]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
x86/fpu: Rename fpu-internal.h to fpu/internal.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32 kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120 int nr;
121 u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125 struct user_return_notifier urn;
126 bool registered;
127 struct kvm_shared_msr_values {
128 u64 host;
129 u64 curr;
130 } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 { "pf_fixed", VCPU_STAT(pf_fixed) },
138 { "pf_guest", VCPU_STAT(pf_guest) },
139 { "tlb_flush", VCPU_STAT(tlb_flush) },
140 { "invlpg", VCPU_STAT(invlpg) },
141 { "exits", VCPU_STAT(exits) },
142 { "io_exits", VCPU_STAT(io_exits) },
143 { "mmio_exits", VCPU_STAT(mmio_exits) },
144 { "signal_exits", VCPU_STAT(signal_exits) },
145 { "irq_window", VCPU_STAT(irq_window_exits) },
146 { "nmi_window", VCPU_STAT(nmi_window_exits) },
147 { "halt_exits", VCPU_STAT(halt_exits) },
148 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 { "hypercalls", VCPU_STAT(hypercalls) },
151 { "request_irq", VCPU_STAT(request_irq_exits) },
152 { "irq_exits", VCPU_STAT(irq_exits) },
153 { "host_state_reload", VCPU_STAT(host_state_reload) },
154 { "efer_reload", VCPU_STAT(efer_reload) },
155 { "fpu_reload", VCPU_STAT(fpu_reload) },
156 { "insn_emulation", VCPU_STAT(insn_emulation) },
157 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 { "irq_injections", VCPU_STAT(irq_injections) },
159 { "nmi_injections", VCPU_STAT(nmi_injections) },
160 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 { "mmu_flooded", VM_STAT(mmu_flooded) },
165 { "mmu_recycled", VM_STAT(mmu_recycled) },
166 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 { "mmu_unsync", VM_STAT(mmu_unsync) },
168 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 { "largepages", VM_STAT(lpages) },
170 { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 int i;
180 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 unsigned slot;
187 struct kvm_shared_msrs *locals
188 = container_of(urn, struct kvm_shared_msrs, urn);
189 struct kvm_shared_msr_values *values;
190
191 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 values = &locals->values[slot];
193 if (values->host != values->curr) {
194 wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 values->curr = values->host;
196 }
197 }
198 locals->registered = false;
199 user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 u64 value;
205 unsigned int cpu = smp_processor_id();
206 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208 /* only read, and nobody should modify it at this time,
209 * so don't need lock */
210 if (slot >= shared_msrs_global.nr) {
211 printk(KERN_ERR "kvm: invalid MSR slot!");
212 return;
213 }
214 rdmsrl_safe(msr, &value);
215 smsr->values[slot].host = value;
216 smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 if (slot >= shared_msrs_global.nr)
223 shared_msrs_global.nr = slot + 1;
224 shared_msrs_global.msrs[slot] = msr;
225 /* we need ensured the shared_msr_global have been updated */
226 smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 unsigned i;
233
234 for (i = 0; i < shared_msrs_global.nr; ++i)
235 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 unsigned int cpu = smp_processor_id();
241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 int err;
243
244 if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 return 0;
246 smsr->values[slot].curr = value;
247 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 if (err)
249 return 1;
250
251 if (!smsr->registered) {
252 smsr->urn.on_user_return = kvm_on_user_return;
253 user_return_notifier_register(&smsr->urn);
254 smsr->registered = true;
255 }
256 return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262 unsigned int cpu = smp_processor_id();
263 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265 if (smsr->registered)
266 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 u64 old_state = vcpu->arch.apic_base &
278 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 u64 new_state = msr_info->data &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284 if (!msr_info->host_initiated &&
285 ((msr_info->data & reserved_bits) != 0 ||
286 new_state == X2APIC_ENABLE ||
287 (new_state == MSR_IA32_APICBASE_ENABLE &&
288 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 old_state == 0)))
291 return 1;
292
293 kvm_lapic_set_base(vcpu, msr_info->data);
294 return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 /* Fault while not rebooting. We want the trace. */
301 BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN 0
306 #define EXCPT_CONTRIBUTORY 1
307 #define EXCPT_PF 2
308
309 static int exception_class(int vector)
310 {
311 switch (vector) {
312 case PF_VECTOR:
313 return EXCPT_PF;
314 case DE_VECTOR:
315 case TS_VECTOR:
316 case NP_VECTOR:
317 case SS_VECTOR:
318 case GP_VECTOR:
319 return EXCPT_CONTRIBUTORY;
320 default:
321 break;
322 }
323 return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT 0
327 #define EXCPT_TRAP 1
328 #define EXCPT_ABORT 2
329 #define EXCPT_INTERRUPT 3
330
331 static int exception_type(int vector)
332 {
333 unsigned int mask;
334
335 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 return EXCPT_INTERRUPT;
337
338 mask = 1 << vector;
339
340 /* #DB is trap, as instruction watchpoints are handled elsewhere */
341 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 return EXCPT_TRAP;
343
344 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 return EXCPT_ABORT;
346
347 /* Reserved exceptions will result in fault */
348 return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 unsigned nr, bool has_error, u32 error_code,
353 bool reinject)
354 {
355 u32 prev_nr;
356 int class1, class2;
357
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360 if (!vcpu->arch.exception.pending) {
361 queue:
362 if (has_error && !is_protmode(vcpu))
363 has_error = false;
364 vcpu->arch.exception.pending = true;
365 vcpu->arch.exception.has_error_code = has_error;
366 vcpu->arch.exception.nr = nr;
367 vcpu->arch.exception.error_code = error_code;
368 vcpu->arch.exception.reinject = reinject;
369 return;
370 }
371
372 /* to check exception */
373 prev_nr = vcpu->arch.exception.nr;
374 if (prev_nr == DF_VECTOR) {
375 /* triple fault -> shutdown */
376 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 return;
378 }
379 class1 = exception_class(prev_nr);
380 class2 = exception_class(nr);
381 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 /* generate double fault per SDM Table 5-5 */
384 vcpu->arch.exception.pending = true;
385 vcpu->arch.exception.has_error_code = true;
386 vcpu->arch.exception.nr = DF_VECTOR;
387 vcpu->arch.exception.error_code = 0;
388 } else
389 /* replace previous exception with a new one in a hope
390 that instruction re-execution will regenerate lost
391 exception */
392 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 if (err)
410 kvm_inject_gp(vcpu, 0);
411 else
412 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 ++vcpu->stat.pf_guest;
419 vcpu->arch.cr2 = fault->address;
420 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 else
429 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431 return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 atomic_inc(&vcpu->arch.nmi_queued);
437 kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
455 * a #GP and return false.
456 */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 return true;
461 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 return true;
470
471 kvm_queue_exception(vcpu, UD_VECTOR);
472 return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477 * This function will be used to read from the physical memory of the currently
478 * running guest. The difference to kvm_read_guest_page is that this function
479 * can read from guest physical or from the guest's guest physical memory.
480 */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 gfn_t ngfn, void *data, int offset, int len,
483 u32 access)
484 {
485 struct x86_exception exception;
486 gfn_t real_gfn;
487 gpa_t ngpa;
488
489 ngpa = gfn_to_gpa(ngfn);
490 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 if (real_gfn == UNMAPPED_GVA)
492 return -EFAULT;
493
494 real_gfn = gpa_to_gfn(real_gfn);
495
496 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 void *data, int offset, int len, u32 access)
502 {
503 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 data, offset, len, access);
505 }
506
507 /*
508 * Load the pae pdptrs. Return true is they are all valid.
509 */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 int i;
515 int ret;
516 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 offset * sizeof(u64), sizeof(pdpte),
520 PFERR_USER_MASK|PFERR_WRITE_MASK);
521 if (ret < 0) {
522 ret = 0;
523 goto out;
524 }
525 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 if (is_present_gpte(pdpte[i]) &&
527 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 ret = 0;
529 goto out;
530 }
531 }
532 ret = 1;
533
534 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 __set_bit(VCPU_EXREG_PDPTR,
536 (unsigned long *)&vcpu->arch.regs_avail);
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541 return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 bool changed = true;
549 int offset;
550 gfn_t gfn;
551 int r;
552
553 if (is_long_mode(vcpu) || !is_pae(vcpu))
554 return false;
555
556 if (!test_bit(VCPU_EXREG_PDPTR,
557 (unsigned long *)&vcpu->arch.regs_avail))
558 return true;
559
560 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 PFERR_USER_MASK | PFERR_WRITE_MASK);
564 if (r < 0)
565 goto out;
566 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569 return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 X86_CR0_CD | X86_CR0_NW;
577
578 cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581 if (cr0 & 0xffffffff00000000UL)
582 return 1;
583 #endif
584
585 cr0 &= ~CR0_RESERVED_BITS;
586
587 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 return 1;
589
590 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 return 1;
592
593 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 if ((vcpu->arch.efer & EFER_LME)) {
596 int cs_db, cs_l;
597
598 if (!is_pae(vcpu))
599 return 1;
600 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 if (cs_l)
602 return 1;
603 } else
604 #endif
605 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 kvm_read_cr3(vcpu)))
607 return 1;
608 }
609
610 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 return 1;
612
613 kvm_x86_ops->set_cr0(vcpu, cr0);
614
615 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 kvm_clear_async_pf_completion_queue(vcpu);
617 kvm_async_pf_hash_reset(vcpu);
618 }
619
620 if ((cr0 ^ old_cr0) & update_bits)
621 kvm_mmu_reset_context(vcpu);
622 return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 !vcpu->guest_xcr0_loaded) {
636 /* kvm_set_xcr() also depends on this */
637 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 vcpu->guest_xcr0_loaded = 1;
639 }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 if (vcpu->guest_xcr0_loaded) {
645 if (vcpu->arch.xcr0 != host_xcr0)
646 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 vcpu->guest_xcr0_loaded = 0;
648 }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 u64 xcr0 = xcr;
654 u64 old_xcr0 = vcpu->arch.xcr0;
655 u64 valid_bits;
656
657 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
658 if (index != XCR_XFEATURE_ENABLED_MASK)
659 return 1;
660 if (!(xcr0 & XSTATE_FP))
661 return 1;
662 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 return 1;
664
665 /*
666 * Do not allow the guest to set bits that we do not support
667 * saving. However, xcr0 bit 0 is always set, even if the
668 * emulated CPU does not support XSAVE (see fx_init).
669 */
670 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 if (xcr0 & ~valid_bits)
672 return 1;
673
674 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 return 1;
676
677 if (xcr0 & XSTATE_AVX512) {
678 if (!(xcr0 & XSTATE_YMM))
679 return 1;
680 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 return 1;
682 }
683 kvm_put_guest_xcr0(vcpu);
684 vcpu->arch.xcr0 = xcr0;
685
686 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 kvm_update_cpuid(vcpu);
688 return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 __kvm_set_xcr(vcpu, index, xcr)) {
695 kvm_inject_gp(vcpu, 0);
696 return 1;
697 }
698 return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706 X86_CR4_PAE | X86_CR4_SMEP;
707 if (cr4 & CR4_RESERVED_BITS)
708 return 1;
709
710 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 return 1;
712
713 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 return 1;
715
716 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 return 1;
718
719 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 return 1;
721
722 if (is_long_mode(vcpu)) {
723 if (!(cr4 & X86_CR4_PAE))
724 return 1;
725 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 && ((cr4 ^ old_cr4) & pdptr_bits)
727 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 kvm_read_cr3(vcpu)))
729 return 1;
730
731 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 if (!guest_cpuid_has_pcid(vcpu))
733 return 1;
734
735 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 return 1;
738 }
739
740 if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 return 1;
742
743 if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 kvm_mmu_reset_context(vcpu);
746
747 if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 kvm_update_cpuid(vcpu);
752
753 return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760 cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 kvm_mmu_sync_roots(vcpu);
765 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 return 0;
767 }
768
769 if (is_long_mode(vcpu)) {
770 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 return 1;
772 } else if (is_pae(vcpu) && is_paging(vcpu) &&
773 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 return 1;
775
776 vcpu->arch.cr3 = cr3;
777 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 kvm_mmu_new_cr3(vcpu);
779 return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785 if (cr8 & CR8_RESERVED_BITS)
786 return 1;
787 if (irqchip_in_kernel(vcpu->kvm))
788 kvm_lapic_set_tpr(vcpu, cr8);
789 else
790 vcpu->arch.cr8 = cr8;
791 return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797 if (irqchip_in_kernel(vcpu->kvm))
798 return kvm_lapic_get_cr8(vcpu);
799 else
800 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806 int i;
807
808 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809 for (i = 0; i < KVM_NR_DB_REGS; i++)
810 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812 }
813 }
814
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823 unsigned long dr7;
824
825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826 dr7 = vcpu->arch.guest_debug_dr7;
827 else
828 dr7 = vcpu->arch.dr7;
829 kvm_x86_ops->set_dr7(vcpu, dr7);
830 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831 if (dr7 & DR7_BP_EN_MASK)
832 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837 u64 fixed = DR6_FIXED_1;
838
839 if (!guest_cpuid_has_rtm(vcpu))
840 fixed |= DR6_RTM;
841 return fixed;
842 }
843
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846 switch (dr) {
847 case 0 ... 3:
848 vcpu->arch.db[dr] = val;
849 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850 vcpu->arch.eff_db[dr] = val;
851 break;
852 case 4:
853 /* fall through */
854 case 6:
855 if (val & 0xffffffff00000000ULL)
856 return -1; /* #GP */
857 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858 kvm_update_dr6(vcpu);
859 break;
860 case 5:
861 /* fall through */
862 default: /* 7 */
863 if (val & 0xffffffff00000000ULL)
864 return -1; /* #GP */
865 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866 kvm_update_dr7(vcpu);
867 break;
868 }
869
870 return 0;
871 }
872
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875 if (__kvm_set_dr(vcpu, dr, val)) {
876 kvm_inject_gp(vcpu, 0);
877 return 1;
878 }
879 return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885 switch (dr) {
886 case 0 ... 3:
887 *val = vcpu->arch.db[dr];
888 break;
889 case 4:
890 /* fall through */
891 case 6:
892 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893 *val = vcpu->arch.dr6;
894 else
895 *val = kvm_x86_ops->get_dr6(vcpu);
896 break;
897 case 5:
898 /* fall through */
899 default: /* 7 */
900 *val = vcpu->arch.dr7;
901 break;
902 }
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910 u64 data;
911 int err;
912
913 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914 if (err)
915 return err;
916 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918 return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922 /*
923 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925 *
926 * This list is modified at module load time to reflect the
927 * capabilities of the host cpu. This capabilities test skips MSRs that are
928 * kvm-specific. Those are put in the beginning of the list.
929 */
930
931 #define KVM_SAVE_MSRS_BEGIN 12
932 static u32 msrs_to_save[] = {
933 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938 MSR_KVM_PV_EOI_EN,
939 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940 MSR_STAR,
941 #ifdef CONFIG_X86_64
942 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947
948 static unsigned num_msrs_to_save;
949
950 static const u32 emulated_msrs[] = {
951 MSR_IA32_TSC_ADJUST,
952 MSR_IA32_TSCDEADLINE,
953 MSR_IA32_MISC_ENABLE,
954 MSR_IA32_MCG_STATUS,
955 MSR_IA32_MCG_CTL,
956 };
957
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960 if (efer & efer_reserved_bits)
961 return false;
962
963 if (efer & EFER_FFXSR) {
964 struct kvm_cpuid_entry2 *feat;
965
966 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968 return false;
969 }
970
971 if (efer & EFER_SVME) {
972 struct kvm_cpuid_entry2 *feat;
973
974 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976 return false;
977 }
978
979 return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985 u64 old_efer = vcpu->arch.efer;
986
987 if (!kvm_valid_efer(vcpu, efer))
988 return 1;
989
990 if (is_paging(vcpu)
991 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992 return 1;
993
994 efer &= ~EFER_LMA;
995 efer |= vcpu->arch.efer & EFER_LMA;
996
997 kvm_x86_ops->set_efer(vcpu, efer);
998
999 /* Update reserved bits */
1000 if ((efer ^ old_efer) & EFER_NX)
1001 kvm_mmu_reset_context(vcpu);
1002
1003 return 0;
1004 }
1005
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008 efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011
1012 /*
1013 * Writes msr value into into the appropriate "register".
1014 * Returns 0 on success, non-0 otherwise.
1015 * Assumes vcpu_load() was already called.
1016 */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019 switch (msr->index) {
1020 case MSR_FS_BASE:
1021 case MSR_GS_BASE:
1022 case MSR_KERNEL_GS_BASE:
1023 case MSR_CSTAR:
1024 case MSR_LSTAR:
1025 if (is_noncanonical_address(msr->data))
1026 return 1;
1027 break;
1028 case MSR_IA32_SYSENTER_EIP:
1029 case MSR_IA32_SYSENTER_ESP:
1030 /*
1031 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032 * non-canonical address is written on Intel but not on
1033 * AMD (which ignores the top 32-bits, because it does
1034 * not implement 64-bit SYSENTER).
1035 *
1036 * 64-bit code should hence be able to write a non-canonical
1037 * value on AMD. Making the address canonical ensures that
1038 * vmentry does not fail on Intel after writing a non-canonical
1039 * value, and that something deterministic happens if the guest
1040 * invokes 64-bit SYSENTER.
1041 */
1042 msr->data = get_canonical(msr->data);
1043 }
1044 return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047
1048 /*
1049 * Adapt set_msr() to msr_io()'s calling convention
1050 */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053 struct msr_data msr;
1054
1055 msr.data = *data;
1056 msr.index = index;
1057 msr.host_initiated = true;
1058 return kvm_set_msr(vcpu, &msr);
1059 }
1060
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063 seqcount_t seq;
1064
1065 struct { /* extract of a clocksource struct */
1066 int vclock_mode;
1067 cycle_t cycle_last;
1068 cycle_t mask;
1069 u32 mult;
1070 u32 shift;
1071 } clock;
1072
1073 u64 boot_ns;
1074 u64 nsec_base;
1075 };
1076
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082 u64 boot_ns;
1083
1084 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085
1086 write_seqcount_begin(&vdata->seq);
1087
1088 /* copy pvclock gtod data */
1089 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1090 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1091 vdata->clock.mask = tk->tkr_mono.mask;
1092 vdata->clock.mult = tk->tkr_mono.mult;
1093 vdata->clock.shift = tk->tkr_mono.shift;
1094
1095 vdata->boot_ns = boot_ns;
1096 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1097
1098 write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104 /*
1105 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106 * vcpu_enter_guest. This function is only called from
1107 * the physical CPU that is running vcpu.
1108 */
1109 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114 int version;
1115 int r;
1116 struct pvclock_wall_clock wc;
1117 struct timespec boot;
1118
1119 if (!wall_clock)
1120 return;
1121
1122 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123 if (r)
1124 return;
1125
1126 if (version & 1)
1127 ++version; /* first time write, random junk */
1128
1129 ++version;
1130
1131 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132
1133 /*
1134 * The guest calculates current wall clock time by adding
1135 * system time (updated by kvm_guest_time_update below) to the
1136 * wall clock specified here. guest system time equals host
1137 * system time for us, thus we must fill in host boot time here.
1138 */
1139 getboottime(&boot);
1140
1141 if (kvm->arch.kvmclock_offset) {
1142 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143 boot = timespec_sub(boot, ts);
1144 }
1145 wc.sec = boot.tv_sec;
1146 wc.nsec = boot.tv_nsec;
1147 wc.version = version;
1148
1149 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150
1151 version++;
1152 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157 uint32_t quotient, remainder;
1158
1159 /* Don't try to replace with do_div(), this one calculates
1160 * "(dividend << 32) / divisor" */
1161 __asm__ ( "divl %4"
1162 : "=a" (quotient), "=d" (remainder)
1163 : "0" (0), "1" (dividend), "r" (divisor) );
1164 return quotient;
1165 }
1166
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168 s8 *pshift, u32 *pmultiplier)
1169 {
1170 uint64_t scaled64;
1171 int32_t shift = 0;
1172 uint64_t tps64;
1173 uint32_t tps32;
1174
1175 tps64 = base_khz * 1000LL;
1176 scaled64 = scaled_khz * 1000LL;
1177 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178 tps64 >>= 1;
1179 shift--;
1180 }
1181
1182 tps32 = (uint32_t)tps64;
1183 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185 scaled64 >>= 1;
1186 else
1187 tps32 <<= 1;
1188 shift++;
1189 }
1190
1191 *pshift = shift;
1192 *pmultiplier = div_frac(scaled64, tps32);
1193
1194 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197
1198 static inline u64 get_kernel_ns(void)
1199 {
1200 return ktime_get_boot_ns();
1201 }
1202
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213 vcpu->arch.virtual_tsc_shift);
1214 }
1215
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218 u64 v = (u64)khz * (1000000 + ppm);
1219 do_div(v, 1000000);
1220 return v;
1221 }
1222
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225 u32 thresh_lo, thresh_hi;
1226 int use_scaling = 0;
1227
1228 /* tsc_khz can be zero if TSC calibration fails */
1229 if (this_tsc_khz == 0)
1230 return;
1231
1232 /* Compute a scale to convert nanoseconds in TSC cycles */
1233 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234 &vcpu->arch.virtual_tsc_shift,
1235 &vcpu->arch.virtual_tsc_mult);
1236 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237
1238 /*
1239 * Compute the variation in TSC rate which is acceptable
1240 * within the range of tolerance and decide if the
1241 * rate being applied is within that bounds of the hardware
1242 * rate. If so, no scaling or compensation need be done.
1243 */
1244 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248 use_scaling = 1;
1249 }
1250 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256 vcpu->arch.virtual_tsc_mult,
1257 vcpu->arch.virtual_tsc_shift);
1258 tsc += vcpu->arch.this_tsc_write;
1259 return tsc;
1260 }
1261
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265 bool vcpus_matched;
1266 struct kvm_arch *ka = &vcpu->kvm->arch;
1267 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268
1269 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270 atomic_read(&vcpu->kvm->online_vcpus));
1271
1272 /*
1273 * Once the masterclock is enabled, always perform request in
1274 * order to update it.
1275 *
1276 * In order to enable masterclock, the host clocksource must be TSC
1277 * and the vcpus need to have matched TSCs. When that happens,
1278 * perform request to enable masterclock.
1279 */
1280 if (ka->use_master_clock ||
1281 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283
1284 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285 atomic_read(&vcpu->kvm->online_vcpus),
1286 ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298 struct kvm *kvm = vcpu->kvm;
1299 u64 offset, ns, elapsed;
1300 unsigned long flags;
1301 s64 usdiff;
1302 bool matched;
1303 bool already_matched;
1304 u64 data = msr->data;
1305
1306 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308 ns = get_kernel_ns();
1309 elapsed = ns - kvm->arch.last_tsc_nsec;
1310
1311 if (vcpu->arch.virtual_tsc_khz) {
1312 int faulted = 0;
1313
1314 /* n.b - signed multiplication and division required */
1315 usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319 /* do_div() only does unsigned */
1320 asm("1: idivl %[divisor]\n"
1321 "2: xor %%edx, %%edx\n"
1322 " movl $0, %[faulted]\n"
1323 "3:\n"
1324 ".section .fixup,\"ax\"\n"
1325 "4: movl $1, %[faulted]\n"
1326 " jmp 3b\n"
1327 ".previous\n"
1328
1329 _ASM_EXTABLE(1b, 4b)
1330
1331 : "=A"(usdiff), [faulted] "=r" (faulted)
1332 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333
1334 #endif
1335 do_div(elapsed, 1000);
1336 usdiff -= elapsed;
1337 if (usdiff < 0)
1338 usdiff = -usdiff;
1339
1340 /* idivl overflow => difference is larger than USEC_PER_SEC */
1341 if (faulted)
1342 usdiff = USEC_PER_SEC;
1343 } else
1344 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345
1346 /*
1347 * Special case: TSC write with a small delta (1 second) of virtual
1348 * cycle time against real time is interpreted as an attempt to
1349 * synchronize the CPU.
1350 *
1351 * For a reliable TSC, we can match TSC offsets, and for an unstable
1352 * TSC, we add elapsed time in this computation. We could let the
1353 * compensation code attempt to catch up if we fall behind, but
1354 * it's better to try to match offsets from the beginning.
1355 */
1356 if (usdiff < USEC_PER_SEC &&
1357 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358 if (!check_tsc_unstable()) {
1359 offset = kvm->arch.cur_tsc_offset;
1360 pr_debug("kvm: matched tsc offset for %llu\n", data);
1361 } else {
1362 u64 delta = nsec_to_cycles(vcpu, elapsed);
1363 data += delta;
1364 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366 }
1367 matched = true;
1368 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369 } else {
1370 /*
1371 * We split periods of matched TSC writes into generations.
1372 * For each generation, we track the original measured
1373 * nanosecond time, offset, and write, so if TSCs are in
1374 * sync, we can match exact offset, and if not, we can match
1375 * exact software computation in compute_guest_tsc()
1376 *
1377 * These values are tracked in kvm->arch.cur_xxx variables.
1378 */
1379 kvm->arch.cur_tsc_generation++;
1380 kvm->arch.cur_tsc_nsec = ns;
1381 kvm->arch.cur_tsc_write = data;
1382 kvm->arch.cur_tsc_offset = offset;
1383 matched = false;
1384 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385 kvm->arch.cur_tsc_generation, data);
1386 }
1387
1388 /*
1389 * We also track th most recent recorded KHZ, write and time to
1390 * allow the matching interval to be extended at each write.
