]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
perf/x86/intel/bts: Set event->hw.itrace_started in pmu::start to match the new logic
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32 kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123 int nr;
124 u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128 struct user_return_notifier urn;
129 bool registered;
130 struct kvm_shared_msr_values {
131 u64 host;
132 u64 curr;
133 } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140 { "pf_fixed", VCPU_STAT(pf_fixed) },
141 { "pf_guest", VCPU_STAT(pf_guest) },
142 { "tlb_flush", VCPU_STAT(tlb_flush) },
143 { "invlpg", VCPU_STAT(invlpg) },
144 { "exits", VCPU_STAT(exits) },
145 { "io_exits", VCPU_STAT(io_exits) },
146 { "mmio_exits", VCPU_STAT(mmio_exits) },
147 { "signal_exits", VCPU_STAT(signal_exits) },
148 { "irq_window", VCPU_STAT(irq_window_exits) },
149 { "nmi_window", VCPU_STAT(nmi_window_exits) },
150 { "halt_exits", VCPU_STAT(halt_exits) },
151 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
153 { "hypercalls", VCPU_STAT(hypercalls) },
154 { "request_irq", VCPU_STAT(request_irq_exits) },
155 { "irq_exits", VCPU_STAT(irq_exits) },
156 { "host_state_reload", VCPU_STAT(host_state_reload) },
157 { "efer_reload", VCPU_STAT(efer_reload) },
158 { "fpu_reload", VCPU_STAT(fpu_reload) },
159 { "insn_emulation", VCPU_STAT(insn_emulation) },
160 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161 { "irq_injections", VCPU_STAT(irq_injections) },
162 { "nmi_injections", VCPU_STAT(nmi_injections) },
163 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
165 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167 { "mmu_flooded", VM_STAT(mmu_flooded) },
168 { "mmu_recycled", VM_STAT(mmu_recycled) },
169 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170 { "mmu_unsync", VM_STAT(mmu_unsync) },
171 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172 { "largepages", VM_STAT(lpages) },
173 { NULL }
174 };
175
176 u64 __read_mostly host_xcr0;
177
178 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179
180 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181 {
182 int i;
183 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184 vcpu->arch.apf.gfns[i] = ~0;
185 }
186
187 static void kvm_on_user_return(struct user_return_notifier *urn)
188 {
189 unsigned slot;
190 struct kvm_shared_msrs *locals
191 = container_of(urn, struct kvm_shared_msrs, urn);
192 struct kvm_shared_msr_values *values;
193
194 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195 values = &locals->values[slot];
196 if (values->host != values->curr) {
197 wrmsrl(shared_msrs_global.msrs[slot], values->host);
198 values->curr = values->host;
199 }
200 }
201 locals->registered = false;
202 user_return_notifier_unregister(urn);
203 }
204
205 static void shared_msr_update(unsigned slot, u32 msr)
206 {
207 u64 value;
208 unsigned int cpu = smp_processor_id();
209 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210
211 /* only read, and nobody should modify it at this time,
212 * so don't need lock */
213 if (slot >= shared_msrs_global.nr) {
214 printk(KERN_ERR "kvm: invalid MSR slot!");
215 return;
216 }
217 rdmsrl_safe(msr, &value);
218 smsr->values[slot].host = value;
219 smsr->values[slot].curr = value;
220 }
221
222 void kvm_define_shared_msr(unsigned slot, u32 msr)
223 {
224 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225 shared_msrs_global.msrs[slot] = msr;
226 if (slot >= shared_msrs_global.nr)
227 shared_msrs_global.nr = slot + 1;
228 }
229 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
230
231 static void kvm_shared_msr_cpu_online(void)
232 {
233 unsigned i;
234
235 for (i = 0; i < shared_msrs_global.nr; ++i)
236 shared_msr_update(i, shared_msrs_global.msrs[i]);
237 }
238
239 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
240 {
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243 int err;
244
245 if (((value ^ smsr->values[slot].curr) & mask) == 0)
246 return 0;
247 smsr->values[slot].curr = value;
248 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
249 if (err)
250 return 1;
251
252 if (!smsr->registered) {
253 smsr->urn.on_user_return = kvm_on_user_return;
254 user_return_notifier_register(&smsr->urn);
255 smsr->registered = true;
256 }
257 return 0;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
260
261 static void drop_user_return_notifiers(void)
262 {
263 unsigned int cpu = smp_processor_id();
264 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266 if (smsr->registered)
267 kvm_on_user_return(&smsr->urn);
268 }
269
270 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
271 {
272 return vcpu->arch.apic_base;
273 }
274 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
275
276 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
277 {
278 u64 old_state = vcpu->arch.apic_base &
279 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
280 u64 new_state = msr_info->data &
281 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
283 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
284
285 if (!msr_info->host_initiated &&
286 ((msr_info->data & reserved_bits) != 0 ||
287 new_state == X2APIC_ENABLE ||
288 (new_state == MSR_IA32_APICBASE_ENABLE &&
289 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
290 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
291 old_state == 0)))
292 return 1;
293
294 kvm_lapic_set_base(vcpu, msr_info->data);
295 return 0;
296 }
297 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
298
299 asmlinkage __visible void kvm_spurious_fault(void)
300 {
301 /* Fault while not rebooting. We want the trace. */
302 BUG();
303 }
304 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
305
306 #define EXCPT_BENIGN 0
307 #define EXCPT_CONTRIBUTORY 1
308 #define EXCPT_PF 2
309
310 static int exception_class(int vector)
311 {
312 switch (vector) {
313 case PF_VECTOR:
314 return EXCPT_PF;
315 case DE_VECTOR:
316 case TS_VECTOR:
317 case NP_VECTOR:
318 case SS_VECTOR:
319 case GP_VECTOR:
320 return EXCPT_CONTRIBUTORY;
321 default:
322 break;
323 }
324 return EXCPT_BENIGN;
325 }
326
327 #define EXCPT_FAULT 0
328 #define EXCPT_TRAP 1
329 #define EXCPT_ABORT 2
330 #define EXCPT_INTERRUPT 3
331
332 static int exception_type(int vector)
333 {
334 unsigned int mask;
335
336 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
337 return EXCPT_INTERRUPT;
338
339 mask = 1 << vector;
340
341 /* #DB is trap, as instruction watchpoints are handled elsewhere */
342 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
343 return EXCPT_TRAP;
344
345 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
346 return EXCPT_ABORT;
347
348 /* Reserved exceptions will result in fault */
349 return EXCPT_FAULT;
350 }
351
352 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
353 unsigned nr, bool has_error, u32 error_code,
354 bool reinject)
355 {
356 u32 prev_nr;
357 int class1, class2;
358
359 kvm_make_request(KVM_REQ_EVENT, vcpu);
360
361 if (!vcpu->arch.exception.pending) {
362 queue:
363 if (has_error && !is_protmode(vcpu))
364 has_error = false;
365 vcpu->arch.exception.pending = true;
366 vcpu->arch.exception.has_error_code = has_error;
367 vcpu->arch.exception.nr = nr;
368 vcpu->arch.exception.error_code = error_code;
369 vcpu->arch.exception.reinject = reinject;
370 return;
371 }
372
373 /* to check exception */
374 prev_nr = vcpu->arch.exception.nr;
375 if (prev_nr == DF_VECTOR) {
376 /* triple fault -> shutdown */
377 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
378 return;
379 }
380 class1 = exception_class(prev_nr);
381 class2 = exception_class(nr);
382 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
383 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
384 /* generate double fault per SDM Table 5-5 */
385 vcpu->arch.exception.pending = true;
386 vcpu->arch.exception.has_error_code = true;
387 vcpu->arch.exception.nr = DF_VECTOR;
388 vcpu->arch.exception.error_code = 0;
389 } else
390 /* replace previous exception with a new one in a hope
391 that instruction re-execution will regenerate lost
392 exception */
393 goto queue;
394 }
395
396 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
397 {
398 kvm_multiple_exception(vcpu, nr, false, 0, false);
399 }
400 EXPORT_SYMBOL_GPL(kvm_queue_exception);
401
402 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
403 {
404 kvm_multiple_exception(vcpu, nr, false, 0, true);
405 }
406 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
407
408 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
409 {
410 if (err)
411 kvm_inject_gp(vcpu, 0);
412 else
413 kvm_x86_ops->skip_emulated_instruction(vcpu);
414 }
415 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
416
417 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
418 {
419 ++vcpu->stat.pf_guest;
420 vcpu->arch.cr2 = fault->address;
421 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
422 }
423 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
424
425 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
426 {
427 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
428 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
429 else
430 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
431
432 return fault->nested_page_fault;
433 }
434
435 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
436 {
437 atomic_inc(&vcpu->arch.nmi_queued);
438 kvm_make_request(KVM_REQ_NMI, vcpu);
439 }
440 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
441
442 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
443 {
444 kvm_multiple_exception(vcpu, nr, true, error_code, false);
445 }
446 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
447
448 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
449 {
450 kvm_multiple_exception(vcpu, nr, true, error_code, true);
451 }
452 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
453
454 /*
455 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
456 * a #GP and return false.
457 */
458 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
459 {
460 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
461 return true;
462 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
463 return false;
464 }
465 EXPORT_SYMBOL_GPL(kvm_require_cpl);
466
467 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
468 {
469 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
470 return true;
471
472 kvm_queue_exception(vcpu, UD_VECTOR);
473 return false;
474 }
475 EXPORT_SYMBOL_GPL(kvm_require_dr);
476
477 /*
478 * This function will be used to read from the physical memory of the currently
479 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
480 * can read from guest physical or from the guest's guest physical memory.
481 */
482 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
483 gfn_t ngfn, void *data, int offset, int len,
484 u32 access)
485 {
486 struct x86_exception exception;
487 gfn_t real_gfn;
488 gpa_t ngpa;
489
490 ngpa = gfn_to_gpa(ngfn);
491 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
492 if (real_gfn == UNMAPPED_GVA)
493 return -EFAULT;
494
495 real_gfn = gpa_to_gfn(real_gfn);
496
497 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
498 }
499 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
500
501 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
502 void *data, int offset, int len, u32 access)
503 {
504 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
505 data, offset, len, access);
506 }
507
508 /*
509 * Load the pae pdptrs. Return true is they are all valid.
510 */
511 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
512 {
513 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
514 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
515 int i;
516 int ret;
517 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
518
519 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
520 offset * sizeof(u64), sizeof(pdpte),
521 PFERR_USER_MASK|PFERR_WRITE_MASK);
522 if (ret < 0) {
523 ret = 0;
524 goto out;
525 }
526 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
527 if (is_present_gpte(pdpte[i]) &&
528 (pdpte[i] &
529 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
530 ret = 0;
531 goto out;
532 }
533 }
534 ret = 1;
535
536 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_avail);
539 __set_bit(VCPU_EXREG_PDPTR,
540 (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543 return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 bool changed = true;
551 int offset;
552 gfn_t gfn;
553 int r;
554
555 if (is_long_mode(vcpu) || !is_pae(vcpu))
556 return false;
557
558 if (!test_bit(VCPU_EXREG_PDPTR,
559 (unsigned long *)&vcpu->arch.regs_avail))
560 return true;
561
562 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 PFERR_USER_MASK | PFERR_WRITE_MASK);
566 if (r < 0)
567 goto out;
568 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571 return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579 cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582 if (cr0 & 0xffffffff00000000UL)
583 return 1;
584 #endif
585
586 cr0 &= ~CR0_RESERVED_BITS;
587
588 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 return 1;
590
591 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 return 1;
593
594 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 if ((vcpu->arch.efer & EFER_LME)) {
597 int cs_db, cs_l;
598
599 if (!is_pae(vcpu))
600 return 1;
601 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 if (cs_l)
603 return 1;
604 } else
605 #endif
606 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609 }
610
611 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 return 1;
613
614 kvm_x86_ops->set_cr0(vcpu, cr0);
615
616 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 kvm_clear_async_pf_completion_queue(vcpu);
618 kvm_async_pf_hash_reset(vcpu);
619 }
620
621 if ((cr0 ^ old_cr0) & update_bits)
622 kvm_mmu_reset_context(vcpu);
623
624 if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 !vcpu->guest_xcr0_loaded) {
641 /* kvm_set_xcr() also depends on this */
642 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 vcpu->guest_xcr0_loaded = 1;
644 }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 if (vcpu->guest_xcr0_loaded) {
650 if (vcpu->arch.xcr0 != host_xcr0)
651 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 vcpu->guest_xcr0_loaded = 0;
653 }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 u64 xcr0 = xcr;
659 u64 old_xcr0 = vcpu->arch.xcr0;
660 u64 valid_bits;
661
662 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
663 if (index != XCR_XFEATURE_ENABLED_MASK)
664 return 1;
665 if (!(xcr0 & XSTATE_FP))
666 return 1;
667 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 return 1;
669
670 /*
671 * Do not allow the guest to set bits that we do not support
672 * saving. However, xcr0 bit 0 is always set, even if the
673 * emulated CPU does not support XSAVE (see fx_init).
674 */
675 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 if (xcr0 & ~valid_bits)
677 return 1;
678
679 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 return 1;
681
682 if (xcr0 & XSTATE_AVX512) {
683 if (!(xcr0 & XSTATE_YMM))
684 return 1;
685 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 return 1;
687 }
688 kvm_put_guest_xcr0(vcpu);
689 vcpu->arch.xcr0 = xcr0;
690
691 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 kvm_update_cpuid(vcpu);
693 return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 __kvm_set_xcr(vcpu, index, xcr)) {
700 kvm_inject_gp(vcpu, 0);
701 return 1;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 X86_CR4_SMEP | X86_CR4_SMAP;
712
713 if (cr4 & CR4_RESERVED_BITS)
714 return 1;
715
716 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 return 1;
718
719 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 return 1;
721
722 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 return 1;
724
725 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 return 1;
727
728 if (is_long_mode(vcpu)) {
729 if (!(cr4 & X86_CR4_PAE))
730 return 1;
731 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 && ((cr4 ^ old_cr4) & pdptr_bits)
733 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 kvm_read_cr3(vcpu)))
735 return 1;
736
737 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 if (!guest_cpuid_has_pcid(vcpu))
739 return 1;
740
741 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 return 1;
744 }
745
746 if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 return 1;
748
749 if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 kvm_mmu_reset_context(vcpu);
752
753 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 kvm_update_cpuid(vcpu);
755
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 kvm_mmu_sync_roots(vcpu);
768 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 return 0;
770 }
771
772 if (is_long_mode(vcpu)) {
773 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 return 1;
775 } else if (is_pae(vcpu) && is_paging(vcpu) &&
776 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 return 1;
778
779 vcpu->arch.cr3 = cr3;
780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 kvm_mmu_new_cr3(vcpu);
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 if (cr8 & CR8_RESERVED_BITS)
789 return 1;
790 if (irqchip_in_kernel(vcpu->kvm))
791 kvm_lapic_set_tpr(vcpu, cr8);
792 else
793 vcpu->arch.cr8 = cr8;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 if (irqchip_in_kernel(vcpu->kvm))
801 return kvm_lapic_get_cr8(vcpu);
802 else
803 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 int i;
810
811 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 for (i = 0; i < KVM_NR_DB_REGS; i++)
813 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 unsigned long dr7;
827
828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 dr7 = vcpu->arch.guest_debug_dr7;
830 else
831 dr7 = vcpu->arch.dr7;
832 kvm_x86_ops->set_dr7(vcpu, dr7);
833 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 if (dr7 & DR7_BP_EN_MASK)
835 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 u64 fixed = DR6_FIXED_1;
841
842 if (!guest_cpuid_has_rtm(vcpu))
843 fixed |= DR6_RTM;
844 return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 switch (dr) {
850 case 0 ... 3:
851 vcpu->arch.db[dr] = val;
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 vcpu->arch.eff_db[dr] = val;
854 break;
855 case 4:
856 /* fall through */
857 case 6:
858 if (val & 0xffffffff00000000ULL)
859 return -1; /* #GP */
860 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 kvm_update_dr6(vcpu);
862 break;
863 case 5:
864 /* fall through */
865 default: /* 7 */
866 if (val & 0xffffffff00000000ULL)
867 return -1; /* #GP */
868 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 kvm_update_dr7(vcpu);
870 break;
871 }
872
873 return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 if (__kvm_set_dr(vcpu, dr, val)) {
879 kvm_inject_gp(vcpu, 0);
880 return 1;
881 }
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 switch (dr) {
889 case 0 ... 3:
890 *val = vcpu->arch.db[dr];
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 *val = vcpu->arch.dr6;
897 else
898 *val = kvm_x86_ops->get_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 *val = vcpu->arch.dr7;
904 break;
905 }
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 u64 data;
914 int err;
915
916 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 if (err)
918 return err;
919 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928 *
929 * This list is modified at module load time to reflect the
930 * capabilities of the host cpu. This capabilities test skips MSRs that are
931 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932 * may depend on host virtualization features rather than host cpu features.
933 */
934
935 static u32 msrs_to_save[] = {
936 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 MSR_STAR,
938 #ifdef CONFIG_X86_64
939 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
953 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
954 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
955 MSR_KVM_PV_EOI_EN,
956
957 MSR_IA32_TSC_ADJUST,
958 MSR_IA32_TSCDEADLINE,
959 MSR_IA32_MISC_ENABLE,
960 MSR_IA32_MCG_STATUS,
961 MSR_IA32_MCG_CTL,
962 MSR_IA32_SMBASE,
963 };
964
965 static unsigned num_emulated_msrs;
966
967 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
968 {
969 if (efer & efer_reserved_bits)
970 return false;
971
972 if (efer & EFER_FFXSR) {
973 struct kvm_cpuid_entry2 *feat;
974
975 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
976 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
977 return false;
978 }
979
980 if (efer & EFER_SVME) {
981 struct kvm_cpuid_entry2 *feat;
982
983 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
984 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
985 return false;
986 }
987
988 return true;
989 }
990 EXPORT_SYMBOL_GPL(kvm_valid_efer);
991
992 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
993 {
994 u64 old_efer = vcpu->arch.efer;
995
996 if (!kvm_valid_efer(vcpu, efer))
997 return 1;
998
999 if (is_paging(vcpu)
1000 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1001 return 1;
1002
1003 efer &= ~EFER_LMA;
1004 efer |= vcpu->arch.efer & EFER_LMA;
1005
1006 kvm_x86_ops->set_efer(vcpu, efer);
1007
1008 /* Update reserved bits */
1009 if ((efer ^ old_efer) & EFER_NX)
1010 kvm_mmu_reset_context(vcpu);
1011
1012 return 0;
1013 }
1014
1015 void kvm_enable_efer_bits(u64 mask)
1016 {
1017 efer_reserved_bits &= ~mask;
1018 }
1019 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1020
1021 /*
1022 * Writes msr value into into the appropriate "register".
1023 * Returns 0 on success, non-0 otherwise.
1024 * Assumes vcpu_load() was already called.
1025 */
1026 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1027 {
1028 switch (msr->index) {
1029 case MSR_FS_BASE:
1030 case MSR_GS_BASE:
1031 case MSR_KERNEL_GS_BASE:
1032 case MSR_CSTAR:
1033 case MSR_LSTAR:
1034 if (is_noncanonical_address(msr->data))
1035 return 1;
1036 break;
1037 case MSR_IA32_SYSENTER_EIP:
1038 case MSR_IA32_SYSENTER_ESP:
1039 /*
1040 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1041 * non-canonical address is written on Intel but not on
1042 * AMD (which ignores the top 32-bits, because it does
1043 * not implement 64-bit SYSENTER).
1044 *
1045 * 64-bit code should hence be able to write a non-canonical
1046 * value on AMD. Making the address canonical ensures that
1047 * vmentry does not fail on Intel after writing a non-canonical
1048 * value, and that something deterministic happens if the guest
1049 * invokes 64-bit SYSENTER.
1050 */
1051 msr->data = get_canonical(msr->data);
1052 }
1053 return kvm_x86_ops->set_msr(vcpu, msr);
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_set_msr);
1056
1057 /*
1058 * Adapt set_msr() to msr_io()'s calling convention
1059 */
1060 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1061 {
1062 struct msr_data msr;
1063 int r;
1064
1065 msr.index = index;
1066 msr.host_initiated = true;
1067 r = kvm_get_msr(vcpu, &msr);
1068 if (r)
1069 return r;
1070
1071 *data = msr.data;
1072 return 0;
1073 }
1074
1075 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1076 {
1077 struct msr_data msr;
1078
1079 msr.data = *data;
1080 msr.index = index;
1081 msr.host_initiated = true;
1082 return kvm_set_msr(vcpu, &msr);
1083 }
1084
1085 #ifdef CONFIG_X86_64
1086 struct pvclock_gtod_data {
1087 seqcount_t seq;
1088
1089 struct { /* extract of a clocksource struct */
1090 int vclock_mode;
1091 cycle_t cycle_last;
1092 cycle_t mask;
1093 u32 mult;
1094 u32 shift;
1095 } clock;
1096
1097 u64 boot_ns;
1098 u64 nsec_base;
1099 };
1100
1101 static struct pvclock_gtod_data pvclock_gtod_data;
1102
1103 static void update_pvclock_gtod(struct timekeeper *tk)
1104 {
1105 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1106 u64 boot_ns;
1107
1108 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1109
1110 write_seqcount_begin(&vdata->seq);
1111
1112 /* copy pvclock gtod data */
1113 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1114 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1115 vdata->clock.mask = tk->tkr_mono.mask;
1116 vdata->clock.mult = tk->tkr_mono.mult;
1117 vdata->clock.shift = tk->tkr_mono.shift;
1118
1119 vdata->boot_ns = boot_ns;
1120 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1121
1122 write_seqcount_end(&vdata->seq);
1123 }
1124 #endif
1125
1126 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1127 {
1128 /*
1129 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1130 * vcpu_enter_guest. This function is only called from
1131 * the physical CPU that is running vcpu.
1132 */
1133 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1134 }
1135
1136 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1137 {
1138 int version;
1139 int r;
1140 struct pvclock_wall_clock wc;
1141 struct timespec boot;
1142
1143 if (!wall_clock)
1144 return;
1145
1146 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1147 if (r)
1148 return;
1149
1150 if (version & 1)
1151 ++version; /* first time write, random junk */
1152
1153 ++version;
1154
1155 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1156
1157 /*
1158 * The guest calculates current wall clock time by adding
1159 * system time (updated by kvm_guest_time_update below) to the
1160 * wall clock specified here. guest system time equals host
1161 * system time for us, thus we must fill in host boot time here.
1162 */
1163 getboottime(&boot);
1164
1165 if (kvm->arch.kvmclock_offset) {
1166 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1167 boot = timespec_sub(boot, ts);
1168 }
1169 wc.sec = boot.tv_sec;
1170 wc.nsec = boot.tv_nsec;
1171 wc.version = version;
1172
1173 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1174
1175 version++;
1176 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1177 }
1178
1179 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1180 {
1181 uint32_t quotient, remainder;
1182
1183 /* Don't try to replace with do_div(), this one calculates
1184 * "(dividend << 32) / divisor" */
1185 __asm__ ( "divl %4"
1186 : "=a" (quotient), "=d" (remainder)
1187 : "0" (0), "1" (dividend), "r" (divisor) );
1188 return quotient;
1189 }
1190
1191 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1192 s8 *pshift, u32 *pmultiplier)
1193 {
1194 uint64_t scaled64;
1195 int32_t shift = 0;
1196 uint64_t tps64;
1197 uint32_t tps32;
1198
1199 tps64 = base_khz * 1000LL;
1200 scaled64 = scaled_khz * 1000LL;
1201 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1202 tps64 >>= 1;
1203 shift--;
1204 }
1205
1206 tps32 = (uint32_t)tps64;
1207 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1208 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1209 scaled64 >>= 1;
1210 else
1211 tps32 <<= 1;
1212 shift++;
1213 }
1214
1215 *pshift = shift;
1216 *pmultiplier = div_frac(scaled64, tps32);
1217
1218 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1219 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1220 }
1221
1222 #ifdef CONFIG_X86_64
1223 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1224 #endif
1225
1226 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1227 static unsigned long max_tsc_khz;
1228
1229 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1230 {
1231 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1232 vcpu->arch.virtual_tsc_shift);
1233 }
1234
1235 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1236 {
1237 u64 v = (u64)khz * (1000000 + ppm);
1238 do_div(v, 1000000);
1239 return v;
1240 }
1241
1242 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1243 {
1244 u32 thresh_lo, thresh_hi;
1245 int use_scaling = 0;
1246
1247 /* tsc_khz can be zero if TSC calibration fails */
1248 if (this_tsc_khz == 0)
1249 return;
1250
1251 /* Compute a scale to convert nanoseconds in TSC cycles */
1252 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1253 &vcpu->arch.virtual_tsc_shift,
1254 &vcpu->arch.virtual_tsc_mult);
1255 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1256
1257 /*
1258 * Compute the variation in TSC rate which is acceptable
1259 * within the range of tolerance and decide if the
1260 * rate being applied is within that bounds of the hardware
1261 * rate. If so, no scaling or compensation need be done.
1262 */
1263 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1264 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1265 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1266 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1267 use_scaling = 1;
1268 }
1269 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1270 }
1271
1272 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1273 {
1274 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1275 vcpu->arch.virtual_tsc_mult,
1276 vcpu->arch.virtual_tsc_shift);
1277 tsc += vcpu->arch.this_tsc_write;
1278 return tsc;
1279 }
1280
1281 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1282 {
1283 #ifdef CONFIG_X86_64
1284 bool vcpus_matched;
1285 struct kvm_arch *ka = &vcpu->kvm->arch;
1286 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1289 atomic_read(&vcpu->kvm->online_vcpus));
1290
1291 /*
1292 * Once the masterclock is enabled, always perform request in
1293 * order to update it.
1294 *
1295 * In order to enable masterclock, the host clocksource must be TSC
1296 * and the vcpus need to have matched TSCs. When that happens,
1297 * perform request to enable masterclock.
