]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Emulate triple fault shutdown if RSM emulation fails
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/internal.h> /* Ugh! */
71 #include <asm/pvclock.h>
72 #include <asm/div64.h>
73 #include <asm/irq_remapping.h>
74 #include <asm/mshyperv.h>
75 #include <asm/hypervisor.h>
76 #include <asm/tlbflush.h>
77 #include <asm/intel_pt.h>
78 #include <asm/emulate_prefix.h>
79 #include <asm/sgx.h>
80 #include <clocksource/hyperv_timer.h>
81
82 #define CREATE_TRACE_POINTS
83 #include "trace.h"
84
85 #define MAX_IO_MSRS 256
86 #define KVM_MAX_MCE_BANKS 32
87 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
88 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
89
90 #define emul_to_vcpu(ctxt) \
91 ((struct kvm_vcpu *)(ctxt)->vcpu)
92
93 /* EFER defaults:
94 * - enable syscall per default because its emulated by KVM
95 * - enable LME and LMA per default on 64 bit KVM
96 */
97 #ifdef CONFIG_X86_64
98 static
99 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
100 #else
101 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
102 #endif
103
104 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
105
106 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
107 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
108
109 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
110 static void process_nmi(struct kvm_vcpu *vcpu);
111 static void process_smi(struct kvm_vcpu *vcpu);
112 static void enter_smm(struct kvm_vcpu *vcpu);
113 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
114 static void store_regs(struct kvm_vcpu *vcpu);
115 static int sync_regs(struct kvm_vcpu *vcpu);
116
117 struct kvm_x86_ops kvm_x86_ops __read_mostly;
118 EXPORT_SYMBOL_GPL(kvm_x86_ops);
119
120 #define KVM_X86_OP(func) \
121 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
122 *(((struct kvm_x86_ops *)0)->func));
123 #define KVM_X86_OP_NULL KVM_X86_OP
124 #include <asm/kvm-x86-ops.h>
125 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
127 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
128
129 static bool __read_mostly ignore_msrs = 0;
130 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
131
132 bool __read_mostly report_ignored_msrs = true;
133 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
134 EXPORT_SYMBOL_GPL(report_ignored_msrs);
135
136 unsigned int min_timer_period_us = 200;
137 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
138
139 static bool __read_mostly kvmclock_periodic_sync = true;
140 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
141
142 bool __read_mostly kvm_has_tsc_control;
143 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
144 u32 __read_mostly kvm_max_guest_tsc_khz;
145 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
146 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
147 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
148 u64 __read_mostly kvm_max_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
150 u64 __read_mostly kvm_default_tsc_scaling_ratio;
151 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
152 bool __read_mostly kvm_has_bus_lock_exit;
153 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
154
155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
156 static u32 __read_mostly tsc_tolerance_ppm = 250;
157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
158
159 /*
160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
161 * adaptive tuning starting from default advancement of 1000ns. '0' disables
162 * advancement entirely. Any other value is used as-is and disables adaptive
163 * tuning, i.e. allows privileged userspace to set an exact advancement time.
164 */
165 static int __read_mostly lapic_timer_advance_ns = -1;
166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, S_IRUGO);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, S_IRUGO);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 static bool __read_mostly force_emulation_prefix = false;
176 module_param(force_emulation_prefix, bool, S_IRUGO);
177
178 int __read_mostly pi_inject_timer = -1;
179 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
180
181 /*
182 * Restoring the host value for MSRs that are only consumed when running in
183 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
184 * returns to userspace, i.e. the kernel can run with the guest's value.
185 */
186 #define KVM_MAX_NR_USER_RETURN_MSRS 16
187
188 struct kvm_user_return_msrs {
189 struct user_return_notifier urn;
190 bool registered;
191 struct kvm_user_return_msr_values {
192 u64 host;
193 u64 curr;
194 } values[KVM_MAX_NR_USER_RETURN_MSRS];
195 };
196
197 u32 __read_mostly kvm_nr_uret_msrs;
198 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
199 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
200 static struct kvm_user_return_msrs __percpu *user_return_msrs;
201
202 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
203 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
204 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
205 | XFEATURE_MASK_PKRU)
206
207 u64 __read_mostly host_efer;
208 EXPORT_SYMBOL_GPL(host_efer);
209
210 bool __read_mostly allow_smaller_maxphyaddr = 0;
211 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
212
213 bool __read_mostly enable_apicv = true;
214 EXPORT_SYMBOL_GPL(enable_apicv);
215
216 u64 __read_mostly host_xss;
217 EXPORT_SYMBOL_GPL(host_xss);
218 u64 __read_mostly supported_xss;
219 EXPORT_SYMBOL_GPL(supported_xss);
220
221 struct kvm_stats_debugfs_item debugfs_entries[] = {
222 VCPU_STAT("pf_fixed", pf_fixed),
223 VCPU_STAT("pf_guest", pf_guest),
224 VCPU_STAT("tlb_flush", tlb_flush),
225 VCPU_STAT("invlpg", invlpg),
226 VCPU_STAT("exits", exits),
227 VCPU_STAT("io_exits", io_exits),
228 VCPU_STAT("mmio_exits", mmio_exits),
229 VCPU_STAT("signal_exits", signal_exits),
230 VCPU_STAT("irq_window", irq_window_exits),
231 VCPU_STAT("nmi_window", nmi_window_exits),
232 VCPU_STAT("halt_exits", halt_exits),
233 VCPU_STAT("halt_successful_poll", halt_successful_poll),
234 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
235 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
236 VCPU_STAT("halt_wakeup", halt_wakeup),
237 VCPU_STAT("hypercalls", hypercalls),
238 VCPU_STAT("request_irq", request_irq_exits),
239 VCPU_STAT("irq_exits", irq_exits),
240 VCPU_STAT("host_state_reload", host_state_reload),
241 VCPU_STAT("fpu_reload", fpu_reload),
242 VCPU_STAT("insn_emulation", insn_emulation),
243 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
244 VCPU_STAT("irq_injections", irq_injections),
245 VCPU_STAT("nmi_injections", nmi_injections),
246 VCPU_STAT("req_event", req_event),
247 VCPU_STAT("l1d_flush", l1d_flush),
248 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
249 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
250 VCPU_STAT("nested_run", nested_run),
251 VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
252 VCPU_STAT("directed_yield_successful", directed_yield_successful),
253 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
254 VM_STAT("mmu_pte_write", mmu_pte_write),
255 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
256 VM_STAT("mmu_flooded", mmu_flooded),
257 VM_STAT("mmu_recycled", mmu_recycled),
258 VM_STAT("mmu_cache_miss", mmu_cache_miss),
259 VM_STAT("mmu_unsync", mmu_unsync),
260 VM_STAT("remote_tlb_flush", remote_tlb_flush),
261 VM_STAT("largepages", lpages, .mode = 0444),
262 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
263 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
264 { NULL }
265 };
266
267 u64 __read_mostly host_xcr0;
268 u64 __read_mostly supported_xcr0;
269 EXPORT_SYMBOL_GPL(supported_xcr0);
270
271 static struct kmem_cache *x86_fpu_cache;
272
273 static struct kmem_cache *x86_emulator_cache;
274
275 /*
276 * When called, it means the previous get/set msr reached an invalid msr.
277 * Return true if we want to ignore/silent this failed msr access.
278 */
279 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
280 {
281 const char *op = write ? "wrmsr" : "rdmsr";
282
283 if (ignore_msrs) {
284 if (report_ignored_msrs)
285 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
286 op, msr, data);
287 /* Mask the error */
288 return true;
289 } else {
290 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
291 op, msr, data);
292 return false;
293 }
294 }
295
296 static struct kmem_cache *kvm_alloc_emulator_cache(void)
297 {
298 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
299 unsigned int size = sizeof(struct x86_emulate_ctxt);
300
301 return kmem_cache_create_usercopy("x86_emulator", size,
302 __alignof__(struct x86_emulate_ctxt),
303 SLAB_ACCOUNT, useroffset,
304 size - useroffset, NULL);
305 }
306
307 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
308
309 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
310 {
311 int i;
312 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
313 vcpu->arch.apf.gfns[i] = ~0;
314 }
315
316 static void kvm_on_user_return(struct user_return_notifier *urn)
317 {
318 unsigned slot;
319 struct kvm_user_return_msrs *msrs
320 = container_of(urn, struct kvm_user_return_msrs, urn);
321 struct kvm_user_return_msr_values *values;
322 unsigned long flags;
323
324 /*
325 * Disabling irqs at this point since the following code could be
326 * interrupted and executed through kvm_arch_hardware_disable()
327 */
328 local_irq_save(flags);
329 if (msrs->registered) {
330 msrs->registered = false;
331 user_return_notifier_unregister(urn);
332 }
333 local_irq_restore(flags);
334 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
335 values = &msrs->values[slot];
336 if (values->host != values->curr) {
337 wrmsrl(kvm_uret_msrs_list[slot], values->host);
338 values->curr = values->host;
339 }
340 }
341 }
342
343 static int kvm_probe_user_return_msr(u32 msr)
344 {
345 u64 val;
346 int ret;
347
348 preempt_disable();
349 ret = rdmsrl_safe(msr, &val);
350 if (ret)
351 goto out;
352 ret = wrmsrl_safe(msr, val);
353 out:
354 preempt_enable();
355 return ret;
356 }
357
358 int kvm_add_user_return_msr(u32 msr)
359 {
360 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
361
362 if (kvm_probe_user_return_msr(msr))
363 return -1;
364
365 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
366 return kvm_nr_uret_msrs++;
367 }
368 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
369
370 int kvm_find_user_return_msr(u32 msr)
371 {
372 int i;
373
374 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
375 if (kvm_uret_msrs_list[i] == msr)
376 return i;
377 }
378 return -1;
379 }
380 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
381
382 static void kvm_user_return_msr_cpu_online(void)
383 {
384 unsigned int cpu = smp_processor_id();
385 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
386 u64 value;
387 int i;
388
389 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
390 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
391 msrs->values[i].host = value;
392 msrs->values[i].curr = value;
393 }
394 }
395
396 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
397 {
398 unsigned int cpu = smp_processor_id();
399 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
400 int err;
401
402 value = (value & mask) | (msrs->values[slot].host & ~mask);
403 if (value == msrs->values[slot].curr)
404 return 0;
405 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
406 if (err)
407 return 1;
408
409 msrs->values[slot].curr = value;
410 if (!msrs->registered) {
411 msrs->urn.on_user_return = kvm_on_user_return;
412 user_return_notifier_register(&msrs->urn);
413 msrs->registered = true;
414 }
415 return 0;
416 }
417 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
418
419 static void drop_user_return_notifiers(void)
420 {
421 unsigned int cpu = smp_processor_id();
422 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423
424 if (msrs->registered)
425 kvm_on_user_return(&msrs->urn);
426 }
427
428 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
429 {
430 return vcpu->arch.apic_base;
431 }
432 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
433
434 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
435 {
436 return kvm_apic_mode(kvm_get_apic_base(vcpu));
437 }
438 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
439
440 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
441 {
442 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
443 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
444 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
445 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
446
447 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
448 return 1;
449 if (!msr_info->host_initiated) {
450 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
451 return 1;
452 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
453 return 1;
454 }
455
456 kvm_lapic_set_base(vcpu, msr_info->data);
457 kvm_recalculate_apic_map(vcpu->kvm);
458 return 0;
459 }
460 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
461
462 asmlinkage __visible noinstr void kvm_spurious_fault(void)
463 {
464 /* Fault while not rebooting. We want the trace. */
465 BUG_ON(!kvm_rebooting);
466 }
467 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
468
469 #define EXCPT_BENIGN 0
470 #define EXCPT_CONTRIBUTORY 1
471 #define EXCPT_PF 2
472
473 static int exception_class(int vector)
474 {
475 switch (vector) {
476 case PF_VECTOR:
477 return EXCPT_PF;
478 case DE_VECTOR:
479 case TS_VECTOR:
480 case NP_VECTOR:
481 case SS_VECTOR:
482 case GP_VECTOR:
483 return EXCPT_CONTRIBUTORY;
484 default:
485 break;
486 }
487 return EXCPT_BENIGN;
488 }
489
490 #define EXCPT_FAULT 0
491 #define EXCPT_TRAP 1
492 #define EXCPT_ABORT 2
493 #define EXCPT_INTERRUPT 3
494
495 static int exception_type(int vector)
496 {
497 unsigned int mask;
498
499 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
500 return EXCPT_INTERRUPT;
501
502 mask = 1 << vector;
503
504 /* #DB is trap, as instruction watchpoints are handled elsewhere */
505 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
506 return EXCPT_TRAP;
507
508 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
509 return EXCPT_ABORT;
510
511 /* Reserved exceptions will result in fault */
512 return EXCPT_FAULT;
513 }
514
515 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
516 {
517 unsigned nr = vcpu->arch.exception.nr;
518 bool has_payload = vcpu->arch.exception.has_payload;
519 unsigned long payload = vcpu->arch.exception.payload;
520
521 if (!has_payload)
522 return;
523
524 switch (nr) {
525 case DB_VECTOR:
526 /*
527 * "Certain debug exceptions may clear bit 0-3. The
528 * remaining contents of the DR6 register are never
529 * cleared by the processor".
530 */
531 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
532 /*
533 * In order to reflect the #DB exception payload in guest
534 * dr6, three components need to be considered: active low
535 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
536 * DR6_BS and DR6_BT)
537 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
538 * In the target guest dr6:
539 * FIXED_1 bits should always be set.
540 * Active low bits should be cleared if 1-setting in payload.
541 * Active high bits should be set if 1-setting in payload.
542 *
543 * Note, the payload is compatible with the pending debug
544 * exceptions/exit qualification under VMX, that active_low bits
545 * are active high in payload.
546 * So they need to be flipped for DR6.
547 */
548 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
549 vcpu->arch.dr6 |= payload;
550 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
551
552 /*
553 * The #DB payload is defined as compatible with the 'pending
554 * debug exceptions' field under VMX, not DR6. While bit 12 is
555 * defined in the 'pending debug exceptions' field (enabled
556 * breakpoint), it is reserved and must be zero in DR6.
557 */
558 vcpu->arch.dr6 &= ~BIT(12);
559 break;
560 case PF_VECTOR:
561 vcpu->arch.cr2 = payload;
562 break;
563 }
564
565 vcpu->arch.exception.has_payload = false;
566 vcpu->arch.exception.payload = 0;
567 }
568 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
569
570 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
571 unsigned nr, bool has_error, u32 error_code,
572 bool has_payload, unsigned long payload, bool reinject)
573 {
574 u32 prev_nr;
575 int class1, class2;
576
577 kvm_make_request(KVM_REQ_EVENT, vcpu);
578
579 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
580 queue:
581 if (reinject) {
582 /*
583 * On vmentry, vcpu->arch.exception.pending is only
584 * true if an event injection was blocked by
585 * nested_run_pending. In that case, however,
586 * vcpu_enter_guest requests an immediate exit,
587 * and the guest shouldn't proceed far enough to
588 * need reinjection.
589 */
590 WARN_ON_ONCE(vcpu->arch.exception.pending);
591 vcpu->arch.exception.injected = true;
592 if (WARN_ON_ONCE(has_payload)) {
593 /*
594 * A reinjected event has already
595 * delivered its payload.
596 */
597 has_payload = false;
598 payload = 0;
599 }
600 } else {
601 vcpu->arch.exception.pending = true;
602 vcpu->arch.exception.injected = false;
603 }
604 vcpu->arch.exception.has_error_code = has_error;
605 vcpu->arch.exception.nr = nr;
606 vcpu->arch.exception.error_code = error_code;
607 vcpu->arch.exception.has_payload = has_payload;
608 vcpu->arch.exception.payload = payload;
609 if (!is_guest_mode(vcpu))
610 kvm_deliver_exception_payload(vcpu);
611 return;
612 }
613
614 /* to check exception */
615 prev_nr = vcpu->arch.exception.nr;
616 if (prev_nr == DF_VECTOR) {
617 /* triple fault -> shutdown */
618 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
619 return;
620 }
621 class1 = exception_class(prev_nr);
622 class2 = exception_class(nr);
623 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
624 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
625 /*
626 * Generate double fault per SDM Table 5-5. Set
627 * exception.pending = true so that the double fault
628 * can trigger a nested vmexit.
629 */
630 vcpu->arch.exception.pending = true;
631 vcpu->arch.exception.injected = false;
632 vcpu->arch.exception.has_error_code = true;
633 vcpu->arch.exception.nr = DF_VECTOR;
634 vcpu->arch.exception.error_code = 0;
635 vcpu->arch.exception.has_payload = false;
636 vcpu->arch.exception.payload = 0;
637 } else
638 /* replace previous exception with a new one in a hope
639 that instruction re-execution will regenerate lost
640 exception */
641 goto queue;
642 }
643
644 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
645 {
646 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
647 }
648 EXPORT_SYMBOL_GPL(kvm_queue_exception);
649
650 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
651 {
652 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
653 }
654 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
655
656 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
657 unsigned long payload)
658 {
659 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
660 }
661 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
662
663 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
664 u32 error_code, unsigned long payload)
665 {
666 kvm_multiple_exception(vcpu, nr, true, error_code,
667 true, payload, false);
668 }
669
670 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
671 {
672 if (err)
673 kvm_inject_gp(vcpu, 0);
674 else
675 return kvm_skip_emulated_instruction(vcpu);
676
677 return 1;
678 }
679 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
680
681 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
682 {
683 ++vcpu->stat.pf_guest;
684 vcpu->arch.exception.nested_apf =
685 is_guest_mode(vcpu) && fault->async_page_fault;
686 if (vcpu->arch.exception.nested_apf) {
687 vcpu->arch.apf.nested_apf_token = fault->address;
688 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
689 } else {
690 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
691 fault->address);
692 }
693 }
694 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
695
696 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
697 struct x86_exception *fault)
698 {
699 struct kvm_mmu *fault_mmu;
700 WARN_ON_ONCE(fault->vector != PF_VECTOR);
701
702 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
703 vcpu->arch.walk_mmu;
704
705 /*
706 * Invalidate the TLB entry for the faulting address, if it exists,
707 * else the access will fault indefinitely (and to emulate hardware).
708 */
709 if ((fault->error_code & PFERR_PRESENT_MASK) &&
710 !(fault->error_code & PFERR_RSVD_MASK))
711 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
712 fault_mmu->root_hpa);
713
714 fault_mmu->inject_page_fault(vcpu, fault);
715 return fault->nested_page_fault;
716 }
717 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
718
719 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
720 {
721 atomic_inc(&vcpu->arch.nmi_queued);
722 kvm_make_request(KVM_REQ_NMI, vcpu);
723 }
724 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
725
726 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
727 {
728 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
729 }
730 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
731
732 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
733 {
734 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
735 }
736 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
737
738 /*
739 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
740 * a #GP and return false.
741 */
742 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
743 {
744 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
745 return true;
746 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
747 return false;
748 }
749 EXPORT_SYMBOL_GPL(kvm_require_cpl);
750
751 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
752 {
753 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754 return true;
755
756 kvm_queue_exception(vcpu, UD_VECTOR);
757 return false;
758 }
759 EXPORT_SYMBOL_GPL(kvm_require_dr);
760
761 /*
762 * This function will be used to read from the physical memory of the currently
763 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
764 * can read from guest physical or from the guest's guest physical memory.
765 */
766 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
767 gfn_t ngfn, void *data, int offset, int len,
768 u32 access)
769 {
770 struct x86_exception exception;
771 gfn_t real_gfn;
772 gpa_t ngpa;
773
774 ngpa = gfn_to_gpa(ngfn);
775 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
776 if (real_gfn == UNMAPPED_GVA)
777 return -EFAULT;
778
779 real_gfn = gpa_to_gfn(real_gfn);
780
781 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
782 }
783 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
784
785 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
786 void *data, int offset, int len, u32 access)
787 {
788 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
789 data, offset, len, access);
790 }
791
792 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
793 {
794 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
795 }
796
797 /*
798 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
799 */
800 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
801 {
802 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
803 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
804 int i;
805 int ret;
806 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
807
808 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
809 offset * sizeof(u64), sizeof(pdpte),
810 PFERR_USER_MASK|PFERR_WRITE_MASK);
811 if (ret < 0) {
812 ret = 0;
813 goto out;
814 }
815 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
816 if ((pdpte[i] & PT_PRESENT_MASK) &&
817 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
818 ret = 0;
819 goto out;
820 }
821 }
822 ret = 1;
823
824 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
825 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
826
827 out:
828
829 return ret;
830 }
831 EXPORT_SYMBOL_GPL(load_pdptrs);
832
833 bool pdptrs_changed(struct kvm_vcpu *vcpu)
834 {
835 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
836 int offset;
837 gfn_t gfn;
838 int r;
839
840 if (!is_pae_paging(vcpu))
841 return false;
842
843 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
844 return true;
845
846 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
847 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
848 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
849 PFERR_USER_MASK | PFERR_WRITE_MASK);
850 if (r < 0)
851 return true;
852
853 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
854 }
855 EXPORT_SYMBOL_GPL(pdptrs_changed);
856
857 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
858 {
859 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
860
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & update_bits)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 __write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 __write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1046 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1047
1048 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1049 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1050 kvm_mmu_reset_context(vcpu);
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1053
1054 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1055 {
1056 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1057 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1058 X86_CR4_SMEP;
1059
1060 if (!kvm_is_valid_cr4(vcpu, cr4))
1061 return 1;
1062
1063 if (is_long_mode(vcpu)) {
1064 if (!(cr4 & X86_CR4_PAE))
1065 return 1;
1066 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1067 return 1;
1068 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1069 && ((cr4 ^ old_cr4) & pdptr_bits)
1070 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1071 kvm_read_cr3(vcpu)))
1072 return 1;
1073
1074 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1075 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1076 return 1;
1077
1078 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1079 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1080 return 1;
1081 }
1082
1083 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1084
1085 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1086
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1090
1091 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1092 {
1093 bool skip_tlb_flush = false;
1094 #ifdef CONFIG_X86_64
1095 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1096
1097 if (pcid_enabled) {
1098 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1099 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1100 }
1101 #endif
1102
1103 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1104 if (!skip_tlb_flush) {
1105 kvm_mmu_sync_roots(vcpu);
1106 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1107 }
1108 return 0;
1109 }
1110
1111 /*
1112 * Do not condition the GPA check on long mode, this helper is used to
1113 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1114 * the current vCPU mode is accurate.
1115 */
1116 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1117 return 1;
1118
1119 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1120 return 1;
1121
1122 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1123 vcpu->arch.cr3 = cr3;
1124 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1125
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1129
1130 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1131 {
1132 if (cr8 & CR8_RESERVED_BITS)
1133 return 1;
1134 if (lapic_in_kernel(vcpu))
1135 kvm_lapic_set_tpr(vcpu, cr8);
1136 else
1137 vcpu->arch.cr8 = cr8;
1138 return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1141
1142 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1143 {
1144 if (lapic_in_kernel(vcpu))
1145 return kvm_lapic_get_cr8(vcpu);
1146 else
1147 return vcpu->arch.cr8;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1150
1151 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1152 {
1153 int i;
1154
1155 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1156 for (i = 0; i < KVM_NR_DB_REGS; i++)
1157 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1158 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1159 }
1160 }
1161
1162 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1163 {
1164 unsigned long dr7;
1165
1166 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1167 dr7 = vcpu->arch.guest_debug_dr7;
1168 else
1169 dr7 = vcpu->arch.dr7;
1170 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1171 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1172 if (dr7 & DR7_BP_EN_MASK)
1173 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1176
1177 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1178 {
1179 u64 fixed = DR6_FIXED_1;
1180
1181 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1182 fixed |= DR6_RTM;
1183
1184 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1185 fixed |= DR6_BUS_LOCK;
1186 return fixed;
1187 }
1188
1189 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1190 {
1191 size_t size = ARRAY_SIZE(vcpu->arch.db);
1192
1193 switch (dr) {
1194 case 0 ... 3:
1195 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1196 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1197 vcpu->arch.eff_db[dr] = val;
1198 break;
1199 case 4:
1200 case 6:
1201 if (!kvm_dr6_valid(val))
1202 return 1; /* #GP */
1203 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1204 break;
1205 case 5:
1206 default: /* 7 */
1207 if (!kvm_dr7_valid(val))
1208 return 1; /* #GP */
1209 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1210 kvm_update_dr7(vcpu);
1211 break;
1212 }
1213
1214 return 0;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_set_dr);
1217
1218 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1219 {
1220 size_t size = ARRAY_SIZE(vcpu->arch.db);
1221
1222 switch (dr) {
1223 case 0 ... 3:
1224 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1225 break;
1226 case 4:
1227 case 6:
1228 *val = vcpu->arch.dr6;
1229 break;
1230 case 5:
1231 default: /* 7 */
1232 *val = vcpu->arch.dr7;
1233 break;
1234 }
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_get_dr);
1237
1238 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1239 {
1240 u32 ecx = kvm_rcx_read(vcpu);
1241 u64 data;
1242
1243 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1244 kvm_inject_gp(vcpu, 0);
1245 return 1;
1246 }
1247
1248 kvm_rax_write(vcpu, (u32)data);
1249 kvm_rdx_write(vcpu, data >> 32);
1250 return kvm_skip_emulated_instruction(vcpu);
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1253
1254 /*
1255 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1256 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1257 *
1258 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1259 * extract the supported MSRs from the related const lists.
1260 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1261 * capabilities of the host cpu. This capabilities test skips MSRs that are
1262 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1263 * may depend on host virtualization features rather than host cpu features.
1264 */
1265
1266 static const u32 msrs_to_save_all[] = {
1267 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1268 MSR_STAR,
1269 #ifdef CONFIG_X86_64
1270 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1271 #endif
1272 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1273 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1274 MSR_IA32_SPEC_CTRL,
1275 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1276 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1277 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1278 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1279 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1280 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1281 MSR_IA32_UMWAIT_CONTROL,
1282
1283 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1284 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1285 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1286 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1287 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1288 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1289 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1290 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1291 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1292 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1293 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1294 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1295 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1296 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1297 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1298 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1299 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1300 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1301 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1302 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1303 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1304 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1305 };
1306
1307 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1308 static unsigned num_msrs_to_save;
1309
1310 static const u32 emulated_msrs_all[] = {
1311 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1312 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1313 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1314 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1315 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1316 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1317 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1318 HV_X64_MSR_RESET,
1319 HV_X64_MSR_VP_INDEX,
1320 HV_X64_MSR_VP_RUNTIME,
1321 HV_X64_MSR_SCONTROL,
1322 HV_X64_MSR_STIMER0_CONFIG,
1323 HV_X64_MSR_VP_ASSIST_PAGE,
1324 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1325 HV_X64_MSR_TSC_EMULATION_STATUS,
1326 HV_X64_MSR_SYNDBG_OPTIONS,
1327 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1328 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1329 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1330
1331 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1332 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1333
1334 MSR_IA32_TSC_ADJUST,
1335 MSR_IA32_TSC_DEADLINE,
1336 MSR_IA32_ARCH_CAPABILITIES,
1337 MSR_IA32_PERF_CAPABILITIES,
1338 MSR_IA32_MISC_ENABLE,
1339 MSR_IA32_MCG_STATUS,
1340 MSR_IA32_MCG_CTL,
1341 MSR_IA32_MCG_EXT_CTL,
1342 MSR_IA32_SMBASE,
1343 MSR_SMI_COUNT,
1344 MSR_PLATFORM_INFO,
1345 MSR_MISC_FEATURES_ENABLES,
1346 MSR_AMD64_VIRT_SPEC_CTRL,
1347 MSR_IA32_POWER_CTL,
1348 MSR_IA32_UCODE_REV,
1349
1350 /*
1351 * The following list leaves out MSRs whose values are determined
1352 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1353 * We always support the "true" VMX control MSRs, even if the host
1354 * processor does not, so I am putting these registers here rather
1355 * than in msrs_to_save_all.
1356 */
1357 MSR_IA32_VMX_BASIC,
1358 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1359 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1360 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1361 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1362 MSR_IA32_VMX_MISC,
1363 MSR_IA32_VMX_CR0_FIXED0,
1364 MSR_IA32_VMX_CR4_FIXED0,
1365 MSR_IA32_VMX_VMCS_ENUM,
1366 MSR_IA32_VMX_PROCBASED_CTLS2,
1367 MSR_IA32_VMX_EPT_VPID_CAP,
1368 MSR_IA32_VMX_VMFUNC,
1369
1370 MSR_K7_HWCR,
1371 MSR_KVM_POLL_CONTROL,
1372 };
1373
1374 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1375 static unsigned num_emulated_msrs;
1376
1377 /*
1378 * List of msr numbers which are used to expose MSR-based features that
1379 * can be used by a hypervisor to validate requested CPU features.
1380 */
1381 static const u32 msr_based_features_all[] = {
1382 MSR_IA32_VMX_BASIC,
1383 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1384 MSR_IA32_VMX_PINBASED_CTLS,
1385 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1386 MSR_IA32_VMX_PROCBASED_CTLS,
1387 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1388 MSR_IA32_VMX_EXIT_CTLS,
1389 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1390 MSR_IA32_VMX_ENTRY_CTLS,
1391 MSR_IA32_VMX_MISC,
1392 MSR_IA32_VMX_CR0_FIXED0,
1393 MSR_IA32_VMX_CR0_FIXED1,
1394 MSR_IA32_VMX_CR4_FIXED0,
1395 MSR_IA32_VMX_CR4_FIXED1,
1396 MSR_IA32_VMX_VMCS_ENUM,
1397 MSR_IA32_VMX_PROCBASED_CTLS2,
1398 MSR_IA32_VMX_EPT_VPID_CAP,
1399 MSR_IA32_VMX_VMFUNC,
1400
1401 MSR_F10H_DECFG,
1402 MSR_IA32_UCODE_REV,
1403 MSR_IA32_ARCH_CAPABILITIES,
1404 MSR_IA32_PERF_CAPABILITIES,
1405 };
1406
1407 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1408 static unsigned int num_msr_based_features;
1409
1410 static u64 kvm_get_arch_capabilities(void)
1411 {
1412 u64 data = 0;
1413
1414 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1415 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1416
1417 /*
1418 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1419 * the nested hypervisor runs with NX huge pages. If it is not,
1420 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1421 * L1 guests, so it need not worry about its own (L2) guests.
1422 */
1423 data |= ARCH_CAP_PSCHANGE_MC_NO;
1424
1425 /*
1426 * If we're doing cache flushes (either "always" or "cond")
1427 * we will do one whenever the guest does a vmlaunch/vmresume.
1428 * If an outer hypervisor is doing the cache flush for us
1429 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1430 * capability to the guest too, and if EPT is disabled we're not
1431 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1432 * require a nested hypervisor to do a flush of its own.
1433 */
1434 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1435 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1436
1437 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1438 data |= ARCH_CAP_RDCL_NO;
1439 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1440 data |= ARCH_CAP_SSB_NO;
1441 if (!boot_cpu_has_bug(X86_BUG_MDS))
1442 data |= ARCH_CAP_MDS_NO;
1443
1444 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1445 /*
1446 * If RTM=0 because the kernel has disabled TSX, the host might
1447 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1448 * and therefore knows that there cannot be TAA) but keep
1449 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1450 * and we want to allow migrating those guests to tsx=off hosts.
1451 */
1452 data &= ~ARCH_CAP_TAA_NO;
1453 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1454 data |= ARCH_CAP_TAA_NO;
1455 } else {
1456 /*
1457 * Nothing to do here; we emulate TSX_CTRL if present on the
1458 * host so the guest can choose between disabling TSX or
1459 * using VERW to clear CPU buffers.
1460 */
1461 }
1462
1463 return data;
1464 }
1465
1466 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1467 {
1468 switch (msr->index) {
1469 case MSR_IA32_ARCH_CAPABILITIES:
1470 msr->data = kvm_get_arch_capabilities();
1471 break;
1472 case MSR_IA32_UCODE_REV:
1473 rdmsrl_safe(msr->index, &msr->data);
1474 break;
1475 default:
1476 return static_call(kvm_x86_get_msr_feature)(msr);
1477 }
1478 return 0;
1479 }
1480
1481 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1482 {
1483 struct kvm_msr_entry msr;
1484 int r;
1485
1486 msr.index = index;
1487 r = kvm_get_msr_feature(&msr);
1488
1489 if (r == KVM_MSR_RET_INVALID) {
1490 /* Unconditionally clear the output for simplicity */
1491 *data = 0;
1492 if (kvm_msr_ignored_check(index, 0, false))
1493 r = 0;
1494 }
1495
1496 if (r)
1497 return r;
1498
1499 *data = msr.data;
1500
1501 return 0;
1502 }
1503
1504 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1505 {
1506 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1507 return false;
1508
1509 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1510 return false;
1511
1512 if (efer & (EFER_LME | EFER_LMA) &&
1513 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1514 return false;
1515
1516 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1517 return false;
1518
1519 return true;
1520
1521 }
1522 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1523 {
1524 if (efer & efer_reserved_bits)
1525 return false;
1526
1527 return __kvm_valid_efer(vcpu, efer);
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1530
1531 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1532 {
1533 u64 old_efer = vcpu->arch.efer;
1534 u64 efer = msr_info->data;
1535 int r;
1536
1537 if (efer & efer_reserved_bits)
1538 return 1;
1539
1540 if (!msr_info->host_initiated) {
1541 if (!__kvm_valid_efer(vcpu, efer))
1542 return 1;
1543
1544 if (is_paging(vcpu) &&
1545 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1546 return 1;
1547 }
1548
1549 efer &= ~EFER_LMA;
1550 efer |= vcpu->arch.efer & EFER_LMA;
1551
1552 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1553 if (r) {
1554 WARN_ON(r > 0);
1555 return r;
1556 }
1557
1558 /* Update reserved bits */
1559 if ((efer ^ old_efer) & EFER_NX)
1560 kvm_mmu_reset_context(vcpu);
1561
1562 return 0;
1563 }
1564
1565 void kvm_enable_efer_bits(u64 mask)
1566 {
1567 efer_reserved_bits &= ~mask;
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1570
1571 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1572 {
1573 struct kvm_x86_msr_filter *msr_filter;
1574 struct msr_bitmap_range *ranges;
1575 struct kvm *kvm = vcpu->kvm;
1576 bool allowed;
1577 int idx;
1578 u32 i;
1579
1580 /* x2APIC MSRs do not support filtering. */
1581 if (index >= 0x800 && index <= 0x8ff)
1582 return true;
1583
1584 idx = srcu_read_lock(&kvm->srcu);
1585
1586 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1587 if (!msr_filter) {
1588 allowed = true;
1589 goto out;
1590 }
1591
1592 allowed = msr_filter->default_allow;
1593 ranges = msr_filter->ranges;
1594
1595 for (i = 0; i < msr_filter->count; i++) {
1596 u32 start = ranges[i].base;
1597 u32 end = start + ranges[i].nmsrs;
1598 u32 flags = ranges[i].flags;
1599 unsigned long *bitmap = ranges[i].bitmap;
1600
1601 if ((index >= start) && (index < end) && (flags & type)) {
1602 allowed = !!test_bit(index - start, bitmap);
1603 break;
1604 }
1605 }
1606
1607 out:
1608 srcu_read_unlock(&kvm->srcu, idx);
1609
1610 return allowed;
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1613
1614 /*
1615 * Write @data into the MSR specified by @index. Select MSR specific fault
1616 * checks are bypassed if @host_initiated is %true.
1617 * Returns 0 on success, non-0 otherwise.
1618 * Assumes vcpu_load() was already called.
1619 */
1620 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1621 bool host_initiated)
1622 {
1623 struct msr_data msr;
1624
1625 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1626 return KVM_MSR_RET_FILTERED;
1627
1628 switch (index) {
1629 case MSR_FS_BASE:
1630 case MSR_GS_BASE:
1631 case MSR_KERNEL_GS_BASE:
1632 case MSR_CSTAR:
1633 case MSR_LSTAR:
1634 if (is_noncanonical_address(data, vcpu))
1635 return 1;
1636 break;
1637 case MSR_IA32_SYSENTER_EIP:
1638 case MSR_IA32_SYSENTER_ESP:
1639 /*
1640 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1641 * non-canonical address is written on Intel but not on
1642 * AMD (which ignores the top 32-bits, because it does
1643 * not implement 64-bit SYSENTER).
1644 *
1645 * 64-bit code should hence be able to write a non-canonical
1646 * value on AMD. Making the address canonical ensures that
1647 * vmentry does not fail on Intel after writing a non-canonical
1648 * value, and that something deterministic happens if the guest
1649 * invokes 64-bit SYSENTER.
1650 */
1651 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1652 break;
1653 case MSR_TSC_AUX:
1654 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1655 return 1;
1656
1657 if (!host_initiated &&
1658 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1659 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1660 return 1;
1661
1662 /*
1663 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1664 * incomplete and conflicting architectural behavior. Current
1665 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1666 * reserved and always read as zeros. Enforce Intel's reserved
1667 * bits check if and only if the guest CPU is Intel, and clear
1668 * the bits in all other cases. This ensures cross-vendor
1669 * migration will provide consistent behavior for the guest.
1670 */
1671 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1672 return 1;
1673
1674 data = (u32)data;
1675 break;
1676 }
1677
1678 msr.data = data;
1679 msr.index = index;
1680 msr.host_initiated = host_initiated;
1681
1682 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1683 }
1684
1685 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1686 u32 index, u64 data, bool host_initiated)
1687 {
1688 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1689
1690 if (ret == KVM_MSR_RET_INVALID)
1691 if (kvm_msr_ignored_check(index, data, true))
1692 ret = 0;
1693
1694 return ret;
1695 }
1696
1697 /*
1698 * Read the MSR specified by @index into @data. Select MSR specific fault
1699 * checks are bypassed if @host_initiated is %true.
1700 * Returns 0 on success, non-0 otherwise.
1701 * Assumes vcpu_load() was already called.