1391 */
1392 kvm->arch.last_tsc_nsec = ns;
1393 kvm->arch.last_tsc_write = data;
1394 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395
1396 vcpu->arch.last_guest_tsc = data;
1397
1398 /* Keep track of which generation this VCPU has synchronized to */
1399 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402
1403 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404 update_ia32_tsc_adjust_msr(vcpu, offset);
1405 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407
1408 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409 if (!matched) {
1410 kvm->arch.nr_vcpus_matched_tsc = 0;
1411 } else if (!already_matched) {
1412 kvm->arch.nr_vcpus_matched_tsc++;
1413 }
1414
1415 kvm_track_tsc_matching(vcpu);
1416 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420
1421 #ifdef CONFIG_X86_64
1422
1423 static cycle_t read_tsc(void)
1424 {
1425 cycle_t ret;
1426 u64 last;
1427
1428 /*
1429 * Empirically, a fence (of type that depends on the CPU)
1430 * before rdtsc is enough to ensure that rdtsc is ordered
1431 * with respect to loads. The various CPU manuals are unclear
1432 * as to whether rdtsc can be reordered with later loads,
1433 * but no one has ever seen it happen.
1434 */
1435 rdtsc_barrier();
1436 ret = (cycle_t)vget_cycles();
1437
1438 last = pvclock_gtod_data.clock.cycle_last;
1439
1440 if (likely(ret >= last))
1441 return ret;
1442
1443 /*
1444 * GCC likes to generate cmov here, but this branch is extremely
1445 * predictable (it's just a funciton of time and the likely is
1446 * very likely) and there's a data dependence, so force GCC
1447 * to generate a branch instead. I don't barrier() because
1448 * we don't actually need a barrier, and if this function
1449 * ever gets inlined it will generate worse code.
1450 */
1451 asm volatile ("");
1452 return last;
1453 }
1454
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457 long v;
1458 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459
1460 *cycle_now = read_tsc();
1461
1462 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463 return v * gtod->clock.mult;
1464 }
1465
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469 unsigned long seq;
1470 int mode;
1471 u64 ns;
1472
1473 do {
1474 seq = read_seqcount_begin(&gtod->seq);
1475 mode = gtod->clock.vclock_mode;
1476 ns = gtod->nsec_base;
1477 ns += vgettsc(cycle_now);
1478 ns >>= gtod->clock.shift;
1479 ns += gtod->boot_ns;
1480 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481 *t = ns;
1482
1483 return mode;
1484 }
1485
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489 /* checked again under seqlock below */
1490 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491 return false;
1492
1493 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496
1497 /*
1498 *
1499 * Assuming a stable TSC across physical CPUS, and a stable TSC
1500 * across virtual CPUs, the following condition is possible.
1501 * Each numbered line represents an event visible to both
1502 * CPUs at the next numbered event.
1503 *
1504 * "timespecX" represents host monotonic time. "tscX" represents
1505 * RDTSC value.
1506 *
1507 * VCPU0 on CPU0 | VCPU1 on CPU1
1508 *
1509 * 1. read timespec0,tsc0
1510 * 2. | timespec1 = timespec0 + N
1511 * | tsc1 = tsc0 + M
1512 * 3. transition to guest | transition to guest
1513 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1515 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516 *
1517 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518 *
1519 * - ret0 < ret1
1520 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521 * ...
1522 * - 0 < N - M => M < N
1523 *
1524 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525 * always the case (the difference between two distinct xtime instances
1526 * might be smaller then the difference between corresponding TSC reads,
1527 * when updating guest vcpus pvclock areas).
1528 *
1529 * To avoid that problem, do not allow visibility of distinct
1530 * system_timestamp/tsc_timestamp values simultaneously: use a master
1531 * copy of host monotonic time values. Update that master copy
1532 * in lockstep.
1533 *
1534 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535 *
1536 */
1537
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541 struct kvm_arch *ka = &kvm->arch;
1542 int vclock_mode;
1543 bool host_tsc_clocksource, vcpus_matched;
1544
1545 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546 atomic_read(&kvm->online_vcpus));
1547
1548 /*
1549 * If the host uses TSC clock, then passthrough TSC as stable
1550 * to the guest.
1551 */
1552 host_tsc_clocksource = kvm_get_time_and_clockread(
1553 &ka->master_kernel_ns,
1554 &ka->master_cycle_now);
1555
1556 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557 && !backwards_tsc_observed
1558 && !ka->boot_vcpu_runs_old_kvmclock;
1559
1560 if (ka->use_master_clock)
1561 atomic_set(&kvm_guest_has_master_clock, 1);
1562
1563 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565 vcpus_matched);
1566 #endif
1567 }
1568
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572 int i;
1573 struct kvm_vcpu *vcpu;
1574 struct kvm_arch *ka = &kvm->arch;
1575
1576 spin_lock(&ka->pvclock_gtod_sync_lock);
1577 kvm_make_mclock_inprogress_request(kvm);
1578 /* no guest entries from this point */
1579 pvclock_update_vm_gtod_copy(kvm);
1580
1581 kvm_for_each_vcpu(i, vcpu, kvm)
1582 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583
1584 /* guest entries allowed */
1585 kvm_for_each_vcpu(i, vcpu, kvm)
1586 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587
1588 spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594 unsigned long flags, this_tsc_khz;
1595 struct kvm_vcpu_arch *vcpu = &v->arch;
1596 struct kvm_arch *ka = &v->kvm->arch;
1597 s64 kernel_ns;
1598 u64 tsc_timestamp, host_tsc;
1599 struct pvclock_vcpu_time_info guest_hv_clock;
1600 u8 pvclock_flags;
1601 bool use_master_clock;
1602
1603 kernel_ns = 0;
1604 host_tsc = 0;
1605
1606 /*
1607 * If the host uses TSC clock, then passthrough TSC as stable
1608 * to the guest.
1609 */
1610 spin_lock(&ka->pvclock_gtod_sync_lock);
1611 use_master_clock = ka->use_master_clock;
1612 if (use_master_clock) {
1613 host_tsc = ka->master_cycle_now;
1614 kernel_ns = ka->master_kernel_ns;
1615 }
1616 spin_unlock(&ka->pvclock_gtod_sync_lock);
1617
1618 /* Keep irq disabled to prevent changes to the clock */
1619 local_irq_save(flags);
1620 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621 if (unlikely(this_tsc_khz == 0)) {
1622 local_irq_restore(flags);
1623 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624 return 1;
1625 }
1626 if (!use_master_clock) {
1627 host_tsc = native_read_tsc();
1628 kernel_ns = get_kernel_ns();
1629 }
1630
1631 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632
1633 /*
1634 * We may have to catch up the TSC to match elapsed wall clock
1635 * time for two reasons, even if kvmclock is used.
1636 * 1) CPU could have been running below the maximum TSC rate
1637 * 2) Broken TSC compensation resets the base at each VCPU
1638 * entry to avoid unknown leaps of TSC even when running
1639 * again on the same CPU. This may cause apparent elapsed
1640 * time to disappear, and the guest to stand still or run
1641 * very slowly.
1642 */
1643 if (vcpu->tsc_catchup) {
1644 u64 tsc = compute_guest_tsc(v, kernel_ns);
1645 if (tsc > tsc_timestamp) {
1646 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647 tsc_timestamp = tsc;
1648 }
1649 }
1650
1651 local_irq_restore(flags);
1652
1653 if (!vcpu->pv_time_enabled)
1654 return 0;
1655
1656 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658 &vcpu->hv_clock.tsc_shift,
1659 &vcpu->hv_clock.tsc_to_system_mul);
1660 vcpu->hw_tsc_khz = this_tsc_khz;
1661 }
1662
1663 /* With all the info we got, fill in the values */
1664 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666 vcpu->last_guest_tsc = tsc_timestamp;
1667
1668 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669 &guest_hv_clock, sizeof(guest_hv_clock))))
1670 return 0;
1671
1672 /* This VCPU is paused, but it's legal for a guest to read another
1673 * VCPU's kvmclock, so we really have to follow the specification where
1674 * it says that version is odd if data is being modified, and even after
1675 * it is consistent.
1676 *
1677 * Version field updates must be kept separate. This is because
1678 * kvm_write_guest_cached might use a "rep movs" instruction, and
1679 * writes within a string instruction are weakly ordered. So there
1680 * are three writes overall.
1681 *
1682 * As a small optimization, only write the version field in the first
1683 * and third write. The vcpu->pv_time cache is still valid, because the
1684 * version field is the first in the struct.
1685 */
1686 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1687
1688 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1689 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1690 &vcpu->hv_clock,
1691 sizeof(vcpu->hv_clock.version));
1692
1693 smp_wmb();
1694
1695 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1696 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1697
1698 if (vcpu->pvclock_set_guest_stopped_request) {
1699 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1700 vcpu->pvclock_set_guest_stopped_request = false;
1701 }
1702
1703 /* If the host uses TSC clocksource, then it is stable */
1704 if (use_master_clock)
1705 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1706
1707 vcpu->hv_clock.flags = pvclock_flags;
1708
1709 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1710
1711 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 &vcpu->hv_clock,
1713 sizeof(vcpu->hv_clock));
1714
1715 smp_wmb();
1716
1717 vcpu->hv_clock.version++;
1718 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1719 &vcpu->hv_clock,
1720 sizeof(vcpu->hv_clock.version));
1721 return 0;
1722 }
1723
1724 /*
1725 * kvmclock updates which are isolated to a given vcpu, such as
1726 * vcpu->cpu migration, should not allow system_timestamp from
1727 * the rest of the vcpus to remain static. Otherwise ntp frequency
1728 * correction applies to one vcpu's system_timestamp but not
1729 * the others.
1730 *
1731 * So in those cases, request a kvmclock update for all vcpus.
1732 * We need to rate-limit these requests though, as they can
1733 * considerably slow guests that have a large number of vcpus.
1734 * The time for a remote vcpu to update its kvmclock is bound
1735 * by the delay we use to rate-limit the updates.
1736 */
1737
1738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1739
1740 static void kvmclock_update_fn(struct work_struct *work)
1741 {
1742 int i;
1743 struct delayed_work *dwork = to_delayed_work(work);
1744 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1745 kvmclock_update_work);
1746 struct kvm *kvm = container_of(ka, struct kvm, arch);
1747 struct kvm_vcpu *vcpu;
1748
1749 kvm_for_each_vcpu(i, vcpu, kvm) {
1750 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1751 kvm_vcpu_kick(vcpu);
1752 }
1753 }
1754
1755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1756 {
1757 struct kvm *kvm = v->kvm;
1758
1759 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1760 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1761 KVMCLOCK_UPDATE_DELAY);
1762 }
1763
1764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1765
1766 static void kvmclock_sync_fn(struct work_struct *work)
1767 {
1768 struct delayed_work *dwork = to_delayed_work(work);
1769 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1770 kvmclock_sync_work);
1771 struct kvm *kvm = container_of(ka, struct kvm, arch);
1772
1773 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1774 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1775 KVMCLOCK_SYNC_PERIOD);
1776 }
1777
1778 static bool msr_mtrr_valid(unsigned msr)
1779 {
1780 switch (msr) {
1781 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1782 case MSR_MTRRfix64K_00000:
1783 case MSR_MTRRfix16K_80000:
1784 case MSR_MTRRfix16K_A0000:
1785 case MSR_MTRRfix4K_C0000:
1786 case MSR_MTRRfix4K_C8000:
1787 case MSR_MTRRfix4K_D0000:
1788 case MSR_MTRRfix4K_D8000:
1789 case MSR_MTRRfix4K_E0000:
1790 case MSR_MTRRfix4K_E8000:
1791 case MSR_MTRRfix4K_F0000:
1792 case MSR_MTRRfix4K_F8000:
1793 case MSR_MTRRdefType:
1794 case MSR_IA32_CR_PAT:
1795 return true;
1796 case 0x2f8:
1797 return true;
1798 }
1799 return false;
1800 }
1801
1802 static bool valid_pat_type(unsigned t)
1803 {
1804 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1805 }
1806
1807 static bool valid_mtrr_type(unsigned t)
1808 {
1809 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1810 }
1811
1812 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1813 {
1814 int i;
1815 u64 mask;
1816
1817 if (!msr_mtrr_valid(msr))
1818 return false;
1819
1820 if (msr == MSR_IA32_CR_PAT) {
1821 for (i = 0; i < 8; i++)
1822 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1823 return false;
1824 return true;
1825 } else if (msr == MSR_MTRRdefType) {
1826 if (data & ~0xcff)
1827 return false;
1828 return valid_mtrr_type(data & 0xff);
1829 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1830 for (i = 0; i < 8 ; i++)
1831 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1832 return false;
1833 return true;
1834 }
1835
1836 /* variable MTRRs */
1837 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1838
1839 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1840 if ((msr & 1) == 0) {
1841 /* MTRR base */
1842 if (!valid_mtrr_type(data & 0xff))
1843 return false;
1844 mask |= 0xf00;
1845 } else
1846 /* MTRR mask */
1847 mask |= 0x7ff;
1848 if (data & mask) {
1849 kvm_inject_gp(vcpu, 0);
1850 return false;
1851 }
1852
1853 return true;
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1856
1857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1858 {
1859 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1860
1861 if (!kvm_mtrr_valid(vcpu, msr, data))
1862 return 1;
1863
1864 if (msr == MSR_MTRRdefType) {
1865 vcpu->arch.mtrr_state.def_type = data;
1866 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1867 } else if (msr == MSR_MTRRfix64K_00000)
1868 p[0] = data;
1869 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1870 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1871 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1872 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1873 else if (msr == MSR_IA32_CR_PAT)
1874 vcpu->arch.pat = data;
1875 else { /* Variable MTRRs */
1876 int idx, is_mtrr_mask;
1877 u64 *pt;
1878
1879 idx = (msr - 0x200) / 2;
1880 is_mtrr_mask = msr - 0x200 - 2 * idx;
1881 if (!is_mtrr_mask)
1882 pt =
1883 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1884 else
1885 pt =
1886 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1887 *pt = data;
1888 }
1889
1890 kvm_mmu_reset_context(vcpu);
1891 return 0;
1892 }
1893
1894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1895 {
1896 u64 mcg_cap = vcpu->arch.mcg_cap;
1897 unsigned bank_num = mcg_cap & 0xff;
1898
1899 switch (msr) {
1900 case MSR_IA32_MCG_STATUS:
1901 vcpu->arch.mcg_status = data;
1902 break;
1903 case MSR_IA32_MCG_CTL:
1904 if (!(mcg_cap & MCG_CTL_P))
1905 return 1;
1906 if (data != 0 && data != ~(u64)0)
1907 return -1;
1908 vcpu->arch.mcg_ctl = data;
1909 break;
1910 default:
1911 if (msr >= MSR_IA32_MC0_CTL &&
1912 msr < MSR_IA32_MCx_CTL(bank_num)) {
1913 u32 offset = msr - MSR_IA32_MC0_CTL;
1914 /* only 0 or all 1s can be written to IA32_MCi_CTL
1915 * some Linux kernels though clear bit 10 in bank 4 to
1916 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1917 * this to avoid an uncatched #GP in the guest
1918 */
1919 if ((offset & 0x3) == 0 &&
1920 data != 0 && (data | (1 << 10)) != ~(u64)0)
1921 return -1;
1922 vcpu->arch.mce_banks[offset] = data;
1923 break;
1924 }
1925 return 1;
1926 }
1927 return 0;
1928 }
1929
1930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1931 {
1932 struct kvm *kvm = vcpu->kvm;
1933 int lm = is_long_mode(vcpu);
1934 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1935 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1936 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1937 : kvm->arch.xen_hvm_config.blob_size_32;
1938 u32 page_num = data & ~PAGE_MASK;
1939 u64 page_addr = data & PAGE_MASK;
1940 u8 *page;
1941 int r;
1942
1943 r = -E2BIG;
1944 if (page_num >= blob_size)
1945 goto out;
1946 r = -ENOMEM;
1947 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1948 if (IS_ERR(page)) {
1949 r = PTR_ERR(page);
1950 goto out;
1951 }
1952 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1953 goto out_free;
1954 r = 0;
1955 out_free:
1956 kfree(page);
1957 out:
1958 return r;
1959 }
1960
1961 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1962 {
1963 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1964 }
1965
1966 static bool kvm_hv_msr_partition_wide(u32 msr)
1967 {
1968 bool r = false;
1969 switch (msr) {
1970 case HV_X64_MSR_GUEST_OS_ID:
1971 case HV_X64_MSR_HYPERCALL:
1972 case HV_X64_MSR_REFERENCE_TSC:
1973 case HV_X64_MSR_TIME_REF_COUNT:
1974 r = true;
1975 break;
1976 }
1977
1978 return r;
1979 }
1980
1981 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1982 {
1983 struct kvm *kvm = vcpu->kvm;
1984
1985 switch (msr) {
1986 case HV_X64_MSR_GUEST_OS_ID:
1987 kvm->arch.hv_guest_os_id = data;
1988 /* setting guest os id to zero disables hypercall page */
1989 if (!kvm->arch.hv_guest_os_id)
1990 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1991 break;
1992 case HV_X64_MSR_HYPERCALL: {
1993 u64 gfn;
1994 unsigned long addr;
1995 u8 instructions[4];
1996
1997 /* if guest os id is not set hypercall should remain disabled */
1998 if (!kvm->arch.hv_guest_os_id)
1999 break;
2000 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2001 kvm->arch.hv_hypercall = data;
2002 break;
2003 }
2004 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2005 addr = gfn_to_hva(kvm, gfn);
2006 if (kvm_is_error_hva(addr))
2007 return 1;
2008 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2009 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2010 if (__copy_to_user((void __user *)addr, instructions, 4))
2011 return 1;
2012 kvm->arch.hv_hypercall = data;
2013 mark_page_dirty(kvm, gfn);
2014 break;
2015 }
2016 case HV_X64_MSR_REFERENCE_TSC: {
2017 u64 gfn;
2018 HV_REFERENCE_TSC_PAGE tsc_ref;
2019 memset(&tsc_ref, 0, sizeof(tsc_ref));
2020 kvm->arch.hv_tsc_page = data;
2021 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2022 break;
2023 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2024 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2025 &tsc_ref, sizeof(tsc_ref)))
2026 return 1;
2027 mark_page_dirty(kvm, gfn);
2028 break;
2029 }
2030 default:
2031 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2032 "data 0x%llx\n", msr, data);
2033 return 1;
2034 }
2035 return 0;
2036 }
2037
2038 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2039 {
2040 switch (msr) {
2041 case HV_X64_MSR_APIC_ASSIST_PAGE: {
2042 u64 gfn;
2043 unsigned long addr;
2044
2045 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2046 vcpu->arch.hv_vapic = data;
2047 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2048 return 1;
2049 break;
2050 }
2051 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2052 addr = gfn_to_hva(vcpu->kvm, gfn);
2053 if (kvm_is_error_hva(addr))
2054 return 1;
2055 if (__clear_user((void __user *)addr, PAGE_SIZE))
2056 return 1;
2057 vcpu->arch.hv_vapic = data;
2058 mark_page_dirty(vcpu->kvm, gfn);
2059 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2060 return 1;
2061 break;
2062 }
2063 case HV_X64_MSR_EOI:
2064 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2065 case HV_X64_MSR_ICR:
2066 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2067 case HV_X64_MSR_TPR:
2068 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2069 default:
2070 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2071 "data 0x%llx\n", msr, data);
2072 return 1;
2073 }
2074
2075 return 0;
2076 }
2077
2078 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 {
2080 gpa_t gpa = data & ~0x3f;
2081
2082 /* Bits 2:5 are reserved, Should be zero */
2083 if (data & 0x3c)
2084 return 1;
2085
2086 vcpu->arch.apf.msr_val = data;
2087
2088 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2089 kvm_clear_async_pf_completion_queue(vcpu);
2090 kvm_async_pf_hash_reset(vcpu);
2091 return 0;
2092 }
2093
2094 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2095 sizeof(u32)))
2096 return 1;
2097
2098 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2099 kvm_async_pf_wakeup_all(vcpu);
2100 return 0;
2101 }
2102
2103 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 {
2105 vcpu->arch.pv_time_enabled = false;
2106 }
2107
2108 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2109 {
2110 u64 delta;
2111
2112 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2113 return;
2114
2115 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2116 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117 vcpu->arch.st.accum_steal = delta;
2118 }
2119
2120 static void record_steal_time(struct kvm_vcpu *vcpu)
2121 {
2122 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2123 return;
2124
2125 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2127 return;
2128
2129 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2130 vcpu->arch.st.steal.version += 2;
2131 vcpu->arch.st.accum_steal = 0;
2132
2133 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2134 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2135 }
2136
2137 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2138 {
2139 bool pr = false;
2140 u32 msr = msr_info->index;
2141 u64 data = msr_info->data;
2142
2143 switch (msr) {
2144 case MSR_AMD64_NB_CFG:
2145 case MSR_IA32_UCODE_REV:
2146 case MSR_IA32_UCODE_WRITE:
2147 case MSR_VM_HSAVE_PA:
2148 case MSR_AMD64_PATCH_LOADER:
2149 case MSR_AMD64_BU_CFG2:
2150 break;
2151
2152 case MSR_EFER:
2153 return set_efer(vcpu, data);
2154 case MSR_K7_HWCR:
2155 data &= ~(u64)0x40; /* ignore flush filter disable */
2156 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2157 data &= ~(u64)0x8; /* ignore TLB cache disable */
2158 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2159 if (data != 0) {
2160 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2161 data);
2162 return 1;
2163 }
2164 break;
2165 case MSR_FAM10H_MMIO_CONF_BASE:
2166 if (data != 0) {
2167 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2168 "0x%llx\n", data);
2169 return 1;
2170 }
2171 break;
2172 case MSR_IA32_DEBUGCTLMSR:
2173 if (!data) {
2174 /* We support the non-activated case already */
2175 break;
2176 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2177 /* Values other than LBR and BTF are vendor-specific,
2178 thus reserved and should throw a #GP */
2179 return 1;
2180 }
2181 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2182 __func__, data);
2183 break;
2184 case 0x200 ... 0x2ff:
2185 return set_msr_mtrr(vcpu, msr, data);
2186 case MSR_IA32_APICBASE:
2187 return kvm_set_apic_base(vcpu, msr_info);
2188 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2189 return kvm_x2apic_msr_write(vcpu, msr, data);
2190 case MSR_IA32_TSCDEADLINE:
2191 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2192 break;
2193 case MSR_IA32_TSC_ADJUST:
2194 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2195 if (!msr_info->host_initiated) {
2196 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2197 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2198 }
2199 vcpu->arch.ia32_tsc_adjust_msr = data;
2200 }
2201 break;
2202 case MSR_IA32_MISC_ENABLE:
2203 vcpu->arch.ia32_misc_enable_msr = data;
2204 break;
2205 case MSR_KVM_WALL_CLOCK_NEW:
2206 case MSR_KVM_WALL_CLOCK:
2207 vcpu->kvm->arch.wall_clock = data;
2208 kvm_write_wall_clock(vcpu->kvm, data);
2209 break;
2210 case MSR_KVM_SYSTEM_TIME_NEW:
2211 case MSR_KVM_SYSTEM_TIME: {
2212 u64 gpa_offset;
2213 struct kvm_arch *ka = &vcpu->kvm->arch;
2214
2215 kvmclock_reset(vcpu);
2216
2217 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2218 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2219
2220 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2221 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2222 &vcpu->requests);
2223
2224 ka->boot_vcpu_runs_old_kvmclock = tmp;
2225 }
2226
2227 vcpu->arch.time = data;
2228 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2229
2230 /* we verify if the enable bit is set... */
2231 if (!(data & 1))
2232 break;
2233
2234 gpa_offset = data & ~(PAGE_MASK | 1);
2235
2236 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2237 &vcpu->arch.pv_time, data & ~1ULL,
2238 sizeof(struct pvclock_vcpu_time_info)))
2239 vcpu->arch.pv_time_enabled = false;
2240 else
2241 vcpu->arch.pv_time_enabled = true;
2242
2243 break;
2244 }
2245 case MSR_KVM_ASYNC_PF_EN:
2246 if (kvm_pv_enable_async_pf(vcpu, data))
2247 return 1;
2248 break;
2249 case MSR_KVM_STEAL_TIME:
2250
2251 if (unlikely(!sched_info_on()))
2252 return 1;
2253
2254 if (data & KVM_STEAL_RESERVED_MASK)
2255 return 1;
2256
2257 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2258 data & KVM_STEAL_VALID_BITS,
2259 sizeof(struct kvm_steal_time)))
2260 return 1;
2261
2262 vcpu->arch.st.msr_val = data;
2263
2264 if (!(data & KVM_MSR_ENABLED))
2265 break;
2266
2267 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2268
2269 preempt_disable();
2270 accumulate_steal_time(vcpu);
2271 preempt_enable();
2272
2273 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2274
2275 break;
2276 case MSR_KVM_PV_EOI_EN:
2277 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2278 return 1;
2279 break;
2280
2281 case MSR_IA32_MCG_CTL:
2282 case MSR_IA32_MCG_STATUS:
2283 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2284 return set_msr_mce(vcpu, msr, data);
2285
2286 /* Performance counters are not protected by a CPUID bit,
2287 * so we should check all of them in the generic path for the sake of
2288 * cross vendor migration.
2289 * Writing a zero into the event select MSRs disables them,
2290 * which we perfectly emulate ;-). Any other value should be at least
2291 * reported, some guests depend on them.
2292 */
2293 case MSR_K7_EVNTSEL0:
2294 case MSR_K7_EVNTSEL1:
2295 case MSR_K7_EVNTSEL2:
2296 case MSR_K7_EVNTSEL3:
2297 if (data != 0)
2298 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2299 "0x%x data 0x%llx\n", msr, data);
2300 break;
2301 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2302 * so we ignore writes to make it happy.