1298 */
1299 if (ka->use_master_clock ||
1300 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1301 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1302
1303 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1304 atomic_read(&vcpu->kvm->online_vcpus),
1305 ka->use_master_clock, gtod->clock.vclock_mode);
1306 #endif
1307 }
1308
1309 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1310 {
1311 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1312 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1313 }
1314
1315 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1316 {
1317 struct kvm *kvm = vcpu->kvm;
1318 u64 offset, ns, elapsed;
1319 unsigned long flags;
1320 s64 usdiff;
1321 bool matched;
1322 bool already_matched;
1323 u64 data = msr->data;
1324
1325 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1326 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1327 ns = get_kernel_ns();
1328 elapsed = ns - kvm->arch.last_tsc_nsec;
1329
1330 if (vcpu->arch.virtual_tsc_khz) {
1331 int faulted = 0;
1332
1333 /* n.b - signed multiplication and division required */
1334 usdiff = data - kvm->arch.last_tsc_write;
1335 #ifdef CONFIG_X86_64
1336 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1337 #else
1338 /* do_div() only does unsigned */
1339 asm("1: idivl %[divisor]\n"
1340 "2: xor %%edx, %%edx\n"
1341 " movl $0, %[faulted]\n"
1342 "3:\n"
1343 ".section .fixup,\"ax\"\n"
1344 "4: movl $1, %[faulted]\n"
1345 " jmp 3b\n"
1346 ".previous\n"
1347
1348 _ASM_EXTABLE(1b, 4b)
1349
1350 : "=A"(usdiff), [faulted] "=r" (faulted)
1351 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1352
1353 #endif
1354 do_div(elapsed, 1000);
1355 usdiff -= elapsed;
1356 if (usdiff < 0)
1357 usdiff = -usdiff;
1358
1359 /* idivl overflow => difference is larger than USEC_PER_SEC */
1360 if (faulted)
1361 usdiff = USEC_PER_SEC;
1362 } else
1363 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1364
1365 /*
1366 * Special case: TSC write with a small delta (1 second) of virtual
1367 * cycle time against real time is interpreted as an attempt to
1368 * synchronize the CPU.
1369 *
1370 * For a reliable TSC, we can match TSC offsets, and for an unstable
1371 * TSC, we add elapsed time in this computation. We could let the
1372 * compensation code attempt to catch up if we fall behind, but
1373 * it's better to try to match offsets from the beginning.
1374 */
1375 if (usdiff < USEC_PER_SEC &&
1376 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1377 if (!check_tsc_unstable()) {
1378 offset = kvm->arch.cur_tsc_offset;
1379 pr_debug("kvm: matched tsc offset for %llu\n", data);
1380 } else {
1381 u64 delta = nsec_to_cycles(vcpu, elapsed);
1382 data += delta;
1383 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1384 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1385 }
1386 matched = true;
1387 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1388 } else {
1389 /*
1390 * We split periods of matched TSC writes into generations.
1391 * For each generation, we track the original measured
1392 * nanosecond time, offset, and write, so if TSCs are in
1393 * sync, we can match exact offset, and if not, we can match
1394 * exact software computation in compute_guest_tsc()
1395 *
1396 * These values are tracked in kvm->arch.cur_xxx variables.
1397 */
1398 kvm->arch.cur_tsc_generation++;
1399 kvm->arch.cur_tsc_nsec = ns;
1400 kvm->arch.cur_tsc_write = data;
1401 kvm->arch.cur_tsc_offset = offset;
1402 matched = false;
1403 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1404 kvm->arch.cur_tsc_generation, data);
1405 }
1406
1407 /*
1408 * We also track th most recent recorded KHZ, write and time to
1409 * allow the matching interval to be extended at each write.
1410 */
1411 kvm->arch.last_tsc_nsec = ns;
1412 kvm->arch.last_tsc_write = data;
1413 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1414
1415 vcpu->arch.last_guest_tsc = data;
1416
1417 /* Keep track of which generation this VCPU has synchronized to */
1418 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1419 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1420 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1421
1422 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1423 update_ia32_tsc_adjust_msr(vcpu, offset);
1424 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1425 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1426
1427 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1428 if (!matched) {
1429 kvm->arch.nr_vcpus_matched_tsc = 0;
1430 } else if (!already_matched) {
1431 kvm->arch.nr_vcpus_matched_tsc++;
1432 }
1433
1434 kvm_track_tsc_matching(vcpu);
1435 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1436 }
1437
1438 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1439
1440 #ifdef CONFIG_X86_64
1441
1442 static cycle_t read_tsc(void)
1443 {
1444 cycle_t ret;
1445 u64 last;
1446
1447 /*
1448 * Empirically, a fence (of type that depends on the CPU)
1449 * before rdtsc is enough to ensure that rdtsc is ordered
1450 * with respect to loads. The various CPU manuals are unclear
1451 * as to whether rdtsc can be reordered with later loads,
1452 * but no one has ever seen it happen.
1453 */
1454 rdtsc_barrier();
1455 ret = (cycle_t)vget_cycles();
1456
1457 last = pvclock_gtod_data.clock.cycle_last;
1458
1459 if (likely(ret >= last))
1460 return ret;
1461
1462 /*
1463 * GCC likes to generate cmov here, but this branch is extremely
1464 * predictable (it's just a funciton of time and the likely is
1465 * very likely) and there's a data dependence, so force GCC
1466 * to generate a branch instead. I don't barrier() because
1467 * we don't actually need a barrier, and if this function
1468 * ever gets inlined it will generate worse code.
1469 */
1470 asm volatile ("");
1471 return last;
1472 }
1473
1474 static inline u64 vgettsc(cycle_t *cycle_now)
1475 {
1476 long v;
1477 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478
1479 *cycle_now = read_tsc();
1480
1481 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1482 return v * gtod->clock.mult;
1483 }
1484
1485 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1486 {
1487 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1488 unsigned long seq;
1489 int mode;
1490 u64 ns;
1491
1492 do {
1493 seq = read_seqcount_begin(&gtod->seq);
1494 mode = gtod->clock.vclock_mode;
1495 ns = gtod->nsec_base;
1496 ns += vgettsc(cycle_now);
1497 ns >>= gtod->clock.shift;
1498 ns += gtod->boot_ns;
1499 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1500 *t = ns;
1501
1502 return mode;
1503 }
1504
1505 /* returns true if host is using tsc clocksource */
1506 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1507 {
1508 /* checked again under seqlock below */
1509 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1510 return false;
1511
1512 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1513 }
1514 #endif
1515
1516 /*
1517 *
1518 * Assuming a stable TSC across physical CPUS, and a stable TSC
1519 * across virtual CPUs, the following condition is possible.
1520 * Each numbered line represents an event visible to both
1521 * CPUs at the next numbered event.
1522 *
1523 * "timespecX" represents host monotonic time. "tscX" represents
1524 * RDTSC value.
1525 *
1526 * VCPU0 on CPU0 | VCPU1 on CPU1
1527 *
1528 * 1. read timespec0,tsc0
1529 * 2. | timespec1 = timespec0 + N
1530 * | tsc1 = tsc0 + M
1531 * 3. transition to guest | transition to guest
1532 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1533 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1534 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1535 *
1536 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1537 *
1538 * - ret0 < ret1
1539 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1540 * ...
1541 * - 0 < N - M => M < N
1542 *
1543 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1544 * always the case (the difference between two distinct xtime instances
1545 * might be smaller then the difference between corresponding TSC reads,
1546 * when updating guest vcpus pvclock areas).
1547 *
1548 * To avoid that problem, do not allow visibility of distinct
1549 * system_timestamp/tsc_timestamp values simultaneously: use a master
1550 * copy of host monotonic time values. Update that master copy
1551 * in lockstep.
1552 *
1553 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1554 *
1555 */
1556
1557 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1558 {
1559 #ifdef CONFIG_X86_64
1560 struct kvm_arch *ka = &kvm->arch;
1561 int vclock_mode;
1562 bool host_tsc_clocksource, vcpus_matched;
1563
1564 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1565 atomic_read(&kvm->online_vcpus));
1566
1567 /*
1568 * If the host uses TSC clock, then passthrough TSC as stable
1569 * to the guest.
1570 */
1571 host_tsc_clocksource = kvm_get_time_and_clockread(
1572 &ka->master_kernel_ns,
1573 &ka->master_cycle_now);
1574
1575 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1576 && !backwards_tsc_observed
1577 && !ka->boot_vcpu_runs_old_kvmclock;
1578
1579 if (ka->use_master_clock)
1580 atomic_set(&kvm_guest_has_master_clock, 1);
1581
1582 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1583 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1584 vcpus_matched);
1585 #endif
1586 }
1587
1588 static void kvm_gen_update_masterclock(struct kvm *kvm)
1589 {
1590 #ifdef CONFIG_X86_64
1591 int i;
1592 struct kvm_vcpu *vcpu;
1593 struct kvm_arch *ka = &kvm->arch;
1594
1595 spin_lock(&ka->pvclock_gtod_sync_lock);
1596 kvm_make_mclock_inprogress_request(kvm);
1597 /* no guest entries from this point */
1598 pvclock_update_vm_gtod_copy(kvm);
1599
1600 kvm_for_each_vcpu(i, vcpu, kvm)
1601 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1602
1603 /* guest entries allowed */
1604 kvm_for_each_vcpu(i, vcpu, kvm)
1605 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1606
1607 spin_unlock(&ka->pvclock_gtod_sync_lock);
1608 #endif
1609 }
1610
1611 static int kvm_guest_time_update(struct kvm_vcpu *v)
1612 {
1613 unsigned long flags, this_tsc_khz;
1614 struct kvm_vcpu_arch *vcpu = &v->arch;
1615 struct kvm_arch *ka = &v->kvm->arch;
1616 s64 kernel_ns;
1617 u64 tsc_timestamp, host_tsc;
1618 struct pvclock_vcpu_time_info guest_hv_clock;
1619 u8 pvclock_flags;
1620 bool use_master_clock;
1621
1622 kernel_ns = 0;
1623 host_tsc = 0;
1624
1625 /*
1626 * If the host uses TSC clock, then passthrough TSC as stable
1627 * to the guest.
1628 */
1629 spin_lock(&ka->pvclock_gtod_sync_lock);
1630 use_master_clock = ka->use_master_clock;
1631 if (use_master_clock) {
1632 host_tsc = ka->master_cycle_now;
1633 kernel_ns = ka->master_kernel_ns;
1634 }
1635 spin_unlock(&ka->pvclock_gtod_sync_lock);
1636
1637 /* Keep irq disabled to prevent changes to the clock */
1638 local_irq_save(flags);
1639 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1640 if (unlikely(this_tsc_khz == 0)) {
1641 local_irq_restore(flags);
1642 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1643 return 1;
1644 }
1645 if (!use_master_clock) {
1646 host_tsc = native_read_tsc();
1647 kernel_ns = get_kernel_ns();
1648 }
1649
1650 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1651
1652 /*
1653 * We may have to catch up the TSC to match elapsed wall clock
1654 * time for two reasons, even if kvmclock is used.
1655 * 1) CPU could have been running below the maximum TSC rate
1656 * 2) Broken TSC compensation resets the base at each VCPU
1657 * entry to avoid unknown leaps of TSC even when running
1658 * again on the same CPU. This may cause apparent elapsed
1659 * time to disappear, and the guest to stand still or run
1660 * very slowly.
1661 */
1662 if (vcpu->tsc_catchup) {
1663 u64 tsc = compute_guest_tsc(v, kernel_ns);
1664 if (tsc > tsc_timestamp) {
1665 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1666 tsc_timestamp = tsc;
1667 }
1668 }
1669
1670 local_irq_restore(flags);
1671
1672 if (!vcpu->pv_time_enabled)
1673 return 0;
1674
1675 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1676 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1677 &vcpu->hv_clock.tsc_shift,
1678 &vcpu->hv_clock.tsc_to_system_mul);
1679 vcpu->hw_tsc_khz = this_tsc_khz;
1680 }
1681
1682 /* With all the info we got, fill in the values */
1683 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1684 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1685 vcpu->last_guest_tsc = tsc_timestamp;
1686
1687 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1688 &guest_hv_clock, sizeof(guest_hv_clock))))
1689 return 0;
1690
1691 /* This VCPU is paused, but it's legal for a guest to read another
1692 * VCPU's kvmclock, so we really have to follow the specification where
1693 * it says that version is odd if data is being modified, and even after
1694 * it is consistent.
1695 *
1696 * Version field updates must be kept separate. This is because
1697 * kvm_write_guest_cached might use a "rep movs" instruction, and
1698 * writes within a string instruction are weakly ordered. So there
1699 * are three writes overall.
1700 *
1701 * As a small optimization, only write the version field in the first
1702 * and third write. The vcpu->pv_time cache is still valid, because the
1703 * version field is the first in the struct.
1704 */
1705 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1706
1707 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1708 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709 &vcpu->hv_clock,
1710 sizeof(vcpu->hv_clock.version));
1711
1712 smp_wmb();
1713
1714 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1715 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1716
1717 if (vcpu->pvclock_set_guest_stopped_request) {
1718 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1719 vcpu->pvclock_set_guest_stopped_request = false;
1720 }
1721
1722 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1723
1724 /* If the host uses TSC clocksource, then it is stable */
1725 if (use_master_clock)
1726 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1727
1728 vcpu->hv_clock.flags = pvclock_flags;
1729
1730 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1731
1732 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1733 &vcpu->hv_clock,
1734 sizeof(vcpu->hv_clock));
1735
1736 smp_wmb();
1737
1738 vcpu->hv_clock.version++;
1739 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1740 &vcpu->hv_clock,
1741 sizeof(vcpu->hv_clock.version));
1742 return 0;
1743 }
1744
1745 /*
1746 * kvmclock updates which are isolated to a given vcpu, such as
1747 * vcpu->cpu migration, should not allow system_timestamp from
1748 * the rest of the vcpus to remain static. Otherwise ntp frequency
1749 * correction applies to one vcpu's system_timestamp but not
1750 * the others.
1751 *
1752 * So in those cases, request a kvmclock update for all vcpus.
1753 * We need to rate-limit these requests though, as they can
1754 * considerably slow guests that have a large number of vcpus.
1755 * The time for a remote vcpu to update its kvmclock is bound
1756 * by the delay we use to rate-limit the updates.
1757 */
1758
1759 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1760
1761 static void kvmclock_update_fn(struct work_struct *work)
1762 {
1763 int i;
1764 struct delayed_work *dwork = to_delayed_work(work);
1765 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1766 kvmclock_update_work);
1767 struct kvm *kvm = container_of(ka, struct kvm, arch);
1768 struct kvm_vcpu *vcpu;
1769
1770 kvm_for_each_vcpu(i, vcpu, kvm) {
1771 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1772 kvm_vcpu_kick(vcpu);
1773 }
1774 }
1775
1776 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1777 {
1778 struct kvm *kvm = v->kvm;
1779
1780 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1781 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1782 KVMCLOCK_UPDATE_DELAY);
1783 }
1784
1785 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1786
1787 static void kvmclock_sync_fn(struct work_struct *work)
1788 {
1789 struct delayed_work *dwork = to_delayed_work(work);
1790 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1791 kvmclock_sync_work);
1792 struct kvm *kvm = container_of(ka, struct kvm, arch);
1793
1794 if (!kvmclock_periodic_sync)
1795 return;
1796
1797 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1798 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1799 KVMCLOCK_SYNC_PERIOD);
1800 }
1801
1802 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1803 {
1804 u64 mcg_cap = vcpu->arch.mcg_cap;
1805 unsigned bank_num = mcg_cap & 0xff;
1806
1807 switch (msr) {
1808 case MSR_IA32_MCG_STATUS:
1809 vcpu->arch.mcg_status = data;
1810 break;
1811 case MSR_IA32_MCG_CTL:
1812 if (!(mcg_cap & MCG_CTL_P))
1813 return 1;
1814 if (data != 0 && data != ~(u64)0)
1815 return -1;
1816 vcpu->arch.mcg_ctl = data;
1817 break;
1818 default:
1819 if (msr >= MSR_IA32_MC0_CTL &&
1820 msr < MSR_IA32_MCx_CTL(bank_num)) {
1821 u32 offset = msr - MSR_IA32_MC0_CTL;
1822 /* only 0 or all 1s can be written to IA32_MCi_CTL
1823 * some Linux kernels though clear bit 10 in bank 4 to
1824 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1825 * this to avoid an uncatched #GP in the guest
1826 */
1827 if ((offset & 0x3) == 0 &&
1828 data != 0 && (data | (1 << 10)) != ~(u64)0)
1829 return -1;
1830 vcpu->arch.mce_banks[offset] = data;
1831 break;
1832 }
1833 return 1;
1834 }
1835 return 0;
1836 }
1837
1838 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1839 {
1840 struct kvm *kvm = vcpu->kvm;
1841 int lm = is_long_mode(vcpu);
1842 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1843 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1844 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1845 : kvm->arch.xen_hvm_config.blob_size_32;
1846 u32 page_num = data & ~PAGE_MASK;
1847 u64 page_addr = data & PAGE_MASK;
1848 u8 *page;
1849 int r;
1850
1851 r = -E2BIG;
1852 if (page_num >= blob_size)
1853 goto out;
1854 r = -ENOMEM;
1855 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1856 if (IS_ERR(page)) {
1857 r = PTR_ERR(page);
1858 goto out;
1859 }
1860 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1861 goto out_free;
1862 r = 0;
1863 out_free:
1864 kfree(page);
1865 out:
1866 return r;
1867 }
1868
1869 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1870 {
1871 gpa_t gpa = data & ~0x3f;
1872
1873 /* Bits 2:5 are reserved, Should be zero */
1874 if (data & 0x3c)
1875 return 1;
1876
1877 vcpu->arch.apf.msr_val = data;
1878
1879 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1880 kvm_clear_async_pf_completion_queue(vcpu);
1881 kvm_async_pf_hash_reset(vcpu);
1882 return 0;
1883 }
1884
1885 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1886 sizeof(u32)))
1887 return 1;
1888
1889 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1890 kvm_async_pf_wakeup_all(vcpu);
1891 return 0;
1892 }
1893
1894 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1895 {
1896 vcpu->arch.pv_time_enabled = false;
1897 }
1898
1899 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1900 {
1901 u64 delta;
1902
1903 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1904 return;
1905
1906 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1907 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1908 vcpu->arch.st.accum_steal = delta;
1909 }
1910
1911 static void record_steal_time(struct kvm_vcpu *vcpu)
1912 {
1913 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1914 return;
1915
1916 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1917 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1918 return;
1919
1920 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1921 vcpu->arch.st.steal.version += 2;
1922 vcpu->arch.st.accum_steal = 0;
1923
1924 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1925 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1926 }
1927
1928 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1929 {
1930 bool pr = false;
1931 u32 msr = msr_info->index;
1932 u64 data = msr_info->data;
1933
1934 switch (msr) {
1935 case MSR_AMD64_NB_CFG:
1936 case MSR_IA32_UCODE_REV:
1937 case MSR_IA32_UCODE_WRITE:
1938 case MSR_VM_HSAVE_PA:
1939 case MSR_AMD64_PATCH_LOADER:
1940 case MSR_AMD64_BU_CFG2:
1941 break;
1942
1943 case MSR_EFER:
1944 return set_efer(vcpu, data);
1945 case MSR_K7_HWCR:
1946 data &= ~(u64)0x40; /* ignore flush filter disable */
1947 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1948 data &= ~(u64)0x8; /* ignore TLB cache disable */
1949 data &= ~(u64)0x40000; /* ignore Mc status write enable */
1950 if (data != 0) {
1951 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1952 data);
1953 return 1;
1954 }
1955 break;
1956 case MSR_FAM10H_MMIO_CONF_BASE:
1957 if (data != 0) {
1958 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1959 "0x%llx\n", data);
1960 return 1;
1961 }
1962 break;
1963 case MSR_IA32_DEBUGCTLMSR:
1964 if (!data) {
1965 /* We support the non-activated case already */
1966 break;
1967 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1968 /* Values other than LBR and BTF are vendor-specific,
1969 thus reserved and should throw a #GP */
1970 return 1;
1971 }
1972 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1973 __func__, data);
1974 break;
1975 case 0x200 ... 0x2ff:
1976 return kvm_mtrr_set_msr(vcpu, msr, data);
1977 case MSR_IA32_APICBASE:
1978 return kvm_set_apic_base(vcpu, msr_info);
1979 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1980 return kvm_x2apic_msr_write(vcpu, msr, data);
1981 case MSR_IA32_TSCDEADLINE:
1982 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1983 break;
1984 case MSR_IA32_TSC_ADJUST:
1985 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1986 if (!msr_info->host_initiated) {
1987 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1988 adjust_tsc_offset_guest(vcpu, adj);
1989 }
1990 vcpu->arch.ia32_tsc_adjust_msr = data;
1991 }
1992 break;
1993 case MSR_IA32_MISC_ENABLE:
1994 vcpu->arch.ia32_misc_enable_msr = data;
1995 break;
1996 case MSR_IA32_SMBASE:
1997 if (!msr_info->host_initiated)
1998 return 1;
1999 vcpu->arch.smbase = data;
2000 break;
2001 case MSR_KVM_WALL_CLOCK_NEW:
2002 case MSR_KVM_WALL_CLOCK:
2003 vcpu->kvm->arch.wall_clock = data;
2004 kvm_write_wall_clock(vcpu->kvm, data);
2005 break;
2006 case MSR_KVM_SYSTEM_TIME_NEW:
2007 case MSR_KVM_SYSTEM_TIME: {
2008 u64 gpa_offset;
2009 struct kvm_arch *ka = &vcpu->kvm->arch;
2010
2011 kvmclock_reset(vcpu);
2012
2013 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2014 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2015
2016 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2017 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2018 &vcpu->requests);
2019
2020 ka->boot_vcpu_runs_old_kvmclock = tmp;
2021
2022 ka->kvmclock_offset = -get_kernel_ns();
2023 }
2024
2025 vcpu->arch.time = data;
2026 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2027
2028 /* we verify if the enable bit is set... */
2029 if (!(data & 1))
2030 break;
2031
2032 gpa_offset = data & ~(PAGE_MASK | 1);
2033
2034 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2035 &vcpu->arch.pv_time, data & ~1ULL,
2036 sizeof(struct pvclock_vcpu_time_info)))
2037 vcpu->arch.pv_time_enabled = false;
2038 else
2039 vcpu->arch.pv_time_enabled = true;
2040
2041 break;
2042 }
2043 case MSR_KVM_ASYNC_PF_EN:
2044 if (kvm_pv_enable_async_pf(vcpu, data))
2045 return 1;
2046 break;
2047 case MSR_KVM_STEAL_TIME:
2048
2049 if (unlikely(!sched_info_on()))
2050 return 1;
2051
2052 if (data & KVM_STEAL_RESERVED_MASK)
2053 return 1;
2054
2055 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2056 data & KVM_STEAL_VALID_BITS,
2057 sizeof(struct kvm_steal_time)))
2058 return 1;
2059
2060 vcpu->arch.st.msr_val = data;
2061
2062 if (!(data & KVM_MSR_ENABLED))
2063 break;
2064
2065 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2066
2067 preempt_disable();
2068 accumulate_steal_time(vcpu);
2069 preempt_enable();
2070
2071 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2072
2073 break;
2074 case MSR_KVM_PV_EOI_EN:
2075 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2076 return 1;
2077 break;
2078
2079 case MSR_IA32_MCG_CTL:
2080 case MSR_IA32_MCG_STATUS:
2081 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2082 return set_msr_mce(vcpu, msr, data);
2083
2084 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2085 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2086 pr = true; /* fall through */
2087 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2088 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2089 if (kvm_pmu_is_valid_msr(vcpu, msr))
2090 return kvm_pmu_set_msr(vcpu, msr_info);
2091
2092 if (pr || data != 0)
2093 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2094 "0x%x data 0x%llx\n", msr, data);
2095 break;
2096 case MSR_K7_CLK_CTL:
2097 /*
2098 * Ignore all writes to this no longer documented MSR.
2099 * Writes are only relevant for old K7 processors,
2100 * all pre-dating SVM, but a recommended workaround from
2101 * AMD for these chips. It is possible to specify the
2102 * affected processor models on the command line, hence
2103 * the need to ignore the workaround.
2104 */
2105 break;
2106 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2107 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2108 case HV_X64_MSR_CRASH_CTL:
2109 return kvm_hv_set_msr_common(vcpu, msr, data,
2110 msr_info->host_initiated);
2111 case MSR_IA32_BBL_CR_CTL3:
2112 /* Drop writes to this legacy MSR -- see rdmsr
2113 * counterpart for further detail.
2114 */
2115 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2116 break;
2117 case MSR_AMD64_OSVW_ID_LENGTH:
2118 if (!guest_cpuid_has_osvw(vcpu))
2119 return 1;
2120 vcpu->arch.osvw.length = data;
2121 break;
2122 case MSR_AMD64_OSVW_STATUS:
2123 if (!guest_cpuid_has_osvw(vcpu))
2124 return 1;
2125 vcpu->arch.osvw.status = data;
2126 break;
2127 default:
2128 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2129 return xen_hvm_config(vcpu, data);
2130 if (kvm_pmu_is_valid_msr(vcpu, msr))
2131 return kvm_pmu_set_msr(vcpu, msr_info);
2132 if (!ignore_msrs) {
2133 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2134 msr, data);
2135 return 1;
2136 } else {
2137 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2138 msr, data);
2139 break;
2140 }
2141 }
2142 return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2145
2146
2147 /*
2148 * Reads an msr value (of 'msr_index') into 'pdata'.
2149 * Returns 0 on success, non-0 otherwise.
2150 * Assumes vcpu_load() was already called.
2151 */
2152 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2153 {
2154 return kvm_x86_ops->get_msr(vcpu, msr);
2155 }
2156 EXPORT_SYMBOL_GPL(kvm_get_msr);
2157
2158 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2159 {
2160 u64 data;
2161 u64 mcg_cap = vcpu->arch.mcg_cap;
2162 unsigned bank_num = mcg_cap & 0xff;
2163
2164 switch (msr) {
2165 case MSR_IA32_P5_MC_ADDR:
2166 case MSR_IA32_P5_MC_TYPE:
2167 data = 0;
2168 break;
2169 case MSR_IA32_MCG_CAP:
2170 data = vcpu->arch.mcg_cap;
2171 break;
2172 case MSR_IA32_MCG_CTL:
2173 if (!(mcg_cap & MCG_CTL_P))
2174 return 1;
2175 data = vcpu->arch.mcg_ctl;
2176 break;
2177 case MSR_IA32_MCG_STATUS:
2178 data = vcpu->arch.mcg_status;
2179 break;
2180 default:
2181 if (msr >= MSR_IA32_MC0_CTL &&
2182 msr < MSR_IA32_MCx_CTL(bank_num)) {
2183 u32 offset = msr - MSR_IA32_MC0_CTL;
2184 data = vcpu->arch.mce_banks[offset];
2185 break;
2186 }
2187 return 1;
2188 }
2189 *pdata = data;
2190 return 0;
2191 }
2192
2193 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2194 {
2195 switch (msr_info->index) {
2196 case MSR_IA32_PLATFORM_ID:
2197 case MSR_IA32_EBL_CR_POWERON:
2198 case MSR_IA32_DEBUGCTLMSR:
2199 case MSR_IA32_LASTBRANCHFROMIP:
2200 case MSR_IA32_LASTBRANCHTOIP:
2201 case MSR_IA32_LASTINTFROMIP:
2202 case MSR_IA32_LASTINTTOIP:
2203 case MSR_K8_SYSCFG:
2204 case MSR_K7_HWCR:
2205 case MSR_VM_HSAVE_PA:
2206 case MSR_K8_INT_PENDING_MSG:
2207 case MSR_AMD64_NB_CFG:
2208 case MSR_FAM10H_MMIO_CONF_BASE:
2209 case MSR_AMD64_BU_CFG2:
2210 msr_info->data = 0;
2211 break;
2212 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2213 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2214 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2215 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2216 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2217 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2218 msr_info->data = 0;
2219 break;
2220 case MSR_IA32_UCODE_REV:
2221 msr_info->data = 0x100000000ULL;
2222 break;
2223 case MSR_MTRRcap:
2224 case 0x200 ... 0x2ff:
2225 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2226 case 0xcd: /* fsb frequency */
2227 msr_info->data = 3;
2228 break;
2229 /*
2230 * MSR_EBC_FREQUENCY_ID
2231 * Conservative value valid for even the basic CPU models.
