]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: fix tsc catchup issue with tsc scaling
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32 kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112 int nr;
113 u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117 struct user_return_notifier urn;
118 bool registered;
119 struct kvm_shared_msr_values {
120 u64 host;
121 u64 curr;
122 } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129 { "pf_fixed", VCPU_STAT(pf_fixed) },
130 { "pf_guest", VCPU_STAT(pf_guest) },
131 { "tlb_flush", VCPU_STAT(tlb_flush) },
132 { "invlpg", VCPU_STAT(invlpg) },
133 { "exits", VCPU_STAT(exits) },
134 { "io_exits", VCPU_STAT(io_exits) },
135 { "mmio_exits", VCPU_STAT(mmio_exits) },
136 { "signal_exits", VCPU_STAT(signal_exits) },
137 { "irq_window", VCPU_STAT(irq_window_exits) },
138 { "nmi_window", VCPU_STAT(nmi_window_exits) },
139 { "halt_exits", VCPU_STAT(halt_exits) },
140 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141 { "hypercalls", VCPU_STAT(hypercalls) },
142 { "request_irq", VCPU_STAT(request_irq_exits) },
143 { "irq_exits", VCPU_STAT(irq_exits) },
144 { "host_state_reload", VCPU_STAT(host_state_reload) },
145 { "efer_reload", VCPU_STAT(efer_reload) },
146 { "fpu_reload", VCPU_STAT(fpu_reload) },
147 { "insn_emulation", VCPU_STAT(insn_emulation) },
148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149 { "irq_injections", VCPU_STAT(irq_injections) },
150 { "nmi_injections", VCPU_STAT(nmi_injections) },
151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155 { "mmu_flooded", VM_STAT(mmu_flooded) },
156 { "mmu_recycled", VM_STAT(mmu_recycled) },
157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158 { "mmu_unsync", VM_STAT(mmu_unsync) },
159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160 { "largepages", VM_STAT(lpages) },
161 { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170 int i;
171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177 unsigned slot;
178 struct kvm_shared_msrs *locals
179 = container_of(urn, struct kvm_shared_msrs, urn);
180 struct kvm_shared_msr_values *values;
181
182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183 values = &locals->values[slot];
184 if (values->host != values->curr) {
185 wrmsrl(shared_msrs_global.msrs[slot], values->host);
186 values->curr = values->host;
187 }
188 }
189 locals->registered = false;
190 user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195 u64 value;
196 unsigned int cpu = smp_processor_id();
197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199 /* only read, and nobody should modify it at this time,
200 * so don't need lock */
201 if (slot >= shared_msrs_global.nr) {
202 printk(KERN_ERR "kvm: invalid MSR slot!");
203 return;
204 }
205 rdmsrl_safe(msr, &value);
206 smsr->values[slot].host = value;
207 smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212 if (slot >= shared_msrs_global.nr)
213 shared_msrs_global.nr = slot + 1;
214 shared_msrs_global.msrs[slot] = msr;
215 /* we need ensured the shared_msr_global have been updated */
216 smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222 unsigned i;
223
224 for (i = 0; i < shared_msrs_global.nr; ++i)
225 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230 unsigned int cpu = smp_processor_id();
231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233 if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 return;
235 smsr->values[slot].curr = value;
236 wrmsrl(shared_msrs_global.msrs[slot], value);
237 if (!smsr->registered) {
238 smsr->urn.on_user_return = kvm_on_user_return;
239 user_return_notifier_register(&smsr->urn);
240 smsr->registered = true;
241 }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247 unsigned int cpu = smp_processor_id();
248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250 if (smsr->registered)
251 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 {
262 /* TODO: reserve bits check */
263 kvm_lapic_set_base(vcpu, data);
264 }
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266
267 asmlinkage void kvm_spurious_fault(void)
268 {
269 /* Fault while not rebooting. We want the trace. */
270 BUG();
271 }
272 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
273
274 #define EXCPT_BENIGN 0
275 #define EXCPT_CONTRIBUTORY 1
276 #define EXCPT_PF 2
277
278 static int exception_class(int vector)
279 {
280 switch (vector) {
281 case PF_VECTOR:
282 return EXCPT_PF;
283 case DE_VECTOR:
284 case TS_VECTOR:
285 case NP_VECTOR:
286 case SS_VECTOR:
287 case GP_VECTOR:
288 return EXCPT_CONTRIBUTORY;
289 default:
290 break;
291 }
292 return EXCPT_BENIGN;
293 }
294
295 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
296 unsigned nr, bool has_error, u32 error_code,
297 bool reinject)
298 {
299 u32 prev_nr;
300 int class1, class2;
301
302 kvm_make_request(KVM_REQ_EVENT, vcpu);
303
304 if (!vcpu->arch.exception.pending) {
305 queue:
306 vcpu->arch.exception.pending = true;
307 vcpu->arch.exception.has_error_code = has_error;
308 vcpu->arch.exception.nr = nr;
309 vcpu->arch.exception.error_code = error_code;
310 vcpu->arch.exception.reinject = reinject;
311 return;
312 }
313
314 /* to check exception */
315 prev_nr = vcpu->arch.exception.nr;
316 if (prev_nr == DF_VECTOR) {
317 /* triple fault -> shutdown */
318 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
319 return;
320 }
321 class1 = exception_class(prev_nr);
322 class2 = exception_class(nr);
323 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
324 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
325 /* generate double fault per SDM Table 5-5 */
326 vcpu->arch.exception.pending = true;
327 vcpu->arch.exception.has_error_code = true;
328 vcpu->arch.exception.nr = DF_VECTOR;
329 vcpu->arch.exception.error_code = 0;
330 } else
331 /* replace previous exception with a new one in a hope
332 that instruction re-execution will regenerate lost
333 exception */
334 goto queue;
335 }
336
337 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
338 {
339 kvm_multiple_exception(vcpu, nr, false, 0, false);
340 }
341 EXPORT_SYMBOL_GPL(kvm_queue_exception);
342
343 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
344 {
345 kvm_multiple_exception(vcpu, nr, false, 0, true);
346 }
347 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
348
349 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
350 {
351 if (err)
352 kvm_inject_gp(vcpu, 0);
353 else
354 kvm_x86_ops->skip_emulated_instruction(vcpu);
355 }
356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
357
358 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 ++vcpu->stat.pf_guest;
361 vcpu->arch.cr2 = fault->address;
362 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
363 }
364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
365
366 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
367 {
368 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
369 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
370 else
371 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
372 }
373
374 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
375 {
376 atomic_inc(&vcpu->arch.nmi_queued);
377 kvm_make_request(KVM_REQ_NMI, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
380
381 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
382 {
383 kvm_multiple_exception(vcpu, nr, true, error_code, false);
384 }
385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
386
387 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
388 {
389 kvm_multiple_exception(vcpu, nr, true, error_code, true);
390 }
391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
392
393 /*
394 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
395 * a #GP and return false.
396 */
397 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
398 {
399 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
400 return true;
401 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
402 return false;
403 }
404 EXPORT_SYMBOL_GPL(kvm_require_cpl);
405
406 /*
407 * This function will be used to read from the physical memory of the currently
408 * running guest. The difference to kvm_read_guest_page is that this function
409 * can read from guest physical or from the guest's guest physical memory.
410 */
411 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
412 gfn_t ngfn, void *data, int offset, int len,
413 u32 access)
414 {
415 gfn_t real_gfn;
416 gpa_t ngpa;
417
418 ngpa = gfn_to_gpa(ngfn);
419 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
420 if (real_gfn == UNMAPPED_GVA)
421 return -EFAULT;
422
423 real_gfn = gpa_to_gfn(real_gfn);
424
425 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
426 }
427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
428
429 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
430 void *data, int offset, int len, u32 access)
431 {
432 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
433 data, offset, len, access);
434 }
435
436 /*
437 * Load the pae pdptrs. Return true is they are all valid.
438 */
439 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
440 {
441 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
442 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
443 int i;
444 int ret;
445 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
446
447 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
448 offset * sizeof(u64), sizeof(pdpte),
449 PFERR_USER_MASK|PFERR_WRITE_MASK);
450 if (ret < 0) {
451 ret = 0;
452 goto out;
453 }
454 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
455 if (is_present_gpte(pdpte[i]) &&
456 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
457 ret = 0;
458 goto out;
459 }
460 }
461 ret = 1;
462
463 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
464 __set_bit(VCPU_EXREG_PDPTR,
465 (unsigned long *)&vcpu->arch.regs_avail);
466 __set_bit(VCPU_EXREG_PDPTR,
467 (unsigned long *)&vcpu->arch.regs_dirty);
468 out:
469
470 return ret;
471 }
472 EXPORT_SYMBOL_GPL(load_pdptrs);
473
474 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
475 {
476 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
477 bool changed = true;
478 int offset;
479 gfn_t gfn;
480 int r;
481
482 if (is_long_mode(vcpu) || !is_pae(vcpu))
483 return false;
484
485 if (!test_bit(VCPU_EXREG_PDPTR,
486 (unsigned long *)&vcpu->arch.regs_avail))
487 return true;
488
489 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
490 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
491 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
492 PFERR_USER_MASK | PFERR_WRITE_MASK);
493 if (r < 0)
494 goto out;
495 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
496 out:
497
498 return changed;
499 }
500
501 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
502 {
503 unsigned long old_cr0 = kvm_read_cr0(vcpu);
504 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
505 X86_CR0_CD | X86_CR0_NW;
506
507 cr0 |= X86_CR0_ET;
508
509 #ifdef CONFIG_X86_64
510 if (cr0 & 0xffffffff00000000UL)
511 return 1;
512 #endif
513
514 cr0 &= ~CR0_RESERVED_BITS;
515
516 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
517 return 1;
518
519 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
520 return 1;
521
522 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
523 #ifdef CONFIG_X86_64
524 if ((vcpu->arch.efer & EFER_LME)) {
525 int cs_db, cs_l;
526
527 if (!is_pae(vcpu))
528 return 1;
529 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
530 if (cs_l)
531 return 1;
532 } else
533 #endif
534 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
535 kvm_read_cr3(vcpu)))
536 return 1;
537 }
538
539 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
540 return 1;
541
542 kvm_x86_ops->set_cr0(vcpu, cr0);
543
544 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
545 kvm_clear_async_pf_completion_queue(vcpu);
546 kvm_async_pf_hash_reset(vcpu);
547 }
548
549 if ((cr0 ^ old_cr0) & update_bits)
550 kvm_mmu_reset_context(vcpu);
551 return 0;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr0);
554
555 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
556 {
557 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
558 }
559 EXPORT_SYMBOL_GPL(kvm_lmsw);
560
561 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
562 {
563 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
564 !vcpu->guest_xcr0_loaded) {
565 /* kvm_set_xcr() also depends on this */
566 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
567 vcpu->guest_xcr0_loaded = 1;
568 }
569 }
570
571 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
572 {
573 if (vcpu->guest_xcr0_loaded) {
574 if (vcpu->arch.xcr0 != host_xcr0)
575 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
576 vcpu->guest_xcr0_loaded = 0;
577 }
578 }
579
580 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
581 {
582 u64 xcr0;
583 u64 valid_bits;
584
585 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
586 if (index != XCR_XFEATURE_ENABLED_MASK)
587 return 1;
588 xcr0 = xcr;
589 if (!(xcr0 & XSTATE_FP))
590 return 1;
591 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
592 return 1;
593
594 /*
595 * Do not allow the guest to set bits that we do not support
596 * saving. However, xcr0 bit 0 is always set, even if the
597 * emulated CPU does not support XSAVE (see fx_init).
598 */
599 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
600 if (xcr0 & ~valid_bits)
601 return 1;
602
603 kvm_put_guest_xcr0(vcpu);
604 vcpu->arch.xcr0 = xcr0;
605 return 0;
606 }
607
608 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
609 {
610 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
611 __kvm_set_xcr(vcpu, index, xcr)) {
612 kvm_inject_gp(vcpu, 0);
613 return 1;
614 }
615 return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_xcr);
618
619 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
620 {
621 unsigned long old_cr4 = kvm_read_cr4(vcpu);
622 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
623 X86_CR4_PAE | X86_CR4_SMEP;
624 if (cr4 & CR4_RESERVED_BITS)
625 return 1;
626
627 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
628 return 1;
629
630 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
631 return 1;
632
633 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
634 return 1;
635
636 if (is_long_mode(vcpu)) {
637 if (!(cr4 & X86_CR4_PAE))
638 return 1;
639 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
640 && ((cr4 ^ old_cr4) & pdptr_bits)
641 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
642 kvm_read_cr3(vcpu)))
643 return 1;
644
645 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
646 if (!guest_cpuid_has_pcid(vcpu))
647 return 1;
648
649 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
650 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
651 return 1;
652 }
653
654 if (kvm_x86_ops->set_cr4(vcpu, cr4))
655 return 1;
656
657 if (((cr4 ^ old_cr4) & pdptr_bits) ||
658 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
659 kvm_mmu_reset_context(vcpu);
660
661 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662 kvm_update_cpuid(vcpu);
663
664 return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671 kvm_mmu_sync_roots(vcpu);
672 kvm_mmu_flush_tlb(vcpu);
673 return 0;
674 }
675
676 if (is_long_mode(vcpu)) {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
678 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
679 return 1;
680 } else
681 if (cr3 & CR3_L_MODE_RESERVED_BITS)
682 return 1;
683 } else {
684 if (is_pae(vcpu)) {
685 if (cr3 & CR3_PAE_RESERVED_BITS)
686 return 1;
687 if (is_paging(vcpu) &&
688 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
689 return 1;
690 }
691 /*
692 * We don't check reserved bits in nonpae mode, because
693 * this isn't enforced, and VMware depends on this.
694 */
695 }
696
697 vcpu->arch.cr3 = cr3;
698 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699 kvm_mmu_new_cr3(vcpu);
700 return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706 if (cr8 & CR8_RESERVED_BITS)
707 return 1;
708 if (irqchip_in_kernel(vcpu->kvm))
709 kvm_lapic_set_tpr(vcpu, cr8);
710 else
711 vcpu->arch.cr8 = cr8;
712 return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718 if (irqchip_in_kernel(vcpu->kvm))
719 return kvm_lapic_get_cr8(vcpu);
720 else
721 return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724
725 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
726 {
727 unsigned long dr7;
728
729 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
730 dr7 = vcpu->arch.guest_debug_dr7;
731 else
732 dr7 = vcpu->arch.dr7;
733 kvm_x86_ops->set_dr7(vcpu, dr7);
734 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
735 }
736
737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
738 {
739 switch (dr) {
740 case 0 ... 3:
741 vcpu->arch.db[dr] = val;
742 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
743 vcpu->arch.eff_db[dr] = val;
744 break;
745 case 4:
746 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 return 1; /* #UD */
748 /* fall through */
749 case 6:
750 if (val & 0xffffffff00000000ULL)
751 return -1; /* #GP */
752 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
753 break;
754 case 5:
755 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
756 return 1; /* #UD */
757 /* fall through */
758 default: /* 7 */
759 if (val & 0xffffffff00000000ULL)
760 return -1; /* #GP */
761 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
762 kvm_update_dr7(vcpu);
763 break;
764 }
765
766 return 0;
767 }
768
769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
770 {
771 int res;
772
773 res = __kvm_set_dr(vcpu, dr, val);
774 if (res > 0)
775 kvm_queue_exception(vcpu, UD_VECTOR);
776 else if (res < 0)
777 kvm_inject_gp(vcpu, 0);
778
779 return res;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_dr);
782
783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
784 {
785 switch (dr) {
786 case 0 ... 3:
787 *val = vcpu->arch.db[dr];
788 break;
789 case 4:
790 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
791 return 1;
792 /* fall through */
793 case 6:
794 *val = vcpu->arch.dr6;
795 break;
796 case 5:
797 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798 return 1;
799 /* fall through */
800 default: /* 7 */
801 *val = vcpu->arch.dr7;
802 break;
803 }
804
805 return 0;
806 }
807
808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
809 {
810 if (_kvm_get_dr(vcpu, dr, val)) {
811 kvm_queue_exception(vcpu, UD_VECTOR);
812 return 1;
813 }
814 return 0;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_dr);
817
818 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
819 {
820 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
821 u64 data;
822 int err;
823
824 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
825 if (err)
826 return err;
827 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
828 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
829 return err;
830 }
831 EXPORT_SYMBOL_GPL(kvm_rdpmc);
832
833 /*
834 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
835 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
836 *
837 * This list is modified at module load time to reflect the
838 * capabilities of the host cpu. This capabilities test skips MSRs that are
839 * kvm-specific. Those are put in the beginning of the list.
840 */
841
842 #define KVM_SAVE_MSRS_BEGIN 10
843 static u32 msrs_to_save[] = {
844 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
845 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
846 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
847 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
848 MSR_KVM_PV_EOI_EN,
849 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
850 MSR_STAR,
851 #ifdef CONFIG_X86_64
852 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
853 #endif
854 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
855 MSR_IA32_FEATURE_CONTROL
856 };
857
858 static unsigned num_msrs_to_save;
859
860 static const u32 emulated_msrs[] = {
861 MSR_IA32_TSC_ADJUST,
862 MSR_IA32_TSCDEADLINE,
863 MSR_IA32_MISC_ENABLE,
864 MSR_IA32_MCG_STATUS,
865 MSR_IA32_MCG_CTL,
866 };
867
868 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
869 {
870 if (efer & efer_reserved_bits)
871 return false;
872
873 if (efer & EFER_FFXSR) {
874 struct kvm_cpuid_entry2 *feat;
875
876 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
877 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
878 return false;
879 }
880
881 if (efer & EFER_SVME) {
882 struct kvm_cpuid_entry2 *feat;
883
884 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
885 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
886 return false;
887 }
888
889 return true;
890 }
891 EXPORT_SYMBOL_GPL(kvm_valid_efer);
892
893 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
894 {
895 u64 old_efer = vcpu->arch.efer;
896
897 if (!kvm_valid_efer(vcpu, efer))
898 return 1;
899
900 if (is_paging(vcpu)
901 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
902 return 1;
903
904 efer &= ~EFER_LMA;
905 efer |= vcpu->arch.efer & EFER_LMA;
906
907 kvm_x86_ops->set_efer(vcpu, efer);
908
909 /* Update reserved bits */
910 if ((efer ^ old_efer) & EFER_NX)
911 kvm_mmu_reset_context(vcpu);
912
913 return 0;
914 }
915
916 void kvm_enable_efer_bits(u64 mask)
917 {
918 efer_reserved_bits &= ~mask;
919 }
920 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
921
922
923 /*
924 * Writes msr value into into the appropriate "register".
925 * Returns 0 on success, non-0 otherwise.
926 * Assumes vcpu_load() was already called.
927 */
928 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
929 {
930 return kvm_x86_ops->set_msr(vcpu, msr);
931 }
932
933 /*
934 * Adapt set_msr() to msr_io()'s calling convention
935 */
936 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
937 {
938 struct msr_data msr;
939
940 msr.data = *data;
941 msr.index = index;
942 msr.host_initiated = true;
943 return kvm_set_msr(vcpu, &msr);
944 }
945
946 #ifdef CONFIG_X86_64
947 struct pvclock_gtod_data {
948 seqcount_t seq;
949
950 struct { /* extract of a clocksource struct */
951 int vclock_mode;
952 cycle_t cycle_last;
953 cycle_t mask;
954 u32 mult;
955 u32 shift;
956 } clock;
957
958 /* open coded 'struct timespec' */
959 u64 monotonic_time_snsec;
960 time_t monotonic_time_sec;
961 };
962
963 static struct pvclock_gtod_data pvclock_gtod_data;
964
965 static void update_pvclock_gtod(struct timekeeper *tk)
966 {
967 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
968
969 write_seqcount_begin(&vdata->seq);
970
971 /* copy pvclock gtod data */
972 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
973 vdata->clock.cycle_last = tk->clock->cycle_last;
974 vdata->clock.mask = tk->clock->mask;
975 vdata->clock.mult = tk->mult;
976 vdata->clock.shift = tk->shift;
977
978 vdata->monotonic_time_sec = tk->xtime_sec
979 + tk->wall_to_monotonic.tv_sec;
980 vdata->monotonic_time_snsec = tk->xtime_nsec
981 + (tk->wall_to_monotonic.tv_nsec
982 << tk->shift);
983 while (vdata->monotonic_time_snsec >=
984 (((u64)NSEC_PER_SEC) << tk->shift)) {
985 vdata->monotonic_time_snsec -=
986 ((u64)NSEC_PER_SEC) << tk->shift;
987 vdata->monotonic_time_sec++;
988 }
989
990 write_seqcount_end(&vdata->seq);
991 }
992 #endif
993
994
995 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
996 {
997 int version;
998 int r;
999 struct pvclock_wall_clock wc;
1000 struct timespec boot;
1001
1002 if (!wall_clock)
1003 return;
1004
1005 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1006 if (r)
1007 return;
1008
1009 if (version & 1)
1010 ++version; /* first time write, random junk */
1011
1012 ++version;
1013
1014 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1015
1016 /*
1017 * The guest calculates current wall clock time by adding
1018 * system time (updated by kvm_guest_time_update below) to the
1019 * wall clock specified here. guest system time equals host
1020 * system time for us, thus we must fill in host boot time here.
1021 */
1022 getboottime(&boot);
1023
1024 if (kvm->arch.kvmclock_offset) {
1025 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1026 boot = timespec_sub(boot, ts);
1027 }
1028 wc.sec = boot.tv_sec;
1029 wc.nsec = boot.tv_nsec;
1030 wc.version = version;
1031
1032 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1033
1034 version++;
1035 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1036 }
1037
1038 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1039 {
1040 uint32_t quotient, remainder;
1041
1042 /* Don't try to replace with do_div(), this one calculates
1043 * "(dividend << 32) / divisor" */
1044 __asm__ ( "divl %4"
1045 : "=a" (quotient), "=d" (remainder)
1046 : "0" (0), "1" (dividend), "r" (divisor) );
1047 return quotient;
1048 }
1049
1050 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1051 s8 *pshift, u32 *pmultiplier)
1052 {
1053 uint64_t scaled64;
1054 int32_t shift = 0;
1055 uint64_t tps64;
1056 uint32_t tps32;
1057
1058 tps64 = base_khz * 1000LL;
1059 scaled64 = scaled_khz * 1000LL;
1060 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1061 tps64 >>= 1;
1062 shift--;
1063 }
1064
1065 tps32 = (uint32_t)tps64;
1066 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1067 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1068 scaled64 >>= 1;
1069 else
1070 tps32 <<= 1;
1071 shift++;
1072 }
1073
1074 *pshift = shift;
1075 *pmultiplier = div_frac(scaled64, tps32);
1076
1077 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1078 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1079 }
1080
1081 static inline u64 get_kernel_ns(void)
1082 {
1083 struct timespec ts;
1084
1085 WARN_ON(preemptible());
1086 ktime_get_ts(&ts);
1087 monotonic_to_bootbased(&ts);
1088 return timespec_to_ns(&ts);
1089 }
1090
1091 #ifdef CONFIG_X86_64
1092 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1093 #endif
1094
1095 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1096 unsigned long max_tsc_khz;
1097
1098 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1099 {
1100 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1101 vcpu->arch.virtual_tsc_shift);
1102 }
1103
1104 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1105 {
1106 u64 v = (u64)khz * (1000000 + ppm);
1107 do_div(v, 1000000);
1108 return v;
1109 }
1110
1111 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1112 {
1113 u32 thresh_lo, thresh_hi;
1114 int use_scaling = 0;
1115
1116 /* tsc_khz can be zero if TSC calibration fails */
1117 if (this_tsc_khz == 0)
1118 return;
1119
1120 /* Compute a scale to convert nanoseconds in TSC cycles */
1121 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1122 &vcpu->arch.virtual_tsc_shift,
1123 &vcpu->arch.virtual_tsc_mult);
1124 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1125
1126 /*
1127 * Compute the variation in TSC rate which is acceptable
1128 * within the range of tolerance and decide if the
1129 * rate being applied is within that bounds of the hardware
1130 * rate. If so, no scaling or compensation need be done.