2303 */
2304 case MSR_K7_PERFCTR0:
2305 case MSR_K7_PERFCTR1:
2306 case MSR_K7_PERFCTR2:
2307 case MSR_K7_PERFCTR3:
2308 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2309 "0x%x data 0x%llx\n", msr, data);
2310 break;
2311 case MSR_P6_PERFCTR0:
2312 case MSR_P6_PERFCTR1:
2313 pr = true;
2314 case MSR_P6_EVNTSEL0:
2315 case MSR_P6_EVNTSEL1:
2316 if (kvm_pmu_msr(vcpu, msr))
2317 return kvm_pmu_set_msr(vcpu, msr_info);
2318
2319 if (pr || data != 0)
2320 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2321 "0x%x data 0x%llx\n", msr, data);
2322 break;
2323 case MSR_K7_CLK_CTL:
2324 /*
2325 * Ignore all writes to this no longer documented MSR.
2326 * Writes are only relevant for old K7 processors,
2327 * all pre-dating SVM, but a recommended workaround from
2328 * AMD for these chips. It is possible to specify the
2329 * affected processor models on the command line, hence
2330 * the need to ignore the workaround.
2331 */
2332 break;
2333 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2334 if (kvm_hv_msr_partition_wide(msr)) {
2335 int r;
2336 mutex_lock(&vcpu->kvm->lock);
2337 r = set_msr_hyperv_pw(vcpu, msr, data);
2338 mutex_unlock(&vcpu->kvm->lock);
2339 return r;
2340 } else
2341 return set_msr_hyperv(vcpu, msr, data);
2342 break;
2343 case MSR_IA32_BBL_CR_CTL3:
2344 /* Drop writes to this legacy MSR -- see rdmsr
2345 * counterpart for further detail.
2346 */
2347 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2348 break;
2349 case MSR_AMD64_OSVW_ID_LENGTH:
2350 if (!guest_cpuid_has_osvw(vcpu))
2351 return 1;
2352 vcpu->arch.osvw.length = data;
2353 break;
2354 case MSR_AMD64_OSVW_STATUS:
2355 if (!guest_cpuid_has_osvw(vcpu))
2356 return 1;
2357 vcpu->arch.osvw.status = data;
2358 break;
2359 default:
2360 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2361 return xen_hvm_config(vcpu, data);
2362 if (kvm_pmu_msr(vcpu, msr))
2363 return kvm_pmu_set_msr(vcpu, msr_info);
2364 if (!ignore_msrs) {
2365 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2366 msr, data);
2367 return 1;
2368 } else {
2369 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2370 msr, data);
2371 break;
2372 }
2373 }
2374 return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2377
2378
2379 /*
2380 * Reads an msr value (of 'msr_index') into 'pdata'.
2381 * Returns 0 on success, non-0 otherwise.
2382 * Assumes vcpu_load() was already called.
2383 */
2384 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2385 {
2386 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_msr);
2389
2390 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2391 {
2392 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2393
2394 if (!msr_mtrr_valid(msr))
2395 return 1;
2396
2397 if (msr == MSR_MTRRdefType)
2398 *pdata = vcpu->arch.mtrr_state.def_type +
2399 (vcpu->arch.mtrr_state.enabled << 10);
2400 else if (msr == MSR_MTRRfix64K_00000)
2401 *pdata = p[0];
2402 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2403 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2404 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2405 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2406 else if (msr == MSR_IA32_CR_PAT)
2407 *pdata = vcpu->arch.pat;
2408 else { /* Variable MTRRs */
2409 int idx, is_mtrr_mask;
2410 u64 *pt;
2411
2412 idx = (msr - 0x200) / 2;
2413 is_mtrr_mask = msr - 0x200 - 2 * idx;
2414 if (!is_mtrr_mask)
2415 pt =
2416 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2417 else
2418 pt =
2419 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2420 *pdata = *pt;
2421 }
2422
2423 return 0;
2424 }
2425
2426 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2427 {
2428 u64 data;
2429 u64 mcg_cap = vcpu->arch.mcg_cap;
2430 unsigned bank_num = mcg_cap & 0xff;
2431
2432 switch (msr) {
2433 case MSR_IA32_P5_MC_ADDR:
2434 case MSR_IA32_P5_MC_TYPE:
2435 data = 0;
2436 break;
2437 case MSR_IA32_MCG_CAP:
2438 data = vcpu->arch.mcg_cap;
2439 break;
2440 case MSR_IA32_MCG_CTL:
2441 if (!(mcg_cap & MCG_CTL_P))
2442 return 1;
2443 data = vcpu->arch.mcg_ctl;
2444 break;
2445 case MSR_IA32_MCG_STATUS:
2446 data = vcpu->arch.mcg_status;
2447 break;
2448 default:
2449 if (msr >= MSR_IA32_MC0_CTL &&
2450 msr < MSR_IA32_MCx_CTL(bank_num)) {
2451 u32 offset = msr - MSR_IA32_MC0_CTL;
2452 data = vcpu->arch.mce_banks[offset];
2453 break;
2454 }
2455 return 1;
2456 }
2457 *pdata = data;
2458 return 0;
2459 }
2460
2461 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463 u64 data = 0;
2464 struct kvm *kvm = vcpu->kvm;
2465
2466 switch (msr) {
2467 case HV_X64_MSR_GUEST_OS_ID:
2468 data = kvm->arch.hv_guest_os_id;
2469 break;
2470 case HV_X64_MSR_HYPERCALL:
2471 data = kvm->arch.hv_hypercall;
2472 break;
2473 case HV_X64_MSR_TIME_REF_COUNT: {
2474 data =
2475 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2476 break;
2477 }
2478 case HV_X64_MSR_REFERENCE_TSC:
2479 data = kvm->arch.hv_tsc_page;
2480 break;
2481 default:
2482 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483 return 1;
2484 }
2485
2486 *pdata = data;
2487 return 0;
2488 }
2489
2490 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2491 {
2492 u64 data = 0;
2493
2494 switch (msr) {
2495 case HV_X64_MSR_VP_INDEX: {
2496 int r;
2497 struct kvm_vcpu *v;
2498 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2499 if (v == vcpu) {
2500 data = r;
2501 break;
2502 }
2503 }
2504 break;
2505 }
2506 case HV_X64_MSR_EOI:
2507 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2508 case HV_X64_MSR_ICR:
2509 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2510 case HV_X64_MSR_TPR:
2511 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2512 case HV_X64_MSR_APIC_ASSIST_PAGE:
2513 data = vcpu->arch.hv_vapic;
2514 break;
2515 default:
2516 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2517 return 1;
2518 }
2519 *pdata = data;
2520 return 0;
2521 }
2522
2523 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2524 {
2525 u64 data;
2526
2527 switch (msr) {
2528 case MSR_IA32_PLATFORM_ID:
2529 case MSR_IA32_EBL_CR_POWERON:
2530 case MSR_IA32_DEBUGCTLMSR:
2531 case MSR_IA32_LASTBRANCHFROMIP:
2532 case MSR_IA32_LASTBRANCHTOIP:
2533 case MSR_IA32_LASTINTFROMIP:
2534 case MSR_IA32_LASTINTTOIP:
2535 case MSR_K8_SYSCFG:
2536 case MSR_K7_HWCR:
2537 case MSR_VM_HSAVE_PA:
2538 case MSR_K7_EVNTSEL0:
2539 case MSR_K7_EVNTSEL1:
2540 case MSR_K7_EVNTSEL2:
2541 case MSR_K7_EVNTSEL3:
2542 case MSR_K7_PERFCTR0:
2543 case MSR_K7_PERFCTR1:
2544 case MSR_K7_PERFCTR2:
2545 case MSR_K7_PERFCTR3:
2546 case MSR_K8_INT_PENDING_MSG:
2547 case MSR_AMD64_NB_CFG:
2548 case MSR_FAM10H_MMIO_CONF_BASE:
2549 case MSR_AMD64_BU_CFG2:
2550 data = 0;
2551 break;
2552 case MSR_P6_PERFCTR0:
2553 case MSR_P6_PERFCTR1:
2554 case MSR_P6_EVNTSEL0:
2555 case MSR_P6_EVNTSEL1:
2556 if (kvm_pmu_msr(vcpu, msr))
2557 return kvm_pmu_get_msr(vcpu, msr, pdata);
2558 data = 0;
2559 break;
2560 case MSR_IA32_UCODE_REV:
2561 data = 0x100000000ULL;
2562 break;
2563 case MSR_MTRRcap:
2564 data = 0x500 | KVM_NR_VAR_MTRR;
2565 break;
2566 case 0x200 ... 0x2ff:
2567 return get_msr_mtrr(vcpu, msr, pdata);
2568 case 0xcd: /* fsb frequency */
2569 data = 3;
2570 break;
2571 /*
2572 * MSR_EBC_FREQUENCY_ID
2573 * Conservative value valid for even the basic CPU models.
2574 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2575 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2576 * and 266MHz for model 3, or 4. Set Core Clock
2577 * Frequency to System Bus Frequency Ratio to 1 (bits
2578 * 31:24) even though these are only valid for CPU
2579 * models > 2, however guests may end up dividing or
2580 * multiplying by zero otherwise.
2581 */
2582 case MSR_EBC_FREQUENCY_ID:
2583 data = 1 << 24;
2584 break;
2585 case MSR_IA32_APICBASE:
2586 data = kvm_get_apic_base(vcpu);
2587 break;
2588 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2589 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2590 break;
2591 case MSR_IA32_TSCDEADLINE:
2592 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2593 break;
2594 case MSR_IA32_TSC_ADJUST:
2595 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2596 break;
2597 case MSR_IA32_MISC_ENABLE:
2598 data = vcpu->arch.ia32_misc_enable_msr;
2599 break;
2600 case MSR_IA32_PERF_STATUS:
2601 /* TSC increment by tick */
2602 data = 1000ULL;
2603 /* CPU multiplier */
2604 data |= (((uint64_t)4ULL) << 40);
2605 break;
2606 case MSR_EFER:
2607 data = vcpu->arch.efer;
2608 break;
2609 case MSR_KVM_WALL_CLOCK:
2610 case MSR_KVM_WALL_CLOCK_NEW:
2611 data = vcpu->kvm->arch.wall_clock;
2612 break;
2613 case MSR_KVM_SYSTEM_TIME:
2614 case MSR_KVM_SYSTEM_TIME_NEW:
2615 data = vcpu->arch.time;
2616 break;
2617 case MSR_KVM_ASYNC_PF_EN:
2618 data = vcpu->arch.apf.msr_val;
2619 break;
2620 case MSR_KVM_STEAL_TIME:
2621 data = vcpu->arch.st.msr_val;
2622 break;
2623 case MSR_KVM_PV_EOI_EN:
2624 data = vcpu->arch.pv_eoi.msr_val;
2625 break;
2626 case MSR_IA32_P5_MC_ADDR:
2627 case MSR_IA32_P5_MC_TYPE:
2628 case MSR_IA32_MCG_CAP:
2629 case MSR_IA32_MCG_CTL:
2630 case MSR_IA32_MCG_STATUS:
2631 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2632 return get_msr_mce(vcpu, msr, pdata);
2633 case MSR_K7_CLK_CTL:
2634 /*
2635 * Provide expected ramp-up count for K7. All other
2636 * are set to zero, indicating minimum divisors for
2637 * every field.
2638 *
2639 * This prevents guest kernels on AMD host with CPU
2640 * type 6, model 8 and higher from exploding due to
2641 * the rdmsr failing.
2642 */
2643 data = 0x20000000;
2644 break;
2645 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2646 if (kvm_hv_msr_partition_wide(msr)) {
2647 int r;
2648 mutex_lock(&vcpu->kvm->lock);
2649 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2650 mutex_unlock(&vcpu->kvm->lock);
2651 return r;
2652 } else
2653 return get_msr_hyperv(vcpu, msr, pdata);
2654 break;
2655 case MSR_IA32_BBL_CR_CTL3:
2656 /* This legacy MSR exists but isn't fully documented in current
2657 * silicon. It is however accessed by winxp in very narrow
2658 * scenarios where it sets bit #19, itself documented as
2659 * a "reserved" bit. Best effort attempt to source coherent
2660 * read data here should the balance of the register be
2661 * interpreted by the guest:
2662 *
2663 * L2 cache control register 3: 64GB range, 256KB size,
2664 * enabled, latency 0x1, configured
2665 */
2666 data = 0xbe702111;
2667 break;
2668 case MSR_AMD64_OSVW_ID_LENGTH:
2669 if (!guest_cpuid_has_osvw(vcpu))
2670 return 1;
2671 data = vcpu->arch.osvw.length;
2672 break;
2673 case MSR_AMD64_OSVW_STATUS:
2674 if (!guest_cpuid_has_osvw(vcpu))
2675 return 1;
2676 data = vcpu->arch.osvw.status;
2677 break;
2678 default:
2679 if (kvm_pmu_msr(vcpu, msr))
2680 return kvm_pmu_get_msr(vcpu, msr, pdata);
2681 if (!ignore_msrs) {
2682 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2683 return 1;
2684 } else {
2685 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2686 data = 0;
2687 }
2688 break;
2689 }
2690 *pdata = data;
2691 return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2694
2695 /*
2696 * Read or write a bunch of msrs. All parameters are kernel addresses.
2697 *
2698 * @return number of msrs set successfully.
2699 */
2700 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2701 struct kvm_msr_entry *entries,
2702 int (*do_msr)(struct kvm_vcpu *vcpu,
2703 unsigned index, u64 *data))
2704 {
2705 int i, idx;
2706
2707 idx = srcu_read_lock(&vcpu->kvm->srcu);
2708 for (i = 0; i < msrs->nmsrs; ++i)
2709 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2710 break;
2711 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712
2713 return i;
2714 }
2715
2716 /*
2717 * Read or write a bunch of msrs. Parameters are user addresses.
2718 *
2719 * @return number of msrs set successfully.
2720 */
2721 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2722 int (*do_msr)(struct kvm_vcpu *vcpu,
2723 unsigned index, u64 *data),
2724 int writeback)
2725 {
2726 struct kvm_msrs msrs;
2727 struct kvm_msr_entry *entries;
2728 int r, n;
2729 unsigned size;
2730
2731 r = -EFAULT;
2732 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2733 goto out;
2734
2735 r = -E2BIG;
2736 if (msrs.nmsrs >= MAX_IO_MSRS)
2737 goto out;
2738
2739 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2740 entries = memdup_user(user_msrs->entries, size);
2741 if (IS_ERR(entries)) {
2742 r = PTR_ERR(entries);
2743 goto out;
2744 }
2745
2746 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2747 if (r < 0)
2748 goto out_free;
2749
2750 r = -EFAULT;
2751 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2752 goto out_free;
2753
2754 r = n;
2755
2756 out_free:
2757 kfree(entries);
2758 out:
2759 return r;
2760 }
2761
2762 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2763 {
2764 int r;
2765
2766 switch (ext) {
2767 case KVM_CAP_IRQCHIP:
2768 case KVM_CAP_HLT:
2769 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2770 case KVM_CAP_SET_TSS_ADDR:
2771 case KVM_CAP_EXT_CPUID:
2772 case KVM_CAP_EXT_EMUL_CPUID:
2773 case KVM_CAP_CLOCKSOURCE:
2774 case KVM_CAP_PIT:
2775 case KVM_CAP_NOP_IO_DELAY:
2776 case KVM_CAP_MP_STATE:
2777 case KVM_CAP_SYNC_MMU:
2778 case KVM_CAP_USER_NMI:
2779 case KVM_CAP_REINJECT_CONTROL:
2780 case KVM_CAP_IRQ_INJECT_STATUS:
2781 case KVM_CAP_IOEVENTFD:
2782 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2783 case KVM_CAP_PIT2:
2784 case KVM_CAP_PIT_STATE2:
2785 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2786 case KVM_CAP_XEN_HVM:
2787 case KVM_CAP_ADJUST_CLOCK:
2788 case KVM_CAP_VCPU_EVENTS:
2789 case KVM_CAP_HYPERV:
2790 case KVM_CAP_HYPERV_VAPIC:
2791 case KVM_CAP_HYPERV_SPIN:
2792 case KVM_CAP_PCI_SEGMENT:
2793 case KVM_CAP_DEBUGREGS:
2794 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2795 case KVM_CAP_XSAVE:
2796 case KVM_CAP_ASYNC_PF:
2797 case KVM_CAP_GET_TSC_KHZ:
2798 case KVM_CAP_KVMCLOCK_CTRL:
2799 case KVM_CAP_READONLY_MEM:
2800 case KVM_CAP_HYPERV_TIME:
2801 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2802 case KVM_CAP_TSC_DEADLINE_TIMER:
2803 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2804 case KVM_CAP_ASSIGN_DEV_IRQ:
2805 case KVM_CAP_PCI_2_3:
2806 #endif
2807 r = 1;
2808 break;
2809 case KVM_CAP_COALESCED_MMIO:
2810 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2811 break;
2812 case KVM_CAP_VAPIC:
2813 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2814 break;
2815 case KVM_CAP_NR_VCPUS:
2816 r = KVM_SOFT_MAX_VCPUS;
2817 break;
2818 case KVM_CAP_MAX_VCPUS:
2819 r = KVM_MAX_VCPUS;
2820 break;
2821 case KVM_CAP_NR_MEMSLOTS:
2822 r = KVM_USER_MEM_SLOTS;
2823 break;
2824 case KVM_CAP_PV_MMU: /* obsolete */
2825 r = 0;
2826 break;
2827 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2828 case KVM_CAP_IOMMU:
2829 r = iommu_present(&pci_bus_type);
2830 break;
2831 #endif
2832 case KVM_CAP_MCE:
2833 r = KVM_MAX_MCE_BANKS;
2834 break;
2835 case KVM_CAP_XCRS:
2836 r = cpu_has_xsave;
2837 break;
2838 case KVM_CAP_TSC_CONTROL:
2839 r = kvm_has_tsc_control;
2840 break;
2841 default:
2842 r = 0;
2843 break;
2844 }
2845 return r;
2846
2847 }
2848
2849 long kvm_arch_dev_ioctl(struct file *filp,
2850 unsigned int ioctl, unsigned long arg)
2851 {
2852 void __user *argp = (void __user *)arg;
2853 long r;
2854
2855 switch (ioctl) {
2856 case KVM_GET_MSR_INDEX_LIST: {
2857 struct kvm_msr_list __user *user_msr_list = argp;
2858 struct kvm_msr_list msr_list;
2859 unsigned n;
2860
2861 r = -EFAULT;
2862 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2863 goto out;
2864 n = msr_list.nmsrs;
2865 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2866 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2867 goto out;
2868 r = -E2BIG;
2869 if (n < msr_list.nmsrs)
2870 goto out;
2871 r = -EFAULT;
2872 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2873 num_msrs_to_save * sizeof(u32)))
2874 goto out;
2875 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2876 &emulated_msrs,
2877 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2878 goto out;
2879 r = 0;
2880 break;
2881 }
2882 case KVM_GET_SUPPORTED_CPUID:
2883 case KVM_GET_EMULATED_CPUID: {
2884 struct kvm_cpuid2 __user *cpuid_arg = argp;
2885 struct kvm_cpuid2 cpuid;
2886
2887 r = -EFAULT;
2888 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2889 goto out;
2890
2891 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2892 ioctl);
2893 if (r)
2894 goto out;
2895
2896 r = -EFAULT;
2897 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2898 goto out;
2899 r = 0;
2900 break;
2901 }
2902 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2903 u64 mce_cap;
2904
2905 mce_cap = KVM_MCE_CAP_SUPPORTED;
2906 r = -EFAULT;
2907 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2908 goto out;
2909 r = 0;
2910 break;
2911 }
2912 default:
2913 r = -EINVAL;
2914 }
2915 out:
2916 return r;
2917 }
2918
2919 static void wbinvd_ipi(void *garbage)
2920 {
2921 wbinvd();
2922 }
2923
2924 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2925 {
2926 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2927 }
2928
2929 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2930 {
2931 /* Address WBINVD may be executed by guest */
2932 if (need_emulate_wbinvd(vcpu)) {
2933 if (kvm_x86_ops->has_wbinvd_exit())
2934 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2935 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2936 smp_call_function_single(vcpu->cpu,
2937 wbinvd_ipi, NULL, 1);
2938 }
2939
2940 kvm_x86_ops->vcpu_load(vcpu, cpu);
2941
2942 /* Apply any externally detected TSC adjustments (due to suspend) */
2943 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2944 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2945 vcpu->arch.tsc_offset_adjustment = 0;
2946 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2947 }
2948
2949 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2950 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2951 native_read_tsc() - vcpu->arch.last_host_tsc;
2952 if (tsc_delta < 0)
2953 mark_tsc_unstable("KVM discovered backwards TSC");
2954 if (check_tsc_unstable()) {
2955 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2956 vcpu->arch.last_guest_tsc);
2957 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2958 vcpu->arch.tsc_catchup = 1;
2959 }
2960 /*
2961 * On a host with synchronized TSC, there is no need to update
2962 * kvmclock on vcpu->cpu migration
2963 */
2964 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2965 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2966 if (vcpu->cpu != cpu)
2967 kvm_migrate_timers(vcpu);
2968 vcpu->cpu = cpu;
2969 }
2970
2971 accumulate_steal_time(vcpu);
2972 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2973 }
2974
2975 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2976 {
2977 kvm_x86_ops->vcpu_put(vcpu);
2978 kvm_put_guest_fpu(vcpu);
2979 vcpu->arch.last_host_tsc = native_read_tsc();
2980 }
2981
2982 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2983 struct kvm_lapic_state *s)
2984 {
2985 kvm_x86_ops->sync_pir_to_irr(vcpu);
2986 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2987
2988 return 0;
2989 }
2990
2991 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2992 struct kvm_lapic_state *s)
2993 {
2994 kvm_apic_post_state_restore(vcpu, s);
2995 update_cr8_intercept(vcpu);
2996
2997 return 0;
2998 }
2999
3000 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3001 struct kvm_interrupt *irq)
3002 {
3003 if (irq->irq >= KVM_NR_INTERRUPTS)
3004 return -EINVAL;
3005 if (irqchip_in_kernel(vcpu->kvm))
3006 return -ENXIO;
3007
3008 kvm_queue_interrupt(vcpu, irq->irq, false);
3009 kvm_make_request(KVM_REQ_EVENT, vcpu);
3010
3011 return 0;
3012 }
3013
3014 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3015 {
3016 kvm_inject_nmi(vcpu);
3017
3018 return 0;
3019 }
3020
3021 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3022 struct kvm_tpr_access_ctl *tac)
3023 {
3024 if (tac->flags)
3025 return -EINVAL;
3026 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3027 return 0;
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3031 u64 mcg_cap)
3032 {
3033 int r;
3034 unsigned bank_num = mcg_cap & 0xff, bank;
3035
3036 r = -EINVAL;
3037 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3038 goto out;
3039 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3040 goto out;
3041 r = 0;
3042 vcpu->arch.mcg_cap = mcg_cap;
3043 /* Init IA32_MCG_CTL to all 1s */
3044 if (mcg_cap & MCG_CTL_P)
3045 vcpu->arch.mcg_ctl = ~(u64)0;
3046 /* Init IA32_MCi_CTL to all 1s */
3047 for (bank = 0; bank < bank_num; bank++)
3048 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3049 out:
3050 return r;
3051 }
3052
3053 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3054 struct kvm_x86_mce *mce)
3055 {
3056 u64 mcg_cap = vcpu->arch.mcg_cap;
3057 unsigned bank_num = mcg_cap & 0xff;
3058 u64 *banks = vcpu->arch.mce_banks;
3059
3060 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3061 return -EINVAL;
3062 /*
3063 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3064 * reporting is disabled
3065 */
3066 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3067 vcpu->arch.mcg_ctl != ~(u64)0)
3068 return 0;
3069 banks += 4 * mce->bank;
3070 /*
3071 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3072 * reporting is disabled for the bank
3073 */
3074 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3075 return 0;
3076 if (mce->status & MCI_STATUS_UC) {
3077 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3078 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3079 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3080 return 0;
3081 }
3082 if (banks[1] & MCI_STATUS_VAL)
3083 mce->status |= MCI_STATUS_OVER;
3084 banks[2] = mce->addr;
3085 banks[3] = mce->misc;
3086 vcpu->arch.mcg_status = mce->mcg_status;
3087 banks[1] = mce->status;
3088 kvm_queue_exception(vcpu, MC_VECTOR);
3089 } else if (!(banks[1] & MCI_STATUS_VAL)
3090 || !(banks[1] & MCI_STATUS_UC)) {
3091 if (banks[1] & MCI_STATUS_VAL)
3092 mce->status |= MCI_STATUS_OVER;
3093 banks[2] = mce->addr;
3094 banks[3] = mce->misc;
3095 banks[1] = mce->status;
3096 } else
3097 banks[1] |= MCI_STATUS_OVER;
3098 return 0;
3099 }
3100
3101 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3102 struct kvm_vcpu_events *events)
3103 {
3104 process_nmi(vcpu);
3105 events->exception.injected =
3106 vcpu->arch.exception.pending &&
3107 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3108 events->exception.nr = vcpu->arch.exception.nr;
3109 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3110 events->exception.pad = 0;
3111 events->exception.error_code = vcpu->arch.exception.error_code;
3112
3113 events->interrupt.injected =
3114 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3115 events->interrupt.nr = vcpu->arch.interrupt.nr;
3116 events->interrupt.soft = 0;
3117 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3118
3119 events->nmi.injected = vcpu->arch.nmi_injected;
3120 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3121 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3122 events->nmi.pad = 0;
3123
3124 events->sipi_vector = 0; /* never valid when reporting to user space */
3125
3126 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3127 | KVM_VCPUEVENT_VALID_SHADOW);
3128 memset(&events->reserved, 0, sizeof(events->reserved));
3129 }
3130
3131 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3132 struct kvm_vcpu_events *events)
3133 {
3134 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3135 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3136 | KVM_VCPUEVENT_VALID_SHADOW))
3137 return -EINVAL;
3138
3139 process_nmi(vcpu);
3140 vcpu->arch.exception.pending = events->exception.injected;
3141 vcpu->arch.exception.nr = events->exception.nr;
3142 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3143 vcpu->arch.exception.error_code = events->exception.error_code;
3144
3145 vcpu->arch.interrupt.pending = events->interrupt.injected;
3146 vcpu->arch.interrupt.nr = events->interrupt.nr;
3147 vcpu->arch.interrupt.soft = events->interrupt.soft;
3148 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3149 kvm_x86_ops->set_interrupt_shadow(vcpu,
3150 events->interrupt.shadow);
3151
3152 vcpu->arch.nmi_injected = events->nmi.injected;
3153 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3154 vcpu->arch.nmi_pending = events->nmi.pending;
3155 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3156
3157 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3158 kvm_vcpu_has_lapic(vcpu))
3159 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3160
3161 kvm_make_request(KVM_REQ_EVENT, vcpu);
3162
3163 return 0;
3164 }
3165
3166 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3167 struct kvm_debugregs *dbgregs)
3168 {
3169 unsigned long val;
3170
3171 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3172 kvm_get_dr(vcpu, 6, &val);
3173 dbgregs->dr6 = val;
3174 dbgregs->dr7 = vcpu->arch.dr7;
3175 dbgregs->flags = 0;
3176 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3177 }
3178
3179 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3180 struct kvm_debugregs *dbgregs)
3181 {
3182 if (dbgregs->flags)
3183 return -EINVAL;
3184
3185 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3186 kvm_update_dr0123(vcpu);
3187 vcpu->arch.dr6 = dbgregs->dr6;
3188 kvm_update_dr6(vcpu);
3189 vcpu->arch.dr7 = dbgregs->dr7;
3190 kvm_update_dr7(vcpu);
3191
3192 return 0;
3193 }
3194
3195 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3196
3197 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3198 {
3199 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3200 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3201 u64 valid;
3202
3203 /*
3204 * Copy legacy XSAVE area, to avoid complications with CPUID
3205 * leaves 0 and 1 in the loop below.