2232 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2233 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2234 * and 266MHz for model 3, or 4. Set Core Clock
2235 * Frequency to System Bus Frequency Ratio to 1 (bits
2236 * 31:24) even though these are only valid for CPU
2237 * models > 2, however guests may end up dividing or
2238 * multiplying by zero otherwise.
2239 */
2240 case MSR_EBC_FREQUENCY_ID:
2241 msr_info->data = 1 << 24;
2242 break;
2243 case MSR_IA32_APICBASE:
2244 msr_info->data = kvm_get_apic_base(vcpu);
2245 break;
2246 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2247 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2248 break;
2249 case MSR_IA32_TSCDEADLINE:
2250 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2251 break;
2252 case MSR_IA32_TSC_ADJUST:
2253 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2254 break;
2255 case MSR_IA32_MISC_ENABLE:
2256 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2257 break;
2258 case MSR_IA32_SMBASE:
2259 if (!msr_info->host_initiated)
2260 return 1;
2261 msr_info->data = vcpu->arch.smbase;
2262 break;
2263 case MSR_IA32_PERF_STATUS:
2264 /* TSC increment by tick */
2265 msr_info->data = 1000ULL;
2266 /* CPU multiplier */
2267 msr_info->data |= (((uint64_t)4ULL) << 40);
2268 break;
2269 case MSR_EFER:
2270 msr_info->data = vcpu->arch.efer;
2271 break;
2272 case MSR_KVM_WALL_CLOCK:
2273 case MSR_KVM_WALL_CLOCK_NEW:
2274 msr_info->data = vcpu->kvm->arch.wall_clock;
2275 break;
2276 case MSR_KVM_SYSTEM_TIME:
2277 case MSR_KVM_SYSTEM_TIME_NEW:
2278 msr_info->data = vcpu->arch.time;
2279 break;
2280 case MSR_KVM_ASYNC_PF_EN:
2281 msr_info->data = vcpu->arch.apf.msr_val;
2282 break;
2283 case MSR_KVM_STEAL_TIME:
2284 msr_info->data = vcpu->arch.st.msr_val;
2285 break;
2286 case MSR_KVM_PV_EOI_EN:
2287 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2288 break;
2289 case MSR_IA32_P5_MC_ADDR:
2290 case MSR_IA32_P5_MC_TYPE:
2291 case MSR_IA32_MCG_CAP:
2292 case MSR_IA32_MCG_CTL:
2293 case MSR_IA32_MCG_STATUS:
2294 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2295 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2296 case MSR_K7_CLK_CTL:
2297 /*
2298 * Provide expected ramp-up count for K7. All other
2299 * are set to zero, indicating minimum divisors for
2300 * every field.
2301 *
2302 * This prevents guest kernels on AMD host with CPU
2303 * type 6, model 8 and higher from exploding due to
2304 * the rdmsr failing.
2305 */
2306 msr_info->data = 0x20000000;
2307 break;
2308 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2309 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2310 case HV_X64_MSR_CRASH_CTL:
2311 return kvm_hv_get_msr_common(vcpu,
2312 msr_info->index, &msr_info->data);
2313 break;
2314 case MSR_IA32_BBL_CR_CTL3:
2315 /* This legacy MSR exists but isn't fully documented in current
2316 * silicon. It is however accessed by winxp in very narrow
2317 * scenarios where it sets bit #19, itself documented as
2318 * a "reserved" bit. Best effort attempt to source coherent
2319 * read data here should the balance of the register be
2320 * interpreted by the guest:
2321 *
2322 * L2 cache control register 3: 64GB range, 256KB size,
2323 * enabled, latency 0x1, configured
2324 */
2325 msr_info->data = 0xbe702111;
2326 break;
2327 case MSR_AMD64_OSVW_ID_LENGTH:
2328 if (!guest_cpuid_has_osvw(vcpu))
2329 return 1;
2330 msr_info->data = vcpu->arch.osvw.length;
2331 break;
2332 case MSR_AMD64_OSVW_STATUS:
2333 if (!guest_cpuid_has_osvw(vcpu))
2334 return 1;
2335 msr_info->data = vcpu->arch.osvw.status;
2336 break;
2337 default:
2338 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2339 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2340 if (!ignore_msrs) {
2341 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2342 return 1;
2343 } else {
2344 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2345 msr_info->data = 0;
2346 }
2347 break;
2348 }
2349 return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2352
2353 /*
2354 * Read or write a bunch of msrs. All parameters are kernel addresses.
2355 *
2356 * @return number of msrs set successfully.
2357 */
2358 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2359 struct kvm_msr_entry *entries,
2360 int (*do_msr)(struct kvm_vcpu *vcpu,
2361 unsigned index, u64 *data))
2362 {
2363 int i, idx;
2364
2365 idx = srcu_read_lock(&vcpu->kvm->srcu);
2366 for (i = 0; i < msrs->nmsrs; ++i)
2367 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2368 break;
2369 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2370
2371 return i;
2372 }
2373
2374 /*
2375 * Read or write a bunch of msrs. Parameters are user addresses.
2376 *
2377 * @return number of msrs set successfully.
2378 */
2379 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2380 int (*do_msr)(struct kvm_vcpu *vcpu,
2381 unsigned index, u64 *data),
2382 int writeback)
2383 {
2384 struct kvm_msrs msrs;
2385 struct kvm_msr_entry *entries;
2386 int r, n;
2387 unsigned size;
2388
2389 r = -EFAULT;
2390 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2391 goto out;
2392
2393 r = -E2BIG;
2394 if (msrs.nmsrs >= MAX_IO_MSRS)
2395 goto out;
2396
2397 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2398 entries = memdup_user(user_msrs->entries, size);
2399 if (IS_ERR(entries)) {
2400 r = PTR_ERR(entries);
2401 goto out;
2402 }
2403
2404 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2405 if (r < 0)
2406 goto out_free;
2407
2408 r = -EFAULT;
2409 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2410 goto out_free;
2411
2412 r = n;
2413
2414 out_free:
2415 kfree(entries);
2416 out:
2417 return r;
2418 }
2419
2420 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2421 {
2422 int r;
2423
2424 switch (ext) {
2425 case KVM_CAP_IRQCHIP:
2426 case KVM_CAP_HLT:
2427 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2428 case KVM_CAP_SET_TSS_ADDR:
2429 case KVM_CAP_EXT_CPUID:
2430 case KVM_CAP_EXT_EMUL_CPUID:
2431 case KVM_CAP_CLOCKSOURCE:
2432 case KVM_CAP_PIT:
2433 case KVM_CAP_NOP_IO_DELAY:
2434 case KVM_CAP_MP_STATE:
2435 case KVM_CAP_SYNC_MMU:
2436 case KVM_CAP_USER_NMI:
2437 case KVM_CAP_REINJECT_CONTROL:
2438 case KVM_CAP_IRQ_INJECT_STATUS:
2439 case KVM_CAP_IOEVENTFD:
2440 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2441 case KVM_CAP_PIT2:
2442 case KVM_CAP_PIT_STATE2:
2443 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2444 case KVM_CAP_XEN_HVM:
2445 case KVM_CAP_ADJUST_CLOCK:
2446 case KVM_CAP_VCPU_EVENTS:
2447 case KVM_CAP_HYPERV:
2448 case KVM_CAP_HYPERV_VAPIC:
2449 case KVM_CAP_HYPERV_SPIN:
2450 case KVM_CAP_PCI_SEGMENT:
2451 case KVM_CAP_DEBUGREGS:
2452 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2453 case KVM_CAP_XSAVE:
2454 case KVM_CAP_ASYNC_PF:
2455 case KVM_CAP_GET_TSC_KHZ:
2456 case KVM_CAP_KVMCLOCK_CTRL:
2457 case KVM_CAP_READONLY_MEM:
2458 case KVM_CAP_HYPERV_TIME:
2459 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2460 case KVM_CAP_TSC_DEADLINE_TIMER:
2461 case KVM_CAP_ENABLE_CAP_VM:
2462 case KVM_CAP_DISABLE_QUIRKS:
2463 case KVM_CAP_SET_BOOT_CPU_ID:
2464 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2465 case KVM_CAP_ASSIGN_DEV_IRQ:
2466 case KVM_CAP_PCI_2_3:
2467 #endif
2468 r = 1;
2469 break;
2470 case KVM_CAP_X86_SMM:
2471 /* SMBASE is usually relocated above 1M on modern chipsets,
2472 * and SMM handlers might indeed rely on 4G segment limits,
2473 * so do not report SMM to be available if real mode is
2474 * emulated via vm86 mode. Still, do not go to great lengths
2475 * to avoid userspace's usage of the feature, because it is a
2476 * fringe case that is not enabled except via specific settings
2477 * of the module parameters.
2478 */
2479 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2480 break;
2481 case KVM_CAP_COALESCED_MMIO:
2482 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2483 break;
2484 case KVM_CAP_VAPIC:
2485 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2486 break;
2487 case KVM_CAP_NR_VCPUS:
2488 r = KVM_SOFT_MAX_VCPUS;
2489 break;
2490 case KVM_CAP_MAX_VCPUS:
2491 r = KVM_MAX_VCPUS;
2492 break;
2493 case KVM_CAP_NR_MEMSLOTS:
2494 r = KVM_USER_MEM_SLOTS;
2495 break;
2496 case KVM_CAP_PV_MMU: /* obsolete */
2497 r = 0;
2498 break;
2499 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2500 case KVM_CAP_IOMMU:
2501 r = iommu_present(&pci_bus_type);
2502 break;
2503 #endif
2504 case KVM_CAP_MCE:
2505 r = KVM_MAX_MCE_BANKS;
2506 break;
2507 case KVM_CAP_XCRS:
2508 r = cpu_has_xsave;
2509 break;
2510 case KVM_CAP_TSC_CONTROL:
2511 r = kvm_has_tsc_control;
2512 break;
2513 default:
2514 r = 0;
2515 break;
2516 }
2517 return r;
2518
2519 }
2520
2521 long kvm_arch_dev_ioctl(struct file *filp,
2522 unsigned int ioctl, unsigned long arg)
2523 {
2524 void __user *argp = (void __user *)arg;
2525 long r;
2526
2527 switch (ioctl) {
2528 case KVM_GET_MSR_INDEX_LIST: {
2529 struct kvm_msr_list __user *user_msr_list = argp;
2530 struct kvm_msr_list msr_list;
2531 unsigned n;
2532
2533 r = -EFAULT;
2534 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2535 goto out;
2536 n = msr_list.nmsrs;
2537 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2538 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2539 goto out;
2540 r = -E2BIG;
2541 if (n < msr_list.nmsrs)
2542 goto out;
2543 r = -EFAULT;
2544 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2545 num_msrs_to_save * sizeof(u32)))
2546 goto out;
2547 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2548 &emulated_msrs,
2549 num_emulated_msrs * sizeof(u32)))
2550 goto out;
2551 r = 0;
2552 break;
2553 }
2554 case KVM_GET_SUPPORTED_CPUID:
2555 case KVM_GET_EMULATED_CPUID: {
2556 struct kvm_cpuid2 __user *cpuid_arg = argp;
2557 struct kvm_cpuid2 cpuid;
2558
2559 r = -EFAULT;
2560 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2561 goto out;
2562
2563 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2564 ioctl);
2565 if (r)
2566 goto out;
2567
2568 r = -EFAULT;
2569 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2570 goto out;
2571 r = 0;
2572 break;
2573 }
2574 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2575 u64 mce_cap;
2576
2577 mce_cap = KVM_MCE_CAP_SUPPORTED;
2578 r = -EFAULT;
2579 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2580 goto out;
2581 r = 0;
2582 break;
2583 }
2584 default:
2585 r = -EINVAL;
2586 }
2587 out:
2588 return r;
2589 }
2590
2591 static void wbinvd_ipi(void *garbage)
2592 {
2593 wbinvd();
2594 }
2595
2596 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2597 {
2598 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2599 }
2600
2601 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2602 {
2603 /* Address WBINVD may be executed by guest */
2604 if (need_emulate_wbinvd(vcpu)) {
2605 if (kvm_x86_ops->has_wbinvd_exit())
2606 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2607 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2608 smp_call_function_single(vcpu->cpu,
2609 wbinvd_ipi, NULL, 1);
2610 }
2611
2612 kvm_x86_ops->vcpu_load(vcpu, cpu);
2613
2614 /* Apply any externally detected TSC adjustments (due to suspend) */
2615 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2616 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2617 vcpu->arch.tsc_offset_adjustment = 0;
2618 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2619 }
2620
2621 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2622 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2623 native_read_tsc() - vcpu->arch.last_host_tsc;
2624 if (tsc_delta < 0)
2625 mark_tsc_unstable("KVM discovered backwards TSC");
2626 if (check_tsc_unstable()) {
2627 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2628 vcpu->arch.last_guest_tsc);
2629 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2630 vcpu->arch.tsc_catchup = 1;
2631 }
2632 /*
2633 * On a host with synchronized TSC, there is no need to update
2634 * kvmclock on vcpu->cpu migration
2635 */
2636 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2637 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2638 if (vcpu->cpu != cpu)
2639 kvm_migrate_timers(vcpu);
2640 vcpu->cpu = cpu;
2641 }
2642
2643 accumulate_steal_time(vcpu);
2644 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2645 }
2646
2647 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2648 {
2649 kvm_x86_ops->vcpu_put(vcpu);
2650 kvm_put_guest_fpu(vcpu);
2651 vcpu->arch.last_host_tsc = native_read_tsc();
2652 }
2653
2654 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2655 struct kvm_lapic_state *s)
2656 {
2657 kvm_x86_ops->sync_pir_to_irr(vcpu);
2658 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2659
2660 return 0;
2661 }
2662
2663 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2664 struct kvm_lapic_state *s)
2665 {
2666 kvm_apic_post_state_restore(vcpu, s);
2667 update_cr8_intercept(vcpu);
2668
2669 return 0;
2670 }
2671
2672 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2673 struct kvm_interrupt *irq)
2674 {
2675 if (irq->irq >= KVM_NR_INTERRUPTS)
2676 return -EINVAL;
2677 if (irqchip_in_kernel(vcpu->kvm))
2678 return -ENXIO;
2679
2680 kvm_queue_interrupt(vcpu, irq->irq, false);
2681 kvm_make_request(KVM_REQ_EVENT, vcpu);
2682
2683 return 0;
2684 }
2685
2686 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2687 {
2688 kvm_inject_nmi(vcpu);
2689
2690 return 0;
2691 }
2692
2693 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2694 {
2695 kvm_make_request(KVM_REQ_SMI, vcpu);
2696
2697 return 0;
2698 }
2699
2700 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2701 struct kvm_tpr_access_ctl *tac)
2702 {
2703 if (tac->flags)
2704 return -EINVAL;
2705 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2706 return 0;
2707 }
2708
2709 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2710 u64 mcg_cap)
2711 {
2712 int r;
2713 unsigned bank_num = mcg_cap & 0xff, bank;
2714
2715 r = -EINVAL;
2716 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2717 goto out;
2718 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2719 goto out;
2720 r = 0;
2721 vcpu->arch.mcg_cap = mcg_cap;
2722 /* Init IA32_MCG_CTL to all 1s */
2723 if (mcg_cap & MCG_CTL_P)
2724 vcpu->arch.mcg_ctl = ~(u64)0;
2725 /* Init IA32_MCi_CTL to all 1s */
2726 for (bank = 0; bank < bank_num; bank++)
2727 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2728 out:
2729 return r;
2730 }
2731
2732 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2733 struct kvm_x86_mce *mce)
2734 {
2735 u64 mcg_cap = vcpu->arch.mcg_cap;
2736 unsigned bank_num = mcg_cap & 0xff;
2737 u64 *banks = vcpu->arch.mce_banks;
2738
2739 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2740 return -EINVAL;
2741 /*
2742 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2743 * reporting is disabled
2744 */
2745 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2746 vcpu->arch.mcg_ctl != ~(u64)0)
2747 return 0;
2748 banks += 4 * mce->bank;
2749 /*
2750 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2751 * reporting is disabled for the bank
2752 */
2753 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2754 return 0;
2755 if (mce->status & MCI_STATUS_UC) {
2756 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2757 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2758 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2759 return 0;
2760 }
2761 if (banks[1] & MCI_STATUS_VAL)
2762 mce->status |= MCI_STATUS_OVER;
2763 banks[2] = mce->addr;
2764 banks[3] = mce->misc;
2765 vcpu->arch.mcg_status = mce->mcg_status;
2766 banks[1] = mce->status;
2767 kvm_queue_exception(vcpu, MC_VECTOR);
2768 } else if (!(banks[1] & MCI_STATUS_VAL)
2769 || !(banks[1] & MCI_STATUS_UC)) {
2770 if (banks[1] & MCI_STATUS_VAL)
2771 mce->status |= MCI_STATUS_OVER;
2772 banks[2] = mce->addr;
2773 banks[3] = mce->misc;
2774 banks[1] = mce->status;
2775 } else
2776 banks[1] |= MCI_STATUS_OVER;
2777 return 0;
2778 }
2779
2780 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2781 struct kvm_vcpu_events *events)
2782 {
2783 process_nmi(vcpu);
2784 events->exception.injected =
2785 vcpu->arch.exception.pending &&
2786 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2787 events->exception.nr = vcpu->arch.exception.nr;
2788 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2789 events->exception.pad = 0;
2790 events->exception.error_code = vcpu->arch.exception.error_code;
2791
2792 events->interrupt.injected =
2793 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2794 events->interrupt.nr = vcpu->arch.interrupt.nr;
2795 events->interrupt.soft = 0;
2796 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2797
2798 events->nmi.injected = vcpu->arch.nmi_injected;
2799 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2800 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2801 events->nmi.pad = 0;
2802
2803 events->sipi_vector = 0; /* never valid when reporting to user space */
2804
2805 events->smi.smm = is_smm(vcpu);
2806 events->smi.pending = vcpu->arch.smi_pending;
2807 events->smi.smm_inside_nmi =
2808 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2809 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2810
2811 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2812 | KVM_VCPUEVENT_VALID_SHADOW
2813 | KVM_VCPUEVENT_VALID_SMM);
2814 memset(&events->reserved, 0, sizeof(events->reserved));
2815 }
2816
2817 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2818 struct kvm_vcpu_events *events)
2819 {
2820 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2821 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2822 | KVM_VCPUEVENT_VALID_SHADOW
2823 | KVM_VCPUEVENT_VALID_SMM))
2824 return -EINVAL;
2825
2826 process_nmi(vcpu);
2827 vcpu->arch.exception.pending = events->exception.injected;
2828 vcpu->arch.exception.nr = events->exception.nr;
2829 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2830 vcpu->arch.exception.error_code = events->exception.error_code;
2831
2832 vcpu->arch.interrupt.pending = events->interrupt.injected;
2833 vcpu->arch.interrupt.nr = events->interrupt.nr;
2834 vcpu->arch.interrupt.soft = events->interrupt.soft;
2835 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2836 kvm_x86_ops->set_interrupt_shadow(vcpu,
2837 events->interrupt.shadow);
2838
2839 vcpu->arch.nmi_injected = events->nmi.injected;
2840 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2841 vcpu->arch.nmi_pending = events->nmi.pending;
2842 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2843
2844 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2845 kvm_vcpu_has_lapic(vcpu))
2846 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2847
2848 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2849 if (events->smi.smm)
2850 vcpu->arch.hflags |= HF_SMM_MASK;
2851 else
2852 vcpu->arch.hflags &= ~HF_SMM_MASK;
2853 vcpu->arch.smi_pending = events->smi.pending;
2854 if (events->smi.smm_inside_nmi)
2855 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2856 else
2857 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2858 if (kvm_vcpu_has_lapic(vcpu)) {
2859 if (events->smi.latched_init)
2860 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2861 else
2862 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2863 }
2864 }
2865
2866 kvm_make_request(KVM_REQ_EVENT, vcpu);
2867
2868 return 0;
2869 }
2870
2871 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2872 struct kvm_debugregs *dbgregs)
2873 {
2874 unsigned long val;
2875
2876 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2877 kvm_get_dr(vcpu, 6, &val);
2878 dbgregs->dr6 = val;
2879 dbgregs->dr7 = vcpu->arch.dr7;
2880 dbgregs->flags = 0;
2881 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2882 }
2883
2884 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2885 struct kvm_debugregs *dbgregs)
2886 {
2887 if (dbgregs->flags)
2888 return -EINVAL;
2889
2890 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2891 kvm_update_dr0123(vcpu);
2892 vcpu->arch.dr6 = dbgregs->dr6;
2893 kvm_update_dr6(vcpu);
2894 vcpu->arch.dr7 = dbgregs->dr7;
2895 kvm_update_dr7(vcpu);
2896
2897 return 0;
2898 }
2899
2900 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2901
2902 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2903 {
2904 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2905 u64 xstate_bv = xsave->header.xfeatures;
2906 u64 valid;
2907
2908 /*
2909 * Copy legacy XSAVE area, to avoid complications with CPUID
2910 * leaves 0 and 1 in the loop below.
2911 */
2912 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2913
2914 /* Set XSTATE_BV */
2915 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2916
2917 /*
2918 * Copy each region from the possibly compacted offset to the
2919 * non-compacted offset.
2920 */
2921 valid = xstate_bv & ~XSTATE_FPSSE;
2922 while (valid) {
2923 u64 feature = valid & -valid;
2924 int index = fls64(feature) - 1;
2925 void *src = get_xsave_addr(xsave, feature);
2926
2927 if (src) {
2928 u32 size, offset, ecx, edx;
2929 cpuid_count(XSTATE_CPUID, index,
2930 &size, &offset, &ecx, &edx);
2931 memcpy(dest + offset, src, size);
2932 }
2933
2934 valid -= feature;
2935 }
2936 }
2937
2938 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2939 {
2940 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2941 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2942 u64 valid;
2943
2944 /*
2945 * Copy legacy XSAVE area, to avoid complications with CPUID
2946 * leaves 0 and 1 in the loop below.
2947 */
2948 memcpy(xsave, src, XSAVE_HDR_OFFSET);
2949
2950 /* Set XSTATE_BV and possibly XCOMP_BV. */
2951 xsave->header.xfeatures = xstate_bv;
2952 if (cpu_has_xsaves)
2953 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2954
2955 /*
2956 * Copy each region from the non-compacted offset to the
2957 * possibly compacted offset.
2958 */
2959 valid = xstate_bv & ~XSTATE_FPSSE;
2960 while (valid) {
2961 u64 feature = valid & -valid;
2962 int index = fls64(feature) - 1;
2963 void *dest = get_xsave_addr(xsave, feature);
2964
2965 if (dest) {
2966 u32 size, offset, ecx, edx;
2967 cpuid_count(XSTATE_CPUID, index,
2968 &size, &offset, &ecx, &edx);
2969 memcpy(dest, src + offset, size);
2970 }
2971
2972 valid -= feature;
2973 }
2974 }
2975
2976 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2977 struct kvm_xsave *guest_xsave)
2978 {
2979 if (cpu_has_xsave) {
2980 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2981 fill_xsave((u8 *) guest_xsave->region, vcpu);
2982 } else {
2983 memcpy(guest_xsave->region,
2984 &vcpu->arch.guest_fpu.state.fxsave,
2985 sizeof(struct fxregs_state));
2986 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2987 XSTATE_FPSSE;
2988 }
2989 }
2990
2991 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2992 struct kvm_xsave *guest_xsave)
2993 {
2994 u64 xstate_bv =
2995 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2996
2997 if (cpu_has_xsave) {
2998 /*
2999 * Here we allow setting states that are not present in
3000 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3001 * with old userspace.
3002 */
3003 if (xstate_bv & ~kvm_supported_xcr0())
3004 return -EINVAL;
3005 load_xsave(vcpu, (u8 *)guest_xsave->region);
3006 } else {
3007 if (xstate_bv & ~XSTATE_FPSSE)
3008 return -EINVAL;
3009 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3010 guest_xsave->region, sizeof(struct fxregs_state));
3011 }
3012 return 0;
3013 }
3014
3015 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3016 struct kvm_xcrs *guest_xcrs)
3017 {
3018 if (!cpu_has_xsave) {
3019 guest_xcrs->nr_xcrs = 0;
3020 return;
3021 }
3022
3023 guest_xcrs->nr_xcrs = 1;
3024 guest_xcrs->flags = 0;
3025 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3026 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3027 }
3028
3029 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3030 struct kvm_xcrs *guest_xcrs)
3031 {
3032 int i, r = 0;
3033
3034 if (!cpu_has_xsave)
3035 return -EINVAL;
3036
3037 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3038 return -EINVAL;
3039
3040 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3041 /* Only support XCR0 currently */
3042 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3043 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3044 guest_xcrs->xcrs[i].value);
3045 break;
3046 }
3047 if (r)
3048 r = -EINVAL;
3049 return r;
3050 }
3051
3052 /*
3053 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3054 * stopped by the hypervisor. This function will be called from the host only.
3055 * EINVAL is returned when the host attempts to set the flag for a guest that
3056 * does not support pv clocks.
