]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86/vPMU: rename a few PMU functions
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32 kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116
117 static bool backwards_tsc_observed = false;
118
119 #define KVM_NR_SHARED_MSRS 16
120
121 struct kvm_shared_msrs_global {
122 int nr;
123 u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125
126 struct kvm_shared_msrs {
127 struct user_return_notifier urn;
128 bool registered;
129 struct kvm_shared_msr_values {
130 u64 host;
131 u64 curr;
132 } values[KVM_NR_SHARED_MSRS];
133 };
134
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139 { "pf_fixed", VCPU_STAT(pf_fixed) },
140 { "pf_guest", VCPU_STAT(pf_guest) },
141 { "tlb_flush", VCPU_STAT(tlb_flush) },
142 { "invlpg", VCPU_STAT(invlpg) },
143 { "exits", VCPU_STAT(exits) },
144 { "io_exits", VCPU_STAT(io_exits) },
145 { "mmio_exits", VCPU_STAT(mmio_exits) },
146 { "signal_exits", VCPU_STAT(signal_exits) },
147 { "irq_window", VCPU_STAT(irq_window_exits) },
148 { "nmi_window", VCPU_STAT(nmi_window_exits) },
149 { "halt_exits", VCPU_STAT(halt_exits) },
150 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
152 { "hypercalls", VCPU_STAT(hypercalls) },
153 { "request_irq", VCPU_STAT(request_irq_exits) },
154 { "irq_exits", VCPU_STAT(irq_exits) },
155 { "host_state_reload", VCPU_STAT(host_state_reload) },
156 { "efer_reload", VCPU_STAT(efer_reload) },
157 { "fpu_reload", VCPU_STAT(fpu_reload) },
158 { "insn_emulation", VCPU_STAT(insn_emulation) },
159 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160 { "irq_injections", VCPU_STAT(irq_injections) },
161 { "nmi_injections", VCPU_STAT(nmi_injections) },
162 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
164 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166 { "mmu_flooded", VM_STAT(mmu_flooded) },
167 { "mmu_recycled", VM_STAT(mmu_recycled) },
168 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169 { "mmu_unsync", VM_STAT(mmu_unsync) },
170 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171 { "largepages", VM_STAT(lpages) },
172 { NULL }
173 };
174
175 u64 __read_mostly host_xcr0;
176
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181 int i;
182 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183 vcpu->arch.apf.gfns[i] = ~0;
184 }
185
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188 unsigned slot;
189 struct kvm_shared_msrs *locals
190 = container_of(urn, struct kvm_shared_msrs, urn);
191 struct kvm_shared_msr_values *values;
192
193 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194 values = &locals->values[slot];
195 if (values->host != values->curr) {
196 wrmsrl(shared_msrs_global.msrs[slot], values->host);
197 values->curr = values->host;
198 }
199 }
200 locals->registered = false;
201 user_return_notifier_unregister(urn);
202 }
203
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206 u64 value;
207 unsigned int cpu = smp_processor_id();
208 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209
210 /* only read, and nobody should modify it at this time,
211 * so don't need lock */
212 if (slot >= shared_msrs_global.nr) {
213 printk(KERN_ERR "kvm: invalid MSR slot!");
214 return;
215 }
216 rdmsrl_safe(msr, &value);
217 smsr->values[slot].host = value;
218 smsr->values[slot].curr = value;
219 }
220
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224 if (slot >= shared_msrs_global.nr)
225 shared_msrs_global.nr = slot + 1;
226 shared_msrs_global.msrs[slot] = msr;
227 /* we need ensured the shared_msr_global have been updated */
228 smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234 unsigned i;
235
236 for (i = 0; i < shared_msrs_global.nr; ++i)
237 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 int err;
245
246 if (((value ^ smsr->values[slot].curr) & mask) == 0)
247 return 0;
248 smsr->values[slot].curr = value;
249 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250 if (err)
251 return 1;
252
253 if (!smsr->registered) {
254 smsr->urn.on_user_return = kvm_on_user_return;
255 user_return_notifier_register(&smsr->urn);
256 smsr->registered = true;
257 }
258 return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264 unsigned int cpu = smp_processor_id();
265 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267 if (smsr->registered)
268 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273 return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279 u64 old_state = vcpu->arch.apic_base &
280 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 u64 new_state = msr_info->data &
282 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286 if (!msr_info->host_initiated &&
287 ((msr_info->data & reserved_bits) != 0 ||
288 new_state == X2APIC_ENABLE ||
289 (new_state == MSR_IA32_APICBASE_ENABLE &&
290 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292 old_state == 0)))
293 return 1;
294
295 kvm_lapic_set_base(vcpu, msr_info->data);
296 return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302 /* Fault while not rebooting. We want the trace. */
303 BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN 0
308 #define EXCPT_CONTRIBUTORY 1
309 #define EXCPT_PF 2
310
311 static int exception_class(int vector)
312 {
313 switch (vector) {
314 case PF_VECTOR:
315 return EXCPT_PF;
316 case DE_VECTOR:
317 case TS_VECTOR:
318 case NP_VECTOR:
319 case SS_VECTOR:
320 case GP_VECTOR:
321 return EXCPT_CONTRIBUTORY;
322 default:
323 break;
324 }
325 return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT 0
329 #define EXCPT_TRAP 1
330 #define EXCPT_ABORT 2
331 #define EXCPT_INTERRUPT 3
332
333 static int exception_type(int vector)
334 {
335 unsigned int mask;
336
337 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338 return EXCPT_INTERRUPT;
339
340 mask = 1 << vector;
341
342 /* #DB is trap, as instruction watchpoints are handled elsewhere */
343 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344 return EXCPT_TRAP;
345
346 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347 return EXCPT_ABORT;
348
349 /* Reserved exceptions will result in fault */
350 return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354 unsigned nr, bool has_error, u32 error_code,
355 bool reinject)
356 {
357 u32 prev_nr;
358 int class1, class2;
359
360 kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362 if (!vcpu->arch.exception.pending) {
363 queue:
364 if (has_error && !is_protmode(vcpu))
365 has_error = false;
366 vcpu->arch.exception.pending = true;
367 vcpu->arch.exception.has_error_code = has_error;
368 vcpu->arch.exception.nr = nr;
369 vcpu->arch.exception.error_code = error_code;
370 vcpu->arch.exception.reinject = reinject;
371 return;
372 }
373
374 /* to check exception */
375 prev_nr = vcpu->arch.exception.nr;
376 if (prev_nr == DF_VECTOR) {
377 /* triple fault -> shutdown */
378 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379 return;
380 }
381 class1 = exception_class(prev_nr);
382 class2 = exception_class(nr);
383 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385 /* generate double fault per SDM Table 5-5 */
386 vcpu->arch.exception.pending = true;
387 vcpu->arch.exception.has_error_code = true;
388 vcpu->arch.exception.nr = DF_VECTOR;
389 vcpu->arch.exception.error_code = 0;
390 } else
391 /* replace previous exception with a new one in a hope
392 that instruction re-execution will regenerate lost
393 exception */
394 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399 kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405 kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411 if (err)
412 kvm_inject_gp(vcpu, 0);
413 else
414 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420 ++vcpu->stat.pf_guest;
421 vcpu->arch.cr2 = fault->address;
422 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430 else
431 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433 return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438 atomic_inc(&vcpu->arch.nmi_queued);
439 kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445 kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451 kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
457 * a #GP and return false.
458 */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462 return true;
463 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464 return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471 return true;
472
473 kvm_queue_exception(vcpu, UD_VECTOR);
474 return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479 * This function will be used to read from the physical memory of the currently
480 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481 * can read from guest physical or from the guest's guest physical memory.
482 */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484 gfn_t ngfn, void *data, int offset, int len,
485 u32 access)
486 {
487 struct x86_exception exception;
488 gfn_t real_gfn;
489 gpa_t ngpa;
490
491 ngpa = gfn_to_gpa(ngfn);
492 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493 if (real_gfn == UNMAPPED_GVA)
494 return -EFAULT;
495
496 real_gfn = gpa_to_gfn(real_gfn);
497
498 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503 void *data, int offset, int len, u32 access)
504 {
505 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506 data, offset, len, access);
507 }
508
509 /*
510 * Load the pae pdptrs. Return true is they are all valid.
511 */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516 int i;
517 int ret;
518 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521 offset * sizeof(u64), sizeof(pdpte),
522 PFERR_USER_MASK|PFERR_WRITE_MASK);
523 if (ret < 0) {
524 ret = 0;
525 goto out;
526 }
527 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528 if (is_present_gpte(pdpte[i]) &&
529 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530 ret = 0;
531 goto out;
532 }
533 }
534 ret = 1;
535
536 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 __set_bit(VCPU_EXREG_PDPTR,
538 (unsigned long *)&vcpu->arch.regs_avail);
539 __set_bit(VCPU_EXREG_PDPTR,
540 (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543 return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 bool changed = true;
551 int offset;
552 gfn_t gfn;
553 int r;
554
555 if (is_long_mode(vcpu) || !is_pae(vcpu))
556 return false;
557
558 if (!test_bit(VCPU_EXREG_PDPTR,
559 (unsigned long *)&vcpu->arch.regs_avail))
560 return true;
561
562 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 PFERR_USER_MASK | PFERR_WRITE_MASK);
566 if (r < 0)
567 goto out;
568 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571 return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579 cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582 if (cr0 & 0xffffffff00000000UL)
583 return 1;
584 #endif
585
586 cr0 &= ~CR0_RESERVED_BITS;
587
588 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 return 1;
590
591 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 return 1;
593
594 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 if ((vcpu->arch.efer & EFER_LME)) {
597 int cs_db, cs_l;
598
599 if (!is_pae(vcpu))
600 return 1;
601 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 if (cs_l)
603 return 1;
604 } else
605 #endif
606 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609 }
610
611 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 return 1;
613
614 kvm_x86_ops->set_cr0(vcpu, cr0);
615
616 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 kvm_clear_async_pf_completion_queue(vcpu);
618 kvm_async_pf_hash_reset(vcpu);
619 }
620
621 if ((cr0 ^ old_cr0) & update_bits)
622 kvm_mmu_reset_context(vcpu);
623
624 if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 !vcpu->guest_xcr0_loaded) {
641 /* kvm_set_xcr() also depends on this */
642 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 vcpu->guest_xcr0_loaded = 1;
644 }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 if (vcpu->guest_xcr0_loaded) {
650 if (vcpu->arch.xcr0 != host_xcr0)
651 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 vcpu->guest_xcr0_loaded = 0;
653 }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 u64 xcr0 = xcr;
659 u64 old_xcr0 = vcpu->arch.xcr0;
660 u64 valid_bits;
661
662 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
663 if (index != XCR_XFEATURE_ENABLED_MASK)
664 return 1;
665 if (!(xcr0 & XSTATE_FP))
666 return 1;
667 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 return 1;
669
670 /*
671 * Do not allow the guest to set bits that we do not support
672 * saving. However, xcr0 bit 0 is always set, even if the
673 * emulated CPU does not support XSAVE (see fx_init).
674 */
675 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 if (xcr0 & ~valid_bits)
677 return 1;
678
679 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 return 1;
681
682 if (xcr0 & XSTATE_AVX512) {
683 if (!(xcr0 & XSTATE_YMM))
684 return 1;
685 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 return 1;
687 }
688 kvm_put_guest_xcr0(vcpu);
689 vcpu->arch.xcr0 = xcr0;
690
691 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 kvm_update_cpuid(vcpu);
693 return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 __kvm_set_xcr(vcpu, index, xcr)) {
700 kvm_inject_gp(vcpu, 0);
701 return 1;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 X86_CR4_SMEP | X86_CR4_SMAP;
712
713 if (cr4 & CR4_RESERVED_BITS)
714 return 1;
715
716 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 return 1;
718
719 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 return 1;
721
722 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 return 1;
724
725 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 return 1;
727
728 if (is_long_mode(vcpu)) {
729 if (!(cr4 & X86_CR4_PAE))
730 return 1;
731 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 && ((cr4 ^ old_cr4) & pdptr_bits)
733 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 kvm_read_cr3(vcpu)))
735 return 1;
736
737 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 if (!guest_cpuid_has_pcid(vcpu))
739 return 1;
740
741 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 return 1;
744 }
745
746 if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 return 1;
748
749 if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 kvm_mmu_reset_context(vcpu);
752
753 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 kvm_update_cpuid(vcpu);
755
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 kvm_mmu_sync_roots(vcpu);
768 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 return 0;
770 }
771
772 if (is_long_mode(vcpu)) {
773 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 return 1;
775 } else if (is_pae(vcpu) && is_paging(vcpu) &&
776 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 return 1;
778
779 vcpu->arch.cr3 = cr3;
780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 kvm_mmu_new_cr3(vcpu);
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 if (cr8 & CR8_RESERVED_BITS)
789 return 1;
790 if (irqchip_in_kernel(vcpu->kvm))
791 kvm_lapic_set_tpr(vcpu, cr8);
792 else
793 vcpu->arch.cr8 = cr8;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 if (irqchip_in_kernel(vcpu->kvm))
801 return kvm_lapic_get_cr8(vcpu);
802 else
803 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 int i;
810
811 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 for (i = 0; i < KVM_NR_DB_REGS; i++)
813 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 unsigned long dr7;
827
828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 dr7 = vcpu->arch.guest_debug_dr7;
830 else
831 dr7 = vcpu->arch.dr7;
832 kvm_x86_ops->set_dr7(vcpu, dr7);
833 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 if (dr7 & DR7_BP_EN_MASK)
835 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 u64 fixed = DR6_FIXED_1;
841
842 if (!guest_cpuid_has_rtm(vcpu))
843 fixed |= DR6_RTM;
844 return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 switch (dr) {
850 case 0 ... 3:
851 vcpu->arch.db[dr] = val;
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 vcpu->arch.eff_db[dr] = val;
854 break;
855 case 4:
856 /* fall through */
857 case 6:
858 if (val & 0xffffffff00000000ULL)
859 return -1; /* #GP */
860 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 kvm_update_dr6(vcpu);
862 break;
863 case 5:
864 /* fall through */
865 default: /* 7 */
866 if (val & 0xffffffff00000000ULL)
867 return -1; /* #GP */
868 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 kvm_update_dr7(vcpu);
870 break;
871 }
872
873 return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 if (__kvm_set_dr(vcpu, dr, val)) {
879 kvm_inject_gp(vcpu, 0);
880 return 1;
881 }
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 switch (dr) {
889 case 0 ... 3:
890 *val = vcpu->arch.db[dr];
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 *val = vcpu->arch.dr6;
897 else
898 *val = kvm_x86_ops->get_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 *val = vcpu->arch.dr7;
904 break;
905 }
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 u64 data;
914 int err;
915
916 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 if (err)
918 return err;
919 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928 *
929 * This list is modified at module load time to reflect the
930 * capabilities of the host cpu. This capabilities test skips MSRs that are
931 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932 * may depend on host virtualization features rather than host cpu features.
933 */
934
935 static u32 msrs_to_save[] = {
936 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 MSR_STAR,
938 #ifdef CONFIG_X86_64
939 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953 MSR_KVM_PV_EOI_EN,
954
955 MSR_IA32_TSC_ADJUST,
956 MSR_IA32_TSCDEADLINE,
957 MSR_IA32_MISC_ENABLE,
958 MSR_IA32_MCG_STATUS,
959 MSR_IA32_MCG_CTL,
960 MSR_IA32_SMBASE,
961 };
962
963 static unsigned num_emulated_msrs;
964
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967 if (efer & efer_reserved_bits)
968 return false;
969
970 if (efer & EFER_FFXSR) {
971 struct kvm_cpuid_entry2 *feat;
972
973 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975 return false;
976 }
977
978 if (efer & EFER_SVME) {
979 struct kvm_cpuid_entry2 *feat;
980
981 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983 return false;
984 }
985
986 return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 u64 old_efer = vcpu->arch.efer;
993
994 if (!kvm_valid_efer(vcpu, efer))
995 return 1;
996
997 if (is_paging(vcpu)
998 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999 return 1;
1000
1001 efer &= ~EFER_LMA;
1002 efer |= vcpu->arch.efer & EFER_LMA;
1003
1004 kvm_x86_ops->set_efer(vcpu, efer);
1005
1006 /* Update reserved bits */
1007 if ((efer ^ old_efer) & EFER_NX)
1008 kvm_mmu_reset_context(vcpu);
1009
1010 return 0;
1011 }
1012
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015 efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018
1019 /*
1020 * Writes msr value into into the appropriate "register".
1021 * Returns 0 on success, non-0 otherwise.
1022 * Assumes vcpu_load() was already called.
1023 */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026 switch (msr->index) {
1027 case MSR_FS_BASE:
1028 case MSR_GS_BASE:
1029 case MSR_KERNEL_GS_BASE:
1030 case MSR_CSTAR:
1031 case MSR_LSTAR:
1032 if (is_noncanonical_address(msr->data))
1033 return 1;
1034 break;
1035 case MSR_IA32_SYSENTER_EIP:
1036 case MSR_IA32_SYSENTER_ESP:
1037 /*
1038 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039 * non-canonical address is written on Intel but not on
1040 * AMD (which ignores the top 32-bits, because it does
1041 * not implement 64-bit SYSENTER).
1042 *
1043 * 64-bit code should hence be able to write a non-canonical
1044 * value on AMD. Making the address canonical ensures that
1045 * vmentry does not fail on Intel after writing a non-canonical
1046 * value, and that something deterministic happens if the guest
1047 * invokes 64-bit SYSENTER.
1048 */
1049 msr->data = get_canonical(msr->data);
1050 }
1051 return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054
1055 /*
1056 * Adapt set_msr() to msr_io()'s calling convention
1057 */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060 struct msr_data msr;
1061 int r;
1062
1063 msr.index = index;
1064 msr.host_initiated = true;
1065 r = kvm_get_msr(vcpu, &msr);
1066 if (r)
1067 return r;
1068
1069 *data = msr.data;
1070 return 0;
1071 }
1072
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075 struct msr_data msr;
1076
1077 msr.data = *data;
1078 msr.index = index;
1079 msr.host_initiated = true;
1080 return kvm_set_msr(vcpu, &msr);
1081 }
1082
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085 seqcount_t seq;
1086
1087 struct { /* extract of a clocksource struct */
1088 int vclock_mode;
1089 cycle_t cycle_last;
1090 cycle_t mask;
1091 u32 mult;
1092 u32 shift;
1093 } clock;
1094
1095 u64 boot_ns;
1096 u64 nsec_base;
1097 };
1098
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104 u64 boot_ns;
1105
1106 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107
1108 write_seqcount_begin(&vdata->seq);
1109
1110 /* copy pvclock gtod data */
1111 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1112 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1113 vdata->clock.mask = tk->tkr_mono.mask;
1114 vdata->clock.mult = tk->tkr_mono.mult;
1115 vdata->clock.shift = tk->tkr_mono.shift;
1116
1117 vdata->boot_ns = boot_ns;
1118 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1119
1120 write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126 /*
1127 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128 * vcpu_enter_guest. This function is only called from
1129 * the physical CPU that is running vcpu.
1130 */
1131 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136 int version;
1137 int r;
1138 struct pvclock_wall_clock wc;
1139 struct timespec boot;
1140
1141 if (!wall_clock)
1142 return;
1143
1144 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145 if (r)
1146 return;
1147
1148 if (version & 1)
1149 ++version; /* first time write, random junk */
1150
1151 ++version;
1152
1153 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154
1155 /*
1156 * The guest calculates current wall clock time by adding
1157 * system time (updated by kvm_guest_time_update below) to the
1158 * wall clock specified here. guest system time equals host
1159 * system time for us, thus we must fill in host boot time here.
1160 */
1161 getboottime(&boot);
1162
1163 if (kvm->arch.kvmclock_offset) {
1164 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165 boot = timespec_sub(boot, ts);
1166 }
1167 wc.sec = boot.tv_sec;
1168 wc.nsec = boot.tv_nsec;
1169 wc.version = version;
1170
1171 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172
1173 version++;
1174 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179 uint32_t quotient, remainder;
1180
1181 /* Don't try to replace with do_div(), this one calculates
1182 * "(dividend << 32) / divisor" */
1183 __asm__ ( "divl %4"
1184 : "=a" (quotient), "=d" (remainder)
1185 : "0" (0), "1" (dividend), "r" (divisor) );
1186 return quotient;
1187 }
1188
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190 s8 *pshift, u32 *pmultiplier)
1191 {
1192 uint64_t scaled64;
1193 int32_t shift = 0;
1194 uint64_t tps64;
1195 uint32_t tps32;
1196
1197 tps64 = base_khz * 1000LL;
1198 scaled64 = scaled_khz * 1000LL;
1199 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200 tps64 >>= 1;
1201 shift--;
1202 }
1203
1204 tps32 = (uint32_t)tps64;
1205 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207 scaled64 >>= 1;
1208 else
1209 tps32 <<= 1;
1210 shift++;
1211 }
1212
1213 *pshift = shift;
1214 *pmultiplier = div_frac(scaled64, tps32);
1215
1216 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219
1220 static inline u64 get_kernel_ns(void)
1221 {
1222 return ktime_get_boot_ns();
1223 }
1224
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235 vcpu->arch.virtual_tsc_shift);
1236 }
1237
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240 u64 v = (u64)khz * (1000000 + ppm);
1241 do_div(v, 1000000);
1242 return v;
1243 }
1244
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247 u32 thresh_lo, thresh_hi;
1248 int use_scaling = 0;
1249
1250 /* tsc_khz can be zero if TSC calibration fails */
1251 if (this_tsc_khz == 0)
1252 return;
1253
1254 /* Compute a scale to convert nanoseconds in TSC cycles */
1255 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256 &vcpu->arch.virtual_tsc_shift,
1257 &vcpu->arch.virtual_tsc_mult);
1258 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259
1260 /*
1261 * Compute the variation in TSC rate which is acceptable
1262 * within the range of tolerance and decide if the
1263 * rate being applied is within that bounds of the hardware
1264 * rate. If so, no scaling or compensation need be done.
1265 */
1266 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270 use_scaling = 1;
1271 }
1272 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278 vcpu->arch.virtual_tsc_mult,
1279 vcpu->arch.virtual_tsc_shift);
1280 tsc += vcpu->arch.this_tsc_write;
1281 return tsc;
1282 }
1283
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287 bool vcpus_matched;
1288 struct kvm_arch *ka = &vcpu->kvm->arch;
1289 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290
1291 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292 atomic_read(&vcpu->kvm->online_vcpus));
1293
1294 /*
1295 * Once the masterclock is enabled, always perform request in
1296 * order to update it.
1297 *
1298 * In order to enable masterclock, the host clocksource must be TSC
1299 * and the vcpus need to have matched TSCs. When that happens,
1300 * perform request to enable masterclock.
1301 */
1302 if (ka->use_master_clock ||
1303 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305
1306 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307 atomic_read(&vcpu->kvm->online_vcpus),
1308 ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320 struct kvm *kvm = vcpu->kvm;
1321 u64 offset, ns, elapsed;
1322 unsigned long flags;
1323 s64 usdiff;
1324 bool matched;
1325 bool already_matched;
1326 u64 data = msr->data;
1327
1328 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330 ns = get_kernel_ns();
1331 elapsed = ns - kvm->arch.last_tsc_nsec;
1332
1333 if (vcpu->arch.virtual_tsc_khz) {
1334 int faulted = 0;
1335
1336 /* n.b - signed multiplication and division required */
1337 usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341 /* do_div() only does unsigned */
1342 asm("1: idivl %[divisor]\n"
1343 "2: xor %%edx, %%edx\n"
1344 " movl $0, %[faulted]\n"
1345 "3:\n"
1346 ".section .fixup,\"ax\"\n"
1347 "4: movl $1, %[faulted]\n"
1348 " jmp 3b\n"
1349 ".previous\n"
1350
1351 _ASM_EXTABLE(1b, 4b)
1352
1353 : "=A"(usdiff), [faulted] "=r" (faulted)
1354 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355
1356 #endif
1357 do_div(elapsed, 1000);
1358 usdiff -= elapsed;
1359 if (usdiff < 0)
1360 usdiff = -usdiff;
1361
1362 /* idivl overflow => difference is larger than USEC_PER_SEC */
1363 if (faulted)
1364 usdiff = USEC_PER_SEC;
1365 } else
1366 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367
1368 /*
1369 * Special case: TSC write with a small delta (1 second) of virtual
1370 * cycle time against real time is interpreted as an attempt to
1371 * synchronize the CPU.
1372 *
1373 * For a reliable TSC, we can match TSC offsets, and for an unstable
1374 * TSC, we add elapsed time in this computation. We could let the
1375 * compensation code attempt to catch up if we fall behind, but
1376 * it's better to try to match offsets from the beginning.
1377 */
1378 if (usdiff < USEC_PER_SEC &&
1379 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380 if (!check_tsc_unstable()) {
1381 offset = kvm->arch.cur_tsc_offset;
1382 pr_debug("kvm: matched tsc offset for %llu\n", data);
1383 } else {
1384 u64 delta = nsec_to_cycles(vcpu, elapsed);
1385 data += delta;
1386 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388 }
1389 matched = true;
1390 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391 } else {
1392 /*
1393 * We split periods of matched TSC writes into generations.
1394 * For each generation, we track the original measured
1395 * nanosecond time, offset, and write, so if TSCs are in
1396 * sync, we can match exact offset, and if not, we can match
1397 * exact software computation in compute_guest_tsc()
1398 *
1399 * These values are tracked in kvm->arch.cur_xxx variables.
1400 */
1401 kvm->arch.cur_tsc_generation++;
1402 kvm->arch.cur_tsc_nsec = ns;
1403 kvm->arch.cur_tsc_write = data;
1404 kvm->arch.cur_tsc_offset = offset;
1405 matched = false;
1406 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407 kvm->arch.cur_tsc_generation, data);
1408 }
1409
1410 /*
1411 * We also track th most recent recorded KHZ, write and time to
1412 * allow the matching interval to be extended at each write.
1413 */
1414 kvm->arch.last_tsc_nsec = ns;
1415 kvm->arch.last_tsc_write = data;
1416 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417
1418 vcpu->arch.last_guest_tsc = data;
1419
1420 /* Keep track of which generation this VCPU has synchronized to */
1421 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424
1425 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426 update_ia32_tsc_adjust_msr(vcpu, offset);
1427 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429
1430 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431 if (!matched) {
1432 kvm->arch.nr_vcpus_matched_tsc = 0;
1433 } else if (!already_matched) {
1434 kvm->arch.nr_vcpus_matched_tsc++;
1435 }
1436
1437 kvm_track_tsc_matching(vcpu);
1438 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442
1443 #ifdef CONFIG_X86_64
1444
1445 static cycle_t read_tsc(void)
1446 {
1447 cycle_t ret;
1448 u64 last;
1449
1450 /*
1451 * Empirically, a fence (of type that depends on the CPU)
1452 * before rdtsc is enough to ensure that rdtsc is ordered
1453 * with respect to loads. The various CPU manuals are unclear
1454 * as to whether rdtsc can be reordered with later loads,
1455 * but no one has ever seen it happen.
