]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/x86.c
KVM: X86: Introduce kvm_get_msr_feature()
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
87 */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
108
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
114
115 unsigned int min_timer_period_us = 500;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
117
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
120
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32 __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64 __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
131
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
135
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns = 0;
138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
139
140 static bool __read_mostly vector_hashing = true;
141 module_param(vector_hashing, bool, S_IRUGO);
142
143 #define KVM_NR_SHARED_MSRS 16
144
145 struct kvm_shared_msrs_global {
146 int nr;
147 u32 msrs[KVM_NR_SHARED_MSRS];
148 };
149
150 struct kvm_shared_msrs {
151 struct user_return_notifier urn;
152 bool registered;
153 struct kvm_shared_msr_values {
154 u64 host;
155 u64 curr;
156 } values[KVM_NR_SHARED_MSRS];
157 };
158
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
160 static struct kvm_shared_msrs __percpu *shared_msrs;
161
162 struct kvm_stats_debugfs_item debugfs_entries[] = {
163 { "pf_fixed", VCPU_STAT(pf_fixed) },
164 { "pf_guest", VCPU_STAT(pf_guest) },
165 { "tlb_flush", VCPU_STAT(tlb_flush) },
166 { "invlpg", VCPU_STAT(invlpg) },
167 { "exits", VCPU_STAT(exits) },
168 { "io_exits", VCPU_STAT(io_exits) },
169 { "mmio_exits", VCPU_STAT(mmio_exits) },
170 { "signal_exits", VCPU_STAT(signal_exits) },
171 { "irq_window", VCPU_STAT(irq_window_exits) },
172 { "nmi_window", VCPU_STAT(nmi_window_exits) },
173 { "halt_exits", VCPU_STAT(halt_exits) },
174 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
175 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
176 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
177 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
178 { "hypercalls", VCPU_STAT(hypercalls) },
179 { "request_irq", VCPU_STAT(request_irq_exits) },
180 { "irq_exits", VCPU_STAT(irq_exits) },
181 { "host_state_reload", VCPU_STAT(host_state_reload) },
182 { "fpu_reload", VCPU_STAT(fpu_reload) },
183 { "insn_emulation", VCPU_STAT(insn_emulation) },
184 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
185 { "irq_injections", VCPU_STAT(irq_injections) },
186 { "nmi_injections", VCPU_STAT(nmi_injections) },
187 { "req_event", VCPU_STAT(req_event) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 /*
570 * Load the pae pdptrs. Return true is they are all valid.
571 */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
586 }
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
593 }
594 }
595 ret = 1;
596
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
615
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
618
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
622
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632 return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641 cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
647
648 cr0 &= ~CR0_RESERVED_BITS;
649
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
652
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
655
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
660
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
671 }
672
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
675
676 kvm_x86_ops->set_cr0(vcpu, cr0);
677
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
681 }
682
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
685
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 if (vcpu->arch.xcr0 != host_xcr0)
707 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
708 vcpu->guest_xcr0_loaded = 1;
709 }
710 }
711
712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
713 {
714 if (vcpu->guest_xcr0_loaded) {
715 if (vcpu->arch.xcr0 != host_xcr0)
716 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
717 vcpu->guest_xcr0_loaded = 0;
718 }
719 }
720
721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
722 {
723 u64 xcr0 = xcr;
724 u64 old_xcr0 = vcpu->arch.xcr0;
725 u64 valid_bits;
726
727 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
728 if (index != XCR_XFEATURE_ENABLED_MASK)
729 return 1;
730 if (!(xcr0 & XFEATURE_MASK_FP))
731 return 1;
732 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
733 return 1;
734
735 /*
736 * Do not allow the guest to set bits that we do not support
737 * saving. However, xcr0 bit 0 is always set, even if the
738 * emulated CPU does not support XSAVE (see fx_init).
739 */
740 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
741 if (xcr0 & ~valid_bits)
742 return 1;
743
744 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
745 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
746 return 1;
747
748 if (xcr0 & XFEATURE_MASK_AVX512) {
749 if (!(xcr0 & XFEATURE_MASK_YMM))
750 return 1;
751 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
752 return 1;
753 }
754 vcpu->arch.xcr0 = xcr0;
755
756 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
757 kvm_update_cpuid(vcpu);
758 return 0;
759 }
760
761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
762 {
763 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
764 __kvm_set_xcr(vcpu, index, xcr)) {
765 kvm_inject_gp(vcpu, 0);
766 return 1;
767 }
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_xcr);
771
772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
773 {
774 unsigned long old_cr4 = kvm_read_cr4(vcpu);
775 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
776 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
777
778 if (cr4 & CR4_RESERVED_BITS)
779 return 1;
780
781 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
782 return 1;
783
784 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
785 return 1;
786
787 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
788 return 1;
789
790 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
791 return 1;
792
793 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
794 return 1;
795
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
797 return 1;
798
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
800 return 1;
801
802 if (is_long_mode(vcpu)) {
803 if (!(cr4 & X86_CR4_PAE))
804 return 1;
805 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
806 && ((cr4 ^ old_cr4) & pdptr_bits)
807 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 kvm_read_cr3(vcpu)))
809 return 1;
810
811 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
812 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
813 return 1;
814
815 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
817 return 1;
818 }
819
820 if (kvm_x86_ops->set_cr4(vcpu, cr4))
821 return 1;
822
823 if (((cr4 ^ old_cr4) & pdptr_bits) ||
824 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
825 kvm_mmu_reset_context(vcpu);
826
827 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
828 kvm_update_cpuid(vcpu);
829
830 return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr4);
833
834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
835 {
836 #ifdef CONFIG_X86_64
837 cr3 &= ~CR3_PCID_INVD;
838 #endif
839
840 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
841 kvm_mmu_sync_roots(vcpu);
842 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
843 return 0;
844 }
845
846 if (is_long_mode(vcpu) &&
847 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
848 return 1;
849 else if (is_pae(vcpu) && is_paging(vcpu) &&
850 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
851 return 1;
852
853 vcpu->arch.cr3 = cr3;
854 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
855 kvm_mmu_new_cr3(vcpu);
856 return 0;
857 }
858 EXPORT_SYMBOL_GPL(kvm_set_cr3);
859
860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
861 {
862 if (cr8 & CR8_RESERVED_BITS)
863 return 1;
864 if (lapic_in_kernel(vcpu))
865 kvm_lapic_set_tpr(vcpu, cr8);
866 else
867 vcpu->arch.cr8 = cr8;
868 return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr8);
871
872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
873 {
874 if (lapic_in_kernel(vcpu))
875 return kvm_lapic_get_cr8(vcpu);
876 else
877 return vcpu->arch.cr8;
878 }
879 EXPORT_SYMBOL_GPL(kvm_get_cr8);
880
881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
882 {
883 int i;
884
885 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
886 for (i = 0; i < KVM_NR_DB_REGS; i++)
887 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
888 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
889 }
890 }
891
892 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
893 {
894 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
896 }
897
898 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
899 {
900 unsigned long dr7;
901
902 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
903 dr7 = vcpu->arch.guest_debug_dr7;
904 else
905 dr7 = vcpu->arch.dr7;
906 kvm_x86_ops->set_dr7(vcpu, dr7);
907 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
908 if (dr7 & DR7_BP_EN_MASK)
909 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
910 }
911
912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
913 {
914 u64 fixed = DR6_FIXED_1;
915
916 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
917 fixed |= DR6_RTM;
918 return fixed;
919 }
920
921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
922 {
923 switch (dr) {
924 case 0 ... 3:
925 vcpu->arch.db[dr] = val;
926 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
927 vcpu->arch.eff_db[dr] = val;
928 break;
929 case 4:
930 /* fall through */
931 case 6:
932 if (val & 0xffffffff00000000ULL)
933 return -1; /* #GP */
934 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
935 kvm_update_dr6(vcpu);
936 break;
937 case 5:
938 /* fall through */
939 default: /* 7 */
940 if (val & 0xffffffff00000000ULL)
941 return -1; /* #GP */
942 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
943 kvm_update_dr7(vcpu);
944 break;
945 }
946
947 return 0;
948 }
949
950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
951 {
952 if (__kvm_set_dr(vcpu, dr, val)) {
953 kvm_inject_gp(vcpu, 0);
954 return 1;
955 }
956 return 0;
957 }
958 EXPORT_SYMBOL_GPL(kvm_set_dr);
959
960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
961 {
962 switch (dr) {
963 case 0 ... 3:
964 *val = vcpu->arch.db[dr];
965 break;
966 case 4:
967 /* fall through */
968 case 6:
969 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
970 *val = vcpu->arch.dr6;
971 else
972 *val = kvm_x86_ops->get_dr6(vcpu);
973 break;
974 case 5:
975 /* fall through */
976 default: /* 7 */
977 *val = vcpu->arch.dr7;
978 break;
979 }
980 return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_get_dr);
983
984 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
985 {
986 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
987 u64 data;
988 int err;
989
990 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
991 if (err)
992 return err;
993 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
994 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
995 return err;
996 }
997 EXPORT_SYMBOL_GPL(kvm_rdpmc);
998
999 /*
1000 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1002 *
1003 * This list is modified at module load time to reflect the
1004 * capabilities of the host cpu. This capabilities test skips MSRs that are
1005 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006 * may depend on host virtualization features rather than host cpu features.
1007 */
1008
1009 static u32 msrs_to_save[] = {
1010 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1011 MSR_STAR,
1012 #ifdef CONFIG_X86_64
1013 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1014 #endif
1015 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1016 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1017 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1018 };
1019
1020 static unsigned num_msrs_to_save;
1021
1022 static u32 emulated_msrs[] = {
1023 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1024 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1025 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1026 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1027 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1028 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1029 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1030 HV_X64_MSR_RESET,
1031 HV_X64_MSR_VP_INDEX,
1032 HV_X64_MSR_VP_RUNTIME,
1033 HV_X64_MSR_SCONTROL,
1034 HV_X64_MSR_STIMER0_CONFIG,
1035 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1036 MSR_KVM_PV_EOI_EN,
1037
1038 MSR_IA32_TSC_ADJUST,
1039 MSR_IA32_TSCDEADLINE,
1040 MSR_IA32_MISC_ENABLE,
1041 MSR_IA32_MCG_STATUS,
1042 MSR_IA32_MCG_CTL,
1043 MSR_IA32_MCG_EXT_CTL,
1044 MSR_IA32_SMBASE,
1045 MSR_SMI_COUNT,
1046 MSR_PLATFORM_INFO,
1047 MSR_MISC_FEATURES_ENABLES,
1048 };
1049
1050 static unsigned num_emulated_msrs;
1051
1052 /*
1053 * List of msr numbers which are used to expose MSR-based features that
1054 * can be used by a hypervisor to validate requested CPU features.
1055 */
1056 static u32 msr_based_features[] = {
1057 MSR_F10H_DECFG,
1058 };
1059
1060 static unsigned int num_msr_based_features;
1061
1062 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1063 {
1064 switch (msr->index) {
1065 default:
1066 if (kvm_x86_ops->get_msr_feature(msr))
1067 return 1;
1068 }
1069 return 0;
1070 }
1071
1072 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1073 {
1074 struct kvm_msr_entry msr;
1075 int r;
1076
1077 msr.index = index;
1078 r = kvm_get_msr_feature(&msr);
1079 if (r)
1080 return r;
1081
1082 *data = msr.data;
1083
1084 return 0;
1085 }
1086
1087 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1088 {
1089 if (efer & efer_reserved_bits)
1090 return false;
1091
1092 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1093 return false;
1094
1095 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1096 return false;
1097
1098 return true;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1101
1102 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1103 {
1104 u64 old_efer = vcpu->arch.efer;
1105
1106 if (!kvm_valid_efer(vcpu, efer))
1107 return 1;
1108
1109 if (is_paging(vcpu)
1110 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1111 return 1;
1112
1113 efer &= ~EFER_LMA;
1114 efer |= vcpu->arch.efer & EFER_LMA;
1115
1116 kvm_x86_ops->set_efer(vcpu, efer);
1117
1118 /* Update reserved bits */
1119 if ((efer ^ old_efer) & EFER_NX)
1120 kvm_mmu_reset_context(vcpu);
1121
1122 return 0;
1123 }
1124
1125 void kvm_enable_efer_bits(u64 mask)
1126 {
1127 efer_reserved_bits &= ~mask;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1130
1131 /*
1132 * Writes msr value into into the appropriate "register".
1133 * Returns 0 on success, non-0 otherwise.
1134 * Assumes vcpu_load() was already called.
1135 */
1136 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1137 {
1138 switch (msr->index) {
1139 case MSR_FS_BASE:
1140 case MSR_GS_BASE:
1141 case MSR_KERNEL_GS_BASE:
1142 case MSR_CSTAR:
1143 case MSR_LSTAR:
1144 if (is_noncanonical_address(msr->data, vcpu))
1145 return 1;
1146 break;
1147 case MSR_IA32_SYSENTER_EIP:
1148 case MSR_IA32_SYSENTER_ESP:
1149 /*
1150 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1151 * non-canonical address is written on Intel but not on
1152 * AMD (which ignores the top 32-bits, because it does
1153 * not implement 64-bit SYSENTER).
1154 *
1155 * 64-bit code should hence be able to write a non-canonical
1156 * value on AMD. Making the address canonical ensures that
1157 * vmentry does not fail on Intel after writing a non-canonical
1158 * value, and that something deterministic happens if the guest
1159 * invokes 64-bit SYSENTER.
1160 */
1161 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1162 }
1163 return kvm_x86_ops->set_msr(vcpu, msr);
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_set_msr);
1166
1167 /*
1168 * Adapt set_msr() to msr_io()'s calling convention
1169 */
1170 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1171 {
1172 struct msr_data msr;
1173 int r;
1174
1175 msr.index = index;
1176 msr.host_initiated = true;
1177 r = kvm_get_msr(vcpu, &msr);
1178 if (r)
1179 return r;
1180
1181 *data = msr.data;
1182 return 0;
1183 }
1184
1185 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1186 {
1187 struct msr_data msr;
1188
1189 msr.data = *data;
1190 msr.index = index;
1191 msr.host_initiated = true;
1192 return kvm_set_msr(vcpu, &msr);
1193 }
1194
1195 #ifdef CONFIG_X86_64
1196 struct pvclock_gtod_data {
1197 seqcount_t seq;
1198
1199 struct { /* extract of a clocksource struct */
1200 int vclock_mode;
1201 u64 cycle_last;
1202 u64 mask;
1203 u32 mult;
1204 u32 shift;
1205 } clock;
1206
1207 u64 boot_ns;
1208 u64 nsec_base;
1209 u64 wall_time_sec;
1210 };
1211
1212 static struct pvclock_gtod_data pvclock_gtod_data;
1213
1214 static void update_pvclock_gtod(struct timekeeper *tk)
1215 {
1216 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1217 u64 boot_ns;
1218
1219 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1220
1221 write_seqcount_begin(&vdata->seq);
1222
1223 /* copy pvclock gtod data */
1224 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1225 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1226 vdata->clock.mask = tk->tkr_mono.mask;
1227 vdata->clock.mult = tk->tkr_mono.mult;
1228 vdata->clock.shift = tk->tkr_mono.shift;
1229
1230 vdata->boot_ns = boot_ns;
1231 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1232
1233 vdata->wall_time_sec = tk->xtime_sec;
1234
1235 write_seqcount_end(&vdata->seq);
1236 }
1237 #endif
1238
1239 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1240 {
1241 /*
1242 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1243 * vcpu_enter_guest. This function is only called from
1244 * the physical CPU that is running vcpu.
