]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: update master clock before computing kvmclock_offset
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142 int nr;
143 u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
148 bool registered;
149 struct kvm_shared_msr_values {
150 u64 host;
151 u64 curr;
152 } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
197 { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206 int i;
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213 unsigned slot;
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
217 unsigned long flags;
218
219 /*
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
222 */
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
227 }
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
234 }
235 }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240 u64 value;
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
248 return;
249 }
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266 unsigned i;
267
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276 int err;
277
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 return 0;
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282 if (err)
283 return 1;
284
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
289 }
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324 old_state == 0)))
325 return 1;
326
327 kvm_lapic_set_base(vcpu, msr_info->data);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334 /* Fault while not rebooting. We want the trace. */
335 BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
341 #define EXCPT_PF 2
342
343 static int exception_class(int vector)
344 {
345 switch (vector) {
346 case PF_VECTOR:
347 return EXCPT_PF;
348 case DE_VECTOR:
349 case TS_VECTOR:
350 case NP_VECTOR:
351 case SS_VECTOR:
352 case GP_VECTOR:
353 return EXCPT_CONTRIBUTORY;
354 default:
355 break;
356 }
357 return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT 0
361 #define EXCPT_TRAP 1
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
364
365 static int exception_type(int vector)
366 {
367 unsigned int mask;
368
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
371
372 mask = 1 << vector;
373
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376 return EXCPT_TRAP;
377
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379 return EXCPT_ABORT;
380
381 /* Reserved exceptions will result in fault */
382 return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
387 bool reinject)
388 {
389 u32 prev_nr;
390 int class1, class2;
391
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394 if (!vcpu->arch.exception.pending) {
395 queue:
396 if (has_error && !is_protmode(vcpu))
397 has_error = false;
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
403 return;
404 }
405
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411 return;
412 }
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
422 } else
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
425 exception */
426 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443 if (err)
444 kvm_inject_gp(vcpu, 0);
445 else
446 return kvm_skip_emulated_instruction(vcpu);
447
448 return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 else
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467 return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
492 */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 return true;
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498 return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505 return true;
506
507 kvm_queue_exception(vcpu, UD_VECTOR);
508 return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
516 */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
519 u32 access)
520 {
521 struct x86_exception exception;
522 gfn_t real_gfn;
523 gpa_t ngpa;
524
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
528 return -EFAULT;
529
530 real_gfn = gpa_to_gfn(real_gfn);
531
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
538 {
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
541 }
542
543 /*
544 * Load the pae pdptrs. Return true is they are all valid.
545 */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550 int i;
551 int ret;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
557 if (ret < 0) {
558 ret = 0;
559 goto out;
560 }
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 (pdpte[i] &
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565 ret = 0;
566 goto out;
567 }
568 }
569 ret = 1;
570
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578 return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585 bool changed = true;
586 int offset;
587 gfn_t gfn;
588 int r;
589
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
591 return false;
592
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
595 return true;
596
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
601 if (r < 0)
602 goto out;
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606 return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615 cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618 if (cr0 & 0xffffffff00000000UL)
619 return 1;
620 #endif
621
622 cr0 &= ~CR0_RESERVED_BITS;
623
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625 return 1;
626
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628 return 1;
629
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632 if ((vcpu->arch.efer & EFER_LME)) {
633 int cs_db, cs_l;
634
635 if (!is_pae(vcpu))
636 return 1;
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638 if (cs_l)
639 return 1;
640 } else
641 #endif
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643 kvm_read_cr3(vcpu)))
644 return 1;
645 }
646
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648 return 1;
649
650 kvm_x86_ops->set_cr0(vcpu, cr0);
651
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
655 }
656
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
659
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
682 }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
691 }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696 u64 xcr0 = xcr;
697 u64 old_xcr0 = vcpu->arch.xcr0;
698 u64 valid_bits;
699
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
702 return 1;
703 if (!(xcr0 & XFEATURE_MASK_FP))
704 return 1;
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706 return 1;
707
708 /*
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
712 */
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
715 return 1;
716
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719 return 1;
720
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
723 return 1;
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725 return 1;
726 }
727 vcpu->arch.xcr0 = xcr0;
728
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
731 return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
739 return 1;
740 }
741 return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751 if (cr4 & CR4_RESERVED_BITS)
752 return 1;
753
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755 return 1;
756
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758 return 1;
759
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761 return 1;
762
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764 return 1;
765
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767 return 1;
768
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
771 return 1;
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 kvm_read_cr3(vcpu)))
776 return 1;
777
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
780 return 1;
781
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784 return 1;
785 }
786
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
788 return 1;
789
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
793
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804 cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810 return 0;
811 }
812
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 return 1;
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818 return 1;
819
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829 if (cr8 & CR8_RESERVED_BITS)
830 return 1;
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
833 else
834 vcpu->arch.cr8 = cr8;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
843 else
844 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850 int i;
851
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856 }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867 unsigned long dr7;
868
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
871 else
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881 u64 fixed = DR6_FIXED_1;
882
883 if (!guest_cpuid_has_rtm(vcpu))
884 fixed |= DR6_RTM;
885 return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 switch (dr) {
891 case 0 ... 3:
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
895 break;
896 case 4:
897 /* fall through */
898 case 6:
899 if (val & 0xffffffff00000000ULL)
900 return -1; /* #GP */
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
903 break;
904 case 5:
905 /* fall through */
906 default: /* 7 */
907 if (val & 0xffffffff00000000ULL)
908 return -1; /* #GP */
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
911 break;
912 }
913
914 return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
921 return 1;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 *val = vcpu->arch.db[dr];
932 break;
933 case 4:
934 /* fall through */
935 case 6:
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
938 else
939 *val = kvm_x86_ops->get_dr6(vcpu);
940 break;
941 case 5:
942 /* fall through */
943 default: /* 7 */
944 *val = vcpu->arch.dr7;
945 break;
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954 u64 data;
955 int err;
956
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958 if (err)
959 return err;
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 *
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
974 */
975
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978 MSR_STAR,
979 #ifdef CONFIG_X86_64
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995 HV_X64_MSR_RESET,
996 HV_X64_MSR_VP_INDEX,
997 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_SCONTROL,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001 MSR_KVM_PV_EOI_EN,
1002
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_CTL,
1008 MSR_IA32_MCG_EXT_CTL,
1009 MSR_IA32_SMBASE,
1010 MSR_PLATFORM_INFO,
1011 MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018 if (efer & efer_reserved_bits)
1019 return false;
1020
1021 if (efer & EFER_FFXSR) {
1022 struct kvm_cpuid_entry2 *feat;
1023
1024 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026 return false;
1027 }
1028
1029 if (efer & EFER_SVME) {
1030 struct kvm_cpuid_entry2 *feat;
1031
1032 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034 return false;
1035 }
1036
1037 return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043 u64 old_efer = vcpu->arch.efer;
1044
1045 if (!kvm_valid_efer(vcpu, efer))
1046 return 1;
1047
1048 if (is_paging(vcpu)
1049 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050 return 1;
1051
1052 efer &= ~EFER_LMA;
1053 efer |= vcpu->arch.efer & EFER_LMA;
1054
1055 kvm_x86_ops->set_efer(vcpu, efer);
1056
1057 /* Update reserved bits */
1058 if ((efer ^ old_efer) & EFER_NX)
1059 kvm_mmu_reset_context(vcpu);
1060
1061 return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066 efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071 * Writes msr value into into the appropriate "register".
1072 * Returns 0 on success, non-0 otherwise.
1073 * Assumes vcpu_load() was already called.
1074 */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077 switch (msr->index) {
1078 case MSR_FS_BASE:
1079 case MSR_GS_BASE:
1080 case MSR_KERNEL_GS_BASE:
1081 case MSR_CSTAR:
1082 case MSR_LSTAR:
1083 if (is_noncanonical_address(msr->data))
1084 return 1;
1085 break;
1086 case MSR_IA32_SYSENTER_EIP:
1087 case MSR_IA32_SYSENTER_ESP:
1088 /*
1089 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090 * non-canonical address is written on Intel but not on
1091 * AMD (which ignores the top 32-bits, because it does
1092 * not implement 64-bit SYSENTER).
1093 *
1094 * 64-bit code should hence be able to write a non-canonical
1095 * value on AMD. Making the address canonical ensures that
1096 * vmentry does not fail on Intel after writing a non-canonical
1097 * value, and that something deterministic happens if the guest
1098 * invokes 64-bit SYSENTER.
1099 */
1100 msr->data = get_canonical(msr->data);
1101 }
1102 return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107 * Adapt set_msr() to msr_io()'s calling convention
1108 */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111 struct msr_data msr;
1112 int r;
1113
1114 msr.index = index;
1115 msr.host_initiated = true;
1116 r = kvm_get_msr(vcpu, &msr);
1117 if (r)
1118 return r;
1119
1120 *data = msr.data;
1121 return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126 struct msr_data msr;
1127
1128 msr.data = *data;
1129 msr.index = index;
1130 msr.host_initiated = true;
1131 return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136 seqcount_t seq;
1137
1138 struct { /* extract of a clocksource struct */
1139 int vclock_mode;
1140 u64 cycle_last;
1141 u64 mask;
1142 u32 mult;
1143 u32 shift;
1144 } clock;
1145
1146 u64 boot_ns;
1147 u64 nsec_base;
1148 u64 wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156 u64 boot_ns;
1157
1158 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160 write_seqcount_begin(&vdata->seq);
1161
1162 /* copy pvclock gtod data */
1163 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1164 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1165 vdata->clock.mask = tk->tkr_mono.mask;
1166 vdata->clock.mult = tk->tkr_mono.mult;
1167 vdata->clock.shift = tk->tkr_mono.shift;
1168
1169 vdata->boot_ns = boot_ns;
1170 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1171
1172 vdata->wall_time_sec = tk->xtime_sec;
1173
1174 write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180 /*
1181 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182 * vcpu_enter_guest. This function is only called from
1183 * the physical CPU that is running vcpu.
1184 */
1185 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190 int version;
1191 int r;
1192 struct pvclock_wall_clock wc;
1193 struct timespec64 boot;
1194
1195 if (!wall_clock)
1196 return;
1197
1198 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199 if (r)
1200 return;
1201
1202 if (version & 1)
1203 ++version; /* first time write, random junk */
1204
1205 ++version;
1206
1207 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208 return;
1209
1210 /*
1211 * The guest calculates current wall clock time by adding
1212 * system time (updated by kvm_guest_time_update below) to the
1213 * wall clock specified here. guest system time equals host
1214 * system time for us, thus we must fill in host boot time here.
1215 */
1216 getboottime64(&boot);
1217
1218 if (kvm->arch.kvmclock_offset) {
1219 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220 boot = timespec64_sub(boot, ts);
1221 }
1222 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223 wc.nsec = boot.tv_nsec;
1224 wc.version = version;
1225
1226 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228 version++;
1229 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234 do_shl32_div32(dividend, divisor);
1235 return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239 s8 *pshift, u32 *pmultiplier)
1240 {
1241 uint64_t scaled64;
1242 int32_t shift = 0;
1243 uint64_t tps64;
1244 uint32_t tps32;
1245
1246 tps64 = base_hz;
1247 scaled64 = scaled_hz;
1248 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249 tps64 >>= 1;
1250 shift--;
1251 }
1252
1253 tps32 = (uint32_t)tps64;
1254 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256 scaled64 >>= 1;
1257 else
1258 tps32 <<= 1;
1259 shift++;
1260 }
1261
1262 *pshift = shift;
1263 *pmultiplier = div_frac(scaled64, tps32);
1264
1265 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278 u64 v = (u64)khz * (1000000 + ppm);
1279 do_div(v, 1000000);
1280 return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285 u64 ratio;
1286
1287 /* Guest TSC same frequency as host TSC? */
1288 if (!scale) {
1289 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290 return 0;
1291 }
1292
1293 /* TSC scaling supported? */
1294 if (!kvm_has_tsc_control) {
1295 if (user_tsc_khz > tsc_khz) {
1296 vcpu->arch.tsc_catchup = 1;
1297 vcpu->arch.tsc_always_catchup = 1;
1298 return 0;
1299 } else {
1300 WARN(1, "user requested TSC rate below hardware speed\n");
1301 return -1;
1302 }
1303 }
1304
1305 /* TSC scaling required - calculate ratio */
1306 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307 user_tsc_khz, tsc_khz);
1308
1309 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311 user_tsc_khz);
1312 return -1;
1313 }
1314
1315 vcpu->arch.tsc_scaling_ratio = ratio;
1316 return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321 u32 thresh_lo, thresh_hi;
1322 int use_scaling = 0;
1323
1324 /* tsc_khz can be zero if TSC calibration fails */
1325 if (user_tsc_khz == 0) {
1326 /* set tsc_scaling_ratio to a safe value */
1327 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328 return -1;
1329 }
1330
1331 /* Compute a scale to convert nanoseconds in TSC cycles */
1332 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333 &vcpu->arch.virtual_tsc_shift,
1334 &vcpu->arch.virtual_tsc_mult);
1335 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337 /*
1338 * Compute the variation in TSC rate which is acceptable
1339 * within the range of tolerance and decide if the
1340 * rate being applied is within that bounds of the hardware
1341 * rate. If so, no scaling or compensation need be done.
1342 */
1343 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347 use_scaling = 1;
1348 }
1349 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355 vcpu->arch.virtual_tsc_mult,
1356 vcpu->arch.virtual_tsc_shift);
1357 tsc += vcpu->arch.this_tsc_write;
1358 return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364 bool vcpus_matched;
1365 struct kvm_arch *ka = &vcpu->kvm->arch;
1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369 atomic_read(&vcpu->kvm->online_vcpus));
1370
1371 /*
1372 * Once the masterclock is enabled, always perform request in
1373 * order to update it.
1374 *
1375 * In order to enable masterclock, the host clocksource must be TSC
1376 * and the vcpus need to have matched TSCs. When that happens,
1377 * perform request to enable masterclock.
1378 */
1379 if (ka->use_master_clock ||
1380 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384 atomic_read(&vcpu->kvm->online_vcpus),
1385 ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391 u64 curr_offset = vcpu->arch.tsc_offset;
1392 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396 * Multiply tsc by a fixed point number represented by ratio.
1397 *
1398 * The most significant 64-N bits (mult) of ratio represent the
1399 * integral part of the fixed point number; the remaining N bits
1400 * (frac) represent the fractional part, ie. ratio represents a fixed
1401 * point number (mult + frac * 2^(-N)).
1402 *
1403 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404 */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412 u64 _tsc = tsc;
1413 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415 if (ratio != kvm_default_tsc_scaling_ratio)
1416 _tsc = __scale_tsc(ratio, tsc);
1417
1418 return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424 u64 tsc;
1425
1426 tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428 return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440 vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445 struct kvm *kvm = vcpu->kvm;
1446 u64 offset, ns, elapsed;
1447 unsigned long flags;
1448 bool matched;
1449 bool already_matched;
1450 u64 data = msr->data;
1451 bool synchronizing = false;
1452
1453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454 offset = kvm_compute_tsc_offset(vcpu, data);
1455 ns = ktime_get_boot_ns();
1456 elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458 if (vcpu->arch.virtual_tsc_khz) {
1459 if (data == 0 && msr->host_initiated) {
1460 /*
1461 * detection of vcpu initialization -- need to sync
1462 * with other vCPUs. This particularly helps to keep
1463 * kvm_clock stable after CPU hotplug
1464 */
1465 synchronizing = true;
1466 } else {
1467 u64 tsc_exp = kvm->arch.last_tsc_write +
1468 nsec_to_cycles(vcpu, elapsed);
1469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470 /*
1471 * Special case: TSC write with a small delta (1 second)
1472 * of virtual cycle time against real time is
1473 * interpreted as an attempt to synchronize the CPU.
1474 */
1475 synchronizing = data < tsc_exp + tsc_hz &&
1476 data + tsc_hz > tsc_exp;
1477 }
1478 }
1479
1480 /*
1481 * For a reliable TSC, we can match TSC offsets, and for an unstable
1482 * TSC, we add elapsed time in this computation. We could let the
1483 * compensation code attempt to catch up if we fall behind, but
1484 * it's better to try to match offsets from the beginning.
1485 */
1486 if (synchronizing &&
1487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488 if (!check_tsc_unstable()) {
1489 offset = kvm->arch.cur_tsc_offset;
1490 pr_debug("kvm: matched tsc offset for %llu\n", data);
1491 } else {
1492 u64 delta = nsec_to_cycles(vcpu, elapsed);
1493 data += delta;
1494 offset = kvm_compute_tsc_offset(vcpu, data);
1495 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496 }
1497 matched = true;
1498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499 } else {
1500 /*
1501 * We split periods of matched TSC writes into generations.
1502 * For each generation, we track the original measured
1503 * nanosecond time, offset, and write, so if TSCs are in
1504 * sync, we can match exact offset, and if not, we can match
1505 * exact software computation in compute_guest_tsc()
1506 *
1507 * These values are tracked in kvm->arch.cur_xxx variables.
1508 */
1509 kvm->arch.cur_tsc_generation++;
1510 kvm->arch.cur_tsc_nsec = ns;
1511 kvm->arch.cur_tsc_write = data;
1512 kvm->arch.cur_tsc_offset = offset;
1513 matched = false;
1514 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515 kvm->arch.cur_tsc_generation, data);
1516 }
1517
1518 /*
1519 * We also track th most recent recorded KHZ, write and time to
1520 * allow the matching interval to be extended at each write.
1521 */
1522 kvm->arch.last_tsc_nsec = ns;
1523 kvm->arch.last_tsc_write = data;
1524 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526 vcpu->arch.last_guest_tsc = data;
1527
1528 /* Keep track of which generation this VCPU has synchronized to */
1529 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534 update_ia32_tsc_adjust_msr(vcpu, offset);
1535 kvm_vcpu_write_tsc_offset(vcpu, offset);
1536 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539 if (!matched) {
1540 kvm->arch.nr_vcpus_matched_tsc = 0;
1541 } else if (!already_matched) {
1542 kvm->arch.nr_vcpus_matched_tsc++;
1543 }
1544
1545 kvm_track_tsc_matching(vcpu);
1546 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552 s64 adjustment)
1553 {
1554 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560 WARN_ON(adjustment < 0);
1561 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562 adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569 u64 ret = (u64)rdtsc_ordered();
1570 u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572 if (likely(ret >= last))
1573 return ret;
1574
1575 /*
1576 * GCC likes to generate cmov here, but this branch is extremely
1577 * predictable (it's just a function of time and the likely is
1578 * very likely) and there's a data dependence, so force GCC
1579 * to generate a branch instead. I don't barrier() because
1580 * we don't actually need a barrier, and if this function
1581 * ever gets inlined it will generate worse code.
1582 */
1583 asm volatile ("");
1584 return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589 long v;
1590 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592 *cycle_now = read_tsc();
1593
1594 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595 return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601 unsigned long seq;
1602 int mode;
1603 u64 ns;
1604
1605 do {
1606 seq = read_seqcount_begin(&gtod->seq);
1607 mode = gtod->clock.vclock_mode;
1608 ns = gtod->nsec_base;
1609 ns += vgettsc(cycle_now);
1610 ns >>= gtod->clock.shift;
1611 ns += gtod->boot_ns;
1612 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613 *t = ns;
1614
1615 return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621 unsigned long seq;
1622 int mode;
1623 u64 ns;
1624
1625 do {
1626 seq = read_seqcount_begin(&gtod->seq);
1627 mode = gtod->clock.vclock_mode;
1628 ts->tv_sec = gtod->wall_time_sec;
1629 ns = gtod->nsec_base;
1630 ns += vgettsc(cycle_now);
1631 ns >>= gtod->clock.shift;
1632 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635 ts->tv_nsec = ns;
1636
1637 return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643 /* checked again under seqlock below */
1644 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645 return false;
1646
1647 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652 u64 *cycle_now)
1653 {
1654 /* checked again under seqlock below */
1655 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656 return false;
1657
1658 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663 *
1664 * Assuming a stable TSC across physical CPUS, and a stable TSC
1665 * across virtual CPUs, the following condition is possible.
1666 * Each numbered line represents an event visible to both
1667 * CPUs at the next numbered event.
1668 *
1669 * "timespecX" represents host monotonic time. "tscX" represents
1670 * RDTSC value.
1671 *
1672 * VCPU0 on CPU0 | VCPU1 on CPU1
1673 *
1674 * 1. read timespec0,tsc0
1675 * 2. | timespec1 = timespec0 + N
1676 * | tsc1 = tsc0 + M
1677 * 3. transition to guest | transition to guest
1678 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1680 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681 *
1682 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683 *
1684 * - ret0 < ret1
1685 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686 * ...
1687 * - 0 < N - M => M < N
1688 *
1689 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690 * always the case (the difference between two distinct xtime instances
1691 * might be smaller then the difference between corresponding TSC reads,
1692 * when updating guest vcpus pvclock areas).
1693 *
1694 * To avoid that problem, do not allow visibility of distinct
1695 * system_timestamp/tsc_timestamp values simultaneously: use a master
1696 * copy of host monotonic time values. Update that master copy
1697 * in lockstep.
1698 *
1699 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700 *
1701 */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706 struct kvm_arch *ka = &kvm->arch;
1707 int vclock_mode;
1708 bool host_tsc_clocksource, vcpus_matched;
1709
1710 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711 atomic_read(&kvm->online_vcpus));
1712
1713 /*
1714 * If the host uses TSC clock, then passthrough TSC as stable
1715 * to the guest.
1716 */
1717 host_tsc_clocksource = kvm_get_time_and_clockread(
1718 &ka->master_kernel_ns,
1719 &ka->master_cycle_now);
1720
1721 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722 && !backwards_tsc_observed
1723 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725 if (ka->use_master_clock)
1726 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730 vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742 int i;
1743 struct kvm_vcpu *vcpu;
1744 struct kvm_arch *ka = &kvm->arch;
1745
1746 spin_lock(&ka->pvclock_gtod_sync_lock);
1747 kvm_make_mclock_inprogress_request(kvm);
1748 /* no guest entries from this point */
1749 pvclock_update_vm_gtod_copy(kvm);
1750
1751 kvm_for_each_vcpu(i, vcpu, kvm)
1752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754 /* guest entries allowed */
1755 kvm_for_each_vcpu(i, vcpu, kvm)
1756 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1757
1758 spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1763 {
1764 struct kvm_arch *ka = &kvm->arch;
1765 struct pvclock_vcpu_time_info hv_clock;
1766 u64 ret;
1767
1768 spin_lock(&ka->pvclock_gtod_sync_lock);
1769 if (!ka->use_master_clock) {
1770 spin_unlock(&ka->pvclock_gtod_sync_lock);
1771 return ktime_get_boot_ns() + ka->kvmclock_offset;
1772 }
1773
1774 hv_clock.tsc_timestamp = ka->master_cycle_now;
1775 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1776 spin_unlock(&ka->pvclock_gtod_sync_lock);
1777
1778 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1779 get_cpu();
1780
1781 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1782 &hv_clock.tsc_shift,
1783 &hv_clock.tsc_to_system_mul);
1784 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1785
1786 put_cpu();
1787
1788 return ret;
1789 }
1790
1791 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1792 {
1793 struct kvm_vcpu_arch *vcpu = &v->arch;
1794 struct pvclock_vcpu_time_info guest_hv_clock;
1795
1796 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 &guest_hv_clock, sizeof(guest_hv_clock))))
1798 return;
1799
1800 /* This VCPU is paused, but it's legal for a guest to read another
1801 * VCPU's kvmclock, so we really have to follow the specification where
1802 * it says that version is odd if data is being modified, and even after
1803 * it is consistent.
1804 *
1805 * Version field updates must be kept separate. This is because
1806 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 * writes within a string instruction are weakly ordered. So there
1808 * are three writes overall.
1809 *
1810 * As a small optimization, only write the version field in the first
1811 * and third write. The vcpu->pv_time cache is still valid, because the
1812 * version field is the first in the struct.
1813 */
1814 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818 &vcpu->hv_clock,
1819 sizeof(vcpu->hv_clock.version));
1820
1821 smp_wmb();
1822
1823 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826 if (vcpu->pvclock_set_guest_stopped_request) {
1827 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1828 vcpu->pvclock_set_guest_stopped_request = false;
1829 }
1830
1831 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1832
1833 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1834 &vcpu->hv_clock,
1835 sizeof(vcpu->hv_clock));
1836
1837 smp_wmb();
1838
1839 vcpu->hv_clock.version++;
1840 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841 &vcpu->hv_clock,
1842 sizeof(vcpu->hv_clock.version));
1843 }
1844
1845 static int kvm_guest_time_update(struct kvm_vcpu *v)
1846 {
1847 unsigned long flags, tgt_tsc_khz;
1848 struct kvm_vcpu_arch *vcpu = &v->arch;
1849 struct kvm_arch *ka = &v->kvm->arch;
1850 s64 kernel_ns;
1851 u64 tsc_timestamp, host_tsc;
1852 u8 pvclock_flags;
1853 bool use_master_clock;
1854
1855 kernel_ns = 0;
1856 host_tsc = 0;
1857
1858 /*
1859 * If the host uses TSC clock, then passthrough TSC as stable
1860 * to the guest.
1861 */
1862 spin_lock(&ka->pvclock_gtod_sync_lock);
1863 use_master_clock = ka->use_master_clock;
1864 if (use_master_clock) {
1865 host_tsc = ka->master_cycle_now;
1866 kernel_ns = ka->master_kernel_ns;
1867 }
1868 spin_unlock(&ka->pvclock_gtod_sync_lock);
1869
1870 /* Keep irq disabled to prevent changes to the clock */
1871 local_irq_save(flags);
1872 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1873 if (unlikely(tgt_tsc_khz == 0)) {
1874 local_irq_restore(flags);
1875 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1876 return 1;
1877 }
1878 if (!use_master_clock) {
1879 host_tsc = rdtsc();
1880 kernel_ns = ktime_get_boot_ns();
1881 }
1882
1883 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1884
1885 /*
1886 * We may have to catch up the TSC to match elapsed wall clock
1887 * time for two reasons, even if kvmclock is used.
1888 * 1) CPU could have been running below the maximum TSC rate
1889 * 2) Broken TSC compensation resets the base at each VCPU
1890 * entry to avoid unknown leaps of TSC even when running
1891 * again on the same CPU. This may cause apparent elapsed
1892 * time to disappear, and the guest to stand still or run
1893 * very slowly.
