 if (!vcpu->arch.pv_time_enabled)
3361 return -EINVAL;
3362 vcpu->arch.pvclock_set_guest_stopped_request = true;
3363 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3364 return 0;
3365 }
3366
3367 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3368 struct kvm_enable_cap *cap)
3369 {
3370 if (cap->flags)
3371 return -EINVAL;
3372
3373 switch (cap->cap) {
3374 case KVM_CAP_HYPERV_SYNIC:
3375 if (!irqchip_in_kernel(vcpu->kvm))
3376 return -EINVAL;
3377 return kvm_hv_activate_synic(vcpu);
3378 default:
3379 return -EINVAL;
3380 }
3381 }
3382
3383 long kvm_arch_vcpu_ioctl(struct file *filp,
3384 unsigned int ioctl, unsigned long arg)
3385 {
3386 struct kvm_vcpu *vcpu = filp->private_data;
3387 void __user *argp = (void __user *)arg;
3388 int r;
3389 union {
3390 struct kvm_lapic_state *lapic;
3391 struct kvm_xsave *xsave;
3392 struct kvm_xcrs *xcrs;
3393 void *buffer;
3394 } u;
3395
3396 u.buffer = NULL;
3397 switch (ioctl) {
3398 case KVM_GET_LAPIC: {
3399 r = -EINVAL;
3400 if (!lapic_in_kernel(vcpu))
3401 goto out;
3402 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3403
3404 r = -ENOMEM;
3405 if (!u.lapic)
3406 goto out;
3407 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3408 if (r)
3409 goto out;
3410 r = -EFAULT;
3411 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3412 goto out;
3413 r = 0;
3414 break;
3415 }
3416 case KVM_SET_LAPIC: {
3417 r = -EINVAL;
3418 if (!lapic_in_kernel(vcpu))
3419 goto out;
3420 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3421 if (IS_ERR(u.lapic))
3422 return PTR_ERR(u.lapic);
3423
3424 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3425 break;
3426 }
3427 case KVM_INTERRUPT: {
3428 struct kvm_interrupt irq;
3429
3430 r = -EFAULT;
3431 if (copy_from_user(&irq, argp, sizeof irq))
3432 goto out;
3433 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3434 break;
3435 }
3436 case KVM_NMI: {
3437 r = kvm_vcpu_ioctl_nmi(vcpu);
3438 break;
3439 }
3440 case KVM_SMI: {
3441 r = kvm_vcpu_ioctl_smi(vcpu);
3442 break;
3443 }
3444 case KVM_SET_CPUID: {
3445 struct kvm_cpuid __user *cpuid_arg = argp;
3446 struct kvm_cpuid cpuid;
3447
3448 r = -EFAULT;
3449 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3450 goto out;
3451 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3452 break;
3453 }
3454 case KVM_SET_CPUID2: {
3455 struct kvm_cpuid2 __user *cpuid_arg = argp;
3456 struct kvm_cpuid2 cpuid;
3457
3458 r = -EFAULT;
3459 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3460 goto out;
3461 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3462 cpuid_arg->entries);
3463 break;
3464 }
3465 case KVM_GET_CPUID2: {
3466 struct kvm_cpuid2 __user *cpuid_arg = argp;
3467 struct kvm_cpuid2 cpuid;
3468
3469 r = -EFAULT;
3470 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3471 goto out;
3472 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3473 cpuid_arg->entries);
3474 if (r)
3475 goto out;
3476 r = -EFAULT;
3477 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3478 goto out;
3479 r = 0;
3480 break;
3481 }
3482 case KVM_GET_MSRS:
3483 r = msr_io(vcpu, argp, do_get_msr, 1);
3484 break;
3485 case KVM_SET_MSRS:
3486 r = msr_io(vcpu, argp, do_set_msr, 0);
3487 break;
3488 case KVM_TPR_ACCESS_REPORTING: {
3489 struct kvm_tpr_access_ctl tac;
3490
3491 r = -EFAULT;
3492 if (copy_from_user(&tac, argp, sizeof tac))
3493 goto out;
3494 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3495 if (r)
3496 goto out;
3497 r = -EFAULT;
3498 if (copy_to_user(argp, &tac, sizeof tac))
3499 goto out;
3500 r = 0;
3501 break;
3502 };
3503 case KVM_SET_VAPIC_ADDR: {
3504 struct kvm_vapic_addr va;
3505 int idx;
3506
3507 r = -EINVAL;
3508 if (!lapic_in_kernel(vcpu))
3509 goto out;
3510 r = -EFAULT;
3511 if (copy_from_user(&va, argp, sizeof va))
3512 goto out;
3513 idx = srcu_read_lock(&vcpu->kvm->srcu);
3514 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3515 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3516 break;
3517 }
3518 case KVM_X86_SETUP_MCE: {
3519 u64 mcg_cap;
3520
3521 r = -EFAULT;
3522 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3523 goto out;
3524 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3525 break;
3526 }
3527 case KVM_X86_SET_MCE: {
3528 struct kvm_x86_mce mce;
3529
3530 r = -EFAULT;
3531 if (copy_from_user(&mce, argp, sizeof mce))
3532 goto out;
3533 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3534 break;
3535 }
3536 case KVM_GET_VCPU_EVENTS: {
3537 struct kvm_vcpu_events events;
3538
3539 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3540
3541 r = -EFAULT;
3542 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3543 break;
3544 r = 0;
3545 break;
3546 }
3547 case KVM_SET_VCPU_EVENTS: {
3548 struct kvm_vcpu_events events;
3549
3550 r = -EFAULT;
3551 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3552 break;
3553
3554 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3555 break;
3556 }
3557 case KVM_GET_DEBUGREGS: {
3558 struct kvm_debugregs dbgregs;
3559
3560 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3561
3562 r = -EFAULT;
3563 if (copy_to_user(argp, &dbgregs,
3564 sizeof(struct kvm_debugregs)))
3565 break;
3566 r = 0;
3567 break;
3568 }
3569 case KVM_SET_DEBUGREGS: {
3570 struct kvm_debugregs dbgregs;
3571
3572 r = -EFAULT;
3573 if (copy_from_user(&dbgregs, argp,
3574 sizeof(struct kvm_debugregs)))
3575 break;
3576
3577 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3578 break;
3579 }
3580 case KVM_GET_XSAVE: {
3581 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3582 r = -ENOMEM;
3583 if (!u.xsave)
3584 break;
3585
3586 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3587
3588 r = -EFAULT;
3589 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3590 break;
3591 r = 0;
3592 break;
3593 }
3594 case KVM_SET_XSAVE: {
3595 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3596 if (IS_ERR(u.xsave))
3597 return PTR_ERR(u.xsave);
3598
3599 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3600 break;
3601 }
3602 case KVM_GET_XCRS: {
3603 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3604 r = -ENOMEM;
3605 if (!u.xcrs)
3606 break;
3607
3608 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3609
3610 r = -EFAULT;
3611 if (copy_to_user(argp, u.xcrs,
3612 sizeof(struct kvm_xcrs)))
3613 break;
3614 r = 0;
3615 break;
3616 }
3617 case KVM_SET_XCRS: {
3618 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3619 if (IS_ERR(u.xcrs))
3620 return PTR_ERR(u.xcrs);
3621
3622 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3623 break;
3624 }
3625 case KVM_SET_TSC_KHZ: {
3626 u32 user_tsc_khz;
3627
3628 r = -EINVAL;
3629 user_tsc_khz = (u32)arg;
3630
3631 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3632 goto out;
3633
3634 if (user_tsc_khz == 0)
3635 user_tsc_khz = tsc_khz;
3636
3637 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3638 r = 0;
3639
3640 goto out;
3641 }
3642 case KVM_GET_TSC_KHZ: {
3643 r = vcpu->arch.virtual_tsc_khz;
3644 goto out;
3645 }
3646 case KVM_KVMCLOCK_CTRL: {
3647 r = kvm_set_guest_paused(vcpu);
3648 goto out;
3649 }
3650 case KVM_ENABLE_CAP: {
3651 struct kvm_enable_cap cap;
3652
3653 r = -EFAULT;
3654 if (copy_from_user(&cap, argp, sizeof(cap)))
3655 goto out;
3656 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3657 break;
3658 }
3659 default:
3660 r = -EINVAL;
3661 }
3662 out:
3663 kfree(u.buffer);
3664 return r;
3665 }
3666
3667 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3668 {
3669 return VM_FAULT_SIGBUS;
3670 }
3671
3672 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3673 {
3674 int ret;
3675
3676 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3677 return -EINVAL;
3678 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3679 return ret;
3680 }
3681
3682 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3683 u64 ident_addr)
3684 {
3685 kvm->arch.ept_identity_map_addr = ident_addr;
3686 return 0;
3687 }
3688
3689 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3690 u32 kvm_nr_mmu_pages)
3691 {
3692 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3693 return -EINVAL;
3694
3695 mutex_lock(&kvm->slots_lock);
3696
3697 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3698 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3699
3700 mutex_unlock(&kvm->slots_lock);
3701 return 0;
3702 }
3703
3704 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3705 {
3706 return kvm->arch.n_max_mmu_pages;
3707 }
3708
3709 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3710 {
3711 struct kvm_pic *pic = kvm->arch.vpic;
3712 int r;
3713
3714 r = 0;
3715 switch (chip->chip_id) {
3716 case KVM_IRQCHIP_PIC_MASTER:
3717 memcpy(&chip->chip.pic, &pic->pics[0],
3718 sizeof(struct kvm_pic_state));
3719 break;
3720 case KVM_IRQCHIP_PIC_SLAVE:
3721 memcpy(&chip->chip.pic, &pic->pics[1],
3722 sizeof(struct kvm_pic_state));
3723 break;
3724 case KVM_IRQCHIP_IOAPIC:
3725 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3726 break;
3727 default:
3728 r = -EINVAL;
3729 break;
3730 }
3731 return r;
3732 }
3733
3734 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3735 {
3736 struct kvm_pic *pic = kvm->arch.vpic;
3737 int r;
3738
3739 r = 0;
3740 switch (chip->chip_id) {
3741 case KVM_IRQCHIP_PIC_MASTER:
3742 spin_lock(&pic->lock);
3743 memcpy(&pic->pics[0], &chip->chip.pic,
3744 sizeof(struct kvm_pic_state));
3745 spin_unlock(&pic->lock);
3746 break;
3747 case KVM_IRQCHIP_PIC_SLAVE:
3748 spin_lock(&pic->lock);
3749 memcpy(&pic->pics[1], &chip->chip.pic,
3750 sizeof(struct kvm_pic_state));
3751 spin_unlock(&pic->lock);
3752 break;
3753 case KVM_IRQCHIP_IOAPIC:
3754 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3755 break;
3756 default:
3757 r = -EINVAL;
3758 break;
3759 }
3760 kvm_pic_update_irq(pic);
3761 return r;
3762 }
3763
3764 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3765 {
3766 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3767
3768 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3769
3770 mutex_lock(&kps->lock);
3771 memcpy(ps, &kps->channels, sizeof(*ps));
3772 mutex_unlock(&kps->lock);
3773 return 0;
3774 }
3775
3776 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3777 {
3778 int i;
3779 struct kvm_pit *pit = kvm->arch.vpit;
3780
3781 mutex_lock(&pit->pit_state.lock);
3782 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3783 for (i = 0; i < 3; i++)
3784 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3785 mutex_unlock(&pit->pit_state.lock);
3786 return 0;
3787 }
3788
3789 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3790 {
3791 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3792 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3793 sizeof(ps->channels));
3794 ps->flags = kvm->arch.vpit->pit_state.flags;
3795 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3796 memset(&ps->reserved, 0, sizeof(ps->reserved));
3797 return 0;
3798 }
3799
3800 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3801 {
3802 int start = 0;
3803 int i;
3804 u32 prev_legacy, cur_legacy;
3805 struct kvm_pit *pit = kvm->arch.vpit;
3806
3807 mutex_lock(&pit->pit_state.lock);
3808 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3809 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3810 if (!prev_legacy && cur_legacy)
3811 start = 1;
3812 memcpy(&pit->pit_state.channels, &ps->channels,
3813 sizeof(pit->pit_state.channels));
3814 pit->pit_state.flags = ps->flags;
3815 for (i = 0; i < 3; i++)
3816 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3817 start && i == 0);
3818 mutex_unlock(&pit->pit_state.lock);
3819 return 0;
3820 }
3821
3822 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3823 struct kvm_reinject_control *control)
3824 {
3825 struct kvm_pit *pit = kvm->arch.vpit;
3826
3827 if (!pit)
3828 return -ENXIO;
3829
3830 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3831 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3832 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3833 */
3834 mutex_lock(&pit->pit_state.lock);
3835 kvm_pit_set_reinject(pit, control->pit_reinject);
3836 mutex_unlock(&pit->pit_state.lock);
3837
3838 return 0;
3839 }
3840
3841 /**
3842 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3843 * @kvm: kvm instance
3844 * @log: slot id and address to which we copy the log
3845 *
3846 * Steps 1-4 below provide general overview of dirty page logging. See
3847 * kvm_get_dirty_log_protect() function description for additional details.
3848 *
3849 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3850 * always flush the TLB (step 4) even if previous step failed and the dirty
3851 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3852 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3853 * writes will be marked dirty for next log read.
3854 *
3855 * 1. Take a snapshot of the bit and clear it if needed.
3856 * 2. Write protect the corresponding page.
3857 * 3. Copy the snapshot to the userspace.
3858 * 4. Flush TLB's if needed.
3859 */
3860 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3861 {
3862 bool is_dirty = false;
3863 int r;
3864
3865 mutex_lock(&kvm->slots_lock);
3866
3867 /*
3868 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3869 */
3870 if (kvm_x86_ops->flush_log_dirty)
3871 kvm_x86_ops->flush_log_dirty(kvm);
3872
3873 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3874
3875 /*
3876 * All the TLBs can be flushed out of mmu lock, see the comments in
3877 * kvm_mmu_slot_remove_write_access().
3878 */
3879 lockdep_assert_held(&kvm->slots_lock);
3880 if (is_dirty)
3881 kvm_flush_remote_tlbs(kvm);
3882
3883 mutex_unlock(&kvm->slots_lock);
3884 return r;
3885 }
3886
3887 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3888 bool line_status)
3889 {
3890 if (!irqchip_in_kernel(kvm))
3891 return -ENXIO;
3892
3893 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3894 irq_event->irq, irq_event->level,
3895 line_status);
3896 return 0;
3897 }
3898
3899 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3900 struct kvm_enable_cap *cap)
3901 {
3902 int r;
3903
3904 if (cap->flags)
3905 return -EINVAL;
3906
3907 switch (cap->cap) {
3908 case KVM_CAP_DISABLE_QUIRKS:
3909 kvm->arch.disabled_quirks = cap->args[0];
3910 r = 0;
3911 break;
3912 case KVM_CAP_SPLIT_IRQCHIP: {
3913 mutex_lock(&kvm->lock);
3914 r = -EINVAL;
3915 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3916 goto split_irqchip_unlock;
3917 r = -EEXIST;
3918 if (irqchip_in_kernel(kvm))
3919 goto split_irqchip_unlock;
3920 if (kvm->created_vcpus)
3921 goto split_irqchip_unlock;
3922 r = kvm_setup_empty_irq_routing(kvm);
3923 if (r)
3924 goto split_irqchip_unlock;
3925 /* Pairs with irqchip_in_kernel. */
3926 smp_wmb();
3927 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3928 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3929 r = 0;
3930 split_irqchip_unlock:
3931 mutex_unlock(&kvm->lock);
3932 break;
3933 }
3934 case KVM_CAP_X2APIC_API:
3935 r = -EINVAL;
3936 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3937 break;
3938
3939 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3940 kvm->arch.x2apic_format = true;
3941 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3942 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3943
3944 r = 0;
3945 break;
3946 default:
3947 r = -EINVAL;
3948 break;
3949 }
3950 return r;
3951 }
3952
3953 long kvm_arch_vm_ioctl(struct file *filp,
3954 unsigned int ioctl, unsigned long arg)
3955 {
3956 struct kvm *kvm = filp->private_data;
3957 void __user *argp = (void __user *)arg;
3958 int r = -ENOTTY;
3959 /*
3960 * This union makes it completely explicit to gcc-3.x
3961 * that these two variables' stack usage should be
3962 * combined, not added together.