1131 */
1132 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1133 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1134 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1135 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1136 use_scaling = 1;
1137 }
1138 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1139 }
1140
1141 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1142 {
1143 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1144 vcpu->arch.virtual_tsc_mult,
1145 vcpu->arch.virtual_tsc_shift);
1146 tsc += vcpu->arch.this_tsc_write;
1147 return tsc;
1148 }
1149
1150 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1151 {
1152 #ifdef CONFIG_X86_64
1153 bool vcpus_matched;
1154 bool do_request = false;
1155 struct kvm_arch *ka = &vcpu->kvm->arch;
1156 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1157
1158 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1159 atomic_read(&vcpu->kvm->online_vcpus));
1160
1161 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1162 if (!ka->use_master_clock)
1163 do_request = 1;
1164
1165 if (!vcpus_matched && ka->use_master_clock)
1166 do_request = 1;
1167
1168 if (do_request)
1169 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1170
1171 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1172 atomic_read(&vcpu->kvm->online_vcpus),
1173 ka->use_master_clock, gtod->clock.vclock_mode);
1174 #endif
1175 }
1176
1177 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1178 {
1179 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1180 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1181 }
1182
1183 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1184 {
1185 struct kvm *kvm = vcpu->kvm;
1186 u64 offset, ns, elapsed;
1187 unsigned long flags;
1188 s64 usdiff;
1189 bool matched;
1190 u64 data = msr->data;
1191
1192 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1193 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1194 ns = get_kernel_ns();
1195 elapsed = ns - kvm->arch.last_tsc_nsec;
1196
1197 if (vcpu->arch.virtual_tsc_khz) {
1198 int faulted = 0;
1199
1200 /* n.b - signed multiplication and division required */
1201 usdiff = data - kvm->arch.last_tsc_write;
1202 #ifdef CONFIG_X86_64
1203 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1204 #else
1205 /* do_div() only does unsigned */
1206 asm("1: idivl %[divisor]\n"
1207 "2: xor %%edx, %%edx\n"
1208 " movl $0, %[faulted]\n"
1209 "3:\n"
1210 ".section .fixup,\"ax\"\n"
1211 "4: movl $1, %[faulted]\n"
1212 " jmp 3b\n"
1213 ".previous\n"
1214
1215 _ASM_EXTABLE(1b, 4b)
1216
1217 : "=A"(usdiff), [faulted] "=r" (faulted)
1218 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1219
1220 #endif
1221 do_div(elapsed, 1000);
1222 usdiff -= elapsed;
1223 if (usdiff < 0)
1224 usdiff = -usdiff;
1225
1226 /* idivl overflow => difference is larger than USEC_PER_SEC */
1227 if (faulted)
1228 usdiff = USEC_PER_SEC;
1229 } else
1230 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1231
1232 /*
1233 * Special case: TSC write with a small delta (1 second) of virtual
1234 * cycle time against real time is interpreted as an attempt to
1235 * synchronize the CPU.
1236 *
1237 * For a reliable TSC, we can match TSC offsets, and for an unstable
1238 * TSC, we add elapsed time in this computation. We could let the
1239 * compensation code attempt to catch up if we fall behind, but
1240 * it's better to try to match offsets from the beginning.
1241 */
1242 if (usdiff < USEC_PER_SEC &&
1243 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1244 if (!check_tsc_unstable()) {
1245 offset = kvm->arch.cur_tsc_offset;
1246 pr_debug("kvm: matched tsc offset for %llu\n", data);
1247 } else {
1248 u64 delta = nsec_to_cycles(vcpu, elapsed);
1249 data += delta;
1250 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1251 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1252 }
1253 matched = true;
1254 } else {
1255 /*
1256 * We split periods of matched TSC writes into generations.
1257 * For each generation, we track the original measured
1258 * nanosecond time, offset, and write, so if TSCs are in
1259 * sync, we can match exact offset, and if not, we can match
1260 * exact software computation in compute_guest_tsc()
1261 *
1262 * These values are tracked in kvm->arch.cur_xxx variables.
1263 */
1264 kvm->arch.cur_tsc_generation++;
1265 kvm->arch.cur_tsc_nsec = ns;
1266 kvm->arch.cur_tsc_write = data;
1267 kvm->arch.cur_tsc_offset = offset;
1268 matched = false;
1269 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1270 kvm->arch.cur_tsc_generation, data);
1271 }
1272
1273 /*
1274 * We also track th most recent recorded KHZ, write and time to
1275 * allow the matching interval to be extended at each write.
1276 */
1277 kvm->arch.last_tsc_nsec = ns;
1278 kvm->arch.last_tsc_write = data;
1279 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1280
1281 /* Reset of TSC must disable overshoot protection below */
1282 vcpu->arch.hv_clock.tsc_timestamp = 0;
1283 vcpu->arch.last_guest_tsc = data;
1284
1285 /* Keep track of which generation this VCPU has synchronized to */
1286 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1287 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1288 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1289
1290 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1291 update_ia32_tsc_adjust_msr(vcpu, offset);
1292 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1293 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1294
1295 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1296 if (matched)
1297 kvm->arch.nr_vcpus_matched_tsc++;
1298 else
1299 kvm->arch.nr_vcpus_matched_tsc = 0;
1300
1301 kvm_track_tsc_matching(vcpu);
1302 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1303 }
1304
1305 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1306
1307 #ifdef CONFIG_X86_64
1308
1309 static cycle_t read_tsc(void)
1310 {
1311 cycle_t ret;
1312 u64 last;
1313
1314 /*
1315 * Empirically, a fence (of type that depends on the CPU)
1316 * before rdtsc is enough to ensure that rdtsc is ordered
1317 * with respect to loads. The various CPU manuals are unclear
1318 * as to whether rdtsc can be reordered with later loads,
1319 * but no one has ever seen it happen.
1320 */
1321 rdtsc_barrier();
1322 ret = (cycle_t)vget_cycles();
1323
1324 last = pvclock_gtod_data.clock.cycle_last;
1325
1326 if (likely(ret >= last))
1327 return ret;
1328
1329 /*
1330 * GCC likes to generate cmov here, but this branch is extremely
1331 * predictable (it's just a funciton of time and the likely is
1332 * very likely) and there's a data dependence, so force GCC
1333 * to generate a branch instead. I don't barrier() because
1334 * we don't actually need a barrier, and if this function
1335 * ever gets inlined it will generate worse code.
1336 */
1337 asm volatile ("");
1338 return last;
1339 }
1340
1341 static inline u64 vgettsc(cycle_t *cycle_now)
1342 {
1343 long v;
1344 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1345
1346 *cycle_now = read_tsc();
1347
1348 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1349 return v * gtod->clock.mult;
1350 }
1351
1352 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1353 {
1354 unsigned long seq;
1355 u64 ns;
1356 int mode;
1357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359 ts->tv_nsec = 0;
1360 do {
1361 seq = read_seqcount_begin(&gtod->seq);
1362 mode = gtod->clock.vclock_mode;
1363 ts->tv_sec = gtod->monotonic_time_sec;
1364 ns = gtod->monotonic_time_snsec;
1365 ns += vgettsc(cycle_now);
1366 ns >>= gtod->clock.shift;
1367 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1368 timespec_add_ns(ts, ns);
1369
1370 return mode;
1371 }
1372
1373 /* returns true if host is using tsc clocksource */
1374 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1375 {
1376 struct timespec ts;
1377
1378 /* checked again under seqlock below */
1379 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1380 return false;
1381
1382 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1383 return false;
1384
1385 monotonic_to_bootbased(&ts);
1386 *kernel_ns = timespec_to_ns(&ts);
1387
1388 return true;
1389 }
1390 #endif
1391
1392 /*
1393 *
1394 * Assuming a stable TSC across physical CPUS, and a stable TSC
1395 * across virtual CPUs, the following condition is possible.
1396 * Each numbered line represents an event visible to both
1397 * CPUs at the next numbered event.
1398 *
1399 * "timespecX" represents host monotonic time. "tscX" represents
1400 * RDTSC value.
1401 *
1402 * VCPU0 on CPU0 | VCPU1 on CPU1
1403 *
1404 * 1. read timespec0,tsc0
1405 * 2. | timespec1 = timespec0 + N
1406 * | tsc1 = tsc0 + M
1407 * 3. transition to guest | transition to guest
1408 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1409 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1410 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1411 *
1412 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1413 *
1414 * - ret0 < ret1
1415 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1416 * ...
1417 * - 0 < N - M => M < N
1418 *
1419 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1420 * always the case (the difference between two distinct xtime instances
1421 * might be smaller then the difference between corresponding TSC reads,
1422 * when updating guest vcpus pvclock areas).
1423 *
1424 * To avoid that problem, do not allow visibility of distinct
1425 * system_timestamp/tsc_timestamp values simultaneously: use a master
1426 * copy of host monotonic time values. Update that master copy
1427 * in lockstep.
1428 *
1429 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1430 *
1431 */
1432
1433 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1434 {
1435 #ifdef CONFIG_X86_64
1436 struct kvm_arch *ka = &kvm->arch;
1437 int vclock_mode;
1438 bool host_tsc_clocksource, vcpus_matched;
1439
1440 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1441 atomic_read(&kvm->online_vcpus));
1442
1443 /*
1444 * If the host uses TSC clock, then passthrough TSC as stable
1445 * to the guest.
1446 */
1447 host_tsc_clocksource = kvm_get_time_and_clockread(
1448 &ka->master_kernel_ns,
1449 &ka->master_cycle_now);
1450
1451 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1452
1453 if (ka->use_master_clock)
1454 atomic_set(&kvm_guest_has_master_clock, 1);
1455
1456 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1457 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1458 vcpus_matched);
1459 #endif
1460 }
1461
1462 static void kvm_gen_update_masterclock(struct kvm *kvm)
1463 {
1464 #ifdef CONFIG_X86_64
1465 int i;
1466 struct kvm_vcpu *vcpu;
1467 struct kvm_arch *ka = &kvm->arch;
1468
1469 spin_lock(&ka->pvclock_gtod_sync_lock);
1470 kvm_make_mclock_inprogress_request(kvm);
1471 /* no guest entries from this point */
1472 pvclock_update_vm_gtod_copy(kvm);
1473
1474 kvm_for_each_vcpu(i, vcpu, kvm)
1475 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1476
1477 /* guest entries allowed */
1478 kvm_for_each_vcpu(i, vcpu, kvm)
1479 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1480
1481 spin_unlock(&ka->pvclock_gtod_sync_lock);
1482 #endif
1483 }
1484
1485 static int kvm_guest_time_update(struct kvm_vcpu *v)
1486 {
1487 unsigned long flags, this_tsc_khz;
1488 struct kvm_vcpu_arch *vcpu = &v->arch;
1489 struct kvm_arch *ka = &v->kvm->arch;
1490 s64 kernel_ns;
1491 u64 tsc_timestamp, host_tsc;
1492 struct pvclock_vcpu_time_info guest_hv_clock;
1493 u8 pvclock_flags;
1494 bool use_master_clock;
1495
1496 kernel_ns = 0;
1497 host_tsc = 0;
1498
1499 /*
1500 * If the host uses TSC clock, then passthrough TSC as stable
1501 * to the guest.
1502 */
1503 spin_lock(&ka->pvclock_gtod_sync_lock);
1504 use_master_clock = ka->use_master_clock;
1505 if (use_master_clock) {
1506 host_tsc = ka->master_cycle_now;
1507 kernel_ns = ka->master_kernel_ns;
1508 }
1509 spin_unlock(&ka->pvclock_gtod_sync_lock);
1510
1511 /* Keep irq disabled to prevent changes to the clock */
1512 local_irq_save(flags);
1513 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1514 if (unlikely(this_tsc_khz == 0)) {
1515 local_irq_restore(flags);
1516 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1517 return 1;
1518 }
1519 if (!use_master_clock) {
1520 host_tsc = native_read_tsc();
1521 kernel_ns = get_kernel_ns();
1522 }
1523
1524 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1525
1526 /*
1527 * We may have to catch up the TSC to match elapsed wall clock
1528 * time for two reasons, even if kvmclock is used.
1529 * 1) CPU could have been running below the maximum TSC rate
1530 * 2) Broken TSC compensation resets the base at each VCPU
1531 * entry to avoid unknown leaps of TSC even when running
1532 * again on the same CPU. This may cause apparent elapsed
1533 * time to disappear, and the guest to stand still or run
1534 * very slowly.
1535 */
1536 if (vcpu->tsc_catchup) {
1537 u64 tsc = compute_guest_tsc(v, kernel_ns);
1538 if (tsc > tsc_timestamp) {
1539 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1540 tsc_timestamp = tsc;
1541 }
1542 }
1543
1544 local_irq_restore(flags);
1545
1546 if (!vcpu->pv_time_enabled)
1547 return 0;
1548
1549 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1550 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1551 &vcpu->hv_clock.tsc_shift,
1552 &vcpu->hv_clock.tsc_to_system_mul);
1553 vcpu->hw_tsc_khz = this_tsc_khz;
1554 }
1555
1556 /* With all the info we got, fill in the values */
1557 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1558 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1559 vcpu->last_kernel_ns = kernel_ns;
1560 vcpu->last_guest_tsc = tsc_timestamp;
1561
1562 /*
1563 * The interface expects us to write an even number signaling that the
1564 * update is finished. Since the guest won't see the intermediate
1565 * state, we just increase by 2 at the end.
1566 */
1567 vcpu->hv_clock.version += 2;
1568
1569 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1570 &guest_hv_clock, sizeof(guest_hv_clock))))
1571 return 0;
1572
1573 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1574 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1575
1576 if (vcpu->pvclock_set_guest_stopped_request) {
1577 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1578 vcpu->pvclock_set_guest_stopped_request = false;
1579 }
1580
1581 /* If the host uses TSC clocksource, then it is stable */
1582 if (use_master_clock)
1583 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1584
1585 vcpu->hv_clock.flags = pvclock_flags;
1586
1587 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1588 &vcpu->hv_clock,
1589 sizeof(vcpu->hv_clock));
1590 return 0;
1591 }
1592
1593 /*
1594 * kvmclock updates which are isolated to a given vcpu, such as
1595 * vcpu->cpu migration, should not allow system_timestamp from
1596 * the rest of the vcpus to remain static. Otherwise ntp frequency
1597 * correction applies to one vcpu's system_timestamp but not
1598 * the others.
1599 *
1600 * So in those cases, request a kvmclock update for all vcpus.
1601 * The worst case for a remote vcpu to update its kvmclock
1602 * is then bounded by maximum nohz sleep latency.
1603 */
1604
1605 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1606 {
1607 int i;
1608 struct kvm *kvm = v->kvm;
1609 struct kvm_vcpu *vcpu;
1610
1611 kvm_for_each_vcpu(i, vcpu, kvm) {
1612 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1613 kvm_vcpu_kick(vcpu);
1614 }
1615 }
1616
1617 static bool msr_mtrr_valid(unsigned msr)
1618 {
1619 switch (msr) {
1620 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1621 case MSR_MTRRfix64K_00000:
1622 case MSR_MTRRfix16K_80000:
1623 case MSR_MTRRfix16K_A0000:
1624 case MSR_MTRRfix4K_C0000:
1625 case MSR_MTRRfix4K_C8000:
1626 case MSR_MTRRfix4K_D0000:
1627 case MSR_MTRRfix4K_D8000:
1628 case MSR_MTRRfix4K_E0000:
1629 case MSR_MTRRfix4K_E8000:
1630 case MSR_MTRRfix4K_F0000:
1631 case MSR_MTRRfix4K_F8000:
1632 case MSR_MTRRdefType:
1633 case MSR_IA32_CR_PAT:
1634 return true;
1635 case 0x2f8:
1636 return true;
1637 }
1638 return false;
1639 }
1640
1641 static bool valid_pat_type(unsigned t)
1642 {
1643 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1644 }
1645
1646 static bool valid_mtrr_type(unsigned t)
1647 {
1648 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1649 }
1650
1651 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653 int i;
1654
1655 if (!msr_mtrr_valid(msr))
1656 return false;
1657
1658 if (msr == MSR_IA32_CR_PAT) {
1659 for (i = 0; i < 8; i++)
1660 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1661 return false;
1662 return true;
1663 } else if (msr == MSR_MTRRdefType) {
1664 if (data & ~0xcff)
1665 return false;
1666 return valid_mtrr_type(data & 0xff);
1667 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1668 for (i = 0; i < 8 ; i++)
1669 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1670 return false;
1671 return true;
1672 }
1673
1674 /* variable MTRRs */
1675 return valid_mtrr_type(data & 0xff);
1676 }
1677
1678 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1679 {
1680 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1681
1682 if (!mtrr_valid(vcpu, msr, data))
1683 return 1;
1684
1685 if (msr == MSR_MTRRdefType) {
1686 vcpu->arch.mtrr_state.def_type = data;
1687 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1688 } else if (msr == MSR_MTRRfix64K_00000)
1689 p[0] = data;
1690 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1691 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1692 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1693 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1694 else if (msr == MSR_IA32_CR_PAT)
1695 vcpu->arch.pat = data;
1696 else { /* Variable MTRRs */
1697 int idx, is_mtrr_mask;
1698 u64 *pt;
1699
1700 idx = (msr - 0x200) / 2;
1701 is_mtrr_mask = msr - 0x200 - 2 * idx;
1702 if (!is_mtrr_mask)
1703 pt =
1704 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1705 else
1706 pt =
1707 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1708 *pt = data;
1709 }
1710
1711 kvm_mmu_reset_context(vcpu);
1712 return 0;
1713 }
1714
1715 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1716 {
1717 u64 mcg_cap = vcpu->arch.mcg_cap;
1718 unsigned bank_num = mcg_cap & 0xff;
1719
1720 switch (msr) {
1721 case MSR_IA32_MCG_STATUS:
1722 vcpu->arch.mcg_status = data;
1723 break;
1724 case MSR_IA32_MCG_CTL:
1725 if (!(mcg_cap & MCG_CTL_P))
1726 return 1;
1727 if (data != 0 && data != ~(u64)0)
1728 return -1;
1729 vcpu->arch.mcg_ctl = data;
1730 break;
1731 default:
1732 if (msr >= MSR_IA32_MC0_CTL &&
1733 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1734 u32 offset = msr - MSR_IA32_MC0_CTL;
1735 /* only 0 or all 1s can be written to IA32_MCi_CTL
1736 * some Linux kernels though clear bit 10 in bank 4 to
1737 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1738 * this to avoid an uncatched #GP in the guest
1739 */
1740 if ((offset & 0x3) == 0 &&
1741 data != 0 && (data | (1 << 10)) != ~(u64)0)
1742 return -1;
1743 vcpu->arch.mce_banks[offset] = data;
1744 break;
1745 }
1746 return 1;
1747 }
1748 return 0;
1749 }
1750
1751 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1752 {
1753 struct kvm *kvm = vcpu->kvm;
1754 int lm = is_long_mode(vcpu);
1755 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1756 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1757 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1758 : kvm->arch.xen_hvm_config.blob_size_32;
1759 u32 page_num = data & ~PAGE_MASK;
1760 u64 page_addr = data & PAGE_MASK;
1761 u8 *page;
1762 int r;
1763
1764 r = -E2BIG;
1765 if (page_num >= blob_size)
1766 goto out;
1767 r = -ENOMEM;
1768 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1769 if (IS_ERR(page)) {
1770 r = PTR_ERR(page);
1771 goto out;
1772 }
1773 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1774 goto out_free;
1775 r = 0;
1776 out_free:
1777 kfree(page);
1778 out:
1779 return r;
1780 }
1781
1782 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1783 {
1784 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1785 }
1786
1787 static bool kvm_hv_msr_partition_wide(u32 msr)
1788 {
1789 bool r = false;
1790 switch (msr) {
1791 case HV_X64_MSR_GUEST_OS_ID:
1792 case HV_X64_MSR_HYPERCALL:
1793 r = true;
1794 break;
1795 }
1796
1797 return r;
1798 }
1799
1800 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1801 {
1802 struct kvm *kvm = vcpu->kvm;
1803
1804 switch (msr) {
1805 case HV_X64_MSR_GUEST_OS_ID:
1806 kvm->arch.hv_guest_os_id = data;
1807 /* setting guest os id to zero disables hypercall page */
1808 if (!kvm->arch.hv_guest_os_id)
1809 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1810 break;
1811 case HV_X64_MSR_HYPERCALL: {
1812 u64 gfn;
1813 unsigned long addr;
1814 u8 instructions[4];
1815
1816 /* if guest os id is not set hypercall should remain disabled */
1817 if (!kvm->arch.hv_guest_os_id)
1818 break;
1819 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1820 kvm->arch.hv_hypercall = data;
1821 break;
1822 }
1823 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1824 addr = gfn_to_hva(kvm, gfn);
1825 if (kvm_is_error_hva(addr))
1826 return 1;
1827 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1828 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1829 if (__copy_to_user((void __user *)addr, instructions, 4))
1830 return 1;
1831 kvm->arch.hv_hypercall = data;
1832 break;
1833 }
1834 default:
1835 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1836 "data 0x%llx\n", msr, data);
1837 return 1;
1838 }
1839 return 0;
1840 }
1841
1842 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1843 {
1844 switch (msr) {
1845 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1846 unsigned long addr;
1847
1848 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1849 vcpu->arch.hv_vapic = data;
1850 break;
1851 }
1852 addr = gfn_to_hva(vcpu->kvm, data >>
1853 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1854 if (kvm_is_error_hva(addr))
1855 return 1;
1856 if (__clear_user((void __user *)addr, PAGE_SIZE))
1857 return 1;
1858 vcpu->arch.hv_vapic = data;
1859 break;
1860 }
1861 case HV_X64_MSR_EOI:
1862 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1863 case HV_X64_MSR_ICR:
1864 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1865 case HV_X64_MSR_TPR:
1866 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1867 default:
1868 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1869 "data 0x%llx\n", msr, data);
1870 return 1;
1871 }
1872
1873 return 0;
1874 }
1875
1876 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1877 {
1878 gpa_t gpa = data & ~0x3f;
1879
1880 /* Bits 2:5 are reserved, Should be zero */
1881 if (data & 0x3c)
1882 return 1;
1883
1884 vcpu->arch.apf.msr_val = data;
1885
1886 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1887 kvm_clear_async_pf_completion_queue(vcpu);
1888 kvm_async_pf_hash_reset(vcpu);
1889 return 0;
1890 }
1891
1892 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1893 sizeof(u32)))
1894 return 1;
1895
1896 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1897 kvm_async_pf_wakeup_all(vcpu);
1898 return 0;
1899 }
1900
1901 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1902 {
1903 vcpu->arch.pv_time_enabled = false;
1904 }
1905
1906 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1907 {
1908 u64 delta;
1909
1910 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1911 return;
1912
1913 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1914 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1915 vcpu->arch.st.accum_steal = delta;
1916 }
1917
1918 static void record_steal_time(struct kvm_vcpu *vcpu)
1919 {
1920 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1921 return;
1922
1923 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1924 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1925 return;
1926
1927 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1928 vcpu->arch.st.steal.version += 2;
1929 vcpu->arch.st.accum_steal = 0;
1930
1931 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1932 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1933 }
1934
1935 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1936 {
1937 bool pr = false;
1938 u32 msr = msr_info->index;
1939 u64 data = msr_info->data;
1940
1941 switch (msr) {
1942 case MSR_AMD64_NB_CFG:
1943 case MSR_IA32_UCODE_REV:
1944 case MSR_IA32_UCODE_WRITE:
1945 case MSR_VM_HSAVE_PA:
1946 case MSR_AMD64_PATCH_LOADER:
1947 case MSR_AMD64_BU_CFG2:
1948 break;
1949
1950 case MSR_EFER:
1951 return set_efer(vcpu, data);
1952 case MSR_K7_HWCR:
1953 data &= ~(u64)0x40; /* ignore flush filter disable */
1954 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1955 data &= ~(u64)0x8; /* ignore TLB cache disable */
1956 if (data != 0) {
1957 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1958 data);
1959 return 1;
1960 }
1961 break;
1962 case MSR_FAM10H_MMIO_CONF_BASE:
1963 if (data != 0) {
1964 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1965 "0x%llx\n", data);
1966 return 1;
1967 }
1968 break;
1969 case MSR_IA32_DEBUGCTLMSR:
1970 if (!data) {
1971 /* We support the non-activated case already */
1972 break;
1973 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1974 /* Values other than LBR and BTF are vendor-specific,
1975 thus reserved and should throw a #GP */
1976 return 1;
1977 }
1978 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1979 __func__, data);
1980 break;
1981 case 0x200 ... 0x2ff:
1982 return set_msr_mtrr(vcpu, msr, data);
1983 case MSR_IA32_APICBASE:
1984 kvm_set_apic_base(vcpu, data);
1985 break;
1986 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1987 return kvm_x2apic_msr_write(vcpu, msr, data);
1988 case MSR_IA32_TSCDEADLINE:
1989 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1990 break;
1991 case MSR_IA32_TSC_ADJUST:
1992 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1993 if (!msr_info->host_initiated) {
1994 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1995 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1996 }
1997 vcpu->arch.ia32_tsc_adjust_msr = data;
1998 }
1999 break;
2000 case MSR_IA32_MISC_ENABLE:
2001 vcpu->arch.ia32_misc_enable_msr = data;
2002 break;
2003 case MSR_KVM_WALL_CLOCK_NEW:
2004 case MSR_KVM_WALL_CLOCK:
2005 vcpu->kvm->arch.wall_clock = data;
2006 kvm_write_wall_clock(vcpu->kvm, data);
2007 break;
2008 case MSR_KVM_SYSTEM_TIME_NEW:
2009 case MSR_KVM_SYSTEM_TIME: {
2010 u64 gpa_offset;
2011 kvmclock_reset(vcpu);
2012
2013 vcpu->arch.time = data;
2014 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2015
2016 /* we verify if the enable bit is set... */
2017 if (!(data & 1))
2018 break;
2019
2020 gpa_offset = data & ~(PAGE_MASK | 1);
2021
2022 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2023 &vcpu->arch.pv_time, data & ~1ULL,
2024 sizeof(struct pvclock_vcpu_time_info)))
2025 vcpu->arch.pv_time_enabled = false;
2026 else
2027 vcpu->arch.pv_time_enabled = true;
2028
2029 break;
2030 }
2031 case MSR_KVM_ASYNC_PF_EN:
2032 if (kvm_pv_enable_async_pf(vcpu, data))
2033 return 1;
2034 break;
2035 case MSR_KVM_STEAL_TIME:
2036
2037 if (unlikely(!sched_info_on()))
2038 return 1;
2039
2040 if (data & KVM_STEAL_RESERVED_MASK)
2041 return 1;
2042
2043 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2044 data & KVM_STEAL_VALID_BITS,
2045 sizeof(struct kvm_steal_time)))
2046 return 1;
2047
2048 vcpu->arch.st.msr_val = data;
2049
2050 if (!(data & KVM_MSR_ENABLED))
2051 break;
2052
2053 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2054
2055 preempt_disable();
2056 accumulate_steal_time(vcpu);
2057 preempt_enable();
2058
2059 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2060
2061 break;
2062 case MSR_KVM_PV_EOI_EN:
2063 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2064 return 1;
2065 break;
2066
2067 case MSR_IA32_MCG_CTL:
2068 case MSR_IA32_MCG_STATUS:
2069 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2070 return set_msr_mce(vcpu, msr, data);
2071
2072 /* Performance counters are not protected by a CPUID bit,
2073 * so we should check all of them in the generic path for the sake of
2074 * cross vendor migration.