3206 */
3207 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3208
3209 /* Set XSTATE_BV */
3210 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3211
3212 /*
3213 * Copy each region from the possibly compacted offset to the
3214 * non-compacted offset.
3215 */
3216 valid = xstate_bv & ~XSTATE_FPSSE;
3217 while (valid) {
3218 u64 feature = valid & -valid;
3219 int index = fls64(feature) - 1;
3220 void *src = get_xsave_addr(xsave, feature);
3221
3222 if (src) {
3223 u32 size, offset, ecx, edx;
3224 cpuid_count(XSTATE_CPUID, index,
3225 &size, &offset, &ecx, &edx);
3226 memcpy(dest + offset, src, size);
3227 }
3228
3229 valid -= feature;
3230 }
3231 }
3232
3233 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3234 {
3235 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3236 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3237 u64 valid;
3238
3239 /*
3240 * Copy legacy XSAVE area, to avoid complications with CPUID
3241 * leaves 0 and 1 in the loop below.
3242 */
3243 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3244
3245 /* Set XSTATE_BV and possibly XCOMP_BV. */
3246 xsave->xsave_hdr.xstate_bv = xstate_bv;
3247 if (cpu_has_xsaves)
3248 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3249
3250 /*
3251 * Copy each region from the non-compacted offset to the
3252 * possibly compacted offset.
3253 */
3254 valid = xstate_bv & ~XSTATE_FPSSE;
3255 while (valid) {
3256 u64 feature = valid & -valid;
3257 int index = fls64(feature) - 1;
3258 void *dest = get_xsave_addr(xsave, feature);
3259
3260 if (dest) {
3261 u32 size, offset, ecx, edx;
3262 cpuid_count(XSTATE_CPUID, index,
3263 &size, &offset, &ecx, &edx);
3264 memcpy(dest, src + offset, size);
3265 } else
3266 WARN_ON_ONCE(1);
3267
3268 valid -= feature;
3269 }
3270 }
3271
3272 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3273 struct kvm_xsave *guest_xsave)
3274 {
3275 if (cpu_has_xsave) {
3276 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3277 fill_xsave((u8 *) guest_xsave->region, vcpu);
3278 } else {
3279 memcpy(guest_xsave->region,
3280 &vcpu->arch.guest_fpu.state->fxsave,
3281 sizeof(struct i387_fxsave_struct));
3282 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3283 XSTATE_FPSSE;
3284 }
3285 }
3286
3287 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3288 struct kvm_xsave *guest_xsave)
3289 {
3290 u64 xstate_bv =
3291 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3292
3293 if (cpu_has_xsave) {
3294 /*
3295 * Here we allow setting states that are not present in
3296 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3297 * with old userspace.
3298 */
3299 if (xstate_bv & ~kvm_supported_xcr0())
3300 return -EINVAL;
3301 load_xsave(vcpu, (u8 *)guest_xsave->region);
3302 } else {
3303 if (xstate_bv & ~XSTATE_FPSSE)
3304 return -EINVAL;
3305 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3306 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3307 }
3308 return 0;
3309 }
3310
3311 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3312 struct kvm_xcrs *guest_xcrs)
3313 {
3314 if (!cpu_has_xsave) {
3315 guest_xcrs->nr_xcrs = 0;
3316 return;
3317 }
3318
3319 guest_xcrs->nr_xcrs = 1;
3320 guest_xcrs->flags = 0;
3321 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3322 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3323 }
3324
3325 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3326 struct kvm_xcrs *guest_xcrs)
3327 {
3328 int i, r = 0;
3329
3330 if (!cpu_has_xsave)
3331 return -EINVAL;
3332
3333 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3334 return -EINVAL;
3335
3336 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3337 /* Only support XCR0 currently */
3338 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3339 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3340 guest_xcrs->xcrs[i].value);
3341 break;
3342 }
3343 if (r)
3344 r = -EINVAL;
3345 return r;
3346 }
3347
3348 /*
3349 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3350 * stopped by the hypervisor. This function will be called from the host only.
3351 * EINVAL is returned when the host attempts to set the flag for a guest that
3352 * does not support pv clocks.
3353 */
3354 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3355 {
3356 if (!vcpu->arch.pv_time_enabled)
3357 return -EINVAL;
3358 vcpu->arch.pvclock_set_guest_stopped_request = true;
3359 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3360 return 0;
3361 }
3362
3363 long kvm_arch_vcpu_ioctl(struct file *filp,
3364 unsigned int ioctl, unsigned long arg)
3365 {
3366 struct kvm_vcpu *vcpu = filp->private_data;
3367 void __user *argp = (void __user *)arg;
3368 int r;
3369 union {
3370 struct kvm_lapic_state *lapic;
3371 struct kvm_xsave *xsave;
3372 struct kvm_xcrs *xcrs;
3373 void *buffer;
3374 } u;
3375
3376 u.buffer = NULL;
3377 switch (ioctl) {
3378 case KVM_GET_LAPIC: {
3379 r = -EINVAL;
3380 if (!vcpu->arch.apic)
3381 goto out;
3382 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3383
3384 r = -ENOMEM;
3385 if (!u.lapic)
3386 goto out;
3387 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3388 if (r)
3389 goto out;
3390 r = -EFAULT;
3391 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3392 goto out;
3393 r = 0;
3394 break;
3395 }
3396 case KVM_SET_LAPIC: {
3397 r = -EINVAL;
3398 if (!vcpu->arch.apic)
3399 goto out;
3400 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3401 if (IS_ERR(u.lapic))
3402 return PTR_ERR(u.lapic);
3403
3404 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3405 break;
3406 }
3407 case KVM_INTERRUPT: {
3408 struct kvm_interrupt irq;
3409
3410 r = -EFAULT;
3411 if (copy_from_user(&irq, argp, sizeof irq))
3412 goto out;
3413 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3414 break;
3415 }
3416 case KVM_NMI: {
3417 r = kvm_vcpu_ioctl_nmi(vcpu);
3418 break;
3419 }
3420 case KVM_SET_CPUID: {
3421 struct kvm_cpuid __user *cpuid_arg = argp;
3422 struct kvm_cpuid cpuid;
3423
3424 r = -EFAULT;
3425 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3426 goto out;
3427 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3428 break;
3429 }
3430 case KVM_SET_CPUID2: {
3431 struct kvm_cpuid2 __user *cpuid_arg = argp;
3432 struct kvm_cpuid2 cpuid;
3433
3434 r = -EFAULT;
3435 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3436 goto out;
3437 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3438 cpuid_arg->entries);
3439 break;
3440 }
3441 case KVM_GET_CPUID2: {
3442 struct kvm_cpuid2 __user *cpuid_arg = argp;
3443 struct kvm_cpuid2 cpuid;
3444
3445 r = -EFAULT;
3446 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3447 goto out;
3448 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3449 cpuid_arg->entries);
3450 if (r)
3451 goto out;
3452 r = -EFAULT;
3453 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3454 goto out;
3455 r = 0;
3456 break;
3457 }
3458 case KVM_GET_MSRS:
3459 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3460 break;
3461 case KVM_SET_MSRS:
3462 r = msr_io(vcpu, argp, do_set_msr, 0);
3463 break;
3464 case KVM_TPR_ACCESS_REPORTING: {
3465 struct kvm_tpr_access_ctl tac;
3466
3467 r = -EFAULT;
3468 if (copy_from_user(&tac, argp, sizeof tac))
3469 goto out;
3470 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3471 if (r)
3472 goto out;
3473 r = -EFAULT;
3474 if (copy_to_user(argp, &tac, sizeof tac))
3475 goto out;
3476 r = 0;
3477 break;
3478 };
3479 case KVM_SET_VAPIC_ADDR: {
3480 struct kvm_vapic_addr va;
3481
3482 r = -EINVAL;
3483 if (!irqchip_in_kernel(vcpu->kvm))
3484 goto out;
3485 r = -EFAULT;
3486 if (copy_from_user(&va, argp, sizeof va))
3487 goto out;
3488 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3489 break;
3490 }
3491 case KVM_X86_SETUP_MCE: {
3492 u64 mcg_cap;
3493
3494 r = -EFAULT;
3495 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3496 goto out;
3497 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3498 break;
3499 }
3500 case KVM_X86_SET_MCE: {
3501 struct kvm_x86_mce mce;
3502
3503 r = -EFAULT;
3504 if (copy_from_user(&mce, argp, sizeof mce))
3505 goto out;
3506 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3507 break;
3508 }
3509 case KVM_GET_VCPU_EVENTS: {
3510 struct kvm_vcpu_events events;
3511
3512 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3513
3514 r = -EFAULT;
3515 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3516 break;
3517 r = 0;
3518 break;
3519 }
3520 case KVM_SET_VCPU_EVENTS: {
3521 struct kvm_vcpu_events events;
3522
3523 r = -EFAULT;
3524 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3525 break;
3526
3527 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3528 break;
3529 }
3530 case KVM_GET_DEBUGREGS: {
3531 struct kvm_debugregs dbgregs;
3532
3533 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3534
3535 r = -EFAULT;
3536 if (copy_to_user(argp, &dbgregs,
3537 sizeof(struct kvm_debugregs)))
3538 break;
3539 r = 0;
3540 break;
3541 }
3542 case KVM_SET_DEBUGREGS: {
3543 struct kvm_debugregs dbgregs;
3544
3545 r = -EFAULT;
3546 if (copy_from_user(&dbgregs, argp,
3547 sizeof(struct kvm_debugregs)))
3548 break;
3549
3550 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3551 break;
3552 }
3553 case KVM_GET_XSAVE: {
3554 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3555 r = -ENOMEM;
3556 if (!u.xsave)
3557 break;
3558
3559 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3560
3561 r = -EFAULT;
3562 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3563 break;
3564 r = 0;
3565 break;
3566 }
3567 case KVM_SET_XSAVE: {
3568 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3569 if (IS_ERR(u.xsave))
3570 return PTR_ERR(u.xsave);
3571
3572 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3573 break;
3574 }
3575 case KVM_GET_XCRS: {
3576 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3577 r = -ENOMEM;
3578 if (!u.xcrs)
3579 break;
3580
3581 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3582
3583 r = -EFAULT;
3584 if (copy_to_user(argp, u.xcrs,
3585 sizeof(struct kvm_xcrs)))
3586 break;
3587 r = 0;
3588 break;
3589 }
3590 case KVM_SET_XCRS: {
3591 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3592 if (IS_ERR(u.xcrs))
3593 return PTR_ERR(u.xcrs);
3594
3595 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3596 break;
3597 }
3598 case KVM_SET_TSC_KHZ: {
3599 u32 user_tsc_khz;
3600
3601 r = -EINVAL;
3602 user_tsc_khz = (u32)arg;
3603
3604 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3605 goto out;
3606
3607 if (user_tsc_khz == 0)
3608 user_tsc_khz = tsc_khz;
3609
3610 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3611
3612 r = 0;
3613 goto out;
3614 }
3615 case KVM_GET_TSC_KHZ: {
3616 r = vcpu->arch.virtual_tsc_khz;
3617 goto out;
3618 }
3619 case KVM_KVMCLOCK_CTRL: {
3620 r = kvm_set_guest_paused(vcpu);
3621 goto out;
3622 }
3623 default:
3624 r = -EINVAL;
3625 }
3626 out:
3627 kfree(u.buffer);
3628 return r;
3629 }
3630
3631 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3632 {
3633 return VM_FAULT_SIGBUS;
3634 }
3635
3636 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3637 {
3638 int ret;
3639
3640 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3641 return -EINVAL;
3642 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3643 return ret;
3644 }
3645
3646 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3647 u64 ident_addr)
3648 {
3649 kvm->arch.ept_identity_map_addr = ident_addr;
3650 return 0;
3651 }
3652
3653 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3654 u32 kvm_nr_mmu_pages)
3655 {
3656 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3657 return -EINVAL;
3658
3659 mutex_lock(&kvm->slots_lock);
3660
3661 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3662 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3663
3664 mutex_unlock(&kvm->slots_lock);
3665 return 0;
3666 }
3667
3668 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3669 {
3670 return kvm->arch.n_max_mmu_pages;
3671 }
3672
3673 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3674 {
3675 int r;
3676
3677 r = 0;
3678 switch (chip->chip_id) {
3679 case KVM_IRQCHIP_PIC_MASTER:
3680 memcpy(&chip->chip.pic,
3681 &pic_irqchip(kvm)->pics[0],
3682 sizeof(struct kvm_pic_state));
3683 break;
3684 case KVM_IRQCHIP_PIC_SLAVE:
3685 memcpy(&chip->chip.pic,
3686 &pic_irqchip(kvm)->pics[1],
3687 sizeof(struct kvm_pic_state));
3688 break;
3689 case KVM_IRQCHIP_IOAPIC:
3690 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3691 break;
3692 default:
3693 r = -EINVAL;
3694 break;
3695 }
3696 return r;
3697 }
3698
3699 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3700 {
3701 int r;
3702
3703 r = 0;
3704 switch (chip->chip_id) {
3705 case KVM_IRQCHIP_PIC_MASTER:
3706 spin_lock(&pic_irqchip(kvm)->lock);
3707 memcpy(&pic_irqchip(kvm)->pics[0],
3708 &chip->chip.pic,
3709 sizeof(struct kvm_pic_state));
3710 spin_unlock(&pic_irqchip(kvm)->lock);
3711 break;
3712 case KVM_IRQCHIP_PIC_SLAVE:
3713 spin_lock(&pic_irqchip(kvm)->lock);
3714 memcpy(&pic_irqchip(kvm)->pics[1],
3715 &chip->chip.pic,
3716 sizeof(struct kvm_pic_state));
3717 spin_unlock(&pic_irqchip(kvm)->lock);
3718 break;
3719 case KVM_IRQCHIP_IOAPIC:
3720 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3721 break;
3722 default:
3723 r = -EINVAL;
3724 break;
3725 }
3726 kvm_pic_update_irq(pic_irqchip(kvm));
3727 return r;
3728 }
3729
3730 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3731 {
3732 int r = 0;
3733
3734 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3736 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3737 return r;
3738 }
3739
3740 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3741 {
3742 int r = 0;
3743
3744 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3745 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3746 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3747 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3748 return r;
3749 }
3750
3751 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3752 {
3753 int r = 0;
3754
3755 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3756 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3757 sizeof(ps->channels));
3758 ps->flags = kvm->arch.vpit->pit_state.flags;
3759 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3760 memset(&ps->reserved, 0, sizeof(ps->reserved));
3761 return r;
3762 }
3763
3764 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3765 {
3766 int r = 0, start = 0;
3767 u32 prev_legacy, cur_legacy;
3768 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3769 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3770 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3771 if (!prev_legacy && cur_legacy)
3772 start = 1;
3773 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3774 sizeof(kvm->arch.vpit->pit_state.channels));
3775 kvm->arch.vpit->pit_state.flags = ps->flags;
3776 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3777 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3778 return r;
3779 }
3780
3781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3782 struct kvm_reinject_control *control)
3783 {
3784 if (!kvm->arch.vpit)
3785 return -ENXIO;
3786 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3787 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3788 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3789 return 0;
3790 }
3791
3792 /**
3793 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3794 * @kvm: kvm instance
3795 * @log: slot id and address to which we copy the log
3796 *
3797 * Steps 1-4 below provide general overview of dirty page logging. See
3798 * kvm_get_dirty_log_protect() function description for additional details.
3799 *
3800 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3801 * always flush the TLB (step 4) even if previous step failed and the dirty
3802 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3803 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3804 * writes will be marked dirty for next log read.
3805 *
3806 * 1. Take a snapshot of the bit and clear it if needed.
3807 * 2. Write protect the corresponding page.
3808 * 3. Copy the snapshot to the userspace.
3809 * 4. Flush TLB's if needed.
3810 */
3811 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3812 {
3813 bool is_dirty = false;
3814 int r;
3815
3816 mutex_lock(&kvm->slots_lock);
3817
3818 /*
3819 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3820 */
3821 if (kvm_x86_ops->flush_log_dirty)
3822 kvm_x86_ops->flush_log_dirty(kvm);
3823
3824 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3825
3826 /*
3827 * All the TLBs can be flushed out of mmu lock, see the comments in
3828 * kvm_mmu_slot_remove_write_access().
3829 */
3830 lockdep_assert_held(&kvm->slots_lock);
3831 if (is_dirty)
3832 kvm_flush_remote_tlbs(kvm);
3833
3834 mutex_unlock(&kvm->slots_lock);
3835 return r;
3836 }
3837
3838 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3839 bool line_status)
3840 {
3841 if (!irqchip_in_kernel(kvm))
3842 return -ENXIO;
3843
3844 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3845 irq_event->irq, irq_event->level,
3846 line_status);
3847 return 0;
3848 }
3849
3850 long kvm_arch_vm_ioctl(struct file *filp,
3851 unsigned int ioctl, unsigned long arg)
3852 {
3853 struct kvm *kvm = filp->private_data;
3854 void __user *argp = (void __user *)arg;
3855 int r = -ENOTTY;
3856 /*
3857 * This union makes it completely explicit to gcc-3.x
3858 * that these two variables' stack usage should be
3859 * combined, not added together.
3860 */
3861 union {
3862 struct kvm_pit_state ps;
3863 struct kvm_pit_state2 ps2;
3864 struct kvm_pit_config pit_config;
3865 } u;
3866
3867 switch (ioctl) {
3868 case KVM_SET_TSS_ADDR:
3869 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3870 break;
3871 case KVM_SET_IDENTITY_MAP_ADDR: {
3872 u64 ident_addr;
3873
3874 r = -EFAULT;
3875 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3876 goto out;
3877 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3878 break;
3879 }
3880 case KVM_SET_NR_MMU_PAGES:
3881 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3882 break;
3883 case KVM_GET_NR_MMU_PAGES:
3884 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3885 break;
3886 case KVM_CREATE_IRQCHIP: {
3887 struct kvm_pic *vpic;
3888
3889 mutex_lock(&kvm->lock);
3890 r = -EEXIST;
3891 if (kvm->arch.vpic)
3892 goto create_irqchip_unlock;
3893 r = -EINVAL;
3894 if (atomic_read(&kvm->online_vcpus))
3895 goto create_irqchip_unlock;
3896 r = -ENOMEM;
3897 vpic = kvm_create_pic(kvm);
3898 if (vpic) {
3899 r = kvm_ioapic_init(kvm);
3900 if (r) {
3901 mutex_lock(&kvm->slots_lock);
3902 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3903 &vpic->dev_master);
3904 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3905 &vpic->dev_slave);
3906 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3907 &vpic->dev_eclr);
3908 mutex_unlock(&kvm->slots_lock);
3909 kfree(vpic);
3910 goto create_irqchip_unlock;
3911 }
3912 } else
3913 goto create_irqchip_unlock;
3914 smp_wmb();
3915 kvm->arch.vpic = vpic;
3916 smp_wmb();
3917 r = kvm_setup_default_irq_routing(kvm);
3918 if (r) {
3919 mutex_lock(&kvm->slots_lock);
3920 mutex_lock(&kvm->irq_lock);
3921 kvm_ioapic_destroy(kvm);
3922 kvm_destroy_pic(kvm);
3923 mutex_unlock(&kvm->irq_lock);
3924 mutex_unlock(&kvm->slots_lock);
3925 }
3926 create_irqchip_unlock:
3927 mutex_unlock(&kvm->lock);
3928 break;
3929 }
3930 case KVM_CREATE_PIT:
3931 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3932 goto create_pit;
3933 case KVM_CREATE_PIT2:
3934 r = -EFAULT;
3935 if (copy_from_user(&u.pit_config, argp,
3936 sizeof(struct kvm_pit_config)))
3937 goto out;
3938 create_pit:
3939 mutex_lock(&kvm->slots_lock);
3940 r = -EEXIST;
3941 if (kvm->arch.vpit)
3942 goto create_pit_unlock;
3943 r = -ENOMEM;
3944 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3945 if (kvm->arch.vpit)
3946 r = 0;
3947 create_pit_unlock:
3948 mutex_unlock(&kvm->slots_lock);
3949 break;
3950 case KVM_GET_IRQCHIP: {
3951 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3952 struct kvm_irqchip *chip;
3953
3954 chip = memdup_user(argp, sizeof(*chip));
3955 if (IS_ERR(chip)) {
3956 r = PTR_ERR(chip);
3957 goto out;
3958 }
3959
3960 r = -ENXIO;
3961 if (!irqchip_in_kernel(kvm))
3962 goto get_irqchip_out;
3963 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3964 if (r)
3965 goto get_irqchip_out;
3966 r = -EFAULT;
3967 if (copy_to_user(argp, chip, sizeof *chip))
3968 goto get_irqchip_out;
3969 r = 0;
3970 get_irqchip_out:
3971 kfree(chip);
3972 break;
3973 }
3974 case KVM_SET_IRQCHIP: {
3975 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3976 struct kvm_irqchip *chip;
3977
3978 chip = memdup_user(argp, sizeof(*chip));
3979 if (IS_ERR(chip)) {
3980 r = PTR_ERR(chip);
3981 goto out;
3982 }
3983
3984 r = -ENXIO;
3985 if (!irqchip_in_kernel(kvm))
3986 goto set_irqchip_out;
3987 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3988 if (r)
3989 goto set_irqchip_out;
3990 r = 0;
3991 set_irqchip_out:
3992 kfree(chip);
3993 break;
3994 }
3995 case KVM_GET_PIT: {
3996 r = -EFAULT;
3997 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3998 goto out;
3999 r = -ENXIO;
4000 if (!kvm->arch.vpit)
4001 goto out;
4002 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4003 if (r)
4004 goto out;
4005 r = -EFAULT;
4006 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4007 goto out;
4008 r = 0;
4009 break;
4010 }
4011 case KVM_SET_PIT: {
4012 r = -EFAULT;
4013 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4014 goto out;
4015 r = -ENXIO;
4016 if (!kvm->arch.vpit)
4017 goto out;
4018 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4019 break;
4020 }
4021 case KVM_GET_PIT2: {
4022 r = -ENXIO;
4023 if (!kvm->arch.vpit)
4024 goto out;
4025 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4026 if (r)
4027 goto out;
4028 r = -EFAULT;
4029 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4030 goto out;
4031 r = 0;
4032 break;
4033 }
4034 case KVM_SET_PIT2: {
4035 r = -EFAULT;
4036 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4037 goto out;
4038 r = -ENXIO;
4039 if (!kvm->arch.vpit)
4040 goto out;
4041 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4042 break;
4043 }
4044 case KVM_REINJECT_CONTROL: {
4045 struct kvm_reinject_control control;
4046 r = -EFAULT;
4047 if (copy_from_user(&control, argp, sizeof(control)))
4048 goto out;
4049 r = kvm_vm_ioctl_reinject(kvm, &control);
4050 break;
4051 }
4052 case KVM_XEN_HVM_CONFIG: {
4053 r = -EFAULT;
4054 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4055 sizeof(struct kvm_xen_hvm_config)))
4056 goto out;
4057 r = -EINVAL;
4058 if (kvm->arch.xen_hvm_config.flags)
4059 goto out;
4060 r = 0;
4061 break;
4062 }
4063 case KVM_SET_CLOCK: {
4064 struct kvm_clock_data user_ns;
4065 u64 now_ns;
4066 s64 delta;
4067
4068 r = -EFAULT;
4069 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4070 goto out;
4071
4072 r = -EINVAL;
4073 if (user_ns.flags)
4074 goto out;
4075
4076 r = 0;
4077 local_irq_disable();
4078 now_ns = get_kernel_ns();
4079 delta = user_ns.clock - now_ns;
4080 local_irq_enable();
4081 kvm->arch.kvmclock_offset = delta;
4082 kvm_gen_update_masterclock(kvm);
4083 break;
4084 }
4085 case KVM_GET_CLOCK: {
4086 struct kvm_clock_data user_ns;
4087 u64 now_ns;
4088
4089 local_irq_disable();
4090 now_ns = get_kernel_ns();
4091 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4092 local_irq_enable();
4093 user_ns.flags = 0;
4094 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4095
4096 r = -EFAULT;
4097 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4098 goto out;
4099 r = 0;
4100 break;
4101 }
4102
4103 default:
4104 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4105 }
4106 out:
4107 return r;
4108 }
4109
4110 static void kvm_init_msr_list(void)
4111 {
4112 u32 dummy[2];
4113 unsigned i, j;
4114
4115 /* skip the first msrs in the list. KVM-specific */
4116 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4117 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4118 continue;
4119
4120 /*
4121 * Even MSRs that are valid in the host may not be exposed
4122 * to the guests in some cases. We could work around this
4123 * in VMX with the generic MSR save/load machinery, but it
4124 * is not really worthwhile since it will really only
4125 * happen with nested virtualization.