1894 */
1895 if (vcpu->tsc_catchup) {
1896 u64 tsc = compute_guest_tsc(v, kernel_ns);
1897 if (tsc > tsc_timestamp) {
1898 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1899 tsc_timestamp = tsc;
1900 }
1901 }
1902
1903 local_irq_restore(flags);
1904
1905 /* With all the info we got, fill in the values */
1906
1907 if (kvm_has_tsc_control)
1908 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1909
1910 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1911 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1912 &vcpu->hv_clock.tsc_shift,
1913 &vcpu->hv_clock.tsc_to_system_mul);
1914 vcpu->hw_tsc_khz = tgt_tsc_khz;
1915 }
1916
1917 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1918 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1919 vcpu->last_guest_tsc = tsc_timestamp;
1920
1921 /* If the host uses TSC clocksource, then it is stable */
1922 pvclock_flags = 0;
1923 if (use_master_clock)
1924 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1925
1926 vcpu->hv_clock.flags = pvclock_flags;
1927
1928 if (vcpu->pv_time_enabled)
1929 kvm_setup_pvclock_page(v);
1930 if (v == kvm_get_vcpu(v->kvm, 0))
1931 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1932 return 0;
1933 }
1934
1935 /*
1936 * kvmclock updates which are isolated to a given vcpu, such as
1937 * vcpu->cpu migration, should not allow system_timestamp from
1938 * the rest of the vcpus to remain static. Otherwise ntp frequency
1939 * correction applies to one vcpu's system_timestamp but not
1940 * the others.
1941 *
1942 * So in those cases, request a kvmclock update for all vcpus.
1943 * We need to rate-limit these requests though, as they can
1944 * considerably slow guests that have a large number of vcpus.
1945 * The time for a remote vcpu to update its kvmclock is bound
1946 * by the delay we use to rate-limit the updates.
1947 */
1948
1949 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1950
1951 static void kvmclock_update_fn(struct work_struct *work)
1952 {
1953 int i;
1954 struct delayed_work *dwork = to_delayed_work(work);
1955 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1956 kvmclock_update_work);
1957 struct kvm *kvm = container_of(ka, struct kvm, arch);
1958 struct kvm_vcpu *vcpu;
1959
1960 kvm_for_each_vcpu(i, vcpu, kvm) {
1961 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1962 kvm_vcpu_kick(vcpu);
1963 }
1964 }
1965
1966 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1967 {
1968 struct kvm *kvm = v->kvm;
1969
1970 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1971 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1972 KVMCLOCK_UPDATE_DELAY);
1973 }
1974
1975 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1976
1977 static void kvmclock_sync_fn(struct work_struct *work)
1978 {
1979 struct delayed_work *dwork = to_delayed_work(work);
1980 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1981 kvmclock_sync_work);
1982 struct kvm *kvm = container_of(ka, struct kvm, arch);
1983
1984 if (!kvmclock_periodic_sync)
1985 return;
1986
1987 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1988 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1989 KVMCLOCK_SYNC_PERIOD);
1990 }
1991
1992 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1993 {
1994 u64 mcg_cap = vcpu->arch.mcg_cap;
1995 unsigned bank_num = mcg_cap & 0xff;
1996
1997 switch (msr) {
1998 case MSR_IA32_MCG_STATUS:
1999 vcpu->arch.mcg_status = data;
2000 break;
2001 case MSR_IA32_MCG_CTL:
2002 if (!(mcg_cap & MCG_CTL_P))
2003 return 1;
2004 if (data != 0 && data != ~(u64)0)
2005 return -1;
2006 vcpu->arch.mcg_ctl = data;
2007 break;
2008 default:
2009 if (msr >= MSR_IA32_MC0_CTL &&
2010 msr < MSR_IA32_MCx_CTL(bank_num)) {
2011 u32 offset = msr - MSR_IA32_MC0_CTL;
2012 /* only 0 or all 1s can be written to IA32_MCi_CTL
2013 * some Linux kernels though clear bit 10 in bank 4 to
2014 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2015 * this to avoid an uncatched #GP in the guest
2016 */
2017 if ((offset & 0x3) == 0 &&
2018 data != 0 && (data | (1 << 10)) != ~(u64)0)
2019 return -1;
2020 vcpu->arch.mce_banks[offset] = data;
2021 break;
2022 }
2023 return 1;
2024 }
2025 return 0;
2026 }
2027
2028 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2029 {
2030 struct kvm *kvm = vcpu->kvm;
2031 int lm = is_long_mode(vcpu);
2032 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2033 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2034 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2035 : kvm->arch.xen_hvm_config.blob_size_32;
2036 u32 page_num = data & ~PAGE_MASK;
2037 u64 page_addr = data & PAGE_MASK;
2038 u8 *page;
2039 int r;
2040
2041 r = -E2BIG;
2042 if (page_num >= blob_size)
2043 goto out;
2044 r = -ENOMEM;
2045 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2046 if (IS_ERR(page)) {
2047 r = PTR_ERR(page);
2048 goto out;
2049 }
2050 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2051 goto out_free;
2052 r = 0;
2053 out_free:
2054 kfree(page);
2055 out:
2056 return r;
2057 }
2058
2059 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061 gpa_t gpa = data & ~0x3f;
2062
2063 /* Bits 2:5 are reserved, Should be zero */
2064 if (data & 0x3c)
2065 return 1;
2066
2067 vcpu->arch.apf.msr_val = data;
2068
2069 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2070 kvm_clear_async_pf_completion_queue(vcpu);
2071 kvm_async_pf_hash_reset(vcpu);
2072 return 0;
2073 }
2074
2075 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2076 sizeof(u32)))
2077 return 1;
2078
2079 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2080 kvm_async_pf_wakeup_all(vcpu);
2081 return 0;
2082 }
2083
2084 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2085 {
2086 vcpu->arch.pv_time_enabled = false;
2087 }
2088
2089 static void record_steal_time(struct kvm_vcpu *vcpu)
2090 {
2091 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2092 return;
2093
2094 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2095 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2096 return;
2097
2098 vcpu->arch.st.steal.preempted = 0;
2099
2100 if (vcpu->arch.st.steal.version & 1)
2101 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2102
2103 vcpu->arch.st.steal.version += 1;
2104
2105 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2107
2108 smp_wmb();
2109
2110 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2111 vcpu->arch.st.last_steal;
2112 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2113
2114 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2116
2117 smp_wmb();
2118
2119 vcpu->arch.st.steal.version += 1;
2120
2121 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2122 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2123 }
2124
2125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2126 {
2127 bool pr = false;
2128 u32 msr = msr_info->index;
2129 u64 data = msr_info->data;
2130
2131 switch (msr) {
2132 case MSR_AMD64_NB_CFG:
2133 case MSR_IA32_UCODE_REV:
2134 case MSR_IA32_UCODE_WRITE:
2135 case MSR_VM_HSAVE_PA:
2136 case MSR_AMD64_PATCH_LOADER:
2137 case MSR_AMD64_BU_CFG2:
2138 case MSR_AMD64_DC_CFG:
2139 break;
2140
2141 case MSR_EFER:
2142 return set_efer(vcpu, data);
2143 case MSR_K7_HWCR:
2144 data &= ~(u64)0x40; /* ignore flush filter disable */
2145 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2146 data &= ~(u64)0x8; /* ignore TLB cache disable */
2147 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2148 if (data != 0) {
2149 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2150 data);
2151 return 1;
2152 }
2153 break;
2154 case MSR_FAM10H_MMIO_CONF_BASE:
2155 if (data != 0) {
2156 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2157 "0x%llx\n", data);
2158 return 1;
2159 }
2160 break;
2161 case MSR_IA32_DEBUGCTLMSR:
2162 if (!data) {
2163 /* We support the non-activated case already */
2164 break;
2165 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2166 /* Values other than LBR and BTF are vendor-specific,
2167 thus reserved and should throw a #GP */
2168 return 1;
2169 }
2170 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2171 __func__, data);
2172 break;
2173 case 0x200 ... 0x2ff:
2174 return kvm_mtrr_set_msr(vcpu, msr, data);
2175 case MSR_IA32_APICBASE:
2176 return kvm_set_apic_base(vcpu, msr_info);
2177 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2178 return kvm_x2apic_msr_write(vcpu, msr, data);
2179 case MSR_IA32_TSCDEADLINE:
2180 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2181 break;
2182 case MSR_IA32_TSC_ADJUST:
2183 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2184 if (!msr_info->host_initiated) {
2185 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2186 adjust_tsc_offset_guest(vcpu, adj);
2187 }
2188 vcpu->arch.ia32_tsc_adjust_msr = data;
2189 }
2190 break;
2191 case MSR_IA32_MISC_ENABLE:
2192 vcpu->arch.ia32_misc_enable_msr = data;
2193 break;
2194 case MSR_IA32_SMBASE:
2195 if (!msr_info->host_initiated)
2196 return 1;
2197 vcpu->arch.smbase = data;
2198 break;
2199 case MSR_KVM_WALL_CLOCK_NEW:
2200 case MSR_KVM_WALL_CLOCK:
2201 vcpu->kvm->arch.wall_clock = data;
2202 kvm_write_wall_clock(vcpu->kvm, data);
2203 break;
2204 case MSR_KVM_SYSTEM_TIME_NEW:
2205 case MSR_KVM_SYSTEM_TIME: {
2206 struct kvm_arch *ka = &vcpu->kvm->arch;
2207
2208 kvmclock_reset(vcpu);
2209
2210 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2211 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2212
2213 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2214 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2215
2216 ka->boot_vcpu_runs_old_kvmclock = tmp;
2217 }
2218
2219 vcpu->arch.time = data;
2220 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2221
2222 /* we verify if the enable bit is set... */
2223 if (!(data & 1))
2224 break;
2225
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2227 &vcpu->arch.pv_time, data & ~1ULL,
2228 sizeof(struct pvclock_vcpu_time_info)))
2229 vcpu->arch.pv_time_enabled = false;
2230 else
2231 vcpu->arch.pv_time_enabled = true;
2232
2233 break;
2234 }
2235 case MSR_KVM_ASYNC_PF_EN:
2236 if (kvm_pv_enable_async_pf(vcpu, data))
2237 return 1;
2238 break;
2239 case MSR_KVM_STEAL_TIME:
2240
2241 if (unlikely(!sched_info_on()))
2242 return 1;
2243
2244 if (data & KVM_STEAL_RESERVED_MASK)
2245 return 1;
2246
2247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2248 data & KVM_STEAL_VALID_BITS,
2249 sizeof(struct kvm_steal_time)))
2250 return 1;
2251
2252 vcpu->arch.st.msr_val = data;
2253
2254 if (!(data & KVM_MSR_ENABLED))
2255 break;
2256
2257 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2258
2259 break;
2260 case MSR_KVM_PV_EOI_EN:
2261 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2262 return 1;
2263 break;
2264
2265 case MSR_IA32_MCG_CTL:
2266 case MSR_IA32_MCG_STATUS:
2267 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2268 return set_msr_mce(vcpu, msr, data);
2269
2270 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2271 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2272 pr = true; /* fall through */
2273 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2274 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2275 if (kvm_pmu_is_valid_msr(vcpu, msr))
2276 return kvm_pmu_set_msr(vcpu, msr_info);
2277
2278 if (pr || data != 0)
2279 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2280 "0x%x data 0x%llx\n", msr, data);
2281 break;
2282 case MSR_K7_CLK_CTL:
2283 /*
2284 * Ignore all writes to this no longer documented MSR.
2285 * Writes are only relevant for old K7 processors,
2286 * all pre-dating SVM, but a recommended workaround from
2287 * AMD for these chips. It is possible to specify the
2288 * affected processor models on the command line, hence
2289 * the need to ignore the workaround.
2290 */
2291 break;
2292 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2293 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2294 case HV_X64_MSR_CRASH_CTL:
2295 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2296 return kvm_hv_set_msr_common(vcpu, msr, data,
2297 msr_info->host_initiated);
2298 case MSR_IA32_BBL_CR_CTL3:
2299 /* Drop writes to this legacy MSR -- see rdmsr
2300 * counterpart for further detail.
2301 */
2302 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2303 break;
2304 case MSR_AMD64_OSVW_ID_LENGTH:
2305 if (!guest_cpuid_has_osvw(vcpu))
2306 return 1;
2307 vcpu->arch.osvw.length = data;
2308 break;
2309 case MSR_AMD64_OSVW_STATUS:
2310 if (!guest_cpuid_has_osvw(vcpu))
2311 return 1;
2312 vcpu->arch.osvw.status = data;
2313 break;
2314 case MSR_PLATFORM_INFO:
2315 if (!msr_info->host_initiated ||
2316 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2317 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2318 cpuid_fault_enabled(vcpu)))
2319 return 1;
2320 vcpu->arch.msr_platform_info = data;
2321 break;
2322 case MSR_MISC_FEATURES_ENABLES:
2323 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2324 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2325 !supports_cpuid_fault(vcpu)))
2326 return 1;
2327 vcpu->arch.msr_misc_features_enables = data;
2328 break;
2329 default:
2330 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2331 return xen_hvm_config(vcpu, data);
2332 if (kvm_pmu_is_valid_msr(vcpu, msr))
2333 return kvm_pmu_set_msr(vcpu, msr_info);
2334 if (!ignore_msrs) {
2335 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2336 msr, data);
2337 return 1;
2338 } else {
2339 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2340 msr, data);
2341 break;
2342 }
2343 }
2344 return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2347
2348
2349 /*
2350 * Reads an msr value (of 'msr_index') into 'pdata'.
2351 * Returns 0 on success, non-0 otherwise.
2352 * Assumes vcpu_load() was already called.
2353 */
2354 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2355 {
2356 return kvm_x86_ops->get_msr(vcpu, msr);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_get_msr);
2359
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362 u64 data;
2363 u64 mcg_cap = vcpu->arch.mcg_cap;
2364 unsigned bank_num = mcg_cap & 0xff;
2365
2366 switch (msr) {
2367 case MSR_IA32_P5_MC_ADDR:
2368 case MSR_IA32_P5_MC_TYPE:
2369 data = 0;
2370 break;
2371 case MSR_IA32_MCG_CAP:
2372 data = vcpu->arch.mcg_cap;
2373 break;
2374 case MSR_IA32_MCG_CTL:
2375 if (!(mcg_cap & MCG_CTL_P))
2376 return 1;
2377 data = vcpu->arch.mcg_ctl;
2378 break;
2379 case MSR_IA32_MCG_STATUS:
2380 data = vcpu->arch.mcg_status;
2381 break;
2382 default:
2383 if (msr >= MSR_IA32_MC0_CTL &&
2384 msr < MSR_IA32_MCx_CTL(bank_num)) {
2385 u32 offset = msr - MSR_IA32_MC0_CTL;
2386 data = vcpu->arch.mce_banks[offset];
2387 break;
2388 }
2389 return 1;
2390 }
2391 *pdata = data;
2392 return 0;
2393 }
2394
2395 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2396 {
2397 switch (msr_info->index) {
2398 case MSR_IA32_PLATFORM_ID:
2399 case MSR_IA32_EBL_CR_POWERON:
2400 case MSR_IA32_DEBUGCTLMSR:
2401 case MSR_IA32_LASTBRANCHFROMIP:
2402 case MSR_IA32_LASTBRANCHTOIP:
2403 case MSR_IA32_LASTINTFROMIP:
2404 case MSR_IA32_LASTINTTOIP:
2405 case MSR_K8_SYSCFG:
2406 case MSR_K8_TSEG_ADDR:
2407 case MSR_K8_TSEG_MASK:
2408 case MSR_K7_HWCR:
2409 case MSR_VM_HSAVE_PA:
2410 case MSR_K8_INT_PENDING_MSG:
2411 case MSR_AMD64_NB_CFG:
2412 case MSR_FAM10H_MMIO_CONF_BASE:
2413 case MSR_AMD64_BU_CFG2:
2414 case MSR_IA32_PERF_CTL:
2415 case MSR_AMD64_DC_CFG:
2416 msr_info->data = 0;
2417 break;
2418 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2419 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2420 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2421 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2422 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2423 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2424 msr_info->data = 0;
2425 break;
2426 case MSR_IA32_UCODE_REV:
2427 msr_info->data = 0x100000000ULL;
2428 break;
2429 case MSR_MTRRcap:
2430 case 0x200 ... 0x2ff:
2431 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2432 case 0xcd: /* fsb frequency */
2433 msr_info->data = 3;
2434 break;
2435 /*
2436 * MSR_EBC_FREQUENCY_ID
2437 * Conservative value valid for even the basic CPU models.
2438 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2439 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2440 * and 266MHz for model 3, or 4. Set Core Clock
2441 * Frequency to System Bus Frequency Ratio to 1 (bits
2442 * 31:24) even though these are only valid for CPU
2443 * models > 2, however guests may end up dividing or
2444 * multiplying by zero otherwise.
2445 */
2446 case MSR_EBC_FREQUENCY_ID:
2447 msr_info->data = 1 << 24;
2448 break;
2449 case MSR_IA32_APICBASE:
2450 msr_info->data = kvm_get_apic_base(vcpu);
2451 break;
2452 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2453 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2454 break;
2455 case MSR_IA32_TSCDEADLINE:
2456 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2457 break;
2458 case MSR_IA32_TSC_ADJUST:
2459 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2460 break;
2461 case MSR_IA32_MISC_ENABLE:
2462 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2463 break;
2464 case MSR_IA32_SMBASE:
2465 if (!msr_info->host_initiated)
2466 return 1;
2467 msr_info->data = vcpu->arch.smbase;
2468 break;
2469 case MSR_IA32_PERF_STATUS:
2470 /* TSC increment by tick */
2471 msr_info->data = 1000ULL;
2472 /* CPU multiplier */
2473 msr_info->data |= (((uint64_t)4ULL) << 40);
2474 break;
2475 case MSR_EFER:
2476 msr_info->data = vcpu->arch.efer;
2477 break;
2478 case MSR_KVM_WALL_CLOCK:
2479 case MSR_KVM_WALL_CLOCK_NEW:
2480 msr_info->data = vcpu->kvm->arch.wall_clock;
2481 break;
2482 case MSR_KVM_SYSTEM_TIME:
2483 case MSR_KVM_SYSTEM_TIME_NEW:
2484 msr_info->data = vcpu->arch.time;
2485 break;
2486 case MSR_KVM_ASYNC_PF_EN:
2487 msr_info->data = vcpu->arch.apf.msr_val;
2488 break;
2489 case MSR_KVM_STEAL_TIME:
2490 msr_info->data = vcpu->arch.st.msr_val;
2491 break;
2492 case MSR_KVM_PV_EOI_EN:
2493 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2494 break;
2495 case MSR_IA32_P5_MC_ADDR:
2496 case MSR_IA32_P5_MC_TYPE:
2497 case MSR_IA32_MCG_CAP:
2498 case MSR_IA32_MCG_CTL:
2499 case MSR_IA32_MCG_STATUS:
2500 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2501 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2502 case MSR_K7_CLK_CTL:
2503 /*
2504 * Provide expected ramp-up count for K7. All other
2505 * are set to zero, indicating minimum divisors for
2506 * every field.
2507 *
2508 * This prevents guest kernels on AMD host with CPU
2509 * type 6, model 8 and higher from exploding due to
2510 * the rdmsr failing.
2511 */
2512 msr_info->data = 0x20000000;
2513 break;
2514 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2515 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2516 case HV_X64_MSR_CRASH_CTL:
2517 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2518 return kvm_hv_get_msr_common(vcpu,
2519 msr_info->index, &msr_info->data);
2520 break;
2521 case MSR_IA32_BBL_CR_CTL3:
2522 /* This legacy MSR exists but isn't fully documented in current
2523 * silicon. It is however accessed by winxp in very narrow
2524 * scenarios where it sets bit #19, itself documented as
2525 * a "reserved" bit. Best effort attempt to source coherent
2526 * read data here should the balance of the register be
2527 * interpreted by the guest:
2528 *
2529 * L2 cache control register 3: 64GB range, 256KB size,
2530 * enabled, latency 0x1, configured
2531 */
2532 msr_info->data = 0xbe702111;
2533 break;
2534 case MSR_AMD64_OSVW_ID_LENGTH:
2535 if (!guest_cpuid_has_osvw(vcpu))
2536 return 1;
2537 msr_info->data = vcpu->arch.osvw.length;
2538 break;
2539 case MSR_AMD64_OSVW_STATUS:
2540 if (!guest_cpuid_has_osvw(vcpu))
2541 return 1;
2542 msr_info->data = vcpu->arch.osvw.status;
2543 break;
2544 case MSR_PLATFORM_INFO:
2545 msr_info->data = vcpu->arch.msr_platform_info;
2546 break;
2547 case MSR_MISC_FEATURES_ENABLES:
2548 msr_info->data = vcpu->arch.msr_misc_features_enables;
2549 break;
2550 default:
2551 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2552 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2553 if (!ignore_msrs) {
2554 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2555 msr_info->index);
2556 return 1;
2557 } else {
2558 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2559 msr_info->data = 0;
2560 }
2561 break;
2562 }
2563 return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2566
2567 /*
2568 * Read or write a bunch of msrs. All parameters are kernel addresses.
2569 *
2570 * @return number of msrs set successfully.
2571 */
2572 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2573 struct kvm_msr_entry *entries,
2574 int (*do_msr)(struct kvm_vcpu *vcpu,
2575 unsigned index, u64 *data))
2576 {
2577 int i, idx;
2578
2579 idx = srcu_read_lock(&vcpu->kvm->srcu);
2580 for (i = 0; i < msrs->nmsrs; ++i)
2581 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2582 break;
2583 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2584
2585 return i;
2586 }
2587
2588 /*
2589 * Read or write a bunch of msrs. Parameters are user addresses.
2590 *
2591 * @return number of msrs set successfully.
2592 */
2593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2594 int (*do_msr)(struct kvm_vcpu *vcpu,
2595 unsigned index, u64 *data),
2596 int writeback)
2597 {
2598 struct kvm_msrs msrs;
2599 struct kvm_msr_entry *entries;
2600 int r, n;
2601 unsigned size;
2602
2603 r = -EFAULT;
2604 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2605 goto out;
2606
2607 r = -E2BIG;
2608 if (msrs.nmsrs >= MAX_IO_MSRS)
2609 goto out;
2610
2611 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2612 entries = memdup_user(user_msrs->entries, size);
2613 if (IS_ERR(entries)) {
2614 r = PTR_ERR(entries);
2615 goto out;
2616 }
2617
2618 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2619 if (r < 0)
2620 goto out_free;
2621
2622 r = -EFAULT;
2623 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2624 goto out_free;
2625
2626 r = n;
2627
2628 out_free:
2629 kfree(entries);
2630 out:
2631 return r;
2632 }
2633
2634 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2635 {
2636 int r;
2637
2638 switch (ext) {
2639 case KVM_CAP_IRQCHIP:
2640 case KVM_CAP_HLT:
2641 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2642 case KVM_CAP_SET_TSS_ADDR:
2643 case KVM_CAP_EXT_CPUID:
2644 case KVM_CAP_EXT_EMUL_CPUID:
2645 case KVM_CAP_CLOCKSOURCE:
2646 case KVM_CAP_PIT:
2647 case KVM_CAP_NOP_IO_DELAY:
2648 case KVM_CAP_MP_STATE:
2649 case KVM_CAP_SYNC_MMU:
2650 case KVM_CAP_USER_NMI:
2651 case KVM_CAP_REINJECT_CONTROL:
2652 case KVM_CAP_IRQ_INJECT_STATUS:
2653 case KVM_CAP_IOEVENTFD:
2654 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2655 case KVM_CAP_PIT2:
2656 case KVM_CAP_PIT_STATE2:
2657 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2658 case KVM_CAP_XEN_HVM:
2659 case KVM_CAP_VCPU_EVENTS:
2660 case KVM_CAP_HYPERV:
2661 case KVM_CAP_HYPERV_VAPIC:
2662 case KVM_CAP_HYPERV_SPIN:
2663 case KVM_CAP_HYPERV_SYNIC:
2664 case KVM_CAP_PCI_SEGMENT:
2665 case KVM_CAP_DEBUGREGS:
2666 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2667 case KVM_CAP_XSAVE:
2668 case KVM_CAP_ASYNC_PF:
2669 case KVM_CAP_GET_TSC_KHZ:
2670 case KVM_CAP_KVMCLOCK_CTRL:
2671 case KVM_CAP_READONLY_MEM:
2672 case KVM_CAP_HYPERV_TIME:
2673 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2674 case KVM_CAP_TSC_DEADLINE_TIMER:
2675 case KVM_CAP_ENABLE_CAP_VM:
2676 case KVM_CAP_DISABLE_QUIRKS:
2677 case KVM_CAP_SET_BOOT_CPU_ID:
2678 case KVM_CAP_SPLIT_IRQCHIP:
2679 case KVM_CAP_IMMEDIATE_EXIT:
2680 r = 1;
2681 break;
2682 case KVM_CAP_ADJUST_CLOCK:
2683 r = KVM_CLOCK_TSC_STABLE;
2684 break;
2685 case KVM_CAP_X86_GUEST_MWAIT:
2686 r = kvm_mwait_in_guest();
2687 break;
2688 case KVM_CAP_X86_SMM:
2689 /* SMBASE is usually relocated above 1M on modern chipsets,
2690 * and SMM handlers might indeed rely on 4G segment limits,
2691 * so do not report SMM to be available if real mode is
2692 * emulated via vm86 mode. Still, do not go to great lengths
2693 * to avoid userspace's usage of the feature, because it is a
2694 * fringe case that is not enabled except via specific settings
2695 * of the module parameters.