1702 */
1703 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1704 bool host_initiated)
1705 {
1706 struct msr_data msr;
1707 int ret;
1708
1709 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1710 return KVM_MSR_RET_FILTERED;
1711
1712 switch (index) {
1713 case MSR_TSC_AUX:
1714 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1715 return 1;
1716
1717 if (!host_initiated &&
1718 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1719 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1720 return 1;
1721 break;
1722 }
1723
1724 msr.index = index;
1725 msr.host_initiated = host_initiated;
1726
1727 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1728 if (!ret)
1729 *data = msr.data;
1730 return ret;
1731 }
1732
1733 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1734 u32 index, u64 *data, bool host_initiated)
1735 {
1736 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1737
1738 if (ret == KVM_MSR_RET_INVALID) {
1739 /* Unconditionally clear *data for simplicity */
1740 *data = 0;
1741 if (kvm_msr_ignored_check(index, 0, false))
1742 ret = 0;
1743 }
1744
1745 return ret;
1746 }
1747
1748 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1749 {
1750 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_get_msr);
1753
1754 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1755 {
1756 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_set_msr);
1759
1760 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1761 {
1762 int err = vcpu->run->msr.error;
1763 if (!err) {
1764 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1765 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1766 }
1767
1768 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1769 }
1770
1771 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1772 {
1773 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1774 }
1775
1776 static u64 kvm_msr_reason(int r)
1777 {
1778 switch (r) {
1779 case KVM_MSR_RET_INVALID:
1780 return KVM_MSR_EXIT_REASON_UNKNOWN;
1781 case KVM_MSR_RET_FILTERED:
1782 return KVM_MSR_EXIT_REASON_FILTER;
1783 default:
1784 return KVM_MSR_EXIT_REASON_INVAL;
1785 }
1786 }
1787
1788 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1789 u32 exit_reason, u64 data,
1790 int (*completion)(struct kvm_vcpu *vcpu),
1791 int r)
1792 {
1793 u64 msr_reason = kvm_msr_reason(r);
1794
1795 /* Check if the user wanted to know about this MSR fault */
1796 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1797 return 0;
1798
1799 vcpu->run->exit_reason = exit_reason;
1800 vcpu->run->msr.error = 0;
1801 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1802 vcpu->run->msr.reason = msr_reason;
1803 vcpu->run->msr.index = index;
1804 vcpu->run->msr.data = data;
1805 vcpu->arch.complete_userspace_io = completion;
1806
1807 return 1;
1808 }
1809
1810 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1811 {
1812 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1813 complete_emulated_rdmsr, r);
1814 }
1815
1816 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1817 {
1818 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1819 complete_emulated_wrmsr, r);
1820 }
1821
1822 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1823 {
1824 u32 ecx = kvm_rcx_read(vcpu);
1825 u64 data;
1826 int r;
1827
1828 r = kvm_get_msr(vcpu, ecx, &data);
1829
1830 /* MSR read failed? See if we should ask user space */
1831 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1832 /* Bounce to user space */
1833 return 0;
1834 }
1835
1836 if (!r) {
1837 trace_kvm_msr_read(ecx, data);
1838
1839 kvm_rax_write(vcpu, data & -1u);
1840 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1841 } else {
1842 trace_kvm_msr_read_ex(ecx);
1843 }
1844
1845 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1848
1849 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1850 {
1851 u32 ecx = kvm_rcx_read(vcpu);
1852 u64 data = kvm_read_edx_eax(vcpu);
1853 int r;
1854
1855 r = kvm_set_msr(vcpu, ecx, data);
1856
1857 /* MSR write failed? See if we should ask user space */
1858 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1859 /* Bounce to user space */
1860 return 0;
1861
1862 /* Signal all other negative errors to userspace */
1863 if (r < 0)
1864 return r;
1865
1866 if (!r)
1867 trace_kvm_msr_write(ecx, data);
1868 else
1869 trace_kvm_msr_write_ex(ecx, data);
1870
1871 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1874
1875 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1876 {
1877 return kvm_skip_emulated_instruction(vcpu);
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1880
1881 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1882 {
1883 /* Treat an INVD instruction as a NOP and just skip it. */
1884 return kvm_emulate_as_nop(vcpu);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1887
1888 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1889 {
1890 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1891 return kvm_emulate_as_nop(vcpu);
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1894
1895 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1896 {
1897 kvm_queue_exception(vcpu, UD_VECTOR);
1898 return 1;
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1901
1902 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1903 {
1904 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1905 return kvm_emulate_as_nop(vcpu);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1908
1909 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1910 {
1911 xfer_to_guest_mode_prepare();
1912 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1913 xfer_to_guest_mode_work_pending();
1914 }
1915
1916 /*
1917 * The fast path for frequent and performance sensitive wrmsr emulation,
1918 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1919 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1920 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1921 * other cases which must be called after interrupts are enabled on the host.
1922 */
1923 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1924 {
1925 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1926 return 1;
1927
1928 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1929 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1930 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1931 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1932
1933 data &= ~(1 << 12);
1934 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1935 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1936 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1937 trace_kvm_apic_write(APIC_ICR, (u32)data);
1938 return 0;
1939 }
1940
1941 return 1;
1942 }
1943
1944 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1945 {
1946 if (!kvm_can_use_hv_timer(vcpu))
1947 return 1;
1948
1949 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1950 return 0;
1951 }
1952
1953 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1954 {
1955 u32 msr = kvm_rcx_read(vcpu);
1956 u64 data;
1957 fastpath_t ret = EXIT_FASTPATH_NONE;
1958
1959 switch (msr) {
1960 case APIC_BASE_MSR + (APIC_ICR >> 4):
1961 data = kvm_read_edx_eax(vcpu);
1962 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1963 kvm_skip_emulated_instruction(vcpu);
1964 ret = EXIT_FASTPATH_EXIT_HANDLED;
1965 }
1966 break;
1967 case MSR_IA32_TSC_DEADLINE:
1968 data = kvm_read_edx_eax(vcpu);
1969 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1970 kvm_skip_emulated_instruction(vcpu);
1971 ret = EXIT_FASTPATH_REENTER_GUEST;
1972 }
1973 break;
1974 default:
1975 break;
1976 }
1977
1978 if (ret != EXIT_FASTPATH_NONE)
1979 trace_kvm_msr_write(msr, data);
1980
1981 return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1984
1985 /*
1986 * Adapt set_msr() to msr_io()'s calling convention
1987 */
1988 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1989 {
1990 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1991 }
1992
1993 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1994 {
1995 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1996 }
1997
1998 #ifdef CONFIG_X86_64
1999 struct pvclock_clock {
2000 int vclock_mode;
2001 u64 cycle_last;
2002 u64 mask;
2003 u32 mult;
2004 u32 shift;
2005 u64 base_cycles;
2006 u64 offset;
2007 };
2008
2009 struct pvclock_gtod_data {
2010 seqcount_t seq;
2011
2012 struct pvclock_clock clock; /* extract of a clocksource struct */
2013 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2014
2015 ktime_t offs_boot;
2016 u64 wall_time_sec;
2017 };
2018
2019 static struct pvclock_gtod_data pvclock_gtod_data;
2020
2021 static void update_pvclock_gtod(struct timekeeper *tk)
2022 {
2023 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2024
2025 write_seqcount_begin(&vdata->seq);
2026
2027 /* copy pvclock gtod data */
2028 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2029 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2030 vdata->clock.mask = tk->tkr_mono.mask;
2031 vdata->clock.mult = tk->tkr_mono.mult;
2032 vdata->clock.shift = tk->tkr_mono.shift;
2033 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2034 vdata->clock.offset = tk->tkr_mono.base;
2035
2036 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2037 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2038 vdata->raw_clock.mask = tk->tkr_raw.mask;
2039 vdata->raw_clock.mult = tk->tkr_raw.mult;
2040 vdata->raw_clock.shift = tk->tkr_raw.shift;
2041 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2042 vdata->raw_clock.offset = tk->tkr_raw.base;
2043
2044 vdata->wall_time_sec = tk->xtime_sec;
2045
2046 vdata->offs_boot = tk->offs_boot;
2047
2048 write_seqcount_end(&vdata->seq);
2049 }
2050
2051 static s64 get_kvmclock_base_ns(void)
2052 {
2053 /* Count up from boot time, but with the frequency of the raw clock. */
2054 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2055 }
2056 #else
2057 static s64 get_kvmclock_base_ns(void)
2058 {
2059 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2060 return ktime_get_boottime_ns();
2061 }
2062 #endif
2063
2064 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2065 {
2066 int version;
2067 int r;
2068 struct pvclock_wall_clock wc;
2069 u32 wc_sec_hi;
2070 u64 wall_nsec;
2071
2072 if (!wall_clock)
2073 return;
2074
2075 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2076 if (r)
2077 return;
2078
2079 if (version & 1)
2080 ++version; /* first time write, random junk */
2081
2082 ++version;
2083
2084 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2085 return;
2086
2087 /*
2088 * The guest calculates current wall clock time by adding
2089 * system time (updated by kvm_guest_time_update below) to the
2090 * wall clock specified here. We do the reverse here.
2091 */
2092 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2093
2094 wc.nsec = do_div(wall_nsec, 1000000000);
2095 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2096 wc.version = version;
2097
2098 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2099
2100 if (sec_hi_ofs) {
2101 wc_sec_hi = wall_nsec >> 32;
2102 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2103 &wc_sec_hi, sizeof(wc_sec_hi));
2104 }
2105
2106 version++;
2107 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2108 }
2109
2110 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2111 bool old_msr, bool host_initiated)
2112 {
2113 struct kvm_arch *ka = &vcpu->kvm->arch;
2114
2115 if (vcpu->vcpu_id == 0 && !host_initiated) {
2116 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2117 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2118
2119 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2120 }
2121
2122 vcpu->arch.time = system_time;
2123 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2124
2125 /* we verify if the enable bit is set... */
2126 vcpu->arch.pv_time_enabled = false;
2127 if (!(system_time & 1))
2128 return;
2129
2130 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2131 &vcpu->arch.pv_time, system_time & ~1ULL,
2132 sizeof(struct pvclock_vcpu_time_info)))
2133 vcpu->arch.pv_time_enabled = true;
2134
2135 return;
2136 }
2137
2138 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2139 {
2140 do_shl32_div32(dividend, divisor);
2141 return dividend;
2142 }
2143
2144 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2145 s8 *pshift, u32 *pmultiplier)
2146 {
2147 uint64_t scaled64;
2148 int32_t shift = 0;
2149 uint64_t tps64;
2150 uint32_t tps32;
2151
2152 tps64 = base_hz;
2153 scaled64 = scaled_hz;
2154 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2155 tps64 >>= 1;
2156 shift--;
2157 }
2158
2159 tps32 = (uint32_t)tps64;
2160 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2161 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2162 scaled64 >>= 1;
2163 else
2164 tps32 <<= 1;
2165 shift++;
2166 }
2167
2168 *pshift = shift;
2169 *pmultiplier = div_frac(scaled64, tps32);
2170 }
2171
2172 #ifdef CONFIG_X86_64
2173 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2174 #endif
2175
2176 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2177 static unsigned long max_tsc_khz;
2178
2179 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2180 {
2181 u64 v = (u64)khz * (1000000 + ppm);
2182 do_div(v, 1000000);
2183 return v;
2184 }
2185
2186 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2187
2188 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2189 {
2190 u64 ratio;
2191
2192 /* Guest TSC same frequency as host TSC? */
2193 if (!scale) {
2194 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2195 return 0;
2196 }
2197
2198 /* TSC scaling supported? */
2199 if (!kvm_has_tsc_control) {
2200 if (user_tsc_khz > tsc_khz) {
2201 vcpu->arch.tsc_catchup = 1;
2202 vcpu->arch.tsc_always_catchup = 1;
2203 return 0;
2204 } else {
2205 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2206 return -1;
2207 }
2208 }
2209
2210 /* TSC scaling required - calculate ratio */
2211 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2212 user_tsc_khz, tsc_khz);
2213
2214 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2215 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2216 user_tsc_khz);
2217 return -1;
2218 }
2219
2220 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2221 return 0;
2222 }
2223
2224 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2225 {
2226 u32 thresh_lo, thresh_hi;
2227 int use_scaling = 0;
2228
2229 /* tsc_khz can be zero if TSC calibration fails */
2230 if (user_tsc_khz == 0) {
2231 /* set tsc_scaling_ratio to a safe value */
2232 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2233 return -1;
2234 }
2235
2236 /* Compute a scale to convert nanoseconds in TSC cycles */
2237 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2238 &vcpu->arch.virtual_tsc_shift,
2239 &vcpu->arch.virtual_tsc_mult);
2240 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2241
2242 /*
2243 * Compute the variation in TSC rate which is acceptable
2244 * within the range of tolerance and decide if the
2245 * rate being applied is within that bounds of the hardware
2246 * rate. If so, no scaling or compensation need be done.
2247 */
2248 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2249 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2250 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2251 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2252 use_scaling = 1;
2253 }
2254 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2255 }
2256
2257 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2258 {
2259 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2260 vcpu->arch.virtual_tsc_mult,
2261 vcpu->arch.virtual_tsc_shift);
2262 tsc += vcpu->arch.this_tsc_write;
2263 return tsc;
2264 }
2265
2266 static inline int gtod_is_based_on_tsc(int mode)
2267 {
2268 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2269 }
2270
2271 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2272 {
2273 #ifdef CONFIG_X86_64
2274 bool vcpus_matched;
2275 struct kvm_arch *ka = &vcpu->kvm->arch;
2276 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2277
2278 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2279 atomic_read(&vcpu->kvm->online_vcpus));
2280
2281 /*
2282 * Once the masterclock is enabled, always perform request in
2283 * order to update it.
2284 *
2285 * In order to enable masterclock, the host clocksource must be TSC
2286 * and the vcpus need to have matched TSCs. When that happens,
2287 * perform request to enable masterclock.
2288 */
2289 if (ka->use_master_clock ||
2290 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2291 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2292
2293 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2294 atomic_read(&vcpu->kvm->online_vcpus),
2295 ka->use_master_clock, gtod->clock.vclock_mode);
2296 #endif
2297 }
2298
2299 /*
2300 * Multiply tsc by a fixed point number represented by ratio.
2301 *
2302 * The most significant 64-N bits (mult) of ratio represent the
2303 * integral part of the fixed point number; the remaining N bits
2304 * (frac) represent the fractional part, ie. ratio represents a fixed
2305 * point number (mult + frac * 2^(-N)).
2306 *
2307 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2308 */
2309 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2310 {
2311 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2312 }
2313
2314 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2315 {
2316 u64 _tsc = tsc;
2317
2318 if (ratio != kvm_default_tsc_scaling_ratio)
2319 _tsc = __scale_tsc(ratio, tsc);
2320
2321 return _tsc;
2322 }
2323 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2324
2325 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2326 {
2327 u64 tsc;
2328
2329 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2330
2331 return target_tsc - tsc;
2332 }
2333
2334 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2335 {
2336 return vcpu->arch.l1_tsc_offset +
2337 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2340
2341 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2342 {
2343 u64 nested_offset;
2344
2345 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2346 nested_offset = l1_offset;
2347 else
2348 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2349 kvm_tsc_scaling_ratio_frac_bits);
2350
2351 nested_offset += l2_offset;
2352 return nested_offset;
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2355
2356 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2357 {
2358 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2359 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2360 kvm_tsc_scaling_ratio_frac_bits);
2361
2362 return l1_multiplier;
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2365
2366 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2367 {
2368 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2369 vcpu->arch.l1_tsc_offset,
2370 l1_offset);
2371
2372 vcpu->arch.l1_tsc_offset = l1_offset;
2373
2374 /*
2375 * If we are here because L1 chose not to trap WRMSR to TSC then
2376 * according to the spec this should set L1's TSC (as opposed to
2377 * setting L1's offset for L2).
2378 */
2379 if (is_guest_mode(vcpu))
2380 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2381 l1_offset,
2382 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2383 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2384 else
2385 vcpu->arch.tsc_offset = l1_offset;
2386
2387 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2388 }
2389
2390 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2391 {
2392 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2393
2394 /* Userspace is changing the multiplier while L2 is active */
2395 if (is_guest_mode(vcpu))
2396 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2397 l1_multiplier,
2398 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2399 else
2400 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2401
2402 if (kvm_has_tsc_control)
2403 static_call(kvm_x86_write_tsc_multiplier)(
2404 vcpu, vcpu->arch.tsc_scaling_ratio);
2405 }
2406
2407 static inline bool kvm_check_tsc_unstable(void)
2408 {
2409 #ifdef CONFIG_X86_64
2410 /*
2411 * TSC is marked unstable when we're running on Hyper-V,
2412 * 'TSC page' clocksource is good.
2413 */
2414 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2415 return false;
2416 #endif
2417 return check_tsc_unstable();
2418 }
2419
2420 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2421 {
2422 struct kvm *kvm = vcpu->kvm;
2423 u64 offset, ns, elapsed;
2424 unsigned long flags;
2425 bool matched;
2426 bool already_matched;
2427 bool synchronizing = false;
2428
2429 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2430 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2431 ns = get_kvmclock_base_ns();
2432 elapsed = ns - kvm->arch.last_tsc_nsec;
2433
2434 if (vcpu->arch.virtual_tsc_khz) {
2435 if (data == 0) {
2436 /*
2437 * detection of vcpu initialization -- need to sync
2438 * with other vCPUs. This particularly helps to keep
2439 * kvm_clock stable after CPU hotplug
2440 */
2441 synchronizing = true;
2442 } else {
2443 u64 tsc_exp = kvm->arch.last_tsc_write +
2444 nsec_to_cycles(vcpu, elapsed);
2445 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2446 /*
2447 * Special case: TSC write with a small delta (1 second)
2448 * of virtual cycle time against real time is
2449 * interpreted as an attempt to synchronize the CPU.
2450 */
2451 synchronizing = data < tsc_exp + tsc_hz &&
2452 data + tsc_hz > tsc_exp;
2453 }
2454 }
2455
2456 /*
2457 * For a reliable TSC, we can match TSC offsets, and for an unstable
2458 * TSC, we add elapsed time in this computation. We could let the
2459 * compensation code attempt to catch up if we fall behind, but
2460 * it's better to try to match offsets from the beginning.
2461 */
2462 if (synchronizing &&
2463 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2464 if (!kvm_check_tsc_unstable()) {
2465 offset = kvm->arch.cur_tsc_offset;
2466 } else {
2467 u64 delta = nsec_to_cycles(vcpu, elapsed);
2468 data += delta;
2469 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2470 }
2471 matched = true;
2472 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2473 } else {
2474 /*
2475 * We split periods of matched TSC writes into generations.
2476 * For each generation, we track the original measured
2477 * nanosecond time, offset, and write, so if TSCs are in
2478 * sync, we can match exact offset, and if not, we can match
2479 * exact software computation in compute_guest_tsc()
2480 *
2481 * These values are tracked in kvm->arch.cur_xxx variables.
2482 */
2483 kvm->arch.cur_tsc_generation++;
2484 kvm->arch.cur_tsc_nsec = ns;
2485 kvm->arch.cur_tsc_write = data;
2486 kvm->arch.cur_tsc_offset = offset;
2487 matched = false;
2488 }
2489
2490 /*
2491 * We also track th most recent recorded KHZ, write and time to
2492 * allow the matching interval to be extended at each write.
2493 */
2494 kvm->arch.last_tsc_nsec = ns;
2495 kvm->arch.last_tsc_write = data;
2496 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2497
2498 vcpu->arch.last_guest_tsc = data;
2499
2500 /* Keep track of which generation this VCPU has synchronized to */
2501 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2502 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2503 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2504
2505 kvm_vcpu_write_tsc_offset(vcpu, offset);
2506 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2507
2508 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2509 if (!matched) {
2510 kvm->arch.nr_vcpus_matched_tsc = 0;
2511 } else if (!already_matched) {
2512 kvm->arch.nr_vcpus_matched_tsc++;
2513 }
2514
2515 kvm_track_tsc_matching(vcpu);
2516 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2517 }
2518
2519 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2520 s64 adjustment)
2521 {
2522 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2523 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2524 }
2525
2526 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2527 {
2528 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2529 WARN_ON(adjustment < 0);
2530 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2531 vcpu->arch.l1_tsc_scaling_ratio);
2532 adjust_tsc_offset_guest(vcpu, adjustment);
2533 }
2534
2535 #ifdef CONFIG_X86_64
2536
2537 static u64 read_tsc(void)
2538 {
2539 u64 ret = (u64)rdtsc_ordered();
2540 u64 last = pvclock_gtod_data.clock.cycle_last;
2541
2542 if (likely(ret >= last))
2543 return ret;
2544
2545 /*
2546 * GCC likes to generate cmov here, but this branch is extremely
2547 * predictable (it's just a function of time and the likely is
2548 * very likely) and there's a data dependence, so force GCC
2549 * to generate a branch instead. I don't barrier() because
2550 * we don't actually need a barrier, and if this function
2551 * ever gets inlined it will generate worse code.
2552 */
2553 asm volatile ("");
2554 return last;
2555 }
2556
2557 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2558 int *mode)
2559 {
2560 long v;
2561 u64 tsc_pg_val;
2562
2563 switch (clock->vclock_mode) {
2564 case VDSO_CLOCKMODE_HVCLOCK:
2565 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2566 tsc_timestamp);
2567 if (tsc_pg_val != U64_MAX) {
2568 /* TSC page valid */
2569 *mode = VDSO_CLOCKMODE_HVCLOCK;
2570 v = (tsc_pg_val - clock->cycle_last) &
2571 clock->mask;
2572 } else {
2573 /* TSC page invalid */
2574 *mode = VDSO_CLOCKMODE_NONE;
2575 }
2576 break;
2577 case VDSO_CLOCKMODE_TSC:
2578 *mode = VDSO_CLOCKMODE_TSC;
2579 *tsc_timestamp = read_tsc();
2580 v = (*tsc_timestamp - clock->cycle_last) &
2581 clock->mask;
2582 break;
2583 default:
2584 *mode = VDSO_CLOCKMODE_NONE;
2585 }
2586
2587 if (*mode == VDSO_CLOCKMODE_NONE)
2588 *tsc_timestamp = v = 0;
2589
2590 return v * clock->mult;
2591 }
2592
2593 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2594 {
2595 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2596 unsigned long seq;
2597 int mode;
2598 u64 ns;
2599
2600 do {
2601 seq = read_seqcount_begin(&gtod->seq);
2602 ns = gtod->raw_clock.base_cycles;
2603 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2604 ns >>= gtod->raw_clock.shift;
2605 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2606 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2607 *t = ns;
2608
2609 return mode;
2610 }
2611
2612 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2613 {
2614 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2615 unsigned long seq;
2616 int mode;
2617 u64 ns;
2618
2619 do {
2620 seq = read_seqcount_begin(&gtod->seq);
2621 ts->tv_sec = gtod->wall_time_sec;
2622 ns = gtod->clock.base_cycles;
2623 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2624 ns >>= gtod->clock.shift;
2625 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2626
2627 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2628 ts->tv_nsec = ns;
2629
2630 return mode;
2631 }
2632
2633 /* returns true if host is using TSC based clocksource */
2634 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2635 {
2636 /* checked again under seqlock below */
2637 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2638 return false;
2639
2640 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2641 tsc_timestamp));
2642 }
2643
2644 /* returns true if host is using TSC based clocksource */
2645 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2646 u64 *tsc_timestamp)
2647 {
2648 /* checked again under seqlock below */
2649 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2650 return false;
2651
2652 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2653 }
2654 #endif
2655
2656 /*
2657 *
2658 * Assuming a stable TSC across physical CPUS, and a stable TSC
2659 * across virtual CPUs, the following condition is possible.
2660 * Each numbered line represents an event visible to both
2661 * CPUs at the next numbered event.
2662 *
2663 * "timespecX" represents host monotonic time. "tscX" represents
2664 * RDTSC value.
2665 *
2666 * VCPU0 on CPU0 | VCPU1 on CPU1
2667 *
2668 * 1. read timespec0,tsc0
2669 * 2. | timespec1 = timespec0 + N
2670 * | tsc1 = tsc0 + M
2671 * 3. transition to guest | transition to guest
2672 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2673 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2674 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2675 *
2676 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2677 *
2678 * - ret0 < ret1
2679 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2680 * ...
2681 * - 0 < N - M => M < N
2682 *
2683 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2684 * always the case (the difference between two distinct xtime instances
2685 * might be smaller then the difference between corresponding TSC reads,
2686 * when updating guest vcpus pvclock areas).
2687 *
2688 * To avoid that problem, do not allow visibility of distinct
2689 * system_timestamp/tsc_timestamp values simultaneously: use a master
2690 * copy of host monotonic time values. Update that master copy
2691 * in lockstep.
2692 *
2693 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2694 *
2695 */
2696
2697 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2698 {
2699 #ifdef CONFIG_X86_64
2700 struct kvm_arch *ka = &kvm->arch;
2701 int vclock_mode;
2702 bool host_tsc_clocksource, vcpus_matched;
2703
2704 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2705 atomic_read(&kvm->online_vcpus));
2706
2707 /*
2708 * If the host uses TSC clock, then passthrough TSC as stable
2709 * to the guest.
2710 */
2711 host_tsc_clocksource = kvm_get_time_and_clockread(
2712 &ka->master_kernel_ns,
2713 &ka->master_cycle_now);
2714
2715 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2716 && !ka->backwards_tsc_observed
2717 && !ka->boot_vcpu_runs_old_kvmclock;
2718
2719 if (ka->use_master_clock)
2720 atomic_set(&kvm_guest_has_master_clock, 1);
2721
2722 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2723 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2724 vcpus_matched);
2725 #endif
2726 }
2727
2728 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2729 {
2730 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2731 }
2732
2733 static void kvm_gen_update_masterclock(struct kvm *kvm)
2734 {
2735 #ifdef CONFIG_X86_64
2736 int i;
2737 struct kvm_vcpu *vcpu;
2738 struct kvm_arch *ka = &kvm->arch;
2739 unsigned long flags;
2740
2741 kvm_hv_invalidate_tsc_page(kvm);
2742
2743 kvm_make_mclock_inprogress_request(kvm);
2744
2745 /* no guest entries from this point */
2746 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2747 pvclock_update_vm_gtod_copy(kvm);
2748 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2749
2750 kvm_for_each_vcpu(i, vcpu, kvm)
2751 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2752
2753 /* guest entries allowed */
2754 kvm_for_each_vcpu(i, vcpu, kvm)
2755 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2756 #endif
2757 }
2758
2759 u64 get_kvmclock_ns(struct kvm *kvm)
2760 {
2761 struct kvm_arch *ka = &kvm->arch;
2762 struct pvclock_vcpu_time_info hv_clock;
2763 unsigned long flags;
2764 u64 ret;
2765
2766 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2767 if (!ka->use_master_clock) {
2768 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2769 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2770 }
2771
2772 hv_clock.tsc_timestamp = ka->master_cycle_now;
2773 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2774 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2775
2776 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2777 get_cpu();
2778
2779 if (__this_cpu_read(cpu_tsc_khz)) {
2780 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2781 &hv_clock.tsc_shift,
2782 &hv_clock.tsc_to_system_mul);
2783 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2784 } else
2785 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2786
2787 put_cpu();
2788
2789 return ret;
2790 }
2791
2792 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2793 struct gfn_to_hva_cache *cache,
2794 unsigned int offset)
2795 {
2796 struct kvm_vcpu_arch *vcpu = &v->arch;
2797 struct pvclock_vcpu_time_info guest_hv_clock;
2798
2799 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2800 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2801 return;
2802
2803 /* This VCPU is paused, but it's legal for a guest to read another
2804 * VCPU's kvmclock, so we really have to follow the specification where
2805 * it says that version is odd if data is being modified, and even after
2806 * it is consistent.
2807 *
2808 * Version field updates must be kept separate. This is because
2809 * kvm_write_guest_cached might use a "rep movs" instruction, and
2810 * writes within a string instruction are weakly ordered. So there
2811 * are three writes overall.
2812 *
2813 * As a small optimization, only write the version field in the first
2814 * and third write. The vcpu->pv_time cache is still valid, because the
2815 * version field is the first in the struct.
2816 */
2817 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2818
2819 if (guest_hv_clock.version & 1)
2820 ++guest_hv_clock.version; /* first time write, random junk */
2821
2822 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2823 kvm_write_guest_offset_cached(v->kvm, cache,
2824 &vcpu->hv_clock, offset,
2825 sizeof(vcpu->hv_clock.version));
2826
2827 smp_wmb();
2828
2829 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2830 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2831
2832 if (vcpu->pvclock_set_guest_stopped_request) {
2833 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2834 vcpu->pvclock_set_guest_stopped_request = false;
2835 }
2836
2837 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2838
2839 kvm_write_guest_offset_cached(v->kvm, cache,
2840 &vcpu->hv_clock, offset,
2841 sizeof(vcpu->hv_clock));
2842
2843 smp_wmb();
2844
2845 vcpu->hv_clock.version++;
2846 kvm_write_guest_offset_cached(v->kvm, cache,
2847 &vcpu->hv_clock, offset,
2848 sizeof(vcpu->hv_clock.version));
2849 }
2850
2851 static int kvm_guest_time_update(struct kvm_vcpu *v)
2852 {
2853 unsigned long flags, tgt_tsc_khz;
2854 struct kvm_vcpu_arch *vcpu = &v->arch;
2855 struct kvm_arch *ka = &v->kvm->arch;
2856 s64 kernel_ns;
2857 u64 tsc_timestamp, host_tsc;
2858 u8 pvclock_flags;
2859 bool use_master_clock;
2860
2861 kernel_ns = 0;
2862 host_tsc = 0;
2863
2864 /*
2865 * If the host uses TSC clock, then passthrough TSC as stable
2866 * to the guest.
2867 */
2868 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2869 use_master_clock = ka->use_master_clock;
2870 if (use_master_clock) {
2871 host_tsc = ka->master_cycle_now;
2872 kernel_ns = ka->master_kernel_ns;
2873 }
2874 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2875
2876 /* Keep irq disabled to prevent changes to the clock */
2877 local_irq_save(flags);
2878 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2879 if (unlikely(tgt_tsc_khz == 0)) {
2880 local_irq_restore(flags);
2881 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2882 return 1;
2883 }
2884 if (!use_master_clock) {
2885 host_tsc = rdtsc();
2886 kernel_ns = get_kvmclock_base_ns();
2887 }
2888
2889 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2890
2891 /*
2892 * We may have to catch up the TSC to match elapsed wall clock
2893 * time for two reasons, even if kvmclock is used.
2894 * 1) CPU could have been running below the maximum TSC rate
2895 * 2) Broken TSC compensation resets the base at each VCPU
2896 * entry to avoid unknown leaps of TSC even when running
2897 * again on the same CPU. This may cause apparent elapsed
2898 * time to disappear, and the guest to stand still or run
2899 * very slowly.
2900 */
2901 if (vcpu->tsc_catchup) {
2902 u64 tsc = compute_guest_tsc(v, kernel_ns);
2903 if (tsc > tsc_timestamp) {
2904 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2905 tsc_timestamp = tsc;
2906 }
2907 }
2908
2909 local_irq_restore(flags);
2910
2911 /* With all the info we got, fill in the values */
2912
2913 if (kvm_has_tsc_control)
2914 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2915 v->arch.l1_tsc_scaling_ratio);
2916
2917 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2918 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2919 &vcpu->hv_clock.tsc_shift,
2920 &vcpu->hv_clock.tsc_to_system_mul);
2921 vcpu->hw_tsc_khz = tgt_tsc_khz;
2922 }
2923
2924 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2925 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2926 vcpu->last_guest_tsc = tsc_timestamp;
2927
2928 /* If the host uses TSC clocksource, then it is stable */
2929 pvclock_flags = 0;
2930 if (use_master_clock)
2931 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2932
2933 vcpu->hv_clock.flags = pvclock_flags;
2934
2935 if (vcpu->pv_time_enabled)
2936 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2937 if (vcpu->xen.vcpu_info_set)
2938 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2939 offsetof(struct compat_vcpu_info, time));
2940 if (vcpu->xen.vcpu_time_info_set)
2941 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2942 if (v == kvm_get_vcpu(v->kvm, 0))
2943 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2944 return 0;
2945 }
2946
2947 /*
2948 * kvmclock updates which are isolated to a given vcpu, such as
2949 * vcpu->cpu migration, should not allow system_timestamp from
2950 * the rest of the vcpus to remain static. Otherwise ntp frequency
2951 * correction applies to one vcpu's system_timestamp but not
2952 * the others.
2953 *
2954 * So in those cases, request a kvmclock update for all vcpus.
2955 * We need to rate-limit these requests though, as they can
2956 * considerably slow guests that have a large number of vcpus.
2957 * The time for a remote vcpu to update its kvmclock is bound
2958 * by the delay we use to rate-limit the updates.
2959 */
2960
2961 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2962
2963 static void kvmclock_update_fn(struct work_struct *work)
2964 {
2965 int i;
2966 struct delayed_work *dwork = to_delayed_work(work);
2967 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2968 kvmclock_update_work);
2969 struct kvm *kvm = container_of(ka, struct kvm, arch);
2970 struct kvm_vcpu *vcpu;
2971
2972 kvm_for_each_vcpu(i, vcpu, kvm) {
2973 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974 kvm_vcpu_kick(vcpu);
2975 }
2976 }
2977
2978 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2979 {
2980 struct kvm *kvm = v->kvm;
2981
2982 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2983 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2984 KVMCLOCK_UPDATE_DELAY);
2985 }
2986
2987 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2988
2989 static void kvmclock_sync_fn(struct work_struct *work)
2990 {
2991 struct delayed_work *dwork = to_delayed_work(work);
2992 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2993 kvmclock_sync_work);
2994 struct kvm *kvm = container_of(ka, struct kvm, arch);
2995
2996 if (!kvmclock_periodic_sync)
2997 return;
2998
2999 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3000 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3001 KVMCLOCK_SYNC_PERIOD);
3002 }
3003
3004 /*
3005 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3006 */
3007 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3008 {
3009 /* McStatusWrEn enabled? */
3010 if (guest_cpuid_is_amd_or_hygon(vcpu))
3011 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3012
3013 return false;
3014 }
3015
3016 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3017 {
3018 u64 mcg_cap = vcpu->arch.mcg_cap;
3019 unsigned bank_num = mcg_cap & 0xff;
3020 u32 msr = msr_info->index;
3021 u64 data = msr_info->data;
3022
3023 switch (msr) {
3024 case MSR_IA32_MCG_STATUS:
3025 vcpu->arch.mcg_status = data;
3026 break;
3027 case MSR_IA32_MCG_CTL:
3028 if (!(mcg_cap & MCG_CTL_P) &&
3029 (data || !msr_info->host_initiated))
3030 return 1;
3031 if (data != 0 && data != ~(u64)0)
3032 return 1;
3033 vcpu->arch.mcg_ctl = data;
3034 break;
3035 default:
3036 if (msr >= MSR_IA32_MC0_CTL &&
3037 msr < MSR_IA32_MCx_CTL(bank_num)) {
3038 u32 offset = array_index_nospec(
3039 msr - MSR_IA32_MC0_CTL,
3040 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3041
3042 /* only 0 or all 1s can be written to IA32_MCi_CTL
3043 * some Linux kernels though clear bit 10 in bank 4 to
3044 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3045 * this to avoid an uncatched #GP in the guest
3046 */
3047 if ((offset & 0x3) == 0 &&
3048 data != 0 && (data | (1 << 10)) != ~(u64)0)
3049 return -1;
3050
3051 /* MCi_STATUS */
3052 if (!msr_info->host_initiated &&
3053 (offset & 0x3) == 1 && data != 0) {
3054 if (!can_set_mci_status(vcpu))
3055 return -1;
3056 }
3057
3058 vcpu->arch.mce_banks[offset] = data;
3059 break;
3060 }
3061 return 1;
3062 }
3063 return 0;
3064 }
3065
3066 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3067 {
3068 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3069
3070 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3071 }
3072
3073 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3074 {
3075 gpa_t gpa = data & ~0x3f;
3076
3077 /* Bits 4:5 are reserved, Should be zero */
3078 if (data & 0x30)
3079 return 1;
3080
3081 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3082 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3083 return 1;
3084
3085 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3086 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3087 return 1;
3088
3089 if (!lapic_in_kernel(vcpu))
3090 return data ? 1 : 0;
3091
3092 vcpu->arch.apf.msr_en_val = data;
3093
3094 if (!kvm_pv_async_pf_enabled(vcpu)) {
3095 kvm_clear_async_pf_completion_queue(vcpu);
3096 kvm_async_pf_hash_reset(vcpu);
3097 return 0;
3098 }
3099
3100 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3101 sizeof(u64)))
3102 return 1;
3103
3104 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3105 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3106
3107 kvm_async_pf_wakeup_all(vcpu);
3108
3109 return 0;
3110 }
3111
3112 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3113 {
3114 /* Bits 8-63 are reserved */
3115 if (data >> 8)
3116 return 1;
3117
3118 if (!lapic_in_kernel(vcpu))
3119 return 1;
3120
3121 vcpu->arch.apf.msr_int_val = data;
3122
3123 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3124
3125 return 0;
3126 }
3127
3128 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3129 {
3130 vcpu->arch.pv_time_enabled = false;
3131 vcpu->arch.time = 0;
3132 }
3133
3134 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3135 {
3136 ++vcpu->stat.tlb_flush;
3137 static_call(kvm_x86_tlb_flush_all)(vcpu);
3138 }
3139
3140 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3141 {
3142 ++vcpu->stat.tlb_flush;
3143
3144 if (!tdp_enabled) {
3145 /*
3146 * A TLB flush on behalf of the guest is equivalent to
3147 * INVPCID(all), toggling CR4.PGE, etc., which requires
3148 * a forced sync of the shadow page tables. Unload the
3149 * entire MMU here and the subsequent load will sync the
3150 * shadow page tables, and also flush the TLB.
3151 */
3152 kvm_mmu_unload(vcpu);
3153 return;
3154 }
3155
3156 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3157 }
3158
3159 static void record_steal_time(struct kvm_vcpu *vcpu)
3160 {
3161 struct kvm_host_map map;
3162 struct kvm_steal_time *st;
3163
3164 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3165 kvm_xen_runstate_set_running(vcpu);
3166 return;
3167 }
3168
3169 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3170 return;
3171
3172 /* -EAGAIN is returned in atomic context so we can just return. */
3173 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3174 &map, &vcpu->arch.st.cache, false))
3175 return;
3176
3177 st = map.hva +
3178 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3179
3180 /*
3181 * Doing a TLB flush here, on the guest's behalf, can avoid
3182 * expensive IPIs.
3183 */
3184 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3185 u8 st_preempted = xchg(&st->preempted, 0);
3186
3187 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3188 st_preempted & KVM_VCPU_FLUSH_TLB);
3189 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3190 kvm_vcpu_flush_tlb_guest(vcpu);
3191 } else {
3192 st->preempted = 0;
3193 }
3194
3195 vcpu->arch.st.preempted = 0;
3196
3197 if (st->version & 1)
3198 st->version += 1; /* first time write, random junk */
3199
3200 st->version += 1;
3201
3202 smp_wmb();
3203
3204 st->steal += current->sched_info.run_delay -
3205 vcpu->arch.st.last_steal;
3206 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3207
3208 smp_wmb();
3209
3210 st->version += 1;
3211
3212 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3213 }
3214
3215 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3216 {
3217 bool pr = false;
3218 u32 msr = msr_info->index;
3219 u64 data = msr_info->data;
3220
3221 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3222 return kvm_xen_write_hypercall_page(vcpu, data);
3223
3224 switch (msr) {
3225 case MSR_AMD64_NB_CFG:
3226 case MSR_IA32_UCODE_WRITE:
3227 case MSR_VM_HSAVE_PA:
3228 case MSR_AMD64_PATCH_LOADER:
3229 case MSR_AMD64_BU_CFG2:
3230 case MSR_AMD64_DC_CFG:
3231 case MSR_F15H_EX_CFG:
3232 break;
3233
3234 case MSR_IA32_UCODE_REV:
3235 if (msr_info->host_initiated)
3236 vcpu->arch.microcode_version = data;
3237 break;
3238 case MSR_IA32_ARCH_CAPABILITIES:
3239 if (!msr_info->host_initiated)
3240 return 1;
3241 vcpu->arch.arch_capabilities = data;
3242 break;
3243 case MSR_IA32_PERF_CAPABILITIES: {
3244 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3245
3246 if (!msr_info->host_initiated)
3247 return 1;
3248 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3249 return 1;
3250 if (data & ~msr_ent.data)
3251 return 1;
3252
3253 vcpu->arch.perf_capabilities = data;
3254
3255 return 0;
3256 }
3257 case MSR_EFER:
3258 return set_efer(vcpu, msr_info);
3259 case MSR_K7_HWCR:
3260 data &= ~(u64)0x40; /* ignore flush filter disable */
3261 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3262 data &= ~(u64)0x8; /* ignore TLB cache disable */
3263
3264 /* Handle McStatusWrEn */
3265 if (data == BIT_ULL(18)) {
3266 vcpu->arch.msr_hwcr = data;
3267 } else if (data != 0) {
3268 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3269 data);
3270 return 1;
3271 }
3272 break;
3273 case MSR_FAM10H_MMIO_CONF_BASE:
3274 if (data != 0) {
3275 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3276 "0x%llx\n", data);
3277 return 1;
3278 }
3279 break;
3280 case 0x200 ... 0x2ff:
3281 return kvm_mtrr_set_msr(vcpu, msr, data);
3282 case MSR_IA32_APICBASE:
3283 return kvm_set_apic_base(vcpu, msr_info);
3284 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3285 return kvm_x2apic_msr_write(vcpu, msr, data);
3286 case MSR_IA32_TSC_DEADLINE:
3287 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3288 break;
3289 case MSR_IA32_TSC_ADJUST:
3290 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3291 if (!msr_info->host_initiated) {
3292 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3293 adjust_tsc_offset_guest(vcpu, adj);
3294 }
3295 vcpu->arch.ia32_tsc_adjust_msr = data;
3296 }
3297 break;
3298 case MSR_IA32_MISC_ENABLE:
3299 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3300 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3301 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3302 return 1;
3303 vcpu->arch.ia32_misc_enable_msr = data;
3304 kvm_update_cpuid_runtime(vcpu);
3305 } else {
3306 vcpu->arch.ia32_misc_enable_msr = data;
3307 }
3308 break;
3309 case MSR_IA32_SMBASE:
3310 if (!msr_info->host_initiated)
3311 return 1;
3312 vcpu->arch.smbase = data;
3313 break;
3314 case MSR_IA32_POWER_CTL:
3315 vcpu->arch.msr_ia32_power_ctl = data;
3316 break;
3317 case MSR_IA32_TSC:
3318 if (msr_info->host_initiated) {
3319 kvm_synchronize_tsc(vcpu, data);
3320 } else {
3321 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3322 adjust_tsc_offset_guest(vcpu, adj);
3323 vcpu->arch.ia32_tsc_adjust_msr += adj;
3324 }
3325 break;
3326 case MSR_IA32_XSS:
3327 if (!msr_info->host_initiated &&
3328 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3329 return 1;
3330 /*
3331 * KVM supports exposing PT to the guest, but does not support
3332 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3333 * XSAVES/XRSTORS to save/restore PT MSRs.