3057 */
3058 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3059 {
3060 if (!vcpu->arch.pv_time_enabled)
3061 return -EINVAL;
3062 vcpu->arch.pvclock_set_guest_stopped_request = true;
3063 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3064 return 0;
3065 }
3066
3067 long kvm_arch_vcpu_ioctl(struct file *filp,
3068 unsigned int ioctl, unsigned long arg)
3069 {
3070 struct kvm_vcpu *vcpu = filp->private_data;
3071 void __user *argp = (void __user *)arg;
3072 int r;
3073 union {
3074 struct kvm_lapic_state *lapic;
3075 struct kvm_xsave *xsave;
3076 struct kvm_xcrs *xcrs;
3077 void *buffer;
3078 } u;
3079
3080 u.buffer = NULL;
3081 switch (ioctl) {
3082 case KVM_GET_LAPIC: {
3083 r = -EINVAL;
3084 if (!vcpu->arch.apic)
3085 goto out;
3086 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3087
3088 r = -ENOMEM;
3089 if (!u.lapic)
3090 goto out;
3091 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3092 if (r)
3093 goto out;
3094 r = -EFAULT;
3095 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3096 goto out;
3097 r = 0;
3098 break;
3099 }
3100 case KVM_SET_LAPIC: {
3101 r = -EINVAL;
3102 if (!vcpu->arch.apic)
3103 goto out;
3104 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3105 if (IS_ERR(u.lapic))
3106 return PTR_ERR(u.lapic);
3107
3108 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3109 break;
3110 }
3111 case KVM_INTERRUPT: {
3112 struct kvm_interrupt irq;
3113
3114 r = -EFAULT;
3115 if (copy_from_user(&irq, argp, sizeof irq))
3116 goto out;
3117 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3118 break;
3119 }
3120 case KVM_NMI: {
3121 r = kvm_vcpu_ioctl_nmi(vcpu);
3122 break;
3123 }
3124 case KVM_SMI: {
3125 r = kvm_vcpu_ioctl_smi(vcpu);
3126 break;
3127 }
3128 case KVM_SET_CPUID: {
3129 struct kvm_cpuid __user *cpuid_arg = argp;
3130 struct kvm_cpuid cpuid;
3131
3132 r = -EFAULT;
3133 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3134 goto out;
3135 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3136 break;
3137 }
3138 case KVM_SET_CPUID2: {
3139 struct kvm_cpuid2 __user *cpuid_arg = argp;
3140 struct kvm_cpuid2 cpuid;
3141
3142 r = -EFAULT;
3143 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3144 goto out;
3145 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3146 cpuid_arg->entries);
3147 break;
3148 }
3149 case KVM_GET_CPUID2: {
3150 struct kvm_cpuid2 __user *cpuid_arg = argp;
3151 struct kvm_cpuid2 cpuid;
3152
3153 r = -EFAULT;
3154 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3155 goto out;
3156 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3157 cpuid_arg->entries);
3158 if (r)
3159 goto out;
3160 r = -EFAULT;
3161 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3162 goto out;
3163 r = 0;
3164 break;
3165 }
3166 case KVM_GET_MSRS:
3167 r = msr_io(vcpu, argp, do_get_msr, 1);
3168 break;
3169 case KVM_SET_MSRS:
3170 r = msr_io(vcpu, argp, do_set_msr, 0);
3171 break;
3172 case KVM_TPR_ACCESS_REPORTING: {
3173 struct kvm_tpr_access_ctl tac;
3174
3175 r = -EFAULT;
3176 if (copy_from_user(&tac, argp, sizeof tac))
3177 goto out;
3178 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3179 if (r)
3180 goto out;
3181 r = -EFAULT;
3182 if (copy_to_user(argp, &tac, sizeof tac))
3183 goto out;
3184 r = 0;
3185 break;
3186 };
3187 case KVM_SET_VAPIC_ADDR: {
3188 struct kvm_vapic_addr va;
3189
3190 r = -EINVAL;
3191 if (!irqchip_in_kernel(vcpu->kvm))
3192 goto out;
3193 r = -EFAULT;
3194 if (copy_from_user(&va, argp, sizeof va))
3195 goto out;
3196 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3197 break;
3198 }
3199 case KVM_X86_SETUP_MCE: {
3200 u64 mcg_cap;
3201
3202 r = -EFAULT;
3203 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3204 goto out;
3205 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3206 break;
3207 }
3208 case KVM_X86_SET_MCE: {
3209 struct kvm_x86_mce mce;
3210
3211 r = -EFAULT;
3212 if (copy_from_user(&mce, argp, sizeof mce))
3213 goto out;
3214 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3215 break;
3216 }
3217 case KVM_GET_VCPU_EVENTS: {
3218 struct kvm_vcpu_events events;
3219
3220 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3221
3222 r = -EFAULT;
3223 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3224 break;
3225 r = 0;
3226 break;
3227 }
3228 case KVM_SET_VCPU_EVENTS: {
3229 struct kvm_vcpu_events events;
3230
3231 r = -EFAULT;
3232 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3233 break;
3234
3235 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3236 break;
3237 }
3238 case KVM_GET_DEBUGREGS: {
3239 struct kvm_debugregs dbgregs;
3240
3241 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3242
3243 r = -EFAULT;
3244 if (copy_to_user(argp, &dbgregs,
3245 sizeof(struct kvm_debugregs)))
3246 break;
3247 r = 0;
3248 break;
3249 }
3250 case KVM_SET_DEBUGREGS: {
3251 struct kvm_debugregs dbgregs;
3252
3253 r = -EFAULT;
3254 if (copy_from_user(&dbgregs, argp,
3255 sizeof(struct kvm_debugregs)))
3256 break;
3257
3258 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3259 break;
3260 }
3261 case KVM_GET_XSAVE: {
3262 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3263 r = -ENOMEM;
3264 if (!u.xsave)
3265 break;
3266
3267 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3268
3269 r = -EFAULT;
3270 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3271 break;
3272 r = 0;
3273 break;
3274 }
3275 case KVM_SET_XSAVE: {
3276 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3277 if (IS_ERR(u.xsave))
3278 return PTR_ERR(u.xsave);
3279
3280 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3281 break;
3282 }
3283 case KVM_GET_XCRS: {
3284 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3285 r = -ENOMEM;
3286 if (!u.xcrs)
3287 break;
3288
3289 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3290
3291 r = -EFAULT;
3292 if (copy_to_user(argp, u.xcrs,
3293 sizeof(struct kvm_xcrs)))
3294 break;
3295 r = 0;
3296 break;
3297 }
3298 case KVM_SET_XCRS: {
3299 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3300 if (IS_ERR(u.xcrs))
3301 return PTR_ERR(u.xcrs);
3302
3303 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3304 break;
3305 }
3306 case KVM_SET_TSC_KHZ: {
3307 u32 user_tsc_khz;
3308
3309 r = -EINVAL;
3310 user_tsc_khz = (u32)arg;
3311
3312 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3313 goto out;
3314
3315 if (user_tsc_khz == 0)
3316 user_tsc_khz = tsc_khz;
3317
3318 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3319
3320 r = 0;
3321 goto out;
3322 }
3323 case KVM_GET_TSC_KHZ: {
3324 r = vcpu->arch.virtual_tsc_khz;
3325 goto out;
3326 }
3327 case KVM_KVMCLOCK_CTRL: {
3328 r = kvm_set_guest_paused(vcpu);
3329 goto out;
3330 }
3331 default:
3332 r = -EINVAL;
3333 }
3334 out:
3335 kfree(u.buffer);
3336 return r;
3337 }
3338
3339 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3340 {
3341 return VM_FAULT_SIGBUS;
3342 }
3343
3344 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3345 {
3346 int ret;
3347
3348 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3349 return -EINVAL;
3350 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3351 return ret;
3352 }
3353
3354 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3355 u64 ident_addr)
3356 {
3357 kvm->arch.ept_identity_map_addr = ident_addr;
3358 return 0;
3359 }
3360
3361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3362 u32 kvm_nr_mmu_pages)
3363 {
3364 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3365 return -EINVAL;
3366
3367 mutex_lock(&kvm->slots_lock);
3368
3369 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3370 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3371
3372 mutex_unlock(&kvm->slots_lock);
3373 return 0;
3374 }
3375
3376 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3377 {
3378 return kvm->arch.n_max_mmu_pages;
3379 }
3380
3381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3382 {
3383 int r;
3384
3385 r = 0;
3386 switch (chip->chip_id) {
3387 case KVM_IRQCHIP_PIC_MASTER:
3388 memcpy(&chip->chip.pic,
3389 &pic_irqchip(kvm)->pics[0],
3390 sizeof(struct kvm_pic_state));
3391 break;
3392 case KVM_IRQCHIP_PIC_SLAVE:
3393 memcpy(&chip->chip.pic,
3394 &pic_irqchip(kvm)->pics[1],
3395 sizeof(struct kvm_pic_state));
3396 break;
3397 case KVM_IRQCHIP_IOAPIC:
3398 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3399 break;
3400 default:
3401 r = -EINVAL;
3402 break;
3403 }
3404 return r;
3405 }
3406
3407 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3408 {
3409 int r;
3410
3411 r = 0;
3412 switch (chip->chip_id) {
3413 case KVM_IRQCHIP_PIC_MASTER:
3414 spin_lock(&pic_irqchip(kvm)->lock);
3415 memcpy(&pic_irqchip(kvm)->pics[0],
3416 &chip->chip.pic,
3417 sizeof(struct kvm_pic_state));
3418 spin_unlock(&pic_irqchip(kvm)->lock);
3419 break;
3420 case KVM_IRQCHIP_PIC_SLAVE:
3421 spin_lock(&pic_irqchip(kvm)->lock);
3422 memcpy(&pic_irqchip(kvm)->pics[1],
3423 &chip->chip.pic,
3424 sizeof(struct kvm_pic_state));
3425 spin_unlock(&pic_irqchip(kvm)->lock);
3426 break;
3427 case KVM_IRQCHIP_IOAPIC:
3428 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3429 break;
3430 default:
3431 r = -EINVAL;
3432 break;
3433 }
3434 kvm_pic_update_irq(pic_irqchip(kvm));
3435 return r;
3436 }
3437
3438 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3439 {
3440 int r = 0;
3441
3442 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3443 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3444 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3445 return r;
3446 }
3447
3448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3449 {
3450 int r = 0;
3451
3452 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3453 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3454 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3455 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456 return r;
3457 }
3458
3459 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460 {
3461 int r = 0;
3462
3463 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3465 sizeof(ps->channels));
3466 ps->flags = kvm->arch.vpit->pit_state.flags;
3467 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3468 memset(&ps->reserved, 0, sizeof(ps->reserved));
3469 return r;
3470 }
3471
3472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3473 {
3474 int r = 0, start = 0;
3475 u32 prev_legacy, cur_legacy;
3476 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3478 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3479 if (!prev_legacy && cur_legacy)
3480 start = 1;
3481 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3482 sizeof(kvm->arch.vpit->pit_state.channels));
3483 kvm->arch.vpit->pit_state.flags = ps->flags;
3484 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3485 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3486 return r;
3487 }
3488
3489 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3490 struct kvm_reinject_control *control)
3491 {
3492 if (!kvm->arch.vpit)
3493 return -ENXIO;
3494 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3495 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3496 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3497 return 0;
3498 }
3499
3500 /**
3501 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3502 * @kvm: kvm instance
3503 * @log: slot id and address to which we copy the log
3504 *
3505 * Steps 1-4 below provide general overview of dirty page logging. See
3506 * kvm_get_dirty_log_protect() function description for additional details.
3507 *
3508 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3509 * always flush the TLB (step 4) even if previous step failed and the dirty
3510 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3511 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3512 * writes will be marked dirty for next log read.
3513 *
3514 * 1. Take a snapshot of the bit and clear it if needed.
3515 * 2. Write protect the corresponding page.
3516 * 3. Copy the snapshot to the userspace.
3517 * 4. Flush TLB's if needed.
3518 */
3519 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3520 {
3521 bool is_dirty = false;
3522 int r;
3523
3524 mutex_lock(&kvm->slots_lock);
3525
3526 /*
3527 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3528 */
3529 if (kvm_x86_ops->flush_log_dirty)
3530 kvm_x86_ops->flush_log_dirty(kvm);
3531
3532 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3533
3534 /*
3535 * All the TLBs can be flushed out of mmu lock, see the comments in
3536 * kvm_mmu_slot_remove_write_access().
3537 */
3538 lockdep_assert_held(&kvm->slots_lock);
3539 if (is_dirty)
3540 kvm_flush_remote_tlbs(kvm);
3541
3542 mutex_unlock(&kvm->slots_lock);
3543 return r;
3544 }
3545
3546 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3547 bool line_status)
3548 {
3549 if (!irqchip_in_kernel(kvm))
3550 return -ENXIO;
3551
3552 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3553 irq_event->irq, irq_event->level,
3554 line_status);
3555 return 0;
3556 }
3557
3558 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3559 struct kvm_enable_cap *cap)
3560 {
3561 int r;
3562
3563 if (cap->flags)
3564 return -EINVAL;
3565
3566 switch (cap->cap) {
3567 case KVM_CAP_DISABLE_QUIRKS:
3568 kvm->arch.disabled_quirks = cap->args[0];
3569 r = 0;
3570 break;
3571 default:
3572 r = -EINVAL;
3573 break;
3574 }
3575 return r;
3576 }
3577
3578 long kvm_arch_vm_ioctl(struct file *filp,
3579 unsigned int ioctl, unsigned long arg)
3580 {
3581 struct kvm *kvm = filp->private_data;
3582 void __user *argp = (void __user *)arg;
3583 int r = -ENOTTY;
3584 /*
3585 * This union makes it completely explicit to gcc-3.x
3586 * that these two variables' stack usage should be
3587 * combined, not added together.
3588 */
3589 union {
3590 struct kvm_pit_state ps;
3591 struct kvm_pit_state2 ps2;
3592 struct kvm_pit_config pit_config;
3593 } u;
3594
3595 switch (ioctl) {
3596 case KVM_SET_TSS_ADDR:
3597 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3598 break;
3599 case KVM_SET_IDENTITY_MAP_ADDR: {
3600 u64 ident_addr;
3601
3602 r = -EFAULT;
3603 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3604 goto out;
3605 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3606 break;
3607 }
3608 case KVM_SET_NR_MMU_PAGES:
3609 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3610 break;
3611 case KVM_GET_NR_MMU_PAGES:
3612 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3613 break;
3614 case KVM_CREATE_IRQCHIP: {
3615 struct kvm_pic *vpic;
3616
3617 mutex_lock(&kvm->lock);
3618 r = -EEXIST;
3619 if (kvm->arch.vpic)
3620 goto create_irqchip_unlock;
3621 r = -EINVAL;
3622 if (atomic_read(&kvm->online_vcpus))
3623 goto create_irqchip_unlock;
3624 r = -ENOMEM;
3625 vpic = kvm_create_pic(kvm);
3626 if (vpic) {
3627 r = kvm_ioapic_init(kvm);
3628 if (r) {
3629 mutex_lock(&kvm->slots_lock);
3630 kvm_destroy_pic(vpic);
3631 mutex_unlock(&kvm->slots_lock);
3632 goto create_irqchip_unlock;
3633 }
3634 } else
3635 goto create_irqchip_unlock;
3636 r = kvm_setup_default_irq_routing(kvm);
3637 if (r) {
3638 mutex_lock(&kvm->slots_lock);
3639 mutex_lock(&kvm->irq_lock);
3640 kvm_ioapic_destroy(kvm);
3641 kvm_destroy_pic(vpic);
3642 mutex_unlock(&kvm->irq_lock);
3643 mutex_unlock(&kvm->slots_lock);
3644 goto create_irqchip_unlock;
3645 }
3646 /* Write kvm->irq_routing before kvm->arch.vpic. */
3647 smp_wmb();
3648 kvm->arch.vpic = vpic;
3649 create_irqchip_unlock:
3650 mutex_unlock(&kvm->lock);
3651 break;
3652 }
3653 case KVM_CREATE_PIT:
3654 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3655 goto create_pit;
3656 case KVM_CREATE_PIT2:
3657 r = -EFAULT;
3658 if (copy_from_user(&u.pit_config, argp,
3659 sizeof(struct kvm_pit_config)))
3660 goto out;
3661 create_pit:
3662 mutex_lock(&kvm->slots_lock);
3663 r = -EEXIST;
3664 if (kvm->arch.vpit)
3665 goto create_pit_unlock;
3666 r = -ENOMEM;
3667 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3668 if (kvm->arch.vpit)
3669 r = 0;
3670 create_pit_unlock:
3671 mutex_unlock(&kvm->slots_lock);
3672 break;
3673 case KVM_GET_IRQCHIP: {
3674 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3675 struct kvm_irqchip *chip;
3676
3677 chip = memdup_user(argp, sizeof(*chip));
3678 if (IS_ERR(chip)) {
3679 r = PTR_ERR(chip);
3680 goto out;
3681 }
3682
3683 r = -ENXIO;
3684 if (!irqchip_in_kernel(kvm))
3685 goto get_irqchip_out;
3686 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3687 if (r)
3688 goto get_irqchip_out;
3689 r = -EFAULT;
3690 if (copy_to_user(argp, chip, sizeof *chip))
3691 goto get_irqchip_out;
3692 r = 0;
3693 get_irqchip_out:
3694 kfree(chip);
3695 break;
3696 }
3697 case KVM_SET_IRQCHIP: {
3698 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3699 struct kvm_irqchip *chip;
3700
3701 chip = memdup_user(argp, sizeof(*chip));
3702 if (IS_ERR(chip)) {
3703 r = PTR_ERR(chip);
3704 goto out;
3705 }
3706
3707 r = -ENXIO;
3708 if (!irqchip_in_kernel(kvm))
3709 goto set_irqchip_out;
3710 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3711 if (r)
3712 goto set_irqchip_out;
3713 r = 0;
3714 set_irqchip_out:
3715 kfree(chip);
3716 break;
3717 }
3718 case KVM_GET_PIT: {
3719 r = -EFAULT;
3720 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3721 goto out;
3722 r = -ENXIO;
3723 if (!kvm->arch.vpit)
3724 goto out;
3725 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3726 if (r)
3727 goto out;
3728 r = -EFAULT;
3729 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3730 goto out;
3731 r = 0;
3732 break;
3733 }
3734 case KVM_SET_PIT: {
3735 r = -EFAULT;
3736 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3737 goto out;
3738 r = -ENXIO;
3739 if (!kvm->arch.vpit)
3740 goto out;
3741 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3742 break;
3743 }
3744 case KVM_GET_PIT2: {
3745 r = -ENXIO;
3746 if (!kvm->arch.vpit)
3747 goto out;
3748 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3749 if (r)
3750 goto out;
3751 r = -EFAULT;
3752 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3753 goto out;
3754 r = 0;
3755 break;
3756 }
3757 case KVM_SET_PIT2: {
3758 r = -EFAULT;
3759 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3760 goto out;
3761 r = -ENXIO;
3762 if (!kvm->arch.vpit)
3763 goto out;
3764 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3765 break;
3766 }
3767 case KVM_REINJECT_CONTROL: {
3768 struct kvm_reinject_control control;
3769 r = -EFAULT;
3770 if (copy_from_user(&control, argp, sizeof(control)))
3771 goto out;
3772 r = kvm_vm_ioctl_reinject(kvm, &control);
3773 break;
3774 }
3775 case KVM_SET_BOOT_CPU_ID:
3776 r = 0;
3777 mutex_lock(&kvm->lock);
3778 if (atomic_read(&kvm->online_vcpus) != 0)
3779 r = -EBUSY;
3780 else
3781 kvm->arch.bsp_vcpu_id = arg;
3782 mutex_unlock(&kvm->lock);
3783 break;
3784 case KVM_XEN_HVM_CONFIG: {
3785 r = -EFAULT;
3786 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3787 sizeof(struct kvm_xen_hvm_config)))
3788 goto out;
3789 r = -EINVAL;
3790 if (kvm->arch.xen_hvm_config.flags)
3791 goto out;
3792 r = 0;
3793 break;
3794 }
3795 case KVM_SET_CLOCK: {
3796 struct kvm_clock_data user_ns;
3797 u64 now_ns;
3798 s64 delta;
3799
3800 r = -EFAULT;
3801 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3802 goto out;
3803
3804 r = -EINVAL;
3805 if (user_ns.flags)
3806 goto out;
3807
3808 r = 0;
3809 local_irq_disable();
3810 now_ns = get_kernel_ns();
3811 delta = user_ns.clock - now_ns;
3812 local_irq_enable();
3813 kvm->arch.kvmclock_offset = delta;
3814 kvm_gen_update_masterclock(kvm);
3815 break;
3816 }
3817 case KVM_GET_CLOCK: {
3818 struct kvm_clock_data user_ns;
3819 u64 now_ns;
3820
3821 local_irq_disable();
3822 now_ns = get_kernel_ns();
3823 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3824 local_irq_enable();
3825 user_ns.flags = 0;
3826 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3827
3828 r = -EFAULT;
3829 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3830 goto out;
3831 r = 0;
3832 break;
3833 }
3834 case KVM_ENABLE_CAP: {
3835 struct kvm_enable_cap cap;
3836
3837 r = -EFAULT;
3838 if (copy_from_user(&cap, argp, sizeof(cap)))
3839 goto out;
3840 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3841 break;
3842 }
3843 default:
3844 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3845 }
3846 out:
3847 return r;
3848 }
3849
3850 static void kvm_init_msr_list(void)
3851 {
3852 u32 dummy[2];
3853 unsigned i, j;
3854
3855 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3856 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3857 continue;
3858
3859 /*
3860 * Even MSRs that are valid in the host may not be exposed
3861 * to the guests in some cases. We could work around this
3862 * in VMX with the generic MSR save/load machinery, but it
3863 * is not really worthwhile since it will really only
3864 * happen with nested virtualization.
3865 */
3866 switch (msrs_to_save[i]) {
3867 case MSR_IA32_BNDCFGS:
3868 if (!kvm_x86_ops->mpx_supported())
3869 continue;
3870 break;
3871 default:
3872 break;
3873 }
3874
3875 if (j < i)
3876 msrs_to_save[j] = msrs_to_save[i];
3877 j++;
3878 }
3879 num_msrs_to_save = j;
3880
3881 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3882 switch (emulated_msrs[i]) {
3883 case MSR_IA32_SMBASE:
3884 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3885 continue;
3886 break;
3887 default:
3888 break;
3889 }
3890
3891 if (j < i)
3892 emulated_msrs[j] = emulated_msrs[i];
3893 j++;
3894 }
3895 num_emulated_msrs = j;
3896 }
3897
3898 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3899 const void *v)
3900 {
3901 int handled = 0;
3902 int n;
3903
3904 do {
3905 n = min(len, 8);
3906 if (!(vcpu->arch.apic &&
3907 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3908 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3909 break;
3910 handled += n;
3911 addr += n;
3912 len -= n;
3913 v += n;
3914 } while (len);
3915
3916 return handled;
3917 }
3918
3919 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3920 {
3921 int handled = 0;
3922 int n;
3923
3924 do {
3925 n = min(len, 8);
3926 if (!(vcpu->arch.apic &&
3927 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3928 addr, n, v))
3929 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3930 break;
3931 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3932 handled += n;
3933 addr += n;
3934 len -= n;
3935 v += n;
3936 } while (len);
3937
3938 return handled;
3939 }
3940
3941 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3942 struct kvm_segment *var, int seg)
3943 {
3944 kvm_x86_ops->set_segment(vcpu, var, seg);
3945 }
3946
3947 void kvm_get_segment(struct kvm_vcpu *vcpu,
3948 struct kvm_segment *var, int seg)
3949 {
3950 kvm_x86_ops->get_segment(vcpu, var, seg);
3951 }
3952
3953 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3954 struct x86_exception *exception)
3955 {
3956 gpa_t t_gpa;
3957
3958 BUG_ON(!mmu_is_nested(vcpu));
3959
3960 /* NPT walks are always user-walks */
3961 access |= PFERR_USER_MASK;
3962 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3963
3964 return t_gpa;
3965 }
3966
3967 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3968 struct x86_exception *exception)
3969 {
3970 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3971 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3972 }
3973
3974 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3975 struct x86_exception *exception)
3976 {
3977 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3978 access |= PFERR_FETCH_MASK;
3979 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3980 }
3981
3982 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3983 struct x86_exception *exception)
3984 {
3985 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3986 access |= PFERR_WRITE_MASK;
3987 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3988 }
3989
3990 /* uses this to access any guest's mapped memory without checking CPL */
3991 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3992 struct x86_exception *exception)
3993 {
3994 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3995 }
3996
3997 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3998 struct kvm_vcpu *vcpu, u32 access,
3999 struct x86_exception *exception)
4000 {
4001 void *data = val;
4002 int r = X86EMUL_CONTINUE;
4003
4004 while (bytes) {
4005 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4006 exception);
4007 unsigned offset = addr & (PAGE_SIZE-1);
4008 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4009 int ret;
4010
4011 if (gpa == UNMAPPED_GVA)
4012 return X86EMUL_PROPAGATE_FAULT;
4013 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4014 offset, toread);
4015 if (ret < 0) {
4016 r = X86EMUL_IO_NEEDED;
4017 goto out;
4018 }
4019
4020 bytes -= toread;
4021 data += toread;
4022 addr += toread;
4023 }
4024 out:
4025 return r;
4026 }
4027
4028 /* used for instruction fetching */
4029 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4030 gva_t addr, void *val, unsigned int bytes,
4031 struct x86_exception *exception)
4032 {
4033 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4034 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4035 unsigned offset;
4036 int ret;
4037
4038 /* Inline kvm_read_guest_virt_helper for speed. */
4039 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4040 exception);
4041 if (unlikely(gpa == UNMAPPED_GVA))
4042 return X86EMUL_PROPAGATE_FAULT;
4043
4044 offset = addr & (PAGE_SIZE-1);
4045 if (WARN_ON(offset + bytes > PAGE_SIZE))
4046 bytes = (unsigned)PAGE_SIZE - offset;
4047 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4048 offset, bytes);
4049 if (unlikely(ret < 0))
4050 return X86EMUL_IO_NEEDED;
4051
4052 return X86EMUL_CONTINUE;
4053 }
4054
4055 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4056 gva_t addr, void *val, unsigned int bytes,
4057 struct x86_exception *exception)
4058 {
4059 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4060 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4061
4062 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4063 exception);
4064 }
4065 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4066
4067 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4068 gva_t addr, void *val, unsigned int bytes,
4069 struct x86_exception *exception)
4070 {
4071 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4072 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4073 }
4074
4075 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4076 gva_t addr, void *val,
4077 unsigned int bytes,
4078 struct x86_exception *exception)
4079 {
4080 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4081 void *data = val;
4082 int r = X86EMUL_CONTINUE;
4083
4084 while (bytes) {
4085 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4086 PFERR_WRITE_MASK,
4087 exception);
4088 unsigned offset = addr & (PAGE_SIZE-1);
4089 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4090 int ret;
4091
4092 if (gpa == UNMAPPED_GVA)
4093 return X86EMUL_PROPAGATE_FAULT;
4094 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4095 if (ret < 0) {
4096 r = X86EMUL_IO_NEEDED;
4097 goto out;
4098 }
4099
4100 bytes -= towrite;
4101 data += towrite;
4102 addr += towrite;
4103 }
4104 out:
4105 return r;
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4108
4109 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4110 gpa_t *gpa, struct x86_exception *exception,
4111 bool write)
4112 {
4113 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4114 | (write ? PFERR_WRITE_MASK : 0);
4115
4116 if (vcpu_match_mmio_gva(vcpu, gva)
4117 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4118 vcpu->arch.access, access)) {
4119 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4120 (gva & (PAGE_SIZE - 1));
4121 trace_vcpu_match_mmio(gva, *gpa, write, false);
4122 return 1;
4123 }
4124
4125 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4126
4127 if (*gpa == UNMAPPED_GVA)
4128 return -1;
4129
4130 /* For APIC access vmexit */
4131 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4132 return 1;
4133
4134 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4135 trace_vcpu_match_mmio(gva, *gpa, write, true);
4136 return 1;
4137 }
4138
4139 return 0;
4140 }
4141
4142 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4143 const void *val, int bytes)
4144 {
4145 int ret;
4146
4147 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4148 if (ret < 0)
4149 return 0;
4150 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4151 return 1;
4152 }
4153
4154 struct read_write_emulator_ops {
4155 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4156 int bytes);
4157 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4158 void *val, int bytes);
4159 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4160 int bytes, void *val);
4161 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4162 void *val, int bytes);
4163 bool write;
4164 };
4165
4166 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4167 {
4168 if (vcpu->mmio_read_completed) {
4169 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4170 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4171 vcpu->mmio_read_completed = 0;
4172 return 1;
4173 }
4174
4175 return 0;
4176 }
4177
4178 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4179 void *val, int bytes)
4180 {
4181 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4182 }
4183
4184 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4185 void *val, int bytes)
4186 {
4187 return emulator_write_phys(vcpu, gpa, val, bytes);
4188 }
4189
4190 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4191 {
4192 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4193 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4194 }
4195
4196 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4197 void *val, int bytes)
4198 {
4199 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4200 return X86EMUL_IO_NEEDED;
4201 }
4202
4203 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4204 void *val, int bytes)
4205 {
4206 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4207
4208 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4209 return X86EMUL_CONTINUE;
4210 }
4211
4212 static const struct read_write_emulator_ops read_emultor = {
4213 .read_write_prepare = read_prepare,
4214 .read_write_emulate = read_emulate,
4215 .read_write_mmio = vcpu_mmio_read,
4216 .read_write_exit_mmio = read_exit_mmio,
4217 };
4218
4219 static const struct read_write_emulator_ops write_emultor = {
4220 .read_write_emulate = write_emulate,
4221 .read_write_mmio = write_mmio,
4222 .read_write_exit_mmio = write_exit_mmio,
4223 .write = true,
4224 };
4225
4226 static int emulator_read_write_onepage(unsigned long addr, void *val,
4227 unsigned int bytes,
4228 struct x86_exception *exception,
4229 struct kvm_vcpu *vcpu,
4230 const struct read_write_emulator_ops *ops)
4231 {
4232 gpa_t gpa;
4233 int handled, ret;
4234 bool write = ops->write;
4235 struct kvm_mmio_fragment *frag;
4236
4237 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4238
4239 if (ret < 0)
4240 return X86EMUL_PROPAGATE_FAULT;
4241
4242 /* For APIC access vmexit */
4243 if (ret)
4244 goto mmio;
4245
4246 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4247 return X86EMUL_CONTINUE;
4248
4249 mmio:
4250 /*
4251 * Is this MMIO handled locally?