2075 * Writing a zero into the event select MSRs disables them,
2076 * which we perfectly emulate ;-). Any other value should be at least
2077 * reported, some guests depend on them.
2078 */
2079 case MSR_K7_EVNTSEL0:
2080 case MSR_K7_EVNTSEL1:
2081 case MSR_K7_EVNTSEL2:
2082 case MSR_K7_EVNTSEL3:
2083 if (data != 0)
2084 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2085 "0x%x data 0x%llx\n", msr, data);
2086 break;
2087 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2088 * so we ignore writes to make it happy.
2089 */
2090 case MSR_K7_PERFCTR0:
2091 case MSR_K7_PERFCTR1:
2092 case MSR_K7_PERFCTR2:
2093 case MSR_K7_PERFCTR3:
2094 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2095 "0x%x data 0x%llx\n", msr, data);
2096 break;
2097 case MSR_P6_PERFCTR0:
2098 case MSR_P6_PERFCTR1:
2099 pr = true;
2100 case MSR_P6_EVNTSEL0:
2101 case MSR_P6_EVNTSEL1:
2102 if (kvm_pmu_msr(vcpu, msr))
2103 return kvm_pmu_set_msr(vcpu, msr_info);
2104
2105 if (pr || data != 0)
2106 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2107 "0x%x data 0x%llx\n", msr, data);
2108 break;
2109 case MSR_K7_CLK_CTL:
2110 /*
2111 * Ignore all writes to this no longer documented MSR.
2112 * Writes are only relevant for old K7 processors,
2113 * all pre-dating SVM, but a recommended workaround from
2114 * AMD for these chips. It is possible to specify the
2115 * affected processor models on the command line, hence
2116 * the need to ignore the workaround.
2117 */
2118 break;
2119 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2120 if (kvm_hv_msr_partition_wide(msr)) {
2121 int r;
2122 mutex_lock(&vcpu->kvm->lock);
2123 r = set_msr_hyperv_pw(vcpu, msr, data);
2124 mutex_unlock(&vcpu->kvm->lock);
2125 return r;
2126 } else
2127 return set_msr_hyperv(vcpu, msr, data);
2128 break;
2129 case MSR_IA32_BBL_CR_CTL3:
2130 /* Drop writes to this legacy MSR -- see rdmsr
2131 * counterpart for further detail.
2132 */
2133 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2134 break;
2135 case MSR_AMD64_OSVW_ID_LENGTH:
2136 if (!guest_cpuid_has_osvw(vcpu))
2137 return 1;
2138 vcpu->arch.osvw.length = data;
2139 break;
2140 case MSR_AMD64_OSVW_STATUS:
2141 if (!guest_cpuid_has_osvw(vcpu))
2142 return 1;
2143 vcpu->arch.osvw.status = data;
2144 break;
2145 default:
2146 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2147 return xen_hvm_config(vcpu, data);
2148 if (kvm_pmu_msr(vcpu, msr))
2149 return kvm_pmu_set_msr(vcpu, msr_info);
2150 if (!ignore_msrs) {
2151 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2152 msr, data);
2153 return 1;
2154 } else {
2155 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2156 msr, data);
2157 break;
2158 }
2159 }
2160 return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2163
2164
2165 /*
2166 * Reads an msr value (of 'msr_index') into 'pdata'.
2167 * Returns 0 on success, non-0 otherwise.
2168 * Assumes vcpu_load() was already called.
2169 */
2170 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2171 {
2172 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2173 }
2174
2175 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2176 {
2177 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2178
2179 if (!msr_mtrr_valid(msr))
2180 return 1;
2181
2182 if (msr == MSR_MTRRdefType)
2183 *pdata = vcpu->arch.mtrr_state.def_type +
2184 (vcpu->arch.mtrr_state.enabled << 10);
2185 else if (msr == MSR_MTRRfix64K_00000)
2186 *pdata = p[0];
2187 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2188 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2189 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2190 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2191 else if (msr == MSR_IA32_CR_PAT)
2192 *pdata = vcpu->arch.pat;
2193 else { /* Variable MTRRs */
2194 int idx, is_mtrr_mask;
2195 u64 *pt;
2196
2197 idx = (msr - 0x200) / 2;
2198 is_mtrr_mask = msr - 0x200 - 2 * idx;
2199 if (!is_mtrr_mask)
2200 pt =
2201 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2202 else
2203 pt =
2204 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2205 *pdata = *pt;
2206 }
2207
2208 return 0;
2209 }
2210
2211 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2212 {
2213 u64 data;
2214 u64 mcg_cap = vcpu->arch.mcg_cap;
2215 unsigned bank_num = mcg_cap & 0xff;
2216
2217 switch (msr) {
2218 case MSR_IA32_P5_MC_ADDR:
2219 case MSR_IA32_P5_MC_TYPE:
2220 data = 0;
2221 break;
2222 case MSR_IA32_MCG_CAP:
2223 data = vcpu->arch.mcg_cap;
2224 break;
2225 case MSR_IA32_MCG_CTL:
2226 if (!(mcg_cap & MCG_CTL_P))
2227 return 1;
2228 data = vcpu->arch.mcg_ctl;
2229 break;
2230 case MSR_IA32_MCG_STATUS:
2231 data = vcpu->arch.mcg_status;
2232 break;
2233 default:
2234 if (msr >= MSR_IA32_MC0_CTL &&
2235 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2236 u32 offset = msr - MSR_IA32_MC0_CTL;
2237 data = vcpu->arch.mce_banks[offset];
2238 break;
2239 }
2240 return 1;
2241 }
2242 *pdata = data;
2243 return 0;
2244 }
2245
2246 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2247 {
2248 u64 data = 0;
2249 struct kvm *kvm = vcpu->kvm;
2250
2251 switch (msr) {
2252 case HV_X64_MSR_GUEST_OS_ID:
2253 data = kvm->arch.hv_guest_os_id;
2254 break;
2255 case HV_X64_MSR_HYPERCALL:
2256 data = kvm->arch.hv_hypercall;
2257 break;
2258 default:
2259 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2260 return 1;
2261 }
2262
2263 *pdata = data;
2264 return 0;
2265 }
2266
2267 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2268 {
2269 u64 data = 0;
2270
2271 switch (msr) {
2272 case HV_X64_MSR_VP_INDEX: {
2273 int r;
2274 struct kvm_vcpu *v;
2275 kvm_for_each_vcpu(r, v, vcpu->kvm)
2276 if (v == vcpu)
2277 data = r;
2278 break;
2279 }
2280 case HV_X64_MSR_EOI:
2281 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2282 case HV_X64_MSR_ICR:
2283 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2284 case HV_X64_MSR_TPR:
2285 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2286 case HV_X64_MSR_APIC_ASSIST_PAGE:
2287 data = vcpu->arch.hv_vapic;
2288 break;
2289 default:
2290 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2291 return 1;
2292 }
2293 *pdata = data;
2294 return 0;
2295 }
2296
2297 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2298 {
2299 u64 data;
2300
2301 switch (msr) {
2302 case MSR_IA32_PLATFORM_ID:
2303 case MSR_IA32_EBL_CR_POWERON:
2304 case MSR_IA32_DEBUGCTLMSR:
2305 case MSR_IA32_LASTBRANCHFROMIP:
2306 case MSR_IA32_LASTBRANCHTOIP:
2307 case MSR_IA32_LASTINTFROMIP:
2308 case MSR_IA32_LASTINTTOIP:
2309 case MSR_K8_SYSCFG:
2310 case MSR_K7_HWCR:
2311 case MSR_VM_HSAVE_PA:
2312 case MSR_K7_EVNTSEL0:
2313 case MSR_K7_PERFCTR0:
2314 case MSR_K8_INT_PENDING_MSG:
2315 case MSR_AMD64_NB_CFG:
2316 case MSR_FAM10H_MMIO_CONF_BASE:
2317 case MSR_AMD64_BU_CFG2:
2318 data = 0;
2319 break;
2320 case MSR_P6_PERFCTR0:
2321 case MSR_P6_PERFCTR1:
2322 case MSR_P6_EVNTSEL0:
2323 case MSR_P6_EVNTSEL1:
2324 if (kvm_pmu_msr(vcpu, msr))
2325 return kvm_pmu_get_msr(vcpu, msr, pdata);
2326 data = 0;
2327 break;
2328 case MSR_IA32_UCODE_REV:
2329 data = 0x100000000ULL;
2330 break;
2331 case MSR_MTRRcap:
2332 data = 0x500 | KVM_NR_VAR_MTRR;
2333 break;
2334 case 0x200 ... 0x2ff:
2335 return get_msr_mtrr(vcpu, msr, pdata);
2336 case 0xcd: /* fsb frequency */
2337 data = 3;
2338 break;
2339 /*
2340 * MSR_EBC_FREQUENCY_ID
2341 * Conservative value valid for even the basic CPU models.
2342 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2343 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2344 * and 266MHz for model 3, or 4. Set Core Clock
2345 * Frequency to System Bus Frequency Ratio to 1 (bits
2346 * 31:24) even though these are only valid for CPU
2347 * models > 2, however guests may end up dividing or
2348 * multiplying by zero otherwise.
2349 */
2350 case MSR_EBC_FREQUENCY_ID:
2351 data = 1 << 24;
2352 break;
2353 case MSR_IA32_APICBASE:
2354 data = kvm_get_apic_base(vcpu);
2355 break;
2356 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2357 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2358 break;
2359 case MSR_IA32_TSCDEADLINE:
2360 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2361 break;
2362 case MSR_IA32_TSC_ADJUST:
2363 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2364 break;
2365 case MSR_IA32_MISC_ENABLE:
2366 data = vcpu->arch.ia32_misc_enable_msr;
2367 break;
2368 case MSR_IA32_PERF_STATUS:
2369 /* TSC increment by tick */
2370 data = 1000ULL;
2371 /* CPU multiplier */
2372 data |= (((uint64_t)4ULL) << 40);
2373 break;
2374 case MSR_EFER:
2375 data = vcpu->arch.efer;
2376 break;
2377 case MSR_KVM_WALL_CLOCK:
2378 case MSR_KVM_WALL_CLOCK_NEW:
2379 data = vcpu->kvm->arch.wall_clock;
2380 break;
2381 case MSR_KVM_SYSTEM_TIME:
2382 case MSR_KVM_SYSTEM_TIME_NEW:
2383 data = vcpu->arch.time;
2384 break;
2385 case MSR_KVM_ASYNC_PF_EN:
2386 data = vcpu->arch.apf.msr_val;
2387 break;
2388 case MSR_KVM_STEAL_TIME:
2389 data = vcpu->arch.st.msr_val;
2390 break;
2391 case MSR_KVM_PV_EOI_EN:
2392 data = vcpu->arch.pv_eoi.msr_val;
2393 break;
2394 case MSR_IA32_P5_MC_ADDR:
2395 case MSR_IA32_P5_MC_TYPE:
2396 case MSR_IA32_MCG_CAP:
2397 case MSR_IA32_MCG_CTL:
2398 case MSR_IA32_MCG_STATUS:
2399 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2400 return get_msr_mce(vcpu, msr, pdata);
2401 case MSR_K7_CLK_CTL:
2402 /*
2403 * Provide expected ramp-up count for K7. All other
2404 * are set to zero, indicating minimum divisors for
2405 * every field.
2406 *
2407 * This prevents guest kernels on AMD host with CPU
2408 * type 6, model 8 and higher from exploding due to
2409 * the rdmsr failing.
2410 */
2411 data = 0x20000000;
2412 break;
2413 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2414 if (kvm_hv_msr_partition_wide(msr)) {
2415 int r;
2416 mutex_lock(&vcpu->kvm->lock);
2417 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2418 mutex_unlock(&vcpu->kvm->lock);
2419 return r;
2420 } else
2421 return get_msr_hyperv(vcpu, msr, pdata);
2422 break;
2423 case MSR_IA32_BBL_CR_CTL3:
2424 /* This legacy MSR exists but isn't fully documented in current
2425 * silicon. It is however accessed by winxp in very narrow
2426 * scenarios where it sets bit #19, itself documented as
2427 * a "reserved" bit. Best effort attempt to source coherent
2428 * read data here should the balance of the register be
2429 * interpreted by the guest:
2430 *
2431 * L2 cache control register 3: 64GB range, 256KB size,
2432 * enabled, latency 0x1, configured
2433 */
2434 data = 0xbe702111;
2435 break;
2436 case MSR_AMD64_OSVW_ID_LENGTH:
2437 if (!guest_cpuid_has_osvw(vcpu))
2438 return 1;
2439 data = vcpu->arch.osvw.length;
2440 break;
2441 case MSR_AMD64_OSVW_STATUS:
2442 if (!guest_cpuid_has_osvw(vcpu))
2443 return 1;
2444 data = vcpu->arch.osvw.status;
2445 break;
2446 default:
2447 if (kvm_pmu_msr(vcpu, msr))
2448 return kvm_pmu_get_msr(vcpu, msr, pdata);
2449 if (!ignore_msrs) {
2450 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2451 return 1;
2452 } else {
2453 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2454 data = 0;
2455 }
2456 break;
2457 }
2458 *pdata = data;
2459 return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2462
2463 /*
2464 * Read or write a bunch of msrs. All parameters are kernel addresses.
2465 *
2466 * @return number of msrs set successfully.
2467 */
2468 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2469 struct kvm_msr_entry *entries,
2470 int (*do_msr)(struct kvm_vcpu *vcpu,
2471 unsigned index, u64 *data))
2472 {
2473 int i, idx;
2474
2475 idx = srcu_read_lock(&vcpu->kvm->srcu);
2476 for (i = 0; i < msrs->nmsrs; ++i)
2477 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2478 break;
2479 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2480
2481 return i;
2482 }
2483
2484 /*
2485 * Read or write a bunch of msrs. Parameters are user addresses.
2486 *
2487 * @return number of msrs set successfully.
2488 */
2489 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2490 int (*do_msr)(struct kvm_vcpu *vcpu,
2491 unsigned index, u64 *data),
2492 int writeback)
2493 {
2494 struct kvm_msrs msrs;
2495 struct kvm_msr_entry *entries;
2496 int r, n;
2497 unsigned size;
2498
2499 r = -EFAULT;
2500 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2501 goto out;
2502
2503 r = -E2BIG;
2504 if (msrs.nmsrs >= MAX_IO_MSRS)
2505 goto out;
2506
2507 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2508 entries = memdup_user(user_msrs->entries, size);
2509 if (IS_ERR(entries)) {
2510 r = PTR_ERR(entries);
2511 goto out;
2512 }
2513
2514 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2515 if (r < 0)
2516 goto out_free;
2517
2518 r = -EFAULT;
2519 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2520 goto out_free;
2521
2522 r = n;
2523
2524 out_free:
2525 kfree(entries);
2526 out:
2527 return r;
2528 }
2529
2530 int kvm_dev_ioctl_check_extension(long ext)
2531 {
2532 int r;
2533
2534 switch (ext) {
2535 case KVM_CAP_IRQCHIP:
2536 case KVM_CAP_HLT:
2537 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2538 case KVM_CAP_SET_TSS_ADDR:
2539 case KVM_CAP_EXT_CPUID:
2540 case KVM_CAP_EXT_EMUL_CPUID:
2541 case KVM_CAP_CLOCKSOURCE:
2542 case KVM_CAP_PIT:
2543 case KVM_CAP_NOP_IO_DELAY:
2544 case KVM_CAP_MP_STATE:
2545 case KVM_CAP_SYNC_MMU:
2546 case KVM_CAP_USER_NMI:
2547 case KVM_CAP_REINJECT_CONTROL:
2548 case KVM_CAP_IRQ_INJECT_STATUS:
2549 case KVM_CAP_IRQFD:
2550 case KVM_CAP_IOEVENTFD:
2551 case KVM_CAP_PIT2:
2552 case KVM_CAP_PIT_STATE2:
2553 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2554 case KVM_CAP_XEN_HVM:
2555 case KVM_CAP_ADJUST_CLOCK:
2556 case KVM_CAP_VCPU_EVENTS:
2557 case KVM_CAP_HYPERV:
2558 case KVM_CAP_HYPERV_VAPIC:
2559 case KVM_CAP_HYPERV_SPIN:
2560 case KVM_CAP_PCI_SEGMENT:
2561 case KVM_CAP_DEBUGREGS:
2562 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2563 case KVM_CAP_XSAVE:
2564 case KVM_CAP_ASYNC_PF:
2565 case KVM_CAP_GET_TSC_KHZ:
2566 case KVM_CAP_KVMCLOCK_CTRL:
2567 case KVM_CAP_READONLY_MEM:
2568 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2569 case KVM_CAP_ASSIGN_DEV_IRQ:
2570 case KVM_CAP_PCI_2_3:
2571 #endif
2572 r = 1;
2573 break;
2574 case KVM_CAP_COALESCED_MMIO:
2575 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2576 break;
2577 case KVM_CAP_VAPIC:
2578 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2579 break;
2580 case KVM_CAP_NR_VCPUS:
2581 r = KVM_SOFT_MAX_VCPUS;
2582 break;
2583 case KVM_CAP_MAX_VCPUS:
2584 r = KVM_MAX_VCPUS;
2585 break;
2586 case KVM_CAP_NR_MEMSLOTS:
2587 r = KVM_USER_MEM_SLOTS;
2588 break;
2589 case KVM_CAP_PV_MMU: /* obsolete */
2590 r = 0;
2591 break;
2592 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2593 case KVM_CAP_IOMMU:
2594 r = iommu_present(&pci_bus_type);
2595 break;
2596 #endif
2597 case KVM_CAP_MCE:
2598 r = KVM_MAX_MCE_BANKS;
2599 break;
2600 case KVM_CAP_XCRS:
2601 r = cpu_has_xsave;
2602 break;
2603 case KVM_CAP_TSC_CONTROL:
2604 r = kvm_has_tsc_control;
2605 break;
2606 case KVM_CAP_TSC_DEADLINE_TIMER:
2607 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2608 break;
2609 default:
2610 r = 0;
2611 break;
2612 }
2613 return r;
2614
2615 }
2616
2617 long kvm_arch_dev_ioctl(struct file *filp,
2618 unsigned int ioctl, unsigned long arg)
2619 {
2620 void __user *argp = (void __user *)arg;
2621 long r;
2622
2623 switch (ioctl) {
2624 case KVM_GET_MSR_INDEX_LIST: {
2625 struct kvm_msr_list __user *user_msr_list = argp;
2626 struct kvm_msr_list msr_list;
2627 unsigned n;
2628
2629 r = -EFAULT;
2630 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2631 goto out;
2632 n = msr_list.nmsrs;
2633 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2634 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2635 goto out;
2636 r = -E2BIG;
2637 if (n < msr_list.nmsrs)
2638 goto out;
2639 r = -EFAULT;
2640 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2641 num_msrs_to_save * sizeof(u32)))
2642 goto out;
2643 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2644 &emulated_msrs,
2645 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2646 goto out;
2647 r = 0;
2648 break;
2649 }
2650 case KVM_GET_SUPPORTED_CPUID:
2651 case KVM_GET_EMULATED_CPUID: {
2652 struct kvm_cpuid2 __user *cpuid_arg = argp;
2653 struct kvm_cpuid2 cpuid;
2654
2655 r = -EFAULT;
2656 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2657 goto out;
2658
2659 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2660 ioctl);
2661 if (r)
2662 goto out;
2663
2664 r = -EFAULT;
2665 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2666 goto out;
2667 r = 0;
2668 break;
2669 }
2670 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2671 u64 mce_cap;
2672
2673 mce_cap = KVM_MCE_CAP_SUPPORTED;
2674 r = -EFAULT;
2675 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2676 goto out;
2677 r = 0;
2678 break;
2679 }
2680 default:
2681 r = -EINVAL;
2682 }
2683 out:
2684 return r;
2685 }
2686
2687 static void wbinvd_ipi(void *garbage)
2688 {
2689 wbinvd();
2690 }
2691
2692 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2693 {
2694 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2695 }
2696
2697 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2698 {
2699 /* Address WBINVD may be executed by guest */
2700 if (need_emulate_wbinvd(vcpu)) {
2701 if (kvm_x86_ops->has_wbinvd_exit())
2702 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2703 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2704 smp_call_function_single(vcpu->cpu,
2705 wbinvd_ipi, NULL, 1);
2706 }
2707
2708 kvm_x86_ops->vcpu_load(vcpu, cpu);
2709
2710 /* Apply any externally detected TSC adjustments (due to suspend) */
2711 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2712 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2713 vcpu->arch.tsc_offset_adjustment = 0;
2714 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2715 }
2716
2717 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2718 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2719 native_read_tsc() - vcpu->arch.last_host_tsc;
2720 if (tsc_delta < 0)
2721 mark_tsc_unstable("KVM discovered backwards TSC");
2722 if (check_tsc_unstable()) {
2723 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2724 vcpu->arch.last_guest_tsc);
2725 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2726 vcpu->arch.tsc_catchup = 1;
2727 }
2728 /*
2729 * On a host with synchronized TSC, there is no need to update
2730 * kvmclock on vcpu->cpu migration
2731 */
2732 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2733 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2734 if (vcpu->cpu != cpu)
2735 kvm_migrate_timers(vcpu);
2736 vcpu->cpu = cpu;
2737 }
2738
2739 accumulate_steal_time(vcpu);
2740 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2741 }
2742
2743 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2744 {
2745 kvm_x86_ops->vcpu_put(vcpu);
2746 kvm_put_guest_fpu(vcpu);
2747 vcpu->arch.last_host_tsc = native_read_tsc();
2748 }
2749
2750 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2751 struct kvm_lapic_state *s)
2752 {
2753 kvm_x86_ops->sync_pir_to_irr(vcpu);
2754 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2755
2756 return 0;
2757 }
2758
2759 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2760 struct kvm_lapic_state *s)
2761 {
2762 kvm_apic_post_state_restore(vcpu, s);
2763 update_cr8_intercept(vcpu);
2764
2765 return 0;
2766 }
2767
2768 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2769 struct kvm_interrupt *irq)
2770 {
2771 if (irq->irq >= KVM_NR_INTERRUPTS)
2772 return -EINVAL;
2773 if (irqchip_in_kernel(vcpu->kvm))
2774 return -ENXIO;
2775
2776 kvm_queue_interrupt(vcpu, irq->irq, false);
2777 kvm_make_request(KVM_REQ_EVENT, vcpu);
2778
2779 return 0;
2780 }
2781
2782 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2783 {
2784 kvm_inject_nmi(vcpu);
2785
2786 return 0;
2787 }
2788
2789 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2790 struct kvm_tpr_access_ctl *tac)
2791 {
2792 if (tac->flags)
2793 return -EINVAL;
2794 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2795 return 0;
2796 }
2797
2798 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2799 u64 mcg_cap)
2800 {
2801 int r;
2802 unsigned bank_num = mcg_cap & 0xff, bank;
2803
2804 r = -EINVAL;
2805 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2806 goto out;
2807 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2808 goto out;
2809 r = 0;
2810 vcpu->arch.mcg_cap = mcg_cap;
2811 /* Init IA32_MCG_CTL to all 1s */
2812 if (mcg_cap & MCG_CTL_P)
2813 vcpu->arch.mcg_ctl = ~(u64)0;
2814 /* Init IA32_MCi_CTL to all 1s */
2815 for (bank = 0; bank < bank_num; bank++)
2816 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2817 out:
2818 return r;
2819 }
2820
2821 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2822 struct kvm_x86_mce *mce)
2823 {
2824 u64 mcg_cap = vcpu->arch.mcg_cap;
2825 unsigned bank_num = mcg_cap & 0xff;
2826 u64 *banks = vcpu->arch.mce_banks;
2827
2828 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2829 return -EINVAL;
2830 /*
2831 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2832 * reporting is disabled
2833 */
2834 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2835 vcpu->arch.mcg_ctl != ~(u64)0)
2836 return 0;
2837 banks += 4 * mce->bank;
2838 /*
2839 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2840 * reporting is disabled for the bank
2841 */
2842 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2843 return 0;
2844 if (mce->status & MCI_STATUS_UC) {
2845 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2846 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2847 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2848 return 0;
2849 }
2850 if (banks[1] & MCI_STATUS_VAL)
2851 mce->status |= MCI_STATUS_OVER;
2852 banks[2] = mce->addr;
2853 banks[3] = mce->misc;
2854 vcpu->arch.mcg_status = mce->mcg_status;
2855 banks[1] = mce->status;
2856 kvm_queue_exception(vcpu, MC_VECTOR);
2857 } else if (!(banks[1] & MCI_STATUS_VAL)
2858 || !(banks[1] & MCI_STATUS_UC)) {
2859 if (banks[1] & MCI_STATUS_VAL)
2860 mce->status |= MCI_STATUS_OVER;
2861 banks[2] = mce->addr;
2862 banks[3] = mce->misc;
2863 banks[1] = mce->status;
2864 } else
2865 banks[1] |= MCI_STATUS_OVER;
2866 return 0;
2867 }
2868
2869 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2870 struct kvm_vcpu_events *events)
2871 {
2872 process_nmi(vcpu);
2873 events->exception.injected =
2874 vcpu->arch.exception.pending &&
2875 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2876 events->exception.nr = vcpu->arch.exception.nr;
2877 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2878 events->exception.pad = 0;
2879 events->exception.error_code = vcpu->arch.exception.error_code;
2880
2881 events->interrupt.injected =
2882 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2883 events->interrupt.nr = vcpu->arch.interrupt.nr;
2884 events->interrupt.soft = 0;
2885 events->interrupt.shadow =
2886 kvm_x86_ops->get_interrupt_shadow(vcpu,
2887 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2888
2889 events->nmi.injected = vcpu->arch.nmi_injected;
2890 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2891 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2892 events->nmi.pad = 0;
2893
2894 events->sipi_vector = 0; /* never valid when reporting to user space */
2895
2896 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2897 | KVM_VCPUEVENT_VALID_SHADOW);
2898 memset(&events->reserved, 0, sizeof(events->reserved));
2899 }
2900
2901 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2902 struct kvm_vcpu_events *events)
2903 {
2904 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2905 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2906 | KVM_VCPUEVENT_VALID_SHADOW))
2907 return -EINVAL;
2908
2909 process_nmi(vcpu);
2910 vcpu->arch.exception.pending = events->exception.injected;
2911 vcpu->arch.exception.nr = events->exception.nr;
2912 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2913 vcpu->arch.exception.error_code = events->exception.error_code;
2914
2915 vcpu->arch.interrupt.pending = events->interrupt.injected;
2916 vcpu->arch.interrupt.nr = events->interrupt.nr;
2917 vcpu->arch.interrupt.soft = events->interrupt.soft;
2918 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2919 kvm_x86_ops->set_interrupt_shadow(vcpu,
2920 events->interrupt.shadow);
2921
2922 vcpu->arch.nmi_injected = events->nmi.injected;
2923 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2924 vcpu->arch.nmi_pending = events->nmi.pending;
2925 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2926
2927 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2928 kvm_vcpu_has_lapic(vcpu))
2929 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2930
2931 kvm_make_request(KVM_REQ_EVENT, vcpu);
2932
2933 return 0;
2934 }
2935
2936 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2937 struct kvm_debugregs *dbgregs)
2938 {
2939 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2940 dbgregs->dr6 = vcpu->arch.dr6;
2941 dbgregs->dr7 = vcpu->arch.dr7;
2942 dbgregs->flags = 0;
2943 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2944 }
2945
2946 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2947 struct kvm_debugregs *dbgregs)
2948 {
2949 if (dbgregs->flags)
2950 return -EINVAL;
2951
2952 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2953 vcpu->arch.dr6 = dbgregs->dr6;
2954 vcpu->arch.dr7 = dbgregs->dr7;
2955
2956 return 0;
2957 }
2958
2959 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2960 struct kvm_xsave *guest_xsave)
2961 {
2962 if (cpu_has_xsave) {
2963 memcpy(guest_xsave->region,
2964 &vcpu->arch.guest_fpu.state->xsave,
2965 vcpu->arch.guest_xstate_size);
2966 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
2967 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
2968 } else {
2969 memcpy(guest_xsave->region,
2970 &vcpu->arch.guest_fpu.state->fxsave,
2971 sizeof(struct i387_fxsave_struct));
2972 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2973 XSTATE_FPSSE;
2974 }
2975 }
2976
2977 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2978 struct kvm_xsave *guest_xsave)
2979 {
2980 u64 xstate_bv =
2981 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2982
2983 if (cpu_has_xsave) {
2984 /*
2985 * Here we allow setting states that are not present in
2986 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
2987 * with old userspace.