2696 */
2697 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2698 break;
2699 case KVM_CAP_VAPIC:
2700 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2701 break;
2702 case KVM_CAP_NR_VCPUS:
2703 r = KVM_SOFT_MAX_VCPUS;
2704 break;
2705 case KVM_CAP_MAX_VCPUS:
2706 r = KVM_MAX_VCPUS;
2707 break;
2708 case KVM_CAP_NR_MEMSLOTS:
2709 r = KVM_USER_MEM_SLOTS;
2710 break;
2711 case KVM_CAP_PV_MMU: /* obsolete */
2712 r = 0;
2713 break;
2714 case KVM_CAP_MCE:
2715 r = KVM_MAX_MCE_BANKS;
2716 break;
2717 case KVM_CAP_XCRS:
2718 r = boot_cpu_has(X86_FEATURE_XSAVE);
2719 break;
2720 case KVM_CAP_TSC_CONTROL:
2721 r = kvm_has_tsc_control;
2722 break;
2723 case KVM_CAP_X2APIC_API:
2724 r = KVM_X2APIC_API_VALID_FLAGS;
2725 break;
2726 default:
2727 r = 0;
2728 break;
2729 }
2730 return r;
2731
2732 }
2733
2734 long kvm_arch_dev_ioctl(struct file *filp,
2735 unsigned int ioctl, unsigned long arg)
2736 {
2737 void __user *argp = (void __user *)arg;
2738 long r;
2739
2740 switch (ioctl) {
2741 case KVM_GET_MSR_INDEX_LIST: {
2742 struct kvm_msr_list __user *user_msr_list = argp;
2743 struct kvm_msr_list msr_list;
2744 unsigned n;
2745
2746 r = -EFAULT;
2747 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2748 goto out;
2749 n = msr_list.nmsrs;
2750 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2751 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2752 goto out;
2753 r = -E2BIG;
2754 if (n < msr_list.nmsrs)
2755 goto out;
2756 r = -EFAULT;
2757 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2758 num_msrs_to_save * sizeof(u32)))
2759 goto out;
2760 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2761 &emulated_msrs,
2762 num_emulated_msrs * sizeof(u32)))
2763 goto out;
2764 r = 0;
2765 break;
2766 }
2767 case KVM_GET_SUPPORTED_CPUID:
2768 case KVM_GET_EMULATED_CPUID: {
2769 struct kvm_cpuid2 __user *cpuid_arg = argp;
2770 struct kvm_cpuid2 cpuid;
2771
2772 r = -EFAULT;
2773 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2774 goto out;
2775
2776 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2777 ioctl);
2778 if (r)
2779 goto out;
2780
2781 r = -EFAULT;
2782 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2783 goto out;
2784 r = 0;
2785 break;
2786 }
2787 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2788 r = -EFAULT;
2789 if (copy_to_user(argp, &kvm_mce_cap_supported,
2790 sizeof(kvm_mce_cap_supported)))
2791 goto out;
2792 r = 0;
2793 break;
2794 }
2795 default:
2796 r = -EINVAL;
2797 }
2798 out:
2799 return r;
2800 }
2801
2802 static void wbinvd_ipi(void *garbage)
2803 {
2804 wbinvd();
2805 }
2806
2807 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2808 {
2809 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2810 }
2811
2812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2813 {
2814 /* Address WBINVD may be executed by guest */
2815 if (need_emulate_wbinvd(vcpu)) {
2816 if (kvm_x86_ops->has_wbinvd_exit())
2817 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2818 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2819 smp_call_function_single(vcpu->cpu,
2820 wbinvd_ipi, NULL, 1);
2821 }
2822
2823 kvm_x86_ops->vcpu_load(vcpu, cpu);
2824
2825 /* Apply any externally detected TSC adjustments (due to suspend) */
2826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2828 vcpu->arch.tsc_offset_adjustment = 0;
2829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2830 }
2831
2832 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2834 rdtsc() - vcpu->arch.last_host_tsc;
2835 if (tsc_delta < 0)
2836 mark_tsc_unstable("KVM discovered backwards TSC");
2837
2838 if (check_tsc_unstable()) {
2839 u64 offset = kvm_compute_tsc_offset(vcpu,
2840 vcpu->arch.last_guest_tsc);
2841 kvm_vcpu_write_tsc_offset(vcpu, offset);
2842 vcpu->arch.tsc_catchup = 1;
2843 }
2844
2845 if (kvm_lapic_hv_timer_in_use(vcpu))
2846 kvm_lapic_restart_hv_timer(vcpu);
2847
2848 /*
2849 * On a host with synchronized TSC, there is no need to update
2850 * kvmclock on vcpu->cpu migration
2851 */
2852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2854 if (vcpu->cpu != cpu)
2855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2856 vcpu->cpu = cpu;
2857 }
2858
2859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2860 }
2861
2862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2863 {
2864 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2865 return;
2866
2867 vcpu->arch.st.steal.preempted = 1;
2868
2869 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2870 &vcpu->arch.st.steal.preempted,
2871 offsetof(struct kvm_steal_time, preempted),
2872 sizeof(vcpu->arch.st.steal.preempted));
2873 }
2874
2875 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2876 {
2877 int idx;
2878 /*
2879 * Disable page faults because we're in atomic context here.
2880 * kvm_write_guest_offset_cached() would call might_fault()
2881 * that relies on pagefault_disable() to tell if there's a
2882 * bug. NOTE: the write to guest memory may not go through if
2883 * during postcopy live migration or if there's heavy guest
2884 * paging.
2885 */
2886 pagefault_disable();
2887 /*
2888 * kvm_memslots() will be called by
2889 * kvm_write_guest_offset_cached() so take the srcu lock.
2890 */
2891 idx = srcu_read_lock(&vcpu->kvm->srcu);
2892 kvm_steal_time_set_preempted(vcpu);
2893 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2894 pagefault_enable();
2895 kvm_x86_ops->vcpu_put(vcpu);
2896 kvm_put_guest_fpu(vcpu);
2897 vcpu->arch.last_host_tsc = rdtsc();
2898 }
2899
2900 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2901 struct kvm_lapic_state *s)
2902 {
2903 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2904 kvm_x86_ops->sync_pir_to_irr(vcpu);
2905
2906 return kvm_apic_get_state(vcpu, s);
2907 }
2908
2909 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2910 struct kvm_lapic_state *s)
2911 {
2912 int r;
2913
2914 r = kvm_apic_set_state(vcpu, s);
2915 if (r)
2916 return r;
2917 update_cr8_intercept(vcpu);
2918
2919 return 0;
2920 }
2921
2922 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2923 {
2924 return (!lapic_in_kernel(vcpu) ||
2925 kvm_apic_accept_pic_intr(vcpu));
2926 }
2927
2928 /*
2929 * if userspace requested an interrupt window, check that the
2930 * interrupt window is open.
2931 *
2932 * No need to exit to userspace if we already have an interrupt queued.
2933 */
2934 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2935 {
2936 return kvm_arch_interrupt_allowed(vcpu) &&
2937 !kvm_cpu_has_interrupt(vcpu) &&
2938 !kvm_event_needs_reinjection(vcpu) &&
2939 kvm_cpu_accept_dm_intr(vcpu);
2940 }
2941
2942 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2943 struct kvm_interrupt *irq)
2944 {
2945 if (irq->irq >= KVM_NR_INTERRUPTS)
2946 return -EINVAL;
2947
2948 if (!irqchip_in_kernel(vcpu->kvm)) {
2949 kvm_queue_interrupt(vcpu, irq->irq, false);
2950 kvm_make_request(KVM_REQ_EVENT, vcpu);
2951 return 0;
2952 }
2953
2954 /*
2955 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2956 * fail for in-kernel 8259.
2957 */
2958 if (pic_in_kernel(vcpu->kvm))
2959 return -ENXIO;
2960
2961 if (vcpu->arch.pending_external_vector != -1)
2962 return -EEXIST;
2963
2964 vcpu->arch.pending_external_vector = irq->irq;
2965 kvm_make_request(KVM_REQ_EVENT, vcpu);
2966 return 0;
2967 }
2968
2969 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2970 {
2971 kvm_inject_nmi(vcpu);
2972
2973 return 0;
2974 }
2975
2976 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2977 {
2978 kvm_make_request(KVM_REQ_SMI, vcpu);
2979
2980 return 0;
2981 }
2982
2983 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2984 struct kvm_tpr_access_ctl *tac)
2985 {
2986 if (tac->flags)
2987 return -EINVAL;
2988 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2989 return 0;
2990 }
2991
2992 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2993 u64 mcg_cap)
2994 {
2995 int r;
2996 unsigned bank_num = mcg_cap & 0xff, bank;
2997
2998 r = -EINVAL;
2999 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3000 goto out;
3001 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3002 goto out;
3003 r = 0;
3004 vcpu->arch.mcg_cap = mcg_cap;
3005 /* Init IA32_MCG_CTL to all 1s */
3006 if (mcg_cap & MCG_CTL_P)
3007 vcpu->arch.mcg_ctl = ~(u64)0;
3008 /* Init IA32_MCi_CTL to all 1s */
3009 for (bank = 0; bank < bank_num; bank++)
3010 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3011
3012 if (kvm_x86_ops->setup_mce)
3013 kvm_x86_ops->setup_mce(vcpu);
3014 out:
3015 return r;
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3019 struct kvm_x86_mce *mce)
3020 {
3021 u64 mcg_cap = vcpu->arch.mcg_cap;
3022 unsigned bank_num = mcg_cap & 0xff;
3023 u64 *banks = vcpu->arch.mce_banks;
3024
3025 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3026 return -EINVAL;
3027 /*
3028 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3029 * reporting is disabled
3030 */
3031 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3032 vcpu->arch.mcg_ctl != ~(u64)0)
3033 return 0;
3034 banks += 4 * mce->bank;
3035 /*
3036 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3037 * reporting is disabled for the bank
3038 */
3039 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3040 return 0;
3041 if (mce->status & MCI_STATUS_UC) {
3042 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3043 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3044 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3045 return 0;
3046 }
3047 if (banks[1] & MCI_STATUS_VAL)
3048 mce->status |= MCI_STATUS_OVER;
3049 banks[2] = mce->addr;
3050 banks[3] = mce->misc;
3051 vcpu->arch.mcg_status = mce->mcg_status;
3052 banks[1] = mce->status;
3053 kvm_queue_exception(vcpu, MC_VECTOR);
3054 } else if (!(banks[1] & MCI_STATUS_VAL)
3055 || !(banks[1] & MCI_STATUS_UC)) {
3056 if (banks[1] & MCI_STATUS_VAL)
3057 mce->status |= MCI_STATUS_OVER;
3058 banks[2] = mce->addr;
3059 banks[3] = mce->misc;
3060 banks[1] = mce->status;
3061 } else
3062 banks[1] |= MCI_STATUS_OVER;
3063 return 0;
3064 }
3065
3066 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3067 struct kvm_vcpu_events *events)
3068 {
3069 process_nmi(vcpu);
3070 events->exception.injected =
3071 vcpu->arch.exception.pending &&
3072 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3073 events->exception.nr = vcpu->arch.exception.nr;
3074 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3075 events->exception.pad = 0;
3076 events->exception.error_code = vcpu->arch.exception.error_code;
3077
3078 events->interrupt.injected =
3079 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3080 events->interrupt.nr = vcpu->arch.interrupt.nr;
3081 events->interrupt.soft = 0;
3082 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3083
3084 events->nmi.injected = vcpu->arch.nmi_injected;
3085 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3086 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3087 events->nmi.pad = 0;
3088
3089 events->sipi_vector = 0; /* never valid when reporting to user space */
3090
3091 events->smi.smm = is_smm(vcpu);
3092 events->smi.pending = vcpu->arch.smi_pending;
3093 events->smi.smm_inside_nmi =
3094 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3095 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3096
3097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3098 | KVM_VCPUEVENT_VALID_SHADOW
3099 | KVM_VCPUEVENT_VALID_SMM);
3100 memset(&events->reserved, 0, sizeof(events->reserved));
3101 }
3102
3103 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3104
3105 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3106 struct kvm_vcpu_events *events)
3107 {
3108 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3109 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3110 | KVM_VCPUEVENT_VALID_SHADOW
3111 | KVM_VCPUEVENT_VALID_SMM))
3112 return -EINVAL;
3113
3114 if (events->exception.injected &&
3115 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3116 is_guest_mode(vcpu)))
3117 return -EINVAL;
3118
3119 /* INITs are latched while in SMM */
3120 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3121 (events->smi.smm || events->smi.pending) &&
3122 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3123 return -EINVAL;
3124
3125 process_nmi(vcpu);
3126 vcpu->arch.exception.pending = events->exception.injected;
3127 vcpu->arch.exception.nr = events->exception.nr;
3128 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3129 vcpu->arch.exception.error_code = events->exception.error_code;
3130
3131 vcpu->arch.interrupt.pending = events->interrupt.injected;
3132 vcpu->arch.interrupt.nr = events->interrupt.nr;
3133 vcpu->arch.interrupt.soft = events->interrupt.soft;
3134 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3135 kvm_x86_ops->set_interrupt_shadow(vcpu,
3136 events->interrupt.shadow);
3137
3138 vcpu->arch.nmi_injected = events->nmi.injected;
3139 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3140 vcpu->arch.nmi_pending = events->nmi.pending;
3141 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3142
3143 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3144 lapic_in_kernel(vcpu))
3145 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3146
3147 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3148 u32 hflags = vcpu->arch.hflags;
3149 if (events->smi.smm)
3150 hflags |= HF_SMM_MASK;
3151 else
3152 hflags &= ~HF_SMM_MASK;
3153 kvm_set_hflags(vcpu, hflags);
3154
3155 vcpu->arch.smi_pending = events->smi.pending;
3156 if (events->smi.smm_inside_nmi)
3157 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3158 else
3159 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3160 if (lapic_in_kernel(vcpu)) {
3161 if (events->smi.latched_init)
3162 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3163 else
3164 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3165 }
3166 }
3167
3168 kvm_make_request(KVM_REQ_EVENT, vcpu);
3169
3170 return 0;
3171 }
3172
3173 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3174 struct kvm_debugregs *dbgregs)
3175 {
3176 unsigned long val;
3177
3178 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3179 kvm_get_dr(vcpu, 6, &val);
3180 dbgregs->dr6 = val;
3181 dbgregs->dr7 = vcpu->arch.dr7;
3182 dbgregs->flags = 0;
3183 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3184 }
3185
3186 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3187 struct kvm_debugregs *dbgregs)
3188 {
3189 if (dbgregs->flags)
3190 return -EINVAL;
3191
3192 if (dbgregs->dr6 & ~0xffffffffull)
3193 return -EINVAL;
3194 if (dbgregs->dr7 & ~0xffffffffull)
3195 return -EINVAL;
3196
3197 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3198 kvm_update_dr0123(vcpu);
3199 vcpu->arch.dr6 = dbgregs->dr6;
3200 kvm_update_dr6(vcpu);
3201 vcpu->arch.dr7 = dbgregs->dr7;
3202 kvm_update_dr7(vcpu);
3203
3204 return 0;
3205 }
3206
3207 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3208
3209 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3210 {
3211 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3212 u64 xstate_bv = xsave->header.xfeatures;
3213 u64 valid;
3214
3215 /*
3216 * Copy legacy XSAVE area, to avoid complications with CPUID
3217 * leaves 0 and 1 in the loop below.
3218 */
3219 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3220
3221 /* Set XSTATE_BV */
3222 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3223 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3224
3225 /*
3226 * Copy each region from the possibly compacted offset to the
3227 * non-compacted offset.
3228 */
3229 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3230 while (valid) {
3231 u64 feature = valid & -valid;
3232 int index = fls64(feature) - 1;
3233 void *src = get_xsave_addr(xsave, feature);
3234
3235 if (src) {
3236 u32 size, offset, ecx, edx;
3237 cpuid_count(XSTATE_CPUID, index,
3238 &size, &offset, &ecx, &edx);
3239 memcpy(dest + offset, src, size);
3240 }
3241
3242 valid -= feature;
3243 }
3244 }
3245
3246 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3247 {
3248 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3249 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3250 u64 valid;
3251
3252 /*
3253 * Copy legacy XSAVE area, to avoid complications with CPUID
3254 * leaves 0 and 1 in the loop below.
3255 */
3256 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3257
3258 /* Set XSTATE_BV and possibly XCOMP_BV. */
3259 xsave->header.xfeatures = xstate_bv;
3260 if (boot_cpu_has(X86_FEATURE_XSAVES))
3261 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3262
3263 /*
3264 * Copy each region from the non-compacted offset to the
3265 * possibly compacted offset.
3266 */
3267 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3268 while (valid) {
3269 u64 feature = valid & -valid;
3270 int index = fls64(feature) - 1;
3271 void *dest = get_xsave_addr(xsave, feature);
3272
3273 if (dest) {
3274 u32 size, offset, ecx, edx;
3275 cpuid_count(XSTATE_CPUID, index,
3276 &size, &offset, &ecx, &edx);
3277 memcpy(dest, src + offset, size);
3278 }
3279
3280 valid -= feature;
3281 }
3282 }
3283
3284 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3285 struct kvm_xsave *guest_xsave)
3286 {
3287 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3288 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3289 fill_xsave((u8 *) guest_xsave->region, vcpu);
3290 } else {
3291 memcpy(guest_xsave->region,
3292 &vcpu->arch.guest_fpu.state.fxsave,
3293 sizeof(struct fxregs_state));
3294 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3295 XFEATURE_MASK_FPSSE;
3296 }
3297 }
3298
3299 #define XSAVE_MXCSR_OFFSET 24
3300
3301 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3302 struct kvm_xsave *guest_xsave)
3303 {
3304 u64 xstate_bv =
3305 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3306 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3307
3308 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3309 /*
3310 * Here we allow setting states that are not present in
3311 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3312 * with old userspace.
3313 */
3314 if (xstate_bv & ~kvm_supported_xcr0() ||
3315 mxcsr & ~mxcsr_feature_mask)
3316 return -EINVAL;
3317 load_xsave(vcpu, (u8 *)guest_xsave->region);
3318 } else {
3319 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3320 mxcsr & ~mxcsr_feature_mask)
3321 return -EINVAL;
3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323 guest_xsave->region, sizeof(struct fxregs_state));
3324 }
3325 return 0;
3326 }
3327
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329 struct kvm_xcrs *guest_xcrs)
3330 {
3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332 guest_xcrs->nr_xcrs = 0;
3333 return;
3334 }
3335
3336 guest_xcrs->nr_xcrs = 1;
3337 guest_xcrs->flags = 0;
3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3340 }
3341
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343 struct kvm_xcrs *guest_xcrs)
3344 {
3345 int i, r = 0;
3346
3347 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3348 return -EINVAL;
3349
3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3351 return -EINVAL;
3352
3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354 /* Only support XCR0 currently */
3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357 guest_xcrs->xcrs[i].value);
3358 break;
3359 }
3360 if (r)
3361 r = -EINVAL;
3362 return r;
3363 }
3364
3365 /*
3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367 * stopped by the hypervisor. This function will be called from the host only.
3368 * EINVAL is returned when the host attempts to set the flag for a guest that
3369 * does not support pv clocks.
3370 */
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3372 {
3373 if (!vcpu->arch.pv_time_enabled)
3374 return -EINVAL;
3375 vcpu->arch.pvclock_set_guest_stopped_request = true;
3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377 return 0;
3378 }
3379
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381 struct kvm_enable_cap *cap)
3382 {
3383 if (cap->flags)
3384 return -EINVAL;
3385
3386 switch (cap->cap) {
3387 case KVM_CAP_HYPERV_SYNIC:
3388 if (!irqchip_in_kernel(vcpu->kvm))
3389 return -EINVAL;
3390 return kvm_hv_activate_synic(vcpu);
3391 default:
3392 return -EINVAL;
3393 }
3394 }
3395
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3398 {
3399 struct kvm_vcpu *vcpu = filp->private_data;
3400 void __user *argp = (void __user *)arg;
3401 int r;
3402 union {
3403 struct kvm_lapic_state *lapic;
3404 struct kvm_xsave *xsave;
3405 struct kvm_xcrs *xcrs;
3406 void *buffer;
3407 } u;
3408
3409 u.buffer = NULL;
3410 switch (ioctl) {
3411 case KVM_GET_LAPIC: {
3412 r = -EINVAL;
3413 if (!lapic_in_kernel(vcpu))
3414 goto out;
3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416
3417 r = -ENOMEM;
3418 if (!u.lapic)
3419 goto out;
3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3421 if (r)
3422 goto out;
3423 r = -EFAULT;
3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425 goto out;
3426 r = 0;
3427 break;
3428 }
3429 case KVM_SET_LAPIC: {
3430 r = -EINVAL;
3431 if (!lapic_in_kernel(vcpu))
3432 goto out;
3433 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434 if (IS_ERR(u.lapic))
3435 return PTR_ERR(u.lapic);
3436
3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3438 break;
3439 }
3440 case KVM_INTERRUPT: {
3441 struct kvm_interrupt irq;
3442
3443 r = -EFAULT;
3444 if (copy_from_user(&irq, argp, sizeof irq))
3445 goto out;
3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3447 break;
3448 }
3449 case KVM_NMI: {
3450 r = kvm_vcpu_ioctl_nmi(vcpu);
3451 break;
3452 }
3453 case KVM_SMI: {
3454 r = kvm_vcpu_ioctl_smi(vcpu);
3455 break;
3456 }
3457 case KVM_SET_CPUID: {
3458 struct kvm_cpuid __user *cpuid_arg = argp;
3459 struct kvm_cpuid cpuid;
3460
3461 r = -EFAULT;
3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463 goto out;
3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3465 break;
3466 }
3467 case KVM_SET_CPUID2: {
3468 struct kvm_cpuid2 __user *cpuid_arg = argp;
3469 struct kvm_cpuid2 cpuid;
3470
3471 r = -EFAULT;
3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473 goto out;
3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475 cpuid_arg->entries);
3476 break;
3477 }
3478 case KVM_GET_CPUID2: {
3479 struct kvm_cpuid2 __user *cpuid_arg = argp;
3480 struct kvm_cpuid2 cpuid;
3481
3482 r = -EFAULT;
3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3484 goto out;
3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486 cpuid_arg->entries);
3487 if (r)
3488 goto out;
3489 r = -EFAULT;
3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3491 goto out;
3492 r = 0;
3493 break;
3494 }
3495 case KVM_GET_MSRS:
3496 r = msr_io(vcpu, argp, do_get_msr, 1);
3497 break;
3498 case KVM_SET_MSRS:
3499 r = msr_io(vcpu, argp, do_set_msr, 0);
3500 break;
3501 case KVM_TPR_ACCESS_REPORTING: {
3502 struct kvm_tpr_access_ctl tac;
3503
3504 r = -EFAULT;
3505 if (copy_from_user(&tac, argp, sizeof tac))
3506 goto out;
3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3508 if (r)
3509 goto out;
3510 r = -EFAULT;
3511 if (copy_to_user(argp, &tac, sizeof tac))
3512 goto out;
3513 r = 0;
3514 break;
3515 };
3516 case KVM_SET_VAPIC_ADDR: {
3517 struct kvm_vapic_addr va;
3518 int idx;
3519
3520 r = -EINVAL;
3521 if (!lapic_in_kernel(vcpu))
3522 goto out;
3523 r = -EFAULT;
3524 if (copy_from_user(&va, argp, sizeof va))
3525 goto out;
3526 idx = srcu_read_lock(&vcpu->kvm->srcu);
3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3529 break;
3530 }
3531 case KVM_X86_SETUP_MCE: {
3532 u64 mcg_cap;
3533
3534 r = -EFAULT;
3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3536 goto out;
3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3538 break;
3539 }
3540 case KVM_X86_SET_MCE: {
3541 struct kvm_x86_mce mce;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&mce, argp, sizeof mce))
3545 goto out;
3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3547 break;
3548 }
3549 case KVM_GET_VCPU_EVENTS: {
3550 struct kvm_vcpu_events events;
3551
3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3553
3554 r = -EFAULT;
3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556 break;
3557 r = 0;
3558 break;
3559 }
3560 case KVM_SET_VCPU_EVENTS: {
3561 struct kvm_vcpu_events events;
3562
3563 r = -EFAULT;
3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3565 break;
3566
3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3568 break;
3569 }
3570 case KVM_GET_DEBUGREGS: {
3571 struct kvm_debugregs dbgregs;
3572
3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3574
3575 r = -EFAULT;
3576 if (copy_to_user(argp, &dbgregs,
3577 sizeof(struct kvm_debugregs)))
3578 break;
3579 r = 0;
3580 break;
3581 }
3582 case KVM_SET_DEBUGREGS: {
3583 struct kvm_debugregs dbgregs;
3584
3585 r = -EFAULT;
3586 if (copy_from_user(&dbgregs, argp,
3587 sizeof(struct kvm_debugregs)))
3588 break;
3589
3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3591 break;
3592 }
3593 case KVM_GET_XSAVE: {
3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595 r = -ENOMEM;
3596 if (!u.xsave)
3597 break;
3598
3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3600
3601 r = -EFAULT;
3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603 break;
3604 r = 0;
3605 break;
3606 }
3607 case KVM_SET_XSAVE: {
3608 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609 if (IS_ERR(u.xsave))
3610 return PTR_ERR(u.xsave);
3611
3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3613 break;
3614 }
3615 case KVM_GET_XCRS: {
3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617 r = -ENOMEM;
3618 if (!u.xcrs)
3619 break;
3620
3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3622
3623 r = -EFAULT;
3624 if (copy_to_user(argp, u.xcrs,
3625 sizeof(struct kvm_xcrs)))
3626 break;
3627 r = 0;
3628 break;
3629 }
3630 case KVM_SET_XCRS: {
3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3632 if (IS_ERR(u.xcrs))
3633 return PTR_ERR(u.xcrs);
3634
3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3636 break;
3637 }
3638 case KVM_SET_TSC_KHZ: {
3639 u32 user_tsc_khz;
3640
3641 r = -EINVAL;
3642 user_tsc_khz = (u32)arg;
3643
3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3645 goto out;
3646
3647 if (user_tsc_khz == 0)
3648 user_tsc_khz = tsc_khz;
3649
3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651 r = 0;
3652
3653 goto out;
3654 }
3655 case KVM_GET_TSC_KHZ: {
3656 r = vcpu->arch.virtual_tsc_khz;
3657 goto out;
3658 }
3659 case KVM_KVMCLOCK_CTRL: {
3660 r = kvm_set_guest_paused(vcpu);
3661 goto out;
3662 }
3663 case KVM_ENABLE_CAP: {
3664 struct kvm_enable_cap cap;
3665
3666 r = -EFAULT;
3667 if (copy_from_user(&cap, argp, sizeof(cap)))
3668 goto out;
3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3670 break;
3671 }
3672 default:
3673 r = -EINVAL;
3674 }
3675 out:
3676 kfree(u.buffer);
3677 return r;
3678 }
3679
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3681 {
3682 return VM_FAULT_SIGBUS;
3683 }
3684
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3686 {
3687 int ret;
3688
3689 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3690 return -EINVAL;
3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3692 return ret;
3693 }
3694
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3696 u64 ident_addr)
3697 {
3698 kvm->arch.ept_identity_map_addr = ident_addr;
3699 return 0;
3700 }
3701
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703 u32 kvm_nr_mmu_pages)
3704 {
3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3706 return -EINVAL;
3707
3708 mutex_lock(&kvm->slots_lock);
3709
3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3712
3713 mutex_unlock(&kvm->slots_lock);
3714 return 0;
3715 }
3716
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3718 {
3719 return kvm->arch.n_max_mmu_pages;
3720 }
3721
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 {
3724 struct kvm_pic *pic = kvm->arch.vpic;
3725 int r;
3726
3727 r = 0;
3728 switch (chip->chip_id) {
3729 case KVM_IRQCHIP_PIC_MASTER:
3730 memcpy(&chip->chip.pic, &pic->pics[0],
3731 sizeof(struct kvm_pic_state));
3732 break;
3733 case KVM_IRQCHIP_PIC_SLAVE:
3734 memcpy(&chip->chip.pic, &pic->pics[1],
3735 sizeof(struct kvm_pic_state));
3736 break;
3737 case KVM_IRQCHIP_IOAPIC:
3738 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3739 break;
3740 default:
3741 r = -EINVAL;
3742 break;
3743 }
3744 return r;
3745 }
3746
3747 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3748 {
3749 struct kvm_pic *pic = kvm->arch.vpic;
3750 int r;
3751
3752 r = 0;
3753 switch (chip->chip_id) {
3754 case KVM_IRQCHIP_PIC_MASTER:
3755 spin_lock(&pic->lock);
3756 memcpy(&pic->pics[0], &chip->chip.pic,
3757 sizeof(struct kvm_pic_state));
3758 spin_unlock(&pic->lock);
3759 break;
3760 case KVM_IRQCHIP_PIC_SLAVE:
3761 spin_lock(&pic->lock);
3762 memcpy(&pic->pics[1], &chip->chip.pic,
3763 sizeof(struct kvm_pic_state));
3764 spin_unlock(&pic->lock);
3765 break;
3766 case KVM_IRQCHIP_IOAPIC:
3767 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3768 break;
3769 default:
3770 r = -EINVAL;
3771 break;
3772 }
3773 kvm_pic_update_irq(pic);
3774 return r;
3775 }
3776
3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3778 {
3779 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3780
3781 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3782
3783 mutex_lock(&kps->lock);
3784 memcpy(ps, &kps->channels, sizeof(*ps));
3785 mutex_unlock(&kps->lock);
3786 return 0;
3787 }
3788
3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3790 {
3791 int i;
3792 struct kvm_pit *pit = kvm->arch.vpit;
3793
3794 mutex_lock(&pit->pit_state.lock);
3795 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3796 for (i = 0; i < 3; i++)
3797 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3798 mutex_unlock(&pit->pit_state.lock);
3799 return 0;
3800 }
3801
3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3803 {
3804 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3805 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3806 sizeof(ps->channels));
3807 ps->flags = kvm->arch.vpit->pit_state.flags;
3808 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3809 memset(&ps->reserved, 0, sizeof(ps->reserved));
3810 return 0;
3811 }
3812
3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3814 {
3815 int start = 0;
3816 int i;
3817 u32 prev_legacy, cur_legacy;
3818 struct kvm_pit *pit = kvm->arch.vpit;
3819
3820 mutex_lock(&pit->pit_state.lock);
3821 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3822 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3823 if (!prev_legacy && cur_legacy)
3824 start = 1;
3825 memcpy(&pit->pit_state.channels, &ps->channels,
3826 sizeof(pit->pit_state.channels));
3827 pit->pit_state.flags = ps->flags;
3828 for (i = 0; i < 3; i++)
3829 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3830 start && i == 0);
3831 mutex_unlock(&pit->pit_state.lock);
3832 return 0;
3833 }
3834
3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3836 struct kvm_reinject_control *control)
3837 {
3838 struct kvm_pit *pit = kvm->arch.vpit;
3839
3840 if (!pit)
3841 return -ENXIO;
3842
3843 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3844 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3845 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3846 */
3847 mutex_lock(&pit->pit_state.lock);
3848 kvm_pit_set_reinject(pit, control->pit_reinject);
3849 mutex_unlock(&pit->pit_state.lock);
3850
3851 return 0;
3852 }
3853
3854 /**
3855 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3856 * @kvm: kvm instance
3857 * @log: slot id and address to which we copy the log
3858 *
3859 * Steps 1-4 below provide general overview of dirty page logging. See
3860 * kvm_get_dirty_log_protect() function description for additional details.