4252 */
4253 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4254 if (handled == bytes)
4255 return X86EMUL_CONTINUE;
4256
4257 gpa += handled;
4258 bytes -= handled;
4259 val += handled;
4260
4261 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4262 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4263 frag->gpa = gpa;
4264 frag->data = val;
4265 frag->len = bytes;
4266 return X86EMUL_CONTINUE;
4267 }
4268
4269 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4270 unsigned long addr,
4271 void *val, unsigned int bytes,
4272 struct x86_exception *exception,
4273 const struct read_write_emulator_ops *ops)
4274 {
4275 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4276 gpa_t gpa;
4277 int rc;
4278
4279 if (ops->read_write_prepare &&
4280 ops->read_write_prepare(vcpu, val, bytes))
4281 return X86EMUL_CONTINUE;
4282
4283 vcpu->mmio_nr_fragments = 0;
4284
4285 /* Crossing a page boundary? */
4286 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4287 int now;
4288
4289 now = -addr & ~PAGE_MASK;
4290 rc = emulator_read_write_onepage(addr, val, now, exception,
4291 vcpu, ops);
4292
4293 if (rc != X86EMUL_CONTINUE)
4294 return rc;
4295 addr += now;
4296 if (ctxt->mode != X86EMUL_MODE_PROT64)
4297 addr = (u32)addr;
4298 val += now;
4299 bytes -= now;
4300 }
4301
4302 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4303 vcpu, ops);
4304 if (rc != X86EMUL_CONTINUE)
4305 return rc;
4306
4307 if (!vcpu->mmio_nr_fragments)
4308 return rc;
4309
4310 gpa = vcpu->mmio_fragments[0].gpa;
4311
4312 vcpu->mmio_needed = 1;
4313 vcpu->mmio_cur_fragment = 0;
4314
4315 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4316 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4317 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4318 vcpu->run->mmio.phys_addr = gpa;
4319
4320 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4321 }
4322
4323 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4324 unsigned long addr,
4325 void *val,
4326 unsigned int bytes,
4327 struct x86_exception *exception)
4328 {
4329 return emulator_read_write(ctxt, addr, val, bytes,
4330 exception, &read_emultor);
4331 }
4332
4333 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4334 unsigned long addr,
4335 const void *val,
4336 unsigned int bytes,
4337 struct x86_exception *exception)
4338 {
4339 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4340 exception, &write_emultor);
4341 }
4342
4343 #define CMPXCHG_TYPE(t, ptr, old, new) \
4344 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4345
4346 #ifdef CONFIG_X86_64
4347 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4348 #else
4349 # define CMPXCHG64(ptr, old, new) \
4350 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4351 #endif
4352
4353 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4354 unsigned long addr,
4355 const void *old,
4356 const void *new,
4357 unsigned int bytes,
4358 struct x86_exception *exception)
4359 {
4360 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4361 gpa_t gpa;
4362 struct page *page;
4363 char *kaddr;
4364 bool exchanged;
4365
4366 /* guests cmpxchg8b have to be emulated atomically */
4367 if (bytes > 8 || (bytes & (bytes - 1)))
4368 goto emul_write;
4369
4370 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4371
4372 if (gpa == UNMAPPED_GVA ||
4373 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4374 goto emul_write;
4375
4376 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4377 goto emul_write;
4378
4379 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4380 if (is_error_page(page))
4381 goto emul_write;
4382
4383 kaddr = kmap_atomic(page);
4384 kaddr += offset_in_page(gpa);
4385 switch (bytes) {
4386 case 1:
4387 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4388 break;
4389 case 2:
4390 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4391 break;
4392 case 4:
4393 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4394 break;
4395 case 8:
4396 exchanged = CMPXCHG64(kaddr, old, new);
4397 break;
4398 default:
4399 BUG();
4400 }
4401 kunmap_atomic(kaddr);
4402 kvm_release_page_dirty(page);
4403
4404 if (!exchanged)
4405 return X86EMUL_CMPXCHG_FAILED;
4406
4407 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4408 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4409
4410 return X86EMUL_CONTINUE;
4411
4412 emul_write:
4413 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4414
4415 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4416 }
4417
4418 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4419 {
4420 /* TODO: String I/O for in kernel device */
4421 int r;
4422
4423 if (vcpu->arch.pio.in)
4424 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4425 vcpu->arch.pio.size, pd);
4426 else
4427 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4428 vcpu->arch.pio.port, vcpu->arch.pio.size,
4429 pd);
4430 return r;
4431 }
4432
4433 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4434 unsigned short port, void *val,
4435 unsigned int count, bool in)
4436 {
4437 vcpu->arch.pio.port = port;
4438 vcpu->arch.pio.in = in;
4439 vcpu->arch.pio.count = count;
4440 vcpu->arch.pio.size = size;
4441
4442 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4443 vcpu->arch.pio.count = 0;
4444 return 1;
4445 }
4446
4447 vcpu->run->exit_reason = KVM_EXIT_IO;
4448 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4449 vcpu->run->io.size = size;
4450 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4451 vcpu->run->io.count = count;
4452 vcpu->run->io.port = port;
4453
4454 return 0;
4455 }
4456
4457 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4458 int size, unsigned short port, void *val,
4459 unsigned int count)
4460 {
4461 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4462 int ret;
4463
4464 if (vcpu->arch.pio.count)
4465 goto data_avail;
4466
4467 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4468 if (ret) {
4469 data_avail:
4470 memcpy(val, vcpu->arch.pio_data, size * count);
4471 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4472 vcpu->arch.pio.count = 0;
4473 return 1;
4474 }
4475
4476 return 0;
4477 }
4478
4479 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4480 int size, unsigned short port,
4481 const void *val, unsigned int count)
4482 {
4483 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4484
4485 memcpy(vcpu->arch.pio_data, val, size * count);
4486 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4487 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4488 }
4489
4490 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4491 {
4492 return kvm_x86_ops->get_segment_base(vcpu, seg);
4493 }
4494
4495 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4496 {
4497 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4498 }
4499
4500 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4501 {
4502 if (!need_emulate_wbinvd(vcpu))
4503 return X86EMUL_CONTINUE;
4504
4505 if (kvm_x86_ops->has_wbinvd_exit()) {
4506 int cpu = get_cpu();
4507
4508 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4509 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4510 wbinvd_ipi, NULL, 1);
4511 put_cpu();
4512 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4513 } else
4514 wbinvd();
4515 return X86EMUL_CONTINUE;
4516 }
4517
4518 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4519 {
4520 kvm_x86_ops->skip_emulated_instruction(vcpu);
4521 return kvm_emulate_wbinvd_noskip(vcpu);
4522 }
4523 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4524
4525
4526
4527 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4528 {
4529 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4530 }
4531
4532 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4533 unsigned long *dest)
4534 {
4535 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4536 }
4537
4538 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4539 unsigned long value)
4540 {
4541
4542 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4543 }
4544
4545 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4546 {
4547 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4548 }
4549
4550 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4551 {
4552 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4553 unsigned long value;
4554
4555 switch (cr) {
4556 case 0:
4557 value = kvm_read_cr0(vcpu);
4558 break;
4559 case 2:
4560 value = vcpu->arch.cr2;
4561 break;
4562 case 3:
4563 value = kvm_read_cr3(vcpu);
4564 break;
4565 case 4:
4566 value = kvm_read_cr4(vcpu);
4567 break;
4568 case 8:
4569 value = kvm_get_cr8(vcpu);
4570 break;
4571 default:
4572 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4573 return 0;
4574 }
4575
4576 return value;
4577 }
4578
4579 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4580 {
4581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582 int res = 0;
4583
4584 switch (cr) {
4585 case 0:
4586 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4587 break;
4588 case 2:
4589 vcpu->arch.cr2 = val;
4590 break;
4591 case 3:
4592 res = kvm_set_cr3(vcpu, val);
4593 break;
4594 case 4:
4595 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4596 break;
4597 case 8:
4598 res = kvm_set_cr8(vcpu, val);
4599 break;
4600 default:
4601 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4602 res = -1;
4603 }
4604
4605 return res;
4606 }
4607
4608 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4609 {
4610 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4611 }
4612
4613 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4614 {
4615 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4616 }
4617
4618 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4619 {
4620 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4621 }
4622
4623 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4624 {
4625 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4626 }
4627
4628 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4629 {
4630 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4631 }
4632
4633 static unsigned long emulator_get_cached_segment_base(
4634 struct x86_emulate_ctxt *ctxt, int seg)
4635 {
4636 return get_segment_base(emul_to_vcpu(ctxt), seg);
4637 }
4638
4639 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4640 struct desc_struct *desc, u32 *base3,
4641 int seg)
4642 {
4643 struct kvm_segment var;
4644
4645 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4646 *selector = var.selector;
4647
4648 if (var.unusable) {
4649 memset(desc, 0, sizeof(*desc));
4650 return false;
4651 }
4652
4653 if (var.g)
4654 var.limit >>= 12;
4655 set_desc_limit(desc, var.limit);
4656 set_desc_base(desc, (unsigned long)var.base);
4657 #ifdef CONFIG_X86_64
4658 if (base3)
4659 *base3 = var.base >> 32;
4660 #endif
4661 desc->type = var.type;
4662 desc->s = var.s;
4663 desc->dpl = var.dpl;
4664 desc->p = var.present;
4665 desc->avl = var.avl;
4666 desc->l = var.l;
4667 desc->d = var.db;
4668 desc->g = var.g;
4669
4670 return true;
4671 }
4672
4673 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4674 struct desc_struct *desc, u32 base3,
4675 int seg)
4676 {
4677 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4678 struct kvm_segment var;
4679
4680 var.selector = selector;
4681 var.base = get_desc_base(desc);
4682 #ifdef CONFIG_X86_64
4683 var.base |= ((u64)base3) << 32;
4684 #endif
4685 var.limit = get_desc_limit(desc);
4686 if (desc->g)
4687 var.limit = (var.limit << 12) | 0xfff;
4688 var.type = desc->type;
4689 var.dpl = desc->dpl;
4690 var.db = desc->d;
4691 var.s = desc->s;
4692 var.l = desc->l;
4693 var.g = desc->g;
4694 var.avl = desc->avl;
4695 var.present = desc->p;
4696 var.unusable = !var.present;
4697 var.padding = 0;
4698
4699 kvm_set_segment(vcpu, &var, seg);
4700 return;
4701 }
4702
4703 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4704 u32 msr_index, u64 *pdata)
4705 {
4706 struct msr_data msr;
4707 int r;
4708
4709 msr.index = msr_index;
4710 msr.host_initiated = false;
4711 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4712 if (r)
4713 return r;
4714
4715 *pdata = msr.data;
4716 return 0;
4717 }
4718
4719 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4720 u32 msr_index, u64 data)
4721 {
4722 struct msr_data msr;
4723
4724 msr.data = data;
4725 msr.index = msr_index;
4726 msr.host_initiated = false;
4727 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4728 }
4729
4730 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4731 {
4732 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4733
4734 return vcpu->arch.smbase;
4735 }
4736
4737 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4738 {
4739 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740
4741 vcpu->arch.smbase = smbase;
4742 }
4743
4744 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4745 u32 pmc)
4746 {
4747 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4748 }
4749
4750 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4751 u32 pmc, u64 *pdata)
4752 {
4753 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4754 }
4755
4756 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4757 {
4758 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4759 }
4760
4761 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4762 {
4763 preempt_disable();
4764 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4765 /*
4766 * CR0.TS may reference the host fpu state, not the guest fpu state,
4767 * so it may be clear at this point.
4768 */
4769 clts();
4770 }
4771
4772 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4773 {
4774 preempt_enable();
4775 }
4776
4777 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4778 struct x86_instruction_info *info,
4779 enum x86_intercept_stage stage)
4780 {
4781 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4782 }
4783
4784 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4785 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4786 {
4787 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4788 }
4789
4790 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4791 {
4792 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4793 }
4794
4795 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4796 {
4797 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4798 }
4799
4800 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4801 {
4802 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4803 }
4804
4805 static const struct x86_emulate_ops emulate_ops = {
4806 .read_gpr = emulator_read_gpr,
4807 .write_gpr = emulator_write_gpr,
4808 .read_std = kvm_read_guest_virt_system,
4809 .write_std = kvm_write_guest_virt_system,
4810 .fetch = kvm_fetch_guest_virt,
4811 .read_emulated = emulator_read_emulated,
4812 .write_emulated = emulator_write_emulated,
4813 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4814 .invlpg = emulator_invlpg,
4815 .pio_in_emulated = emulator_pio_in_emulated,
4816 .pio_out_emulated = emulator_pio_out_emulated,
4817 .get_segment = emulator_get_segment,
4818 .set_segment = emulator_set_segment,
4819 .get_cached_segment_base = emulator_get_cached_segment_base,
4820 .get_gdt = emulator_get_gdt,
4821 .get_idt = emulator_get_idt,
4822 .set_gdt = emulator_set_gdt,
4823 .set_idt = emulator_set_idt,
4824 .get_cr = emulator_get_cr,
4825 .set_cr = emulator_set_cr,
4826 .cpl = emulator_get_cpl,
4827 .get_dr = emulator_get_dr,
4828 .set_dr = emulator_set_dr,
4829 .get_smbase = emulator_get_smbase,
4830 .set_smbase = emulator_set_smbase,
4831 .set_msr = emulator_set_msr,
4832 .get_msr = emulator_get_msr,
4833 .check_pmc = emulator_check_pmc,
4834 .read_pmc = emulator_read_pmc,
4835 .halt = emulator_halt,
4836 .wbinvd = emulator_wbinvd,
4837 .fix_hypercall = emulator_fix_hypercall,
4838 .get_fpu = emulator_get_fpu,
4839 .put_fpu = emulator_put_fpu,
4840 .intercept = emulator_intercept,
4841 .get_cpuid = emulator_get_cpuid,
4842 .set_nmi_mask = emulator_set_nmi_mask,
4843 };
4844
4845 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4846 {
4847 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4848 /*
4849 * an sti; sti; sequence only disable interrupts for the first
4850 * instruction. So, if the last instruction, be it emulated or
4851 * not, left the system with the INT_STI flag enabled, it
4852 * means that the last instruction is an sti. We should not
4853 * leave the flag on in this case. The same goes for mov ss
4854 */
4855 if (int_shadow & mask)
4856 mask = 0;
4857 if (unlikely(int_shadow || mask)) {
4858 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4859 if (!mask)
4860 kvm_make_request(KVM_REQ_EVENT, vcpu);
4861 }
4862 }
4863
4864 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4865 {
4866 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4867 if (ctxt->exception.vector == PF_VECTOR)
4868 return kvm_propagate_fault(vcpu, &ctxt->exception);
4869
4870 if (ctxt->exception.error_code_valid)
4871 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4872 ctxt->exception.error_code);
4873 else
4874 kvm_queue_exception(vcpu, ctxt->exception.vector);
4875 return false;
4876 }
4877
4878 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4879 {
4880 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4881 int cs_db, cs_l;
4882
4883 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4884
4885 ctxt->eflags = kvm_get_rflags(vcpu);
4886 ctxt->eip = kvm_rip_read(vcpu);
4887 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4888 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4889 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4890 cs_db ? X86EMUL_MODE_PROT32 :
4891 X86EMUL_MODE_PROT16;
4892 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4893 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4894 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4895 ctxt->emul_flags = vcpu->arch.hflags;
4896
4897 init_decode_cache(ctxt);
4898 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4899 }
4900
4901 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4902 {
4903 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4904 int ret;
4905
4906 init_emulate_ctxt(vcpu);
4907
4908 ctxt->op_bytes = 2;
4909 ctxt->ad_bytes = 2;
4910 ctxt->_eip = ctxt->eip + inc_eip;
4911 ret = emulate_int_real(ctxt, irq);
4912
4913 if (ret != X86EMUL_CONTINUE)
4914 return EMULATE_FAIL;
4915
4916 ctxt->eip = ctxt->_eip;
4917 kvm_rip_write(vcpu, ctxt->eip);
4918 kvm_set_rflags(vcpu, ctxt->eflags);
4919
4920 if (irq == NMI_VECTOR)
4921 vcpu->arch.nmi_pending = 0;
4922 else
4923 vcpu->arch.interrupt.pending = false;
4924
4925 return EMULATE_DONE;
4926 }
4927 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4928
4929 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4930 {
4931 int r = EMULATE_DONE;
4932
4933 ++vcpu->stat.insn_emulation_fail;
4934 trace_kvm_emulate_insn_failed(vcpu);
4935 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4936 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4937 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4938 vcpu->run->internal.ndata = 0;
4939 r = EMULATE_FAIL;
4940 }
4941 kvm_queue_exception(vcpu, UD_VECTOR);
4942
4943 return r;
4944 }
4945
4946 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4947 bool write_fault_to_shadow_pgtable,
4948 int emulation_type)
4949 {
4950 gpa_t gpa = cr2;
4951 pfn_t pfn;
4952
4953 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4954 return false;
4955
4956 if (!vcpu->arch.mmu.direct_map) {
4957 /*
4958 * Write permission should be allowed since only
4959 * write access need to be emulated.
4960 */
4961 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4962
4963 /*
4964 * If the mapping is invalid in guest, let cpu retry
4965 * it to generate fault.
4966 */
4967 if (gpa == UNMAPPED_GVA)
4968 return true;
4969 }
4970
4971 /*
4972 * Do not retry the unhandleable instruction if it faults on the
4973 * readonly host memory, otherwise it will goto a infinite loop:
4974 * retry instruction -> write #PF -> emulation fail -> retry
4975 * instruction -> ...
4976 */
4977 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4978
4979 /*
4980 * If the instruction failed on the error pfn, it can not be fixed,
4981 * report the error to userspace.
4982 */
4983 if (is_error_noslot_pfn(pfn))
4984 return false;
4985
4986 kvm_release_pfn_clean(pfn);
4987
4988 /* The instructions are well-emulated on direct mmu. */
4989 if (vcpu->arch.mmu.direct_map) {
4990 unsigned int indirect_shadow_pages;
4991
4992 spin_lock(&vcpu->kvm->mmu_lock);
4993 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4994 spin_unlock(&vcpu->kvm->mmu_lock);
4995
4996 if (indirect_shadow_pages)
4997 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4998
4999 return true;
5000 }
5001
5002 /*
5003 * if emulation was due to access to shadowed page table
5004 * and it failed try to unshadow page and re-enter the
5005 * guest to let CPU execute the instruction.
5006 */
5007 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5008
5009 /*
5010 * If the access faults on its page table, it can not
5011 * be fixed by unprotecting shadow page and it should
5012 * be reported to userspace.
5013 */
5014 return !write_fault_to_shadow_pgtable;
5015 }
5016
5017 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5018 unsigned long cr2, int emulation_type)
5019 {
5020 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5021 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5022
5023 last_retry_eip = vcpu->arch.last_retry_eip;
5024 last_retry_addr = vcpu->arch.last_retry_addr;
5025
5026 /*
5027 * If the emulation is caused by #PF and it is non-page_table
5028 * writing instruction, it means the VM-EXIT is caused by shadow
5029 * page protected, we can zap the shadow page and retry this
5030 * instruction directly.
5031 *
5032 * Note: if the guest uses a non-page-table modifying instruction
5033 * on the PDE that points to the instruction, then we will unmap
5034 * the instruction and go to an infinite loop. So, we cache the
5035 * last retried eip and the last fault address, if we meet the eip
5036 * and the address again, we can break out of the potential infinite
5037 * loop.
5038 */
5039 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5040
5041 if (!(emulation_type & EMULTYPE_RETRY))
5042 return false;
5043
5044 if (x86_page_table_writing_insn(ctxt))
5045 return false;
5046
5047 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5048 return false;
5049
5050 vcpu->arch.last_retry_eip = ctxt->eip;
5051 vcpu->arch.last_retry_addr = cr2;
5052
5053 if (!vcpu->arch.mmu.direct_map)
5054 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5055
5056 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5057
5058 return true;
5059 }
5060
5061 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5062 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5063
5064 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5065 {
5066 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5067 /* This is a good place to trace that we are exiting SMM. */
5068 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5069
5070 if (unlikely(vcpu->arch.smi_pending)) {
5071 kvm_make_request(KVM_REQ_SMI, vcpu);
5072 vcpu->arch.smi_pending = 0;
5073 } else {
5074 /* Process a latched INIT, if any. */
5075 kvm_make_request(KVM_REQ_EVENT, vcpu);
5076 }
5077 }
5078
5079 kvm_mmu_reset_context(vcpu);
5080 }
5081
5082 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5083 {
5084 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5085
5086 vcpu->arch.hflags = emul_flags;
5087
5088 if (changed & HF_SMM_MASK)
5089 kvm_smm_changed(vcpu);
5090 }
5091
5092 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5093 unsigned long *db)
5094 {
5095 u32 dr6 = 0;
5096 int i;
5097 u32 enable, rwlen;
5098
5099 enable = dr7;
5100 rwlen = dr7 >> 16;
5101 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5102 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5103 dr6 |= (1 << i);
5104 return dr6;
5105 }
5106
5107 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5108 {
5109 struct kvm_run *kvm_run = vcpu->run;
5110
5111 /*
5112 * rflags is the old, "raw" value of the flags. The new value has
5113 * not been saved yet.
5114 *
5115 * This is correct even for TF set by the guest, because "the
5116 * processor will not generate this exception after the instruction
5117 * that sets the TF flag".
5118 */
5119 if (unlikely(rflags & X86_EFLAGS_TF)) {
5120 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5121 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5122 DR6_RTM;
5123 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5124 kvm_run->debug.arch.exception = DB_VECTOR;
5125 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5126 *r = EMULATE_USER_EXIT;
5127 } else {
5128 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5129 /*
5130 * "Certain debug exceptions may clear bit 0-3. The
5131 * remaining contents of the DR6 register are never
5132 * cleared by the processor".
5133 */
5134 vcpu->arch.dr6 &= ~15;
5135 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5136 kvm_queue_exception(vcpu, DB_VECTOR);
5137 }
5138 }
5139 }
5140
5141 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5142 {
5143 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5144 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5145 struct kvm_run *kvm_run = vcpu->run;
5146 unsigned long eip = kvm_get_linear_rip(vcpu);
5147 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5148 vcpu->arch.guest_debug_dr7,
5149 vcpu->arch.eff_db);
5150
5151 if (dr6 != 0) {
5152 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5153 kvm_run->debug.arch.pc = eip;
5154 kvm_run->debug.arch.exception = DB_VECTOR;
5155 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5156 *r = EMULATE_USER_EXIT;
5157 return true;
5158 }
5159 }
5160
5161 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5162 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5163 unsigned long eip = kvm_get_linear_rip(vcpu);
5164 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5165 vcpu->arch.dr7,
5166 vcpu->arch.db);
5167
5168 if (dr6 != 0) {
5169 vcpu->arch.dr6 &= ~15;
5170 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5171 kvm_queue_exception(vcpu, DB_VECTOR);
5172 *r = EMULATE_DONE;
5173 return true;
5174 }
5175 }
5176
5177 return false;
5178 }
5179
5180 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5181 unsigned long cr2,
5182 int emulation_type,
5183 void *insn,
5184 int insn_len)
5185 {
5186 int r;
5187 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5188 bool writeback = true;
5189 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5190
5191 /*
5192 * Clear write_fault_to_shadow_pgtable here to ensure it is
5193 * never reused.