3963 */
3964 union {
3965 struct kvm_pit_state ps;
3966 struct kvm_pit_state2 ps2;
3967 struct kvm_pit_config pit_config;
3968 } u;
3969
3970 switch (ioctl) {
3971 case KVM_SET_TSS_ADDR:
3972 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3973 break;
3974 case KVM_SET_IDENTITY_MAP_ADDR: {
3975 u64 ident_addr;
3976
3977 r = -EFAULT;
3978 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3979 goto out;
3980 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3981 break;
3982 }
3983 case KVM_SET_NR_MMU_PAGES:
3984 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3985 break;
3986 case KVM_GET_NR_MMU_PAGES:
3987 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3988 break;
3989 case KVM_CREATE_IRQCHIP: {
3990 mutex_lock(&kvm->lock);
3991
3992 r = -EEXIST;
3993 if (irqchip_in_kernel(kvm))
3994 goto create_irqchip_unlock;
3995
3996 r = -EINVAL;
3997 if (kvm->created_vcpus)
3998 goto create_irqchip_unlock;
3999
4000 r = kvm_pic_init(kvm);
4001 if (r)
4002 goto create_irqchip_unlock;
4003
4004 r = kvm_ioapic_init(kvm);
4005 if (r) {
4006 kvm_pic_destroy(kvm);
4007 goto create_irqchip_unlock;
4008 }
4009
4010 r = kvm_setup_default_irq_routing(kvm);
4011 if (r) {
4012 kvm_ioapic_destroy(kvm);
4013 kvm_pic_destroy(kvm);
4014 goto create_irqchip_unlock;
4015 }
4016 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4017 smp_wmb();
4018 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4019 create_irqchip_unlock:
4020 mutex_unlock(&kvm->lock);
4021 break;
4022 }
4023 case KVM_CREATE_PIT:
4024 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4025 goto create_pit;
4026 case KVM_CREATE_PIT2:
4027 r = -EFAULT;
4028 if (copy_from_user(&u.pit_config, argp,
4029 sizeof(struct kvm_pit_config)))
4030 goto out;
4031 create_pit:
4032 mutex_lock(&kvm->lock);
4033 r = -EEXIST;
4034 if (kvm->arch.vpit)
4035 goto create_pit_unlock;
4036 r = -ENOMEM;
4037 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4038 if (kvm->arch.vpit)
4039 r = 0;
4040 create_pit_unlock:
4041 mutex_unlock(&kvm->lock);
4042 break;
4043 case KVM_GET_IRQCHIP: {
4044 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4045 struct kvm_irqchip *chip;
4046
4047 chip = memdup_user(argp, sizeof(*chip));
4048 if (IS_ERR(chip)) {
4049 r = PTR_ERR(chip);
4050 goto out;
4051 }
4052
4053 r = -ENXIO;
4054 if (!irqchip_kernel(kvm))
4055 goto get_irqchip_out;
4056 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4057 if (r)
4058 goto get_irqchip_out;
4059 r = -EFAULT;
4060 if (copy_to_user(argp, chip, sizeof *chip))
4061 goto get_irqchip_out;
4062 r = 0;
4063 get_irqchip_out:
4064 kfree(chip);
4065 break;
4066 }
4067 case KVM_SET_IRQCHIP: {
4068 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4069 struct kvm_irqchip *chip;
4070
4071 chip = memdup_user(argp, sizeof(*chip));
4072 if (IS_ERR(chip)) {
4073 r = PTR_ERR(chip);
4074 goto out;
4075 }
4076
4077 r = -ENXIO;
4078 if (!irqchip_kernel(kvm))
4079 goto set_irqchip_out;
4080 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4081 if (r)
4082 goto set_irqchip_out;
4083 r = 0;
4084 set_irqchip_out:
4085 kfree(chip);
4086 break;
4087 }
4088 case KVM_GET_PIT: {
4089 r = -EFAULT;
4090 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4091 goto out;
4092 r = -ENXIO;
4093 if (!kvm->arch.vpit)
4094 goto out;
4095 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4096 if (r)
4097 goto out;
4098 r = -EFAULT;
4099 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4100 goto out;
4101 r = 0;
4102 break;
4103 }
4104 case KVM_SET_PIT: {
4105 r = -EFAULT;
4106 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4107 goto out;
4108 r = -ENXIO;
4109 if (!kvm->arch.vpit)
4110 goto out;
4111 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4112 break;
4113 }
4114 case KVM_GET_PIT2: {
4115 r = -ENXIO;
4116 if (!kvm->arch.vpit)
4117 goto out;
4118 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4119 if (r)
4120 goto out;
4121 r = -EFAULT;
4122 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4123 goto out;
4124 r = 0;
4125 break;
4126 }
4127 case KVM_SET_PIT2: {
4128 r = -EFAULT;
4129 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4130 goto out;
4131 r = -ENXIO;
4132 if (!kvm->arch.vpit)
4133 goto out;
4134 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4135 break;
4136 }
4137 case KVM_REINJECT_CONTROL: {
4138 struct kvm_reinject_control control;
4139 r = -EFAULT;
4140 if (copy_from_user(&control, argp, sizeof(control)))
4141 goto out;
4142 r = kvm_vm_ioctl_reinject(kvm, &control);
4143 break;
4144 }
4145 case KVM_SET_BOOT_CPU_ID:
4146 r = 0;
4147 mutex_lock(&kvm->lock);
4148 if (kvm->created_vcpus)
4149 r = -EBUSY;
4150 else
4151 kvm->arch.bsp_vcpu_id = arg;
4152 mutex_unlock(&kvm->lock);
4153 break;
4154 case KVM_XEN_HVM_CONFIG: {
4155 r = -EFAULT;
4156 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4157 sizeof(struct kvm_xen_hvm_config)))
4158 goto out;
4159 r = -EINVAL;
4160 if (kvm->arch.xen_hvm_config.flags)
4161 goto out;
4162 r = 0;
4163 break;
4164 }
4165 case KVM_SET_CLOCK: {
4166 struct kvm_clock_data user_ns;
4167 u64 now_ns;
4168
4169 r = -EFAULT;
4170 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4171 goto out;
4172
4173 r = -EINVAL;
4174 if (user_ns.flags)
4175 goto out;
4176
4177 r = 0;
4178 now_ns = get_kvmclock_ns(kvm);
4179 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4180 kvm_gen_update_masterclock(kvm);
4181 break;
4182 }
4183 case KVM_GET_CLOCK: {
4184 struct kvm_clock_data user_ns;
4185 u64 now_ns;
4186
4187 now_ns = get_kvmclock_ns(kvm);
4188 user_ns.clock = now_ns;
4189 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4190 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4191
4192 r = -EFAULT;
4193 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4194 goto out;
4195 r = 0;
4196 break;
4197 }
4198 case KVM_ENABLE_CAP: {
4199 struct kvm_enable_cap cap;
4200
4201 r = -EFAULT;
4202 if (copy_from_user(&cap, argp, sizeof(cap)))
4203 goto out;
4204 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4205 break;
4206 }
4207 default:
4208 r = -ENOTTY;
4209 }
4210 out:
4211 return r;
4212 }
4213
4214 static void kvm_init_msr_list(void)
4215 {
4216 u32 dummy[2];
4217 unsigned i, j;
4218
4219 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4220 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4221 continue;
4222
4223 /*
4224 * Even MSRs that are valid in the host may not be exposed
4225 * to the guests in some cases.
4226 */
4227 switch (msrs_to_save[i]) {
4228 case MSR_IA32_BNDCFGS:
4229 if (!kvm_x86_ops->mpx_supported())
4230 continue;
4231 break;
4232 case MSR_TSC_AUX:
4233 if (!kvm_x86_ops->rdtscp_supported())
4234 continue;
4235 break;
4236 default:
4237 break;
4238 }
4239
4240 if (j < i)
4241 msrs_to_save[j] = msrs_to_save[i];
4242 j++;
4243 }
4244 num_msrs_to_save = j;
4245
4246 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4247 switch (emulated_msrs[i]) {
4248 case MSR_IA32_SMBASE:
4249 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4250 continue;
4251 break;
4252 default:
4253 break;
4254 }
4255
4256 if (j < i)
4257 emulated_msrs[j] = emulated_msrs[i];
4258 j++;
4259 }
4260 num_emulated_msrs = j;
4261 }
4262
4263 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4264 const void *v)
4265 {
4266 int handled = 0;
4267 int n;
4268
4269 do {
4270 n = min(len, 8);
4271 if (!(lapic_in_kernel(vcpu) &&
4272 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4273 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4274 break;
4275 handled += n;
4276 addr += n;
4277 len -= n;
4278 v += n;
4279 } while (len);
4280
4281 return handled;
4282 }
4283
4284 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4285 {
4286 int handled = 0;
4287 int n;
4288
4289 do {
4290 n = min(len, 8);
4291 if (!(lapic_in_kernel(vcpu) &&
4292 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4293 addr, n, v))
4294 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4295 break;
4296 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4297 handled += n;
4298 addr += n;
4299 len -= n;
4300 v += n;
4301 } while (len);
4302
4303 return handled;
4304 }
4305
4306 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4307 struct kvm_segment *var, int seg)
4308 {
4309 kvm_x86_ops->set_segment(vcpu, var, seg);
4310 }
4311
4312 void kvm_get_segment(struct kvm_vcpu *vcpu,
4313 struct kvm_segment *var, int seg)
4314 {
4315 kvm_x86_ops->get_segment(vcpu, var, seg);
4316 }
4317
4318 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4319 struct x86_exception *exception)
4320 {
4321 gpa_t t_gpa;
4322
4323 BUG_ON(!mmu_is_nested(vcpu));
4324
4325 /* NPT walks are always user-walks */
4326 access |= PFERR_USER_MASK;
4327 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4328
4329 return t_gpa;
4330 }
4331
4332 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4333 struct x86_exception *exception)
4334 {
4335 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4336 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4337 }
4338
4339 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4340 struct x86_exception *exception)
4341 {
4342 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4343 access |= PFERR_FETCH_MASK;
4344 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4345 }
4346
4347 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4348 struct x86_exception *exception)
4349 {
4350 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4351 access |= PFERR_WRITE_MASK;
4352 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4353 }
4354
4355 /* uses this to access any guest's mapped memory without checking CPL */
4356 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4357 struct x86_exception *exception)
4358 {
4359 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4360 }
4361
4362 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4363 struct kvm_vcpu *vcpu, u32 access,
4364 struct x86_exception *exception)
4365 {
4366 void *data = val;
4367 int r = X86EMUL_CONTINUE;
4368
4369 while (bytes) {
4370 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4371 exception);
4372 unsigned offset = addr & (PAGE_SIZE-1);
4373 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4374 int ret;
4375
4376 if (gpa == UNMAPPED_GVA)
4377 return X86EMUL_PROPAGATE_FAULT;
4378 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4379 offset, toread);
4380 if (ret < 0) {
4381 r = X86EMUL_IO_NEEDED;
4382 goto out;
4383 }
4384
4385 bytes -= toread;
4386 data += toread;
4387 addr += toread;
4388 }
4389 out:
4390 return r;
4391 }
4392
4393 /* used for instruction fetching */
4394 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4395 gva_t addr, void *val, unsigned int bytes,
4396 struct x86_exception *exception)
4397 {
4398 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4399 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4400 unsigned offset;
4401 int ret;
4402
4403 /* Inline kvm_read_guest_virt_helper for speed. */
4404 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4405 exception);
4406 if (unlikely(gpa == UNMAPPED_GVA))
4407 return X86EMUL_PROPAGATE_FAULT;
4408
4409 offset = addr & (PAGE_SIZE-1);
4410 if (WARN_ON(offset + bytes > PAGE_SIZE))
4411 bytes = (unsigned)PAGE_SIZE - offset;
4412 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4413 offset, bytes);
4414 if (unlikely(ret < 0))
4415 return X86EMUL_IO_NEEDED;
4416
4417 return X86EMUL_CONTINUE;
4418 }
4419
4420 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4421 gva_t addr, void *val, unsigned int bytes,
4422 struct x86_exception *exception)
4423 {
4424 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4426
4427 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4428 exception);
4429 }
4430 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4431
4432 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4433 gva_t addr, void *val, unsigned int bytes,
4434 struct x86_exception *exception)
4435 {
4436 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4437 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4438 }
4439
4440 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4441 unsigned long addr, void *val, unsigned int bytes)
4442 {
4443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4444 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4445
4446 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4447 }
4448
4449 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4450 gva_t addr, void *val,
4451 unsigned int bytes,
4452 struct x86_exception *exception)
4453 {
4454 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4455 void *data = val;
4456 int r = X86EMUL_CONTINUE;
4457
4458 while (bytes) {
4459 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4460 PFERR_WRITE_MASK,
4461 exception);
4462 unsigned offset = addr & (PAGE_SIZE-1);
4463 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4464 int ret;
4465
4466 if (gpa == UNMAPPED_GVA)
4467 return X86EMUL_PROPAGATE_FAULT;
4468 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4469 if (ret < 0) {
4470 r = X86EMUL_IO_NEEDED;
4471 goto out;
4472 }
4473
4474 bytes -= towrite;
4475 data += towrite;
4476 addr += towrite;
4477 }
4478 out:
4479 return r;
4480 }
4481 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4482
4483 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4484 gpa_t gpa, bool write)
4485 {
4486 /* For APIC access vmexit */
4487 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4488 return 1;
4489
4490 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4491 trace_vcpu_match_mmio(gva, gpa, write, true);
4492 return 1;
4493 }
4494
4495 return 0;
4496 }
4497
4498 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4499 gpa_t *gpa, struct x86_exception *exception,
4500 bool write)
4501 {
4502 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4503 | (write ? PFERR_WRITE_MASK : 0);
4504
4505 /*
4506 * currently PKRU is only applied to ept enabled guest so
4507 * there is no pkey in EPT page table for L1 guest or EPT
4508 * shadow page table for L2 guest.
4509 */
4510 if (vcpu_match_mmio_gva(vcpu, gva)
4511 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4512 vcpu->arch.access, 0, access)) {
4513 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4514 (gva & (PAGE_SIZE - 1));
4515 trace_vcpu_match_mmio(gva, *gpa, write, false);
4516 return 1;
4517 }
4518
4519 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4520
4521 if (*gpa == UNMAPPED_GVA)
4522 return -1;
4523
4524 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4525 }
4526
4527 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4528 const void *val, int bytes)
4529 {
4530 int ret;
4531
4532 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4533 if (ret < 0)
4534 return 0;
4535 kvm_page_track_write(vcpu, gpa, val, bytes);
4536 return 1;
4537 }
4538
4539 struct read_write_emulator_ops {
4540 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4541 int bytes);
4542 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4543 void *val, int bytes);
4544 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4545 int bytes, void *val);
4546 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4547 void *val, int bytes);
4548 bool write;
4549 };
4550
4551 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4552 {
4553 if (vcpu->mmio_read_completed) {
4554 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4555 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4556 vcpu->mmio_read_completed = 0;
4557 return 1;
4558 }
4559
4560 return 0;
4561 }
4562
4563 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4564 void *val, int bytes)
4565 {
4566 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4567 }
4568
4569 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4570 void *val, int bytes)
4571 {
4572 return emulator_write_phys(vcpu, gpa, val, bytes);
4573 }
4574
4575 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4576 {
4577 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4578 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4579 }
4580
4581 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4582 void *val, int bytes)
4583 {
4584 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4585 return X86EMUL_IO_NEEDED;
4586 }
4587
4588 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 void *val, int bytes)
4590 {
4591 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4592
4593 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4594 return X86EMUL_CONTINUE;
4595 }
4596
4597 static const struct read_write_emulator_ops read_emultor = {
4598 .read_write_prepare = read_prepare,
4599 .read_write_emulate = read_emulate,
4600 .read_write_mmio = vcpu_mmio_read,
4601 .read_write_exit_mmio = read_exit_mmio,
4602 };
4603
4604 static const struct read_write_emulator_ops write_emultor = {
4605 .read_write_emulate = write_emulate,
4606 .read_write_mmio = write_mmio,
4607 .read_write_exit_mmio = write_exit_mmio,
4608 .write = true,
4609 };
4610
4611 static int emulator_read_write_onepage(unsigned long addr, void *val,
4612 unsigned int bytes,
4613 struct x86_exception *exception,
4614 struct kvm_vcpu *vcpu,
4615 const struct read_write_emulator_ops *ops)
4616 {
4617 gpa_t gpa;
4618 int handled, ret;
4619 bool write = ops->write;
4620 struct kvm_mmio_fragment *frag;
4621 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4622
4623 /*
4624 * If the exit was due to a NPF we may already have a GPA.
4625 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4626 * Note, this cannot be used on string operations since string
4627 * operation using rep will only have the initial GPA from the NPF
4628 * occurred.
4629 */
4630 if (vcpu->arch.gpa_available &&
4631 emulator_can_use_gpa(ctxt) &&
4632 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4633 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4634 gpa = exception->address;
4635 goto mmio;
4636 }
4637
4638 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4639
4640 if (ret < 0)
4641 return X86EMUL_PROPAGATE_FAULT;
4642
4643 /* For APIC access vmexit */
4644 if (ret)
4645 goto mmio;
4646
4647 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4648 return X86EMUL_CONTINUE;
4649
4650 mmio:
4651 /*
4652 * Is this MMIO handled locally?