2988 */
2989 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
2990 return -EINVAL;
2991 if (xstate_bv & ~host_xcr0)
2992 return -EINVAL;
2993 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2994 guest_xsave->region, vcpu->arch.guest_xstate_size);
2995 } else {
2996 if (xstate_bv & ~XSTATE_FPSSE)
2997 return -EINVAL;
2998 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2999 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3000 }
3001 return 0;
3002 }
3003
3004 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3005 struct kvm_xcrs *guest_xcrs)
3006 {
3007 if (!cpu_has_xsave) {
3008 guest_xcrs->nr_xcrs = 0;
3009 return;
3010 }
3011
3012 guest_xcrs->nr_xcrs = 1;
3013 guest_xcrs->flags = 0;
3014 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3015 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3019 struct kvm_xcrs *guest_xcrs)
3020 {
3021 int i, r = 0;
3022
3023 if (!cpu_has_xsave)
3024 return -EINVAL;
3025
3026 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3027 return -EINVAL;
3028
3029 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3030 /* Only support XCR0 currently */
3031 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3032 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3033 guest_xcrs->xcrs[i].value);
3034 break;
3035 }
3036 if (r)
3037 r = -EINVAL;
3038 return r;
3039 }
3040
3041 /*
3042 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3043 * stopped by the hypervisor. This function will be called from the host only.
3044 * EINVAL is returned when the host attempts to set the flag for a guest that
3045 * does not support pv clocks.
3046 */
3047 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3048 {
3049 if (!vcpu->arch.pv_time_enabled)
3050 return -EINVAL;
3051 vcpu->arch.pvclock_set_guest_stopped_request = true;
3052 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3053 return 0;
3054 }
3055
3056 long kvm_arch_vcpu_ioctl(struct file *filp,
3057 unsigned int ioctl, unsigned long arg)
3058 {
3059 struct kvm_vcpu *vcpu = filp->private_data;
3060 void __user *argp = (void __user *)arg;
3061 int r;
3062 union {
3063 struct kvm_lapic_state *lapic;
3064 struct kvm_xsave *xsave;
3065 struct kvm_xcrs *xcrs;
3066 void *buffer;
3067 } u;
3068
3069 u.buffer = NULL;
3070 switch (ioctl) {
3071 case KVM_GET_LAPIC: {
3072 r = -EINVAL;
3073 if (!vcpu->arch.apic)
3074 goto out;
3075 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3076
3077 r = -ENOMEM;
3078 if (!u.lapic)
3079 goto out;
3080 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3081 if (r)
3082 goto out;
3083 r = -EFAULT;
3084 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3085 goto out;
3086 r = 0;
3087 break;
3088 }
3089 case KVM_SET_LAPIC: {
3090 r = -EINVAL;
3091 if (!vcpu->arch.apic)
3092 goto out;
3093 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3094 if (IS_ERR(u.lapic))
3095 return PTR_ERR(u.lapic);
3096
3097 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3098 break;
3099 }
3100 case KVM_INTERRUPT: {
3101 struct kvm_interrupt irq;
3102
3103 r = -EFAULT;
3104 if (copy_from_user(&irq, argp, sizeof irq))
3105 goto out;
3106 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3107 break;
3108 }
3109 case KVM_NMI: {
3110 r = kvm_vcpu_ioctl_nmi(vcpu);
3111 break;
3112 }
3113 case KVM_SET_CPUID: {
3114 struct kvm_cpuid __user *cpuid_arg = argp;
3115 struct kvm_cpuid cpuid;
3116
3117 r = -EFAULT;
3118 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3119 goto out;
3120 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3121 break;
3122 }
3123 case KVM_SET_CPUID2: {
3124 struct kvm_cpuid2 __user *cpuid_arg = argp;
3125 struct kvm_cpuid2 cpuid;
3126
3127 r = -EFAULT;
3128 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3129 goto out;
3130 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3131 cpuid_arg->entries);
3132 break;
3133 }
3134 case KVM_GET_CPUID2: {
3135 struct kvm_cpuid2 __user *cpuid_arg = argp;
3136 struct kvm_cpuid2 cpuid;
3137
3138 r = -EFAULT;
3139 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3140 goto out;
3141 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3142 cpuid_arg->entries);
3143 if (r)
3144 goto out;
3145 r = -EFAULT;
3146 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3147 goto out;
3148 r = 0;
3149 break;
3150 }
3151 case KVM_GET_MSRS:
3152 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3153 break;
3154 case KVM_SET_MSRS:
3155 r = msr_io(vcpu, argp, do_set_msr, 0);
3156 break;
3157 case KVM_TPR_ACCESS_REPORTING: {
3158 struct kvm_tpr_access_ctl tac;
3159
3160 r = -EFAULT;
3161 if (copy_from_user(&tac, argp, sizeof tac))
3162 goto out;
3163 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3164 if (r)
3165 goto out;
3166 r = -EFAULT;
3167 if (copy_to_user(argp, &tac, sizeof tac))
3168 goto out;
3169 r = 0;
3170 break;
3171 };
3172 case KVM_SET_VAPIC_ADDR: {
3173 struct kvm_vapic_addr va;
3174
3175 r = -EINVAL;
3176 if (!irqchip_in_kernel(vcpu->kvm))
3177 goto out;
3178 r = -EFAULT;
3179 if (copy_from_user(&va, argp, sizeof va))
3180 goto out;
3181 r = 0;
3182 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3183 break;
3184 }
3185 case KVM_X86_SETUP_MCE: {
3186 u64 mcg_cap;
3187
3188 r = -EFAULT;
3189 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3190 goto out;
3191 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3192 break;
3193 }
3194 case KVM_X86_SET_MCE: {
3195 struct kvm_x86_mce mce;
3196
3197 r = -EFAULT;
3198 if (copy_from_user(&mce, argp, sizeof mce))
3199 goto out;
3200 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3201 break;
3202 }
3203 case KVM_GET_VCPU_EVENTS: {
3204 struct kvm_vcpu_events events;
3205
3206 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3207
3208 r = -EFAULT;
3209 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3210 break;
3211 r = 0;
3212 break;
3213 }
3214 case KVM_SET_VCPU_EVENTS: {
3215 struct kvm_vcpu_events events;
3216
3217 r = -EFAULT;
3218 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3219 break;
3220
3221 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3222 break;
3223 }
3224 case KVM_GET_DEBUGREGS: {
3225 struct kvm_debugregs dbgregs;
3226
3227 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3228
3229 r = -EFAULT;
3230 if (copy_to_user(argp, &dbgregs,
3231 sizeof(struct kvm_debugregs)))
3232 break;
3233 r = 0;
3234 break;
3235 }
3236 case KVM_SET_DEBUGREGS: {
3237 struct kvm_debugregs dbgregs;
3238
3239 r = -EFAULT;
3240 if (copy_from_user(&dbgregs, argp,
3241 sizeof(struct kvm_debugregs)))
3242 break;
3243
3244 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3245 break;
3246 }
3247 case KVM_GET_XSAVE: {
3248 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3249 r = -ENOMEM;
3250 if (!u.xsave)
3251 break;
3252
3253 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3254
3255 r = -EFAULT;
3256 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3257 break;
3258 r = 0;
3259 break;
3260 }
3261 case KVM_SET_XSAVE: {
3262 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3263 if (IS_ERR(u.xsave))
3264 return PTR_ERR(u.xsave);
3265
3266 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3267 break;
3268 }
3269 case KVM_GET_XCRS: {
3270 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3271 r = -ENOMEM;
3272 if (!u.xcrs)
3273 break;
3274
3275 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3276
3277 r = -EFAULT;
3278 if (copy_to_user(argp, u.xcrs,
3279 sizeof(struct kvm_xcrs)))
3280 break;
3281 r = 0;
3282 break;
3283 }
3284 case KVM_SET_XCRS: {
3285 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3286 if (IS_ERR(u.xcrs))
3287 return PTR_ERR(u.xcrs);
3288
3289 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3290 break;
3291 }
3292 case KVM_SET_TSC_KHZ: {
3293 u32 user_tsc_khz;
3294
3295 r = -EINVAL;
3296 user_tsc_khz = (u32)arg;
3297
3298 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3299 goto out;
3300
3301 if (user_tsc_khz == 0)
3302 user_tsc_khz = tsc_khz;
3303
3304 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3305
3306 r = 0;
3307 goto out;
3308 }
3309 case KVM_GET_TSC_KHZ: {
3310 r = vcpu->arch.virtual_tsc_khz;
3311 goto out;
3312 }
3313 case KVM_KVMCLOCK_CTRL: {
3314 r = kvm_set_guest_paused(vcpu);
3315 goto out;
3316 }
3317 default:
3318 r = -EINVAL;
3319 }
3320 out:
3321 kfree(u.buffer);
3322 return r;
3323 }
3324
3325 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3326 {
3327 return VM_FAULT_SIGBUS;
3328 }
3329
3330 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3331 {
3332 int ret;
3333
3334 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3335 return -EINVAL;
3336 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3337 return ret;
3338 }
3339
3340 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3341 u64 ident_addr)
3342 {
3343 kvm->arch.ept_identity_map_addr = ident_addr;
3344 return 0;
3345 }
3346
3347 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3348 u32 kvm_nr_mmu_pages)
3349 {
3350 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3351 return -EINVAL;
3352
3353 mutex_lock(&kvm->slots_lock);
3354
3355 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3356 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3357
3358 mutex_unlock(&kvm->slots_lock);
3359 return 0;
3360 }
3361
3362 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3363 {
3364 return kvm->arch.n_max_mmu_pages;
3365 }
3366
3367 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3368 {
3369 int r;
3370
3371 r = 0;
3372 switch (chip->chip_id) {
3373 case KVM_IRQCHIP_PIC_MASTER:
3374 memcpy(&chip->chip.pic,
3375 &pic_irqchip(kvm)->pics[0],
3376 sizeof(struct kvm_pic_state));
3377 break;
3378 case KVM_IRQCHIP_PIC_SLAVE:
3379 memcpy(&chip->chip.pic,
3380 &pic_irqchip(kvm)->pics[1],
3381 sizeof(struct kvm_pic_state));
3382 break;
3383 case KVM_IRQCHIP_IOAPIC:
3384 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3385 break;
3386 default:
3387 r = -EINVAL;
3388 break;
3389 }
3390 return r;
3391 }
3392
3393 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3394 {
3395 int r;
3396
3397 r = 0;
3398 switch (chip->chip_id) {
3399 case KVM_IRQCHIP_PIC_MASTER:
3400 spin_lock(&pic_irqchip(kvm)->lock);
3401 memcpy(&pic_irqchip(kvm)->pics[0],
3402 &chip->chip.pic,
3403 sizeof(struct kvm_pic_state));
3404 spin_unlock(&pic_irqchip(kvm)->lock);
3405 break;
3406 case KVM_IRQCHIP_PIC_SLAVE:
3407 spin_lock(&pic_irqchip(kvm)->lock);
3408 memcpy(&pic_irqchip(kvm)->pics[1],
3409 &chip->chip.pic,
3410 sizeof(struct kvm_pic_state));
3411 spin_unlock(&pic_irqchip(kvm)->lock);
3412 break;
3413 case KVM_IRQCHIP_IOAPIC:
3414 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3415 break;
3416 default:
3417 r = -EINVAL;
3418 break;
3419 }
3420 kvm_pic_update_irq(pic_irqchip(kvm));
3421 return r;
3422 }
3423
3424 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3425 {
3426 int r = 0;
3427
3428 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3429 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3430 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3431 return r;
3432 }
3433
3434 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3435 {
3436 int r = 0;
3437
3438 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3439 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3440 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3441 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3442 return r;
3443 }
3444
3445 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3446 {
3447 int r = 0;
3448
3449 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3450 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3451 sizeof(ps->channels));
3452 ps->flags = kvm->arch.vpit->pit_state.flags;
3453 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3454 memset(&ps->reserved, 0, sizeof(ps->reserved));
3455 return r;
3456 }
3457
3458 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3459 {
3460 int r = 0, start = 0;
3461 u32 prev_legacy, cur_legacy;
3462 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3463 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3464 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3465 if (!prev_legacy && cur_legacy)
3466 start = 1;
3467 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3468 sizeof(kvm->arch.vpit->pit_state.channels));
3469 kvm->arch.vpit->pit_state.flags = ps->flags;
3470 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3471 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3472 return r;
3473 }
3474
3475 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3476 struct kvm_reinject_control *control)
3477 {
3478 if (!kvm->arch.vpit)
3479 return -ENXIO;
3480 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3481 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3482 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3483 return 0;
3484 }
3485
3486 /**
3487 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3488 * @kvm: kvm instance
3489 * @log: slot id and address to which we copy the log
3490 *
3491 * We need to keep it in mind that VCPU threads can write to the bitmap
3492 * concurrently. So, to avoid losing data, we keep the following order for
3493 * each bit:
3494 *
3495 * 1. Take a snapshot of the bit and clear it if needed.
3496 * 2. Write protect the corresponding page.
3497 * 3. Flush TLB's if needed.
3498 * 4. Copy the snapshot to the userspace.
3499 *
3500 * Between 2 and 3, the guest may write to the page using the remaining TLB
3501 * entry. This is not a problem because the page will be reported dirty at
3502 * step 4 using the snapshot taken before and step 3 ensures that successive
3503 * writes will be logged for the next call.
3504 */
3505 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3506 {
3507 int r;
3508 struct kvm_memory_slot *memslot;
3509 unsigned long n, i;
3510 unsigned long *dirty_bitmap;
3511 unsigned long *dirty_bitmap_buffer;
3512 bool is_dirty = false;
3513
3514 mutex_lock(&kvm->slots_lock);
3515
3516 r = -EINVAL;
3517 if (log->slot >= KVM_USER_MEM_SLOTS)
3518 goto out;
3519
3520 memslot = id_to_memslot(kvm->memslots, log->slot);
3521
3522 dirty_bitmap = memslot->dirty_bitmap;
3523 r = -ENOENT;
3524 if (!dirty_bitmap)
3525 goto out;
3526
3527 n = kvm_dirty_bitmap_bytes(memslot);
3528
3529 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3530 memset(dirty_bitmap_buffer, 0, n);
3531
3532 spin_lock(&kvm->mmu_lock);
3533
3534 for (i = 0; i < n / sizeof(long); i++) {
3535 unsigned long mask;
3536 gfn_t offset;
3537
3538 if (!dirty_bitmap[i])
3539 continue;
3540
3541 is_dirty = true;
3542
3543 mask = xchg(&dirty_bitmap[i], 0);
3544 dirty_bitmap_buffer[i] = mask;
3545
3546 offset = i * BITS_PER_LONG;
3547 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3548 }
3549 if (is_dirty)
3550 kvm_flush_remote_tlbs(kvm);
3551
3552 spin_unlock(&kvm->mmu_lock);
3553
3554 r = -EFAULT;
3555 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3556 goto out;
3557
3558 r = 0;
3559 out:
3560 mutex_unlock(&kvm->slots_lock);
3561 return r;
3562 }
3563
3564 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3565 bool line_status)
3566 {
3567 if (!irqchip_in_kernel(kvm))
3568 return -ENXIO;
3569
3570 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3571 irq_event->irq, irq_event->level,
3572 line_status);
3573 return 0;
3574 }
3575
3576 long kvm_arch_vm_ioctl(struct file *filp,
3577 unsigned int ioctl, unsigned long arg)
3578 {
3579 struct kvm *kvm = filp->private_data;
3580 void __user *argp = (void __user *)arg;
3581 int r = -ENOTTY;
3582 /*
3583 * This union makes it completely explicit to gcc-3.x
3584 * that these two variables' stack usage should be
3585 * combined, not added together.