3334 */
3335 if (data & ~supported_xss)
3336 return 1;
3337 vcpu->arch.ia32_xss = data;
3338 break;
3339 case MSR_SMI_COUNT:
3340 if (!msr_info->host_initiated)
3341 return 1;
3342 vcpu->arch.smi_count = data;
3343 break;
3344 case MSR_KVM_WALL_CLOCK_NEW:
3345 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3346 return 1;
3347
3348 vcpu->kvm->arch.wall_clock = data;
3349 kvm_write_wall_clock(vcpu->kvm, data, 0);
3350 break;
3351 case MSR_KVM_WALL_CLOCK:
3352 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3353 return 1;
3354
3355 vcpu->kvm->arch.wall_clock = data;
3356 kvm_write_wall_clock(vcpu->kvm, data, 0);
3357 break;
3358 case MSR_KVM_SYSTEM_TIME_NEW:
3359 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3360 return 1;
3361
3362 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3363 break;
3364 case MSR_KVM_SYSTEM_TIME:
3365 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3366 return 1;
3367
3368 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3369 break;
3370 case MSR_KVM_ASYNC_PF_EN:
3371 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3372 return 1;
3373
3374 if (kvm_pv_enable_async_pf(vcpu, data))
3375 return 1;
3376 break;
3377 case MSR_KVM_ASYNC_PF_INT:
3378 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3379 return 1;
3380
3381 if (kvm_pv_enable_async_pf_int(vcpu, data))
3382 return 1;
3383 break;
3384 case MSR_KVM_ASYNC_PF_ACK:
3385 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3386 return 1;
3387 if (data & 0x1) {
3388 vcpu->arch.apf.pageready_pending = false;
3389 kvm_check_async_pf_completion(vcpu);
3390 }
3391 break;
3392 case MSR_KVM_STEAL_TIME:
3393 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3394 return 1;
3395
3396 if (unlikely(!sched_info_on()))
3397 return 1;
3398
3399 if (data & KVM_STEAL_RESERVED_MASK)
3400 return 1;
3401
3402 vcpu->arch.st.msr_val = data;
3403
3404 if (!(data & KVM_MSR_ENABLED))
3405 break;
3406
3407 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3408
3409 break;
3410 case MSR_KVM_PV_EOI_EN:
3411 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3412 return 1;
3413
3414 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3415 return 1;
3416 break;
3417
3418 case MSR_KVM_POLL_CONTROL:
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3420 return 1;
3421
3422 /* only enable bit supported */
3423 if (data & (-1ULL << 1))
3424 return 1;
3425
3426 vcpu->arch.msr_kvm_poll_control = data;
3427 break;
3428
3429 case MSR_IA32_MCG_CTL:
3430 case MSR_IA32_MCG_STATUS:
3431 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3432 return set_msr_mce(vcpu, msr_info);
3433
3434 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3435 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3436 pr = true;
3437 fallthrough;
3438 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3439 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3440 if (kvm_pmu_is_valid_msr(vcpu, msr))
3441 return kvm_pmu_set_msr(vcpu, msr_info);
3442
3443 if (pr || data != 0)
3444 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3445 "0x%x data 0x%llx\n", msr, data);
3446 break;
3447 case MSR_K7_CLK_CTL:
3448 /*
3449 * Ignore all writes to this no longer documented MSR.
3450 * Writes are only relevant for old K7 processors,
3451 * all pre-dating SVM, but a recommended workaround from
3452 * AMD for these chips. It is possible to specify the
3453 * affected processor models on the command line, hence
3454 * the need to ignore the workaround.
3455 */
3456 break;
3457 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3458 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3459 case HV_X64_MSR_SYNDBG_OPTIONS:
3460 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3461 case HV_X64_MSR_CRASH_CTL:
3462 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3463 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3464 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3465 case HV_X64_MSR_TSC_EMULATION_STATUS:
3466 return kvm_hv_set_msr_common(vcpu, msr, data,
3467 msr_info->host_initiated);
3468 case MSR_IA32_BBL_CR_CTL3:
3469 /* Drop writes to this legacy MSR -- see rdmsr
3470 * counterpart for further detail.
3471 */
3472 if (report_ignored_msrs)
3473 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3474 msr, data);
3475 break;
3476 case MSR_AMD64_OSVW_ID_LENGTH:
3477 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3478 return 1;
3479 vcpu->arch.osvw.length = data;
3480 break;
3481 case MSR_AMD64_OSVW_STATUS:
3482 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3483 return 1;
3484 vcpu->arch.osvw.status = data;
3485 break;
3486 case MSR_PLATFORM_INFO:
3487 if (!msr_info->host_initiated ||
3488 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3489 cpuid_fault_enabled(vcpu)))
3490 return 1;
3491 vcpu->arch.msr_platform_info = data;
3492 break;
3493 case MSR_MISC_FEATURES_ENABLES:
3494 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3495 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3496 !supports_cpuid_fault(vcpu)))
3497 return 1;
3498 vcpu->arch.msr_misc_features_enables = data;
3499 break;
3500 default:
3501 if (kvm_pmu_is_valid_msr(vcpu, msr))
3502 return kvm_pmu_set_msr(vcpu, msr_info);
3503 return KVM_MSR_RET_INVALID;
3504 }
3505 return 0;
3506 }
3507 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3508
3509 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3510 {
3511 u64 data;
3512 u64 mcg_cap = vcpu->arch.mcg_cap;
3513 unsigned bank_num = mcg_cap & 0xff;
3514
3515 switch (msr) {
3516 case MSR_IA32_P5_MC_ADDR:
3517 case MSR_IA32_P5_MC_TYPE:
3518 data = 0;
3519 break;
3520 case MSR_IA32_MCG_CAP:
3521 data = vcpu->arch.mcg_cap;
3522 break;
3523 case MSR_IA32_MCG_CTL:
3524 if (!(mcg_cap & MCG_CTL_P) && !host)
3525 return 1;
3526 data = vcpu->arch.mcg_ctl;
3527 break;
3528 case MSR_IA32_MCG_STATUS:
3529 data = vcpu->arch.mcg_status;
3530 break;
3531 default:
3532 if (msr >= MSR_IA32_MC0_CTL &&
3533 msr < MSR_IA32_MCx_CTL(bank_num)) {
3534 u32 offset = array_index_nospec(
3535 msr - MSR_IA32_MC0_CTL,
3536 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3537
3538 data = vcpu->arch.mce_banks[offset];
3539 break;
3540 }
3541 return 1;
3542 }
3543 *pdata = data;
3544 return 0;
3545 }
3546
3547 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3548 {
3549 switch (msr_info->index) {
3550 case MSR_IA32_PLATFORM_ID:
3551 case MSR_IA32_EBL_CR_POWERON:
3552 case MSR_IA32_LASTBRANCHFROMIP:
3553 case MSR_IA32_LASTBRANCHTOIP:
3554 case MSR_IA32_LASTINTFROMIP:
3555 case MSR_IA32_LASTINTTOIP:
3556 case MSR_K8_SYSCFG:
3557 case MSR_K8_TSEG_ADDR:
3558 case MSR_K8_TSEG_MASK:
3559 case MSR_VM_HSAVE_PA:
3560 case MSR_K8_INT_PENDING_MSG:
3561 case MSR_AMD64_NB_CFG:
3562 case MSR_FAM10H_MMIO_CONF_BASE:
3563 case MSR_AMD64_BU_CFG2:
3564 case MSR_IA32_PERF_CTL:
3565 case MSR_AMD64_DC_CFG:
3566 case MSR_F15H_EX_CFG:
3567 /*
3568 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3569 * limit) MSRs. Just return 0, as we do not want to expose the host
3570 * data here. Do not conditionalize this on CPUID, as KVM does not do
3571 * so for existing CPU-specific MSRs.
3572 */
3573 case MSR_RAPL_POWER_UNIT:
3574 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3575 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3576 case MSR_PKG_ENERGY_STATUS: /* Total package */
3577 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3578 msr_info->data = 0;
3579 break;
3580 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3581 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3582 return kvm_pmu_get_msr(vcpu, msr_info);
3583 if (!msr_info->host_initiated)
3584 return 1;
3585 msr_info->data = 0;
3586 break;
3587 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3588 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3589 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3590 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3591 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3592 return kvm_pmu_get_msr(vcpu, msr_info);
3593 msr_info->data = 0;
3594 break;
3595 case MSR_IA32_UCODE_REV:
3596 msr_info->data = vcpu->arch.microcode_version;
3597 break;
3598 case MSR_IA32_ARCH_CAPABILITIES:
3599 if (!msr_info->host_initiated &&
3600 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3601 return 1;
3602 msr_info->data = vcpu->arch.arch_capabilities;
3603 break;
3604 case MSR_IA32_PERF_CAPABILITIES:
3605 if (!msr_info->host_initiated &&
3606 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3607 return 1;
3608 msr_info->data = vcpu->arch.perf_capabilities;
3609 break;
3610 case MSR_IA32_POWER_CTL:
3611 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3612 break;
3613 case MSR_IA32_TSC: {
3614 /*
3615 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3616 * even when not intercepted. AMD manual doesn't explicitly
3617 * state this but appears to behave the same.
3618 *
3619 * On userspace reads and writes, however, we unconditionally
3620 * return L1's TSC value to ensure backwards-compatible
3621 * behavior for migration.
3622 */
3623 u64 offset, ratio;
3624
3625 if (msr_info->host_initiated) {
3626 offset = vcpu->arch.l1_tsc_offset;
3627 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3628 } else {
3629 offset = vcpu->arch.tsc_offset;
3630 ratio = vcpu->arch.tsc_scaling_ratio;
3631 }
3632
3633 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3634 break;
3635 }
3636 case MSR_MTRRcap:
3637 case 0x200 ... 0x2ff:
3638 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3639 case 0xcd: /* fsb frequency */
3640 msr_info->data = 3;
3641 break;
3642 /*
3643 * MSR_EBC_FREQUENCY_ID
3644 * Conservative value valid for even the basic CPU models.
3645 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3646 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3647 * and 266MHz for model 3, or 4. Set Core Clock
3648 * Frequency to System Bus Frequency Ratio to 1 (bits
3649 * 31:24) even though these are only valid for CPU
3650 * models > 2, however guests may end up dividing or
3651 * multiplying by zero otherwise.
3652 */
3653 case MSR_EBC_FREQUENCY_ID:
3654 msr_info->data = 1 << 24;
3655 break;
3656 case MSR_IA32_APICBASE:
3657 msr_info->data = kvm_get_apic_base(vcpu);
3658 break;
3659 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3660 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3661 case MSR_IA32_TSC_DEADLINE:
3662 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3663 break;
3664 case MSR_IA32_TSC_ADJUST:
3665 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3666 break;
3667 case MSR_IA32_MISC_ENABLE:
3668 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3669 break;
3670 case MSR_IA32_SMBASE:
3671 if (!msr_info->host_initiated)
3672 return 1;
3673 msr_info->data = vcpu->arch.smbase;
3674 break;
3675 case MSR_SMI_COUNT:
3676 msr_info->data = vcpu->arch.smi_count;
3677 break;
3678 case MSR_IA32_PERF_STATUS:
3679 /* TSC increment by tick */
3680 msr_info->data = 1000ULL;
3681 /* CPU multiplier */
3682 msr_info->data |= (((uint64_t)4ULL) << 40);
3683 break;
3684 case MSR_EFER:
3685 msr_info->data = vcpu->arch.efer;
3686 break;
3687 case MSR_KVM_WALL_CLOCK:
3688 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3689 return 1;
3690
3691 msr_info->data = vcpu->kvm->arch.wall_clock;
3692 break;
3693 case MSR_KVM_WALL_CLOCK_NEW:
3694 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3695 return 1;
3696
3697 msr_info->data = vcpu->kvm->arch.wall_clock;
3698 break;
3699 case MSR_KVM_SYSTEM_TIME:
3700 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3701 return 1;
3702
3703 msr_info->data = vcpu->arch.time;
3704 break;
3705 case MSR_KVM_SYSTEM_TIME_NEW:
3706 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3707 return 1;
3708
3709 msr_info->data = vcpu->arch.time;
3710 break;
3711 case MSR_KVM_ASYNC_PF_EN:
3712 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3713 return 1;
3714
3715 msr_info->data = vcpu->arch.apf.msr_en_val;
3716 break;
3717 case MSR_KVM_ASYNC_PF_INT:
3718 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3719 return 1;
3720
3721 msr_info->data = vcpu->arch.apf.msr_int_val;
3722 break;
3723 case MSR_KVM_ASYNC_PF_ACK:
3724 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3725 return 1;
3726
3727 msr_info->data = 0;
3728 break;
3729 case MSR_KVM_STEAL_TIME:
3730 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3731 return 1;
3732
3733 msr_info->data = vcpu->arch.st.msr_val;
3734 break;
3735 case MSR_KVM_PV_EOI_EN:
3736 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3737 return 1;
3738
3739 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3740 break;
3741 case MSR_KVM_POLL_CONTROL:
3742 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3743 return 1;
3744
3745 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3746 break;
3747 case MSR_IA32_P5_MC_ADDR:
3748 case MSR_IA32_P5_MC_TYPE:
3749 case MSR_IA32_MCG_CAP:
3750 case MSR_IA32_MCG_CTL:
3751 case MSR_IA32_MCG_STATUS:
3752 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3753 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3754 msr_info->host_initiated);
3755 case MSR_IA32_XSS:
3756 if (!msr_info->host_initiated &&
3757 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3758 return 1;
3759 msr_info->data = vcpu->arch.ia32_xss;
3760 break;
3761 case MSR_K7_CLK_CTL:
3762 /*
3763 * Provide expected ramp-up count for K7. All other
3764 * are set to zero, indicating minimum divisors for
3765 * every field.
3766 *
3767 * This prevents guest kernels on AMD host with CPU
3768 * type 6, model 8 and higher from exploding due to
3769 * the rdmsr failing.
3770 */
3771 msr_info->data = 0x20000000;
3772 break;
3773 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3774 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3775 case HV_X64_MSR_SYNDBG_OPTIONS:
3776 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3777 case HV_X64_MSR_CRASH_CTL:
3778 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3779 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3780 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3781 case HV_X64_MSR_TSC_EMULATION_STATUS:
3782 return kvm_hv_get_msr_common(vcpu,
3783 msr_info->index, &msr_info->data,
3784 msr_info->host_initiated);
3785 case MSR_IA32_BBL_CR_CTL3:
3786 /* This legacy MSR exists but isn't fully documented in current
3787 * silicon. It is however accessed by winxp in very narrow
3788 * scenarios where it sets bit #19, itself documented as
3789 * a "reserved" bit. Best effort attempt to source coherent
3790 * read data here should the balance of the register be
3791 * interpreted by the guest:
3792 *
3793 * L2 cache control register 3: 64GB range, 256KB size,
3794 * enabled, latency 0x1, configured
3795 */
3796 msr_info->data = 0xbe702111;
3797 break;
3798 case MSR_AMD64_OSVW_ID_LENGTH:
3799 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3800 return 1;
3801 msr_info->data = vcpu->arch.osvw.length;
3802 break;
3803 case MSR_AMD64_OSVW_STATUS:
3804 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3805 return 1;
3806 msr_info->data = vcpu->arch.osvw.status;
3807 break;
3808 case MSR_PLATFORM_INFO:
3809 if (!msr_info->host_initiated &&
3810 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3811 return 1;
3812 msr_info->data = vcpu->arch.msr_platform_info;
3813 break;
3814 case MSR_MISC_FEATURES_ENABLES:
3815 msr_info->data = vcpu->arch.msr_misc_features_enables;
3816 break;
3817 case MSR_K7_HWCR:
3818 msr_info->data = vcpu->arch.msr_hwcr;
3819 break;
3820 default:
3821 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3822 return kvm_pmu_get_msr(vcpu, msr_info);
3823 return KVM_MSR_RET_INVALID;
3824 }
3825 return 0;
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3828
3829 /*
3830 * Read or write a bunch of msrs. All parameters are kernel addresses.
3831 *
3832 * @return number of msrs set successfully.
3833 */
3834 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3835 struct kvm_msr_entry *entries,
3836 int (*do_msr)(struct kvm_vcpu *vcpu,
3837 unsigned index, u64 *data))
3838 {
3839 int i;
3840
3841 for (i = 0; i < msrs->nmsrs; ++i)
3842 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3843 break;
3844
3845 return i;
3846 }
3847
3848 /*
3849 * Read or write a bunch of msrs. Parameters are user addresses.
3850 *
3851 * @return number of msrs set successfully.
3852 */
3853 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3854 int (*do_msr)(struct kvm_vcpu *vcpu,
3855 unsigned index, u64 *data),
3856 int writeback)
3857 {
3858 struct kvm_msrs msrs;
3859 struct kvm_msr_entry *entries;
3860 int r, n;
3861 unsigned size;
3862
3863 r = -EFAULT;
3864 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3865 goto out;
3866
3867 r = -E2BIG;
3868 if (msrs.nmsrs >= MAX_IO_MSRS)
3869 goto out;
3870
3871 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3872 entries = memdup_user(user_msrs->entries, size);
3873 if (IS_ERR(entries)) {
3874 r = PTR_ERR(entries);
3875 goto out;
3876 }
3877
3878 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3879 if (r < 0)
3880 goto out_free;
3881
3882 r = -EFAULT;
3883 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3884 goto out_free;
3885
3886 r = n;
3887
3888 out_free:
3889 kfree(entries);
3890 out:
3891 return r;
3892 }
3893
3894 static inline bool kvm_can_mwait_in_guest(void)
3895 {
3896 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3897 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3898 boot_cpu_has(X86_FEATURE_ARAT);
3899 }
3900
3901 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3902 struct kvm_cpuid2 __user *cpuid_arg)
3903 {
3904 struct kvm_cpuid2 cpuid;
3905 int r;
3906
3907 r = -EFAULT;
3908 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3909 return r;
3910
3911 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3912 if (r)
3913 return r;
3914
3915 r = -EFAULT;
3916 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3917 return r;
3918
3919 return 0;
3920 }
3921
3922 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3923 {
3924 int r = 0;
3925
3926 switch (ext) {
3927 case KVM_CAP_IRQCHIP:
3928 case KVM_CAP_HLT:
3929 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3930 case KVM_CAP_SET_TSS_ADDR:
3931 case KVM_CAP_EXT_CPUID:
3932 case KVM_CAP_EXT_EMUL_CPUID:
3933 case KVM_CAP_CLOCKSOURCE:
3934 case KVM_CAP_PIT:
3935 case KVM_CAP_NOP_IO_DELAY:
3936 case KVM_CAP_MP_STATE:
3937 case KVM_CAP_SYNC_MMU:
3938 case KVM_CAP_USER_NMI:
3939 case KVM_CAP_REINJECT_CONTROL:
3940 case KVM_CAP_IRQ_INJECT_STATUS:
3941 case KVM_CAP_IOEVENTFD:
3942 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3943 case KVM_CAP_PIT2:
3944 case KVM_CAP_PIT_STATE2:
3945 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3946 case KVM_CAP_VCPU_EVENTS:
3947 case KVM_CAP_HYPERV:
3948 case KVM_CAP_HYPERV_VAPIC:
3949 case KVM_CAP_HYPERV_SPIN:
3950 case KVM_CAP_HYPERV_SYNIC:
3951 case KVM_CAP_HYPERV_SYNIC2:
3952 case KVM_CAP_HYPERV_VP_INDEX:
3953 case KVM_CAP_HYPERV_EVENTFD:
3954 case KVM_CAP_HYPERV_TLBFLUSH:
3955 case KVM_CAP_HYPERV_SEND_IPI:
3956 case KVM_CAP_HYPERV_CPUID:
3957 case KVM_CAP_SYS_HYPERV_CPUID:
3958 case KVM_CAP_PCI_SEGMENT:
3959 case KVM_CAP_DEBUGREGS:
3960 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3961 case KVM_CAP_XSAVE:
3962 case KVM_CAP_ASYNC_PF:
3963 case KVM_CAP_ASYNC_PF_INT:
3964 case KVM_CAP_GET_TSC_KHZ:
3965 case KVM_CAP_KVMCLOCK_CTRL:
3966 case KVM_CAP_READONLY_MEM:
3967 case KVM_CAP_HYPERV_TIME:
3968 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3969 case KVM_CAP_TSC_DEADLINE_TIMER:
3970 case KVM_CAP_DISABLE_QUIRKS:
3971 case KVM_CAP_SET_BOOT_CPU_ID:
3972 case KVM_CAP_SPLIT_IRQCHIP:
3973 case KVM_CAP_IMMEDIATE_EXIT:
3974 case KVM_CAP_PMU_EVENT_FILTER:
3975 case KVM_CAP_GET_MSR_FEATURES:
3976 case KVM_CAP_MSR_PLATFORM_INFO:
3977 case KVM_CAP_EXCEPTION_PAYLOAD:
3978 case KVM_CAP_SET_GUEST_DEBUG:
3979 case KVM_CAP_LAST_CPU:
3980 case KVM_CAP_X86_USER_SPACE_MSR:
3981 case KVM_CAP_X86_MSR_FILTER:
3982 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3983 #ifdef CONFIG_X86_SGX_KVM
3984 case KVM_CAP_SGX_ATTRIBUTE:
3985 #endif
3986 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3987 r = 1;
3988 break;
3989 case KVM_CAP_SET_GUEST_DEBUG2:
3990 return KVM_GUESTDBG_VALID_MASK;
3991 #ifdef CONFIG_KVM_XEN
3992 case KVM_CAP_XEN_HVM:
3993 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3994 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3995 KVM_XEN_HVM_CONFIG_SHARED_INFO;
3996 if (sched_info_on())
3997 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3998 break;
3999 #endif
4000 case KVM_CAP_SYNC_REGS:
4001 r = KVM_SYNC_X86_VALID_FIELDS;
4002 break;
4003 case KVM_CAP_ADJUST_CLOCK:
4004 r = KVM_CLOCK_TSC_STABLE;
4005 break;
4006 case KVM_CAP_X86_DISABLE_EXITS:
4007 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4008 KVM_X86_DISABLE_EXITS_CSTATE;
4009 if(kvm_can_mwait_in_guest())
4010 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4011 break;
4012 case KVM_CAP_X86_SMM:
4013 /* SMBASE is usually relocated above 1M on modern chipsets,
4014 * and SMM handlers might indeed rely on 4G segment limits,
4015 * so do not report SMM to be available if real mode is
4016 * emulated via vm86 mode. Still, do not go to great lengths
4017 * to avoid userspace's usage of the feature, because it is a
4018 * fringe case that is not enabled except via specific settings
4019 * of the module parameters.
4020 */
4021 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4022 break;
4023 case KVM_CAP_VAPIC:
4024 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4025 break;
4026 case KVM_CAP_NR_VCPUS:
4027 r = KVM_SOFT_MAX_VCPUS;
4028 break;
4029 case KVM_CAP_MAX_VCPUS:
4030 r = KVM_MAX_VCPUS;
4031 break;
4032 case KVM_CAP_MAX_VCPU_ID:
4033 r = KVM_MAX_VCPU_ID;
4034 break;
4035 case KVM_CAP_PV_MMU: /* obsolete */
4036 r = 0;
4037 break;
4038 case KVM_CAP_MCE:
4039 r = KVM_MAX_MCE_BANKS;
4040 break;
4041 case KVM_CAP_XCRS:
4042 r = boot_cpu_has(X86_FEATURE_XSAVE);
4043 break;
4044 case KVM_CAP_TSC_CONTROL:
4045 r = kvm_has_tsc_control;
4046 break;
4047 case KVM_CAP_X2APIC_API:
4048 r = KVM_X2APIC_API_VALID_FLAGS;
4049 break;
4050 case KVM_CAP_NESTED_STATE:
4051 r = kvm_x86_ops.nested_ops->get_state ?
4052 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4053 break;
4054 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4055 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4056 break;
4057 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4058 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4059 break;
4060 case KVM_CAP_SMALLER_MAXPHYADDR:
4061 r = (int) allow_smaller_maxphyaddr;
4062 break;
4063 case KVM_CAP_STEAL_TIME:
4064 r = sched_info_on();
4065 break;
4066 case KVM_CAP_X86_BUS_LOCK_EXIT:
4067 if (kvm_has_bus_lock_exit)
4068 r = KVM_BUS_LOCK_DETECTION_OFF |
4069 KVM_BUS_LOCK_DETECTION_EXIT;
4070 else
4071 r = 0;
4072 break;
4073 default:
4074 break;
4075 }
4076 return r;
4077
4078 }
4079
4080 long kvm_arch_dev_ioctl(struct file *filp,
4081 unsigned int ioctl, unsigned long arg)
4082 {
4083 void __user *argp = (void __user *)arg;
4084 long r;
4085
4086 switch (ioctl) {
4087 case KVM_GET_MSR_INDEX_LIST: {
4088 struct kvm_msr_list __user *user_msr_list = argp;
4089 struct kvm_msr_list msr_list;
4090 unsigned n;
4091
4092 r = -EFAULT;
4093 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4094 goto out;
4095 n = msr_list.nmsrs;
4096 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4097 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4098 goto out;
4099 r = -E2BIG;
4100 if (n < msr_list.nmsrs)
4101 goto out;
4102 r = -EFAULT;
4103 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4104 num_msrs_to_save * sizeof(u32)))
4105 goto out;
4106 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4107 &emulated_msrs,
4108 num_emulated_msrs * sizeof(u32)))
4109 goto out;
4110 r = 0;
4111 break;
4112 }
4113 case KVM_GET_SUPPORTED_CPUID:
4114 case KVM_GET_EMULATED_CPUID: {
4115 struct kvm_cpuid2 __user *cpuid_arg = argp;
4116 struct kvm_cpuid2 cpuid;
4117
4118 r = -EFAULT;
4119 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4120 goto out;
4121
4122 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4123 ioctl);
4124 if (r)
4125 goto out;
4126
4127 r = -EFAULT;
4128 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4129 goto out;
4130 r = 0;
4131 break;
4132 }
4133 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4134 r = -EFAULT;
4135 if (copy_to_user(argp, &kvm_mce_cap_supported,
4136 sizeof(kvm_mce_cap_supported)))
4137 goto out;
4138 r = 0;
4139 break;
4140 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4141 struct kvm_msr_list __user *user_msr_list = argp;
4142 struct kvm_msr_list msr_list;
4143 unsigned int n;
4144
4145 r = -EFAULT;
4146 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4147 goto out;
4148 n = msr_list.nmsrs;
4149 msr_list.nmsrs = num_msr_based_features;
4150 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4151 goto out;
4152 r = -E2BIG;
4153 if (n < msr_list.nmsrs)
4154 goto out;
4155 r = -EFAULT;
4156 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4157 num_msr_based_features * sizeof(u32)))
4158 goto out;
4159 r = 0;
4160 break;
4161 }
4162 case KVM_GET_MSRS:
4163 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4164 break;
4165 case KVM_GET_SUPPORTED_HV_CPUID:
4166 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4167 break;
4168 default:
4169 r = -EINVAL;
4170 break;
4171 }
4172 out:
4173 return r;
4174 }
4175
4176 static void wbinvd_ipi(void *garbage)
4177 {
4178 wbinvd();
4179 }
4180
4181 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4182 {
4183 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4184 }
4185
4186 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4187 {
4188 /* Address WBINVD may be executed by guest */
4189 if (need_emulate_wbinvd(vcpu)) {
4190 if (static_call(kvm_x86_has_wbinvd_exit)())
4191 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4192 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4193 smp_call_function_single(vcpu->cpu,
4194 wbinvd_ipi, NULL, 1);
4195 }
4196
4197 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4198
4199 /* Save host pkru register if supported */
4200 vcpu->arch.host_pkru = read_pkru();
4201
4202 /* Apply any externally detected TSC adjustments (due to suspend) */
4203 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4204 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4205 vcpu->arch.tsc_offset_adjustment = 0;
4206 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4207 }
4208
4209 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4210 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4211 rdtsc() - vcpu->arch.last_host_tsc;
4212 if (tsc_delta < 0)
4213 mark_tsc_unstable("KVM discovered backwards TSC");
4214
4215 if (kvm_check_tsc_unstable()) {
4216 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4217 vcpu->arch.last_guest_tsc);
4218 kvm_vcpu_write_tsc_offset(vcpu, offset);
4219 vcpu->arch.tsc_catchup = 1;
4220 }
4221
4222 if (kvm_lapic_hv_timer_in_use(vcpu))
4223 kvm_lapic_restart_hv_timer(vcpu);
4224
4225 /*
4226 * On a host with synchronized TSC, there is no need to update
4227 * kvmclock on vcpu->cpu migration
4228 */
4229 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4230 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4231 if (vcpu->cpu != cpu)
4232 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4233 vcpu->cpu = cpu;
4234 }
4235
4236 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4237 }
4238
4239 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4240 {
4241 struct kvm_host_map map;
4242 struct kvm_steal_time *st;
4243
4244 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4245 return;
4246
4247 if (vcpu->arch.st.preempted)
4248 return;
4249
4250 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4251 &vcpu->arch.st.cache, true))
4252 return;
4253
4254 st = map.hva +
4255 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4256
4257 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4258
4259 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4260 }
4261
4262 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4263 {
4264 int idx;
4265
4266 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4267 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4268
4269 /*
4270 * Take the srcu lock as memslots will be accessed to check the gfn
4271 * cache generation against the memslots generation.
4272 */
4273 idx = srcu_read_lock(&vcpu->kvm->srcu);
4274 if (kvm_xen_msr_enabled(vcpu->kvm))
4275 kvm_xen_runstate_set_preempted(vcpu);
4276 else
4277 kvm_steal_time_set_preempted(vcpu);
4278 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4279
4280 static_call(kvm_x86_vcpu_put)(vcpu);
4281 vcpu->arch.last_host_tsc = rdtsc();
4282 /*
4283 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4284 * on every vmexit, but if not, we might have a stale dr6 from the
4285 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4286 */
4287 set_debugreg(0, 6);
4288 }
4289
4290 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4291 struct kvm_lapic_state *s)
4292 {
4293 if (vcpu->arch.apicv_active)
4294 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4295
4296 return kvm_apic_get_state(vcpu, s);
4297 }
4298
4299 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4300 struct kvm_lapic_state *s)
4301 {
4302 int r;
4303
4304 r = kvm_apic_set_state(vcpu, s);
4305 if (r)
4306 return r;
4307 update_cr8_intercept(vcpu);
4308
4309 return 0;
4310 }
4311
4312 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4313 {
4314 /*
4315 * We can accept userspace's request for interrupt injection
4316 * as long as we have a place to store the interrupt number.
4317 * The actual injection will happen when the CPU is able to
4318 * deliver the interrupt.
4319 */
4320 if (kvm_cpu_has_extint(vcpu))
4321 return false;
4322
4323 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4324 return (!lapic_in_kernel(vcpu) ||
4325 kvm_apic_accept_pic_intr(vcpu));
4326 }
4327
4328 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4329 {
4330 return kvm_arch_interrupt_allowed(vcpu) &&
4331 kvm_cpu_accept_dm_intr(vcpu);
4332 }
4333
4334 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4335 struct kvm_interrupt *irq)
4336 {
4337 if (irq->irq >= KVM_NR_INTERRUPTS)
4338 return -EINVAL;
4339
4340 if (!irqchip_in_kernel(vcpu->kvm)) {
4341 kvm_queue_interrupt(vcpu, irq->irq, false);
4342 kvm_make_request(KVM_REQ_EVENT, vcpu);
4343 return 0;
4344 }
4345
4346 /*
4347 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4348 * fail for in-kernel 8259.
4349 */
4350 if (pic_in_kernel(vcpu->kvm))
4351 return -ENXIO;
4352
4353 if (vcpu->arch.pending_external_vector != -1)
4354 return -EEXIST;
4355
4356 vcpu->arch.pending_external_vector = irq->irq;
4357 kvm_make_request(KVM_REQ_EVENT, vcpu);
4358 return 0;
4359 }
4360
4361 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4362 {
4363 kvm_inject_nmi(vcpu);
4364
4365 return 0;
4366 }
4367
4368 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4369 {
4370 kvm_make_request(KVM_REQ_SMI, vcpu);
4371
4372 return 0;
4373 }
4374
4375 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4376 struct kvm_tpr_access_ctl *tac)
4377 {
4378 if (tac->flags)
4379 return -EINVAL;
4380 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4381 return 0;
4382 }
4383
4384 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4385 u64 mcg_cap)
4386 {
4387 int r;
4388 unsigned bank_num = mcg_cap & 0xff, bank;
4389
4390 r = -EINVAL;
4391 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4392 goto out;
4393 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4394 goto out;
4395 r = 0;
4396 vcpu->arch.mcg_cap = mcg_cap;
4397 /* Init IA32_MCG_CTL to all 1s */
4398 if (mcg_cap & MCG_CTL_P)
4399 vcpu->arch.mcg_ctl = ~(u64)0;
4400 /* Init IA32_MCi_CTL to all 1s */
4401 for (bank = 0; bank < bank_num; bank++)
4402 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4403
4404 static_call(kvm_x86_setup_mce)(vcpu);
4405 out:
4406 return r;
4407 }
4408
4409 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4410 struct kvm_x86_mce *mce)
4411 {
4412 u64 mcg_cap = vcpu->arch.mcg_cap;
4413 unsigned bank_num = mcg_cap & 0xff;
4414 u64 *banks = vcpu->arch.mce_banks;
4415
4416 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4417 return -EINVAL;
4418 /*
4419 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4420 * reporting is disabled
4421 */
4422 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4423 vcpu->arch.mcg_ctl != ~(u64)0)
4424 return 0;
4425 banks += 4 * mce->bank;
4426 /*
4427 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4428 * reporting is disabled for the bank
4429 */
4430 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4431 return 0;
4432 if (mce->status & MCI_STATUS_UC) {
4433 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4434 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4435 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4436 return 0;
4437 }
4438 if (banks[1] & MCI_STATUS_VAL)
4439 mce->status |= MCI_STATUS_OVER;
4440 banks[2] = mce->addr;
4441 banks[3] = mce->misc;
4442 vcpu->arch.mcg_status = mce->mcg_status;
4443 banks[1] = mce->status;
4444 kvm_queue_exception(vcpu, MC_VECTOR);
4445 } else if (!(banks[1] & MCI_STATUS_VAL)
4446 || !(banks[1] & MCI_STATUS_UC)) {
4447 if (banks[1] & MCI_STATUS_VAL)
4448 mce->status |= MCI_STATUS_OVER;
4449 banks[2] = mce->addr;
4450 banks[3] = mce->misc;
4451 banks[1] = mce->status;
4452 } else
4453 banks[1] |= MCI_STATUS_OVER;
4454 return 0;
4455 }
4456
4457 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4458 struct kvm_vcpu_events *events)
4459 {
4460 process_nmi(vcpu);
4461
4462 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4463 process_smi(vcpu);
4464
4465 /*
4466 * In guest mode, payload delivery should be deferred,
4467 * so that the L1 hypervisor can intercept #PF before
4468 * CR2 is modified (or intercept #DB before DR6 is
4469 * modified under nVMX). Unless the per-VM capability,
4470 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4471 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4472 * opportunistically defer the exception payload, deliver it if the
4473 * capability hasn't been requested before processing a
4474 * KVM_GET_VCPU_EVENTS.
4475 */
4476 if (!vcpu->kvm->arch.exception_payload_enabled &&
4477 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4478 kvm_deliver_exception_payload(vcpu);
4479
4480 /*
4481 * The API doesn't provide the instruction length for software
4482 * exceptions, so don't report them. As long as the guest RIP
4483 * isn't advanced, we should expect to encounter the exception
4484 * again.
4485 */
4486 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4487 events->exception.injected = 0;
4488 events->exception.pending = 0;
4489 } else {
4490 events->exception.injected = vcpu->arch.exception.injected;
4491 events->exception.pending = vcpu->arch.exception.pending;
4492 /*
4493 * For ABI compatibility, deliberately conflate
4494 * pending and injected exceptions when
4495 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4496 */
4497 if (!vcpu->kvm->arch.exception_payload_enabled)
4498 events->exception.injected |=
4499 vcpu->arch.exception.pending;
4500 }
4501 events->exception.nr = vcpu->arch.exception.nr;
4502 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4503 events->exception.error_code = vcpu->arch.exception.error_code;
4504 events->exception_has_payload = vcpu->arch.exception.has_payload;
4505 events->exception_payload = vcpu->arch.exception.payload;
4506
4507 events->interrupt.injected =
4508 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4509 events->interrupt.nr = vcpu->arch.interrupt.nr;
4510 events->interrupt.soft = 0;
4511 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4512
4513 events->nmi.injected = vcpu->arch.nmi_injected;
4514 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4515 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4516 events->nmi.pad = 0;
4517
4518 events->sipi_vector = 0; /* never valid when reporting to user space */
4519
4520 events->smi.smm = is_smm(vcpu);
4521 events->smi.pending = vcpu->arch.smi_pending;
4522 events->smi.smm_inside_nmi =
4523 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4524 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4525
4526 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4527 | KVM_VCPUEVENT_VALID_SHADOW
4528 | KVM_VCPUEVENT_VALID_SMM);
4529 if (vcpu->kvm->arch.exception_payload_enabled)
4530 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4531
4532 memset(&events->reserved, 0, sizeof(events->reserved));
4533 }
4534
4535 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4536
4537 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4538 struct kvm_vcpu_events *events)
4539 {
4540 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4541 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4542 | KVM_VCPUEVENT_VALID_SHADOW
4543 | KVM_VCPUEVENT_VALID_SMM
4544 | KVM_VCPUEVENT_VALID_PAYLOAD))
4545 return -EINVAL;
4546
4547 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4548 if (!vcpu->kvm->arch.exception_payload_enabled)
4549 return -EINVAL;
4550 if (events->exception.pending)
4551 events->exception.injected = 0;
4552 else
4553 events->exception_has_payload = 0;
4554 } else {
4555 events->exception.pending = 0;
4556 events->exception_has_payload = 0;
4557 }
4558
4559 if ((events->exception.injected || events->exception.pending) &&
4560 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4561 return -EINVAL;
4562
4563 /* INITs are latched while in SMM */
4564 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4565 (events->smi.smm || events->smi.pending) &&
4566 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4567 return -EINVAL;
4568
4569 process_nmi(vcpu);
4570 vcpu->arch.exception.injected = events->exception.injected;
4571 vcpu->arch.exception.pending = events->exception.pending;
4572 vcpu->arch.exception.nr = events->exception.nr;
4573 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4574 vcpu->arch.exception.error_code = events->exception.error_code;
4575 vcpu->arch.exception.has_payload = events->exception_has_payload;
4576 vcpu->arch.exception.payload = events->exception_payload;
4577
4578 vcpu->arch.interrupt.injected = events->interrupt.injected;
4579 vcpu->arch.interrupt.nr = events->interrupt.nr;
4580 vcpu->arch.interrupt.soft = events->interrupt.soft;
4581 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4582 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4583 events->interrupt.shadow);
4584
4585 vcpu->arch.nmi_injected = events->nmi.injected;
4586 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4587 vcpu->arch.nmi_pending = events->nmi.pending;
4588 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4589
4590 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4591 lapic_in_kernel(vcpu))
4592 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4593
4594 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4595 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4596 if (events->smi.smm)
4597 vcpu->arch.hflags |= HF_SMM_MASK;
4598 else
4599 vcpu->arch.hflags &= ~HF_SMM_MASK;
4600 kvm_smm_changed(vcpu);
4601 }
4602
4603 vcpu->arch.smi_pending = events->smi.pending;
4604
4605 if (events->smi.smm) {
4606 if (events->smi.smm_inside_nmi)
4607 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4608 else
4609 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4610 }
4611
4612 if (lapic_in_kernel(vcpu)) {
4613 if (events->smi.latched_init)
4614 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4615 else
4616 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4617 }
4618 }
4619
4620 kvm_make_request(KVM_REQ_EVENT, vcpu);
4621
4622 return 0;
4623 }
4624
4625 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4626 struct kvm_debugregs *dbgregs)
4627 {
4628 unsigned long val;
4629
4630 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4631 kvm_get_dr(vcpu, 6, &val);
4632 dbgregs->dr6 = val;
4633 dbgregs->dr7 = vcpu->arch.dr7;
4634 dbgregs->flags = 0;
4635 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4636 }
4637
4638 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4639 struct kvm_debugregs *dbgregs)
4640 {
4641 if (dbgregs->flags)
4642 return -EINVAL;
4643
4644 if (!kvm_dr6_valid(dbgregs->dr6))
4645 return -EINVAL;
4646 if (!kvm_dr7_valid(dbgregs->dr7))
4647 return -EINVAL;
4648
4649 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4650 kvm_update_dr0123(vcpu);
4651 vcpu->arch.dr6 = dbgregs->dr6;
4652 vcpu->arch.dr7 = dbgregs->dr7;
4653 kvm_update_dr7(vcpu);
4654
4655 return 0;
4656 }
4657
4658 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4659
4660 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4661 {
4662 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4663 u64 xstate_bv = xsave->header.xfeatures;
4664 u64 valid;
4665
4666 /*
4667 * Copy legacy XSAVE area, to avoid complications with CPUID
4668 * leaves 0 and 1 in the loop below.