4126 */
4127 switch (msrs_to_save[i]) {
4128 case MSR_IA32_BNDCFGS:
4129 if (!kvm_x86_ops->mpx_supported())
4130 continue;
4131 break;
4132 default:
4133 break;
4134 }
4135
4136 if (j < i)
4137 msrs_to_save[j] = msrs_to_save[i];
4138 j++;
4139 }
4140 num_msrs_to_save = j;
4141 }
4142
4143 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144 const void *v)
4145 {
4146 int handled = 0;
4147 int n;
4148
4149 do {
4150 n = min(len, 8);
4151 if (!(vcpu->arch.apic &&
4152 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154 break;
4155 handled += n;
4156 addr += n;
4157 len -= n;
4158 v += n;
4159 } while (len);
4160
4161 return handled;
4162 }
4163
4164 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165 {
4166 int handled = 0;
4167 int n;
4168
4169 do {
4170 n = min(len, 8);
4171 if (!(vcpu->arch.apic &&
4172 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173 addr, n, v))
4174 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175 break;
4176 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177 handled += n;
4178 addr += n;
4179 len -= n;
4180 v += n;
4181 } while (len);
4182
4183 return handled;
4184 }
4185
4186 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187 struct kvm_segment *var, int seg)
4188 {
4189 kvm_x86_ops->set_segment(vcpu, var, seg);
4190 }
4191
4192 void kvm_get_segment(struct kvm_vcpu *vcpu,
4193 struct kvm_segment *var, int seg)
4194 {
4195 kvm_x86_ops->get_segment(vcpu, var, seg);
4196 }
4197
4198 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199 struct x86_exception *exception)
4200 {
4201 gpa_t t_gpa;
4202
4203 BUG_ON(!mmu_is_nested(vcpu));
4204
4205 /* NPT walks are always user-walks */
4206 access |= PFERR_USER_MASK;
4207 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208
4209 return t_gpa;
4210 }
4211
4212 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213 struct x86_exception *exception)
4214 {
4215 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217 }
4218
4219 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220 struct x86_exception *exception)
4221 {
4222 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223 access |= PFERR_FETCH_MASK;
4224 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225 }
4226
4227 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228 struct x86_exception *exception)
4229 {
4230 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231 access |= PFERR_WRITE_MASK;
4232 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233 }
4234
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237 struct x86_exception *exception)
4238 {
4239 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240 }
4241
4242 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243 struct kvm_vcpu *vcpu, u32 access,
4244 struct x86_exception *exception)
4245 {
4246 void *data = val;
4247 int r = X86EMUL_CONTINUE;
4248
4249 while (bytes) {
4250 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251 exception);
4252 unsigned offset = addr & (PAGE_SIZE-1);
4253 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254 int ret;
4255
4256 if (gpa == UNMAPPED_GVA)
4257 return X86EMUL_PROPAGATE_FAULT;
4258 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4259 offset, toread);
4260 if (ret < 0) {
4261 r = X86EMUL_IO_NEEDED;
4262 goto out;
4263 }
4264
4265 bytes -= toread;
4266 data += toread;
4267 addr += toread;
4268 }
4269 out:
4270 return r;
4271 }
4272
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275 gva_t addr, void *val, unsigned int bytes,
4276 struct x86_exception *exception)
4277 {
4278 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280 unsigned offset;
4281 int ret;
4282
4283 /* Inline kvm_read_guest_virt_helper for speed. */
4284 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285 exception);
4286 if (unlikely(gpa == UNMAPPED_GVA))
4287 return X86EMUL_PROPAGATE_FAULT;
4288
4289 offset = addr & (PAGE_SIZE-1);
4290 if (WARN_ON(offset + bytes > PAGE_SIZE))
4291 bytes = (unsigned)PAGE_SIZE - offset;
4292 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4293 offset, bytes);
4294 if (unlikely(ret < 0))
4295 return X86EMUL_IO_NEEDED;
4296
4297 return X86EMUL_CONTINUE;
4298 }
4299
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301 gva_t addr, void *val, unsigned int bytes,
4302 struct x86_exception *exception)
4303 {
4304 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306
4307 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308 exception);
4309 }
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313 gva_t addr, void *val, unsigned int bytes,
4314 struct x86_exception *exception)
4315 {
4316 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318 }
4319
4320 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4321 gva_t addr, void *val,
4322 unsigned int bytes,
4323 struct x86_exception *exception)
4324 {
4325 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4326 void *data = val;
4327 int r = X86EMUL_CONTINUE;
4328
4329 while (bytes) {
4330 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4331 PFERR_WRITE_MASK,
4332 exception);
4333 unsigned offset = addr & (PAGE_SIZE-1);
4334 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4335 int ret;
4336
4337 if (gpa == UNMAPPED_GVA)
4338 return X86EMUL_PROPAGATE_FAULT;
4339 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4340 if (ret < 0) {
4341 r = X86EMUL_IO_NEEDED;
4342 goto out;
4343 }
4344
4345 bytes -= towrite;
4346 data += towrite;
4347 addr += towrite;
4348 }
4349 out:
4350 return r;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4353
4354 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4355 gpa_t *gpa, struct x86_exception *exception,
4356 bool write)
4357 {
4358 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4359 | (write ? PFERR_WRITE_MASK : 0);
4360
4361 if (vcpu_match_mmio_gva(vcpu, gva)
4362 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4363 vcpu->arch.access, access)) {
4364 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4365 (gva & (PAGE_SIZE - 1));
4366 trace_vcpu_match_mmio(gva, *gpa, write, false);
4367 return 1;
4368 }
4369
4370 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4371
4372 if (*gpa == UNMAPPED_GVA)
4373 return -1;
4374
4375 /* For APIC access vmexit */
4376 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4377 return 1;
4378
4379 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4380 trace_vcpu_match_mmio(gva, *gpa, write, true);
4381 return 1;
4382 }
4383
4384 return 0;
4385 }
4386
4387 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4388 const void *val, int bytes)
4389 {
4390 int ret;
4391
4392 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4393 if (ret < 0)
4394 return 0;
4395 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4396 return 1;
4397 }
4398
4399 struct read_write_emulator_ops {
4400 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4401 int bytes);
4402 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 void *val, int bytes);
4404 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 int bytes, void *val);
4406 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 void *val, int bytes);
4408 bool write;
4409 };
4410
4411 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4412 {
4413 if (vcpu->mmio_read_completed) {
4414 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4415 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4416 vcpu->mmio_read_completed = 0;
4417 return 1;
4418 }
4419
4420 return 0;
4421 }
4422
4423 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4424 void *val, int bytes)
4425 {
4426 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4427 }
4428
4429 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4430 void *val, int bytes)
4431 {
4432 return emulator_write_phys(vcpu, gpa, val, bytes);
4433 }
4434
4435 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4436 {
4437 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4438 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4439 }
4440
4441 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4442 void *val, int bytes)
4443 {
4444 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4445 return X86EMUL_IO_NEEDED;
4446 }
4447
4448 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4449 void *val, int bytes)
4450 {
4451 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4452
4453 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4454 return X86EMUL_CONTINUE;
4455 }
4456
4457 static const struct read_write_emulator_ops read_emultor = {
4458 .read_write_prepare = read_prepare,
4459 .read_write_emulate = read_emulate,
4460 .read_write_mmio = vcpu_mmio_read,
4461 .read_write_exit_mmio = read_exit_mmio,
4462 };
4463
4464 static const struct read_write_emulator_ops write_emultor = {
4465 .read_write_emulate = write_emulate,
4466 .read_write_mmio = write_mmio,
4467 .read_write_exit_mmio = write_exit_mmio,
4468 .write = true,
4469 };
4470
4471 static int emulator_read_write_onepage(unsigned long addr, void *val,
4472 unsigned int bytes,
4473 struct x86_exception *exception,
4474 struct kvm_vcpu *vcpu,
4475 const struct read_write_emulator_ops *ops)
4476 {
4477 gpa_t gpa;
4478 int handled, ret;
4479 bool write = ops->write;
4480 struct kvm_mmio_fragment *frag;
4481
4482 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4483
4484 if (ret < 0)
4485 return X86EMUL_PROPAGATE_FAULT;
4486
4487 /* For APIC access vmexit */
4488 if (ret)
4489 goto mmio;
4490
4491 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4492 return X86EMUL_CONTINUE;
4493
4494 mmio:
4495 /*
4496 * Is this MMIO handled locally?
4497 */
4498 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4499 if (handled == bytes)
4500 return X86EMUL_CONTINUE;
4501
4502 gpa += handled;
4503 bytes -= handled;
4504 val += handled;
4505
4506 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4507 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4508 frag->gpa = gpa;
4509 frag->data = val;
4510 frag->len = bytes;
4511 return X86EMUL_CONTINUE;
4512 }
4513
4514 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4515 unsigned long addr,
4516 void *val, unsigned int bytes,
4517 struct x86_exception *exception,
4518 const struct read_write_emulator_ops *ops)
4519 {
4520 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521 gpa_t gpa;
4522 int rc;
4523
4524 if (ops->read_write_prepare &&
4525 ops->read_write_prepare(vcpu, val, bytes))
4526 return X86EMUL_CONTINUE;
4527
4528 vcpu->mmio_nr_fragments = 0;
4529
4530 /* Crossing a page boundary? */
4531 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4532 int now;
4533
4534 now = -addr & ~PAGE_MASK;
4535 rc = emulator_read_write_onepage(addr, val, now, exception,
4536 vcpu, ops);
4537
4538 if (rc != X86EMUL_CONTINUE)
4539 return rc;
4540 addr += now;
4541 if (ctxt->mode != X86EMUL_MODE_PROT64)
4542 addr = (u32)addr;
4543 val += now;
4544 bytes -= now;
4545 }
4546
4547 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4548 vcpu, ops);
4549 if (rc != X86EMUL_CONTINUE)
4550 return rc;
4551
4552 if (!vcpu->mmio_nr_fragments)
4553 return rc;
4554
4555 gpa = vcpu->mmio_fragments[0].gpa;
4556
4557 vcpu->mmio_needed = 1;
4558 vcpu->mmio_cur_fragment = 0;
4559
4560 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4561 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4562 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4563 vcpu->run->mmio.phys_addr = gpa;
4564
4565 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4566 }
4567
4568 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4569 unsigned long addr,
4570 void *val,
4571 unsigned int bytes,
4572 struct x86_exception *exception)
4573 {
4574 return emulator_read_write(ctxt, addr, val, bytes,
4575 exception, &read_emultor);
4576 }
4577
4578 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4579 unsigned long addr,
4580 const void *val,
4581 unsigned int bytes,
4582 struct x86_exception *exception)
4583 {
4584 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4585 exception, &write_emultor);
4586 }
4587
4588 #define CMPXCHG_TYPE(t, ptr, old, new) \
4589 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4590
4591 #ifdef CONFIG_X86_64
4592 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4593 #else
4594 # define CMPXCHG64(ptr, old, new) \
4595 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4596 #endif
4597
4598 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4599 unsigned long addr,
4600 const void *old,
4601 const void *new,
4602 unsigned int bytes,
4603 struct x86_exception *exception)
4604 {
4605 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 gpa_t gpa;
4607 struct page *page;
4608 char *kaddr;
4609 bool exchanged;
4610
4611 /* guests cmpxchg8b have to be emulated atomically */
4612 if (bytes > 8 || (bytes & (bytes - 1)))
4613 goto emul_write;
4614
4615 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4616
4617 if (gpa == UNMAPPED_GVA ||
4618 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4619 goto emul_write;
4620
4621 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4622 goto emul_write;
4623
4624 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4625 if (is_error_page(page))
4626 goto emul_write;
4627
4628 kaddr = kmap_atomic(page);
4629 kaddr += offset_in_page(gpa);
4630 switch (bytes) {
4631 case 1:
4632 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4633 break;
4634 case 2:
4635 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4636 break;
4637 case 4:
4638 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4639 break;
4640 case 8:
4641 exchanged = CMPXCHG64(kaddr, old, new);
4642 break;
4643 default:
4644 BUG();
4645 }
4646 kunmap_atomic(kaddr);
4647 kvm_release_page_dirty(page);
4648
4649 if (!exchanged)
4650 return X86EMUL_CMPXCHG_FAILED;
4651
4652 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4653 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4654
4655 return X86EMUL_CONTINUE;
4656
4657 emul_write:
4658 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4659
4660 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4661 }
4662
4663 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4664 {
4665 /* TODO: String I/O for in kernel device */
4666 int r;
4667
4668 if (vcpu->arch.pio.in)
4669 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4670 vcpu->arch.pio.size, pd);
4671 else
4672 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4673 vcpu->arch.pio.port, vcpu->arch.pio.size,
4674 pd);
4675 return r;
4676 }
4677
4678 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4679 unsigned short port, void *val,
4680 unsigned int count, bool in)
4681 {
4682 vcpu->arch.pio.port = port;
4683 vcpu->arch.pio.in = in;
4684 vcpu->arch.pio.count = count;
4685 vcpu->arch.pio.size = size;
4686
4687 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4688 vcpu->arch.pio.count = 0;
4689 return 1;
4690 }
4691
4692 vcpu->run->exit_reason = KVM_EXIT_IO;
4693 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4694 vcpu->run->io.size = size;
4695 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4696 vcpu->run->io.count = count;
4697 vcpu->run->io.port = port;
4698
4699 return 0;
4700 }
4701
4702 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4703 int size, unsigned short port, void *val,
4704 unsigned int count)
4705 {
4706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4707 int ret;
4708
4709 if (vcpu->arch.pio.count)
4710 goto data_avail;
4711
4712 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4713 if (ret) {
4714 data_avail:
4715 memcpy(val, vcpu->arch.pio_data, size * count);
4716 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4717 vcpu->arch.pio.count = 0;
4718 return 1;
4719 }
4720
4721 return 0;
4722 }
4723
4724 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4725 int size, unsigned short port,
4726 const void *val, unsigned int count)
4727 {
4728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729
4730 memcpy(vcpu->arch.pio_data, val, size * count);
4731 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4732 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4733 }
4734
4735 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4736 {
4737 return kvm_x86_ops->get_segment_base(vcpu, seg);
4738 }
4739
4740 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4741 {
4742 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4743 }
4744
4745 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4746 {
4747 if (!need_emulate_wbinvd(vcpu))
4748 return X86EMUL_CONTINUE;
4749
4750 if (kvm_x86_ops->has_wbinvd_exit()) {
4751 int cpu = get_cpu();
4752
4753 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4754 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4755 wbinvd_ipi, NULL, 1);
4756 put_cpu();
4757 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4758 } else
4759 wbinvd();
4760 return X86EMUL_CONTINUE;
4761 }
4762
4763 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4764 {
4765 kvm_x86_ops->skip_emulated_instruction(vcpu);
4766 return kvm_emulate_wbinvd_noskip(vcpu);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4769
4770
4771
4772 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4773 {
4774 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4775 }
4776
4777 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4778 unsigned long *dest)
4779 {
4780 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4781 }
4782
4783 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4784 unsigned long value)
4785 {
4786
4787 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4788 }
4789
4790 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4791 {
4792 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4793 }
4794
4795 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4796 {
4797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 unsigned long value;
4799
4800 switch (cr) {
4801 case 0:
4802 value = kvm_read_cr0(vcpu);
4803 break;
4804 case 2:
4805 value = vcpu->arch.cr2;
4806 break;
4807 case 3:
4808 value = kvm_read_cr3(vcpu);
4809 break;
4810 case 4:
4811 value = kvm_read_cr4(vcpu);
4812 break;
4813 case 8:
4814 value = kvm_get_cr8(vcpu);
4815 break;
4816 default:
4817 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4818 return 0;
4819 }
4820
4821 return value;
4822 }
4823
4824 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4825 {
4826 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827 int res = 0;
4828
4829 switch (cr) {
4830 case 0:
4831 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4832 break;
4833 case 2:
4834 vcpu->arch.cr2 = val;
4835 break;
4836 case 3:
4837 res = kvm_set_cr3(vcpu, val);
4838 break;
4839 case 4:
4840 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4841 break;
4842 case 8:
4843 res = kvm_set_cr8(vcpu, val);
4844 break;
4845 default:
4846 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4847 res = -1;
4848 }
4849
4850 return res;
4851 }
4852
4853 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4854 {
4855 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4856 }
4857
4858 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4859 {
4860 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4861 }
4862
4863 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4864 {
4865 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4866 }
4867
4868 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4869 {
4870 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4871 }
4872
4873 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4874 {
4875 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4876 }
4877
4878 static unsigned long emulator_get_cached_segment_base(
4879 struct x86_emulate_ctxt *ctxt, int seg)
4880 {
4881 return get_segment_base(emul_to_vcpu(ctxt), seg);
4882 }
4883
4884 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4885 struct desc_struct *desc, u32 *base3,
4886 int seg)
4887 {
4888 struct kvm_segment var;
4889
4890 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4891 *selector = var.selector;
4892
4893 if (var.unusable) {
4894 memset(desc, 0, sizeof(*desc));
4895 return false;
4896 }
4897
4898 if (var.g)
4899 var.limit >>= 12;
4900 set_desc_limit(desc, var.limit);
4901 set_desc_base(desc, (unsigned long)var.base);
4902 #ifdef CONFIG_X86_64
4903 if (base3)
4904 *base3 = var.base >> 32;
4905 #endif
4906 desc->type = var.type;
4907 desc->s = var.s;
4908 desc->dpl = var.dpl;
4909 desc->p = var.present;
4910 desc->avl = var.avl;
4911 desc->l = var.l;
4912 desc->d = var.db;
4913 desc->g = var.g;
4914
4915 return true;
4916 }
4917
4918 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4919 struct desc_struct *desc, u32 base3,
4920 int seg)
4921 {
4922 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923 struct kvm_segment var;
4924
4925 var.selector = selector;
4926 var.base = get_desc_base(desc);
4927 #ifdef CONFIG_X86_64
4928 var.base |= ((u64)base3) << 32;
4929 #endif
4930 var.limit = get_desc_limit(desc);
4931 if (desc->g)
4932 var.limit = (var.limit << 12) | 0xfff;
4933 var.type = desc->type;
4934 var.dpl = desc->dpl;
4935 var.db = desc->d;
4936 var.s = desc->s;
4937 var.l = desc->l;
4938 var.g = desc->g;
4939 var.avl = desc->avl;
4940 var.present = desc->p;
4941 var.unusable = !var.present;
4942 var.padding = 0;
4943
4944 kvm_set_segment(vcpu, &var, seg);
4945 return;
4946 }
4947
4948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4949 u32 msr_index, u64 *pdata)
4950 {
4951 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4952 }
4953
4954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4955 u32 msr_index, u64 data)
4956 {
4957 struct msr_data msr;
4958
4959 msr.data = data;
4960 msr.index = msr_index;
4961 msr.host_initiated = false;
4962 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4963 }
4964
4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966 u32 pmc)
4967 {
4968 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4969 }
4970
4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972 u32 pmc, u64 *pdata)
4973 {
4974 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976
4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981
4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984 preempt_disable();
4985 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986 /*
4987 * CR0.TS may reference the host fpu state, not the guest fpu state,
4988 * so it may be clear at this point.
4989 */
4990 clts();
4991 }
4992
4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995 preempt_enable();
4996 }
4997
4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999 struct x86_instruction_info *info,
5000 enum x86_intercept_stage stage)
5001 {
5002 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010
5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015
5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025
5026 static const struct x86_emulate_ops emulate_ops = {
5027 .read_gpr = emulator_read_gpr,
5028 .write_gpr = emulator_write_gpr,
5029 .read_std = kvm_read_guest_virt_system,
5030 .write_std = kvm_write_guest_virt_system,
5031 .fetch = kvm_fetch_guest_virt,
5032 .read_emulated = emulator_read_emulated,
5033 .write_emulated = emulator_write_emulated,
5034 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5035 .invlpg = emulator_invlpg,
5036 .pio_in_emulated = emulator_pio_in_emulated,
5037 .pio_out_emulated = emulator_pio_out_emulated,
5038 .get_segment = emulator_get_segment,
5039 .set_segment = emulator_set_segment,
5040 .get_cached_segment_base = emulator_get_cached_segment_base,
5041 .get_gdt = emulator_get_gdt,
5042 .get_idt = emulator_get_idt,
5043 .set_gdt = emulator_set_gdt,
5044 .set_idt = emulator_set_idt,
5045 .get_cr = emulator_get_cr,
5046 .set_cr = emulator_set_cr,
5047 .cpl = emulator_get_cpl,
5048 .get_dr = emulator_get_dr,
5049 .set_dr = emulator_set_dr,
5050 .set_msr = emulator_set_msr,
5051 .get_msr = emulator_get_msr,
5052 .check_pmc = emulator_check_pmc,
5053 .read_pmc = emulator_read_pmc,
5054 .halt = emulator_halt,
5055 .wbinvd = emulator_wbinvd,
5056 .fix_hypercall = emulator_fix_hypercall,
5057 .get_fpu = emulator_get_fpu,
5058 .put_fpu = emulator_put_fpu,
5059 .intercept = emulator_intercept,
5060 .get_cpuid = emulator_get_cpuid,
5061 .set_nmi_mask = emulator_set_nmi_mask,
5062 };
5063
5064 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5065 {
5066 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5067 /*
5068 * an sti; sti; sequence only disable interrupts for the first
5069 * instruction. So, if the last instruction, be it emulated or
5070 * not, left the system with the INT_STI flag enabled, it
5071 * means that the last instruction is an sti. We should not
5072 * leave the flag on in this case. The same goes for mov ss
5073 */
5074 if (int_shadow & mask)
5075 mask = 0;
5076 if (unlikely(int_shadow || mask)) {
5077 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5078 if (!mask)
5079 kvm_make_request(KVM_REQ_EVENT, vcpu);
5080 }
5081 }
5082
5083 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5084 {
5085 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5086 if (ctxt->exception.vector == PF_VECTOR)
5087 return kvm_propagate_fault(vcpu, &ctxt->exception);
5088
5089 if (ctxt->exception.error_code_valid)
5090 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5091 ctxt->exception.error_code);
5092 else
5093 kvm_queue_exception(vcpu, ctxt->exception.vector);
5094 return false;
5095 }
5096
5097 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5098 {
5099 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5100 int cs_db, cs_l;
5101
5102 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5103
5104 ctxt->eflags = kvm_get_rflags(vcpu);
5105 ctxt->eip = kvm_rip_read(vcpu);
5106 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5107 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5108 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5109 cs_db ? X86EMUL_MODE_PROT32 :
5110 X86EMUL_MODE_PROT16;
5111 ctxt->guest_mode = is_guest_mode(vcpu);
5112
5113 init_decode_cache(ctxt);
5114 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5115 }
5116
5117 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5118 {
5119 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5120 int ret;
5121
5122 init_emulate_ctxt(vcpu);
5123
5124 ctxt->op_bytes = 2;
5125 ctxt->ad_bytes = 2;
5126 ctxt->_eip = ctxt->eip + inc_eip;
5127 ret = emulate_int_real(ctxt, irq);
5128
5129 if (ret != X86EMUL_CONTINUE)
5130 return EMULATE_FAIL;
5131
5132 ctxt->eip = ctxt->_eip;
5133 kvm_rip_write(vcpu, ctxt->eip);
5134 kvm_set_rflags(vcpu, ctxt->eflags);
5135
5136 if (irq == NMI_VECTOR)
5137 vcpu->arch.nmi_pending = 0;
5138 else
5139 vcpu->arch.interrupt.pending = false;
5140
5141 return EMULATE_DONE;
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5144
5145 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5146 {
5147 int r = EMULATE_DONE;
5148
5149 ++vcpu->stat.insn_emulation_fail;
5150 trace_kvm_emulate_insn_failed(vcpu);
5151 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5152 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5153 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5154 vcpu->run->internal.ndata = 0;
5155 r = EMULATE_FAIL;
5156 }
5157 kvm_queue_exception(vcpu, UD_VECTOR);
5158
5159 return r;
5160 }
5161
5162 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5163 bool write_fault_to_shadow_pgtable,
5164 int emulation_type)
5165 {
5166 gpa_t gpa = cr2;
5167 pfn_t pfn;
5168
5169 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5170 return false;
5171
5172 if (!vcpu->arch.mmu.direct_map) {
5173 /*
5174 * Write permission should be allowed since only
5175 * write access need to be emulated.
5176 */
5177 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5178
5179 /*
5180 * If the mapping is invalid in guest, let cpu retry
5181 * it to generate fault.