4653 */
4654 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4655 if (handled == bytes)
4656 return X86EMUL_CONTINUE;
4657
4658 gpa += handled;
4659 bytes -= handled;
4660 val += handled;
4661
4662 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4663 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4664 frag->gpa = gpa;
4665 frag->data = val;
4666 frag->len = bytes;
4667 return X86EMUL_CONTINUE;
4668 }
4669
4670 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4671 unsigned long addr,
4672 void *val, unsigned int bytes,
4673 struct x86_exception *exception,
4674 const struct read_write_emulator_ops *ops)
4675 {
4676 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4677 gpa_t gpa;
4678 int rc;
4679
4680 if (ops->read_write_prepare &&
4681 ops->read_write_prepare(vcpu, val, bytes))
4682 return X86EMUL_CONTINUE;
4683
4684 vcpu->mmio_nr_fragments = 0;
4685
4686 /* Crossing a page boundary? */
4687 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4688 int now;
4689
4690 now = -addr & ~PAGE_MASK;
4691 rc = emulator_read_write_onepage(addr, val, now, exception,
4692 vcpu, ops);
4693
4694 if (rc != X86EMUL_CONTINUE)
4695 return rc;
4696 addr += now;
4697 if (ctxt->mode != X86EMUL_MODE_PROT64)
4698 addr = (u32)addr;
4699 val += now;
4700 bytes -= now;
4701 }
4702
4703 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4704 vcpu, ops);
4705 if (rc != X86EMUL_CONTINUE)
4706 return rc;
4707
4708 if (!vcpu->mmio_nr_fragments)
4709 return rc;
4710
4711 gpa = vcpu->mmio_fragments[0].gpa;
4712
4713 vcpu->mmio_needed = 1;
4714 vcpu->mmio_cur_fragment = 0;
4715
4716 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4717 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4718 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4719 vcpu->run->mmio.phys_addr = gpa;
4720
4721 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4722 }
4723
4724 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4725 unsigned long addr,
4726 void *val,
4727 unsigned int bytes,
4728 struct x86_exception *exception)
4729 {
4730 return emulator_read_write(ctxt, addr, val, bytes,
4731 exception, &read_emultor);
4732 }
4733
4734 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4735 unsigned long addr,
4736 const void *val,
4737 unsigned int bytes,
4738 struct x86_exception *exception)
4739 {
4740 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4741 exception, &write_emultor);
4742 }
4743
4744 #define CMPXCHG_TYPE(t, ptr, old, new) \
4745 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4746
4747 #ifdef CONFIG_X86_64
4748 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4749 #else
4750 # define CMPXCHG64(ptr, old, new) \
4751 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4752 #endif
4753
4754 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4755 unsigned long addr,
4756 const void *old,
4757 const void *new,
4758 unsigned int bytes,
4759 struct x86_exception *exception)
4760 {
4761 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4762 gpa_t gpa;
4763 struct page *page;
4764 char *kaddr;
4765 bool exchanged;
4766
4767 /* guests cmpxchg8b have to be emulated atomically */
4768 if (bytes > 8 || (bytes & (bytes - 1)))
4769 goto emul_write;
4770
4771 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4772
4773 if (gpa == UNMAPPED_GVA ||
4774 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4775 goto emul_write;
4776
4777 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4778 goto emul_write;
4779
4780 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4781 if (is_error_page(page))
4782 goto emul_write;
4783
4784 kaddr = kmap_atomic(page);
4785 kaddr += offset_in_page(gpa);
4786 switch (bytes) {
4787 case 1:
4788 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4789 break;
4790 case 2:
4791 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4792 break;
4793 case 4:
4794 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4795 break;
4796 case 8:
4797 exchanged = CMPXCHG64(kaddr, old, new);
4798 break;
4799 default:
4800 BUG();
4801 }
4802 kunmap_atomic(kaddr);
4803 kvm_release_page_dirty(page);
4804
4805 if (!exchanged)
4806 return X86EMUL_CMPXCHG_FAILED;
4807
4808 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4809 kvm_page_track_write(vcpu, gpa, new, bytes);
4810
4811 return X86EMUL_CONTINUE;
4812
4813 emul_write:
4814 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4815
4816 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4817 }
4818
4819 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4820 {
4821 /* TODO: String I/O for in kernel device */
4822 int r;
4823
4824 if (vcpu->arch.pio.in)
4825 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4826 vcpu->arch.pio.size, pd);
4827 else
4828 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4829 vcpu->arch.pio.port, vcpu->arch.pio.size,
4830 pd);
4831 return r;
4832 }
4833
4834 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4835 unsigned short port, void *val,
4836 unsigned int count, bool in)
4837 {
4838 vcpu->arch.pio.port = port;
4839 vcpu->arch.pio.in = in;
4840 vcpu->arch.pio.count = count;
4841 vcpu->arch.pio.size = size;
4842
4843 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4844 vcpu->arch.pio.count = 0;
4845 return 1;
4846 }
4847
4848 vcpu->run->exit_reason = KVM_EXIT_IO;
4849 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4850 vcpu->run->io.size = size;
4851 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4852 vcpu->run->io.count = count;
4853 vcpu->run->io.port = port;
4854
4855 return 0;
4856 }
4857
4858 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4859 int size, unsigned short port, void *val,
4860 unsigned int count)
4861 {
4862 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4863 int ret;
4864
4865 if (vcpu->arch.pio.count)
4866 goto data_avail;
4867
4868 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4869 if (ret) {
4870 data_avail:
4871 memcpy(val, vcpu->arch.pio_data, size * count);
4872 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4873 vcpu->arch.pio.count = 0;
4874 return 1;
4875 }
4876
4877 return 0;
4878 }
4879
4880 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4881 int size, unsigned short port,
4882 const void *val, unsigned int count)
4883 {
4884 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4885
4886 memcpy(vcpu->arch.pio_data, val, size * count);
4887 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4888 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4889 }
4890
4891 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4892 {
4893 return kvm_x86_ops->get_segment_base(vcpu, seg);
4894 }
4895
4896 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4897 {
4898 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4899 }
4900
4901 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4902 {
4903 if (!need_emulate_wbinvd(vcpu))
4904 return X86EMUL_CONTINUE;
4905
4906 if (kvm_x86_ops->has_wbinvd_exit()) {
4907 int cpu = get_cpu();
4908
4909 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4910 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4911 wbinvd_ipi, NULL, 1);
4912 put_cpu();
4913 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4914 } else
4915 wbinvd();
4916 return X86EMUL_CONTINUE;
4917 }
4918
4919 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4920 {
4921 kvm_emulate_wbinvd_noskip(vcpu);
4922 return kvm_skip_emulated_instruction(vcpu);
4923 }
4924 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4925
4926
4927
4928 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4929 {
4930 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4931 }
4932
4933 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4934 unsigned long *dest)
4935 {
4936 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4937 }
4938
4939 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4940 unsigned long value)
4941 {
4942
4943 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4944 }
4945
4946 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4947 {
4948 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4949 }
4950
4951 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4952 {
4953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954 unsigned long value;
4955
4956 switch (cr) {
4957 case 0:
4958 value = kvm_read_cr0(vcpu);
4959 break;
4960 case 2:
4961 value = vcpu->arch.cr2;
4962 break;
4963 case 3:
4964 value = kvm_read_cr3(vcpu);
4965 break;
4966 case 4:
4967 value = kvm_read_cr4(vcpu);
4968 break;
4969 case 8:
4970 value = kvm_get_cr8(vcpu);
4971 break;
4972 default:
4973 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4974 return 0;
4975 }
4976
4977 return value;
4978 }
4979
4980 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4981 {
4982 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4983 int res = 0;
4984
4985 switch (cr) {
4986 case 0:
4987 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4988 break;
4989 case 2:
4990 vcpu->arch.cr2 = val;
4991 break;
4992 case 3:
4993 res = kvm_set_cr3(vcpu, val);
4994 break;
4995 case 4:
4996 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4997 break;
4998 case 8:
4999 res = kvm_set_cr8(vcpu, val);
5000 break;
5001 default:
5002 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5003 res = -1;
5004 }
5005
5006 return res;
5007 }
5008
5009 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5010 {
5011 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5012 }
5013
5014 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5015 {
5016 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5017 }
5018
5019 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5020 {
5021 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5022 }
5023
5024 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5025 {
5026 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5027 }
5028
5029 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5030 {
5031 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5032 }
5033
5034 static unsigned long emulator_get_cached_segment_base(
5035 struct x86_emulate_ctxt *ctxt, int seg)
5036 {
5037 return get_segment_base(emul_to_vcpu(ctxt), seg);
5038 }
5039
5040 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5041 struct desc_struct *desc, u32 *base3,
5042 int seg)
5043 {
5044 struct kvm_segment var;
5045
5046 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5047 *selector = var.selector;
5048
5049 if (var.unusable) {
5050 memset(desc, 0, sizeof(*desc));
5051 return false;
5052 }
5053
5054 if (var.g)
5055 var.limit >>= 12;
5056 set_desc_limit(desc, var.limit);
5057 set_desc_base(desc, (unsigned long)var.base);
5058 #ifdef CONFIG_X86_64
5059 if (base3)
5060 *base3 = var.base >> 32;
5061 #endif
5062 desc->type = var.type;
5063 desc->s = var.s;
5064 desc->dpl = var.dpl;
5065 desc->p = var.present;
5066 desc->avl = var.avl;
5067 desc->l = var.l;
5068 desc->d = var.db;
5069 desc->g = var.g;
5070
5071 return true;
5072 }
5073
5074 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5075 struct desc_struct *desc, u32 base3,
5076 int seg)
5077 {
5078 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5079 struct kvm_segment var;
5080
5081 var.selector = selector;
5082 var.base = get_desc_base(desc);
5083 #ifdef CONFIG_X86_64
5084 var.base |= ((u64)base3) << 32;
5085 #endif
5086 var.limit = get_desc_limit(desc);
5087 if (desc->g)
5088 var.limit = (var.limit << 12) | 0xfff;
5089 var.type = desc->type;
5090 var.dpl = desc->dpl;
5091 var.db = desc->d;
5092 var.s = desc->s;
5093 var.l = desc->l;
5094 var.g = desc->g;
5095 var.avl = desc->avl;
5096 var.present = desc->p;
5097 var.unusable = !var.present;
5098 var.padding = 0;
5099
5100 kvm_set_segment(vcpu, &var, seg);
5101 return;
5102 }
5103
5104 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5105 u32 msr_index, u64 *pdata)
5106 {
5107 struct msr_data msr;
5108 int r;
5109
5110 msr.index = msr_index;
5111 msr.host_initiated = false;
5112 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5113 if (r)
5114 return r;
5115
5116 *pdata = msr.data;
5117 return 0;
5118 }
5119
5120 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5121 u32 msr_index, u64 data)
5122 {
5123 struct msr_data msr;
5124
5125 msr.data = data;
5126 msr.index = msr_index;
5127 msr.host_initiated = false;
5128 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5129 }
5130
5131 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5132 {
5133 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5134
5135 return vcpu->arch.smbase;
5136 }
5137
5138 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5139 {
5140 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5141
5142 vcpu->arch.smbase = smbase;
5143 }
5144
5145 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5146 u32 pmc)
5147 {
5148 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5149 }
5150
5151 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5152 u32 pmc, u64 *pdata)
5153 {
5154 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5155 }
5156
5157 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5158 {
5159 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5160 }
5161
5162 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5163 {
5164 preempt_disable();
5165 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5166 }
5167
5168 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5169 {
5170 preempt_enable();
5171 }
5172
5173 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5174 struct x86_instruction_info *info,
5175 enum x86_intercept_stage stage)
5176 {
5177 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5178 }
5179
5180 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5181 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5182 {
5183 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5184 }
5185
5186 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5187 {
5188 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5189 }
5190
5191 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5192 {
5193 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5194 }
5195
5196 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5197 {
5198 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5199 }
5200
5201 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5202 {
5203 return emul_to_vcpu(ctxt)->arch.hflags;
5204 }
5205
5206 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5207 {
5208 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5209 }
5210
5211 static const struct x86_emulate_ops emulate_ops = {
5212 .read_gpr = emulator_read_gpr,
5213 .write_gpr = emulator_write_gpr,
5214 .read_std = kvm_read_guest_virt_system,
5215 .write_std = kvm_write_guest_virt_system,
5216 .read_phys = kvm_read_guest_phys_system,
5217 .fetch = kvm_fetch_guest_virt,
5218 .read_emulated = emulator_read_emulated,
5219 .write_emulated = emulator_write_emulated,
5220 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5221 .invlpg = emulator_invlpg,
5222 .pio_in_emulated = emulator_pio_in_emulated,
5223 .pio_out_emulated = emulator_pio_out_emulated,
5224 .get_segment = emulator_get_segment,
5225 .set_segment = emulator_set_segment,
5226 .get_cached_segment_base = emulator_get_cached_segment_base,
5227 .get_gdt = emulator_get_gdt,
5228 .get_idt = emulator_get_idt,
5229 .set_gdt = emulator_set_gdt,
5230 .set_idt = emulator_set_idt,
5231 .get_cr = emulator_get_cr,
5232 .set_cr = emulator_set_cr,
5233 .cpl = emulator_get_cpl,
5234 .get_dr = emulator_get_dr,
5235 .set_dr = emulator_set_dr,
5236 .get_smbase = emulator_get_smbase,
5237 .set_smbase = emulator_set_smbase,
5238 .set_msr = emulator_set_msr,
5239 .get_msr = emulator_get_msr,
5240 .check_pmc = emulator_check_pmc,
5241 .read_pmc = emulator_read_pmc,
5242 .halt = emulator_halt,
5243 .wbinvd = emulator_wbinvd,
5244 .fix_hypercall = emulator_fix_hypercall,
5245 .get_fpu = emulator_get_fpu,
5246 .put_fpu = emulator_put_fpu,
5247 .intercept = emulator_intercept,
5248 .get_cpuid = emulator_get_cpuid,
5249 .set_nmi_mask = emulator_set_nmi_mask,
5250 .get_hflags = emulator_get_hflags,
5251 .set_hflags = emulator_set_hflags,
5252 };
5253
5254 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5255 {
5256 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5257 /*
5258 * an sti; sti; sequence only disable interrupts for the first
5259 * instruction. So, if the last instruction, be it emulated or
5260 * not, left the system with the INT_STI flag enabled, it
5261 * means that the last instruction is an sti. We should not
5262 * leave the flag on in this case. The same goes for mov ss
5263 */
5264 if (int_shadow & mask)
5265 mask = 0;
5266 if (unlikely(int_shadow || mask)) {
5267 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5268 if (!mask)
5269 kvm_make_request(KVM_REQ_EVENT, vcpu);
5270 }
5271 }
5272
5273 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5274 {
5275 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5276 if (ctxt->exception.vector == PF_VECTOR)
5277 return kvm_propagate_fault(vcpu, &ctxt->exception);
5278
5279 if (ctxt->exception.error_code_valid)
5280 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5281 ctxt->exception.error_code);
5282 else
5283 kvm_queue_exception(vcpu, ctxt->exception.vector);
5284 return false;
5285 }
5286
5287 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5288 {
5289 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5290 int cs_db, cs_l;
5291
5292 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5293
5294 ctxt->eflags = kvm_get_rflags(vcpu);
5295 ctxt->eip = kvm_rip_read(vcpu);
5296 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5297 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5298 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5299 cs_db ? X86EMUL_MODE_PROT32 :
5300 X86EMUL_MODE_PROT16;
5301 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5302 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5303 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5304
5305 init_decode_cache(ctxt);
5306 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5307 }
5308
5309 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5310 {
5311 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5312 int ret;
5313
5314 init_emulate_ctxt(vcpu);
5315
5316 ctxt->op_bytes = 2;
5317 ctxt->ad_bytes = 2;
5318 ctxt->_eip = ctxt->eip + inc_eip;
5319 ret = emulate_int_real(ctxt, irq);
5320
5321 if (ret != X86EMUL_CONTINUE)
5322 return EMULATE_FAIL;
5323
5324 ctxt->eip = ctxt->_eip;
5325 kvm_rip_write(vcpu, ctxt->eip);
5326 kvm_set_rflags(vcpu, ctxt->eflags);
5327
5328 if (irq == NMI_VECTOR)
5329 vcpu->arch.nmi_pending = 0;
5330 else
5331 vcpu->arch.interrupt.pending = false;
5332
5333 return EMULATE_DONE;
5334 }
5335 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5336
5337 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5338 {
5339 int r = EMULATE_DONE;
5340
5341 ++vcpu->stat.insn_emulation_fail;
5342 trace_kvm_emulate_insn_failed(vcpu);
5343 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5344 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5345 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5346 vcpu->run->internal.ndata = 0;
5347 r = EMULATE_FAIL;
5348 }
5349 kvm_queue_exception(vcpu, UD_VECTOR);
5350
5351 return r;
5352 }
5353
5354 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5355 bool write_fault_to_shadow_pgtable,
5356 int emulation_type)
5357 {
5358 gpa_t gpa = cr2;
5359 kvm_pfn_t pfn;
5360
5361 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5362 return false;
5363
5364 if (!vcpu->arch.mmu.direct_map) {
5365 /*
5366 * Write permission should be allowed since only
5367 * write access need to be emulated.
5368 */
5369 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5370
5371 /*
5372 * If the mapping is invalid in guest, let cpu retry
5373 * it to generate fault.
5374 */
5375 if (gpa == UNMAPPED_GVA)
5376 return true;
5377 }
5378
5379 /*
5380 * Do not retry the unhandleable instruction if it faults on the
5381 * readonly host memory, otherwise it will goto a infinite loop:
5382 * retry instruction -> write #PF -> emulation fail -> retry
5383 * instruction -> ...
5384 */
5385 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5386
5387 /*
5388 * If the instruction failed on the error pfn, it can not be fixed,
5389 * report the error to userspace.
5390 */
5391 if (is_error_noslot_pfn(pfn))
5392 return false;
5393
5394 kvm_release_pfn_clean(pfn);
5395
5396 /* The instructions are well-emulated on direct mmu. */
5397 if (vcpu->arch.mmu.direct_map) {
5398 unsigned int indirect_shadow_pages;
5399
5400 spin_lock(&vcpu->kvm->mmu_lock);
5401 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5402 spin_unlock(&vcpu->kvm->mmu_lock);
5403
5404 if (indirect_shadow_pages)
5405 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5406
5407 return true;
5408 }
5409
5410 /*
5411 * if emulation was due to access to shadowed page table
5412 * and it failed try to unshadow page and re-enter the
5413 * guest to let CPU execute the instruction.
5414 */
5415 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5416
5417 /*
5418 * If the access faults on its page table, it can not
5419 * be fixed by unprotecting shadow page and it should
5420 * be reported to userspace.
5421 */
5422 return !write_fault_to_shadow_pgtable;
5423 }
5424
5425 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5426 unsigned long cr2, int emulation_type)
5427 {
5428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5429 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5430
5431 last_retry_eip = vcpu->arch.last_retry_eip;
5432 last_retry_addr = vcpu->arch.last_retry_addr;
5433
5434 /*
5435 * If the emulation is caused by #PF and it is non-page_table
5436 * writing instruction, it means the VM-EXIT is caused by shadow
5437 * page protected, we can zap the shadow page and retry this
5438 * instruction directly.
5439 *
5440 * Note: if the guest uses a non-page-table modifying instruction
5441 * on the PDE that points to the instruction, then we will unmap
5442 * the instruction and go to an infinite loop. So, we cache the
5443 * last retried eip and the last fault address, if we meet the eip
5444 * and the address again, we can break out of the potential infinite
5445 * loop.