3861 *
3862 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3863 * always flush the TLB (step 4) even if previous step failed and the dirty
3864 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3865 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3866 * writes will be marked dirty for next log read.
3867 *
3868 * 1. Take a snapshot of the bit and clear it if needed.
3869 * 2. Write protect the corresponding page.
3870 * 3. Copy the snapshot to the userspace.
3871 * 4. Flush TLB's if needed.
3872 */
3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3874 {
3875 bool is_dirty = false;
3876 int r;
3877
3878 mutex_lock(&kvm->slots_lock);
3879
3880 /*
3881 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3882 */
3883 if (kvm_x86_ops->flush_log_dirty)
3884 kvm_x86_ops->flush_log_dirty(kvm);
3885
3886 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3887
3888 /*
3889 * All the TLBs can be flushed out of mmu lock, see the comments in
3890 * kvm_mmu_slot_remove_write_access().
3891 */
3892 lockdep_assert_held(&kvm->slots_lock);
3893 if (is_dirty)
3894 kvm_flush_remote_tlbs(kvm);
3895
3896 mutex_unlock(&kvm->slots_lock);
3897 return r;
3898 }
3899
3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3901 bool line_status)
3902 {
3903 if (!irqchip_in_kernel(kvm))
3904 return -ENXIO;
3905
3906 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3907 irq_event->irq, irq_event->level,
3908 line_status);
3909 return 0;
3910 }
3911
3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3913 struct kvm_enable_cap *cap)
3914 {
3915 int r;
3916
3917 if (cap->flags)
3918 return -EINVAL;
3919
3920 switch (cap->cap) {
3921 case KVM_CAP_DISABLE_QUIRKS:
3922 kvm->arch.disabled_quirks = cap->args[0];
3923 r = 0;
3924 break;
3925 case KVM_CAP_SPLIT_IRQCHIP: {
3926 mutex_lock(&kvm->lock);
3927 r = -EINVAL;
3928 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3929 goto split_irqchip_unlock;
3930 r = -EEXIST;
3931 if (irqchip_in_kernel(kvm))
3932 goto split_irqchip_unlock;
3933 if (kvm->created_vcpus)
3934 goto split_irqchip_unlock;
3935 r = kvm_setup_empty_irq_routing(kvm);
3936 if (r)
3937 goto split_irqchip_unlock;
3938 /* Pairs with irqchip_in_kernel. */
3939 smp_wmb();
3940 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3941 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3942 r = 0;
3943 split_irqchip_unlock:
3944 mutex_unlock(&kvm->lock);
3945 break;
3946 }
3947 case KVM_CAP_X2APIC_API:
3948 r = -EINVAL;
3949 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3950 break;
3951
3952 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3953 kvm->arch.x2apic_format = true;
3954 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3955 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3956
3957 r = 0;
3958 break;
3959 default:
3960 r = -EINVAL;
3961 break;
3962 }
3963 return r;
3964 }
3965
3966 long kvm_arch_vm_ioctl(struct file *filp,
3967 unsigned int ioctl, unsigned long arg)
3968 {
3969 struct kvm *kvm = filp->private_data;
3970 void __user *argp = (void __user *)arg;
3971 int r = -ENOTTY;
3972 /*
3973 * This union makes it completely explicit to gcc-3.x
3974 * that these two variables' stack usage should be
3975 * combined, not added together.
3976 */
3977 union {
3978 struct kvm_pit_state ps;
3979 struct kvm_pit_state2 ps2;
3980 struct kvm_pit_config pit_config;
3981 } u;
3982
3983 switch (ioctl) {
3984 case KVM_SET_TSS_ADDR:
3985 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3986 break;
3987 case KVM_SET_IDENTITY_MAP_ADDR: {
3988 u64 ident_addr;
3989
3990 r = -EFAULT;
3991 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3992 goto out;
3993 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3994 break;
3995 }
3996 case KVM_SET_NR_MMU_PAGES:
3997 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3998 break;
3999 case KVM_GET_NR_MMU_PAGES:
4000 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4001 break;
4002 case KVM_CREATE_IRQCHIP: {
4003 mutex_lock(&kvm->lock);
4004
4005 r = -EEXIST;
4006 if (irqchip_in_kernel(kvm))
4007 goto create_irqchip_unlock;
4008
4009 r = -EINVAL;
4010 if (kvm->created_vcpus)
4011 goto create_irqchip_unlock;
4012
4013 r = kvm_pic_init(kvm);
4014 if (r)
4015 goto create_irqchip_unlock;
4016
4017 r = kvm_ioapic_init(kvm);
4018 if (r) {
4019 kvm_pic_destroy(kvm);
4020 goto create_irqchip_unlock;
4021 }
4022
4023 r = kvm_setup_default_irq_routing(kvm);
4024 if (r) {
4025 kvm_ioapic_destroy(kvm);
4026 kvm_pic_destroy(kvm);
4027 goto create_irqchip_unlock;
4028 }
4029 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4030 smp_wmb();
4031 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4032 create_irqchip_unlock:
4033 mutex_unlock(&kvm->lock);
4034 break;
4035 }
4036 case KVM_CREATE_PIT:
4037 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4038 goto create_pit;
4039 case KVM_CREATE_PIT2:
4040 r = -EFAULT;
4041 if (copy_from_user(&u.pit_config, argp,
4042 sizeof(struct kvm_pit_config)))
4043 goto out;
4044 create_pit:
4045 mutex_lock(&kvm->lock);
4046 r = -EEXIST;
4047 if (kvm->arch.vpit)
4048 goto create_pit_unlock;
4049 r = -ENOMEM;
4050 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4051 if (kvm->arch.vpit)
4052 r = 0;
4053 create_pit_unlock:
4054 mutex_unlock(&kvm->lock);
4055 break;
4056 case KVM_GET_IRQCHIP: {
4057 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4058 struct kvm_irqchip *chip;
4059
4060 chip = memdup_user(argp, sizeof(*chip));
4061 if (IS_ERR(chip)) {
4062 r = PTR_ERR(chip);
4063 goto out;
4064 }
4065
4066 r = -ENXIO;
4067 if (!irqchip_kernel(kvm))
4068 goto get_irqchip_out;
4069 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4070 if (r)
4071 goto get_irqchip_out;
4072 r = -EFAULT;
4073 if (copy_to_user(argp, chip, sizeof *chip))
4074 goto get_irqchip_out;
4075 r = 0;
4076 get_irqchip_out:
4077 kfree(chip);
4078 break;
4079 }
4080 case KVM_SET_IRQCHIP: {
4081 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4082 struct kvm_irqchip *chip;
4083
4084 chip = memdup_user(argp, sizeof(*chip));
4085 if (IS_ERR(chip)) {
4086 r = PTR_ERR(chip);
4087 goto out;
4088 }
4089
4090 r = -ENXIO;
4091 if (!irqchip_kernel(kvm))
4092 goto set_irqchip_out;
4093 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4094 if (r)
4095 goto set_irqchip_out;
4096 r = 0;
4097 set_irqchip_out:
4098 kfree(chip);
4099 break;
4100 }
4101 case KVM_GET_PIT: {
4102 r = -EFAULT;
4103 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4104 goto out;
4105 r = -ENXIO;
4106 if (!kvm->arch.vpit)
4107 goto out;
4108 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4109 if (r)
4110 goto out;
4111 r = -EFAULT;
4112 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4113 goto out;
4114 r = 0;
4115 break;
4116 }
4117 case KVM_SET_PIT: {
4118 r = -EFAULT;
4119 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4120 goto out;
4121 r = -ENXIO;
4122 if (!kvm->arch.vpit)
4123 goto out;
4124 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4125 break;
4126 }
4127 case KVM_GET_PIT2: {
4128 r = -ENXIO;
4129 if (!kvm->arch.vpit)
4130 goto out;
4131 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4132 if (r)
4133 goto out;
4134 r = -EFAULT;
4135 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4136 goto out;
4137 r = 0;
4138 break;
4139 }
4140 case KVM_SET_PIT2: {
4141 r = -EFAULT;
4142 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4143 goto out;
4144 r = -ENXIO;
4145 if (!kvm->arch.vpit)
4146 goto out;
4147 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4148 break;
4149 }
4150 case KVM_REINJECT_CONTROL: {
4151 struct kvm_reinject_control control;
4152 r = -EFAULT;
4153 if (copy_from_user(&control, argp, sizeof(control)))
4154 goto out;
4155 r = kvm_vm_ioctl_reinject(kvm, &control);
4156 break;
4157 }
4158 case KVM_SET_BOOT_CPU_ID:
4159 r = 0;
4160 mutex_lock(&kvm->lock);
4161 if (kvm->created_vcpus)
4162 r = -EBUSY;
4163 else
4164 kvm->arch.bsp_vcpu_id = arg;
4165 mutex_unlock(&kvm->lock);
4166 break;
4167 case KVM_XEN_HVM_CONFIG: {
4168 r = -EFAULT;
4169 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4170 sizeof(struct kvm_xen_hvm_config)))
4171 goto out;
4172 r = -EINVAL;
4173 if (kvm->arch.xen_hvm_config.flags)
4174 goto out;
4175 r = 0;
4176 break;
4177 }
4178 case KVM_SET_CLOCK: {
4179 struct kvm_clock_data user_ns;
4180 u64 now_ns;
4181
4182 r = -EFAULT;
4183 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4184 goto out;
4185
4186 r = -EINVAL;
4187 if (user_ns.flags)
4188 goto out;
4189
4190 r = 0;
4191 /*
4192 * TODO: userspace has to take care of races with VCPU_RUN, so
4193 * kvm_gen_update_masterclock() can be cut down to locked
4194 * pvclock_update_vm_gtod_copy().
4195 */
4196 kvm_gen_update_masterclock(kvm);
4197 now_ns = get_kvmclock_ns(kvm);
4198 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4199 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4200 break;
4201 }
4202 case KVM_GET_CLOCK: {
4203 struct kvm_clock_data user_ns;
4204 u64 now_ns;
4205
4206 now_ns = get_kvmclock_ns(kvm);
4207 user_ns.clock = now_ns;
4208 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4209 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4210
4211 r = -EFAULT;
4212 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4213 goto out;
4214 r = 0;
4215 break;
4216 }
4217 case KVM_ENABLE_CAP: {
4218 struct kvm_enable_cap cap;
4219
4220 r = -EFAULT;
4221 if (copy_from_user(&cap, argp, sizeof(cap)))
4222 goto out;
4223 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4224 break;
4225 }
4226 default:
4227 r = -ENOTTY;
4228 }
4229 out:
4230 return r;
4231 }
4232
4233 static void kvm_init_msr_list(void)
4234 {
4235 u32 dummy[2];
4236 unsigned i, j;
4237
4238 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4239 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4240 continue;
4241
4242 /*
4243 * Even MSRs that are valid in the host may not be exposed
4244 * to the guests in some cases.
4245 */
4246 switch (msrs_to_save[i]) {
4247 case MSR_IA32_BNDCFGS:
4248 if (!kvm_x86_ops->mpx_supported())
4249 continue;
4250 break;
4251 case MSR_TSC_AUX:
4252 if (!kvm_x86_ops->rdtscp_supported())
4253 continue;
4254 break;
4255 default:
4256 break;
4257 }
4258
4259 if (j < i)
4260 msrs_to_save[j] = msrs_to_save[i];
4261 j++;
4262 }
4263 num_msrs_to_save = j;
4264
4265 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4266 switch (emulated_msrs[i]) {
4267 case MSR_IA32_SMBASE:
4268 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4269 continue;
4270 break;
4271 default:
4272 break;
4273 }
4274
4275 if (j < i)
4276 emulated_msrs[j] = emulated_msrs[i];
4277 j++;
4278 }
4279 num_emulated_msrs = j;
4280 }
4281
4282 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4283 const void *v)
4284 {
4285 int handled = 0;
4286 int n;
4287
4288 do {
4289 n = min(len, 8);
4290 if (!(lapic_in_kernel(vcpu) &&
4291 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4292 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4293 break;
4294 handled += n;
4295 addr += n;
4296 len -= n;
4297 v += n;
4298 } while (len);
4299
4300 return handled;
4301 }
4302
4303 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4304 {
4305 int handled = 0;
4306 int n;
4307
4308 do {
4309 n = min(len, 8);
4310 if (!(lapic_in_kernel(vcpu) &&
4311 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4312 addr, n, v))
4313 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4314 break;
4315 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4316 handled += n;
4317 addr += n;
4318 len -= n;
4319 v += n;
4320 } while (len);
4321
4322 return handled;
4323 }
4324
4325 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4326 struct kvm_segment *var, int seg)
4327 {
4328 kvm_x86_ops->set_segment(vcpu, var, seg);
4329 }
4330
4331 void kvm_get_segment(struct kvm_vcpu *vcpu,
4332 struct kvm_segment *var, int seg)
4333 {
4334 kvm_x86_ops->get_segment(vcpu, var, seg);
4335 }
4336
4337 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4338 struct x86_exception *exception)
4339 {
4340 gpa_t t_gpa;
4341
4342 BUG_ON(!mmu_is_nested(vcpu));
4343
4344 /* NPT walks are always user-walks */
4345 access |= PFERR_USER_MASK;
4346 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4347
4348 return t_gpa;
4349 }
4350
4351 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4352 struct x86_exception *exception)
4353 {
4354 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4355 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4356 }
4357
4358 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4359 struct x86_exception *exception)
4360 {
4361 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4362 access |= PFERR_FETCH_MASK;
4363 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4364 }
4365
4366 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4367 struct x86_exception *exception)
4368 {
4369 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4370 access |= PFERR_WRITE_MASK;
4371 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4372 }
4373
4374 /* uses this to access any guest's mapped memory without checking CPL */
4375 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4376 struct x86_exception *exception)
4377 {
4378 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4379 }
4380
4381 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4382 struct kvm_vcpu *vcpu, u32 access,
4383 struct x86_exception *exception)
4384 {
4385 void *data = val;
4386 int r = X86EMUL_CONTINUE;
4387
4388 while (bytes) {
4389 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4390 exception);
4391 unsigned offset = addr & (PAGE_SIZE-1);
4392 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4393 int ret;
4394
4395 if (gpa == UNMAPPED_GVA)
4396 return X86EMUL_PROPAGATE_FAULT;
4397 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4398 offset, toread);
4399 if (ret < 0) {
4400 r = X86EMUL_IO_NEEDED;
4401 goto out;
4402 }
4403
4404 bytes -= toread;
4405 data += toread;
4406 addr += toread;
4407 }
4408 out:
4409 return r;
4410 }
4411
4412 /* used for instruction fetching */
4413 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4414 gva_t addr, void *val, unsigned int bytes,
4415 struct x86_exception *exception)
4416 {
4417 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4419 unsigned offset;
4420 int ret;
4421
4422 /* Inline kvm_read_guest_virt_helper for speed. */
4423 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4424 exception);
4425 if (unlikely(gpa == UNMAPPED_GVA))
4426 return X86EMUL_PROPAGATE_FAULT;
4427
4428 offset = addr & (PAGE_SIZE-1);
4429 if (WARN_ON(offset + bytes > PAGE_SIZE))
4430 bytes = (unsigned)PAGE_SIZE - offset;
4431 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4432 offset, bytes);
4433 if (unlikely(ret < 0))
4434 return X86EMUL_IO_NEEDED;
4435
4436 return X86EMUL_CONTINUE;
4437 }
4438
4439 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4440 gva_t addr, void *val, unsigned int bytes,
4441 struct x86_exception *exception)
4442 {
4443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4444 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4445
4446 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4447 exception);
4448 }
4449 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4450
4451 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4452 gva_t addr, void *val, unsigned int bytes,
4453 struct x86_exception *exception)
4454 {
4455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4456 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4457 }
4458
4459 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4460 unsigned long addr, void *val, unsigned int bytes)
4461 {
4462 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4463 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4464
4465 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4466 }
4467
4468 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4469 gva_t addr, void *val,
4470 unsigned int bytes,
4471 struct x86_exception *exception)
4472 {
4473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4474 void *data = val;
4475 int r = X86EMUL_CONTINUE;
4476
4477 while (bytes) {
4478 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4479 PFERR_WRITE_MASK,
4480 exception);
4481 unsigned offset = addr & (PAGE_SIZE-1);
4482 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4483 int ret;
4484
4485 if (gpa == UNMAPPED_GVA)
4486 return X86EMUL_PROPAGATE_FAULT;
4487 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4488 if (ret < 0) {
4489 r = X86EMUL_IO_NEEDED;
4490 goto out;
4491 }
4492
4493 bytes -= towrite;
4494 data += towrite;
4495 addr += towrite;
4496 }
4497 out:
4498 return r;
4499 }
4500 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4501
4502 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4503 gpa_t gpa, bool write)
4504 {
4505 /* For APIC access vmexit */
4506 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4507 return 1;
4508
4509 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4510 trace_vcpu_match_mmio(gva, gpa, write, true);
4511 return 1;
4512 }
4513
4514 return 0;
4515 }
4516
4517 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4518 gpa_t *gpa, struct x86_exception *exception,
4519 bool write)
4520 {
4521 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4522 | (write ? PFERR_WRITE_MASK : 0);
4523
4524 /*
4525 * currently PKRU is only applied to ept enabled guest so
4526 * there is no pkey in EPT page table for L1 guest or EPT
4527 * shadow page table for L2 guest.
4528 */
4529 if (vcpu_match_mmio_gva(vcpu, gva)
4530 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4531 vcpu->arch.access, 0, access)) {
4532 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4533 (gva & (PAGE_SIZE - 1));
4534 trace_vcpu_match_mmio(gva, *gpa, write, false);
4535 return 1;
4536 }
4537
4538 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4539
4540 if (*gpa == UNMAPPED_GVA)
4541 return -1;
4542
4543 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4544 }
4545
4546 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4547 const void *val, int bytes)
4548 {
4549 int ret;
4550
4551 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4552 if (ret < 0)
4553 return 0;
4554 kvm_page_track_write(vcpu, gpa, val, bytes);
4555 return 1;
4556 }
4557
4558 struct read_write_emulator_ops {
4559 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4560 int bytes);
4561 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4562 void *val, int bytes);
4563 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4564 int bytes, void *val);
4565 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4566 void *val, int bytes);
4567 bool write;
4568 };
4569
4570 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4571 {
4572 if (vcpu->mmio_read_completed) {
4573 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4574 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4575 vcpu->mmio_read_completed = 0;
4576 return 1;
4577 }
4578
4579 return 0;
4580 }
4581
4582 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4583 void *val, int bytes)
4584 {
4585 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4586 }
4587
4588 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 void *val, int bytes)
4590 {
4591 return emulator_write_phys(vcpu, gpa, val, bytes);
4592 }
4593
4594 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4595 {
4596 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4597 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4598 }
4599
4600 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4601 void *val, int bytes)
4602 {
4603 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4604 return X86EMUL_IO_NEEDED;
4605 }
4606
4607 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4608 void *val, int bytes)
4609 {
4610 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4611
4612 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4613 return X86EMUL_CONTINUE;
4614 }
4615
4616 static const struct read_write_emulator_ops read_emultor = {
4617 .read_write_prepare = read_prepare,
4618 .read_write_emulate = read_emulate,
4619 .read_write_mmio = vcpu_mmio_read,
4620 .read_write_exit_mmio = read_exit_mmio,
4621 };
4622
4623 static const struct read_write_emulator_ops write_emultor = {
4624 .read_write_emulate = write_emulate,
4625 .read_write_mmio = write_mmio,
4626 .read_write_exit_mmio = write_exit_mmio,
4627 .write = true,
4628 };
4629
4630 static int emulator_read_write_onepage(unsigned long addr, void *val,
4631 unsigned int bytes,
4632 struct x86_exception *exception,
4633 struct kvm_vcpu *vcpu,
4634 const struct read_write_emulator_ops *ops)
4635 {
4636 gpa_t gpa;
4637 int handled, ret;
4638 bool write = ops->write;
4639 struct kvm_mmio_fragment *frag;
4640 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4641
4642 /*
4643 * If the exit was due to a NPF we may already have a GPA.
4644 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4645 * Note, this cannot be used on string operations since string
4646 * operation using rep will only have the initial GPA from the NPF
4647 * occurred.
4648 */
4649 if (vcpu->arch.gpa_available &&
4650 emulator_can_use_gpa(ctxt) &&
4651 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4652 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4653 gpa = exception->address;
4654 goto mmio;
4655 }
4656
4657 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4658
4659 if (ret < 0)
4660 return X86EMUL_PROPAGATE_FAULT;
4661
4662 /* For APIC access vmexit */
4663 if (ret)
4664 goto mmio;
4665
4666 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4667 return X86EMUL_CONTINUE;
4668
4669 mmio:
4670 /*
4671 * Is this MMIO handled locally?