1245 */
1246 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1247 }
1248
1249 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1250 {
1251 int version;
1252 int r;
1253 struct pvclock_wall_clock wc;
1254 struct timespec64 boot;
1255
1256 if (!wall_clock)
1257 return;
1258
1259 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1260 if (r)
1261 return;
1262
1263 if (version & 1)
1264 ++version; /* first time write, random junk */
1265
1266 ++version;
1267
1268 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1269 return;
1270
1271 /*
1272 * The guest calculates current wall clock time by adding
1273 * system time (updated by kvm_guest_time_update below) to the
1274 * wall clock specified here. guest system time equals host
1275 * system time for us, thus we must fill in host boot time here.
1276 */
1277 getboottime64(&boot);
1278
1279 if (kvm->arch.kvmclock_offset) {
1280 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1281 boot = timespec64_sub(boot, ts);
1282 }
1283 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1284 wc.nsec = boot.tv_nsec;
1285 wc.version = version;
1286
1287 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1288
1289 version++;
1290 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1291 }
1292
1293 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1294 {
1295 do_shl32_div32(dividend, divisor);
1296 return dividend;
1297 }
1298
1299 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1300 s8 *pshift, u32 *pmultiplier)
1301 {
1302 uint64_t scaled64;
1303 int32_t shift = 0;
1304 uint64_t tps64;
1305 uint32_t tps32;
1306
1307 tps64 = base_hz;
1308 scaled64 = scaled_hz;
1309 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1310 tps64 >>= 1;
1311 shift--;
1312 }
1313
1314 tps32 = (uint32_t)tps64;
1315 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1316 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1317 scaled64 >>= 1;
1318 else
1319 tps32 <<= 1;
1320 shift++;
1321 }
1322
1323 *pshift = shift;
1324 *pmultiplier = div_frac(scaled64, tps32);
1325
1326 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1327 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1328 }
1329
1330 #ifdef CONFIG_X86_64
1331 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1332 #endif
1333
1334 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1335 static unsigned long max_tsc_khz;
1336
1337 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1338 {
1339 u64 v = (u64)khz * (1000000 + ppm);
1340 do_div(v, 1000000);
1341 return v;
1342 }
1343
1344 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1345 {
1346 u64 ratio;
1347
1348 /* Guest TSC same frequency as host TSC? */
1349 if (!scale) {
1350 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1351 return 0;
1352 }
1353
1354 /* TSC scaling supported? */
1355 if (!kvm_has_tsc_control) {
1356 if (user_tsc_khz > tsc_khz) {
1357 vcpu->arch.tsc_catchup = 1;
1358 vcpu->arch.tsc_always_catchup = 1;
1359 return 0;
1360 } else {
1361 WARN(1, "user requested TSC rate below hardware speed\n");
1362 return -1;
1363 }
1364 }
1365
1366 /* TSC scaling required - calculate ratio */
1367 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1368 user_tsc_khz, tsc_khz);
1369
1370 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1371 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1372 user_tsc_khz);
1373 return -1;
1374 }
1375
1376 vcpu->arch.tsc_scaling_ratio = ratio;
1377 return 0;
1378 }
1379
1380 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1381 {
1382 u32 thresh_lo, thresh_hi;
1383 int use_scaling = 0;
1384
1385 /* tsc_khz can be zero if TSC calibration fails */
1386 if (user_tsc_khz == 0) {
1387 /* set tsc_scaling_ratio to a safe value */
1388 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1389 return -1;
1390 }
1391
1392 /* Compute a scale to convert nanoseconds in TSC cycles */
1393 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1394 &vcpu->arch.virtual_tsc_shift,
1395 &vcpu->arch.virtual_tsc_mult);
1396 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1397
1398 /*
1399 * Compute the variation in TSC rate which is acceptable
1400 * within the range of tolerance and decide if the
1401 * rate being applied is within that bounds of the hardware
1402 * rate. If so, no scaling or compensation need be done.
1403 */
1404 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1405 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1406 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1407 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1408 use_scaling = 1;
1409 }
1410 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1411 }
1412
1413 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1414 {
1415 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1416 vcpu->arch.virtual_tsc_mult,
1417 vcpu->arch.virtual_tsc_shift);
1418 tsc += vcpu->arch.this_tsc_write;
1419 return tsc;
1420 }
1421
1422 static inline int gtod_is_based_on_tsc(int mode)
1423 {
1424 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1425 }
1426
1427 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1428 {
1429 #ifdef CONFIG_X86_64
1430 bool vcpus_matched;
1431 struct kvm_arch *ka = &vcpu->kvm->arch;
1432 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1433
1434 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1435 atomic_read(&vcpu->kvm->online_vcpus));
1436
1437 /*
1438 * Once the masterclock is enabled, always perform request in
1439 * order to update it.
1440 *
1441 * In order to enable masterclock, the host clocksource must be TSC
1442 * and the vcpus need to have matched TSCs. When that happens,
1443 * perform request to enable masterclock.
1444 */
1445 if (ka->use_master_clock ||
1446 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1447 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1448
1449 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1450 atomic_read(&vcpu->kvm->online_vcpus),
1451 ka->use_master_clock, gtod->clock.vclock_mode);
1452 #endif
1453 }
1454
1455 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1456 {
1457 u64 curr_offset = vcpu->arch.tsc_offset;
1458 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1459 }
1460
1461 /*
1462 * Multiply tsc by a fixed point number represented by ratio.
1463 *
1464 * The most significant 64-N bits (mult) of ratio represent the
1465 * integral part of the fixed point number; the remaining N bits
1466 * (frac) represent the fractional part, ie. ratio represents a fixed
1467 * point number (mult + frac * 2^(-N)).
1468 *
1469 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1470 */
1471 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1472 {
1473 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1474 }
1475
1476 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1477 {
1478 u64 _tsc = tsc;
1479 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1480
1481 if (ratio != kvm_default_tsc_scaling_ratio)
1482 _tsc = __scale_tsc(ratio, tsc);
1483
1484 return _tsc;
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1487
1488 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1489 {
1490 u64 tsc;
1491
1492 tsc = kvm_scale_tsc(vcpu, rdtsc());
1493
1494 return target_tsc - tsc;
1495 }
1496
1497 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1498 {
1499 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1502
1503 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1504 {
1505 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1506 vcpu->arch.tsc_offset = offset;
1507 }
1508
1509 static inline bool kvm_check_tsc_unstable(void)
1510 {
1511 #ifdef CONFIG_X86_64
1512 /*
1513 * TSC is marked unstable when we're running on Hyper-V,
1514 * 'TSC page' clocksource is good.
1515 */
1516 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1517 return false;
1518 #endif
1519 return check_tsc_unstable();
1520 }
1521
1522 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1523 {
1524 struct kvm *kvm = vcpu->kvm;
1525 u64 offset, ns, elapsed;
1526 unsigned long flags;
1527 bool matched;
1528 bool already_matched;
1529 u64 data = msr->data;
1530 bool synchronizing = false;
1531
1532 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1533 offset = kvm_compute_tsc_offset(vcpu, data);
1534 ns = ktime_get_boot_ns();
1535 elapsed = ns - kvm->arch.last_tsc_nsec;
1536
1537 if (vcpu->arch.virtual_tsc_khz) {
1538 if (data == 0 && msr->host_initiated) {
1539 /*
1540 * detection of vcpu initialization -- need to sync
1541 * with other vCPUs. This particularly helps to keep
1542 * kvm_clock stable after CPU hotplug
1543 */
1544 synchronizing = true;
1545 } else {
1546 u64 tsc_exp = kvm->arch.last_tsc_write +
1547 nsec_to_cycles(vcpu, elapsed);
1548 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1549 /*
1550 * Special case: TSC write with a small delta (1 second)
1551 * of virtual cycle time against real time is
1552 * interpreted as an attempt to synchronize the CPU.
1553 */
1554 synchronizing = data < tsc_exp + tsc_hz &&
1555 data + tsc_hz > tsc_exp;
1556 }
1557 }
1558
1559 /*
1560 * For a reliable TSC, we can match TSC offsets, and for an unstable
1561 * TSC, we add elapsed time in this computation. We could let the
1562 * compensation code attempt to catch up if we fall behind, but
1563 * it's better to try to match offsets from the beginning.
1564 */
1565 if (synchronizing &&
1566 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1567 if (!kvm_check_tsc_unstable()) {
1568 offset = kvm->arch.cur_tsc_offset;
1569 pr_debug("kvm: matched tsc offset for %llu\n", data);
1570 } else {
1571 u64 delta = nsec_to_cycles(vcpu, elapsed);
1572 data += delta;
1573 offset = kvm_compute_tsc_offset(vcpu, data);
1574 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1575 }
1576 matched = true;
1577 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1578 } else {
1579 /*
1580 * We split periods of matched TSC writes into generations.
1581 * For each generation, we track the original measured
1582 * nanosecond time, offset, and write, so if TSCs are in
1583 * sync, we can match exact offset, and if not, we can match
1584 * exact software computation in compute_guest_tsc()
1585 *
1586 * These values are tracked in kvm->arch.cur_xxx variables.
1587 */
1588 kvm->arch.cur_tsc_generation++;
1589 kvm->arch.cur_tsc_nsec = ns;
1590 kvm->arch.cur_tsc_write = data;
1591 kvm->arch.cur_tsc_offset = offset;
1592 matched = false;
1593 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1594 kvm->arch.cur_tsc_generation, data);
1595 }
1596
1597 /*
1598 * We also track th most recent recorded KHZ, write and time to
1599 * allow the matching interval to be extended at each write.
1600 */
1601 kvm->arch.last_tsc_nsec = ns;
1602 kvm->arch.last_tsc_write = data;
1603 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1604
1605 vcpu->arch.last_guest_tsc = data;
1606
1607 /* Keep track of which generation this VCPU has synchronized to */
1608 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1609 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1610 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1611
1612 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1613 update_ia32_tsc_adjust_msr(vcpu, offset);
1614
1615 kvm_vcpu_write_tsc_offset(vcpu, offset);
1616 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1617
1618 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1619 if (!matched) {
1620 kvm->arch.nr_vcpus_matched_tsc = 0;
1621 } else if (!already_matched) {
1622 kvm->arch.nr_vcpus_matched_tsc++;
1623 }
1624
1625 kvm_track_tsc_matching(vcpu);
1626 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1627 }
1628
1629 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1630
1631 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1632 s64 adjustment)
1633 {
1634 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1635 }
1636
1637 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1638 {
1639 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1640 WARN_ON(adjustment < 0);
1641 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1642 adjust_tsc_offset_guest(vcpu, adjustment);
1643 }
1644
1645 #ifdef CONFIG_X86_64
1646
1647 static u64 read_tsc(void)
1648 {
1649 u64 ret = (u64)rdtsc_ordered();
1650 u64 last = pvclock_gtod_data.clock.cycle_last;
1651
1652 if (likely(ret >= last))
1653 return ret;
1654
1655 /*
1656 * GCC likes to generate cmov here, but this branch is extremely
1657 * predictable (it's just a function of time and the likely is
1658 * very likely) and there's a data dependence, so force GCC
1659 * to generate a branch instead. I don't barrier() because
1660 * we don't actually need a barrier, and if this function
1661 * ever gets inlined it will generate worse code.
1662 */
1663 asm volatile ("");
1664 return last;
1665 }
1666
1667 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1668 {
1669 long v;
1670 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1671 u64 tsc_pg_val;
1672
1673 switch (gtod->clock.vclock_mode) {
1674 case VCLOCK_HVCLOCK:
1675 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1676 tsc_timestamp);
1677 if (tsc_pg_val != U64_MAX) {
1678 /* TSC page valid */
1679 *mode = VCLOCK_HVCLOCK;
1680 v = (tsc_pg_val - gtod->clock.cycle_last) &
1681 gtod->clock.mask;
1682 } else {
1683 /* TSC page invalid */
1684 *mode = VCLOCK_NONE;
1685 }
1686 break;
1687 case VCLOCK_TSC:
1688 *mode = VCLOCK_TSC;
1689 *tsc_timestamp = read_tsc();
1690 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1691 gtod->clock.mask;
1692 break;
1693 default:
1694 *mode = VCLOCK_NONE;
1695 }
1696
1697 if (*mode == VCLOCK_NONE)
1698 *tsc_timestamp = v = 0;
1699
1700 return v * gtod->clock.mult;
1701 }
1702
1703 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1704 {
1705 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1706 unsigned long seq;
1707 int mode;
1708 u64 ns;
1709
1710 do {
1711 seq = read_seqcount_begin(&gtod->seq);
1712 ns = gtod->nsec_base;
1713 ns += vgettsc(tsc_timestamp, &mode);
1714 ns >>= gtod->clock.shift;
1715 ns += gtod->boot_ns;
1716 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1717 *t = ns;
1718
1719 return mode;
1720 }
1721
1722 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1723 {
1724 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1725 unsigned long seq;
1726 int mode;
1727 u64 ns;
1728
1729 do {
1730 seq = read_seqcount_begin(&gtod->seq);
1731 ts->tv_sec = gtod->wall_time_sec;
1732 ns = gtod->nsec_base;
1733 ns += vgettsc(tsc_timestamp, &mode);
1734 ns >>= gtod->clock.shift;
1735 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1736
1737 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1738 ts->tv_nsec = ns;
1739
1740 return mode;
1741 }
1742
1743 /* returns true if host is using TSC based clocksource */
1744 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1745 {
1746 /* checked again under seqlock below */
1747 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1748 return false;
1749
1750 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1751 tsc_timestamp));
1752 }
1753
1754 /* returns true if host is using TSC based clocksource */
1755 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1756 u64 *tsc_timestamp)
1757 {
1758 /* checked again under seqlock below */
1759 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1760 return false;
1761
1762 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1763 }
1764 #endif
1765
1766 /*
1767 *
1768 * Assuming a stable TSC across physical CPUS, and a stable TSC
1769 * across virtual CPUs, the following condition is possible.
1770 * Each numbered line represents an event visible to both
1771 * CPUs at the next numbered event.
1772 *
1773 * "timespecX" represents host monotonic time. "tscX" represents
1774 * RDTSC value.
1775 *
1776 * VCPU0 on CPU0 | VCPU1 on CPU1
1777 *
1778 * 1. read timespec0,tsc0
1779 * 2. | timespec1 = timespec0 + N
1780 * | tsc1 = tsc0 + M
1781 * 3. transition to guest | transition to guest
1782 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1783 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1784 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1785 *
1786 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1787 *
1788 * - ret0 < ret1
1789 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1790 * ...
1791 * - 0 < N - M => M < N
1792 *
1793 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1794 * always the case (the difference between two distinct xtime instances
1795 * might be smaller then the difference between corresponding TSC reads,
1796 * when updating guest vcpus pvclock areas).
1797 *
1798 * To avoid that problem, do not allow visibility of distinct
1799 * system_timestamp/tsc_timestamp values simultaneously: use a master
1800 * copy of host monotonic time values. Update that master copy
1801 * in lockstep.