4669 */
4670 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4671
4672 /* Set XSTATE_BV */
4673 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4674 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4675
4676 /*
4677 * Copy each region from the possibly compacted offset to the
4678 * non-compacted offset.
4679 */
4680 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4681 while (valid) {
4682 u64 xfeature_mask = valid & -valid;
4683 int xfeature_nr = fls64(xfeature_mask) - 1;
4684 void *src = get_xsave_addr(xsave, xfeature_nr);
4685
4686 if (src) {
4687 u32 size, offset, ecx, edx;
4688 cpuid_count(XSTATE_CPUID, xfeature_nr,
4689 &size, &offset, &ecx, &edx);
4690 if (xfeature_nr == XFEATURE_PKRU)
4691 memcpy(dest + offset, &vcpu->arch.pkru,
4692 sizeof(vcpu->arch.pkru));
4693 else
4694 memcpy(dest + offset, src, size);
4695
4696 }
4697
4698 valid -= xfeature_mask;
4699 }
4700 }
4701
4702 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4703 {
4704 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4705 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4706 u64 valid;
4707
4708 /*
4709 * Copy legacy XSAVE area, to avoid complications with CPUID
4710 * leaves 0 and 1 in the loop below.
4711 */
4712 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4713
4714 /* Set XSTATE_BV and possibly XCOMP_BV. */
4715 xsave->header.xfeatures = xstate_bv;
4716 if (boot_cpu_has(X86_FEATURE_XSAVES))
4717 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4718
4719 /*
4720 * Copy each region from the non-compacted offset to the
4721 * possibly compacted offset.
4722 */
4723 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4724 while (valid) {
4725 u64 xfeature_mask = valid & -valid;
4726 int xfeature_nr = fls64(xfeature_mask) - 1;
4727 void *dest = get_xsave_addr(xsave, xfeature_nr);
4728
4729 if (dest) {
4730 u32 size, offset, ecx, edx;
4731 cpuid_count(XSTATE_CPUID, xfeature_nr,
4732 &size, &offset, &ecx, &edx);
4733 if (xfeature_nr == XFEATURE_PKRU)
4734 memcpy(&vcpu->arch.pkru, src + offset,
4735 sizeof(vcpu->arch.pkru));
4736 else
4737 memcpy(dest, src + offset, size);
4738 }
4739
4740 valid -= xfeature_mask;
4741 }
4742 }
4743
4744 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4745 struct kvm_xsave *guest_xsave)
4746 {
4747 if (!vcpu->arch.guest_fpu)
4748 return;
4749
4750 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4751 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4752 fill_xsave((u8 *) guest_xsave->region, vcpu);
4753 } else {
4754 memcpy(guest_xsave->region,
4755 &vcpu->arch.guest_fpu->state.fxsave,
4756 sizeof(struct fxregs_state));
4757 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4758 XFEATURE_MASK_FPSSE;
4759 }
4760 }
4761
4762 #define XSAVE_MXCSR_OFFSET 24
4763
4764 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4765 struct kvm_xsave *guest_xsave)
4766 {
4767 u64 xstate_bv;
4768 u32 mxcsr;
4769
4770 if (!vcpu->arch.guest_fpu)
4771 return 0;
4772
4773 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4774 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4775
4776 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4777 /*
4778 * Here we allow setting states that are not present in
4779 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4780 * with old userspace.
4781 */
4782 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4783 return -EINVAL;
4784 load_xsave(vcpu, (u8 *)guest_xsave->region);
4785 } else {
4786 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4787 mxcsr & ~mxcsr_feature_mask)
4788 return -EINVAL;
4789 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4790 guest_xsave->region, sizeof(struct fxregs_state));
4791 }
4792 return 0;
4793 }
4794
4795 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4796 struct kvm_xcrs *guest_xcrs)
4797 {
4798 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4799 guest_xcrs->nr_xcrs = 0;
4800 return;
4801 }
4802
4803 guest_xcrs->nr_xcrs = 1;
4804 guest_xcrs->flags = 0;
4805 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4806 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4807 }
4808
4809 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4810 struct kvm_xcrs *guest_xcrs)
4811 {
4812 int i, r = 0;
4813
4814 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4815 return -EINVAL;
4816
4817 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4818 return -EINVAL;
4819
4820 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4821 /* Only support XCR0 currently */
4822 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4823 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4824 guest_xcrs->xcrs[i].value);
4825 break;
4826 }
4827 if (r)
4828 r = -EINVAL;
4829 return r;
4830 }
4831
4832 /*
4833 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4834 * stopped by the hypervisor. This function will be called from the host only.
4835 * EINVAL is returned when the host attempts to set the flag for a guest that
4836 * does not support pv clocks.
4837 */
4838 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4839 {
4840 if (!vcpu->arch.pv_time_enabled)
4841 return -EINVAL;
4842 vcpu->arch.pvclock_set_guest_stopped_request = true;
4843 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4844 return 0;
4845 }
4846
4847 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4848 struct kvm_enable_cap *cap)
4849 {
4850 int r;
4851 uint16_t vmcs_version;
4852 void __user *user_ptr;
4853
4854 if (cap->flags)
4855 return -EINVAL;
4856
4857 switch (cap->cap) {
4858 case KVM_CAP_HYPERV_SYNIC2:
4859 if (cap->args[0])
4860 return -EINVAL;
4861 fallthrough;
4862
4863 case KVM_CAP_HYPERV_SYNIC:
4864 if (!irqchip_in_kernel(vcpu->kvm))
4865 return -EINVAL;
4866 return kvm_hv_activate_synic(vcpu, cap->cap ==
4867 KVM_CAP_HYPERV_SYNIC2);
4868 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4869 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4870 return -ENOTTY;
4871 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4872 if (!r) {
4873 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4874 if (copy_to_user(user_ptr, &vmcs_version,
4875 sizeof(vmcs_version)))
4876 r = -EFAULT;
4877 }
4878 return r;
4879 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4880 if (!kvm_x86_ops.enable_direct_tlbflush)
4881 return -ENOTTY;
4882
4883 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4884
4885 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4886 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4887 if (vcpu->arch.pv_cpuid.enforce)
4888 kvm_update_pv_runtime(vcpu);
4889
4890 return 0;
4891 default:
4892 return -EINVAL;
4893 }
4894 }
4895
4896 long kvm_arch_vcpu_ioctl(struct file *filp,
4897 unsigned int ioctl, unsigned long arg)
4898 {
4899 struct kvm_vcpu *vcpu = filp->private_data;
4900 void __user *argp = (void __user *)arg;
4901 int r;
4902 union {
4903 struct kvm_lapic_state *lapic;
4904 struct kvm_xsave *xsave;
4905 struct kvm_xcrs *xcrs;
4906 void *buffer;
4907 } u;
4908
4909 vcpu_load(vcpu);
4910
4911 u.buffer = NULL;
4912 switch (ioctl) {
4913 case KVM_GET_LAPIC: {
4914 r = -EINVAL;
4915 if (!lapic_in_kernel(vcpu))
4916 goto out;
4917 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4918 GFP_KERNEL_ACCOUNT);
4919
4920 r = -ENOMEM;
4921 if (!u.lapic)
4922 goto out;
4923 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4924 if (r)
4925 goto out;
4926 r = -EFAULT;
4927 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4928 goto out;
4929 r = 0;
4930 break;
4931 }
4932 case KVM_SET_LAPIC: {
4933 r = -EINVAL;
4934 if (!lapic_in_kernel(vcpu))
4935 goto out;
4936 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4937 if (IS_ERR(u.lapic)) {
4938 r = PTR_ERR(u.lapic);
4939 goto out_nofree;
4940 }
4941
4942 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4943 break;
4944 }
4945 case KVM_INTERRUPT: {
4946 struct kvm_interrupt irq;
4947
4948 r = -EFAULT;
4949 if (copy_from_user(&irq, argp, sizeof(irq)))
4950 goto out;
4951 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4952 break;
4953 }
4954 case KVM_NMI: {
4955 r = kvm_vcpu_ioctl_nmi(vcpu);
4956 break;
4957 }
4958 case KVM_SMI: {
4959 r = kvm_vcpu_ioctl_smi(vcpu);
4960 break;
4961 }
4962 case KVM_SET_CPUID: {
4963 struct kvm_cpuid __user *cpuid_arg = argp;
4964 struct kvm_cpuid cpuid;
4965
4966 r = -EFAULT;
4967 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4968 goto out;
4969 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4970 break;
4971 }
4972 case KVM_SET_CPUID2: {
4973 struct kvm_cpuid2 __user *cpuid_arg = argp;
4974 struct kvm_cpuid2 cpuid;
4975
4976 r = -EFAULT;
4977 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4978 goto out;
4979 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4980 cpuid_arg->entries);
4981 break;
4982 }
4983 case KVM_GET_CPUID2: {
4984 struct kvm_cpuid2 __user *cpuid_arg = argp;
4985 struct kvm_cpuid2 cpuid;
4986
4987 r = -EFAULT;
4988 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4989 goto out;
4990 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4991 cpuid_arg->entries);
4992 if (r)
4993 goto out;
4994 r = -EFAULT;
4995 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4996 goto out;
4997 r = 0;
4998 break;
4999 }
5000 case KVM_GET_MSRS: {
5001 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5002 r = msr_io(vcpu, argp, do_get_msr, 1);
5003 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5004 break;
5005 }
5006 case KVM_SET_MSRS: {
5007 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5008 r = msr_io(vcpu, argp, do_set_msr, 0);
5009 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5010 break;
5011 }
5012 case KVM_TPR_ACCESS_REPORTING: {
5013 struct kvm_tpr_access_ctl tac;
5014
5015 r = -EFAULT;
5016 if (copy_from_user(&tac, argp, sizeof(tac)))
5017 goto out;
5018 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5019 if (r)
5020 goto out;
5021 r = -EFAULT;
5022 if (copy_to_user(argp, &tac, sizeof(tac)))
5023 goto out;
5024 r = 0;
5025 break;
5026 };
5027 case KVM_SET_VAPIC_ADDR: {
5028 struct kvm_vapic_addr va;
5029 int idx;
5030
5031 r = -EINVAL;
5032 if (!lapic_in_kernel(vcpu))
5033 goto out;
5034 r = -EFAULT;
5035 if (copy_from_user(&va, argp, sizeof(va)))
5036 goto out;
5037 idx = srcu_read_lock(&vcpu->kvm->srcu);
5038 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5039 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5040 break;
5041 }
5042 case KVM_X86_SETUP_MCE: {
5043 u64 mcg_cap;
5044
5045 r = -EFAULT;
5046 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5047 goto out;
5048 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5049 break;
5050 }
5051 case KVM_X86_SET_MCE: {
5052 struct kvm_x86_mce mce;
5053
5054 r = -EFAULT;
5055 if (copy_from_user(&mce, argp, sizeof(mce)))
5056 goto out;
5057 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5058 break;
5059 }
5060 case KVM_GET_VCPU_EVENTS: {
5061 struct kvm_vcpu_events events;
5062
5063 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5064
5065 r = -EFAULT;
5066 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5067 break;
5068 r = 0;
5069 break;
5070 }
5071 case KVM_SET_VCPU_EVENTS: {
5072 struct kvm_vcpu_events events;
5073
5074 r = -EFAULT;
5075 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5076 break;
5077
5078 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5079 break;
5080 }
5081 case KVM_GET_DEBUGREGS: {
5082 struct kvm_debugregs dbgregs;
5083
5084 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5085
5086 r = -EFAULT;
5087 if (copy_to_user(argp, &dbgregs,
5088 sizeof(struct kvm_debugregs)))
5089 break;
5090 r = 0;
5091 break;
5092 }
5093 case KVM_SET_DEBUGREGS: {
5094 struct kvm_debugregs dbgregs;
5095
5096 r = -EFAULT;
5097 if (copy_from_user(&dbgregs, argp,
5098 sizeof(struct kvm_debugregs)))
5099 break;
5100
5101 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5102 break;
5103 }
5104 case KVM_GET_XSAVE: {
5105 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5106 r = -ENOMEM;
5107 if (!u.xsave)
5108 break;
5109
5110 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5111
5112 r = -EFAULT;
5113 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5114 break;
5115 r = 0;
5116 break;
5117 }
5118 case KVM_SET_XSAVE: {
5119 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5120 if (IS_ERR(u.xsave)) {
5121 r = PTR_ERR(u.xsave);
5122 goto out_nofree;
5123 }
5124
5125 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5126 break;
5127 }
5128 case KVM_GET_XCRS: {
5129 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5130 r = -ENOMEM;
5131 if (!u.xcrs)
5132 break;
5133
5134 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5135
5136 r = -EFAULT;
5137 if (copy_to_user(argp, u.xcrs,
5138 sizeof(struct kvm_xcrs)))
5139 break;
5140 r = 0;
5141 break;
5142 }
5143 case KVM_SET_XCRS: {
5144 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5145 if (IS_ERR(u.xcrs)) {
5146 r = PTR_ERR(u.xcrs);
5147 goto out_nofree;
5148 }
5149
5150 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5151 break;
5152 }
5153 case KVM_SET_TSC_KHZ: {
5154 u32 user_tsc_khz;
5155
5156 r = -EINVAL;
5157 user_tsc_khz = (u32)arg;
5158
5159 if (kvm_has_tsc_control &&
5160 user_tsc_khz >= kvm_max_guest_tsc_khz)
5161 goto out;
5162
5163 if (user_tsc_khz == 0)
5164 user_tsc_khz = tsc_khz;
5165
5166 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5167 r = 0;
5168
5169 goto out;
5170 }
5171 case KVM_GET_TSC_KHZ: {
5172 r = vcpu->arch.virtual_tsc_khz;
5173 goto out;
5174 }
5175 case KVM_KVMCLOCK_CTRL: {
5176 r = kvm_set_guest_paused(vcpu);
5177 goto out;
5178 }
5179 case KVM_ENABLE_CAP: {
5180 struct kvm_enable_cap cap;
5181
5182 r = -EFAULT;
5183 if (copy_from_user(&cap, argp, sizeof(cap)))
5184 goto out;
5185 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5186 break;
5187 }
5188 case KVM_GET_NESTED_STATE: {
5189 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5190 u32 user_data_size;
5191
5192 r = -EINVAL;
5193 if (!kvm_x86_ops.nested_ops->get_state)
5194 break;
5195
5196 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5197 r = -EFAULT;
5198 if (get_user(user_data_size, &user_kvm_nested_state->size))
5199 break;
5200
5201 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5202 user_data_size);
5203 if (r < 0)
5204 break;
5205
5206 if (r > user_data_size) {
5207 if (put_user(r, &user_kvm_nested_state->size))
5208 r = -EFAULT;
5209 else
5210 r = -E2BIG;
5211 break;
5212 }
5213
5214 r = 0;
5215 break;
5216 }
5217 case KVM_SET_NESTED_STATE: {
5218 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5219 struct kvm_nested_state kvm_state;
5220 int idx;
5221
5222 r = -EINVAL;
5223 if (!kvm_x86_ops.nested_ops->set_state)
5224 break;
5225
5226 r = -EFAULT;
5227 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5228 break;
5229
5230 r = -EINVAL;
5231 if (kvm_state.size < sizeof(kvm_state))
5232 break;
5233
5234 if (kvm_state.flags &
5235 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5236 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5237 | KVM_STATE_NESTED_GIF_SET))
5238 break;
5239
5240 /* nested_run_pending implies guest_mode. */
5241 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5242 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5243 break;
5244
5245 idx = srcu_read_lock(&vcpu->kvm->srcu);
5246 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5247 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5248 break;
5249 }
5250 case KVM_GET_SUPPORTED_HV_CPUID:
5251 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5252 break;
5253 #ifdef CONFIG_KVM_XEN
5254 case KVM_XEN_VCPU_GET_ATTR: {
5255 struct kvm_xen_vcpu_attr xva;
5256
5257 r = -EFAULT;
5258 if (copy_from_user(&xva, argp, sizeof(xva)))
5259 goto out;
5260 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5261 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5262 r = -EFAULT;
5263 break;
5264 }
5265 case KVM_XEN_VCPU_SET_ATTR: {
5266 struct kvm_xen_vcpu_attr xva;
5267
5268 r = -EFAULT;
5269 if (copy_from_user(&xva, argp, sizeof(xva)))
5270 goto out;
5271 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5272 break;
5273 }
5274 #endif
5275 default:
5276 r = -EINVAL;
5277 }
5278 out:
5279 kfree(u.buffer);
5280 out_nofree:
5281 vcpu_put(vcpu);
5282 return r;
5283 }
5284
5285 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5286 {
5287 return VM_FAULT_SIGBUS;
5288 }
5289
5290 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5291 {
5292 int ret;
5293
5294 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5295 return -EINVAL;
5296 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5297 return ret;
5298 }
5299
5300 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5301 u64 ident_addr)
5302 {
5303 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5304 }
5305
5306 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5307 unsigned long kvm_nr_mmu_pages)
5308 {
5309 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5310 return -EINVAL;
5311
5312 mutex_lock(&kvm->slots_lock);
5313
5314 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5315 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5316
5317 mutex_unlock(&kvm->slots_lock);
5318 return 0;
5319 }
5320
5321 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5322 {
5323 return kvm->arch.n_max_mmu_pages;
5324 }
5325
5326 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5327 {
5328 struct kvm_pic *pic = kvm->arch.vpic;
5329 int r;
5330
5331 r = 0;
5332 switch (chip->chip_id) {
5333 case KVM_IRQCHIP_PIC_MASTER:
5334 memcpy(&chip->chip.pic, &pic->pics[0],
5335 sizeof(struct kvm_pic_state));
5336 break;
5337 case KVM_IRQCHIP_PIC_SLAVE:
5338 memcpy(&chip->chip.pic, &pic->pics[1],
5339 sizeof(struct kvm_pic_state));
5340 break;
5341 case KVM_IRQCHIP_IOAPIC:
5342 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5343 break;
5344 default:
5345 r = -EINVAL;
5346 break;
5347 }
5348 return r;
5349 }
5350
5351 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5352 {
5353 struct kvm_pic *pic = kvm->arch.vpic;
5354 int r;
5355
5356 r = 0;
5357 switch (chip->chip_id) {
5358 case KVM_IRQCHIP_PIC_MASTER:
5359 spin_lock(&pic->lock);
5360 memcpy(&pic->pics[0], &chip->chip.pic,
5361 sizeof(struct kvm_pic_state));
5362 spin_unlock(&pic->lock);
5363 break;
5364 case KVM_IRQCHIP_PIC_SLAVE:
5365 spin_lock(&pic->lock);
5366 memcpy(&pic->pics[1], &chip->chip.pic,
5367 sizeof(struct kvm_pic_state));
5368 spin_unlock(&pic->lock);
5369 break;
5370 case KVM_IRQCHIP_IOAPIC:
5371 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5372 break;
5373 default:
5374 r = -EINVAL;
5375 break;
5376 }
5377 kvm_pic_update_irq(pic);
5378 return r;
5379 }
5380
5381 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5382 {
5383 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5384
5385 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5386
5387 mutex_lock(&kps->lock);
5388 memcpy(ps, &kps->channels, sizeof(*ps));
5389 mutex_unlock(&kps->lock);
5390 return 0;
5391 }
5392
5393 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5394 {
5395 int i;
5396 struct kvm_pit *pit = kvm->arch.vpit;
5397
5398 mutex_lock(&pit->pit_state.lock);
5399 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5400 for (i = 0; i < 3; i++)
5401 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5402 mutex_unlock(&pit->pit_state.lock);
5403 return 0;
5404 }
5405
5406 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5407 {
5408 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5409 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5410 sizeof(ps->channels));
5411 ps->flags = kvm->arch.vpit->pit_state.flags;
5412 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5413 memset(&ps->reserved, 0, sizeof(ps->reserved));
5414 return 0;
5415 }
5416
5417 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5418 {
5419 int start = 0;
5420 int i;
5421 u32 prev_legacy, cur_legacy;
5422 struct kvm_pit *pit = kvm->arch.vpit;
5423
5424 mutex_lock(&pit->pit_state.lock);
5425 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5426 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5427 if (!prev_legacy && cur_legacy)
5428 start = 1;
5429 memcpy(&pit->pit_state.channels, &ps->channels,
5430 sizeof(pit->pit_state.channels));
5431 pit->pit_state.flags = ps->flags;
5432 for (i = 0; i < 3; i++)
5433 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5434 start && i == 0);
5435 mutex_unlock(&pit->pit_state.lock);
5436 return 0;
5437 }
5438
5439 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5440 struct kvm_reinject_control *control)
5441 {
5442 struct kvm_pit *pit = kvm->arch.vpit;
5443
5444 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5445 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5446 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5447 */
5448 mutex_lock(&pit->pit_state.lock);
5449 kvm_pit_set_reinject(pit, control->pit_reinject);
5450 mutex_unlock(&pit->pit_state.lock);
5451
5452 return 0;
5453 }
5454
5455 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5456 {
5457
5458 /*
5459 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5460 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5461 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5462 * VM-Exit.
5463 */
5464 struct kvm_vcpu *vcpu;
5465 int i;
5466
5467 kvm_for_each_vcpu(i, vcpu, kvm)
5468 kvm_vcpu_kick(vcpu);
5469 }
5470
5471 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5472 bool line_status)
5473 {
5474 if (!irqchip_in_kernel(kvm))
5475 return -ENXIO;
5476
5477 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5478 irq_event->irq, irq_event->level,
5479 line_status);
5480 return 0;
5481 }
5482
5483 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5484 struct kvm_enable_cap *cap)
5485 {
5486 int r;
5487
5488 if (cap->flags)
5489 return -EINVAL;
5490
5491 switch (cap->cap) {
5492 case KVM_CAP_DISABLE_QUIRKS:
5493 kvm->arch.disabled_quirks = cap->args[0];
5494 r = 0;
5495 break;
5496 case KVM_CAP_SPLIT_IRQCHIP: {
5497 mutex_lock(&kvm->lock);
5498 r = -EINVAL;
5499 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5500 goto split_irqchip_unlock;
5501 r = -EEXIST;
5502 if (irqchip_in_kernel(kvm))
5503 goto split_irqchip_unlock;
5504 if (kvm->created_vcpus)
5505 goto split_irqchip_unlock;
5506 r = kvm_setup_empty_irq_routing(kvm);
5507 if (r)
5508 goto split_irqchip_unlock;
5509 /* Pairs with irqchip_in_kernel. */
5510 smp_wmb();
5511 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5512 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5513 r = 0;
5514 split_irqchip_unlock:
5515 mutex_unlock(&kvm->lock);
5516 break;
5517 }
5518 case KVM_CAP_X2APIC_API:
5519 r = -EINVAL;
5520 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5521 break;
5522
5523 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5524 kvm->arch.x2apic_format = true;
5525 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5526 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5527
5528 r = 0;
5529 break;
5530 case KVM_CAP_X86_DISABLE_EXITS:
5531 r = -EINVAL;
5532 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5533 break;
5534
5535 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5536 kvm_can_mwait_in_guest())
5537 kvm->arch.mwait_in_guest = true;
5538 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5539 kvm->arch.hlt_in_guest = true;
5540 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5541 kvm->arch.pause_in_guest = true;
5542 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5543 kvm->arch.cstate_in_guest = true;
5544 r = 0;
5545 break;
5546 case KVM_CAP_MSR_PLATFORM_INFO:
5547 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5548 r = 0;
5549 break;
5550 case KVM_CAP_EXCEPTION_PAYLOAD:
5551 kvm->arch.exception_payload_enabled = cap->args[0];
5552 r = 0;
5553 break;
5554 case KVM_CAP_X86_USER_SPACE_MSR:
5555 kvm->arch.user_space_msr_mask = cap->args[0];
5556 r = 0;
5557 break;
5558 case KVM_CAP_X86_BUS_LOCK_EXIT:
5559 r = -EINVAL;
5560 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5561 break;
5562
5563 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5564 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5565 break;
5566
5567 if (kvm_has_bus_lock_exit &&
5568 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5569 kvm->arch.bus_lock_detection_enabled = true;
5570 r = 0;
5571 break;
5572 #ifdef CONFIG_X86_SGX_KVM
5573 case KVM_CAP_SGX_ATTRIBUTE: {
5574 unsigned long allowed_attributes = 0;
5575
5576 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5577 if (r)
5578 break;
5579
5580 /* KVM only supports the PROVISIONKEY privileged attribute. */
5581 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5582 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5583 kvm->arch.sgx_provisioning_allowed = true;
5584 else
5585 r = -EINVAL;
5586 break;
5587 }
5588 #endif
5589 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5590 r = -EINVAL;
5591 if (kvm_x86_ops.vm_copy_enc_context_from)
5592 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5593 return r;
5594 default:
5595 r = -EINVAL;
5596 break;
5597 }
5598 return r;
5599 }
5600
5601 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5602 {
5603 struct kvm_x86_msr_filter *msr_filter;
5604
5605 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5606 if (!msr_filter)
5607 return NULL;
5608
5609 msr_filter->default_allow = default_allow;
5610 return msr_filter;
5611 }
5612
5613 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5614 {
5615 u32 i;
5616
5617 if (!msr_filter)
5618 return;
5619
5620 for (i = 0; i < msr_filter->count; i++)
5621 kfree(msr_filter->ranges[i].bitmap);
5622
5623 kfree(msr_filter);
5624 }
5625
5626 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5627 struct kvm_msr_filter_range *user_range)
5628 {
5629 unsigned long *bitmap = NULL;
5630 size_t bitmap_size;
5631
5632 if (!user_range->nmsrs)
5633 return 0;
5634
5635 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5636 return -EINVAL;
5637
5638 if (!user_range->flags)
5639 return -EINVAL;
5640
5641 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5642 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5643 return -EINVAL;
5644
5645 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5646 if (IS_ERR(bitmap))
5647 return PTR_ERR(bitmap);
5648
5649 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5650 .flags = user_range->flags,
5651 .base = user_range->base,
5652 .nmsrs = user_range->nmsrs,
5653 .bitmap = bitmap,
5654 };
5655
5656 msr_filter->count++;
5657 return 0;
5658 }
5659
5660 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5661 {
5662 struct kvm_msr_filter __user *user_msr_filter = argp;
5663 struct kvm_x86_msr_filter *new_filter, *old_filter;
5664 struct kvm_msr_filter filter;
5665 bool default_allow;
5666 bool empty = true;
5667 int r = 0;
5668 u32 i;
5669
5670 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5671 return -EFAULT;
5672
5673 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5674 empty &= !filter.ranges[i].nmsrs;
5675
5676 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5677 if (empty && !default_allow)
5678 return -EINVAL;
5679
5680 new_filter = kvm_alloc_msr_filter(default_allow);
5681 if (!new_filter)
5682 return -ENOMEM;
5683
5684 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5685 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5686 if (r) {
5687 kvm_free_msr_filter(new_filter);
5688 return r;
5689 }
5690 }
5691
5692 mutex_lock(&kvm->lock);
5693
5694 /* The per-VM filter is protected by kvm->lock... */
5695 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5696
5697 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5698 synchronize_srcu(&kvm->srcu);
5699
5700 kvm_free_msr_filter(old_filter);
5701
5702 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5703 mutex_unlock(&kvm->lock);
5704
5705 return 0;
5706 }
5707
5708 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5709 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5710 {
5711 struct kvm_vcpu *vcpu;
5712 int i, ret = 0;
5713
5714 mutex_lock(&kvm->lock);
5715 kvm_for_each_vcpu(i, vcpu, kvm) {
5716 if (!vcpu->arch.pv_time_enabled)
5717 continue;
5718
5719 ret = kvm_set_guest_paused(vcpu);
5720 if (ret) {
5721 kvm_err("Failed to pause guest VCPU%d: %d\n",
5722 vcpu->vcpu_id, ret);
5723 break;
5724 }
5725 }
5726 mutex_unlock(&kvm->lock);
5727
5728 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5729 }
5730
5731 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5732 {
5733 switch (state) {
5734 case PM_HIBERNATION_PREPARE:
5735 case PM_SUSPEND_PREPARE:
5736 return kvm_arch_suspend_notifier(kvm);
5737 }
5738
5739 return NOTIFY_DONE;
5740 }
5741 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5742
5743 long kvm_arch_vm_ioctl(struct file *filp,
5744 unsigned int ioctl, unsigned long arg)
5745 {
5746 struct kvm *kvm = filp->private_data;
5747 void __user *argp = (void __user *)arg;
5748 int r = -ENOTTY;
5749 /*
5750 * This union makes it completely explicit to gcc-3.x
5751 * that these two variables' stack usage should be
5752 * combined, not added together.
5753 */
5754 union {
5755 struct kvm_pit_state ps;
5756 struct kvm_pit_state2 ps2;
5757 struct kvm_pit_config pit_config;
5758 } u;
5759
5760 switch (ioctl) {
5761 case KVM_SET_TSS_ADDR:
5762 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5763 break;
5764 case KVM_SET_IDENTITY_MAP_ADDR: {
5765 u64 ident_addr;
5766
5767 mutex_lock(&kvm->lock);
5768 r = -EINVAL;
5769 if (kvm->created_vcpus)
5770 goto set_identity_unlock;
5771 r = -EFAULT;
5772 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5773 goto set_identity_unlock;
5774 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5775 set_identity_unlock:
5776 mutex_unlock(&kvm->lock);
5777 break;
5778 }
5779 case KVM_SET_NR_MMU_PAGES:
5780 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5781 break;
5782 case KVM_GET_NR_MMU_PAGES:
5783 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5784 break;
5785 case KVM_CREATE_IRQCHIP: {
5786 mutex_lock(&kvm->lock);
5787
5788 r = -EEXIST;
5789 if (irqchip_in_kernel(kvm))
5790 goto create_irqchip_unlock;
5791
5792 r = -EINVAL;
5793 if (kvm->created_vcpus)
5794 goto create_irqchip_unlock;
5795
5796 r = kvm_pic_init(kvm);
5797 if (r)
5798 goto create_irqchip_unlock;
5799
5800 r = kvm_ioapic_init(kvm);
5801 if (r) {
5802 kvm_pic_destroy(kvm);
5803 goto create_irqchip_unlock;
5804 }
5805
5806 r = kvm_setup_default_irq_routing(kvm);
5807 if (r) {
5808 kvm_ioapic_destroy(kvm);
5809 kvm_pic_destroy(kvm);
5810 goto create_irqchip_unlock;
5811 }
5812 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5813 smp_wmb();
5814 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5815 create_irqchip_unlock:
5816 mutex_unlock(&kvm->lock);
5817 break;
5818 }
5819 case KVM_CREATE_PIT:
5820 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5821 goto create_pit;
5822 case KVM_CREATE_PIT2:
5823 r = -EFAULT;
5824 if (copy_from_user(&u.pit_config, argp,
5825 sizeof(struct kvm_pit_config)))
5826 goto out;
5827 create_pit:
5828 mutex_lock(&kvm->lock);
5829 r = -EEXIST;
5830 if (kvm->arch.vpit)
5831 goto create_pit_unlock;
5832 r = -ENOMEM;
5833 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5834 if (kvm->arch.vpit)
5835 r = 0;
5836 create_pit_unlock:
5837 mutex_unlock(&kvm->lock);
5838 break;
5839 case KVM_GET_IRQCHIP: {
5840 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5841 struct kvm_irqchip *chip;
5842
5843 chip = memdup_user(argp, sizeof(*chip));
5844 if (IS_ERR(chip)) {
5845 r = PTR_ERR(chip);
5846 goto out;
5847 }
5848
5849 r = -ENXIO;
5850 if (!irqchip_kernel(kvm))
5851 goto get_irqchip_out;
5852 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5853 if (r)
5854 goto get_irqchip_out;
5855 r = -EFAULT;
5856 if (copy_to_user(argp, chip, sizeof(*chip)))
5857 goto get_irqchip_out;
5858 r = 0;
5859 get_irqchip_out:
5860 kfree(chip);
5861 break;
5862 }
5863 case KVM_SET_IRQCHIP: {
5864 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5865 struct kvm_irqchip *chip;
5866
5867 chip = memdup_user(argp, sizeof(*chip));
5868 if (IS_ERR(chip)) {
5869 r = PTR_ERR(chip);
5870 goto out;
5871 }
5872
5873 r = -ENXIO;
5874 if (!irqchip_kernel(kvm))
5875 goto set_irqchip_out;
5876 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5877 set_irqchip_out:
5878 kfree(chip);
5879 break;
5880 }
5881 case KVM_GET_PIT: {
5882 r = -EFAULT;
5883 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5884 goto out;
5885 r = -ENXIO;
5886 if (!kvm->arch.vpit)
5887 goto out;
5888 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5889 if (r)
5890 goto out;
5891 r = -EFAULT;
5892 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5893 goto out;
5894 r = 0;
5895 break;
5896 }
5897 case KVM_SET_PIT: {
5898 r = -EFAULT;
5899 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5900 goto out;
5901 mutex_lock(&kvm->lock);
5902 r = -ENXIO;
5903 if (!kvm->arch.vpit)
5904 goto set_pit_out;
5905 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5906 set_pit_out:
5907 mutex_unlock(&kvm->lock);
5908 break;
5909 }
5910 case KVM_GET_PIT2: {
5911 r = -ENXIO;
5912 if (!kvm->arch.vpit)
5913 goto out;
5914 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5915 if (r)
5916 goto out;
5917 r = -EFAULT;
5918 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5919 goto out;
5920 r = 0;
5921 break;
5922 }
5923 case KVM_SET_PIT2: {
5924 r = -EFAULT;
5925 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5926 goto out;
5927 mutex_lock(&kvm->lock);
5928 r = -ENXIO;
5929 if (!kvm->arch.vpit)
5930 goto set_pit2_out;
5931 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5932 set_pit2_out:
5933 mutex_unlock(&kvm->lock);
5934 break;
5935 }
5936 case KVM_REINJECT_CONTROL: {
5937 struct kvm_reinject_control control;
5938 r = -EFAULT;
5939 if (copy_from_user(&control, argp, sizeof(control)))
5940 goto out;
5941 r = -ENXIO;
5942 if (!kvm->arch.vpit)
5943 goto out;
5944 r = kvm_vm_ioctl_reinject(kvm, &control);
5945 break;
5946 }
5947 case KVM_SET_BOOT_CPU_ID:
5948 r = 0;
5949 mutex_lock(&kvm->lock);
5950 if (kvm->created_vcpus)
5951 r = -EBUSY;
5952 else
5953 kvm->arch.bsp_vcpu_id = arg;
5954 mutex_unlock(&kvm->lock);
5955 break;
5956 #ifdef CONFIG_KVM_XEN
5957 case KVM_XEN_HVM_CONFIG: {
5958 struct kvm_xen_hvm_config xhc;
5959 r = -EFAULT;
5960 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5961 goto out;
5962 r = kvm_xen_hvm_config(kvm, &xhc);
5963 break;
5964 }
5965 case KVM_XEN_HVM_GET_ATTR: {
5966 struct kvm_xen_hvm_attr xha;
5967
5968 r = -EFAULT;
5969 if (copy_from_user(&xha, argp, sizeof(xha)))
5970 goto out;
5971 r = kvm_xen_hvm_get_attr(kvm, &xha);
5972 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5973 r = -EFAULT;
5974 break;
5975 }
5976 case KVM_XEN_HVM_SET_ATTR: {
5977 struct kvm_xen_hvm_attr xha;
5978
5979 r = -EFAULT;
5980 if (copy_from_user(&xha, argp, sizeof(xha)))
5981 goto out;
5982 r = kvm_xen_hvm_set_attr(kvm, &xha);
5983 break;
5984 }
5985 #endif
5986 case KVM_SET_CLOCK: {
5987 struct kvm_arch *ka = &kvm->arch;
5988 struct kvm_clock_data user_ns;
5989 u64 now_ns;
5990
5991 r = -EFAULT;
5992 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5993 goto out;
5994
5995 r = -EINVAL;
5996 if (user_ns.flags)
5997 goto out;
5998
5999 r = 0;
6000 /*
6001 * TODO: userspace has to take care of races with VCPU_RUN, so
6002 * kvm_gen_update_masterclock() can be cut down to locked
6003 * pvclock_update_vm_gtod_copy().
6004 */
6005 kvm_gen_update_masterclock(kvm);
6006
6007 /*
6008 * This pairs with kvm_guest_time_update(): when masterclock is
6009 * in use, we use master_kernel_ns + kvmclock_offset to set
6010 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6011 * is slightly ahead) here we risk going negative on unsigned
6012 * 'system_time' when 'user_ns.clock' is very small.
6013 */
6014 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6015 if (kvm->arch.use_master_clock)
6016 now_ns = ka->master_kernel_ns;
6017 else
6018 now_ns = get_kvmclock_base_ns();
6019 ka->kvmclock_offset = user_ns.clock - now_ns;
6020 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6021
6022 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6023 break;
6024 }
6025 case KVM_GET_CLOCK: {
6026 struct kvm_clock_data user_ns;
6027 u64 now_ns;
6028
6029 now_ns = get_kvmclock_ns(kvm);
6030 user_ns.clock = now_ns;
6031 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6032 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6033
6034 r = -EFAULT;
6035 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6036 goto out;
6037 r = 0;
6038 break;
6039 }
6040 case KVM_MEMORY_ENCRYPT_OP: {
6041 r = -ENOTTY;
6042 if (kvm_x86_ops.mem_enc_op)
6043 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6044 break;
6045 }
6046 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6047 struct kvm_enc_region region;
6048
6049 r = -EFAULT;
6050 if (copy_from_user(&region, argp, sizeof(region)))
6051 goto out;
6052
6053 r = -ENOTTY;
6054 if (kvm_x86_ops.mem_enc_reg_region)
6055 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6056 break;
6057 }
6058 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6059 struct kvm_enc_region region;
6060
6061 r = -EFAULT;
6062 if (copy_from_user(&region, argp, sizeof(region)))
6063 goto out;
6064
6065 r = -ENOTTY;
6066 if (kvm_x86_ops.mem_enc_unreg_region)
6067 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6068 break;
6069 }
6070 case KVM_HYPERV_EVENTFD: {
6071 struct kvm_hyperv_eventfd hvevfd;
6072
6073 r = -EFAULT;
6074 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6075 goto out;
6076 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6077 break;
6078 }
6079 case KVM_SET_PMU_EVENT_FILTER:
6080 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6081 break;
6082 case KVM_X86_SET_MSR_FILTER:
6083 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6084 break;
6085 default:
6086 r = -ENOTTY;
6087 }
6088 out:
6089 return r;
6090 }
6091
6092 static void kvm_init_msr_list(void)
6093 {
6094 struct x86_pmu_capability x86_pmu;
6095 u32 dummy[2];
6096 unsigned i;
6097
6098 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6099 "Please update the fixed PMCs in msrs_to_saved_all[]");
6100
6101 perf_get_x86_pmu_capability(&x86_pmu);
6102
6103 num_msrs_to_save = 0;
6104 num_emulated_msrs = 0;
6105 num_msr_based_features = 0;
6106
6107 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6108 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6109 continue;
6110
6111 /*
6112 * Even MSRs that are valid in the host may not be exposed
6113 * to the guests in some cases.