3586 */
3587 union {
3588 struct kvm_pit_state ps;
3589 struct kvm_pit_state2 ps2;
3590 struct kvm_pit_config pit_config;
3591 } u;
3592
3593 switch (ioctl) {
3594 case KVM_SET_TSS_ADDR:
3595 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3596 break;
3597 case KVM_SET_IDENTITY_MAP_ADDR: {
3598 u64 ident_addr;
3599
3600 r = -EFAULT;
3601 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3602 goto out;
3603 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3604 break;
3605 }
3606 case KVM_SET_NR_MMU_PAGES:
3607 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3608 break;
3609 case KVM_GET_NR_MMU_PAGES:
3610 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3611 break;
3612 case KVM_CREATE_IRQCHIP: {
3613 struct kvm_pic *vpic;
3614
3615 mutex_lock(&kvm->lock);
3616 r = -EEXIST;
3617 if (kvm->arch.vpic)
3618 goto create_irqchip_unlock;
3619 r = -EINVAL;
3620 if (atomic_read(&kvm->online_vcpus))
3621 goto create_irqchip_unlock;
3622 r = -ENOMEM;
3623 vpic = kvm_create_pic(kvm);
3624 if (vpic) {
3625 r = kvm_ioapic_init(kvm);
3626 if (r) {
3627 mutex_lock(&kvm->slots_lock);
3628 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3629 &vpic->dev_master);
3630 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3631 &vpic->dev_slave);
3632 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3633 &vpic->dev_eclr);
3634 mutex_unlock(&kvm->slots_lock);
3635 kfree(vpic);
3636 goto create_irqchip_unlock;
3637 }
3638 } else
3639 goto create_irqchip_unlock;
3640 smp_wmb();
3641 kvm->arch.vpic = vpic;
3642 smp_wmb();
3643 r = kvm_setup_default_irq_routing(kvm);
3644 if (r) {
3645 mutex_lock(&kvm->slots_lock);
3646 mutex_lock(&kvm->irq_lock);
3647 kvm_ioapic_destroy(kvm);
3648 kvm_destroy_pic(kvm);
3649 mutex_unlock(&kvm->irq_lock);
3650 mutex_unlock(&kvm->slots_lock);
3651 }
3652 create_irqchip_unlock:
3653 mutex_unlock(&kvm->lock);
3654 break;
3655 }
3656 case KVM_CREATE_PIT:
3657 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3658 goto create_pit;
3659 case KVM_CREATE_PIT2:
3660 r = -EFAULT;
3661 if (copy_from_user(&u.pit_config, argp,
3662 sizeof(struct kvm_pit_config)))
3663 goto out;
3664 create_pit:
3665 mutex_lock(&kvm->slots_lock);
3666 r = -EEXIST;
3667 if (kvm->arch.vpit)
3668 goto create_pit_unlock;
3669 r = -ENOMEM;
3670 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3671 if (kvm->arch.vpit)
3672 r = 0;
3673 create_pit_unlock:
3674 mutex_unlock(&kvm->slots_lock);
3675 break;
3676 case KVM_GET_IRQCHIP: {
3677 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3678 struct kvm_irqchip *chip;
3679
3680 chip = memdup_user(argp, sizeof(*chip));
3681 if (IS_ERR(chip)) {
3682 r = PTR_ERR(chip);
3683 goto out;
3684 }
3685
3686 r = -ENXIO;
3687 if (!irqchip_in_kernel(kvm))
3688 goto get_irqchip_out;
3689 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3690 if (r)
3691 goto get_irqchip_out;
3692 r = -EFAULT;
3693 if (copy_to_user(argp, chip, sizeof *chip))
3694 goto get_irqchip_out;
3695 r = 0;
3696 get_irqchip_out:
3697 kfree(chip);
3698 break;
3699 }
3700 case KVM_SET_IRQCHIP: {
3701 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3702 struct kvm_irqchip *chip;
3703
3704 chip = memdup_user(argp, sizeof(*chip));
3705 if (IS_ERR(chip)) {
3706 r = PTR_ERR(chip);
3707 goto out;
3708 }
3709
3710 r = -ENXIO;
3711 if (!irqchip_in_kernel(kvm))
3712 goto set_irqchip_out;
3713 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3714 if (r)
3715 goto set_irqchip_out;
3716 r = 0;
3717 set_irqchip_out:
3718 kfree(chip);
3719 break;
3720 }
3721 case KVM_GET_PIT: {
3722 r = -EFAULT;
3723 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3724 goto out;
3725 r = -ENXIO;
3726 if (!kvm->arch.vpit)
3727 goto out;
3728 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3729 if (r)
3730 goto out;
3731 r = -EFAULT;
3732 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3733 goto out;
3734 r = 0;
3735 break;
3736 }
3737 case KVM_SET_PIT: {
3738 r = -EFAULT;
3739 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3740 goto out;
3741 r = -ENXIO;
3742 if (!kvm->arch.vpit)
3743 goto out;
3744 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3745 break;
3746 }
3747 case KVM_GET_PIT2: {
3748 r = -ENXIO;
3749 if (!kvm->arch.vpit)
3750 goto out;
3751 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3752 if (r)
3753 goto out;
3754 r = -EFAULT;
3755 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3756 goto out;
3757 r = 0;
3758 break;
3759 }
3760 case KVM_SET_PIT2: {
3761 r = -EFAULT;
3762 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3763 goto out;
3764 r = -ENXIO;
3765 if (!kvm->arch.vpit)
3766 goto out;
3767 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3768 break;
3769 }
3770 case KVM_REINJECT_CONTROL: {
3771 struct kvm_reinject_control control;
3772 r = -EFAULT;
3773 if (copy_from_user(&control, argp, sizeof(control)))
3774 goto out;
3775 r = kvm_vm_ioctl_reinject(kvm, &control);
3776 break;
3777 }
3778 case KVM_XEN_HVM_CONFIG: {
3779 r = -EFAULT;
3780 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3781 sizeof(struct kvm_xen_hvm_config)))
3782 goto out;
3783 r = -EINVAL;
3784 if (kvm->arch.xen_hvm_config.flags)
3785 goto out;
3786 r = 0;
3787 break;
3788 }
3789 case KVM_SET_CLOCK: {
3790 struct kvm_clock_data user_ns;
3791 u64 now_ns;
3792 s64 delta;
3793
3794 r = -EFAULT;
3795 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3796 goto out;
3797
3798 r = -EINVAL;
3799 if (user_ns.flags)
3800 goto out;
3801
3802 r = 0;
3803 local_irq_disable();
3804 now_ns = get_kernel_ns();
3805 delta = user_ns.clock - now_ns;
3806 local_irq_enable();
3807 kvm->arch.kvmclock_offset = delta;
3808 kvm_gen_update_masterclock(kvm);
3809 break;
3810 }
3811 case KVM_GET_CLOCK: {
3812 struct kvm_clock_data user_ns;
3813 u64 now_ns;
3814
3815 local_irq_disable();
3816 now_ns = get_kernel_ns();
3817 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3818 local_irq_enable();
3819 user_ns.flags = 0;
3820 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3821
3822 r = -EFAULT;
3823 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3824 goto out;
3825 r = 0;
3826 break;
3827 }
3828
3829 default:
3830 ;
3831 }
3832 out:
3833 return r;
3834 }
3835
3836 static void kvm_init_msr_list(void)
3837 {
3838 u32 dummy[2];
3839 unsigned i, j;
3840
3841 /* skip the first msrs in the list. KVM-specific */
3842 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3843 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3844 continue;
3845 if (j < i)
3846 msrs_to_save[j] = msrs_to_save[i];
3847 j++;
3848 }
3849 num_msrs_to_save = j;
3850 }
3851
3852 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3853 const void *v)
3854 {
3855 int handled = 0;
3856 int n;
3857
3858 do {
3859 n = min(len, 8);
3860 if (!(vcpu->arch.apic &&
3861 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3862 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3863 break;
3864 handled += n;
3865 addr += n;
3866 len -= n;
3867 v += n;
3868 } while (len);
3869
3870 return handled;
3871 }
3872
3873 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3874 {
3875 int handled = 0;
3876 int n;
3877
3878 do {
3879 n = min(len, 8);
3880 if (!(vcpu->arch.apic &&
3881 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3882 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3883 break;
3884 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3885 handled += n;
3886 addr += n;
3887 len -= n;
3888 v += n;
3889 } while (len);
3890
3891 return handled;
3892 }
3893
3894 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3895 struct kvm_segment *var, int seg)
3896 {
3897 kvm_x86_ops->set_segment(vcpu, var, seg);
3898 }
3899
3900 void kvm_get_segment(struct kvm_vcpu *vcpu,
3901 struct kvm_segment *var, int seg)
3902 {
3903 kvm_x86_ops->get_segment(vcpu, var, seg);
3904 }
3905
3906 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3907 {
3908 gpa_t t_gpa;
3909 struct x86_exception exception;
3910
3911 BUG_ON(!mmu_is_nested(vcpu));
3912
3913 /* NPT walks are always user-walks */
3914 access |= PFERR_USER_MASK;
3915 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3916
3917 return t_gpa;
3918 }
3919
3920 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3921 struct x86_exception *exception)
3922 {
3923 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3924 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3925 }
3926
3927 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3928 struct x86_exception *exception)
3929 {
3930 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3931 access |= PFERR_FETCH_MASK;
3932 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3933 }
3934
3935 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3936 struct x86_exception *exception)
3937 {
3938 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3939 access |= PFERR_WRITE_MASK;
3940 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941 }
3942
3943 /* uses this to access any guest's mapped memory without checking CPL */
3944 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3945 struct x86_exception *exception)
3946 {
3947 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3948 }
3949
3950 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3951 struct kvm_vcpu *vcpu, u32 access,
3952 struct x86_exception *exception)
3953 {
3954 void *data = val;
3955 int r = X86EMUL_CONTINUE;
3956
3957 while (bytes) {
3958 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3959 exception);
3960 unsigned offset = addr & (PAGE_SIZE-1);
3961 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3962 int ret;
3963
3964 if (gpa == UNMAPPED_GVA)
3965 return X86EMUL_PROPAGATE_FAULT;
3966 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3967 if (ret < 0) {
3968 r = X86EMUL_IO_NEEDED;
3969 goto out;
3970 }
3971
3972 bytes -= toread;
3973 data += toread;
3974 addr += toread;
3975 }
3976 out:
3977 return r;
3978 }
3979
3980 /* used for instruction fetching */
3981 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3982 gva_t addr, void *val, unsigned int bytes,
3983 struct x86_exception *exception)
3984 {
3985 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3986 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987
3988 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3989 access | PFERR_FETCH_MASK,
3990 exception);
3991 }
3992
3993 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3994 gva_t addr, void *val, unsigned int bytes,
3995 struct x86_exception *exception)
3996 {
3997 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3999
4000 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4001 exception);
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4004
4005 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4006 gva_t addr, void *val, unsigned int bytes,
4007 struct x86_exception *exception)
4008 {
4009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4011 }
4012
4013 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4014 gva_t addr, void *val,
4015 unsigned int bytes,
4016 struct x86_exception *exception)
4017 {
4018 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4019 void *data = val;
4020 int r = X86EMUL_CONTINUE;
4021
4022 while (bytes) {
4023 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4024 PFERR_WRITE_MASK,
4025 exception);
4026 unsigned offset = addr & (PAGE_SIZE-1);
4027 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4028 int ret;
4029
4030 if (gpa == UNMAPPED_GVA)
4031 return X86EMUL_PROPAGATE_FAULT;
4032 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4033 if (ret < 0) {
4034 r = X86EMUL_IO_NEEDED;
4035 goto out;
4036 }
4037
4038 bytes -= towrite;
4039 data += towrite;
4040 addr += towrite;
4041 }
4042 out:
4043 return r;
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4046
4047 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4048 gpa_t *gpa, struct x86_exception *exception,
4049 bool write)
4050 {
4051 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4052 | (write ? PFERR_WRITE_MASK : 0);
4053
4054 if (vcpu_match_mmio_gva(vcpu, gva)
4055 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4056 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4057 (gva & (PAGE_SIZE - 1));
4058 trace_vcpu_match_mmio(gva, *gpa, write, false);
4059 return 1;
4060 }
4061
4062 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4063
4064 if (*gpa == UNMAPPED_GVA)
4065 return -1;
4066
4067 /* For APIC access vmexit */
4068 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4069 return 1;
4070
4071 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4072 trace_vcpu_match_mmio(gva, *gpa, write, true);
4073 return 1;
4074 }
4075
4076 return 0;
4077 }
4078
4079 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4080 const void *val, int bytes)
4081 {
4082 int ret;
4083
4084 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4085 if (ret < 0)
4086 return 0;
4087 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4088 return 1;
4089 }
4090
4091 struct read_write_emulator_ops {
4092 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4093 int bytes);
4094 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4095 void *val, int bytes);
4096 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4097 int bytes, void *val);
4098 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099 void *val, int bytes);
4100 bool write;
4101 };
4102
4103 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4104 {
4105 if (vcpu->mmio_read_completed) {
4106 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4107 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4108 vcpu->mmio_read_completed = 0;
4109 return 1;
4110 }
4111
4112 return 0;
4113 }
4114
4115 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4116 void *val, int bytes)
4117 {
4118 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4119 }
4120
4121 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4122 void *val, int bytes)
4123 {
4124 return emulator_write_phys(vcpu, gpa, val, bytes);
4125 }
4126
4127 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4128 {
4129 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4130 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4131 }
4132
4133 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4134 void *val, int bytes)
4135 {
4136 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4137 return X86EMUL_IO_NEEDED;
4138 }
4139
4140 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4141 void *val, int bytes)
4142 {
4143 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4144
4145 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4146 return X86EMUL_CONTINUE;
4147 }
4148
4149 static const struct read_write_emulator_ops read_emultor = {
4150 .read_write_prepare = read_prepare,
4151 .read_write_emulate = read_emulate,
4152 .read_write_mmio = vcpu_mmio_read,
4153 .read_write_exit_mmio = read_exit_mmio,
4154 };
4155
4156 static const struct read_write_emulator_ops write_emultor = {
4157 .read_write_emulate = write_emulate,
4158 .read_write_mmio = write_mmio,
4159 .read_write_exit_mmio = write_exit_mmio,
4160 .write = true,
4161 };
4162
4163 static int emulator_read_write_onepage(unsigned long addr, void *val,
4164 unsigned int bytes,
4165 struct x86_exception *exception,
4166 struct kvm_vcpu *vcpu,
4167 const struct read_write_emulator_ops *ops)
4168 {
4169 gpa_t gpa;
4170 int handled, ret;
4171 bool write = ops->write;
4172 struct kvm_mmio_fragment *frag;
4173
4174 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4175
4176 if (ret < 0)
4177 return X86EMUL_PROPAGATE_FAULT;
4178
4179 /* For APIC access vmexit */
4180 if (ret)
4181 goto mmio;
4182
4183 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4184 return X86EMUL_CONTINUE;
4185
4186 mmio:
4187 /*
4188 * Is this MMIO handled locally?
4189 */
4190 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4191 if (handled == bytes)
4192 return X86EMUL_CONTINUE;
4193
4194 gpa += handled;
4195 bytes -= handled;
4196 val += handled;
4197
4198 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4199 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4200 frag->gpa = gpa;
4201 frag->data = val;
4202 frag->len = bytes;
4203 return X86EMUL_CONTINUE;
4204 }
4205
4206 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4207 void *val, unsigned int bytes,
4208 struct x86_exception *exception,
4209 const struct read_write_emulator_ops *ops)
4210 {
4211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4212 gpa_t gpa;
4213 int rc;
4214
4215 if (ops->read_write_prepare &&
4216 ops->read_write_prepare(vcpu, val, bytes))
4217 return X86EMUL_CONTINUE;
4218
4219 vcpu->mmio_nr_fragments = 0;
4220
4221 /* Crossing a page boundary? */
4222 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4223 int now;
4224
4225 now = -addr & ~PAGE_MASK;
4226 rc = emulator_read_write_onepage(addr, val, now, exception,
4227 vcpu, ops);
4228
4229 if (rc != X86EMUL_CONTINUE)
4230 return rc;
4231 addr += now;
4232 val += now;
4233 bytes -= now;
4234 }
4235
4236 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4237 vcpu, ops);
4238 if (rc != X86EMUL_CONTINUE)
4239 return rc;
4240
4241 if (!vcpu->mmio_nr_fragments)
4242 return rc;
4243
4244 gpa = vcpu->mmio_fragments[0].gpa;
4245
4246 vcpu->mmio_needed = 1;
4247 vcpu->mmio_cur_fragment = 0;
4248
4249 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4250 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4251 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4252 vcpu->run->mmio.phys_addr = gpa;
4253
4254 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4255 }
4256
4257 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4258 unsigned long addr,
4259 void *val,
4260 unsigned int bytes,
4261 struct x86_exception *exception)
4262 {
4263 return emulator_read_write(ctxt, addr, val, bytes,
4264 exception, &read_emultor);
4265 }
4266
4267 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4268 unsigned long addr,
4269 const void *val,
4270 unsigned int bytes,
4271 struct x86_exception *exception)
4272 {
4273 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4274 exception, &write_emultor);
4275 }
4276
4277 #define CMPXCHG_TYPE(t, ptr, old, new) \
4278 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4279
4280 #ifdef CONFIG_X86_64
4281 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4282 #else
4283 # define CMPXCHG64(ptr, old, new) \
4284 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4285 #endif
4286
4287 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4288 unsigned long addr,
4289 const void *old,
4290 const void *new,
4291 unsigned int bytes,
4292 struct x86_exception *exception)
4293 {
4294 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4295 gpa_t gpa;
4296 struct page *page;
4297 char *kaddr;
4298 bool exchanged;
4299
4300 /* guests cmpxchg8b have to be emulated atomically */
4301 if (bytes > 8 || (bytes & (bytes - 1)))
4302 goto emul_write;
4303
4304 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4305
4306 if (gpa == UNMAPPED_GVA ||
4307 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4308 goto emul_write;
4309
4310 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4311 goto emul_write;
4312
4313 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4314 if (is_error_page(page))
4315 goto emul_write;
4316
4317 kaddr = kmap_atomic(page);
4318 kaddr += offset_in_page(gpa);
4319 switch (bytes) {
4320 case 1:
4321 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4322 break;
4323 case 2:
4324 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4325 break;
4326 case 4:
4327 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4328 break;
4329 case 8:
4330 exchanged = CMPXCHG64(kaddr, old, new);
4331 break;
4332 default:
4333 BUG();
4334 }
4335 kunmap_atomic(kaddr);
4336 kvm_release_page_dirty(page);
4337
4338 if (!exchanged)
4339 return X86EMUL_CMPXCHG_FAILED;
4340
4341 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4342
4343 return X86EMUL_CONTINUE;
4344
4345 emul_write:
4346 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4347
4348 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4349 }
4350
4351 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4352 {
4353 /* TODO: String I/O for in kernel device */
4354 int r;
4355
4356 if (vcpu->arch.pio.in)
4357 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4358 vcpu->arch.pio.size, pd);
4359 else
4360 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4361 vcpu->arch.pio.port, vcpu->arch.pio.size,
4362 pd);
4363 return r;
4364 }
4365
4366 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4367 unsigned short port, void *val,
4368 unsigned int count, bool in)
4369 {
4370 trace_kvm_pio(!in, port, size, count);
4371
4372 vcpu->arch.pio.port = port;
4373 vcpu->arch.pio.in = in;
4374 vcpu->arch.pio.count = count;
4375 vcpu->arch.pio.size = size;
4376
4377 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4378 vcpu->arch.pio.count = 0;
4379 return 1;
4380 }
4381
4382 vcpu->run->exit_reason = KVM_EXIT_IO;
4383 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4384 vcpu->run->io.size = size;
4385 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4386 vcpu->run->io.count = count;
4387 vcpu->run->io.port = port;
4388
4389 return 0;
4390 }
4391
4392 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4393 int size, unsigned short port, void *val,
4394 unsigned int count)
4395 {
4396 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4397 int ret;
4398
4399 if (vcpu->arch.pio.count)
4400 goto data_avail;
4401
4402 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4403 if (ret) {
4404 data_avail:
4405 memcpy(val, vcpu->arch.pio_data, size * count);
4406 vcpu->arch.pio.count = 0;
4407 return 1;
4408 }
4409
4410 return 0;
4411 }
4412
4413 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4414 int size, unsigned short port,
4415 const void *val, unsigned int count)
4416 {
4417 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418
4419 memcpy(vcpu->arch.pio_data, val, size * count);
4420 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4421 }
4422
4423 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4424 {
4425 return kvm_x86_ops->get_segment_base(vcpu, seg);
4426 }
4427
4428 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4429 {
4430 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4431 }
4432
4433 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4434 {
4435 if (!need_emulate_wbinvd(vcpu))
4436 return X86EMUL_CONTINUE;
4437
4438 if (kvm_x86_ops->has_wbinvd_exit()) {
4439 int cpu = get_cpu();
4440
4441 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4442 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4443 wbinvd_ipi, NULL, 1);
4444 put_cpu();
4445 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4446 } else
4447 wbinvd();
4448 return X86EMUL_CONTINUE;
4449 }
4450 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4451
4452 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4453 {
4454 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4455 }
4456
4457 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4458 {
4459 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4460 }
4461
4462 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4463 {
4464
4465 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4466 }
4467
4468 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4469 {
4470 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4471 }
4472
4473 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4474 {
4475 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476 unsigned long value;
4477
4478 switch (cr) {
4479 case 0:
4480 value = kvm_read_cr0(vcpu);
4481 break;
4482 case 2:
4483 value = vcpu->arch.cr2;
4484 break;
4485 case 3:
4486 value = kvm_read_cr3(vcpu);
4487 break;
4488 case 4:
4489 value = kvm_read_cr4(vcpu);
4490 break;
4491 case 8:
4492 value = kvm_get_cr8(vcpu);
4493 break;
4494 default:
4495 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4496 return 0;
4497 }
4498
4499 return value;
4500 }
4501
4502 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4503 {
4504 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505 int res = 0;
4506
4507 switch (cr) {
4508 case 0:
4509 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4510 break;
4511 case 2:
4512 vcpu->arch.cr2 = val;
4513 break;
4514 case 3:
4515 res = kvm_set_cr3(vcpu, val);
4516 break;
4517 case 4:
4518 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4519 break;
4520 case 8:
4521 res = kvm_set_cr8(vcpu, val);
4522 break;
4523 default:
4524 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4525 res = -1;
4526 }
4527
4528 return res;
4529 }
4530
4531 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4532 {
4533 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4534 }
4535
4536 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4537 {
4538 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4539 }
4540
4541 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4542 {
4543 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4544 }
4545
4546 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4547 {
4548 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4549 }
4550
4551 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4552 {
4553 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4554 }
4555
4556 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4557 {
4558 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4559 }
4560
4561 static unsigned long emulator_get_cached_segment_base(
4562 struct x86_emulate_ctxt *ctxt, int seg)
4563 {
4564 return get_segment_base(emul_to_vcpu(ctxt), seg);
4565 }
4566
4567 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4568 struct desc_struct *desc, u32 *base3,
4569 int seg)
4570 {
4571 struct kvm_segment var;
4572
4573 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4574 *selector = var.selector;
4575
4576 if (var.unusable) {
4577 memset(desc, 0, sizeof(*desc));
4578 return false;
4579 }
4580
4581 if (var.g)
4582 var.limit >>= 12;
4583 set_desc_limit(desc, var.limit);
4584 set_desc_base(desc, (unsigned long)var.base);
4585 #ifdef CONFIG_X86_64
4586 if (base3)
4587 *base3 = var.base >> 32;
4588 #endif
4589 desc->type = var.type;
4590 desc->s = var.s;
4591 desc->dpl = var.dpl;
4592 desc->p = var.present;
4593 desc->avl = var.avl;
4594 desc->l = var.l;
4595 desc->d = var.db;
4596 desc->g = var.g;
4597
4598 return true;
4599 }
4600
4601 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4602 struct desc_struct *desc, u32 base3,
4603 int seg)
4604 {
4605 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 struct kvm_segment var;
4607
4608 var.selector = selector;
4609 var.base = get_desc_base(desc);
4610 #ifdef CONFIG_X86_64
4611 var.base |= ((u64)base3) << 32;
4612 #endif
4613 var.limit = get_desc_limit(desc);
4614 if (desc->g)
4615 var.limit = (var.limit << 12) | 0xfff;
4616 var.type = desc->type;
4617 var.present = desc->p;
4618 var.dpl = desc->dpl;
4619 var.db = desc->d;
4620 var.s = desc->s;
4621 var.l = desc->l;
4622 var.g = desc->g;
4623 var.avl = desc->avl;
4624 var.present = desc->p;
4625 var.unusable = !var.present;
4626 var.padding = 0;
4627
4628 kvm_set_segment(vcpu, &var, seg);
4629 return;
4630 }
4631
4632 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4633 u32 msr_index, u64 *pdata)
4634 {
4635 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4636 }
4637
4638 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4639 u32 msr_index, u64 data)
4640 {
4641 struct msr_data msr;
4642
4643 msr.data = data;
4644 msr.index = msr_index;
4645 msr.host_initiated = false;
4646 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4647 }
4648
4649 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4650 u32 pmc, u64 *pdata)
4651 {
4652 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4653 }
4654
4655 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4656 {
4657 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4658 }
4659
4660 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4661 {
4662 preempt_disable();
4663 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4664 /*
4665 * CR0.TS may reference the host fpu state, not the guest fpu state,
4666 * so it may be clear at this point.