1802 *
1803 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1804 *
1805 */
1806
1807 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1808 {
1809 #ifdef CONFIG_X86_64
1810 struct kvm_arch *ka = &kvm->arch;
1811 int vclock_mode;
1812 bool host_tsc_clocksource, vcpus_matched;
1813
1814 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1815 atomic_read(&kvm->online_vcpus));
1816
1817 /*
1818 * If the host uses TSC clock, then passthrough TSC as stable
1819 * to the guest.
1820 */
1821 host_tsc_clocksource = kvm_get_time_and_clockread(
1822 &ka->master_kernel_ns,
1823 &ka->master_cycle_now);
1824
1825 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1826 && !ka->backwards_tsc_observed
1827 && !ka->boot_vcpu_runs_old_kvmclock;
1828
1829 if (ka->use_master_clock)
1830 atomic_set(&kvm_guest_has_master_clock, 1);
1831
1832 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1833 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1834 vcpus_matched);
1835 #endif
1836 }
1837
1838 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1839 {
1840 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1841 }
1842
1843 static void kvm_gen_update_masterclock(struct kvm *kvm)
1844 {
1845 #ifdef CONFIG_X86_64
1846 int i;
1847 struct kvm_vcpu *vcpu;
1848 struct kvm_arch *ka = &kvm->arch;
1849
1850 spin_lock(&ka->pvclock_gtod_sync_lock);
1851 kvm_make_mclock_inprogress_request(kvm);
1852 /* no guest entries from this point */
1853 pvclock_update_vm_gtod_copy(kvm);
1854
1855 kvm_for_each_vcpu(i, vcpu, kvm)
1856 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1857
1858 /* guest entries allowed */
1859 kvm_for_each_vcpu(i, vcpu, kvm)
1860 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1861
1862 spin_unlock(&ka->pvclock_gtod_sync_lock);
1863 #endif
1864 }
1865
1866 u64 get_kvmclock_ns(struct kvm *kvm)
1867 {
1868 struct kvm_arch *ka = &kvm->arch;
1869 struct pvclock_vcpu_time_info hv_clock;
1870 u64 ret;
1871
1872 spin_lock(&ka->pvclock_gtod_sync_lock);
1873 if (!ka->use_master_clock) {
1874 spin_unlock(&ka->pvclock_gtod_sync_lock);
1875 return ktime_get_boot_ns() + ka->kvmclock_offset;
1876 }
1877
1878 hv_clock.tsc_timestamp = ka->master_cycle_now;
1879 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1880 spin_unlock(&ka->pvclock_gtod_sync_lock);
1881
1882 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1883 get_cpu();
1884
1885 if (__this_cpu_read(cpu_tsc_khz)) {
1886 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1887 &hv_clock.tsc_shift,
1888 &hv_clock.tsc_to_system_mul);
1889 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1890 } else
1891 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1892
1893 put_cpu();
1894
1895 return ret;
1896 }
1897
1898 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1899 {
1900 struct kvm_vcpu_arch *vcpu = &v->arch;
1901 struct pvclock_vcpu_time_info guest_hv_clock;
1902
1903 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1904 &guest_hv_clock, sizeof(guest_hv_clock))))
1905 return;
1906
1907 /* This VCPU is paused, but it's legal for a guest to read another
1908 * VCPU's kvmclock, so we really have to follow the specification where
1909 * it says that version is odd if data is being modified, and even after
1910 * it is consistent.
1911 *
1912 * Version field updates must be kept separate. This is because
1913 * kvm_write_guest_cached might use a "rep movs" instruction, and
1914 * writes within a string instruction are weakly ordered. So there
1915 * are three writes overall.
1916 *
1917 * As a small optimization, only write the version field in the first
1918 * and third write. The vcpu->pv_time cache is still valid, because the
1919 * version field is the first in the struct.
1920 */
1921 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1922
1923 if (guest_hv_clock.version & 1)
1924 ++guest_hv_clock.version; /* first time write, random junk */
1925
1926 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1927 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1928 &vcpu->hv_clock,
1929 sizeof(vcpu->hv_clock.version));
1930
1931 smp_wmb();
1932
1933 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1934 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1935
1936 if (vcpu->pvclock_set_guest_stopped_request) {
1937 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1938 vcpu->pvclock_set_guest_stopped_request = false;
1939 }
1940
1941 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1942
1943 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1944 &vcpu->hv_clock,
1945 sizeof(vcpu->hv_clock));
1946
1947 smp_wmb();
1948
1949 vcpu->hv_clock.version++;
1950 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1951 &vcpu->hv_clock,
1952 sizeof(vcpu->hv_clock.version));
1953 }
1954
1955 static int kvm_guest_time_update(struct kvm_vcpu *v)
1956 {
1957 unsigned long flags, tgt_tsc_khz;
1958 struct kvm_vcpu_arch *vcpu = &v->arch;
1959 struct kvm_arch *ka = &v->kvm->arch;
1960 s64 kernel_ns;
1961 u64 tsc_timestamp, host_tsc;
1962 u8 pvclock_flags;
1963 bool use_master_clock;
1964
1965 kernel_ns = 0;
1966 host_tsc = 0;
1967
1968 /*
1969 * If the host uses TSC clock, then passthrough TSC as stable
1970 * to the guest.
1971 */
1972 spin_lock(&ka->pvclock_gtod_sync_lock);
1973 use_master_clock = ka->use_master_clock;
1974 if (use_master_clock) {
1975 host_tsc = ka->master_cycle_now;
1976 kernel_ns = ka->master_kernel_ns;
1977 }
1978 spin_unlock(&ka->pvclock_gtod_sync_lock);
1979
1980 /* Keep irq disabled to prevent changes to the clock */
1981 local_irq_save(flags);
1982 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1983 if (unlikely(tgt_tsc_khz == 0)) {
1984 local_irq_restore(flags);
1985 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1986 return 1;
1987 }
1988 if (!use_master_clock) {
1989 host_tsc = rdtsc();
1990 kernel_ns = ktime_get_boot_ns();
1991 }
1992
1993 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1994
1995 /*
1996 * We may have to catch up the TSC to match elapsed wall clock
1997 * time for two reasons, even if kvmclock is used.
1998 * 1) CPU could have been running below the maximum TSC rate
1999 * 2) Broken TSC compensation resets the base at each VCPU
2000 * entry to avoid unknown leaps of TSC even when running
2001 * again on the same CPU. This may cause apparent elapsed
2002 * time to disappear, and the guest to stand still or run
2003 * very slowly.
2004 */
2005 if (vcpu->tsc_catchup) {
2006 u64 tsc = compute_guest_tsc(v, kernel_ns);
2007 if (tsc > tsc_timestamp) {
2008 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2009 tsc_timestamp = tsc;
2010 }
2011 }
2012
2013 local_irq_restore(flags);
2014
2015 /* With all the info we got, fill in the values */
2016
2017 if (kvm_has_tsc_control)
2018 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2019
2020 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2021 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2022 &vcpu->hv_clock.tsc_shift,
2023 &vcpu->hv_clock.tsc_to_system_mul);
2024 vcpu->hw_tsc_khz = tgt_tsc_khz;
2025 }
2026
2027 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2028 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2029 vcpu->last_guest_tsc = tsc_timestamp;
2030
2031 /* If the host uses TSC clocksource, then it is stable */
2032 pvclock_flags = 0;
2033 if (use_master_clock)
2034 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2035
2036 vcpu->hv_clock.flags = pvclock_flags;
2037
2038 if (vcpu->pv_time_enabled)
2039 kvm_setup_pvclock_page(v);
2040 if (v == kvm_get_vcpu(v->kvm, 0))
2041 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2042 return 0;
2043 }
2044
2045 /*
2046 * kvmclock updates which are isolated to a given vcpu, such as
2047 * vcpu->cpu migration, should not allow system_timestamp from
2048 * the rest of the vcpus to remain static. Otherwise ntp frequency
2049 * correction applies to one vcpu's system_timestamp but not
2050 * the others.
2051 *
2052 * So in those cases, request a kvmclock update for all vcpus.
2053 * We need to rate-limit these requests though, as they can
2054 * considerably slow guests that have a large number of vcpus.
2055 * The time for a remote vcpu to update its kvmclock is bound
2056 * by the delay we use to rate-limit the updates.
2057 */
2058
2059 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2060
2061 static void kvmclock_update_fn(struct work_struct *work)
2062 {
2063 int i;
2064 struct delayed_work *dwork = to_delayed_work(work);
2065 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2066 kvmclock_update_work);
2067 struct kvm *kvm = container_of(ka, struct kvm, arch);
2068 struct kvm_vcpu *vcpu;
2069
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2072 kvm_vcpu_kick(vcpu);
2073 }
2074 }
2075
2076 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2077 {
2078 struct kvm *kvm = v->kvm;
2079
2080 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2081 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2082 KVMCLOCK_UPDATE_DELAY);
2083 }
2084
2085 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2086
2087 static void kvmclock_sync_fn(struct work_struct *work)
2088 {
2089 struct delayed_work *dwork = to_delayed_work(work);
2090 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2091 kvmclock_sync_work);
2092 struct kvm *kvm = container_of(ka, struct kvm, arch);
2093
2094 if (!kvmclock_periodic_sync)
2095 return;
2096
2097 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2098 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2099 KVMCLOCK_SYNC_PERIOD);
2100 }
2101
2102 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2103 {
2104 u64 mcg_cap = vcpu->arch.mcg_cap;
2105 unsigned bank_num = mcg_cap & 0xff;
2106 u32 msr = msr_info->index;
2107 u64 data = msr_info->data;
2108
2109 switch (msr) {
2110 case MSR_IA32_MCG_STATUS:
2111 vcpu->arch.mcg_status = data;
2112 break;
2113 case MSR_IA32_MCG_CTL:
2114 if (!(mcg_cap & MCG_CTL_P))
2115 return 1;
2116 if (data != 0 && data != ~(u64)0)
2117 return -1;
2118 vcpu->arch.mcg_ctl = data;
2119 break;
2120 default:
2121 if (msr >= MSR_IA32_MC0_CTL &&
2122 msr < MSR_IA32_MCx_CTL(bank_num)) {
2123 u32 offset = msr - MSR_IA32_MC0_CTL;
2124 /* only 0 or all 1s can be written to IA32_MCi_CTL
2125 * some Linux kernels though clear bit 10 in bank 4 to
2126 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2127 * this to avoid an uncatched #GP in the guest
2128 */
2129 if ((offset & 0x3) == 0 &&
2130 data != 0 && (data | (1 << 10)) != ~(u64)0)
2131 return -1;
2132 if (!msr_info->host_initiated &&
2133 (offset & 0x3) == 1 && data != 0)
2134 return -1;
2135 vcpu->arch.mce_banks[offset] = data;
2136 break;
2137 }
2138 return 1;
2139 }
2140 return 0;
2141 }
2142
2143 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2144 {
2145 struct kvm *kvm = vcpu->kvm;
2146 int lm = is_long_mode(vcpu);
2147 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2148 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2149 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2150 : kvm->arch.xen_hvm_config.blob_size_32;
2151 u32 page_num = data & ~PAGE_MASK;
2152 u64 page_addr = data & PAGE_MASK;
2153 u8 *page;
2154 int r;
2155
2156 r = -E2BIG;
2157 if (page_num >= blob_size)
2158 goto out;
2159 r = -ENOMEM;
2160 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2161 if (IS_ERR(page)) {
2162 r = PTR_ERR(page);
2163 goto out;
2164 }
2165 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2166 goto out_free;
2167 r = 0;
2168 out_free:
2169 kfree(page);
2170 out:
2171 return r;
2172 }
2173
2174 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176 gpa_t gpa = data & ~0x3f;
2177
2178 /* Bits 3:5 are reserved, Should be zero */
2179 if (data & 0x38)
2180 return 1;
2181
2182 vcpu->arch.apf.msr_val = data;
2183
2184 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2185 kvm_clear_async_pf_completion_queue(vcpu);
2186 kvm_async_pf_hash_reset(vcpu);
2187 return 0;
2188 }
2189
2190 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2191 sizeof(u32)))
2192 return 1;
2193
2194 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2195 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2196 kvm_async_pf_wakeup_all(vcpu);
2197 return 0;
2198 }
2199
2200 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2201 {
2202 vcpu->arch.pv_time_enabled = false;
2203 }
2204
2205 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2206 {
2207 ++vcpu->stat.tlb_flush;
2208 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2209 }
2210
2211 static void record_steal_time(struct kvm_vcpu *vcpu)
2212 {
2213 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2214 return;
2215
2216 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2217 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2218 return;
2219
2220 /*
2221 * Doing a TLB flush here, on the guest's behalf, can avoid
2222 * expensive IPIs.