5446 */
5447 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5448
5449 if (!(emulation_type & EMULTYPE_RETRY))
5450 return false;
5451
5452 if (x86_page_table_writing_insn(ctxt))
5453 return false;
5454
5455 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5456 return false;
5457
5458 vcpu->arch.last_retry_eip = ctxt->eip;
5459 vcpu->arch.last_retry_addr = cr2;
5460
5461 if (!vcpu->arch.mmu.direct_map)
5462 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5463
5464 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5465
5466 return true;
5467 }
5468
5469 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5470 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5471
5472 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5473 {
5474 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5475 /* This is a good place to trace that we are exiting SMM. */
5476 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5477
5478 /* Process a latched INIT or SMI, if any. */
5479 kvm_make_request(KVM_REQ_EVENT, vcpu);
5480 }
5481
5482 kvm_mmu_reset_context(vcpu);
5483 }
5484
5485 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5486 {
5487 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5488
5489 vcpu->arch.hflags = emul_flags;
5490
5491 if (changed & HF_SMM_MASK)
5492 kvm_smm_changed(vcpu);
5493 }
5494
5495 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5496 unsigned long *db)
5497 {
5498 u32 dr6 = 0;
5499 int i;
5500 u32 enable, rwlen;
5501
5502 enable = dr7;
5503 rwlen = dr7 >> 16;
5504 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5505 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5506 dr6 |= (1 << i);
5507 return dr6;
5508 }
5509
5510 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5511 {
5512 struct kvm_run *kvm_run = vcpu->run;
5513
5514 /*
5515 * rflags is the old, "raw" value of the flags. The new value has
5516 * not been saved yet.
5517 *
5518 * This is correct even for TF set by the guest, because "the
5519 * processor will not generate this exception after the instruction
5520 * that sets the TF flag".
5521 */
5522 if (unlikely(rflags & X86_EFLAGS_TF)) {
5523 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5524 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5525 DR6_RTM;
5526 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5527 kvm_run->debug.arch.exception = DB_VECTOR;
5528 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5529 *r = EMULATE_USER_EXIT;
5530 } else {
5531 /*
5532 * "Certain debug exceptions may clear bit 0-3. The
5533 * remaining contents of the DR6 register are never
5534 * cleared by the processor".
5535 */
5536 vcpu->arch.dr6 &= ~15;
5537 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5538 kvm_queue_exception(vcpu, DB_VECTOR);
5539 }
5540 }
5541 }
5542
5543 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5544 {
5545 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5546 int r = EMULATE_DONE;
5547
5548 kvm_x86_ops->skip_emulated_instruction(vcpu);
5549 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5550 return r == EMULATE_DONE;
5551 }
5552 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5553
5554 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5555 {
5556 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5557 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5558 struct kvm_run *kvm_run = vcpu->run;
5559 unsigned long eip = kvm_get_linear_rip(vcpu);
5560 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5561 vcpu->arch.guest_debug_dr7,
5562 vcpu->arch.eff_db);
5563
5564 if (dr6 != 0) {
5565 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5566 kvm_run->debug.arch.pc = eip;
5567 kvm_run->debug.arch.exception = DB_VECTOR;
5568 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5569 *r = EMULATE_USER_EXIT;
5570 return true;
5571 }
5572 }
5573
5574 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5575 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5576 unsigned long eip = kvm_get_linear_rip(vcpu);
5577 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5578 vcpu->arch.dr7,
5579 vcpu->arch.db);
5580
5581 if (dr6 != 0) {
5582 vcpu->arch.dr6 &= ~15;
5583 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5584 kvm_queue_exception(vcpu, DB_VECTOR);
5585 *r = EMULATE_DONE;
5586 return true;
5587 }
5588 }
5589
5590 return false;
5591 }
5592
5593 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5594 unsigned long cr2,
5595 int emulation_type,
5596 void *insn,
5597 int insn_len)
5598 {
5599 int r;
5600 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5601 bool writeback = true;
5602 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5603
5604 /*
5605 * Clear write_fault_to_shadow_pgtable here to ensure it is
5606 * never reused.
5607 */
5608 vcpu->arch.write_fault_to_shadow_pgtable = false;
5609 kvm_clear_exception_queue(vcpu);
5610
5611 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5612 init_emulate_ctxt(vcpu);
5613
5614 /*
5615 * We will reenter on the same instruction since
5616 * we do not set complete_userspace_io. This does not
5617 * handle watchpoints yet, those would be handled in
5618 * the emulate_ops.
5619 */
5620 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5621 return r;
5622
5623 ctxt->interruptibility = 0;
5624 ctxt->have_exception = false;
5625 ctxt->exception.vector = -1;
5626 ctxt->perm_ok = false;
5627
5628 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5629
5630 r = x86_decode_insn(ctxt, insn, insn_len);
5631
5632 trace_kvm_emulate_insn_start(vcpu);
5633 ++vcpu->stat.insn_emulation;
5634 if (r != EMULATION_OK) {
5635 if (emulation_type & EMULTYPE_TRAP_UD)
5636 return EMULATE_FAIL;
5637 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5638 emulation_type))
5639 return EMULATE_DONE;
5640 if (emulation_type & EMULTYPE_SKIP)
5641 return EMULATE_FAIL;
5642 return handle_emulation_failure(vcpu);
5643 }
5644 }
5645
5646 if (emulation_type & EMULTYPE_SKIP) {
5647 kvm_rip_write(vcpu, ctxt->_eip);
5648 if (ctxt->eflags & X86_EFLAGS_RF)
5649 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5650 return EMULATE_DONE;
5651 }
5652
5653 if (retry_instruction(ctxt, cr2, emulation_type))
5654 return EMULATE_DONE;
5655
5656 /* this is needed for vmware backdoor interface to work since it
5657 changes registers values during IO operation */
5658 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5659 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5660 emulator_invalidate_register_cache(ctxt);
5661 }
5662
5663 restart:
5664 /* Save the faulting GPA (cr2) in the address field */
5665 ctxt->exception.address = cr2;
5666
5667 r = x86_emulate_insn(ctxt);
5668
5669 if (r == EMULATION_INTERCEPTED)
5670 return EMULATE_DONE;
5671
5672 if (r == EMULATION_FAILED) {
5673 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5674 emulation_type))
5675 return EMULATE_DONE;
5676
5677 return handle_emulation_failure(vcpu);
5678 }
5679
5680 if (ctxt->have_exception) {
5681 r = EMULATE_DONE;
5682 if (inject_emulated_exception(vcpu))
5683 return r;
5684 } else if (vcpu->arch.pio.count) {
5685 if (!vcpu->arch.pio.in) {
5686 /* FIXME: return into emulator if single-stepping. */
5687 vcpu->arch.pio.count = 0;
5688 } else {
5689 writeback = false;
5690 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5691 }
5692 r = EMULATE_USER_EXIT;
5693 } else if (vcpu->mmio_needed) {
5694 if (!vcpu->mmio_is_write)
5695 writeback = false;
5696 r = EMULATE_USER_EXIT;
5697 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5698 } else if (r == EMULATION_RESTART)
5699 goto restart;
5700 else
5701 r = EMULATE_DONE;
5702
5703 if (writeback) {
5704 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5705 toggle_interruptibility(vcpu, ctxt->interruptibility);
5706 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5707 kvm_rip_write(vcpu, ctxt->eip);
5708 if (r == EMULATE_DONE)
5709 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5710 if (!ctxt->have_exception ||
5711 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5712 __kvm_set_rflags(vcpu, ctxt->eflags);
5713
5714 /*
5715 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5716 * do nothing, and it will be requested again as soon as
5717 * the shadow expires. But we still need to check here,
5718 * because POPF has no interrupt shadow.
5719 */
5720 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5721 kvm_make_request(KVM_REQ_EVENT, vcpu);
5722 } else
5723 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5724
5725 return r;
5726 }
5727 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5728
5729 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5730 {
5731 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5732 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5733 size, port, &val, 1);
5734 /* do not return to emulator after return from userspace */
5735 vcpu->arch.pio.count = 0;
5736 return ret;
5737 }
5738 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5739
5740 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5741 {
5742 unsigned long val;
5743
5744 /* We should only ever be called with arch.pio.count equal to 1 */
5745 BUG_ON(vcpu->arch.pio.count != 1);
5746
5747 /* For size less than 4 we merge, else we zero extend */
5748 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5749 : 0;
5750
5751 /*
5752 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5753 * the copy and tracing
5754 */
5755 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5756 vcpu->arch.pio.port, &val, 1);
5757 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5758
5759 return 1;
5760 }
5761
5762 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5763 {
5764 unsigned long val;
5765 int ret;
5766
5767 /* For size less than 4 we merge, else we zero extend */
5768 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5769
5770 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5771 &val, 1);
5772 if (ret) {
5773 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5774 return ret;
5775 }
5776
5777 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5778
5779 return 0;
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5782
5783 static int kvmclock_cpu_down_prep(unsigned int cpu)
5784 {
5785 __this_cpu_write(cpu_tsc_khz, 0);
5786 return 0;
5787 }
5788
5789 static void tsc_khz_changed(void *data)
5790 {
5791 struct cpufreq_freqs *freq = data;
5792 unsigned long khz = 0;
5793
5794 if (data)
5795 khz = freq->new;
5796 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5797 khz = cpufreq_quick_get(raw_smp_processor_id());
5798 if (!khz)
5799 khz = tsc_khz;
5800 __this_cpu_write(cpu_tsc_khz, khz);
5801 }
5802
5803 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5804 void *data)
5805 {
5806 struct cpufreq_freqs *freq = data;
5807 struct kvm *kvm;
5808 struct kvm_vcpu *vcpu;
5809 int i, send_ipi = 0;
5810
5811 /*
5812 * We allow guests to temporarily run on slowing clocks,
5813 * provided we notify them after, or to run on accelerating
5814 * clocks, provided we notify them before. Thus time never
5815 * goes backwards.
5816 *
5817 * However, we have a problem. We can't atomically update
5818 * the frequency of a given CPU from this function; it is
5819 * merely a notifier, which can be called from any CPU.
5820 * Changing the TSC frequency at arbitrary points in time
5821 * requires a recomputation of local variables related to
5822 * the TSC for each VCPU. We must flag these local variables
5823 * to be updated and be sure the update takes place with the
5824 * new frequency before any guests proceed.
5825 *
5826 * Unfortunately, the combination of hotplug CPU and frequency
5827 * change creates an intractable locking scenario; the order
5828 * of when these callouts happen is undefined with respect to
5829 * CPU hotplug, and they can race with each other. As such,
5830 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5831 * undefined; you can actually have a CPU frequency change take
5832 * place in between the computation of X and the setting of the
5833 * variable. To protect against this problem, all updates of
5834 * the per_cpu tsc_khz variable are done in an interrupt
5835 * protected IPI, and all callers wishing to update the value
5836 * must wait for a synchronous IPI to complete (which is trivial
5837 * if the caller is on the CPU already). This establishes the
5838 * necessary total order on variable updates.
5839 *
5840 * Note that because a guest time update may take place
5841 * anytime after the setting of the VCPU's request bit, the
5842 * correct TSC value must be set before the request. However,
5843 * to ensure the update actually makes it to any guest which
5844 * starts running in hardware virtualization between the set
5845 * and the acquisition of the spinlock, we must also ping the
5846 * CPU after setting the request bit.
5847 *
5848 */
5849
5850 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5851 return 0;
5852 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5853 return 0;
5854
5855 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5856
5857 spin_lock(&kvm_lock);
5858 list_for_each_entry(kvm, &vm_list, vm_list) {
5859 kvm_for_each_vcpu(i, vcpu, kvm) {
5860 if (vcpu->cpu != freq->cpu)
5861 continue;
5862 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5863 if (vcpu->cpu != smp_processor_id())
5864 send_ipi = 1;
5865 }
5866 }
5867 spin_unlock(&kvm_lock);
5868
5869 if (freq->old < freq->new && send_ipi) {
5870 /*
5871 * We upscale the frequency. Must make the guest
5872 * doesn't see old kvmclock values while running with
5873 * the new frequency, otherwise we risk the guest sees
5874 * time go backwards.
5875 *
5876 * In case we update the frequency for another cpu
5877 * (which might be in guest context) send an interrupt
5878 * to kick the cpu out of guest context. Next time
5879 * guest context is entered kvmclock will be updated,
5880 * so the guest will not see stale values.
5881 */
5882 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5883 }
5884 return 0;
5885 }
5886
5887 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5888 .notifier_call = kvmclock_cpufreq_notifier
5889 };
5890
5891 static int kvmclock_cpu_online(unsigned int cpu)
5892 {
5893 tsc_khz_changed(NULL);
5894 return 0;
5895 }
5896
5897 static void kvm_timer_init(void)
5898 {
5899 max_tsc_khz = tsc_khz;
5900
5901 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5902 #ifdef CONFIG_CPU_FREQ
5903 struct cpufreq_policy policy;
5904 int cpu;
5905
5906 memset(&policy, 0, sizeof(policy));
5907 cpu = get_cpu();
5908 cpufreq_get_policy(&policy, cpu);
5909 if (policy.cpuinfo.max_freq)
5910 max_tsc_khz = policy.cpuinfo.max_freq;
5911 put_cpu();
5912 #endif
5913 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5914 CPUFREQ_TRANSITION_NOTIFIER);
5915 }
5916 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5917
5918 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5919 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5920 }
5921
5922 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5923
5924 int kvm_is_in_guest(void)
5925 {
5926 return __this_cpu_read(current_vcpu) != NULL;
5927 }
5928
5929 static int kvm_is_user_mode(void)
5930 {
5931 int user_mode = 3;
5932
5933 if (__this_cpu_read(current_vcpu))
5934 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5935
5936 return user_mode != 0;
5937 }
5938
5939 static unsigned long kvm_get_guest_ip(void)
5940 {
5941 unsigned long ip = 0;
5942
5943 if (__this_cpu_read(current_vcpu))
5944 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5945
5946 return ip;
5947 }
5948
5949 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5950 .is_in_guest = kvm_is_in_guest,
5951 .is_user_mode = kvm_is_user_mode,
5952 .get_guest_ip = kvm_get_guest_ip,
5953 };
5954
5955 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5956 {
5957 __this_cpu_write(current_vcpu, vcpu);
5958 }
5959 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5960
5961 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5962 {
5963 __this_cpu_write(current_vcpu, NULL);
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5966
5967 static void kvm_set_mmio_spte_mask(void)
5968 {
5969 u64 mask;
5970 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5971
5972 /*
5973 * Set the reserved bits and the present bit of an paging-structure
5974 * entry to generate page fault with PFER.RSV = 1.
5975 */
5976 /* Mask the reserved physical address bits. */
5977 mask = rsvd_bits(maxphyaddr, 51);
5978
5979 /* Set the present bit. */
5980 mask |= 1ull;
5981
5982 #ifdef CONFIG_X86_64
5983 /*
5984 * If reserved bit is not supported, clear the present bit to disable
5985 * mmio page fault.
5986 */
5987 if (maxphyaddr == 52)
5988 mask &= ~1ull;
5989 #endif
5990
5991 kvm_mmu_set_mmio_spte_mask(mask);
5992 }
5993
5994 #ifdef CONFIG_X86_64
5995 static void pvclock_gtod_update_fn(struct work_struct *work)
5996 {
5997 struct kvm *kvm;
5998
5999 struct kvm_vcpu *vcpu;
6000 int i;
6001
6002 spin_lock(&kvm_lock);
6003 list_for_each_entry(kvm, &vm_list, vm_list)
6004 kvm_for_each_vcpu(i, vcpu, kvm)
6005 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6006 atomic_set(&kvm_guest_has_master_clock, 0);
6007 spin_unlock(&kvm_lock);
6008 }
6009
6010 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6011
6012 /*
6013 * Notification about pvclock gtod data update.
6014 */
6015 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6016 void *priv)
6017 {
6018 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6019 struct timekeeper *tk = priv;
6020
6021 update_pvclock_gtod(tk);
6022
6023 /* disable master clock if host does not trust, or does not
6024 * use, TSC clocksource
6025 */
6026 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6027 atomic_read(&kvm_guest_has_master_clock) != 0)
6028 queue_work(system_long_wq, &pvclock_gtod_work);
6029
6030 return 0;
6031 }
6032
6033 static struct notifier_block pvclock_gtod_notifier = {
6034 .notifier_call = pvclock_gtod_notify,
6035 };
6036 #endif
6037
6038 int kvm_arch_init(void *opaque)
6039 {
6040 int r;
6041 struct kvm_x86_ops *ops = opaque;
6042
6043 if (kvm_x86_ops) {
6044 printk(KERN_ERR "kvm: already loaded the other module\n");
6045 r = -EEXIST;
6046 goto out;
6047 }
6048
6049 if (!ops->cpu_has_kvm_support()) {
6050 printk(KERN_ERR "kvm: no hardware support\n");
6051 r = -EOPNOTSUPP;
6052 goto out;
6053 }
6054 if (ops->disabled_by_bios()) {
6055 printk(KERN_ERR "kvm: disabled by bios\n");
6056 r = -EOPNOTSUPP;
6057 goto out;
6058 }
6059
6060 r = -ENOMEM;
6061 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6062 if (!shared_msrs) {
6063 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6064 goto out;
6065 }
6066
6067 r = kvm_mmu_module_init();
6068 if (r)
6069 goto out_free_percpu;
6070
6071 kvm_set_mmio_spte_mask();
6072
6073 kvm_x86_ops = ops;
6074
6075 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6076 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6077 PT_PRESENT_MASK, 0);
6078 kvm_timer_init();
6079
6080 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6081
6082 if (boot_cpu_has(X86_FEATURE_XSAVE))
6083 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6084
6085 kvm_lapic_init();
6086 #ifdef CONFIG_X86_64
6087 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6088 #endif
6089
6090 return 0;
6091
6092 out_free_percpu:
6093 free_percpu(shared_msrs);
6094 out:
6095 return r;
6096 }
6097
6098 void kvm_arch_exit(void)
6099 {
6100 kvm_lapic_exit();
6101 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6102
6103 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6104 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6105 CPUFREQ_TRANSITION_NOTIFIER);
6106 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6107 #ifdef CONFIG_X86_64
6108 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6109 #endif
6110 kvm_x86_ops = NULL;
6111 kvm_mmu_module_exit();
6112 free_percpu(shared_msrs);
6113 }
6114
6115 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6116 {
6117 ++vcpu->stat.halt_exits;
6118 if (lapic_in_kernel(vcpu)) {
6119 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6120 return 1;
6121 } else {
6122 vcpu->run->exit_reason = KVM_EXIT_HLT;
6123 return 0;
6124 }
6125 }
6126 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6127
6128 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6129 {
6130 int ret = kvm_skip_emulated_instruction(vcpu);
6131 /*
6132 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6133 * KVM_EXIT_DEBUG here.