6114 */
6115 switch (msrs_to_save_all[i]) {
6116 case MSR_IA32_BNDCFGS:
6117 if (!kvm_mpx_supported())
6118 continue;
6119 break;
6120 case MSR_TSC_AUX:
6121 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6122 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6123 continue;
6124 break;
6125 case MSR_IA32_UMWAIT_CONTROL:
6126 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6127 continue;
6128 break;
6129 case MSR_IA32_RTIT_CTL:
6130 case MSR_IA32_RTIT_STATUS:
6131 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6132 continue;
6133 break;
6134 case MSR_IA32_RTIT_CR3_MATCH:
6135 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6136 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6137 continue;
6138 break;
6139 case MSR_IA32_RTIT_OUTPUT_BASE:
6140 case MSR_IA32_RTIT_OUTPUT_MASK:
6141 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6142 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6143 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6144 continue;
6145 break;
6146 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6147 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6148 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6149 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6150 continue;
6151 break;
6152 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6153 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6154 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6155 continue;
6156 break;
6157 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6158 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6159 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6160 continue;
6161 break;
6162 default:
6163 break;
6164 }
6165
6166 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6167 }
6168
6169 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6170 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6171 continue;
6172
6173 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6174 }
6175
6176 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6177 struct kvm_msr_entry msr;
6178
6179 msr.index = msr_based_features_all[i];
6180 if (kvm_get_msr_feature(&msr))
6181 continue;
6182
6183 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6184 }
6185 }
6186
6187 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6188 const void *v)
6189 {
6190 int handled = 0;
6191 int n;
6192
6193 do {
6194 n = min(len, 8);
6195 if (!(lapic_in_kernel(vcpu) &&
6196 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6197 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6198 break;
6199 handled += n;
6200 addr += n;
6201 len -= n;
6202 v += n;
6203 } while (len);
6204
6205 return handled;
6206 }
6207
6208 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6209 {
6210 int handled = 0;
6211 int n;
6212
6213 do {
6214 n = min(len, 8);
6215 if (!(lapic_in_kernel(vcpu) &&
6216 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6217 addr, n, v))
6218 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6219 break;
6220 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6221 handled += n;
6222 addr += n;
6223 len -= n;
6224 v += n;
6225 } while (len);
6226
6227 return handled;
6228 }
6229
6230 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6231 struct kvm_segment *var, int seg)
6232 {
6233 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6234 }
6235
6236 void kvm_get_segment(struct kvm_vcpu *vcpu,
6237 struct kvm_segment *var, int seg)
6238 {
6239 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6240 }
6241
6242 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6243 struct x86_exception *exception)
6244 {
6245 gpa_t t_gpa;
6246
6247 BUG_ON(!mmu_is_nested(vcpu));
6248
6249 /* NPT walks are always user-walks */
6250 access |= PFERR_USER_MASK;
6251 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6252
6253 return t_gpa;
6254 }
6255
6256 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6257 struct x86_exception *exception)
6258 {
6259 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6260 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6261 }
6262 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6263
6264 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6265 struct x86_exception *exception)
6266 {
6267 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6268 access |= PFERR_FETCH_MASK;
6269 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6270 }
6271
6272 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6273 struct x86_exception *exception)
6274 {
6275 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6276 access |= PFERR_WRITE_MASK;
6277 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6278 }
6279 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6280
6281 /* uses this to access any guest's mapped memory without checking CPL */
6282 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6283 struct x86_exception *exception)
6284 {
6285 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6286 }
6287
6288 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6289 struct kvm_vcpu *vcpu, u32 access,
6290 struct x86_exception *exception)
6291 {
6292 void *data = val;
6293 int r = X86EMUL_CONTINUE;
6294
6295 while (bytes) {
6296 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6297 exception);
6298 unsigned offset = addr & (PAGE_SIZE-1);
6299 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6300 int ret;
6301
6302 if (gpa == UNMAPPED_GVA)
6303 return X86EMUL_PROPAGATE_FAULT;
6304 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6305 offset, toread);
6306 if (ret < 0) {
6307 r = X86EMUL_IO_NEEDED;
6308 goto out;
6309 }
6310
6311 bytes -= toread;
6312 data += toread;
6313 addr += toread;
6314 }
6315 out:
6316 return r;
6317 }
6318
6319 /* used for instruction fetching */
6320 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6321 gva_t addr, void *val, unsigned int bytes,
6322 struct x86_exception *exception)
6323 {
6324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6325 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6326 unsigned offset;
6327 int ret;
6328
6329 /* Inline kvm_read_guest_virt_helper for speed. */
6330 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6331 exception);
6332 if (unlikely(gpa == UNMAPPED_GVA))
6333 return X86EMUL_PROPAGATE_FAULT;
6334
6335 offset = addr & (PAGE_SIZE-1);
6336 if (WARN_ON(offset + bytes > PAGE_SIZE))
6337 bytes = (unsigned)PAGE_SIZE - offset;
6338 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6339 offset, bytes);
6340 if (unlikely(ret < 0))
6341 return X86EMUL_IO_NEEDED;
6342
6343 return X86EMUL_CONTINUE;
6344 }
6345
6346 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6347 gva_t addr, void *val, unsigned int bytes,
6348 struct x86_exception *exception)
6349 {
6350 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6351
6352 /*
6353 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6354 * is returned, but our callers are not ready for that and they blindly
6355 * call kvm_inject_page_fault. Ensure that they at least do not leak
6356 * uninitialized kernel stack memory into cr2 and error code.
6357 */
6358 memset(exception, 0, sizeof(*exception));
6359 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6360 exception);
6361 }
6362 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6363
6364 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6365 gva_t addr, void *val, unsigned int bytes,
6366 struct x86_exception *exception, bool system)
6367 {
6368 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6369 u32 access = 0;
6370
6371 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6372 access |= PFERR_USER_MASK;
6373
6374 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6375 }
6376
6377 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6378 unsigned long addr, void *val, unsigned int bytes)
6379 {
6380 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6381 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6382
6383 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6384 }
6385
6386 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6387 struct kvm_vcpu *vcpu, u32 access,
6388 struct x86_exception *exception)
6389 {
6390 void *data = val;
6391 int r = X86EMUL_CONTINUE;
6392
6393 while (bytes) {
6394 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6395 access,
6396 exception);
6397 unsigned offset = addr & (PAGE_SIZE-1);
6398 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6399 int ret;
6400
6401 if (gpa == UNMAPPED_GVA)
6402 return X86EMUL_PROPAGATE_FAULT;
6403 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6404 if (ret < 0) {
6405 r = X86EMUL_IO_NEEDED;
6406 goto out;
6407 }
6408
6409 bytes -= towrite;
6410 data += towrite;
6411 addr += towrite;
6412 }
6413 out:
6414 return r;
6415 }
6416
6417 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6418 unsigned int bytes, struct x86_exception *exception,
6419 bool system)
6420 {
6421 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6422 u32 access = PFERR_WRITE_MASK;
6423
6424 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6425 access |= PFERR_USER_MASK;
6426
6427 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6428 access, exception);
6429 }
6430
6431 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6432 unsigned int bytes, struct x86_exception *exception)
6433 {
6434 /* kvm_write_guest_virt_system can pull in tons of pages. */
6435 vcpu->arch.l1tf_flush_l1d = true;
6436
6437 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6438 PFERR_WRITE_MASK, exception);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6441
6442 int handle_ud(struct kvm_vcpu *vcpu)
6443 {
6444 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6445 int emul_type = EMULTYPE_TRAP_UD;
6446 char sig[5]; /* ud2; .ascii "kvm" */
6447 struct x86_exception e;
6448
6449 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6450 return 1;
6451
6452 if (force_emulation_prefix &&
6453 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6454 sig, sizeof(sig), &e) == 0 &&
6455 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6456 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6457 emul_type = EMULTYPE_TRAP_UD_FORCED;
6458 }
6459
6460 return kvm_emulate_instruction(vcpu, emul_type);
6461 }
6462 EXPORT_SYMBOL_GPL(handle_ud);
6463
6464 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6465 gpa_t gpa, bool write)
6466 {
6467 /* For APIC access vmexit */
6468 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6469 return 1;
6470
6471 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6472 trace_vcpu_match_mmio(gva, gpa, write, true);
6473 return 1;
6474 }
6475
6476 return 0;
6477 }
6478
6479 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6480 gpa_t *gpa, struct x86_exception *exception,
6481 bool write)
6482 {
6483 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6484 | (write ? PFERR_WRITE_MASK : 0);
6485
6486 /*
6487 * currently PKRU is only applied to ept enabled guest so
6488 * there is no pkey in EPT page table for L1 guest or EPT
6489 * shadow page table for L2 guest.
6490 */
6491 if (vcpu_match_mmio_gva(vcpu, gva)
6492 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6493 vcpu->arch.mmio_access, 0, access)) {
6494 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6495 (gva & (PAGE_SIZE - 1));
6496 trace_vcpu_match_mmio(gva, *gpa, write, false);
6497 return 1;
6498 }
6499
6500 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6501
6502 if (*gpa == UNMAPPED_GVA)
6503 return -1;
6504
6505 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6506 }
6507
6508 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6509 const void *val, int bytes)
6510 {
6511 int ret;
6512
6513 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6514 if (ret < 0)
6515 return 0;
6516 kvm_page_track_write(vcpu, gpa, val, bytes);
6517 return 1;
6518 }
6519
6520 struct read_write_emulator_ops {
6521 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6522 int bytes);
6523 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6524 void *val, int bytes);
6525 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6526 int bytes, void *val);
6527 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6528 void *val, int bytes);
6529 bool write;
6530 };
6531
6532 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6533 {
6534 if (vcpu->mmio_read_completed) {
6535 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6536 vcpu->mmio_fragments[0].gpa, val);
6537 vcpu->mmio_read_completed = 0;
6538 return 1;
6539 }
6540
6541 return 0;
6542 }
6543
6544 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6545 void *val, int bytes)
6546 {
6547 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6548 }
6549
6550 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6551 void *val, int bytes)
6552 {
6553 return emulator_write_phys(vcpu, gpa, val, bytes);
6554 }
6555
6556 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6557 {
6558 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6559 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6560 }
6561
6562 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6563 void *val, int bytes)
6564 {
6565 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6566 return X86EMUL_IO_NEEDED;
6567 }
6568
6569 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6570 void *val, int bytes)
6571 {
6572 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6573
6574 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6575 return X86EMUL_CONTINUE;
6576 }
6577
6578 static const struct read_write_emulator_ops read_emultor = {
6579 .read_write_prepare = read_prepare,
6580 .read_write_emulate = read_emulate,
6581 .read_write_mmio = vcpu_mmio_read,
6582 .read_write_exit_mmio = read_exit_mmio,
6583 };
6584
6585 static const struct read_write_emulator_ops write_emultor = {
6586 .read_write_emulate = write_emulate,
6587 .read_write_mmio = write_mmio,
6588 .read_write_exit_mmio = write_exit_mmio,
6589 .write = true,
6590 };
6591
6592 static int emulator_read_write_onepage(unsigned long addr, void *val,
6593 unsigned int bytes,
6594 struct x86_exception *exception,
6595 struct kvm_vcpu *vcpu,
6596 const struct read_write_emulator_ops *ops)
6597 {
6598 gpa_t gpa;
6599 int handled, ret;
6600 bool write = ops->write;
6601 struct kvm_mmio_fragment *frag;
6602 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6603
6604 /*
6605 * If the exit was due to a NPF we may already have a GPA.
6606 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6607 * Note, this cannot be used on string operations since string
6608 * operation using rep will only have the initial GPA from the NPF
6609 * occurred.
6610 */
6611 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6612 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6613 gpa = ctxt->gpa_val;
6614 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6615 } else {
6616 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6617 if (ret < 0)
6618 return X86EMUL_PROPAGATE_FAULT;
6619 }
6620
6621 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6622 return X86EMUL_CONTINUE;
6623
6624 /*
6625 * Is this MMIO handled locally?
6626 */
6627 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6628 if (handled == bytes)
6629 return X86EMUL_CONTINUE;
6630
6631 gpa += handled;
6632 bytes -= handled;
6633 val += handled;
6634
6635 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6636 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6637 frag->gpa = gpa;
6638 frag->data = val;
6639 frag->len = bytes;
6640 return X86EMUL_CONTINUE;
6641 }
6642
6643 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6644 unsigned long addr,
6645 void *val, unsigned int bytes,
6646 struct x86_exception *exception,
6647 const struct read_write_emulator_ops *ops)
6648 {
6649 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6650 gpa_t gpa;
6651 int rc;
6652
6653 if (ops->read_write_prepare &&
6654 ops->read_write_prepare(vcpu, val, bytes))
6655 return X86EMUL_CONTINUE;
6656
6657 vcpu->mmio_nr_fragments = 0;
6658
6659 /* Crossing a page boundary? */
6660 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6661 int now;
6662
6663 now = -addr & ~PAGE_MASK;
6664 rc = emulator_read_write_onepage(addr, val, now, exception,
6665 vcpu, ops);
6666
6667 if (rc != X86EMUL_CONTINUE)
6668 return rc;
6669 addr += now;
6670 if (ctxt->mode != X86EMUL_MODE_PROT64)
6671 addr = (u32)addr;
6672 val += now;
6673 bytes -= now;
6674 }
6675
6676 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6677 vcpu, ops);
6678 if (rc != X86EMUL_CONTINUE)
6679 return rc;
6680
6681 if (!vcpu->mmio_nr_fragments)
6682 return rc;
6683
6684 gpa = vcpu->mmio_fragments[0].gpa;
6685
6686 vcpu->mmio_needed = 1;
6687 vcpu->mmio_cur_fragment = 0;
6688
6689 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6690 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6691 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6692 vcpu->run->mmio.phys_addr = gpa;
6693
6694 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6695 }
6696
6697 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6698 unsigned long addr,
6699 void *val,
6700 unsigned int bytes,
6701 struct x86_exception *exception)
6702 {
6703 return emulator_read_write(ctxt, addr, val, bytes,
6704 exception, &read_emultor);
6705 }
6706
6707 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6708 unsigned long addr,
6709 const void *val,
6710 unsigned int bytes,
6711 struct x86_exception *exception)
6712 {
6713 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6714 exception, &write_emultor);
6715 }
6716
6717 #define CMPXCHG_TYPE(t, ptr, old, new) \
6718 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6719
6720 #ifdef CONFIG_X86_64
6721 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6722 #else
6723 # define CMPXCHG64(ptr, old, new) \
6724 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6725 #endif
6726
6727 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6728 unsigned long addr,
6729 const void *old,
6730 const void *new,
6731 unsigned int bytes,
6732 struct x86_exception *exception)
6733 {
6734 struct kvm_host_map map;
6735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6736 u64 page_line_mask;
6737 gpa_t gpa;
6738 char *kaddr;
6739 bool exchanged;
6740
6741 /* guests cmpxchg8b have to be emulated atomically */
6742 if (bytes > 8 || (bytes & (bytes - 1)))
6743 goto emul_write;
6744
6745 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6746
6747 if (gpa == UNMAPPED_GVA ||
6748 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6749 goto emul_write;
6750
6751 /*
6752 * Emulate the atomic as a straight write to avoid #AC if SLD is
6753 * enabled in the host and the access splits a cache line.
6754 */
6755 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6756 page_line_mask = ~(cache_line_size() - 1);
6757 else
6758 page_line_mask = PAGE_MASK;
6759
6760 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6761 goto emul_write;
6762
6763 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6764 goto emul_write;
6765
6766 kaddr = map.hva + offset_in_page(gpa);
6767
6768 switch (bytes) {
6769 case 1:
6770 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6771 break;
6772 case 2:
6773 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6774 break;
6775 case 4:
6776 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6777 break;
6778 case 8:
6779 exchanged = CMPXCHG64(kaddr, old, new);
6780 break;
6781 default:
6782 BUG();
6783 }
6784
6785 kvm_vcpu_unmap(vcpu, &map, true);
6786
6787 if (!exchanged)
6788 return X86EMUL_CMPXCHG_FAILED;
6789
6790 kvm_page_track_write(vcpu, gpa, new, bytes);
6791
6792 return X86EMUL_CONTINUE;
6793
6794 emul_write:
6795 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6796
6797 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6798 }
6799
6800 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6801 {
6802 int r = 0, i;
6803
6804 for (i = 0; i < vcpu->arch.pio.count; i++) {
6805 if (vcpu->arch.pio.in)
6806 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6807 vcpu->arch.pio.size, pd);
6808 else
6809 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6810 vcpu->arch.pio.port, vcpu->arch.pio.size,
6811 pd);
6812 if (r)
6813 break;
6814 pd += vcpu->arch.pio.size;
6815 }
6816 return r;
6817 }
6818
6819 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6820 unsigned short port, void *val,
6821 unsigned int count, bool in)
6822 {
6823 vcpu->arch.pio.port = port;
6824 vcpu->arch.pio.in = in;
6825 vcpu->arch.pio.count = count;
6826 vcpu->arch.pio.size = size;
6827
6828 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6829 vcpu->arch.pio.count = 0;
6830 return 1;
6831 }
6832
6833 vcpu->run->exit_reason = KVM_EXIT_IO;
6834 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6835 vcpu->run->io.size = size;
6836 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6837 vcpu->run->io.count = count;
6838 vcpu->run->io.port = port;
6839
6840 return 0;
6841 }
6842
6843 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6844 unsigned short port, void *val, unsigned int count)
6845 {
6846 int ret;
6847
6848 if (vcpu->arch.pio.count)
6849 goto data_avail;
6850
6851 memset(vcpu->arch.pio_data, 0, size * count);
6852
6853 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6854 if (ret) {
6855 data_avail:
6856 memcpy(val, vcpu->arch.pio_data, size * count);
6857 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6858 vcpu->arch.pio.count = 0;
6859 return 1;
6860 }
6861
6862 return 0;
6863 }
6864
6865 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6866 int size, unsigned short port, void *val,
6867 unsigned int count)
6868 {
6869 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6870
6871 }
6872
6873 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6874 unsigned short port, const void *val,
6875 unsigned int count)
6876 {
6877 memcpy(vcpu->arch.pio_data, val, size * count);
6878 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6879 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6880 }
6881
6882 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6883 int size, unsigned short port,
6884 const void *val, unsigned int count)
6885 {
6886 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6887 }
6888
6889 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6890 {
6891 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6892 }
6893
6894 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6895 {
6896 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6897 }
6898
6899 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6900 {
6901 if (!need_emulate_wbinvd(vcpu))
6902 return X86EMUL_CONTINUE;
6903
6904 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6905 int cpu = get_cpu();
6906
6907 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6908 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6909 wbinvd_ipi, NULL, 1);
6910 put_cpu();
6911 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6912 } else
6913 wbinvd();
6914 return X86EMUL_CONTINUE;
6915 }
6916
6917 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6918 {
6919 kvm_emulate_wbinvd_noskip(vcpu);
6920 return kvm_skip_emulated_instruction(vcpu);
6921 }
6922 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6923
6924
6925
6926 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6927 {
6928 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6929 }
6930
6931 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6932 unsigned long *dest)
6933 {
6934 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6935 }
6936
6937 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6938 unsigned long value)
6939 {
6940
6941 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6942 }
6943
6944 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6945 {
6946 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6947 }
6948
6949 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6950 {
6951 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6952 unsigned long value;
6953
6954 switch (cr) {
6955 case 0:
6956 value = kvm_read_cr0(vcpu);
6957 break;
6958 case 2:
6959 value = vcpu->arch.cr2;
6960 break;
6961 case 3:
6962 value = kvm_read_cr3(vcpu);
6963 break;
6964 case 4:
6965 value = kvm_read_cr4(vcpu);
6966 break;
6967 case 8:
6968 value = kvm_get_cr8(vcpu);
6969 break;
6970 default:
6971 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6972 return 0;
6973 }
6974
6975 return value;
6976 }
6977
6978 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6979 {
6980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6981 int res = 0;
6982
6983 switch (cr) {
6984 case 0:
6985 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6986 break;
6987 case 2:
6988 vcpu->arch.cr2 = val;
6989 break;
6990 case 3:
6991 res = kvm_set_cr3(vcpu, val);
6992 break;
6993 case 4:
6994 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6995 break;
6996 case 8:
6997 res = kvm_set_cr8(vcpu, val);
6998 break;
6999 default:
7000 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7001 res = -1;
7002 }
7003
7004 return res;
7005 }
7006
7007 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7008 {
7009 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7010 }
7011
7012 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7013 {
7014 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7015 }
7016
7017 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7018 {
7019 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7020 }
7021
7022 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7023 {
7024 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7025 }
7026
7027 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7028 {
7029 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7030 }
7031
7032 static unsigned long emulator_get_cached_segment_base(
7033 struct x86_emulate_ctxt *ctxt, int seg)
7034 {
7035 return get_segment_base(emul_to_vcpu(ctxt), seg);
7036 }
7037
7038 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7039 struct desc_struct *desc, u32 *base3,
7040 int seg)
7041 {
7042 struct kvm_segment var;
7043
7044 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7045 *selector = var.selector;
7046
7047 if (var.unusable) {
7048 memset(desc, 0, sizeof(*desc));
7049 if (base3)
7050 *base3 = 0;
7051 return false;
7052 }
7053
7054 if (var.g)
7055 var.limit >>= 12;
7056 set_desc_limit(desc, var.limit);
7057 set_desc_base(desc, (unsigned long)var.base);
7058 #ifdef CONFIG_X86_64
7059 if (base3)
7060 *base3 = var.base >> 32;
7061 #endif
7062 desc->type = var.type;
7063 desc->s = var.s;
7064 desc->dpl = var.dpl;
7065 desc->p = var.present;
7066 desc->avl = var.avl;
7067 desc->l = var.l;
7068 desc->d = var.db;
7069 desc->g = var.g;
7070
7071 return true;
7072 }
7073
7074 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7075 struct desc_struct *desc, u32 base3,
7076 int seg)
7077 {
7078 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7079 struct kvm_segment var;
7080
7081 var.selector = selector;
7082 var.base = get_desc_base(desc);
7083 #ifdef CONFIG_X86_64
7084 var.base |= ((u64)base3) << 32;
7085 #endif
7086 var.limit = get_desc_limit(desc);
7087 if (desc->g)
7088 var.limit = (var.limit << 12) | 0xfff;
7089 var.type = desc->type;
7090 var.dpl = desc->dpl;
7091 var.db = desc->d;
7092 var.s = desc->s;
7093 var.l = desc->l;
7094 var.g = desc->g;
7095 var.avl = desc->avl;
7096 var.present = desc->p;
7097 var.unusable = !var.present;
7098 var.padding = 0;
7099
7100 kvm_set_segment(vcpu, &var, seg);
7101 return;
7102 }
7103
7104 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7105 u32 msr_index, u64 *pdata)
7106 {
7107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7108 int r;
7109
7110 r = kvm_get_msr(vcpu, msr_index, pdata);
7111
7112 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7113 /* Bounce to user space */
7114 return X86EMUL_IO_NEEDED;
7115 }
7116
7117 return r;
7118 }
7119
7120 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7121 u32 msr_index, u64 data)
7122 {
7123 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7124 int r;
7125
7126 r = kvm_set_msr(vcpu, msr_index, data);
7127
7128 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7129 /* Bounce to user space */
7130 return X86EMUL_IO_NEEDED;
7131 }
7132
7133 return r;
7134 }
7135
7136 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7137 {
7138 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7139
7140 return vcpu->arch.smbase;
7141 }
7142
7143 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7144 {
7145 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7146
7147 vcpu->arch.smbase = smbase;
7148 }
7149
7150 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7151 u32 pmc)
7152 {
7153 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7154 }
7155
7156 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7157 u32 pmc, u64 *pdata)
7158 {
7159 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7160 }
7161
7162 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7163 {
7164 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7165 }
7166
7167 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7168 struct x86_instruction_info *info,
7169 enum x86_intercept_stage stage)
7170 {
7171 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7172 &ctxt->exception);
7173 }
7174
7175 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7176 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7177 bool exact_only)
7178 {
7179 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7180 }
7181
7182 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7183 {
7184 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7185 }
7186
7187 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7188 {
7189 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7190 }
7191
7192 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7193 {
7194 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7195 }
7196
7197 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7198 {
7199 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7200 }
7201
7202 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7203 {
7204 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7205 }
7206
7207 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7208 {
7209 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7210 }
7211
7212 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7213 {
7214 return emul_to_vcpu(ctxt)->arch.hflags;
7215 }
7216
7217 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7218 {
7219 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7220
7221 vcpu->arch.hflags = emul_flags;
7222 kvm_mmu_reset_context(vcpu);
7223 }
7224
7225 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7226 const char *smstate)
7227 {
7228 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7229 }
7230
7231 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7232 {
7233 kvm_smm_changed(emul_to_vcpu(ctxt));
7234 }
7235
7236 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7237 {
7238 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7239 }
7240
7241 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7242 {
7243 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7244 }
7245
7246 static const struct x86_emulate_ops emulate_ops = {
7247 .read_gpr = emulator_read_gpr,
7248 .write_gpr = emulator_write_gpr,
7249 .read_std = emulator_read_std,
7250 .write_std = emulator_write_std,
7251 .read_phys = kvm_read_guest_phys_system,
7252 .fetch = kvm_fetch_guest_virt,
7253 .read_emulated = emulator_read_emulated,
7254 .write_emulated = emulator_write_emulated,
7255 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7256 .invlpg = emulator_invlpg,
7257 .pio_in_emulated = emulator_pio_in_emulated,
7258 .pio_out_emulated = emulator_pio_out_emulated,
7259 .get_segment = emulator_get_segment,
7260 .set_segment = emulator_set_segment,
7261 .get_cached_segment_base = emulator_get_cached_segment_base,
7262 .get_gdt = emulator_get_gdt,
7263 .get_idt = emulator_get_idt,
7264 .set_gdt = emulator_set_gdt,
7265 .set_idt = emulator_set_idt,
7266 .get_cr = emulator_get_cr,
7267 .set_cr = emulator_set_cr,
7268 .cpl = emulator_get_cpl,
7269 .get_dr = emulator_get_dr,
7270 .set_dr = emulator_set_dr,
7271 .get_smbase = emulator_get_smbase,
7272 .set_smbase = emulator_set_smbase,
7273 .set_msr = emulator_set_msr,
7274 .get_msr = emulator_get_msr,
7275 .check_pmc = emulator_check_pmc,
7276 .read_pmc = emulator_read_pmc,
7277 .halt = emulator_halt,
7278 .wbinvd = emulator_wbinvd,
7279 .fix_hypercall = emulator_fix_hypercall,
7280 .intercept = emulator_intercept,
7281 .get_cpuid = emulator_get_cpuid,
7282 .guest_has_long_mode = emulator_guest_has_long_mode,
7283 .guest_has_movbe = emulator_guest_has_movbe,
7284 .guest_has_fxsr = emulator_guest_has_fxsr,
7285 .set_nmi_mask = emulator_set_nmi_mask,
7286 .get_hflags = emulator_get_hflags,
7287 .set_hflags = emulator_set_hflags,
7288 .pre_leave_smm = emulator_pre_leave_smm,
7289 .post_leave_smm = emulator_post_leave_smm,
7290 .triple_fault = emulator_triple_fault,
7291 .set_xcr = emulator_set_xcr,
7292 };
7293
7294 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7295 {
7296 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7297 /*
7298 * an sti; sti; sequence only disable interrupts for the first
7299 * instruction. So, if the last instruction, be it emulated or
7300 * not, left the system with the INT_STI flag enabled, it
7301 * means that the last instruction is an sti. We should not
7302 * leave the flag on in this case. The same goes for mov ss
7303 */
7304 if (int_shadow & mask)
7305 mask = 0;
7306 if (unlikely(int_shadow || mask)) {
7307 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7308 if (!mask)
7309 kvm_make_request(KVM_REQ_EVENT, vcpu);
7310 }
7311 }
7312
7313 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7314 {
7315 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7316 if (ctxt->exception.vector == PF_VECTOR)
7317 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7318
7319 if (ctxt->exception.error_code_valid)
7320 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7321 ctxt->exception.error_code);
7322 else
7323 kvm_queue_exception(vcpu, ctxt->exception.vector);
7324 return false;
7325 }
7326
7327 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7328 {
7329 struct x86_emulate_ctxt *ctxt;
7330
7331 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7332 if (!ctxt) {
7333 pr_err("kvm: failed to allocate vcpu's emulator\n");
7334 return NULL;
7335 }
7336
7337 ctxt->vcpu = vcpu;
7338 ctxt->ops = &emulate_ops;
7339 vcpu->arch.emulate_ctxt = ctxt;
7340
7341 return ctxt;
7342 }
7343
7344 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7345 {
7346 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7347 int cs_db, cs_l;
7348
7349 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7350
7351 ctxt->gpa_available = false;
7352 ctxt->eflags = kvm_get_rflags(vcpu);
7353 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7354
7355 ctxt->eip = kvm_rip_read(vcpu);
7356 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7357 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7358 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7359 cs_db ? X86EMUL_MODE_PROT32 :
7360 X86EMUL_MODE_PROT16;
7361 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7362 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7363 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7364
7365 ctxt->interruptibility = 0;
7366 ctxt->have_exception = false;
7367 ctxt->exception.vector = -1;
7368 ctxt->perm_ok = false;
7369
7370 init_decode_cache(ctxt);
7371 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7372 }
7373
7374 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7375 {
7376 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7377 int ret;
7378
7379 init_emulate_ctxt(vcpu);
7380
7381 ctxt->op_bytes = 2;
7382 ctxt->ad_bytes = 2;
7383 ctxt->_eip = ctxt->eip + inc_eip;
7384 ret = emulate_int_real(ctxt, irq);
7385
7386 if (ret != X86EMUL_CONTINUE) {
7387 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7388 } else {
7389 ctxt->eip = ctxt->_eip;
7390 kvm_rip_write(vcpu, ctxt->eip);
7391 kvm_set_rflags(vcpu, ctxt->eflags);
7392 }
7393 }
7394 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7395
7396 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7397 {
7398 ++vcpu->stat.insn_emulation_fail;
7399 trace_kvm_emulate_insn_failed(vcpu);
7400
7401 if (emulation_type & EMULTYPE_VMWARE_GP) {
7402 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7403 return 1;
7404 }
7405
7406 if (emulation_type & EMULTYPE_SKIP) {
7407 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7408 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7409 vcpu->run->internal.ndata = 0;
7410 return 0;
7411 }
7412
7413 kvm_queue_exception(vcpu, UD_VECTOR);
7414
7415 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7416 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7417 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7418 vcpu->run->internal.ndata = 0;
7419 return 0;
7420 }
7421
7422 return 1;
7423 }
7424
7425 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7426 bool write_fault_to_shadow_pgtable,
7427 int emulation_type)
7428 {
7429 gpa_t gpa = cr2_or_gpa;
7430 kvm_pfn_t pfn;
7431
7432 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7433 return false;
7434
7435 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7436 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7437 return false;
7438
7439 if (!vcpu->arch.mmu->direct_map) {
7440 /*
7441 * Write permission should be allowed since only
7442 * write access need to be emulated.
7443 */
7444 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7445
7446 /*
7447 * If the mapping is invalid in guest, let cpu retry
7448 * it to generate fault.
7449 */
7450 if (gpa == UNMAPPED_GVA)
7451 return true;
7452 }
7453
7454 /*
7455 * Do not retry the unhandleable instruction if it faults on the
7456 * readonly host memory, otherwise it will goto a infinite loop:
7457 * retry instruction -> write #PF -> emulation fail -> retry
7458 * instruction -> ...
7459 */
7460 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7461
7462 /*
7463 * If the instruction failed on the error pfn, it can not be fixed,
7464 * report the error to userspace.
7465 */
7466 if (is_error_noslot_pfn(pfn))
7467 return false;
7468
7469 kvm_release_pfn_clean(pfn);
7470
7471 /* The instructions are well-emulated on direct mmu. */
7472 if (vcpu->arch.mmu->direct_map) {
7473 unsigned int indirect_shadow_pages;
7474
7475 write_lock(&vcpu->kvm->mmu_lock);
7476 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7477 write_unlock(&vcpu->kvm->mmu_lock);
7478
7479 if (indirect_shadow_pages)
7480 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7481
7482 return true;
7483 }
7484
7485 /*
7486 * if emulation was due to access to shadowed page table
7487 * and it failed try to unshadow page and re-enter the
7488 * guest to let CPU execute the instruction.
7489 */
7490 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7491
7492 /*
7493 * If the access faults on its page table, it can not
7494 * be fixed by unprotecting shadow page and it should
7495 * be reported to userspace.
7496 */
7497 return !write_fault_to_shadow_pgtable;
7498 }
7499
7500 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7501 gpa_t cr2_or_gpa, int emulation_type)
7502 {
7503 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7504 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7505
7506 last_retry_eip = vcpu->arch.last_retry_eip;
7507 last_retry_addr = vcpu->arch.last_retry_addr;
7508
7509 /*
7510 * If the emulation is caused by #PF and it is non-page_table
7511 * writing instruction, it means the VM-EXIT is caused by shadow
7512 * page protected, we can zap the shadow page and retry this
7513 * instruction directly.
7514 *
7515 * Note: if the guest uses a non-page-table modifying instruction
7516 * on the PDE that points to the instruction, then we will unmap
7517 * the instruction and go to an infinite loop. So, we cache the
7518 * last retried eip and the last fault address, if we meet the eip
7519 * and the address again, we can break out of the potential infinite
7520 * loop.
7521 */
7522 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7523
7524 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7525 return false;
7526
7527 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7528 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7529 return false;
7530
7531 if (x86_page_table_writing_insn(ctxt))
7532 return false;
7533
7534 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7535 return false;
7536
7537 vcpu->arch.last_retry_eip = ctxt->eip;
7538 vcpu->arch.last_retry_addr = cr2_or_gpa;
7539
7540 if (!vcpu->arch.mmu->direct_map)
7541 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7542
7543 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7544
7545 return true;
7546 }
7547
7548 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7549 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7550
7551 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7552 {
7553 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7554 /* This is a good place to trace that we are exiting SMM. */
7555 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7556
7557 /* Process a latched INIT or SMI, if any. */
7558 kvm_make_request(KVM_REQ_EVENT, vcpu);
7559 }
7560
7561 kvm_mmu_reset_context(vcpu);
7562 }
7563
7564 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7565 unsigned long *db)
7566 {
7567 u32 dr6 = 0;
7568 int i;
7569 u32 enable, rwlen;
7570
7571 enable = dr7;
7572 rwlen = dr7 >> 16;
7573 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7574 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7575 dr6 |= (1 << i);
7576 return dr6;
7577 }
7578
7579 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7580 {
7581 struct kvm_run *kvm_run = vcpu->run;
7582
7583 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7584 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7585 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7586 kvm_run->debug.arch.exception = DB_VECTOR;
7587 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7588 return 0;
7589 }
7590 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7591 return 1;
7592 }
7593
7594 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7595 {
7596 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7597 int r;
7598
7599 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7600 if (unlikely(!r))
7601 return 0;
7602
7603 /*
7604 * rflags is the old, "raw" value of the flags. The new value has
7605 * not been saved yet.
7606 *
7607 * This is correct even for TF set by the guest, because "the
7608 * processor will not generate this exception after the instruction
7609 * that sets the TF flag".
7610 */
7611 if (unlikely(rflags & X86_EFLAGS_TF))
7612 r = kvm_vcpu_do_singlestep(vcpu);
7613 return r;
7614 }
7615 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7616
7617 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7618 {
7619 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7620 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7621 struct kvm_run *kvm_run = vcpu->run;
7622 unsigned long eip = kvm_get_linear_rip(vcpu);
7623 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7624 vcpu->arch.guest_debug_dr7,
7625 vcpu->arch.eff_db);
7626
7627 if (dr6 != 0) {
7628 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7629 kvm_run->debug.arch.pc = eip;
7630 kvm_run->debug.arch.exception = DB_VECTOR;
7631 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7632 *r = 0;
7633 return true;
7634 }
7635 }
7636
7637 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7638 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7639 unsigned long eip = kvm_get_linear_rip(vcpu);
7640 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7641 vcpu->arch.dr7,
7642 vcpu->arch.db);
7643
7644 if (dr6 != 0) {
7645 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7646 *r = 1;
7647 return true;
7648 }
7649 }
7650
7651 return false;
7652 }
7653
7654 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7655 {
7656 switch (ctxt->opcode_len) {
7657 case 1:
7658 switch (ctxt->b) {
7659 case 0xe4: /* IN */
7660 case 0xe5:
7661 case 0xec:
7662 case 0xed:
7663 case 0xe6: /* OUT */
7664 case 0xe7:
7665 case 0xee:
7666 case 0xef:
7667 case 0x6c: /* INS */
7668 case 0x6d:
7669 case 0x6e: /* OUTS */
7670 case 0x6f:
7671 return true;
7672 }
7673 break;
7674 case 2:
7675 switch (ctxt->b) {
7676 case 0x33: /* RDPMC */
7677 return true;
7678 }
7679 break;
7680 }
7681
7682 return false;
7683 }
7684
7685 /*
7686 * Decode to be emulated instruction. Return EMULATION_OK if success.
7687 */
7688 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7689 void *insn, int insn_len)
7690 {
7691 int r = EMULATION_OK;
7692 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7693
7694 init_emulate_ctxt(vcpu);
7695
7696 /*
7697 * We will reenter on the same instruction since we do not set
7698 * complete_userspace_io. This does not handle watchpoints yet,
7699 * those would be handled in the emulate_ops.
7700 */
7701 if (!(emulation_type & EMULTYPE_SKIP) &&
7702 kvm_vcpu_check_breakpoint(vcpu, &r))
7703 return r;
7704
7705 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7706
7707 trace_kvm_emulate_insn_start(vcpu);
7708 ++vcpu->stat.insn_emulation;
7709
7710 return r;
7711 }
7712 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7713
7714 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7715 int emulation_type, void *insn, int insn_len)
7716 {
7717 int r;
7718 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7719 bool writeback = true;
7720 bool write_fault_to_spt;
7721
7722 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7723 return 1;
7724
7725 vcpu->arch.l1tf_flush_l1d = true;
7726
7727 /*
7728 * Clear write_fault_to_shadow_pgtable here to ensure it is
7729 * never reused.
7730 */
7731 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7732 vcpu->arch.write_fault_to_shadow_pgtable = false;
7733
7734 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7735 kvm_clear_exception_queue(vcpu);
7736
7737 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7738 insn, insn_len);
7739 if (r != EMULATION_OK) {
7740 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7741 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7742 kvm_queue_exception(vcpu, UD_VECTOR);
7743 return 1;
7744 }
7745 if (reexecute_instruction(vcpu, cr2_or_gpa,
7746 write_fault_to_spt,
7747 emulation_type))
7748 return 1;
7749 if (ctxt->have_exception) {
7750 /*
7751 * #UD should result in just EMULATION_FAILED, and trap-like
7752 * exception should not be encountered during decode.