5194 */
5195 vcpu->arch.write_fault_to_shadow_pgtable = false;
5196 kvm_clear_exception_queue(vcpu);
5197
5198 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5199 init_emulate_ctxt(vcpu);
5200
5201 /*
5202 * We will reenter on the same instruction since
5203 * we do not set complete_userspace_io. This does not
5204 * handle watchpoints yet, those would be handled in
5205 * the emulate_ops.
5206 */
5207 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5208 return r;
5209
5210 ctxt->interruptibility = 0;
5211 ctxt->have_exception = false;
5212 ctxt->exception.vector = -1;
5213 ctxt->perm_ok = false;
5214
5215 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5216
5217 r = x86_decode_insn(ctxt, insn, insn_len);
5218
5219 trace_kvm_emulate_insn_start(vcpu);
5220 ++vcpu->stat.insn_emulation;
5221 if (r != EMULATION_OK) {
5222 if (emulation_type & EMULTYPE_TRAP_UD)
5223 return EMULATE_FAIL;
5224 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5225 emulation_type))
5226 return EMULATE_DONE;
5227 if (emulation_type & EMULTYPE_SKIP)
5228 return EMULATE_FAIL;
5229 return handle_emulation_failure(vcpu);
5230 }
5231 }
5232
5233 if (emulation_type & EMULTYPE_SKIP) {
5234 kvm_rip_write(vcpu, ctxt->_eip);
5235 if (ctxt->eflags & X86_EFLAGS_RF)
5236 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5237 return EMULATE_DONE;
5238 }
5239
5240 if (retry_instruction(ctxt, cr2, emulation_type))
5241 return EMULATE_DONE;
5242
5243 /* this is needed for vmware backdoor interface to work since it
5244 changes registers values during IO operation */
5245 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5246 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5247 emulator_invalidate_register_cache(ctxt);
5248 }
5249
5250 restart:
5251 r = x86_emulate_insn(ctxt);
5252
5253 if (r == EMULATION_INTERCEPTED)
5254 return EMULATE_DONE;
5255
5256 if (r == EMULATION_FAILED) {
5257 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5258 emulation_type))
5259 return EMULATE_DONE;
5260
5261 return handle_emulation_failure(vcpu);
5262 }
5263
5264 if (ctxt->have_exception) {
5265 r = EMULATE_DONE;
5266 if (inject_emulated_exception(vcpu))
5267 return r;
5268 } else if (vcpu->arch.pio.count) {
5269 if (!vcpu->arch.pio.in) {
5270 /* FIXME: return into emulator if single-stepping. */
5271 vcpu->arch.pio.count = 0;
5272 } else {
5273 writeback = false;
5274 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5275 }
5276 r = EMULATE_USER_EXIT;
5277 } else if (vcpu->mmio_needed) {
5278 if (!vcpu->mmio_is_write)
5279 writeback = false;
5280 r = EMULATE_USER_EXIT;
5281 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5282 } else if (r == EMULATION_RESTART)
5283 goto restart;
5284 else
5285 r = EMULATE_DONE;
5286
5287 if (writeback) {
5288 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5289 toggle_interruptibility(vcpu, ctxt->interruptibility);
5290 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5291 if (vcpu->arch.hflags != ctxt->emul_flags)
5292 kvm_set_hflags(vcpu, ctxt->emul_flags);
5293 kvm_rip_write(vcpu, ctxt->eip);
5294 if (r == EMULATE_DONE)
5295 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5296 if (!ctxt->have_exception ||
5297 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5298 __kvm_set_rflags(vcpu, ctxt->eflags);
5299
5300 /*
5301 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5302 * do nothing, and it will be requested again as soon as
5303 * the shadow expires. But we still need to check here,
5304 * because POPF has no interrupt shadow.
5305 */
5306 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5307 kvm_make_request(KVM_REQ_EVENT, vcpu);
5308 } else
5309 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5310
5311 return r;
5312 }
5313 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5314
5315 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5316 {
5317 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5318 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5319 size, port, &val, 1);
5320 /* do not return to emulator after return from userspace */
5321 vcpu->arch.pio.count = 0;
5322 return ret;
5323 }
5324 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5325
5326 static void tsc_bad(void *info)
5327 {
5328 __this_cpu_write(cpu_tsc_khz, 0);
5329 }
5330
5331 static void tsc_khz_changed(void *data)
5332 {
5333 struct cpufreq_freqs *freq = data;
5334 unsigned long khz = 0;
5335
5336 if (data)
5337 khz = freq->new;
5338 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5339 khz = cpufreq_quick_get(raw_smp_processor_id());
5340 if (!khz)
5341 khz = tsc_khz;
5342 __this_cpu_write(cpu_tsc_khz, khz);
5343 }
5344
5345 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5346 void *data)
5347 {
5348 struct cpufreq_freqs *freq = data;
5349 struct kvm *kvm;
5350 struct kvm_vcpu *vcpu;
5351 int i, send_ipi = 0;
5352
5353 /*
5354 * We allow guests to temporarily run on slowing clocks,
5355 * provided we notify them after, or to run on accelerating
5356 * clocks, provided we notify them before. Thus time never
5357 * goes backwards.
5358 *
5359 * However, we have a problem. We can't atomically update
5360 * the frequency of a given CPU from this function; it is
5361 * merely a notifier, which can be called from any CPU.
5362 * Changing the TSC frequency at arbitrary points in time
5363 * requires a recomputation of local variables related to
5364 * the TSC for each VCPU. We must flag these local variables
5365 * to be updated and be sure the update takes place with the
5366 * new frequency before any guests proceed.
5367 *
5368 * Unfortunately, the combination of hotplug CPU and frequency
5369 * change creates an intractable locking scenario; the order
5370 * of when these callouts happen is undefined with respect to
5371 * CPU hotplug, and they can race with each other. As such,
5372 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5373 * undefined; you can actually have a CPU frequency change take
5374 * place in between the computation of X and the setting of the
5375 * variable. To protect against this problem, all updates of
5376 * the per_cpu tsc_khz variable are done in an interrupt
5377 * protected IPI, and all callers wishing to update the value
5378 * must wait for a synchronous IPI to complete (which is trivial
5379 * if the caller is on the CPU already). This establishes the
5380 * necessary total order on variable updates.
5381 *
5382 * Note that because a guest time update may take place
5383 * anytime after the setting of the VCPU's request bit, the
5384 * correct TSC value must be set before the request. However,
5385 * to ensure the update actually makes it to any guest which
5386 * starts running in hardware virtualization between the set
5387 * and the acquisition of the spinlock, we must also ping the
5388 * CPU after setting the request bit.
5389 *
5390 */
5391
5392 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5393 return 0;
5394 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5395 return 0;
5396
5397 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5398
5399 spin_lock(&kvm_lock);
5400 list_for_each_entry(kvm, &vm_list, vm_list) {
5401 kvm_for_each_vcpu(i, vcpu, kvm) {
5402 if (vcpu->cpu != freq->cpu)
5403 continue;
5404 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5405 if (vcpu->cpu != smp_processor_id())
5406 send_ipi = 1;
5407 }
5408 }
5409 spin_unlock(&kvm_lock);
5410
5411 if (freq->old < freq->new && send_ipi) {
5412 /*
5413 * We upscale the frequency. Must make the guest
5414 * doesn't see old kvmclock values while running with
5415 * the new frequency, otherwise we risk the guest sees
5416 * time go backwards.
5417 *
5418 * In case we update the frequency for another cpu
5419 * (which might be in guest context) send an interrupt
5420 * to kick the cpu out of guest context. Next time
5421 * guest context is entered kvmclock will be updated,
5422 * so the guest will not see stale values.
5423 */
5424 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5425 }
5426 return 0;
5427 }
5428
5429 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5430 .notifier_call = kvmclock_cpufreq_notifier
5431 };
5432
5433 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5434 unsigned long action, void *hcpu)
5435 {
5436 unsigned int cpu = (unsigned long)hcpu;
5437
5438 switch (action) {
5439 case CPU_ONLINE:
5440 case CPU_DOWN_FAILED:
5441 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5442 break;
5443 case CPU_DOWN_PREPARE:
5444 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5445 break;
5446 }
5447 return NOTIFY_OK;
5448 }
5449
5450 static struct notifier_block kvmclock_cpu_notifier_block = {
5451 .notifier_call = kvmclock_cpu_notifier,
5452 .priority = -INT_MAX
5453 };
5454
5455 static void kvm_timer_init(void)
5456 {
5457 int cpu;
5458
5459 max_tsc_khz = tsc_khz;
5460
5461 cpu_notifier_register_begin();
5462 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5463 #ifdef CONFIG_CPU_FREQ
5464 struct cpufreq_policy policy;
5465 memset(&policy, 0, sizeof(policy));
5466 cpu = get_cpu();
5467 cpufreq_get_policy(&policy, cpu);
5468 if (policy.cpuinfo.max_freq)
5469 max_tsc_khz = policy.cpuinfo.max_freq;
5470 put_cpu();
5471 #endif
5472 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5473 CPUFREQ_TRANSITION_NOTIFIER);
5474 }
5475 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5476 for_each_online_cpu(cpu)
5477 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5478
5479 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5480 cpu_notifier_register_done();
5481
5482 }
5483
5484 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5485
5486 int kvm_is_in_guest(void)
5487 {
5488 return __this_cpu_read(current_vcpu) != NULL;
5489 }
5490
5491 static int kvm_is_user_mode(void)
5492 {
5493 int user_mode = 3;
5494
5495 if (__this_cpu_read(current_vcpu))
5496 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5497
5498 return user_mode != 0;
5499 }
5500
5501 static unsigned long kvm_get_guest_ip(void)
5502 {
5503 unsigned long ip = 0;
5504
5505 if (__this_cpu_read(current_vcpu))
5506 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5507
5508 return ip;
5509 }
5510
5511 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5512 .is_in_guest = kvm_is_in_guest,
5513 .is_user_mode = kvm_is_user_mode,
5514 .get_guest_ip = kvm_get_guest_ip,
5515 };
5516
5517 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5518 {
5519 __this_cpu_write(current_vcpu, vcpu);
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5522
5523 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5524 {
5525 __this_cpu_write(current_vcpu, NULL);
5526 }
5527 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5528
5529 static void kvm_set_mmio_spte_mask(void)
5530 {
5531 u64 mask;
5532 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5533
5534 /*
5535 * Set the reserved bits and the present bit of an paging-structure
5536 * entry to generate page fault with PFER.RSV = 1.
5537 */
5538 /* Mask the reserved physical address bits. */
5539 mask = rsvd_bits(maxphyaddr, 51);
5540
5541 /* Bit 62 is always reserved for 32bit host. */
5542 mask |= 0x3ull << 62;
5543
5544 /* Set the present bit. */
5545 mask |= 1ull;
5546
5547 #ifdef CONFIG_X86_64
5548 /*
5549 * If reserved bit is not supported, clear the present bit to disable
5550 * mmio page fault.
5551 */
5552 if (maxphyaddr == 52)
5553 mask &= ~1ull;
5554 #endif
5555
5556 kvm_mmu_set_mmio_spte_mask(mask);
5557 }
5558
5559 #ifdef CONFIG_X86_64
5560 static void pvclock_gtod_update_fn(struct work_struct *work)
5561 {
5562 struct kvm *kvm;
5563
5564 struct kvm_vcpu *vcpu;
5565 int i;
5566
5567 spin_lock(&kvm_lock);
5568 list_for_each_entry(kvm, &vm_list, vm_list)
5569 kvm_for_each_vcpu(i, vcpu, kvm)
5570 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5571 atomic_set(&kvm_guest_has_master_clock, 0);
5572 spin_unlock(&kvm_lock);
5573 }
5574
5575 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5576
5577 /*
5578 * Notification about pvclock gtod data update.
5579 */
5580 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5581 void *priv)
5582 {
5583 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5584 struct timekeeper *tk = priv;
5585
5586 update_pvclock_gtod(tk);
5587
5588 /* disable master clock if host does not trust, or does not
5589 * use, TSC clocksource
5590 */
5591 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5592 atomic_read(&kvm_guest_has_master_clock) != 0)
5593 queue_work(system_long_wq, &pvclock_gtod_work);
5594
5595 return 0;
5596 }
5597
5598 static struct notifier_block pvclock_gtod_notifier = {
5599 .notifier_call = pvclock_gtod_notify,
5600 };
5601 #endif
5602
5603 int kvm_arch_init(void *opaque)
5604 {
5605 int r;
5606 struct kvm_x86_ops *ops = opaque;
5607
5608 if (kvm_x86_ops) {
5609 printk(KERN_ERR "kvm: already loaded the other module\n");
5610 r = -EEXIST;
5611 goto out;
5612 }
5613
5614 if (!ops->cpu_has_kvm_support()) {
5615 printk(KERN_ERR "kvm: no hardware support\n");
5616 r = -EOPNOTSUPP;
5617 goto out;
5618 }
5619 if (ops->disabled_by_bios()) {
5620 printk(KERN_ERR "kvm: disabled by bios\n");
5621 r = -EOPNOTSUPP;
5622 goto out;
5623 }
5624
5625 r = -ENOMEM;
5626 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5627 if (!shared_msrs) {
5628 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5629 goto out;
5630 }
5631
5632 r = kvm_mmu_module_init();
5633 if (r)
5634 goto out_free_percpu;
5635
5636 kvm_set_mmio_spte_mask();
5637
5638 kvm_x86_ops = ops;
5639
5640 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5641 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5642
5643 kvm_timer_init();
5644
5645 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5646
5647 if (cpu_has_xsave)
5648 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5649
5650 kvm_lapic_init();
5651 #ifdef CONFIG_X86_64
5652 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5653 #endif
5654
5655 return 0;
5656
5657 out_free_percpu:
5658 free_percpu(shared_msrs);
5659 out:
5660 return r;
5661 }
5662
5663 void kvm_arch_exit(void)
5664 {
5665 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5666
5667 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5668 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5669 CPUFREQ_TRANSITION_NOTIFIER);
5670 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5671 #ifdef CONFIG_X86_64
5672 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5673 #endif
5674 kvm_x86_ops = NULL;
5675 kvm_mmu_module_exit();
5676 free_percpu(shared_msrs);
5677 }
5678
5679 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5680 {
5681 ++vcpu->stat.halt_exits;
5682 if (irqchip_in_kernel(vcpu->kvm)) {
5683 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5684 return 1;
5685 } else {
5686 vcpu->run->exit_reason = KVM_EXIT_HLT;
5687 return 0;
5688 }
5689 }
5690 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5691
5692 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5693 {
5694 kvm_x86_ops->skip_emulated_instruction(vcpu);
5695 return kvm_vcpu_halt(vcpu);
5696 }
5697 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5698
5699 /*
5700 * kvm_pv_kick_cpu_op: Kick a vcpu.
5701 *
5702 * @apicid - apicid of vcpu to be kicked.
5703 */
5704 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5705 {
5706 struct kvm_lapic_irq lapic_irq;
5707
5708 lapic_irq.shorthand = 0;
5709 lapic_irq.dest_mode = 0;
5710 lapic_irq.dest_id = apicid;
5711 lapic_irq.msi_redir_hint = false;
5712
5713 lapic_irq.delivery_mode = APIC_DM_REMRD;
5714 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5715 }
5716
5717 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5718 {
5719 unsigned long nr, a0, a1, a2, a3, ret;
5720 int op_64_bit, r = 1;
5721
5722 kvm_x86_ops->skip_emulated_instruction(vcpu);
5723
5724 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5725 return kvm_hv_hypercall(vcpu);
5726
5727 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5728 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5729 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5730 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5731 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5732
5733 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5734
5735 op_64_bit = is_64_bit_mode(vcpu);
5736 if (!op_64_bit) {
5737 nr &= 0xFFFFFFFF;
5738 a0 &= 0xFFFFFFFF;
5739 a1 &= 0xFFFFFFFF;
5740 a2 &= 0xFFFFFFFF;
5741 a3 &= 0xFFFFFFFF;
5742 }
5743
5744 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5745 ret = -KVM_EPERM;
5746 goto out;
5747 }
5748
5749 switch (nr) {
5750 case KVM_HC_VAPIC_POLL_IRQ:
5751 ret = 0;
5752 break;
5753 case KVM_HC_KICK_CPU:
5754 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5755 ret = 0;
5756 break;
5757 default:
5758 ret = -KVM_ENOSYS;
5759 break;
5760 }
5761 out:
5762 if (!op_64_bit)
5763 ret = (u32)ret;
5764 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5765 ++vcpu->stat.hypercalls;
5766 return r;
5767 }
5768 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5769
5770 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5771 {
5772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5773 char instruction[3];
5774 unsigned long rip = kvm_rip_read(vcpu);
5775
5776 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5777
5778 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5779 }
5780
5781 /*
5782 * Check if userspace requested an interrupt window, and that the
5783 * interrupt window is open.
5784 *
5785 * No need to exit to userspace if we already have an interrupt queued.
5786 */
5787 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5788 {
5789 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5790 vcpu->run->request_interrupt_window &&
5791 kvm_arch_interrupt_allowed(vcpu));
5792 }
5793
5794 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5795 {
5796 struct kvm_run *kvm_run = vcpu->run;
5797
5798 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5799 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5800 kvm_run->cr8 = kvm_get_cr8(vcpu);
5801 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5802 if (irqchip_in_kernel(vcpu->kvm))
5803 kvm_run->ready_for_interrupt_injection = 1;
5804 else
5805 kvm_run->ready_for_interrupt_injection =
5806 kvm_arch_interrupt_allowed(vcpu) &&
5807 !kvm_cpu_has_interrupt(vcpu) &&
5808 !kvm_event_needs_reinjection(vcpu);
5809 }
5810
5811 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5812 {
5813 int max_irr, tpr;
5814
5815 if (!kvm_x86_ops->update_cr8_intercept)
5816 return;
5817
5818 if (!vcpu->arch.apic)
5819 return;
5820
5821 if (!vcpu->arch.apic->vapic_addr)
5822 max_irr = kvm_lapic_find_highest_irr(vcpu);
5823 else
5824 max_irr = -1;
5825
5826 if (max_irr != -1)
5827 max_irr >>= 4;
5828
5829 tpr = kvm_lapic_get_cr8(vcpu);
5830
5831 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5832 }
5833
5834 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5835 {
5836 int r;
5837
5838 /* try to reinject previous events if any */
5839 if (vcpu->arch.exception.pending) {
5840 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5841 vcpu->arch.exception.has_error_code,
5842 vcpu->arch.exception.error_code);
5843
5844 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5845 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5846 X86_EFLAGS_RF);
5847
5848 if (vcpu->arch.exception.nr == DB_VECTOR &&
5849 (vcpu->arch.dr7 & DR7_GD)) {
5850 vcpu->arch.dr7 &= ~DR7_GD;
5851 kvm_update_dr7(vcpu);
5852 }
5853
5854 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5855 vcpu->arch.exception.has_error_code,
5856 vcpu->arch.exception.error_code,
5857 vcpu->arch.exception.reinject);
5858 return 0;
5859 }
5860
5861 if (vcpu->arch.nmi_injected) {
5862 kvm_x86_ops->set_nmi(vcpu);
5863 return 0;
5864 }
5865
5866 if (vcpu->arch.interrupt.pending) {
5867 kvm_x86_ops->set_irq(vcpu);
5868 return 0;
5869 }
5870
5871 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5872 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5873 if (r != 0)
5874 return r;
5875 }
5876
5877 /* try to inject new event if pending */
5878 if (vcpu->arch.nmi_pending) {
5879 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5880 --vcpu->arch.nmi_pending;
5881 vcpu->arch.nmi_injected = true;
5882 kvm_x86_ops->set_nmi(vcpu);
5883 }
5884 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5885 /*
5886 * Because interrupts can be injected asynchronously, we are
5887 * calling check_nested_events again here to avoid a race condition.
5888 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5889 * proposal and current concerns. Perhaps we should be setting
5890 * KVM_REQ_EVENT only on certain events and not unconditionally?
5891 */
5892 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5893 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5894 if (r != 0)
5895 return r;
5896 }
5897 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5898 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5899 false);
5900 kvm_x86_ops->set_irq(vcpu);
5901 }
5902 }
5903 return 0;
5904 }
5905
5906 static void process_nmi(struct kvm_vcpu *vcpu)
5907 {
5908 unsigned limit = 2;
5909
5910 /*
5911 * x86 is limited to one NMI running, and one NMI pending after it.
5912 * If an NMI is already in progress, limit further NMIs to just one.
5913 * Otherwise, allow two (and we'll inject the first one immediately).
5914 */
5915 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5916 limit = 1;
5917
5918 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5919 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5920 kvm_make_request(KVM_REQ_EVENT, vcpu);
5921 }
5922
5923 #define put_smstate(type, buf, offset, val) \
5924 *(type *)((buf) + (offset) - 0x7e00) = val
5925
5926 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5927 {
5928 u32 flags = 0;
5929 flags |= seg->g << 23;
5930 flags |= seg->db << 22;
5931 flags |= seg->l << 21;
5932 flags |= seg->avl << 20;
5933 flags |= seg->present << 15;
5934 flags |= seg->dpl << 13;
5935 flags |= seg->s << 12;
5936 flags |= seg->type << 8;
5937 return flags;
5938 }
5939
5940 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5941 {
5942 struct kvm_segment seg;
5943 int offset;
5944
5945 kvm_get_segment(vcpu, &seg, n);
5946 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5947
5948 if (n < 3)
5949 offset = 0x7f84 + n * 12;
5950 else
5951 offset = 0x7f2c + (n - 3) * 12;
5952
5953 put_smstate(u32, buf, offset + 8, seg.base);
5954 put_smstate(u32, buf, offset + 4, seg.limit);
5955 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5956 }
5957
5958 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5959 {
5960 struct kvm_segment seg;
5961 int offset;
5962 u16 flags;
5963
5964 kvm_get_segment(vcpu, &seg, n);
5965 offset = 0x7e00 + n * 16;
5966
5967 flags = process_smi_get_segment_flags(&seg) >> 8;
5968 put_smstate(u16, buf, offset, seg.selector);
5969 put_smstate(u16, buf, offset + 2, flags);
5970 put_smstate(u32, buf, offset + 4, seg.limit);
5971 put_smstate(u64, buf, offset + 8, seg.base);
5972 }
5973
5974 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5975 {
5976 struct desc_ptr dt;
5977 struct kvm_segment seg;
5978 unsigned long val;
5979 int i;
5980
5981 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5982 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5983 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5984 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5985
5986 for (i = 0; i < 8; i++)
5987 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5988
5989 kvm_get_dr(vcpu, 6, &val);
5990 put_smstate(u32, buf, 0x7fcc, (u32)val);
5991 kvm_get_dr(vcpu, 7, &val);
5992 put_smstate(u32, buf, 0x7fc8, (u32)val);
5993
5994 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5995 put_smstate(u32, buf, 0x7fc4, seg.selector);
5996 put_smstate(u32, buf, 0x7f64, seg.base);
5997 put_smstate(u32, buf, 0x7f60, seg.limit);
5998 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5999
6000 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6001 put_smstate(u32, buf, 0x7fc0, seg.selector);
6002 put_smstate(u32, buf, 0x7f80, seg.base);
6003 put_smstate(u32, buf, 0x7f7c, seg.limit);
6004 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6005
6006 kvm_x86_ops->get_gdt(vcpu, &dt);
6007 put_smstate(u32, buf, 0x7f74, dt.address);
6008 put_smstate(u32, buf, 0x7f70, dt.size);
6009
6010 kvm_x86_ops->get_idt(vcpu, &dt);
6011 put_smstate(u32, buf, 0x7f58, dt.address);
6012 put_smstate(u32, buf, 0x7f54, dt.size);
6013
6014 for (i = 0; i < 6; i++)
6015 process_smi_save_seg_32(vcpu, buf, i);
6016
6017 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6018
6019 /* revision id */
6020 put_smstate(u32, buf, 0x7efc, 0x00020000);
6021 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6022 }
6023
6024 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6025 {
6026 #ifdef CONFIG_X86_64
6027 struct desc_ptr dt;
6028 struct kvm_segment seg;
6029 unsigned long val;
6030 int i;
6031
6032 for (i = 0; i < 16; i++)
6033 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6034
6035 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6036 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6037
6038 kvm_get_dr(vcpu, 6, &val);
6039 put_smstate(u64, buf, 0x7f68, val);
6040 kvm_get_dr(vcpu, 7, &val);
6041 put_smstate(u64, buf, 0x7f60, val);
6042
6043 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6044 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6045 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6046
6047 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6048
6049 /* revision id */
6050 put_smstate(u32, buf, 0x7efc, 0x00020064);
6051
6052 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6053
6054 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6055 put_smstate(u16, buf, 0x7e90, seg.selector);
6056 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6057 put_smstate(u32, buf, 0x7e94, seg.limit);
6058 put_smstate(u64, buf, 0x7e98, seg.base);
6059
6060 kvm_x86_ops->get_idt(vcpu, &dt);
6061 put_smstate(u32, buf, 0x7e84, dt.size);
6062 put_smstate(u64, buf, 0x7e88, dt.address);
6063
6064 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6065 put_smstate(u16, buf, 0x7e70, seg.selector);
6066 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6067 put_smstate(u32, buf, 0x7e74, seg.limit);
6068 put_smstate(u64, buf, 0x7e78, seg.base);
6069
6070 kvm_x86_ops->get_gdt(vcpu, &dt);
6071 put_smstate(u32, buf, 0x7e64, dt.size);
6072 put_smstate(u64, buf, 0x7e68, dt.address);
6073
6074 for (i = 0; i < 6; i++)
6075 process_smi_save_seg_64(vcpu, buf, i);
6076 #else
6077 WARN_ON_ONCE(1);
6078 #endif
6079 }
6080
6081 static void process_smi(struct kvm_vcpu *vcpu)
6082 {
6083 struct kvm_segment cs, ds;
6084 struct desc_ptr dt;
6085 char buf[512];
6086 u32 cr0;
6087
6088 if (is_smm(vcpu)) {
6089 vcpu->arch.smi_pending = true;
6090 return;
6091 }
6092
6093 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6094 vcpu->arch.hflags |= HF_SMM_MASK;
6095 memset(buf, 0, 512);
6096 if (guest_cpuid_has_longmode(vcpu))
6097 process_smi_save_state_64(vcpu, buf);
6098 else
6099 process_smi_save_state_32(vcpu, buf);
6100
6101 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6102
6103 if (kvm_x86_ops->get_nmi_mask(vcpu))
6104 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6105 else
6106 kvm_x86_ops->set_nmi_mask(vcpu, true);
6107
6108 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6109 kvm_rip_write(vcpu, 0x8000);
6110
6111 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6112 kvm_x86_ops->set_cr0(vcpu, cr0);
6113 vcpu->arch.cr0 = cr0;
6114
6115 kvm_x86_ops->set_cr4(vcpu, 0);
6116
6117 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6118 dt.address = dt.size = 0;
6119 kvm_x86_ops->set_idt(vcpu, &dt);
6120
6121 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6122
6123 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6124 cs.base = vcpu->arch.smbase;
6125
6126 ds.selector = 0;
6127 ds.base = 0;
6128
6129 cs.limit = ds.limit = 0xffffffff;
6130 cs.type = ds.type = 0x3;
6131 cs.dpl = ds.dpl = 0;
6132 cs.db = ds.db = 0;
6133 cs.s = ds.s = 1;
6134 cs.l = ds.l = 0;
6135 cs.g = ds.g = 1;
6136 cs.avl = ds.avl = 0;
6137 cs.present = ds.present = 1;
6138 cs.unusable = ds.unusable = 0;
6139 cs.padding = ds.padding = 0;
6140
6141 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6142 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6143 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6144 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6145 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6146 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6147
6148 if (guest_cpuid_has_longmode(vcpu))
6149 kvm_x86_ops->set_efer(vcpu, 0);
6150
6151 kvm_update_cpuid(vcpu);
6152 kvm_mmu_reset_context(vcpu);
6153 }
6154
6155 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6156 {
6157 u64 eoi_exit_bitmap[4];
6158 u32 tmr[8];
6159
6160 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6161 return;
6162
6163 memset(eoi_exit_bitmap, 0, 32);
6164 memset(tmr, 0, 32);
6165
6166 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6167 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6168 kvm_apic_update_tmr(vcpu, tmr);
6169 }
6170
6171 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6172 {
6173 ++vcpu->stat.tlb_flush;
6174 kvm_x86_ops->tlb_flush(vcpu);
6175 }
6176
6177 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6178 {
6179 struct page *page = NULL;
6180
6181 if (!irqchip_in_kernel(vcpu->kvm))
6182 return;
6183
6184 if (!kvm_x86_ops->set_apic_access_page_addr)
6185 return;
6186
6187 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6188 if (is_error_page(page))
6189 return;
6190 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6191
6192 /*
6193 * Do not pin apic access page in memory, the MMU notifier
6194 * will call us again if it is migrated or swapped out.