4667 */
4668 clts();
4669 }
4670
4671 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4672 {
4673 preempt_enable();
4674 }
4675
4676 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4677 struct x86_instruction_info *info,
4678 enum x86_intercept_stage stage)
4679 {
4680 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4681 }
4682
4683 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4684 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4685 {
4686 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4687 }
4688
4689 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4690 {
4691 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4692 }
4693
4694 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4695 {
4696 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4697 }
4698
4699 static const struct x86_emulate_ops emulate_ops = {
4700 .read_gpr = emulator_read_gpr,
4701 .write_gpr = emulator_write_gpr,
4702 .read_std = kvm_read_guest_virt_system,
4703 .write_std = kvm_write_guest_virt_system,
4704 .fetch = kvm_fetch_guest_virt,
4705 .read_emulated = emulator_read_emulated,
4706 .write_emulated = emulator_write_emulated,
4707 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4708 .invlpg = emulator_invlpg,
4709 .pio_in_emulated = emulator_pio_in_emulated,
4710 .pio_out_emulated = emulator_pio_out_emulated,
4711 .get_segment = emulator_get_segment,
4712 .set_segment = emulator_set_segment,
4713 .get_cached_segment_base = emulator_get_cached_segment_base,
4714 .get_gdt = emulator_get_gdt,
4715 .get_idt = emulator_get_idt,
4716 .set_gdt = emulator_set_gdt,
4717 .set_idt = emulator_set_idt,
4718 .get_cr = emulator_get_cr,
4719 .set_cr = emulator_set_cr,
4720 .set_rflags = emulator_set_rflags,
4721 .cpl = emulator_get_cpl,
4722 .get_dr = emulator_get_dr,
4723 .set_dr = emulator_set_dr,
4724 .set_msr = emulator_set_msr,
4725 .get_msr = emulator_get_msr,
4726 .read_pmc = emulator_read_pmc,
4727 .halt = emulator_halt,
4728 .wbinvd = emulator_wbinvd,
4729 .fix_hypercall = emulator_fix_hypercall,
4730 .get_fpu = emulator_get_fpu,
4731 .put_fpu = emulator_put_fpu,
4732 .intercept = emulator_intercept,
4733 .get_cpuid = emulator_get_cpuid,
4734 };
4735
4736 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4737 {
4738 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4739 /*
4740 * an sti; sti; sequence only disable interrupts for the first
4741 * instruction. So, if the last instruction, be it emulated or
4742 * not, left the system with the INT_STI flag enabled, it
4743 * means that the last instruction is an sti. We should not
4744 * leave the flag on in this case. The same goes for mov ss
4745 */
4746 if (!(int_shadow & mask))
4747 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4748 }
4749
4750 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4751 {
4752 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4753 if (ctxt->exception.vector == PF_VECTOR)
4754 kvm_propagate_fault(vcpu, &ctxt->exception);
4755 else if (ctxt->exception.error_code_valid)
4756 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4757 ctxt->exception.error_code);
4758 else
4759 kvm_queue_exception(vcpu, ctxt->exception.vector);
4760 }
4761
4762 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4763 {
4764 memset(&ctxt->opcode_len, 0,
4765 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4766
4767 ctxt->fetch.start = 0;
4768 ctxt->fetch.end = 0;
4769 ctxt->io_read.pos = 0;
4770 ctxt->io_read.end = 0;
4771 ctxt->mem_read.pos = 0;
4772 ctxt->mem_read.end = 0;
4773 }
4774
4775 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4776 {
4777 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4778 int cs_db, cs_l;
4779
4780 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4781
4782 ctxt->eflags = kvm_get_rflags(vcpu);
4783 ctxt->eip = kvm_rip_read(vcpu);
4784 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4785 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4786 cs_l ? X86EMUL_MODE_PROT64 :
4787 cs_db ? X86EMUL_MODE_PROT32 :
4788 X86EMUL_MODE_PROT16;
4789 ctxt->guest_mode = is_guest_mode(vcpu);
4790
4791 init_decode_cache(ctxt);
4792 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4793 }
4794
4795 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4796 {
4797 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4798 int ret;
4799
4800 init_emulate_ctxt(vcpu);
4801
4802 ctxt->op_bytes = 2;
4803 ctxt->ad_bytes = 2;
4804 ctxt->_eip = ctxt->eip + inc_eip;
4805 ret = emulate_int_real(ctxt, irq);
4806
4807 if (ret != X86EMUL_CONTINUE)
4808 return EMULATE_FAIL;
4809
4810 ctxt->eip = ctxt->_eip;
4811 kvm_rip_write(vcpu, ctxt->eip);
4812 kvm_set_rflags(vcpu, ctxt->eflags);
4813
4814 if (irq == NMI_VECTOR)
4815 vcpu->arch.nmi_pending = 0;
4816 else
4817 vcpu->arch.interrupt.pending = false;
4818
4819 return EMULATE_DONE;
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4822
4823 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4824 {
4825 int r = EMULATE_DONE;
4826
4827 ++vcpu->stat.insn_emulation_fail;
4828 trace_kvm_emulate_insn_failed(vcpu);
4829 if (!is_guest_mode(vcpu)) {
4830 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4831 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4832 vcpu->run->internal.ndata = 0;
4833 r = EMULATE_FAIL;
4834 }
4835 kvm_queue_exception(vcpu, UD_VECTOR);
4836
4837 return r;
4838 }
4839
4840 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4841 bool write_fault_to_shadow_pgtable,
4842 int emulation_type)
4843 {
4844 gpa_t gpa = cr2;
4845 pfn_t pfn;
4846
4847 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4848 return false;
4849
4850 if (!vcpu->arch.mmu.direct_map) {
4851 /*
4852 * Write permission should be allowed since only
4853 * write access need to be emulated.
4854 */
4855 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4856
4857 /*
4858 * If the mapping is invalid in guest, let cpu retry
4859 * it to generate fault.
4860 */
4861 if (gpa == UNMAPPED_GVA)
4862 return true;
4863 }
4864
4865 /*
4866 * Do not retry the unhandleable instruction if it faults on the
4867 * readonly host memory, otherwise it will goto a infinite loop:
4868 * retry instruction -> write #PF -> emulation fail -> retry
4869 * instruction -> ...
4870 */
4871 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4872
4873 /*
4874 * If the instruction failed on the error pfn, it can not be fixed,
4875 * report the error to userspace.
4876 */
4877 if (is_error_noslot_pfn(pfn))
4878 return false;
4879
4880 kvm_release_pfn_clean(pfn);
4881
4882 /* The instructions are well-emulated on direct mmu. */
4883 if (vcpu->arch.mmu.direct_map) {
4884 unsigned int indirect_shadow_pages;
4885
4886 spin_lock(&vcpu->kvm->mmu_lock);
4887 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4888 spin_unlock(&vcpu->kvm->mmu_lock);
4889
4890 if (indirect_shadow_pages)
4891 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4892
4893 return true;
4894 }
4895
4896 /*
4897 * if emulation was due to access to shadowed page table
4898 * and it failed try to unshadow page and re-enter the
4899 * guest to let CPU execute the instruction.
4900 */
4901 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4902
4903 /*
4904 * If the access faults on its page table, it can not
4905 * be fixed by unprotecting shadow page and it should
4906 * be reported to userspace.
4907 */
4908 return !write_fault_to_shadow_pgtable;
4909 }
4910
4911 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4912 unsigned long cr2, int emulation_type)
4913 {
4914 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4916
4917 last_retry_eip = vcpu->arch.last_retry_eip;
4918 last_retry_addr = vcpu->arch.last_retry_addr;
4919
4920 /*
4921 * If the emulation is caused by #PF and it is non-page_table
4922 * writing instruction, it means the VM-EXIT is caused by shadow
4923 * page protected, we can zap the shadow page and retry this
4924 * instruction directly.
4925 *
4926 * Note: if the guest uses a non-page-table modifying instruction
4927 * on the PDE that points to the instruction, then we will unmap
4928 * the instruction and go to an infinite loop. So, we cache the
4929 * last retried eip and the last fault address, if we meet the eip
4930 * and the address again, we can break out of the potential infinite
4931 * loop.
4932 */
4933 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4934
4935 if (!(emulation_type & EMULTYPE_RETRY))
4936 return false;
4937
4938 if (x86_page_table_writing_insn(ctxt))
4939 return false;
4940
4941 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4942 return false;
4943
4944 vcpu->arch.last_retry_eip = ctxt->eip;
4945 vcpu->arch.last_retry_addr = cr2;
4946
4947 if (!vcpu->arch.mmu.direct_map)
4948 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4949
4950 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4951
4952 return true;
4953 }
4954
4955 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4956 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4957
4958 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4959 unsigned long *db)
4960 {
4961 u32 dr6 = 0;
4962 int i;
4963 u32 enable, rwlen;
4964
4965 enable = dr7;
4966 rwlen = dr7 >> 16;
4967 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4968 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4969 dr6 |= (1 << i);
4970 return dr6;
4971 }
4972
4973 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
4974 {
4975 struct kvm_run *kvm_run = vcpu->run;
4976
4977 /*
4978 * Use the "raw" value to see if TF was passed to the processor.
4979 * Note that the new value of the flags has not been saved yet.
4980 *
4981 * This is correct even for TF set by the guest, because "the
4982 * processor will not generate this exception after the instruction
4983 * that sets the TF flag".
4984 */
4985 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
4986
4987 if (unlikely(rflags & X86_EFLAGS_TF)) {
4988 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4989 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
4990 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
4991 kvm_run->debug.arch.exception = DB_VECTOR;
4992 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4993 *r = EMULATE_USER_EXIT;
4994 } else {
4995 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
4996 /*
4997 * "Certain debug exceptions may clear bit 0-3. The
4998 * remaining contents of the DR6 register are never
4999 * cleared by the processor".
5000 */
5001 vcpu->arch.dr6 &= ~15;
5002 vcpu->arch.dr6 |= DR6_BS;
5003 kvm_queue_exception(vcpu, DB_VECTOR);
5004 }
5005 }
5006 }
5007
5008 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5009 {
5010 struct kvm_run *kvm_run = vcpu->run;
5011 unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5012 u32 dr6 = 0;
5013
5014 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5015 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5016 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5017 vcpu->arch.guest_debug_dr7,
5018 vcpu->arch.eff_db);
5019
5020 if (dr6 != 0) {
5021 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5022 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5023 get_segment_base(vcpu, VCPU_SREG_CS);
5024
5025 kvm_run->debug.arch.exception = DB_VECTOR;
5026 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5027 *r = EMULATE_USER_EXIT;
5028 return true;
5029 }
5030 }
5031
5032 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5033 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5034 vcpu->arch.dr7,
5035 vcpu->arch.db);
5036
5037 if (dr6 != 0) {
5038 vcpu->arch.dr6 &= ~15;
5039 vcpu->arch.dr6 |= dr6;
5040 kvm_queue_exception(vcpu, DB_VECTOR);
5041 *r = EMULATE_DONE;
5042 return true;
5043 }
5044 }
5045
5046 return false;
5047 }
5048
5049 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5050 unsigned long cr2,
5051 int emulation_type,
5052 void *insn,
5053 int insn_len)
5054 {
5055 int r;
5056 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5057 bool writeback = true;
5058 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5059
5060 /*
5061 * Clear write_fault_to_shadow_pgtable here to ensure it is
5062 * never reused.
5063 */
5064 vcpu->arch.write_fault_to_shadow_pgtable = false;
5065 kvm_clear_exception_queue(vcpu);
5066
5067 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5068 init_emulate_ctxt(vcpu);
5069
5070 /*
5071 * We will reenter on the same instruction since
5072 * we do not set complete_userspace_io. This does not
5073 * handle watchpoints yet, those would be handled in
5074 * the emulate_ops.
5075 */
5076 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5077 return r;
5078
5079 ctxt->interruptibility = 0;
5080 ctxt->have_exception = false;
5081 ctxt->perm_ok = false;
5082
5083 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5084
5085 r = x86_decode_insn(ctxt, insn, insn_len);
5086
5087 trace_kvm_emulate_insn_start(vcpu);
5088 ++vcpu->stat.insn_emulation;
5089 if (r != EMULATION_OK) {
5090 if (emulation_type & EMULTYPE_TRAP_UD)
5091 return EMULATE_FAIL;
5092 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5093 emulation_type))
5094 return EMULATE_DONE;
5095 if (emulation_type & EMULTYPE_SKIP)
5096 return EMULATE_FAIL;
5097 return handle_emulation_failure(vcpu);
5098 }
5099 }
5100
5101 if (emulation_type & EMULTYPE_SKIP) {
5102 kvm_rip_write(vcpu, ctxt->_eip);
5103 return EMULATE_DONE;
5104 }
5105
5106 if (retry_instruction(ctxt, cr2, emulation_type))
5107 return EMULATE_DONE;
5108
5109 /* this is needed for vmware backdoor interface to work since it
5110 changes registers values during IO operation */
5111 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5112 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5113 emulator_invalidate_register_cache(ctxt);
5114 }
5115
5116 restart:
5117 r = x86_emulate_insn(ctxt);
5118
5119 if (r == EMULATION_INTERCEPTED)
5120 return EMULATE_DONE;
5121
5122 if (r == EMULATION_FAILED) {
5123 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5124 emulation_type))
5125 return EMULATE_DONE;
5126
5127 return handle_emulation_failure(vcpu);
5128 }
5129
5130 if (ctxt->have_exception) {
5131 inject_emulated_exception(vcpu);
5132 r = EMULATE_DONE;
5133 } else if (vcpu->arch.pio.count) {
5134 if (!vcpu->arch.pio.in) {
5135 /* FIXME: return into emulator if single-stepping. */
5136 vcpu->arch.pio.count = 0;
5137 } else {
5138 writeback = false;
5139 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5140 }
5141 r = EMULATE_USER_EXIT;
5142 } else if (vcpu->mmio_needed) {
5143 if (!vcpu->mmio_is_write)
5144 writeback = false;
5145 r = EMULATE_USER_EXIT;
5146 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5147 } else if (r == EMULATION_RESTART)
5148 goto restart;
5149 else
5150 r = EMULATE_DONE;
5151
5152 if (writeback) {
5153 toggle_interruptibility(vcpu, ctxt->interruptibility);
5154 kvm_make_request(KVM_REQ_EVENT, vcpu);
5155 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5156 kvm_rip_write(vcpu, ctxt->eip);
5157 if (r == EMULATE_DONE)
5158 kvm_vcpu_check_singlestep(vcpu, &r);
5159 kvm_set_rflags(vcpu, ctxt->eflags);
5160 } else
5161 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5162
5163 return r;
5164 }
5165 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5166
5167 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5168 {
5169 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5170 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5171 size, port, &val, 1);
5172 /* do not return to emulator after return from userspace */
5173 vcpu->arch.pio.count = 0;
5174 return ret;
5175 }
5176 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5177
5178 static void tsc_bad(void *info)
5179 {
5180 __this_cpu_write(cpu_tsc_khz, 0);
5181 }
5182
5183 static void tsc_khz_changed(void *data)
5184 {
5185 struct cpufreq_freqs *freq = data;
5186 unsigned long khz = 0;
5187
5188 if (data)
5189 khz = freq->new;
5190 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5191 khz = cpufreq_quick_get(raw_smp_processor_id());
5192 if (!khz)
5193 khz = tsc_khz;
5194 __this_cpu_write(cpu_tsc_khz, khz);
5195 }
5196
5197 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5198 void *data)
5199 {
5200 struct cpufreq_freqs *freq = data;
5201 struct kvm *kvm;
5202 struct kvm_vcpu *vcpu;
5203 int i, send_ipi = 0;
5204
5205 /*
5206 * We allow guests to temporarily run on slowing clocks,
5207 * provided we notify them after, or to run on accelerating
5208 * clocks, provided we notify them before. Thus time never
5209 * goes backwards.
5210 *
5211 * However, we have a problem. We can't atomically update
5212 * the frequency of a given CPU from this function; it is
5213 * merely a notifier, which can be called from any CPU.
5214 * Changing the TSC frequency at arbitrary points in time
5215 * requires a recomputation of local variables related to
5216 * the TSC for each VCPU. We must flag these local variables
5217 * to be updated and be sure the update takes place with the
5218 * new frequency before any guests proceed.
5219 *
5220 * Unfortunately, the combination of hotplug CPU and frequency
5221 * change creates an intractable locking scenario; the order
5222 * of when these callouts happen is undefined with respect to
5223 * CPU hotplug, and they can race with each other. As such,
5224 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5225 * undefined; you can actually have a CPU frequency change take
5226 * place in between the computation of X and the setting of the
5227 * variable. To protect against this problem, all updates of
5228 * the per_cpu tsc_khz variable are done in an interrupt
5229 * protected IPI, and all callers wishing to update the value
5230 * must wait for a synchronous IPI to complete (which is trivial
5231 * if the caller is on the CPU already). This establishes the
5232 * necessary total order on variable updates.
5233 *
5234 * Note that because a guest time update may take place
5235 * anytime after the setting of the VCPU's request bit, the
5236 * correct TSC value must be set before the request. However,
5237 * to ensure the update actually makes it to any guest which
5238 * starts running in hardware virtualization between the set
5239 * and the acquisition of the spinlock, we must also ping the
5240 * CPU after setting the request bit.
5241 *
5242 */
5243
5244 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5245 return 0;
5246 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5247 return 0;
5248
5249 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5250
5251 spin_lock(&kvm_lock);
5252 list_for_each_entry(kvm, &vm_list, vm_list) {
5253 kvm_for_each_vcpu(i, vcpu, kvm) {
5254 if (vcpu->cpu != freq->cpu)
5255 continue;
5256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5257 if (vcpu->cpu != smp_processor_id())
5258 send_ipi = 1;
5259 }
5260 }
5261 spin_unlock(&kvm_lock);
5262
5263 if (freq->old < freq->new && send_ipi) {
5264 /*
5265 * We upscale the frequency. Must make the guest
5266 * doesn't see old kvmclock values while running with
5267 * the new frequency, otherwise we risk the guest sees
5268 * time go backwards.
5269 *
5270 * In case we update the frequency for another cpu
5271 * (which might be in guest context) send an interrupt
5272 * to kick the cpu out of guest context. Next time
5273 * guest context is entered kvmclock will be updated,
5274 * so the guest will not see stale values.
5275 */
5276 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5277 }
5278 return 0;
5279 }
5280
5281 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5282 .notifier_call = kvmclock_cpufreq_notifier
5283 };
5284
5285 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5286 unsigned long action, void *hcpu)
5287 {
5288 unsigned int cpu = (unsigned long)hcpu;
5289
5290 switch (action) {
5291 case CPU_ONLINE:
5292 case CPU_DOWN_FAILED:
5293 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5294 break;
5295 case CPU_DOWN_PREPARE:
5296 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5297 break;
5298 }
5299 return NOTIFY_OK;
5300 }
5301
5302 static struct notifier_block kvmclock_cpu_notifier_block = {
5303 .notifier_call = kvmclock_cpu_notifier,
5304 .priority = -INT_MAX
5305 };
5306
5307 static void kvm_timer_init(void)
5308 {
5309 int cpu;
5310
5311 max_tsc_khz = tsc_khz;
5312 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5313 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5314 #ifdef CONFIG_CPU_FREQ
5315 struct cpufreq_policy policy;
5316 memset(&policy, 0, sizeof(policy));
5317 cpu = get_cpu();
5318 cpufreq_get_policy(&policy, cpu);
5319 if (policy.cpuinfo.max_freq)
5320 max_tsc_khz = policy.cpuinfo.max_freq;
5321 put_cpu();
5322 #endif
5323 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5324 CPUFREQ_TRANSITION_NOTIFIER);
5325 }
5326 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5327 for_each_online_cpu(cpu)
5328 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5329 }
5330
5331 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5332
5333 int kvm_is_in_guest(void)
5334 {
5335 return __this_cpu_read(current_vcpu) != NULL;
5336 }
5337
5338 static int kvm_is_user_mode(void)
5339 {
5340 int user_mode = 3;
5341
5342 if (__this_cpu_read(current_vcpu))
5343 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5344
5345 return user_mode != 0;
5346 }
5347
5348 static unsigned long kvm_get_guest_ip(void)
5349 {
5350 unsigned long ip = 0;
5351
5352 if (__this_cpu_read(current_vcpu))
5353 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5354
5355 return ip;
5356 }
5357
5358 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5359 .is_in_guest = kvm_is_in_guest,
5360 .is_user_mode = kvm_is_user_mode,
5361 .get_guest_ip = kvm_get_guest_ip,
5362 };
5363
5364 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5365 {
5366 __this_cpu_write(current_vcpu, vcpu);
5367 }
5368 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5369
5370 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5371 {
5372 __this_cpu_write(current_vcpu, NULL);
5373 }
5374 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5375
5376 static void kvm_set_mmio_spte_mask(void)
5377 {
5378 u64 mask;
5379 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5380
5381 /*
5382 * Set the reserved bits and the present bit of an paging-structure
5383 * entry to generate page fault with PFER.RSV = 1.
5384 */
5385 /* Mask the reserved physical address bits. */
5386 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5387
5388 /* Bit 62 is always reserved for 32bit host. */
5389 mask |= 0x3ull << 62;
5390
5391 /* Set the present bit. */
5392 mask |= 1ull;
5393
5394 #ifdef CONFIG_X86_64
5395 /*
5396 * If reserved bit is not supported, clear the present bit to disable
5397 * mmio page fault.
5398 */
5399 if (maxphyaddr == 52)
5400 mask &= ~1ull;
5401 #endif
5402
5403 kvm_mmu_set_mmio_spte_mask(mask);
5404 }
5405
5406 #ifdef CONFIG_X86_64
5407 static void pvclock_gtod_update_fn(struct work_struct *work)
5408 {
5409 struct kvm *kvm;
5410
5411 struct kvm_vcpu *vcpu;
5412 int i;
5413
5414 spin_lock(&kvm_lock);
5415 list_for_each_entry(kvm, &vm_list, vm_list)
5416 kvm_for_each_vcpu(i, vcpu, kvm)
5417 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5418 atomic_set(&kvm_guest_has_master_clock, 0);
5419 spin_unlock(&kvm_lock);
5420 }
5421
5422 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5423
5424 /*
5425 * Notification about pvclock gtod data update.
5426 */
5427 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5428 void *priv)
5429 {
5430 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5431 struct timekeeper *tk = priv;
5432
5433 update_pvclock_gtod(tk);
5434
5435 /* disable master clock if host does not trust, or does not
5436 * use, TSC clocksource
5437 */
5438 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5439 atomic_read(&kvm_guest_has_master_clock) != 0)
5440 queue_work(system_long_wq, &pvclock_gtod_work);
5441
5442 return 0;
5443 }
5444
5445 static struct notifier_block pvclock_gtod_notifier = {
5446 .notifier_call = pvclock_gtod_notify,
5447 };
5448 #endif
5449
5450 int kvm_arch_init(void *opaque)
5451 {
5452 int r;
5453 struct kvm_x86_ops *ops = opaque;
5454
5455 if (kvm_x86_ops) {
5456 printk(KERN_ERR "kvm: already loaded the other module\n");
5457 r = -EEXIST;
5458 goto out;
5459 }
5460
5461 if (!ops->cpu_has_kvm_support()) {
5462 printk(KERN_ERR "kvm: no hardware support\n");
5463 r = -EOPNOTSUPP;
5464 goto out;
5465 }
5466 if (ops->disabled_by_bios()) {
5467 printk(KERN_ERR "kvm: disabled by bios\n");
5468 r = -EOPNOTSUPP;
5469 goto out;
5470 }
5471
5472 r = -ENOMEM;
5473 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5474 if (!shared_msrs) {
5475 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5476 goto out;
5477 }
5478
5479 r = kvm_mmu_module_init();
5480 if (r)
5481 goto out_free_percpu;
5482
5483 kvm_set_mmio_spte_mask();
5484 kvm_init_msr_list();
5485
5486 kvm_x86_ops = ops;
5487 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5488 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5489
5490 kvm_timer_init();
5491
5492 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5493
5494 if (cpu_has_xsave)
5495 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5496
5497 kvm_lapic_init();
5498 #ifdef CONFIG_X86_64
5499 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5500 #endif
5501
5502 return 0;
5503
5504 out_free_percpu:
5505 free_percpu(shared_msrs);
5506 out:
5507 return r;
5508 }
5509
5510 void kvm_arch_exit(void)
5511 {
5512 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5513
5514 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5515 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5516 CPUFREQ_TRANSITION_NOTIFIER);
5517 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5518 #ifdef CONFIG_X86_64
5519 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5520 #endif
5521 kvm_x86_ops = NULL;
5522 kvm_mmu_module_exit();
5523 free_percpu(shared_msrs);
5524 }
5525
5526 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5527 {
5528 ++vcpu->stat.halt_exits;
5529 if (irqchip_in_kernel(vcpu->kvm)) {
5530 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5531 return 1;
5532 } else {
5533 vcpu->run->exit_reason = KVM_EXIT_HLT;
5534 return 0;
5535 }
5536 }
5537 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5538
5539 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5540 {
5541 u64 param, ingpa, outgpa, ret;
5542 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5543 bool fast, longmode;
5544 int cs_db, cs_l;
5545
5546 /*
5547 * hypercall generates UD from non zero cpl and real mode
5548 * per HYPER-V spec
5549 */
5550 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5551 kvm_queue_exception(vcpu, UD_VECTOR);
5552 return 0;
5553 }
5554
5555 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5556 longmode = is_long_mode(vcpu) && cs_l == 1;
5557
5558 if (!longmode) {
5559 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5560 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5561 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5562 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5563 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5564 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5565 }
5566 #ifdef CONFIG_X86_64
5567 else {
5568 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5569 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5570 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5571 }
5572 #endif
5573
5574 code = param & 0xffff;
5575 fast = (param >> 16) & 0x1;
5576 rep_cnt = (param >> 32) & 0xfff;
5577 rep_idx = (param >> 48) & 0xfff;
5578
5579 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5580
5581 switch (code) {
5582 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5583 kvm_vcpu_on_spin(vcpu);
5584 break;
5585 default:
5586 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5587 break;
5588 }
5589
5590 ret = res | (((u64)rep_done & 0xfff) << 32);
5591 if (longmode) {
5592 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5593 } else {
5594 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5595 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5596 }
5597
5598 return 1;
5599 }
5600
5601 /*
5602 * kvm_pv_kick_cpu_op: Kick a vcpu.
5603 *
5604 * @apicid - apicid of vcpu to be kicked.
5605 */
5606 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5607 {
5608 struct kvm_lapic_irq lapic_irq;
5609
5610 lapic_irq.shorthand = 0;
5611 lapic_irq.dest_mode = 0;
5612 lapic_irq.dest_id = apicid;
5613
5614 lapic_irq.delivery_mode = APIC_DM_REMRD;
5615 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5616 }
5617
5618 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5619 {
5620 unsigned long nr, a0, a1, a2, a3, ret;
5621 int r = 1;
5622
5623 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5624 return kvm_hv_hypercall(vcpu);
5625
5626 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5627 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5628 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5629 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5630 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5631
5632 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5633
5634 if (!is_long_mode(vcpu)) {
5635 nr &= 0xFFFFFFFF;
5636 a0 &= 0xFFFFFFFF;
5637 a1 &= 0xFFFFFFFF;
5638 a2 &= 0xFFFFFFFF;
5639 a3 &= 0xFFFFFFFF;
5640 }
5641
5642 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5643 ret = -KVM_EPERM;
5644 goto out;
5645 }
5646
5647 switch (nr) {
5648 case KVM_HC_VAPIC_POLL_IRQ:
5649 ret = 0;
5650 break;
5651 case KVM_HC_KICK_CPU:
5652 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5653 ret = 0;
5654 break;
5655 default:
5656 ret = -KVM_ENOSYS;
5657 break;
5658 }
5659 out:
5660 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5661 ++vcpu->stat.hypercalls;
5662 return r;
5663 }
5664 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5665
5666 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5667 {
5668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5669 char instruction[3];
5670 unsigned long rip = kvm_rip_read(vcpu);
5671
5672 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5673
5674 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5675 }
5676
5677 /*
5678 * Check if userspace requested an interrupt window, and that the
5679 * interrupt window is open.