1456 */
1457 rdtsc_barrier();
1458 ret = (cycle_t)vget_cycles();
1459
1460 last = pvclock_gtod_data.clock.cycle_last;
1461
1462 if (likely(ret >= last))
1463 return ret;
1464
1465 /*
1466 * GCC likes to generate cmov here, but this branch is extremely
1467 * predictable (it's just a funciton of time and the likely is
1468 * very likely) and there's a data dependence, so force GCC
1469 * to generate a branch instead. I don't barrier() because
1470 * we don't actually need a barrier, and if this function
1471 * ever gets inlined it will generate worse code.
1472 */
1473 asm volatile ("");
1474 return last;
1475 }
1476
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479 long v;
1480 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481
1482 *cycle_now = read_tsc();
1483
1484 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485 return v * gtod->clock.mult;
1486 }
1487
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491 unsigned long seq;
1492 int mode;
1493 u64 ns;
1494
1495 do {
1496 seq = read_seqcount_begin(&gtod->seq);
1497 mode = gtod->clock.vclock_mode;
1498 ns = gtod->nsec_base;
1499 ns += vgettsc(cycle_now);
1500 ns >>= gtod->clock.shift;
1501 ns += gtod->boot_ns;
1502 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503 *t = ns;
1504
1505 return mode;
1506 }
1507
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511 /* checked again under seqlock below */
1512 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513 return false;
1514
1515 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518
1519 /*
1520 *
1521 * Assuming a stable TSC across physical CPUS, and a stable TSC
1522 * across virtual CPUs, the following condition is possible.
1523 * Each numbered line represents an event visible to both
1524 * CPUs at the next numbered event.
1525 *
1526 * "timespecX" represents host monotonic time. "tscX" represents
1527 * RDTSC value.
1528 *
1529 * VCPU0 on CPU0 | VCPU1 on CPU1
1530 *
1531 * 1. read timespec0,tsc0
1532 * 2. | timespec1 = timespec0 + N
1533 * | tsc1 = tsc0 + M
1534 * 3. transition to guest | transition to guest
1535 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1537 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538 *
1539 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540 *
1541 * - ret0 < ret1
1542 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543 * ...
1544 * - 0 < N - M => M < N
1545 *
1546 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547 * always the case (the difference between two distinct xtime instances
1548 * might be smaller then the difference between corresponding TSC reads,
1549 * when updating guest vcpus pvclock areas).
1550 *
1551 * To avoid that problem, do not allow visibility of distinct
1552 * system_timestamp/tsc_timestamp values simultaneously: use a master
1553 * copy of host monotonic time values. Update that master copy
1554 * in lockstep.
1555 *
1556 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557 *
1558 */
1559
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563 struct kvm_arch *ka = &kvm->arch;
1564 int vclock_mode;
1565 bool host_tsc_clocksource, vcpus_matched;
1566
1567 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568 atomic_read(&kvm->online_vcpus));
1569
1570 /*
1571 * If the host uses TSC clock, then passthrough TSC as stable
1572 * to the guest.
1573 */
1574 host_tsc_clocksource = kvm_get_time_and_clockread(
1575 &ka->master_kernel_ns,
1576 &ka->master_cycle_now);
1577
1578 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579 && !backwards_tsc_observed
1580 && !ka->boot_vcpu_runs_old_kvmclock;
1581
1582 if (ka->use_master_clock)
1583 atomic_set(&kvm_guest_has_master_clock, 1);
1584
1585 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587 vcpus_matched);
1588 #endif
1589 }
1590
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594 int i;
1595 struct kvm_vcpu *vcpu;
1596 struct kvm_arch *ka = &kvm->arch;
1597
1598 spin_lock(&ka->pvclock_gtod_sync_lock);
1599 kvm_make_mclock_inprogress_request(kvm);
1600 /* no guest entries from this point */
1601 pvclock_update_vm_gtod_copy(kvm);
1602
1603 kvm_for_each_vcpu(i, vcpu, kvm)
1604 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605
1606 /* guest entries allowed */
1607 kvm_for_each_vcpu(i, vcpu, kvm)
1608 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609
1610 spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616 unsigned long flags, this_tsc_khz;
1617 struct kvm_vcpu_arch *vcpu = &v->arch;
1618 struct kvm_arch *ka = &v->kvm->arch;
1619 s64 kernel_ns;
1620 u64 tsc_timestamp, host_tsc;
1621 struct pvclock_vcpu_time_info guest_hv_clock;
1622 u8 pvclock_flags;
1623 bool use_master_clock;
1624
1625 kernel_ns = 0;
1626 host_tsc = 0;
1627
1628 /*
1629 * If the host uses TSC clock, then passthrough TSC as stable
1630 * to the guest.
1631 */
1632 spin_lock(&ka->pvclock_gtod_sync_lock);
1633 use_master_clock = ka->use_master_clock;
1634 if (use_master_clock) {
1635 host_tsc = ka->master_cycle_now;
1636 kernel_ns = ka->master_kernel_ns;
1637 }
1638 spin_unlock(&ka->pvclock_gtod_sync_lock);
1639
1640 /* Keep irq disabled to prevent changes to the clock */
1641 local_irq_save(flags);
1642 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643 if (unlikely(this_tsc_khz == 0)) {
1644 local_irq_restore(flags);
1645 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646 return 1;
1647 }
1648 if (!use_master_clock) {
1649 host_tsc = native_read_tsc();
1650 kernel_ns = get_kernel_ns();
1651 }
1652
1653 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654
1655 /*
1656 * We may have to catch up the TSC to match elapsed wall clock
1657 * time for two reasons, even if kvmclock is used.
1658 * 1) CPU could have been running below the maximum TSC rate
1659 * 2) Broken TSC compensation resets the base at each VCPU
1660 * entry to avoid unknown leaps of TSC even when running
1661 * again on the same CPU. This may cause apparent elapsed
1662 * time to disappear, and the guest to stand still or run
1663 * very slowly.
1664 */
1665 if (vcpu->tsc_catchup) {
1666 u64 tsc = compute_guest_tsc(v, kernel_ns);
1667 if (tsc > tsc_timestamp) {
1668 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669 tsc_timestamp = tsc;
1670 }
1671 }
1672
1673 local_irq_restore(flags);
1674
1675 if (!vcpu->pv_time_enabled)
1676 return 0;
1677
1678 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680 &vcpu->hv_clock.tsc_shift,
1681 &vcpu->hv_clock.tsc_to_system_mul);
1682 vcpu->hw_tsc_khz = this_tsc_khz;
1683 }
1684
1685 /* With all the info we got, fill in the values */
1686 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688 vcpu->last_guest_tsc = tsc_timestamp;
1689
1690 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691 &guest_hv_clock, sizeof(guest_hv_clock))))
1692 return 0;
1693
1694 /* This VCPU is paused, but it's legal for a guest to read another
1695 * VCPU's kvmclock, so we really have to follow the specification where
1696 * it says that version is odd if data is being modified, and even after
1697 * it is consistent.
1698 *
1699 * Version field updates must be kept separate. This is because
1700 * kvm_write_guest_cached might use a "rep movs" instruction, and
1701 * writes within a string instruction are weakly ordered. So there
1702 * are three writes overall.
1703 *
1704 * As a small optimization, only write the version field in the first
1705 * and third write. The vcpu->pv_time cache is still valid, because the
1706 * version field is the first in the struct.
1707 */
1708 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709
1710 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 &vcpu->hv_clock,
1713 sizeof(vcpu->hv_clock.version));
1714
1715 smp_wmb();
1716
1717 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719
1720 if (vcpu->pvclock_set_guest_stopped_request) {
1721 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722 vcpu->pvclock_set_guest_stopped_request = false;
1723 }
1724
1725 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726
1727 /* If the host uses TSC clocksource, then it is stable */
1728 if (use_master_clock)
1729 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731 vcpu->hv_clock.flags = pvclock_flags;
1732
1733 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736 &vcpu->hv_clock,
1737 sizeof(vcpu->hv_clock));
1738
1739 smp_wmb();
1740
1741 vcpu->hv_clock.version++;
1742 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743 &vcpu->hv_clock,
1744 sizeof(vcpu->hv_clock.version));
1745 return 0;
1746 }
1747
1748 /*
1749 * kvmclock updates which are isolated to a given vcpu, such as
1750 * vcpu->cpu migration, should not allow system_timestamp from
1751 * the rest of the vcpus to remain static. Otherwise ntp frequency
1752 * correction applies to one vcpu's system_timestamp but not
1753 * the others.
1754 *
1755 * So in those cases, request a kvmclock update for all vcpus.
1756 * We need to rate-limit these requests though, as they can
1757 * considerably slow guests that have a large number of vcpus.
1758 * The time for a remote vcpu to update its kvmclock is bound
1759 * by the delay we use to rate-limit the updates.
1760 */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766 int i;
1767 struct delayed_work *dwork = to_delayed_work(work);
1768 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769 kvmclock_update_work);
1770 struct kvm *kvm = container_of(ka, struct kvm, arch);
1771 struct kvm_vcpu *vcpu;
1772
1773 kvm_for_each_vcpu(i, vcpu, kvm) {
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 kvm_vcpu_kick(vcpu);
1776 }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781 struct kvm *kvm = v->kvm;
1782
1783 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785 KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792 struct delayed_work *dwork = to_delayed_work(work);
1793 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794 kvmclock_sync_work);
1795 struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797 if (!kvmclock_periodic_sync)
1798 return;
1799
1800 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802 KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807 u64 mcg_cap = vcpu->arch.mcg_cap;
1808 unsigned bank_num = mcg_cap & 0xff;
1809
1810 switch (msr) {
1811 case MSR_IA32_MCG_STATUS:
1812 vcpu->arch.mcg_status = data;
1813 break;
1814 case MSR_IA32_MCG_CTL:
1815 if (!(mcg_cap & MCG_CTL_P))
1816 return 1;
1817 if (data != 0 && data != ~(u64)0)
1818 return -1;
1819 vcpu->arch.mcg_ctl = data;
1820 break;
1821 default:
1822 if (msr >= MSR_IA32_MC0_CTL &&
1823 msr < MSR_IA32_MCx_CTL(bank_num)) {
1824 u32 offset = msr - MSR_IA32_MC0_CTL;
1825 /* only 0 or all 1s can be written to IA32_MCi_CTL
1826 * some Linux kernels though clear bit 10 in bank 4 to
1827 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 * this to avoid an uncatched #GP in the guest
1829 */
1830 if ((offset & 0x3) == 0 &&
1831 data != 0 && (data | (1 << 10)) != ~(u64)0)
1832 return -1;
1833 vcpu->arch.mce_banks[offset] = data;
1834 break;
1835 }
1836 return 1;
1837 }
1838 return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843 struct kvm *kvm = vcpu->kvm;
1844 int lm = is_long_mode(vcpu);
1845 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848 : kvm->arch.xen_hvm_config.blob_size_32;
1849 u32 page_num = data & ~PAGE_MASK;
1850 u64 page_addr = data & PAGE_MASK;
1851 u8 *page;
1852 int r;
1853
1854 r = -E2BIG;
1855 if (page_num >= blob_size)
1856 goto out;
1857 r = -ENOMEM;
1858 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859 if (IS_ERR(page)) {
1860 r = PTR_ERR(page);
1861 goto out;
1862 }
1863 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864 goto out_free;
1865 r = 0;
1866 out_free:
1867 kfree(page);
1868 out:
1869 return r;
1870 }
1871
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879 bool r = false;
1880 switch (msr) {
1881 case HV_X64_MSR_GUEST_OS_ID:
1882 case HV_X64_MSR_HYPERCALL:
1883 case HV_X64_MSR_REFERENCE_TSC:
1884 case HV_X64_MSR_TIME_REF_COUNT:
1885 r = true;
1886 break;
1887 }
1888
1889 return r;
1890 }
1891
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894 struct kvm *kvm = vcpu->kvm;
1895
1896 switch (msr) {
1897 case HV_X64_MSR_GUEST_OS_ID:
1898 kvm->arch.hv_guest_os_id = data;
1899 /* setting guest os id to zero disables hypercall page */
1900 if (!kvm->arch.hv_guest_os_id)
1901 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902 break;
1903 case HV_X64_MSR_HYPERCALL: {
1904 u64 gfn;
1905 unsigned long addr;
1906 u8 instructions[4];
1907
1908 /* if guest os id is not set hypercall should remain disabled */
1909 if (!kvm->arch.hv_guest_os_id)
1910 break;
1911 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912 kvm->arch.hv_hypercall = data;
1913 break;
1914 }
1915 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916 addr = gfn_to_hva(kvm, gfn);
1917 if (kvm_is_error_hva(addr))
1918 return 1;
1919 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921 if (__copy_to_user((void __user *)addr, instructions, 4))
1922 return 1;
1923 kvm->arch.hv_hypercall = data;
1924 mark_page_dirty(kvm, gfn);
1925 break;
1926 }
1927 case HV_X64_MSR_REFERENCE_TSC: {
1928 u64 gfn;
1929 HV_REFERENCE_TSC_PAGE tsc_ref;
1930 memset(&tsc_ref, 0, sizeof(tsc_ref));
1931 kvm->arch.hv_tsc_page = data;
1932 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933 break;
1934 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936 &tsc_ref, sizeof(tsc_ref)))
1937 return 1;
1938 mark_page_dirty(kvm, gfn);
1939 break;
1940 }
1941 default:
1942 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943 "data 0x%llx\n", msr, data);
1944 return 1;
1945 }
1946 return 0;
1947 }
1948
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951 switch (msr) {
1952 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953 u64 gfn;
1954 unsigned long addr;
1955
1956 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957 vcpu->arch.hv_vapic = data;
1958 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959 return 1;
1960 break;
1961 }
1962 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964 if (kvm_is_error_hva(addr))
1965 return 1;
1966 if (__clear_user((void __user *)addr, PAGE_SIZE))
1967 return 1;
1968 vcpu->arch.hv_vapic = data;
1969 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971 return 1;
1972 break;
1973 }
1974 case HV_X64_MSR_EOI:
1975 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976 case HV_X64_MSR_ICR:
1977 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978 case HV_X64_MSR_TPR:
1979 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980 default:
1981 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982 "data 0x%llx\n", msr, data);
1983 return 1;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991 gpa_t gpa = data & ~0x3f;
1992
1993 /* Bits 2:5 are reserved, Should be zero */
1994 if (data & 0x3c)
1995 return 1;
1996
1997 vcpu->arch.apf.msr_val = data;
1998
1999 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000 kvm_clear_async_pf_completion_queue(vcpu);
2001 kvm_async_pf_hash_reset(vcpu);
2002 return 0;
2003 }
2004
2005 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006 sizeof(u32)))
2007 return 1;
2008
2009 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010 kvm_async_pf_wakeup_all(vcpu);
2011 return 0;
2012 }
2013
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016 vcpu->arch.pv_time_enabled = false;
2017 }
2018
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021 u64 delta;
2022
2023 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024 return;
2025
2026 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 vcpu->arch.st.accum_steal = delta;
2029 }
2030
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034 return;
2035
2036 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038 return;
2039
2040 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041 vcpu->arch.st.steal.version += 2;
2042 vcpu->arch.st.accum_steal = 0;
2043
2044 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050 bool pr = false;
2051 u32 msr = msr_info->index;
2052 u64 data = msr_info->data;
2053
2054 switch (msr) {
2055 case MSR_AMD64_NB_CFG:
2056 case MSR_IA32_UCODE_REV:
2057 case MSR_IA32_UCODE_WRITE:
2058 case MSR_VM_HSAVE_PA:
2059 case MSR_AMD64_PATCH_LOADER:
2060 case MSR_AMD64_BU_CFG2:
2061 break;
2062
2063 case MSR_EFER:
2064 return set_efer(vcpu, data);
2065 case MSR_K7_HWCR:
2066 data &= ~(u64)0x40; /* ignore flush filter disable */
2067 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2068 data &= ~(u64)0x8; /* ignore TLB cache disable */
2069 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2070 if (data != 0) {
2071 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072 data);
2073 return 1;
2074 }
2075 break;
2076 case MSR_FAM10H_MMIO_CONF_BASE:
2077 if (data != 0) {
2078 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079 "0x%llx\n", data);
2080 return 1;
2081 }
2082 break;
2083 case MSR_IA32_DEBUGCTLMSR:
2084 if (!data) {
2085 /* We support the non-activated case already */
2086 break;
2087 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088 /* Values other than LBR and BTF are vendor-specific,
2089 thus reserved and should throw a #GP */
2090 return 1;
2091 }
2092 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093 __func__, data);
2094 break;
2095 case 0x200 ... 0x2ff:
2096 return kvm_mtrr_set_msr(vcpu, msr, data);
2097 case MSR_IA32_APICBASE:
2098 return kvm_set_apic_base(vcpu, msr_info);
2099 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100 return kvm_x2apic_msr_write(vcpu, msr, data);
2101 case MSR_IA32_TSCDEADLINE:
2102 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103 break;
2104 case MSR_IA32_TSC_ADJUST:
2105 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106 if (!msr_info->host_initiated) {
2107 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109 }
2110 vcpu->arch.ia32_tsc_adjust_msr = data;
2111 }
2112 break;
2113 case MSR_IA32_MISC_ENABLE:
2114 vcpu->arch.ia32_misc_enable_msr = data;
2115 break;
2116 case MSR_IA32_SMBASE:
2117 if (!msr_info->host_initiated)
2118 return 1;
2119 vcpu->arch.smbase = data;
2120 break;
2121 case MSR_KVM_WALL_CLOCK_NEW:
2122 case MSR_KVM_WALL_CLOCK:
2123 vcpu->kvm->arch.wall_clock = data;
2124 kvm_write_wall_clock(vcpu->kvm, data);
2125 break;
2126 case MSR_KVM_SYSTEM_TIME_NEW:
2127 case MSR_KVM_SYSTEM_TIME: {
2128 u64 gpa_offset;
2129 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131 kvmclock_reset(vcpu);
2132
2133 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138 &vcpu->requests);
2139
2140 ka->boot_vcpu_runs_old_kvmclock = tmp;
2141
2142 ka->kvmclock_offset = -get_kernel_ns();
2143 }
2144
2145 vcpu->arch.time = data;
2146 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147
2148 /* we verify if the enable bit is set... */
2149 if (!(data & 1))
2150 break;
2151
2152 gpa_offset = data & ~(PAGE_MASK | 1);
2153
2154 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155 &vcpu->arch.pv_time, data & ~1ULL,
2156 sizeof(struct pvclock_vcpu_time_info)))
2157 vcpu->arch.pv_time_enabled = false;
2158 else
2159 vcpu->arch.pv_time_enabled = true;
2160
2161 break;
2162 }
2163 case MSR_KVM_ASYNC_PF_EN:
2164 if (kvm_pv_enable_async_pf(vcpu, data))
2165 return 1;
2166 break;
2167 case MSR_KVM_STEAL_TIME:
2168
2169 if (unlikely(!sched_info_on()))
2170 return 1;
2171
2172 if (data & KVM_STEAL_RESERVED_MASK)
2173 return 1;
2174
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176 data & KVM_STEAL_VALID_BITS,
2177 sizeof(struct kvm_steal_time)))
2178 return 1;
2179
2180 vcpu->arch.st.msr_val = data;
2181
2182 if (!(data & KVM_MSR_ENABLED))
2183 break;
2184
2185 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186
2187 preempt_disable();
2188 accumulate_steal_time(vcpu);
2189 preempt_enable();
2190
2191 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192
2193 break;
2194 case MSR_KVM_PV_EOI_EN:
2195 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196 return 1;
2197 break;
2198
2199 case MSR_IA32_MCG_CTL:
2200 case MSR_IA32_MCG_STATUS:
2201 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202 return set_msr_mce(vcpu, msr, data);
2203
2204 /* Performance counters are not protected by a CPUID bit,
2205 * so we should check all of them in the generic path for the sake of
2206 * cross vendor migration.
2207 * Writing a zero into the event select MSRs disables them,
2208 * which we perfectly emulate ;-). Any other value should be at least
2209 * reported, some guests depend on them.
2210 */
2211 case MSR_K7_EVNTSEL0:
2212 case MSR_K7_EVNTSEL1:
2213 case MSR_K7_EVNTSEL2:
2214 case MSR_K7_EVNTSEL3:
2215 if (data != 0)
2216 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2217 "0x%x data 0x%llx\n", msr, data);
2218 break;
2219 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2220 * so we ignore writes to make it happy.
2221 */
2222 case MSR_K7_PERFCTR0:
2223 case MSR_K7_PERFCTR1:
2224 case MSR_K7_PERFCTR2:
2225 case MSR_K7_PERFCTR3:
2226 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2227 "0x%x data 0x%llx\n", msr, data);
2228 break;
2229 case MSR_P6_PERFCTR0:
2230 case MSR_P6_PERFCTR1:
2231 pr = true;
2232 case MSR_P6_EVNTSEL0:
2233 case MSR_P6_EVNTSEL1:
2234 if (kvm_pmu_is_valid_msr(vcpu, msr))
2235 return kvm_pmu_set_msr(vcpu, msr_info);
2236
2237 if (pr || data != 0)
2238 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2239 "0x%x data 0x%llx\n", msr, data);
2240 break;
2241 case MSR_K7_CLK_CTL:
2242 /*
2243 * Ignore all writes to this no longer documented MSR.
2244 * Writes are only relevant for old K7 processors,
2245 * all pre-dating SVM, but a recommended workaround from
2246 * AMD for these chips. It is possible to specify the
2247 * affected processor models on the command line, hence
2248 * the need to ignore the workaround.
2249 */
2250 break;
2251 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2252 if (kvm_hv_msr_partition_wide(msr)) {
2253 int r;
2254 mutex_lock(&vcpu->kvm->lock);
2255 r = set_msr_hyperv_pw(vcpu, msr, data);
2256 mutex_unlock(&vcpu->kvm->lock);
2257 return r;
2258 } else
2259 return set_msr_hyperv(vcpu, msr, data);
2260 break;
2261 case MSR_IA32_BBL_CR_CTL3:
2262 /* Drop writes to this legacy MSR -- see rdmsr
2263 * counterpart for further detail.
2264 */
2265 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2266 break;
2267 case MSR_AMD64_OSVW_ID_LENGTH:
2268 if (!guest_cpuid_has_osvw(vcpu))
2269 return 1;
2270 vcpu->arch.osvw.length = data;
2271 break;
2272 case MSR_AMD64_OSVW_STATUS:
2273 if (!guest_cpuid_has_osvw(vcpu))
2274 return 1;
2275 vcpu->arch.osvw.status = data;
2276 break;
2277 default:
2278 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2279 return xen_hvm_config(vcpu, data);
2280 if (kvm_pmu_is_valid_msr(vcpu, msr))
2281 return kvm_pmu_set_msr(vcpu, msr_info);
2282 if (!ignore_msrs) {
2283 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2284 msr, data);
2285 return 1;
2286 } else {
2287 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2288 msr, data);
2289 break;
2290 }
2291 }
2292 return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2295
2296
2297 /*
2298 * Reads an msr value (of 'msr_index') into 'pdata'.
2299 * Returns 0 on success, non-0 otherwise.
2300 * Assumes vcpu_load() was already called.
2301 */
2302 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2303 {
2304 return kvm_x86_ops->get_msr(vcpu, msr);
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_get_msr);
2307
2308 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2309 {
2310 u64 data;
2311 u64 mcg_cap = vcpu->arch.mcg_cap;
2312 unsigned bank_num = mcg_cap & 0xff;
2313
2314 switch (msr) {
2315 case MSR_IA32_P5_MC_ADDR:
2316 case MSR_IA32_P5_MC_TYPE:
2317 data = 0;
2318 break;
2319 case MSR_IA32_MCG_CAP:
2320 data = vcpu->arch.mcg_cap;
2321 break;
2322 case MSR_IA32_MCG_CTL:
2323 if (!(mcg_cap & MCG_CTL_P))
2324 return 1;
2325 data = vcpu->arch.mcg_ctl;
2326 break;
2327 case MSR_IA32_MCG_STATUS:
2328 data = vcpu->arch.mcg_status;
2329 break;
2330 default:
2331 if (msr >= MSR_IA32_MC0_CTL &&
2332 msr < MSR_IA32_MCx_CTL(bank_num)) {
2333 u32 offset = msr - MSR_IA32_MC0_CTL;
2334 data = vcpu->arch.mce_banks[offset];
2335 break;
2336 }
2337 return 1;
2338 }
2339 *pdata = data;
2340 return 0;
2341 }
2342
2343 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2344 {
2345 u64 data = 0;
2346 struct kvm *kvm = vcpu->kvm;
2347
2348 switch (msr) {
2349 case HV_X64_MSR_GUEST_OS_ID:
2350 data = kvm->arch.hv_guest_os_id;
2351 break;
2352 case HV_X64_MSR_HYPERCALL:
2353 data = kvm->arch.hv_hypercall;
2354 break;
2355 case HV_X64_MSR_TIME_REF_COUNT: {
2356 data =
2357 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2358 break;
2359 }
2360 case HV_X64_MSR_REFERENCE_TSC:
2361 data = kvm->arch.hv_tsc_page;
2362 break;
2363 default:
2364 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2365 return 1;
2366 }
2367
2368 *pdata = data;
2369 return 0;
2370 }
2371
2372 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2373 {
2374 u64 data = 0;
2375
2376 switch (msr) {
2377 case HV_X64_MSR_VP_INDEX: {
2378 int r;
2379 struct kvm_vcpu *v;
2380 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2381 if (v == vcpu) {
2382 data = r;
2383 break;
2384 }
2385 }
2386 break;
2387 }
2388 case HV_X64_MSR_EOI:
2389 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2390 case HV_X64_MSR_ICR:
2391 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2392 case HV_X64_MSR_TPR:
2393 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2394 case HV_X64_MSR_APIC_ASSIST_PAGE:
2395 data = vcpu->arch.hv_vapic;
2396 break;
2397 default:
2398 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2399 return 1;
2400 }
2401 *pdata = data;
2402 return 0;
2403 }
2404
2405 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2406 {
2407 u64 data;
2408
2409 switch (msr_info->index) {
2410 case MSR_IA32_PLATFORM_ID:
2411 case MSR_IA32_EBL_CR_POWERON:
2412 case MSR_IA32_DEBUGCTLMSR:
2413 case MSR_IA32_LASTBRANCHFROMIP:
2414 case MSR_IA32_LASTBRANCHTOIP:
2415 case MSR_IA32_LASTINTFROMIP:
2416 case MSR_IA32_LASTINTTOIP:
2417 case MSR_K8_SYSCFG:
2418 case MSR_K7_HWCR:
2419 case MSR_VM_HSAVE_PA:
2420 case MSR_K7_EVNTSEL0:
2421 case MSR_K7_EVNTSEL1:
2422 case MSR_K7_EVNTSEL2:
2423 case MSR_K7_EVNTSEL3:
2424 case MSR_K7_PERFCTR0:
2425 case MSR_K7_PERFCTR1:
2426 case MSR_K7_PERFCTR2:
2427 case MSR_K7_PERFCTR3:
2428 case MSR_K8_INT_PENDING_MSG:
2429 case MSR_AMD64_NB_CFG:
2430 case MSR_FAM10H_MMIO_CONF_BASE:
2431 case MSR_AMD64_BU_CFG2:
2432 msr_info->data = 0;
2433 break;
2434 case MSR_P6_PERFCTR0:
2435 case MSR_P6_PERFCTR1:
2436 case MSR_P6_EVNTSEL0:
2437 case MSR_P6_EVNTSEL1:
2438 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2439 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2440 msr_info->data = 0;
2441 break;
2442 case MSR_IA32_UCODE_REV:
2443 msr_info->data = 0x100000000ULL;
2444 break;
2445 case MSR_MTRRcap:
2446 case 0x200 ... 0x2ff:
2447 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2448 case 0xcd: /* fsb frequency */
2449 msr_info->data = 3;
2450 break;
2451 /*
2452 * MSR_EBC_FREQUENCY_ID
2453 * Conservative value valid for even the basic CPU models.