5182 */
5183 if (gpa == UNMAPPED_GVA)
5184 return true;
5185 }
5186
5187 /*
5188 * Do not retry the unhandleable instruction if it faults on the
5189 * readonly host memory, otherwise it will goto a infinite loop:
5190 * retry instruction -> write #PF -> emulation fail -> retry
5191 * instruction -> ...
5192 */
5193 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5194
5195 /*
5196 * If the instruction failed on the error pfn, it can not be fixed,
5197 * report the error to userspace.
5198 */
5199 if (is_error_noslot_pfn(pfn))
5200 return false;
5201
5202 kvm_release_pfn_clean(pfn);
5203
5204 /* The instructions are well-emulated on direct mmu. */
5205 if (vcpu->arch.mmu.direct_map) {
5206 unsigned int indirect_shadow_pages;
5207
5208 spin_lock(&vcpu->kvm->mmu_lock);
5209 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5210 spin_unlock(&vcpu->kvm->mmu_lock);
5211
5212 if (indirect_shadow_pages)
5213 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5214
5215 return true;
5216 }
5217
5218 /*
5219 * if emulation was due to access to shadowed page table
5220 * and it failed try to unshadow page and re-enter the
5221 * guest to let CPU execute the instruction.
5222 */
5223 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5224
5225 /*
5226 * If the access faults on its page table, it can not
5227 * be fixed by unprotecting shadow page and it should
5228 * be reported to userspace.
5229 */
5230 return !write_fault_to_shadow_pgtable;
5231 }
5232
5233 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5234 unsigned long cr2, int emulation_type)
5235 {
5236 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5237 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5238
5239 last_retry_eip = vcpu->arch.last_retry_eip;
5240 last_retry_addr = vcpu->arch.last_retry_addr;
5241
5242 /*
5243 * If the emulation is caused by #PF and it is non-page_table
5244 * writing instruction, it means the VM-EXIT is caused by shadow
5245 * page protected, we can zap the shadow page and retry this
5246 * instruction directly.
5247 *
5248 * Note: if the guest uses a non-page-table modifying instruction
5249 * on the PDE that points to the instruction, then we will unmap
5250 * the instruction and go to an infinite loop. So, we cache the
5251 * last retried eip and the last fault address, if we meet the eip
5252 * and the address again, we can break out of the potential infinite
5253 * loop.
5254 */
5255 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5256
5257 if (!(emulation_type & EMULTYPE_RETRY))
5258 return false;
5259
5260 if (x86_page_table_writing_insn(ctxt))
5261 return false;
5262
5263 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5264 return false;
5265
5266 vcpu->arch.last_retry_eip = ctxt->eip;
5267 vcpu->arch.last_retry_addr = cr2;
5268
5269 if (!vcpu->arch.mmu.direct_map)
5270 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5271
5272 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5273
5274 return true;
5275 }
5276
5277 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5278 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5279
5280 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5281 unsigned long *db)
5282 {
5283 u32 dr6 = 0;
5284 int i;
5285 u32 enable, rwlen;
5286
5287 enable = dr7;
5288 rwlen = dr7 >> 16;
5289 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5290 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5291 dr6 |= (1 << i);
5292 return dr6;
5293 }
5294
5295 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5296 {
5297 struct kvm_run *kvm_run = vcpu->run;
5298
5299 /*
5300 * rflags is the old, "raw" value of the flags. The new value has
5301 * not been saved yet.
5302 *
5303 * This is correct even for TF set by the guest, because "the
5304 * processor will not generate this exception after the instruction
5305 * that sets the TF flag".
5306 */
5307 if (unlikely(rflags & X86_EFLAGS_TF)) {
5308 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5309 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5310 DR6_RTM;
5311 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5312 kvm_run->debug.arch.exception = DB_VECTOR;
5313 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314 *r = EMULATE_USER_EXIT;
5315 } else {
5316 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5317 /*
5318 * "Certain debug exceptions may clear bit 0-3. The
5319 * remaining contents of the DR6 register are never
5320 * cleared by the processor".
5321 */
5322 vcpu->arch.dr6 &= ~15;
5323 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5324 kvm_queue_exception(vcpu, DB_VECTOR);
5325 }
5326 }
5327 }
5328
5329 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5330 {
5331 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5332 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5333 struct kvm_run *kvm_run = vcpu->run;
5334 unsigned long eip = kvm_get_linear_rip(vcpu);
5335 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5336 vcpu->arch.guest_debug_dr7,
5337 vcpu->arch.eff_db);
5338
5339 if (dr6 != 0) {
5340 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5341 kvm_run->debug.arch.pc = eip;
5342 kvm_run->debug.arch.exception = DB_VECTOR;
5343 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5344 *r = EMULATE_USER_EXIT;
5345 return true;
5346 }
5347 }
5348
5349 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5350 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5351 unsigned long eip = kvm_get_linear_rip(vcpu);
5352 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5353 vcpu->arch.dr7,
5354 vcpu->arch.db);
5355
5356 if (dr6 != 0) {
5357 vcpu->arch.dr6 &= ~15;
5358 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5359 kvm_queue_exception(vcpu, DB_VECTOR);
5360 *r = EMULATE_DONE;
5361 return true;
5362 }
5363 }
5364
5365 return false;
5366 }
5367
5368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5369 unsigned long cr2,
5370 int emulation_type,
5371 void *insn,
5372 int insn_len)
5373 {
5374 int r;
5375 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5376 bool writeback = true;
5377 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5378
5379 /*
5380 * Clear write_fault_to_shadow_pgtable here to ensure it is
5381 * never reused.
5382 */
5383 vcpu->arch.write_fault_to_shadow_pgtable = false;
5384 kvm_clear_exception_queue(vcpu);
5385
5386 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5387 init_emulate_ctxt(vcpu);
5388
5389 /*
5390 * We will reenter on the same instruction since
5391 * we do not set complete_userspace_io. This does not
5392 * handle watchpoints yet, those would be handled in
5393 * the emulate_ops.
5394 */
5395 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5396 return r;
5397
5398 ctxt->interruptibility = 0;
5399 ctxt->have_exception = false;
5400 ctxt->exception.vector = -1;
5401 ctxt->perm_ok = false;
5402
5403 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5404
5405 r = x86_decode_insn(ctxt, insn, insn_len);
5406
5407 trace_kvm_emulate_insn_start(vcpu);
5408 ++vcpu->stat.insn_emulation;
5409 if (r != EMULATION_OK) {
5410 if (emulation_type & EMULTYPE_TRAP_UD)
5411 return EMULATE_FAIL;
5412 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5413 emulation_type))
5414 return EMULATE_DONE;
5415 if (emulation_type & EMULTYPE_SKIP)
5416 return EMULATE_FAIL;
5417 return handle_emulation_failure(vcpu);
5418 }
5419 }
5420
5421 if (emulation_type & EMULTYPE_SKIP) {
5422 kvm_rip_write(vcpu, ctxt->_eip);
5423 if (ctxt->eflags & X86_EFLAGS_RF)
5424 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5425 return EMULATE_DONE;
5426 }
5427
5428 if (retry_instruction(ctxt, cr2, emulation_type))
5429 return EMULATE_DONE;
5430
5431 /* this is needed for vmware backdoor interface to work since it
5432 changes registers values during IO operation */
5433 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5434 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5435 emulator_invalidate_register_cache(ctxt);
5436 }
5437
5438 restart:
5439 r = x86_emulate_insn(ctxt);
5440
5441 if (r == EMULATION_INTERCEPTED)
5442 return EMULATE_DONE;
5443
5444 if (r == EMULATION_FAILED) {
5445 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446 emulation_type))
5447 return EMULATE_DONE;
5448
5449 return handle_emulation_failure(vcpu);
5450 }
5451
5452 if (ctxt->have_exception) {
5453 r = EMULATE_DONE;
5454 if (inject_emulated_exception(vcpu))
5455 return r;
5456 } else if (vcpu->arch.pio.count) {
5457 if (!vcpu->arch.pio.in) {
5458 /* FIXME: return into emulator if single-stepping. */
5459 vcpu->arch.pio.count = 0;
5460 } else {
5461 writeback = false;
5462 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5463 }
5464 r = EMULATE_USER_EXIT;
5465 } else if (vcpu->mmio_needed) {
5466 if (!vcpu->mmio_is_write)
5467 writeback = false;
5468 r = EMULATE_USER_EXIT;
5469 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5470 } else if (r == EMULATION_RESTART)
5471 goto restart;
5472 else
5473 r = EMULATE_DONE;
5474
5475 if (writeback) {
5476 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5477 toggle_interruptibility(vcpu, ctxt->interruptibility);
5478 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5479 kvm_rip_write(vcpu, ctxt->eip);
5480 if (r == EMULATE_DONE)
5481 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5482 if (!ctxt->have_exception ||
5483 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5484 __kvm_set_rflags(vcpu, ctxt->eflags);
5485
5486 /*
5487 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488 * do nothing, and it will be requested again as soon as
5489 * the shadow expires. But we still need to check here,
5490 * because POPF has no interrupt shadow.
5491 */
5492 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5493 kvm_make_request(KVM_REQ_EVENT, vcpu);
5494 } else
5495 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5496
5497 return r;
5498 }
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5500
5501 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5502 {
5503 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5504 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5505 size, port, &val, 1);
5506 /* do not return to emulator after return from userspace */
5507 vcpu->arch.pio.count = 0;
5508 return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5511
5512 static void tsc_bad(void *info)
5513 {
5514 __this_cpu_write(cpu_tsc_khz, 0);
5515 }
5516
5517 static void tsc_khz_changed(void *data)
5518 {
5519 struct cpufreq_freqs *freq = data;
5520 unsigned long khz = 0;
5521
5522 if (data)
5523 khz = freq->new;
5524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5525 khz = cpufreq_quick_get(raw_smp_processor_id());
5526 if (!khz)
5527 khz = tsc_khz;
5528 __this_cpu_write(cpu_tsc_khz, khz);
5529 }
5530
5531 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5532 void *data)
5533 {
5534 struct cpufreq_freqs *freq = data;
5535 struct kvm *kvm;
5536 struct kvm_vcpu *vcpu;
5537 int i, send_ipi = 0;
5538
5539 /*
5540 * We allow guests to temporarily run on slowing clocks,
5541 * provided we notify them after, or to run on accelerating
5542 * clocks, provided we notify them before. Thus time never
5543 * goes backwards.
5544 *
5545 * However, we have a problem. We can't atomically update
5546 * the frequency of a given CPU from this function; it is
5547 * merely a notifier, which can be called from any CPU.
5548 * Changing the TSC frequency at arbitrary points in time
5549 * requires a recomputation of local variables related to
5550 * the TSC for each VCPU. We must flag these local variables
5551 * to be updated and be sure the update takes place with the
5552 * new frequency before any guests proceed.
5553 *
5554 * Unfortunately, the combination of hotplug CPU and frequency
5555 * change creates an intractable locking scenario; the order
5556 * of when these callouts happen is undefined with respect to
5557 * CPU hotplug, and they can race with each other. As such,
5558 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559 * undefined; you can actually have a CPU frequency change take
5560 * place in between the computation of X and the setting of the
5561 * variable. To protect against this problem, all updates of
5562 * the per_cpu tsc_khz variable are done in an interrupt
5563 * protected IPI, and all callers wishing to update the value
5564 * must wait for a synchronous IPI to complete (which is trivial
5565 * if the caller is on the CPU already). This establishes the
5566 * necessary total order on variable updates.
5567 *
5568 * Note that because a guest time update may take place
5569 * anytime after the setting of the VCPU's request bit, the
5570 * correct TSC value must be set before the request. However,
5571 * to ensure the update actually makes it to any guest which
5572 * starts running in hardware virtualization between the set
5573 * and the acquisition of the spinlock, we must also ping the
5574 * CPU after setting the request bit.
5575 *
5576 */
5577
5578 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5579 return 0;
5580 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5581 return 0;
5582
5583 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5584
5585 spin_lock(&kvm_lock);
5586 list_for_each_entry(kvm, &vm_list, vm_list) {
5587 kvm_for_each_vcpu(i, vcpu, kvm) {
5588 if (vcpu->cpu != freq->cpu)
5589 continue;
5590 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5591 if (vcpu->cpu != smp_processor_id())
5592 send_ipi = 1;
5593 }
5594 }
5595 spin_unlock(&kvm_lock);
5596
5597 if (freq->old < freq->new && send_ipi) {
5598 /*
5599 * We upscale the frequency. Must make the guest
5600 * doesn't see old kvmclock values while running with
5601 * the new frequency, otherwise we risk the guest sees
5602 * time go backwards.
5603 *
5604 * In case we update the frequency for another cpu
5605 * (which might be in guest context) send an interrupt
5606 * to kick the cpu out of guest context. Next time
5607 * guest context is entered kvmclock will be updated,
5608 * so the guest will not see stale values.
5609 */
5610 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5611 }
5612 return 0;
5613 }
5614
5615 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5616 .notifier_call = kvmclock_cpufreq_notifier
5617 };
5618
5619 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5620 unsigned long action, void *hcpu)
5621 {
5622 unsigned int cpu = (unsigned long)hcpu;
5623
5624 switch (action) {
5625 case CPU_ONLINE:
5626 case CPU_DOWN_FAILED:
5627 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5628 break;
5629 case CPU_DOWN_PREPARE:
5630 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5631 break;
5632 }
5633 return NOTIFY_OK;
5634 }
5635
5636 static struct notifier_block kvmclock_cpu_notifier_block = {
5637 .notifier_call = kvmclock_cpu_notifier,
5638 .priority = -INT_MAX
5639 };
5640
5641 static void kvm_timer_init(void)
5642 {
5643 int cpu;
5644
5645 max_tsc_khz = tsc_khz;
5646
5647 cpu_notifier_register_begin();
5648 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5649 #ifdef CONFIG_CPU_FREQ
5650 struct cpufreq_policy policy;
5651 memset(&policy, 0, sizeof(policy));
5652 cpu = get_cpu();
5653 cpufreq_get_policy(&policy, cpu);
5654 if (policy.cpuinfo.max_freq)
5655 max_tsc_khz = policy.cpuinfo.max_freq;
5656 put_cpu();
5657 #endif
5658 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5659 CPUFREQ_TRANSITION_NOTIFIER);
5660 }
5661 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5662 for_each_online_cpu(cpu)
5663 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664
5665 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5666 cpu_notifier_register_done();
5667
5668 }
5669
5670 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5671
5672 int kvm_is_in_guest(void)
5673 {
5674 return __this_cpu_read(current_vcpu) != NULL;
5675 }
5676
5677 static int kvm_is_user_mode(void)
5678 {
5679 int user_mode = 3;
5680
5681 if (__this_cpu_read(current_vcpu))
5682 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5683
5684 return user_mode != 0;
5685 }
5686
5687 static unsigned long kvm_get_guest_ip(void)
5688 {
5689 unsigned long ip = 0;
5690
5691 if (__this_cpu_read(current_vcpu))
5692 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5693
5694 return ip;
5695 }
5696
5697 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5698 .is_in_guest = kvm_is_in_guest,
5699 .is_user_mode = kvm_is_user_mode,
5700 .get_guest_ip = kvm_get_guest_ip,
5701 };
5702
5703 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5704 {
5705 __this_cpu_write(current_vcpu, vcpu);
5706 }
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5708
5709 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5710 {
5711 __this_cpu_write(current_vcpu, NULL);
5712 }
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5714
5715 static void kvm_set_mmio_spte_mask(void)
5716 {
5717 u64 mask;
5718 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5719
5720 /*
5721 * Set the reserved bits and the present bit of an paging-structure
5722 * entry to generate page fault with PFER.RSV = 1.
5723 */
5724 /* Mask the reserved physical address bits. */
5725 mask = rsvd_bits(maxphyaddr, 51);
5726
5727 /* Bit 62 is always reserved for 32bit host. */
5728 mask |= 0x3ull << 62;
5729
5730 /* Set the present bit. */
5731 mask |= 1ull;
5732
5733 #ifdef CONFIG_X86_64
5734 /*
5735 * If reserved bit is not supported, clear the present bit to disable
5736 * mmio page fault.
5737 */
5738 if (maxphyaddr == 52)
5739 mask &= ~1ull;
5740 #endif
5741
5742 kvm_mmu_set_mmio_spte_mask(mask);
5743 }
5744
5745 #ifdef CONFIG_X86_64
5746 static void pvclock_gtod_update_fn(struct work_struct *work)
5747 {
5748 struct kvm *kvm;
5749
5750 struct kvm_vcpu *vcpu;
5751 int i;
5752
5753 spin_lock(&kvm_lock);
5754 list_for_each_entry(kvm, &vm_list, vm_list)
5755 kvm_for_each_vcpu(i, vcpu, kvm)
5756 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5757 atomic_set(&kvm_guest_has_master_clock, 0);
5758 spin_unlock(&kvm_lock);
5759 }
5760
5761 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5762
5763 /*
5764 * Notification about pvclock gtod data update.
5765 */
5766 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5767 void *priv)
5768 {
5769 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5770 struct timekeeper *tk = priv;
5771
5772 update_pvclock_gtod(tk);
5773
5774 /* disable master clock if host does not trust, or does not
5775 * use, TSC clocksource
5776 */
5777 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5778 atomic_read(&kvm_guest_has_master_clock) != 0)
5779 queue_work(system_long_wq, &pvclock_gtod_work);
5780
5781 return 0;
5782 }
5783
5784 static struct notifier_block pvclock_gtod_notifier = {
5785 .notifier_call = pvclock_gtod_notify,
5786 };
5787 #endif
5788
5789 int kvm_arch_init(void *opaque)
5790 {
5791 int r;
5792 struct kvm_x86_ops *ops = opaque;
5793
5794 if (kvm_x86_ops) {
5795 printk(KERN_ERR "kvm: already loaded the other module\n");
5796 r = -EEXIST;
5797 goto out;
5798 }
5799
5800 if (!ops->cpu_has_kvm_support()) {
5801 printk(KERN_ERR "kvm: no hardware support\n");
5802 r = -EOPNOTSUPP;
5803 goto out;
5804 }
5805 if (ops->disabled_by_bios()) {
5806 printk(KERN_ERR "kvm: disabled by bios\n");
5807 r = -EOPNOTSUPP;
5808 goto out;
5809 }
5810
5811 r = -ENOMEM;
5812 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5813 if (!shared_msrs) {
5814 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5815 goto out;
5816 }
5817
5818 r = kvm_mmu_module_init();
5819 if (r)
5820 goto out_free_percpu;
5821
5822 kvm_set_mmio_spte_mask();
5823
5824 kvm_x86_ops = ops;
5825
5826 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5827 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5828
5829 kvm_timer_init();
5830
5831 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5832
5833 if (cpu_has_xsave)
5834 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5835
5836 kvm_lapic_init();
5837 #ifdef CONFIG_X86_64
5838 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5839 #endif
5840
5841 return 0;
5842
5843 out_free_percpu:
5844 free_percpu(shared_msrs);
5845 out:
5846 return r;
5847 }
5848
5849 void kvm_arch_exit(void)
5850 {
5851 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5852
5853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5854 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5855 CPUFREQ_TRANSITION_NOTIFIER);
5856 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5857 #ifdef CONFIG_X86_64
5858 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5859 #endif
5860 kvm_x86_ops = NULL;
5861 kvm_mmu_module_exit();
5862 free_percpu(shared_msrs);
5863 }
5864
5865 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5866 {
5867 ++vcpu->stat.halt_exits;
5868 if (irqchip_in_kernel(vcpu->kvm)) {
5869 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5870 return 1;
5871 } else {
5872 vcpu->run->exit_reason = KVM_EXIT_HLT;
5873 return 0;
5874 }
5875 }
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5877
5878 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5879 {
5880 kvm_x86_ops->skip_emulated_instruction(vcpu);
5881 return kvm_vcpu_halt(vcpu);
5882 }
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5884
5885 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5886 {
5887 u64 param, ingpa, outgpa, ret;
5888 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5889 bool fast, longmode;
5890
5891 /*
5892 * hypercall generates UD from non zero cpl and real mode
5893 * per HYPER-V spec
5894 */
5895 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5896 kvm_queue_exception(vcpu, UD_VECTOR);
5897 return 0;
5898 }
5899
5900 longmode = is_64_bit_mode(vcpu);
5901
5902 if (!longmode) {
5903 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5904 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5905 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5906 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5907 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5908 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5909 }
5910 #ifdef CONFIG_X86_64
5911 else {
5912 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5913 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5914 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5915 }
5916 #endif
5917
5918 code = param & 0xffff;
5919 fast = (param >> 16) & 0x1;
5920 rep_cnt = (param >> 32) & 0xfff;
5921 rep_idx = (param >> 48) & 0xfff;
5922
5923 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5924
5925 switch (code) {
5926 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5927 kvm_vcpu_on_spin(vcpu);
5928 break;
5929 default:
5930 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5931 break;
5932 }
5933
5934 ret = res | (((u64)rep_done & 0xfff) << 32);
5935 if (longmode) {
5936 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5937 } else {
5938 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5939 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5940 }
5941
5942 return 1;
5943 }
5944
5945 /*
5946 * kvm_pv_kick_cpu_op: Kick a vcpu.
5947 *
5948 * @apicid - apicid of vcpu to be kicked.
5949 */
5950 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5951 {
5952 struct kvm_lapic_irq lapic_irq;
5953
5954 lapic_irq.shorthand = 0;
5955 lapic_irq.dest_mode = 0;
5956 lapic_irq.dest_id = apicid;
5957
5958 lapic_irq.delivery_mode = APIC_DM_REMRD;
5959 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5960 }
5961
5962 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5963 {
5964 unsigned long nr, a0, a1, a2, a3, ret;
5965 int op_64_bit, r = 1;
5966
5967 kvm_x86_ops->skip_emulated_instruction(vcpu);
5968
5969 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5970 return kvm_hv_hypercall(vcpu);
5971
5972 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5973 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5974 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5975 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5976 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5977
5978 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5979
5980 op_64_bit = is_64_bit_mode(vcpu);
5981 if (!op_64_bit) {
5982 nr &= 0xFFFFFFFF;
5983 a0 &= 0xFFFFFFFF;
5984 a1 &= 0xFFFFFFFF;
5985 a2 &= 0xFFFFFFFF;
5986 a3 &= 0xFFFFFFFF;
5987 }
5988
5989 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5990 ret = -KVM_EPERM;
5991 goto out;
5992 }
5993
5994 switch (nr) {
5995 case KVM_HC_VAPIC_POLL_IRQ:
5996 ret = 0;
5997 break;
5998 case KVM_HC_KICK_CPU:
5999 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6000 ret = 0;
6001 break;
6002 default:
6003 ret = -KVM_ENOSYS;
6004 break;
6005 }
6006 out:
6007 if (!op_64_bit)
6008 ret = (u32)ret;
6009 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6010 ++vcpu->stat.hypercalls;
6011 return r;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6014
6015 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6016 {
6017 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6018 char instruction[3];
6019 unsigned long rip = kvm_rip_read(vcpu);
6020
6021 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6022
6023 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6024 }
6025
6026 /*
6027 * Check if userspace requested an interrupt window, and that the
6028 * interrupt window is open.
6029 *
6030 * No need to exit to userspace if we already have an interrupt queued.
6031 */
6032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6033 {
6034 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6035 vcpu->run->request_interrupt_window &&
6036 kvm_arch_interrupt_allowed(vcpu));
6037 }
6038
6039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6040 {
6041 struct kvm_run *kvm_run = vcpu->run;
6042
6043 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6044 kvm_run->cr8 = kvm_get_cr8(vcpu);
6045 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6046 if (irqchip_in_kernel(vcpu->kvm))
6047 kvm_run->ready_for_interrupt_injection = 1;
6048 else
6049 kvm_run->ready_for_interrupt_injection =
6050 kvm_arch_interrupt_allowed(vcpu) &&
6051 !kvm_cpu_has_interrupt(vcpu) &&
6052 !kvm_event_needs_reinjection(vcpu);
6053 }
6054
6055 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6056 {
6057 int max_irr, tpr;
6058
6059 if (!kvm_x86_ops->update_cr8_intercept)
6060 return;
6061
6062 if (!vcpu->arch.apic)
6063 return;
6064
6065 if (!vcpu->arch.apic->vapic_addr)
6066 max_irr = kvm_lapic_find_highest_irr(vcpu);
6067 else
6068 max_irr = -1;
6069
6070 if (max_irr != -1)
6071 max_irr >>= 4;
6072
6073 tpr = kvm_lapic_get_cr8(vcpu);
6074
6075 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6076 }
6077
6078 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6079 {
6080 int r;
6081
6082 /* try to reinject previous events if any */
6083 if (vcpu->arch.exception.pending) {
6084 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6085 vcpu->arch.exception.has_error_code,
6086 vcpu->arch.exception.error_code);
6087
6088 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6089 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6090 X86_EFLAGS_RF);
6091
6092 if (vcpu->arch.exception.nr == DB_VECTOR &&
6093 (vcpu->arch.dr7 & DR7_GD)) {
6094 vcpu->arch.dr7 &= ~DR7_GD;
6095 kvm_update_dr7(vcpu);
6096 }
6097
6098 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6099 vcpu->arch.exception.has_error_code,
6100 vcpu->arch.exception.error_code,
6101 vcpu->arch.exception.reinject);
6102 return 0;
6103 }
6104
6105 if (vcpu->arch.nmi_injected) {
6106 kvm_x86_ops->set_nmi(vcpu);
6107 return 0;
6108 }
6109
6110 if (vcpu->arch.interrupt.pending) {
6111 kvm_x86_ops->set_irq(vcpu);
6112 return 0;
6113 }
6114
6115 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6116 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6117 if (r != 0)
6118 return r;
6119 }
6120
6121 /* try to inject new event if pending */
6122 if (vcpu->arch.nmi_pending) {
6123 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6124 --vcpu->arch.nmi_pending;
6125 vcpu->arch.nmi_injected = true;
6126 kvm_x86_ops->set_nmi(vcpu);
6127 }
6128 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6129 /*
6130 * Because interrupts can be injected asynchronously, we are
6131 * calling check_nested_events again here to avoid a race condition.