5680 *
5681 * No need to exit to userspace if we already have an interrupt queued.
5682 */
5683 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5684 {
5685 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5686 vcpu->run->request_interrupt_window &&
5687 kvm_arch_interrupt_allowed(vcpu));
5688 }
5689
5690 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5691 {
5692 struct kvm_run *kvm_run = vcpu->run;
5693
5694 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5695 kvm_run->cr8 = kvm_get_cr8(vcpu);
5696 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5697 if (irqchip_in_kernel(vcpu->kvm))
5698 kvm_run->ready_for_interrupt_injection = 1;
5699 else
5700 kvm_run->ready_for_interrupt_injection =
5701 kvm_arch_interrupt_allowed(vcpu) &&
5702 !kvm_cpu_has_interrupt(vcpu) &&
5703 !kvm_event_needs_reinjection(vcpu);
5704 }
5705
5706 static int vapic_enter(struct kvm_vcpu *vcpu)
5707 {
5708 struct kvm_lapic *apic = vcpu->arch.apic;
5709 struct page *page;
5710
5711 if (!apic || !apic->vapic_addr)
5712 return 0;
5713
5714 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5715 if (is_error_page(page))
5716 return -EFAULT;
5717
5718 vcpu->arch.apic->vapic_page = page;
5719 return 0;
5720 }
5721
5722 static void vapic_exit(struct kvm_vcpu *vcpu)
5723 {
5724 struct kvm_lapic *apic = vcpu->arch.apic;
5725 int idx;
5726
5727 if (!apic || !apic->vapic_addr)
5728 return;
5729
5730 idx = srcu_read_lock(&vcpu->kvm->srcu);
5731 kvm_release_page_dirty(apic->vapic_page);
5732 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5733 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5734 }
5735
5736 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5737 {
5738 int max_irr, tpr;
5739
5740 if (!kvm_x86_ops->update_cr8_intercept)
5741 return;
5742
5743 if (!vcpu->arch.apic)
5744 return;
5745
5746 if (!vcpu->arch.apic->vapic_addr)
5747 max_irr = kvm_lapic_find_highest_irr(vcpu);
5748 else
5749 max_irr = -1;
5750
5751 if (max_irr != -1)
5752 max_irr >>= 4;
5753
5754 tpr = kvm_lapic_get_cr8(vcpu);
5755
5756 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5757 }
5758
5759 static void inject_pending_event(struct kvm_vcpu *vcpu)
5760 {
5761 /* try to reinject previous events if any */
5762 if (vcpu->arch.exception.pending) {
5763 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5764 vcpu->arch.exception.has_error_code,
5765 vcpu->arch.exception.error_code);
5766 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5767 vcpu->arch.exception.has_error_code,
5768 vcpu->arch.exception.error_code,
5769 vcpu->arch.exception.reinject);
5770 return;
5771 }
5772
5773 if (vcpu->arch.nmi_injected) {
5774 kvm_x86_ops->set_nmi(vcpu);
5775 return;
5776 }
5777
5778 if (vcpu->arch.interrupt.pending) {
5779 kvm_x86_ops->set_irq(vcpu);
5780 return;
5781 }
5782
5783 /* try to inject new event if pending */
5784 if (vcpu->arch.nmi_pending) {
5785 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5786 --vcpu->arch.nmi_pending;
5787 vcpu->arch.nmi_injected = true;
5788 kvm_x86_ops->set_nmi(vcpu);
5789 }
5790 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5791 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5792 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5793 false);
5794 kvm_x86_ops->set_irq(vcpu);
5795 }
5796 }
5797 }
5798
5799 static void process_nmi(struct kvm_vcpu *vcpu)
5800 {
5801 unsigned limit = 2;
5802
5803 /*
5804 * x86 is limited to one NMI running, and one NMI pending after it.
5805 * If an NMI is already in progress, limit further NMIs to just one.
5806 * Otherwise, allow two (and we'll inject the first one immediately).
5807 */
5808 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5809 limit = 1;
5810
5811 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5812 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5813 kvm_make_request(KVM_REQ_EVENT, vcpu);
5814 }
5815
5816 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5817 {
5818 u64 eoi_exit_bitmap[4];
5819 u32 tmr[8];
5820
5821 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5822 return;
5823
5824 memset(eoi_exit_bitmap, 0, 32);
5825 memset(tmr, 0, 32);
5826
5827 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5828 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5829 kvm_apic_update_tmr(vcpu, tmr);
5830 }
5831
5832 /*
5833 * Returns 1 to let __vcpu_run() continue the guest execution loop without
5834 * exiting to the userspace. Otherwise, the value will be returned to the
5835 * userspace.
5836 */
5837 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5838 {
5839 int r;
5840 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5841 vcpu->run->request_interrupt_window;
5842 bool req_immediate_exit = false;
5843
5844 if (vcpu->requests) {
5845 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5846 kvm_mmu_unload(vcpu);
5847 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5848 __kvm_migrate_timers(vcpu);
5849 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5850 kvm_gen_update_masterclock(vcpu->kvm);
5851 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5852 kvm_gen_kvmclock_update(vcpu);
5853 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5854 r = kvm_guest_time_update(vcpu);
5855 if (unlikely(r))
5856 goto out;
5857 }
5858 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5859 kvm_mmu_sync_roots(vcpu);
5860 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5861 kvm_x86_ops->tlb_flush(vcpu);
5862 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5863 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5864 r = 0;
5865 goto out;
5866 }
5867 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5868 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5869 r = 0;
5870 goto out;
5871 }
5872 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5873 vcpu->fpu_active = 0;
5874 kvm_x86_ops->fpu_deactivate(vcpu);
5875 }
5876 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5877 /* Page is swapped out. Do synthetic halt */
5878 vcpu->arch.apf.halted = true;
5879 r = 1;
5880 goto out;
5881 }
5882 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5883 record_steal_time(vcpu);
5884 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5885 process_nmi(vcpu);
5886 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5887 kvm_handle_pmu_event(vcpu);
5888 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5889 kvm_deliver_pmi(vcpu);
5890 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5891 vcpu_scan_ioapic(vcpu);
5892 }
5893
5894 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5895 kvm_apic_accept_events(vcpu);
5896 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5897 r = 1;
5898 goto out;
5899 }
5900
5901 inject_pending_event(vcpu);
5902
5903 /* enable NMI/IRQ window open exits if needed */
5904 if (vcpu->arch.nmi_pending)
5905 req_immediate_exit =
5906 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5907 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5908 req_immediate_exit =
5909 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5910
5911 if (kvm_lapic_enabled(vcpu)) {
5912 /*
5913 * Update architecture specific hints for APIC
5914 * virtual interrupt delivery.
5915 */
5916 if (kvm_x86_ops->hwapic_irr_update)
5917 kvm_x86_ops->hwapic_irr_update(vcpu,
5918 kvm_lapic_find_highest_irr(vcpu));
5919 update_cr8_intercept(vcpu);
5920 kvm_lapic_sync_to_vapic(vcpu);
5921 }
5922 }
5923
5924 r = kvm_mmu_reload(vcpu);
5925 if (unlikely(r)) {
5926 goto cancel_injection;
5927 }
5928
5929 preempt_disable();
5930
5931 kvm_x86_ops->prepare_guest_switch(vcpu);
5932 if (vcpu->fpu_active)
5933 kvm_load_guest_fpu(vcpu);
5934 kvm_load_guest_xcr0(vcpu);
5935
5936 vcpu->mode = IN_GUEST_MODE;
5937
5938 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5939
5940 /* We should set ->mode before check ->requests,
5941 * see the comment in make_all_cpus_request.
5942 */
5943 smp_mb__after_srcu_read_unlock();
5944
5945 local_irq_disable();
5946
5947 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5948 || need_resched() || signal_pending(current)) {
5949 vcpu->mode = OUTSIDE_GUEST_MODE;
5950 smp_wmb();
5951 local_irq_enable();
5952 preempt_enable();
5953 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5954 r = 1;
5955 goto cancel_injection;
5956 }
5957
5958 if (req_immediate_exit)
5959 smp_send_reschedule(vcpu->cpu);
5960
5961 kvm_guest_enter();
5962
5963 if (unlikely(vcpu->arch.switch_db_regs)) {
5964 set_debugreg(0, 7);
5965 set_debugreg(vcpu->arch.eff_db[0], 0);
5966 set_debugreg(vcpu->arch.eff_db[1], 1);
5967 set_debugreg(vcpu->arch.eff_db[2], 2);
5968 set_debugreg(vcpu->arch.eff_db[3], 3);
5969 }
5970
5971 trace_kvm_entry(vcpu->vcpu_id);
5972 kvm_x86_ops->run(vcpu);
5973
5974 /*
5975 * If the guest has used debug registers, at least dr7
5976 * will be disabled while returning to the host.
5977 * If we don't have active breakpoints in the host, we don't
5978 * care about the messed up debug address registers. But if
5979 * we have some of them active, restore the old state.
5980 */
5981 if (hw_breakpoint_active())
5982 hw_breakpoint_restore();
5983
5984 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5985 native_read_tsc());
5986
5987 vcpu->mode = OUTSIDE_GUEST_MODE;
5988 smp_wmb();
5989
5990 /* Interrupt is enabled by handle_external_intr() */
5991 kvm_x86_ops->handle_external_intr(vcpu);
5992
5993 ++vcpu->stat.exits;
5994
5995 /*
5996 * We must have an instruction between local_irq_enable() and
5997 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5998 * the interrupt shadow. The stat.exits increment will do nicely.
5999 * But we need to prevent reordering, hence this barrier():
6000 */
6001 barrier();
6002
6003 kvm_guest_exit();
6004
6005 preempt_enable();
6006
6007 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6008
6009 /*
6010 * Profile KVM exit RIPs:
6011 */
6012 if (unlikely(prof_on == KVM_PROFILING)) {
6013 unsigned long rip = kvm_rip_read(vcpu);
6014 profile_hit(KVM_PROFILING, (void *)rip);
6015 }
6016
6017 if (unlikely(vcpu->arch.tsc_always_catchup))
6018 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6019
6020 if (vcpu->arch.apic_attention)
6021 kvm_lapic_sync_from_vapic(vcpu);
6022
6023 r = kvm_x86_ops->handle_exit(vcpu);
6024 return r;
6025
6026 cancel_injection:
6027 kvm_x86_ops->cancel_injection(vcpu);
6028 if (unlikely(vcpu->arch.apic_attention))
6029 kvm_lapic_sync_from_vapic(vcpu);
6030 out:
6031 return r;
6032 }
6033
6034
6035 static int __vcpu_run(struct kvm_vcpu *vcpu)
6036 {
6037 int r;
6038 struct kvm *kvm = vcpu->kvm;
6039
6040 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6041 r = vapic_enter(vcpu);
6042 if (r) {
6043 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6044 return r;
6045 }
6046
6047 r = 1;
6048 while (r > 0) {
6049 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6050 !vcpu->arch.apf.halted)
6051 r = vcpu_enter_guest(vcpu);
6052 else {
6053 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6054 kvm_vcpu_block(vcpu);
6055 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6056 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6057 kvm_apic_accept_events(vcpu);
6058 switch(vcpu->arch.mp_state) {
6059 case KVM_MP_STATE_HALTED:
6060 vcpu->arch.pv.pv_unhalted = false;
6061 vcpu->arch.mp_state =
6062 KVM_MP_STATE_RUNNABLE;
6063 case KVM_MP_STATE_RUNNABLE:
6064 vcpu->arch.apf.halted = false;
6065 break;
6066 case KVM_MP_STATE_INIT_RECEIVED:
6067 break;
6068 default:
6069 r = -EINTR;
6070 break;
6071 }
6072 }
6073 }
6074
6075 if (r <= 0)
6076 break;
6077
6078 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6079 if (kvm_cpu_has_pending_timer(vcpu))
6080 kvm_inject_pending_timer_irqs(vcpu);
6081
6082 if (dm_request_for_irq_injection(vcpu)) {
6083 r = -EINTR;
6084 vcpu->run->exit_reason = KVM_EXIT_INTR;
6085 ++vcpu->stat.request_irq_exits;
6086 }
6087
6088 kvm_check_async_pf_completion(vcpu);
6089
6090 if (signal_pending(current)) {
6091 r = -EINTR;
6092 vcpu->run->exit_reason = KVM_EXIT_INTR;
6093 ++vcpu->stat.signal_exits;
6094 }
6095 if (need_resched()) {
6096 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6097 cond_resched();
6098 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6099 }
6100 }
6101
6102 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6103
6104 vapic_exit(vcpu);
6105
6106 return r;
6107 }
6108
6109 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6110 {
6111 int r;
6112 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6113 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6114 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6115 if (r != EMULATE_DONE)
6116 return 0;
6117 return 1;
6118 }
6119
6120 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6121 {
6122 BUG_ON(!vcpu->arch.pio.count);
6123
6124 return complete_emulated_io(vcpu);
6125 }
6126
6127 /*
6128 * Implements the following, as a state machine:
6129 *
6130 * read:
6131 * for each fragment
6132 * for each mmio piece in the fragment
6133 * write gpa, len
6134 * exit
6135 * copy data
6136 * execute insn
6137 *
6138 * write:
6139 * for each fragment
6140 * for each mmio piece in the fragment
6141 * write gpa, len
6142 * copy data
6143 * exit
6144 */
6145 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6146 {
6147 struct kvm_run *run = vcpu->run;
6148 struct kvm_mmio_fragment *frag;
6149 unsigned len;
6150
6151 BUG_ON(!vcpu->mmio_needed);
6152
6153 /* Complete previous fragment */
6154 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6155 len = min(8u, frag->len);
6156 if (!vcpu->mmio_is_write)
6157 memcpy(frag->data, run->mmio.data, len);
6158
6159 if (frag->len <= 8) {
6160 /* Switch to the next fragment. */
6161 frag++;
6162 vcpu->mmio_cur_fragment++;
6163 } else {
6164 /* Go forward to the next mmio piece. */
6165 frag->data += len;
6166 frag->gpa += len;
6167 frag->len -= len;
6168 }
6169
6170 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6171 vcpu->mmio_needed = 0;
6172
6173 /* FIXME: return into emulator if single-stepping. */
6174 if (vcpu->mmio_is_write)
6175 return 1;
6176 vcpu->mmio_read_completed = 1;
6177 return complete_emulated_io(vcpu);
6178 }
6179
6180 run->exit_reason = KVM_EXIT_MMIO;
6181 run->mmio.phys_addr = frag->gpa;
6182 if (vcpu->mmio_is_write)
6183 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6184 run->mmio.len = min(8u, frag->len);
6185 run->mmio.is_write = vcpu->mmio_is_write;
6186 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6187 return 0;
6188 }
6189
6190
6191 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6192 {
6193 int r;
6194 sigset_t sigsaved;
6195
6196 if (!tsk_used_math(current) && init_fpu(current))
6197 return -ENOMEM;
6198
6199 if (vcpu->sigset_active)
6200 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6201
6202 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6203 kvm_vcpu_block(vcpu);
6204 kvm_apic_accept_events(vcpu);
6205 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6206 r = -EAGAIN;
6207 goto out;
6208 }
6209
6210 /* re-sync apic's tpr */
6211 if (!irqchip_in_kernel(vcpu->kvm)) {
6212 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6213 r = -EINVAL;
6214 goto out;
6215 }
6216 }
6217
6218 if (unlikely(vcpu->arch.complete_userspace_io)) {
6219 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6220 vcpu->arch.complete_userspace_io = NULL;
6221 r = cui(vcpu);
6222 if (r <= 0)
6223 goto out;
6224 } else
6225 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6226
6227 r = __vcpu_run(vcpu);
6228
6229 out:
6230 post_kvm_run_save(vcpu);
6231 if (vcpu->sigset_active)
6232 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6233
6234 return r;
6235 }
6236
6237 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6238 {
6239 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6240 /*
6241 * We are here if userspace calls get_regs() in the middle of
6242 * instruction emulation. Registers state needs to be copied
6243 * back from emulation context to vcpu. Userspace shouldn't do
6244 * that usually, but some bad designed PV devices (vmware
6245 * backdoor interface) need this to work
6246 */
6247 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6248 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6249 }
6250 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6251 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6252 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6253 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6254 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6255 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6256 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6257 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6258 #ifdef CONFIG_X86_64
6259 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6260 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6261 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6262 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6263 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6264 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6265 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6266 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6267 #endif
6268
6269 regs->rip = kvm_rip_read(vcpu);
6270 regs->rflags = kvm_get_rflags(vcpu);
6271
6272 return 0;
6273 }
6274
6275 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6276 {
6277 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6278 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6279
6280 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6281 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6282 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6283 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6284 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6285 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6286 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6287 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6288 #ifdef CONFIG_X86_64
6289 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6290 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6291 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6292 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6293 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6294 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6295 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6296 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6297 #endif
6298
6299 kvm_rip_write(vcpu, regs->rip);
6300 kvm_set_rflags(vcpu, regs->rflags);
6301
6302 vcpu->arch.exception.pending = false;
6303
6304 kvm_make_request(KVM_REQ_EVENT, vcpu);
6305
6306 return 0;
6307 }
6308
6309 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6310 {
6311 struct kvm_segment cs;
6312
6313 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6314 *db = cs.db;
6315 *l = cs.l;
6316 }
6317 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6318
6319 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6320 struct kvm_sregs *sregs)
6321 {
6322 struct desc_ptr dt;
6323
6324 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6325 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6326 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6327 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6328 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6329 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6330
6331 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6332 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6333
6334 kvm_x86_ops->get_idt(vcpu, &dt);
6335 sregs->idt.limit = dt.size;
6336 sregs->idt.base = dt.address;
6337 kvm_x86_ops->get_gdt(vcpu, &dt);
6338 sregs->gdt.limit = dt.size;
6339 sregs->gdt.base = dt.address;
6340
6341 sregs->cr0 = kvm_read_cr0(vcpu);
6342 sregs->cr2 = vcpu->arch.cr2;
6343 sregs->cr3 = kvm_read_cr3(vcpu);
6344 sregs->cr4 = kvm_read_cr4(vcpu);
6345 sregs->cr8 = kvm_get_cr8(vcpu);
6346 sregs->efer = vcpu->arch.efer;
6347 sregs->apic_base = kvm_get_apic_base(vcpu);
6348
6349 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6350
6351 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6352 set_bit(vcpu->arch.interrupt.nr,
6353 (unsigned long *)sregs->interrupt_bitmap);
6354
6355 return 0;
6356 }
6357
6358 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6359 struct kvm_mp_state *mp_state)
6360 {
6361 kvm_apic_accept_events(vcpu);
6362 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6363 vcpu->arch.pv.pv_unhalted)
6364 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6365 else
6366 mp_state->mp_state = vcpu->arch.mp_state;
6367
6368 return 0;
6369 }
6370
6371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6372 struct kvm_mp_state *mp_state)
6373 {
6374 if (!kvm_vcpu_has_lapic(vcpu) &&
6375 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6376 return -EINVAL;
6377
6378 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6379 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6380 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6381 } else
6382 vcpu->arch.mp_state = mp_state->mp_state;
6383 kvm_make_request(KVM_REQ_EVENT, vcpu);
6384 return 0;
6385 }
6386
6387 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6388 int reason, bool has_error_code, u32 error_code)
6389 {
6390 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6391 int ret;
6392
6393 init_emulate_ctxt(vcpu);
6394
6395 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6396 has_error_code, error_code);
6397
6398 if (ret)
6399 return EMULATE_FAIL;
6400
6401 kvm_rip_write(vcpu, ctxt->eip);
6402 kvm_set_rflags(vcpu, ctxt->eflags);
6403 kvm_make_request(KVM_REQ_EVENT, vcpu);
6404 return EMULATE_DONE;
6405 }
6406 EXPORT_SYMBOL_GPL(kvm_task_switch);
6407
6408 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6409 struct kvm_sregs *sregs)
6410 {
6411 int mmu_reset_needed = 0;
6412 int pending_vec, max_bits, idx;
6413 struct desc_ptr dt;
6414
6415 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6416 return -EINVAL;
6417
6418 dt.size = sregs->idt.limit;
6419 dt.address = sregs->idt.base;
6420 kvm_x86_ops->set_idt(vcpu, &dt);
6421 dt.size = sregs->gdt.limit;
6422 dt.address = sregs->gdt.base;
6423 kvm_x86_ops->set_gdt(vcpu, &dt);
6424
6425 vcpu->arch.cr2 = sregs->cr2;
6426 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6427 vcpu->arch.cr3 = sregs->cr3;
6428 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6429
6430 kvm_set_cr8(vcpu, sregs->cr8);
6431
6432 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6433 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6434 kvm_set_apic_base(vcpu, sregs->apic_base);
6435
6436 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6437 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6438 vcpu->arch.cr0 = sregs->cr0;
6439
6440 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6441 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6442 if (sregs->cr4 & X86_CR4_OSXSAVE)
6443 kvm_update_cpuid(vcpu);
6444
6445 idx = srcu_read_lock(&vcpu->kvm->srcu);
6446 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6447 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6448 mmu_reset_needed = 1;
6449 }
6450 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6451
6452 if (mmu_reset_needed)
6453 kvm_mmu_reset_context(vcpu);
6454
6455 max_bits = KVM_NR_INTERRUPTS;
6456 pending_vec = find_first_bit(
6457 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6458 if (pending_vec < max_bits) {
6459 kvm_queue_interrupt(vcpu, pending_vec, false);
6460 pr_debug("Set back pending irq %d\n", pending_vec);
6461 }
6462
6463 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6464 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6465 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6466 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6467 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6468 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6469
6470 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6471 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6472
6473 update_cr8_intercept(vcpu);
6474
6475 /* Older userspace won't unhalt the vcpu on reset. */
6476 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6477 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6478 !is_protmode(vcpu))
6479 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6480
6481 kvm_make_request(KVM_REQ_EVENT, vcpu);
6482
6483 return 0;
6484 }
6485
6486 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6487 struct kvm_guest_debug *dbg)
6488 {
6489 unsigned long rflags;
6490 int i, r;
6491
6492 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6493 r = -EBUSY;
6494 if (vcpu->arch.exception.pending)
6495 goto out;
6496 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6497 kvm_queue_exception(vcpu, DB_VECTOR);
6498 else
6499 kvm_queue_exception(vcpu, BP_VECTOR);
6500 }
6501
6502 /*
6503 * Read rflags as long as potentially injected trace flags are still
6504 * filtered out.
6505 */
6506 rflags = kvm_get_rflags(vcpu);
6507
6508 vcpu->guest_debug = dbg->control;
6509 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6510 vcpu->guest_debug = 0;
6511
6512 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6513 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6514 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6515 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6516 } else {
6517 for (i = 0; i < KVM_NR_DB_REGS; i++)
6518 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6519 }
6520 kvm_update_dr7(vcpu);
6521
6522 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6523 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6524 get_segment_base(vcpu, VCPU_SREG_CS);
6525
6526 /*
6527 * Trigger an rflags update that will inject or remove the trace
6528 * flags.
6529 */
6530 kvm_set_rflags(vcpu, rflags);
6531
6532 kvm_x86_ops->update_db_bp_intercept(vcpu);
6533
6534 r = 0;
6535
6536 out:
6537
6538 return r;
6539 }
6540
6541 /*
6542 * Translate a guest virtual address to a guest physical address.