2223 */
2224 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2225 kvm_vcpu_flush_tlb(vcpu, false);
2226
2227 if (vcpu->arch.st.steal.version & 1)
2228 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2229
2230 vcpu->arch.st.steal.version += 1;
2231
2232 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2233 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2234
2235 smp_wmb();
2236
2237 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2238 vcpu->arch.st.last_steal;
2239 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2240
2241 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2242 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2243
2244 smp_wmb();
2245
2246 vcpu->arch.st.steal.version += 1;
2247
2248 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2249 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2250 }
2251
2252 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2253 {
2254 bool pr = false;
2255 u32 msr = msr_info->index;
2256 u64 data = msr_info->data;
2257
2258 switch (msr) {
2259 case MSR_AMD64_NB_CFG:
2260 case MSR_IA32_UCODE_REV:
2261 case MSR_IA32_UCODE_WRITE:
2262 case MSR_VM_HSAVE_PA:
2263 case MSR_AMD64_PATCH_LOADER:
2264 case MSR_AMD64_BU_CFG2:
2265 case MSR_AMD64_DC_CFG:
2266 break;
2267
2268 case MSR_EFER:
2269 return set_efer(vcpu, data);
2270 case MSR_K7_HWCR:
2271 data &= ~(u64)0x40; /* ignore flush filter disable */
2272 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2273 data &= ~(u64)0x8; /* ignore TLB cache disable */
2274 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2275 if (data != 0) {
2276 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2277 data);
2278 return 1;
2279 }
2280 break;
2281 case MSR_FAM10H_MMIO_CONF_BASE:
2282 if (data != 0) {
2283 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2284 "0x%llx\n", data);
2285 return 1;
2286 }
2287 break;
2288 case MSR_IA32_DEBUGCTLMSR:
2289 if (!data) {
2290 /* We support the non-activated case already */
2291 break;
2292 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2293 /* Values other than LBR and BTF are vendor-specific,
2294 thus reserved and should throw a #GP */
2295 return 1;
2296 }
2297 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2298 __func__, data);
2299 break;
2300 case 0x200 ... 0x2ff:
2301 return kvm_mtrr_set_msr(vcpu, msr, data);
2302 case MSR_IA32_APICBASE:
2303 return kvm_set_apic_base(vcpu, msr_info);
2304 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2305 return kvm_x2apic_msr_write(vcpu, msr, data);
2306 case MSR_IA32_TSCDEADLINE:
2307 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2308 break;
2309 case MSR_IA32_TSC_ADJUST:
2310 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2311 if (!msr_info->host_initiated) {
2312 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2313 adjust_tsc_offset_guest(vcpu, adj);
2314 }
2315 vcpu->arch.ia32_tsc_adjust_msr = data;
2316 }
2317 break;
2318 case MSR_IA32_MISC_ENABLE:
2319 vcpu->arch.ia32_misc_enable_msr = data;
2320 break;
2321 case MSR_IA32_SMBASE:
2322 if (!msr_info->host_initiated)
2323 return 1;
2324 vcpu->arch.smbase = data;
2325 break;
2326 case MSR_SMI_COUNT:
2327 if (!msr_info->host_initiated)
2328 return 1;
2329 vcpu->arch.smi_count = data;
2330 break;
2331 case MSR_KVM_WALL_CLOCK_NEW:
2332 case MSR_KVM_WALL_CLOCK:
2333 vcpu->kvm->arch.wall_clock = data;
2334 kvm_write_wall_clock(vcpu->kvm, data);
2335 break;
2336 case MSR_KVM_SYSTEM_TIME_NEW:
2337 case MSR_KVM_SYSTEM_TIME: {
2338 struct kvm_arch *ka = &vcpu->kvm->arch;
2339
2340 kvmclock_reset(vcpu);
2341
2342 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2343 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2344
2345 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2346 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2347
2348 ka->boot_vcpu_runs_old_kvmclock = tmp;
2349 }
2350
2351 vcpu->arch.time = data;
2352 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2353
2354 /* we verify if the enable bit is set... */
2355 if (!(data & 1))
2356 break;
2357
2358 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2359 &vcpu->arch.pv_time, data & ~1ULL,
2360 sizeof(struct pvclock_vcpu_time_info)))
2361 vcpu->arch.pv_time_enabled = false;
2362 else
2363 vcpu->arch.pv_time_enabled = true;
2364
2365 break;
2366 }
2367 case MSR_KVM_ASYNC_PF_EN:
2368 if (kvm_pv_enable_async_pf(vcpu, data))
2369 return 1;
2370 break;
2371 case MSR_KVM_STEAL_TIME:
2372
2373 if (unlikely(!sched_info_on()))
2374 return 1;
2375
2376 if (data & KVM_STEAL_RESERVED_MASK)
2377 return 1;
2378
2379 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2380 data & KVM_STEAL_VALID_BITS,
2381 sizeof(struct kvm_steal_time)))
2382 return 1;
2383
2384 vcpu->arch.st.msr_val = data;
2385
2386 if (!(data & KVM_MSR_ENABLED))
2387 break;
2388
2389 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2390
2391 break;
2392 case MSR_KVM_PV_EOI_EN:
2393 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2394 return 1;
2395 break;
2396
2397 case MSR_IA32_MCG_CTL:
2398 case MSR_IA32_MCG_STATUS:
2399 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2400 return set_msr_mce(vcpu, msr_info);
2401
2402 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2403 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2404 pr = true; /* fall through */
2405 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2406 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2407 if (kvm_pmu_is_valid_msr(vcpu, msr))
2408 return kvm_pmu_set_msr(vcpu, msr_info);
2409
2410 if (pr || data != 0)
2411 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2412 "0x%x data 0x%llx\n", msr, data);
2413 break;
2414 case MSR_K7_CLK_CTL:
2415 /*
2416 * Ignore all writes to this no longer documented MSR.
2417 * Writes are only relevant for old K7 processors,
2418 * all pre-dating SVM, but a recommended workaround from
2419 * AMD for these chips. It is possible to specify the
2420 * affected processor models on the command line, hence
2421 * the need to ignore the workaround.
2422 */
2423 break;
2424 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2425 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2426 case HV_X64_MSR_CRASH_CTL:
2427 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2428 return kvm_hv_set_msr_common(vcpu, msr, data,
2429 msr_info->host_initiated);
2430 case MSR_IA32_BBL_CR_CTL3:
2431 /* Drop writes to this legacy MSR -- see rdmsr
2432 * counterpart for further detail.
2433 */
2434 if (report_ignored_msrs)
2435 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2436 msr, data);
2437 break;
2438 case MSR_AMD64_OSVW_ID_LENGTH:
2439 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2440 return 1;
2441 vcpu->arch.osvw.length = data;
2442 break;
2443 case MSR_AMD64_OSVW_STATUS:
2444 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2445 return 1;
2446 vcpu->arch.osvw.status = data;
2447 break;
2448 case MSR_PLATFORM_INFO:
2449 if (!msr_info->host_initiated ||
2450 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2451 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2452 cpuid_fault_enabled(vcpu)))
2453 return 1;
2454 vcpu->arch.msr_platform_info = data;
2455 break;
2456 case MSR_MISC_FEATURES_ENABLES:
2457 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2458 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2459 !supports_cpuid_fault(vcpu)))
2460 return 1;
2461 vcpu->arch.msr_misc_features_enables = data;
2462 break;
2463 default:
2464 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2465 return xen_hvm_config(vcpu, data);
2466 if (kvm_pmu_is_valid_msr(vcpu, msr))
2467 return kvm_pmu_set_msr(vcpu, msr_info);
2468 if (!ignore_msrs) {
2469 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2470 msr, data);
2471 return 1;
2472 } else {
2473 if (report_ignored_msrs)
2474 vcpu_unimpl(vcpu,
2475 "ignored wrmsr: 0x%x data 0x%llx\n",
2476 msr, data);
2477 break;
2478 }
2479 }
2480 return 0;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2483
2484
2485 /*
2486 * Reads an msr value (of 'msr_index') into 'pdata'.
2487 * Returns 0 on success, non-0 otherwise.
2488 * Assumes vcpu_load() was already called.
2489 */
2490 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2491 {
2492 return kvm_x86_ops->get_msr(vcpu, msr);
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_get_msr);
2495
2496 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2497 {
2498 u64 data;
2499 u64 mcg_cap = vcpu->arch.mcg_cap;
2500 unsigned bank_num = mcg_cap & 0xff;
2501
2502 switch (msr) {
2503 case MSR_IA32_P5_MC_ADDR:
2504 case MSR_IA32_P5_MC_TYPE:
2505 data = 0;
2506 break;
2507 case MSR_IA32_MCG_CAP:
2508 data = vcpu->arch.mcg_cap;
2509 break;
2510 case MSR_IA32_MCG_CTL:
2511 if (!(mcg_cap & MCG_CTL_P))
2512 return 1;
2513 data = vcpu->arch.mcg_ctl;
2514 break;
2515 case MSR_IA32_MCG_STATUS:
2516 data = vcpu->arch.mcg_status;
2517 break;
2518 default:
2519 if (msr >= MSR_IA32_MC0_CTL &&
2520 msr < MSR_IA32_MCx_CTL(bank_num)) {
2521 u32 offset = msr - MSR_IA32_MC0_CTL;
2522 data = vcpu->arch.mce_banks[offset];
2523 break;
2524 }
2525 return 1;
2526 }
2527 *pdata = data;
2528 return 0;
2529 }
2530
2531 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2532 {
2533 switch (msr_info->index) {
2534 case MSR_IA32_PLATFORM_ID:
2535 case MSR_IA32_EBL_CR_POWERON:
2536 case MSR_IA32_DEBUGCTLMSR:
2537 case MSR_IA32_LASTBRANCHFROMIP:
2538 case MSR_IA32_LASTBRANCHTOIP:
2539 case MSR_IA32_LASTINTFROMIP:
2540 case MSR_IA32_LASTINTTOIP:
2541 case MSR_K8_SYSCFG:
2542 case MSR_K8_TSEG_ADDR:
2543 case MSR_K8_TSEG_MASK:
2544 case MSR_K7_HWCR:
2545 case MSR_VM_HSAVE_PA:
2546 case MSR_K8_INT_PENDING_MSG:
2547 case MSR_AMD64_NB_CFG:
2548 case MSR_FAM10H_MMIO_CONF_BASE:
2549 case MSR_AMD64_BU_CFG2:
2550 case MSR_IA32_PERF_CTL:
2551 case MSR_AMD64_DC_CFG:
2552 msr_info->data = 0;
2553 break;
2554 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2555 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2556 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2557 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2558 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2559 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2560 msr_info->data = 0;
2561 break;
2562 case MSR_IA32_UCODE_REV:
2563 msr_info->data = 0x100000000ULL;
2564 break;
2565 case MSR_MTRRcap:
2566 case 0x200 ... 0x2ff:
2567 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2568 case 0xcd: /* fsb frequency */
2569 msr_info->data = 3;
2570 break;
2571 /*
2572 * MSR_EBC_FREQUENCY_ID
2573 * Conservative value valid for even the basic CPU models.
2574 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2575 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2576 * and 266MHz for model 3, or 4. Set Core Clock
2577 * Frequency to System Bus Frequency Ratio to 1 (bits
2578 * 31:24) even though these are only valid for CPU
2579 * models > 2, however guests may end up dividing or
2580 * multiplying by zero otherwise.
2581 */
2582 case MSR_EBC_FREQUENCY_ID:
2583 msr_info->data = 1 << 24;
2584 break;
2585 case MSR_IA32_APICBASE:
2586 msr_info->data = kvm_get_apic_base(vcpu);
2587 break;
2588 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2589 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2590 break;
2591 case MSR_IA32_TSCDEADLINE:
2592 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2593 break;
2594 case MSR_IA32_TSC_ADJUST:
2595 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2596 break;
2597 case MSR_IA32_MISC_ENABLE:
2598 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2599 break;
2600 case MSR_IA32_SMBASE:
2601 if (!msr_info->host_initiated)
2602 return 1;
2603 msr_info->data = vcpu->arch.smbase;
2604 break;
2605 case MSR_SMI_COUNT:
2606 msr_info->data = vcpu->arch.smi_count;
2607 break;
2608 case MSR_IA32_PERF_STATUS:
2609 /* TSC increment by tick */
2610 msr_info->data = 1000ULL;
2611 /* CPU multiplier */
2612 msr_info->data |= (((uint64_t)4ULL) << 40);
2613 break;
2614 case MSR_EFER:
2615 msr_info->data = vcpu->arch.efer;
2616 break;
2617 case MSR_KVM_WALL_CLOCK:
2618 case MSR_KVM_WALL_CLOCK_NEW:
2619 msr_info->data = vcpu->kvm->arch.wall_clock;
2620 break;
2621 case MSR_KVM_SYSTEM_TIME:
2622 case MSR_KVM_SYSTEM_TIME_NEW:
2623 msr_info->data = vcpu->arch.time;
2624 break;
2625 case MSR_KVM_ASYNC_PF_EN:
2626 msr_info->data = vcpu->arch.apf.msr_val;
2627 break;
2628 case MSR_KVM_STEAL_TIME:
2629 msr_info->data = vcpu->arch.st.msr_val;
2630 break;
2631 case MSR_KVM_PV_EOI_EN:
2632 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2633 break;
2634 case MSR_IA32_P5_MC_ADDR:
2635 case MSR_IA32_P5_MC_TYPE:
2636 case MSR_IA32_MCG_CAP:
2637 case MSR_IA32_MCG_CTL:
2638 case MSR_IA32_MCG_STATUS:
2639 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2640 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2641 case MSR_K7_CLK_CTL:
2642 /*
2643 * Provide expected ramp-up count for K7. All other
2644 * are set to zero, indicating minimum divisors for
2645 * every field.
2646 *
2647 * This prevents guest kernels on AMD host with CPU
2648 * type 6, model 8 and higher from exploding due to
2649 * the rdmsr failing.
2650 */
2651 msr_info->data = 0x20000000;
2652 break;
2653 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2654 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2655 case HV_X64_MSR_CRASH_CTL:
2656 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2657 return kvm_hv_get_msr_common(vcpu,
2658 msr_info->index, &msr_info->data);
2659 break;
2660 case MSR_IA32_BBL_CR_CTL3:
2661 /* This legacy MSR exists but isn't fully documented in current
2662 * silicon. It is however accessed by winxp in very narrow
2663 * scenarios where it sets bit #19, itself documented as
2664 * a "reserved" bit. Best effort attempt to source coherent
2665 * read data here should the balance of the register be
2666 * interpreted by the guest:
2667 *
2668 * L2 cache control register 3: 64GB range, 256KB size,
2669 * enabled, latency 0x1, configured
2670 */
2671 msr_info->data = 0xbe702111;
2672 break;
2673 case MSR_AMD64_OSVW_ID_LENGTH:
2674 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2675 return 1;
2676 msr_info->data = vcpu->arch.osvw.length;
2677 break;
2678 case MSR_AMD64_OSVW_STATUS:
2679 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2680 return 1;
2681 msr_info->data = vcpu->arch.osvw.status;
2682 break;
2683 case MSR_PLATFORM_INFO:
2684 msr_info->data = vcpu->arch.msr_platform_info;
2685 break;
2686 case MSR_MISC_FEATURES_ENABLES:
2687 msr_info->data = vcpu->arch.msr_misc_features_enables;
2688 break;
2689 default:
2690 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2691 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2692 if (!ignore_msrs) {
2693 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2694 msr_info->index);
2695 return 1;
2696 } else {
2697 if (report_ignored_msrs)
2698 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2699 msr_info->index);
2700 msr_info->data = 0;
2701 }
2702 break;
2703 }
2704 return 0;
2705 }
2706 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2707
2708 /*
2709 * Read or write a bunch of msrs. All parameters are kernel addresses.
2710 *
2711 * @return number of msrs set successfully.
2712 */
2713 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2714 struct kvm_msr_entry *entries,
2715 int (*do_msr)(struct kvm_vcpu *vcpu,
2716 unsigned index, u64 *data))
2717 {
2718 int i;
2719
2720 for (i = 0; i < msrs->nmsrs; ++i)
2721 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2722 break;
2723
2724 return i;
2725 }
2726
2727 /*
2728 * Read or write a bunch of msrs. Parameters are user addresses.
2729 *
2730 * @return number of msrs set successfully.