2454 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2455 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2456 * and 266MHz for model 3, or 4. Set Core Clock
2457 * Frequency to System Bus Frequency Ratio to 1 (bits
2458 * 31:24) even though these are only valid for CPU
2459 * models > 2, however guests may end up dividing or
2460 * multiplying by zero otherwise.
2461 */
2462 case MSR_EBC_FREQUENCY_ID:
2463 msr_info->data = 1 << 24;
2464 break;
2465 case MSR_IA32_APICBASE:
2466 msr_info->data = kvm_get_apic_base(vcpu);
2467 break;
2468 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2469 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2470 break;
2471 case MSR_IA32_TSCDEADLINE:
2472 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2473 break;
2474 case MSR_IA32_TSC_ADJUST:
2475 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2476 break;
2477 case MSR_IA32_MISC_ENABLE:
2478 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2479 break;
2480 case MSR_IA32_SMBASE:
2481 if (!msr_info->host_initiated)
2482 return 1;
2483 msr_info->data = vcpu->arch.smbase;
2484 break;
2485 case MSR_IA32_PERF_STATUS:
2486 /* TSC increment by tick */
2487 msr_info->data = 1000ULL;
2488 /* CPU multiplier */
2489 data |= (((uint64_t)4ULL) << 40);
2490 break;
2491 case MSR_EFER:
2492 msr_info->data = vcpu->arch.efer;
2493 break;
2494 case MSR_KVM_WALL_CLOCK:
2495 case MSR_KVM_WALL_CLOCK_NEW:
2496 msr_info->data = vcpu->kvm->arch.wall_clock;
2497 break;
2498 case MSR_KVM_SYSTEM_TIME:
2499 case MSR_KVM_SYSTEM_TIME_NEW:
2500 msr_info->data = vcpu->arch.time;
2501 break;
2502 case MSR_KVM_ASYNC_PF_EN:
2503 msr_info->data = vcpu->arch.apf.msr_val;
2504 break;
2505 case MSR_KVM_STEAL_TIME:
2506 msr_info->data = vcpu->arch.st.msr_val;
2507 break;
2508 case MSR_KVM_PV_EOI_EN:
2509 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2510 break;
2511 case MSR_IA32_P5_MC_ADDR:
2512 case MSR_IA32_P5_MC_TYPE:
2513 case MSR_IA32_MCG_CAP:
2514 case MSR_IA32_MCG_CTL:
2515 case MSR_IA32_MCG_STATUS:
2516 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2517 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2518 case MSR_K7_CLK_CTL:
2519 /*
2520 * Provide expected ramp-up count for K7. All other
2521 * are set to zero, indicating minimum divisors for
2522 * every field.
2523 *
2524 * This prevents guest kernels on AMD host with CPU
2525 * type 6, model 8 and higher from exploding due to
2526 * the rdmsr failing.
2527 */
2528 msr_info->data = 0x20000000;
2529 break;
2530 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2531 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2532 int r;
2533 mutex_lock(&vcpu->kvm->lock);
2534 r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2535 mutex_unlock(&vcpu->kvm->lock);
2536 return r;
2537 } else
2538 return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2539 break;
2540 case MSR_IA32_BBL_CR_CTL3:
2541 /* This legacy MSR exists but isn't fully documented in current
2542 * silicon. It is however accessed by winxp in very narrow
2543 * scenarios where it sets bit #19, itself documented as
2544 * a "reserved" bit. Best effort attempt to source coherent
2545 * read data here should the balance of the register be
2546 * interpreted by the guest:
2547 *
2548 * L2 cache control register 3: 64GB range, 256KB size,
2549 * enabled, latency 0x1, configured
2550 */
2551 msr_info->data = 0xbe702111;
2552 break;
2553 case MSR_AMD64_OSVW_ID_LENGTH:
2554 if (!guest_cpuid_has_osvw(vcpu))
2555 return 1;
2556 msr_info->data = vcpu->arch.osvw.length;
2557 break;
2558 case MSR_AMD64_OSVW_STATUS:
2559 if (!guest_cpuid_has_osvw(vcpu))
2560 return 1;
2561 msr_info->data = vcpu->arch.osvw.status;
2562 break;
2563 default:
2564 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2565 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2566 if (!ignore_msrs) {
2567 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2568 return 1;
2569 } else {
2570 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2571 msr_info->data = 0;
2572 }
2573 break;
2574 }
2575 return 0;
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2578
2579 /*
2580 * Read or write a bunch of msrs. All parameters are kernel addresses.
2581 *
2582 * @return number of msrs set successfully.
2583 */
2584 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2585 struct kvm_msr_entry *entries,
2586 int (*do_msr)(struct kvm_vcpu *vcpu,
2587 unsigned index, u64 *data))
2588 {
2589 int i, idx;
2590
2591 idx = srcu_read_lock(&vcpu->kvm->srcu);
2592 for (i = 0; i < msrs->nmsrs; ++i)
2593 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2594 break;
2595 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2596
2597 return i;
2598 }
2599
2600 /*
2601 * Read or write a bunch of msrs. Parameters are user addresses.
2602 *
2603 * @return number of msrs set successfully.
2604 */
2605 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2606 int (*do_msr)(struct kvm_vcpu *vcpu,
2607 unsigned index, u64 *data),
2608 int writeback)
2609 {
2610 struct kvm_msrs msrs;
2611 struct kvm_msr_entry *entries;
2612 int r, n;
2613 unsigned size;
2614
2615 r = -EFAULT;
2616 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2617 goto out;
2618
2619 r = -E2BIG;
2620 if (msrs.nmsrs >= MAX_IO_MSRS)
2621 goto out;
2622
2623 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2624 entries = memdup_user(user_msrs->entries, size);
2625 if (IS_ERR(entries)) {
2626 r = PTR_ERR(entries);
2627 goto out;
2628 }
2629
2630 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2631 if (r < 0)
2632 goto out_free;
2633
2634 r = -EFAULT;
2635 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2636 goto out_free;
2637
2638 r = n;
2639
2640 out_free:
2641 kfree(entries);
2642 out:
2643 return r;
2644 }
2645
2646 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2647 {
2648 int r;
2649
2650 switch (ext) {
2651 case KVM_CAP_IRQCHIP:
2652 case KVM_CAP_HLT:
2653 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2654 case KVM_CAP_SET_TSS_ADDR:
2655 case KVM_CAP_EXT_CPUID:
2656 case KVM_CAP_EXT_EMUL_CPUID:
2657 case KVM_CAP_CLOCKSOURCE:
2658 case KVM_CAP_PIT:
2659 case KVM_CAP_NOP_IO_DELAY:
2660 case KVM_CAP_MP_STATE:
2661 case KVM_CAP_SYNC_MMU:
2662 case KVM_CAP_USER_NMI:
2663 case KVM_CAP_REINJECT_CONTROL:
2664 case KVM_CAP_IRQ_INJECT_STATUS:
2665 case KVM_CAP_IOEVENTFD:
2666 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2667 case KVM_CAP_PIT2:
2668 case KVM_CAP_PIT_STATE2:
2669 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2670 case KVM_CAP_XEN_HVM:
2671 case KVM_CAP_ADJUST_CLOCK:
2672 case KVM_CAP_VCPU_EVENTS:
2673 case KVM_CAP_HYPERV:
2674 case KVM_CAP_HYPERV_VAPIC:
2675 case KVM_CAP_HYPERV_SPIN:
2676 case KVM_CAP_PCI_SEGMENT:
2677 case KVM_CAP_DEBUGREGS:
2678 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2679 case KVM_CAP_XSAVE:
2680 case KVM_CAP_ASYNC_PF:
2681 case KVM_CAP_GET_TSC_KHZ:
2682 case KVM_CAP_KVMCLOCK_CTRL:
2683 case KVM_CAP_READONLY_MEM:
2684 case KVM_CAP_HYPERV_TIME:
2685 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2686 case KVM_CAP_TSC_DEADLINE_TIMER:
2687 case KVM_CAP_ENABLE_CAP_VM:
2688 case KVM_CAP_DISABLE_QUIRKS:
2689 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2690 case KVM_CAP_ASSIGN_DEV_IRQ:
2691 case KVM_CAP_PCI_2_3:
2692 #endif
2693 r = 1;
2694 break;
2695 case KVM_CAP_X86_SMM:
2696 /* SMBASE is usually relocated above 1M on modern chipsets,
2697 * and SMM handlers might indeed rely on 4G segment limits,
2698 * so do not report SMM to be available if real mode is
2699 * emulated via vm86 mode. Still, do not go to great lengths
2700 * to avoid userspace's usage of the feature, because it is a
2701 * fringe case that is not enabled except via specific settings
2702 * of the module parameters.
2703 */
2704 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2705 break;
2706 case KVM_CAP_COALESCED_MMIO:
2707 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2708 break;
2709 case KVM_CAP_VAPIC:
2710 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2711 break;
2712 case KVM_CAP_NR_VCPUS:
2713 r = KVM_SOFT_MAX_VCPUS;
2714 break;
2715 case KVM_CAP_MAX_VCPUS:
2716 r = KVM_MAX_VCPUS;
2717 break;
2718 case KVM_CAP_NR_MEMSLOTS:
2719 r = KVM_USER_MEM_SLOTS;
2720 break;
2721 case KVM_CAP_PV_MMU: /* obsolete */
2722 r = 0;
2723 break;
2724 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2725 case KVM_CAP_IOMMU:
2726 r = iommu_present(&pci_bus_type);
2727 break;
2728 #endif
2729 case KVM_CAP_MCE:
2730 r = KVM_MAX_MCE_BANKS;
2731 break;
2732 case KVM_CAP_XCRS:
2733 r = cpu_has_xsave;
2734 break;
2735 case KVM_CAP_TSC_CONTROL:
2736 r = kvm_has_tsc_control;
2737 break;
2738 default:
2739 r = 0;
2740 break;
2741 }
2742 return r;
2743
2744 }
2745
2746 long kvm_arch_dev_ioctl(struct file *filp,
2747 unsigned int ioctl, unsigned long arg)
2748 {
2749 void __user *argp = (void __user *)arg;
2750 long r;
2751
2752 switch (ioctl) {
2753 case KVM_GET_MSR_INDEX_LIST: {
2754 struct kvm_msr_list __user *user_msr_list = argp;
2755 struct kvm_msr_list msr_list;
2756 unsigned n;
2757
2758 r = -EFAULT;
2759 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2760 goto out;
2761 n = msr_list.nmsrs;
2762 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2763 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2764 goto out;
2765 r = -E2BIG;
2766 if (n < msr_list.nmsrs)
2767 goto out;
2768 r = -EFAULT;
2769 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2770 num_msrs_to_save * sizeof(u32)))
2771 goto out;
2772 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2773 &emulated_msrs,
2774 num_emulated_msrs * sizeof(u32)))
2775 goto out;
2776 r = 0;
2777 break;
2778 }
2779 case KVM_GET_SUPPORTED_CPUID:
2780 case KVM_GET_EMULATED_CPUID: {
2781 struct kvm_cpuid2 __user *cpuid_arg = argp;
2782 struct kvm_cpuid2 cpuid;
2783
2784 r = -EFAULT;
2785 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2786 goto out;
2787
2788 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2789 ioctl);
2790 if (r)
2791 goto out;
2792
2793 r = -EFAULT;
2794 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2795 goto out;
2796 r = 0;
2797 break;
2798 }
2799 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2800 u64 mce_cap;
2801
2802 mce_cap = KVM_MCE_CAP_SUPPORTED;
2803 r = -EFAULT;
2804 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2805 goto out;
2806 r = 0;
2807 break;
2808 }
2809 default:
2810 r = -EINVAL;
2811 }
2812 out:
2813 return r;
2814 }
2815
2816 static void wbinvd_ipi(void *garbage)
2817 {
2818 wbinvd();
2819 }
2820
2821 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2822 {
2823 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2824 }
2825
2826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2827 {
2828 /* Address WBINVD may be executed by guest */
2829 if (need_emulate_wbinvd(vcpu)) {
2830 if (kvm_x86_ops->has_wbinvd_exit())
2831 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2832 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2833 smp_call_function_single(vcpu->cpu,
2834 wbinvd_ipi, NULL, 1);
2835 }
2836
2837 kvm_x86_ops->vcpu_load(vcpu, cpu);
2838
2839 /* Apply any externally detected TSC adjustments (due to suspend) */
2840 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2841 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2842 vcpu->arch.tsc_offset_adjustment = 0;
2843 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2844 }
2845
2846 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2847 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2848 native_read_tsc() - vcpu->arch.last_host_tsc;
2849 if (tsc_delta < 0)
2850 mark_tsc_unstable("KVM discovered backwards TSC");
2851 if (check_tsc_unstable()) {
2852 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2853 vcpu->arch.last_guest_tsc);
2854 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2855 vcpu->arch.tsc_catchup = 1;
2856 }
2857 /*
2858 * On a host with synchronized TSC, there is no need to update
2859 * kvmclock on vcpu->cpu migration
2860 */
2861 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2862 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2863 if (vcpu->cpu != cpu)
2864 kvm_migrate_timers(vcpu);
2865 vcpu->cpu = cpu;
2866 }
2867
2868 accumulate_steal_time(vcpu);
2869 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2870 }
2871
2872 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2873 {
2874 kvm_x86_ops->vcpu_put(vcpu);
2875 kvm_put_guest_fpu(vcpu);
2876 vcpu->arch.last_host_tsc = native_read_tsc();
2877 }
2878
2879 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2880 struct kvm_lapic_state *s)
2881 {
2882 kvm_x86_ops->sync_pir_to_irr(vcpu);
2883 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2884
2885 return 0;
2886 }
2887
2888 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2889 struct kvm_lapic_state *s)
2890 {
2891 kvm_apic_post_state_restore(vcpu, s);
2892 update_cr8_intercept(vcpu);
2893
2894 return 0;
2895 }
2896
2897 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2898 struct kvm_interrupt *irq)
2899 {
2900 if (irq->irq >= KVM_NR_INTERRUPTS)
2901 return -EINVAL;
2902 if (irqchip_in_kernel(vcpu->kvm))
2903 return -ENXIO;
2904
2905 kvm_queue_interrupt(vcpu, irq->irq, false);
2906 kvm_make_request(KVM_REQ_EVENT, vcpu);
2907
2908 return 0;
2909 }
2910
2911 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2912 {
2913 kvm_inject_nmi(vcpu);
2914
2915 return 0;
2916 }
2917
2918 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2919 {
2920 kvm_make_request(KVM_REQ_SMI, vcpu);
2921
2922 return 0;
2923 }
2924
2925 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2926 struct kvm_tpr_access_ctl *tac)
2927 {
2928 if (tac->flags)
2929 return -EINVAL;
2930 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2931 return 0;
2932 }
2933
2934 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2935 u64 mcg_cap)
2936 {
2937 int r;
2938 unsigned bank_num = mcg_cap & 0xff, bank;
2939
2940 r = -EINVAL;
2941 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2942 goto out;
2943 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2944 goto out;
2945 r = 0;
2946 vcpu->arch.mcg_cap = mcg_cap;
2947 /* Init IA32_MCG_CTL to all 1s */
2948 if (mcg_cap & MCG_CTL_P)
2949 vcpu->arch.mcg_ctl = ~(u64)0;
2950 /* Init IA32_MCi_CTL to all 1s */
2951 for (bank = 0; bank < bank_num; bank++)
2952 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2953 out:
2954 return r;
2955 }
2956
2957 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2958 struct kvm_x86_mce *mce)
2959 {
2960 u64 mcg_cap = vcpu->arch.mcg_cap;
2961 unsigned bank_num = mcg_cap & 0xff;
2962 u64 *banks = vcpu->arch.mce_banks;
2963
2964 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2965 return -EINVAL;
2966 /*
2967 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2968 * reporting is disabled
2969 */
2970 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2971 vcpu->arch.mcg_ctl != ~(u64)0)
2972 return 0;
2973 banks += 4 * mce->bank;
2974 /*
2975 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2976 * reporting is disabled for the bank
2977 */
2978 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2979 return 0;
2980 if (mce->status & MCI_STATUS_UC) {
2981 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2982 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2983 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2984 return 0;
2985 }
2986 if (banks[1] & MCI_STATUS_VAL)
2987 mce->status |= MCI_STATUS_OVER;
2988 banks[2] = mce->addr;
2989 banks[3] = mce->misc;
2990 vcpu->arch.mcg_status = mce->mcg_status;
2991 banks[1] = mce->status;
2992 kvm_queue_exception(vcpu, MC_VECTOR);
2993 } else if (!(banks[1] & MCI_STATUS_VAL)
2994 || !(banks[1] & MCI_STATUS_UC)) {
2995 if (banks[1] & MCI_STATUS_VAL)
2996 mce->status |= MCI_STATUS_OVER;
2997 banks[2] = mce->addr;
2998 banks[3] = mce->misc;
2999 banks[1] = mce->status;
3000 } else
3001 banks[1] |= MCI_STATUS_OVER;
3002 return 0;
3003 }
3004
3005 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3006 struct kvm_vcpu_events *events)
3007 {
3008 process_nmi(vcpu);
3009 events->exception.injected =
3010 vcpu->arch.exception.pending &&
3011 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3012 events->exception.nr = vcpu->arch.exception.nr;
3013 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3014 events->exception.pad = 0;
3015 events->exception.error_code = vcpu->arch.exception.error_code;
3016
3017 events->interrupt.injected =
3018 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3019 events->interrupt.nr = vcpu->arch.interrupt.nr;
3020 events->interrupt.soft = 0;
3021 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3022
3023 events->nmi.injected = vcpu->arch.nmi_injected;
3024 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3025 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3026 events->nmi.pad = 0;
3027
3028 events->sipi_vector = 0; /* never valid when reporting to user space */
3029
3030 events->smi.smm = is_smm(vcpu);
3031 events->smi.pending = vcpu->arch.smi_pending;
3032 events->smi.smm_inside_nmi =
3033 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3034 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3035
3036 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3037 | KVM_VCPUEVENT_VALID_SHADOW
3038 | KVM_VCPUEVENT_VALID_SMM);
3039 memset(&events->reserved, 0, sizeof(events->reserved));
3040 }
3041
3042 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3043 struct kvm_vcpu_events *events)
3044 {
3045 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3046 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3047 | KVM_VCPUEVENT_VALID_SHADOW
3048 | KVM_VCPUEVENT_VALID_SMM))
3049 return -EINVAL;
3050
3051 process_nmi(vcpu);
3052 vcpu->arch.exception.pending = events->exception.injected;
3053 vcpu->arch.exception.nr = events->exception.nr;
3054 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3055 vcpu->arch.exception.error_code = events->exception.error_code;
3056
3057 vcpu->arch.interrupt.pending = events->interrupt.injected;
3058 vcpu->arch.interrupt.nr = events->interrupt.nr;
3059 vcpu->arch.interrupt.soft = events->interrupt.soft;
3060 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3061 kvm_x86_ops->set_interrupt_shadow(vcpu,
3062 events->interrupt.shadow);
3063
3064 vcpu->arch.nmi_injected = events->nmi.injected;
3065 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3066 vcpu->arch.nmi_pending = events->nmi.pending;
3067 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3068
3069 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3070 kvm_vcpu_has_lapic(vcpu))
3071 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3072
3073 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3074 if (events->smi.smm)
3075 vcpu->arch.hflags |= HF_SMM_MASK;
3076 else
3077 vcpu->arch.hflags &= ~HF_SMM_MASK;
3078 vcpu->arch.smi_pending = events->smi.pending;
3079 if (events->smi.smm_inside_nmi)
3080 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3081 else
3082 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3083 if (kvm_vcpu_has_lapic(vcpu)) {
3084 if (events->smi.latched_init)
3085 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3086 else
3087 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3088 }
3089 }
3090
3091 kvm_make_request(KVM_REQ_EVENT, vcpu);
3092
3093 return 0;
3094 }
3095
3096 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3097 struct kvm_debugregs *dbgregs)
3098 {
3099 unsigned long val;
3100
3101 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3102 kvm_get_dr(vcpu, 6, &val);
3103 dbgregs->dr6 = val;
3104 dbgregs->dr7 = vcpu->arch.dr7;
3105 dbgregs->flags = 0;
3106 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3107 }
3108
3109 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3110 struct kvm_debugregs *dbgregs)
3111 {
3112 if (dbgregs->flags)
3113 return -EINVAL;
3114
3115 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3116 kvm_update_dr0123(vcpu);
3117 vcpu->arch.dr6 = dbgregs->dr6;
3118 kvm_update_dr6(vcpu);
3119 vcpu->arch.dr7 = dbgregs->dr7;
3120 kvm_update_dr7(vcpu);
3121
3122 return 0;
3123 }
3124
3125 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3126
3127 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3128 {
3129 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3130 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3131 u64 valid;
3132
3133 /*
3134 * Copy legacy XSAVE area, to avoid complications with CPUID
3135 * leaves 0 and 1 in the loop below.
3136 */
3137 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3138
3139 /* Set XSTATE_BV */
3140 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3141
3142 /*
3143 * Copy each region from the possibly compacted offset to the
3144 * non-compacted offset.
3145 */
3146 valid = xstate_bv & ~XSTATE_FPSSE;
3147 while (valid) {
3148 u64 feature = valid & -valid;
3149 int index = fls64(feature) - 1;
3150 void *src = get_xsave_addr(xsave, feature);
3151
3152 if (src) {
3153 u32 size, offset, ecx, edx;
3154 cpuid_count(XSTATE_CPUID, index,
3155 &size, &offset, &ecx, &edx);
3156 memcpy(dest + offset, src, size);
3157 }
3158
3159 valid -= feature;
3160 }
3161 }
3162
3163 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3164 {
3165 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3166 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3167 u64 valid;
3168
3169 /*
3170 * Copy legacy XSAVE area, to avoid complications with CPUID
3171 * leaves 0 and 1 in the loop below.
3172 */
3173 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3174
3175 /* Set XSTATE_BV and possibly XCOMP_BV. */
3176 xsave->xsave_hdr.xstate_bv = xstate_bv;
3177 if (cpu_has_xsaves)
3178 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3179
3180 /*
3181 * Copy each region from the non-compacted offset to the
3182 * possibly compacted offset.
3183 */
3184 valid = xstate_bv & ~XSTATE_FPSSE;
3185 while (valid) {
3186 u64 feature = valid & -valid;
3187 int index = fls64(feature) - 1;
3188 void *dest = get_xsave_addr(xsave, feature);
3189
3190 if (dest) {
3191 u32 size, offset, ecx, edx;
3192 cpuid_count(XSTATE_CPUID, index,
3193 &size, &offset, &ecx, &edx);
3194 memcpy(dest, src + offset, size);
3195 } else
3196 WARN_ON_ONCE(1);
3197
3198 valid -= feature;
3199 }
3200 }
3201
3202 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3203 struct kvm_xsave *guest_xsave)
3204 {
3205 if (cpu_has_xsave) {
3206 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3207 fill_xsave((u8 *) guest_xsave->region, vcpu);
3208 } else {
3209 memcpy(guest_xsave->region,
3210 &vcpu->arch.guest_fpu.state->fxsave,
3211 sizeof(struct i387_fxsave_struct));
3212 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3213 XSTATE_FPSSE;
3214 }
3215 }
3216
3217 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3218 struct kvm_xsave *guest_xsave)
3219 {
3220 u64 xstate_bv =
3221 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3222
3223 if (cpu_has_xsave) {
3224 /*
3225 * Here we allow setting states that are not present in
3226 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3227 * with old userspace.
3228 */
3229 if (xstate_bv & ~kvm_supported_xcr0())
3230 return -EINVAL;
3231 load_xsave(vcpu, (u8 *)guest_xsave->region);
3232 } else {
3233 if (xstate_bv & ~XSTATE_FPSSE)
3234 return -EINVAL;
3235 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3236 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3237 }
3238 return 0;
3239 }
3240
3241 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3242 struct kvm_xcrs *guest_xcrs)
3243 {
3244 if (!cpu_has_xsave) {
3245 guest_xcrs->nr_xcrs = 0;
3246 return;
3247 }
3248
3249 guest_xcrs->nr_xcrs = 1;
3250 guest_xcrs->flags = 0;
3251 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3252 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3253 }
3254
3255 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3256 struct kvm_xcrs *guest_xcrs)
3257 {
3258 int i, r = 0;
3259
3260 if (!cpu_has_xsave)
3261 return -EINVAL;
3262
3263 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3264 return -EINVAL;
3265
3266 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3267 /* Only support XCR0 currently */
3268 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3269 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3270 guest_xcrs->xcrs[i].value);
3271 break;
3272 }
3273 if (r)
3274 r = -EINVAL;
3275 return r;
3276 }
3277
3278 /*
3279 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3280 * stopped by the hypervisor. This function will be called from the host only.
3281 * EINVAL is returned when the host attempts to set the flag for a guest that
3282 * does not support pv clocks.