6543 */
6544 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6545 struct kvm_translation *tr)
6546 {
6547 unsigned long vaddr = tr->linear_address;
6548 gpa_t gpa;
6549 int idx;
6550
6551 idx = srcu_read_lock(&vcpu->kvm->srcu);
6552 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6553 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6554 tr->physical_address = gpa;
6555 tr->valid = gpa != UNMAPPED_GVA;
6556 tr->writeable = 1;
6557 tr->usermode = 0;
6558
6559 return 0;
6560 }
6561
6562 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6563 {
6564 struct i387_fxsave_struct *fxsave =
6565 &vcpu->arch.guest_fpu.state->fxsave;
6566
6567 memcpy(fpu->fpr, fxsave->st_space, 128);
6568 fpu->fcw = fxsave->cwd;
6569 fpu->fsw = fxsave->swd;
6570 fpu->ftwx = fxsave->twd;
6571 fpu->last_opcode = fxsave->fop;
6572 fpu->last_ip = fxsave->rip;
6573 fpu->last_dp = fxsave->rdp;
6574 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6575
6576 return 0;
6577 }
6578
6579 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6580 {
6581 struct i387_fxsave_struct *fxsave =
6582 &vcpu->arch.guest_fpu.state->fxsave;
6583
6584 memcpy(fxsave->st_space, fpu->fpr, 128);
6585 fxsave->cwd = fpu->fcw;
6586 fxsave->swd = fpu->fsw;
6587 fxsave->twd = fpu->ftwx;
6588 fxsave->fop = fpu->last_opcode;
6589 fxsave->rip = fpu->last_ip;
6590 fxsave->rdp = fpu->last_dp;
6591 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6592
6593 return 0;
6594 }
6595
6596 int fx_init(struct kvm_vcpu *vcpu)
6597 {
6598 int err;
6599
6600 err = fpu_alloc(&vcpu->arch.guest_fpu);
6601 if (err)
6602 return err;
6603
6604 fpu_finit(&vcpu->arch.guest_fpu);
6605
6606 /*
6607 * Ensure guest xcr0 is valid for loading
6608 */
6609 vcpu->arch.xcr0 = XSTATE_FP;
6610
6611 vcpu->arch.cr0 |= X86_CR0_ET;
6612
6613 return 0;
6614 }
6615 EXPORT_SYMBOL_GPL(fx_init);
6616
6617 static void fx_free(struct kvm_vcpu *vcpu)
6618 {
6619 fpu_free(&vcpu->arch.guest_fpu);
6620 }
6621
6622 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6623 {
6624 if (vcpu->guest_fpu_loaded)
6625 return;
6626
6627 /*
6628 * Restore all possible states in the guest,
6629 * and assume host would use all available bits.
6630 * Guest xcr0 would be loaded later.
6631 */
6632 kvm_put_guest_xcr0(vcpu);
6633 vcpu->guest_fpu_loaded = 1;
6634 __kernel_fpu_begin();
6635 fpu_restore_checking(&vcpu->arch.guest_fpu);
6636 trace_kvm_fpu(1);
6637 }
6638
6639 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6640 {
6641 kvm_put_guest_xcr0(vcpu);
6642
6643 if (!vcpu->guest_fpu_loaded)
6644 return;
6645
6646 vcpu->guest_fpu_loaded = 0;
6647 fpu_save_init(&vcpu->arch.guest_fpu);
6648 __kernel_fpu_end();
6649 ++vcpu->stat.fpu_reload;
6650 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6651 trace_kvm_fpu(0);
6652 }
6653
6654 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6655 {
6656 kvmclock_reset(vcpu);
6657
6658 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6659 fx_free(vcpu);
6660 kvm_x86_ops->vcpu_free(vcpu);
6661 }
6662
6663 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6664 unsigned int id)
6665 {
6666 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6667 printk_once(KERN_WARNING
6668 "kvm: SMP vm created on host with unstable TSC; "
6669 "guest TSC will not be reliable\n");
6670 return kvm_x86_ops->vcpu_create(kvm, id);
6671 }
6672
6673 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6674 {
6675 int r;
6676
6677 vcpu->arch.mtrr_state.have_fixed = 1;
6678 r = vcpu_load(vcpu);
6679 if (r)
6680 return r;
6681 kvm_vcpu_reset(vcpu);
6682 kvm_mmu_setup(vcpu);
6683 vcpu_put(vcpu);
6684
6685 return r;
6686 }
6687
6688 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6689 {
6690 int r;
6691 struct msr_data msr;
6692
6693 r = vcpu_load(vcpu);
6694 if (r)
6695 return r;
6696 msr.data = 0x0;
6697 msr.index = MSR_IA32_TSC;
6698 msr.host_initiated = true;
6699 kvm_write_tsc(vcpu, &msr);
6700 vcpu_put(vcpu);
6701
6702 return r;
6703 }
6704
6705 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6706 {
6707 int r;
6708 vcpu->arch.apf.msr_val = 0;
6709
6710 r = vcpu_load(vcpu);
6711 BUG_ON(r);
6712 kvm_mmu_unload(vcpu);
6713 vcpu_put(vcpu);
6714
6715 fx_free(vcpu);
6716 kvm_x86_ops->vcpu_free(vcpu);
6717 }
6718
6719 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6720 {
6721 atomic_set(&vcpu->arch.nmi_queued, 0);
6722 vcpu->arch.nmi_pending = 0;
6723 vcpu->arch.nmi_injected = false;
6724
6725 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6726 vcpu->arch.dr6 = DR6_FIXED_1;
6727 vcpu->arch.dr7 = DR7_FIXED_1;
6728 kvm_update_dr7(vcpu);
6729
6730 kvm_make_request(KVM_REQ_EVENT, vcpu);
6731 vcpu->arch.apf.msr_val = 0;
6732 vcpu->arch.st.msr_val = 0;
6733
6734 kvmclock_reset(vcpu);
6735
6736 kvm_clear_async_pf_completion_queue(vcpu);
6737 kvm_async_pf_hash_reset(vcpu);
6738 vcpu->arch.apf.halted = false;
6739
6740 kvm_pmu_reset(vcpu);
6741
6742 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6743 vcpu->arch.regs_avail = ~0;
6744 vcpu->arch.regs_dirty = ~0;
6745
6746 kvm_x86_ops->vcpu_reset(vcpu);
6747 }
6748
6749 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6750 {
6751 struct kvm_segment cs;
6752
6753 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6754 cs.selector = vector << 8;
6755 cs.base = vector << 12;
6756 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6757 kvm_rip_write(vcpu, 0);
6758 }
6759
6760 int kvm_arch_hardware_enable(void *garbage)
6761 {
6762 struct kvm *kvm;
6763 struct kvm_vcpu *vcpu;
6764 int i;
6765 int ret;
6766 u64 local_tsc;
6767 u64 max_tsc = 0;
6768 bool stable, backwards_tsc = false;
6769
6770 kvm_shared_msr_cpu_online();
6771 ret = kvm_x86_ops->hardware_enable(garbage);
6772 if (ret != 0)
6773 return ret;
6774
6775 local_tsc = native_read_tsc();
6776 stable = !check_tsc_unstable();
6777 list_for_each_entry(kvm, &vm_list, vm_list) {
6778 kvm_for_each_vcpu(i, vcpu, kvm) {
6779 if (!stable && vcpu->cpu == smp_processor_id())
6780 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6781 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6782 backwards_tsc = true;
6783 if (vcpu->arch.last_host_tsc > max_tsc)
6784 max_tsc = vcpu->arch.last_host_tsc;
6785 }
6786 }
6787 }
6788
6789 /*
6790 * Sometimes, even reliable TSCs go backwards. This happens on
6791 * platforms that reset TSC during suspend or hibernate actions, but
6792 * maintain synchronization. We must compensate. Fortunately, we can
6793 * detect that condition here, which happens early in CPU bringup,
6794 * before any KVM threads can be running. Unfortunately, we can't
6795 * bring the TSCs fully up to date with real time, as we aren't yet far
6796 * enough into CPU bringup that we know how much real time has actually
6797 * elapsed; our helper function, get_kernel_ns() will be using boot
6798 * variables that haven't been updated yet.
6799 *
6800 * So we simply find the maximum observed TSC above, then record the
6801 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6802 * the adjustment will be applied. Note that we accumulate
6803 * adjustments, in case multiple suspend cycles happen before some VCPU
6804 * gets a chance to run again. In the event that no KVM threads get a
6805 * chance to run, we will miss the entire elapsed period, as we'll have
6806 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6807 * loose cycle time. This isn't too big a deal, since the loss will be
6808 * uniform across all VCPUs (not to mention the scenario is extremely
6809 * unlikely). It is possible that a second hibernate recovery happens
6810 * much faster than a first, causing the observed TSC here to be
6811 * smaller; this would require additional padding adjustment, which is
6812 * why we set last_host_tsc to the local tsc observed here.
6813 *
6814 * N.B. - this code below runs only on platforms with reliable TSC,
6815 * as that is the only way backwards_tsc is set above. Also note
6816 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6817 * have the same delta_cyc adjustment applied if backwards_tsc
6818 * is detected. Note further, this adjustment is only done once,
6819 * as we reset last_host_tsc on all VCPUs to stop this from being
6820 * called multiple times (one for each physical CPU bringup).
6821 *
6822 * Platforms with unreliable TSCs don't have to deal with this, they
6823 * will be compensated by the logic in vcpu_load, which sets the TSC to
6824 * catchup mode. This will catchup all VCPUs to real time, but cannot
6825 * guarantee that they stay in perfect synchronization.
6826 */
6827 if (backwards_tsc) {
6828 u64 delta_cyc = max_tsc - local_tsc;
6829 list_for_each_entry(kvm, &vm_list, vm_list) {
6830 kvm_for_each_vcpu(i, vcpu, kvm) {
6831 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6832 vcpu->arch.last_host_tsc = local_tsc;
6833 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6834 &vcpu->requests);
6835 }
6836
6837 /*
6838 * We have to disable TSC offset matching.. if you were
6839 * booting a VM while issuing an S4 host suspend....
6840 * you may have some problem. Solving this issue is
6841 * left as an exercise to the reader.
6842 */
6843 kvm->arch.last_tsc_nsec = 0;
6844 kvm->arch.last_tsc_write = 0;
6845 }
6846
6847 }
6848 return 0;
6849 }
6850
6851 void kvm_arch_hardware_disable(void *garbage)
6852 {
6853 kvm_x86_ops->hardware_disable(garbage);
6854 drop_user_return_notifiers(garbage);
6855 }
6856
6857 int kvm_arch_hardware_setup(void)
6858 {
6859 return kvm_x86_ops->hardware_setup();
6860 }
6861
6862 void kvm_arch_hardware_unsetup(void)
6863 {
6864 kvm_x86_ops->hardware_unsetup();
6865 }
6866
6867 void kvm_arch_check_processor_compat(void *rtn)
6868 {
6869 kvm_x86_ops->check_processor_compatibility(rtn);
6870 }
6871
6872 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6873 {
6874 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6875 }
6876
6877 struct static_key kvm_no_apic_vcpu __read_mostly;
6878
6879 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6880 {
6881 struct page *page;
6882 struct kvm *kvm;
6883 int r;
6884
6885 BUG_ON(vcpu->kvm == NULL);
6886 kvm = vcpu->kvm;
6887
6888 vcpu->arch.pv.pv_unhalted = false;
6889 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6890 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6891 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6892 else
6893 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6894
6895 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6896 if (!page) {
6897 r = -ENOMEM;
6898 goto fail;
6899 }
6900 vcpu->arch.pio_data = page_address(page);
6901
6902 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6903
6904 r = kvm_mmu_create(vcpu);
6905 if (r < 0)
6906 goto fail_free_pio_data;
6907
6908 if (irqchip_in_kernel(kvm)) {
6909 r = kvm_create_lapic(vcpu);
6910 if (r < 0)
6911 goto fail_mmu_destroy;
6912 } else
6913 static_key_slow_inc(&kvm_no_apic_vcpu);
6914
6915 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6916 GFP_KERNEL);
6917 if (!vcpu->arch.mce_banks) {
6918 r = -ENOMEM;
6919 goto fail_free_lapic;
6920 }
6921 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6922
6923 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6924 r = -ENOMEM;
6925 goto fail_free_mce_banks;
6926 }
6927
6928 r = fx_init(vcpu);
6929 if (r)
6930 goto fail_free_wbinvd_dirty_mask;
6931
6932 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6933 vcpu->arch.pv_time_enabled = false;
6934
6935 vcpu->arch.guest_supported_xcr0 = 0;
6936 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6937
6938 kvm_async_pf_hash_reset(vcpu);
6939 kvm_pmu_init(vcpu);
6940
6941 return 0;
6942 fail_free_wbinvd_dirty_mask:
6943 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6944 fail_free_mce_banks:
6945 kfree(vcpu->arch.mce_banks);
6946 fail_free_lapic:
6947 kvm_free_lapic(vcpu);
6948 fail_mmu_destroy:
6949 kvm_mmu_destroy(vcpu);
6950 fail_free_pio_data:
6951 free_page((unsigned long)vcpu->arch.pio_data);
6952 fail:
6953 return r;
6954 }
6955
6956 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6957 {
6958 int idx;
6959
6960 kvm_pmu_destroy(vcpu);
6961 kfree(vcpu->arch.mce_banks);
6962 kvm_free_lapic(vcpu);
6963 idx = srcu_read_lock(&vcpu->kvm->srcu);
6964 kvm_mmu_destroy(vcpu);
6965 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6966 free_page((unsigned long)vcpu->arch.pio_data);
6967 if (!irqchip_in_kernel(vcpu->kvm))
6968 static_key_slow_dec(&kvm_no_apic_vcpu);
6969 }
6970
6971 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6972 {
6973 if (type)
6974 return -EINVAL;
6975
6976 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6977 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6978 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6979 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
6980
6981 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6982 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6983 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6984 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6985 &kvm->arch.irq_sources_bitmap);
6986
6987 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6988 mutex_init(&kvm->arch.apic_map_lock);
6989 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6990
6991 pvclock_update_vm_gtod_copy(kvm);
6992
6993 return 0;
6994 }
6995
6996 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6997 {
6998 int r;
6999 r = vcpu_load(vcpu);
7000 BUG_ON(r);
7001 kvm_mmu_unload(vcpu);
7002 vcpu_put(vcpu);
7003 }
7004
7005 static void kvm_free_vcpus(struct kvm *kvm)
7006 {
7007 unsigned int i;
7008 struct kvm_vcpu *vcpu;
7009
7010 /*
7011 * Unpin any mmu pages first.
7012 */
7013 kvm_for_each_vcpu(i, vcpu, kvm) {
7014 kvm_clear_async_pf_completion_queue(vcpu);
7015 kvm_unload_vcpu_mmu(vcpu);
7016 }
7017 kvm_for_each_vcpu(i, vcpu, kvm)
7018 kvm_arch_vcpu_free(vcpu);
7019
7020 mutex_lock(&kvm->lock);
7021 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7022 kvm->vcpus[i] = NULL;
7023
7024 atomic_set(&kvm->online_vcpus, 0);
7025 mutex_unlock(&kvm->lock);
7026 }
7027
7028 void kvm_arch_sync_events(struct kvm *kvm)
7029 {
7030 kvm_free_all_assigned_devices(kvm);
7031 kvm_free_pit(kvm);
7032 }
7033
7034 void kvm_arch_destroy_vm(struct kvm *kvm)
7035 {
7036 if (current->mm == kvm->mm) {
7037 /*
7038 * Free memory regions allocated on behalf of userspace,
7039 * unless the the memory map has changed due to process exit
7040 * or fd copying.
7041 */
7042 struct kvm_userspace_memory_region mem;
7043 memset(&mem, 0, sizeof(mem));
7044 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7045 kvm_set_memory_region(kvm, &mem);
7046
7047 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7048 kvm_set_memory_region(kvm, &mem);
7049
7050 mem.slot = TSS_PRIVATE_MEMSLOT;
7051 kvm_set_memory_region(kvm, &mem);
7052 }
7053 kvm_iommu_unmap_guest(kvm);
7054 kfree(kvm->arch.vpic);
7055 kfree(kvm->arch.vioapic);
7056 kvm_free_vcpus(kvm);
7057 if (kvm->arch.apic_access_page)
7058 put_page(kvm->arch.apic_access_page);
7059 if (kvm->arch.ept_identity_pagetable)
7060 put_page(kvm->arch.ept_identity_pagetable);
7061 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7062 }
7063
7064 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7065 struct kvm_memory_slot *dont)
7066 {
7067 int i;
7068
7069 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7070 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7071 kvm_kvfree(free->arch.rmap[i]);
7072 free->arch.rmap[i] = NULL;
7073 }
7074 if (i == 0)
7075 continue;
7076
7077 if (!dont || free->arch.lpage_info[i - 1] !=
7078 dont->arch.lpage_info[i - 1]) {
7079 kvm_kvfree(free->arch.lpage_info[i - 1]);
7080 free->arch.lpage_info[i - 1] = NULL;
7081 }
7082 }
7083 }
7084
7085 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7086 unsigned long npages)
7087 {
7088 int i;
7089
7090 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7091 unsigned long ugfn;
7092 int lpages;
7093 int level = i + 1;
7094
7095 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7096 slot->base_gfn, level) + 1;
7097
7098 slot->arch.rmap[i] =
7099 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7100 if (!slot->arch.rmap[i])
7101 goto out_free;
7102 if (i == 0)
7103 continue;
7104
7105 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7106 sizeof(*slot->arch.lpage_info[i - 1]));
7107 if (!slot->arch.lpage_info[i - 1])
7108 goto out_free;
7109
7110 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7111 slot->arch.lpage_info[i - 1][0].write_count = 1;
7112 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7113 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7114 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7115 /*
7116 * If the gfn and userspace address are not aligned wrt each
7117 * other, or if explicitly asked to, disable large page
7118 * support for this slot
7119 */
7120 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7121 !kvm_largepages_enabled()) {
7122 unsigned long j;
7123
7124 for (j = 0; j < lpages; ++j)
7125 slot->arch.lpage_info[i - 1][j].write_count = 1;
7126 }
7127 }
7128
7129 return 0;
7130
7131 out_free:
7132 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7133 kvm_kvfree(slot->arch.rmap[i]);
7134 slot->arch.rmap[i] = NULL;
7135 if (i == 0)
7136 continue;
7137
7138 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7139 slot->arch.lpage_info[i - 1] = NULL;
7140 }
7141 return -ENOMEM;
7142 }
7143
7144 void kvm_arch_memslots_updated(struct kvm *kvm)
7145 {
7146 /*
7147 * memslots->generation has been incremented.
7148 * mmio generation may have reached its maximum value.
7149 */
7150 kvm_mmu_invalidate_mmio_sptes(kvm);
7151 }
7152
7153 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7154 struct kvm_memory_slot *memslot,
7155 struct kvm_userspace_memory_region *mem,
7156 enum kvm_mr_change change)
7157 {
7158 /*
7159 * Only private memory slots need to be mapped here since
7160 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7161 */
7162 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7163 unsigned long userspace_addr;
7164
7165 /*
7166 * MAP_SHARED to prevent internal slot pages from being moved
7167 * by fork()/COW.
7168 */
7169 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7170 PROT_READ | PROT_WRITE,
7171 MAP_SHARED | MAP_ANONYMOUS, 0);
7172
7173 if (IS_ERR((void *)userspace_addr))
7174 return PTR_ERR((void *)userspace_addr);
7175
7176 memslot->userspace_addr = userspace_addr;
7177 }
7178
7179 return 0;
7180 }
7181
7182 void kvm_arch_commit_memory_region(struct kvm *kvm,
7183 struct kvm_userspace_memory_region *mem,
7184 const struct kvm_memory_slot *old,
7185 enum kvm_mr_change change)
7186 {
7187
7188 int nr_mmu_pages = 0;
7189
7190 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7191 int ret;
7192
7193 ret = vm_munmap(old->userspace_addr,
7194 old->npages * PAGE_SIZE);
7195 if (ret < 0)
7196 printk(KERN_WARNING
7197 "kvm_vm_ioctl_set_memory_region: "
7198 "failed to munmap memory\n");
7199 }
7200
7201 if (!kvm->arch.n_requested_mmu_pages)
7202 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7203
7204 if (nr_mmu_pages)
7205 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7206 /*
7207 * Write protect all pages for dirty logging.
7208 * Existing largepage mappings are destroyed here and new ones will
7209 * not be created until the end of the logging.
7210 */
7211 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7212 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7213 }
7214
7215 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7216 {
7217 kvm_mmu_invalidate_zap_all_pages(kvm);
7218 }
7219
7220 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7221 struct kvm_memory_slot *slot)
7222 {
7223 kvm_mmu_invalidate_zap_all_pages(kvm);
7224 }
7225
7226 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7227 {
7228 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7229 !vcpu->arch.apf.halted)
7230 || !list_empty_careful(&vcpu->async_pf.done)
7231 || kvm_apic_has_events(vcpu)
7232 || vcpu->arch.pv.pv_unhalted
7233 || atomic_read(&vcpu->arch.nmi_queued) ||
7234 (kvm_arch_interrupt_allowed(vcpu) &&
7235 kvm_cpu_has_interrupt(vcpu));
7236 }
7237
7238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7239 {
7240 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7241 }
7242
7243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7244 {
7245 return kvm_x86_ops->interrupt_allowed(vcpu);
7246 }
7247
7248 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7249 {
7250 unsigned long current_rip = kvm_rip_read(vcpu) +
7251 get_segment_base(vcpu, VCPU_SREG_CS);
7252
7253 return current_rip == linear_rip;
7254 }
7255 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7256
7257 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7258 {
7259 unsigned long rflags;
7260
7261 rflags = kvm_x86_ops->get_rflags(vcpu);
7262 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7263 rflags &= ~X86_EFLAGS_TF;
7264 return rflags;
7265 }
7266 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7267
7268 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7269 {
7270 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7271 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7272 rflags |= X86_EFLAGS_TF;
7273 kvm_x86_ops->set_rflags(vcpu, rflags);
7274 kvm_make_request(KVM_REQ_EVENT, vcpu);
7275 }
7276 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7277
7278 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7279 {
7280 int r;
7281
7282 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7283 work->wakeup_all)
7284 return;
7285
7286 r = kvm_mmu_reload(vcpu);
7287 if (unlikely(r))
7288 return;
7289
7290 if (!vcpu->arch.mmu.direct_map &&
7291 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7292 return;
7293
7294 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7295 }
7296
7297 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7298 {
7299 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7300 }
7301
7302 static inline u32 kvm_async_pf_next_probe(u32 key)
7303 {
7304 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7305 }
7306
7307 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7308 {
7309 u32 key = kvm_async_pf_hash_fn(gfn);
7310
7311 while (vcpu->arch.apf.gfns[key] != ~0)
7312 key = kvm_async_pf_next_probe(key);
7313
7314 vcpu->arch.apf.gfns[key] = gfn;
7315 }
7316
7317 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7318 {
7319 int i;
7320 u32 key = kvm_async_pf_hash_fn(gfn);
7321
7322 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7323 (vcpu->arch.apf.gfns[key] != gfn &&
7324 vcpu->arch.apf.gfns[key] != ~0); i++)
7325 key = kvm_async_pf_next_probe(key);
7326
7327 return key;
7328 }
7329
7330 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7331 {
7332 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7333 }
7334
7335 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7336 {
7337 u32 i, j, k;
7338
7339 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7340 while (true) {
7341 vcpu->arch.apf.gfns[i] = ~0;
7342 do {
7343 j = kvm_async_pf_next_probe(j);
7344 if (vcpu->arch.apf.gfns[j] == ~0)
7345 return;
7346 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7347 /*
7348 * k lies cyclically in ]i,j]
7349 * | i.k.j |
7350 * |....j i.k.| or |.k..j i...|
7351 */
7352 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7353 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7354 i = j;
7355 }
7356 }
7357
7358 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7359 {
7360
7361 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7362 sizeof(val));
7363 }
7364
7365 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7366 struct kvm_async_pf *work)
7367 {
7368 struct x86_exception fault;
7369
7370 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7371 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7372
7373 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7374 (vcpu->arch.apf.send_user_only &&
7375 kvm_x86_ops->get_cpl(vcpu) == 0))
7376 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7377 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7378 fault.vector = PF_VECTOR;
7379 fault.error_code_valid = true;
7380 fault.error_code = 0;
7381 fault.nested_page_fault = false;
7382 fault.address = work->arch.token;
7383 kvm_inject_page_fault(vcpu, &fault);
7384 }
7385 }
7386
7387 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7388 struct kvm_async_pf *work)
7389 {
7390 struct x86_exception fault;
7391
7392 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7393 if (work->wakeup_all)
7394 work->arch.token = ~0; /* broadcast wakeup */
7395 else
7396 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7397
7398 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7399 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7400 fault.vector = PF_VECTOR;
7401 fault.error_code_valid = true;
7402 fault.error_code = 0;
7403 fault.nested_page_fault = false;
7404 fault.address = work->arch.token;
7405 kvm_inject_page_fault(vcpu, &fault);
7406 }
7407 vcpu->arch.apf.halted = false;
7408 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7409 }
7410
7411 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7412 {
7413 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7414 return true;
7415 else
7416 return !kvm_event_needs_reinjection(vcpu) &&
7417 kvm_x86_ops->interrupt_allowed(vcpu);
7418 }
7419
7420 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7421 {
7422 atomic_inc(&kvm->arch.noncoherent_dma_count);
7423 }
7424 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7425
7426 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7427 {
7428 atomic_dec(&kvm->arch.noncoherent_dma_count);
7429 }
7430 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7431
7432 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7433 {
7434 return atomic_read(&kvm->arch.noncoherent_dma_count);
7435 }
7436 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7437
7438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);