4672 */
4673 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4674 if (handled == bytes)
4675 return X86EMUL_CONTINUE;
4676
4677 gpa += handled;
4678 bytes -= handled;
4679 val += handled;
4680
4681 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4682 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4683 frag->gpa = gpa;
4684 frag->data = val;
4685 frag->len = bytes;
4686 return X86EMUL_CONTINUE;
4687 }
4688
4689 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4690 unsigned long addr,
4691 void *val, unsigned int bytes,
4692 struct x86_exception *exception,
4693 const struct read_write_emulator_ops *ops)
4694 {
4695 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4696 gpa_t gpa;
4697 int rc;
4698
4699 if (ops->read_write_prepare &&
4700 ops->read_write_prepare(vcpu, val, bytes))
4701 return X86EMUL_CONTINUE;
4702
4703 vcpu->mmio_nr_fragments = 0;
4704
4705 /* Crossing a page boundary? */
4706 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4707 int now;
4708
4709 now = -addr & ~PAGE_MASK;
4710 rc = emulator_read_write_onepage(addr, val, now, exception,
4711 vcpu, ops);
4712
4713 if (rc != X86EMUL_CONTINUE)
4714 return rc;
4715 addr += now;
4716 if (ctxt->mode != X86EMUL_MODE_PROT64)
4717 addr = (u32)addr;
4718 val += now;
4719 bytes -= now;
4720 }
4721
4722 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4723 vcpu, ops);
4724 if (rc != X86EMUL_CONTINUE)
4725 return rc;
4726
4727 if (!vcpu->mmio_nr_fragments)
4728 return rc;
4729
4730 gpa = vcpu->mmio_fragments[0].gpa;
4731
4732 vcpu->mmio_needed = 1;
4733 vcpu->mmio_cur_fragment = 0;
4734
4735 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4736 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4737 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4738 vcpu->run->mmio.phys_addr = gpa;
4739
4740 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4741 }
4742
4743 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4744 unsigned long addr,
4745 void *val,
4746 unsigned int bytes,
4747 struct x86_exception *exception)
4748 {
4749 return emulator_read_write(ctxt, addr, val, bytes,
4750 exception, &read_emultor);
4751 }
4752
4753 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4754 unsigned long addr,
4755 const void *val,
4756 unsigned int bytes,
4757 struct x86_exception *exception)
4758 {
4759 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4760 exception, &write_emultor);
4761 }
4762
4763 #define CMPXCHG_TYPE(t, ptr, old, new) \
4764 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4765
4766 #ifdef CONFIG_X86_64
4767 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4768 #else
4769 # define CMPXCHG64(ptr, old, new) \
4770 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4771 #endif
4772
4773 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4774 unsigned long addr,
4775 const void *old,
4776 const void *new,
4777 unsigned int bytes,
4778 struct x86_exception *exception)
4779 {
4780 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 gpa_t gpa;
4782 struct page *page;
4783 char *kaddr;
4784 bool exchanged;
4785
4786 /* guests cmpxchg8b have to be emulated atomically */
4787 if (bytes > 8 || (bytes & (bytes - 1)))
4788 goto emul_write;
4789
4790 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4791
4792 if (gpa == UNMAPPED_GVA ||
4793 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4794 goto emul_write;
4795
4796 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4797 goto emul_write;
4798
4799 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4800 if (is_error_page(page))
4801 goto emul_write;
4802
4803 kaddr = kmap_atomic(page);
4804 kaddr += offset_in_page(gpa);
4805 switch (bytes) {
4806 case 1:
4807 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4808 break;
4809 case 2:
4810 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4811 break;
4812 case 4:
4813 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4814 break;
4815 case 8:
4816 exchanged = CMPXCHG64(kaddr, old, new);
4817 break;
4818 default:
4819 BUG();
4820 }
4821 kunmap_atomic(kaddr);
4822 kvm_release_page_dirty(page);
4823
4824 if (!exchanged)
4825 return X86EMUL_CMPXCHG_FAILED;
4826
4827 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4828 kvm_page_track_write(vcpu, gpa, new, bytes);
4829
4830 return X86EMUL_CONTINUE;
4831
4832 emul_write:
4833 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4834
4835 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4836 }
4837
4838 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4839 {
4840 int r = 0, i;
4841
4842 for (i = 0; i < vcpu->arch.pio.count; i++) {
4843 if (vcpu->arch.pio.in)
4844 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4845 vcpu->arch.pio.size, pd);
4846 else
4847 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4848 vcpu->arch.pio.port, vcpu->arch.pio.size,
4849 pd);
4850 if (r)
4851 break;
4852 pd += vcpu->arch.pio.size;
4853 }
4854 return r;
4855 }
4856
4857 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4858 unsigned short port, void *val,
4859 unsigned int count, bool in)
4860 {
4861 vcpu->arch.pio.port = port;
4862 vcpu->arch.pio.in = in;
4863 vcpu->arch.pio.count = count;
4864 vcpu->arch.pio.size = size;
4865
4866 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4867 vcpu->arch.pio.count = 0;
4868 return 1;
4869 }
4870
4871 vcpu->run->exit_reason = KVM_EXIT_IO;
4872 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4873 vcpu->run->io.size = size;
4874 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4875 vcpu->run->io.count = count;
4876 vcpu->run->io.port = port;
4877
4878 return 0;
4879 }
4880
4881 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4882 int size, unsigned short port, void *val,
4883 unsigned int count)
4884 {
4885 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4886 int ret;
4887
4888 if (vcpu->arch.pio.count)
4889 goto data_avail;
4890
4891 memset(vcpu->arch.pio_data, 0, size * count);
4892
4893 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4894 if (ret) {
4895 data_avail:
4896 memcpy(val, vcpu->arch.pio_data, size * count);
4897 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4898 vcpu->arch.pio.count = 0;
4899 return 1;
4900 }
4901
4902 return 0;
4903 }
4904
4905 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4906 int size, unsigned short port,
4907 const void *val, unsigned int count)
4908 {
4909 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4910
4911 memcpy(vcpu->arch.pio_data, val, size * count);
4912 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4913 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4914 }
4915
4916 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4917 {
4918 return kvm_x86_ops->get_segment_base(vcpu, seg);
4919 }
4920
4921 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4922 {
4923 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4924 }
4925
4926 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4927 {
4928 if (!need_emulate_wbinvd(vcpu))
4929 return X86EMUL_CONTINUE;
4930
4931 if (kvm_x86_ops->has_wbinvd_exit()) {
4932 int cpu = get_cpu();
4933
4934 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4935 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4936 wbinvd_ipi, NULL, 1);
4937 put_cpu();
4938 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4939 } else
4940 wbinvd();
4941 return X86EMUL_CONTINUE;
4942 }
4943
4944 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4945 {
4946 kvm_emulate_wbinvd_noskip(vcpu);
4947 return kvm_skip_emulated_instruction(vcpu);
4948 }
4949 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4950
4951
4952
4953 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4954 {
4955 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4956 }
4957
4958 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959 unsigned long *dest)
4960 {
4961 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4962 }
4963
4964 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4965 unsigned long value)
4966 {
4967
4968 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4969 }
4970
4971 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4972 {
4973 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4974 }
4975
4976 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4977 {
4978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4979 unsigned long value;
4980
4981 switch (cr) {
4982 case 0:
4983 value = kvm_read_cr0(vcpu);
4984 break;
4985 case 2:
4986 value = vcpu->arch.cr2;
4987 break;
4988 case 3:
4989 value = kvm_read_cr3(vcpu);
4990 break;
4991 case 4:
4992 value = kvm_read_cr4(vcpu);
4993 break;
4994 case 8:
4995 value = kvm_get_cr8(vcpu);
4996 break;
4997 default:
4998 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4999 return 0;
5000 }
5001
5002 return value;
5003 }
5004
5005 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5006 {
5007 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5008 int res = 0;
5009
5010 switch (cr) {
5011 case 0:
5012 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5013 break;
5014 case 2:
5015 vcpu->arch.cr2 = val;
5016 break;
5017 case 3:
5018 res = kvm_set_cr3(vcpu, val);
5019 break;
5020 case 4:
5021 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5022 break;
5023 case 8:
5024 res = kvm_set_cr8(vcpu, val);
5025 break;
5026 default:
5027 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5028 res = -1;
5029 }
5030
5031 return res;
5032 }
5033
5034 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5035 {
5036 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5037 }
5038
5039 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5040 {
5041 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5042 }
5043
5044 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5045 {
5046 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5047 }
5048
5049 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5050 {
5051 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5052 }
5053
5054 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5055 {
5056 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5057 }
5058
5059 static unsigned long emulator_get_cached_segment_base(
5060 struct x86_emulate_ctxt *ctxt, int seg)
5061 {
5062 return get_segment_base(emul_to_vcpu(ctxt), seg);
5063 }
5064
5065 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5066 struct desc_struct *desc, u32 *base3,
5067 int seg)
5068 {
5069 struct kvm_segment var;
5070
5071 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5072 *selector = var.selector;
5073
5074 if (var.unusable) {
5075 memset(desc, 0, sizeof(*desc));
5076 if (base3)
5077 *base3 = 0;
5078 return false;
5079 }
5080
5081 if (var.g)
5082 var.limit >>= 12;
5083 set_desc_limit(desc, var.limit);
5084 set_desc_base(desc, (unsigned long)var.base);
5085 #ifdef CONFIG_X86_64
5086 if (base3)
5087 *base3 = var.base >> 32;
5088 #endif
5089 desc->type = var.type;
5090 desc->s = var.s;
5091 desc->dpl = var.dpl;
5092 desc->p = var.present;
5093 desc->avl = var.avl;
5094 desc->l = var.l;
5095 desc->d = var.db;
5096 desc->g = var.g;
5097
5098 return true;
5099 }
5100
5101 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5102 struct desc_struct *desc, u32 base3,
5103 int seg)
5104 {
5105 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5106 struct kvm_segment var;
5107
5108 var.selector = selector;
5109 var.base = get_desc_base(desc);
5110 #ifdef CONFIG_X86_64
5111 var.base |= ((u64)base3) << 32;
5112 #endif
5113 var.limit = get_desc_limit(desc);
5114 if (desc->g)
5115 var.limit = (var.limit << 12) | 0xfff;
5116 var.type = desc->type;
5117 var.dpl = desc->dpl;
5118 var.db = desc->d;
5119 var.s = desc->s;
5120 var.l = desc->l;
5121 var.g = desc->g;
5122 var.avl = desc->avl;
5123 var.present = desc->p;
5124 var.unusable = !var.present;
5125 var.padding = 0;
5126
5127 kvm_set_segment(vcpu, &var, seg);
5128 return;
5129 }
5130
5131 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5132 u32 msr_index, u64 *pdata)
5133 {
5134 struct msr_data msr;
5135 int r;
5136
5137 msr.index = msr_index;
5138 msr.host_initiated = false;
5139 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5140 if (r)
5141 return r;
5142
5143 *pdata = msr.data;
5144 return 0;
5145 }
5146
5147 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5148 u32 msr_index, u64 data)
5149 {
5150 struct msr_data msr;
5151
5152 msr.data = data;
5153 msr.index = msr_index;
5154 msr.host_initiated = false;
5155 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5156 }
5157
5158 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5159 {
5160 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5161
5162 return vcpu->arch.smbase;
5163 }
5164
5165 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5166 {
5167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5168
5169 vcpu->arch.smbase = smbase;
5170 }
5171
5172 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5173 u32 pmc)
5174 {
5175 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5176 }
5177
5178 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5179 u32 pmc, u64 *pdata)
5180 {
5181 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5182 }
5183
5184 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5185 {
5186 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5187 }
5188
5189 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5190 {
5191 preempt_disable();
5192 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5193 }
5194
5195 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5196 {
5197 preempt_enable();
5198 }
5199
5200 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5201 struct x86_instruction_info *info,
5202 enum x86_intercept_stage stage)
5203 {
5204 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5205 }
5206
5207 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5208 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5209 {
5210 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5211 }
5212
5213 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5214 {
5215 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5216 }
5217
5218 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5219 {
5220 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5221 }
5222
5223 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5224 {
5225 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5226 }
5227
5228 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5229 {
5230 return emul_to_vcpu(ctxt)->arch.hflags;
5231 }
5232
5233 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5234 {
5235 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5236 }
5237
5238 static const struct x86_emulate_ops emulate_ops = {
5239 .read_gpr = emulator_read_gpr,
5240 .write_gpr = emulator_write_gpr,
5241 .read_std = kvm_read_guest_virt_system,
5242 .write_std = kvm_write_guest_virt_system,
5243 .read_phys = kvm_read_guest_phys_system,
5244 .fetch = kvm_fetch_guest_virt,
5245 .read_emulated = emulator_read_emulated,
5246 .write_emulated = emulator_write_emulated,
5247 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5248 .invlpg = emulator_invlpg,
5249 .pio_in_emulated = emulator_pio_in_emulated,
5250 .pio_out_emulated = emulator_pio_out_emulated,
5251 .get_segment = emulator_get_segment,
5252 .set_segment = emulator_set_segment,
5253 .get_cached_segment_base = emulator_get_cached_segment_base,
5254 .get_gdt = emulator_get_gdt,
5255 .get_idt = emulator_get_idt,
5256 .set_gdt = emulator_set_gdt,
5257 .set_idt = emulator_set_idt,
5258 .get_cr = emulator_get_cr,
5259 .set_cr = emulator_set_cr,
5260 .cpl = emulator_get_cpl,
5261 .get_dr = emulator_get_dr,
5262 .set_dr = emulator_set_dr,
5263 .get_smbase = emulator_get_smbase,
5264 .set_smbase = emulator_set_smbase,
5265 .set_msr = emulator_set_msr,
5266 .get_msr = emulator_get_msr,
5267 .check_pmc = emulator_check_pmc,
5268 .read_pmc = emulator_read_pmc,
5269 .halt = emulator_halt,
5270 .wbinvd = emulator_wbinvd,
5271 .fix_hypercall = emulator_fix_hypercall,
5272 .get_fpu = emulator_get_fpu,
5273 .put_fpu = emulator_put_fpu,
5274 .intercept = emulator_intercept,
5275 .get_cpuid = emulator_get_cpuid,
5276 .set_nmi_mask = emulator_set_nmi_mask,
5277 .get_hflags = emulator_get_hflags,
5278 .set_hflags = emulator_set_hflags,
5279 };
5280
5281 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5282 {
5283 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5284 /*
5285 * an sti; sti; sequence only disable interrupts for the first
5286 * instruction. So, if the last instruction, be it emulated or
5287 * not, left the system with the INT_STI flag enabled, it
5288 * means that the last instruction is an sti. We should not
5289 * leave the flag on in this case. The same goes for mov ss
5290 */
5291 if (int_shadow & mask)
5292 mask = 0;
5293 if (unlikely(int_shadow || mask)) {
5294 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5295 if (!mask)
5296 kvm_make_request(KVM_REQ_EVENT, vcpu);
5297 }
5298 }
5299
5300 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5301 {
5302 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5303 if (ctxt->exception.vector == PF_VECTOR)
5304 return kvm_propagate_fault(vcpu, &ctxt->exception);
5305
5306 if (ctxt->exception.error_code_valid)
5307 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5308 ctxt->exception.error_code);
5309 else
5310 kvm_queue_exception(vcpu, ctxt->exception.vector);
5311 return false;
5312 }
5313
5314 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5315 {
5316 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5317 int cs_db, cs_l;
5318
5319 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5320
5321 ctxt->eflags = kvm_get_rflags(vcpu);
5322 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5323
5324 ctxt->eip = kvm_rip_read(vcpu);
5325 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5326 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5327 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5328 cs_db ? X86EMUL_MODE_PROT32 :
5329 X86EMUL_MODE_PROT16;
5330 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5331 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5332 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5333
5334 init_decode_cache(ctxt);
5335 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5336 }
5337
5338 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5339 {
5340 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5341 int ret;
5342
5343 init_emulate_ctxt(vcpu);
5344
5345 ctxt->op_bytes = 2;
5346 ctxt->ad_bytes = 2;
5347 ctxt->_eip = ctxt->eip + inc_eip;
5348 ret = emulate_int_real(ctxt, irq);
5349
5350 if (ret != X86EMUL_CONTINUE)
5351 return EMULATE_FAIL;
5352
5353 ctxt->eip = ctxt->_eip;
5354 kvm_rip_write(vcpu, ctxt->eip);
5355 kvm_set_rflags(vcpu, ctxt->eflags);
5356
5357 if (irq == NMI_VECTOR)
5358 vcpu->arch.nmi_pending = 0;
5359 else
5360 vcpu->arch.interrupt.pending = false;
5361
5362 return EMULATE_DONE;
5363 }
5364 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5365
5366 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5367 {
5368 int r = EMULATE_DONE;
5369
5370 ++vcpu->stat.insn_emulation_fail;
5371 trace_kvm_emulate_insn_failed(vcpu);
5372 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5373 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5374 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5375 vcpu->run->internal.ndata = 0;
5376 r = EMULATE_FAIL;
5377 }
5378 kvm_queue_exception(vcpu, UD_VECTOR);
5379
5380 return r;
5381 }
5382
5383 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5384 bool write_fault_to_shadow_pgtable,
5385 int emulation_type)
5386 {
5387 gpa_t gpa = cr2;
5388 kvm_pfn_t pfn;
5389
5390 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5391 return false;
5392
5393 if (!vcpu->arch.mmu.direct_map) {
5394 /*
5395 * Write permission should be allowed since only
5396 * write access need to be emulated.
5397 */
5398 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5399
5400 /*
5401 * If the mapping is invalid in guest, let cpu retry
5402 * it to generate fault.
5403 */
5404 if (gpa == UNMAPPED_GVA)
5405 return true;
5406 }
5407
5408 /*
5409 * Do not retry the unhandleable instruction if it faults on the
5410 * readonly host memory, otherwise it will goto a infinite loop:
5411 * retry instruction -> write #PF -> emulation fail -> retry
5412 * instruction -> ...
5413 */
5414 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5415
5416 /*
5417 * If the instruction failed on the error pfn, it can not be fixed,
5418 * report the error to userspace.
5419 */
5420 if (is_error_noslot_pfn(pfn))
5421 return false;
5422
5423 kvm_release_pfn_clean(pfn);
5424
5425 /* The instructions are well-emulated on direct mmu. */
5426 if (vcpu->arch.mmu.direct_map) {
5427 unsigned int indirect_shadow_pages;
5428
5429 spin_lock(&vcpu->kvm->mmu_lock);
5430 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5431 spin_unlock(&vcpu->kvm->mmu_lock);
5432
5433 if (indirect_shadow_pages)
5434 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5435
5436 return true;
5437 }
5438
5439 /*
5440 * if emulation was due to access to shadowed page table
5441 * and it failed try to unshadow page and re-enter the
5442 * guest to let CPU execute the instruction.
5443 */
5444 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5445
5446 /*
5447 * If the access faults on its page table, it can not
5448 * be fixed by unprotecting shadow page and it should
5449 * be reported to userspace.
5450 */
5451 return !write_fault_to_shadow_pgtable;
5452 }
5453
5454 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5455 unsigned long cr2, int emulation_type)
5456 {
5457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5458 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5459
5460 last_retry_eip = vcpu->arch.last_retry_eip;
5461 last_retry_addr = vcpu->arch.last_retry_addr;
5462
5463 /*
5464 * If the emulation is caused by #PF and it is non-page_table
5465 * writing instruction, it means the VM-EXIT is caused by shadow
5466 * page protected, we can zap the shadow page and retry this
5467 * instruction directly.
5468 *
5469 * Note: if the guest uses a non-page-table modifying instruction
5470 * on the PDE that points to the instruction, then we will unmap
5471 * the instruction and go to an infinite loop. So, we cache the
5472 * last retried eip and the last fault address, if we meet the eip
5473 * and the address again, we can break out of the potential infinite
5474 * loop.
5475 */
5476 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5477
5478 if (!(emulation_type & EMULTYPE_RETRY))
5479 return false;
5480
5481 if (x86_page_table_writing_insn(ctxt))
5482 return false;
5483
5484 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5485 return false;
5486
5487 vcpu->arch.last_retry_eip = ctxt->eip;
5488 vcpu->arch.last_retry_addr = cr2;
5489
5490 if (!vcpu->arch.mmu.direct_map)
5491 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5492
5493 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5494
5495 return true;
5496 }
5497
5498 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5499 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5500
5501 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5502 {
5503 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5504 /* This is a good place to trace that we are exiting SMM. */
5505 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5506
5507 /* Process a latched INIT or SMI, if any. */
5508 kvm_make_request(KVM_REQ_EVENT, vcpu);
5509 }
5510
5511 kvm_mmu_reset_context(vcpu);
5512 }
5513
5514 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5515 {
5516 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5517
5518 vcpu->arch.hflags = emul_flags;
5519
5520 if (changed & HF_SMM_MASK)
5521 kvm_smm_changed(vcpu);
5522 }
5523
5524 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5525 unsigned long *db)
5526 {
5527 u32 dr6 = 0;
5528 int i;
5529 u32 enable, rwlen;
5530
5531 enable = dr7;
5532 rwlen = dr7 >> 16;
5533 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5534 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5535 dr6 |= (1 << i);
5536 return dr6;
5537 }
5538
5539 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5540 {
5541 struct kvm_run *kvm_run = vcpu->run;
5542
5543 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5544 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5545 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5546 kvm_run->debug.arch.exception = DB_VECTOR;
5547 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5548 *r = EMULATE_USER_EXIT;
5549 } else {
5550 /*
5551 * "Certain debug exceptions may clear bit 0-3. The
5552 * remaining contents of the DR6 register are never
5553 * cleared by the processor".
5554 */
5555 vcpu->arch.dr6 &= ~15;
5556 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5557 kvm_queue_exception(vcpu, DB_VECTOR);
5558 }
5559 }
5560
5561 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5562 {
5563 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5564 int r = EMULATE_DONE;
5565
5566 kvm_x86_ops->skip_emulated_instruction(vcpu);
5567
5568 /*
5569 * rflags is the old, "raw" value of the flags. The new value has
5570 * not been saved yet.
5571 *
5572 * This is correct even for TF set by the guest, because "the
5573 * processor will not generate this exception after the instruction
5574 * that sets the TF flag".
5575 */
5576 if (unlikely(rflags & X86_EFLAGS_TF))
5577 kvm_vcpu_do_singlestep(vcpu, &r);
5578 return r == EMULATE_DONE;
5579 }
5580 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5581
5582 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5583 {
5584 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5585 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5586 struct kvm_run *kvm_run = vcpu->run;
5587 unsigned long eip = kvm_get_linear_rip(vcpu);
5588 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5589 vcpu->arch.guest_debug_dr7,
5590 vcpu->arch.eff_db);
5591
5592 if (dr6 != 0) {
5593 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5594 kvm_run->debug.arch.pc = eip;
5595 kvm_run->debug.arch.exception = DB_VECTOR;
5596 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5597 *r = EMULATE_USER_EXIT;
5598 return true;
5599 }
5600 }
5601
5602 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5603 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5604 unsigned long eip = kvm_get_linear_rip(vcpu);
5605 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5606 vcpu->arch.dr7,
5607 vcpu->arch.db);
5608
5609 if (dr6 != 0) {
5610 vcpu->arch.dr6 &= ~15;
5611 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5612 kvm_queue_exception(vcpu, DB_VECTOR);
5613 *r = EMULATE_DONE;
5614 return true;
5615 }
5616 }
5617
5618 return false;
5619 }
5620
5621 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5622 unsigned long cr2,
5623 int emulation_type,
5624 void *insn,
5625 int insn_len)
5626 {
5627 int r;
5628 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5629 bool writeback = true;
5630 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5631
5632 /*
5633 * Clear write_fault_to_shadow_pgtable here to ensure it is
5634 * never reused.
5635 */
5636 vcpu->arch.write_fault_to_shadow_pgtable = false;
5637 kvm_clear_exception_queue(vcpu);
5638
5639 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5640 init_emulate_ctxt(vcpu);
5641
5642 /*
5643 * We will reenter on the same instruction since
5644 * we do not set complete_userspace_io. This does not
5645 * handle watchpoints yet, those would be handled in
5646 * the emulate_ops.
5647 */
5648 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5649 return r;
5650
5651 ctxt->interruptibility = 0;
5652 ctxt->have_exception = false;
5653 ctxt->exception.vector = -1;
5654 ctxt->perm_ok = false;
5655
5656 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5657
5658 r = x86_decode_insn(ctxt, insn, insn_len);
5659
5660 trace_kvm_emulate_insn_start(vcpu);
5661 ++vcpu->stat.insn_emulation;
5662 if (r != EMULATION_OK) {
5663 if (emulation_type & EMULTYPE_TRAP_UD)
5664 return EMULATE_FAIL;
5665 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5666 emulation_type))
5667 return EMULATE_DONE;
5668 if (emulation_type & EMULTYPE_SKIP)
5669 return EMULATE_FAIL;
5670 return handle_emulation_failure(vcpu);
5671 }
5672 }
5673
5674 if (emulation_type & EMULTYPE_SKIP) {
5675 kvm_rip_write(vcpu, ctxt->_eip);
5676 if (ctxt->eflags & X86_EFLAGS_RF)
5677 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5678 return EMULATE_DONE;
5679 }
5680
5681 if (retry_instruction(ctxt, cr2, emulation_type))
5682 return EMULATE_DONE;
5683
5684 /* this is needed for vmware backdoor interface to work since it
5685 changes registers values during IO operation */
5686 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5687 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5688 emulator_invalidate_register_cache(ctxt);
5689 }
5690
5691 restart:
5692 /* Save the faulting GPA (cr2) in the address field */
5693 ctxt->exception.address = cr2;
5694
5695 r = x86_emulate_insn(ctxt);
5696
5697 if (r == EMULATION_INTERCEPTED)
5698 return EMULATE_DONE;
5699
5700 if (r == EMULATION_FAILED) {
5701 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5702 emulation_type))
5703 return EMULATE_DONE;
5704
5705 return handle_emulation_failure(vcpu);
5706 }
5707
5708 if (ctxt->have_exception) {
5709 r = EMULATE_DONE;
5710 if (inject_emulated_exception(vcpu))
5711 return r;
5712 } else if (vcpu->arch.pio.count) {
5713 if (!vcpu->arch.pio.in) {
5714 /* FIXME: return into emulator if single-stepping. */
5715 vcpu->arch.pio.count = 0;
5716 } else {
5717 writeback = false;
5718 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5719 }
5720 r = EMULATE_USER_EXIT;
5721 } else if (vcpu->mmio_needed) {
5722 if (!vcpu->mmio_is_write)
5723 writeback = false;
5724 r = EMULATE_USER_EXIT;
5725 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5726 } else if (r == EMULATION_RESTART)
5727 goto restart;
5728 else
5729 r = EMULATE_DONE;
5730
5731 if (writeback) {
5732 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5733 toggle_interruptibility(vcpu, ctxt->interruptibility);
5734 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5735 kvm_rip_write(vcpu, ctxt->eip);
5736 if (r == EMULATE_DONE &&
5737 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5738 kvm_vcpu_do_singlestep(vcpu, &r);
5739 if (!ctxt->have_exception ||
5740 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5741 __kvm_set_rflags(vcpu, ctxt->eflags);
5742
5743 /*
5744 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5745 * do nothing, and it will be requested again as soon as
5746 * the shadow expires. But we still need to check here,
5747 * because POPF has no interrupt shadow.
5748 */
5749 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5750 kvm_make_request(KVM_REQ_EVENT, vcpu);
5751 } else
5752 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5753
5754 return r;
5755 }
5756 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5757
5758 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5759 {
5760 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5761 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5762 size, port, &val, 1);
5763 /* do not return to emulator after return from userspace */
5764 vcpu->arch.pio.count = 0;
5765 return ret;
5766 }
5767 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5768
5769 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5770 {
5771 unsigned long val;
5772
5773 /* We should only ever be called with arch.pio.count equal to 1 */
5774 BUG_ON(vcpu->arch.pio.count != 1);
5775
5776 /* For size less than 4 we merge, else we zero extend */
5777 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5778 : 0;
5779
5780 /*
5781 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5782 * the copy and tracing
5783 */
5784 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5785 vcpu->arch.pio.port, &val, 1);
5786 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5787
5788 return 1;
5789 }
5790
5791 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5792 {
5793 unsigned long val;
5794 int ret;
5795
5796 /* For size less than 4 we merge, else we zero extend */
5797 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5798
5799 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5800 &val, 1);
5801 if (ret) {
5802 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5803 return ret;
5804 }
5805
5806 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5807
5808 return 0;
5809 }
5810 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5811
5812 static int kvmclock_cpu_down_prep(unsigned int cpu)
5813 {
5814 __this_cpu_write(cpu_tsc_khz, 0);
5815 return 0;
5816 }
5817
5818 static void tsc_khz_changed(void *data)
5819 {
5820 struct cpufreq_freqs *freq = data;
5821 unsigned long khz = 0;
5822
5823 if (data)
5824 khz = freq->new;
5825 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5826 khz = cpufreq_quick_get(raw_smp_processor_id());
5827 if (!khz)
5828 khz = tsc_khz;
5829 __this_cpu_write(cpu_tsc_khz, khz);
5830 }
5831
5832 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5833 void *data)
5834 {
5835 struct cpufreq_freqs *freq = data;
5836 struct kvm *kvm;
5837 struct kvm_vcpu *vcpu;
5838 int i, send_ipi = 0;
5839
5840 /*
5841 * We allow guests to temporarily run on slowing clocks,
5842 * provided we notify them after, or to run on accelerating
5843 * clocks, provided we notify them before. Thus time never
5844 * goes backwards.