3283 */
3284 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3285 {
3286 if (!vcpu->arch.pv_time_enabled)
3287 return -EINVAL;
3288 vcpu->arch.pvclock_set_guest_stopped_request = true;
3289 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3290 return 0;
3291 }
3292
3293 long kvm_arch_vcpu_ioctl(struct file *filp,
3294 unsigned int ioctl, unsigned long arg)
3295 {
3296 struct kvm_vcpu *vcpu = filp->private_data;
3297 void __user *argp = (void __user *)arg;
3298 int r;
3299 union {
3300 struct kvm_lapic_state *lapic;
3301 struct kvm_xsave *xsave;
3302 struct kvm_xcrs *xcrs;
3303 void *buffer;
3304 } u;
3305
3306 u.buffer = NULL;
3307 switch (ioctl) {
3308 case KVM_GET_LAPIC: {
3309 r = -EINVAL;
3310 if (!vcpu->arch.apic)
3311 goto out;
3312 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3313
3314 r = -ENOMEM;
3315 if (!u.lapic)
3316 goto out;
3317 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3318 if (r)
3319 goto out;
3320 r = -EFAULT;
3321 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3322 goto out;
3323 r = 0;
3324 break;
3325 }
3326 case KVM_SET_LAPIC: {
3327 r = -EINVAL;
3328 if (!vcpu->arch.apic)
3329 goto out;
3330 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3331 if (IS_ERR(u.lapic))
3332 return PTR_ERR(u.lapic);
3333
3334 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3335 break;
3336 }
3337 case KVM_INTERRUPT: {
3338 struct kvm_interrupt irq;
3339
3340 r = -EFAULT;
3341 if (copy_from_user(&irq, argp, sizeof irq))
3342 goto out;
3343 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3344 break;
3345 }
3346 case KVM_NMI: {
3347 r = kvm_vcpu_ioctl_nmi(vcpu);
3348 break;
3349 }
3350 case KVM_SMI: {
3351 r = kvm_vcpu_ioctl_smi(vcpu);
3352 break;
3353 }
3354 case KVM_SET_CPUID: {
3355 struct kvm_cpuid __user *cpuid_arg = argp;
3356 struct kvm_cpuid cpuid;
3357
3358 r = -EFAULT;
3359 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3360 goto out;
3361 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3362 break;
3363 }
3364 case KVM_SET_CPUID2: {
3365 struct kvm_cpuid2 __user *cpuid_arg = argp;
3366 struct kvm_cpuid2 cpuid;
3367
3368 r = -EFAULT;
3369 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3370 goto out;
3371 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3372 cpuid_arg->entries);
3373 break;
3374 }
3375 case KVM_GET_CPUID2: {
3376 struct kvm_cpuid2 __user *cpuid_arg = argp;
3377 struct kvm_cpuid2 cpuid;
3378
3379 r = -EFAULT;
3380 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3381 goto out;
3382 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3383 cpuid_arg->entries);
3384 if (r)
3385 goto out;
3386 r = -EFAULT;
3387 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3388 goto out;
3389 r = 0;
3390 break;
3391 }
3392 case KVM_GET_MSRS:
3393 r = msr_io(vcpu, argp, do_get_msr, 1);
3394 break;
3395 case KVM_SET_MSRS:
3396 r = msr_io(vcpu, argp, do_set_msr, 0);
3397 break;
3398 case KVM_TPR_ACCESS_REPORTING: {
3399 struct kvm_tpr_access_ctl tac;
3400
3401 r = -EFAULT;
3402 if (copy_from_user(&tac, argp, sizeof tac))
3403 goto out;
3404 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3405 if (r)
3406 goto out;
3407 r = -EFAULT;
3408 if (copy_to_user(argp, &tac, sizeof tac))
3409 goto out;
3410 r = 0;
3411 break;
3412 };
3413 case KVM_SET_VAPIC_ADDR: {
3414 struct kvm_vapic_addr va;
3415
3416 r = -EINVAL;
3417 if (!irqchip_in_kernel(vcpu->kvm))
3418 goto out;
3419 r = -EFAULT;
3420 if (copy_from_user(&va, argp, sizeof va))
3421 goto out;
3422 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3423 break;
3424 }
3425 case KVM_X86_SETUP_MCE: {
3426 u64 mcg_cap;
3427
3428 r = -EFAULT;
3429 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3430 goto out;
3431 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3432 break;
3433 }
3434 case KVM_X86_SET_MCE: {
3435 struct kvm_x86_mce mce;
3436
3437 r = -EFAULT;
3438 if (copy_from_user(&mce, argp, sizeof mce))
3439 goto out;
3440 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3441 break;
3442 }
3443 case KVM_GET_VCPU_EVENTS: {
3444 struct kvm_vcpu_events events;
3445
3446 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3447
3448 r = -EFAULT;
3449 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3450 break;
3451 r = 0;
3452 break;
3453 }
3454 case KVM_SET_VCPU_EVENTS: {
3455 struct kvm_vcpu_events events;
3456
3457 r = -EFAULT;
3458 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3459 break;
3460
3461 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3462 break;
3463 }
3464 case KVM_GET_DEBUGREGS: {
3465 struct kvm_debugregs dbgregs;
3466
3467 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3468
3469 r = -EFAULT;
3470 if (copy_to_user(argp, &dbgregs,
3471 sizeof(struct kvm_debugregs)))
3472 break;
3473 r = 0;
3474 break;
3475 }
3476 case KVM_SET_DEBUGREGS: {
3477 struct kvm_debugregs dbgregs;
3478
3479 r = -EFAULT;
3480 if (copy_from_user(&dbgregs, argp,
3481 sizeof(struct kvm_debugregs)))
3482 break;
3483
3484 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3485 break;
3486 }
3487 case KVM_GET_XSAVE: {
3488 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3489 r = -ENOMEM;
3490 if (!u.xsave)
3491 break;
3492
3493 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3494
3495 r = -EFAULT;
3496 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3497 break;
3498 r = 0;
3499 break;
3500 }
3501 case KVM_SET_XSAVE: {
3502 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3503 if (IS_ERR(u.xsave))
3504 return PTR_ERR(u.xsave);
3505
3506 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3507 break;
3508 }
3509 case KVM_GET_XCRS: {
3510 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3511 r = -ENOMEM;
3512 if (!u.xcrs)
3513 break;
3514
3515 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3516
3517 r = -EFAULT;
3518 if (copy_to_user(argp, u.xcrs,
3519 sizeof(struct kvm_xcrs)))
3520 break;
3521 r = 0;
3522 break;
3523 }
3524 case KVM_SET_XCRS: {
3525 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3526 if (IS_ERR(u.xcrs))
3527 return PTR_ERR(u.xcrs);
3528
3529 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3530 break;
3531 }
3532 case KVM_SET_TSC_KHZ: {
3533 u32 user_tsc_khz;
3534
3535 r = -EINVAL;
3536 user_tsc_khz = (u32)arg;
3537
3538 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3539 goto out;
3540
3541 if (user_tsc_khz == 0)
3542 user_tsc_khz = tsc_khz;
3543
3544 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3545
3546 r = 0;
3547 goto out;
3548 }
3549 case KVM_GET_TSC_KHZ: {
3550 r = vcpu->arch.virtual_tsc_khz;
3551 goto out;
3552 }
3553 case KVM_KVMCLOCK_CTRL: {
3554 r = kvm_set_guest_paused(vcpu);
3555 goto out;
3556 }
3557 default:
3558 r = -EINVAL;
3559 }
3560 out:
3561 kfree(u.buffer);
3562 return r;
3563 }
3564
3565 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3566 {
3567 return VM_FAULT_SIGBUS;
3568 }
3569
3570 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3571 {
3572 int ret;
3573
3574 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3575 return -EINVAL;
3576 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3577 return ret;
3578 }
3579
3580 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3581 u64 ident_addr)
3582 {
3583 kvm->arch.ept_identity_map_addr = ident_addr;
3584 return 0;
3585 }
3586
3587 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3588 u32 kvm_nr_mmu_pages)
3589 {
3590 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3591 return -EINVAL;
3592
3593 mutex_lock(&kvm->slots_lock);
3594
3595 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3596 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3597
3598 mutex_unlock(&kvm->slots_lock);
3599 return 0;
3600 }
3601
3602 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3603 {
3604 return kvm->arch.n_max_mmu_pages;
3605 }
3606
3607 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3608 {
3609 int r;
3610
3611 r = 0;
3612 switch (chip->chip_id) {
3613 case KVM_IRQCHIP_PIC_MASTER:
3614 memcpy(&chip->chip.pic,
3615 &pic_irqchip(kvm)->pics[0],
3616 sizeof(struct kvm_pic_state));
3617 break;
3618 case KVM_IRQCHIP_PIC_SLAVE:
3619 memcpy(&chip->chip.pic,
3620 &pic_irqchip(kvm)->pics[1],
3621 sizeof(struct kvm_pic_state));
3622 break;
3623 case KVM_IRQCHIP_IOAPIC:
3624 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3625 break;
3626 default:
3627 r = -EINVAL;
3628 break;
3629 }
3630 return r;
3631 }
3632
3633 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3634 {
3635 int r;
3636
3637 r = 0;
3638 switch (chip->chip_id) {
3639 case KVM_IRQCHIP_PIC_MASTER:
3640 spin_lock(&pic_irqchip(kvm)->lock);
3641 memcpy(&pic_irqchip(kvm)->pics[0],
3642 &chip->chip.pic,
3643 sizeof(struct kvm_pic_state));
3644 spin_unlock(&pic_irqchip(kvm)->lock);
3645 break;
3646 case KVM_IRQCHIP_PIC_SLAVE:
3647 spin_lock(&pic_irqchip(kvm)->lock);
3648 memcpy(&pic_irqchip(kvm)->pics[1],
3649 &chip->chip.pic,
3650 sizeof(struct kvm_pic_state));
3651 spin_unlock(&pic_irqchip(kvm)->lock);
3652 break;
3653 case KVM_IRQCHIP_IOAPIC:
3654 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3655 break;
3656 default:
3657 r = -EINVAL;
3658 break;
3659 }
3660 kvm_pic_update_irq(pic_irqchip(kvm));
3661 return r;
3662 }
3663
3664 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3665 {
3666 int r = 0;
3667
3668 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3669 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3670 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3671 return r;
3672 }
3673
3674 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3675 {
3676 int r = 0;
3677
3678 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3679 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3680 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3681 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3682 return r;
3683 }
3684
3685 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3686 {
3687 int r = 0;
3688
3689 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3690 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3691 sizeof(ps->channels));
3692 ps->flags = kvm->arch.vpit->pit_state.flags;
3693 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3694 memset(&ps->reserved, 0, sizeof(ps->reserved));
3695 return r;
3696 }
3697
3698 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3699 {
3700 int r = 0, start = 0;
3701 u32 prev_legacy, cur_legacy;
3702 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3703 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3704 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3705 if (!prev_legacy && cur_legacy)
3706 start = 1;
3707 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3708 sizeof(kvm->arch.vpit->pit_state.channels));
3709 kvm->arch.vpit->pit_state.flags = ps->flags;
3710 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3711 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3712 return r;
3713 }
3714
3715 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3716 struct kvm_reinject_control *control)
3717 {
3718 if (!kvm->arch.vpit)
3719 return -ENXIO;
3720 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3721 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3722 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3723 return 0;
3724 }
3725
3726 /**
3727 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3728 * @kvm: kvm instance
3729 * @log: slot id and address to which we copy the log
3730 *
3731 * Steps 1-4 below provide general overview of dirty page logging. See
3732 * kvm_get_dirty_log_protect() function description for additional details.
3733 *
3734 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3735 * always flush the TLB (step 4) even if previous step failed and the dirty
3736 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3737 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3738 * writes will be marked dirty for next log read.
3739 *
3740 * 1. Take a snapshot of the bit and clear it if needed.
3741 * 2. Write protect the corresponding page.
3742 * 3. Copy the snapshot to the userspace.
3743 * 4. Flush TLB's if needed.
3744 */
3745 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3746 {
3747 bool is_dirty = false;
3748 int r;
3749
3750 mutex_lock(&kvm->slots_lock);
3751
3752 /*
3753 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3754 */
3755 if (kvm_x86_ops->flush_log_dirty)
3756 kvm_x86_ops->flush_log_dirty(kvm);
3757
3758 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3759
3760 /*
3761 * All the TLBs can be flushed out of mmu lock, see the comments in
3762 * kvm_mmu_slot_remove_write_access().
3763 */
3764 lockdep_assert_held(&kvm->slots_lock);
3765 if (is_dirty)
3766 kvm_flush_remote_tlbs(kvm);
3767
3768 mutex_unlock(&kvm->slots_lock);
3769 return r;
3770 }
3771
3772 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3773 bool line_status)
3774 {
3775 if (!irqchip_in_kernel(kvm))
3776 return -ENXIO;
3777
3778 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3779 irq_event->irq, irq_event->level,
3780 line_status);
3781 return 0;
3782 }
3783
3784 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3785 struct kvm_enable_cap *cap)
3786 {
3787 int r;
3788
3789 if (cap->flags)
3790 return -EINVAL;
3791
3792 switch (cap->cap) {
3793 case KVM_CAP_DISABLE_QUIRKS:
3794 kvm->arch.disabled_quirks = cap->args[0];
3795 r = 0;
3796 break;
3797 default:
3798 r = -EINVAL;
3799 break;
3800 }
3801 return r;
3802 }
3803
3804 long kvm_arch_vm_ioctl(struct file *filp,
3805 unsigned int ioctl, unsigned long arg)
3806 {
3807 struct kvm *kvm = filp->private_data;
3808 void __user *argp = (void __user *)arg;
3809 int r = -ENOTTY;
3810 /*
3811 * This union makes it completely explicit to gcc-3.x
3812 * that these two variables' stack usage should be
3813 * combined, not added together.
3814 */
3815 union {
3816 struct kvm_pit_state ps;
3817 struct kvm_pit_state2 ps2;
3818 struct kvm_pit_config pit_config;
3819 } u;
3820
3821 switch (ioctl) {
3822 case KVM_SET_TSS_ADDR:
3823 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3824 break;
3825 case KVM_SET_IDENTITY_MAP_ADDR: {
3826 u64 ident_addr;
3827
3828 r = -EFAULT;
3829 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3830 goto out;
3831 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3832 break;
3833 }
3834 case KVM_SET_NR_MMU_PAGES:
3835 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3836 break;
3837 case KVM_GET_NR_MMU_PAGES:
3838 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3839 break;
3840 case KVM_CREATE_IRQCHIP: {
3841 struct kvm_pic *vpic;
3842
3843 mutex_lock(&kvm->lock);
3844 r = -EEXIST;
3845 if (kvm->arch.vpic)
3846 goto create_irqchip_unlock;
3847 r = -EINVAL;
3848 if (atomic_read(&kvm->online_vcpus))
3849 goto create_irqchip_unlock;
3850 r = -ENOMEM;
3851 vpic = kvm_create_pic(kvm);
3852 if (vpic) {
3853 r = kvm_ioapic_init(kvm);
3854 if (r) {
3855 mutex_lock(&kvm->slots_lock);
3856 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3857 &vpic->dev_master);
3858 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3859 &vpic->dev_slave);
3860 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3861 &vpic->dev_eclr);
3862 mutex_unlock(&kvm->slots_lock);
3863 kfree(vpic);
3864 goto create_irqchip_unlock;
3865 }
3866 } else
3867 goto create_irqchip_unlock;
3868 smp_wmb();
3869 kvm->arch.vpic = vpic;
3870 smp_wmb();
3871 r = kvm_setup_default_irq_routing(kvm);
3872 if (r) {
3873 mutex_lock(&kvm->slots_lock);
3874 mutex_lock(&kvm->irq_lock);
3875 kvm_ioapic_destroy(kvm);
3876 kvm_destroy_pic(kvm);
3877 mutex_unlock(&kvm->irq_lock);
3878 mutex_unlock(&kvm->slots_lock);
3879 }
3880 create_irqchip_unlock:
3881 mutex_unlock(&kvm->lock);
3882 break;
3883 }
3884 case KVM_CREATE_PIT:
3885 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3886 goto create_pit;
3887 case KVM_CREATE_PIT2:
3888 r = -EFAULT;
3889 if (copy_from_user(&u.pit_config, argp,
3890 sizeof(struct kvm_pit_config)))
3891 goto out;
3892 create_pit:
3893 mutex_lock(&kvm->slots_lock);
3894 r = -EEXIST;
3895 if (kvm->arch.vpit)
3896 goto create_pit_unlock;
3897 r = -ENOMEM;
3898 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3899 if (kvm->arch.vpit)
3900 r = 0;
3901 create_pit_unlock:
3902 mutex_unlock(&kvm->slots_lock);
3903 break;
3904 case KVM_GET_IRQCHIP: {
3905 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3906 struct kvm_irqchip *chip;
3907
3908 chip = memdup_user(argp, sizeof(*chip));
3909 if (IS_ERR(chip)) {
3910 r = PTR_ERR(chip);
3911 goto out;
3912 }
3913
3914 r = -ENXIO;
3915 if (!irqchip_in_kernel(kvm))
3916 goto get_irqchip_out;
3917 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3918 if (r)
3919 goto get_irqchip_out;
3920 r = -EFAULT;
3921 if (copy_to_user(argp, chip, sizeof *chip))
3922 goto get_irqchip_out;
3923 r = 0;
3924 get_irqchip_out:
3925 kfree(chip);
3926 break;
3927 }
3928 case KVM_SET_IRQCHIP: {
3929 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3930 struct kvm_irqchip *chip;
3931
3932 chip = memdup_user(argp, sizeof(*chip));
3933 if (IS_ERR(chip)) {
3934 r = PTR_ERR(chip);
3935 goto out;
3936 }
3937
3938 r = -ENXIO;
3939 if (!irqchip_in_kernel(kvm))
3940 goto set_irqchip_out;
3941 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3942 if (r)
3943 goto set_irqchip_out;
3944 r = 0;
3945 set_irqchip_out:
3946 kfree(chip);
3947 break;
3948 }
3949 case KVM_GET_PIT: {
3950 r = -EFAULT;
3951 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3952 goto out;
3953 r = -ENXIO;
3954 if (!kvm->arch.vpit)
3955 goto out;
3956 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3957 if (r)
3958 goto out;
3959 r = -EFAULT;
3960 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3961 goto out;
3962 r = 0;
3963 break;
3964 }
3965 case KVM_SET_PIT: {
3966 r = -EFAULT;
3967 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3968 goto out;
3969 r = -ENXIO;
3970 if (!kvm->arch.vpit)
3971 goto out;
3972 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3973 break;
3974 }
3975 case KVM_GET_PIT2: {
3976 r = -ENXIO;
3977 if (!kvm->arch.vpit)
3978 goto out;
3979 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3980 if (r)
3981 goto out;
3982 r = -EFAULT;
3983 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3984 goto out;
3985 r = 0;
3986 break;
3987 }
3988 case KVM_SET_PIT2: {
3989 r = -EFAULT;
3990 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3991 goto out;
3992 r = -ENXIO;
3993 if (!kvm->arch.vpit)
3994 goto out;
3995 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3996 break;
3997 }
3998 case KVM_REINJECT_CONTROL: {
3999 struct kvm_reinject_control control;
4000 r = -EFAULT;
4001 if (copy_from_user(&control, argp, sizeof(control)))
4002 goto out;
4003 r = kvm_vm_ioctl_reinject(kvm, &control);
4004 break;
4005 }
4006 case KVM_XEN_HVM_CONFIG: {
4007 r = -EFAULT;
4008 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4009 sizeof(struct kvm_xen_hvm_config)))
4010 goto out;
4011 r = -EINVAL;
4012 if (kvm->arch.xen_hvm_config.flags)
4013 goto out;
4014 r = 0;
4015 break;
4016 }
4017 case KVM_SET_CLOCK: {
4018 struct kvm_clock_data user_ns;
4019 u64 now_ns;
4020 s64 delta;
4021
4022 r = -EFAULT;
4023 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4024 goto out;
4025
4026 r = -EINVAL;
4027 if (user_ns.flags)
4028 goto out;
4029
4030 r = 0;
4031 local_irq_disable();
4032 now_ns = get_kernel_ns();
4033 delta = user_ns.clock - now_ns;
4034 local_irq_enable();
4035 kvm->arch.kvmclock_offset = delta;
4036 kvm_gen_update_masterclock(kvm);
4037 break;
4038 }
4039 case KVM_GET_CLOCK: {
4040 struct kvm_clock_data user_ns;
4041 u64 now_ns;
4042
4043 local_irq_disable();
4044 now_ns = get_kernel_ns();
4045 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4046 local_irq_enable();
4047 user_ns.flags = 0;
4048 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4049
4050 r = -EFAULT;
4051 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4052 goto out;
4053 r = 0;
4054 break;
4055 }
4056 case KVM_ENABLE_CAP: {
4057 struct kvm_enable_cap cap;
4058
4059 r = -EFAULT;
4060 if (copy_from_user(&cap, argp, sizeof(cap)))
4061 goto out;
4062 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4063 break;
4064 }
4065 default:
4066 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4067 }
4068 out:
4069 return r;
4070 }
4071
4072 static void kvm_init_msr_list(void)
4073 {
4074 u32 dummy[2];
4075 unsigned i, j;
4076
4077 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4078 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4079 continue;
4080
4081 /*
4082 * Even MSRs that are valid in the host may not be exposed
4083 * to the guests in some cases. We could work around this
4084 * in VMX with the generic MSR save/load machinery, but it
4085 * is not really worthwhile since it will really only
4086 * happen with nested virtualization.
4087 */
4088 switch (msrs_to_save[i]) {
4089 case MSR_IA32_BNDCFGS:
4090 if (!kvm_x86_ops->mpx_supported())
4091 continue;
4092 break;
4093 default:
4094 break;
4095 }
4096
4097 if (j < i)
4098 msrs_to_save[j] = msrs_to_save[i];
4099 j++;
4100 }
4101 num_msrs_to_save = j;
4102
4103 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4104 switch (emulated_msrs[i]) {
4105 case MSR_IA32_SMBASE:
4106 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4107 continue;
4108 break;
4109 default:
4110 break;
4111 }
4112
4113 if (j < i)
4114 emulated_msrs[j] = emulated_msrs[i];
4115 j++;
4116 }
4117 num_emulated_msrs = j;
4118 }
4119
4120 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4121 const void *v)
4122 {
4123 int handled = 0;
4124 int n;
4125
4126 do {
4127 n = min(len, 8);
4128 if (!(vcpu->arch.apic &&
4129 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4130 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4131 break;
4132 handled += n;
4133 addr += n;
4134 len -= n;
4135 v += n;
4136 } while (len);
4137
4138 return handled;
4139 }
4140
4141 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4142 {
4143 int handled = 0;
4144 int n;
4145
4146 do {
4147 n = min(len, 8);
4148 if (!(vcpu->arch.apic &&
4149 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4150 addr, n, v))
4151 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4152 break;
4153 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4154 handled += n;
4155 addr += n;
4156 len -= n;
4157 v += n;
4158 } while (len);
4159
4160 return handled;
4161 }
4162
4163 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4164 struct kvm_segment *var, int seg)
4165 {
4166 kvm_x86_ops->set_segment(vcpu, var, seg);
4167 }
4168
4169 void kvm_get_segment(struct kvm_vcpu *vcpu,
4170 struct kvm_segment *var, int seg)
4171 {
4172 kvm_x86_ops->get_segment(vcpu, var, seg);
4173 }
4174
4175 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4176 struct x86_exception *exception)
4177 {
4178 gpa_t t_gpa;
4179
4180 BUG_ON(!mmu_is_nested(vcpu));
4181
4182 /* NPT walks are always user-walks */
4183 access |= PFERR_USER_MASK;
4184 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4185
4186 return t_gpa;
4187 }
4188
4189 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4190 struct x86_exception *exception)
4191 {
4192 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195
4196 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4197 struct x86_exception *exception)
4198 {
4199 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4200 access |= PFERR_FETCH_MASK;
4201 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4202 }
4203
4204 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4205 struct x86_exception *exception)
4206 {
4207 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208 access |= PFERR_WRITE_MASK;
4209 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4210 }
4211
4212 /* uses this to access any guest's mapped memory without checking CPL */
4213 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4214 struct x86_exception *exception)
4215 {
4216 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4217 }
4218
4219 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4220 struct kvm_vcpu *vcpu, u32 access,
4221 struct x86_exception *exception)
4222 {
4223 void *data = val;
4224 int r = X86EMUL_CONTINUE;
4225
4226 while (bytes) {
4227 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4228 exception);
4229 unsigned offset = addr & (PAGE_SIZE-1);
4230 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4231 int ret;
4232
4233 if (gpa == UNMAPPED_GVA)
4234 return X86EMUL_PROPAGATE_FAULT;
4235 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4236 offset, toread);
4237 if (ret < 0) {
4238 r = X86EMUL_IO_NEEDED;
4239 goto out;
4240 }
4241
4242 bytes -= toread;
4243 data += toread;
4244 addr += toread;
4245 }
4246 out:
4247 return r;
4248 }
4249
4250 /* used for instruction fetching */
4251 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4252 gva_t addr, void *val, unsigned int bytes,
4253 struct x86_exception *exception)
4254 {
4255 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4256 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4257 unsigned offset;
4258 int ret;
4259
4260 /* Inline kvm_read_guest_virt_helper for speed. */
4261 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4262 exception);
4263 if (unlikely(gpa == UNMAPPED_GVA))
4264 return X86EMUL_PROPAGATE_FAULT;
4265
4266 offset = addr & (PAGE_SIZE-1);
4267 if (WARN_ON(offset + bytes > PAGE_SIZE))
4268 bytes = (unsigned)PAGE_SIZE - offset;
4269 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4270 offset, bytes);
4271 if (unlikely(ret < 0))
4272 return X86EMUL_IO_NEEDED;
4273
4274 return X86EMUL_CONTINUE;
4275 }
4276
4277 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4278 gva_t addr, void *val, unsigned int bytes,
4279 struct x86_exception *exception)
4280 {
4281 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4283
4284 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4285 exception);
4286 }
4287 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4288
4289 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4290 gva_t addr, void *val, unsigned int bytes,
4291 struct x86_exception *exception)
4292 {
4293 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4295 }
4296
4297 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4298 gva_t addr, void *val,
4299 unsigned int bytes,
4300 struct x86_exception *exception)
4301 {
4302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4303 void *data = val;
4304 int r = X86EMUL_CONTINUE;
4305
4306 while (bytes) {
4307 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4308 PFERR_WRITE_MASK,
4309 exception);
4310 unsigned offset = addr & (PAGE_SIZE-1);
4311 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4312 int ret;
4313
4314 if (gpa == UNMAPPED_GVA)
4315 return X86EMUL_PROPAGATE_FAULT;
4316 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4317 if (ret < 0) {
4318 r = X86EMUL_IO_NEEDED;
4319 goto out;
4320 }
4321
4322 bytes -= towrite;
4323 data += towrite;
4324 addr += towrite;
4325 }
4326 out:
4327 return r;
4328 }
4329 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4330
4331 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4332 gpa_t *gpa, struct x86_exception *exception,
4333 bool write)
4334 {
4335 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4336 | (write ? PFERR_WRITE_MASK : 0);
4337
4338 if (vcpu_match_mmio_gva(vcpu, gva)
4339 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4340 vcpu->arch.access, access)) {
4341 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4342 (gva & (PAGE_SIZE - 1));
4343 trace_vcpu_match_mmio(gva, *gpa, write, false);
4344 return 1;
4345 }
4346
4347 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4348
4349 if (*gpa == UNMAPPED_GVA)
4350 return -1;
4351
4352 /* For APIC access vmexit */
4353 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4354 return 1;
4355
4356 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4357 trace_vcpu_match_mmio(gva, *gpa, write, true);
4358 return 1;
4359 }
4360
4361 return 0;
4362 }
4363
4364 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4365 const void *val, int bytes)
4366 {
4367 int ret;
4368
4369 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4370 if (ret < 0)
4371 return 0;
4372 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4373 return 1;
4374 }
4375
4376 struct read_write_emulator_ops {
4377 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4378 int bytes);
4379 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380 void *val, int bytes);
4381 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 int bytes, void *val);
4383 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 void *val, int bytes);
4385 bool write;
4386 };
4387
4388 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4389 {
4390 if (vcpu->mmio_read_completed) {
4391 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4392 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4393 vcpu->mmio_read_completed = 0;
4394 return 1;
4395 }
4396
4397 return 0;
4398 }
4399
4400 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4401 void *val, int bytes)
4402 {
4403 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4404 }
4405
4406 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 void *val, int bytes)
4408 {
4409 return emulator_write_phys(vcpu, gpa, val, bytes);
4410 }
4411
4412 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4413 {
4414 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4415 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4416 }
4417
4418 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4419 void *val, int bytes)
4420 {
4421 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4422 return X86EMUL_IO_NEEDED;
4423 }
4424
4425 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426 void *val, int bytes)
4427 {
4428 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4429
4430 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4431 return X86EMUL_CONTINUE;
4432 }
4433
4434 static const struct read_write_emulator_ops read_emultor = {
4435 .read_write_prepare = read_prepare,
4436 .read_write_emulate = read_emulate,
4437 .read_write_mmio = vcpu_mmio_read,
4438 .read_write_exit_mmio = read_exit_mmio,
4439 };
4440
4441 static const struct read_write_emulator_ops write_emultor = {
4442 .read_write_emulate = write_emulate,
4443 .read_write_mmio = write_mmio,
4444 .read_write_exit_mmio = write_exit_mmio,
4445 .write = true,
4446 };
4447
4448 static int emulator_read_write_onepage(unsigned long addr, void *val,
4449 unsigned int bytes,
4450 struct x86_exception *exception,
4451 struct kvm_vcpu *vcpu,
4452 const struct read_write_emulator_ops *ops)
4453 {
4454 gpa_t gpa;
4455 int handled, ret;
4456 bool write = ops->write;
4457 struct kvm_mmio_fragment *frag;
4458
4459 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4460
4461 if (ret < 0)
4462 return X86EMUL_PROPAGATE_FAULT;
4463
4464 /* For APIC access vmexit */
4465 if (ret)
4466 goto mmio;
4467
4468 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4469 return X86EMUL_CONTINUE;
4470
4471 mmio:
4472 /*
4473 * Is this MMIO handled locally?