7753 */
7754 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7755 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7756 inject_emulated_exception(vcpu);
7757 return 1;
7758 }
7759 return handle_emulation_failure(vcpu, emulation_type);
7760 }
7761 }
7762
7763 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7764 !is_vmware_backdoor_opcode(ctxt)) {
7765 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7766 return 1;
7767 }
7768
7769 /*
7770 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7771 * for kvm_skip_emulated_instruction(). The caller is responsible for
7772 * updating interruptibility state and injecting single-step #DBs.
7773 */
7774 if (emulation_type & EMULTYPE_SKIP) {
7775 kvm_rip_write(vcpu, ctxt->_eip);
7776 if (ctxt->eflags & X86_EFLAGS_RF)
7777 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7778 return 1;
7779 }
7780
7781 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7782 return 1;
7783
7784 /* this is needed for vmware backdoor interface to work since it
7785 changes registers values during IO operation */
7786 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7787 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7788 emulator_invalidate_register_cache(ctxt);
7789 }
7790
7791 restart:
7792 if (emulation_type & EMULTYPE_PF) {
7793 /* Save the faulting GPA (cr2) in the address field */
7794 ctxt->exception.address = cr2_or_gpa;
7795
7796 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7797 if (vcpu->arch.mmu->direct_map) {
7798 ctxt->gpa_available = true;
7799 ctxt->gpa_val = cr2_or_gpa;
7800 }
7801 } else {
7802 /* Sanitize the address out of an abundance of paranoia. */
7803 ctxt->exception.address = 0;
7804 }
7805
7806 r = x86_emulate_insn(ctxt);
7807
7808 if (r == EMULATION_INTERCEPTED)
7809 return 1;
7810
7811 if (r == EMULATION_FAILED) {
7812 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7813 emulation_type))
7814 return 1;
7815
7816 return handle_emulation_failure(vcpu, emulation_type);
7817 }
7818
7819 if (ctxt->have_exception) {
7820 r = 1;
7821 if (inject_emulated_exception(vcpu))
7822 return r;
7823 } else if (vcpu->arch.pio.count) {
7824 if (!vcpu->arch.pio.in) {
7825 /* FIXME: return into emulator if single-stepping. */
7826 vcpu->arch.pio.count = 0;
7827 } else {
7828 writeback = false;
7829 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7830 }
7831 r = 0;
7832 } else if (vcpu->mmio_needed) {
7833 ++vcpu->stat.mmio_exits;
7834
7835 if (!vcpu->mmio_is_write)
7836 writeback = false;
7837 r = 0;
7838 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7839 } else if (r == EMULATION_RESTART)
7840 goto restart;
7841 else
7842 r = 1;
7843
7844 if (writeback) {
7845 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7846 toggle_interruptibility(vcpu, ctxt->interruptibility);
7847 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7848 if (!ctxt->have_exception ||
7849 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7850 kvm_rip_write(vcpu, ctxt->eip);
7851 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7852 r = kvm_vcpu_do_singlestep(vcpu);
7853 if (kvm_x86_ops.update_emulated_instruction)
7854 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7855 __kvm_set_rflags(vcpu, ctxt->eflags);
7856 }
7857
7858 /*
7859 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7860 * do nothing, and it will be requested again as soon as
7861 * the shadow expires. But we still need to check here,
7862 * because POPF has no interrupt shadow.
7863 */
7864 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7865 kvm_make_request(KVM_REQ_EVENT, vcpu);
7866 } else
7867 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7868
7869 return r;
7870 }
7871
7872 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7873 {
7874 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7875 }
7876 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7877
7878 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7879 void *insn, int insn_len)
7880 {
7881 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7882 }
7883 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7884
7885 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7886 {
7887 vcpu->arch.pio.count = 0;
7888 return 1;
7889 }
7890
7891 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7892 {
7893 vcpu->arch.pio.count = 0;
7894
7895 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7896 return 1;
7897
7898 return kvm_skip_emulated_instruction(vcpu);
7899 }
7900
7901 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7902 unsigned short port)
7903 {
7904 unsigned long val = kvm_rax_read(vcpu);
7905 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7906
7907 if (ret)
7908 return ret;
7909
7910 /*
7911 * Workaround userspace that relies on old KVM behavior of %rip being
7912 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7913 */
7914 if (port == 0x7e &&
7915 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7916 vcpu->arch.complete_userspace_io =
7917 complete_fast_pio_out_port_0x7e;
7918 kvm_skip_emulated_instruction(vcpu);
7919 } else {
7920 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7921 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7922 }
7923 return 0;
7924 }
7925
7926 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7927 {
7928 unsigned long val;
7929
7930 /* We should only ever be called with arch.pio.count equal to 1 */
7931 BUG_ON(vcpu->arch.pio.count != 1);
7932
7933 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7934 vcpu->arch.pio.count = 0;
7935 return 1;
7936 }
7937
7938 /* For size less than 4 we merge, else we zero extend */
7939 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7940
7941 /*
7942 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7943 * the copy and tracing
7944 */
7945 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7946 kvm_rax_write(vcpu, val);
7947
7948 return kvm_skip_emulated_instruction(vcpu);
7949 }
7950
7951 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7952 unsigned short port)
7953 {
7954 unsigned long val;
7955 int ret;
7956
7957 /* For size less than 4 we merge, else we zero extend */
7958 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7959
7960 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7961 if (ret) {
7962 kvm_rax_write(vcpu, val);
7963 return ret;
7964 }
7965
7966 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7967 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7968
7969 return 0;
7970 }
7971
7972 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7973 {
7974 int ret;
7975
7976 if (in)
7977 ret = kvm_fast_pio_in(vcpu, size, port);
7978 else
7979 ret = kvm_fast_pio_out(vcpu, size, port);
7980 return ret && kvm_skip_emulated_instruction(vcpu);
7981 }
7982 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7983
7984 static int kvmclock_cpu_down_prep(unsigned int cpu)
7985 {
7986 __this_cpu_write(cpu_tsc_khz, 0);
7987 return 0;
7988 }
7989
7990 static void tsc_khz_changed(void *data)
7991 {
7992 struct cpufreq_freqs *freq = data;
7993 unsigned long khz = 0;
7994
7995 if (data)
7996 khz = freq->new;
7997 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7998 khz = cpufreq_quick_get(raw_smp_processor_id());
7999 if (!khz)
8000 khz = tsc_khz;
8001 __this_cpu_write(cpu_tsc_khz, khz);
8002 }
8003
8004 #ifdef CONFIG_X86_64
8005 static void kvm_hyperv_tsc_notifier(void)
8006 {
8007 struct kvm *kvm;
8008 struct kvm_vcpu *vcpu;
8009 int cpu;
8010 unsigned long flags;
8011
8012 mutex_lock(&kvm_lock);
8013 list_for_each_entry(kvm, &vm_list, vm_list)
8014 kvm_make_mclock_inprogress_request(kvm);
8015
8016 hyperv_stop_tsc_emulation();
8017
8018 /* TSC frequency always matches when on Hyper-V */
8019 for_each_present_cpu(cpu)
8020 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8021 kvm_max_guest_tsc_khz = tsc_khz;
8022
8023 list_for_each_entry(kvm, &vm_list, vm_list) {
8024 struct kvm_arch *ka = &kvm->arch;
8025
8026 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8027 pvclock_update_vm_gtod_copy(kvm);
8028 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8029
8030 kvm_for_each_vcpu(cpu, vcpu, kvm)
8031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8032
8033 kvm_for_each_vcpu(cpu, vcpu, kvm)
8034 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8035 }
8036 mutex_unlock(&kvm_lock);
8037 }
8038 #endif
8039
8040 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8041 {
8042 struct kvm *kvm;
8043 struct kvm_vcpu *vcpu;
8044 int i, send_ipi = 0;
8045
8046 /*
8047 * We allow guests to temporarily run on slowing clocks,
8048 * provided we notify them after, or to run on accelerating
8049 * clocks, provided we notify them before. Thus time never
8050 * goes backwards.
8051 *
8052 * However, we have a problem. We can't atomically update
8053 * the frequency of a given CPU from this function; it is
8054 * merely a notifier, which can be called from any CPU.
8055 * Changing the TSC frequency at arbitrary points in time
8056 * requires a recomputation of local variables related to
8057 * the TSC for each VCPU. We must flag these local variables
8058 * to be updated and be sure the update takes place with the
8059 * new frequency before any guests proceed.
8060 *
8061 * Unfortunately, the combination of hotplug CPU and frequency
8062 * change creates an intractable locking scenario; the order
8063 * of when these callouts happen is undefined with respect to
8064 * CPU hotplug, and they can race with each other. As such,
8065 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8066 * undefined; you can actually have a CPU frequency change take
8067 * place in between the computation of X and the setting of the
8068 * variable. To protect against this problem, all updates of
8069 * the per_cpu tsc_khz variable are done in an interrupt
8070 * protected IPI, and all callers wishing to update the value
8071 * must wait for a synchronous IPI to complete (which is trivial
8072 * if the caller is on the CPU already). This establishes the
8073 * necessary total order on variable updates.
8074 *
8075 * Note that because a guest time update may take place
8076 * anytime after the setting of the VCPU's request bit, the
8077 * correct TSC value must be set before the request. However,
8078 * to ensure the update actually makes it to any guest which
8079 * starts running in hardware virtualization between the set
8080 * and the acquisition of the spinlock, we must also ping the
8081 * CPU after setting the request bit.
8082 *
8083 */
8084
8085 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8086
8087 mutex_lock(&kvm_lock);
8088 list_for_each_entry(kvm, &vm_list, vm_list) {
8089 kvm_for_each_vcpu(i, vcpu, kvm) {
8090 if (vcpu->cpu != cpu)
8091 continue;
8092 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8093 if (vcpu->cpu != raw_smp_processor_id())
8094 send_ipi = 1;
8095 }
8096 }
8097 mutex_unlock(&kvm_lock);
8098
8099 if (freq->old < freq->new && send_ipi) {
8100 /*
8101 * We upscale the frequency. Must make the guest
8102 * doesn't see old kvmclock values while running with
8103 * the new frequency, otherwise we risk the guest sees
8104 * time go backwards.
8105 *
8106 * In case we update the frequency for another cpu
8107 * (which might be in guest context) send an interrupt
8108 * to kick the cpu out of guest context. Next time
8109 * guest context is entered kvmclock will be updated,
8110 * so the guest will not see stale values.
8111 */
8112 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8113 }
8114 }
8115
8116 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8117 void *data)
8118 {
8119 struct cpufreq_freqs *freq = data;
8120 int cpu;
8121
8122 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8123 return 0;
8124 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8125 return 0;
8126
8127 for_each_cpu(cpu, freq->policy->cpus)
8128 __kvmclock_cpufreq_notifier(freq, cpu);
8129
8130 return 0;
8131 }
8132
8133 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8134 .notifier_call = kvmclock_cpufreq_notifier
8135 };
8136
8137 static int kvmclock_cpu_online(unsigned int cpu)
8138 {
8139 tsc_khz_changed(NULL);
8140 return 0;
8141 }
8142
8143 static void kvm_timer_init(void)
8144 {
8145 max_tsc_khz = tsc_khz;
8146
8147 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8148 #ifdef CONFIG_CPU_FREQ
8149 struct cpufreq_policy *policy;
8150 int cpu;
8151
8152 cpu = get_cpu();
8153 policy = cpufreq_cpu_get(cpu);
8154 if (policy) {
8155 if (policy->cpuinfo.max_freq)
8156 max_tsc_khz = policy->cpuinfo.max_freq;
8157 cpufreq_cpu_put(policy);
8158 }
8159 put_cpu();
8160 #endif
8161 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8162 CPUFREQ_TRANSITION_NOTIFIER);
8163 }
8164
8165 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8166 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8167 }
8168
8169 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8170 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8171
8172 int kvm_is_in_guest(void)
8173 {
8174 return __this_cpu_read(current_vcpu) != NULL;
8175 }
8176
8177 static int kvm_is_user_mode(void)
8178 {
8179 int user_mode = 3;
8180
8181 if (__this_cpu_read(current_vcpu))
8182 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8183
8184 return user_mode != 0;
8185 }
8186
8187 static unsigned long kvm_get_guest_ip(void)
8188 {
8189 unsigned long ip = 0;
8190
8191 if (__this_cpu_read(current_vcpu))
8192 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8193
8194 return ip;
8195 }
8196
8197 static void kvm_handle_intel_pt_intr(void)
8198 {
8199 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8200
8201 kvm_make_request(KVM_REQ_PMI, vcpu);
8202 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8203 (unsigned long *)&vcpu->arch.pmu.global_status);
8204 }
8205
8206 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8207 .is_in_guest = kvm_is_in_guest,
8208 .is_user_mode = kvm_is_user_mode,
8209 .get_guest_ip = kvm_get_guest_ip,
8210 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8211 };
8212
8213 #ifdef CONFIG_X86_64
8214 static void pvclock_gtod_update_fn(struct work_struct *work)
8215 {
8216 struct kvm *kvm;
8217
8218 struct kvm_vcpu *vcpu;
8219 int i;
8220
8221 mutex_lock(&kvm_lock);
8222 list_for_each_entry(kvm, &vm_list, vm_list)
8223 kvm_for_each_vcpu(i, vcpu, kvm)
8224 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8225 atomic_set(&kvm_guest_has_master_clock, 0);
8226 mutex_unlock(&kvm_lock);
8227 }
8228
8229 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8230
8231 /*
8232 * Indirection to move queue_work() out of the tk_core.seq write held
8233 * region to prevent possible deadlocks against time accessors which
8234 * are invoked with work related locks held.
8235 */
8236 static void pvclock_irq_work_fn(struct irq_work *w)
8237 {
8238 queue_work(system_long_wq, &pvclock_gtod_work);
8239 }
8240
8241 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8242
8243 /*
8244 * Notification about pvclock gtod data update.
8245 */
8246 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8247 void *priv)
8248 {
8249 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8250 struct timekeeper *tk = priv;
8251
8252 update_pvclock_gtod(tk);
8253
8254 /*
8255 * Disable master clock if host does not trust, or does not use,
8256 * TSC based clocksource. Delegate queue_work() to irq_work as
8257 * this is invoked with tk_core.seq write held.
8258 */
8259 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8260 atomic_read(&kvm_guest_has_master_clock) != 0)
8261 irq_work_queue(&pvclock_irq_work);
8262 return 0;
8263 }
8264
8265 static struct notifier_block pvclock_gtod_notifier = {
8266 .notifier_call = pvclock_gtod_notify,
8267 };
8268 #endif
8269
8270 int kvm_arch_init(void *opaque)
8271 {
8272 struct kvm_x86_init_ops *ops = opaque;
8273 int r;
8274
8275 if (kvm_x86_ops.hardware_enable) {
8276 printk(KERN_ERR "kvm: already loaded the other module\n");
8277 r = -EEXIST;
8278 goto out;
8279 }
8280
8281 if (!ops->cpu_has_kvm_support()) {
8282 pr_err_ratelimited("kvm: no hardware support\n");
8283 r = -EOPNOTSUPP;
8284 goto out;
8285 }
8286 if (ops->disabled_by_bios()) {
8287 pr_err_ratelimited("kvm: disabled by bios\n");
8288 r = -EOPNOTSUPP;
8289 goto out;
8290 }
8291
8292 /*
8293 * KVM explicitly assumes that the guest has an FPU and
8294 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8295 * vCPU's FPU state as a fxregs_state struct.
8296 */
8297 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8298 printk(KERN_ERR "kvm: inadequate fpu\n");
8299 r = -EOPNOTSUPP;
8300 goto out;
8301 }
8302
8303 r = -ENOMEM;
8304 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8305 __alignof__(struct fpu), SLAB_ACCOUNT,
8306 NULL);
8307 if (!x86_fpu_cache) {
8308 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8309 goto out;
8310 }
8311
8312 x86_emulator_cache = kvm_alloc_emulator_cache();
8313 if (!x86_emulator_cache) {
8314 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8315 goto out_free_x86_fpu_cache;
8316 }
8317
8318 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8319 if (!user_return_msrs) {
8320 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8321 goto out_free_x86_emulator_cache;
8322 }
8323 kvm_nr_uret_msrs = 0;
8324
8325 r = kvm_mmu_module_init();
8326 if (r)
8327 goto out_free_percpu;
8328
8329 kvm_timer_init();
8330
8331 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8332
8333 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8334 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8335 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8336 }
8337
8338 if (pi_inject_timer == -1)
8339 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8340 #ifdef CONFIG_X86_64
8341 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8342
8343 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8344 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8345 #endif
8346
8347 return 0;
8348
8349 out_free_percpu:
8350 free_percpu(user_return_msrs);
8351 out_free_x86_emulator_cache:
8352 kmem_cache_destroy(x86_emulator_cache);
8353 out_free_x86_fpu_cache:
8354 kmem_cache_destroy(x86_fpu_cache);
8355 out:
8356 return r;
8357 }
8358
8359 void kvm_arch_exit(void)
8360 {
8361 #ifdef CONFIG_X86_64
8362 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8363 clear_hv_tscchange_cb();
8364 #endif
8365 kvm_lapic_exit();
8366 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8367
8368 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8369 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8370 CPUFREQ_TRANSITION_NOTIFIER);
8371 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8372 #ifdef CONFIG_X86_64
8373 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8374 irq_work_sync(&pvclock_irq_work);
8375 cancel_work_sync(&pvclock_gtod_work);
8376 #endif
8377 kvm_x86_ops.hardware_enable = NULL;
8378 kvm_mmu_module_exit();
8379 free_percpu(user_return_msrs);
8380 kmem_cache_destroy(x86_emulator_cache);
8381 kmem_cache_destroy(x86_fpu_cache);
8382 #ifdef CONFIG_KVM_XEN
8383 static_key_deferred_flush(&kvm_xen_enabled);
8384 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8385 #endif
8386 }
8387
8388 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8389 {
8390 ++vcpu->stat.halt_exits;
8391 if (lapic_in_kernel(vcpu)) {
8392 vcpu->arch.mp_state = state;
8393 return 1;
8394 } else {
8395 vcpu->run->exit_reason = reason;
8396 return 0;
8397 }
8398 }
8399
8400 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8401 {
8402 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8403 }
8404 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8405
8406 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8407 {
8408 int ret = kvm_skip_emulated_instruction(vcpu);
8409 /*
8410 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8411 * KVM_EXIT_DEBUG here.
8412 */
8413 return kvm_vcpu_halt(vcpu) && ret;
8414 }
8415 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8416
8417 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8418 {
8419 int ret = kvm_skip_emulated_instruction(vcpu);
8420
8421 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8422 }
8423 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8424
8425 #ifdef CONFIG_X86_64
8426 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8427 unsigned long clock_type)
8428 {
8429 struct kvm_clock_pairing clock_pairing;
8430 struct timespec64 ts;
8431 u64 cycle;
8432 int ret;
8433
8434 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8435 return -KVM_EOPNOTSUPP;
8436
8437 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8438 return -KVM_EOPNOTSUPP;
8439
8440 clock_pairing.sec = ts.tv_sec;
8441 clock_pairing.nsec = ts.tv_nsec;
8442 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8443 clock_pairing.flags = 0;
8444 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8445
8446 ret = 0;
8447 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8448 sizeof(struct kvm_clock_pairing)))
8449 ret = -KVM_EFAULT;
8450
8451 return ret;
8452 }
8453 #endif
8454
8455 /*
8456 * kvm_pv_kick_cpu_op: Kick a vcpu.
8457 *
8458 * @apicid - apicid of vcpu to be kicked.
8459 */
8460 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8461 {
8462 struct kvm_lapic_irq lapic_irq;
8463
8464 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8465 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8466 lapic_irq.level = 0;
8467 lapic_irq.dest_id = apicid;
8468 lapic_irq.msi_redir_hint = false;
8469
8470 lapic_irq.delivery_mode = APIC_DM_REMRD;
8471 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8472 }
8473
8474 bool kvm_apicv_activated(struct kvm *kvm)
8475 {
8476 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8477 }
8478 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8479
8480 static void kvm_apicv_init(struct kvm *kvm)
8481 {
8482 if (enable_apicv)
8483 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8484 &kvm->arch.apicv_inhibit_reasons);
8485 else
8486 set_bit(APICV_INHIBIT_REASON_DISABLE,
8487 &kvm->arch.apicv_inhibit_reasons);
8488 }
8489
8490 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8491 {
8492 struct kvm_vcpu *target = NULL;
8493 struct kvm_apic_map *map;
8494
8495 vcpu->stat.directed_yield_attempted++;
8496
8497 if (single_task_running())
8498 goto no_yield;
8499
8500 rcu_read_lock();
8501 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8502
8503 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8504 target = map->phys_map[dest_id]->vcpu;
8505
8506 rcu_read_unlock();
8507
8508 if (!target || !READ_ONCE(target->ready))
8509 goto no_yield;
8510
8511 /* Ignore requests to yield to self */
8512 if (vcpu == target)
8513 goto no_yield;
8514
8515 if (kvm_vcpu_yield_to(target) <= 0)
8516 goto no_yield;
8517
8518 vcpu->stat.directed_yield_successful++;
8519
8520 no_yield:
8521 return;
8522 }
8523
8524 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8525 {
8526 unsigned long nr, a0, a1, a2, a3, ret;
8527 int op_64_bit;
8528
8529 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8530 return kvm_xen_hypercall(vcpu);
8531
8532 if (kvm_hv_hypercall_enabled(vcpu))
8533 return kvm_hv_hypercall(vcpu);
8534
8535 nr = kvm_rax_read(vcpu);
8536 a0 = kvm_rbx_read(vcpu);
8537 a1 = kvm_rcx_read(vcpu);
8538 a2 = kvm_rdx_read(vcpu);
8539 a3 = kvm_rsi_read(vcpu);
8540
8541 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8542
8543 op_64_bit = is_64_bit_mode(vcpu);
8544 if (!op_64_bit) {
8545 nr &= 0xFFFFFFFF;
8546 a0 &= 0xFFFFFFFF;
8547 a1 &= 0xFFFFFFFF;
8548 a2 &= 0xFFFFFFFF;
8549 a3 &= 0xFFFFFFFF;
8550 }
8551
8552 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8553 ret = -KVM_EPERM;
8554 goto out;
8555 }
8556
8557 ret = -KVM_ENOSYS;
8558
8559 switch (nr) {
8560 case KVM_HC_VAPIC_POLL_IRQ:
8561 ret = 0;
8562 break;
8563 case KVM_HC_KICK_CPU:
8564 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8565 break;
8566
8567 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8568 kvm_sched_yield(vcpu, a1);
8569 ret = 0;
8570 break;
8571 #ifdef CONFIG_X86_64
8572 case KVM_HC_CLOCK_PAIRING:
8573 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8574 break;
8575 #endif
8576 case KVM_HC_SEND_IPI:
8577 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8578 break;
8579
8580 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8581 break;
8582 case KVM_HC_SCHED_YIELD:
8583 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8584 break;
8585
8586 kvm_sched_yield(vcpu, a0);
8587 ret = 0;
8588 break;
8589 default:
8590 ret = -KVM_ENOSYS;
8591 break;
8592 }
8593 out:
8594 if (!op_64_bit)
8595 ret = (u32)ret;
8596 kvm_rax_write(vcpu, ret);
8597
8598 ++vcpu->stat.hypercalls;
8599 return kvm_skip_emulated_instruction(vcpu);
8600 }
8601 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8602
8603 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8604 {
8605 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8606 char instruction[3];
8607 unsigned long rip = kvm_rip_read(vcpu);
8608
8609 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8610
8611 return emulator_write_emulated(ctxt, rip, instruction, 3,
8612 &ctxt->exception);
8613 }
8614
8615 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8616 {
8617 return vcpu->run->request_interrupt_window &&
8618 likely(!pic_in_kernel(vcpu->kvm));
8619 }
8620
8621 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8622 {
8623 struct kvm_run *kvm_run = vcpu->run;
8624
8625 /*
8626 * if_flag is obsolete and useless, so do not bother
8627 * setting it for SEV-ES guests. Userspace can just
8628 * use kvm_run->ready_for_interrupt_injection.
8629 */
8630 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8631 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8632
8633 kvm_run->cr8 = kvm_get_cr8(vcpu);
8634 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8635 kvm_run->ready_for_interrupt_injection =
8636 pic_in_kernel(vcpu->kvm) ||
8637 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8638
8639 if (is_smm(vcpu))
8640 kvm_run->flags |= KVM_RUN_X86_SMM;
8641 }
8642
8643 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8644 {
8645 int max_irr, tpr;
8646
8647 if (!kvm_x86_ops.update_cr8_intercept)
8648 return;
8649
8650 if (!lapic_in_kernel(vcpu))
8651 return;
8652
8653 if (vcpu->arch.apicv_active)
8654 return;
8655
8656 if (!vcpu->arch.apic->vapic_addr)
8657 max_irr = kvm_lapic_find_highest_irr(vcpu);
8658 else
8659 max_irr = -1;
8660
8661 if (max_irr != -1)
8662 max_irr >>= 4;
8663
8664 tpr = kvm_lapic_get_cr8(vcpu);
8665
8666 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8667 }
8668
8669
8670 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8671 {
8672 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8673 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8674 return 1;
8675 }
8676
8677 return kvm_x86_ops.nested_ops->check_events(vcpu);
8678 }
8679
8680 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8681 {
8682 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8683 vcpu->arch.exception.error_code = false;
8684 static_call(kvm_x86_queue_exception)(vcpu);
8685 }
8686
8687 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8688 {
8689 int r;
8690 bool can_inject = true;
8691
8692 /* try to reinject previous events if any */
8693
8694 if (vcpu->arch.exception.injected) {
8695 kvm_inject_exception(vcpu);
8696 can_inject = false;
8697 }
8698 /*
8699 * Do not inject an NMI or interrupt if there is a pending
8700 * exception. Exceptions and interrupts are recognized at
8701 * instruction boundaries, i.e. the start of an instruction.
8702 * Trap-like exceptions, e.g. #DB, have higher priority than
8703 * NMIs and interrupts, i.e. traps are recognized before an
8704 * NMI/interrupt that's pending on the same instruction.
8705 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8706 * priority, but are only generated (pended) during instruction
8707 * execution, i.e. a pending fault-like exception means the
8708 * fault occurred on the *previous* instruction and must be
8709 * serviced prior to recognizing any new events in order to
8710 * fully complete the previous instruction.
8711 */
8712 else if (!vcpu->arch.exception.pending) {
8713 if (vcpu->arch.nmi_injected) {
8714 static_call(kvm_x86_set_nmi)(vcpu);
8715 can_inject = false;
8716 } else if (vcpu->arch.interrupt.injected) {
8717 static_call(kvm_x86_set_irq)(vcpu);
8718 can_inject = false;
8719 }
8720 }
8721
8722 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8723 vcpu->arch.exception.pending);
8724
8725 /*
8726 * Call check_nested_events() even if we reinjected a previous event
8727 * in order for caller to determine if it should require immediate-exit
8728 * from L2 to L1 due to pending L1 events which require exit
8729 * from L2 to L1.
8730 */
8731 if (is_guest_mode(vcpu)) {
8732 r = kvm_check_nested_events(vcpu);
8733 if (r < 0)
8734 goto out;
8735 }
8736
8737 /* try to inject new event if pending */
8738 if (vcpu->arch.exception.pending) {
8739 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8740 vcpu->arch.exception.has_error_code,
8741 vcpu->arch.exception.error_code);
8742
8743 vcpu->arch.exception.pending = false;
8744 vcpu->arch.exception.injected = true;
8745
8746 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8747 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8748 X86_EFLAGS_RF);
8749
8750 if (vcpu->arch.exception.nr == DB_VECTOR) {
8751 kvm_deliver_exception_payload(vcpu);
8752 if (vcpu->arch.dr7 & DR7_GD) {
8753 vcpu->arch.dr7 &= ~DR7_GD;
8754 kvm_update_dr7(vcpu);
8755 }
8756 }
8757
8758 kvm_inject_exception(vcpu);
8759 can_inject = false;
8760 }
8761
8762 /*
8763 * Finally, inject interrupt events. If an event cannot be injected
8764 * due to architectural conditions (e.g. IF=0) a window-open exit
8765 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8766 * and can architecturally be injected, but we cannot do it right now:
8767 * an interrupt could have arrived just now and we have to inject it
8768 * as a vmexit, or there could already an event in the queue, which is
8769 * indicated by can_inject. In that case we request an immediate exit
8770 * in order to make progress and get back here for another iteration.
8771 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8772 */
8773 if (vcpu->arch.smi_pending) {
8774 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8775 if (r < 0)
8776 goto out;
8777 if (r) {
8778 vcpu->arch.smi_pending = false;
8779 ++vcpu->arch.smi_count;
8780 enter_smm(vcpu);
8781 can_inject = false;
8782 } else
8783 static_call(kvm_x86_enable_smi_window)(vcpu);
8784 }
8785
8786 if (vcpu->arch.nmi_pending) {
8787 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8788 if (r < 0)
8789 goto out;
8790 if (r) {
8791 --vcpu->arch.nmi_pending;
8792 vcpu->arch.nmi_injected = true;
8793 static_call(kvm_x86_set_nmi)(vcpu);
8794 can_inject = false;
8795 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8796 }
8797 if (vcpu->arch.nmi_pending)
8798 static_call(kvm_x86_enable_nmi_window)(vcpu);
8799 }
8800
8801 if (kvm_cpu_has_injectable_intr(vcpu)) {
8802 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8803 if (r < 0)
8804 goto out;
8805 if (r) {
8806 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8807 static_call(kvm_x86_set_irq)(vcpu);
8808 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8809 }
8810 if (kvm_cpu_has_injectable_intr(vcpu))
8811 static_call(kvm_x86_enable_irq_window)(vcpu);
8812 }
8813
8814 if (is_guest_mode(vcpu) &&
8815 kvm_x86_ops.nested_ops->hv_timer_pending &&
8816 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8817 *req_immediate_exit = true;
8818
8819 WARN_ON(vcpu->arch.exception.pending);
8820 return 0;
8821
8822 out:
8823 if (r == -EBUSY) {
8824 *req_immediate_exit = true;
8825 r = 0;
8826 }
8827 return r;
8828 }
8829
8830 static void process_nmi(struct kvm_vcpu *vcpu)
8831 {
8832 unsigned limit = 2;
8833
8834 /*
8835 * x86 is limited to one NMI running, and one NMI pending after it.
8836 * If an NMI is already in progress, limit further NMIs to just one.
8837 * Otherwise, allow two (and we'll inject the first one immediately).
8838 */
8839 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8840 limit = 1;
8841
8842 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8843 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8844 kvm_make_request(KVM_REQ_EVENT, vcpu);
8845 }
8846
8847 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8848 {
8849 u32 flags = 0;
8850 flags |= seg->g << 23;
8851 flags |= seg->db << 22;
8852 flags |= seg->l << 21;
8853 flags |= seg->avl << 20;
8854 flags |= seg->present << 15;
8855 flags |= seg->dpl << 13;
8856 flags |= seg->s << 12;
8857 flags |= seg->type << 8;
8858 return flags;
8859 }
8860
8861 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8862 {
8863 struct kvm_segment seg;
8864 int offset;
8865
8866 kvm_get_segment(vcpu, &seg, n);
8867 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8868
8869 if (n < 3)
8870 offset = 0x7f84 + n * 12;
8871 else
8872 offset = 0x7f2c + (n - 3) * 12;
8873
8874 put_smstate(u32, buf, offset + 8, seg.base);
8875 put_smstate(u32, buf, offset + 4, seg.limit);
8876 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8877 }
8878
8879 #ifdef CONFIG_X86_64
8880 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8881 {
8882 struct kvm_segment seg;
8883 int offset;
8884 u16 flags;
8885
8886 kvm_get_segment(vcpu, &seg, n);
8887 offset = 0x7e00 + n * 16;
8888
8889 flags = enter_smm_get_segment_flags(&seg) >> 8;
8890 put_smstate(u16, buf, offset, seg.selector);
8891 put_smstate(u16, buf, offset + 2, flags);
8892 put_smstate(u32, buf, offset + 4, seg.limit);
8893 put_smstate(u64, buf, offset + 8, seg.base);
8894 }
8895 #endif
8896
8897 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8898 {
8899 struct desc_ptr dt;
8900 struct kvm_segment seg;
8901 unsigned long val;
8902 int i;
8903
8904 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8905 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8906 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8907 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8908
8909 for (i = 0; i < 8; i++)
8910 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8911
8912 kvm_get_dr(vcpu, 6, &val);
8913 put_smstate(u32, buf, 0x7fcc, (u32)val);
8914 kvm_get_dr(vcpu, 7, &val);
8915 put_smstate(u32, buf, 0x7fc8, (u32)val);
8916
8917 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8918 put_smstate(u32, buf, 0x7fc4, seg.selector);
8919 put_smstate(u32, buf, 0x7f64, seg.base);
8920 put_smstate(u32, buf, 0x7f60, seg.limit);
8921 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8922
8923 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8924 put_smstate(u32, buf, 0x7fc0, seg.selector);
8925 put_smstate(u32, buf, 0x7f80, seg.base);
8926 put_smstate(u32, buf, 0x7f7c, seg.limit);
8927 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8928
8929 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8930 put_smstate(u32, buf, 0x7f74, dt.address);
8931 put_smstate(u32, buf, 0x7f70, dt.size);
8932
8933 static_call(kvm_x86_get_idt)(vcpu, &dt);
8934 put_smstate(u32, buf, 0x7f58, dt.address);
8935 put_smstate(u32, buf, 0x7f54, dt.size);
8936
8937 for (i = 0; i < 6; i++)
8938 enter_smm_save_seg_32(vcpu, buf, i);
8939
8940 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8941
8942 /* revision id */
8943 put_smstate(u32, buf, 0x7efc, 0x00020000);
8944 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8945 }
8946
8947 #ifdef CONFIG_X86_64
8948 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8949 {
8950 struct desc_ptr dt;
8951 struct kvm_segment seg;
8952 unsigned long val;
8953 int i;
8954
8955 for (i = 0; i < 16; i++)
8956 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8957
8958 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8959 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8960
8961 kvm_get_dr(vcpu, 6, &val);
8962 put_smstate(u64, buf, 0x7f68, val);
8963 kvm_get_dr(vcpu, 7, &val);
8964 put_smstate(u64, buf, 0x7f60, val);
8965
8966 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8967 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8968 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8969
8970 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8971
8972 /* revision id */
8973 put_smstate(u32, buf, 0x7efc, 0x00020064);
8974
8975 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8976
8977 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8978 put_smstate(u16, buf, 0x7e90, seg.selector);
8979 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8980 put_smstate(u32, buf, 0x7e94, seg.limit);
8981 put_smstate(u64, buf, 0x7e98, seg.base);
8982
8983 static_call(kvm_x86_get_idt)(vcpu, &dt);
8984 put_smstate(u32, buf, 0x7e84, dt.size);
8985 put_smstate(u64, buf, 0x7e88, dt.address);
8986
8987 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8988 put_smstate(u16, buf, 0x7e70, seg.selector);
8989 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8990 put_smstate(u32, buf, 0x7e74, seg.limit);
8991 put_smstate(u64, buf, 0x7e78, seg.base);
8992
8993 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8994 put_smstate(u32, buf, 0x7e64, dt.size);
8995 put_smstate(u64, buf, 0x7e68, dt.address);
8996
8997 for (i = 0; i < 6; i++)
8998 enter_smm_save_seg_64(vcpu, buf, i);
8999 }
9000 #endif
9001
9002 static void enter_smm(struct kvm_vcpu *vcpu)
9003 {
9004 struct kvm_segment cs, ds;
9005 struct desc_ptr dt;
9006 char buf[512];
9007 u32 cr0;
9008
9009 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
9010 memset(buf, 0, 512);
9011 #ifdef CONFIG_X86_64
9012 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9013 enter_smm_save_state_64(vcpu, buf);
9014 else
9015 #endif
9016 enter_smm_save_state_32(vcpu, buf);
9017
9018 /*
9019 * Give pre_enter_smm() a chance to make ISA-specific changes to the
9020 * vCPU state (e.g. leave guest mode) after we've saved the state into
9021 * the SMM state-save area.
9022 */
9023 static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
9024
9025 vcpu->arch.hflags |= HF_SMM_MASK;
9026 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9027
9028 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9029 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9030 else
9031 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9032
9033 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9034 kvm_rip_write(vcpu, 0x8000);
9035
9036 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9037 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9038 vcpu->arch.cr0 = cr0;
9039
9040 static_call(kvm_x86_set_cr4)(vcpu, 0);
9041
9042 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9043 dt.address = dt.size = 0;
9044 static_call(kvm_x86_set_idt)(vcpu, &dt);
9045
9046 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9047
9048 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9049 cs.base = vcpu->arch.smbase;
9050
9051 ds.selector = 0;
9052 ds.base = 0;
9053
9054 cs.limit = ds.limit = 0xffffffff;
9055 cs.type = ds.type = 0x3;
9056 cs.dpl = ds.dpl = 0;
9057 cs.db = ds.db = 0;
9058 cs.s = ds.s = 1;
9059 cs.l = ds.l = 0;
9060 cs.g = ds.g = 1;
9061 cs.avl = ds.avl = 0;
9062 cs.present = ds.present = 1;
9063 cs.unusable = ds.unusable = 0;
9064 cs.padding = ds.padding = 0;
9065
9066 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9067 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9068 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9069 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9070 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9071 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9072
9073 #ifdef CONFIG_X86_64
9074 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9075 static_call(kvm_x86_set_efer)(vcpu, 0);
9076 #endif
9077
9078 kvm_update_cpuid_runtime(vcpu);
9079 kvm_mmu_reset_context(vcpu);
9080 }
9081
9082 static void process_smi(struct kvm_vcpu *vcpu)
9083 {
9084 vcpu->arch.smi_pending = true;
9085 kvm_make_request(KVM_REQ_EVENT, vcpu);
9086 }
9087
9088 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9089 unsigned long *vcpu_bitmap)
9090 {
9091 cpumask_var_t cpus;
9092
9093 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9094
9095 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9096 NULL, vcpu_bitmap, cpus);
9097
9098 free_cpumask_var(cpus);
9099 }
9100
9101 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9102 {
9103 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9104 }
9105
9106 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9107 {
9108 if (!lapic_in_kernel(vcpu))
9109 return;
9110
9111 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9112 kvm_apic_update_apicv(vcpu);
9113 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9114 }
9115 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9116
9117 /*
9118 * NOTE: Do not hold any lock prior to calling this.
9119 *
9120 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9121 * locked, because it calls __x86_set_memory_region() which does
9122 * synchronize_srcu(&kvm->srcu).
9123 */
9124 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9125 {
9126 struct kvm_vcpu *except;
9127 unsigned long old, new, expected;
9128
9129 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9130 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9131 return;
9132
9133 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9134 do {
9135 expected = new = old;
9136 if (activate)
9137 __clear_bit(bit, &new);
9138 else
9139 __set_bit(bit, &new);
9140 if (new == old)
9141 break;
9142 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9143 } while (old != expected);
9144
9145 if (!!old == !!new)
9146 return;
9147
9148 trace_kvm_apicv_update_request(activate, bit);
9149 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9150 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9151
9152 /*
9153 * Sending request to update APICV for all other vcpus,
9154 * while update the calling vcpu immediately instead of
9155 * waiting for another #VMEXIT to handle the request.
9156 */
9157 except = kvm_get_running_vcpu();
9158 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9159 except);
9160 if (except)
9161 kvm_vcpu_update_apicv(except);
9162 }
9163 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9164
9165 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9166 {
9167 if (!kvm_apic_present(vcpu))
9168 return;
9169
9170 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9171
9172 if (irqchip_split(vcpu->kvm))
9173 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9174 else {
9175 if (vcpu->arch.apicv_active)
9176 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9177 if (ioapic_in_kernel(vcpu->kvm))
9178 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9179 }
9180
9181 if (is_guest_mode(vcpu))
9182 vcpu->arch.load_eoi_exitmap_pending = true;
9183 else
9184 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9185 }
9186
9187 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9188 {
9189 u64 eoi_exit_bitmap[4];
9190
9191 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9192 return;
9193
9194 if (to_hv_vcpu(vcpu))
9195 bitmap_or((ulong *)eoi_exit_bitmap,
9196 vcpu->arch.ioapic_handled_vectors,
9197 to_hv_synic(vcpu)->vec_bitmap, 256);
9198
9199 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9200 }
9201
9202 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9203 unsigned long start, unsigned long end)
9204 {
9205 unsigned long apic_address;
9206
9207 /*
9208 * The physical address of apic access page is stored in the VMCS.