2731 */
2732 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2733 int (*do_msr)(struct kvm_vcpu *vcpu,
2734 unsigned index, u64 *data),
2735 int writeback)
2736 {
2737 struct kvm_msrs msrs;
2738 struct kvm_msr_entry *entries;
2739 int r, n;
2740 unsigned size;
2741
2742 r = -EFAULT;
2743 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2744 goto out;
2745
2746 r = -E2BIG;
2747 if (msrs.nmsrs >= MAX_IO_MSRS)
2748 goto out;
2749
2750 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2751 entries = memdup_user(user_msrs->entries, size);
2752 if (IS_ERR(entries)) {
2753 r = PTR_ERR(entries);
2754 goto out;
2755 }
2756
2757 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2758 if (r < 0)
2759 goto out_free;
2760
2761 r = -EFAULT;
2762 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2763 goto out_free;
2764
2765 r = n;
2766
2767 out_free:
2768 kfree(entries);
2769 out:
2770 return r;
2771 }
2772
2773 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2774 {
2775 int r;
2776
2777 switch (ext) {
2778 case KVM_CAP_IRQCHIP:
2779 case KVM_CAP_HLT:
2780 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2781 case KVM_CAP_SET_TSS_ADDR:
2782 case KVM_CAP_EXT_CPUID:
2783 case KVM_CAP_EXT_EMUL_CPUID:
2784 case KVM_CAP_CLOCKSOURCE:
2785 case KVM_CAP_PIT:
2786 case KVM_CAP_NOP_IO_DELAY:
2787 case KVM_CAP_MP_STATE:
2788 case KVM_CAP_SYNC_MMU:
2789 case KVM_CAP_USER_NMI:
2790 case KVM_CAP_REINJECT_CONTROL:
2791 case KVM_CAP_IRQ_INJECT_STATUS:
2792 case KVM_CAP_IOEVENTFD:
2793 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2794 case KVM_CAP_PIT2:
2795 case KVM_CAP_PIT_STATE2:
2796 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2797 case KVM_CAP_XEN_HVM:
2798 case KVM_CAP_VCPU_EVENTS:
2799 case KVM_CAP_HYPERV:
2800 case KVM_CAP_HYPERV_VAPIC:
2801 case KVM_CAP_HYPERV_SPIN:
2802 case KVM_CAP_HYPERV_SYNIC:
2803 case KVM_CAP_HYPERV_SYNIC2:
2804 case KVM_CAP_HYPERV_VP_INDEX:
2805 case KVM_CAP_PCI_SEGMENT:
2806 case KVM_CAP_DEBUGREGS:
2807 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2808 case KVM_CAP_XSAVE:
2809 case KVM_CAP_ASYNC_PF:
2810 case KVM_CAP_GET_TSC_KHZ:
2811 case KVM_CAP_KVMCLOCK_CTRL:
2812 case KVM_CAP_READONLY_MEM:
2813 case KVM_CAP_HYPERV_TIME:
2814 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2815 case KVM_CAP_TSC_DEADLINE_TIMER:
2816 case KVM_CAP_ENABLE_CAP_VM:
2817 case KVM_CAP_DISABLE_QUIRKS:
2818 case KVM_CAP_SET_BOOT_CPU_ID:
2819 case KVM_CAP_SPLIT_IRQCHIP:
2820 case KVM_CAP_IMMEDIATE_EXIT:
2821 case KVM_CAP_GET_MSR_FEATURES:
2822 r = 1;
2823 break;
2824 case KVM_CAP_ADJUST_CLOCK:
2825 r = KVM_CLOCK_TSC_STABLE;
2826 break;
2827 case KVM_CAP_X86_GUEST_MWAIT:
2828 r = kvm_mwait_in_guest();
2829 break;
2830 case KVM_CAP_X86_SMM:
2831 /* SMBASE is usually relocated above 1M on modern chipsets,
2832 * and SMM handlers might indeed rely on 4G segment limits,
2833 * so do not report SMM to be available if real mode is
2834 * emulated via vm86 mode. Still, do not go to great lengths
2835 * to avoid userspace's usage of the feature, because it is a
2836 * fringe case that is not enabled except via specific settings
2837 * of the module parameters.
2838 */
2839 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2840 break;
2841 case KVM_CAP_VAPIC:
2842 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2843 break;
2844 case KVM_CAP_NR_VCPUS:
2845 r = KVM_SOFT_MAX_VCPUS;
2846 break;
2847 case KVM_CAP_MAX_VCPUS:
2848 r = KVM_MAX_VCPUS;
2849 break;
2850 case KVM_CAP_NR_MEMSLOTS:
2851 r = KVM_USER_MEM_SLOTS;
2852 break;
2853 case KVM_CAP_PV_MMU: /* obsolete */
2854 r = 0;
2855 break;
2856 case KVM_CAP_MCE:
2857 r = KVM_MAX_MCE_BANKS;
2858 break;
2859 case KVM_CAP_XCRS:
2860 r = boot_cpu_has(X86_FEATURE_XSAVE);
2861 break;
2862 case KVM_CAP_TSC_CONTROL:
2863 r = kvm_has_tsc_control;
2864 break;
2865 case KVM_CAP_X2APIC_API:
2866 r = KVM_X2APIC_API_VALID_FLAGS;
2867 break;
2868 default:
2869 r = 0;
2870 break;
2871 }
2872 return r;
2873
2874 }
2875
2876 long kvm_arch_dev_ioctl(struct file *filp,
2877 unsigned int ioctl, unsigned long arg)
2878 {
2879 void __user *argp = (void __user *)arg;
2880 long r;
2881
2882 switch (ioctl) {
2883 case KVM_GET_MSR_INDEX_LIST: {
2884 struct kvm_msr_list __user *user_msr_list = argp;
2885 struct kvm_msr_list msr_list;
2886 unsigned n;
2887
2888 r = -EFAULT;
2889 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2890 goto out;
2891 n = msr_list.nmsrs;
2892 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2893 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2894 goto out;
2895 r = -E2BIG;
2896 if (n < msr_list.nmsrs)
2897 goto out;
2898 r = -EFAULT;
2899 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2900 num_msrs_to_save * sizeof(u32)))
2901 goto out;
2902 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2903 &emulated_msrs,
2904 num_emulated_msrs * sizeof(u32)))
2905 goto out;
2906 r = 0;
2907 break;
2908 }
2909 case KVM_GET_SUPPORTED_CPUID:
2910 case KVM_GET_EMULATED_CPUID: {
2911 struct kvm_cpuid2 __user *cpuid_arg = argp;
2912 struct kvm_cpuid2 cpuid;
2913
2914 r = -EFAULT;
2915 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2916 goto out;
2917
2918 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2919 ioctl);
2920 if (r)
2921 goto out;
2922
2923 r = -EFAULT;
2924 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2925 goto out;
2926 r = 0;
2927 break;
2928 }
2929 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2930 r = -EFAULT;
2931 if (copy_to_user(argp, &kvm_mce_cap_supported,
2932 sizeof(kvm_mce_cap_supported)))
2933 goto out;
2934 r = 0;
2935 break;
2936 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2937 struct kvm_msr_list __user *user_msr_list = argp;
2938 struct kvm_msr_list msr_list;
2939 unsigned int n;
2940
2941 r = -EFAULT;
2942 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2943 goto out;
2944 n = msr_list.nmsrs;
2945 msr_list.nmsrs = num_msr_based_features;
2946 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2947 goto out;
2948 r = -E2BIG;
2949 if (n < msr_list.nmsrs)
2950 goto out;
2951 r = -EFAULT;
2952 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2953 num_msr_based_features * sizeof(u32)))
2954 goto out;
2955 r = 0;
2956 break;
2957 }
2958 case KVM_GET_MSRS:
2959 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2960 break;
2961 }
2962 default:
2963 r = -EINVAL;
2964 }
2965 out:
2966 return r;
2967 }
2968
2969 static void wbinvd_ipi(void *garbage)
2970 {
2971 wbinvd();
2972 }
2973
2974 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2975 {
2976 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2977 }
2978
2979 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2980 {
2981 /* Address WBINVD may be executed by guest */
2982 if (need_emulate_wbinvd(vcpu)) {
2983 if (kvm_x86_ops->has_wbinvd_exit())
2984 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2985 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2986 smp_call_function_single(vcpu->cpu,
2987 wbinvd_ipi, NULL, 1);
2988 }
2989
2990 kvm_x86_ops->vcpu_load(vcpu, cpu);
2991
2992 /* Apply any externally detected TSC adjustments (due to suspend) */
2993 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2994 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2995 vcpu->arch.tsc_offset_adjustment = 0;
2996 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2997 }
2998
2999 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3000 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3001 rdtsc() - vcpu->arch.last_host_tsc;
3002 if (tsc_delta < 0)
3003 mark_tsc_unstable("KVM discovered backwards TSC");
3004
3005 if (kvm_check_tsc_unstable()) {
3006 u64 offset = kvm_compute_tsc_offset(vcpu,
3007 vcpu->arch.last_guest_tsc);
3008 kvm_vcpu_write_tsc_offset(vcpu, offset);
3009 vcpu->arch.tsc_catchup = 1;
3010 }
3011
3012 if (kvm_lapic_hv_timer_in_use(vcpu))
3013 kvm_lapic_restart_hv_timer(vcpu);
3014
3015 /*
3016 * On a host with synchronized TSC, there is no need to update
3017 * kvmclock on vcpu->cpu migration
3018 */
3019 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3020 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3021 if (vcpu->cpu != cpu)
3022 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3023 vcpu->cpu = cpu;
3024 }
3025
3026 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3027 }
3028
3029 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3030 {
3031 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3032 return;
3033
3034 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3035
3036 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3037 &vcpu->arch.st.steal.preempted,
3038 offsetof(struct kvm_steal_time, preempted),
3039 sizeof(vcpu->arch.st.steal.preempted));
3040 }
3041
3042 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3043 {
3044 int idx;
3045
3046 if (vcpu->preempted)
3047 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3048
3049 /*
3050 * Disable page faults because we're in atomic context here.
3051 * kvm_write_guest_offset_cached() would call might_fault()
3052 * that relies on pagefault_disable() to tell if there's a
3053 * bug. NOTE: the write to guest memory may not go through if
3054 * during postcopy live migration or if there's heavy guest
3055 * paging.
3056 */
3057 pagefault_disable();
3058 /*
3059 * kvm_memslots() will be called by
3060 * kvm_write_guest_offset_cached() so take the srcu lock.
3061 */
3062 idx = srcu_read_lock(&vcpu->kvm->srcu);
3063 kvm_steal_time_set_preempted(vcpu);
3064 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3065 pagefault_enable();
3066 kvm_x86_ops->vcpu_put(vcpu);
3067 vcpu->arch.last_host_tsc = rdtsc();
3068 /*
3069 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3070 * on every vmexit, but if not, we might have a stale dr6 from the
3071 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3072 */
3073 set_debugreg(0, 6);
3074 }
3075
3076 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3077 struct kvm_lapic_state *s)
3078 {
3079 if (vcpu->arch.apicv_active)
3080 kvm_x86_ops->sync_pir_to_irr(vcpu);
3081
3082 return kvm_apic_get_state(vcpu, s);
3083 }
3084
3085 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3086 struct kvm_lapic_state *s)
3087 {
3088 int r;
3089
3090 r = kvm_apic_set_state(vcpu, s);
3091 if (r)
3092 return r;
3093 update_cr8_intercept(vcpu);
3094
3095 return 0;
3096 }
3097
3098 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3099 {
3100 return (!lapic_in_kernel(vcpu) ||
3101 kvm_apic_accept_pic_intr(vcpu));
3102 }
3103
3104 /*
3105 * if userspace requested an interrupt window, check that the
3106 * interrupt window is open.
3107 *
3108 * No need to exit to userspace if we already have an interrupt queued.
3109 */
3110 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3111 {
3112 return kvm_arch_interrupt_allowed(vcpu) &&
3113 !kvm_cpu_has_interrupt(vcpu) &&
3114 !kvm_event_needs_reinjection(vcpu) &&
3115 kvm_cpu_accept_dm_intr(vcpu);
3116 }
3117
3118 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3119 struct kvm_interrupt *irq)
3120 {
3121 if (irq->irq >= KVM_NR_INTERRUPTS)
3122 return -EINVAL;
3123
3124 if (!irqchip_in_kernel(vcpu->kvm)) {
3125 kvm_queue_interrupt(vcpu, irq->irq, false);
3126 kvm_make_request(KVM_REQ_EVENT, vcpu);
3127 return 0;
3128 }
3129
3130 /*
3131 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3132 * fail for in-kernel 8259.
3133 */
3134 if (pic_in_kernel(vcpu->kvm))
3135 return -ENXIO;
3136
3137 if (vcpu->arch.pending_external_vector != -1)
3138 return -EEXIST;
3139
3140 vcpu->arch.pending_external_vector = irq->irq;
3141 kvm_make_request(KVM_REQ_EVENT, vcpu);
3142 return 0;
3143 }
3144
3145 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3146 {
3147 kvm_inject_nmi(vcpu);
3148
3149 return 0;
3150 }
3151
3152 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3153 {
3154 kvm_make_request(KVM_REQ_SMI, vcpu);
3155
3156 return 0;
3157 }
3158
3159 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3160 struct kvm_tpr_access_ctl *tac)
3161 {
3162 if (tac->flags)
3163 return -EINVAL;
3164 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3165 return 0;
3166 }
3167
3168 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3169 u64 mcg_cap)
3170 {
3171 int r;
3172 unsigned bank_num = mcg_cap & 0xff, bank;
3173
3174 r = -EINVAL;
3175 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3176 goto out;
3177 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3178 goto out;
3179 r = 0;
3180 vcpu->arch.mcg_cap = mcg_cap;
3181 /* Init IA32_MCG_CTL to all 1s */
3182 if (mcg_cap & MCG_CTL_P)
3183 vcpu->arch.mcg_ctl = ~(u64)0;
3184 /* Init IA32_MCi_CTL to all 1s */
3185 for (bank = 0; bank < bank_num; bank++)
3186 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3187
3188 if (kvm_x86_ops->setup_mce)
3189 kvm_x86_ops->setup_mce(vcpu);
3190 out:
3191 return r;
3192 }
3193
3194 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3195 struct kvm_x86_mce *mce)
3196 {
3197 u64 mcg_cap = vcpu->arch.mcg_cap;
3198 unsigned bank_num = mcg_cap & 0xff;
3199 u64 *banks = vcpu->arch.mce_banks;
3200
3201 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3202 return -EINVAL;
3203 /*
3204 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3205 * reporting is disabled
3206 */
3207 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3208 vcpu->arch.mcg_ctl != ~(u64)0)
3209 return 0;
3210 banks += 4 * mce->bank;
3211 /*
3212 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3213 * reporting is disabled for the bank
3214 */
3215 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3216 return 0;
3217 if (mce->status & MCI_STATUS_UC) {
3218 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3219 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3220 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3221 return 0;
3222 }
3223 if (banks[1] & MCI_STATUS_VAL)
3224 mce->status |= MCI_STATUS_OVER;
3225 banks[2] = mce->addr;
3226 banks[3] = mce->misc;
3227 vcpu->arch.mcg_status = mce->mcg_status;
3228 banks[1] = mce->status;
3229 kvm_queue_exception(vcpu, MC_VECTOR);
3230 } else if (!(banks[1] & MCI_STATUS_VAL)
3231 || !(banks[1] & MCI_STATUS_UC)) {
3232 if (banks[1] & MCI_STATUS_VAL)
3233 mce->status |= MCI_STATUS_OVER;
3234 banks[2] = mce->addr;
3235 banks[3] = mce->misc;
3236 banks[1] = mce->status;
3237 } else
3238 banks[1] |= MCI_STATUS_OVER;
3239 return 0;
3240 }
3241
3242 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3243 struct kvm_vcpu_events *events)
3244 {
3245 process_nmi(vcpu);
3246 /*
3247 * FIXME: pass injected and pending separately. This is only
3248 * needed for nested virtualization, whose state cannot be
3249 * migrated yet. For now we can combine them.