6132 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6133 * proposal and current concerns. Perhaps we should be setting
6134 * KVM_REQ_EVENT only on certain events and not unconditionally?
6135 */
6136 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6137 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6138 if (r != 0)
6139 return r;
6140 }
6141 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6142 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6143 false);
6144 kvm_x86_ops->set_irq(vcpu);
6145 }
6146 }
6147 return 0;
6148 }
6149
6150 static void process_nmi(struct kvm_vcpu *vcpu)
6151 {
6152 unsigned limit = 2;
6153
6154 /*
6155 * x86 is limited to one NMI running, and one NMI pending after it.
6156 * If an NMI is already in progress, limit further NMIs to just one.
6157 * Otherwise, allow two (and we'll inject the first one immediately).
6158 */
6159 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6160 limit = 1;
6161
6162 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6163 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6164 kvm_make_request(KVM_REQ_EVENT, vcpu);
6165 }
6166
6167 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6168 {
6169 u64 eoi_exit_bitmap[4];
6170 u32 tmr[8];
6171
6172 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6173 return;
6174
6175 memset(eoi_exit_bitmap, 0, 32);
6176 memset(tmr, 0, 32);
6177
6178 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6179 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6180 kvm_apic_update_tmr(vcpu, tmr);
6181 }
6182
6183 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6184 {
6185 ++vcpu->stat.tlb_flush;
6186 kvm_x86_ops->tlb_flush(vcpu);
6187 }
6188
6189 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6190 {
6191 struct page *page = NULL;
6192
6193 if (!irqchip_in_kernel(vcpu->kvm))
6194 return;
6195
6196 if (!kvm_x86_ops->set_apic_access_page_addr)
6197 return;
6198
6199 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6200 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6201
6202 /*
6203 * Do not pin apic access page in memory, the MMU notifier
6204 * will call us again if it is migrated or swapped out.
6205 */
6206 put_page(page);
6207 }
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6209
6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6211 unsigned long address)
6212 {
6213 /*
6214 * The physical address of apic access page is stored in the VMCS.
6215 * Update it when it becomes invalid.
6216 */
6217 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6218 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6219 }
6220
6221 /*
6222 * Returns 1 to let vcpu_run() continue the guest execution loop without
6223 * exiting to the userspace. Otherwise, the value will be returned to the
6224 * userspace.
6225 */
6226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6227 {
6228 int r;
6229 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6230 vcpu->run->request_interrupt_window;
6231 bool req_immediate_exit = false;
6232
6233 if (vcpu->requests) {
6234 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6235 kvm_mmu_unload(vcpu);
6236 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6237 __kvm_migrate_timers(vcpu);
6238 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6239 kvm_gen_update_masterclock(vcpu->kvm);
6240 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6241 kvm_gen_kvmclock_update(vcpu);
6242 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6243 r = kvm_guest_time_update(vcpu);
6244 if (unlikely(r))
6245 goto out;
6246 }
6247 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6248 kvm_mmu_sync_roots(vcpu);
6249 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6250 kvm_vcpu_flush_tlb(vcpu);
6251 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6252 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6253 r = 0;
6254 goto out;
6255 }
6256 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6257 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6258 r = 0;
6259 goto out;
6260 }
6261 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6262 vcpu->fpu_active = 0;
6263 kvm_x86_ops->fpu_deactivate(vcpu);
6264 }
6265 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6266 /* Page is swapped out. Do synthetic halt */
6267 vcpu->arch.apf.halted = true;
6268 r = 1;
6269 goto out;
6270 }
6271 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6272 record_steal_time(vcpu);
6273 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6274 process_nmi(vcpu);
6275 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6276 kvm_handle_pmu_event(vcpu);
6277 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6278 kvm_deliver_pmi(vcpu);
6279 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6280 vcpu_scan_ioapic(vcpu);
6281 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6282 kvm_vcpu_reload_apic_access_page(vcpu);
6283 }
6284
6285 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6286 kvm_apic_accept_events(vcpu);
6287 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6288 r = 1;
6289 goto out;
6290 }
6291
6292 if (inject_pending_event(vcpu, req_int_win) != 0)
6293 req_immediate_exit = true;
6294 /* enable NMI/IRQ window open exits if needed */
6295 else if (vcpu->arch.nmi_pending)
6296 kvm_x86_ops->enable_nmi_window(vcpu);
6297 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6298 kvm_x86_ops->enable_irq_window(vcpu);
6299
6300 if (kvm_lapic_enabled(vcpu)) {
6301 /*
6302 * Update architecture specific hints for APIC
6303 * virtual interrupt delivery.
6304 */
6305 if (kvm_x86_ops->hwapic_irr_update)
6306 kvm_x86_ops->hwapic_irr_update(vcpu,
6307 kvm_lapic_find_highest_irr(vcpu));
6308 update_cr8_intercept(vcpu);
6309 kvm_lapic_sync_to_vapic(vcpu);
6310 }
6311 }
6312
6313 r = kvm_mmu_reload(vcpu);
6314 if (unlikely(r)) {
6315 goto cancel_injection;
6316 }
6317
6318 preempt_disable();
6319
6320 kvm_x86_ops->prepare_guest_switch(vcpu);
6321 if (vcpu->fpu_active)
6322 kvm_load_guest_fpu(vcpu);
6323 kvm_load_guest_xcr0(vcpu);
6324
6325 vcpu->mode = IN_GUEST_MODE;
6326
6327 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6328
6329 /* We should set ->mode before check ->requests,
6330 * see the comment in make_all_cpus_request.
6331 */
6332 smp_mb__after_srcu_read_unlock();
6333
6334 local_irq_disable();
6335
6336 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6337 || need_resched() || signal_pending(current)) {
6338 vcpu->mode = OUTSIDE_GUEST_MODE;
6339 smp_wmb();
6340 local_irq_enable();
6341 preempt_enable();
6342 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6343 r = 1;
6344 goto cancel_injection;
6345 }
6346
6347 if (req_immediate_exit)
6348 smp_send_reschedule(vcpu->cpu);
6349
6350 kvm_guest_enter();
6351
6352 if (unlikely(vcpu->arch.switch_db_regs)) {
6353 set_debugreg(0, 7);
6354 set_debugreg(vcpu->arch.eff_db[0], 0);
6355 set_debugreg(vcpu->arch.eff_db[1], 1);
6356 set_debugreg(vcpu->arch.eff_db[2], 2);
6357 set_debugreg(vcpu->arch.eff_db[3], 3);
6358 set_debugreg(vcpu->arch.dr6, 6);
6359 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6360 }
6361
6362 trace_kvm_entry(vcpu->vcpu_id);
6363 wait_lapic_expire(vcpu);
6364 kvm_x86_ops->run(vcpu);
6365
6366 /*
6367 * Do this here before restoring debug registers on the host. And
6368 * since we do this before handling the vmexit, a DR access vmexit
6369 * can (a) read the correct value of the debug registers, (b) set
6370 * KVM_DEBUGREG_WONT_EXIT again.
6371 */
6372 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6373 int i;
6374
6375 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6376 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6377 for (i = 0; i < KVM_NR_DB_REGS; i++)
6378 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6379 }
6380
6381 /*
6382 * If the guest has used debug registers, at least dr7
6383 * will be disabled while returning to the host.
6384 * If we don't have active breakpoints in the host, we don't
6385 * care about the messed up debug address registers. But if
6386 * we have some of them active, restore the old state.
6387 */
6388 if (hw_breakpoint_active())
6389 hw_breakpoint_restore();
6390
6391 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6392 native_read_tsc());
6393
6394 vcpu->mode = OUTSIDE_GUEST_MODE;
6395 smp_wmb();
6396
6397 /* Interrupt is enabled by handle_external_intr() */
6398 kvm_x86_ops->handle_external_intr(vcpu);
6399
6400 ++vcpu->stat.exits;
6401
6402 /*
6403 * We must have an instruction between local_irq_enable() and
6404 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6405 * the interrupt shadow. The stat.exits increment will do nicely.
6406 * But we need to prevent reordering, hence this barrier():
6407 */
6408 barrier();
6409
6410 kvm_guest_exit();
6411
6412 preempt_enable();
6413
6414 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6415
6416 /*
6417 * Profile KVM exit RIPs:
6418 */
6419 if (unlikely(prof_on == KVM_PROFILING)) {
6420 unsigned long rip = kvm_rip_read(vcpu);
6421 profile_hit(KVM_PROFILING, (void *)rip);
6422 }
6423
6424 if (unlikely(vcpu->arch.tsc_always_catchup))
6425 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6426
6427 if (vcpu->arch.apic_attention)
6428 kvm_lapic_sync_from_vapic(vcpu);
6429
6430 r = kvm_x86_ops->handle_exit(vcpu);
6431 return r;
6432
6433 cancel_injection:
6434 kvm_x86_ops->cancel_injection(vcpu);
6435 if (unlikely(vcpu->arch.apic_attention))
6436 kvm_lapic_sync_from_vapic(vcpu);
6437 out:
6438 return r;
6439 }
6440
6441 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6442 {
6443 if (!kvm_arch_vcpu_runnable(vcpu)) {
6444 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6445 kvm_vcpu_block(vcpu);
6446 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6447 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6448 return 1;
6449 }
6450
6451 kvm_apic_accept_events(vcpu);
6452 switch(vcpu->arch.mp_state) {
6453 case KVM_MP_STATE_HALTED:
6454 vcpu->arch.pv.pv_unhalted = false;
6455 vcpu->arch.mp_state =
6456 KVM_MP_STATE_RUNNABLE;
6457 case KVM_MP_STATE_RUNNABLE:
6458 vcpu->arch.apf.halted = false;
6459 break;
6460 case KVM_MP_STATE_INIT_RECEIVED:
6461 break;
6462 default:
6463 return -EINTR;
6464 break;
6465 }
6466 return 1;
6467 }
6468
6469 static int vcpu_run(struct kvm_vcpu *vcpu)
6470 {
6471 int r;
6472 struct kvm *kvm = vcpu->kvm;
6473
6474 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6475
6476 for (;;) {
6477 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6478 !vcpu->arch.apf.halted)
6479 r = vcpu_enter_guest(vcpu);
6480 else
6481 r = vcpu_block(kvm, vcpu);
6482 if (r <= 0)
6483 break;
6484
6485 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6486 if (kvm_cpu_has_pending_timer(vcpu))
6487 kvm_inject_pending_timer_irqs(vcpu);
6488
6489 if (dm_request_for_irq_injection(vcpu)) {
6490 r = -EINTR;
6491 vcpu->run->exit_reason = KVM_EXIT_INTR;
6492 ++vcpu->stat.request_irq_exits;
6493 break;
6494 }
6495
6496 kvm_check_async_pf_completion(vcpu);
6497
6498 if (signal_pending(current)) {
6499 r = -EINTR;
6500 vcpu->run->exit_reason = KVM_EXIT_INTR;
6501 ++vcpu->stat.signal_exits;
6502 break;
6503 }
6504 if (need_resched()) {
6505 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6506 cond_resched();
6507 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6508 }
6509 }
6510
6511 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6512
6513 return r;
6514 }
6515
6516 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6517 {
6518 int r;
6519 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6521 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6522 if (r != EMULATE_DONE)
6523 return 0;
6524 return 1;
6525 }
6526
6527 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6528 {
6529 BUG_ON(!vcpu->arch.pio.count);
6530
6531 return complete_emulated_io(vcpu);
6532 }
6533
6534 /*
6535 * Implements the following, as a state machine:
6536 *
6537 * read:
6538 * for each fragment
6539 * for each mmio piece in the fragment
6540 * write gpa, len
6541 * exit
6542 * copy data
6543 * execute insn
6544 *
6545 * write:
6546 * for each fragment
6547 * for each mmio piece in the fragment
6548 * write gpa, len
6549 * copy data
6550 * exit
6551 */
6552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6553 {
6554 struct kvm_run *run = vcpu->run;
6555 struct kvm_mmio_fragment *frag;
6556 unsigned len;
6557
6558 BUG_ON(!vcpu->mmio_needed);
6559
6560 /* Complete previous fragment */
6561 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6562 len = min(8u, frag->len);
6563 if (!vcpu->mmio_is_write)
6564 memcpy(frag->data, run->mmio.data, len);
6565
6566 if (frag->len <= 8) {
6567 /* Switch to the next fragment. */
6568 frag++;
6569 vcpu->mmio_cur_fragment++;
6570 } else {
6571 /* Go forward to the next mmio piece. */
6572 frag->data += len;
6573 frag->gpa += len;
6574 frag->len -= len;
6575 }
6576
6577 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6578 vcpu->mmio_needed = 0;
6579
6580 /* FIXME: return into emulator if single-stepping. */
6581 if (vcpu->mmio_is_write)
6582 return 1;
6583 vcpu->mmio_read_completed = 1;
6584 return complete_emulated_io(vcpu);
6585 }
6586
6587 run->exit_reason = KVM_EXIT_MMIO;
6588 run->mmio.phys_addr = frag->gpa;
6589 if (vcpu->mmio_is_write)
6590 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6591 run->mmio.len = min(8u, frag->len);
6592 run->mmio.is_write = vcpu->mmio_is_write;
6593 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6594 return 0;
6595 }
6596
6597
6598 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6599 {
6600 struct fpu *fpu = &current->thread.fpu;
6601 int r;
6602 sigset_t sigsaved;
6603
6604 if (!fpu->fpstate_active && fpstate_alloc_init(fpu))
6605 return -ENOMEM;
6606
6607 if (vcpu->sigset_active)
6608 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6609
6610 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6611 kvm_vcpu_block(vcpu);
6612 kvm_apic_accept_events(vcpu);
6613 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6614 r = -EAGAIN;
6615 goto out;
6616 }
6617
6618 /* re-sync apic's tpr */
6619 if (!irqchip_in_kernel(vcpu->kvm)) {
6620 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6621 r = -EINVAL;
6622 goto out;
6623 }
6624 }
6625
6626 if (unlikely(vcpu->arch.complete_userspace_io)) {
6627 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6628 vcpu->arch.complete_userspace_io = NULL;
6629 r = cui(vcpu);
6630 if (r <= 0)
6631 goto out;
6632 } else
6633 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6634
6635 r = vcpu_run(vcpu);
6636
6637 out:
6638 post_kvm_run_save(vcpu);
6639 if (vcpu->sigset_active)
6640 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6641
6642 return r;
6643 }
6644
6645 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6646 {
6647 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6648 /*
6649 * We are here if userspace calls get_regs() in the middle of
6650 * instruction emulation. Registers state needs to be copied
6651 * back from emulation context to vcpu. Userspace shouldn't do
6652 * that usually, but some bad designed PV devices (vmware
6653 * backdoor interface) need this to work
6654 */
6655 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6656 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6657 }
6658 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6659 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6660 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6661 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6662 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6663 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6664 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6665 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6666 #ifdef CONFIG_X86_64
6667 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6668 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6669 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6670 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6671 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6672 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6673 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6674 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6675 #endif
6676
6677 regs->rip = kvm_rip_read(vcpu);
6678 regs->rflags = kvm_get_rflags(vcpu);
6679
6680 return 0;
6681 }
6682
6683 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6684 {
6685 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6686 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6687
6688 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6689 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6690 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6691 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6692 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6693 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6694 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6695 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6696 #ifdef CONFIG_X86_64
6697 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6698 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6699 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6700 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6701 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6702 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6703 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6704 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6705 #endif
6706
6707 kvm_rip_write(vcpu, regs->rip);
6708 kvm_set_rflags(vcpu, regs->rflags);
6709
6710 vcpu->arch.exception.pending = false;
6711
6712 kvm_make_request(KVM_REQ_EVENT, vcpu);
6713
6714 return 0;
6715 }
6716
6717 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6718 {
6719 struct kvm_segment cs;
6720
6721 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6722 *db = cs.db;
6723 *l = cs.l;
6724 }
6725 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6726
6727 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6728 struct kvm_sregs *sregs)
6729 {
6730 struct desc_ptr dt;
6731
6732 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6733 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6734 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6735 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6736 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6737 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6738
6739 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6740 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6741
6742 kvm_x86_ops->get_idt(vcpu, &dt);
6743 sregs->idt.limit = dt.size;
6744 sregs->idt.base = dt.address;
6745 kvm_x86_ops->get_gdt(vcpu, &dt);
6746 sregs->gdt.limit = dt.size;
6747 sregs->gdt.base = dt.address;
6748
6749 sregs->cr0 = kvm_read_cr0(vcpu);
6750 sregs->cr2 = vcpu->arch.cr2;
6751 sregs->cr3 = kvm_read_cr3(vcpu);
6752 sregs->cr4 = kvm_read_cr4(vcpu);
6753 sregs->cr8 = kvm_get_cr8(vcpu);
6754 sregs->efer = vcpu->arch.efer;
6755 sregs->apic_base = kvm_get_apic_base(vcpu);
6756
6757 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6758
6759 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6760 set_bit(vcpu->arch.interrupt.nr,
6761 (unsigned long *)sregs->interrupt_bitmap);
6762
6763 return 0;
6764 }
6765
6766 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6767 struct kvm_mp_state *mp_state)
6768 {
6769 kvm_apic_accept_events(vcpu);
6770 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6771 vcpu->arch.pv.pv_unhalted)
6772 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6773 else
6774 mp_state->mp_state = vcpu->arch.mp_state;
6775
6776 return 0;
6777 }
6778
6779 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6780 struct kvm_mp_state *mp_state)
6781 {
6782 if (!kvm_vcpu_has_lapic(vcpu) &&
6783 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6784 return -EINVAL;
6785
6786 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6787 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6788 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6789 } else
6790 vcpu->arch.mp_state = mp_state->mp_state;
6791 kvm_make_request(KVM_REQ_EVENT, vcpu);
6792 return 0;
6793 }
6794
6795 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6796 int reason, bool has_error_code, u32 error_code)
6797 {
6798 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6799 int ret;
6800
6801 init_emulate_ctxt(vcpu);
6802
6803 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6804 has_error_code, error_code);
6805
6806 if (ret)
6807 return EMULATE_FAIL;
6808
6809 kvm_rip_write(vcpu, ctxt->eip);
6810 kvm_set_rflags(vcpu, ctxt->eflags);
6811 kvm_make_request(KVM_REQ_EVENT, vcpu);
6812 return EMULATE_DONE;
6813 }
6814 EXPORT_SYMBOL_GPL(kvm_task_switch);
6815
6816 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6817 struct kvm_sregs *sregs)
6818 {
6819 struct msr_data apic_base_msr;
6820 int mmu_reset_needed = 0;
6821 int pending_vec, max_bits, idx;
6822 struct desc_ptr dt;
6823
6824 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6825 return -EINVAL;
6826
6827 dt.size = sregs->idt.limit;
6828 dt.address = sregs->idt.base;
6829 kvm_x86_ops->set_idt(vcpu, &dt);
6830 dt.size = sregs->gdt.limit;
6831 dt.address = sregs->gdt.base;
6832 kvm_x86_ops->set_gdt(vcpu, &dt);
6833
6834 vcpu->arch.cr2 = sregs->cr2;
6835 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6836 vcpu->arch.cr3 = sregs->cr3;
6837 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6838
6839 kvm_set_cr8(vcpu, sregs->cr8);
6840
6841 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6842 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6843 apic_base_msr.data = sregs->apic_base;
6844 apic_base_msr.host_initiated = true;
6845 kvm_set_apic_base(vcpu, &apic_base_msr);
6846
6847 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6848 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6849 vcpu->arch.cr0 = sregs->cr0;
6850
6851 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6852 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6853 if (sregs->cr4 & X86_CR4_OSXSAVE)
6854 kvm_update_cpuid(vcpu);
6855
6856 idx = srcu_read_lock(&vcpu->kvm->srcu);
6857 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6858 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6859 mmu_reset_needed = 1;
6860 }
6861 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6862
6863 if (mmu_reset_needed)
6864 kvm_mmu_reset_context(vcpu);
6865
6866 max_bits = KVM_NR_INTERRUPTS;
6867 pending_vec = find_first_bit(
6868 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6869 if (pending_vec < max_bits) {
6870 kvm_queue_interrupt(vcpu, pending_vec, false);
6871 pr_debug("Set back pending irq %d\n", pending_vec);
6872 }
6873
6874 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6875 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6876 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6877 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6878 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6879 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6880
6881 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6882 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6883
6884 update_cr8_intercept(vcpu);
6885
6886 /* Older userspace won't unhalt the vcpu on reset. */
6887 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6888 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6889 !is_protmode(vcpu))
6890 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6891
6892 kvm_make_request(KVM_REQ_EVENT, vcpu);
6893
6894 return 0;
6895 }
6896
6897 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6898 struct kvm_guest_debug *dbg)
6899 {
6900 unsigned long rflags;
6901 int i, r;
6902
6903 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6904 r = -EBUSY;
6905 if (vcpu->arch.exception.pending)
6906 goto out;
6907 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6908 kvm_queue_exception(vcpu, DB_VECTOR);
6909 else
6910 kvm_queue_exception(vcpu, BP_VECTOR);
6911 }
6912
6913 /*
6914 * Read rflags as long as potentially injected trace flags are still
6915 * filtered out.
6916 */
6917 rflags = kvm_get_rflags(vcpu);
6918
6919 vcpu->guest_debug = dbg->control;
6920 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6921 vcpu->guest_debug = 0;
6922
6923 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6924 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6925 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6926 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6927 } else {
6928 for (i = 0; i < KVM_NR_DB_REGS; i++)
6929 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6930 }
6931 kvm_update_dr7(vcpu);
6932
6933 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6934 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6935 get_segment_base(vcpu, VCPU_SREG_CS);
6936
6937 /*
6938 * Trigger an rflags update that will inject or remove the trace
6939 * flags.
6940 */
6941 kvm_set_rflags(vcpu, rflags);
6942
6943 kvm_x86_ops->update_db_bp_intercept(vcpu);
6944
6945 r = 0;
6946
6947 out:
6948
6949 return r;
6950 }
6951
6952 /*
6953 * Translate a guest virtual address to a guest physical address.
6954 */
6955 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6956 struct kvm_translation *tr)
6957 {
6958 unsigned long vaddr = tr->linear_address;
6959 gpa_t gpa;
6960 int idx;
6961
6962 idx = srcu_read_lock(&vcpu->kvm->srcu);
6963 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6964 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6965 tr->physical_address = gpa;
6966 tr->valid = gpa != UNMAPPED_GVA;
6967 tr->writeable = 1;
6968 tr->usermode = 0;
6969
6970 return 0;
6971 }
6972
6973 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6974 {
6975 struct i387_fxsave_struct *fxsave =
6976 &vcpu->arch.guest_fpu.state->fxsave;
6977
6978 memcpy(fpu->fpr, fxsave->st_space, 128);
6979 fpu->fcw = fxsave->cwd;
6980 fpu->fsw = fxsave->swd;
6981 fpu->ftwx = fxsave->twd;
6982 fpu->last_opcode = fxsave->fop;
6983 fpu->last_ip = fxsave->rip;
6984 fpu->last_dp = fxsave->rdp;
6985 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6986
6987 return 0;
6988 }
6989
6990 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6991 {
6992 struct i387_fxsave_struct *fxsave =
6993 &vcpu->arch.guest_fpu.state->fxsave;
6994
6995 memcpy(fxsave->st_space, fpu->fpr, 128);
6996 fxsave->cwd = fpu->fcw;
6997 fxsave->swd = fpu->fsw;
6998 fxsave->twd = fpu->ftwx;
6999 fxsave->fop = fpu->last_opcode;
7000 fxsave->rip = fpu->last_ip;
7001 fxsave->rdp = fpu->last_dp;
7002 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7003
7004 return 0;
7005 }
7006
7007 int fx_init(struct kvm_vcpu *vcpu)
7008 {
7009 int err;
7010
7011 err = fpstate_alloc(&vcpu->arch.guest_fpu);
7012 if (err)
7013 return err;
7014
7015 fpstate_init(&vcpu->arch.guest_fpu);
7016 if (cpu_has_xsaves)
7017 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7018 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7019
7020 /*
7021 * Ensure guest xcr0 is valid for loading
7022 */
7023 vcpu->arch.xcr0 = XSTATE_FP;
7024
7025 vcpu->arch.cr0 |= X86_CR0_ET;
7026
7027 return 0;
7028 }
7029 EXPORT_SYMBOL_GPL(fx_init);
7030
7031 static void fx_free(struct kvm_vcpu *vcpu)
7032 {
7033 fpstate_free(&vcpu->arch.guest_fpu);
7034 }
7035
7036 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7037 {
7038 if (vcpu->guest_fpu_loaded)
7039 return;
7040
7041 /*
7042 * Restore all possible states in the guest,
7043 * and assume host would use all available bits.
7044 * Guest xcr0 would be loaded later.