6134 */
6135 return kvm_vcpu_halt(vcpu) && ret;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6138
6139 #ifdef CONFIG_X86_64
6140 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6141 unsigned long clock_type)
6142 {
6143 struct kvm_clock_pairing clock_pairing;
6144 struct timespec ts;
6145 u64 cycle;
6146 int ret;
6147
6148 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6149 return -KVM_EOPNOTSUPP;
6150
6151 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6152 return -KVM_EOPNOTSUPP;
6153
6154 clock_pairing.sec = ts.tv_sec;
6155 clock_pairing.nsec = ts.tv_nsec;
6156 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6157 clock_pairing.flags = 0;
6158
6159 ret = 0;
6160 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6161 sizeof(struct kvm_clock_pairing)))
6162 ret = -KVM_EFAULT;
6163
6164 return ret;
6165 }
6166 #endif
6167
6168 /*
6169 * kvm_pv_kick_cpu_op: Kick a vcpu.
6170 *
6171 * @apicid - apicid of vcpu to be kicked.
6172 */
6173 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6174 {
6175 struct kvm_lapic_irq lapic_irq;
6176
6177 lapic_irq.shorthand = 0;
6178 lapic_irq.dest_mode = 0;
6179 lapic_irq.dest_id = apicid;
6180 lapic_irq.msi_redir_hint = false;
6181
6182 lapic_irq.delivery_mode = APIC_DM_REMRD;
6183 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6184 }
6185
6186 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6187 {
6188 vcpu->arch.apicv_active = false;
6189 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6190 }
6191
6192 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6193 {
6194 unsigned long nr, a0, a1, a2, a3, ret;
6195 int op_64_bit, r;
6196
6197 r = kvm_skip_emulated_instruction(vcpu);
6198
6199 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6200 return kvm_hv_hypercall(vcpu);
6201
6202 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6203 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6204 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6205 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6206 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6207
6208 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6209
6210 op_64_bit = is_64_bit_mode(vcpu);
6211 if (!op_64_bit) {
6212 nr &= 0xFFFFFFFF;
6213 a0 &= 0xFFFFFFFF;
6214 a1 &= 0xFFFFFFFF;
6215 a2 &= 0xFFFFFFFF;
6216 a3 &= 0xFFFFFFFF;
6217 }
6218
6219 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6220 ret = -KVM_EPERM;
6221 goto out;
6222 }
6223
6224 switch (nr) {
6225 case KVM_HC_VAPIC_POLL_IRQ:
6226 ret = 0;
6227 break;
6228 case KVM_HC_KICK_CPU:
6229 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6230 ret = 0;
6231 break;
6232 #ifdef CONFIG_X86_64
6233 case KVM_HC_CLOCK_PAIRING:
6234 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6235 break;
6236 #endif
6237 default:
6238 ret = -KVM_ENOSYS;
6239 break;
6240 }
6241 out:
6242 if (!op_64_bit)
6243 ret = (u32)ret;
6244 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6245 ++vcpu->stat.hypercalls;
6246 return r;
6247 }
6248 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6249
6250 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6251 {
6252 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6253 char instruction[3];
6254 unsigned long rip = kvm_rip_read(vcpu);
6255
6256 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6257
6258 return emulator_write_emulated(ctxt, rip, instruction, 3,
6259 &ctxt->exception);
6260 }
6261
6262 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6263 {
6264 return vcpu->run->request_interrupt_window &&
6265 likely(!pic_in_kernel(vcpu->kvm));
6266 }
6267
6268 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6269 {
6270 struct kvm_run *kvm_run = vcpu->run;
6271
6272 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6273 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6274 kvm_run->cr8 = kvm_get_cr8(vcpu);
6275 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6276 kvm_run->ready_for_interrupt_injection =
6277 pic_in_kernel(vcpu->kvm) ||
6278 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6279 }
6280
6281 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6282 {
6283 int max_irr, tpr;
6284
6285 if (!kvm_x86_ops->update_cr8_intercept)
6286 return;
6287
6288 if (!lapic_in_kernel(vcpu))
6289 return;
6290
6291 if (vcpu->arch.apicv_active)
6292 return;
6293
6294 if (!vcpu->arch.apic->vapic_addr)
6295 max_irr = kvm_lapic_find_highest_irr(vcpu);
6296 else
6297 max_irr = -1;
6298
6299 if (max_irr != -1)
6300 max_irr >>= 4;
6301
6302 tpr = kvm_lapic_get_cr8(vcpu);
6303
6304 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6305 }
6306
6307 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6308 {
6309 int r;
6310
6311 /* try to reinject previous events if any */
6312 if (vcpu->arch.exception.pending) {
6313 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6314 vcpu->arch.exception.has_error_code,
6315 vcpu->arch.exception.error_code);
6316
6317 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6318 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6319 X86_EFLAGS_RF);
6320
6321 if (vcpu->arch.exception.nr == DB_VECTOR &&
6322 (vcpu->arch.dr7 & DR7_GD)) {
6323 vcpu->arch.dr7 &= ~DR7_GD;
6324 kvm_update_dr7(vcpu);
6325 }
6326
6327 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6328 vcpu->arch.exception.has_error_code,
6329 vcpu->arch.exception.error_code,
6330 vcpu->arch.exception.reinject);
6331 return 0;
6332 }
6333
6334 if (vcpu->arch.nmi_injected) {
6335 kvm_x86_ops->set_nmi(vcpu);
6336 return 0;
6337 }
6338
6339 if (vcpu->arch.interrupt.pending) {
6340 kvm_x86_ops->set_irq(vcpu);
6341 return 0;
6342 }
6343
6344 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6345 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6346 if (r != 0)
6347 return r;
6348 }
6349
6350 /* try to inject new event if pending */
6351 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6352 vcpu->arch.smi_pending = false;
6353 enter_smm(vcpu);
6354 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6355 --vcpu->arch.nmi_pending;
6356 vcpu->arch.nmi_injected = true;
6357 kvm_x86_ops->set_nmi(vcpu);
6358 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6359 /*
6360 * Because interrupts can be injected asynchronously, we are
6361 * calling check_nested_events again here to avoid a race condition.
6362 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6363 * proposal and current concerns. Perhaps we should be setting
6364 * KVM_REQ_EVENT only on certain events and not unconditionally?
6365 */
6366 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6367 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6368 if (r != 0)
6369 return r;
6370 }
6371 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6372 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6373 false);
6374 kvm_x86_ops->set_irq(vcpu);
6375 }
6376 }
6377
6378 return 0;
6379 }
6380
6381 static void process_nmi(struct kvm_vcpu *vcpu)
6382 {
6383 unsigned limit = 2;
6384
6385 /*
6386 * x86 is limited to one NMI running, and one NMI pending after it.
6387 * If an NMI is already in progress, limit further NMIs to just one.
6388 * Otherwise, allow two (and we'll inject the first one immediately).
6389 */
6390 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6391 limit = 1;
6392
6393 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6394 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6395 kvm_make_request(KVM_REQ_EVENT, vcpu);
6396 }
6397
6398 #define put_smstate(type, buf, offset, val) \
6399 *(type *)((buf) + (offset) - 0x7e00) = val
6400
6401 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6402 {
6403 u32 flags = 0;
6404 flags |= seg->g << 23;
6405 flags |= seg->db << 22;
6406 flags |= seg->l << 21;
6407 flags |= seg->avl << 20;
6408 flags |= seg->present << 15;
6409 flags |= seg->dpl << 13;
6410 flags |= seg->s << 12;
6411 flags |= seg->type << 8;
6412 return flags;
6413 }
6414
6415 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6416 {
6417 struct kvm_segment seg;
6418 int offset;
6419
6420 kvm_get_segment(vcpu, &seg, n);
6421 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6422
6423 if (n < 3)
6424 offset = 0x7f84 + n * 12;
6425 else
6426 offset = 0x7f2c + (n - 3) * 12;
6427
6428 put_smstate(u32, buf, offset + 8, seg.base);
6429 put_smstate(u32, buf, offset + 4, seg.limit);
6430 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6431 }
6432
6433 #ifdef CONFIG_X86_64
6434 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6435 {
6436 struct kvm_segment seg;
6437 int offset;
6438 u16 flags;
6439
6440 kvm_get_segment(vcpu, &seg, n);
6441 offset = 0x7e00 + n * 16;
6442
6443 flags = enter_smm_get_segment_flags(&seg) >> 8;
6444 put_smstate(u16, buf, offset, seg.selector);
6445 put_smstate(u16, buf, offset + 2, flags);
6446 put_smstate(u32, buf, offset + 4, seg.limit);
6447 put_smstate(u64, buf, offset + 8, seg.base);
6448 }
6449 #endif
6450
6451 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6452 {
6453 struct desc_ptr dt;
6454 struct kvm_segment seg;
6455 unsigned long val;
6456 int i;
6457
6458 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6459 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6460 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6461 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6462
6463 for (i = 0; i < 8; i++)
6464 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6465
6466 kvm_get_dr(vcpu, 6, &val);
6467 put_smstate(u32, buf, 0x7fcc, (u32)val);
6468 kvm_get_dr(vcpu, 7, &val);
6469 put_smstate(u32, buf, 0x7fc8, (u32)val);
6470
6471 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6472 put_smstate(u32, buf, 0x7fc4, seg.selector);
6473 put_smstate(u32, buf, 0x7f64, seg.base);
6474 put_smstate(u32, buf, 0x7f60, seg.limit);
6475 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6476
6477 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6478 put_smstate(u32, buf, 0x7fc0, seg.selector);
6479 put_smstate(u32, buf, 0x7f80, seg.base);
6480 put_smstate(u32, buf, 0x7f7c, seg.limit);
6481 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6482
6483 kvm_x86_ops->get_gdt(vcpu, &dt);
6484 put_smstate(u32, buf, 0x7f74, dt.address);
6485 put_smstate(u32, buf, 0x7f70, dt.size);
6486
6487 kvm_x86_ops->get_idt(vcpu, &dt);
6488 put_smstate(u32, buf, 0x7f58, dt.address);
6489 put_smstate(u32, buf, 0x7f54, dt.size);
6490
6491 for (i = 0; i < 6; i++)
6492 enter_smm_save_seg_32(vcpu, buf, i);
6493
6494 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6495
6496 /* revision id */
6497 put_smstate(u32, buf, 0x7efc, 0x00020000);
6498 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6499 }
6500
6501 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6502 {
6503 #ifdef CONFIG_X86_64
6504 struct desc_ptr dt;
6505 struct kvm_segment seg;
6506 unsigned long val;
6507 int i;
6508
6509 for (i = 0; i < 16; i++)
6510 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6511
6512 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6513 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6514
6515 kvm_get_dr(vcpu, 6, &val);
6516 put_smstate(u64, buf, 0x7f68, val);
6517 kvm_get_dr(vcpu, 7, &val);
6518 put_smstate(u64, buf, 0x7f60, val);
6519
6520 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6521 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6522 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6523
6524 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6525
6526 /* revision id */
6527 put_smstate(u32, buf, 0x7efc, 0x00020064);
6528
6529 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6530
6531 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6532 put_smstate(u16, buf, 0x7e90, seg.selector);
6533 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6534 put_smstate(u32, buf, 0x7e94, seg.limit);
6535 put_smstate(u64, buf, 0x7e98, seg.base);
6536
6537 kvm_x86_ops->get_idt(vcpu, &dt);
6538 put_smstate(u32, buf, 0x7e84, dt.size);
6539 put_smstate(u64, buf, 0x7e88, dt.address);
6540
6541 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6542 put_smstate(u16, buf, 0x7e70, seg.selector);
6543 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6544 put_smstate(u32, buf, 0x7e74, seg.limit);
6545 put_smstate(u64, buf, 0x7e78, seg.base);
6546
6547 kvm_x86_ops->get_gdt(vcpu, &dt);
6548 put_smstate(u32, buf, 0x7e64, dt.size);
6549 put_smstate(u64, buf, 0x7e68, dt.address);
6550
6551 for (i = 0; i < 6; i++)
6552 enter_smm_save_seg_64(vcpu, buf, i);
6553 #else
6554 WARN_ON_ONCE(1);
6555 #endif
6556 }
6557
6558 static void enter_smm(struct kvm_vcpu *vcpu)
6559 {
6560 struct kvm_segment cs, ds;
6561 struct desc_ptr dt;
6562 char buf[512];
6563 u32 cr0;
6564
6565 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6566 vcpu->arch.hflags |= HF_SMM_MASK;
6567 memset(buf, 0, 512);
6568 if (guest_cpuid_has_longmode(vcpu))
6569 enter_smm_save_state_64(vcpu, buf);
6570 else
6571 enter_smm_save_state_32(vcpu, buf);
6572
6573 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6574
6575 if (kvm_x86_ops->get_nmi_mask(vcpu))
6576 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6577 else
6578 kvm_x86_ops->set_nmi_mask(vcpu, true);
6579
6580 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6581 kvm_rip_write(vcpu, 0x8000);
6582
6583 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6584 kvm_x86_ops->set_cr0(vcpu, cr0);
6585 vcpu->arch.cr0 = cr0;
6586
6587 kvm_x86_ops->set_cr4(vcpu, 0);
6588
6589 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6590 dt.address = dt.size = 0;
6591 kvm_x86_ops->set_idt(vcpu, &dt);
6592
6593 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6594
6595 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6596 cs.base = vcpu->arch.smbase;
6597
6598 ds.selector = 0;
6599 ds.base = 0;
6600
6601 cs.limit = ds.limit = 0xffffffff;
6602 cs.type = ds.type = 0x3;
6603 cs.dpl = ds.dpl = 0;
6604 cs.db = ds.db = 0;
6605 cs.s = ds.s = 1;
6606 cs.l = ds.l = 0;
6607 cs.g = ds.g = 1;
6608 cs.avl = ds.avl = 0;
6609 cs.present = ds.present = 1;
6610 cs.unusable = ds.unusable = 0;
6611 cs.padding = ds.padding = 0;
6612
6613 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6614 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6615 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6616 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6617 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6618 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6619
6620 if (guest_cpuid_has_longmode(vcpu))
6621 kvm_x86_ops->set_efer(vcpu, 0);
6622
6623 kvm_update_cpuid(vcpu);
6624 kvm_mmu_reset_context(vcpu);
6625 }
6626
6627 static void process_smi(struct kvm_vcpu *vcpu)
6628 {
6629 vcpu->arch.smi_pending = true;
6630 kvm_make_request(KVM_REQ_EVENT, vcpu);
6631 }
6632
6633 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6634 {
6635 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6636 }
6637
6638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6639 {
6640 u64 eoi_exit_bitmap[4];
6641
6642 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6643 return;
6644
6645 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6646
6647 if (irqchip_split(vcpu->kvm))
6648 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6649 else {
6650 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6651 kvm_x86_ops->sync_pir_to_irr(vcpu);
6652 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6653 }
6654 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6655 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6656 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6657 }
6658
6659 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6660 {
6661 ++vcpu->stat.tlb_flush;
6662 kvm_x86_ops->tlb_flush(vcpu);
6663 }
6664
6665 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6666 {
6667 struct page *page = NULL;
6668
6669 if (!lapic_in_kernel(vcpu))
6670 return;
6671
6672 if (!kvm_x86_ops->set_apic_access_page_addr)
6673 return;
6674
6675 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6676 if (is_error_page(page))
6677 return;
6678 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6679
6680 /*
6681 * Do not pin apic access page in memory, the MMU notifier
6682 * will call us again if it is migrated or swapped out.
6683 */
6684 put_page(page);
6685 }
6686 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6687
6688 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6689 unsigned long address)
6690 {
6691 /*
6692 * The physical address of apic access page is stored in the VMCS.
6693 * Update it when it becomes invalid.
6694 */
6695 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6696 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6697 }
6698
6699 /*
6700 * Returns 1 to let vcpu_run() continue the guest execution loop without
6701 * exiting to the userspace. Otherwise, the value will be returned to the
6702 * userspace.