4474 */
4475 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4476 if (handled == bytes)
4477 return X86EMUL_CONTINUE;
4478
4479 gpa += handled;
4480 bytes -= handled;
4481 val += handled;
4482
4483 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4484 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4485 frag->gpa = gpa;
4486 frag->data = val;
4487 frag->len = bytes;
4488 return X86EMUL_CONTINUE;
4489 }
4490
4491 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4492 unsigned long addr,
4493 void *val, unsigned int bytes,
4494 struct x86_exception *exception,
4495 const struct read_write_emulator_ops *ops)
4496 {
4497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4498 gpa_t gpa;
4499 int rc;
4500
4501 if (ops->read_write_prepare &&
4502 ops->read_write_prepare(vcpu, val, bytes))
4503 return X86EMUL_CONTINUE;
4504
4505 vcpu->mmio_nr_fragments = 0;
4506
4507 /* Crossing a page boundary? */
4508 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4509 int now;
4510
4511 now = -addr & ~PAGE_MASK;
4512 rc = emulator_read_write_onepage(addr, val, now, exception,
4513 vcpu, ops);
4514
4515 if (rc != X86EMUL_CONTINUE)
4516 return rc;
4517 addr += now;
4518 if (ctxt->mode != X86EMUL_MODE_PROT64)
4519 addr = (u32)addr;
4520 val += now;
4521 bytes -= now;
4522 }
4523
4524 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4525 vcpu, ops);
4526 if (rc != X86EMUL_CONTINUE)
4527 return rc;
4528
4529 if (!vcpu->mmio_nr_fragments)
4530 return rc;
4531
4532 gpa = vcpu->mmio_fragments[0].gpa;
4533
4534 vcpu->mmio_needed = 1;
4535 vcpu->mmio_cur_fragment = 0;
4536
4537 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4538 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4539 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4540 vcpu->run->mmio.phys_addr = gpa;
4541
4542 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4543 }
4544
4545 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4546 unsigned long addr,
4547 void *val,
4548 unsigned int bytes,
4549 struct x86_exception *exception)
4550 {
4551 return emulator_read_write(ctxt, addr, val, bytes,
4552 exception, &read_emultor);
4553 }
4554
4555 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4556 unsigned long addr,
4557 const void *val,
4558 unsigned int bytes,
4559 struct x86_exception *exception)
4560 {
4561 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4562 exception, &write_emultor);
4563 }
4564
4565 #define CMPXCHG_TYPE(t, ptr, old, new) \
4566 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4567
4568 #ifdef CONFIG_X86_64
4569 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4570 #else
4571 # define CMPXCHG64(ptr, old, new) \
4572 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4573 #endif
4574
4575 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4576 unsigned long addr,
4577 const void *old,
4578 const void *new,
4579 unsigned int bytes,
4580 struct x86_exception *exception)
4581 {
4582 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4583 gpa_t gpa;
4584 struct page *page;
4585 char *kaddr;
4586 bool exchanged;
4587
4588 /* guests cmpxchg8b have to be emulated atomically */
4589 if (bytes > 8 || (bytes & (bytes - 1)))
4590 goto emul_write;
4591
4592 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4593
4594 if (gpa == UNMAPPED_GVA ||
4595 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4596 goto emul_write;
4597
4598 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4599 goto emul_write;
4600
4601 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4602 if (is_error_page(page))
4603 goto emul_write;
4604
4605 kaddr = kmap_atomic(page);
4606 kaddr += offset_in_page(gpa);
4607 switch (bytes) {
4608 case 1:
4609 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4610 break;
4611 case 2:
4612 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4613 break;
4614 case 4:
4615 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4616 break;
4617 case 8:
4618 exchanged = CMPXCHG64(kaddr, old, new);
4619 break;
4620 default:
4621 BUG();
4622 }
4623 kunmap_atomic(kaddr);
4624 kvm_release_page_dirty(page);
4625
4626 if (!exchanged)
4627 return X86EMUL_CMPXCHG_FAILED;
4628
4629 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4630 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4631
4632 return X86EMUL_CONTINUE;
4633
4634 emul_write:
4635 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4636
4637 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4638 }
4639
4640 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4641 {
4642 /* TODO: String I/O for in kernel device */
4643 int r;
4644
4645 if (vcpu->arch.pio.in)
4646 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4647 vcpu->arch.pio.size, pd);
4648 else
4649 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4650 vcpu->arch.pio.port, vcpu->arch.pio.size,
4651 pd);
4652 return r;
4653 }
4654
4655 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4656 unsigned short port, void *val,
4657 unsigned int count, bool in)
4658 {
4659 vcpu->arch.pio.port = port;
4660 vcpu->arch.pio.in = in;
4661 vcpu->arch.pio.count = count;
4662 vcpu->arch.pio.size = size;
4663
4664 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4665 vcpu->arch.pio.count = 0;
4666 return 1;
4667 }
4668
4669 vcpu->run->exit_reason = KVM_EXIT_IO;
4670 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4671 vcpu->run->io.size = size;
4672 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4673 vcpu->run->io.count = count;
4674 vcpu->run->io.port = port;
4675
4676 return 0;
4677 }
4678
4679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4680 int size, unsigned short port, void *val,
4681 unsigned int count)
4682 {
4683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4684 int ret;
4685
4686 if (vcpu->arch.pio.count)
4687 goto data_avail;
4688
4689 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4690 if (ret) {
4691 data_avail:
4692 memcpy(val, vcpu->arch.pio_data, size * count);
4693 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4694 vcpu->arch.pio.count = 0;
4695 return 1;
4696 }
4697
4698 return 0;
4699 }
4700
4701 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4702 int size, unsigned short port,
4703 const void *val, unsigned int count)
4704 {
4705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706
4707 memcpy(vcpu->arch.pio_data, val, size * count);
4708 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4709 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4710 }
4711
4712 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4713 {
4714 return kvm_x86_ops->get_segment_base(vcpu, seg);
4715 }
4716
4717 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4718 {
4719 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4720 }
4721
4722 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4723 {
4724 if (!need_emulate_wbinvd(vcpu))
4725 return X86EMUL_CONTINUE;
4726
4727 if (kvm_x86_ops->has_wbinvd_exit()) {
4728 int cpu = get_cpu();
4729
4730 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4731 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4732 wbinvd_ipi, NULL, 1);
4733 put_cpu();
4734 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4735 } else
4736 wbinvd();
4737 return X86EMUL_CONTINUE;
4738 }
4739
4740 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4741 {
4742 kvm_x86_ops->skip_emulated_instruction(vcpu);
4743 return kvm_emulate_wbinvd_noskip(vcpu);
4744 }
4745 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4746
4747
4748
4749 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4750 {
4751 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4752 }
4753
4754 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4755 unsigned long *dest)
4756 {
4757 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4758 }
4759
4760 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4761 unsigned long value)
4762 {
4763
4764 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4765 }
4766
4767 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4768 {
4769 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4770 }
4771
4772 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4773 {
4774 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775 unsigned long value;
4776
4777 switch (cr) {
4778 case 0:
4779 value = kvm_read_cr0(vcpu);
4780 break;
4781 case 2:
4782 value = vcpu->arch.cr2;
4783 break;
4784 case 3:
4785 value = kvm_read_cr3(vcpu);
4786 break;
4787 case 4:
4788 value = kvm_read_cr4(vcpu);
4789 break;
4790 case 8:
4791 value = kvm_get_cr8(vcpu);
4792 break;
4793 default:
4794 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4795 return 0;
4796 }
4797
4798 return value;
4799 }
4800
4801 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4802 {
4803 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4804 int res = 0;
4805
4806 switch (cr) {
4807 case 0:
4808 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4809 break;
4810 case 2:
4811 vcpu->arch.cr2 = val;
4812 break;
4813 case 3:
4814 res = kvm_set_cr3(vcpu, val);
4815 break;
4816 case 4:
4817 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4818 break;
4819 case 8:
4820 res = kvm_set_cr8(vcpu, val);
4821 break;
4822 default:
4823 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4824 res = -1;
4825 }
4826
4827 return res;
4828 }
4829
4830 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4831 {
4832 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4833 }
4834
4835 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4836 {
4837 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4838 }
4839
4840 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4841 {
4842 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4843 }
4844
4845 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4846 {
4847 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4848 }
4849
4850 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4851 {
4852 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4853 }
4854
4855 static unsigned long emulator_get_cached_segment_base(
4856 struct x86_emulate_ctxt *ctxt, int seg)
4857 {
4858 return get_segment_base(emul_to_vcpu(ctxt), seg);
4859 }
4860
4861 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4862 struct desc_struct *desc, u32 *base3,
4863 int seg)
4864 {
4865 struct kvm_segment var;
4866
4867 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4868 *selector = var.selector;
4869
4870 if (var.unusable) {
4871 memset(desc, 0, sizeof(*desc));
4872 return false;
4873 }
4874
4875 if (var.g)
4876 var.limit >>= 12;
4877 set_desc_limit(desc, var.limit);
4878 set_desc_base(desc, (unsigned long)var.base);
4879 #ifdef CONFIG_X86_64
4880 if (base3)
4881 *base3 = var.base >> 32;
4882 #endif
4883 desc->type = var.type;
4884 desc->s = var.s;
4885 desc->dpl = var.dpl;
4886 desc->p = var.present;
4887 desc->avl = var.avl;
4888 desc->l = var.l;
4889 desc->d = var.db;
4890 desc->g = var.g;
4891
4892 return true;
4893 }
4894
4895 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4896 struct desc_struct *desc, u32 base3,
4897 int seg)
4898 {
4899 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4900 struct kvm_segment var;
4901
4902 var.selector = selector;
4903 var.base = get_desc_base(desc);
4904 #ifdef CONFIG_X86_64
4905 var.base |= ((u64)base3) << 32;
4906 #endif
4907 var.limit = get_desc_limit(desc);
4908 if (desc->g)
4909 var.limit = (var.limit << 12) | 0xfff;
4910 var.type = desc->type;
4911 var.dpl = desc->dpl;
4912 var.db = desc->d;
4913 var.s = desc->s;
4914 var.l = desc->l;
4915 var.g = desc->g;
4916 var.avl = desc->avl;
4917 var.present = desc->p;
4918 var.unusable = !var.present;
4919 var.padding = 0;
4920
4921 kvm_set_segment(vcpu, &var, seg);
4922 return;
4923 }
4924
4925 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4926 u32 msr_index, u64 *pdata)
4927 {
4928 struct msr_data msr;
4929 int r;
4930
4931 msr.index = msr_index;
4932 msr.host_initiated = false;
4933 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4934 if (r)
4935 return r;
4936
4937 *pdata = msr.data;
4938 return 0;
4939 }
4940
4941 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4942 u32 msr_index, u64 data)
4943 {
4944 struct msr_data msr;
4945
4946 msr.data = data;
4947 msr.index = msr_index;
4948 msr.host_initiated = false;
4949 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4950 }
4951
4952 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4953 {
4954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4955
4956 return vcpu->arch.smbase;
4957 }
4958
4959 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4960 {
4961 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4962
4963 vcpu->arch.smbase = smbase;
4964 }
4965
4966 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4967 u32 pmc)
4968 {
4969 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4970 }
4971
4972 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4973 u32 pmc, u64 *pdata)
4974 {
4975 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4976 }
4977
4978 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4979 {
4980 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4981 }
4982
4983 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4984 {
4985 preempt_disable();
4986 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4987 /*
4988 * CR0.TS may reference the host fpu state, not the guest fpu state,
4989 * so it may be clear at this point.
4990 */
4991 clts();
4992 }
4993
4994 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4995 {
4996 preempt_enable();
4997 }
4998
4999 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5000 struct x86_instruction_info *info,
5001 enum x86_intercept_stage stage)
5002 {
5003 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5004 }
5005
5006 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5007 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5008 {
5009 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5010 }
5011
5012 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5013 {
5014 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5015 }
5016
5017 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5018 {
5019 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5020 }
5021
5022 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5023 {
5024 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5025 }
5026
5027 static const struct x86_emulate_ops emulate_ops = {
5028 .read_gpr = emulator_read_gpr,
5029 .write_gpr = emulator_write_gpr,
5030 .read_std = kvm_read_guest_virt_system,
5031 .write_std = kvm_write_guest_virt_system,
5032 .fetch = kvm_fetch_guest_virt,
5033 .read_emulated = emulator_read_emulated,
5034 .write_emulated = emulator_write_emulated,
5035 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5036 .invlpg = emulator_invlpg,
5037 .pio_in_emulated = emulator_pio_in_emulated,
5038 .pio_out_emulated = emulator_pio_out_emulated,
5039 .get_segment = emulator_get_segment,
5040 .set_segment = emulator_set_segment,
5041 .get_cached_segment_base = emulator_get_cached_segment_base,
5042 .get_gdt = emulator_get_gdt,
5043 .get_idt = emulator_get_idt,
5044 .set_gdt = emulator_set_gdt,
5045 .set_idt = emulator_set_idt,
5046 .get_cr = emulator_get_cr,
5047 .set_cr = emulator_set_cr,
5048 .cpl = emulator_get_cpl,
5049 .get_dr = emulator_get_dr,
5050 .set_dr = emulator_set_dr,
5051 .get_smbase = emulator_get_smbase,
5052 .set_smbase = emulator_set_smbase,
5053 .set_msr = emulator_set_msr,
5054 .get_msr = emulator_get_msr,
5055 .check_pmc = emulator_check_pmc,
5056 .read_pmc = emulator_read_pmc,
5057 .halt = emulator_halt,
5058 .wbinvd = emulator_wbinvd,
5059 .fix_hypercall = emulator_fix_hypercall,
5060 .get_fpu = emulator_get_fpu,
5061 .put_fpu = emulator_put_fpu,
5062 .intercept = emulator_intercept,
5063 .get_cpuid = emulator_get_cpuid,
5064 .set_nmi_mask = emulator_set_nmi_mask,
5065 };
5066
5067 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5068 {
5069 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5070 /*
5071 * an sti; sti; sequence only disable interrupts for the first
5072 * instruction. So, if the last instruction, be it emulated or
5073 * not, left the system with the INT_STI flag enabled, it
5074 * means that the last instruction is an sti. We should not
5075 * leave the flag on in this case. The same goes for mov ss
5076 */
5077 if (int_shadow & mask)
5078 mask = 0;
5079 if (unlikely(int_shadow || mask)) {
5080 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5081 if (!mask)
5082 kvm_make_request(KVM_REQ_EVENT, vcpu);
5083 }
5084 }
5085
5086 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5087 {
5088 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5089 if (ctxt->exception.vector == PF_VECTOR)
5090 return kvm_propagate_fault(vcpu, &ctxt->exception);
5091
5092 if (ctxt->exception.error_code_valid)
5093 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5094 ctxt->exception.error_code);
5095 else
5096 kvm_queue_exception(vcpu, ctxt->exception.vector);
5097 return false;
5098 }
5099
5100 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5101 {
5102 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5103 int cs_db, cs_l;
5104
5105 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5106
5107 ctxt->eflags = kvm_get_rflags(vcpu);
5108 ctxt->eip = kvm_rip_read(vcpu);
5109 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5110 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5111 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5112 cs_db ? X86EMUL_MODE_PROT32 :
5113 X86EMUL_MODE_PROT16;
5114 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5115 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5116 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5117 ctxt->emul_flags = vcpu->arch.hflags;
5118
5119 init_decode_cache(ctxt);
5120 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5121 }
5122
5123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5124 {
5125 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5126 int ret;
5127
5128 init_emulate_ctxt(vcpu);
5129
5130 ctxt->op_bytes = 2;
5131 ctxt->ad_bytes = 2;
5132 ctxt->_eip = ctxt->eip + inc_eip;
5133 ret = emulate_int_real(ctxt, irq);
5134
5135 if (ret != X86EMUL_CONTINUE)
5136 return EMULATE_FAIL;
5137
5138 ctxt->eip = ctxt->_eip;
5139 kvm_rip_write(vcpu, ctxt->eip);
5140 kvm_set_rflags(vcpu, ctxt->eflags);
5141
5142 if (irq == NMI_VECTOR)
5143 vcpu->arch.nmi_pending = 0;
5144 else
5145 vcpu->arch.interrupt.pending = false;
5146
5147 return EMULATE_DONE;
5148 }
5149 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5150
5151 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5152 {
5153 int r = EMULATE_DONE;
5154
5155 ++vcpu->stat.insn_emulation_fail;
5156 trace_kvm_emulate_insn_failed(vcpu);
5157 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5158 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5159 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5160 vcpu->run->internal.ndata = 0;
5161 r = EMULATE_FAIL;
5162 }
5163 kvm_queue_exception(vcpu, UD_VECTOR);
5164
5165 return r;
5166 }
5167
5168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5169 bool write_fault_to_shadow_pgtable,
5170 int emulation_type)
5171 {
5172 gpa_t gpa = cr2;
5173 pfn_t pfn;
5174
5175 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5176 return false;
5177
5178 if (!vcpu->arch.mmu.direct_map) {
5179 /*
5180 * Write permission should be allowed since only
5181 * write access need to be emulated.
5182 */
5183 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5184
5185 /*
5186 * If the mapping is invalid in guest, let cpu retry
5187 * it to generate fault.
5188 */
5189 if (gpa == UNMAPPED_GVA)
5190 return true;
5191 }
5192
5193 /*
5194 * Do not retry the unhandleable instruction if it faults on the
5195 * readonly host memory, otherwise it will goto a infinite loop:
5196 * retry instruction -> write #PF -> emulation fail -> retry
5197 * instruction -> ...
5198 */
5199 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5200
5201 /*
5202 * If the instruction failed on the error pfn, it can not be fixed,
5203 * report the error to userspace.
5204 */
5205 if (is_error_noslot_pfn(pfn))
5206 return false;
5207
5208 kvm_release_pfn_clean(pfn);
5209
5210 /* The instructions are well-emulated on direct mmu. */
5211 if (vcpu->arch.mmu.direct_map) {
5212 unsigned int indirect_shadow_pages;
5213
5214 spin_lock(&vcpu->kvm->mmu_lock);
5215 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5216 spin_unlock(&vcpu->kvm->mmu_lock);
5217
5218 if (indirect_shadow_pages)
5219 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5220
5221 return true;
5222 }
5223
5224 /*
5225 * if emulation was due to access to shadowed page table
5226 * and it failed try to unshadow page and re-enter the
5227 * guest to let CPU execute the instruction.
5228 */
5229 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5230
5231 /*
5232 * If the access faults on its page table, it can not
5233 * be fixed by unprotecting shadow page and it should
5234 * be reported to userspace.
5235 */
5236 return !write_fault_to_shadow_pgtable;
5237 }
5238
5239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5240 unsigned long cr2, int emulation_type)
5241 {
5242 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5243 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5244
5245 last_retry_eip = vcpu->arch.last_retry_eip;
5246 last_retry_addr = vcpu->arch.last_retry_addr;
5247
5248 /*
5249 * If the emulation is caused by #PF and it is non-page_table
5250 * writing instruction, it means the VM-EXIT is caused by shadow
5251 * page protected, we can zap the shadow page and retry this
5252 * instruction directly.
5253 *
5254 * Note: if the guest uses a non-page-table modifying instruction
5255 * on the PDE that points to the instruction, then we will unmap
5256 * the instruction and go to an infinite loop. So, we cache the
5257 * last retried eip and the last fault address, if we meet the eip
5258 * and the address again, we can break out of the potential infinite
5259 * loop.
5260 */
5261 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5262
5263 if (!(emulation_type & EMULTYPE_RETRY))
5264 return false;
5265
5266 if (x86_page_table_writing_insn(ctxt))
5267 return false;
5268
5269 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5270 return false;
5271
5272 vcpu->arch.last_retry_eip = ctxt->eip;
5273 vcpu->arch.last_retry_addr = cr2;
5274
5275 if (!vcpu->arch.mmu.direct_map)
5276 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5277
5278 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5279
5280 return true;
5281 }
5282
5283 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5284 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5285
5286 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5287 {
5288 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5289 /* This is a good place to trace that we are exiting SMM. */
5290 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5291
5292 if (unlikely(vcpu->arch.smi_pending)) {
5293 kvm_make_request(KVM_REQ_SMI, vcpu);
5294 vcpu->arch.smi_pending = 0;
5295 } else {
5296 /* Process a latched INIT, if any. */
5297 kvm_make_request(KVM_REQ_EVENT, vcpu);
5298 }
5299 }
5300
5301 kvm_mmu_reset_context(vcpu);
5302 }
5303
5304 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5305 {
5306 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5307
5308 vcpu->arch.hflags = emul_flags;
5309
5310 if (changed & HF_SMM_MASK)
5311 kvm_smm_changed(vcpu);
5312 }
5313
5314 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5315 unsigned long *db)
5316 {
5317 u32 dr6 = 0;
5318 int i;
5319 u32 enable, rwlen;
5320
5321 enable = dr7;
5322 rwlen = dr7 >> 16;
5323 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5324 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5325 dr6 |= (1 << i);
5326 return dr6;
5327 }
5328
5329 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5330 {
5331 struct kvm_run *kvm_run = vcpu->run;
5332
5333 /*
5334 * rflags is the old, "raw" value of the flags. The new value has
5335 * not been saved yet.
5336 *
5337 * This is correct even for TF set by the guest, because "the
5338 * processor will not generate this exception after the instruction
5339 * that sets the TF flag".
5340 */
5341 if (unlikely(rflags & X86_EFLAGS_TF)) {
5342 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5343 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5344 DR6_RTM;
5345 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5346 kvm_run->debug.arch.exception = DB_VECTOR;
5347 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5348 *r = EMULATE_USER_EXIT;
5349 } else {
5350 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5351 /*
5352 * "Certain debug exceptions may clear bit 0-3. The
5353 * remaining contents of the DR6 register are never
5354 * cleared by the processor".
5355 */
5356 vcpu->arch.dr6 &= ~15;
5357 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5358 kvm_queue_exception(vcpu, DB_VECTOR);
5359 }
5360 }
5361 }
5362
5363 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5364 {
5365 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5366 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5367 struct kvm_run *kvm_run = vcpu->run;
5368 unsigned long eip = kvm_get_linear_rip(vcpu);
5369 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5370 vcpu->arch.guest_debug_dr7,
5371 vcpu->arch.eff_db);
5372
5373 if (dr6 != 0) {
5374 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5375 kvm_run->debug.arch.pc = eip;
5376 kvm_run->debug.arch.exception = DB_VECTOR;
5377 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5378 *r = EMULATE_USER_EXIT;
5379 return true;
5380 }
5381 }
5382
5383 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5384 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5385 unsigned long eip = kvm_get_linear_rip(vcpu);
5386 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5387 vcpu->arch.dr7,
5388 vcpu->arch.db);
5389
5390 if (dr6 != 0) {
5391 vcpu->arch.dr6 &= ~15;
5392 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5393 kvm_queue_exception(vcpu, DB_VECTOR);
5394 *r = EMULATE_DONE;
5395 return true;
5396 }
5397 }
5398
5399 return false;
5400 }
5401
5402 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5403 unsigned long cr2,
5404 int emulation_type,
5405 void *insn,
5406 int insn_len)
5407 {
5408 int r;
5409 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5410 bool writeback = true;
5411 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5412
5413 /*
5414 * Clear write_fault_to_shadow_pgtable here to ensure it is
5415 * never reused.
5416 */
5417 vcpu->arch.write_fault_to_shadow_pgtable = false;
5418 kvm_clear_exception_queue(vcpu);
5419
5420 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5421 init_emulate_ctxt(vcpu);
5422
5423 /*
5424 * We will reenter on the same instruction since
5425 * we do not set complete_userspace_io. This does not
5426 * handle watchpoints yet, those would be handled in
5427 * the emulate_ops.