5845 *
5846 * However, we have a problem. We can't atomically update
5847 * the frequency of a given CPU from this function; it is
5848 * merely a notifier, which can be called from any CPU.
5849 * Changing the TSC frequency at arbitrary points in time
5850 * requires a recomputation of local variables related to
5851 * the TSC for each VCPU. We must flag these local variables
5852 * to be updated and be sure the update takes place with the
5853 * new frequency before any guests proceed.
5854 *
5855 * Unfortunately, the combination of hotplug CPU and frequency
5856 * change creates an intractable locking scenario; the order
5857 * of when these callouts happen is undefined with respect to
5858 * CPU hotplug, and they can race with each other. As such,
5859 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5860 * undefined; you can actually have a CPU frequency change take
5861 * place in between the computation of X and the setting of the
5862 * variable. To protect against this problem, all updates of
5863 * the per_cpu tsc_khz variable are done in an interrupt
5864 * protected IPI, and all callers wishing to update the value
5865 * must wait for a synchronous IPI to complete (which is trivial
5866 * if the caller is on the CPU already). This establishes the
5867 * necessary total order on variable updates.
5868 *
5869 * Note that because a guest time update may take place
5870 * anytime after the setting of the VCPU's request bit, the
5871 * correct TSC value must be set before the request. However,
5872 * to ensure the update actually makes it to any guest which
5873 * starts running in hardware virtualization between the set
5874 * and the acquisition of the spinlock, we must also ping the
5875 * CPU after setting the request bit.
5876 *
5877 */
5878
5879 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5880 return 0;
5881 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5882 return 0;
5883
5884 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5885
5886 spin_lock(&kvm_lock);
5887 list_for_each_entry(kvm, &vm_list, vm_list) {
5888 kvm_for_each_vcpu(i, vcpu, kvm) {
5889 if (vcpu->cpu != freq->cpu)
5890 continue;
5891 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5892 if (vcpu->cpu != smp_processor_id())
5893 send_ipi = 1;
5894 }
5895 }
5896 spin_unlock(&kvm_lock);
5897
5898 if (freq->old < freq->new && send_ipi) {
5899 /*
5900 * We upscale the frequency. Must make the guest
5901 * doesn't see old kvmclock values while running with
5902 * the new frequency, otherwise we risk the guest sees
5903 * time go backwards.
5904 *
5905 * In case we update the frequency for another cpu
5906 * (which might be in guest context) send an interrupt
5907 * to kick the cpu out of guest context. Next time
5908 * guest context is entered kvmclock will be updated,
5909 * so the guest will not see stale values.
5910 */
5911 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5912 }
5913 return 0;
5914 }
5915
5916 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5917 .notifier_call = kvmclock_cpufreq_notifier
5918 };
5919
5920 static int kvmclock_cpu_online(unsigned int cpu)
5921 {
5922 tsc_khz_changed(NULL);
5923 return 0;
5924 }
5925
5926 static void kvm_timer_init(void)
5927 {
5928 max_tsc_khz = tsc_khz;
5929
5930 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5931 #ifdef CONFIG_CPU_FREQ
5932 struct cpufreq_policy policy;
5933 int cpu;
5934
5935 memset(&policy, 0, sizeof(policy));
5936 cpu = get_cpu();
5937 cpufreq_get_policy(&policy, cpu);
5938 if (policy.cpuinfo.max_freq)
5939 max_tsc_khz = policy.cpuinfo.max_freq;
5940 put_cpu();
5941 #endif
5942 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5943 CPUFREQ_TRANSITION_NOTIFIER);
5944 }
5945 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5946
5947 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5948 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5949 }
5950
5951 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5952
5953 int kvm_is_in_guest(void)
5954 {
5955 return __this_cpu_read(current_vcpu) != NULL;
5956 }
5957
5958 static int kvm_is_user_mode(void)
5959 {
5960 int user_mode = 3;
5961
5962 if (__this_cpu_read(current_vcpu))
5963 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5964
5965 return user_mode != 0;
5966 }
5967
5968 static unsigned long kvm_get_guest_ip(void)
5969 {
5970 unsigned long ip = 0;
5971
5972 if (__this_cpu_read(current_vcpu))
5973 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5974
5975 return ip;
5976 }
5977
5978 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5979 .is_in_guest = kvm_is_in_guest,
5980 .is_user_mode = kvm_is_user_mode,
5981 .get_guest_ip = kvm_get_guest_ip,
5982 };
5983
5984 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5985 {
5986 __this_cpu_write(current_vcpu, vcpu);
5987 }
5988 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5989
5990 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5991 {
5992 __this_cpu_write(current_vcpu, NULL);
5993 }
5994 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5995
5996 static void kvm_set_mmio_spte_mask(void)
5997 {
5998 u64 mask;
5999 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6000
6001 /*
6002 * Set the reserved bits and the present bit of an paging-structure
6003 * entry to generate page fault with PFER.RSV = 1.
6004 */
6005 /* Mask the reserved physical address bits. */
6006 mask = rsvd_bits(maxphyaddr, 51);
6007
6008 /* Set the present bit. */
6009 mask |= 1ull;
6010
6011 #ifdef CONFIG_X86_64
6012 /*
6013 * If reserved bit is not supported, clear the present bit to disable
6014 * mmio page fault.
6015 */
6016 if (maxphyaddr == 52)
6017 mask &= ~1ull;
6018 #endif
6019
6020 kvm_mmu_set_mmio_spte_mask(mask, mask);
6021 }
6022
6023 #ifdef CONFIG_X86_64
6024 static void pvclock_gtod_update_fn(struct work_struct *work)
6025 {
6026 struct kvm *kvm;
6027
6028 struct kvm_vcpu *vcpu;
6029 int i;
6030
6031 spin_lock(&kvm_lock);
6032 list_for_each_entry(kvm, &vm_list, vm_list)
6033 kvm_for_each_vcpu(i, vcpu, kvm)
6034 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6035 atomic_set(&kvm_guest_has_master_clock, 0);
6036 spin_unlock(&kvm_lock);
6037 }
6038
6039 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6040
6041 /*
6042 * Notification about pvclock gtod data update.
6043 */
6044 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6045 void *priv)
6046 {
6047 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6048 struct timekeeper *tk = priv;
6049
6050 update_pvclock_gtod(tk);
6051
6052 /* disable master clock if host does not trust, or does not
6053 * use, TSC clocksource
6054 */
6055 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6056 atomic_read(&kvm_guest_has_master_clock) != 0)
6057 queue_work(system_long_wq, &pvclock_gtod_work);
6058
6059 return 0;
6060 }
6061
6062 static struct notifier_block pvclock_gtod_notifier = {
6063 .notifier_call = pvclock_gtod_notify,
6064 };
6065 #endif
6066
6067 int kvm_arch_init(void *opaque)
6068 {
6069 int r;
6070 struct kvm_x86_ops *ops = opaque;
6071
6072 if (kvm_x86_ops) {
6073 printk(KERN_ERR "kvm: already loaded the other module\n");
6074 r = -EEXIST;
6075 goto out;
6076 }
6077
6078 if (!ops->cpu_has_kvm_support()) {
6079 printk(KERN_ERR "kvm: no hardware support\n");
6080 r = -EOPNOTSUPP;
6081 goto out;
6082 }
6083 if (ops->disabled_by_bios()) {
6084 printk(KERN_ERR "kvm: disabled by bios\n");
6085 r = -EOPNOTSUPP;
6086 goto out;
6087 }
6088
6089 r = -ENOMEM;
6090 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6091 if (!shared_msrs) {
6092 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6093 goto out;
6094 }
6095
6096 r = kvm_mmu_module_init();
6097 if (r)
6098 goto out_free_percpu;
6099
6100 kvm_set_mmio_spte_mask();
6101
6102 kvm_x86_ops = ops;
6103
6104 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6105 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6106 PT_PRESENT_MASK, 0);
6107 kvm_timer_init();
6108
6109 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6110
6111 if (boot_cpu_has(X86_FEATURE_XSAVE))
6112 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6113
6114 kvm_lapic_init();
6115 #ifdef CONFIG_X86_64
6116 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6117 #endif
6118
6119 return 0;
6120
6121 out_free_percpu:
6122 free_percpu(shared_msrs);
6123 out:
6124 return r;
6125 }
6126
6127 void kvm_arch_exit(void)
6128 {
6129 kvm_lapic_exit();
6130 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6131
6132 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6133 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6134 CPUFREQ_TRANSITION_NOTIFIER);
6135 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6136 #ifdef CONFIG_X86_64
6137 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6138 #endif
6139 kvm_x86_ops = NULL;
6140 kvm_mmu_module_exit();
6141 free_percpu(shared_msrs);
6142 }
6143
6144 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6145 {
6146 ++vcpu->stat.halt_exits;
6147 if (lapic_in_kernel(vcpu)) {
6148 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6149 return 1;
6150 } else {
6151 vcpu->run->exit_reason = KVM_EXIT_HLT;
6152 return 0;
6153 }
6154 }
6155 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6156
6157 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6158 {
6159 int ret = kvm_skip_emulated_instruction(vcpu);
6160 /*
6161 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6162 * KVM_EXIT_DEBUG here.
6163 */
6164 return kvm_vcpu_halt(vcpu) && ret;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6167
6168 #ifdef CONFIG_X86_64
6169 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6170 unsigned long clock_type)
6171 {
6172 struct kvm_clock_pairing clock_pairing;
6173 struct timespec ts;
6174 u64 cycle;
6175 int ret;
6176
6177 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6178 return -KVM_EOPNOTSUPP;
6179
6180 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6181 return -KVM_EOPNOTSUPP;
6182
6183 clock_pairing.sec = ts.tv_sec;
6184 clock_pairing.nsec = ts.tv_nsec;
6185 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6186 clock_pairing.flags = 0;
6187
6188 ret = 0;
6189 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6190 sizeof(struct kvm_clock_pairing)))
6191 ret = -KVM_EFAULT;
6192
6193 return ret;
6194 }
6195 #endif
6196
6197 /*
6198 * kvm_pv_kick_cpu_op: Kick a vcpu.
6199 *
6200 * @apicid - apicid of vcpu to be kicked.
6201 */
6202 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6203 {
6204 struct kvm_lapic_irq lapic_irq;
6205
6206 lapic_irq.shorthand = 0;
6207 lapic_irq.dest_mode = 0;
6208 lapic_irq.dest_id = apicid;
6209 lapic_irq.msi_redir_hint = false;
6210
6211 lapic_irq.delivery_mode = APIC_DM_REMRD;
6212 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6213 }
6214
6215 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6216 {
6217 vcpu->arch.apicv_active = false;
6218 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6219 }
6220
6221 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6222 {
6223 unsigned long nr, a0, a1, a2, a3, ret;
6224 int op_64_bit, r;
6225
6226 r = kvm_skip_emulated_instruction(vcpu);
6227
6228 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6229 return kvm_hv_hypercall(vcpu);
6230
6231 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6232 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6233 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6234 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6235 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6236
6237 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6238
6239 op_64_bit = is_64_bit_mode(vcpu);
6240 if (!op_64_bit) {
6241 nr &= 0xFFFFFFFF;
6242 a0 &= 0xFFFFFFFF;
6243 a1 &= 0xFFFFFFFF;
6244 a2 &= 0xFFFFFFFF;
6245 a3 &= 0xFFFFFFFF;
6246 }
6247
6248 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6249 ret = -KVM_EPERM;
6250 goto out;
6251 }
6252
6253 switch (nr) {
6254 case KVM_HC_VAPIC_POLL_IRQ:
6255 ret = 0;
6256 break;
6257 case KVM_HC_KICK_CPU:
6258 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6259 ret = 0;
6260 break;
6261 #ifdef CONFIG_X86_64
6262 case KVM_HC_CLOCK_PAIRING:
6263 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6264 break;
6265 #endif
6266 default:
6267 ret = -KVM_ENOSYS;
6268 break;
6269 }
6270 out:
6271 if (!op_64_bit)
6272 ret = (u32)ret;
6273 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6274 ++vcpu->stat.hypercalls;
6275 return r;
6276 }
6277 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6278
6279 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6280 {
6281 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6282 char instruction[3];
6283 unsigned long rip = kvm_rip_read(vcpu);
6284
6285 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6286
6287 return emulator_write_emulated(ctxt, rip, instruction, 3,
6288 &ctxt->exception);
6289 }
6290
6291 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6292 {
6293 return vcpu->run->request_interrupt_window &&
6294 likely(!pic_in_kernel(vcpu->kvm));
6295 }
6296
6297 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6298 {
6299 struct kvm_run *kvm_run = vcpu->run;
6300
6301 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6302 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6303 kvm_run->cr8 = kvm_get_cr8(vcpu);
6304 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6305 kvm_run->ready_for_interrupt_injection =
6306 pic_in_kernel(vcpu->kvm) ||
6307 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6308 }
6309
6310 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6311 {
6312 int max_irr, tpr;
6313
6314 if (!kvm_x86_ops->update_cr8_intercept)
6315 return;
6316
6317 if (!lapic_in_kernel(vcpu))
6318 return;
6319
6320 if (vcpu->arch.apicv_active)
6321 return;
6322
6323 if (!vcpu->arch.apic->vapic_addr)
6324 max_irr = kvm_lapic_find_highest_irr(vcpu);
6325 else
6326 max_irr = -1;
6327
6328 if (max_irr != -1)
6329 max_irr >>= 4;
6330
6331 tpr = kvm_lapic_get_cr8(vcpu);
6332
6333 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6334 }
6335
6336 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6337 {
6338 int r;
6339
6340 /* try to reinject previous events if any */
6341 if (vcpu->arch.exception.pending) {
6342 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6343 vcpu->arch.exception.has_error_code,
6344 vcpu->arch.exception.error_code);
6345
6346 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6347 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6348 X86_EFLAGS_RF);
6349
6350 if (vcpu->arch.exception.nr == DB_VECTOR &&
6351 (vcpu->arch.dr7 & DR7_GD)) {
6352 vcpu->arch.dr7 &= ~DR7_GD;
6353 kvm_update_dr7(vcpu);
6354 }
6355
6356 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6357 vcpu->arch.exception.has_error_code,
6358 vcpu->arch.exception.error_code,
6359 vcpu->arch.exception.reinject);
6360 return 0;
6361 }
6362
6363 if (vcpu->arch.nmi_injected) {
6364 kvm_x86_ops->set_nmi(vcpu);
6365 return 0;
6366 }
6367
6368 if (vcpu->arch.interrupt.pending) {
6369 kvm_x86_ops->set_irq(vcpu);
6370 return 0;
6371 }
6372
6373 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6374 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6375 if (r != 0)
6376 return r;
6377 }
6378
6379 /* try to inject new event if pending */
6380 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6381 vcpu->arch.smi_pending = false;
6382 enter_smm(vcpu);
6383 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6384 --vcpu->arch.nmi_pending;
6385 vcpu->arch.nmi_injected = true;
6386 kvm_x86_ops->set_nmi(vcpu);
6387 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6388 /*
6389 * Because interrupts can be injected asynchronously, we are
6390 * calling check_nested_events again here to avoid a race condition.
6391 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6392 * proposal and current concerns. Perhaps we should be setting
6393 * KVM_REQ_EVENT only on certain events and not unconditionally?
6394 */
6395 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6396 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6397 if (r != 0)
6398 return r;
6399 }
6400 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6401 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6402 false);
6403 kvm_x86_ops->set_irq(vcpu);
6404 }
6405 }
6406
6407 return 0;
6408 }
6409
6410 static void process_nmi(struct kvm_vcpu *vcpu)
6411 {
6412 unsigned limit = 2;
6413
6414 /*
6415 * x86 is limited to one NMI running, and one NMI pending after it.
6416 * If an NMI is already in progress, limit further NMIs to just one.
6417 * Otherwise, allow two (and we'll inject the first one immediately).
6418 */
6419 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6420 limit = 1;
6421
6422 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6423 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6424 kvm_make_request(KVM_REQ_EVENT, vcpu);
6425 }
6426
6427 #define put_smstate(type, buf, offset, val) \
6428 *(type *)((buf) + (offset) - 0x7e00) = val
6429
6430 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6431 {
6432 u32 flags = 0;
6433 flags |= seg->g << 23;
6434 flags |= seg->db << 22;
6435 flags |= seg->l << 21;
6436 flags |= seg->avl << 20;
6437 flags |= seg->present << 15;
6438 flags |= seg->dpl << 13;
6439 flags |= seg->s << 12;
6440 flags |= seg->type << 8;
6441 return flags;
6442 }
6443
6444 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6445 {
6446 struct kvm_segment seg;
6447 int offset;
6448
6449 kvm_get_segment(vcpu, &seg, n);
6450 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6451
6452 if (n < 3)
6453 offset = 0x7f84 + n * 12;
6454 else
6455 offset = 0x7f2c + (n - 3) * 12;
6456
6457 put_smstate(u32, buf, offset + 8, seg.base);
6458 put_smstate(u32, buf, offset + 4, seg.limit);
6459 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6460 }
6461
6462 #ifdef CONFIG_X86_64
6463 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6464 {
6465 struct kvm_segment seg;
6466 int offset;
6467 u16 flags;
6468
6469 kvm_get_segment(vcpu, &seg, n);
6470 offset = 0x7e00 + n * 16;
6471
6472 flags = enter_smm_get_segment_flags(&seg) >> 8;
6473 put_smstate(u16, buf, offset, seg.selector);
6474 put_smstate(u16, buf, offset + 2, flags);
6475 put_smstate(u32, buf, offset + 4, seg.limit);
6476 put_smstate(u64, buf, offset + 8, seg.base);
6477 }
6478 #endif
6479
6480 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6481 {
6482 struct desc_ptr dt;
6483 struct kvm_segment seg;
6484 unsigned long val;
6485 int i;
6486
6487 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6488 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6489 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6490 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6491
6492 for (i = 0; i < 8; i++)
6493 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6494
6495 kvm_get_dr(vcpu, 6, &val);
6496 put_smstate(u32, buf, 0x7fcc, (u32)val);
6497 kvm_get_dr(vcpu, 7, &val);
6498 put_smstate(u32, buf, 0x7fc8, (u32)val);
6499
6500 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6501 put_smstate(u32, buf, 0x7fc4, seg.selector);
6502 put_smstate(u32, buf, 0x7f64, seg.base);
6503 put_smstate(u32, buf, 0x7f60, seg.limit);
6504 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6505
6506 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6507 put_smstate(u32, buf, 0x7fc0, seg.selector);
6508 put_smstate(u32, buf, 0x7f80, seg.base);
6509 put_smstate(u32, buf, 0x7f7c, seg.limit);
6510 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6511
6512 kvm_x86_ops->get_gdt(vcpu, &dt);
6513 put_smstate(u32, buf, 0x7f74, dt.address);
6514 put_smstate(u32, buf, 0x7f70, dt.size);
6515
6516 kvm_x86_ops->get_idt(vcpu, &dt);
6517 put_smstate(u32, buf, 0x7f58, dt.address);
6518 put_smstate(u32, buf, 0x7f54, dt.size);
6519
6520 for (i = 0; i < 6; i++)
6521 enter_smm_save_seg_32(vcpu, buf, i);
6522
6523 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6524
6525 /* revision id */
6526 put_smstate(u32, buf, 0x7efc, 0x00020000);
6527 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6528 }
6529
6530 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6531 {
6532 #ifdef CONFIG_X86_64
6533 struct desc_ptr dt;
6534 struct kvm_segment seg;
6535 unsigned long val;
6536 int i;
6537
6538 for (i = 0; i < 16; i++)
6539 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6540
6541 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6542 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6543
6544 kvm_get_dr(vcpu, 6, &val);
6545 put_smstate(u64, buf, 0x7f68, val);
6546 kvm_get_dr(vcpu, 7, &val);
6547 put_smstate(u64, buf, 0x7f60, val);
6548
6549 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6550 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6551 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6552
6553 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6554
6555 /* revision id */
6556 put_smstate(u32, buf, 0x7efc, 0x00020064);
6557
6558 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6559
6560 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6561 put_smstate(u16, buf, 0x7e90, seg.selector);
6562 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6563 put_smstate(u32, buf, 0x7e94, seg.limit);
6564 put_smstate(u64, buf, 0x7e98, seg.base);
6565
6566 kvm_x86_ops->get_idt(vcpu, &dt);
6567 put_smstate(u32, buf, 0x7e84, dt.size);
6568 put_smstate(u64, buf, 0x7e88, dt.address);
6569
6570 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6571 put_smstate(u16, buf, 0x7e70, seg.selector);
6572 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6573 put_smstate(u32, buf, 0x7e74, seg.limit);
6574 put_smstate(u64, buf, 0x7e78, seg.base);
6575
6576 kvm_x86_ops->get_gdt(vcpu, &dt);
6577 put_smstate(u32, buf, 0x7e64, dt.size);
6578 put_smstate(u64, buf, 0x7e68, dt.address);
6579
6580 for (i = 0; i < 6; i++)
6581 enter_smm_save_seg_64(vcpu, buf, i);
6582 #else
6583 WARN_ON_ONCE(1);
6584 #endif
6585 }
6586
6587 static void enter_smm(struct kvm_vcpu *vcpu)
6588 {
6589 struct kvm_segment cs, ds;
6590 struct desc_ptr dt;
6591 char buf[512];
6592 u32 cr0;
6593
6594 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6595 vcpu->arch.hflags |= HF_SMM_MASK;
6596 memset(buf, 0, 512);
6597 if (guest_cpuid_has_longmode(vcpu))
6598 enter_smm_save_state_64(vcpu, buf);
6599 else
6600 enter_smm_save_state_32(vcpu, buf);
6601
6602 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6603
6604 if (kvm_x86_ops->get_nmi_mask(vcpu))
6605 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6606 else
6607 kvm_x86_ops->set_nmi_mask(vcpu, true);
6608
6609 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6610 kvm_rip_write(vcpu, 0x8000);
6611
6612 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6613 kvm_x86_ops->set_cr0(vcpu, cr0);
6614 vcpu->arch.cr0 = cr0;
6615
6616 kvm_x86_ops->set_cr4(vcpu, 0);
6617
6618 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6619 dt.address = dt.size = 0;
6620 kvm_x86_ops->set_idt(vcpu, &dt);
6621
6622 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6623
6624 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6625 cs.base = vcpu->arch.smbase;
6626
6627 ds.selector = 0;
6628 ds.base = 0;
6629
6630 cs.limit = ds.limit = 0xffffffff;
6631 cs.type = ds.type = 0x3;
6632 cs.dpl = ds.dpl = 0;
6633 cs.db = ds.db = 0;
6634 cs.s = ds.s = 1;
6635 cs.l = ds.l = 0;
6636 cs.g = ds.g = 1;
6637 cs.avl = ds.avl = 0;
6638 cs.present = ds.present = 1;
6639 cs.unusable = ds.unusable = 0;
6640 cs.padding = ds.padding = 0;
6641
6642 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6643 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6644 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6645 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6646 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6647 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6648
6649 if (guest_cpuid_has_longmode(vcpu))
6650 kvm_x86_ops->set_efer(vcpu, 0);
6651
6652 kvm_update_cpuid(vcpu);
6653 kvm_mmu_reset_context(vcpu);
6654 }
6655
6656 static void process_smi(struct kvm_vcpu *vcpu)
6657 {
6658 vcpu->arch.smi_pending = true;
6659 kvm_make_request(KVM_REQ_EVENT, vcpu);
6660 }
6661
6662 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6663 {
6664 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6665 }
6666
6667 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6668 {
6669 u64 eoi_exit_bitmap[4];
6670
6671 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6672 return;
6673
6674 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6675
6676 if (irqchip_split(vcpu->kvm))
6677 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6678 else {
6679 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6680 kvm_x86_ops->sync_pir_to_irr(vcpu);
6681 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6682 }
6683 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6684 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6685 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6686 }
6687
6688 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6689 {
6690 ++vcpu->stat.tlb_flush;
6691 kvm_x86_ops->tlb_flush(vcpu);
6692 }
6693
6694 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6695 {
6696 struct page *page = NULL;
6697
6698 if (!lapic_in_kernel(vcpu))
6699 return;
6700
6701 if (!kvm_x86_ops->set_apic_access_page_addr)
6702 return;
6703
6704 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6705 if (is_error_page(page))
6706 return;
6707 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6708
6709 /*
6710 * Do not pin apic access page in memory, the MMU notifier
6711 * will call us again if it is migrated or swapped out.
6712 */
6713 put_page(page);
6714 }
6715 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6716
6717 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6718 unsigned long address)
6719 {
6720 /*
6721 * The physical address of apic access page is stored in the VMCS.
6722 * Update it when it becomes invalid.
6723 */
6724 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6725 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6726 }
6727
6728 /*
6729 * Returns 1 to let vcpu_run() continue the guest execution loop without
6730 * exiting to the userspace. Otherwise, the value will be returned to the
6731 * userspace.