6703 */
6704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6705 {
6706 int r;
6707 bool req_int_win =
6708 dm_request_for_irq_injection(vcpu) &&
6709 kvm_cpu_accept_dm_intr(vcpu);
6710
6711 bool req_immediate_exit = false;
6712
6713 if (vcpu->requests) {
6714 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6715 kvm_mmu_unload(vcpu);
6716 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6717 __kvm_migrate_timers(vcpu);
6718 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6719 kvm_gen_update_masterclock(vcpu->kvm);
6720 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6721 kvm_gen_kvmclock_update(vcpu);
6722 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6723 r = kvm_guest_time_update(vcpu);
6724 if (unlikely(r))
6725 goto out;
6726 }
6727 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6728 kvm_mmu_sync_roots(vcpu);
6729 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6730 kvm_vcpu_flush_tlb(vcpu);
6731 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6732 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6733 r = 0;
6734 goto out;
6735 }
6736 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6737 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6738 r = 0;
6739 goto out;
6740 }
6741 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6742 /* Page is swapped out. Do synthetic halt */
6743 vcpu->arch.apf.halted = true;
6744 r = 1;
6745 goto out;
6746 }
6747 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6748 record_steal_time(vcpu);
6749 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6750 process_smi(vcpu);
6751 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6752 process_nmi(vcpu);
6753 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6754 kvm_pmu_handle_event(vcpu);
6755 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6756 kvm_pmu_deliver_pmi(vcpu);
6757 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6758 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6759 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6760 vcpu->arch.ioapic_handled_vectors)) {
6761 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6762 vcpu->run->eoi.vector =
6763 vcpu->arch.pending_ioapic_eoi;
6764 r = 0;
6765 goto out;
6766 }
6767 }
6768 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6769 vcpu_scan_ioapic(vcpu);
6770 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6771 kvm_vcpu_reload_apic_access_page(vcpu);
6772 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6773 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6774 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6775 r = 0;
6776 goto out;
6777 }
6778 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6779 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6780 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6781 r = 0;
6782 goto out;
6783 }
6784 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6785 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6786 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6787 r = 0;
6788 goto out;
6789 }
6790
6791 /*
6792 * KVM_REQ_HV_STIMER has to be processed after
6793 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6794 * depend on the guest clock being up-to-date
6795 */
6796 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6797 kvm_hv_process_stimers(vcpu);
6798 }
6799
6800 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6801 ++vcpu->stat.req_event;
6802 kvm_apic_accept_events(vcpu);
6803 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6804 r = 1;
6805 goto out;
6806 }
6807
6808 if (inject_pending_event(vcpu, req_int_win) != 0)
6809 req_immediate_exit = true;
6810 else {
6811 /* Enable NMI/IRQ window open exits if needed.
6812 *
6813 * SMIs have two cases: 1) they can be nested, and
6814 * then there is nothing to do here because RSM will
6815 * cause a vmexit anyway; 2) or the SMI can be pending
6816 * because inject_pending_event has completed the
6817 * injection of an IRQ or NMI from the previous vmexit,
6818 * and then we request an immediate exit to inject the SMI.
6819 */
6820 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6821 req_immediate_exit = true;
6822 if (vcpu->arch.nmi_pending)
6823 kvm_x86_ops->enable_nmi_window(vcpu);
6824 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6825 kvm_x86_ops->enable_irq_window(vcpu);
6826 }
6827
6828 if (kvm_lapic_enabled(vcpu)) {
6829 update_cr8_intercept(vcpu);
6830 kvm_lapic_sync_to_vapic(vcpu);
6831 }
6832 }
6833
6834 r = kvm_mmu_reload(vcpu);
6835 if (unlikely(r)) {
6836 goto cancel_injection;
6837 }
6838
6839 preempt_disable();
6840
6841 kvm_x86_ops->prepare_guest_switch(vcpu);
6842 kvm_load_guest_fpu(vcpu);
6843
6844 /*
6845 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6846 * IPI are then delayed after guest entry, which ensures that they
6847 * result in virtual interrupt delivery.
6848 */
6849 local_irq_disable();
6850 vcpu->mode = IN_GUEST_MODE;
6851
6852 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6853
6854 /*
6855 * 1) We should set ->mode before checking ->requests. Please see
6856 * the comment in kvm_vcpu_exiting_guest_mode().
6857 *
6858 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6859 * pairs with the memory barrier implicit in pi_test_and_set_on
6860 * (see vmx_deliver_posted_interrupt).
6861 *
6862 * 3) This also orders the write to mode from any reads to the page
6863 * tables done while the VCPU is running. Please see the comment
6864 * in kvm_flush_remote_tlbs.
6865 */
6866 smp_mb__after_srcu_read_unlock();
6867
6868 /*
6869 * This handles the case where a posted interrupt was
6870 * notified with kvm_vcpu_kick.
6871 */
6872 if (kvm_lapic_enabled(vcpu)) {
6873 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6874 kvm_x86_ops->sync_pir_to_irr(vcpu);
6875 }
6876
6877 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6878 || need_resched() || signal_pending(current)) {
6879 vcpu->mode = OUTSIDE_GUEST_MODE;
6880 smp_wmb();
6881 local_irq_enable();
6882 preempt_enable();
6883 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6884 r = 1;
6885 goto cancel_injection;
6886 }
6887
6888 kvm_load_guest_xcr0(vcpu);
6889
6890 if (req_immediate_exit) {
6891 kvm_make_request(KVM_REQ_EVENT, vcpu);
6892 smp_send_reschedule(vcpu->cpu);
6893 }
6894
6895 trace_kvm_entry(vcpu->vcpu_id);
6896 wait_lapic_expire(vcpu);
6897 guest_enter_irqoff();
6898
6899 if (unlikely(vcpu->arch.switch_db_regs)) {
6900 set_debugreg(0, 7);
6901 set_debugreg(vcpu->arch.eff_db[0], 0);
6902 set_debugreg(vcpu->arch.eff_db[1], 1);
6903 set_debugreg(vcpu->arch.eff_db[2], 2);
6904 set_debugreg(vcpu->arch.eff_db[3], 3);
6905 set_debugreg(vcpu->arch.dr6, 6);
6906 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6907 }
6908
6909 kvm_x86_ops->run(vcpu);
6910
6911 /*
6912 * Do this here before restoring debug registers on the host. And
6913 * since we do this before handling the vmexit, a DR access vmexit
6914 * can (a) read the correct value of the debug registers, (b) set
6915 * KVM_DEBUGREG_WONT_EXIT again.
6916 */
6917 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6918 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6919 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6920 kvm_update_dr0123(vcpu);
6921 kvm_update_dr6(vcpu);
6922 kvm_update_dr7(vcpu);
6923 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6924 }
6925
6926 /*
6927 * If the guest has used debug registers, at least dr7
6928 * will be disabled while returning to the host.
6929 * If we don't have active breakpoints in the host, we don't
6930 * care about the messed up debug address registers. But if
6931 * we have some of them active, restore the old state.
6932 */
6933 if (hw_breakpoint_active())
6934 hw_breakpoint_restore();
6935
6936 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6937
6938 vcpu->mode = OUTSIDE_GUEST_MODE;
6939 smp_wmb();
6940
6941 kvm_put_guest_xcr0(vcpu);
6942
6943 kvm_x86_ops->handle_external_intr(vcpu);
6944
6945 ++vcpu->stat.exits;
6946
6947 guest_exit_irqoff();
6948
6949 local_irq_enable();
6950 preempt_enable();
6951
6952 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6953
6954 /*
6955 * Profile KVM exit RIPs:
6956 */
6957 if (unlikely(prof_on == KVM_PROFILING)) {
6958 unsigned long rip = kvm_rip_read(vcpu);
6959 profile_hit(KVM_PROFILING, (void *)rip);
6960 }
6961
6962 if (unlikely(vcpu->arch.tsc_always_catchup))
6963 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6964
6965 if (vcpu->arch.apic_attention)
6966 kvm_lapic_sync_from_vapic(vcpu);
6967
6968 r = kvm_x86_ops->handle_exit(vcpu);
6969 return r;
6970
6971 cancel_injection:
6972 kvm_x86_ops->cancel_injection(vcpu);
6973 if (unlikely(vcpu->arch.apic_attention))
6974 kvm_lapic_sync_from_vapic(vcpu);
6975 out:
6976 return r;
6977 }
6978
6979 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6980 {
6981 if (!kvm_arch_vcpu_runnable(vcpu) &&
6982 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6983 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6984 kvm_vcpu_block(vcpu);
6985 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6986
6987 if (kvm_x86_ops->post_block)
6988 kvm_x86_ops->post_block(vcpu);
6989
6990 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6991 return 1;
6992 }
6993
6994 kvm_apic_accept_events(vcpu);
6995 switch(vcpu->arch.mp_state) {
6996 case KVM_MP_STATE_HALTED:
6997 vcpu->arch.pv.pv_unhalted = false;
6998 vcpu->arch.mp_state =
6999 KVM_MP_STATE_RUNNABLE;
7000 case KVM_MP_STATE_RUNNABLE:
7001 vcpu->arch.apf.halted = false;
7002 break;
7003 case KVM_MP_STATE_INIT_RECEIVED:
7004 break;
7005 default:
7006 return -EINTR;
7007 break;
7008 }
7009 return 1;
7010 }
7011
7012 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7013 {
7014 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7015 kvm_x86_ops->check_nested_events(vcpu, false);
7016
7017 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7018 !vcpu->arch.apf.halted);
7019 }
7020
7021 static int vcpu_run(struct kvm_vcpu *vcpu)
7022 {
7023 int r;
7024 struct kvm *kvm = vcpu->kvm;
7025
7026 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7027
7028 for (;;) {
7029 if (kvm_vcpu_running(vcpu)) {
7030 r = vcpu_enter_guest(vcpu);
7031 } else {
7032 r = vcpu_block(kvm, vcpu);
7033 }
7034
7035 if (r <= 0)
7036 break;
7037
7038 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7039 if (kvm_cpu_has_pending_timer(vcpu))
7040 kvm_inject_pending_timer_irqs(vcpu);
7041
7042 if (dm_request_for_irq_injection(vcpu) &&
7043 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7044 r = 0;
7045 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7046 ++vcpu->stat.request_irq_exits;
7047 break;
7048 }
7049
7050 kvm_check_async_pf_completion(vcpu);
7051
7052 if (signal_pending(current)) {
7053 r = -EINTR;
7054 vcpu->run->exit_reason = KVM_EXIT_INTR;
7055 ++vcpu->stat.signal_exits;
7056 break;
7057 }
7058 if (need_resched()) {
7059 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7060 cond_resched();
7061 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7062 }
7063 }
7064
7065 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7066
7067 return r;
7068 }
7069
7070 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7071 {
7072 int r;
7073 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7074 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7075 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7076 if (r != EMULATE_DONE)
7077 return 0;
7078 return 1;
7079 }
7080
7081 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7082 {
7083 BUG_ON(!vcpu->arch.pio.count);
7084
7085 return complete_emulated_io(vcpu);
7086 }
7087
7088 /*
7089 * Implements the following, as a state machine:
7090 *
7091 * read:
7092 * for each fragment
7093 * for each mmio piece in the fragment
7094 * write gpa, len
7095 * exit
7096 * copy data
7097 * execute insn
7098 *
7099 * write:
7100 * for each fragment
7101 * for each mmio piece in the fragment
7102 * write gpa, len
7103 * copy data
7104 * exit
7105 */
7106 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7107 {
7108 struct kvm_run *run = vcpu->run;
7109 struct kvm_mmio_fragment *frag;
7110 unsigned len;
7111
7112 BUG_ON(!vcpu->mmio_needed);
7113
7114 /* Complete previous fragment */
7115 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7116 len = min(8u, frag->len);
7117 if (!vcpu->mmio_is_write)
7118 memcpy(frag->data, run->mmio.data, len);
7119
7120 if (frag->len <= 8) {
7121 /* Switch to the next fragment. */
7122 frag++;
7123 vcpu->mmio_cur_fragment++;
7124 } else {
7125 /* Go forward to the next mmio piece. */
7126 frag->data += len;
7127 frag->gpa += len;
7128 frag->len -= len;
7129 }
7130
7131 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7132 vcpu->mmio_needed = 0;
7133
7134 /* FIXME: return into emulator if single-stepping. */
7135 if (vcpu->mmio_is_write)
7136 return 1;
7137 vcpu->mmio_read_completed = 1;
7138 return complete_emulated_io(vcpu);
7139 }
7140
7141 run->exit_reason = KVM_EXIT_MMIO;
7142 run->mmio.phys_addr = frag->gpa;
7143 if (vcpu->mmio_is_write)
7144 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7145 run->mmio.len = min(8u, frag->len);
7146 run->mmio.is_write = vcpu->mmio_is_write;
7147 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7148 return 0;
7149 }
7150
7151
7152 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7153 {
7154 struct fpu *fpu = &current->thread.fpu;
7155 int r;
7156 sigset_t sigsaved;
7157
7158 fpu__activate_curr(fpu);
7159
7160 if (vcpu->sigset_active)
7161 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7162
7163 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7164 kvm_vcpu_block(vcpu);
7165 kvm_apic_accept_events(vcpu);
7166 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7167 r = -EAGAIN;
7168 goto out;
7169 }
7170
7171 /* re-sync apic's tpr */
7172 if (!lapic_in_kernel(vcpu)) {
7173 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7174 r = -EINVAL;
7175 goto out;
7176 }
7177 }
7178
7179 if (unlikely(vcpu->arch.complete_userspace_io)) {
7180 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7181 vcpu->arch.complete_userspace_io = NULL;
7182 r = cui(vcpu);
7183 if (r <= 0)
7184 goto out;
7185 } else
7186 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7187
7188 if (kvm_run->immediate_exit)
7189 r = -EINTR;
7190 else
7191 r = vcpu_run(vcpu);
7192
7193 out:
7194 post_kvm_run_save(vcpu);
7195 if (vcpu->sigset_active)
7196 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7197
7198 return r;
7199 }
7200
7201 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7202 {
7203 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7204 /*
7205 * We are here if userspace calls get_regs() in the middle of
7206 * instruction emulation. Registers state needs to be copied
7207 * back from emulation context to vcpu. Userspace shouldn't do
7208 * that usually, but some bad designed PV devices (vmware
7209 * backdoor interface) need this to work
7210 */
7211 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7212 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7213 }
7214 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7215 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7216 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7217 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7218 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7219 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7220 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7221 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7222 #ifdef CONFIG_X86_64
7223 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7224 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7225 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7226 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7227 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7228 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7229 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7230 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7231 #endif
7232
7233 regs->rip = kvm_rip_read(vcpu);
7234 regs->rflags = kvm_get_rflags(vcpu);
7235
7236 return 0;
7237 }
7238
7239 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7240 {
7241 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7242 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7243
7244 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7245 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7246 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7247 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7248 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7249 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7250 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7251 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7252 #ifdef CONFIG_X86_64
7253 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7254 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7255 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7256 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7257 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7258 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7259 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7260 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7261 #endif
7262
7263 kvm_rip_write(vcpu, regs->rip);
7264 kvm_set_rflags(vcpu, regs->rflags);
7265
7266 vcpu->arch.exception.pending = false;
7267
7268 kvm_make_request(KVM_REQ_EVENT, vcpu);
7269
7270 return 0;
7271 }
7272
7273 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7274 {
7275 struct kvm_segment cs;
7276
7277 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7278 *db = cs.db;
7279 *l = cs.l;
7280 }
7281 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7282
7283 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7284 struct kvm_sregs *sregs)
7285 {
7286 struct desc_ptr dt;
7287
7288 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7289 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7290 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7291 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7292 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7293 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7294
7295 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7296 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7297
7298 kvm_x86_ops->get_idt(vcpu, &dt);
7299 sregs->idt.limit = dt.size;
7300 sregs->idt.base = dt.address;
7301 kvm_x86_ops->get_gdt(vcpu, &dt);
7302 sregs->gdt.limit = dt.size;
7303 sregs->gdt.base = dt.address;
7304
7305 sregs->cr0 = kvm_read_cr0(vcpu);
7306 sregs->cr2 = vcpu->arch.cr2;
7307 sregs->cr3 = kvm_read_cr3(vcpu);
7308 sregs->cr4 = kvm_read_cr4(vcpu);
7309 sregs->cr8 = kvm_get_cr8(vcpu);
7310 sregs->efer = vcpu->arch.efer;
7311 sregs->apic_base = kvm_get_apic_base(vcpu);
7312
7313 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7314
7315 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7316 set_bit(vcpu->arch.interrupt.nr,
7317 (unsigned long *)sregs->interrupt_bitmap);
7318
7319 return 0;
7320 }
7321
7322 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7323 struct kvm_mp_state *mp_state)
7324 {
7325 kvm_apic_accept_events(vcpu);
7326 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7327 vcpu->arch.pv.pv_unhalted)
7328 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7329 else
7330 mp_state->mp_state = vcpu->arch.mp_state;
7331
7332 return 0;
7333 }
7334
7335 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7336 struct kvm_mp_state *mp_state)
7337 {
7338 if (!lapic_in_kernel(vcpu) &&
7339 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7340 return -EINVAL;
7341
7342 /* INITs are latched while in SMM */
7343 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7344 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7345 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7346 return -EINVAL;
7347
7348 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7349 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7350 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7351 } else
7352 vcpu->arch.mp_state = mp_state->mp_state;
7353 kvm_make_request(KVM_REQ_EVENT, vcpu);
7354 return 0;
7355 }
7356
7357 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7358 int reason, bool has_error_code, u32 error_code)
7359 {
7360 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7361 int ret;
7362
7363 init_emulate_ctxt(vcpu);
7364
7365 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7366 has_error_code, error_code);
7367
7368 if (ret)
7369 return EMULATE_FAIL;
7370
7371 kvm_rip_write(vcpu, ctxt->eip);
7372 kvm_set_rflags(vcpu, ctxt->eflags);
7373 kvm_make_request(KVM_REQ_EVENT, vcpu);
7374 return EMULATE_DONE;
7375 }
7376 EXPORT_SYMBOL_GPL(kvm_task_switch);
7377
7378 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7379 struct kvm_sregs *sregs)
7380 {
7381 struct msr_data apic_base_msr;
7382 int mmu_reset_needed = 0;
7383 int pending_vec, max_bits, idx;
7384 struct desc_ptr dt;
7385
7386 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7387 return -EINVAL;
7388
7389 dt.size = sregs->idt.limit;
7390 dt.address = sregs->idt.base;
7391 kvm_x86_ops->set_idt(vcpu, &dt);
7392 dt.size = sregs->gdt.limit;
7393 dt.address = sregs->gdt.base;
7394 kvm_x86_ops->set_gdt(vcpu, &dt);
7395
7396 vcpu->arch.cr2 = sregs->cr2;
7397 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7398 vcpu->arch.cr3 = sregs->cr3;
7399 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7400
7401 kvm_set_cr8(vcpu, sregs->cr8);
7402
7403 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7404 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7405 apic_base_msr.data = sregs->apic_base;
7406 apic_base_msr.host_initiated = true;
7407 kvm_set_apic_base(vcpu, &apic_base_msr);
7408
7409 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7410 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7411 vcpu->arch.cr0 = sregs->cr0;
7412
7413 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7414 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7415 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7416 kvm_update_cpuid(vcpu);
7417
7418 idx = srcu_read_lock(&vcpu->kvm->srcu);
7419 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7420 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7421 mmu_reset_needed = 1;
7422 }
7423 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7424
7425 if (mmu_reset_needed)
7426 kvm_mmu_reset_context(vcpu);
7427
7428 max_bits = KVM_NR_INTERRUPTS;
7429 pending_vec = find_first_bit(
7430 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7431 if (pending_vec < max_bits) {
7432 kvm_queue_interrupt(vcpu, pending_vec, false);
7433 pr_debug("Set back pending irq %d\n", pending_vec);
7434 }
7435
7436 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7437 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7438 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7439 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7440 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7441 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7442
7443 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7444 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7445
7446 update_cr8_intercept(vcpu);
7447
7448 /* Older userspace won't unhalt the vcpu on reset. */
7449 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7450 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7451 !is_protmode(vcpu))
7452 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7453
7454 kvm_make_request(KVM_REQ_EVENT, vcpu);
7455
7456 return 0;
7457 }
7458
7459 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7460 struct kvm_guest_debug *dbg)
7461 {
7462 unsigned long rflags;
7463 int i, r;
7464
7465 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7466 r = -EBUSY;
7467 if (vcpu->arch.exception.pending)
7468 goto out;
7469 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7470 kvm_queue_exception(vcpu, DB_VECTOR);
7471 else
7472 kvm_queue_exception(vcpu, BP_VECTOR);
7473 }
7474
7475 /*
7476 * Read rflags as long as potentially injected trace flags are still
7477 * filtered out.