5428 */
5429 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5430 return r;
5431
5432 ctxt->interruptibility = 0;
5433 ctxt->have_exception = false;
5434 ctxt->exception.vector = -1;
5435 ctxt->perm_ok = false;
5436
5437 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5438
5439 r = x86_decode_insn(ctxt, insn, insn_len);
5440
5441 trace_kvm_emulate_insn_start(vcpu);
5442 ++vcpu->stat.insn_emulation;
5443 if (r != EMULATION_OK) {
5444 if (emulation_type & EMULTYPE_TRAP_UD)
5445 return EMULATE_FAIL;
5446 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5447 emulation_type))
5448 return EMULATE_DONE;
5449 if (emulation_type & EMULTYPE_SKIP)
5450 return EMULATE_FAIL;
5451 return handle_emulation_failure(vcpu);
5452 }
5453 }
5454
5455 if (emulation_type & EMULTYPE_SKIP) {
5456 kvm_rip_write(vcpu, ctxt->_eip);
5457 if (ctxt->eflags & X86_EFLAGS_RF)
5458 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5459 return EMULATE_DONE;
5460 }
5461
5462 if (retry_instruction(ctxt, cr2, emulation_type))
5463 return EMULATE_DONE;
5464
5465 /* this is needed for vmware backdoor interface to work since it
5466 changes registers values during IO operation */
5467 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5468 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5469 emulator_invalidate_register_cache(ctxt);
5470 }
5471
5472 restart:
5473 r = x86_emulate_insn(ctxt);
5474
5475 if (r == EMULATION_INTERCEPTED)
5476 return EMULATE_DONE;
5477
5478 if (r == EMULATION_FAILED) {
5479 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5480 emulation_type))
5481 return EMULATE_DONE;
5482
5483 return handle_emulation_failure(vcpu);
5484 }
5485
5486 if (ctxt->have_exception) {
5487 r = EMULATE_DONE;
5488 if (inject_emulated_exception(vcpu))
5489 return r;
5490 } else if (vcpu->arch.pio.count) {
5491 if (!vcpu->arch.pio.in) {
5492 /* FIXME: return into emulator if single-stepping. */
5493 vcpu->arch.pio.count = 0;
5494 } else {
5495 writeback = false;
5496 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5497 }
5498 r = EMULATE_USER_EXIT;
5499 } else if (vcpu->mmio_needed) {
5500 if (!vcpu->mmio_is_write)
5501 writeback = false;
5502 r = EMULATE_USER_EXIT;
5503 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5504 } else if (r == EMULATION_RESTART)
5505 goto restart;
5506 else
5507 r = EMULATE_DONE;
5508
5509 if (writeback) {
5510 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5511 toggle_interruptibility(vcpu, ctxt->interruptibility);
5512 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5513 if (vcpu->arch.hflags != ctxt->emul_flags)
5514 kvm_set_hflags(vcpu, ctxt->emul_flags);
5515 kvm_rip_write(vcpu, ctxt->eip);
5516 if (r == EMULATE_DONE)
5517 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5518 if (!ctxt->have_exception ||
5519 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5520 __kvm_set_rflags(vcpu, ctxt->eflags);
5521
5522 /*
5523 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5524 * do nothing, and it will be requested again as soon as
5525 * the shadow expires. But we still need to check here,
5526 * because POPF has no interrupt shadow.
5527 */
5528 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5529 kvm_make_request(KVM_REQ_EVENT, vcpu);
5530 } else
5531 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5532
5533 return r;
5534 }
5535 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5536
5537 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5538 {
5539 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5540 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5541 size, port, &val, 1);
5542 /* do not return to emulator after return from userspace */
5543 vcpu->arch.pio.count = 0;
5544 return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5547
5548 static void tsc_bad(void *info)
5549 {
5550 __this_cpu_write(cpu_tsc_khz, 0);
5551 }
5552
5553 static void tsc_khz_changed(void *data)
5554 {
5555 struct cpufreq_freqs *freq = data;
5556 unsigned long khz = 0;
5557
5558 if (data)
5559 khz = freq->new;
5560 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5561 khz = cpufreq_quick_get(raw_smp_processor_id());
5562 if (!khz)
5563 khz = tsc_khz;
5564 __this_cpu_write(cpu_tsc_khz, khz);
5565 }
5566
5567 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5568 void *data)
5569 {
5570 struct cpufreq_freqs *freq = data;
5571 struct kvm *kvm;
5572 struct kvm_vcpu *vcpu;
5573 int i, send_ipi = 0;
5574
5575 /*
5576 * We allow guests to temporarily run on slowing clocks,
5577 * provided we notify them after, or to run on accelerating
5578 * clocks, provided we notify them before. Thus time never
5579 * goes backwards.
5580 *
5581 * However, we have a problem. We can't atomically update
5582 * the frequency of a given CPU from this function; it is
5583 * merely a notifier, which can be called from any CPU.
5584 * Changing the TSC frequency at arbitrary points in time
5585 * requires a recomputation of local variables related to
5586 * the TSC for each VCPU. We must flag these local variables
5587 * to be updated and be sure the update takes place with the
5588 * new frequency before any guests proceed.
5589 *
5590 * Unfortunately, the combination of hotplug CPU and frequency
5591 * change creates an intractable locking scenario; the order
5592 * of when these callouts happen is undefined with respect to
5593 * CPU hotplug, and they can race with each other. As such,
5594 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5595 * undefined; you can actually have a CPU frequency change take
5596 * place in between the computation of X and the setting of the
5597 * variable. To protect against this problem, all updates of
5598 * the per_cpu tsc_khz variable are done in an interrupt
5599 * protected IPI, and all callers wishing to update the value
5600 * must wait for a synchronous IPI to complete (which is trivial
5601 * if the caller is on the CPU already). This establishes the
5602 * necessary total order on variable updates.
5603 *
5604 * Note that because a guest time update may take place
5605 * anytime after the setting of the VCPU's request bit, the
5606 * correct TSC value must be set before the request. However,
5607 * to ensure the update actually makes it to any guest which
5608 * starts running in hardware virtualization between the set
5609 * and the acquisition of the spinlock, we must also ping the
5610 * CPU after setting the request bit.
5611 *
5612 */
5613
5614 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5615 return 0;
5616 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5617 return 0;
5618
5619 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5620
5621 spin_lock(&kvm_lock);
5622 list_for_each_entry(kvm, &vm_list, vm_list) {
5623 kvm_for_each_vcpu(i, vcpu, kvm) {
5624 if (vcpu->cpu != freq->cpu)
5625 continue;
5626 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5627 if (vcpu->cpu != smp_processor_id())
5628 send_ipi = 1;
5629 }
5630 }
5631 spin_unlock(&kvm_lock);
5632
5633 if (freq->old < freq->new && send_ipi) {
5634 /*
5635 * We upscale the frequency. Must make the guest
5636 * doesn't see old kvmclock values while running with
5637 * the new frequency, otherwise we risk the guest sees
5638 * time go backwards.
5639 *
5640 * In case we update the frequency for another cpu
5641 * (which might be in guest context) send an interrupt
5642 * to kick the cpu out of guest context. Next time
5643 * guest context is entered kvmclock will be updated,
5644 * so the guest will not see stale values.
5645 */
5646 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5647 }
5648 return 0;
5649 }
5650
5651 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5652 .notifier_call = kvmclock_cpufreq_notifier
5653 };
5654
5655 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5656 unsigned long action, void *hcpu)
5657 {
5658 unsigned int cpu = (unsigned long)hcpu;
5659
5660 switch (action) {
5661 case CPU_ONLINE:
5662 case CPU_DOWN_FAILED:
5663 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664 break;
5665 case CPU_DOWN_PREPARE:
5666 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5667 break;
5668 }
5669 return NOTIFY_OK;
5670 }
5671
5672 static struct notifier_block kvmclock_cpu_notifier_block = {
5673 .notifier_call = kvmclock_cpu_notifier,
5674 .priority = -INT_MAX
5675 };
5676
5677 static void kvm_timer_init(void)
5678 {
5679 int cpu;
5680
5681 max_tsc_khz = tsc_khz;
5682
5683 cpu_notifier_register_begin();
5684 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5685 #ifdef CONFIG_CPU_FREQ
5686 struct cpufreq_policy policy;
5687 memset(&policy, 0, sizeof(policy));
5688 cpu = get_cpu();
5689 cpufreq_get_policy(&policy, cpu);
5690 if (policy.cpuinfo.max_freq)
5691 max_tsc_khz = policy.cpuinfo.max_freq;
5692 put_cpu();
5693 #endif
5694 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5695 CPUFREQ_TRANSITION_NOTIFIER);
5696 }
5697 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5698 for_each_online_cpu(cpu)
5699 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5700
5701 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5702 cpu_notifier_register_done();
5703
5704 }
5705
5706 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5707
5708 int kvm_is_in_guest(void)
5709 {
5710 return __this_cpu_read(current_vcpu) != NULL;
5711 }
5712
5713 static int kvm_is_user_mode(void)
5714 {
5715 int user_mode = 3;
5716
5717 if (__this_cpu_read(current_vcpu))
5718 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5719
5720 return user_mode != 0;
5721 }
5722
5723 static unsigned long kvm_get_guest_ip(void)
5724 {
5725 unsigned long ip = 0;
5726
5727 if (__this_cpu_read(current_vcpu))
5728 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5729
5730 return ip;
5731 }
5732
5733 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5734 .is_in_guest = kvm_is_in_guest,
5735 .is_user_mode = kvm_is_user_mode,
5736 .get_guest_ip = kvm_get_guest_ip,
5737 };
5738
5739 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5740 {
5741 __this_cpu_write(current_vcpu, vcpu);
5742 }
5743 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5744
5745 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5746 {
5747 __this_cpu_write(current_vcpu, NULL);
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5750
5751 static void kvm_set_mmio_spte_mask(void)
5752 {
5753 u64 mask;
5754 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5755
5756 /*
5757 * Set the reserved bits and the present bit of an paging-structure
5758 * entry to generate page fault with PFER.RSV = 1.
5759 */
5760 /* Mask the reserved physical address bits. */
5761 mask = rsvd_bits(maxphyaddr, 51);
5762
5763 /* Bit 62 is always reserved for 32bit host. */
5764 mask |= 0x3ull << 62;
5765
5766 /* Set the present bit. */
5767 mask |= 1ull;
5768
5769 #ifdef CONFIG_X86_64
5770 /*
5771 * If reserved bit is not supported, clear the present bit to disable
5772 * mmio page fault.
5773 */
5774 if (maxphyaddr == 52)
5775 mask &= ~1ull;
5776 #endif
5777
5778 kvm_mmu_set_mmio_spte_mask(mask);
5779 }
5780
5781 #ifdef CONFIG_X86_64
5782 static void pvclock_gtod_update_fn(struct work_struct *work)
5783 {
5784 struct kvm *kvm;
5785
5786 struct kvm_vcpu *vcpu;
5787 int i;
5788
5789 spin_lock(&kvm_lock);
5790 list_for_each_entry(kvm, &vm_list, vm_list)
5791 kvm_for_each_vcpu(i, vcpu, kvm)
5792 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5793 atomic_set(&kvm_guest_has_master_clock, 0);
5794 spin_unlock(&kvm_lock);
5795 }
5796
5797 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5798
5799 /*
5800 * Notification about pvclock gtod data update.
5801 */
5802 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5803 void *priv)
5804 {
5805 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5806 struct timekeeper *tk = priv;
5807
5808 update_pvclock_gtod(tk);
5809
5810 /* disable master clock if host does not trust, or does not
5811 * use, TSC clocksource
5812 */
5813 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5814 atomic_read(&kvm_guest_has_master_clock) != 0)
5815 queue_work(system_long_wq, &pvclock_gtod_work);
5816
5817 return 0;
5818 }
5819
5820 static struct notifier_block pvclock_gtod_notifier = {
5821 .notifier_call = pvclock_gtod_notify,
5822 };
5823 #endif
5824
5825 int kvm_arch_init(void *opaque)
5826 {
5827 int r;
5828 struct kvm_x86_ops *ops = opaque;
5829
5830 if (kvm_x86_ops) {
5831 printk(KERN_ERR "kvm: already loaded the other module\n");
5832 r = -EEXIST;
5833 goto out;
5834 }
5835
5836 if (!ops->cpu_has_kvm_support()) {
5837 printk(KERN_ERR "kvm: no hardware support\n");
5838 r = -EOPNOTSUPP;
5839 goto out;
5840 }
5841 if (ops->disabled_by_bios()) {
5842 printk(KERN_ERR "kvm: disabled by bios\n");
5843 r = -EOPNOTSUPP;
5844 goto out;
5845 }
5846
5847 r = -ENOMEM;
5848 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5849 if (!shared_msrs) {
5850 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5851 goto out;
5852 }
5853
5854 r = kvm_mmu_module_init();
5855 if (r)
5856 goto out_free_percpu;
5857
5858 kvm_set_mmio_spte_mask();
5859
5860 kvm_x86_ops = ops;
5861
5862 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5863 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5864
5865 kvm_timer_init();
5866
5867 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5868
5869 if (cpu_has_xsave)
5870 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5871
5872 kvm_lapic_init();
5873 #ifdef CONFIG_X86_64
5874 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5875 #endif
5876
5877 return 0;
5878
5879 out_free_percpu:
5880 free_percpu(shared_msrs);
5881 out:
5882 return r;
5883 }
5884
5885 void kvm_arch_exit(void)
5886 {
5887 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5888
5889 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5890 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5891 CPUFREQ_TRANSITION_NOTIFIER);
5892 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5893 #ifdef CONFIG_X86_64
5894 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5895 #endif
5896 kvm_x86_ops = NULL;
5897 kvm_mmu_module_exit();
5898 free_percpu(shared_msrs);
5899 }
5900
5901 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5902 {
5903 ++vcpu->stat.halt_exits;
5904 if (irqchip_in_kernel(vcpu->kvm)) {
5905 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5906 return 1;
5907 } else {
5908 vcpu->run->exit_reason = KVM_EXIT_HLT;
5909 return 0;
5910 }
5911 }
5912 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5913
5914 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5915 {
5916 kvm_x86_ops->skip_emulated_instruction(vcpu);
5917 return kvm_vcpu_halt(vcpu);
5918 }
5919 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5920
5921 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5922 {
5923 u64 param, ingpa, outgpa, ret;
5924 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5925 bool fast, longmode;
5926
5927 /*
5928 * hypercall generates UD from non zero cpl and real mode
5929 * per HYPER-V spec
5930 */
5931 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5932 kvm_queue_exception(vcpu, UD_VECTOR);
5933 return 0;
5934 }
5935
5936 longmode = is_64_bit_mode(vcpu);
5937
5938 if (!longmode) {
5939 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5940 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5941 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5942 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5943 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5944 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5945 }
5946 #ifdef CONFIG_X86_64
5947 else {
5948 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5949 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5950 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5951 }
5952 #endif
5953
5954 code = param & 0xffff;
5955 fast = (param >> 16) & 0x1;
5956 rep_cnt = (param >> 32) & 0xfff;
5957 rep_idx = (param >> 48) & 0xfff;
5958
5959 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5960
5961 switch (code) {
5962 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5963 kvm_vcpu_on_spin(vcpu);
5964 break;
5965 default:
5966 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5967 break;
5968 }
5969
5970 ret = res | (((u64)rep_done & 0xfff) << 32);
5971 if (longmode) {
5972 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5973 } else {
5974 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5975 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5976 }
5977
5978 return 1;
5979 }
5980
5981 /*
5982 * kvm_pv_kick_cpu_op: Kick a vcpu.
5983 *
5984 * @apicid - apicid of vcpu to be kicked.
5985 */
5986 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5987 {
5988 struct kvm_lapic_irq lapic_irq;
5989
5990 lapic_irq.shorthand = 0;
5991 lapic_irq.dest_mode = 0;
5992 lapic_irq.dest_id = apicid;
5993 lapic_irq.msi_redir_hint = false;
5994
5995 lapic_irq.delivery_mode = APIC_DM_REMRD;
5996 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5997 }
5998
5999 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6000 {
6001 unsigned long nr, a0, a1, a2, a3, ret;
6002 int op_64_bit, r = 1;
6003
6004 kvm_x86_ops->skip_emulated_instruction(vcpu);
6005
6006 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6007 return kvm_hv_hypercall(vcpu);
6008
6009 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6010 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6011 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6012 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6013 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6014
6015 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6016
6017 op_64_bit = is_64_bit_mode(vcpu);
6018 if (!op_64_bit) {
6019 nr &= 0xFFFFFFFF;
6020 a0 &= 0xFFFFFFFF;
6021 a1 &= 0xFFFFFFFF;
6022 a2 &= 0xFFFFFFFF;
6023 a3 &= 0xFFFFFFFF;
6024 }
6025
6026 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6027 ret = -KVM_EPERM;
6028 goto out;
6029 }
6030
6031 switch (nr) {
6032 case KVM_HC_VAPIC_POLL_IRQ:
6033 ret = 0;
6034 break;
6035 case KVM_HC_KICK_CPU:
6036 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6037 ret = 0;
6038 break;
6039 default:
6040 ret = -KVM_ENOSYS;
6041 break;
6042 }
6043 out:
6044 if (!op_64_bit)
6045 ret = (u32)ret;
6046 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6047 ++vcpu->stat.hypercalls;
6048 return r;
6049 }
6050 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6051
6052 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6053 {
6054 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6055 char instruction[3];
6056 unsigned long rip = kvm_rip_read(vcpu);
6057
6058 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6059
6060 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6061 }
6062
6063 /*
6064 * Check if userspace requested an interrupt window, and that the
6065 * interrupt window is open.
6066 *
6067 * No need to exit to userspace if we already have an interrupt queued.
6068 */
6069 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6070 {
6071 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6072 vcpu->run->request_interrupt_window &&
6073 kvm_arch_interrupt_allowed(vcpu));
6074 }
6075
6076 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6077 {
6078 struct kvm_run *kvm_run = vcpu->run;
6079
6080 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6081 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6082 kvm_run->cr8 = kvm_get_cr8(vcpu);
6083 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6084 if (irqchip_in_kernel(vcpu->kvm))
6085 kvm_run->ready_for_interrupt_injection = 1;
6086 else
6087 kvm_run->ready_for_interrupt_injection =
6088 kvm_arch_interrupt_allowed(vcpu) &&
6089 !kvm_cpu_has_interrupt(vcpu) &&
6090 !kvm_event_needs_reinjection(vcpu);
6091 }
6092
6093 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6094 {
6095 int max_irr, tpr;
6096
6097 if (!kvm_x86_ops->update_cr8_intercept)
6098 return;
6099
6100 if (!vcpu->arch.apic)
6101 return;
6102
6103 if (!vcpu->arch.apic->vapic_addr)
6104 max_irr = kvm_lapic_find_highest_irr(vcpu);
6105 else
6106 max_irr = -1;
6107
6108 if (max_irr != -1)
6109 max_irr >>= 4;
6110
6111 tpr = kvm_lapic_get_cr8(vcpu);
6112
6113 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6114 }
6115
6116 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6117 {
6118 int r;
6119
6120 /* try to reinject previous events if any */
6121 if (vcpu->arch.exception.pending) {
6122 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6123 vcpu->arch.exception.has_error_code,
6124 vcpu->arch.exception.error_code);
6125
6126 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6127 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6128 X86_EFLAGS_RF);
6129
6130 if (vcpu->arch.exception.nr == DB_VECTOR &&
6131 (vcpu->arch.dr7 & DR7_GD)) {
6132 vcpu->arch.dr7 &= ~DR7_GD;
6133 kvm_update_dr7(vcpu);
6134 }
6135
6136 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6137 vcpu->arch.exception.has_error_code,
6138 vcpu->arch.exception.error_code,
6139 vcpu->arch.exception.reinject);
6140 return 0;
6141 }
6142
6143 if (vcpu->arch.nmi_injected) {
6144 kvm_x86_ops->set_nmi(vcpu);
6145 return 0;
6146 }
6147
6148 if (vcpu->arch.interrupt.pending) {
6149 kvm_x86_ops->set_irq(vcpu);
6150 return 0;
6151 }
6152
6153 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6154 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6155 if (r != 0)
6156 return r;
6157 }
6158
6159 /* try to inject new event if pending */
6160 if (vcpu->arch.nmi_pending) {
6161 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6162 --vcpu->arch.nmi_pending;
6163 vcpu->arch.nmi_injected = true;
6164 kvm_x86_ops->set_nmi(vcpu);
6165 }
6166 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6167 /*
6168 * Because interrupts can be injected asynchronously, we are
6169 * calling check_nested_events again here to avoid a race condition.
6170 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6171 * proposal and current concerns. Perhaps we should be setting
6172 * KVM_REQ_EVENT only on certain events and not unconditionally?
6173 */
6174 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6175 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6176 if (r != 0)
6177 return r;
6178 }
6179 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6180 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6181 false);
6182 kvm_x86_ops->set_irq(vcpu);
6183 }
6184 }
6185 return 0;
6186 }
6187
6188 static void process_nmi(struct kvm_vcpu *vcpu)
6189 {
6190 unsigned limit = 2;
6191
6192 /*
6193 * x86 is limited to one NMI running, and one NMI pending after it.
6194 * If an NMI is already in progress, limit further NMIs to just one.
6195 * Otherwise, allow two (and we'll inject the first one immediately).
6196 */
6197 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6198 limit = 1;
6199
6200 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6201 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6202 kvm_make_request(KVM_REQ_EVENT, vcpu);
6203 }
6204
6205 #define put_smstate(type, buf, offset, val) \
6206 *(type *)((buf) + (offset) - 0x7e00) = val
6207
6208 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6209 {
6210 u32 flags = 0;
6211 flags |= seg->g << 23;
6212 flags |= seg->db << 22;
6213 flags |= seg->l << 21;
6214 flags |= seg->avl << 20;
6215 flags |= seg->present << 15;
6216 flags |= seg->dpl << 13;
6217 flags |= seg->s << 12;
6218 flags |= seg->type << 8;
6219 return flags;
6220 }
6221
6222 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6223 {
6224 struct kvm_segment seg;
6225 int offset;
6226
6227 kvm_get_segment(vcpu, &seg, n);
6228 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6229
6230 if (n < 3)
6231 offset = 0x7f84 + n * 12;
6232 else
6233 offset = 0x7f2c + (n - 3) * 12;
6234
6235 put_smstate(u32, buf, offset + 8, seg.base);
6236 put_smstate(u32, buf, offset + 4, seg.limit);
6237 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6238 }
6239
6240 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6241 {
6242 struct kvm_segment seg;
6243 int offset;
6244 u16 flags;
6245
6246 kvm_get_segment(vcpu, &seg, n);
6247 offset = 0x7e00 + n * 16;
6248
6249 flags = process_smi_get_segment_flags(&seg) >> 8;
6250 put_smstate(u16, buf, offset, seg.selector);
6251 put_smstate(u16, buf, offset + 2, flags);
6252 put_smstate(u32, buf, offset + 4, seg.limit);
6253 put_smstate(u64, buf, offset + 8, seg.base);
6254 }
6255
6256 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6257 {
6258 struct desc_ptr dt;
6259 struct kvm_segment seg;
6260 unsigned long val;
6261 int i;
6262
6263 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6264 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6265 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6266 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6267
6268 for (i = 0; i < 8; i++)
6269 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6270
6271 kvm_get_dr(vcpu, 6, &val);
6272 put_smstate(u32, buf, 0x7fcc, (u32)val);
6273 kvm_get_dr(vcpu, 7, &val);
6274 put_smstate(u32, buf, 0x7fc8, (u32)val);
6275
6276 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6277 put_smstate(u32, buf, 0x7fc4, seg.selector);
6278 put_smstate(u32, buf, 0x7f64, seg.base);
6279 put_smstate(u32, buf, 0x7f60, seg.limit);
6280 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6281
6282 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6283 put_smstate(u32, buf, 0x7fc0, seg.selector);
6284 put_smstate(u32, buf, 0x7f80, seg.base);
6285 put_smstate(u32, buf, 0x7f7c, seg.limit);
6286 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6287
6288 kvm_x86_ops->get_gdt(vcpu, &dt);
6289 put_smstate(u32, buf, 0x7f74, dt.address);
6290 put_smstate(u32, buf, 0x7f70, dt.size);
6291
6292 kvm_x86_ops->get_idt(vcpu, &dt);
6293 put_smstate(u32, buf, 0x7f58, dt.address);
6294 put_smstate(u32, buf, 0x7f54, dt.size);
6295
6296 for (i = 0; i < 6; i++)
6297 process_smi_save_seg_32(vcpu, buf, i);
6298
6299 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6300
6301 /* revision id */
6302 put_smstate(u32, buf, 0x7efc, 0x00020000);
6303 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6304 }
6305
6306 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6307 {
6308 #ifdef CONFIG_X86_64
6309 struct desc_ptr dt;
6310 struct kvm_segment seg;
6311 unsigned long val;
6312 int i;
6313
6314 for (i = 0; i < 16; i++)
6315 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6316
6317 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6318 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6319
6320 kvm_get_dr(vcpu, 6, &val);
6321 put_smstate(u64, buf, 0x7f68, val);
6322 kvm_get_dr(vcpu, 7, &val);
6323 put_smstate(u64, buf, 0x7f60, val);
6324
6325 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6326 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6327 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6328
6329 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6330
6331 /* revision id */
6332 put_smstate(u32, buf, 0x7efc, 0x00020064);
6333
6334 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6335
6336 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6337 put_smstate(u16, buf, 0x7e90, seg.selector);
6338 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6339 put_smstate(u32, buf, 0x7e94, seg.limit);
6340 put_smstate(u64, buf, 0x7e98, seg.base);
6341
6342 kvm_x86_ops->get_idt(vcpu, &dt);
6343 put_smstate(u32, buf, 0x7e84, dt.size);
6344 put_smstate(u64, buf, 0x7e88, dt.address);
6345
6346 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6347 put_smstate(u16, buf, 0x7e70, seg.selector);
6348 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6349 put_smstate(u32, buf, 0x7e74, seg.limit);
6350 put_smstate(u64, buf, 0x7e78, seg.base);
6351
6352 kvm_x86_ops->get_gdt(vcpu, &dt);
6353 put_smstate(u32, buf, 0x7e64, dt.size);
6354 put_smstate(u64, buf, 0x7e68, dt.address);
6355
6356 for (i = 0; i < 6; i++)
6357 process_smi_save_seg_64(vcpu, buf, i);
6358 #else
6359 WARN_ON_ONCE(1);
6360 #endif
6361 }
6362
6363 static void process_smi(struct kvm_vcpu *vcpu)
6364 {
6365 struct kvm_segment cs, ds;
6366 char buf[512];
6367 u32 cr0;
6368
6369 if (is_smm(vcpu)) {
6370 vcpu->arch.smi_pending = true;
6371 return;
6372 }
6373
6374 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6375 vcpu->arch.hflags |= HF_SMM_MASK;
6376 memset(buf, 0, 512);
6377 if (guest_cpuid_has_longmode(vcpu))
6378 process_smi_save_state_64(vcpu, buf);
6379 else
6380 process_smi_save_state_32(vcpu, buf);
6381
6382 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6383
6384 if (kvm_x86_ops->get_nmi_mask(vcpu))
6385 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6386 else
6387 kvm_x86_ops->set_nmi_mask(vcpu, true);
6388
6389 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6390 kvm_rip_write(vcpu, 0x8000);
6391
6392 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6393 kvm_x86_ops->set_cr0(vcpu, cr0);
6394 vcpu->arch.cr0 = cr0;
6395
6396 kvm_x86_ops->set_cr4(vcpu, 0);
6397
6398 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6399
6400 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6401 cs.base = vcpu->arch.smbase;
6402
6403 ds.selector = 0;
6404 ds.base = 0;
6405
6406 cs.limit = ds.limit = 0xffffffff;
6407 cs.type = ds.type = 0x3;
6408 cs.dpl = ds.dpl = 0;
6409 cs.db = ds.db = 0;
6410 cs.s = ds.s = 1;
6411 cs.l = ds.l = 0;
6412 cs.g = ds.g = 1;
6413 cs.avl = ds.avl = 0;
6414 cs.present = ds.present = 1;
6415 cs.unusable = ds.unusable = 0;
6416 cs.padding = ds.padding = 0;
6417
6418 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6419 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6420 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6421 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6422 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6423 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6424
6425 if (guest_cpuid_has_longmode(vcpu))
6426 kvm_x86_ops->set_efer(vcpu, 0);
6427
6428 kvm_update_cpuid(vcpu);
6429 kvm_mmu_reset_context(vcpu);
6430 }
6431
6432 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6433 {
6434 u64 eoi_exit_bitmap[4];
6435 u32 tmr[8];
6436
6437 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6438 return;
6439
6440 memset(eoi_exit_bitmap, 0, 32);
6441 memset(tmr, 0, 32);
6442
6443 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6444 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6445 kvm_apic_update_tmr(vcpu, tmr);
6446 }
6447
6448 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6449 {
6450 ++vcpu->stat.tlb_flush;
6451 kvm_x86_ops->tlb_flush(vcpu);
6452 }
6453
6454 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6455 {
6456 struct page *page = NULL;
6457
6458 if (!irqchip_in_kernel(vcpu->kvm))
6459 return;
6460
6461 if (!kvm_x86_ops->set_apic_access_page_addr)
6462 return;
6463
6464 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6465 if (is_error_page(page))
6466 return;
6467 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6468
6469 /*
6470 * Do not pin apic access page in memory, the MMU notifier
6471 * will call us again if it is migrated or swapped out.