6195 */
6196 put_page(page);
6197 }
6198 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6199
6200 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6201 unsigned long address)
6202 {
6203 /*
6204 * The physical address of apic access page is stored in the VMCS.
6205 * Update it when it becomes invalid.
6206 */
6207 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6208 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6209 }
6210
6211 /*
6212 * Returns 1 to let vcpu_run() continue the guest execution loop without
6213 * exiting to the userspace. Otherwise, the value will be returned to the
6214 * userspace.
6215 */
6216 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6217 {
6218 int r;
6219 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6220 vcpu->run->request_interrupt_window;
6221 bool req_immediate_exit = false;
6222
6223 if (vcpu->requests) {
6224 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6225 kvm_mmu_unload(vcpu);
6226 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6227 __kvm_migrate_timers(vcpu);
6228 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6229 kvm_gen_update_masterclock(vcpu->kvm);
6230 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6231 kvm_gen_kvmclock_update(vcpu);
6232 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6233 r = kvm_guest_time_update(vcpu);
6234 if (unlikely(r))
6235 goto out;
6236 }
6237 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6238 kvm_mmu_sync_roots(vcpu);
6239 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6240 kvm_vcpu_flush_tlb(vcpu);
6241 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6242 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6243 r = 0;
6244 goto out;
6245 }
6246 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6247 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6248 r = 0;
6249 goto out;
6250 }
6251 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6252 vcpu->fpu_active = 0;
6253 kvm_x86_ops->fpu_deactivate(vcpu);
6254 }
6255 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6256 /* Page is swapped out. Do synthetic halt */
6257 vcpu->arch.apf.halted = true;
6258 r = 1;
6259 goto out;
6260 }
6261 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6262 record_steal_time(vcpu);
6263 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6264 process_smi(vcpu);
6265 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6266 process_nmi(vcpu);
6267 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6268 kvm_pmu_handle_event(vcpu);
6269 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6270 kvm_pmu_deliver_pmi(vcpu);
6271 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6272 vcpu_scan_ioapic(vcpu);
6273 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6274 kvm_vcpu_reload_apic_access_page(vcpu);
6275 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6276 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6277 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6278 r = 0;
6279 goto out;
6280 }
6281 }
6282
6283 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6284 kvm_apic_accept_events(vcpu);
6285 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6286 r = 1;
6287 goto out;
6288 }
6289
6290 if (inject_pending_event(vcpu, req_int_win) != 0)
6291 req_immediate_exit = true;
6292 /* enable NMI/IRQ window open exits if needed */
6293 else if (vcpu->arch.nmi_pending)
6294 kvm_x86_ops->enable_nmi_window(vcpu);
6295 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6296 kvm_x86_ops->enable_irq_window(vcpu);
6297
6298 if (kvm_lapic_enabled(vcpu)) {
6299 /*
6300 * Update architecture specific hints for APIC
6301 * virtual interrupt delivery.
6302 */
6303 if (kvm_x86_ops->hwapic_irr_update)
6304 kvm_x86_ops->hwapic_irr_update(vcpu,
6305 kvm_lapic_find_highest_irr(vcpu));
6306 update_cr8_intercept(vcpu);
6307 kvm_lapic_sync_to_vapic(vcpu);
6308 }
6309 }
6310
6311 r = kvm_mmu_reload(vcpu);
6312 if (unlikely(r)) {
6313 goto cancel_injection;
6314 }
6315
6316 preempt_disable();
6317
6318 kvm_x86_ops->prepare_guest_switch(vcpu);
6319 if (vcpu->fpu_active)
6320 kvm_load_guest_fpu(vcpu);
6321 kvm_load_guest_xcr0(vcpu);
6322
6323 vcpu->mode = IN_GUEST_MODE;
6324
6325 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6326
6327 /* We should set ->mode before check ->requests,
6328 * see the comment in make_all_cpus_request.
6329 */
6330 smp_mb__after_srcu_read_unlock();
6331
6332 local_irq_disable();
6333
6334 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6335 || need_resched() || signal_pending(current)) {
6336 vcpu->mode = OUTSIDE_GUEST_MODE;
6337 smp_wmb();
6338 local_irq_enable();
6339 preempt_enable();
6340 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6341 r = 1;
6342 goto cancel_injection;
6343 }
6344
6345 if (req_immediate_exit)
6346 smp_send_reschedule(vcpu->cpu);
6347
6348 __kvm_guest_enter();
6349
6350 if (unlikely(vcpu->arch.switch_db_regs)) {
6351 set_debugreg(0, 7);
6352 set_debugreg(vcpu->arch.eff_db[0], 0);
6353 set_debugreg(vcpu->arch.eff_db[1], 1);
6354 set_debugreg(vcpu->arch.eff_db[2], 2);
6355 set_debugreg(vcpu->arch.eff_db[3], 3);
6356 set_debugreg(vcpu->arch.dr6, 6);
6357 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6358 }
6359
6360 trace_kvm_entry(vcpu->vcpu_id);
6361 wait_lapic_expire(vcpu);
6362 kvm_x86_ops->run(vcpu);
6363
6364 /*
6365 * Do this here before restoring debug registers on the host. And
6366 * since we do this before handling the vmexit, a DR access vmexit
6367 * can (a) read the correct value of the debug registers, (b) set
6368 * KVM_DEBUGREG_WONT_EXIT again.
6369 */
6370 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6371 int i;
6372
6373 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6374 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6375 for (i = 0; i < KVM_NR_DB_REGS; i++)
6376 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6377 }
6378
6379 /*
6380 * If the guest has used debug registers, at least dr7
6381 * will be disabled while returning to the host.
6382 * If we don't have active breakpoints in the host, we don't
6383 * care about the messed up debug address registers. But if
6384 * we have some of them active, restore the old state.
6385 */
6386 if (hw_breakpoint_active())
6387 hw_breakpoint_restore();
6388
6389 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6390 native_read_tsc());
6391
6392 vcpu->mode = OUTSIDE_GUEST_MODE;
6393 smp_wmb();
6394
6395 /* Interrupt is enabled by handle_external_intr() */
6396 kvm_x86_ops->handle_external_intr(vcpu);
6397
6398 ++vcpu->stat.exits;
6399
6400 /*
6401 * We must have an instruction between local_irq_enable() and
6402 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6403 * the interrupt shadow. The stat.exits increment will do nicely.
6404 * But we need to prevent reordering, hence this barrier():
6405 */
6406 barrier();
6407
6408 kvm_guest_exit();
6409
6410 preempt_enable();
6411
6412 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6413
6414 /*
6415 * Profile KVM exit RIPs:
6416 */
6417 if (unlikely(prof_on == KVM_PROFILING)) {
6418 unsigned long rip = kvm_rip_read(vcpu);
6419 profile_hit(KVM_PROFILING, (void *)rip);
6420 }
6421
6422 if (unlikely(vcpu->arch.tsc_always_catchup))
6423 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6424
6425 if (vcpu->arch.apic_attention)
6426 kvm_lapic_sync_from_vapic(vcpu);
6427
6428 r = kvm_x86_ops->handle_exit(vcpu);
6429 return r;
6430
6431 cancel_injection:
6432 kvm_x86_ops->cancel_injection(vcpu);
6433 if (unlikely(vcpu->arch.apic_attention))
6434 kvm_lapic_sync_from_vapic(vcpu);
6435 out:
6436 return r;
6437 }
6438
6439 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6440 {
6441 if (!kvm_arch_vcpu_runnable(vcpu)) {
6442 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6443 kvm_vcpu_block(vcpu);
6444 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6445 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6446 return 1;
6447 }
6448
6449 kvm_apic_accept_events(vcpu);
6450 switch(vcpu->arch.mp_state) {
6451 case KVM_MP_STATE_HALTED:
6452 vcpu->arch.pv.pv_unhalted = false;
6453 vcpu->arch.mp_state =
6454 KVM_MP_STATE_RUNNABLE;
6455 case KVM_MP_STATE_RUNNABLE:
6456 vcpu->arch.apf.halted = false;
6457 break;
6458 case KVM_MP_STATE_INIT_RECEIVED:
6459 break;
6460 default:
6461 return -EINTR;
6462 break;
6463 }
6464 return 1;
6465 }
6466
6467 static int vcpu_run(struct kvm_vcpu *vcpu)
6468 {
6469 int r;
6470 struct kvm *kvm = vcpu->kvm;
6471
6472 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6473
6474 for (;;) {
6475 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6476 !vcpu->arch.apf.halted)
6477 r = vcpu_enter_guest(vcpu);
6478 else
6479 r = vcpu_block(kvm, vcpu);
6480 if (r <= 0)
6481 break;
6482
6483 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6484 if (kvm_cpu_has_pending_timer(vcpu))
6485 kvm_inject_pending_timer_irqs(vcpu);
6486
6487 if (dm_request_for_irq_injection(vcpu)) {
6488 r = -EINTR;
6489 vcpu->run->exit_reason = KVM_EXIT_INTR;
6490 ++vcpu->stat.request_irq_exits;
6491 break;
6492 }
6493
6494 kvm_check_async_pf_completion(vcpu);
6495
6496 if (signal_pending(current)) {
6497 r = -EINTR;
6498 vcpu->run->exit_reason = KVM_EXIT_INTR;
6499 ++vcpu->stat.signal_exits;
6500 break;
6501 }
6502 if (need_resched()) {
6503 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6504 cond_resched();
6505 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6506 }
6507 }
6508
6509 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6510
6511 return r;
6512 }
6513
6514 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6515 {
6516 int r;
6517 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6518 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6519 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6520 if (r != EMULATE_DONE)
6521 return 0;
6522 return 1;
6523 }
6524
6525 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6526 {
6527 BUG_ON(!vcpu->arch.pio.count);
6528
6529 return complete_emulated_io(vcpu);
6530 }
6531
6532 /*
6533 * Implements the following, as a state machine:
6534 *
6535 * read:
6536 * for each fragment
6537 * for each mmio piece in the fragment
6538 * write gpa, len
6539 * exit
6540 * copy data
6541 * execute insn
6542 *
6543 * write:
6544 * for each fragment
6545 * for each mmio piece in the fragment
6546 * write gpa, len
6547 * copy data
6548 * exit
6549 */
6550 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6551 {
6552 struct kvm_run *run = vcpu->run;
6553 struct kvm_mmio_fragment *frag;
6554 unsigned len;
6555
6556 BUG_ON(!vcpu->mmio_needed);
6557
6558 /* Complete previous fragment */
6559 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6560 len = min(8u, frag->len);
6561 if (!vcpu->mmio_is_write)
6562 memcpy(frag->data, run->mmio.data, len);
6563
6564 if (frag->len <= 8) {
6565 /* Switch to the next fragment. */
6566 frag++;
6567 vcpu->mmio_cur_fragment++;
6568 } else {
6569 /* Go forward to the next mmio piece. */
6570 frag->data += len;
6571 frag->gpa += len;
6572 frag->len -= len;
6573 }
6574
6575 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6576 vcpu->mmio_needed = 0;
6577
6578 /* FIXME: return into emulator if single-stepping. */
6579 if (vcpu->mmio_is_write)
6580 return 1;
6581 vcpu->mmio_read_completed = 1;
6582 return complete_emulated_io(vcpu);
6583 }
6584
6585 run->exit_reason = KVM_EXIT_MMIO;
6586 run->mmio.phys_addr = frag->gpa;
6587 if (vcpu->mmio_is_write)
6588 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6589 run->mmio.len = min(8u, frag->len);
6590 run->mmio.is_write = vcpu->mmio_is_write;
6591 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6592 return 0;
6593 }
6594
6595
6596 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6597 {
6598 struct fpu *fpu = &current->thread.fpu;
6599 int r;
6600 sigset_t sigsaved;
6601
6602 fpu__activate_curr(fpu);
6603
6604 if (vcpu->sigset_active)
6605 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6606
6607 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6608 kvm_vcpu_block(vcpu);
6609 kvm_apic_accept_events(vcpu);
6610 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6611 r = -EAGAIN;
6612 goto out;
6613 }
6614
6615 /* re-sync apic's tpr */
6616 if (!irqchip_in_kernel(vcpu->kvm)) {
6617 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6618 r = -EINVAL;
6619 goto out;
6620 }
6621 }
6622
6623 if (unlikely(vcpu->arch.complete_userspace_io)) {
6624 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6625 vcpu->arch.complete_userspace_io = NULL;
6626 r = cui(vcpu);
6627 if (r <= 0)
6628 goto out;
6629 } else
6630 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6631
6632 r = vcpu_run(vcpu);
6633
6634 out:
6635 post_kvm_run_save(vcpu);
6636 if (vcpu->sigset_active)
6637 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6638
6639 return r;
6640 }
6641
6642 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6643 {
6644 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6645 /*
6646 * We are here if userspace calls get_regs() in the middle of
6647 * instruction emulation. Registers state needs to be copied
6648 * back from emulation context to vcpu. Userspace shouldn't do
6649 * that usually, but some bad designed PV devices (vmware
6650 * backdoor interface) need this to work
6651 */
6652 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6653 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6654 }
6655 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6656 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6657 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6658 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6659 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6660 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6661 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6662 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6663 #ifdef CONFIG_X86_64
6664 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6665 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6666 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6667 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6668 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6669 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6670 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6671 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6672 #endif
6673
6674 regs->rip = kvm_rip_read(vcpu);
6675 regs->rflags = kvm_get_rflags(vcpu);
6676
6677 return 0;
6678 }
6679
6680 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6681 {
6682 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6683 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6684
6685 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6686 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6687 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6688 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6689 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6690 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6691 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6692 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6693 #ifdef CONFIG_X86_64
6694 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6695 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6696 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6697 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6698 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6699 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6700 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6701 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6702 #endif
6703
6704 kvm_rip_write(vcpu, regs->rip);
6705 kvm_set_rflags(vcpu, regs->rflags);
6706
6707 vcpu->arch.exception.pending = false;
6708
6709 kvm_make_request(KVM_REQ_EVENT, vcpu);
6710
6711 return 0;
6712 }
6713
6714 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6715 {
6716 struct kvm_segment cs;
6717
6718 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6719 *db = cs.db;
6720 *l = cs.l;
6721 }
6722 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6723
6724 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6725 struct kvm_sregs *sregs)
6726 {
6727 struct desc_ptr dt;
6728
6729 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6730 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6731 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6732 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6733 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6734 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6735
6736 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6737 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6738
6739 kvm_x86_ops->get_idt(vcpu, &dt);
6740 sregs->idt.limit = dt.size;
6741 sregs->idt.base = dt.address;
6742 kvm_x86_ops->get_gdt(vcpu, &dt);
6743 sregs->gdt.limit = dt.size;
6744 sregs->gdt.base = dt.address;
6745
6746 sregs->cr0 = kvm_read_cr0(vcpu);
6747 sregs->cr2 = vcpu->arch.cr2;
6748 sregs->cr3 = kvm_read_cr3(vcpu);
6749 sregs->cr4 = kvm_read_cr4(vcpu);
6750 sregs->cr8 = kvm_get_cr8(vcpu);
6751 sregs->efer = vcpu->arch.efer;
6752 sregs->apic_base = kvm_get_apic_base(vcpu);
6753
6754 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6755
6756 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6757 set_bit(vcpu->arch.interrupt.nr,
6758 (unsigned long *)sregs->interrupt_bitmap);
6759
6760 return 0;
6761 }
6762
6763 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6764 struct kvm_mp_state *mp_state)
6765 {
6766 kvm_apic_accept_events(vcpu);
6767 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6768 vcpu->arch.pv.pv_unhalted)
6769 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6770 else
6771 mp_state->mp_state = vcpu->arch.mp_state;
6772
6773 return 0;
6774 }
6775
6776 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6777 struct kvm_mp_state *mp_state)
6778 {
6779 if (!kvm_vcpu_has_lapic(vcpu) &&
6780 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6781 return -EINVAL;
6782
6783 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6784 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6785 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6786 } else
6787 vcpu->arch.mp_state = mp_state->mp_state;
6788 kvm_make_request(KVM_REQ_EVENT, vcpu);
6789 return 0;
6790 }
6791
6792 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6793 int reason, bool has_error_code, u32 error_code)
6794 {
6795 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6796 int ret;
6797
6798 init_emulate_ctxt(vcpu);
6799
6800 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6801 has_error_code, error_code);
6802
6803 if (ret)
6804 return EMULATE_FAIL;
6805
6806 kvm_rip_write(vcpu, ctxt->eip);
6807 kvm_set_rflags(vcpu, ctxt->eflags);
6808 kvm_make_request(KVM_REQ_EVENT, vcpu);
6809 return EMULATE_DONE;
6810 }
6811 EXPORT_SYMBOL_GPL(kvm_task_switch);
6812
6813 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6814 struct kvm_sregs *sregs)
6815 {
6816 struct msr_data apic_base_msr;
6817 int mmu_reset_needed = 0;
6818 int pending_vec, max_bits, idx;
6819 struct desc_ptr dt;
6820
6821 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6822 return -EINVAL;
6823
6824 dt.size = sregs->idt.limit;
6825 dt.address = sregs->idt.base;
6826 kvm_x86_ops->set_idt(vcpu, &dt);
6827 dt.size = sregs->gdt.limit;
6828 dt.address = sregs->gdt.base;
6829 kvm_x86_ops->set_gdt(vcpu, &dt);
6830
6831 vcpu->arch.cr2 = sregs->cr2;
6832 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6833 vcpu->arch.cr3 = sregs->cr3;
6834 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6835
6836 kvm_set_cr8(vcpu, sregs->cr8);
6837
6838 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6839 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6840 apic_base_msr.data = sregs->apic_base;
6841 apic_base_msr.host_initiated = true;
6842 kvm_set_apic_base(vcpu, &apic_base_msr);
6843
6844 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6845 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6846 vcpu->arch.cr0 = sregs->cr0;
6847
6848 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6849 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6850 if (sregs->cr4 & X86_CR4_OSXSAVE)
6851 kvm_update_cpuid(vcpu);
6852
6853 idx = srcu_read_lock(&vcpu->kvm->srcu);
6854 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6855 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6856 mmu_reset_needed = 1;
6857 }
6858 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6859
6860 if (mmu_reset_needed)
6861 kvm_mmu_reset_context(vcpu);
6862
6863 max_bits = KVM_NR_INTERRUPTS;
6864 pending_vec = find_first_bit(
6865 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6866 if (pending_vec < max_bits) {
6867 kvm_queue_interrupt(vcpu, pending_vec, false);
6868 pr_debug("Set back pending irq %d\n", pending_vec);
6869 }
6870
6871 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6872 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6873 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6874 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6875 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6876 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6877
6878 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6879 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6880
6881 update_cr8_intercept(vcpu);
6882
6883 /* Older userspace won't unhalt the vcpu on reset. */
6884 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6885 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6886 !is_protmode(vcpu))
6887 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6888
6889 kvm_make_request(KVM_REQ_EVENT, vcpu);
6890
6891 return 0;
6892 }
6893
6894 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6895 struct kvm_guest_debug *dbg)
6896 {
6897 unsigned long rflags;
6898 int i, r;
6899
6900 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6901 r = -EBUSY;
6902 if (vcpu->arch.exception.pending)
6903 goto out;
6904 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6905 kvm_queue_exception(vcpu, DB_VECTOR);
6906 else
6907 kvm_queue_exception(vcpu, BP_VECTOR);
6908 }
6909
6910 /*
6911 * Read rflags as long as potentially injected trace flags are still
6912 * filtered out.
6913 */
6914 rflags = kvm_get_rflags(vcpu);
6915
6916 vcpu->guest_debug = dbg->control;
6917 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6918 vcpu->guest_debug = 0;
6919
6920 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6921 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6922 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6923 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6924 } else {
6925 for (i = 0; i < KVM_NR_DB_REGS; i++)
6926 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6927 }
6928 kvm_update_dr7(vcpu);
6929
6930 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6931 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6932 get_segment_base(vcpu, VCPU_SREG_CS);
6933
6934 /*
6935 * Trigger an rflags update that will inject or remove the trace
6936 * flags.
6937 */
6938 kvm_set_rflags(vcpu, rflags);
6939
6940 kvm_x86_ops->update_db_bp_intercept(vcpu);
6941
6942 r = 0;
6943
6944 out:
6945
6946 return r;
6947 }
6948
6949 /*
6950 * Translate a guest virtual address to a guest physical address.
6951 */
6952 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6953 struct kvm_translation *tr)
6954 {
6955 unsigned long vaddr = tr->linear_address;
6956 gpa_t gpa;
6957 int idx;
6958
6959 idx = srcu_read_lock(&vcpu->kvm->srcu);
6960 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6961 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6962 tr->physical_address = gpa;
6963 tr->valid = gpa != UNMAPPED_GVA;
6964 tr->writeable = 1;
6965 tr->usermode = 0;
6966
6967 return 0;
6968 }
6969
6970 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6971 {
6972 struct fxregs_state *fxsave =
6973 &vcpu->arch.guest_fpu.state.fxsave;
6974
6975 memcpy(fpu->fpr, fxsave->st_space, 128);
6976 fpu->fcw = fxsave->cwd;
6977 fpu->fsw = fxsave->swd;
6978 fpu->ftwx = fxsave->twd;
6979 fpu->last_opcode = fxsave->fop;
6980 fpu->last_ip = fxsave->rip;
6981 fpu->last_dp = fxsave->rdp;
6982 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6983
6984 return 0;
6985 }
6986
6987 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6988 {
6989 struct fxregs_state *fxsave =
6990 &vcpu->arch.guest_fpu.state.fxsave;
6991
6992 memcpy(fxsave->st_space, fpu->fpr, 128);
6993 fxsave->cwd = fpu->fcw;
6994 fxsave->swd = fpu->fsw;
6995 fxsave->twd = fpu->ftwx;
6996 fxsave->fop = fpu->last_opcode;
6997 fxsave->rip = fpu->last_ip;
6998 fxsave->rdp = fpu->last_dp;
6999 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7000
7001 return 0;
7002 }
7003
7004 static void fx_init(struct kvm_vcpu *vcpu)
7005 {
7006 fpstate_init(&vcpu->arch.guest_fpu.state);
7007 if (cpu_has_xsaves)
7008 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7009 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7010
7011 /*
7012 * Ensure guest xcr0 is valid for loading
7013 */
7014 vcpu->arch.xcr0 = XSTATE_FP;
7015
7016 vcpu->arch.cr0 |= X86_CR0_ET;
7017 }
7018
7019 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7020 {
7021 if (vcpu->guest_fpu_loaded)
7022 return;
7023
7024 /*
7025 * Restore all possible states in the guest,
7026 * and assume host would use all available bits.
7027 * Guest xcr0 would be loaded later.
7028 */
7029 kvm_put_guest_xcr0(vcpu);
7030 vcpu->guest_fpu_loaded = 1;
7031 __kernel_fpu_begin();
7032 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7033 trace_kvm_fpu(1);
7034 }
7035
7036 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7037 {
7038 kvm_put_guest_xcr0(vcpu);
7039
7040 if (!vcpu->guest_fpu_loaded) {
7041 vcpu->fpu_counter = 0;
7042 return;
7043 }
7044
7045 vcpu->guest_fpu_loaded = 0;
7046 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7047 __kernel_fpu_end();
7048 ++vcpu->stat.fpu_reload;
7049 /*
7050 * If using eager FPU mode, or if the guest is a frequent user
7051 * of the FPU, just leave the FPU active for next time.
7052 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7053 * the FPU in bursts will revert to loading it on demand.