9209 * Update it when it becomes invalid.
9210 */
9211 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9212 if (start <= apic_address && apic_address < end)
9213 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9214 }
9215
9216 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9217 {
9218 if (!lapic_in_kernel(vcpu))
9219 return;
9220
9221 if (!kvm_x86_ops.set_apic_access_page_addr)
9222 return;
9223
9224 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9225 }
9226
9227 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9228 {
9229 smp_send_reschedule(vcpu->cpu);
9230 }
9231 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9232
9233 /*
9234 * Returns 1 to let vcpu_run() continue the guest execution loop without
9235 * exiting to the userspace. Otherwise, the value will be returned to the
9236 * userspace.
9237 */
9238 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9239 {
9240 int r;
9241 bool req_int_win =
9242 dm_request_for_irq_injection(vcpu) &&
9243 kvm_cpu_accept_dm_intr(vcpu);
9244 fastpath_t exit_fastpath;
9245
9246 bool req_immediate_exit = false;
9247
9248 /* Forbid vmenter if vcpu dirty ring is soft-full */
9249 if (unlikely(vcpu->kvm->dirty_ring_size &&
9250 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9251 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9252 trace_kvm_dirty_ring_exit(vcpu);
9253 r = 0;
9254 goto out;
9255 }
9256
9257 if (kvm_request_pending(vcpu)) {
9258 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9259 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9260 r = 0;
9261 goto out;
9262 }
9263 }
9264 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9265 kvm_mmu_unload(vcpu);
9266 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9267 __kvm_migrate_timers(vcpu);
9268 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9269 kvm_gen_update_masterclock(vcpu->kvm);
9270 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9271 kvm_gen_kvmclock_update(vcpu);
9272 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9273 r = kvm_guest_time_update(vcpu);
9274 if (unlikely(r))
9275 goto out;
9276 }
9277 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9278 kvm_mmu_sync_roots(vcpu);
9279 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9280 kvm_mmu_load_pgd(vcpu);
9281 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9282 kvm_vcpu_flush_tlb_all(vcpu);
9283
9284 /* Flushing all ASIDs flushes the current ASID... */
9285 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9286 }
9287 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9288 kvm_vcpu_flush_tlb_current(vcpu);
9289 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
9290 kvm_vcpu_flush_tlb_guest(vcpu);
9291
9292 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9293 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9294 r = 0;
9295 goto out;
9296 }
9297 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9298 if (is_guest_mode(vcpu)) {
9299 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9300 } else {
9301 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9302 vcpu->mmio_needed = 0;
9303 r = 0;
9304 goto out;
9305 }
9306 }
9307 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9308 /* Page is swapped out. Do synthetic halt */
9309 vcpu->arch.apf.halted = true;
9310 r = 1;
9311 goto out;
9312 }
9313 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9314 record_steal_time(vcpu);
9315 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9316 process_smi(vcpu);
9317 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9318 process_nmi(vcpu);
9319 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9320 kvm_pmu_handle_event(vcpu);
9321 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9322 kvm_pmu_deliver_pmi(vcpu);
9323 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9324 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9325 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9326 vcpu->arch.ioapic_handled_vectors)) {
9327 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9328 vcpu->run->eoi.vector =
9329 vcpu->arch.pending_ioapic_eoi;
9330 r = 0;
9331 goto out;
9332 }
9333 }
9334 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9335 vcpu_scan_ioapic(vcpu);
9336 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9337 vcpu_load_eoi_exitmap(vcpu);
9338 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9339 kvm_vcpu_reload_apic_access_page(vcpu);
9340 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9341 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9342 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9343 r = 0;
9344 goto out;
9345 }
9346 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9347 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9348 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9349 r = 0;
9350 goto out;
9351 }
9352 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9353 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9354
9355 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9356 vcpu->run->hyperv = hv_vcpu->exit;
9357 r = 0;
9358 goto out;
9359 }
9360
9361 /*
9362 * KVM_REQ_HV_STIMER has to be processed after
9363 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9364 * depend on the guest clock being up-to-date
9365 */
9366 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9367 kvm_hv_process_stimers(vcpu);
9368 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9369 kvm_vcpu_update_apicv(vcpu);
9370 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9371 kvm_check_async_pf_completion(vcpu);
9372 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9373 static_call(kvm_x86_msr_filter_changed)(vcpu);
9374
9375 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9376 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9377 }
9378
9379 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9380 kvm_xen_has_interrupt(vcpu)) {
9381 ++vcpu->stat.req_event;
9382 r = kvm_apic_accept_events(vcpu);
9383 if (r < 0) {
9384 r = 0;
9385 goto out;
9386 }
9387 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9388 r = 1;
9389 goto out;
9390 }
9391
9392 r = inject_pending_event(vcpu, &req_immediate_exit);
9393 if (r < 0) {
9394 r = 0;
9395 goto out;
9396 }
9397 if (req_int_win)
9398 static_call(kvm_x86_enable_irq_window)(vcpu);
9399
9400 if (kvm_lapic_enabled(vcpu)) {
9401 update_cr8_intercept(vcpu);
9402 kvm_lapic_sync_to_vapic(vcpu);
9403 }
9404 }
9405
9406 r = kvm_mmu_reload(vcpu);
9407 if (unlikely(r)) {
9408 goto cancel_injection;
9409 }
9410
9411 preempt_disable();
9412
9413 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9414
9415 /*
9416 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9417 * IPI are then delayed after guest entry, which ensures that they
9418 * result in virtual interrupt delivery.
9419 */
9420 local_irq_disable();
9421 vcpu->mode = IN_GUEST_MODE;
9422
9423 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9424
9425 /*
9426 * 1) We should set ->mode before checking ->requests. Please see
9427 * the comment in kvm_vcpu_exiting_guest_mode().
9428 *
9429 * 2) For APICv, we should set ->mode before checking PID.ON. This
9430 * pairs with the memory barrier implicit in pi_test_and_set_on
9431 * (see vmx_deliver_posted_interrupt).
9432 *
9433 * 3) This also orders the write to mode from any reads to the page
9434 * tables done while the VCPU is running. Please see the comment
9435 * in kvm_flush_remote_tlbs.
9436 */
9437 smp_mb__after_srcu_read_unlock();
9438
9439 /*
9440 * This handles the case where a posted interrupt was
9441 * notified with kvm_vcpu_kick.
9442 */
9443 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9444 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9445
9446 if (kvm_vcpu_exit_request(vcpu)) {
9447 vcpu->mode = OUTSIDE_GUEST_MODE;
9448 smp_wmb();
9449 local_irq_enable();
9450 preempt_enable();
9451 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9452 r = 1;
9453 goto cancel_injection;
9454 }
9455
9456 if (req_immediate_exit) {
9457 kvm_make_request(KVM_REQ_EVENT, vcpu);
9458 static_call(kvm_x86_request_immediate_exit)(vcpu);
9459 }
9460
9461 fpregs_assert_state_consistent();
9462 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9463 switch_fpu_return();
9464
9465 if (unlikely(vcpu->arch.switch_db_regs)) {
9466 set_debugreg(0, 7);
9467 set_debugreg(vcpu->arch.eff_db[0], 0);
9468 set_debugreg(vcpu->arch.eff_db[1], 1);
9469 set_debugreg(vcpu->arch.eff_db[2], 2);
9470 set_debugreg(vcpu->arch.eff_db[3], 3);
9471 set_debugreg(vcpu->arch.dr6, 6);
9472 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9473 }
9474
9475 for (;;) {
9476 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9477 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9478 break;
9479
9480 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9481 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9482 break;
9483 }
9484
9485 if (vcpu->arch.apicv_active)
9486 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9487 }
9488
9489 /*
9490 * Do this here before restoring debug registers on the host. And
9491 * since we do this before handling the vmexit, a DR access vmexit
9492 * can (a) read the correct value of the debug registers, (b) set
9493 * KVM_DEBUGREG_WONT_EXIT again.
9494 */
9495 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9496 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9497 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9498 kvm_update_dr0123(vcpu);
9499 kvm_update_dr7(vcpu);
9500 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9501 }
9502
9503 /*
9504 * If the guest has used debug registers, at least dr7
9505 * will be disabled while returning to the host.
9506 * If we don't have active breakpoints in the host, we don't
9507 * care about the messed up debug address registers. But if
9508 * we have some of them active, restore the old state.
9509 */
9510 if (hw_breakpoint_active())
9511 hw_breakpoint_restore();
9512
9513 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9514 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9515
9516 vcpu->mode = OUTSIDE_GUEST_MODE;
9517 smp_wmb();
9518
9519 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9520
9521 /*
9522 * Consume any pending interrupts, including the possible source of
9523 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9524 * An instruction is required after local_irq_enable() to fully unblock
9525 * interrupts on processors that implement an interrupt shadow, the
9526 * stat.exits increment will do nicely.
9527 */
9528 kvm_before_interrupt(vcpu);
9529 local_irq_enable();
9530 ++vcpu->stat.exits;
9531 local_irq_disable();
9532 kvm_after_interrupt(vcpu);
9533
9534 /*
9535 * Wait until after servicing IRQs to account guest time so that any
9536 * ticks that occurred while running the guest are properly accounted
9537 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9538 * of accounting via context tracking, but the loss of accuracy is
9539 * acceptable for all known use cases.
9540 */
9541 vtime_account_guest_exit();
9542
9543 if (lapic_in_kernel(vcpu)) {
9544 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9545 if (delta != S64_MIN) {
9546 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9547 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9548 }
9549 }
9550
9551 local_irq_enable();
9552 preempt_enable();
9553
9554 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9555
9556 /*
9557 * Profile KVM exit RIPs:
9558 */
9559 if (unlikely(prof_on == KVM_PROFILING)) {
9560 unsigned long rip = kvm_rip_read(vcpu);
9561 profile_hit(KVM_PROFILING, (void *)rip);
9562 }
9563
9564 if (unlikely(vcpu->arch.tsc_always_catchup))
9565 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9566
9567 if (vcpu->arch.apic_attention)
9568 kvm_lapic_sync_from_vapic(vcpu);
9569
9570 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9571 return r;
9572
9573 cancel_injection:
9574 if (req_immediate_exit)
9575 kvm_make_request(KVM_REQ_EVENT, vcpu);
9576 static_call(kvm_x86_cancel_injection)(vcpu);
9577 if (unlikely(vcpu->arch.apic_attention))
9578 kvm_lapic_sync_from_vapic(vcpu);
9579 out:
9580 return r;
9581 }
9582
9583 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9584 {
9585 if (!kvm_arch_vcpu_runnable(vcpu) &&
9586 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9587 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9588 kvm_vcpu_block(vcpu);
9589 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9590
9591 if (kvm_x86_ops.post_block)
9592 static_call(kvm_x86_post_block)(vcpu);
9593
9594 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9595 return 1;
9596 }
9597
9598 if (kvm_apic_accept_events(vcpu) < 0)
9599 return 0;
9600 switch(vcpu->arch.mp_state) {
9601 case KVM_MP_STATE_HALTED:
9602 case KVM_MP_STATE_AP_RESET_HOLD:
9603 vcpu->arch.pv.pv_unhalted = false;
9604 vcpu->arch.mp_state =
9605 KVM_MP_STATE_RUNNABLE;
9606 fallthrough;
9607 case KVM_MP_STATE_RUNNABLE:
9608 vcpu->arch.apf.halted = false;
9609 break;
9610 case KVM_MP_STATE_INIT_RECEIVED:
9611 break;
9612 default:
9613 return -EINTR;
9614 }
9615 return 1;
9616 }
9617
9618 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9619 {
9620 if (is_guest_mode(vcpu))
9621 kvm_check_nested_events(vcpu);
9622
9623 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9624 !vcpu->arch.apf.halted);
9625 }
9626
9627 static int vcpu_run(struct kvm_vcpu *vcpu)
9628 {
9629 int r;
9630 struct kvm *kvm = vcpu->kvm;
9631
9632 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9633 vcpu->arch.l1tf_flush_l1d = true;
9634
9635 for (;;) {
9636 if (kvm_vcpu_running(vcpu)) {
9637 r = vcpu_enter_guest(vcpu);
9638 } else {
9639 r = vcpu_block(kvm, vcpu);
9640 }
9641
9642 if (r <= 0)
9643 break;
9644
9645 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9646 if (kvm_cpu_has_pending_timer(vcpu))
9647 kvm_inject_pending_timer_irqs(vcpu);
9648
9649 if (dm_request_for_irq_injection(vcpu) &&
9650 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9651 r = 0;
9652 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9653 ++vcpu->stat.request_irq_exits;
9654 break;
9655 }
9656
9657 if (__xfer_to_guest_mode_work_pending()) {
9658 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9659 r = xfer_to_guest_mode_handle_work(vcpu);
9660 if (r)
9661 return r;
9662 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9663 }
9664 }
9665
9666 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9667
9668 return r;
9669 }
9670
9671 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9672 {
9673 int r;
9674
9675 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9676 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9677 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9678 return r;
9679 }
9680
9681 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9682 {
9683 BUG_ON(!vcpu->arch.pio.count);
9684
9685 return complete_emulated_io(vcpu);
9686 }
9687
9688 /*
9689 * Implements the following, as a state machine:
9690 *
9691 * read:
9692 * for each fragment
9693 * for each mmio piece in the fragment
9694 * write gpa, len
9695 * exit
9696 * copy data
9697 * execute insn
9698 *
9699 * write:
9700 * for each fragment
9701 * for each mmio piece in the fragment
9702 * write gpa, len
9703 * copy data
9704 * exit
9705 */
9706 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9707 {
9708 struct kvm_run *run = vcpu->run;
9709 struct kvm_mmio_fragment *frag;
9710 unsigned len;
9711
9712 BUG_ON(!vcpu->mmio_needed);
9713
9714 /* Complete previous fragment */
9715 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9716 len = min(8u, frag->len);
9717 if (!vcpu->mmio_is_write)
9718 memcpy(frag->data, run->mmio.data, len);
9719
9720 if (frag->len <= 8) {
9721 /* Switch to the next fragment. */
9722 frag++;
9723 vcpu->mmio_cur_fragment++;
9724 } else {
9725 /* Go forward to the next mmio piece. */
9726 frag->data += len;
9727 frag->gpa += len;
9728 frag->len -= len;
9729 }
9730
9731 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9732 vcpu->mmio_needed = 0;
9733
9734 /* FIXME: return into emulator if single-stepping. */
9735 if (vcpu->mmio_is_write)
9736 return 1;
9737 vcpu->mmio_read_completed = 1;
9738 return complete_emulated_io(vcpu);
9739 }
9740
9741 run->exit_reason = KVM_EXIT_MMIO;
9742 run->mmio.phys_addr = frag->gpa;
9743 if (vcpu->mmio_is_write)
9744 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9745 run->mmio.len = min(8u, frag->len);
9746 run->mmio.is_write = vcpu->mmio_is_write;
9747 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9748 return 0;
9749 }
9750
9751 static void kvm_save_current_fpu(struct fpu *fpu)
9752 {
9753 /*
9754 * If the target FPU state is not resident in the CPU registers, just
9755 * memcpy() from current, else save CPU state directly to the target.
9756 */
9757 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9758 memcpy(&fpu->state, &current->thread.fpu.state,
9759 fpu_kernel_xstate_size);
9760 else
9761 copy_fpregs_to_fpstate(fpu);
9762 }
9763
9764 /* Swap (qemu) user FPU context for the guest FPU context. */
9765 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9766 {
9767 fpregs_lock();
9768
9769 kvm_save_current_fpu(vcpu->arch.user_fpu);
9770
9771 /*
9772 * Guests with protected state can't have it set by the hypervisor,
9773 * so skip trying to set it.
9774 */
9775 if (vcpu->arch.guest_fpu)
9776 /* PKRU is separately restored in kvm_x86_ops.run. */
9777 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9778 ~XFEATURE_MASK_PKRU);
9779
9780 fpregs_mark_activate();
9781 fpregs_unlock();
9782
9783 trace_kvm_fpu(1);
9784 }
9785
9786 /* When vcpu_run ends, restore user space FPU context. */
9787 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9788 {
9789 fpregs_lock();
9790
9791 /*
9792 * Guests with protected state can't have it read by the hypervisor,
9793 * so skip trying to save it.
9794 */
9795 if (vcpu->arch.guest_fpu)
9796 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9797
9798 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9799
9800 fpregs_mark_activate();
9801 fpregs_unlock();
9802
9803 ++vcpu->stat.fpu_reload;
9804 trace_kvm_fpu(0);
9805 }
9806
9807 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9808 {
9809 struct kvm_run *kvm_run = vcpu->run;
9810 int r;
9811
9812 vcpu_load(vcpu);
9813 kvm_sigset_activate(vcpu);
9814 kvm_run->flags = 0;
9815 kvm_load_guest_fpu(vcpu);
9816
9817 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9818 if (kvm_run->immediate_exit) {
9819 r = -EINTR;
9820 goto out;
9821 }
9822 kvm_vcpu_block(vcpu);
9823 if (kvm_apic_accept_events(vcpu) < 0) {
9824 r = 0;
9825 goto out;
9826 }
9827 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9828 r = -EAGAIN;
9829 if (signal_pending(current)) {
9830 r = -EINTR;
9831 kvm_run->exit_reason = KVM_EXIT_INTR;
9832 ++vcpu->stat.signal_exits;
9833 }
9834 goto out;
9835 }
9836
9837 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9838 r = -EINVAL;
9839 goto out;
9840 }
9841
9842 if (kvm_run->kvm_dirty_regs) {
9843 r = sync_regs(vcpu);
9844 if (r != 0)
9845 goto out;
9846 }
9847
9848 /* re-sync apic's tpr */
9849 if (!lapic_in_kernel(vcpu)) {
9850 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9851 r = -EINVAL;
9852 goto out;
9853 }
9854 }
9855
9856 if (unlikely(vcpu->arch.complete_userspace_io)) {
9857 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9858 vcpu->arch.complete_userspace_io = NULL;
9859 r = cui(vcpu);
9860 if (r <= 0)
9861 goto out;
9862 } else
9863 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9864
9865 if (kvm_run->immediate_exit)
9866 r = -EINTR;
9867 else
9868 r = vcpu_run(vcpu);
9869
9870 out:
9871 kvm_put_guest_fpu(vcpu);
9872 if (kvm_run->kvm_valid_regs)
9873 store_regs(vcpu);
9874 post_kvm_run_save(vcpu);
9875 kvm_sigset_deactivate(vcpu);
9876
9877 vcpu_put(vcpu);
9878 return r;
9879 }
9880
9881 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9882 {
9883 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9884 /*
9885 * We are here if userspace calls get_regs() in the middle of
9886 * instruction emulation. Registers state needs to be copied
9887 * back from emulation context to vcpu. Userspace shouldn't do
9888 * that usually, but some bad designed PV devices (vmware
9889 * backdoor interface) need this to work
9890 */
9891 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9892 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9893 }
9894 regs->rax = kvm_rax_read(vcpu);
9895 regs->rbx = kvm_rbx_read(vcpu);
9896 regs->rcx = kvm_rcx_read(vcpu);
9897 regs->rdx = kvm_rdx_read(vcpu);
9898 regs->rsi = kvm_rsi_read(vcpu);
9899 regs->rdi = kvm_rdi_read(vcpu);
9900 regs->rsp = kvm_rsp_read(vcpu);
9901 regs->rbp = kvm_rbp_read(vcpu);
9902 #ifdef CONFIG_X86_64
9903 regs->r8 = kvm_r8_read(vcpu);
9904 regs->r9 = kvm_r9_read(vcpu);
9905 regs->r10 = kvm_r10_read(vcpu);
9906 regs->r11 = kvm_r11_read(vcpu);
9907 regs->r12 = kvm_r12_read(vcpu);
9908 regs->r13 = kvm_r13_read(vcpu);
9909 regs->r14 = kvm_r14_read(vcpu);
9910 regs->r15 = kvm_r15_read(vcpu);
9911 #endif
9912
9913 regs->rip = kvm_rip_read(vcpu);
9914 regs->rflags = kvm_get_rflags(vcpu);
9915 }
9916
9917 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9918 {
9919 vcpu_load(vcpu);
9920 __get_regs(vcpu, regs);
9921 vcpu_put(vcpu);
9922 return 0;
9923 }
9924
9925 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9926 {
9927 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9928 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9929
9930 kvm_rax_write(vcpu, regs->rax);
9931 kvm_rbx_write(vcpu, regs->rbx);
9932 kvm_rcx_write(vcpu, regs->rcx);
9933 kvm_rdx_write(vcpu, regs->rdx);
9934 kvm_rsi_write(vcpu, regs->rsi);
9935 kvm_rdi_write(vcpu, regs->rdi);
9936 kvm_rsp_write(vcpu, regs->rsp);
9937 kvm_rbp_write(vcpu, regs->rbp);
9938 #ifdef CONFIG_X86_64
9939 kvm_r8_write(vcpu, regs->r8);
9940 kvm_r9_write(vcpu, regs->r9);
9941 kvm_r10_write(vcpu, regs->r10);
9942 kvm_r11_write(vcpu, regs->r11);
9943 kvm_r12_write(vcpu, regs->r12);
9944 kvm_r13_write(vcpu, regs->r13);
9945 kvm_r14_write(vcpu, regs->r14);
9946 kvm_r15_write(vcpu, regs->r15);
9947 #endif
9948
9949 kvm_rip_write(vcpu, regs->rip);
9950 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9951
9952 vcpu->arch.exception.pending = false;
9953
9954 kvm_make_request(KVM_REQ_EVENT, vcpu);
9955 }
9956
9957 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9958 {
9959 vcpu_load(vcpu);
9960 __set_regs(vcpu, regs);
9961 vcpu_put(vcpu);
9962 return 0;
9963 }
9964
9965 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9966 {
9967 struct kvm_segment cs;
9968
9969 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9970 *db = cs.db;
9971 *l = cs.l;
9972 }
9973 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9974
9975 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9976 {
9977 struct desc_ptr dt;
9978
9979 if (vcpu->arch.guest_state_protected)
9980 goto skip_protected_regs;
9981
9982 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9983 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9984 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9985 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9986 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9987 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9988
9989 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9990 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9991
9992 static_call(kvm_x86_get_idt)(vcpu, &dt);
9993 sregs->idt.limit = dt.size;
9994 sregs->idt.base = dt.address;
9995 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9996 sregs->gdt.limit = dt.size;
9997 sregs->gdt.base = dt.address;
9998
9999 sregs->cr2 = vcpu->arch.cr2;
10000 sregs->cr3 = kvm_read_cr3(vcpu);
10001
10002 skip_protected_regs:
10003 sregs->cr0 = kvm_read_cr0(vcpu);
10004 sregs->cr4 = kvm_read_cr4(vcpu);
10005 sregs->cr8 = kvm_get_cr8(vcpu);
10006 sregs->efer = vcpu->arch.efer;
10007 sregs->apic_base = kvm_get_apic_base(vcpu);
10008
10009 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
10010
10011 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10012 set_bit(vcpu->arch.interrupt.nr,
10013 (unsigned long *)sregs->interrupt_bitmap);
10014 }
10015
10016 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10017 struct kvm_sregs *sregs)
10018 {
10019 vcpu_load(vcpu);
10020 __get_sregs(vcpu, sregs);
10021 vcpu_put(vcpu);
10022 return 0;
10023 }
10024
10025 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10026 struct kvm_mp_state *mp_state)
10027 {
10028 int r;
10029
10030 vcpu_load(vcpu);
10031 if (kvm_mpx_supported())
10032 kvm_load_guest_fpu(vcpu);
10033
10034 r = kvm_apic_accept_events(vcpu);
10035 if (r < 0)
10036 goto out;
10037 r = 0;
10038
10039 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10040 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10041 vcpu->arch.pv.pv_unhalted)
10042 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10043 else
10044 mp_state->mp_state = vcpu->arch.mp_state;
10045
10046 out:
10047 if (kvm_mpx_supported())
10048 kvm_put_guest_fpu(vcpu);
10049 vcpu_put(vcpu);
10050 return r;
10051 }
10052
10053 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10054 struct kvm_mp_state *mp_state)
10055 {
10056 int ret = -EINVAL;
10057
10058 vcpu_load(vcpu);
10059
10060 if (!lapic_in_kernel(vcpu) &&
10061 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10062 goto out;
10063
10064 /*
10065 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10066 * INIT state; latched init should be reported using
10067 * KVM_SET_VCPU_EVENTS, so reject it here.
10068 */
10069 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10070 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10071 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10072 goto out;
10073
10074 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10075 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10076 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10077 } else
10078 vcpu->arch.mp_state = mp_state->mp_state;
10079 kvm_make_request(KVM_REQ_EVENT, vcpu);
10080
10081 ret = 0;
10082 out:
10083 vcpu_put(vcpu);
10084 return ret;
10085 }
10086
10087 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10088 int reason, bool has_error_code, u32 error_code)
10089 {
10090 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10091 int ret;
10092
10093 init_emulate_ctxt(vcpu);
10094
10095 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10096 has_error_code, error_code);
10097 if (ret) {
10098 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10099 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10100 vcpu->run->internal.ndata = 0;
10101 return 0;
10102 }
10103
10104 kvm_rip_write(vcpu, ctxt->eip);
10105 kvm_set_rflags(vcpu, ctxt->eflags);
10106 return 1;
10107 }
10108 EXPORT_SYMBOL_GPL(kvm_task_switch);
10109
10110 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10111 {
10112 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10113 /*
10114 * When EFER.LME and CR0.PG are set, the processor is in
10115 * 64-bit mode (though maybe in a 32-bit code segment).
10116 * CR4.PAE and EFER.LMA must be set.
10117 */
10118 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10119 return false;
10120 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10121 return false;
10122 } else {
10123 /*
10124 * Not in 64-bit mode: EFER.LMA is clear and the code
10125 * segment cannot be 64-bit.
10126 */
10127 if (sregs->efer & EFER_LMA || sregs->cs.l)
10128 return false;
10129 }
10130
10131 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10132 }
10133
10134 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10135 {
10136 struct msr_data apic_base_msr;
10137 int mmu_reset_needed = 0;
10138 int pending_vec, max_bits, idx;
10139 struct desc_ptr dt;
10140 int ret = -EINVAL;
10141
10142 if (!kvm_is_valid_sregs(vcpu, sregs))
10143 goto out;
10144
10145 apic_base_msr.data = sregs->apic_base;
10146 apic_base_msr.host_initiated = true;
10147 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10148 goto out;
10149
10150 if (vcpu->arch.guest_state_protected)
10151 goto skip_protected_regs;
10152
10153 dt.size = sregs->idt.limit;
10154 dt.address = sregs->idt.base;
10155 static_call(kvm_x86_set_idt)(vcpu, &dt);
10156 dt.size = sregs->gdt.limit;
10157 dt.address = sregs->gdt.base;
10158 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10159
10160 vcpu->arch.cr2 = sregs->cr2;
10161 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10162 vcpu->arch.cr3 = sregs->cr3;
10163 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10164
10165 kvm_set_cr8(vcpu, sregs->cr8);
10166
10167 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10168 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10169
10170 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10171 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10172 vcpu->arch.cr0 = sregs->cr0;
10173
10174 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10175 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10176
10177 idx = srcu_read_lock(&vcpu->kvm->srcu);
10178 if (is_pae_paging(vcpu)) {
10179 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10180 mmu_reset_needed = 1;
10181 }
10182 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10183
10184 if (mmu_reset_needed)
10185 kvm_mmu_reset_context(vcpu);
10186
10187 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10188 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10189 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10190 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10191 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10192 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10193
10194 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10195 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10196
10197 update_cr8_intercept(vcpu);
10198
10199 /* Older userspace won't unhalt the vcpu on reset. */
10200 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10201 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10202 !is_protmode(vcpu))
10203 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10204
10205 skip_protected_regs:
10206 max_bits = KVM_NR_INTERRUPTS;
10207 pending_vec = find_first_bit(
10208 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10209 if (pending_vec < max_bits) {
10210 kvm_queue_interrupt(vcpu, pending_vec, false);
10211 pr_debug("Set back pending irq %d\n", pending_vec);
10212 }
10213
10214 kvm_make_request(KVM_REQ_EVENT, vcpu);
10215
10216 ret = 0;
10217 out:
10218 return ret;
10219 }
10220
10221 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10222 struct kvm_sregs *sregs)
10223 {
10224 int ret;
10225
10226 vcpu_load(vcpu);
10227 ret = __set_sregs(vcpu, sregs);
10228 vcpu_put(vcpu);
10229 return ret;
10230 }
10231
10232 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10233 struct kvm_guest_debug *dbg)
10234 {
10235 unsigned long rflags;
10236 int i, r;
10237
10238 if (vcpu->arch.guest_state_protected)
10239 return -EINVAL;
10240
10241 vcpu_load(vcpu);
10242
10243 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10244 r = -EBUSY;
10245 if (vcpu->arch.exception.pending)
10246 goto out;
10247 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10248 kvm_queue_exception(vcpu, DB_VECTOR);
10249 else
10250 kvm_queue_exception(vcpu, BP_VECTOR);
10251 }
10252
10253 /*
10254 * Read rflags as long as potentially injected trace flags are still
10255 * filtered out.
10256 */
10257 rflags = kvm_get_rflags(vcpu);
10258
10259 vcpu->guest_debug = dbg->control;
10260 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10261 vcpu->guest_debug = 0;
10262
10263 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10264 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10265 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10266 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10267 } else {
10268 for (i = 0; i < KVM_NR_DB_REGS; i++)
10269 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10270 }
10271 kvm_update_dr7(vcpu);
10272
10273 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10274 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10275
10276 /*
10277 * Trigger an rflags update that will inject or remove the trace
10278 * flags.
10279 */
10280 kvm_set_rflags(vcpu, rflags);
10281
10282 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10283
10284 r = 0;
10285
10286 out:
10287 vcpu_put(vcpu);
10288 return r;
10289 }
10290
10291 /*
10292 * Translate a guest virtual address to a guest physical address.
10293 */
10294 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10295 struct kvm_translation *tr)
10296 {
10297 unsigned long vaddr = tr->linear_address;
10298 gpa_t gpa;
10299 int idx;
10300
10301 vcpu_load(vcpu);
10302
10303 idx = srcu_read_lock(&vcpu->kvm->srcu);
10304 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10305 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10306 tr->physical_address = gpa;
10307 tr->valid = gpa != UNMAPPED_GVA;
10308 tr->writeable = 1;
10309 tr->usermode = 0;
10310
10311 vcpu_put(vcpu);
10312 return 0;
10313 }
10314
10315 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10316 {
10317 struct fxregs_state *fxsave;
10318
10319 if (!vcpu->arch.guest_fpu)
10320 return 0;
10321
10322 vcpu_load(vcpu);
10323
10324 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10325 memcpy(fpu->fpr, fxsave->st_space, 128);
10326 fpu->fcw = fxsave->cwd;
10327 fpu->fsw = fxsave->swd;
10328 fpu->ftwx = fxsave->twd;
10329 fpu->last_opcode = fxsave->fop;
10330 fpu->last_ip = fxsave->rip;
10331 fpu->last_dp = fxsave->rdp;
10332 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10333
10334 vcpu_put(vcpu);
10335 return 0;
10336 }
10337
10338 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10339 {
10340 struct fxregs_state *fxsave;
10341
10342 if (!vcpu->arch.guest_fpu)
10343 return 0;
10344
10345 vcpu_load(vcpu);
10346
10347 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10348
10349 memcpy(fxsave->st_space, fpu->fpr, 128);
10350 fxsave->cwd = fpu->fcw;
10351 fxsave->swd = fpu->fsw;
10352 fxsave->twd = fpu->ftwx;
10353 fxsave->fop = fpu->last_opcode;
10354 fxsave->rip = fpu->last_ip;
10355 fxsave->rdp = fpu->last_dp;
10356 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10357
10358 vcpu_put(vcpu);
10359 return 0;
10360 }
10361
10362 static void store_regs(struct kvm_vcpu *vcpu)
10363 {
10364 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10365
10366 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10367 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10368
10369 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10370 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10371
10372 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10373 kvm_vcpu_ioctl_x86_get_vcpu_events(
10374 vcpu, &vcpu->run->s.regs.events);
10375 }
10376
10377 static int sync_regs(struct kvm_vcpu *vcpu)
10378 {
10379 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10380 return -EINVAL;
10381
10382 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10383 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10384 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10385 }
10386 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10387 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10388 return -EINVAL;
10389 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10390 }
10391 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10392 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10393 vcpu, &vcpu->run->s.regs.events))
10394 return -EINVAL;
10395 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10396 }
10397
10398 return 0;
10399 }
10400
10401 static void fx_init(struct kvm_vcpu *vcpu)
10402 {
10403 if (!vcpu->arch.guest_fpu)
10404 return;
10405
10406 fpstate_init(&vcpu->arch.guest_fpu->state);
10407 if (boot_cpu_has(X86_FEATURE_XSAVES))
10408 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10409 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10410
10411 /*
10412 * Ensure guest xcr0 is valid for loading
10413 */
10414 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10415
10416 vcpu->arch.cr0 |= X86_CR0_ET;
10417 }
10418
10419 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10420 {
10421 if (vcpu->arch.guest_fpu) {
10422 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10423 vcpu->arch.guest_fpu = NULL;
10424 }
10425 }
10426 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10427
10428 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10429 {
10430 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10431 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10432 "guest TSC will not be reliable\n");
10433
10434 return 0;
10435 }
10436
10437 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10438 {
10439 struct page *page;
10440 int r;
10441
10442 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10443 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10444 else
10445 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10446
10447 r = kvm_mmu_create(vcpu);
10448 if (r < 0)
10449 return r;
10450
10451 if (irqchip_in_kernel(vcpu->kvm)) {
10452 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10453 if (r < 0)
10454 goto fail_mmu_destroy;
10455 if (kvm_apicv_activated(vcpu->kvm))
10456 vcpu->arch.apicv_active = true;
10457 } else
10458 static_branch_inc(&kvm_has_noapic_vcpu);
10459
10460 r = -ENOMEM;
10461
10462 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10463 if (!page)
10464 goto fail_free_lapic;
10465 vcpu->arch.pio_data = page_address(page);
10466
10467 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10468 GFP_KERNEL_ACCOUNT);
10469 if (!vcpu->arch.mce_banks)
10470 goto fail_free_pio_data;
10471 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10472
10473 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10474 GFP_KERNEL_ACCOUNT))
10475 goto fail_free_mce_banks;
10476
10477 if (!alloc_emulate_ctxt(vcpu))
10478 goto free_wbinvd_dirty_mask;
10479
10480 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10481 GFP_KERNEL_ACCOUNT);
10482 if (!vcpu->arch.user_fpu) {
10483 pr_err("kvm: failed to allocate userspace's fpu\n");
10484 goto free_emulate_ctxt;
10485 }
10486
10487 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10488 GFP_KERNEL_ACCOUNT);
10489 if (!vcpu->arch.guest_fpu) {
10490 pr_err("kvm: failed to allocate vcpu's fpu\n");
10491 goto free_user_fpu;
10492 }
10493 fx_init(vcpu);
10494
10495 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10496 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10497
10498 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10499
10500 kvm_async_pf_hash_reset(vcpu);
10501 kvm_pmu_init(vcpu);
10502
10503 vcpu->arch.pending_external_vector = -1;
10504 vcpu->arch.preempted_in_kernel = false;
10505
10506 r = static_call(kvm_x86_vcpu_create)(vcpu);
10507 if (r)
10508 goto free_guest_fpu;
10509
10510 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10511 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10512 kvm_vcpu_mtrr_init(vcpu);
10513 vcpu_load(vcpu);
10514 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10515 kvm_vcpu_reset(vcpu, false);
10516 kvm_init_mmu(vcpu, false);
10517 vcpu_put(vcpu);
10518 return 0;
10519
10520 free_guest_fpu:
10521 kvm_free_guest_fpu(vcpu);
10522 free_user_fpu:
10523 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10524 free_emulate_ctxt:
10525 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10526 free_wbinvd_dirty_mask:
10527 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10528 fail_free_mce_banks:
10529 kfree(vcpu->arch.mce_banks);
10530 fail_free_pio_data:
10531 free_page((unsigned long)vcpu->arch.pio_data);
10532 fail_free_lapic:
10533 kvm_free_lapic(vcpu);
10534 fail_mmu_destroy:
10535 kvm_mmu_destroy(vcpu);
10536 return r;
10537 }
10538
10539 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10540 {
10541 struct kvm *kvm = vcpu->kvm;
10542
10543 if (mutex_lock_killable(&vcpu->mutex))
10544 return;
10545 vcpu_load(vcpu);
10546 kvm_synchronize_tsc(vcpu, 0);
10547 vcpu_put(vcpu);
10548
10549 /* poll control enabled by default */
10550 vcpu->arch.msr_kvm_poll_control = 1;
10551
10552 mutex_unlock(&vcpu->mutex);
10553
10554 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10555 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10556 KVMCLOCK_SYNC_PERIOD);
10557 }
10558
10559 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10560 {
10561 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10562 int idx;
10563
10564 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10565
10566 kvmclock_reset(vcpu);
10567
10568 static_call(kvm_x86_vcpu_free)(vcpu);
10569
10570 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10571 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10572 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10573 kvm_free_guest_fpu(vcpu);
10574
10575 kvm_hv_vcpu_uninit(vcpu);
10576 kvm_pmu_destroy(vcpu);
10577 kfree(vcpu->arch.mce_banks);
10578 kvm_free_lapic(vcpu);
10579 idx = srcu_read_lock(&vcpu->kvm->srcu);
10580 kvm_mmu_destroy(vcpu);
10581 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10582 free_page((unsigned long)vcpu->arch.pio_data);
10583 kvfree(vcpu->arch.cpuid_entries);
10584 if (!lapic_in_kernel(vcpu))
10585 static_branch_dec(&kvm_has_noapic_vcpu);
10586 }
10587
10588 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10589 {
10590 kvm_lapic_reset(vcpu, init_event);
10591
10592 vcpu->arch.hflags = 0;
10593
10594 vcpu->arch.smi_pending = 0;
10595 vcpu->arch.smi_count = 0;
10596 atomic_set(&vcpu->arch.nmi_queued, 0);
10597 vcpu->arch.nmi_pending = 0;
10598 vcpu->arch.nmi_injected = false;
10599 kvm_clear_interrupt_queue(vcpu);
10600 kvm_clear_exception_queue(vcpu);
10601
10602 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10603 kvm_update_dr0123(vcpu);
10604 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10605 vcpu->arch.dr7 = DR7_FIXED_1;
10606 kvm_update_dr7(vcpu);
10607
10608 vcpu->arch.cr2 = 0;
10609
10610 kvm_make_request(KVM_REQ_EVENT, vcpu);
10611 vcpu->arch.apf.msr_en_val = 0;
10612 vcpu->arch.apf.msr_int_val = 0;
10613 vcpu->arch.st.msr_val = 0;
10614
10615 kvmclock_reset(vcpu);
10616
10617 kvm_clear_async_pf_completion_queue(vcpu);
10618 kvm_async_pf_hash_reset(vcpu);
10619 vcpu->arch.apf.halted = false;
10620
10621 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10622 void *mpx_state_buffer;
10623
10624 /*
10625 * To avoid have the INIT path from kvm_apic_has_events() that be
10626 * called with loaded FPU and does not let userspace fix the state.