7478 */
7479 rflags = kvm_get_rflags(vcpu);
7480
7481 vcpu->guest_debug = dbg->control;
7482 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7483 vcpu->guest_debug = 0;
7484
7485 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7486 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7487 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7488 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7489 } else {
7490 for (i = 0; i < KVM_NR_DB_REGS; i++)
7491 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7492 }
7493 kvm_update_dr7(vcpu);
7494
7495 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7496 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7497 get_segment_base(vcpu, VCPU_SREG_CS);
7498
7499 /*
7500 * Trigger an rflags update that will inject or remove the trace
7501 * flags.
7502 */
7503 kvm_set_rflags(vcpu, rflags);
7504
7505 kvm_x86_ops->update_bp_intercept(vcpu);
7506
7507 r = 0;
7508
7509 out:
7510
7511 return r;
7512 }
7513
7514 /*
7515 * Translate a guest virtual address to a guest physical address.
7516 */
7517 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7518 struct kvm_translation *tr)
7519 {
7520 unsigned long vaddr = tr->linear_address;
7521 gpa_t gpa;
7522 int idx;
7523
7524 idx = srcu_read_lock(&vcpu->kvm->srcu);
7525 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7526 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7527 tr->physical_address = gpa;
7528 tr->valid = gpa != UNMAPPED_GVA;
7529 tr->writeable = 1;
7530 tr->usermode = 0;
7531
7532 return 0;
7533 }
7534
7535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7536 {
7537 struct fxregs_state *fxsave =
7538 &vcpu->arch.guest_fpu.state.fxsave;
7539
7540 memcpy(fpu->fpr, fxsave->st_space, 128);
7541 fpu->fcw = fxsave->cwd;
7542 fpu->fsw = fxsave->swd;
7543 fpu->ftwx = fxsave->twd;
7544 fpu->last_opcode = fxsave->fop;
7545 fpu->last_ip = fxsave->rip;
7546 fpu->last_dp = fxsave->rdp;
7547 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7548
7549 return 0;
7550 }
7551
7552 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7553 {
7554 struct fxregs_state *fxsave =
7555 &vcpu->arch.guest_fpu.state.fxsave;
7556
7557 memcpy(fxsave->st_space, fpu->fpr, 128);
7558 fxsave->cwd = fpu->fcw;
7559 fxsave->swd = fpu->fsw;
7560 fxsave->twd = fpu->ftwx;
7561 fxsave->fop = fpu->last_opcode;
7562 fxsave->rip = fpu->last_ip;
7563 fxsave->rdp = fpu->last_dp;
7564 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7565
7566 return 0;
7567 }
7568
7569 static void fx_init(struct kvm_vcpu *vcpu)
7570 {
7571 fpstate_init(&vcpu->arch.guest_fpu.state);
7572 if (boot_cpu_has(X86_FEATURE_XSAVES))
7573 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7574 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7575
7576 /*
7577 * Ensure guest xcr0 is valid for loading
7578 */
7579 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7580
7581 vcpu->arch.cr0 |= X86_CR0_ET;
7582 }
7583
7584 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7585 {
7586 if (vcpu->guest_fpu_loaded)
7587 return;
7588
7589 /*
7590 * Restore all possible states in the guest,
7591 * and assume host would use all available bits.
7592 * Guest xcr0 would be loaded later.
7593 */
7594 vcpu->guest_fpu_loaded = 1;
7595 __kernel_fpu_begin();
7596 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7597 trace_kvm_fpu(1);
7598 }
7599
7600 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7601 {
7602 if (!vcpu->guest_fpu_loaded)
7603 return;
7604
7605 vcpu->guest_fpu_loaded = 0;
7606 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7607 __kernel_fpu_end();
7608 ++vcpu->stat.fpu_reload;
7609 trace_kvm_fpu(0);
7610 }
7611
7612 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7613 {
7614 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7615
7616 kvmclock_reset(vcpu);
7617
7618 kvm_x86_ops->vcpu_free(vcpu);
7619 free_cpumask_var(wbinvd_dirty_mask);
7620 }
7621
7622 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7623 unsigned int id)
7624 {
7625 struct kvm_vcpu *vcpu;
7626
7627 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7628 printk_once(KERN_WARNING
7629 "kvm: SMP vm created on host with unstable TSC; "
7630 "guest TSC will not be reliable\n");
7631
7632 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7633
7634 return vcpu;
7635 }
7636
7637 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7638 {
7639 int r;
7640
7641 kvm_vcpu_mtrr_init(vcpu);
7642 r = vcpu_load(vcpu);
7643 if (r)
7644 return r;
7645 kvm_vcpu_reset(vcpu, false);
7646 kvm_mmu_setup(vcpu);
7647 vcpu_put(vcpu);
7648 return r;
7649 }
7650
7651 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7652 {
7653 struct msr_data msr;
7654 struct kvm *kvm = vcpu->kvm;
7655
7656 if (vcpu_load(vcpu))
7657 return;
7658 msr.data = 0x0;
7659 msr.index = MSR_IA32_TSC;
7660 msr.host_initiated = true;
7661 kvm_write_tsc(vcpu, &msr);
7662 vcpu_put(vcpu);
7663
7664 if (!kvmclock_periodic_sync)
7665 return;
7666
7667 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7668 KVMCLOCK_SYNC_PERIOD);
7669 }
7670
7671 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7672 {
7673 int r;
7674 vcpu->arch.apf.msr_val = 0;
7675
7676 r = vcpu_load(vcpu);
7677 BUG_ON(r);
7678 kvm_mmu_unload(vcpu);
7679 vcpu_put(vcpu);
7680
7681 kvm_x86_ops->vcpu_free(vcpu);
7682 }
7683
7684 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7685 {
7686 vcpu->arch.hflags = 0;
7687
7688 vcpu->arch.smi_pending = 0;
7689 atomic_set(&vcpu->arch.nmi_queued, 0);
7690 vcpu->arch.nmi_pending = 0;
7691 vcpu->arch.nmi_injected = false;
7692 kvm_clear_interrupt_queue(vcpu);
7693 kvm_clear_exception_queue(vcpu);
7694
7695 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7696 kvm_update_dr0123(vcpu);
7697 vcpu->arch.dr6 = DR6_INIT;
7698 kvm_update_dr6(vcpu);
7699 vcpu->arch.dr7 = DR7_FIXED_1;
7700 kvm_update_dr7(vcpu);
7701
7702 vcpu->arch.cr2 = 0;
7703
7704 kvm_make_request(KVM_REQ_EVENT, vcpu);
7705 vcpu->arch.apf.msr_val = 0;
7706 vcpu->arch.st.msr_val = 0;
7707
7708 kvmclock_reset(vcpu);
7709
7710 kvm_clear_async_pf_completion_queue(vcpu);
7711 kvm_async_pf_hash_reset(vcpu);
7712 vcpu->arch.apf.halted = false;
7713
7714 if (!init_event) {
7715 kvm_pmu_reset(vcpu);
7716 vcpu->arch.smbase = 0x30000;
7717
7718 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7719 vcpu->arch.msr_misc_features_enables = 0;
7720 }
7721
7722 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7723 vcpu->arch.regs_avail = ~0;
7724 vcpu->arch.regs_dirty = ~0;
7725
7726 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7727 }
7728
7729 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7730 {
7731 struct kvm_segment cs;
7732
7733 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7734 cs.selector = vector << 8;
7735 cs.base = vector << 12;
7736 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7737 kvm_rip_write(vcpu, 0);
7738 }
7739
7740 int kvm_arch_hardware_enable(void)
7741 {
7742 struct kvm *kvm;
7743 struct kvm_vcpu *vcpu;
7744 int i;
7745 int ret;
7746 u64 local_tsc;
7747 u64 max_tsc = 0;
7748 bool stable, backwards_tsc = false;
7749
7750 kvm_shared_msr_cpu_online();
7751 ret = kvm_x86_ops->hardware_enable();
7752 if (ret != 0)
7753 return ret;
7754
7755 local_tsc = rdtsc();
7756 stable = !check_tsc_unstable();
7757 list_for_each_entry(kvm, &vm_list, vm_list) {
7758 kvm_for_each_vcpu(i, vcpu, kvm) {
7759 if (!stable && vcpu->cpu == smp_processor_id())
7760 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7761 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7762 backwards_tsc = true;
7763 if (vcpu->arch.last_host_tsc > max_tsc)
7764 max_tsc = vcpu->arch.last_host_tsc;
7765 }
7766 }
7767 }
7768
7769 /*
7770 * Sometimes, even reliable TSCs go backwards. This happens on
7771 * platforms that reset TSC during suspend or hibernate actions, but
7772 * maintain synchronization. We must compensate. Fortunately, we can
7773 * detect that condition here, which happens early in CPU bringup,
7774 * before any KVM threads can be running. Unfortunately, we can't
7775 * bring the TSCs fully up to date with real time, as we aren't yet far
7776 * enough into CPU bringup that we know how much real time has actually
7777 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7778 * variables that haven't been updated yet.
7779 *
7780 * So we simply find the maximum observed TSC above, then record the
7781 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7782 * the adjustment will be applied. Note that we accumulate
7783 * adjustments, in case multiple suspend cycles happen before some VCPU
7784 * gets a chance to run again. In the event that no KVM threads get a
7785 * chance to run, we will miss the entire elapsed period, as we'll have
7786 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7787 * loose cycle time. This isn't too big a deal, since the loss will be
7788 * uniform across all VCPUs (not to mention the scenario is extremely
7789 * unlikely). It is possible that a second hibernate recovery happens
7790 * much faster than a first, causing the observed TSC here to be
7791 * smaller; this would require additional padding adjustment, which is
7792 * why we set last_host_tsc to the local tsc observed here.
7793 *
7794 * N.B. - this code below runs only on platforms with reliable TSC,
7795 * as that is the only way backwards_tsc is set above. Also note
7796 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7797 * have the same delta_cyc adjustment applied if backwards_tsc
7798 * is detected. Note further, this adjustment is only done once,
7799 * as we reset last_host_tsc on all VCPUs to stop this from being
7800 * called multiple times (one for each physical CPU bringup).
7801 *
7802 * Platforms with unreliable TSCs don't have to deal with this, they
7803 * will be compensated by the logic in vcpu_load, which sets the TSC to
7804 * catchup mode. This will catchup all VCPUs to real time, but cannot
7805 * guarantee that they stay in perfect synchronization.
7806 */
7807 if (backwards_tsc) {
7808 u64 delta_cyc = max_tsc - local_tsc;
7809 backwards_tsc_observed = true;
7810 list_for_each_entry(kvm, &vm_list, vm_list) {
7811 kvm_for_each_vcpu(i, vcpu, kvm) {
7812 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7813 vcpu->arch.last_host_tsc = local_tsc;
7814 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7815 }
7816
7817 /*
7818 * We have to disable TSC offset matching.. if you were
7819 * booting a VM while issuing an S4 host suspend....
7820 * you may have some problem. Solving this issue is
7821 * left as an exercise to the reader.
7822 */
7823 kvm->arch.last_tsc_nsec = 0;
7824 kvm->arch.last_tsc_write = 0;
7825 }
7826
7827 }
7828 return 0;
7829 }
7830
7831 void kvm_arch_hardware_disable(void)
7832 {
7833 kvm_x86_ops->hardware_disable();
7834 drop_user_return_notifiers();
7835 }
7836
7837 int kvm_arch_hardware_setup(void)
7838 {
7839 int r;
7840
7841 r = kvm_x86_ops->hardware_setup();
7842 if (r != 0)
7843 return r;
7844
7845 if (kvm_has_tsc_control) {
7846 /*
7847 * Make sure the user can only configure tsc_khz values that
7848 * fit into a signed integer.
7849 * A min value is not calculated needed because it will always
7850 * be 1 on all machines.
7851 */
7852 u64 max = min(0x7fffffffULL,
7853 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7854 kvm_max_guest_tsc_khz = max;
7855
7856 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7857 }
7858
7859 kvm_init_msr_list();
7860 return 0;
7861 }
7862
7863 void kvm_arch_hardware_unsetup(void)
7864 {
7865 kvm_x86_ops->hardware_unsetup();
7866 }
7867
7868 void kvm_arch_check_processor_compat(void *rtn)
7869 {
7870 kvm_x86_ops->check_processor_compatibility(rtn);
7871 }
7872
7873 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7874 {
7875 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7876 }
7877 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7878
7879 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7880 {
7881 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7882 }
7883
7884 struct static_key kvm_no_apic_vcpu __read_mostly;
7885 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7886
7887 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7888 {
7889 struct page *page;
7890 struct kvm *kvm;
7891 int r;
7892
7893 BUG_ON(vcpu->kvm == NULL);
7894 kvm = vcpu->kvm;
7895
7896 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7897 vcpu->arch.pv.pv_unhalted = false;
7898 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7899 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7900 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7901 else
7902 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7903
7904 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7905 if (!page) {
7906 r = -ENOMEM;
7907 goto fail;
7908 }
7909 vcpu->arch.pio_data = page_address(page);
7910
7911 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7912
7913 r = kvm_mmu_create(vcpu);
7914 if (r < 0)
7915 goto fail_free_pio_data;
7916
7917 if (irqchip_in_kernel(kvm)) {
7918 r = kvm_create_lapic(vcpu);
7919 if (r < 0)
7920 goto fail_mmu_destroy;
7921 } else
7922 static_key_slow_inc(&kvm_no_apic_vcpu);
7923
7924 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7925 GFP_KERNEL);
7926 if (!vcpu->arch.mce_banks) {
7927 r = -ENOMEM;
7928 goto fail_free_lapic;
7929 }
7930 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7931
7932 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7933 r = -ENOMEM;
7934 goto fail_free_mce_banks;
7935 }
7936
7937 fx_init(vcpu);
7938
7939 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7940 vcpu->arch.pv_time_enabled = false;
7941
7942 vcpu->arch.guest_supported_xcr0 = 0;
7943 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7944
7945 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7946
7947 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7948
7949 kvm_async_pf_hash_reset(vcpu);
7950 kvm_pmu_init(vcpu);
7951
7952 vcpu->arch.pending_external_vector = -1;
7953
7954 kvm_hv_vcpu_init(vcpu);
7955
7956 return 0;
7957
7958 fail_free_mce_banks:
7959 kfree(vcpu->arch.mce_banks);
7960 fail_free_lapic:
7961 kvm_free_lapic(vcpu);
7962 fail_mmu_destroy:
7963 kvm_mmu_destroy(vcpu);
7964 fail_free_pio_data:
7965 free_page((unsigned long)vcpu->arch.pio_data);
7966 fail:
7967 return r;
7968 }
7969
7970 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7971 {
7972 int idx;
7973
7974 kvm_hv_vcpu_uninit(vcpu);
7975 kvm_pmu_destroy(vcpu);
7976 kfree(vcpu->arch.mce_banks);
7977 kvm_free_lapic(vcpu);
7978 idx = srcu_read_lock(&vcpu->kvm->srcu);
7979 kvm_mmu_destroy(vcpu);
7980 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7981 free_page((unsigned long)vcpu->arch.pio_data);
7982 if (!lapic_in_kernel(vcpu))
7983 static_key_slow_dec(&kvm_no_apic_vcpu);
7984 }
7985
7986 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7987 {
7988 kvm_x86_ops->sched_in(vcpu, cpu);
7989 }
7990
7991 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7992 {
7993 if (type)
7994 return -EINVAL;
7995
7996 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7997 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7998 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7999 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8000 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8001
8002 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8003 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8004 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8005 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8006 &kvm->arch.irq_sources_bitmap);
8007
8008 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8009 mutex_init(&kvm->arch.apic_map_lock);
8010 mutex_init(&kvm->arch.hyperv.hv_lock);
8011 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8012
8013 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8014 pvclock_update_vm_gtod_copy(kvm);
8015
8016 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8017 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8018
8019 kvm_page_track_init(kvm);
8020 kvm_mmu_init_vm(kvm);
8021
8022 if (kvm_x86_ops->vm_init)
8023 return kvm_x86_ops->vm_init(kvm);
8024
8025 return 0;
8026 }
8027
8028 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8029 {
8030 int r;
8031 r = vcpu_load(vcpu);
8032 BUG_ON(r);
8033 kvm_mmu_unload(vcpu);
8034 vcpu_put(vcpu);
8035 }
8036
8037 static void kvm_free_vcpus(struct kvm *kvm)
8038 {
8039 unsigned int i;
8040 struct kvm_vcpu *vcpu;
8041
8042 /*
8043 * Unpin any mmu pages first.