7045 */
7046 kvm_put_guest_xcr0(vcpu);
7047 vcpu->guest_fpu_loaded = 1;
7048 __kernel_fpu_begin();
7049 fpu_restore_checking(&vcpu->arch.guest_fpu);
7050 trace_kvm_fpu(1);
7051 }
7052
7053 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7054 {
7055 kvm_put_guest_xcr0(vcpu);
7056
7057 if (!vcpu->guest_fpu_loaded)
7058 return;
7059
7060 vcpu->guest_fpu_loaded = 0;
7061 fpu_save_init(&vcpu->arch.guest_fpu);
7062 __kernel_fpu_end();
7063 ++vcpu->stat.fpu_reload;
7064 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7065 trace_kvm_fpu(0);
7066 }
7067
7068 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7069 {
7070 kvmclock_reset(vcpu);
7071
7072 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7073 fx_free(vcpu);
7074 kvm_x86_ops->vcpu_free(vcpu);
7075 }
7076
7077 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7078 unsigned int id)
7079 {
7080 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7081 printk_once(KERN_WARNING
7082 "kvm: SMP vm created on host with unstable TSC; "
7083 "guest TSC will not be reliable\n");
7084 return kvm_x86_ops->vcpu_create(kvm, id);
7085 }
7086
7087 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7088 {
7089 int r;
7090
7091 vcpu->arch.mtrr_state.have_fixed = 1;
7092 r = vcpu_load(vcpu);
7093 if (r)
7094 return r;
7095 kvm_vcpu_reset(vcpu);
7096 kvm_mmu_setup(vcpu);
7097 vcpu_put(vcpu);
7098
7099 return r;
7100 }
7101
7102 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7103 {
7104 struct msr_data msr;
7105 struct kvm *kvm = vcpu->kvm;
7106
7107 if (vcpu_load(vcpu))
7108 return;
7109 msr.data = 0x0;
7110 msr.index = MSR_IA32_TSC;
7111 msr.host_initiated = true;
7112 kvm_write_tsc(vcpu, &msr);
7113 vcpu_put(vcpu);
7114
7115 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7116 KVMCLOCK_SYNC_PERIOD);
7117 }
7118
7119 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7120 {
7121 int r;
7122 vcpu->arch.apf.msr_val = 0;
7123
7124 r = vcpu_load(vcpu);
7125 BUG_ON(r);
7126 kvm_mmu_unload(vcpu);
7127 vcpu_put(vcpu);
7128
7129 fx_free(vcpu);
7130 kvm_x86_ops->vcpu_free(vcpu);
7131 }
7132
7133 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7134 {
7135 atomic_set(&vcpu->arch.nmi_queued, 0);
7136 vcpu->arch.nmi_pending = 0;
7137 vcpu->arch.nmi_injected = false;
7138 kvm_clear_interrupt_queue(vcpu);
7139 kvm_clear_exception_queue(vcpu);
7140
7141 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7142 kvm_update_dr0123(vcpu);
7143 vcpu->arch.dr6 = DR6_INIT;
7144 kvm_update_dr6(vcpu);
7145 vcpu->arch.dr7 = DR7_FIXED_1;
7146 kvm_update_dr7(vcpu);
7147
7148 vcpu->arch.cr2 = 0;
7149
7150 kvm_make_request(KVM_REQ_EVENT, vcpu);
7151 vcpu->arch.apf.msr_val = 0;
7152 vcpu->arch.st.msr_val = 0;
7153
7154 kvmclock_reset(vcpu);
7155
7156 kvm_clear_async_pf_completion_queue(vcpu);
7157 kvm_async_pf_hash_reset(vcpu);
7158 vcpu->arch.apf.halted = false;
7159
7160 kvm_pmu_reset(vcpu);
7161
7162 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7163 vcpu->arch.regs_avail = ~0;
7164 vcpu->arch.regs_dirty = ~0;
7165
7166 kvm_x86_ops->vcpu_reset(vcpu);
7167 }
7168
7169 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7170 {
7171 struct kvm_segment cs;
7172
7173 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7174 cs.selector = vector << 8;
7175 cs.base = vector << 12;
7176 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7177 kvm_rip_write(vcpu, 0);
7178 }
7179
7180 int kvm_arch_hardware_enable(void)
7181 {
7182 struct kvm *kvm;
7183 struct kvm_vcpu *vcpu;
7184 int i;
7185 int ret;
7186 u64 local_tsc;
7187 u64 max_tsc = 0;
7188 bool stable, backwards_tsc = false;
7189
7190 kvm_shared_msr_cpu_online();
7191 ret = kvm_x86_ops->hardware_enable();
7192 if (ret != 0)
7193 return ret;
7194
7195 local_tsc = native_read_tsc();
7196 stable = !check_tsc_unstable();
7197 list_for_each_entry(kvm, &vm_list, vm_list) {
7198 kvm_for_each_vcpu(i, vcpu, kvm) {
7199 if (!stable && vcpu->cpu == smp_processor_id())
7200 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7201 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7202 backwards_tsc = true;
7203 if (vcpu->arch.last_host_tsc > max_tsc)
7204 max_tsc = vcpu->arch.last_host_tsc;
7205 }
7206 }
7207 }
7208
7209 /*
7210 * Sometimes, even reliable TSCs go backwards. This happens on
7211 * platforms that reset TSC during suspend or hibernate actions, but
7212 * maintain synchronization. We must compensate. Fortunately, we can
7213 * detect that condition here, which happens early in CPU bringup,
7214 * before any KVM threads can be running. Unfortunately, we can't
7215 * bring the TSCs fully up to date with real time, as we aren't yet far
7216 * enough into CPU bringup that we know how much real time has actually
7217 * elapsed; our helper function, get_kernel_ns() will be using boot
7218 * variables that haven't been updated yet.
7219 *
7220 * So we simply find the maximum observed TSC above, then record the
7221 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7222 * the adjustment will be applied. Note that we accumulate
7223 * adjustments, in case multiple suspend cycles happen before some VCPU
7224 * gets a chance to run again. In the event that no KVM threads get a
7225 * chance to run, we will miss the entire elapsed period, as we'll have
7226 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7227 * loose cycle time. This isn't too big a deal, since the loss will be
7228 * uniform across all VCPUs (not to mention the scenario is extremely
7229 * unlikely). It is possible that a second hibernate recovery happens
7230 * much faster than a first, causing the observed TSC here to be
7231 * smaller; this would require additional padding adjustment, which is
7232 * why we set last_host_tsc to the local tsc observed here.
7233 *
7234 * N.B. - this code below runs only on platforms with reliable TSC,
7235 * as that is the only way backwards_tsc is set above. Also note
7236 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7237 * have the same delta_cyc adjustment applied if backwards_tsc
7238 * is detected. Note further, this adjustment is only done once,
7239 * as we reset last_host_tsc on all VCPUs to stop this from being
7240 * called multiple times (one for each physical CPU bringup).
7241 *
7242 * Platforms with unreliable TSCs don't have to deal with this, they
7243 * will be compensated by the logic in vcpu_load, which sets the TSC to
7244 * catchup mode. This will catchup all VCPUs to real time, but cannot
7245 * guarantee that they stay in perfect synchronization.
7246 */
7247 if (backwards_tsc) {
7248 u64 delta_cyc = max_tsc - local_tsc;
7249 backwards_tsc_observed = true;
7250 list_for_each_entry(kvm, &vm_list, vm_list) {
7251 kvm_for_each_vcpu(i, vcpu, kvm) {
7252 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7253 vcpu->arch.last_host_tsc = local_tsc;
7254 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7255 }
7256
7257 /*
7258 * We have to disable TSC offset matching.. if you were
7259 * booting a VM while issuing an S4 host suspend....
7260 * you may have some problem. Solving this issue is
7261 * left as an exercise to the reader.
7262 */
7263 kvm->arch.last_tsc_nsec = 0;
7264 kvm->arch.last_tsc_write = 0;
7265 }
7266
7267 }
7268 return 0;
7269 }
7270
7271 void kvm_arch_hardware_disable(void)
7272 {
7273 kvm_x86_ops->hardware_disable();
7274 drop_user_return_notifiers();
7275 }
7276
7277 int kvm_arch_hardware_setup(void)
7278 {
7279 int r;
7280
7281 r = kvm_x86_ops->hardware_setup();
7282 if (r != 0)
7283 return r;
7284
7285 kvm_init_msr_list();
7286 return 0;
7287 }
7288
7289 void kvm_arch_hardware_unsetup(void)
7290 {
7291 kvm_x86_ops->hardware_unsetup();
7292 }
7293
7294 void kvm_arch_check_processor_compat(void *rtn)
7295 {
7296 kvm_x86_ops->check_processor_compatibility(rtn);
7297 }
7298
7299 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7300 {
7301 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7302 }
7303
7304 struct static_key kvm_no_apic_vcpu __read_mostly;
7305
7306 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7307 {
7308 struct page *page;
7309 struct kvm *kvm;
7310 int r;
7311
7312 BUG_ON(vcpu->kvm == NULL);
7313 kvm = vcpu->kvm;
7314
7315 vcpu->arch.pv.pv_unhalted = false;
7316 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7317 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7318 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7319 else
7320 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7321
7322 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7323 if (!page) {
7324 r = -ENOMEM;
7325 goto fail;
7326 }
7327 vcpu->arch.pio_data = page_address(page);
7328
7329 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7330
7331 r = kvm_mmu_create(vcpu);
7332 if (r < 0)
7333 goto fail_free_pio_data;
7334
7335 if (irqchip_in_kernel(kvm)) {
7336 r = kvm_create_lapic(vcpu);
7337 if (r < 0)
7338 goto fail_mmu_destroy;
7339 } else
7340 static_key_slow_inc(&kvm_no_apic_vcpu);
7341
7342 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7343 GFP_KERNEL);
7344 if (!vcpu->arch.mce_banks) {
7345 r = -ENOMEM;
7346 goto fail_free_lapic;
7347 }
7348 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7349
7350 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7351 r = -ENOMEM;
7352 goto fail_free_mce_banks;
7353 }
7354
7355 r = fx_init(vcpu);
7356 if (r)
7357 goto fail_free_wbinvd_dirty_mask;
7358
7359 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7360 vcpu->arch.pv_time_enabled = false;
7361
7362 vcpu->arch.guest_supported_xcr0 = 0;
7363 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7364
7365 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7366
7367 kvm_async_pf_hash_reset(vcpu);
7368 kvm_pmu_init(vcpu);
7369
7370 return 0;
7371 fail_free_wbinvd_dirty_mask:
7372 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7373 fail_free_mce_banks:
7374 kfree(vcpu->arch.mce_banks);
7375 fail_free_lapic:
7376 kvm_free_lapic(vcpu);
7377 fail_mmu_destroy:
7378 kvm_mmu_destroy(vcpu);
7379 fail_free_pio_data:
7380 free_page((unsigned long)vcpu->arch.pio_data);
7381 fail:
7382 return r;
7383 }
7384
7385 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7386 {
7387 int idx;
7388
7389 kvm_pmu_destroy(vcpu);
7390 kfree(vcpu->arch.mce_banks);
7391 kvm_free_lapic(vcpu);
7392 idx = srcu_read_lock(&vcpu->kvm->srcu);
7393 kvm_mmu_destroy(vcpu);
7394 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7395 free_page((unsigned long)vcpu->arch.pio_data);
7396 if (!irqchip_in_kernel(vcpu->kvm))
7397 static_key_slow_dec(&kvm_no_apic_vcpu);
7398 }
7399
7400 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7401 {
7402 kvm_x86_ops->sched_in(vcpu, cpu);
7403 }
7404
7405 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7406 {
7407 if (type)
7408 return -EINVAL;
7409
7410 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7411 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7412 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7413 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7414 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7415
7416 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7417 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7418 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7419 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7420 &kvm->arch.irq_sources_bitmap);
7421
7422 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7423 mutex_init(&kvm->arch.apic_map_lock);
7424 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7425
7426 pvclock_update_vm_gtod_copy(kvm);
7427
7428 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7429 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7430
7431 return 0;
7432 }
7433
7434 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7435 {
7436 int r;
7437 r = vcpu_load(vcpu);
7438 BUG_ON(r);
7439 kvm_mmu_unload(vcpu);
7440 vcpu_put(vcpu);
7441 }
7442
7443 static void kvm_free_vcpus(struct kvm *kvm)
7444 {
7445 unsigned int i;
7446 struct kvm_vcpu *vcpu;
7447
7448 /*
7449 * Unpin any mmu pages first.
7450 */
7451 kvm_for_each_vcpu(i, vcpu, kvm) {
7452 kvm_clear_async_pf_completion_queue(vcpu);
7453 kvm_unload_vcpu_mmu(vcpu);
7454 }
7455 kvm_for_each_vcpu(i, vcpu, kvm)
7456 kvm_arch_vcpu_free(vcpu);
7457
7458 mutex_lock(&kvm->lock);
7459 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7460 kvm->vcpus[i] = NULL;
7461
7462 atomic_set(&kvm->online_vcpus, 0);
7463 mutex_unlock(&kvm->lock);
7464 }
7465
7466 void kvm_arch_sync_events(struct kvm *kvm)
7467 {
7468 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7469 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7470 kvm_free_all_assigned_devices(kvm);
7471 kvm_free_pit(kvm);
7472 }
7473
7474 void kvm_arch_destroy_vm(struct kvm *kvm)
7475 {
7476 if (current->mm == kvm->mm) {
7477 /*
7478 * Free memory regions allocated on behalf of userspace,
7479 * unless the the memory map has changed due to process exit
7480 * or fd copying.
7481 */
7482 struct kvm_userspace_memory_region mem;
7483 memset(&mem, 0, sizeof(mem));
7484 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7485 kvm_set_memory_region(kvm, &mem);
7486
7487 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7488 kvm_set_memory_region(kvm, &mem);
7489
7490 mem.slot = TSS_PRIVATE_MEMSLOT;
7491 kvm_set_memory_region(kvm, &mem);
7492 }
7493 kvm_iommu_unmap_guest(kvm);
7494 kfree(kvm->arch.vpic);
7495 kfree(kvm->arch.vioapic);
7496 kvm_free_vcpus(kvm);
7497 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7498 }
7499
7500 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7501 struct kvm_memory_slot *dont)
7502 {
7503 int i;
7504
7505 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7506 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7507 kvfree(free->arch.rmap[i]);
7508 free->arch.rmap[i] = NULL;
7509 }
7510 if (i == 0)
7511 continue;
7512
7513 if (!dont || free->arch.lpage_info[i - 1] !=
7514 dont->arch.lpage_info[i - 1]) {
7515 kvfree(free->arch.lpage_info[i - 1]);
7516 free->arch.lpage_info[i - 1] = NULL;
7517 }
7518 }
7519 }
7520
7521 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7522 unsigned long npages)
7523 {
7524 int i;
7525
7526 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7527 unsigned long ugfn;
7528 int lpages;
7529 int level = i + 1;
7530
7531 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7532 slot->base_gfn, level) + 1;
7533
7534 slot->arch.rmap[i] =
7535 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7536 if (!slot->arch.rmap[i])
7537 goto out_free;
7538 if (i == 0)
7539 continue;
7540
7541 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7542 sizeof(*slot->arch.lpage_info[i - 1]));
7543 if (!slot->arch.lpage_info[i - 1])
7544 goto out_free;
7545
7546 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7547 slot->arch.lpage_info[i - 1][0].write_count = 1;
7548 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7549 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7550 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7551 /*
7552 * If the gfn and userspace address are not aligned wrt each
7553 * other, or if explicitly asked to, disable large page
7554 * support for this slot
7555 */
7556 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7557 !kvm_largepages_enabled()) {
7558 unsigned long j;
7559
7560 for (j = 0; j < lpages; ++j)
7561 slot->arch.lpage_info[i - 1][j].write_count = 1;
7562 }
7563 }
7564
7565 return 0;
7566
7567 out_free:
7568 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7569 kvfree(slot->arch.rmap[i]);
7570 slot->arch.rmap[i] = NULL;
7571 if (i == 0)
7572 continue;
7573
7574 kvfree(slot->arch.lpage_info[i - 1]);
7575 slot->arch.lpage_info[i - 1] = NULL;
7576 }
7577 return -ENOMEM;
7578 }
7579
7580 void kvm_arch_memslots_updated(struct kvm *kvm)
7581 {
7582 /*
7583 * memslots->generation has been incremented.
7584 * mmio generation may have reached its maximum value.
7585 */
7586 kvm_mmu_invalidate_mmio_sptes(kvm);
7587 }
7588
7589 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7590 struct kvm_memory_slot *memslot,
7591 struct kvm_userspace_memory_region *mem,
7592 enum kvm_mr_change change)
7593 {
7594 /*
7595 * Only private memory slots need to be mapped here since
7596 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7597 */
7598 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7599 unsigned long userspace_addr;
7600
7601 /*
7602 * MAP_SHARED to prevent internal slot pages from being moved
7603 * by fork()/COW.
7604 */
7605 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7606 PROT_READ | PROT_WRITE,
7607 MAP_SHARED | MAP_ANONYMOUS, 0);
7608
7609 if (IS_ERR((void *)userspace_addr))
7610 return PTR_ERR((void *)userspace_addr);
7611
7612 memslot->userspace_addr = userspace_addr;
7613 }
7614
7615 return 0;
7616 }
7617
7618 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7619 struct kvm_memory_slot *new)
7620 {
7621 /* Still write protect RO slot */
7622 if (new->flags & KVM_MEM_READONLY) {
7623 kvm_mmu_slot_remove_write_access(kvm, new);
7624 return;
7625 }
7626
7627 /*
7628 * Call kvm_x86_ops dirty logging hooks when they are valid.
7629 *
7630 * kvm_x86_ops->slot_disable_log_dirty is called when:
7631 *
7632 * - KVM_MR_CREATE with dirty logging is disabled
7633 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7634 *
7635 * The reason is, in case of PML, we need to set D-bit for any slots
7636 * with dirty logging disabled in order to eliminate unnecessary GPA
7637 * logging in PML buffer (and potential PML buffer full VMEXT). This
7638 * guarantees leaving PML enabled during guest's lifetime won't have
7639 * any additonal overhead from PML when guest is running with dirty
7640 * logging disabled for memory slots.
7641 *
7642 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7643 * to dirty logging mode.
7644 *
7645 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7646 *
7647 * In case of write protect:
7648 *
7649 * Write protect all pages for dirty logging.
7650 *
7651 * All the sptes including the large sptes which point to this
7652 * slot are set to readonly. We can not create any new large
7653 * spte on this slot until the end of the logging.
7654 *
7655 * See the comments in fast_page_fault().
7656 */
7657 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7658 if (kvm_x86_ops->slot_enable_log_dirty)
7659 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7660 else
7661 kvm_mmu_slot_remove_write_access(kvm, new);
7662 } else {
7663 if (kvm_x86_ops->slot_disable_log_dirty)
7664 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7665 }
7666 }
7667
7668 void kvm_arch_commit_memory_region(struct kvm *kvm,
7669 struct kvm_userspace_memory_region *mem,
7670 const struct kvm_memory_slot *old,
7671 enum kvm_mr_change change)
7672 {
7673 struct kvm_memory_slot *new;
7674 int nr_mmu_pages = 0;
7675
7676 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7677 int ret;
7678
7679 ret = vm_munmap(old->userspace_addr,
7680 old->npages * PAGE_SIZE);
7681 if (ret < 0)
7682 printk(KERN_WARNING
7683 "kvm_vm_ioctl_set_memory_region: "
7684 "failed to munmap memory\n");
7685 }
7686
7687 if (!kvm->arch.n_requested_mmu_pages)
7688 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7689
7690 if (nr_mmu_pages)
7691 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7692
7693 /* It's OK to get 'new' slot here as it has already been installed */
7694 new = id_to_memslot(kvm->memslots, mem->slot);
7695
7696 /*
7697 * Dirty logging tracks sptes in 4k granularity, meaning that large
7698 * sptes have to be split. If live migration is successful, the guest
7699 * in the source machine will be destroyed and large sptes will be
7700 * created in the destination. However, if the guest continues to run
7701 * in the source machine (for example if live migration fails), small
7702 * sptes will remain around and cause bad performance.
7703 *
7704 * Scan sptes if dirty logging has been stopped, dropping those
7705 * which can be collapsed into a single large-page spte. Later
7706 * page faults will create the large-page sptes.
7707 */
7708 if ((change != KVM_MR_DELETE) &&
7709 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7710 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7711 kvm_mmu_zap_collapsible_sptes(kvm, new);
7712
7713 /*
7714 * Set up write protection and/or dirty logging for the new slot.
7715 *
7716 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7717 * been zapped so no dirty logging staff is needed for old slot. For
7718 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7719 * new and it's also covered when dealing with the new slot.
7720 */
7721 if (change != KVM_MR_DELETE)
7722 kvm_mmu_slot_apply_flags(kvm, new);
7723 }
7724
7725 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7726 {
7727 kvm_mmu_invalidate_zap_all_pages(kvm);
7728 }
7729
7730 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7731 struct kvm_memory_slot *slot)
7732 {
7733 kvm_mmu_invalidate_zap_all_pages(kvm);
7734 }
7735
7736 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7737 {
7738 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7739 kvm_x86_ops->check_nested_events(vcpu, false);
7740
7741 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7742 !vcpu->arch.apf.halted)
7743 || !list_empty_careful(&vcpu->async_pf.done)
7744 || kvm_apic_has_events(vcpu)
7745 || vcpu->arch.pv.pv_unhalted
7746 || atomic_read(&vcpu->arch.nmi_queued) ||
7747 (kvm_arch_interrupt_allowed(vcpu) &&
7748 kvm_cpu_has_interrupt(vcpu));
7749 }
7750
7751 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7752 {
7753 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7754 }
7755
7756 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7757 {
7758 return kvm_x86_ops->interrupt_allowed(vcpu);
7759 }
7760
7761 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7762 {
7763 if (is_64_bit_mode(vcpu))
7764 return kvm_rip_read(vcpu);
7765 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7766 kvm_rip_read(vcpu));
7767 }
7768 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7769
7770 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7771 {
7772 return kvm_get_linear_rip(vcpu) == linear_rip;
7773 }
7774 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7775
7776 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7777 {
7778 unsigned long rflags;
7779
7780 rflags = kvm_x86_ops->get_rflags(vcpu);
7781 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7782 rflags &= ~X86_EFLAGS_TF;
7783 return rflags;
7784 }
7785 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7786
7787 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7788 {
7789 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7790 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7791 rflags |= X86_EFLAGS_TF;
7792 kvm_x86_ops->set_rflags(vcpu, rflags);
7793 }
7794
7795 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7796 {
7797 __kvm_set_rflags(vcpu, rflags);
7798 kvm_make_request(KVM_REQ_EVENT, vcpu);
7799 }
7800 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7801
7802 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7803 {
7804 int r;
7805
7806 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7807 work->wakeup_all)
7808 return;
7809
7810 r = kvm_mmu_reload(vcpu);
7811 if (unlikely(r))
7812 return;
7813
7814 if (!vcpu->arch.mmu.direct_map &&
7815 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7816 return;
7817
7818 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7819 }
7820
7821 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7822 {
7823 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7824 }
7825
7826 static inline u32 kvm_async_pf_next_probe(u32 key)
7827 {
7828 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7829 }
7830
7831 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7832 {
7833 u32 key = kvm_async_pf_hash_fn(gfn);
7834
7835 while (vcpu->arch.apf.gfns[key] != ~0)
7836 key = kvm_async_pf_next_probe(key);
7837
7838 vcpu->arch.apf.gfns[key] = gfn;
7839 }
7840
7841 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7842 {
7843 int i;
7844 u32 key = kvm_async_pf_hash_fn(gfn);
7845
7846 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7847 (vcpu->arch.apf.gfns[key] != gfn &&
7848 vcpu->arch.apf.gfns[key] != ~0); i++)
7849 key = kvm_async_pf_next_probe(key);
7850
7851 return key;
7852 }
7853
7854 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7855 {
7856 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7857 }
7858
7859 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7860 {
7861 u32 i, j, k;
7862
7863 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7864 while (true) {
7865 vcpu->arch.apf.gfns[i] = ~0;
7866 do {
7867 j = kvm_async_pf_next_probe(j);
7868 if (vcpu->arch.apf.gfns[j] == ~0)
7869 return;
7870 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7871 /*
7872 * k lies cyclically in ]i,j]
7873 * | i.k.j |
7874 * |....j i.k.| or |.k..j i...|
7875 */
7876 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7877 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7878 i = j;
7879 }
7880 }
7881
7882 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7883 {
7884
7885 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7886 sizeof(val));
7887 }
7888
7889 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7890 struct kvm_async_pf *work)
7891 {
7892 struct x86_exception fault;
7893
7894 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7895 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7896
7897 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7898 (vcpu->arch.apf.send_user_only &&
7899 kvm_x86_ops->get_cpl(vcpu) == 0))
7900 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7901 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7902 fault.vector = PF_VECTOR;
7903 fault.error_code_valid = true;
7904 fault.error_code = 0;
7905 fault.nested_page_fault = false;
7906 fault.address = work->arch.token;
7907 kvm_inject_page_fault(vcpu, &fault);
7908 }
7909 }
7910
7911 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7912 struct kvm_async_pf *work)
7913 {
7914 struct x86_exception fault;
7915
7916 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7917 if (work->wakeup_all)
7918 work->arch.token = ~0; /* broadcast wakeup */
7919 else
7920 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7921
7922 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7923 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7924 fault.vector = PF_VECTOR;
7925 fault.error_code_valid = true;
7926 fault.error_code = 0;
7927 fault.nested_page_fault = false;
7928 fault.address = work->arch.token;
7929 kvm_inject_page_fault(vcpu, &fault);
7930 }
7931 vcpu->arch.apf.halted = false;
7932 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7933 }
7934
7935 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7936 {
7937 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7938 return true;
7939 else
7940 return !kvm_event_needs_reinjection(vcpu) &&
7941 kvm_x86_ops->interrupt_allowed(vcpu);
7942 }
7943
7944 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7945 {
7946 atomic_inc(&kvm->arch.noncoherent_dma_count);
7947 }
7948 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7949
7950 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7951 {
7952 atomic_dec(&kvm->arch.noncoherent_dma_count);
7953 }
7954 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7955
7956 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7957 {
7958 return atomic_read(&kvm->arch.noncoherent_dma_count);
7959 }
7960 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7961
7962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);