3250 */
3251 events->exception.injected =
3252 (vcpu->arch.exception.pending ||
3253 vcpu->arch.exception.injected) &&
3254 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3255 events->exception.nr = vcpu->arch.exception.nr;
3256 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3257 events->exception.pad = 0;
3258 events->exception.error_code = vcpu->arch.exception.error_code;
3259
3260 events->interrupt.injected =
3261 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3262 events->interrupt.nr = vcpu->arch.interrupt.nr;
3263 events->interrupt.soft = 0;
3264 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3265
3266 events->nmi.injected = vcpu->arch.nmi_injected;
3267 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3268 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3269 events->nmi.pad = 0;
3270
3271 events->sipi_vector = 0; /* never valid when reporting to user space */
3272
3273 events->smi.smm = is_smm(vcpu);
3274 events->smi.pending = vcpu->arch.smi_pending;
3275 events->smi.smm_inside_nmi =
3276 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3277 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3278
3279 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3280 | KVM_VCPUEVENT_VALID_SHADOW
3281 | KVM_VCPUEVENT_VALID_SMM);
3282 memset(&events->reserved, 0, sizeof(events->reserved));
3283 }
3284
3285 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3286
3287 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3288 struct kvm_vcpu_events *events)
3289 {
3290 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3291 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3292 | KVM_VCPUEVENT_VALID_SHADOW
3293 | KVM_VCPUEVENT_VALID_SMM))
3294 return -EINVAL;
3295
3296 if (events->exception.injected &&
3297 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3298 is_guest_mode(vcpu)))
3299 return -EINVAL;
3300
3301 /* INITs are latched while in SMM */
3302 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3303 (events->smi.smm || events->smi.pending) &&
3304 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3305 return -EINVAL;
3306
3307 process_nmi(vcpu);
3308 vcpu->arch.exception.injected = false;
3309 vcpu->arch.exception.pending = events->exception.injected;
3310 vcpu->arch.exception.nr = events->exception.nr;
3311 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3312 vcpu->arch.exception.error_code = events->exception.error_code;
3313
3314 vcpu->arch.interrupt.pending = events->interrupt.injected;
3315 vcpu->arch.interrupt.nr = events->interrupt.nr;
3316 vcpu->arch.interrupt.soft = events->interrupt.soft;
3317 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3318 kvm_x86_ops->set_interrupt_shadow(vcpu,
3319 events->interrupt.shadow);
3320
3321 vcpu->arch.nmi_injected = events->nmi.injected;
3322 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3323 vcpu->arch.nmi_pending = events->nmi.pending;
3324 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3325
3326 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3327 lapic_in_kernel(vcpu))
3328 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3329
3330 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3331 u32 hflags = vcpu->arch.hflags;
3332 if (events->smi.smm)
3333 hflags |= HF_SMM_MASK;
3334 else
3335 hflags &= ~HF_SMM_MASK;
3336 kvm_set_hflags(vcpu, hflags);
3337
3338 vcpu->arch.smi_pending = events->smi.pending;
3339
3340 if (events->smi.smm) {
3341 if (events->smi.smm_inside_nmi)
3342 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3343 else
3344 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3345 if (lapic_in_kernel(vcpu)) {
3346 if (events->smi.latched_init)
3347 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3348 else
3349 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3350 }
3351 }
3352 }
3353
3354 kvm_make_request(KVM_REQ_EVENT, vcpu);
3355
3356 return 0;
3357 }
3358
3359 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3360 struct kvm_debugregs *dbgregs)
3361 {
3362 unsigned long val;
3363
3364 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3365 kvm_get_dr(vcpu, 6, &val);
3366 dbgregs->dr6 = val;
3367 dbgregs->dr7 = vcpu->arch.dr7;
3368 dbgregs->flags = 0;
3369 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3370 }
3371
3372 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3373 struct kvm_debugregs *dbgregs)
3374 {
3375 if (dbgregs->flags)
3376 return -EINVAL;
3377
3378 if (dbgregs->dr6 & ~0xffffffffull)
3379 return -EINVAL;
3380 if (dbgregs->dr7 & ~0xffffffffull)
3381 return -EINVAL;
3382
3383 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3384 kvm_update_dr0123(vcpu);
3385 vcpu->arch.dr6 = dbgregs->dr6;
3386 kvm_update_dr6(vcpu);
3387 vcpu->arch.dr7 = dbgregs->dr7;
3388 kvm_update_dr7(vcpu);
3389
3390 return 0;
3391 }
3392
3393 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3394
3395 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3396 {
3397 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3398 u64 xstate_bv = xsave->header.xfeatures;
3399 u64 valid;
3400
3401 /*
3402 * Copy legacy XSAVE area, to avoid complications with CPUID
3403 * leaves 0 and 1 in the loop below.
3404 */
3405 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3406
3407 /* Set XSTATE_BV */
3408 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3409 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3410
3411 /*
3412 * Copy each region from the possibly compacted offset to the
3413 * non-compacted offset.
3414 */
3415 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3416 while (valid) {
3417 u64 feature = valid & -valid;
3418 int index = fls64(feature) - 1;
3419 void *src = get_xsave_addr(xsave, feature);
3420
3421 if (src) {
3422 u32 size, offset, ecx, edx;
3423 cpuid_count(XSTATE_CPUID, index,
3424 &size, &offset, &ecx, &edx);
3425 if (feature == XFEATURE_MASK_PKRU)
3426 memcpy(dest + offset, &vcpu->arch.pkru,
3427 sizeof(vcpu->arch.pkru));
3428 else
3429 memcpy(dest + offset, src, size);
3430
3431 }
3432
3433 valid -= feature;
3434 }
3435 }
3436
3437 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3438 {
3439 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3440 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3441 u64 valid;
3442
3443 /*
3444 * Copy legacy XSAVE area, to avoid complications with CPUID
3445 * leaves 0 and 1 in the loop below.
3446 */
3447 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3448
3449 /* Set XSTATE_BV and possibly XCOMP_BV. */
3450 xsave->header.xfeatures = xstate_bv;
3451 if (boot_cpu_has(X86_FEATURE_XSAVES))
3452 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3453
3454 /*
3455 * Copy each region from the non-compacted offset to the
3456 * possibly compacted offset.
3457 */
3458 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3459 while (valid) {
3460 u64 feature = valid & -valid;
3461 int index = fls64(feature) - 1;
3462 void *dest = get_xsave_addr(xsave, feature);
3463
3464 if (dest) {
3465 u32 size, offset, ecx, edx;
3466 cpuid_count(XSTATE_CPUID, index,
3467 &size, &offset, &ecx, &edx);
3468 if (feature == XFEATURE_MASK_PKRU)
3469 memcpy(&vcpu->arch.pkru, src + offset,
3470 sizeof(vcpu->arch.pkru));
3471 else
3472 memcpy(dest, src + offset, size);
3473 }
3474
3475 valid -= feature;
3476 }
3477 }
3478
3479 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3480 struct kvm_xsave *guest_xsave)
3481 {
3482 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3483 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3484 fill_xsave((u8 *) guest_xsave->region, vcpu);
3485 } else {
3486 memcpy(guest_xsave->region,
3487 &vcpu->arch.guest_fpu.state.fxsave,
3488 sizeof(struct fxregs_state));
3489 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3490 XFEATURE_MASK_FPSSE;
3491 }
3492 }
3493
3494 #define XSAVE_MXCSR_OFFSET 24
3495
3496 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3497 struct kvm_xsave *guest_xsave)
3498 {
3499 u64 xstate_bv =
3500 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3501 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3502
3503 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3504 /*
3505 * Here we allow setting states that are not present in
3506 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3507 * with old userspace.
3508 */
3509 if (xstate_bv & ~kvm_supported_xcr0() ||
3510 mxcsr & ~mxcsr_feature_mask)
3511 return -EINVAL;
3512 load_xsave(vcpu, (u8 *)guest_xsave->region);
3513 } else {
3514 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3515 mxcsr & ~mxcsr_feature_mask)
3516 return -EINVAL;
3517 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3518 guest_xsave->region, sizeof(struct fxregs_state));
3519 }
3520 return 0;
3521 }
3522
3523 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3524 struct kvm_xcrs *guest_xcrs)
3525 {
3526 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3527 guest_xcrs->nr_xcrs = 0;
3528 return;
3529 }
3530
3531 guest_xcrs->nr_xcrs = 1;
3532 guest_xcrs->flags = 0;
3533 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3534 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3535 }
3536
3537 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3538 struct kvm_xcrs *guest_xcrs)
3539 {
3540 int i, r = 0;
3541
3542 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3543 return -EINVAL;
3544
3545 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3546 return -EINVAL;
3547
3548 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3549 /* Only support XCR0 currently */
3550 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3551 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3552 guest_xcrs->xcrs[i].value);
3553 break;
3554 }
3555 if (r)
3556 r = -EINVAL;
3557 return r;
3558 }
3559
3560 /*
3561 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3562 * stopped by the hypervisor. This function will be called from the host only.
3563 * EINVAL is returned when the host attempts to set the flag for a guest that
3564 * does not support pv clocks.
3565 */
3566 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3567 {
3568 if (!vcpu->arch.pv_time_enabled)
3569 return -EINVAL;
3570 vcpu->arch.pvclock_set_guest_stopped_request = true;
3571 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3572 return 0;
3573 }
3574
3575 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3576 struct kvm_enable_cap *cap)
3577 {
3578 if (cap->flags)
3579 return -EINVAL;
3580
3581 switch (cap->cap) {
3582 case KVM_CAP_HYPERV_SYNIC2:
3583 if (cap->args[0])
3584 return -EINVAL;
3585 case KVM_CAP_HYPERV_SYNIC:
3586 if (!irqchip_in_kernel(vcpu->kvm))
3587 return -EINVAL;
3588 return kvm_hv_activate_synic(vcpu, cap->cap ==
3589 KVM_CAP_HYPERV_SYNIC2);
3590 default:
3591 return -EINVAL;
3592 }
3593 }
3594
3595 long kvm_arch_vcpu_ioctl(struct file *filp,
3596 unsigned int ioctl, unsigned long arg)
3597 {
3598 struct kvm_vcpu *vcpu = filp->private_data;
3599 void __user *argp = (void __user *)arg;
3600 int r;
3601 union {
3602 struct kvm_lapic_state *lapic;
3603 struct kvm_xsave *xsave;
3604 struct kvm_xcrs *xcrs;
3605 void *buffer;
3606 } u;
3607
3608 vcpu_load(vcpu);
3609
3610 u.buffer = NULL;
3611 switch (ioctl) {
3612 case KVM_GET_LAPIC: {
3613 r = -EINVAL;
3614 if (!lapic_in_kernel(vcpu))
3615 goto out;
3616 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3617
3618 r = -ENOMEM;
3619 if (!u.lapic)
3620 goto out;
3621 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3622 if (r)
3623 goto out;
3624 r = -EFAULT;
3625 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3626 goto out;
3627 r = 0;
3628 break;
3629 }
3630 case KVM_SET_LAPIC: {
3631 r = -EINVAL;
3632 if (!lapic_in_kernel(vcpu))
3633 goto out;
3634 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3635 if (IS_ERR(u.lapic)) {
3636 r = PTR_ERR(u.lapic);
3637 goto out_nofree;
3638 }
3639
3640 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3641 break;
3642 }
3643 case KVM_INTERRUPT: {
3644 struct kvm_interrupt irq;
3645
3646 r = -EFAULT;
3647 if (copy_from_user(&irq, argp, sizeof irq))
3648 goto out;
3649 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3650 break;
3651 }
3652 case KVM_NMI: {
3653 r = kvm_vcpu_ioctl_nmi(vcpu);
3654 break;
3655 }
3656 case KVM_SMI: {
3657 r = kvm_vcpu_ioctl_smi(vcpu);
3658 break;
3659 }
3660 case KVM_SET_CPUID: {
3661 struct kvm_cpuid __user *cpuid_arg = argp;
3662 struct kvm_cpuid cpuid;
3663
3664 r = -EFAULT;
3665 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3666 goto out;
3667 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3668 break;
3669 }
3670 case KVM_SET_CPUID2: {
3671 struct kvm_cpuid2 __user *cpuid_arg = argp;
3672 struct kvm_cpuid2 cpuid;
3673
3674 r = -EFAULT;
3675 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3676 goto out;
3677 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3678 cpuid_arg->entries);
3679 break;
3680 }
3681 case KVM_GET_CPUID2: {
3682 struct kvm_cpuid2 __user *cpuid_arg = argp;
3683 struct kvm_cpuid2 cpuid;
3684
3685 r = -EFAULT;
3686 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3687 goto out;
3688 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3689 cpuid_arg->entries);
3690 if (r)
3691 goto out;
3692 r = -EFAULT;
3693 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3694 goto out;
3695 r = 0;
3696 break;
3697 }
3698 case KVM_GET_MSRS: {
3699 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3700 r = msr_io(vcpu, argp, do_get_msr, 1);
3701 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3702 break;
3703 }
3704 case KVM_SET_MSRS: {
3705 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3706 r = msr_io(vcpu, argp, do_set_msr, 0);
3707 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3708 break;
3709 }
3710 case KVM_TPR_ACCESS_REPORTING: {
3711 struct kvm_tpr_access_ctl tac;
3712
3713 r = -EFAULT;
3714 if (copy_from_user(&tac, argp, sizeof tac))
3715 goto out;
3716 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3717 if (r)
3718 goto out;
3719 r = -EFAULT;
3720 if (copy_to_user(argp, &tac, sizeof tac))
3721 goto out;
3722 r = 0;
3723 break;
3724 };
3725 case KVM_SET_VAPIC_ADDR: {
3726 struct kvm_vapic_addr va;
3727 int idx;
3728
3729 r = -EINVAL;
3730 if (!lapic_in_kernel(vcpu))
3731 goto out;
3732 r = -EFAULT;
3733 if (copy_from_user(&va, argp, sizeof va))
3734 goto out;
3735 idx = srcu_read_lock(&vcpu->kvm->srcu);
3736 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3737 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3738 break;
3739 }
3740 case KVM_X86_SETUP_MCE: {
3741 u64 mcg_cap;
3742
3743 r = -EFAULT;
3744 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3745 goto out;
3746 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3747 break;
3748 }
3749 case KVM_X86_SET_MCE: {
3750 struct kvm_x86_mce mce;
3751
3752 r = -EFAULT;
3753 if (copy_from_user(&mce, argp, sizeof mce))
3754 goto out;
3755 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3756 break;
3757 }
3758 case KVM_GET_VCPU_EVENTS: {
3759 struct kvm_vcpu_events events;
3760
3761 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3762
3763 r = -EFAULT;
3764 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3765 break;
3766 r = 0;
3767 break;
3768 }
3769 case KVM_SET_VCPU_EVENTS: {
3770 struct kvm_vcpu_events events;
3771
3772 r = -EFAULT;
3773 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3774 break;
3775
3776 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3777 break;
3778 }
3779 case KVM_GET_DEBUGREGS: {
3780 struct kvm_debugregs dbgregs;
3781
3782 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3783
3784 r = -EFAULT;
3785 if (copy_to_user(argp, &dbgregs,
3786 sizeof(struct kvm_debugregs)))
3787 break;
3788 r = 0;
3789 break;
3790 }
3791 case KVM_SET_DEBUGREGS: {
3792 struct kvm_debugregs dbgregs;
3793
3794 r = -EFAULT;
3795 if (copy_from_user(&dbgregs, argp,
3796 sizeof(struct kvm_debugregs)))
3797 break;
3798
3799 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3800 break;
3801 }