7054 */
7055 if (!vcpu->arch.eager_fpu) {
7056 if (++vcpu->fpu_counter < 5)
7057 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7058 }
7059 trace_kvm_fpu(0);
7060 }
7061
7062 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7063 {
7064 kvmclock_reset(vcpu);
7065
7066 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7067 kvm_x86_ops->vcpu_free(vcpu);
7068 }
7069
7070 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7071 unsigned int id)
7072 {
7073 struct kvm_vcpu *vcpu;
7074
7075 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7076 printk_once(KERN_WARNING
7077 "kvm: SMP vm created on host with unstable TSC; "
7078 "guest TSC will not be reliable\n");
7079
7080 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7081
7082 return vcpu;
7083 }
7084
7085 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7086 {
7087 int r;
7088
7089 kvm_vcpu_mtrr_init(vcpu);
7090 r = vcpu_load(vcpu);
7091 if (r)
7092 return r;
7093 kvm_vcpu_reset(vcpu, false);
7094 kvm_mmu_setup(vcpu);
7095 vcpu_put(vcpu);
7096 return r;
7097 }
7098
7099 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7100 {
7101 struct msr_data msr;
7102 struct kvm *kvm = vcpu->kvm;
7103
7104 if (vcpu_load(vcpu))
7105 return;
7106 msr.data = 0x0;
7107 msr.index = MSR_IA32_TSC;
7108 msr.host_initiated = true;
7109 kvm_write_tsc(vcpu, &msr);
7110 vcpu_put(vcpu);
7111
7112 if (!kvmclock_periodic_sync)
7113 return;
7114
7115 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7116 KVMCLOCK_SYNC_PERIOD);
7117 }
7118
7119 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7120 {
7121 int r;
7122 vcpu->arch.apf.msr_val = 0;
7123
7124 r = vcpu_load(vcpu);
7125 BUG_ON(r);
7126 kvm_mmu_unload(vcpu);
7127 vcpu_put(vcpu);
7128
7129 kvm_x86_ops->vcpu_free(vcpu);
7130 }
7131
7132 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7133 {
7134 vcpu->arch.hflags = 0;
7135
7136 atomic_set(&vcpu->arch.nmi_queued, 0);
7137 vcpu->arch.nmi_pending = 0;
7138 vcpu->arch.nmi_injected = false;
7139 kvm_clear_interrupt_queue(vcpu);
7140 kvm_clear_exception_queue(vcpu);
7141
7142 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7143 kvm_update_dr0123(vcpu);
7144 vcpu->arch.dr6 = DR6_INIT;
7145 kvm_update_dr6(vcpu);
7146 vcpu->arch.dr7 = DR7_FIXED_1;
7147 kvm_update_dr7(vcpu);
7148
7149 vcpu->arch.cr2 = 0;
7150
7151 kvm_make_request(KVM_REQ_EVENT, vcpu);
7152 vcpu->arch.apf.msr_val = 0;
7153 vcpu->arch.st.msr_val = 0;
7154
7155 kvmclock_reset(vcpu);
7156
7157 kvm_clear_async_pf_completion_queue(vcpu);
7158 kvm_async_pf_hash_reset(vcpu);
7159 vcpu->arch.apf.halted = false;
7160
7161 if (!init_event) {
7162 kvm_pmu_reset(vcpu);
7163 vcpu->arch.smbase = 0x30000;
7164 }
7165
7166 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7167 vcpu->arch.regs_avail = ~0;
7168 vcpu->arch.regs_dirty = ~0;
7169
7170 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7171 }
7172
7173 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7174 {
7175 struct kvm_segment cs;
7176
7177 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7178 cs.selector = vector << 8;
7179 cs.base = vector << 12;
7180 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7181 kvm_rip_write(vcpu, 0);
7182 }
7183
7184 int kvm_arch_hardware_enable(void)
7185 {
7186 struct kvm *kvm;
7187 struct kvm_vcpu *vcpu;
7188 int i;
7189 int ret;
7190 u64 local_tsc;
7191 u64 max_tsc = 0;
7192 bool stable, backwards_tsc = false;
7193
7194 kvm_shared_msr_cpu_online();
7195 ret = kvm_x86_ops->hardware_enable();
7196 if (ret != 0)
7197 return ret;
7198
7199 local_tsc = native_read_tsc();
7200 stable = !check_tsc_unstable();
7201 list_for_each_entry(kvm, &vm_list, vm_list) {
7202 kvm_for_each_vcpu(i, vcpu, kvm) {
7203 if (!stable && vcpu->cpu == smp_processor_id())
7204 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7205 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7206 backwards_tsc = true;
7207 if (vcpu->arch.last_host_tsc > max_tsc)
7208 max_tsc = vcpu->arch.last_host_tsc;
7209 }
7210 }
7211 }
7212
7213 /*
7214 * Sometimes, even reliable TSCs go backwards. This happens on
7215 * platforms that reset TSC during suspend or hibernate actions, but
7216 * maintain synchronization. We must compensate. Fortunately, we can
7217 * detect that condition here, which happens early in CPU bringup,
7218 * before any KVM threads can be running. Unfortunately, we can't
7219 * bring the TSCs fully up to date with real time, as we aren't yet far
7220 * enough into CPU bringup that we know how much real time has actually
7221 * elapsed; our helper function, get_kernel_ns() will be using boot
7222 * variables that haven't been updated yet.
7223 *
7224 * So we simply find the maximum observed TSC above, then record the
7225 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7226 * the adjustment will be applied. Note that we accumulate
7227 * adjustments, in case multiple suspend cycles happen before some VCPU
7228 * gets a chance to run again. In the event that no KVM threads get a
7229 * chance to run, we will miss the entire elapsed period, as we'll have
7230 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7231 * loose cycle time. This isn't too big a deal, since the loss will be
7232 * uniform across all VCPUs (not to mention the scenario is extremely
7233 * unlikely). It is possible that a second hibernate recovery happens
7234 * much faster than a first, causing the observed TSC here to be
7235 * smaller; this would require additional padding adjustment, which is
7236 * why we set last_host_tsc to the local tsc observed here.
7237 *
7238 * N.B. - this code below runs only on platforms with reliable TSC,
7239 * as that is the only way backwards_tsc is set above. Also note
7240 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7241 * have the same delta_cyc adjustment applied if backwards_tsc
7242 * is detected. Note further, this adjustment is only done once,
7243 * as we reset last_host_tsc on all VCPUs to stop this from being
7244 * called multiple times (one for each physical CPU bringup).
7245 *
7246 * Platforms with unreliable TSCs don't have to deal with this, they
7247 * will be compensated by the logic in vcpu_load, which sets the TSC to
7248 * catchup mode. This will catchup all VCPUs to real time, but cannot
7249 * guarantee that they stay in perfect synchronization.
7250 */
7251 if (backwards_tsc) {
7252 u64 delta_cyc = max_tsc - local_tsc;
7253 backwards_tsc_observed = true;
7254 list_for_each_entry(kvm, &vm_list, vm_list) {
7255 kvm_for_each_vcpu(i, vcpu, kvm) {
7256 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7257 vcpu->arch.last_host_tsc = local_tsc;
7258 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7259 }
7260
7261 /*
7262 * We have to disable TSC offset matching.. if you were
7263 * booting a VM while issuing an S4 host suspend....
7264 * you may have some problem. Solving this issue is
7265 * left as an exercise to the reader.
7266 */
7267 kvm->arch.last_tsc_nsec = 0;
7268 kvm->arch.last_tsc_write = 0;
7269 }
7270
7271 }
7272 return 0;
7273 }
7274
7275 void kvm_arch_hardware_disable(void)
7276 {
7277 kvm_x86_ops->hardware_disable();
7278 drop_user_return_notifiers();
7279 }
7280
7281 int kvm_arch_hardware_setup(void)
7282 {
7283 int r;
7284
7285 r = kvm_x86_ops->hardware_setup();
7286 if (r != 0)
7287 return r;
7288
7289 kvm_init_msr_list();
7290 return 0;
7291 }
7292
7293 void kvm_arch_hardware_unsetup(void)
7294 {
7295 kvm_x86_ops->hardware_unsetup();
7296 }
7297
7298 void kvm_arch_check_processor_compat(void *rtn)
7299 {
7300 kvm_x86_ops->check_processor_compatibility(rtn);
7301 }
7302
7303 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7304 {
7305 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7306 }
7307 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7308
7309 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7310 {
7311 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7312 }
7313
7314 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7315 {
7316 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7317 }
7318
7319 struct static_key kvm_no_apic_vcpu __read_mostly;
7320
7321 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7322 {
7323 struct page *page;
7324 struct kvm *kvm;
7325 int r;
7326
7327 BUG_ON(vcpu->kvm == NULL);
7328 kvm = vcpu->kvm;
7329
7330 vcpu->arch.pv.pv_unhalted = false;
7331 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7332 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7333 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7334 else
7335 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7336
7337 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7338 if (!page) {
7339 r = -ENOMEM;
7340 goto fail;
7341 }
7342 vcpu->arch.pio_data = page_address(page);
7343
7344 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7345
7346 r = kvm_mmu_create(vcpu);
7347 if (r < 0)
7348 goto fail_free_pio_data;
7349
7350 if (irqchip_in_kernel(kvm)) {
7351 r = kvm_create_lapic(vcpu);
7352 if (r < 0)
7353 goto fail_mmu_destroy;
7354 } else
7355 static_key_slow_inc(&kvm_no_apic_vcpu);
7356
7357 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7358 GFP_KERNEL);
7359 if (!vcpu->arch.mce_banks) {
7360 r = -ENOMEM;
7361 goto fail_free_lapic;
7362 }
7363 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7364
7365 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7366 r = -ENOMEM;
7367 goto fail_free_mce_banks;
7368 }
7369
7370 fx_init(vcpu);
7371
7372 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7373 vcpu->arch.pv_time_enabled = false;
7374
7375 vcpu->arch.guest_supported_xcr0 = 0;
7376 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7377
7378 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7379
7380 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7381
7382 kvm_async_pf_hash_reset(vcpu);
7383 kvm_pmu_init(vcpu);
7384
7385 return 0;
7386
7387 fail_free_mce_banks:
7388 kfree(vcpu->arch.mce_banks);
7389 fail_free_lapic:
7390 kvm_free_lapic(vcpu);
7391 fail_mmu_destroy:
7392 kvm_mmu_destroy(vcpu);
7393 fail_free_pio_data:
7394 free_page((unsigned long)vcpu->arch.pio_data);
7395 fail:
7396 return r;
7397 }
7398
7399 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7400 {
7401 int idx;
7402
7403 kvm_pmu_destroy(vcpu);
7404 kfree(vcpu->arch.mce_banks);
7405 kvm_free_lapic(vcpu);
7406 idx = srcu_read_lock(&vcpu->kvm->srcu);
7407 kvm_mmu_destroy(vcpu);
7408 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7409 free_page((unsigned long)vcpu->arch.pio_data);
7410 if (!irqchip_in_kernel(vcpu->kvm))
7411 static_key_slow_dec(&kvm_no_apic_vcpu);
7412 }
7413
7414 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7415 {
7416 kvm_x86_ops->sched_in(vcpu, cpu);
7417 }
7418
7419 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7420 {
7421 if (type)
7422 return -EINVAL;
7423
7424 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7425 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7426 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7427 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7428 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7429
7430 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7431 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7432 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7433 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7434 &kvm->arch.irq_sources_bitmap);
7435
7436 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7437 mutex_init(&kvm->arch.apic_map_lock);
7438 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7439
7440 pvclock_update_vm_gtod_copy(kvm);
7441
7442 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7443 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7444
7445 return 0;
7446 }
7447
7448 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7449 {
7450 int r;
7451 r = vcpu_load(vcpu);
7452 BUG_ON(r);
7453 kvm_mmu_unload(vcpu);
7454 vcpu_put(vcpu);
7455 }
7456
7457 static void kvm_free_vcpus(struct kvm *kvm)
7458 {
7459 unsigned int i;
7460 struct kvm_vcpu *vcpu;
7461
7462 /*
7463 * Unpin any mmu pages first.
7464 */
7465 kvm_for_each_vcpu(i, vcpu, kvm) {
7466 kvm_clear_async_pf_completion_queue(vcpu);
7467 kvm_unload_vcpu_mmu(vcpu);
7468 }
7469 kvm_for_each_vcpu(i, vcpu, kvm)
7470 kvm_arch_vcpu_free(vcpu);
7471
7472 mutex_lock(&kvm->lock);
7473 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7474 kvm->vcpus[i] = NULL;
7475
7476 atomic_set(&kvm->online_vcpus, 0);
7477 mutex_unlock(&kvm->lock);
7478 }
7479
7480 void kvm_arch_sync_events(struct kvm *kvm)
7481 {
7482 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7483 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7484 kvm_free_all_assigned_devices(kvm);
7485 kvm_free_pit(kvm);
7486 }
7487
7488 int __x86_set_memory_region(struct kvm *kvm,
7489 const struct kvm_userspace_memory_region *mem)
7490 {
7491 int i, r;
7492
7493 /* Called with kvm->slots_lock held. */
7494 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7495
7496 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7497 struct kvm_userspace_memory_region m = *mem;
7498
7499 m.slot |= i << 16;
7500 r = __kvm_set_memory_region(kvm, &m);
7501 if (r < 0)
7502 return r;
7503 }
7504
7505 return 0;
7506 }
7507 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7508
7509 int x86_set_memory_region(struct kvm *kvm,
7510 const struct kvm_userspace_memory_region *mem)
7511 {
7512 int r;
7513
7514 mutex_lock(&kvm->slots_lock);
7515 r = __x86_set_memory_region(kvm, mem);
7516 mutex_unlock(&kvm->slots_lock);
7517
7518 return r;
7519 }
7520 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7521
7522 void kvm_arch_destroy_vm(struct kvm *kvm)
7523 {
7524 if (current->mm == kvm->mm) {
7525 /*
7526 * Free memory regions allocated on behalf of userspace,
7527 * unless the the memory map has changed due to process exit
7528 * or fd copying.
7529 */
7530 struct kvm_userspace_memory_region mem;
7531 memset(&mem, 0, sizeof(mem));
7532 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7533 x86_set_memory_region(kvm, &mem);
7534
7535 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7536 x86_set_memory_region(kvm, &mem);
7537
7538 mem.slot = TSS_PRIVATE_MEMSLOT;
7539 x86_set_memory_region(kvm, &mem);
7540 }
7541 kvm_iommu_unmap_guest(kvm);
7542 kfree(kvm->arch.vpic);
7543 kfree(kvm->arch.vioapic);
7544 kvm_free_vcpus(kvm);
7545 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7546 }
7547
7548 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7549 struct kvm_memory_slot *dont)
7550 {
7551 int i;
7552
7553 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7554 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7555 kvfree(free->arch.rmap[i]);
7556 free->arch.rmap[i] = NULL;
7557 }
7558 if (i == 0)
7559 continue;
7560
7561 if (!dont || free->arch.lpage_info[i - 1] !=
7562 dont->arch.lpage_info[i - 1]) {
7563 kvfree(free->arch.lpage_info[i - 1]);
7564 free->arch.lpage_info[i - 1] = NULL;
7565 }
7566 }
7567 }
7568
7569 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7570 unsigned long npages)
7571 {
7572 int i;
7573
7574 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7575 unsigned long ugfn;
7576 int lpages;
7577 int level = i + 1;
7578
7579 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7580 slot->base_gfn, level) + 1;
7581
7582 slot->arch.rmap[i] =
7583 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7584 if (!slot->arch.rmap[i])
7585 goto out_free;
7586 if (i == 0)
7587 continue;
7588
7589 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7590 sizeof(*slot->arch.lpage_info[i - 1]));
7591 if (!slot->arch.lpage_info[i - 1])
7592 goto out_free;
7593
7594 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7595 slot->arch.lpage_info[i - 1][0].write_count = 1;
7596 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7597 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7598 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7599 /*
7600 * If the gfn and userspace address are not aligned wrt each
7601 * other, or if explicitly asked to, disable large page
7602 * support for this slot
7603 */
7604 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7605 !kvm_largepages_enabled()) {
7606 unsigned long j;
7607
7608 for (j = 0; j < lpages; ++j)
7609 slot->arch.lpage_info[i - 1][j].write_count = 1;
7610 }
7611 }
7612
7613 return 0;
7614
7615 out_free:
7616 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7617 kvfree(slot->arch.rmap[i]);
7618 slot->arch.rmap[i] = NULL;
7619 if (i == 0)
7620 continue;
7621
7622 kvfree(slot->arch.lpage_info[i - 1]);
7623 slot->arch.lpage_info[i - 1] = NULL;
7624 }
7625 return -ENOMEM;
7626 }
7627
7628 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7629 {
7630 /*
7631 * memslots->generation has been incremented.
7632 * mmio generation may have reached its maximum value.
7633 */
7634 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7635 }
7636
7637 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7638 struct kvm_memory_slot *memslot,
7639 const struct kvm_userspace_memory_region *mem,
7640 enum kvm_mr_change change)
7641 {
7642 /*
7643 * Only private memory slots need to be mapped here since
7644 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7645 */
7646 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7647 unsigned long userspace_addr;
7648
7649 /*
7650 * MAP_SHARED to prevent internal slot pages from being moved
7651 * by fork()/COW.
7652 */
7653 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7654 PROT_READ | PROT_WRITE,
7655 MAP_SHARED | MAP_ANONYMOUS, 0);
7656
7657 if (IS_ERR((void *)userspace_addr))
7658 return PTR_ERR((void *)userspace_addr);
7659
7660 memslot->userspace_addr = userspace_addr;
7661 }
7662
7663 return 0;
7664 }
7665
7666 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7667 struct kvm_memory_slot *new)
7668 {
7669 /* Still write protect RO slot */
7670 if (new->flags & KVM_MEM_READONLY) {
7671 kvm_mmu_slot_remove_write_access(kvm, new);
7672 return;
7673 }
7674
7675 /*
7676 * Call kvm_x86_ops dirty logging hooks when they are valid.
7677 *
7678 * kvm_x86_ops->slot_disable_log_dirty is called when:
7679 *
7680 * - KVM_MR_CREATE with dirty logging is disabled
7681 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7682 *
7683 * The reason is, in case of PML, we need to set D-bit for any slots
7684 * with dirty logging disabled in order to eliminate unnecessary GPA
7685 * logging in PML buffer (and potential PML buffer full VMEXT). This
7686 * guarantees leaving PML enabled during guest's lifetime won't have
7687 * any additonal overhead from PML when guest is running with dirty
7688 * logging disabled for memory slots.
7689 *
7690 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7691 * to dirty logging mode.
7692 *
7693 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7694 *
7695 * In case of write protect:
7696 *
7697 * Write protect all pages for dirty logging.
7698 *
7699 * All the sptes including the large sptes which point to this
7700 * slot are set to readonly. We can not create any new large
7701 * spte on this slot until the end of the logging.
7702 *
7703 * See the comments in fast_page_fault().
7704 */
7705 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7706 if (kvm_x86_ops->slot_enable_log_dirty)
7707 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7708 else
7709 kvm_mmu_slot_remove_write_access(kvm, new);
7710 } else {
7711 if (kvm_x86_ops->slot_disable_log_dirty)
7712 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7713 }
7714 }
7715
7716 void kvm_arch_commit_memory_region(struct kvm *kvm,
7717 const struct kvm_userspace_memory_region *mem,
7718 const struct kvm_memory_slot *old,
7719 const struct kvm_memory_slot *new,
7720 enum kvm_mr_change change)
7721 {
7722 int nr_mmu_pages = 0;
7723
7724 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7725 int ret;
7726
7727 ret = vm_munmap(old->userspace_addr,
7728 old->npages * PAGE_SIZE);
7729 if (ret < 0)
7730 printk(KERN_WARNING
7731 "kvm_vm_ioctl_set_memory_region: "
7732 "failed to munmap memory\n");
7733 }
7734
7735 if (!kvm->arch.n_requested_mmu_pages)
7736 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7737
7738 if (nr_mmu_pages)
7739 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7740
7741 /*
7742 * Dirty logging tracks sptes in 4k granularity, meaning that large
7743 * sptes have to be split. If live migration is successful, the guest
7744 * in the source machine will be destroyed and large sptes will be
7745 * created in the destination. However, if the guest continues to run
7746 * in the source machine (for example if live migration fails), small
7747 * sptes will remain around and cause bad performance.
7748 *
7749 * Scan sptes if dirty logging has been stopped, dropping those
7750 * which can be collapsed into a single large-page spte. Later
7751 * page faults will create the large-page sptes.
7752 */
7753 if ((change != KVM_MR_DELETE) &&
7754 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7755 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7756 kvm_mmu_zap_collapsible_sptes(kvm, new);
7757
7758 /*
7759 * Set up write protection and/or dirty logging for the new slot.
7760 *
7761 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7762 * been zapped so no dirty logging staff is needed for old slot. For
7763 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7764 * new and it's also covered when dealing with the new slot.
7765 *
7766 * FIXME: const-ify all uses of struct kvm_memory_slot.
7767 */
7768 if (change != KVM_MR_DELETE)
7769 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7770 }
7771
7772 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7773 {
7774 kvm_mmu_invalidate_zap_all_pages(kvm);
7775 }
7776
7777 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7778 struct kvm_memory_slot *slot)
7779 {
7780 kvm_mmu_invalidate_zap_all_pages(kvm);
7781 }
7782
7783 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7784 {
7785 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7786 kvm_x86_ops->check_nested_events(vcpu, false);
7787
7788 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7789 !vcpu->arch.apf.halted)
7790 || !list_empty_careful(&vcpu->async_pf.done)
7791 || kvm_apic_has_events(vcpu)
7792 || vcpu->arch.pv.pv_unhalted
7793 || atomic_read(&vcpu->arch.nmi_queued) ||
7794 (kvm_arch_interrupt_allowed(vcpu) &&
7795 kvm_cpu_has_interrupt(vcpu));
7796 }
7797
7798 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7799 {
7800 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7801 }
7802
7803 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7804 {
7805 return kvm_x86_ops->interrupt_allowed(vcpu);
7806 }
7807
7808 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7809 {
7810 if (is_64_bit_mode(vcpu))
7811 return kvm_rip_read(vcpu);
7812 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7813 kvm_rip_read(vcpu));
7814 }
7815 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7816
7817 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7818 {
7819 return kvm_get_linear_rip(vcpu) == linear_rip;
7820 }
7821 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7822
7823 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7824 {
7825 unsigned long rflags;
7826
7827 rflags = kvm_x86_ops->get_rflags(vcpu);
7828 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7829 rflags &= ~X86_EFLAGS_TF;
7830 return rflags;
7831 }
7832 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7833
7834 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7835 {
7836 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7837 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7838 rflags |= X86_EFLAGS_TF;
7839 kvm_x86_ops->set_rflags(vcpu, rflags);
7840 }
7841
7842 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7843 {
7844 __kvm_set_rflags(vcpu, rflags);
7845 kvm_make_request(KVM_REQ_EVENT, vcpu);
7846 }
7847 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7848
7849 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7850 {
7851 int r;
7852
7853 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7854 work->wakeup_all)
7855 return;
7856
7857 r = kvm_mmu_reload(vcpu);
7858 if (unlikely(r))
7859 return;
7860
7861 if (!vcpu->arch.mmu.direct_map &&
7862 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7863 return;
7864
7865 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7866 }
7867
7868 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7869 {
7870 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7871 }
7872
7873 static inline u32 kvm_async_pf_next_probe(u32 key)
7874 {
7875 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7876 }
7877
7878 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7879 {
7880 u32 key = kvm_async_pf_hash_fn(gfn);
7881
7882 while (vcpu->arch.apf.gfns[key] != ~0)
7883 key = kvm_async_pf_next_probe(key);
7884
7885 vcpu->arch.apf.gfns[key] = gfn;
7886 }
7887
7888 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7889 {
7890 int i;
7891 u32 key = kvm_async_pf_hash_fn(gfn);
7892
7893 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7894 (vcpu->arch.apf.gfns[key] != gfn &&
7895 vcpu->arch.apf.gfns[key] != ~0); i++)
7896 key = kvm_async_pf_next_probe(key);
7897
7898 return key;
7899 }
7900
7901 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7902 {
7903 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7904 }
7905
7906 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7907 {
7908 u32 i, j, k;
7909
7910 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7911 while (true) {
7912 vcpu->arch.apf.gfns[i] = ~0;
7913 do {
7914 j = kvm_async_pf_next_probe(j);
7915 if (vcpu->arch.apf.gfns[j] == ~0)
7916 return;
7917 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7918 /*
7919 * k lies cyclically in ]i,j]
7920 * | i.k.j |
7921 * |....j i.k.| or |.k..j i...|
7922 */
7923 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7924 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7925 i = j;
7926 }
7927 }
7928
7929 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7930 {
7931
7932 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7933 sizeof(val));
7934 }
7935
7936 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7937 struct kvm_async_pf *work)
7938 {
7939 struct x86_exception fault;
7940
7941 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7942 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7943
7944 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7945 (vcpu->arch.apf.send_user_only &&
7946 kvm_x86_ops->get_cpl(vcpu) == 0))
7947 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7948 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7949 fault.vector = PF_VECTOR;
7950 fault.error_code_valid = true;
7951 fault.error_code = 0;
7952 fault.nested_page_fault = false;
7953 fault.address = work->arch.token;
7954 kvm_inject_page_fault(vcpu, &fault);
7955 }
7956 }
7957
7958 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7959 struct kvm_async_pf *work)
7960 {
7961 struct x86_exception fault;
7962
7963 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7964 if (work->wakeup_all)
7965 work->arch.token = ~0; /* broadcast wakeup */
7966 else
7967 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7968
7969 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7970 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7971 fault.vector = PF_VECTOR;
7972 fault.error_code_valid = true;
7973 fault.error_code = 0;
7974 fault.nested_page_fault = false;
7975 fault.address = work->arch.token;
7976 kvm_inject_page_fault(vcpu, &fault);
7977 }
7978 vcpu->arch.apf.halted = false;
7979 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7980 }
7981
7982 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7983 {
7984 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7985 return true;
7986 else
7987 return !kvm_event_needs_reinjection(vcpu) &&
7988 kvm_x86_ops->interrupt_allowed(vcpu);
7989 }
7990
7991 void kvm_arch_start_assignment(struct kvm *kvm)
7992 {
7993 atomic_inc(&kvm->arch.assigned_device_count);
7994 }
7995 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7996
7997 void kvm_arch_end_assignment(struct kvm *kvm)
7998 {
7999 atomic_dec(&kvm->arch.assigned_device_count);
8000 }
8001 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8002
8003 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8004 {
8005 return atomic_read(&kvm->arch.assigned_device_count);
8006 }
8007 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8008
8009 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8010 {
8011 atomic_inc(&kvm->arch.noncoherent_dma_count);
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8014
8015 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8016 {
8017 atomic_dec(&kvm->arch.noncoherent_dma_count);
8018 }
8019 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8020
8021 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8022 {
8023 return atomic_read(&kvm->arch.noncoherent_dma_count);
8024 }
8025 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8026
8027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);