6472 */
6473 put_page(page);
6474 }
6475 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6476
6477 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6478 unsigned long address)
6479 {
6480 /*
6481 * The physical address of apic access page is stored in the VMCS.
6482 * Update it when it becomes invalid.
6483 */
6484 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6485 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6486 }
6487
6488 /*
6489 * Returns 1 to let vcpu_run() continue the guest execution loop without
6490 * exiting to the userspace. Otherwise, the value will be returned to the
6491 * userspace.
6492 */
6493 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6494 {
6495 int r;
6496 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6497 vcpu->run->request_interrupt_window;
6498 bool req_immediate_exit = false;
6499
6500 if (vcpu->requests) {
6501 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6502 kvm_mmu_unload(vcpu);
6503 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6504 __kvm_migrate_timers(vcpu);
6505 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6506 kvm_gen_update_masterclock(vcpu->kvm);
6507 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6508 kvm_gen_kvmclock_update(vcpu);
6509 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6510 r = kvm_guest_time_update(vcpu);
6511 if (unlikely(r))
6512 goto out;
6513 }
6514 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6515 kvm_mmu_sync_roots(vcpu);
6516 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6517 kvm_vcpu_flush_tlb(vcpu);
6518 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6519 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6520 r = 0;
6521 goto out;
6522 }
6523 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6524 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6525 r = 0;
6526 goto out;
6527 }
6528 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6529 vcpu->fpu_active = 0;
6530 kvm_x86_ops->fpu_deactivate(vcpu);
6531 }
6532 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6533 /* Page is swapped out. Do synthetic halt */
6534 vcpu->arch.apf.halted = true;
6535 r = 1;
6536 goto out;
6537 }
6538 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6539 record_steal_time(vcpu);
6540 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6541 process_smi(vcpu);
6542 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6543 process_nmi(vcpu);
6544 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6545 kvm_pmu_handle_event(vcpu);
6546 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6547 kvm_pmu_deliver_pmi(vcpu);
6548 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6549 vcpu_scan_ioapic(vcpu);
6550 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6551 kvm_vcpu_reload_apic_access_page(vcpu);
6552 }
6553
6554 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6555 kvm_apic_accept_events(vcpu);
6556 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6557 r = 1;
6558 goto out;
6559 }
6560
6561 if (inject_pending_event(vcpu, req_int_win) != 0)
6562 req_immediate_exit = true;
6563 /* enable NMI/IRQ window open exits if needed */
6564 else if (vcpu->arch.nmi_pending)
6565 kvm_x86_ops->enable_nmi_window(vcpu);
6566 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6567 kvm_x86_ops->enable_irq_window(vcpu);
6568
6569 if (kvm_lapic_enabled(vcpu)) {
6570 /*
6571 * Update architecture specific hints for APIC
6572 * virtual interrupt delivery.
6573 */
6574 if (kvm_x86_ops->hwapic_irr_update)
6575 kvm_x86_ops->hwapic_irr_update(vcpu,
6576 kvm_lapic_find_highest_irr(vcpu));
6577 update_cr8_intercept(vcpu);
6578 kvm_lapic_sync_to_vapic(vcpu);
6579 }
6580 }
6581
6582 r = kvm_mmu_reload(vcpu);
6583 if (unlikely(r)) {
6584 goto cancel_injection;
6585 }
6586
6587 preempt_disable();
6588
6589 kvm_x86_ops->prepare_guest_switch(vcpu);
6590 if (vcpu->fpu_active)
6591 kvm_load_guest_fpu(vcpu);
6592 kvm_load_guest_xcr0(vcpu);
6593
6594 vcpu->mode = IN_GUEST_MODE;
6595
6596 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6597
6598 /* We should set ->mode before check ->requests,
6599 * see the comment in make_all_cpus_request.
6600 */
6601 smp_mb__after_srcu_read_unlock();
6602
6603 local_irq_disable();
6604
6605 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6606 || need_resched() || signal_pending(current)) {
6607 vcpu->mode = OUTSIDE_GUEST_MODE;
6608 smp_wmb();
6609 local_irq_enable();
6610 preempt_enable();
6611 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6612 r = 1;
6613 goto cancel_injection;
6614 }
6615
6616 if (req_immediate_exit)
6617 smp_send_reschedule(vcpu->cpu);
6618
6619 __kvm_guest_enter();
6620
6621 if (unlikely(vcpu->arch.switch_db_regs)) {
6622 set_debugreg(0, 7);
6623 set_debugreg(vcpu->arch.eff_db[0], 0);
6624 set_debugreg(vcpu->arch.eff_db[1], 1);
6625 set_debugreg(vcpu->arch.eff_db[2], 2);
6626 set_debugreg(vcpu->arch.eff_db[3], 3);
6627 set_debugreg(vcpu->arch.dr6, 6);
6628 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6629 }
6630
6631 trace_kvm_entry(vcpu->vcpu_id);
6632 wait_lapic_expire(vcpu);
6633 kvm_x86_ops->run(vcpu);
6634
6635 /*
6636 * Do this here before restoring debug registers on the host. And
6637 * since we do this before handling the vmexit, a DR access vmexit
6638 * can (a) read the correct value of the debug registers, (b) set
6639 * KVM_DEBUGREG_WONT_EXIT again.
6640 */
6641 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6642 int i;
6643
6644 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6645 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6646 for (i = 0; i < KVM_NR_DB_REGS; i++)
6647 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6648 }
6649
6650 /*
6651 * If the guest has used debug registers, at least dr7
6652 * will be disabled while returning to the host.
6653 * If we don't have active breakpoints in the host, we don't
6654 * care about the messed up debug address registers. But if
6655 * we have some of them active, restore the old state.
6656 */
6657 if (hw_breakpoint_active())
6658 hw_breakpoint_restore();
6659
6660 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6661 native_read_tsc());
6662
6663 vcpu->mode = OUTSIDE_GUEST_MODE;
6664 smp_wmb();
6665
6666 /* Interrupt is enabled by handle_external_intr() */
6667 kvm_x86_ops->handle_external_intr(vcpu);
6668
6669 ++vcpu->stat.exits;
6670
6671 /*
6672 * We must have an instruction between local_irq_enable() and
6673 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6674 * the interrupt shadow. The stat.exits increment will do nicely.
6675 * But we need to prevent reordering, hence this barrier():
6676 */
6677 barrier();
6678
6679 kvm_guest_exit();
6680
6681 preempt_enable();
6682
6683 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6684
6685 /*
6686 * Profile KVM exit RIPs:
6687 */
6688 if (unlikely(prof_on == KVM_PROFILING)) {
6689 unsigned long rip = kvm_rip_read(vcpu);
6690 profile_hit(KVM_PROFILING, (void *)rip);
6691 }
6692
6693 if (unlikely(vcpu->arch.tsc_always_catchup))
6694 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6695
6696 if (vcpu->arch.apic_attention)
6697 kvm_lapic_sync_from_vapic(vcpu);
6698
6699 r = kvm_x86_ops->handle_exit(vcpu);
6700 return r;
6701
6702 cancel_injection:
6703 kvm_x86_ops->cancel_injection(vcpu);
6704 if (unlikely(vcpu->arch.apic_attention))
6705 kvm_lapic_sync_from_vapic(vcpu);
6706 out:
6707 return r;
6708 }
6709
6710 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6711 {
6712 if (!kvm_arch_vcpu_runnable(vcpu)) {
6713 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6714 kvm_vcpu_block(vcpu);
6715 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6716 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6717 return 1;
6718 }
6719
6720 kvm_apic_accept_events(vcpu);
6721 switch(vcpu->arch.mp_state) {
6722 case KVM_MP_STATE_HALTED:
6723 vcpu->arch.pv.pv_unhalted = false;
6724 vcpu->arch.mp_state =
6725 KVM_MP_STATE_RUNNABLE;
6726 case KVM_MP_STATE_RUNNABLE:
6727 vcpu->arch.apf.halted = false;
6728 break;
6729 case KVM_MP_STATE_INIT_RECEIVED:
6730 break;
6731 default:
6732 return -EINTR;
6733 break;
6734 }
6735 return 1;
6736 }
6737
6738 static int vcpu_run(struct kvm_vcpu *vcpu)
6739 {
6740 int r;
6741 struct kvm *kvm = vcpu->kvm;
6742
6743 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6744
6745 for (;;) {
6746 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6747 !vcpu->arch.apf.halted)
6748 r = vcpu_enter_guest(vcpu);
6749 else
6750 r = vcpu_block(kvm, vcpu);
6751 if (r <= 0)
6752 break;
6753
6754 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6755 if (kvm_cpu_has_pending_timer(vcpu))
6756 kvm_inject_pending_timer_irqs(vcpu);
6757
6758 if (dm_request_for_irq_injection(vcpu)) {
6759 r = -EINTR;
6760 vcpu->run->exit_reason = KVM_EXIT_INTR;
6761 ++vcpu->stat.request_irq_exits;
6762 break;
6763 }
6764
6765 kvm_check_async_pf_completion(vcpu);
6766
6767 if (signal_pending(current)) {
6768 r = -EINTR;
6769 vcpu->run->exit_reason = KVM_EXIT_INTR;
6770 ++vcpu->stat.signal_exits;
6771 break;
6772 }
6773 if (need_resched()) {
6774 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6775 cond_resched();
6776 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6777 }
6778 }
6779
6780 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6781
6782 return r;
6783 }
6784
6785 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6786 {
6787 int r;
6788 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6789 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6790 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6791 if (r != EMULATE_DONE)
6792 return 0;
6793 return 1;
6794 }
6795
6796 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6797 {
6798 BUG_ON(!vcpu->arch.pio.count);
6799
6800 return complete_emulated_io(vcpu);
6801 }
6802
6803 /*
6804 * Implements the following, as a state machine:
6805 *
6806 * read:
6807 * for each fragment
6808 * for each mmio piece in the fragment
6809 * write gpa, len
6810 * exit
6811 * copy data
6812 * execute insn
6813 *
6814 * write:
6815 * for each fragment
6816 * for each mmio piece in the fragment
6817 * write gpa, len
6818 * copy data
6819 * exit
6820 */
6821 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6822 {
6823 struct kvm_run *run = vcpu->run;
6824 struct kvm_mmio_fragment *frag;
6825 unsigned len;
6826
6827 BUG_ON(!vcpu->mmio_needed);
6828
6829 /* Complete previous fragment */
6830 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6831 len = min(8u, frag->len);
6832 if (!vcpu->mmio_is_write)
6833 memcpy(frag->data, run->mmio.data, len);
6834
6835 if (frag->len <= 8) {
6836 /* Switch to the next fragment. */
6837 frag++;
6838 vcpu->mmio_cur_fragment++;
6839 } else {
6840 /* Go forward to the next mmio piece. */
6841 frag->data += len;
6842 frag->gpa += len;
6843 frag->len -= len;
6844 }
6845
6846 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6847 vcpu->mmio_needed = 0;
6848
6849 /* FIXME: return into emulator if single-stepping. */
6850 if (vcpu->mmio_is_write)
6851 return 1;
6852 vcpu->mmio_read_completed = 1;
6853 return complete_emulated_io(vcpu);
6854 }
6855
6856 run->exit_reason = KVM_EXIT_MMIO;
6857 run->mmio.phys_addr = frag->gpa;
6858 if (vcpu->mmio_is_write)
6859 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6860 run->mmio.len = min(8u, frag->len);
6861 run->mmio.is_write = vcpu->mmio_is_write;
6862 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6863 return 0;
6864 }
6865
6866
6867 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6868 {
6869 int r;
6870 sigset_t sigsaved;
6871
6872 if (!tsk_used_math(current) && init_fpu(current))
6873 return -ENOMEM;
6874
6875 if (vcpu->sigset_active)
6876 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6877
6878 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6879 kvm_vcpu_block(vcpu);
6880 kvm_apic_accept_events(vcpu);
6881 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6882 r = -EAGAIN;
6883 goto out;
6884 }
6885
6886 /* re-sync apic's tpr */
6887 if (!irqchip_in_kernel(vcpu->kvm)) {
6888 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6889 r = -EINVAL;
6890 goto out;
6891 }
6892 }
6893
6894 if (unlikely(vcpu->arch.complete_userspace_io)) {
6895 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6896 vcpu->arch.complete_userspace_io = NULL;
6897 r = cui(vcpu);
6898 if (r <= 0)
6899 goto out;
6900 } else
6901 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6902
6903 r = vcpu_run(vcpu);
6904
6905 out:
6906 post_kvm_run_save(vcpu);
6907 if (vcpu->sigset_active)
6908 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6909
6910 return r;
6911 }
6912
6913 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6914 {
6915 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6916 /*
6917 * We are here if userspace calls get_regs() in the middle of
6918 * instruction emulation. Registers state needs to be copied
6919 * back from emulation context to vcpu. Userspace shouldn't do
6920 * that usually, but some bad designed PV devices (vmware
6921 * backdoor interface) need this to work
6922 */
6923 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6924 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6925 }
6926 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6927 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6928 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6929 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6930 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6931 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6932 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6933 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6934 #ifdef CONFIG_X86_64
6935 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6936 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6937 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6938 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6939 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6940 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6941 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6942 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6943 #endif
6944
6945 regs->rip = kvm_rip_read(vcpu);
6946 regs->rflags = kvm_get_rflags(vcpu);
6947
6948 return 0;
6949 }
6950
6951 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6952 {
6953 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6954 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6955
6956 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6957 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6958 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6959 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6960 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6961 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6962 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6963 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6964 #ifdef CONFIG_X86_64
6965 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6966 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6967 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6968 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6969 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6970 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6971 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6972 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6973 #endif
6974
6975 kvm_rip_write(vcpu, regs->rip);
6976 kvm_set_rflags(vcpu, regs->rflags);
6977
6978 vcpu->arch.exception.pending = false;
6979
6980 kvm_make_request(KVM_REQ_EVENT, vcpu);
6981
6982 return 0;
6983 }
6984
6985 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6986 {
6987 struct kvm_segment cs;
6988
6989 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6990 *db = cs.db;
6991 *l = cs.l;
6992 }
6993 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6994
6995 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6996 struct kvm_sregs *sregs)
6997 {
6998 struct desc_ptr dt;
6999
7000 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7001 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7002 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7003 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7004 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7005 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7006
7007 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7008 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7009
7010 kvm_x86_ops->get_idt(vcpu, &dt);
7011 sregs->idt.limit = dt.size;
7012 sregs->idt.base = dt.address;
7013 kvm_x86_ops->get_gdt(vcpu, &dt);
7014 sregs->gdt.limit = dt.size;
7015 sregs->gdt.base = dt.address;
7016
7017 sregs->cr0 = kvm_read_cr0(vcpu);
7018 sregs->cr2 = vcpu->arch.cr2;
7019 sregs->cr3 = kvm_read_cr3(vcpu);
7020 sregs->cr4 = kvm_read_cr4(vcpu);
7021 sregs->cr8 = kvm_get_cr8(vcpu);
7022 sregs->efer = vcpu->arch.efer;
7023 sregs->apic_base = kvm_get_apic_base(vcpu);
7024
7025 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7026
7027 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7028 set_bit(vcpu->arch.interrupt.nr,
7029 (unsigned long *)sregs->interrupt_bitmap);
7030
7031 return 0;
7032 }
7033
7034 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7035 struct kvm_mp_state *mp_state)
7036 {
7037 kvm_apic_accept_events(vcpu);
7038 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7039 vcpu->arch.pv.pv_unhalted)
7040 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7041 else
7042 mp_state->mp_state = vcpu->arch.mp_state;
7043
7044 return 0;
7045 }
7046
7047 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7048 struct kvm_mp_state *mp_state)
7049 {
7050 if (!kvm_vcpu_has_lapic(vcpu) &&
7051 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7052 return -EINVAL;
7053
7054 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7055 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7056 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7057 } else
7058 vcpu->arch.mp_state = mp_state->mp_state;
7059 kvm_make_request(KVM_REQ_EVENT, vcpu);
7060 return 0;
7061 }
7062
7063 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7064 int reason, bool has_error_code, u32 error_code)
7065 {
7066 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7067 int ret;
7068
7069 init_emulate_ctxt(vcpu);
7070
7071 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7072 has_error_code, error_code);
7073
7074 if (ret)
7075 return EMULATE_FAIL;
7076
7077 kvm_rip_write(vcpu, ctxt->eip);
7078 kvm_set_rflags(vcpu, ctxt->eflags);
7079 kvm_make_request(KVM_REQ_EVENT, vcpu);
7080 return EMULATE_DONE;
7081 }
7082 EXPORT_SYMBOL_GPL(kvm_task_switch);
7083
7084 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7085 struct kvm_sregs *sregs)
7086 {
7087 struct msr_data apic_base_msr;
7088 int mmu_reset_needed = 0;
7089 int pending_vec, max_bits, idx;
7090 struct desc_ptr dt;
7091
7092 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7093 return -EINVAL;
7094
7095 dt.size = sregs->idt.limit;
7096 dt.address = sregs->idt.base;
7097 kvm_x86_ops->set_idt(vcpu, &dt);
7098 dt.size = sregs->gdt.limit;
7099 dt.address = sregs->gdt.base;
7100 kvm_x86_ops->set_gdt(vcpu, &dt);
7101
7102 vcpu->arch.cr2 = sregs->cr2;
7103 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7104 vcpu->arch.cr3 = sregs->cr3;
7105 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7106
7107 kvm_set_cr8(vcpu, sregs->cr8);
7108
7109 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7110 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7111 apic_base_msr.data = sregs->apic_base;
7112 apic_base_msr.host_initiated = true;
7113 kvm_set_apic_base(vcpu, &apic_base_msr);
7114
7115 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7116 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7117 vcpu->arch.cr0 = sregs->cr0;
7118
7119 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7120 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7121 if (sregs->cr4 & X86_CR4_OSXSAVE)
7122 kvm_update_cpuid(vcpu);
7123
7124 idx = srcu_read_lock(&vcpu->kvm->srcu);
7125 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7126 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7127 mmu_reset_needed = 1;
7128 }
7129 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7130
7131 if (mmu_reset_needed)
7132 kvm_mmu_reset_context(vcpu);
7133
7134 max_bits = KVM_NR_INTERRUPTS;
7135 pending_vec = find_first_bit(
7136 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7137 if (pending_vec < max_bits) {
7138 kvm_queue_interrupt(vcpu, pending_vec, false);
7139 pr_debug("Set back pending irq %d\n", pending_vec);
7140 }
7141
7142 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7143 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7144 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7145 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7146 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7147 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7148
7149 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7150 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7151
7152 update_cr8_intercept(vcpu);
7153
7154 /* Older userspace won't unhalt the vcpu on reset. */
7155 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7156 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7157 !is_protmode(vcpu))
7158 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7159
7160 kvm_make_request(KVM_REQ_EVENT, vcpu);
7161
7162 return 0;
7163 }
7164
7165 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7166 struct kvm_guest_debug *dbg)
7167 {
7168 unsigned long rflags;
7169 int i, r;
7170
7171 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7172 r = -EBUSY;
7173 if (vcpu->arch.exception.pending)
7174 goto out;
7175 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7176 kvm_queue_exception(vcpu, DB_VECTOR);
7177 else
7178 kvm_queue_exception(vcpu, BP_VECTOR);
7179 }
7180
7181 /*
7182 * Read rflags as long as potentially injected trace flags are still
7183 * filtered out.
7184 */
7185 rflags = kvm_get_rflags(vcpu);
7186
7187 vcpu->guest_debug = dbg->control;
7188 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7189 vcpu->guest_debug = 0;
7190
7191 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7192 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7193 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7194 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7195 } else {
7196 for (i = 0; i < KVM_NR_DB_REGS; i++)
7197 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7198 }
7199 kvm_update_dr7(vcpu);
7200
7201 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7202 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7203 get_segment_base(vcpu, VCPU_SREG_CS);
7204
7205 /*
7206 * Trigger an rflags update that will inject or remove the trace
7207 * flags.
7208 */
7209 kvm_set_rflags(vcpu, rflags);
7210
7211 kvm_x86_ops->update_db_bp_intercept(vcpu);
7212
7213 r = 0;
7214
7215 out:
7216
7217 return r;
7218 }
7219
7220 /*
7221 * Translate a guest virtual address to a guest physical address.
7222 */
7223 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7224 struct kvm_translation *tr)
7225 {
7226 unsigned long vaddr = tr->linear_address;
7227 gpa_t gpa;
7228 int idx;
7229
7230 idx = srcu_read_lock(&vcpu->kvm->srcu);
7231 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7232 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7233 tr->physical_address = gpa;
7234 tr->valid = gpa != UNMAPPED_GVA;
7235 tr->writeable = 1;
7236 tr->usermode = 0;
7237
7238 return 0;
7239 }
7240
7241 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7242 {
7243 struct i387_fxsave_struct *fxsave =
7244 &vcpu->arch.guest_fpu.state->fxsave;
7245
7246 memcpy(fpu->fpr, fxsave->st_space, 128);
7247 fpu->fcw = fxsave->cwd;
7248 fpu->fsw = fxsave->swd;
7249 fpu->ftwx = fxsave->twd;
7250 fpu->last_opcode = fxsave->fop;
7251 fpu->last_ip = fxsave->rip;
7252 fpu->last_dp = fxsave->rdp;
7253 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7254
7255 return 0;
7256 }
7257
7258 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7259 {
7260 struct i387_fxsave_struct *fxsave =
7261 &vcpu->arch.guest_fpu.state->fxsave;
7262
7263 memcpy(fxsave->st_space, fpu->fpr, 128);
7264 fxsave->cwd = fpu->fcw;
7265 fxsave->swd = fpu->fsw;
7266 fxsave->twd = fpu->ftwx;
7267 fxsave->fop = fpu->last_opcode;
7268 fxsave->rip = fpu->last_ip;
7269 fxsave->rdp = fpu->last_dp;
7270 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7271
7272 return 0;
7273 }
7274
7275 int fx_init(struct kvm_vcpu *vcpu, bool init_event)
7276 {
7277 int err;
7278
7279 err = fpu_alloc(&vcpu->arch.guest_fpu);
7280 if (err)
7281 return err;
7282
7283 if (!init_event)
7284 fpu_finit(&vcpu->arch.guest_fpu);
7285
7286 if (cpu_has_xsaves)
7287 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7288 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7289
7290 /*
7291 * Ensure guest xcr0 is valid for loading
7292 */
7293 vcpu->arch.xcr0 = XSTATE_FP;
7294
7295 vcpu->arch.cr0 |= X86_CR0_ET;
7296
7297 return 0;
7298 }
7299 EXPORT_SYMBOL_GPL(fx_init);
7300
7301 static void fx_free(struct kvm_vcpu *vcpu)
7302 {
7303 fpu_free(&vcpu->arch.guest_fpu);
7304 }
7305
7306 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7307 {
7308 if (vcpu->guest_fpu_loaded)
7309 return;
7310
7311 /*
7312 * Restore all possible states in the guest,
7313 * and assume host would use all available bits.
7314 * Guest xcr0 would be loaded later.
7315 */
7316 kvm_put_guest_xcr0(vcpu);
7317 vcpu->guest_fpu_loaded = 1;
7318 __kernel_fpu_begin();
7319 fpu_restore_checking(&vcpu->arch.guest_fpu);
7320 trace_kvm_fpu(1);
7321 }
7322
7323 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7324 {
7325 kvm_put_guest_xcr0(vcpu);
7326
7327 if (!vcpu->guest_fpu_loaded) {
7328 vcpu->fpu_counter = 0;
7329 return;
7330 }
7331
7332 vcpu->guest_fpu_loaded = 0;
7333 fpu_save_init(&vcpu->arch.guest_fpu);
7334 __kernel_fpu_end();
7335 ++vcpu->stat.fpu_reload;
7336 /*
7337 * If using eager FPU mode, or if the guest is a frequent user
7338 * of the FPU, just leave the FPU active for next time.
7339 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7340 * the FPU in bursts will revert to loading it on demand.