3802 case KVM_GET_XSAVE: {
3803 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3804 r = -ENOMEM;
3805 if (!u.xsave)
3806 break;
3807
3808 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3809
3810 r = -EFAULT;
3811 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3812 break;
3813 r = 0;
3814 break;
3815 }
3816 case KVM_SET_XSAVE: {
3817 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3818 if (IS_ERR(u.xsave)) {
3819 r = PTR_ERR(u.xsave);
3820 goto out_nofree;
3821 }
3822
3823 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3824 break;
3825 }
3826 case KVM_GET_XCRS: {
3827 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3828 r = -ENOMEM;
3829 if (!u.xcrs)
3830 break;
3831
3832 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3833
3834 r = -EFAULT;
3835 if (copy_to_user(argp, u.xcrs,
3836 sizeof(struct kvm_xcrs)))
3837 break;
3838 r = 0;
3839 break;
3840 }
3841 case KVM_SET_XCRS: {
3842 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3843 if (IS_ERR(u.xcrs)) {
3844 r = PTR_ERR(u.xcrs);
3845 goto out_nofree;
3846 }
3847
3848 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3849 break;
3850 }
3851 case KVM_SET_TSC_KHZ: {
3852 u32 user_tsc_khz;
3853
3854 r = -EINVAL;
3855 user_tsc_khz = (u32)arg;
3856
3857 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3858 goto out;
3859
3860 if (user_tsc_khz == 0)
3861 user_tsc_khz = tsc_khz;
3862
3863 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3864 r = 0;
3865
3866 goto out;
3867 }
3868 case KVM_GET_TSC_KHZ: {
3869 r = vcpu->arch.virtual_tsc_khz;
3870 goto out;
3871 }
3872 case KVM_KVMCLOCK_CTRL: {
3873 r = kvm_set_guest_paused(vcpu);
3874 goto out;
3875 }
3876 case KVM_ENABLE_CAP: {
3877 struct kvm_enable_cap cap;
3878
3879 r = -EFAULT;
3880 if (copy_from_user(&cap, argp, sizeof(cap)))
3881 goto out;
3882 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3883 break;
3884 }
3885 default:
3886 r = -EINVAL;
3887 }
3888 out:
3889 kfree(u.buffer);
3890 out_nofree:
3891 vcpu_put(vcpu);
3892 return r;
3893 }
3894
3895 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3896 {
3897 return VM_FAULT_SIGBUS;
3898 }
3899
3900 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3901 {
3902 int ret;
3903
3904 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3905 return -EINVAL;
3906 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3907 return ret;
3908 }
3909
3910 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3911 u64 ident_addr)
3912 {
3913 kvm->arch.ept_identity_map_addr = ident_addr;
3914 return 0;
3915 }
3916
3917 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3918 u32 kvm_nr_mmu_pages)
3919 {
3920 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3921 return -EINVAL;
3922
3923 mutex_lock(&kvm->slots_lock);
3924
3925 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3926 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3927
3928 mutex_unlock(&kvm->slots_lock);
3929 return 0;
3930 }
3931
3932 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3933 {
3934 return kvm->arch.n_max_mmu_pages;
3935 }
3936
3937 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3938 {
3939 struct kvm_pic *pic = kvm->arch.vpic;
3940 int r;
3941
3942 r = 0;
3943 switch (chip->chip_id) {
3944 case KVM_IRQCHIP_PIC_MASTER:
3945 memcpy(&chip->chip.pic, &pic->pics[0],
3946 sizeof(struct kvm_pic_state));
3947 break;
3948 case KVM_IRQCHIP_PIC_SLAVE:
3949 memcpy(&chip->chip.pic, &pic->pics[1],
3950 sizeof(struct kvm_pic_state));
3951 break;
3952 case KVM_IRQCHIP_IOAPIC:
3953 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3954 break;
3955 default:
3956 r = -EINVAL;
3957 break;
3958 }
3959 return r;
3960 }
3961
3962 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3963 {
3964 struct kvm_pic *pic = kvm->arch.vpic;
3965 int r;
3966
3967 r = 0;
3968 switch (chip->chip_id) {
3969 case KVM_IRQCHIP_PIC_MASTER:
3970 spin_lock(&pic->lock);
3971 memcpy(&pic->pics[0], &chip->chip.pic,
3972 sizeof(struct kvm_pic_state));
3973 spin_unlock(&pic->lock);
3974 break;
3975 case KVM_IRQCHIP_PIC_SLAVE:
3976 spin_lock(&pic->lock);
3977 memcpy(&pic->pics[1], &chip->chip.pic,
3978 sizeof(struct kvm_pic_state));
3979 spin_unlock(&pic->lock);
3980 break;
3981 case KVM_IRQCHIP_IOAPIC:
3982 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3983 break;
3984 default:
3985 r = -EINVAL;
3986 break;
3987 }
3988 kvm_pic_update_irq(pic);
3989 return r;
3990 }
3991
3992 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3993 {
3994 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3995
3996 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3997
3998 mutex_lock(&kps->lock);
3999 memcpy(ps, &kps->channels, sizeof(*ps));
4000 mutex_unlock(&kps->lock);
4001 return 0;
4002 }
4003
4004 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4005 {
4006 int i;
4007 struct kvm_pit *pit = kvm->arch.vpit;
4008
4009 mutex_lock(&pit->pit_state.lock);
4010 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4011 for (i = 0; i < 3; i++)
4012 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4013 mutex_unlock(&pit->pit_state.lock);
4014 return 0;
4015 }
4016
4017 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4018 {
4019 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4020 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4021 sizeof(ps->channels));
4022 ps->flags = kvm->arch.vpit->pit_state.flags;
4023 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4024 memset(&ps->reserved, 0, sizeof(ps->reserved));
4025 return 0;
4026 }
4027
4028 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4029 {
4030 int start = 0;
4031 int i;
4032 u32 prev_legacy, cur_legacy;
4033 struct kvm_pit *pit = kvm->arch.vpit;
4034
4035 mutex_lock(&pit->pit_state.lock);
4036 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4037 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4038 if (!prev_legacy && cur_legacy)
4039 start = 1;
4040 memcpy(&pit->pit_state.channels, &ps->channels,
4041 sizeof(pit->pit_state.channels));
4042 pit->pit_state.flags = ps->flags;
4043 for (i = 0; i < 3; i++)
4044 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4045 start && i == 0);
4046 mutex_unlock(&pit->pit_state.lock);
4047 return 0;
4048 }
4049
4050 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4051 struct kvm_reinject_control *control)
4052 {
4053 struct kvm_pit *pit = kvm->arch.vpit;
4054
4055 if (!pit)
4056 return -ENXIO;
4057
4058 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4059 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4060 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4061 */
4062 mutex_lock(&pit->pit_state.lock);
4063 kvm_pit_set_reinject(pit, control->pit_reinject);
4064 mutex_unlock(&pit->pit_state.lock);
4065
4066 return 0;
4067 }
4068
4069 /**
4070 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4071 * @kvm: kvm instance
4072 * @log: slot id and address to which we copy the log
4073 *
4074 * Steps 1-4 below provide general overview of dirty page logging. See
4075 * kvm_get_dirty_log_protect() function description for additional details.
4076 *
4077 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4078 * always flush the TLB (step 4) even if previous step failed and the dirty
4079 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4080 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4081 * writes will be marked dirty for next log read.
4082 *
4083 * 1. Take a snapshot of the bit and clear it if needed.
4084 * 2. Write protect the corresponding page.
4085 * 3. Copy the snapshot to the userspace.
4086 * 4. Flush TLB's if needed.
4087 */
4088 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4089 {
4090 bool is_dirty = false;
4091 int r;
4092
4093 mutex_lock(&kvm->slots_lock);
4094
4095 /*
4096 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4097 */
4098 if (kvm_x86_ops->flush_log_dirty)
4099 kvm_x86_ops->flush_log_dirty(kvm);
4100
4101 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4102
4103 /*
4104 * All the TLBs can be flushed out of mmu lock, see the comments in
4105 * kvm_mmu_slot_remove_write_access().
4106 */
4107 lockdep_assert_held(&kvm->slots_lock);
4108 if (is_dirty)
4109 kvm_flush_remote_tlbs(kvm);
4110
4111 mutex_unlock(&kvm->slots_lock);
4112 return r;
4113 }
4114
4115 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4116 bool line_status)
4117 {
4118 if (!irqchip_in_kernel(kvm))
4119 return -ENXIO;
4120
4121 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4122 irq_event->irq, irq_event->level,
4123 line_status);
4124 return 0;
4125 }
4126
4127 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4128 struct kvm_enable_cap *cap)
4129 {
4130 int r;
4131
4132 if (cap->flags)
4133 return -EINVAL;
4134
4135 switch (cap->cap) {
4136 case KVM_CAP_DISABLE_QUIRKS:
4137 kvm->arch.disabled_quirks = cap->args[0];
4138 r = 0;
4139 break;
4140 case KVM_CAP_SPLIT_IRQCHIP: {
4141 mutex_lock(&kvm->lock);
4142 r = -EINVAL;
4143 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4144 goto split_irqchip_unlock;
4145 r = -EEXIST;
4146 if (irqchip_in_kernel(kvm))
4147 goto split_irqchip_unlock;
4148 if (kvm->created_vcpus)
4149 goto split_irqchip_unlock;
4150 r = kvm_setup_empty_irq_routing(kvm);
4151 if (r)
4152 goto split_irqchip_unlock;
4153 /* Pairs with irqchip_in_kernel. */
4154 smp_wmb();
4155 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4156 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4157 r = 0;
4158 split_irqchip_unlock:
4159 mutex_unlock(&kvm->lock);
4160 break;
4161 }
4162 case KVM_CAP_X2APIC_API:
4163 r = -EINVAL;
4164 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4165 break;
4166
4167 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4168 kvm->arch.x2apic_format = true;
4169 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4170 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4171
4172 r = 0;
4173 break;
4174 default:
4175 r = -EINVAL;
4176 break;
4177 }
4178 return r;
4179 }
4180
4181 long kvm_arch_vm_ioctl(struct file *filp,
4182 unsigned int ioctl, unsigned long arg)
4183 {
4184 struct kvm *kvm = filp->private_data;
4185 void __user *argp = (void __user *)arg;
4186 int r = -ENOTTY;
4187 /*
4188 * This union makes it completely explicit to gcc-3.x
4189 * that these two variables' stack usage should be
4190 * combined, not added together.
4191 */
4192 union {
4193 struct kvm_pit_state ps;
4194 struct kvm_pit_state2 ps2;
4195 struct kvm_pit_config pit_config;
4196 } u;
4197
4198 switch (ioctl) {
4199 case KVM_SET_TSS_ADDR:
4200 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4201 break;
4202 case KVM_SET_IDENTITY_MAP_ADDR: {
4203 u64 ident_addr;
4204
4205 mutex_lock(&kvm->lock);
4206 r = -EINVAL;
4207 if (kvm->created_vcpus)
4208 goto set_identity_unlock;
4209 r = -EFAULT;
4210 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4211 goto set_identity_unlock;
4212 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4213 set_identity_unlock:
4214 mutex_unlock(&kvm->lock);
4215 break;
4216 }
4217 case KVM_SET_NR_MMU_PAGES:
4218 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4219 break;
4220 case KVM_GET_NR_MMU_PAGES:
4221 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4222 break;
4223 case KVM_CREATE_IRQCHIP: {
4224 mutex_lock(&kvm->lock);
4225
4226 r = -EEXIST;
4227 if (irqchip_in_kernel(kvm))
4228 goto create_irqchip_unlock;
4229
4230 r = -EINVAL;
4231 if (kvm->created_vcpus)
4232 goto create_irqchip_unlock;
4233
4234 r = kvm_pic_init(kvm);
4235 if (r)
4236 goto create_irqchip_unlock;
4237
4238 r = kvm_ioapic_init(kvm);
4239 if (r) {
4240 kvm_pic_destroy(kvm);
4241 goto create_irqchip_unlock;
4242 }
4243
4244 r = kvm_setup_default_irq_routing(kvm);
4245 if (r) {
4246 kvm_ioapic_destroy(kvm);
4247 kvm_pic_destroy(kvm);
4248 goto create_irqchip_unlock;
4249 }
4250 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4251 smp_wmb();
4252 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4253 create_irqchip_unlock:
4254 mutex_unlock(&kvm->lock);
4255 break;
4256 }
4257 case KVM_CREATE_PIT:
4258 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4259 goto create_pit;
4260 case KVM_CREATE_PIT2:
4261 r = -EFAULT;
4262 if (copy_from_user(&u.pit_config, argp,
4263 sizeof(struct kvm_pit_config)))
4264 goto out;
4265 create_pit:
4266 mutex_lock(&kvm->lock);
4267 r = -EEXIST;
4268 if (kvm->arch.vpit)
4269 goto create_pit_unlock;
4270 r = -ENOMEM;
4271 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4272 if (kvm->arch.vpit)
4273 r = 0;
4274 create_pit_unlock:
4275 mutex_unlock(&kvm->lock);
4276 break;
4277 case KVM_GET_IRQCHIP: {
4278 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4279 struct kvm_irqchip *chip;
4280
4281 chip = memdup_user(argp, sizeof(*chip));
4282 if (IS_ERR(chip)) {
4283 r = PTR_ERR(chip);
4284 goto out;
4285 }
4286
4287 r = -ENXIO;
4288 if (!irqchip_kernel(kvm))
4289 goto get_irqchip_out;
4290 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4291 if (r)
4292 goto get_irqchip_out;
4293 r = -EFAULT;
4294 if (copy_to_user(argp, chip, sizeof *chip))
4295 goto get_irqchip_out;
4296 r = 0;
4297 get_irqchip_out:
4298 kfree(chip);
4299 break;
4300 }
4301 case KVM_SET_IRQCHIP: {
4302 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4303 struct kvm_irqchip *chip;
4304
4305 chip = memdup_user(argp, sizeof(*chip));
4306 if (IS_ERR(chip)) {
4307 r = PTR_ERR(chip);
4308 goto out;
4309 }
4310
4311 r = -ENXIO;
4312 if (!irqchip_kernel(kvm))
4313 goto set_irqchip_out;
4314 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4315 if (r)
4316 goto set_irqchip_out;
4317 r = 0;
4318 set_irqchip_out:
4319 kfree(chip);
4320 break;
4321 }
4322 case KVM_GET_PIT: {
4323 r = -EFAULT;
4324 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4325 goto out;
4326 r = -ENXIO;
4327 if (!kvm->arch.vpit)
4328 goto out;
4329 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4330 if (r)
4331 goto out;
4332 r = -EFAULT;
4333 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4334 goto out;
4335 r = 0;
4336 break;
4337 }
4338 case KVM_SET_PIT: {
4339 r = -EFAULT;
4340 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4341 goto out;
4342 r = -ENXIO;
4343 if (!kvm->arch.vpit)
4344 goto out;
4345 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4346 break;
4347 }
4348 case KVM_GET_PIT2: {
4349 r = -ENXIO;
4350 if (!kvm->arch.vpit)
4351 goto out;
4352 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4353 if (r)
4354 goto out;
4355 r = -EFAULT;
4356 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4357 goto out;
4358 r = 0;
4359 break;
4360 }
4361 case KVM_SET_PIT2: {
4362 r = -EFAULT;
4363 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4364 goto out;
4365 r = -ENXIO;
4366 if (!kvm->arch.vpit)
4367 goto out;
4368 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4369 break;
4370 }
4371 case KVM_REINJECT_CONTROL: {
4372 struct kvm_reinject_control control;
4373 r = -EFAULT;
4374 if (copy_from_user(&control, argp, sizeof(control)))
4375 goto out;
4376 r = kvm_vm_ioctl_reinject(kvm, &control);
4377 break;
4378 }
4379 case KVM_SET_BOOT_CPU_ID:
4380 r = 0;
4381 mutex_lock(&kvm->lock);
4382 if (kvm->created_vcpus)
4383 r = -EBUSY;
4384 else
4385 kvm->arch.bsp_vcpu_id = arg;
4386 mutex_unlock(&kvm->lock);
4387 break;
4388 case KVM_XEN_HVM_CONFIG: {
4389 struct kvm_xen_hvm_config xhc;
4390 r = -EFAULT;
4391 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4392 goto out;
4393 r = -EINVAL;
4394 if (xhc.flags)
4395 goto out;
4396 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4397 r = 0;
4398 break;
4399 }
4400 case KVM_SET_CLOCK: {
4401 struct kvm_clock_data user_ns;
4402 u64 now_ns;
4403
4404 r = -EFAULT;
4405 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4406 goto out;
4407
4408 r = -EINVAL;
4409 if (user_ns.flags)
4410 goto out;
4411
4412 r = 0;
4413 /*
4414 * TODO: userspace has to take care of races with VCPU_RUN, so
4415 * kvm_gen_update_masterclock() can be cut down to locked
4416 * pvclock_update_vm_gtod_copy().