8044 */
8045 kvm_for_each_vcpu(i, vcpu, kvm) {
8046 kvm_clear_async_pf_completion_queue(vcpu);
8047 kvm_unload_vcpu_mmu(vcpu);
8048 }
8049 kvm_for_each_vcpu(i, vcpu, kvm)
8050 kvm_arch_vcpu_free(vcpu);
8051
8052 mutex_lock(&kvm->lock);
8053 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8054 kvm->vcpus[i] = NULL;
8055
8056 atomic_set(&kvm->online_vcpus, 0);
8057 mutex_unlock(&kvm->lock);
8058 }
8059
8060 void kvm_arch_sync_events(struct kvm *kvm)
8061 {
8062 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8063 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8064 kvm_free_pit(kvm);
8065 }
8066
8067 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8068 {
8069 int i, r;
8070 unsigned long hva;
8071 struct kvm_memslots *slots = kvm_memslots(kvm);
8072 struct kvm_memory_slot *slot, old;
8073
8074 /* Called with kvm->slots_lock held. */
8075 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8076 return -EINVAL;
8077
8078 slot = id_to_memslot(slots, id);
8079 if (size) {
8080 if (slot->npages)
8081 return -EEXIST;
8082
8083 /*
8084 * MAP_SHARED to prevent internal slot pages from being moved
8085 * by fork()/COW.
8086 */
8087 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8088 MAP_SHARED | MAP_ANONYMOUS, 0);
8089 if (IS_ERR((void *)hva))
8090 return PTR_ERR((void *)hva);
8091 } else {
8092 if (!slot->npages)
8093 return 0;
8094
8095 hva = 0;
8096 }
8097
8098 old = *slot;
8099 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8100 struct kvm_userspace_memory_region m;
8101
8102 m.slot = id | (i << 16);
8103 m.flags = 0;
8104 m.guest_phys_addr = gpa;
8105 m.userspace_addr = hva;
8106 m.memory_size = size;
8107 r = __kvm_set_memory_region(kvm, &m);
8108 if (r < 0)
8109 return r;
8110 }
8111
8112 if (!size) {
8113 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8114 WARN_ON(r < 0);
8115 }
8116
8117 return 0;
8118 }
8119 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8120
8121 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8122 {
8123 int r;
8124
8125 mutex_lock(&kvm->slots_lock);
8126 r = __x86_set_memory_region(kvm, id, gpa, size);
8127 mutex_unlock(&kvm->slots_lock);
8128
8129 return r;
8130 }
8131 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8132
8133 void kvm_arch_destroy_vm(struct kvm *kvm)
8134 {
8135 if (current->mm == kvm->mm) {
8136 /*
8137 * Free memory regions allocated on behalf of userspace,
8138 * unless the the memory map has changed due to process exit
8139 * or fd copying.
8140 */
8141 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8142 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8143 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8144 }
8145 if (kvm_x86_ops->vm_destroy)
8146 kvm_x86_ops->vm_destroy(kvm);
8147 kvm_pic_destroy(kvm);
8148 kvm_ioapic_destroy(kvm);
8149 kvm_free_vcpus(kvm);
8150 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8151 kvm_mmu_uninit_vm(kvm);
8152 kvm_page_track_cleanup(kvm);
8153 }
8154
8155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8156 struct kvm_memory_slot *dont)
8157 {
8158 int i;
8159
8160 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8161 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8162 kvfree(free->arch.rmap[i]);
8163 free->arch.rmap[i] = NULL;
8164 }
8165 if (i == 0)
8166 continue;
8167
8168 if (!dont || free->arch.lpage_info[i - 1] !=
8169 dont->arch.lpage_info[i - 1]) {
8170 kvfree(free->arch.lpage_info[i - 1]);
8171 free->arch.lpage_info[i - 1] = NULL;
8172 }
8173 }
8174
8175 kvm_page_track_free_memslot(free, dont);
8176 }
8177
8178 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8179 unsigned long npages)
8180 {
8181 int i;
8182
8183 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8184 struct kvm_lpage_info *linfo;
8185 unsigned long ugfn;
8186 int lpages;
8187 int level = i + 1;
8188
8189 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8190 slot->base_gfn, level) + 1;
8191
8192 slot->arch.rmap[i] =
8193 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8194 if (!slot->arch.rmap[i])
8195 goto out_free;
8196 if (i == 0)
8197 continue;
8198
8199 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8200 if (!linfo)
8201 goto out_free;
8202
8203 slot->arch.lpage_info[i - 1] = linfo;
8204
8205 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8206 linfo[0].disallow_lpage = 1;
8207 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8208 linfo[lpages - 1].disallow_lpage = 1;
8209 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8210 /*
8211 * If the gfn and userspace address are not aligned wrt each
8212 * other, or if explicitly asked to, disable large page
8213 * support for this slot
8214 */
8215 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8216 !kvm_largepages_enabled()) {
8217 unsigned long j;
8218
8219 for (j = 0; j < lpages; ++j)
8220 linfo[j].disallow_lpage = 1;
8221 }
8222 }
8223
8224 if (kvm_page_track_create_memslot(slot, npages))
8225 goto out_free;
8226
8227 return 0;
8228
8229 out_free:
8230 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8231 kvfree(slot->arch.rmap[i]);
8232 slot->arch.rmap[i] = NULL;
8233 if (i == 0)
8234 continue;
8235
8236 kvfree(slot->arch.lpage_info[i - 1]);
8237 slot->arch.lpage_info[i - 1] = NULL;
8238 }
8239 return -ENOMEM;
8240 }
8241
8242 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8243 {
8244 /*
8245 * memslots->generation has been incremented.
8246 * mmio generation may have reached its maximum value.
8247 */
8248 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8249 }
8250
8251 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8252 struct kvm_memory_slot *memslot,
8253 const struct kvm_userspace_memory_region *mem,
8254 enum kvm_mr_change change)
8255 {
8256 return 0;
8257 }
8258
8259 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8260 struct kvm_memory_slot *new)
8261 {
8262 /* Still write protect RO slot */
8263 if (new->flags & KVM_MEM_READONLY) {
8264 kvm_mmu_slot_remove_write_access(kvm, new);
8265 return;
8266 }
8267
8268 /*
8269 * Call kvm_x86_ops dirty logging hooks when they are valid.
8270 *
8271 * kvm_x86_ops->slot_disable_log_dirty is called when:
8272 *
8273 * - KVM_MR_CREATE with dirty logging is disabled
8274 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8275 *
8276 * The reason is, in case of PML, we need to set D-bit for any slots
8277 * with dirty logging disabled in order to eliminate unnecessary GPA
8278 * logging in PML buffer (and potential PML buffer full VMEXT). This
8279 * guarantees leaving PML enabled during guest's lifetime won't have
8280 * any additonal overhead from PML when guest is running with dirty
8281 * logging disabled for memory slots.
8282 *
8283 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8284 * to dirty logging mode.
8285 *
8286 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8287 *
8288 * In case of write protect:
8289 *
8290 * Write protect all pages for dirty logging.
8291 *
8292 * All the sptes including the large sptes which point to this
8293 * slot are set to readonly. We can not create any new large
8294 * spte on this slot until the end of the logging.
8295 *
8296 * See the comments in fast_page_fault().
8297 */
8298 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8299 if (kvm_x86_ops->slot_enable_log_dirty)
8300 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8301 else
8302 kvm_mmu_slot_remove_write_access(kvm, new);
8303 } else {
8304 if (kvm_x86_ops->slot_disable_log_dirty)
8305 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8306 }
8307 }
8308
8309 void kvm_arch_commit_memory_region(struct kvm *kvm,
8310 const struct kvm_userspace_memory_region *mem,
8311 const struct kvm_memory_slot *old,
8312 const struct kvm_memory_slot *new,
8313 enum kvm_mr_change change)
8314 {
8315 int nr_mmu_pages = 0;
8316
8317 if (!kvm->arch.n_requested_mmu_pages)
8318 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8319
8320 if (nr_mmu_pages)
8321 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8322
8323 /*
8324 * Dirty logging tracks sptes in 4k granularity, meaning that large
8325 * sptes have to be split. If live migration is successful, the guest
8326 * in the source machine will be destroyed and large sptes will be
8327 * created in the destination. However, if the guest continues to run
8328 * in the source machine (for example if live migration fails), small
8329 * sptes will remain around and cause bad performance.
8330 *
8331 * Scan sptes if dirty logging has been stopped, dropping those
8332 * which can be collapsed into a single large-page spte. Later
8333 * page faults will create the large-page sptes.
8334 */
8335 if ((change != KVM_MR_DELETE) &&
8336 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8337 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8338 kvm_mmu_zap_collapsible_sptes(kvm, new);
8339
8340 /*
8341 * Set up write protection and/or dirty logging for the new slot.
8342 *
8343 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8344 * been zapped so no dirty logging staff is needed for old slot. For
8345 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8346 * new and it's also covered when dealing with the new slot.
8347 *
8348 * FIXME: const-ify all uses of struct kvm_memory_slot.
8349 */
8350 if (change != KVM_MR_DELETE)
8351 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8352 }
8353
8354 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8355 {
8356 kvm_mmu_invalidate_zap_all_pages(kvm);
8357 }
8358
8359 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8360 struct kvm_memory_slot *slot)
8361 {
8362 kvm_page_track_flush_slot(kvm, slot);
8363 }
8364
8365 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8366 {
8367 if (!list_empty_careful(&vcpu->async_pf.done))
8368 return true;
8369
8370 if (kvm_apic_has_events(vcpu))
8371 return true;
8372
8373 if (vcpu->arch.pv.pv_unhalted)
8374 return true;
8375
8376 if (atomic_read(&vcpu->arch.nmi_queued))
8377 return true;
8378
8379 if (kvm_test_request(KVM_REQ_SMI, vcpu))
8380 return true;
8381
8382 if (kvm_arch_interrupt_allowed(vcpu) &&
8383 kvm_cpu_has_interrupt(vcpu))
8384 return true;
8385
8386 if (kvm_hv_has_stimer_pending(vcpu))
8387 return true;
8388
8389 return false;
8390 }
8391
8392 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8393 {
8394 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8395 }
8396
8397 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8398 {
8399 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8400 }
8401
8402 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8403 {
8404 return kvm_x86_ops->interrupt_allowed(vcpu);
8405 }
8406
8407 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8408 {
8409 if (is_64_bit_mode(vcpu))
8410 return kvm_rip_read(vcpu);
8411 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8412 kvm_rip_read(vcpu));
8413 }
8414 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8415
8416 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8417 {
8418 return kvm_get_linear_rip(vcpu) == linear_rip;
8419 }
8420 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8421
8422 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8423 {
8424 unsigned long rflags;
8425
8426 rflags = kvm_x86_ops->get_rflags(vcpu);
8427 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8428 rflags &= ~X86_EFLAGS_TF;
8429 return rflags;
8430 }
8431 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8432
8433 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8434 {
8435 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8436 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8437 rflags |= X86_EFLAGS_TF;
8438 kvm_x86_ops->set_rflags(vcpu, rflags);
8439 }
8440
8441 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8442 {
8443 __kvm_set_rflags(vcpu, rflags);
8444 kvm_make_request(KVM_REQ_EVENT, vcpu);
8445 }
8446 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8447
8448 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8449 {
8450 int r;
8451
8452 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8453 work->wakeup_all)
8454 return;
8455
8456 r = kvm_mmu_reload(vcpu);
8457 if (unlikely(r))
8458 return;
8459
8460 if (!vcpu->arch.mmu.direct_map &&
8461 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8462 return;
8463
8464 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8465 }
8466
8467 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8468 {
8469 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8470 }
8471
8472 static inline u32 kvm_async_pf_next_probe(u32 key)
8473 {
8474 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8475 }
8476
8477 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8478 {
8479 u32 key = kvm_async_pf_hash_fn(gfn);
8480
8481 while (vcpu->arch.apf.gfns[key] != ~0)
8482 key = kvm_async_pf_next_probe(key);
8483
8484 vcpu->arch.apf.gfns[key] = gfn;
8485 }
8486
8487 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8488 {
8489 int i;
8490 u32 key = kvm_async_pf_hash_fn(gfn);
8491
8492 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8493 (vcpu->arch.apf.gfns[key] != gfn &&
8494 vcpu->arch.apf.gfns[key] != ~0); i++)
8495 key = kvm_async_pf_next_probe(key);
8496
8497 return key;
8498 }
8499
8500 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8501 {
8502 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8503 }
8504
8505 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8506 {
8507 u32 i, j, k;
8508
8509 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8510 while (true) {
8511 vcpu->arch.apf.gfns[i] = ~0;
8512 do {
8513 j = kvm_async_pf_next_probe(j);
8514 if (vcpu->arch.apf.gfns[j] == ~0)
8515 return;
8516 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8517 /*
8518 * k lies cyclically in ]i,j]
8519 * | i.k.j |
8520 * |....j i.k.| or |.k..j i...|
8521 */
8522 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8523 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8524 i = j;
8525 }
8526 }
8527
8528 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8529 {
8530
8531 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8532 sizeof(val));
8533 }
8534
8535 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8536 struct kvm_async_pf *work)
8537 {
8538 struct x86_exception fault;
8539
8540 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8541 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8542
8543 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8544 (vcpu->arch.apf.send_user_only &&
8545 kvm_x86_ops->get_cpl(vcpu) == 0))
8546 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8547 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8548 fault.vector = PF_VECTOR;
8549 fault.error_code_valid = true;
8550 fault.error_code = 0;
8551 fault.nested_page_fault = false;
8552 fault.address = work->arch.token;
8553 kvm_inject_page_fault(vcpu, &fault);
8554 }
8555 }
8556
8557 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8558 struct kvm_async_pf *work)
8559 {
8560 struct x86_exception fault;
8561
8562 if (work->wakeup_all)
8563 work->arch.token = ~0; /* broadcast wakeup */
8564 else
8565 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8566 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8567
8568 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8569 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8570 fault.vector = PF_VECTOR;
8571 fault.error_code_valid = true;
8572 fault.error_code = 0;
8573 fault.nested_page_fault = false;
8574 fault.address = work->arch.token;
8575 kvm_inject_page_fault(vcpu, &fault);
8576 }
8577 vcpu->arch.apf.halted = false;
8578 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8579 }
8580
8581 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8582 {
8583 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8584 return true;
8585 else
8586 return !kvm_event_needs_reinjection(vcpu) &&
8587 kvm_x86_ops->interrupt_allowed(vcpu);
8588 }
8589
8590 void kvm_arch_start_assignment(struct kvm *kvm)
8591 {
8592 atomic_inc(&kvm->arch.assigned_device_count);
8593 }
8594 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8595
8596 void kvm_arch_end_assignment(struct kvm *kvm)
8597 {
8598 atomic_dec(&kvm->arch.assigned_device_count);
8599 }
8600 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8601
8602 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8603 {
8604 return atomic_read(&kvm->arch.assigned_device_count);
8605 }
8606 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8607
8608 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8609 {
8610 atomic_inc(&kvm->arch.noncoherent_dma_count);
8611 }
8612 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8613
8614 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8615 {
8616 atomic_dec(&kvm->arch.noncoherent_dma_count);
8617 }
8618 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8619
8620 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8621 {
8622 return atomic_read(&kvm->arch.noncoherent_dma_count);
8623 }
8624 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8625
8626 bool kvm_arch_has_irq_bypass(void)
8627 {
8628 return kvm_x86_ops->update_pi_irte != NULL;
8629 }
8630
8631 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8632 struct irq_bypass_producer *prod)
8633 {
8634 struct kvm_kernel_irqfd *irqfd =
8635 container_of(cons, struct kvm_kernel_irqfd, consumer);
8636
8637 irqfd->producer = prod;
8638
8639 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8640 prod->irq, irqfd->gsi, 1);
8641 }
8642
8643 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8644 struct irq_bypass_producer *prod)
8645 {
8646 int ret;
8647 struct kvm_kernel_irqfd *irqfd =
8648 container_of(cons, struct kvm_kernel_irqfd, consumer);
8649
8650 WARN_ON(irqfd->producer != prod);
8651 irqfd->producer = NULL;
8652
8653 /*
8654 * When producer of consumer is unregistered, we change back to
8655 * remapped mode, so we can re-use the current implementation
8656 * when the irq is masked/disabled or the consumer side (KVM
8657 * int this case doesn't want to receive the interrupts.
8658 */
8659 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8660 if (ret)
8661 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8662 " fails: %d\n", irqfd->consumer.token, ret);
8663 }
8664
8665 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8666 uint32_t guest_irq, bool set)
8667 {
8668 if (!kvm_x86_ops->update_pi_irte)
8669 return -EINVAL;
8670
8671 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8672 }
8673
8674 bool kvm_vector_hashing_enabled(void)
8675 {
8676 return vector_hashing;
8677 }
8678 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8679
8680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);