7341 */
7342 if (!vcpu->arch.eager_fpu) {
7343 if (++vcpu->fpu_counter < 5)
7344 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7345 }
7346 trace_kvm_fpu(0);
7347 }
7348
7349 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7350 {
7351 kvmclock_reset(vcpu);
7352
7353 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7354 fx_free(vcpu);
7355 kvm_x86_ops->vcpu_free(vcpu);
7356 }
7357
7358 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7359 unsigned int id)
7360 {
7361 struct kvm_vcpu *vcpu;
7362
7363 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7364 printk_once(KERN_WARNING
7365 "kvm: SMP vm created on host with unstable TSC; "
7366 "guest TSC will not be reliable\n");
7367
7368 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7369
7370 /*
7371 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7372 * deactivated soon if it doesn't.
7373 */
7374 kvm_x86_ops->fpu_activate(vcpu);
7375 return vcpu;
7376 }
7377
7378 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7379 {
7380 int r;
7381
7382 kvm_vcpu_mtrr_init(vcpu);
7383 r = vcpu_load(vcpu);
7384 if (r)
7385 return r;
7386 kvm_vcpu_reset(vcpu, false);
7387 kvm_mmu_setup(vcpu);
7388 vcpu_put(vcpu);
7389 return r;
7390 }
7391
7392 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7393 {
7394 struct msr_data msr;
7395 struct kvm *kvm = vcpu->kvm;
7396
7397 if (vcpu_load(vcpu))
7398 return;
7399 msr.data = 0x0;
7400 msr.index = MSR_IA32_TSC;
7401 msr.host_initiated = true;
7402 kvm_write_tsc(vcpu, &msr);
7403 vcpu_put(vcpu);
7404
7405 if (!kvmclock_periodic_sync)
7406 return;
7407
7408 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7409 KVMCLOCK_SYNC_PERIOD);
7410 }
7411
7412 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7413 {
7414 int r;
7415 vcpu->arch.apf.msr_val = 0;
7416
7417 r = vcpu_load(vcpu);
7418 BUG_ON(r);
7419 kvm_mmu_unload(vcpu);
7420 vcpu_put(vcpu);
7421
7422 fx_free(vcpu);
7423 kvm_x86_ops->vcpu_free(vcpu);
7424 }
7425
7426 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7427 {
7428 vcpu->arch.hflags = 0;
7429
7430 atomic_set(&vcpu->arch.nmi_queued, 0);
7431 vcpu->arch.nmi_pending = 0;
7432 vcpu->arch.nmi_injected = false;
7433 kvm_clear_interrupt_queue(vcpu);
7434 kvm_clear_exception_queue(vcpu);
7435
7436 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7437 kvm_update_dr0123(vcpu);
7438 vcpu->arch.dr6 = DR6_INIT;
7439 kvm_update_dr6(vcpu);
7440 vcpu->arch.dr7 = DR7_FIXED_1;
7441 kvm_update_dr7(vcpu);
7442
7443 vcpu->arch.cr2 = 0;
7444
7445 kvm_make_request(KVM_REQ_EVENT, vcpu);
7446 vcpu->arch.apf.msr_val = 0;
7447 vcpu->arch.st.msr_val = 0;
7448
7449 kvmclock_reset(vcpu);
7450
7451 kvm_clear_async_pf_completion_queue(vcpu);
7452 kvm_async_pf_hash_reset(vcpu);
7453 vcpu->arch.apf.halted = false;
7454
7455 if (!init_event) {
7456 kvm_pmu_reset(vcpu);
7457 vcpu->arch.smbase = 0x30000;
7458 }
7459
7460 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7461 vcpu->arch.regs_avail = ~0;
7462 vcpu->arch.regs_dirty = ~0;
7463
7464 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7465 }
7466
7467 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7468 {
7469 struct kvm_segment cs;
7470
7471 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7472 cs.selector = vector << 8;
7473 cs.base = vector << 12;
7474 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7475 kvm_rip_write(vcpu, 0);
7476 }
7477
7478 int kvm_arch_hardware_enable(void)
7479 {
7480 struct kvm *kvm;
7481 struct kvm_vcpu *vcpu;
7482 int i;
7483 int ret;
7484 u64 local_tsc;
7485 u64 max_tsc = 0;
7486 bool stable, backwards_tsc = false;
7487
7488 kvm_shared_msr_cpu_online();
7489 ret = kvm_x86_ops->hardware_enable();
7490 if (ret != 0)
7491 return ret;
7492
7493 local_tsc = native_read_tsc();
7494 stable = !check_tsc_unstable();
7495 list_for_each_entry(kvm, &vm_list, vm_list) {
7496 kvm_for_each_vcpu(i, vcpu, kvm) {
7497 if (!stable && vcpu->cpu == smp_processor_id())
7498 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7499 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7500 backwards_tsc = true;
7501 if (vcpu->arch.last_host_tsc > max_tsc)
7502 max_tsc = vcpu->arch.last_host_tsc;
7503 }
7504 }
7505 }
7506
7507 /*
7508 * Sometimes, even reliable TSCs go backwards. This happens on
7509 * platforms that reset TSC during suspend or hibernate actions, but
7510 * maintain synchronization. We must compensate. Fortunately, we can
7511 * detect that condition here, which happens early in CPU bringup,
7512 * before any KVM threads can be running. Unfortunately, we can't
7513 * bring the TSCs fully up to date with real time, as we aren't yet far
7514 * enough into CPU bringup that we know how much real time has actually
7515 * elapsed; our helper function, get_kernel_ns() will be using boot
7516 * variables that haven't been updated yet.
7517 *
7518 * So we simply find the maximum observed TSC above, then record the
7519 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7520 * the adjustment will be applied. Note that we accumulate
7521 * adjustments, in case multiple suspend cycles happen before some VCPU
7522 * gets a chance to run again. In the event that no KVM threads get a
7523 * chance to run, we will miss the entire elapsed period, as we'll have
7524 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7525 * loose cycle time. This isn't too big a deal, since the loss will be
7526 * uniform across all VCPUs (not to mention the scenario is extremely
7527 * unlikely). It is possible that a second hibernate recovery happens
7528 * much faster than a first, causing the observed TSC here to be
7529 * smaller; this would require additional padding adjustment, which is
7530 * why we set last_host_tsc to the local tsc observed here.
7531 *
7532 * N.B. - this code below runs only on platforms with reliable TSC,
7533 * as that is the only way backwards_tsc is set above. Also note
7534 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7535 * have the same delta_cyc adjustment applied if backwards_tsc
7536 * is detected. Note further, this adjustment is only done once,
7537 * as we reset last_host_tsc on all VCPUs to stop this from being
7538 * called multiple times (one for each physical CPU bringup).
7539 *
7540 * Platforms with unreliable TSCs don't have to deal with this, they
7541 * will be compensated by the logic in vcpu_load, which sets the TSC to
7542 * catchup mode. This will catchup all VCPUs to real time, but cannot
7543 * guarantee that they stay in perfect synchronization.
7544 */
7545 if (backwards_tsc) {
7546 u64 delta_cyc = max_tsc - local_tsc;
7547 backwards_tsc_observed = true;
7548 list_for_each_entry(kvm, &vm_list, vm_list) {
7549 kvm_for_each_vcpu(i, vcpu, kvm) {
7550 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7551 vcpu->arch.last_host_tsc = local_tsc;
7552 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7553 }
7554
7555 /*
7556 * We have to disable TSC offset matching.. if you were
7557 * booting a VM while issuing an S4 host suspend....
7558 * you may have some problem. Solving this issue is
7559 * left as an exercise to the reader.
7560 */
7561 kvm->arch.last_tsc_nsec = 0;
7562 kvm->arch.last_tsc_write = 0;
7563 }
7564
7565 }
7566 return 0;
7567 }
7568
7569 void kvm_arch_hardware_disable(void)
7570 {
7571 kvm_x86_ops->hardware_disable();
7572 drop_user_return_notifiers();
7573 }
7574
7575 int kvm_arch_hardware_setup(void)
7576 {
7577 int r;
7578
7579 r = kvm_x86_ops->hardware_setup();
7580 if (r != 0)
7581 return r;
7582
7583 kvm_init_msr_list();
7584 return 0;
7585 }
7586
7587 void kvm_arch_hardware_unsetup(void)
7588 {
7589 kvm_x86_ops->hardware_unsetup();
7590 }
7591
7592 void kvm_arch_check_processor_compat(void *rtn)
7593 {
7594 kvm_x86_ops->check_processor_compatibility(rtn);
7595 }
7596
7597 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7598 {
7599 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7600 }
7601
7602 struct static_key kvm_no_apic_vcpu __read_mostly;
7603
7604 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7605 {
7606 struct page *page;
7607 struct kvm *kvm;
7608 int r;
7609
7610 BUG_ON(vcpu->kvm == NULL);
7611 kvm = vcpu->kvm;
7612
7613 vcpu->arch.pv.pv_unhalted = false;
7614 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7615 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7616 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7617 else
7618 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7619
7620 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7621 if (!page) {
7622 r = -ENOMEM;
7623 goto fail;
7624 }
7625 vcpu->arch.pio_data = page_address(page);
7626
7627 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7628
7629 r = kvm_mmu_create(vcpu);
7630 if (r < 0)
7631 goto fail_free_pio_data;
7632
7633 if (irqchip_in_kernel(kvm)) {
7634 r = kvm_create_lapic(vcpu);
7635 if (r < 0)
7636 goto fail_mmu_destroy;
7637 } else
7638 static_key_slow_inc(&kvm_no_apic_vcpu);
7639
7640 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7641 GFP_KERNEL);
7642 if (!vcpu->arch.mce_banks) {
7643 r = -ENOMEM;
7644 goto fail_free_lapic;
7645 }
7646 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7647
7648 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7649 r = -ENOMEM;
7650 goto fail_free_mce_banks;
7651 }
7652
7653 r = fx_init(vcpu, false);
7654 if (r)
7655 goto fail_free_wbinvd_dirty_mask;
7656
7657 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7658 vcpu->arch.pv_time_enabled = false;
7659
7660 vcpu->arch.guest_supported_xcr0 = 0;
7661 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7662
7663 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7664
7665 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7666
7667 kvm_async_pf_hash_reset(vcpu);
7668 kvm_pmu_init(vcpu);
7669
7670 return 0;
7671 fail_free_wbinvd_dirty_mask:
7672 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7673 fail_free_mce_banks:
7674 kfree(vcpu->arch.mce_banks);
7675 fail_free_lapic:
7676 kvm_free_lapic(vcpu);
7677 fail_mmu_destroy:
7678 kvm_mmu_destroy(vcpu);
7679 fail_free_pio_data:
7680 free_page((unsigned long)vcpu->arch.pio_data);
7681 fail:
7682 return r;
7683 }
7684
7685 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7686 {
7687 int idx;
7688
7689 kvm_pmu_destroy(vcpu);
7690 kfree(vcpu->arch.mce_banks);
7691 kvm_free_lapic(vcpu);
7692 idx = srcu_read_lock(&vcpu->kvm->srcu);
7693 kvm_mmu_destroy(vcpu);
7694 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7695 free_page((unsigned long)vcpu->arch.pio_data);
7696 if (!irqchip_in_kernel(vcpu->kvm))
7697 static_key_slow_dec(&kvm_no_apic_vcpu);
7698 }
7699
7700 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7701 {
7702 kvm_x86_ops->sched_in(vcpu, cpu);
7703 }
7704
7705 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7706 {
7707 if (type)
7708 return -EINVAL;
7709
7710 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7711 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7712 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7713 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7714 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7715
7716 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7717 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7718 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7719 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7720 &kvm->arch.irq_sources_bitmap);
7721
7722 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7723 mutex_init(&kvm->arch.apic_map_lock);
7724 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7725
7726 pvclock_update_vm_gtod_copy(kvm);
7727
7728 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7729 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7730
7731 return 0;
7732 }
7733
7734 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7735 {
7736 int r;
7737 r = vcpu_load(vcpu);
7738 BUG_ON(r);
7739 kvm_mmu_unload(vcpu);
7740 vcpu_put(vcpu);
7741 }
7742
7743 static void kvm_free_vcpus(struct kvm *kvm)
7744 {
7745 unsigned int i;
7746 struct kvm_vcpu *vcpu;
7747
7748 /*
7749 * Unpin any mmu pages first.
7750 */
7751 kvm_for_each_vcpu(i, vcpu, kvm) {
7752 kvm_clear_async_pf_completion_queue(vcpu);
7753 kvm_unload_vcpu_mmu(vcpu);
7754 }
7755 kvm_for_each_vcpu(i, vcpu, kvm)
7756 kvm_arch_vcpu_free(vcpu);
7757
7758 mutex_lock(&kvm->lock);
7759 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7760 kvm->vcpus[i] = NULL;
7761
7762 atomic_set(&kvm->online_vcpus, 0);
7763 mutex_unlock(&kvm->lock);
7764 }
7765
7766 void kvm_arch_sync_events(struct kvm *kvm)
7767 {
7768 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7769 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7770 kvm_free_all_assigned_devices(kvm);
7771 kvm_free_pit(kvm);
7772 }
7773
7774 int __x86_set_memory_region(struct kvm *kvm,
7775 const struct kvm_userspace_memory_region *mem)
7776 {
7777 int i, r;
7778
7779 /* Called with kvm->slots_lock held. */
7780 BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7781
7782 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7783 struct kvm_userspace_memory_region m = *mem;
7784
7785 m.slot |= i << 16;
7786 r = __kvm_set_memory_region(kvm, &m);
7787 if (r < 0)
7788 return r;
7789 }
7790
7791 return 0;
7792 }
7793 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7794
7795 int x86_set_memory_region(struct kvm *kvm,
7796 const struct kvm_userspace_memory_region *mem)
7797 {
7798 int r;
7799
7800 mutex_lock(&kvm->slots_lock);
7801 r = __x86_set_memory_region(kvm, mem);
7802 mutex_unlock(&kvm->slots_lock);
7803
7804 return r;
7805 }
7806 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7807
7808 void kvm_arch_destroy_vm(struct kvm *kvm)
7809 {
7810 if (current->mm == kvm->mm) {
7811 /*
7812 * Free memory regions allocated on behalf of userspace,
7813 * unless the the memory map has changed due to process exit
7814 * or fd copying.
7815 */
7816 struct kvm_userspace_memory_region mem;
7817 memset(&mem, 0, sizeof(mem));
7818 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7819 x86_set_memory_region(kvm, &mem);
7820
7821 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7822 x86_set_memory_region(kvm, &mem);
7823
7824 mem.slot = TSS_PRIVATE_MEMSLOT;
7825 x86_set_memory_region(kvm, &mem);
7826 }
7827 kvm_iommu_unmap_guest(kvm);
7828 kfree(kvm->arch.vpic);
7829 kfree(kvm->arch.vioapic);
7830 kvm_free_vcpus(kvm);
7831 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7832 }
7833
7834 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7835 struct kvm_memory_slot *dont)
7836 {
7837 int i;
7838
7839 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7840 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7841 kvfree(free->arch.rmap[i]);
7842 free->arch.rmap[i] = NULL;
7843 }
7844 if (i == 0)
7845 continue;
7846
7847 if (!dont || free->arch.lpage_info[i - 1] !=
7848 dont->arch.lpage_info[i - 1]) {
7849 kvfree(free->arch.lpage_info[i - 1]);
7850 free->arch.lpage_info[i - 1] = NULL;
7851 }
7852 }
7853 }
7854
7855 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7856 unsigned long npages)
7857 {
7858 int i;
7859
7860 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7861 unsigned long ugfn;
7862 int lpages;
7863 int level = i + 1;
7864
7865 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7866 slot->base_gfn, level) + 1;
7867
7868 slot->arch.rmap[i] =
7869 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7870 if (!slot->arch.rmap[i])
7871 goto out_free;
7872 if (i == 0)
7873 continue;
7874
7875 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7876 sizeof(*slot->arch.lpage_info[i - 1]));
7877 if (!slot->arch.lpage_info[i - 1])
7878 goto out_free;
7879
7880 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7881 slot->arch.lpage_info[i - 1][0].write_count = 1;
7882 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7883 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7884 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7885 /*
7886 * If the gfn and userspace address are not aligned wrt each
7887 * other, or if explicitly asked to, disable large page
7888 * support for this slot
7889 */
7890 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7891 !kvm_largepages_enabled()) {
7892 unsigned long j;
7893
7894 for (j = 0; j < lpages; ++j)
7895 slot->arch.lpage_info[i - 1][j].write_count = 1;
7896 }
7897 }
7898
7899 return 0;
7900
7901 out_free:
7902 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7903 kvfree(slot->arch.rmap[i]);
7904 slot->arch.rmap[i] = NULL;
7905 if (i == 0)
7906 continue;
7907
7908 kvfree(slot->arch.lpage_info[i - 1]);
7909 slot->arch.lpage_info[i - 1] = NULL;
7910 }
7911 return -ENOMEM;
7912 }
7913
7914 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7915 {
7916 /*
7917 * memslots->generation has been incremented.
7918 * mmio generation may have reached its maximum value.
7919 */
7920 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7921 }
7922
7923 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7924 struct kvm_memory_slot *memslot,
7925 const struct kvm_userspace_memory_region *mem,
7926 enum kvm_mr_change change)
7927 {
7928 /*
7929 * Only private memory slots need to be mapped here since
7930 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7931 */
7932 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7933 unsigned long userspace_addr;
7934
7935 /*
7936 * MAP_SHARED to prevent internal slot pages from being moved
7937 * by fork()/COW.
7938 */
7939 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7940 PROT_READ | PROT_WRITE,
7941 MAP_SHARED | MAP_ANONYMOUS, 0);
7942
7943 if (IS_ERR((void *)userspace_addr))
7944 return PTR_ERR((void *)userspace_addr);
7945
7946 memslot->userspace_addr = userspace_addr;
7947 }
7948
7949 return 0;
7950 }
7951
7952 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7953 struct kvm_memory_slot *new)
7954 {
7955 /* Still write protect RO slot */
7956 if (new->flags & KVM_MEM_READONLY) {
7957 kvm_mmu_slot_remove_write_access(kvm, new);
7958 return;
7959 }
7960
7961 /*
7962 * Call kvm_x86_ops dirty logging hooks when they are valid.
7963 *
7964 * kvm_x86_ops->slot_disable_log_dirty is called when:
7965 *
7966 * - KVM_MR_CREATE with dirty logging is disabled
7967 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7968 *
7969 * The reason is, in case of PML, we need to set D-bit for any slots
7970 * with dirty logging disabled in order to eliminate unnecessary GPA
7971 * logging in PML buffer (and potential PML buffer full VMEXT). This
7972 * guarantees leaving PML enabled during guest's lifetime won't have
7973 * any additonal overhead from PML when guest is running with dirty
7974 * logging disabled for memory slots.
7975 *
7976 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7977 * to dirty logging mode.
7978 *
7979 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7980 *
7981 * In case of write protect:
7982 *
7983 * Write protect all pages for dirty logging.
7984 *
7985 * All the sptes including the large sptes which point to this
7986 * slot are set to readonly. We can not create any new large
7987 * spte on this slot until the end of the logging.
7988 *
7989 * See the comments in fast_page_fault().
7990 */
7991 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7992 if (kvm_x86_ops->slot_enable_log_dirty)
7993 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7994 else
7995 kvm_mmu_slot_remove_write_access(kvm, new);
7996 } else {
7997 if (kvm_x86_ops->slot_disable_log_dirty)
7998 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7999 }
8000 }
8001
8002 void kvm_arch_commit_memory_region(struct kvm *kvm,
8003 const struct kvm_userspace_memory_region *mem,
8004 const struct kvm_memory_slot *old,
8005 const struct kvm_memory_slot *new,
8006 enum kvm_mr_change change)
8007 {
8008 int nr_mmu_pages = 0;
8009
8010 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
8011 int ret;
8012
8013 ret = vm_munmap(old->userspace_addr,
8014 old->npages * PAGE_SIZE);
8015 if (ret < 0)
8016 printk(KERN_WARNING
8017 "kvm_vm_ioctl_set_memory_region: "
8018 "failed to munmap memory\n");
8019 }
8020
8021 if (!kvm->arch.n_requested_mmu_pages)
8022 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8023
8024 if (nr_mmu_pages)
8025 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8026
8027 /*
8028 * Dirty logging tracks sptes in 4k granularity, meaning that large
8029 * sptes have to be split. If live migration is successful, the guest
8030 * in the source machine will be destroyed and large sptes will be
8031 * created in the destination. However, if the guest continues to run
8032 * in the source machine (for example if live migration fails), small
8033 * sptes will remain around and cause bad performance.
8034 *
8035 * Scan sptes if dirty logging has been stopped, dropping those
8036 * which can be collapsed into a single large-page spte. Later
8037 * page faults will create the large-page sptes.
8038 */
8039 if ((change != KVM_MR_DELETE) &&
8040 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8041 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8042 kvm_mmu_zap_collapsible_sptes(kvm, new);
8043
8044 /*
8045 * Set up write protection and/or dirty logging for the new slot.
8046 *
8047 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8048 * been zapped so no dirty logging staff is needed for old slot. For
8049 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8050 * new and it's also covered when dealing with the new slot.
8051 *
8052 * FIXME: const-ify all uses of struct kvm_memory_slot.
8053 */
8054 if (change != KVM_MR_DELETE)
8055 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8056 }
8057
8058 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8059 {
8060 kvm_mmu_invalidate_zap_all_pages(kvm);
8061 }
8062
8063 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8064 struct kvm_memory_slot *slot)
8065 {
8066 kvm_mmu_invalidate_zap_all_pages(kvm);
8067 }
8068
8069 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8070 {
8071 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8072 kvm_x86_ops->check_nested_events(vcpu, false);
8073
8074 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8075 !vcpu->arch.apf.halted)
8076 || !list_empty_careful(&vcpu->async_pf.done)
8077 || kvm_apic_has_events(vcpu)
8078 || vcpu->arch.pv.pv_unhalted
8079 || atomic_read(&vcpu->arch.nmi_queued) ||
8080 (kvm_arch_interrupt_allowed(vcpu) &&
8081 kvm_cpu_has_interrupt(vcpu));
8082 }
8083
8084 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8085 {
8086 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8087 }
8088
8089 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8090 {
8091 return kvm_x86_ops->interrupt_allowed(vcpu);
8092 }
8093
8094 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8095 {
8096 if (is_64_bit_mode(vcpu))
8097 return kvm_rip_read(vcpu);
8098 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8099 kvm_rip_read(vcpu));
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8102
8103 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8104 {
8105 return kvm_get_linear_rip(vcpu) == linear_rip;
8106 }
8107 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8108
8109 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8110 {
8111 unsigned long rflags;
8112
8113 rflags = kvm_x86_ops->get_rflags(vcpu);
8114 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8115 rflags &= ~X86_EFLAGS_TF;
8116 return rflags;
8117 }
8118 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8119
8120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8121 {
8122 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8123 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8124 rflags |= X86_EFLAGS_TF;
8125 kvm_x86_ops->set_rflags(vcpu, rflags);
8126 }
8127
8128 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8129 {
8130 __kvm_set_rflags(vcpu, rflags);
8131 kvm_make_request(KVM_REQ_EVENT, vcpu);
8132 }
8133 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8134
8135 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8136 {
8137 int r;
8138
8139 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8140 work->wakeup_all)
8141 return;
8142
8143 r = kvm_mmu_reload(vcpu);
8144 if (unlikely(r))
8145 return;
8146
8147 if (!vcpu->arch.mmu.direct_map &&
8148 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8149 return;
8150
8151 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8152 }
8153
8154 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8155 {
8156 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8157 }
8158
8159 static inline u32 kvm_async_pf_next_probe(u32 key)
8160 {
8161 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8162 }
8163
8164 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8165 {
8166 u32 key = kvm_async_pf_hash_fn(gfn);
8167
8168 while (vcpu->arch.apf.gfns[key] != ~0)
8169 key = kvm_async_pf_next_probe(key);
8170
8171 vcpu->arch.apf.gfns[key] = gfn;
8172 }
8173
8174 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8175 {
8176 int i;
8177 u32 key = kvm_async_pf_hash_fn(gfn);
8178
8179 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8180 (vcpu->arch.apf.gfns[key] != gfn &&
8181 vcpu->arch.apf.gfns[key] != ~0); i++)
8182 key = kvm_async_pf_next_probe(key);
8183
8184 return key;
8185 }
8186
8187 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8188 {
8189 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8190 }
8191
8192 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8193 {
8194 u32 i, j, k;
8195
8196 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8197 while (true) {
8198 vcpu->arch.apf.gfns[i] = ~0;
8199 do {
8200 j = kvm_async_pf_next_probe(j);
8201 if (vcpu->arch.apf.gfns[j] == ~0)
8202 return;
8203 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8204 /*
8205 * k lies cyclically in ]i,j]
8206 * | i.k.j |
8207 * |....j i.k.| or |.k..j i...|
8208 */
8209 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8210 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8211 i = j;
8212 }
8213 }
8214
8215 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8216 {
8217
8218 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8219 sizeof(val));
8220 }
8221
8222 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8223 struct kvm_async_pf *work)
8224 {
8225 struct x86_exception fault;
8226
8227 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8228 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8229
8230 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8231 (vcpu->arch.apf.send_user_only &&
8232 kvm_x86_ops->get_cpl(vcpu) == 0))
8233 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8234 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8235 fault.vector = PF_VECTOR;
8236 fault.error_code_valid = true;
8237 fault.error_code = 0;
8238 fault.nested_page_fault = false;
8239 fault.address = work->arch.token;
8240 kvm_inject_page_fault(vcpu, &fault);
8241 }
8242 }
8243
8244 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8245 struct kvm_async_pf *work)
8246 {
8247 struct x86_exception fault;
8248
8249 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8250 if (work->wakeup_all)
8251 work->arch.token = ~0; /* broadcast wakeup */
8252 else
8253 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8254
8255 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8256 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8257 fault.vector = PF_VECTOR;
8258 fault.error_code_valid = true;
8259 fault.error_code = 0;
8260 fault.nested_page_fault = false;
8261 fault.address = work->arch.token;
8262 kvm_inject_page_fault(vcpu, &fault);
8263 }
8264 vcpu->arch.apf.halted = false;
8265 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8266 }
8267
8268 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8269 {
8270 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8271 return true;
8272 else
8273 return !kvm_event_needs_reinjection(vcpu) &&
8274 kvm_x86_ops->interrupt_allowed(vcpu);
8275 }
8276
8277 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8278 {
8279 atomic_inc(&kvm->arch.noncoherent_dma_count);
8280 }
8281 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8282
8283 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8284 {
8285 atomic_dec(&kvm->arch.noncoherent_dma_count);
8286 }
8287 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8288
8289 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8290 {
8291 return atomic_read(&kvm->arch.noncoherent_dma_count);
8292 }
8293 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8294
8295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);