10627 */
10628 if (init_event)
10629 kvm_put_guest_fpu(vcpu);
10630 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10631 XFEATURE_BNDREGS);
10632 if (mpx_state_buffer)
10633 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10634 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10635 XFEATURE_BNDCSR);
10636 if (mpx_state_buffer)
10637 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10638 if (init_event)
10639 kvm_load_guest_fpu(vcpu);
10640 }
10641
10642 if (!init_event) {
10643 kvm_pmu_reset(vcpu);
10644 vcpu->arch.smbase = 0x30000;
10645
10646 vcpu->arch.msr_misc_features_enables = 0;
10647
10648 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10649 }
10650
10651 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10652 vcpu->arch.regs_avail = ~0;
10653 vcpu->arch.regs_dirty = ~0;
10654
10655 vcpu->arch.ia32_xss = 0;
10656
10657 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10658 }
10659
10660 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10661 {
10662 struct kvm_segment cs;
10663
10664 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10665 cs.selector = vector << 8;
10666 cs.base = vector << 12;
10667 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10668 kvm_rip_write(vcpu, 0);
10669 }
10670 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10671
10672 int kvm_arch_hardware_enable(void)
10673 {
10674 struct kvm *kvm;
10675 struct kvm_vcpu *vcpu;
10676 int i;
10677 int ret;
10678 u64 local_tsc;
10679 u64 max_tsc = 0;
10680 bool stable, backwards_tsc = false;
10681
10682 kvm_user_return_msr_cpu_online();
10683 ret = static_call(kvm_x86_hardware_enable)();
10684 if (ret != 0)
10685 return ret;
10686
10687 local_tsc = rdtsc();
10688 stable = !kvm_check_tsc_unstable();
10689 list_for_each_entry(kvm, &vm_list, vm_list) {
10690 kvm_for_each_vcpu(i, vcpu, kvm) {
10691 if (!stable && vcpu->cpu == smp_processor_id())
10692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10693 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10694 backwards_tsc = true;
10695 if (vcpu->arch.last_host_tsc > max_tsc)
10696 max_tsc = vcpu->arch.last_host_tsc;
10697 }
10698 }
10699 }
10700
10701 /*
10702 * Sometimes, even reliable TSCs go backwards. This happens on
10703 * platforms that reset TSC during suspend or hibernate actions, but
10704 * maintain synchronization. We must compensate. Fortunately, we can
10705 * detect that condition here, which happens early in CPU bringup,
10706 * before any KVM threads can be running. Unfortunately, we can't
10707 * bring the TSCs fully up to date with real time, as we aren't yet far
10708 * enough into CPU bringup that we know how much real time has actually
10709 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10710 * variables that haven't been updated yet.
10711 *
10712 * So we simply find the maximum observed TSC above, then record the
10713 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10714 * the adjustment will be applied. Note that we accumulate
10715 * adjustments, in case multiple suspend cycles happen before some VCPU
10716 * gets a chance to run again. In the event that no KVM threads get a
10717 * chance to run, we will miss the entire elapsed period, as we'll have
10718 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10719 * loose cycle time. This isn't too big a deal, since the loss will be
10720 * uniform across all VCPUs (not to mention the scenario is extremely
10721 * unlikely). It is possible that a second hibernate recovery happens
10722 * much faster than a first, causing the observed TSC here to be
10723 * smaller; this would require additional padding adjustment, which is
10724 * why we set last_host_tsc to the local tsc observed here.
10725 *
10726 * N.B. - this code below runs only on platforms with reliable TSC,
10727 * as that is the only way backwards_tsc is set above. Also note
10728 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10729 * have the same delta_cyc adjustment applied if backwards_tsc
10730 * is detected. Note further, this adjustment is only done once,
10731 * as we reset last_host_tsc on all VCPUs to stop this from being
10732 * called multiple times (one for each physical CPU bringup).
10733 *
10734 * Platforms with unreliable TSCs don't have to deal with this, they
10735 * will be compensated by the logic in vcpu_load, which sets the TSC to
10736 * catchup mode. This will catchup all VCPUs to real time, but cannot
10737 * guarantee that they stay in perfect synchronization.
10738 */
10739 if (backwards_tsc) {
10740 u64 delta_cyc = max_tsc - local_tsc;
10741 list_for_each_entry(kvm, &vm_list, vm_list) {
10742 kvm->arch.backwards_tsc_observed = true;
10743 kvm_for_each_vcpu(i, vcpu, kvm) {
10744 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10745 vcpu->arch.last_host_tsc = local_tsc;
10746 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10747 }
10748
10749 /*
10750 * We have to disable TSC offset matching.. if you were
10751 * booting a VM while issuing an S4 host suspend....
10752 * you may have some problem. Solving this issue is
10753 * left as an exercise to the reader.
10754 */
10755 kvm->arch.last_tsc_nsec = 0;
10756 kvm->arch.last_tsc_write = 0;
10757 }
10758
10759 }
10760 return 0;
10761 }
10762
10763 void kvm_arch_hardware_disable(void)
10764 {
10765 static_call(kvm_x86_hardware_disable)();
10766 drop_user_return_notifiers();
10767 }
10768
10769 int kvm_arch_hardware_setup(void *opaque)
10770 {
10771 struct kvm_x86_init_ops *ops = opaque;
10772 int r;
10773
10774 rdmsrl_safe(MSR_EFER, &host_efer);
10775
10776 if (boot_cpu_has(X86_FEATURE_XSAVES))
10777 rdmsrl(MSR_IA32_XSS, host_xss);
10778
10779 r = ops->hardware_setup();
10780 if (r != 0)
10781 return r;
10782
10783 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10784 kvm_ops_static_call_update();
10785
10786 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10787 supported_xss = 0;
10788
10789 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10790 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10791 #undef __kvm_cpu_cap_has
10792
10793 if (kvm_has_tsc_control) {
10794 /*
10795 * Make sure the user can only configure tsc_khz values that
10796 * fit into a signed integer.
10797 * A min value is not calculated because it will always
10798 * be 1 on all machines.
10799 */
10800 u64 max = min(0x7fffffffULL,
10801 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10802 kvm_max_guest_tsc_khz = max;
10803
10804 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10805 }
10806
10807 kvm_init_msr_list();
10808 return 0;
10809 }
10810
10811 void kvm_arch_hardware_unsetup(void)
10812 {
10813 static_call(kvm_x86_hardware_unsetup)();
10814 }
10815
10816 int kvm_arch_check_processor_compat(void *opaque)
10817 {
10818 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10819 struct kvm_x86_init_ops *ops = opaque;
10820
10821 WARN_ON(!irqs_disabled());
10822
10823 if (__cr4_reserved_bits(cpu_has, c) !=
10824 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10825 return -EIO;
10826
10827 return ops->check_processor_compatibility();
10828 }
10829
10830 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10831 {
10832 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10833 }
10834 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10835
10836 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10837 {
10838 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10839 }
10840
10841 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10842 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10843
10844 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10845 {
10846 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10847
10848 vcpu->arch.l1tf_flush_l1d = true;
10849 if (pmu->version && unlikely(pmu->event_count)) {
10850 pmu->need_cleanup = true;
10851 kvm_make_request(KVM_REQ_PMU, vcpu);
10852 }
10853 static_call(kvm_x86_sched_in)(vcpu, cpu);
10854 }
10855
10856 void kvm_arch_free_vm(struct kvm *kvm)
10857 {
10858 kfree(to_kvm_hv(kvm)->hv_pa_pg);
10859 vfree(kvm);
10860 }
10861
10862
10863 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10864 {
10865 if (type)
10866 return -EINVAL;
10867
10868 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10869 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10870 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10871 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10872 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10873 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10874
10875 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10876 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10877 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10878 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10879 &kvm->arch.irq_sources_bitmap);
10880
10881 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10882 mutex_init(&kvm->arch.apic_map_lock);
10883 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10884
10885 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10886 pvclock_update_vm_gtod_copy(kvm);
10887
10888 kvm->arch.guest_can_read_msr_platform_info = true;
10889
10890 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10891 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10892
10893 kvm_apicv_init(kvm);
10894 kvm_hv_init_vm(kvm);
10895 kvm_page_track_init(kvm);
10896 kvm_mmu_init_vm(kvm);
10897
10898 return static_call(kvm_x86_vm_init)(kvm);
10899 }
10900
10901 int kvm_arch_post_init_vm(struct kvm *kvm)
10902 {
10903 return kvm_mmu_post_init_vm(kvm);
10904 }
10905
10906 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10907 {
10908 vcpu_load(vcpu);
10909 kvm_mmu_unload(vcpu);
10910 vcpu_put(vcpu);
10911 }
10912
10913 static void kvm_free_vcpus(struct kvm *kvm)
10914 {
10915 unsigned int i;
10916 struct kvm_vcpu *vcpu;
10917
10918 /*
10919 * Unpin any mmu pages first.
10920 */
10921 kvm_for_each_vcpu(i, vcpu, kvm) {
10922 kvm_clear_async_pf_completion_queue(vcpu);
10923 kvm_unload_vcpu_mmu(vcpu);
10924 }
10925 kvm_for_each_vcpu(i, vcpu, kvm)
10926 kvm_vcpu_destroy(vcpu);
10927
10928 mutex_lock(&kvm->lock);
10929 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10930 kvm->vcpus[i] = NULL;
10931
10932 atomic_set(&kvm->online_vcpus, 0);
10933 mutex_unlock(&kvm->lock);
10934 }
10935
10936 void kvm_arch_sync_events(struct kvm *kvm)
10937 {
10938 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10939 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10940 kvm_free_pit(kvm);
10941 }
10942
10943 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10944
10945 /**
10946 * __x86_set_memory_region: Setup KVM internal memory slot
10947 *
10948 * @kvm: the kvm pointer to the VM.
10949 * @id: the slot ID to setup.
10950 * @gpa: the GPA to install the slot (unused when @size == 0).
10951 * @size: the size of the slot. Set to zero to uninstall a slot.
10952 *
10953 * This function helps to setup a KVM internal memory slot. Specify
10954 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10955 * slot. The return code can be one of the following:
10956 *
10957 * HVA: on success (uninstall will return a bogus HVA)
10958 * -errno: on error
10959 *
10960 * The caller should always use IS_ERR() to check the return value
10961 * before use. Note, the KVM internal memory slots are guaranteed to
10962 * remain valid and unchanged until the VM is destroyed, i.e., the
10963 * GPA->HVA translation will not change. However, the HVA is a user
10964 * address, i.e. its accessibility is not guaranteed, and must be
10965 * accessed via __copy_{to,from}_user().
10966 */
10967 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10968 u32 size)
10969 {
10970 int i, r;
10971 unsigned long hva, old_npages;
10972 struct kvm_memslots *slots = kvm_memslots(kvm);
10973 struct kvm_memory_slot *slot;
10974
10975 /* Called with kvm->slots_lock held. */
10976 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10977 return ERR_PTR_USR(-EINVAL);
10978
10979 slot = id_to_memslot(slots, id);
10980 if (size) {
10981 if (slot && slot->npages)
10982 return ERR_PTR_USR(-EEXIST);
10983
10984 /*
10985 * MAP_SHARED to prevent internal slot pages from being moved
10986 * by fork()/COW.
10987 */
10988 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10989 MAP_SHARED | MAP_ANONYMOUS, 0);
10990 if (IS_ERR((void *)hva))
10991 return (void __user *)hva;
10992 } else {
10993 if (!slot || !slot->npages)
10994 return NULL;
10995
10996 old_npages = slot->npages;
10997 hva = slot->userspace_addr;
10998 }
10999
11000 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11001 struct kvm_userspace_memory_region m;
11002
11003 m.slot = id | (i << 16);
11004 m.flags = 0;
11005 m.guest_phys_addr = gpa;
11006 m.userspace_addr = hva;
11007 m.memory_size = size;
11008 r = __kvm_set_memory_region(kvm, &m);
11009 if (r < 0)
11010 return ERR_PTR_USR(r);
11011 }
11012
11013 if (!size)
11014 vm_munmap(hva, old_npages * PAGE_SIZE);
11015
11016 return (void __user *)hva;
11017 }
11018 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11019
11020 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11021 {
11022 kvm_mmu_pre_destroy_vm(kvm);
11023 }
11024
11025 void kvm_arch_destroy_vm(struct kvm *kvm)
11026 {
11027 if (current->mm == kvm->mm) {
11028 /*
11029 * Free memory regions allocated on behalf of userspace,
11030 * unless the the memory map has changed due to process exit
11031 * or fd copying.
11032 */
11033 mutex_lock(&kvm->slots_lock);
11034 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11035 0, 0);
11036 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11037 0, 0);
11038 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11039 mutex_unlock(&kvm->slots_lock);
11040 }
11041 static_call_cond(kvm_x86_vm_destroy)(kvm);
11042 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11043 kvm_pic_destroy(kvm);
11044 kvm_ioapic_destroy(kvm);
11045 kvm_free_vcpus(kvm);
11046 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11047 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11048 kvm_mmu_uninit_vm(kvm);
11049 kvm_page_track_cleanup(kvm);
11050 kvm_xen_destroy_vm(kvm);
11051 kvm_hv_destroy_vm(kvm);
11052 }
11053
11054 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11055 {
11056 int i;
11057
11058 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11059 kvfree(slot->arch.rmap[i]);
11060 slot->arch.rmap[i] = NULL;
11061 }
11062 }
11063
11064 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11065 {
11066 int i;
11067
11068 memslot_rmap_free(slot);
11069
11070 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11071 kvfree(slot->arch.lpage_info[i - 1]);
11072 slot->arch.lpage_info[i - 1] = NULL;
11073 }
11074
11075 kvm_page_track_free_memslot(slot);
11076 }
11077
11078 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11079 unsigned long npages)
11080 {
11081 const int sz = sizeof(*slot->arch.rmap[0]);
11082 int i;
11083
11084 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11085 int level = i + 1;
11086 int lpages = gfn_to_index(slot->base_gfn + npages - 1,
11087 slot->base_gfn, level) + 1;
11088
11089 WARN_ON(slot->arch.rmap[i]);
11090
11091 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11092 if (!slot->arch.rmap[i]) {
11093 memslot_rmap_free(slot);
11094 return -ENOMEM;
11095 }
11096 }
11097
11098 return 0;
11099 }
11100
11101 int alloc_all_memslots_rmaps(struct kvm *kvm)
11102 {
11103 struct kvm_memslots *slots;
11104 struct kvm_memory_slot *slot;
11105 int r, i;
11106
11107 /*
11108 * Check if memslots alreday have rmaps early before acquiring
11109 * the slots_arch_lock below.
11110 */
11111 if (kvm_memslots_have_rmaps(kvm))
11112 return 0;
11113
11114 mutex_lock(&kvm->slots_arch_lock);
11115
11116 /*
11117 * Read memslots_have_rmaps again, under the slots arch lock,
11118 * before allocating the rmaps
11119 */
11120 if (kvm_memslots_have_rmaps(kvm)) {
11121 mutex_unlock(&kvm->slots_arch_lock);
11122 return 0;
11123 }
11124
11125 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11126 slots = __kvm_memslots(kvm, i);
11127 kvm_for_each_memslot(slot, slots) {
11128 r = memslot_rmap_alloc(slot, slot->npages);
11129 if (r) {
11130 mutex_unlock(&kvm->slots_arch_lock);
11131 return r;
11132 }
11133 }
11134 }
11135
11136 /*
11137 * Ensure that memslots_have_rmaps becomes true strictly after
11138 * all the rmap pointers are set.
11139 */
11140 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11141 mutex_unlock(&kvm->slots_arch_lock);
11142 return 0;
11143 }
11144
11145 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11146 struct kvm_memory_slot *slot,
11147 unsigned long npages)
11148 {
11149 int i, r;
11150
11151 /*
11152 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11153 * old arrays will be freed by __kvm_set_memory_region() if installing
11154 * the new memslot is successful.
11155 */
11156 memset(&slot->arch, 0, sizeof(slot->arch));
11157
11158 if (kvm_memslots_have_rmaps(kvm)) {
11159 r = memslot_rmap_alloc(slot, npages);
11160 if (r)
11161 return r;
11162 }
11163
11164 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11165 struct kvm_lpage_info *linfo;
11166 unsigned long ugfn;
11167 int lpages;
11168 int level = i + 1;
11169
11170 lpages = gfn_to_index(slot->base_gfn + npages - 1,
11171 slot->base_gfn, level) + 1;
11172
11173 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11174 if (!linfo)
11175 goto out_free;
11176
11177 slot->arch.lpage_info[i - 1] = linfo;
11178
11179 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11180 linfo[0].disallow_lpage = 1;
11181 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11182 linfo[lpages - 1].disallow_lpage = 1;
11183 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11184 /*
11185 * If the gfn and userspace address are not aligned wrt each
11186 * other, disable large page support for this slot.
11187 */
11188 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11189 unsigned long j;
11190
11191 for (j = 0; j < lpages; ++j)
11192 linfo[j].disallow_lpage = 1;
11193 }
11194 }
11195
11196 if (kvm_page_track_create_memslot(slot, npages))
11197 goto out_free;
11198
11199 return 0;
11200
11201 out_free:
11202 memslot_rmap_free(slot);
11203
11204 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11205 kvfree(slot->arch.lpage_info[i - 1]);
11206 slot->arch.lpage_info[i - 1] = NULL;
11207 }
11208 return -ENOMEM;
11209 }
11210
11211 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11212 {
11213 struct kvm_vcpu *vcpu;
11214 int i;
11215
11216 /*
11217 * memslots->generation has been incremented.
11218 * mmio generation may have reached its maximum value.
11219 */
11220 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11221
11222 /* Force re-initialization of steal_time cache */
11223 kvm_for_each_vcpu(i, vcpu, kvm)
11224 kvm_vcpu_kick(vcpu);
11225 }
11226
11227 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11228 struct kvm_memory_slot *memslot,
11229 const struct kvm_userspace_memory_region *mem,
11230 enum kvm_mr_change change)
11231 {
11232 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11233 return kvm_alloc_memslot_metadata(kvm, memslot,
11234 mem->memory_size >> PAGE_SHIFT);
11235 return 0;
11236 }
11237
11238
11239 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11240 {
11241 struct kvm_arch *ka = &kvm->arch;
11242
11243 if (!kvm_x86_ops.cpu_dirty_log_size)
11244 return;
11245
11246 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11247 (!enable && --ka->cpu_dirty_logging_count == 0))
11248 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11249
11250 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11251 }
11252
11253 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11254 struct kvm_memory_slot *old,
11255 struct kvm_memory_slot *new,
11256 enum kvm_mr_change change)
11257 {
11258 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11259
11260 /*
11261 * Update CPU dirty logging if dirty logging is being toggled. This
11262 * applies to all operations.
11263 */
11264 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11265 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11266
11267 /*
11268 * Nothing more to do for RO slots (which can't be dirtied and can't be
11269 * made writable) or CREATE/MOVE/DELETE of a slot.
11270 *
11271 * For a memslot with dirty logging disabled:
11272 * CREATE: No dirty mappings will already exist.
11273 * MOVE/DELETE: The old mappings will already have been cleaned up by
11274 * kvm_arch_flush_shadow_memslot()
11275 *
11276 * For a memslot with dirty logging enabled:
11277 * CREATE: No shadow pages exist, thus nothing to write-protect
11278 * and no dirty bits to clear.
11279 * MOVE/DELETE: The old mappings will already have been cleaned up by
11280 * kvm_arch_flush_shadow_memslot().
11281 */
11282 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11283 return;
11284
11285 /*
11286 * READONLY and non-flags changes were filtered out above, and the only
11287 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11288 * logging isn't being toggled on or off.
11289 */
11290 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11291 return;
11292
11293 if (!log_dirty_pages) {
11294 /*
11295 * Dirty logging tracks sptes in 4k granularity, meaning that
11296 * large sptes have to be split. If live migration succeeds,
11297 * the guest in the source machine will be destroyed and large
11298 * sptes will be created in the destination. However, if the
11299 * guest continues to run in the source machine (for example if
11300 * live migration fails), small sptes will remain around and
11301 * cause bad performance.
11302 *
11303 * Scan sptes if dirty logging has been stopped, dropping those
11304 * which can be collapsed into a single large-page spte. Later
11305 * page faults will create the large-page sptes.
11306 */
11307 kvm_mmu_zap_collapsible_sptes(kvm, new);
11308 } else {
11309 /*
11310 * Initially-all-set does not require write protecting any page,
11311 * because they're all assumed to be dirty.
11312 */
11313 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11314 return;
11315
11316 if (kvm_x86_ops.cpu_dirty_log_size) {
11317 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11318 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11319 } else {
11320 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11321 }
11322 }
11323 }
11324
11325 void kvm_arch_commit_memory_region(struct kvm *kvm,
11326 const struct kvm_userspace_memory_region *mem,
11327 struct kvm_memory_slot *old,
11328 const struct kvm_memory_slot *new,
11329 enum kvm_mr_change change)
11330 {
11331 if (!kvm->arch.n_requested_mmu_pages)
11332 kvm_mmu_change_mmu_pages(kvm,
11333 kvm_mmu_calculate_default_mmu_pages(kvm));
11334
11335 /*
11336 * FIXME: const-ify all uses of struct kvm_memory_slot.
11337 */
11338 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11339
11340 /* Free the arrays associated with the old memslot. */
11341 if (change == KVM_MR_MOVE)
11342 kvm_arch_free_memslot(kvm, old);
11343 }
11344
11345 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11346 {
11347 kvm_mmu_zap_all(kvm);
11348 }
11349
11350 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11351 struct kvm_memory_slot *slot)
11352 {
11353 kvm_page_track_flush_slot(kvm, slot);
11354 }
11355
11356 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11357 {
11358 return (is_guest_mode(vcpu) &&
11359 kvm_x86_ops.guest_apic_has_interrupt &&
11360 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11361 }
11362
11363 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11364 {
11365 if (!list_empty_careful(&vcpu->async_pf.done))
11366 return true;
11367
11368 if (kvm_apic_has_events(vcpu))
11369 return true;
11370
11371 if (vcpu->arch.pv.pv_unhalted)
11372 return true;
11373
11374 if (vcpu->arch.exception.pending)
11375 return true;
11376
11377 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11378 (vcpu->arch.nmi_pending &&
11379 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11380 return true;
11381
11382 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11383 (vcpu->arch.smi_pending &&
11384 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11385 return true;
11386
11387 if (kvm_arch_interrupt_allowed(vcpu) &&
11388 (kvm_cpu_has_interrupt(vcpu) ||
11389 kvm_guest_apic_has_interrupt(vcpu)))
11390 return true;
11391
11392 if (kvm_hv_has_stimer_pending(vcpu))
11393 return true;
11394
11395 if (is_guest_mode(vcpu) &&
11396 kvm_x86_ops.nested_ops->hv_timer_pending &&
11397 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11398 return true;
11399
11400 return false;
11401 }
11402
11403 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11404 {
11405 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11406 }
11407
11408 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11409 {
11410 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11411 return true;
11412
11413 return false;
11414 }
11415
11416 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11417 {
11418 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11419 return true;
11420
11421 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11422 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11423 kvm_test_request(KVM_REQ_EVENT, vcpu))
11424 return true;
11425
11426 return kvm_arch_dy_has_pending_interrupt(vcpu);
11427 }
11428
11429 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11430 {
11431 if (vcpu->arch.guest_state_protected)
11432 return true;
11433
11434 return vcpu->arch.preempted_in_kernel;
11435 }
11436
11437 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11438 {
11439 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11440 }
11441
11442 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11443 {
11444 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11445 }
11446
11447 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11448 {
11449 /* Can't read the RIP when guest state is protected, just return 0 */
11450 if (vcpu->arch.guest_state_protected)
11451 return 0;
11452
11453 if (is_64_bit_mode(vcpu))
11454 return kvm_rip_read(vcpu);
11455 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11456 kvm_rip_read(vcpu));
11457 }
11458 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11459
11460 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11461 {
11462 return kvm_get_linear_rip(vcpu) == linear_rip;
11463 }
11464 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11465
11466 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11467 {
11468 unsigned long rflags;
11469
11470 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11471 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11472 rflags &= ~X86_EFLAGS_TF;
11473 return rflags;
11474 }
11475 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11476
11477 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11478 {
11479 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11480 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11481 rflags |= X86_EFLAGS_TF;
11482 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11483 }
11484
11485 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11486 {
11487 __kvm_set_rflags(vcpu, rflags);
11488 kvm_make_request(KVM_REQ_EVENT, vcpu);
11489 }
11490 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11491
11492 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11493 {
11494 int r;
11495
11496 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11497 work->wakeup_all)
11498 return;
11499
11500 r = kvm_mmu_reload(vcpu);
11501 if (unlikely(r))
11502 return;
11503
11504 if (!vcpu->arch.mmu->direct_map &&
11505 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11506 return;
11507
11508 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11509 }
11510
11511 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11512 {
11513 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11514
11515 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11516 }
11517
11518 static inline u32 kvm_async_pf_next_probe(u32 key)
11519 {
11520 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11521 }
11522
11523 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11524 {
11525 u32 key = kvm_async_pf_hash_fn(gfn);
11526
11527 while (vcpu->arch.apf.gfns[key] != ~0)
11528 key = kvm_async_pf_next_probe(key);
11529
11530 vcpu->arch.apf.gfns[key] = gfn;
11531 }
11532
11533 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11534 {
11535 int i;
11536 u32 key = kvm_async_pf_hash_fn(gfn);
11537
11538 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11539 (vcpu->arch.apf.gfns[key] != gfn &&
11540 vcpu->arch.apf.gfns[key] != ~0); i++)
11541 key = kvm_async_pf_next_probe(key);
11542
11543 return key;
11544 }
11545
11546 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11547 {
11548 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11549 }
11550
11551 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11552 {
11553 u32 i, j, k;
11554
11555 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11556
11557 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11558 return;
11559
11560 while (true) {
11561 vcpu->arch.apf.gfns[i] = ~0;
11562 do {
11563 j = kvm_async_pf_next_probe(j);
11564 if (vcpu->arch.apf.gfns[j] == ~0)
11565 return;
11566 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11567 /*
11568 * k lies cyclically in ]i,j]
11569 * | i.k.j |
11570 * |....j i.k.| or |.k..j i...|
11571 */
11572 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11573 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11574 i = j;
11575 }
11576 }
11577
11578 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11579 {
11580 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11581
11582 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11583 sizeof(reason));
11584 }
11585
11586 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11587 {
11588 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11589
11590 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11591 &token, offset, sizeof(token));
11592 }
11593
11594 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11595 {
11596 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11597 u32 val;
11598
11599 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11600 &val, offset, sizeof(val)))
11601 return false;
11602
11603 return !val;
11604 }
11605
11606 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11607 {
11608 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11609 return false;
11610
11611 if (!kvm_pv_async_pf_enabled(vcpu) ||
11612 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11613 return false;
11614
11615 return true;
11616 }
11617
11618 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11619 {
11620 if (unlikely(!lapic_in_kernel(vcpu) ||
11621 kvm_event_needs_reinjection(vcpu) ||
11622 vcpu->arch.exception.pending))
11623 return false;
11624
11625 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11626 return false;
11627
11628 /*
11629 * If interrupts are off we cannot even use an artificial
11630 * halt state.
11631 */
11632 return kvm_arch_interrupt_allowed(vcpu);
11633 }
11634
11635 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11636 struct kvm_async_pf *work)
11637 {
11638 struct x86_exception fault;
11639
11640 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11641 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11642
11643 if (kvm_can_deliver_async_pf(vcpu) &&
11644 !apf_put_user_notpresent(vcpu)) {
11645 fault.vector = PF_VECTOR;
11646 fault.error_code_valid = true;
11647 fault.error_code = 0;
11648 fault.nested_page_fault = false;
11649 fault.address = work->arch.token;
11650 fault.async_page_fault = true;
11651 kvm_inject_page_fault(vcpu, &fault);
11652 return true;
11653 } else {
11654 /*
11655 * It is not possible to deliver a paravirtualized asynchronous
11656 * page fault, but putting the guest in an artificial halt state
11657 * can be beneficial nevertheless: if an interrupt arrives, we
11658 * can deliver it timely and perhaps the guest will schedule
11659 * another process. When the instruction that triggered a page
11660 * fault is retried, hopefully the page will be ready in the host.
11661 */
11662 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11663 return false;
11664 }
11665 }
11666
11667 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11668 struct kvm_async_pf *work)
11669 {
11670 struct kvm_lapic_irq irq = {
11671 .delivery_mode = APIC_DM_FIXED,
11672 .vector = vcpu->arch.apf.vec
11673 };
11674
11675 if (work->wakeup_all)
11676 work->arch.token = ~0; /* broadcast wakeup */
11677 else
11678 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11679 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11680
11681 if ((work->wakeup_all || work->notpresent_injected) &&
11682 kvm_pv_async_pf_enabled(vcpu) &&
11683 !apf_put_user_ready(vcpu, work->arch.token)) {
11684 vcpu->arch.apf.pageready_pending = true;
11685 kvm_apic_set_irq(vcpu, &irq, NULL);
11686 }
11687
11688 vcpu->arch.apf.halted = false;
11689 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11690 }
11691
11692 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11693 {
11694 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11695 if (!vcpu->arch.apf.pageready_pending)
11696 kvm_vcpu_kick(vcpu);
11697 }
11698
11699 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11700 {
11701 if (!kvm_pv_async_pf_enabled(vcpu))
11702 return true;
11703 else
11704 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11705 }
11706
11707 void kvm_arch_start_assignment(struct kvm *kvm)
11708 {
11709 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11710 static_call_cond(kvm_x86_start_assignment)(kvm);
11711 }
11712 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11713
11714 void kvm_arch_end_assignment(struct kvm *kvm)
11715 {
11716 atomic_dec(&kvm->arch.assigned_device_count);
11717 }
11718 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11719
11720 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11721 {
11722 return atomic_read(&kvm->arch.assigned_device_count);
11723 }
11724 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11725
11726 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11727 {
11728 atomic_inc(&kvm->arch.noncoherent_dma_count);
11729 }
11730 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11731
11732 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11733 {
11734 atomic_dec(&kvm->arch.noncoherent_dma_count);
11735 }
11736 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11737
11738 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11739 {
11740 return atomic_read(&kvm->arch.noncoherent_dma_count);
11741 }
11742 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11743
11744 bool kvm_arch_has_irq_bypass(void)
11745 {
11746 return true;
11747 }
11748
11749 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11750 struct irq_bypass_producer *prod)
11751 {
11752 struct kvm_kernel_irqfd *irqfd =
11753 container_of(cons, struct kvm_kernel_irqfd, consumer);
11754 int ret;
11755
11756 irqfd->producer = prod;
11757 kvm_arch_start_assignment(irqfd->kvm);
11758 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11759 prod->irq, irqfd->gsi, 1);
11760
11761 if (ret)
11762 kvm_arch_end_assignment(irqfd->kvm);
11763
11764 return ret;
11765 }
11766
11767 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11768 struct irq_bypass_producer *prod)
11769 {
11770 int ret;
11771 struct kvm_kernel_irqfd *irqfd =
11772 container_of(cons, struct kvm_kernel_irqfd, consumer);
11773
11774 WARN_ON(irqfd->producer != prod);
11775 irqfd->producer = NULL;
11776
11777 /*
11778 * When producer of consumer is unregistered, we change back to
11779 * remapped mode, so we can re-use the current implementation
11780 * when the irq is masked/disabled or the consumer side (KVM
11781 * int this case doesn't want to receive the interrupts.
11782 */
11783 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11784 if (ret)
11785 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11786 " fails: %d\n", irqfd->consumer.token, ret);
11787
11788 kvm_arch_end_assignment(irqfd->kvm);
11789 }
11790
11791 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11792 uint32_t guest_irq, bool set)
11793 {
11794 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11795 }
11796
11797 bool kvm_vector_hashing_enabled(void)
11798 {
11799 return vector_hashing;
11800 }
11801
11802 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11803 {
11804 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11805 }
11806 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11807
11808
11809 int kvm_spec_ctrl_test_value(u64 value)
11810 {
11811 /*
11812 * test that setting IA32_SPEC_CTRL to given value
11813 * is allowed by the host processor
11814 */
11815
11816 u64 saved_value;
11817 unsigned long flags;
11818 int ret = 0;
11819
11820 local_irq_save(flags);
11821
11822 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11823 ret = 1;
11824 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11825 ret = 1;
11826 else
11827 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11828
11829 local_irq_restore(flags);
11830
11831 return ret;
11832 }
11833 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11834
11835 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11836 {
11837 struct x86_exception fault;
11838 u32 access = error_code &
11839 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11840
11841 if (!(error_code & PFERR_PRESENT_MASK) ||
11842 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11843 /*
11844 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11845 * tables probably do not match the TLB. Just proceed
11846 * with the error code that the processor gave.
11847 */
11848 fault.vector = PF_VECTOR;
11849 fault.error_code_valid = true;
11850 fault.error_code = error_code;
11851 fault.nested_page_fault = false;
11852 fault.address = gva;
11853 }
11854 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11855 }
11856 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11857
11858 /*
11859 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11860 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11861 * indicates whether exit to userspace is needed.
11862 */
11863 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11864 struct x86_exception *e)
11865 {
11866 if (r == X86EMUL_PROPAGATE_FAULT) {
11867 kvm_inject_emulated_page_fault(vcpu, e);
11868 return 1;
11869 }
11870
11871 /*
11872 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11873 * while handling a VMX instruction KVM could've handled the request
11874 * correctly by exiting to userspace and performing I/O but there
11875 * doesn't seem to be a real use-case behind such requests, just return
11876 * KVM_EXIT_INTERNAL_ERROR for now.
11877 */
11878 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11879 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11880 vcpu->run->internal.ndata = 0;
11881
11882 return 0;
11883 }
11884 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11885
11886 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11887 {
11888 bool pcid_enabled;
11889 struct x86_exception e;
11890 unsigned i;
11891 unsigned long roots_to_free = 0;
11892 struct {
11893 u64 pcid;
11894 u64 gla;
11895 } operand;
11896 int r;
11897
11898 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11899 if (r != X86EMUL_CONTINUE)
11900 return kvm_handle_memory_failure(vcpu, r, &e);
11901
11902 if (operand.pcid >> 12 != 0) {
11903 kvm_inject_gp(vcpu, 0);
11904 return 1;
11905 }
11906
11907 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11908
11909 switch (type) {
11910 case INVPCID_TYPE_INDIV_ADDR:
11911 if ((!pcid_enabled && (operand.pcid != 0)) ||
11912 is_noncanonical_address(operand.gla, vcpu)) {
11913 kvm_inject_gp(vcpu, 0);
11914 return 1;
11915 }
11916 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11917 return kvm_skip_emulated_instruction(vcpu);
11918
11919 case INVPCID_TYPE_SINGLE_CTXT:
11920 if (!pcid_enabled && (operand.pcid != 0)) {
11921 kvm_inject_gp(vcpu, 0);
11922 return 1;
11923 }
11924
11925 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11926 kvm_mmu_sync_roots(vcpu);
11927 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11928 }
11929
11930 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11931 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11932 == operand.pcid)
11933 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11934
11935 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11936 /*
11937 * If neither the current cr3 nor any of the prev_roots use the
11938 * given PCID, then nothing needs to be done here because a
11939 * resync will happen anyway before switching to any other CR3.
11940 */
11941
11942 return kvm_skip_emulated_instruction(vcpu);
11943
11944 case INVPCID_TYPE_ALL_NON_GLOBAL:
11945 /*
11946 * Currently, KVM doesn't mark global entries in the shadow
11947 * page tables, so a non-global flush just degenerates to a
11948 * global flush. If needed, we could optimize this later by
11949 * keeping track of global entries in shadow page tables.
11950 */
11951
11952 fallthrough;
11953 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11954 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11955 return kvm_skip_emulated_instruction(vcpu);
11956
11957 default:
11958 BUG(); /* We have already checked above that type <= 3 */
11959 }
11960 }
11961 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11962
11963 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11964 {
11965 struct kvm_run *run = vcpu->run;
11966 struct kvm_mmio_fragment *frag;
11967 unsigned int len;
11968
11969 BUG_ON(!vcpu->mmio_needed);
11970
11971 /* Complete previous fragment */
11972 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11973 len = min(8u, frag->len);
11974 if (!vcpu->mmio_is_write)
11975 memcpy(frag->data, run->mmio.data, len);
11976
11977 if (frag->len <= 8) {
11978 /* Switch to the next fragment. */
11979 frag++;
11980 vcpu->mmio_cur_fragment++;
11981 } else {
11982 /* Go forward to the next mmio piece. */
11983 frag->data += len;
11984 frag->gpa += len;
11985 frag->len -= len;
11986 }
11987
11988 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11989 vcpu->mmio_needed = 0;
11990
11991 // VMG change, at this point, we're always done
11992 // RIP has already been advanced
11993 return 1;
11994 }
11995
11996 // More MMIO is needed
11997 run->mmio.phys_addr = frag->gpa;
11998 run->mmio.len = min(8u, frag->len);
11999 run->mmio.is_write = vcpu->mmio_is_write;
12000 if (run->mmio.is_write)
12001 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12002 run->exit_reason = KVM_EXIT_MMIO;
12003
12004 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12005
12006 return 0;
12007 }
12008
12009 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12010 void *data)
12011 {
12012 int handled;
12013 struct kvm_mmio_fragment *frag;
12014
12015 if (!data)
12016 return -EINVAL;
12017
12018 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12019 if (handled == bytes)
12020 return 1;
12021
12022 bytes -= handled;
12023 gpa += handled;
12024 data += handled;
12025
12026 /*TODO: Check if need to increment number of frags */
12027 frag = vcpu->mmio_fragments;
12028 vcpu->mmio_nr_fragments = 1;
12029 frag->len = bytes;
12030 frag->gpa = gpa;
12031 frag->data = data;
12032
12033 vcpu->mmio_needed = 1;
12034 vcpu->mmio_cur_fragment = 0;
12035
12036 vcpu->run->mmio.phys_addr = gpa;
12037 vcpu->run->mmio.len = min(8u, frag->len);
12038 vcpu->run->mmio.is_write = 1;
12039 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12040 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12041
12042 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12043
12044 return 0;
12045 }
12046 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12047
12048 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12049 void *data)
12050 {
12051 int handled;
12052 struct kvm_mmio_fragment *frag;
12053
12054 if (!data)
12055 return -EINVAL;
12056
12057 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12058 if (handled == bytes)
12059 return 1;
12060
12061 bytes -= handled;
12062 gpa += handled;
12063 data += handled;
12064
12065 /*TODO: Check if need to increment number of frags */
12066 frag = vcpu->mmio_fragments;
12067 vcpu->mmio_nr_fragments = 1;
12068 frag->len = bytes;
12069 frag->gpa = gpa;
12070 frag->data = data;
12071
12072 vcpu->mmio_needed = 1;
12073 vcpu->mmio_cur_fragment = 0;
12074
12075 vcpu->run->mmio.phys_addr = gpa;
12076 vcpu->run->mmio.len = min(8u, frag->len);
12077 vcpu->run->mmio.is_write = 0;
12078 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12079
12080 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12081
12082 return 0;
12083 }
12084 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12085
12086 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12087 {
12088 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12089 vcpu->arch.pio.count * vcpu->arch.pio.size);
12090 vcpu->arch.pio.count = 0;
12091
12092 return 1;
12093 }
12094
12095 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12096 unsigned int port, void *data, unsigned int count)
12097 {
12098 int ret;
12099
12100 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12101 data, count);
12102 if (ret)
12103 return ret;
12104
12105 vcpu->arch.pio.count = 0;
12106
12107 return 0;
12108 }
12109
12110 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12111 unsigned int port, void *data, unsigned int count)
12112 {
12113 int ret;
12114
12115 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12116 data, count);
12117 if (ret) {
12118 vcpu->arch.pio.count = 0;
12119 } else {
12120 vcpu->arch.guest_ins_data = data;
12121 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12122 }
12123
12124 return 0;
12125 }
12126
12127 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12128 unsigned int port, void *data, unsigned int count,
12129 int in)
12130 {
12131 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12132 : kvm_sev_es_outs(vcpu, size, port, data, count);
12133 }
12134 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12135
12136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12157 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12158 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12159 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12160 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12161 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12162 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);