6732 */
6733 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6734 {
6735 int r;
6736 bool req_int_win =
6737 dm_request_for_irq_injection(vcpu) &&
6738 kvm_cpu_accept_dm_intr(vcpu);
6739
6740 bool req_immediate_exit = false;
6741
6742 if (kvm_request_pending(vcpu)) {
6743 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6744 kvm_mmu_unload(vcpu);
6745 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6746 __kvm_migrate_timers(vcpu);
6747 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6748 kvm_gen_update_masterclock(vcpu->kvm);
6749 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6750 kvm_gen_kvmclock_update(vcpu);
6751 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6752 r = kvm_guest_time_update(vcpu);
6753 if (unlikely(r))
6754 goto out;
6755 }
6756 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6757 kvm_mmu_sync_roots(vcpu);
6758 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6759 kvm_vcpu_flush_tlb(vcpu);
6760 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6761 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6762 r = 0;
6763 goto out;
6764 }
6765 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6766 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6767 r = 0;
6768 goto out;
6769 }
6770 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6771 /* Page is swapped out. Do synthetic halt */
6772 vcpu->arch.apf.halted = true;
6773 r = 1;
6774 goto out;
6775 }
6776 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6777 record_steal_time(vcpu);
6778 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6779 process_smi(vcpu);
6780 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6781 process_nmi(vcpu);
6782 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6783 kvm_pmu_handle_event(vcpu);
6784 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6785 kvm_pmu_deliver_pmi(vcpu);
6786 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6787 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6788 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6789 vcpu->arch.ioapic_handled_vectors)) {
6790 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6791 vcpu->run->eoi.vector =
6792 vcpu->arch.pending_ioapic_eoi;
6793 r = 0;
6794 goto out;
6795 }
6796 }
6797 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6798 vcpu_scan_ioapic(vcpu);
6799 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6800 kvm_vcpu_reload_apic_access_page(vcpu);
6801 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6802 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6803 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6804 r = 0;
6805 goto out;
6806 }
6807 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6808 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6809 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6810 r = 0;
6811 goto out;
6812 }
6813 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6814 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6815 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6816 r = 0;
6817 goto out;
6818 }
6819
6820 /*
6821 * KVM_REQ_HV_STIMER has to be processed after
6822 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6823 * depend on the guest clock being up-to-date
6824 */
6825 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6826 kvm_hv_process_stimers(vcpu);
6827 }
6828
6829 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6830 ++vcpu->stat.req_event;
6831 kvm_apic_accept_events(vcpu);
6832 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6833 r = 1;
6834 goto out;
6835 }
6836
6837 if (inject_pending_event(vcpu, req_int_win) != 0)
6838 req_immediate_exit = true;
6839 else {
6840 /* Enable NMI/IRQ window open exits if needed.
6841 *
6842 * SMIs have two cases: 1) they can be nested, and
6843 * then there is nothing to do here because RSM will
6844 * cause a vmexit anyway; 2) or the SMI can be pending
6845 * because inject_pending_event has completed the
6846 * injection of an IRQ or NMI from the previous vmexit,
6847 * and then we request an immediate exit to inject the SMI.
6848 */
6849 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6850 req_immediate_exit = true;
6851 if (vcpu->arch.nmi_pending)
6852 kvm_x86_ops->enable_nmi_window(vcpu);
6853 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6854 kvm_x86_ops->enable_irq_window(vcpu);
6855 }
6856
6857 if (kvm_lapic_enabled(vcpu)) {
6858 update_cr8_intercept(vcpu);
6859 kvm_lapic_sync_to_vapic(vcpu);
6860 }
6861 }
6862
6863 r = kvm_mmu_reload(vcpu);
6864 if (unlikely(r)) {
6865 goto cancel_injection;
6866 }
6867
6868 preempt_disable();
6869
6870 kvm_x86_ops->prepare_guest_switch(vcpu);
6871 kvm_load_guest_fpu(vcpu);
6872
6873 /*
6874 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6875 * IPI are then delayed after guest entry, which ensures that they
6876 * result in virtual interrupt delivery.
6877 */
6878 local_irq_disable();
6879 vcpu->mode = IN_GUEST_MODE;
6880
6881 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6882
6883 /*
6884 * 1) We should set ->mode before checking ->requests. Please see
6885 * the comment in kvm_vcpu_exiting_guest_mode().
6886 *
6887 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6888 * pairs with the memory barrier implicit in pi_test_and_set_on
6889 * (see vmx_deliver_posted_interrupt).
6890 *
6891 * 3) This also orders the write to mode from any reads to the page
6892 * tables done while the VCPU is running. Please see the comment
6893 * in kvm_flush_remote_tlbs.
6894 */
6895 smp_mb__after_srcu_read_unlock();
6896
6897 /*
6898 * This handles the case where a posted interrupt was
6899 * notified with kvm_vcpu_kick.
6900 */
6901 if (kvm_lapic_enabled(vcpu)) {
6902 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6903 kvm_x86_ops->sync_pir_to_irr(vcpu);
6904 }
6905
6906 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6907 || need_resched() || signal_pending(current)) {
6908 vcpu->mode = OUTSIDE_GUEST_MODE;
6909 smp_wmb();
6910 local_irq_enable();
6911 preempt_enable();
6912 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6913 r = 1;
6914 goto cancel_injection;
6915 }
6916
6917 kvm_load_guest_xcr0(vcpu);
6918
6919 if (req_immediate_exit) {
6920 kvm_make_request(KVM_REQ_EVENT, vcpu);
6921 smp_send_reschedule(vcpu->cpu);
6922 }
6923
6924 trace_kvm_entry(vcpu->vcpu_id);
6925 wait_lapic_expire(vcpu);
6926 guest_enter_irqoff();
6927
6928 if (unlikely(vcpu->arch.switch_db_regs)) {
6929 set_debugreg(0, 7);
6930 set_debugreg(vcpu->arch.eff_db[0], 0);
6931 set_debugreg(vcpu->arch.eff_db[1], 1);
6932 set_debugreg(vcpu->arch.eff_db[2], 2);
6933 set_debugreg(vcpu->arch.eff_db[3], 3);
6934 set_debugreg(vcpu->arch.dr6, 6);
6935 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6936 }
6937
6938 kvm_x86_ops->run(vcpu);
6939
6940 /*
6941 * Do this here before restoring debug registers on the host. And
6942 * since we do this before handling the vmexit, a DR access vmexit
6943 * can (a) read the correct value of the debug registers, (b) set
6944 * KVM_DEBUGREG_WONT_EXIT again.
6945 */
6946 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6947 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6948 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6949 kvm_update_dr0123(vcpu);
6950 kvm_update_dr6(vcpu);
6951 kvm_update_dr7(vcpu);
6952 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6953 }
6954
6955 /*
6956 * If the guest has used debug registers, at least dr7
6957 * will be disabled while returning to the host.
6958 * If we don't have active breakpoints in the host, we don't
6959 * care about the messed up debug address registers. But if
6960 * we have some of them active, restore the old state.
6961 */
6962 if (hw_breakpoint_active())
6963 hw_breakpoint_restore();
6964
6965 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6966
6967 vcpu->mode = OUTSIDE_GUEST_MODE;
6968 smp_wmb();
6969
6970 kvm_put_guest_xcr0(vcpu);
6971
6972 kvm_x86_ops->handle_external_intr(vcpu);
6973
6974 ++vcpu->stat.exits;
6975
6976 guest_exit_irqoff();
6977
6978 local_irq_enable();
6979 preempt_enable();
6980
6981 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6982
6983 /*
6984 * Profile KVM exit RIPs:
6985 */
6986 if (unlikely(prof_on == KVM_PROFILING)) {
6987 unsigned long rip = kvm_rip_read(vcpu);
6988 profile_hit(KVM_PROFILING, (void *)rip);
6989 }
6990
6991 if (unlikely(vcpu->arch.tsc_always_catchup))
6992 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6993
6994 if (vcpu->arch.apic_attention)
6995 kvm_lapic_sync_from_vapic(vcpu);
6996
6997 r = kvm_x86_ops->handle_exit(vcpu);
6998 return r;
6999
7000 cancel_injection:
7001 kvm_x86_ops->cancel_injection(vcpu);
7002 if (unlikely(vcpu->arch.apic_attention))
7003 kvm_lapic_sync_from_vapic(vcpu);
7004 out:
7005 return r;
7006 }
7007
7008 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7009 {
7010 if (!kvm_arch_vcpu_runnable(vcpu) &&
7011 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7012 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7013 kvm_vcpu_block(vcpu);
7014 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7015
7016 if (kvm_x86_ops->post_block)
7017 kvm_x86_ops->post_block(vcpu);
7018
7019 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7020 return 1;
7021 }
7022
7023 kvm_apic_accept_events(vcpu);
7024 switch(vcpu->arch.mp_state) {
7025 case KVM_MP_STATE_HALTED:
7026 vcpu->arch.pv.pv_unhalted = false;
7027 vcpu->arch.mp_state =
7028 KVM_MP_STATE_RUNNABLE;
7029 case KVM_MP_STATE_RUNNABLE:
7030 vcpu->arch.apf.halted = false;
7031 break;
7032 case KVM_MP_STATE_INIT_RECEIVED:
7033 break;
7034 default:
7035 return -EINTR;
7036 break;
7037 }
7038 return 1;
7039 }
7040
7041 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7042 {
7043 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7044 kvm_x86_ops->check_nested_events(vcpu, false);
7045
7046 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7047 !vcpu->arch.apf.halted);
7048 }
7049
7050 static int vcpu_run(struct kvm_vcpu *vcpu)
7051 {
7052 int r;
7053 struct kvm *kvm = vcpu->kvm;
7054
7055 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7056
7057 for (;;) {
7058 if (kvm_vcpu_running(vcpu)) {
7059 r = vcpu_enter_guest(vcpu);
7060 } else {
7061 r = vcpu_block(kvm, vcpu);
7062 }
7063
7064 if (r <= 0)
7065 break;
7066
7067 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7068 if (kvm_cpu_has_pending_timer(vcpu))
7069 kvm_inject_pending_timer_irqs(vcpu);
7070
7071 if (dm_request_for_irq_injection(vcpu) &&
7072 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7073 r = 0;
7074 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7075 ++vcpu->stat.request_irq_exits;
7076 break;
7077 }
7078
7079 kvm_check_async_pf_completion(vcpu);
7080
7081 if (signal_pending(current)) {
7082 r = -EINTR;
7083 vcpu->run->exit_reason = KVM_EXIT_INTR;
7084 ++vcpu->stat.signal_exits;
7085 break;
7086 }
7087 if (need_resched()) {
7088 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7089 cond_resched();
7090 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7091 }
7092 }
7093
7094 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7095
7096 return r;
7097 }
7098
7099 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7100 {
7101 int r;
7102 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7103 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7104 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7105 if (r != EMULATE_DONE)
7106 return 0;
7107 return 1;
7108 }
7109
7110 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7111 {
7112 BUG_ON(!vcpu->arch.pio.count);
7113
7114 return complete_emulated_io(vcpu);
7115 }
7116
7117 /*
7118 * Implements the following, as a state machine:
7119 *
7120 * read:
7121 * for each fragment
7122 * for each mmio piece in the fragment
7123 * write gpa, len
7124 * exit
7125 * copy data
7126 * execute insn
7127 *
7128 * write:
7129 * for each fragment
7130 * for each mmio piece in the fragment
7131 * write gpa, len
7132 * copy data
7133 * exit
7134 */
7135 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7136 {
7137 struct kvm_run *run = vcpu->run;
7138 struct kvm_mmio_fragment *frag;
7139 unsigned len;
7140
7141 BUG_ON(!vcpu->mmio_needed);
7142
7143 /* Complete previous fragment */
7144 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7145 len = min(8u, frag->len);
7146 if (!vcpu->mmio_is_write)
7147 memcpy(frag->data, run->mmio.data, len);
7148
7149 if (frag->len <= 8) {
7150 /* Switch to the next fragment. */
7151 frag++;
7152 vcpu->mmio_cur_fragment++;
7153 } else {
7154 /* Go forward to the next mmio piece. */
7155 frag->data += len;
7156 frag->gpa += len;
7157 frag->len -= len;
7158 }
7159
7160 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7161 vcpu->mmio_needed = 0;
7162
7163 /* FIXME: return into emulator if single-stepping. */
7164 if (vcpu->mmio_is_write)
7165 return 1;
7166 vcpu->mmio_read_completed = 1;
7167 return complete_emulated_io(vcpu);
7168 }
7169
7170 run->exit_reason = KVM_EXIT_MMIO;
7171 run->mmio.phys_addr = frag->gpa;
7172 if (vcpu->mmio_is_write)
7173 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7174 run->mmio.len = min(8u, frag->len);
7175 run->mmio.is_write = vcpu->mmio_is_write;
7176 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7177 return 0;
7178 }
7179
7180
7181 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7182 {
7183 struct fpu *fpu = &current->thread.fpu;
7184 int r;
7185 sigset_t sigsaved;
7186
7187 fpu__activate_curr(fpu);
7188
7189 if (vcpu->sigset_active)
7190 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7191
7192 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7193 kvm_vcpu_block(vcpu);
7194 kvm_apic_accept_events(vcpu);
7195 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7196 r = -EAGAIN;
7197 goto out;
7198 }
7199
7200 /* re-sync apic's tpr */
7201 if (!lapic_in_kernel(vcpu)) {
7202 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7203 r = -EINVAL;
7204 goto out;
7205 }
7206 }
7207
7208 if (unlikely(vcpu->arch.complete_userspace_io)) {
7209 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7210 vcpu->arch.complete_userspace_io = NULL;
7211 r = cui(vcpu);
7212 if (r <= 0)
7213 goto out;
7214 } else
7215 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7216
7217 if (kvm_run->immediate_exit)
7218 r = -EINTR;
7219 else
7220 r = vcpu_run(vcpu);
7221
7222 out:
7223 post_kvm_run_save(vcpu);
7224 if (vcpu->sigset_active)
7225 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7226
7227 return r;
7228 }
7229
7230 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7231 {
7232 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7233 /*
7234 * We are here if userspace calls get_regs() in the middle of
7235 * instruction emulation. Registers state needs to be copied
7236 * back from emulation context to vcpu. Userspace shouldn't do
7237 * that usually, but some bad designed PV devices (vmware
7238 * backdoor interface) need this to work
7239 */
7240 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7241 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7242 }
7243 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7244 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7245 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7246 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7247 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7248 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7249 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7250 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7251 #ifdef CONFIG_X86_64
7252 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7253 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7254 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7255 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7256 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7257 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7258 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7259 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7260 #endif
7261
7262 regs->rip = kvm_rip_read(vcpu);
7263 regs->rflags = kvm_get_rflags(vcpu);
7264
7265 return 0;
7266 }
7267
7268 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7269 {
7270 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7271 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7272
7273 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7274 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7275 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7276 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7277 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7278 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7279 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7280 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7281 #ifdef CONFIG_X86_64
7282 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7283 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7284 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7285 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7286 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7287 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7288 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7289 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7290 #endif
7291
7292 kvm_rip_write(vcpu, regs->rip);
7293 kvm_set_rflags(vcpu, regs->rflags);
7294
7295 vcpu->arch.exception.pending = false;
7296
7297 kvm_make_request(KVM_REQ_EVENT, vcpu);
7298
7299 return 0;
7300 }
7301
7302 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7303 {
7304 struct kvm_segment cs;
7305
7306 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7307 *db = cs.db;
7308 *l = cs.l;
7309 }
7310 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7311
7312 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7313 struct kvm_sregs *sregs)
7314 {
7315 struct desc_ptr dt;
7316
7317 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7318 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7319 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7320 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7321 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7322 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7323
7324 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7325 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7326
7327 kvm_x86_ops->get_idt(vcpu, &dt);
7328 sregs->idt.limit = dt.size;
7329 sregs->idt.base = dt.address;
7330 kvm_x86_ops->get_gdt(vcpu, &dt);
7331 sregs->gdt.limit = dt.size;
7332 sregs->gdt.base = dt.address;
7333
7334 sregs->cr0 = kvm_read_cr0(vcpu);
7335 sregs->cr2 = vcpu->arch.cr2;
7336 sregs->cr3 = kvm_read_cr3(vcpu);
7337 sregs->cr4 = kvm_read_cr4(vcpu);
7338 sregs->cr8 = kvm_get_cr8(vcpu);
7339 sregs->efer = vcpu->arch.efer;
7340 sregs->apic_base = kvm_get_apic_base(vcpu);
7341
7342 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7343
7344 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7345 set_bit(vcpu->arch.interrupt.nr,
7346 (unsigned long *)sregs->interrupt_bitmap);
7347
7348 return 0;
7349 }
7350
7351 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7352 struct kvm_mp_state *mp_state)
7353 {
7354 kvm_apic_accept_events(vcpu);
7355 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7356 vcpu->arch.pv.pv_unhalted)
7357 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7358 else
7359 mp_state->mp_state = vcpu->arch.mp_state;
7360
7361 return 0;
7362 }
7363
7364 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7365 struct kvm_mp_state *mp_state)
7366 {
7367 if (!lapic_in_kernel(vcpu) &&
7368 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7369 return -EINVAL;
7370
7371 /* INITs are latched while in SMM */
7372 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7373 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7374 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7375 return -EINVAL;
7376
7377 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7378 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7379 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7380 } else
7381 vcpu->arch.mp_state = mp_state->mp_state;
7382 kvm_make_request(KVM_REQ_EVENT, vcpu);
7383 return 0;
7384 }
7385
7386 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7387 int reason, bool has_error_code, u32 error_code)
7388 {
7389 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7390 int ret;
7391
7392 init_emulate_ctxt(vcpu);
7393
7394 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7395 has_error_code, error_code);
7396
7397 if (ret)
7398 return EMULATE_FAIL;
7399
7400 kvm_rip_write(vcpu, ctxt->eip);
7401 kvm_set_rflags(vcpu, ctxt->eflags);
7402 kvm_make_request(KVM_REQ_EVENT, vcpu);
7403 return EMULATE_DONE;
7404 }
7405 EXPORT_SYMBOL_GPL(kvm_task_switch);
7406
7407 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7408 struct kvm_sregs *sregs)
7409 {
7410 struct msr_data apic_base_msr;
7411 int mmu_reset_needed = 0;
7412 int pending_vec, max_bits, idx;
7413 struct desc_ptr dt;
7414
7415 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7416 return -EINVAL;
7417
7418 dt.size = sregs->idt.limit;
7419 dt.address = sregs->idt.base;
7420 kvm_x86_ops->set_idt(vcpu, &dt);
7421 dt.size = sregs->gdt.limit;
7422 dt.address = sregs->gdt.base;
7423 kvm_x86_ops->set_gdt(vcpu, &dt);
7424
7425 vcpu->arch.cr2 = sregs->cr2;
7426 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7427 vcpu->arch.cr3 = sregs->cr3;
7428 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7429
7430 kvm_set_cr8(vcpu, sregs->cr8);
7431
7432 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7433 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7434 apic_base_msr.data = sregs->apic_base;
7435 apic_base_msr.host_initiated = true;
7436 kvm_set_apic_base(vcpu, &apic_base_msr);
7437
7438 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7439 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7440 vcpu->arch.cr0 = sregs->cr0;
7441
7442 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7443 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7444 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7445 kvm_update_cpuid(vcpu);
7446
7447 idx = srcu_read_lock(&vcpu->kvm->srcu);
7448 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7449 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7450 mmu_reset_needed = 1;
7451 }
7452 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7453
7454 if (mmu_reset_needed)
7455 kvm_mmu_reset_context(vcpu);
7456
7457 max_bits = KVM_NR_INTERRUPTS;
7458 pending_vec = find_first_bit(
7459 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7460 if (pending_vec < max_bits) {
7461 kvm_queue_interrupt(vcpu, pending_vec, false);
7462 pr_debug("Set back pending irq %d\n", pending_vec);
7463 }
7464
7465 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7466 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7467 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7468 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7469 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7470 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7471
7472 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7473 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7474
7475 update_cr8_intercept(vcpu);
7476
7477 /* Older userspace won't unhalt the vcpu on reset. */
7478 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7479 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7480 !is_protmode(vcpu))
7481 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7482
7483 kvm_make_request(KVM_REQ_EVENT, vcpu);
7484
7485 return 0;
7486 }
7487
7488 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7489 struct kvm_guest_debug *dbg)
7490 {
7491 unsigned long rflags;
7492 int i, r;
7493
7494 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7495 r = -EBUSY;
7496 if (vcpu->arch.exception.pending)
7497 goto out;
7498 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7499 kvm_queue_exception(vcpu, DB_VECTOR);
7500 else
7501 kvm_queue_exception(vcpu, BP_VECTOR);
7502 }
7503
7504 /*
7505 * Read rflags as long as potentially injected trace flags are still
7506 * filtered out.
7507 */
7508 rflags = kvm_get_rflags(vcpu);
7509
7510 vcpu->guest_debug = dbg->control;
7511 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7512 vcpu->guest_debug = 0;
7513
7514 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7515 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7516 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7517 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7518 } else {
7519 for (i = 0; i < KVM_NR_DB_REGS; i++)
7520 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7521 }
7522 kvm_update_dr7(vcpu);
7523
7524 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7525 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7526 get_segment_base(vcpu, VCPU_SREG_CS);
7527
7528 /*
7529 * Trigger an rflags update that will inject or remove the trace
7530 * flags.
7531 */
7532 kvm_set_rflags(vcpu, rflags);
7533
7534 kvm_x86_ops->update_bp_intercept(vcpu);
7535
7536 r = 0;
7537
7538 out:
7539
7540 return r;
7541 }
7542
7543 /*
7544 * Translate a guest virtual address to a guest physical address.
7545 */
7546 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7547 struct kvm_translation *tr)
7548 {
7549 unsigned long vaddr = tr->linear_address;
7550 gpa_t gpa;
7551 int idx;
7552
7553 idx = srcu_read_lock(&vcpu->kvm->srcu);
7554 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7555 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7556 tr->physical_address = gpa;
7557 tr->valid = gpa != UNMAPPED_GVA;
7558 tr->writeable = 1;
7559 tr->usermode = 0;
7560
7561 return 0;
7562 }
7563
7564 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7565 {
7566 struct fxregs_state *fxsave =
7567 &vcpu->arch.guest_fpu.state.fxsave;
7568
7569 memcpy(fpu->fpr, fxsave->st_space, 128);
7570 fpu->fcw = fxsave->cwd;
7571 fpu->fsw = fxsave->swd;
7572 fpu->ftwx = fxsave->twd;
7573 fpu->last_opcode = fxsave->fop;
7574 fpu->last_ip = fxsave->rip;
7575 fpu->last_dp = fxsave->rdp;
7576 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7577
7578 return 0;
7579 }
7580
7581 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7582 {
7583 struct fxregs_state *fxsave =
7584 &vcpu->arch.guest_fpu.state.fxsave;
7585
7586 memcpy(fxsave->st_space, fpu->fpr, 128);
7587 fxsave->cwd = fpu->fcw;
7588 fxsave->swd = fpu->fsw;
7589 fxsave->twd = fpu->ftwx;
7590 fxsave->fop = fpu->last_opcode;
7591 fxsave->rip = fpu->last_ip;
7592 fxsave->rdp = fpu->last_dp;
7593 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7594
7595 return 0;
7596 }
7597
7598 static void fx_init(struct kvm_vcpu *vcpu)
7599 {
7600 fpstate_init(&vcpu->arch.guest_fpu.state);
7601 if (boot_cpu_has(X86_FEATURE_XSAVES))
7602 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7603 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7604
7605 /*
7606 * Ensure guest xcr0 is valid for loading
7607 */
7608 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7609
7610 vcpu->arch.cr0 |= X86_CR0_ET;
7611 }
7612
7613 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7614 {
7615 if (vcpu->guest_fpu_loaded)
7616 return;
7617
7618 /*
7619 * Restore all possible states in the guest,
7620 * and assume host would use all available bits.
7621 * Guest xcr0 would be loaded later.
7622 */
7623 vcpu->guest_fpu_loaded = 1;
7624 __kernel_fpu_begin();
7625 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7626 trace_kvm_fpu(1);
7627 }
7628
7629 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7630 {
7631 if (!vcpu->guest_fpu_loaded)
7632 return;
7633
7634 vcpu->guest_fpu_loaded = 0;
7635 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7636 __kernel_fpu_end();
7637 ++vcpu->stat.fpu_reload;
7638 trace_kvm_fpu(0);
7639 }
7640
7641 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7642 {
7643 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7644
7645 kvmclock_reset(vcpu);
7646
7647 kvm_x86_ops->vcpu_free(vcpu);
7648 free_cpumask_var(wbinvd_dirty_mask);
7649 }
7650
7651 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7652 unsigned int id)
7653 {
7654 struct kvm_vcpu *vcpu;
7655
7656 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7657 printk_once(KERN_WARNING
7658 "kvm: SMP vm created on host with unstable TSC; "
7659 "guest TSC will not be reliable\n");
7660
7661 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7662
7663 return vcpu;
7664 }
7665
7666 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7667 {
7668 int r;
7669
7670 kvm_vcpu_mtrr_init(vcpu);
7671 r = vcpu_load(vcpu);
7672 if (r)
7673 return r;
7674 kvm_vcpu_reset(vcpu, false);
7675 kvm_mmu_setup(vcpu);
7676 vcpu_put(vcpu);
7677 return r;
7678 }
7679
7680 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7681 {
7682 struct msr_data msr;
7683 struct kvm *kvm = vcpu->kvm;
7684
7685 if (vcpu_load(vcpu))
7686 return;
7687 msr.data = 0x0;
7688 msr.index = MSR_IA32_TSC;
7689 msr.host_initiated = true;
7690 kvm_write_tsc(vcpu, &msr);
7691 vcpu_put(vcpu);
7692
7693 if (!kvmclock_periodic_sync)
7694 return;
7695
7696 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7697 KVMCLOCK_SYNC_PERIOD);
7698 }
7699
7700 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7701 {
7702 int r;
7703 vcpu->arch.apf.msr_val = 0;
7704
7705 r = vcpu_load(vcpu);
7706 BUG_ON(r);
7707 kvm_mmu_unload(vcpu);
7708 vcpu_put(vcpu);
7709
7710 kvm_x86_ops->vcpu_free(vcpu);
7711 }
7712
7713 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7714 {
7715 vcpu->arch.hflags = 0;
7716
7717 vcpu->arch.smi_pending = 0;
7718 atomic_set(&vcpu->arch.nmi_queued, 0);
7719 vcpu->arch.nmi_pending = 0;
7720 vcpu->arch.nmi_injected = false;
7721 kvm_clear_interrupt_queue(vcpu);
7722 kvm_clear_exception_queue(vcpu);
7723
7724 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7725 kvm_update_dr0123(vcpu);
7726 vcpu->arch.dr6 = DR6_INIT;
7727 kvm_update_dr6(vcpu);
7728 vcpu->arch.dr7 = DR7_FIXED_1;
7729 kvm_update_dr7(vcpu);
7730
7731 vcpu->arch.cr2 = 0;
7732
7733 kvm_make_request(KVM_REQ_EVENT, vcpu);
7734 vcpu->arch.apf.msr_val = 0;
7735 vcpu->arch.st.msr_val = 0;
7736
7737 kvmclock_reset(vcpu);
7738
7739 kvm_clear_async_pf_completion_queue(vcpu);
7740 kvm_async_pf_hash_reset(vcpu);
7741 vcpu->arch.apf.halted = false;
7742
7743 if (!init_event) {
7744 kvm_pmu_reset(vcpu);
7745 vcpu->arch.smbase = 0x30000;
7746
7747 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7748 vcpu->arch.msr_misc_features_enables = 0;
7749 }
7750
7751 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7752 vcpu->arch.regs_avail = ~0;
7753 vcpu->arch.regs_dirty = ~0;
7754
7755 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7756 }
7757
7758 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7759 {
7760 struct kvm_segment cs;
7761
7762 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7763 cs.selector = vector << 8;
7764 cs.base = vector << 12;
7765 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7766 kvm_rip_write(vcpu, 0);
7767 }
7768
7769 int kvm_arch_hardware_enable(void)
7770 {
7771 struct kvm *kvm;
7772 struct kvm_vcpu *vcpu;
7773 int i;
7774 int ret;
7775 u64 local_tsc;
7776 u64 max_tsc = 0;
7777 bool stable, backwards_tsc = false;
7778
7779 kvm_shared_msr_cpu_online();
7780 ret = kvm_x86_ops->hardware_enable();
7781 if (ret != 0)
7782 return ret;
7783
7784 local_tsc = rdtsc();
7785 stable = !check_tsc_unstable();
7786 list_for_each_entry(kvm, &vm_list, vm_list) {
7787 kvm_for_each_vcpu(i, vcpu, kvm) {
7788 if (!stable && vcpu->cpu == smp_processor_id())
7789 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7790 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7791 backwards_tsc = true;
7792 if (vcpu->arch.last_host_tsc > max_tsc)
7793 max_tsc = vcpu->arch.last_host_tsc;
7794 }
7795 }
7796 }
7797
7798 /*
7799 * Sometimes, even reliable TSCs go backwards. This happens on
7800 * platforms that reset TSC during suspend or hibernate actions, but
7801 * maintain synchronization. We must compensate. Fortunately, we can
7802 * detect that condition here, which happens early in CPU bringup,
7803 * before any KVM threads can be running. Unfortunately, we can't
7804 * bring the TSCs fully up to date with real time, as we aren't yet far
7805 * enough into CPU bringup that we know how much real time has actually
7806 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7807 * variables that haven't been updated yet.
7808 *
7809 * So we simply find the maximum observed TSC above, then record the
7810 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7811 * the adjustment will be applied. Note that we accumulate
7812 * adjustments, in case multiple suspend cycles happen before some VCPU
7813 * gets a chance to run again. In the event that no KVM threads get a
7814 * chance to run, we will miss the entire elapsed period, as we'll have
7815 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7816 * loose cycle time. This isn't too big a deal, since the loss will be
7817 * uniform across all VCPUs (not to mention the scenario is extremely
7818 * unlikely). It is possible that a second hibernate recovery happens
7819 * much faster than a first, causing the observed TSC here to be
7820 * smaller; this would require additional padding adjustment, which is
7821 * why we set last_host_tsc to the local tsc observed here.
7822 *
7823 * N.B. - this code below runs only on platforms with reliable TSC,
7824 * as that is the only way backwards_tsc is set above. Also note
7825 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7826 * have the same delta_cyc adjustment applied if backwards_tsc
7827 * is detected. Note further, this adjustment is only done once,
7828 * as we reset last_host_tsc on all VCPUs to stop this from being
7829 * called multiple times (one for each physical CPU bringup).
7830 *
7831 * Platforms with unreliable TSCs don't have to deal with this, they
7832 * will be compensated by the logic in vcpu_load, which sets the TSC to
7833 * catchup mode. This will catchup all VCPUs to real time, but cannot
7834 * guarantee that they stay in perfect synchronization.
7835 */
7836 if (backwards_tsc) {
7837 u64 delta_cyc = max_tsc - local_tsc;
7838 backwards_tsc_observed = true;
7839 list_for_each_entry(kvm, &vm_list, vm_list) {
7840 kvm_for_each_vcpu(i, vcpu, kvm) {
7841 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7842 vcpu->arch.last_host_tsc = local_tsc;
7843 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7844 }
7845
7846 /*
7847 * We have to disable TSC offset matching.. if you were
7848 * booting a VM while issuing an S4 host suspend....
7849 * you may have some problem. Solving this issue is
7850 * left as an exercise to the reader.
7851 */
7852 kvm->arch.last_tsc_nsec = 0;
7853 kvm->arch.last_tsc_write = 0;
7854 }
7855
7856 }
7857 return 0;
7858 }
7859
7860 void kvm_arch_hardware_disable(void)
7861 {
7862 kvm_x86_ops->hardware_disable();
7863 drop_user_return_notifiers();
7864 }
7865
7866 int kvm_arch_hardware_setup(void)
7867 {
7868 int r;
7869
7870 r = kvm_x86_ops->hardware_setup();
7871 if (r != 0)
7872 return r;
7873
7874 if (kvm_has_tsc_control) {
7875 /*
7876 * Make sure the user can only configure tsc_khz values that
7877 * fit into a signed integer.
7878 * A min value is not calculated needed because it will always
7879 * be 1 on all machines.
7880 */
7881 u64 max = min(0x7fffffffULL,
7882 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7883 kvm_max_guest_tsc_khz = max;
7884
7885 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7886 }
7887
7888 kvm_init_msr_list();
7889 return 0;
7890 }
7891
7892 void kvm_arch_hardware_unsetup(void)
7893 {
7894 kvm_x86_ops->hardware_unsetup();
7895 }
7896
7897 void kvm_arch_check_processor_compat(void *rtn)
7898 {
7899 kvm_x86_ops->check_processor_compatibility(rtn);
7900 }
7901
7902 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7903 {
7904 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7905 }
7906 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7907
7908 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7909 {
7910 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7911 }
7912
7913 struct static_key kvm_no_apic_vcpu __read_mostly;
7914 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7915
7916 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7917 {
7918 struct page *page;
7919 struct kvm *kvm;
7920 int r;
7921
7922 BUG_ON(vcpu->kvm == NULL);
7923 kvm = vcpu->kvm;
7924
7925 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7926 vcpu->arch.pv.pv_unhalted = false;
7927 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7928 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7929 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7930 else
7931 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7932
7933 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7934 if (!page) {
7935 r = -ENOMEM;
7936 goto fail;
7937 }
7938 vcpu->arch.pio_data = page_address(page);
7939
7940 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7941
7942 r = kvm_mmu_create(vcpu);
7943 if (r < 0)
7944 goto fail_free_pio_data;
7945
7946 if (irqchip_in_kernel(kvm)) {
7947 r = kvm_create_lapic(vcpu);
7948 if (r < 0)
7949 goto fail_mmu_destroy;
7950 } else
7951 static_key_slow_inc(&kvm_no_apic_vcpu);
7952
7953 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7954 GFP_KERNEL);
7955 if (!vcpu->arch.mce_banks) {
7956 r = -ENOMEM;
7957 goto fail_free_lapic;
7958 }
7959 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7960
7961 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7962 r = -ENOMEM;
7963 goto fail_free_mce_banks;
7964 }
7965
7966 fx_init(vcpu);
7967
7968 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7969 vcpu->arch.pv_time_enabled = false;
7970
7971 vcpu->arch.guest_supported_xcr0 = 0;
7972 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7973
7974 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7975
7976 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7977
7978 kvm_async_pf_hash_reset(vcpu);
7979 kvm_pmu_init(vcpu);
7980
7981 vcpu->arch.pending_external_vector = -1;
7982
7983 kvm_hv_vcpu_init(vcpu);
7984
7985 return 0;
7986
7987 fail_free_mce_banks:
7988 kfree(vcpu->arch.mce_banks);
7989 fail_free_lapic:
7990 kvm_free_lapic(vcpu);
7991 fail_mmu_destroy:
7992 kvm_mmu_destroy(vcpu);
7993 fail_free_pio_data:
7994 free_page((unsigned long)vcpu->arch.pio_data);
7995 fail:
7996 return r;
7997 }
7998
7999 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8000 {
8001 int idx;
8002
8003 kvm_hv_vcpu_uninit(vcpu);
8004 kvm_pmu_destroy(vcpu);
8005 kfree(vcpu->arch.mce_banks);
8006 kvm_free_lapic(vcpu);
8007 idx = srcu_read_lock(&vcpu->kvm->srcu);
8008 kvm_mmu_destroy(vcpu);
8009 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8010 free_page((unsigned long)vcpu->arch.pio_data);
8011 if (!lapic_in_kernel(vcpu))
8012 static_key_slow_dec(&kvm_no_apic_vcpu);
8013 }
8014
8015 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8016 {
8017 kvm_x86_ops->sched_in(vcpu, cpu);
8018 }
8019
8020 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8021 {
8022 if (type)
8023 return -EINVAL;
8024
8025 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8026 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8027 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8028 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8029 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8030
8031 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8032 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8033 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8034 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8035 &kvm->arch.irq_sources_bitmap);
8036
8037 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8038 mutex_init(&kvm->arch.apic_map_lock);
8039 mutex_init(&kvm->arch.hyperv.hv_lock);
8040 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8041
8042 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8043 pvclock_update_vm_gtod_copy(kvm);
8044
8045 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8046 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8047
8048 kvm_page_track_init(kvm);
8049 kvm_mmu_init_vm(kvm);
8050
8051 if (kvm_x86_ops->vm_init)
8052 return kvm_x86_ops->vm_init(kvm);
8053
8054 return 0;
8055 }
8056
8057 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8058 {
8059 int r;
8060 r = vcpu_load(vcpu);
8061 BUG_ON(r);
8062 kvm_mmu_unload(vcpu);
8063 vcpu_put(vcpu);
8064 }
8065
8066 static void kvm_free_vcpus(struct kvm *kvm)
8067 {
8068 unsigned int i;
8069 struct kvm_vcpu *vcpu;
8070
8071 /*
8072 * Unpin any mmu pages first.
8073 */
8074 kvm_for_each_vcpu(i, vcpu, kvm) {
8075 kvm_clear_async_pf_completion_queue(vcpu);
8076 kvm_unload_vcpu_mmu(vcpu);
8077 }
8078 kvm_for_each_vcpu(i, vcpu, kvm)
8079 kvm_arch_vcpu_free(vcpu);
8080
8081 mutex_lock(&kvm->lock);
8082 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8083 kvm->vcpus[i] = NULL;
8084
8085 atomic_set(&kvm->online_vcpus, 0);
8086 mutex_unlock(&kvm->lock);
8087 }
8088
8089 void kvm_arch_sync_events(struct kvm *kvm)
8090 {
8091 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8092 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8093 kvm_free_pit(kvm);
8094 }
8095
8096 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8097 {
8098 int i, r;
8099 unsigned long hva;
8100 struct kvm_memslots *slots = kvm_memslots(kvm);
8101 struct kvm_memory_slot *slot, old;
8102
8103 /* Called with kvm->slots_lock held. */
8104 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8105 return -EINVAL;
8106
8107 slot = id_to_memslot(slots, id);
8108 if (size) {
8109 if (slot->npages)
8110 return -EEXIST;
8111
8112 /*
8113 * MAP_SHARED to prevent internal slot pages from being moved
8114 * by fork()/COW.
8115 */
8116 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8117 MAP_SHARED | MAP_ANONYMOUS, 0);
8118 if (IS_ERR((void *)hva))
8119 return PTR_ERR((void *)hva);
8120 } else {
8121 if (!slot->npages)
8122 return 0;
8123
8124 hva = 0;
8125 }
8126
8127 old = *slot;
8128 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8129 struct kvm_userspace_memory_region m;
8130
8131 m.slot = id | (i << 16);
8132 m.flags = 0;
8133 m.guest_phys_addr = gpa;
8134 m.userspace_addr = hva;
8135 m.memory_size = size;
8136 r = __kvm_set_memory_region(kvm, &m);
8137 if (r < 0)
8138 return r;
8139 }
8140
8141 if (!size) {
8142 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8143 WARN_ON(r < 0);
8144 }
8145
8146 return 0;
8147 }
8148 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8149
8150 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8151 {
8152 int r;
8153
8154 mutex_lock(&kvm->slots_lock);
8155 r = __x86_set_memory_region(kvm, id, gpa, size);
8156 mutex_unlock(&kvm->slots_lock);
8157
8158 return r;
8159 }
8160 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8161
8162 void kvm_arch_destroy_vm(struct kvm *kvm)
8163 {
8164 if (current->mm == kvm->mm) {
8165 /*
8166 * Free memory regions allocated on behalf of userspace,
8167 * unless the the memory map has changed due to process exit
8168 * or fd copying.
8169 */
8170 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8171 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8172 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8173 }
8174 if (kvm_x86_ops->vm_destroy)
8175 kvm_x86_ops->vm_destroy(kvm);
8176 kvm_pic_destroy(kvm);
8177 kvm_ioapic_destroy(kvm);
8178 kvm_free_vcpus(kvm);
8179 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8180 kvm_mmu_uninit_vm(kvm);
8181 kvm_page_track_cleanup(kvm);
8182 }
8183
8184 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8185 struct kvm_memory_slot *dont)
8186 {
8187 int i;
8188
8189 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8190 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8191 kvfree(free->arch.rmap[i]);
8192 free->arch.rmap[i] = NULL;
8193 }
8194 if (i == 0)
8195 continue;
8196
8197 if (!dont || free->arch.lpage_info[i - 1] !=
8198 dont->arch.lpage_info[i - 1]) {
8199 kvfree(free->arch.lpage_info[i - 1]);
8200 free->arch.lpage_info[i - 1] = NULL;
8201 }
8202 }
8203
8204 kvm_page_track_free_memslot(free, dont);
8205 }
8206
8207 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8208 unsigned long npages)
8209 {
8210 int i;
8211
8212 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8213 struct kvm_lpage_info *linfo;
8214 unsigned long ugfn;
8215 int lpages;
8216 int level = i + 1;
8217
8218 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8219 slot->base_gfn, level) + 1;
8220
8221 slot->arch.rmap[i] =
8222 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8223 if (!slot->arch.rmap[i])
8224 goto out_free;
8225 if (i == 0)
8226 continue;
8227
8228 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8229 if (!linfo)
8230 goto out_free;
8231
8232 slot->arch.lpage_info[i - 1] = linfo;
8233
8234 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8235 linfo[0].disallow_lpage = 1;
8236 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8237 linfo[lpages - 1].disallow_lpage = 1;
8238 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8239 /*
8240 * If the gfn and userspace address are not aligned wrt each
8241 * other, or if explicitly asked to, disable large page
8242 * support for this slot
8243 */
8244 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8245 !kvm_largepages_enabled()) {
8246 unsigned long j;
8247
8248 for (j = 0; j < lpages; ++j)
8249 linfo[j].disallow_lpage = 1;
8250 }
8251 }
8252
8253 if (kvm_page_track_create_memslot(slot, npages))
8254 goto out_free;
8255
8256 return 0;
8257
8258 out_free:
8259 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8260 kvfree(slot->arch.rmap[i]);
8261 slot->arch.rmap[i] = NULL;
8262 if (i == 0)
8263 continue;
8264
8265 kvfree(slot->arch.lpage_info[i - 1]);
8266 slot->arch.lpage_info[i - 1] = NULL;
8267 }
8268 return -ENOMEM;
8269 }
8270
8271 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8272 {
8273 /*
8274 * memslots->generation has been incremented.
8275 * mmio generation may have reached its maximum value.
8276 */
8277 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8278 }
8279
8280 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8281 struct kvm_memory_slot *memslot,
8282 const struct kvm_userspace_memory_region *mem,
8283 enum kvm_mr_change change)
8284 {
8285 return 0;
8286 }
8287
8288 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8289 struct kvm_memory_slot *new)
8290 {
8291 /* Still write protect RO slot */
8292 if (new->flags & KVM_MEM_READONLY) {
8293 kvm_mmu_slot_remove_write_access(kvm, new);
8294 return;
8295 }
8296
8297 /*
8298 * Call kvm_x86_ops dirty logging hooks when they are valid.
8299 *
8300 * kvm_x86_ops->slot_disable_log_dirty is called when:
8301 *
8302 * - KVM_MR_CREATE with dirty logging is disabled
8303 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8304 *
8305 * The reason is, in case of PML, we need to set D-bit for any slots
8306 * with dirty logging disabled in order to eliminate unnecessary GPA
8307 * logging in PML buffer (and potential PML buffer full VMEXT). This
8308 * guarantees leaving PML enabled during guest's lifetime won't have
8309 * any additonal overhead from PML when guest is running with dirty
8310 * logging disabled for memory slots.
8311 *
8312 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8313 * to dirty logging mode.
8314 *
8315 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8316 *
8317 * In case of write protect:
8318 *
8319 * Write protect all pages for dirty logging.
8320 *
8321 * All the sptes including the large sptes which point to this
8322 * slot are set to readonly. We can not create any new large
8323 * spte on this slot until the end of the logging.
8324 *
8325 * See the comments in fast_page_fault().
8326 */
8327 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8328 if (kvm_x86_ops->slot_enable_log_dirty)
8329 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8330 else
8331 kvm_mmu_slot_remove_write_access(kvm, new);
8332 } else {
8333 if (kvm_x86_ops->slot_disable_log_dirty)
8334 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8335 }
8336 }
8337
8338 void kvm_arch_commit_memory_region(struct kvm *kvm,
8339 const struct kvm_userspace_memory_region *mem,
8340 const struct kvm_memory_slot *old,
8341 const struct kvm_memory_slot *new,
8342 enum kvm_mr_change change)
8343 {
8344 int nr_mmu_pages = 0;
8345
8346 if (!kvm->arch.n_requested_mmu_pages)
8347 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8348
8349 if (nr_mmu_pages)
8350 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8351
8352 /*
8353 * Dirty logging tracks sptes in 4k granularity, meaning that large
8354 * sptes have to be split. If live migration is successful, the guest
8355 * in the source machine will be destroyed and large sptes will be
8356 * created in the destination. However, if the guest continues to run
8357 * in the source machine (for example if live migration fails), small
8358 * sptes will remain around and cause bad performance.
8359 *
8360 * Scan sptes if dirty logging has been stopped, dropping those
8361 * which can be collapsed into a single large-page spte. Later
8362 * page faults will create the large-page sptes.
8363 */
8364 if ((change != KVM_MR_DELETE) &&
8365 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8366 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8367 kvm_mmu_zap_collapsible_sptes(kvm, new);
8368
8369 /*
8370 * Set up write protection and/or dirty logging for the new slot.
8371 *
8372 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8373 * been zapped so no dirty logging staff is needed for old slot. For
8374 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8375 * new and it's also covered when dealing with the new slot.
8376 *
8377 * FIXME: const-ify all uses of struct kvm_memory_slot.
8378 */
8379 if (change != KVM_MR_DELETE)
8380 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8381 }
8382
8383 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8384 {
8385 kvm_mmu_invalidate_zap_all_pages(kvm);
8386 }
8387
8388 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8389 struct kvm_memory_slot *slot)
8390 {
8391 kvm_page_track_flush_slot(kvm, slot);
8392 }
8393
8394 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8395 {
8396 if (!list_empty_careful(&vcpu->async_pf.done))
8397 return true;
8398
8399 if (kvm_apic_has_events(vcpu))
8400 return true;
8401
8402 if (vcpu->arch.pv.pv_unhalted)
8403 return true;
8404
8405 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8406 (vcpu->arch.nmi_pending &&
8407 kvm_x86_ops->nmi_allowed(vcpu)))
8408 return true;
8409
8410 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8411 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8412 return true;
8413
8414 if (kvm_arch_interrupt_allowed(vcpu) &&
8415 kvm_cpu_has_interrupt(vcpu))
8416 return true;
8417
8418 if (kvm_hv_has_stimer_pending(vcpu))
8419 return true;
8420
8421 return false;
8422 }
8423
8424 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8425 {
8426 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8427 }
8428
8429 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8430 {
8431 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8432 }
8433
8434 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8435 {
8436 return kvm_x86_ops->interrupt_allowed(vcpu);
8437 }
8438
8439 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8440 {
8441 if (is_64_bit_mode(vcpu))
8442 return kvm_rip_read(vcpu);
8443 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8444 kvm_rip_read(vcpu));
8445 }
8446 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8447
8448 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8449 {
8450 return kvm_get_linear_rip(vcpu) == linear_rip;
8451 }
8452 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8453
8454 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8455 {
8456 unsigned long rflags;
8457
8458 rflags = kvm_x86_ops->get_rflags(vcpu);
8459 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8460 rflags &= ~X86_EFLAGS_TF;
8461 return rflags;
8462 }
8463 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8464
8465 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8466 {
8467 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8468 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8469 rflags |= X86_EFLAGS_TF;
8470 kvm_x86_ops->set_rflags(vcpu, rflags);
8471 }
8472
8473 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8474 {
8475 __kvm_set_rflags(vcpu, rflags);
8476 kvm_make_request(KVM_REQ_EVENT, vcpu);
8477 }
8478 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8479
8480 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8481 {
8482 int r;
8483
8484 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8485 work->wakeup_all)
8486 return;
8487
8488 r = kvm_mmu_reload(vcpu);
8489 if (unlikely(r))
8490 return;
8491
8492 if (!vcpu->arch.mmu.direct_map &&
8493 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8494 return;
8495
8496 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8497 }
8498
8499 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8500 {
8501 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8502 }
8503
8504 static inline u32 kvm_async_pf_next_probe(u32 key)
8505 {
8506 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8507 }
8508
8509 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8510 {
8511 u32 key = kvm_async_pf_hash_fn(gfn);
8512
8513 while (vcpu->arch.apf.gfns[key] != ~0)
8514 key = kvm_async_pf_next_probe(key);
8515
8516 vcpu->arch.apf.gfns[key] = gfn;
8517 }
8518
8519 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8520 {
8521 int i;
8522 u32 key = kvm_async_pf_hash_fn(gfn);
8523
8524 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8525 (vcpu->arch.apf.gfns[key] != gfn &&
8526 vcpu->arch.apf.gfns[key] != ~0); i++)
8527 key = kvm_async_pf_next_probe(key);
8528
8529 return key;
8530 }
8531
8532 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8533 {
8534 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8535 }
8536
8537 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8538 {
8539 u32 i, j, k;
8540
8541 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8542 while (true) {
8543 vcpu->arch.apf.gfns[i] = ~0;
8544 do {
8545 j = kvm_async_pf_next_probe(j);
8546 if (vcpu->arch.apf.gfns[j] == ~0)
8547 return;
8548 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8549 /*
8550 * k lies cyclically in ]i,j]
8551 * | i.k.j |
8552 * |....j i.k.| or |.k..j i...|
8553 */
8554 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8555 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8556 i = j;
8557 }
8558 }
8559
8560 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8561 {
8562
8563 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8564 sizeof(val));
8565 }
8566
8567 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8568 struct kvm_async_pf *work)
8569 {
8570 struct x86_exception fault;
8571
8572 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8573 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8574
8575 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8576 (vcpu->arch.apf.send_user_only &&
8577 kvm_x86_ops->get_cpl(vcpu) == 0))
8578 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8579 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8580 fault.vector = PF_VECTOR;
8581 fault.error_code_valid = true;
8582 fault.error_code = 0;
8583 fault.nested_page_fault = false;
8584 fault.address = work->arch.token;
8585 kvm_inject_page_fault(vcpu, &fault);
8586 }
8587 }
8588
8589 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8590 struct kvm_async_pf *work)
8591 {
8592 struct x86_exception fault;
8593
8594 if (work->wakeup_all)
8595 work->arch.token = ~0; /* broadcast wakeup */
8596 else
8597 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8598 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8599
8600 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8601 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8602 fault.vector = PF_VECTOR;
8603 fault.error_code_valid = true;
8604 fault.error_code = 0;
8605 fault.nested_page_fault = false;
8606 fault.address = work->arch.token;
8607 kvm_inject_page_fault(vcpu, &fault);
8608 }
8609 vcpu->arch.apf.halted = false;
8610 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8611 }
8612
8613 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8614 {
8615 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8616 return true;
8617 else
8618 return kvm_can_do_async_pf(vcpu);
8619 }
8620
8621 void kvm_arch_start_assignment(struct kvm *kvm)
8622 {
8623 atomic_inc(&kvm->arch.assigned_device_count);
8624 }
8625 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8626
8627 void kvm_arch_end_assignment(struct kvm *kvm)
8628 {
8629 atomic_dec(&kvm->arch.assigned_device_count);
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8632
8633 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8634 {
8635 return atomic_read(&kvm->arch.assigned_device_count);
8636 }
8637 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8638
8639 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8640 {
8641 atomic_inc(&kvm->arch.noncoherent_dma_count);
8642 }
8643 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8644
8645 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8646 {
8647 atomic_dec(&kvm->arch.noncoherent_dma_count);
8648 }
8649 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8650
8651 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8652 {
8653 return atomic_read(&kvm->arch.noncoherent_dma_count);
8654 }
8655 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8656
8657 bool kvm_arch_has_irq_bypass(void)
8658 {
8659 return kvm_x86_ops->update_pi_irte != NULL;
8660 }
8661
8662 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8663 struct irq_bypass_producer *prod)
8664 {
8665 struct kvm_kernel_irqfd *irqfd =
8666 container_of(cons, struct kvm_kernel_irqfd, consumer);
8667
8668 irqfd->producer = prod;
8669
8670 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8671 prod->irq, irqfd->gsi, 1);
8672 }
8673
8674 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8675 struct irq_bypass_producer *prod)
8676 {
8677 int ret;
8678 struct kvm_kernel_irqfd *irqfd =
8679 container_of(cons, struct kvm_kernel_irqfd, consumer);
8680
8681 WARN_ON(irqfd->producer != prod);
8682 irqfd->producer = NULL;
8683
8684 /*
8685 * When producer of consumer is unregistered, we change back to
8686 * remapped mode, so we can re-use the current implementation
8687 * when the irq is masked/disabled or the consumer side (KVM
8688 * int this case doesn't want to receive the interrupts.
8689 */
8690 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8691 if (ret)
8692 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8693 " fails: %d\n", irqfd->consumer.token, ret);
8694 }
8695
8696 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8697 uint32_t guest_irq, bool set)
8698 {
8699 if (!kvm_x86_ops->update_pi_irte)
8700 return -EINVAL;
8701
8702 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8703 }
8704
8705 bool kvm_vector_hashing_enabled(void)
8706 {
8707 return vector_hashing;
8708 }
8709 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8710
8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);