4417 */
4418 kvm_gen_update_masterclock(kvm);
4419 now_ns = get_kvmclock_ns(kvm);
4420 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4421 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4422 break;
4423 }
4424 case KVM_GET_CLOCK: {
4425 struct kvm_clock_data user_ns;
4426 u64 now_ns;
4427
4428 now_ns = get_kvmclock_ns(kvm);
4429 user_ns.clock = now_ns;
4430 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4431 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4432
4433 r = -EFAULT;
4434 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4435 goto out;
4436 r = 0;
4437 break;
4438 }
4439 case KVM_ENABLE_CAP: {
4440 struct kvm_enable_cap cap;
4441
4442 r = -EFAULT;
4443 if (copy_from_user(&cap, argp, sizeof(cap)))
4444 goto out;
4445 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4446 break;
4447 }
4448 case KVM_MEMORY_ENCRYPT_OP: {
4449 r = -ENOTTY;
4450 if (kvm_x86_ops->mem_enc_op)
4451 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4452 break;
4453 }
4454 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4455 struct kvm_enc_region region;
4456
4457 r = -EFAULT;
4458 if (copy_from_user(&region, argp, sizeof(region)))
4459 goto out;
4460
4461 r = -ENOTTY;
4462 if (kvm_x86_ops->mem_enc_reg_region)
4463 r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4464 break;
4465 }
4466 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4467 struct kvm_enc_region region;
4468
4469 r = -EFAULT;
4470 if (copy_from_user(&region, argp, sizeof(region)))
4471 goto out;
4472
4473 r = -ENOTTY;
4474 if (kvm_x86_ops->mem_enc_unreg_region)
4475 r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4476 break;
4477 }
4478 default:
4479 r = -ENOTTY;
4480 }
4481 out:
4482 return r;
4483 }
4484
4485 static void kvm_init_msr_list(void)
4486 {
4487 u32 dummy[2];
4488 unsigned i, j;
4489
4490 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4491 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4492 continue;
4493
4494 /*
4495 * Even MSRs that are valid in the host may not be exposed
4496 * to the guests in some cases.
4497 */
4498 switch (msrs_to_save[i]) {
4499 case MSR_IA32_BNDCFGS:
4500 if (!kvm_x86_ops->mpx_supported())
4501 continue;
4502 break;
4503 case MSR_TSC_AUX:
4504 if (!kvm_x86_ops->rdtscp_supported())
4505 continue;
4506 break;
4507 default:
4508 break;
4509 }
4510
4511 if (j < i)
4512 msrs_to_save[j] = msrs_to_save[i];
4513 j++;
4514 }
4515 num_msrs_to_save = j;
4516
4517 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4518 switch (emulated_msrs[i]) {
4519 case MSR_IA32_SMBASE:
4520 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4521 continue;
4522 break;
4523 default:
4524 break;
4525 }
4526
4527 if (j < i)
4528 emulated_msrs[j] = emulated_msrs[i];
4529 j++;
4530 }
4531 num_emulated_msrs = j;
4532
4533 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4534 struct kvm_msr_entry msr;
4535
4536 msr.index = msr_based_features[i];
4537 if (kvm_get_msr_feature(&msr))
4538 continue;
4539
4540 if (j < i)
4541 msr_based_features[j] = msr_based_features[i];
4542 j++;
4543 }
4544 num_msr_based_features = j;
4545 }
4546
4547 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4548 const void *v)
4549 {
4550 int handled = 0;
4551 int n;
4552
4553 do {
4554 n = min(len, 8);
4555 if (!(lapic_in_kernel(vcpu) &&
4556 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4557 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4558 break;
4559 handled += n;
4560 addr += n;
4561 len -= n;
4562 v += n;
4563 } while (len);
4564
4565 return handled;
4566 }
4567
4568 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4569 {
4570 int handled = 0;
4571 int n;
4572
4573 do {
4574 n = min(len, 8);
4575 if (!(lapic_in_kernel(vcpu) &&
4576 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4577 addr, n, v))
4578 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4579 break;
4580 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4581 handled += n;
4582 addr += n;
4583 len -= n;
4584 v += n;
4585 } while (len);
4586
4587 return handled;
4588 }
4589
4590 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4591 struct kvm_segment *var, int seg)
4592 {
4593 kvm_x86_ops->set_segment(vcpu, var, seg);
4594 }
4595
4596 void kvm_get_segment(struct kvm_vcpu *vcpu,
4597 struct kvm_segment *var, int seg)
4598 {
4599 kvm_x86_ops->get_segment(vcpu, var, seg);
4600 }
4601
4602 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4603 struct x86_exception *exception)
4604 {
4605 gpa_t t_gpa;
4606
4607 BUG_ON(!mmu_is_nested(vcpu));
4608
4609 /* NPT walks are always user-walks */
4610 access |= PFERR_USER_MASK;
4611 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4612
4613 return t_gpa;
4614 }
4615
4616 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4617 struct x86_exception *exception)
4618 {
4619 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4620 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4621 }
4622
4623 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4624 struct x86_exception *exception)
4625 {
4626 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4627 access |= PFERR_FETCH_MASK;
4628 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4629 }
4630
4631 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4632 struct x86_exception *exception)
4633 {
4634 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4635 access |= PFERR_WRITE_MASK;
4636 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4637 }
4638
4639 /* uses this to access any guest's mapped memory without checking CPL */
4640 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4641 struct x86_exception *exception)
4642 {
4643 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4644 }
4645
4646 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4647 struct kvm_vcpu *vcpu, u32 access,
4648 struct x86_exception *exception)
4649 {
4650 void *data = val;
4651 int r = X86EMUL_CONTINUE;
4652
4653 while (bytes) {
4654 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4655 exception);
4656 unsigned offset = addr & (PAGE_SIZE-1);
4657 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4658 int ret;
4659
4660 if (gpa == UNMAPPED_GVA)
4661 return X86EMUL_PROPAGATE_FAULT;
4662 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4663 offset, toread);
4664 if (ret < 0) {
4665 r = X86EMUL_IO_NEEDED;
4666 goto out;
4667 }
4668
4669 bytes -= toread;
4670 data += toread;
4671 addr += toread;
4672 }
4673 out:
4674 return r;
4675 }
4676
4677 /* used for instruction fetching */
4678 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4679 gva_t addr, void *val, unsigned int bytes,
4680 struct x86_exception *exception)
4681 {
4682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4684 unsigned offset;
4685 int ret;
4686
4687 /* Inline kvm_read_guest_virt_helper for speed. */
4688 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4689 exception);
4690 if (unlikely(gpa == UNMAPPED_GVA))
4691 return X86EMUL_PROPAGATE_FAULT;
4692
4693 offset = addr & (PAGE_SIZE-1);
4694 if (WARN_ON(offset + bytes > PAGE_SIZE))
4695 bytes = (unsigned)PAGE_SIZE - offset;
4696 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4697 offset, bytes);
4698 if (unlikely(ret < 0))
4699 return X86EMUL_IO_NEEDED;
4700
4701 return X86EMUL_CONTINUE;
4702 }
4703
4704 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4705 gva_t addr, void *val, unsigned int bytes,
4706 struct x86_exception *exception)
4707 {
4708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4709 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4710
4711 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4712 exception);
4713 }
4714 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4715
4716 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4717 gva_t addr, void *val, unsigned int bytes,
4718 struct x86_exception *exception)
4719 {
4720 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4721 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4722 }
4723
4724 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4725 unsigned long addr, void *val, unsigned int bytes)
4726 {
4727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4729
4730 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4731 }
4732
4733 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4734 gva_t addr, void *val,
4735 unsigned int bytes,
4736 struct x86_exception *exception)
4737 {
4738 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4739 void *data = val;
4740 int r = X86EMUL_CONTINUE;
4741
4742 while (bytes) {
4743 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4744 PFERR_WRITE_MASK,
4745 exception);
4746 unsigned offset = addr & (PAGE_SIZE-1);
4747 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4748 int ret;
4749
4750 if (gpa == UNMAPPED_GVA)
4751 return X86EMUL_PROPAGATE_FAULT;
4752 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4753 if (ret < 0) {
4754 r = X86EMUL_IO_NEEDED;
4755 goto out;
4756 }
4757
4758 bytes -= towrite;
4759 data += towrite;
4760 addr += towrite;
4761 }
4762 out:
4763 return r;
4764 }
4765 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4766
4767 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4768 gpa_t gpa, bool write)
4769 {
4770 /* For APIC access vmexit */
4771 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4772 return 1;
4773
4774 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4775 trace_vcpu_match_mmio(gva, gpa, write, true);
4776 return 1;
4777 }
4778
4779 return 0;
4780 }
4781
4782 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4783 gpa_t *gpa, struct x86_exception *exception,
4784 bool write)
4785 {
4786 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4787 | (write ? PFERR_WRITE_MASK : 0);
4788
4789 /*
4790 * currently PKRU is only applied to ept enabled guest so
4791 * there is no pkey in EPT page table for L1 guest or EPT
4792 * shadow page table for L2 guest.
4793 */
4794 if (vcpu_match_mmio_gva(vcpu, gva)
4795 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4796 vcpu->arch.access, 0, access)) {
4797 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4798 (gva & (PAGE_SIZE - 1));
4799 trace_vcpu_match_mmio(gva, *gpa, write, false);
4800 return 1;
4801 }
4802
4803 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4804
4805 if (*gpa == UNMAPPED_GVA)
4806 return -1;
4807
4808 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4809 }
4810
4811 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4812 const void *val, int bytes)
4813 {
4814 int ret;
4815
4816 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4817 if (ret < 0)
4818 return 0;
4819 kvm_page_track_write(vcpu, gpa, val, bytes);
4820 return 1;
4821 }
4822
4823 struct read_write_emulator_ops {
4824 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4825 int bytes);
4826 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4827 void *val, int bytes);
4828 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4829 int bytes, void *val);
4830 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4831 void *val, int bytes);
4832 bool write;
4833 };
4834
4835 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4836 {
4837 if (vcpu->mmio_read_completed) {
4838 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4839 vcpu->mmio_fragments[0].gpa, val);
4840 vcpu->mmio_read_completed = 0;
4841 return 1;
4842 }
4843
4844 return 0;
4845 }
4846
4847 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4848 void *val, int bytes)
4849 {
4850 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4851 }
4852
4853 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4854 void *val, int bytes)
4855 {
4856 return emulator_write_phys(vcpu, gpa, val, bytes);
4857 }
4858
4859 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4860 {
4861 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4862 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4863 }
4864
4865 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4866 void *val, int bytes)
4867 {
4868 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4869 return X86EMUL_IO_NEEDED;
4870 }
4871
4872 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4873 void *val, int bytes)
4874 {
4875 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4876
4877 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4878 return X86EMUL_CONTINUE;
4879 }
4880
4881 static const struct read_write_emulator_ops read_emultor = {
4882 .read_write_prepare = read_prepare,
4883 .read_write_emulate = read_emulate,
4884 .read_write_mmio = vcpu_mmio_read,
4885 .read_write_exit_mmio = read_exit_mmio,
4886 };
4887
4888 static const struct read_write_emulator_ops write_emultor = {
4889 .read_write_emulate = write_emulate,
4890 .read_write_mmio = write_mmio,
4891 .read_write_exit_mmio = write_exit_mmio,
4892 .write = true,
4893 };
4894
4895 static int emulator_read_write_onepage(unsigned long addr, void *val,
4896 unsigned int bytes,
4897 struct x86_exception *exception,
4898 struct kvm_vcpu *vcpu,
4899 const struct read_write_emulator_ops *ops)
4900 {
4901 gpa_t gpa;
4902 int handled, ret;
4903 bool write = ops->write;
4904 struct kvm_mmio_fragment *frag;
4905 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4906
4907 /*
4908 * If the exit was due to a NPF we may already have a GPA.
4909 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4910 * Note, this cannot be used on string operations since string
4911 * operation using rep will only have the initial GPA from the NPF
4912 * occurred.
4913 */
4914 if (vcpu->arch.gpa_available &&
4915 emulator_can_use_gpa(ctxt) &&
4916 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4917 gpa = vcpu->arch.gpa_val;
4918 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4919 } else {
4920 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4921 if (ret < 0)
4922 return X86EMUL_PROPAGATE_FAULT;
4923 }
4924
4925 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4926 return X86EMUL_CONTINUE;
4927
4928 /*
4929 * Is this MMIO handled locally?
4930 */
4931 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4932 if (handled == bytes)
4933 return X86EMUL_CONTINUE;
4934
4935 gpa += handled;
4936 bytes -= handled;
4937 val += handled;
4938
4939 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4940 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4941 frag->gpa = gpa;
4942 frag->data = val;
4943 frag->len = bytes;
4944 return X86EMUL_CONTINUE;
4945 }
4946
4947 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4948 unsigned long addr,
4949 void *val, unsigned int bytes,
4950 struct x86_exception *exception,
4951 const struct read_write_emulator_ops *ops)
4952 {
4953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954 gpa_t gpa;
4955 int rc;
4956
4957 if (ops->read_write_prepare &&
4958 ops->read_write_prepare(vcpu, val, bytes))
4959 return X86EMUL_CONTINUE;
4960
4961 vcpu->mmio_nr_fragments = 0;
4962
4963 /* Crossing a page boundary? */
4964 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4965 int now;
4966
4967 now = -addr & ~PAGE_MASK;
4968 rc = emulator_read_write_onepage(addr, val, now, exception,
4969 vcpu, ops);
4970
4971 if (rc != X86EMUL_CONTINUE)
4972 return rc;
4973 addr += now;
4974 if (ctxt->mode != X86EMUL_MODE_PROT64)
4975 addr = (u32)addr;
4976 val += now;
4977 bytes -= now;
4978 }
4979
4980 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4981 vcpu, ops);
4982 if (rc != X86EMUL_CONTINUE)
4983 return rc;
4984
4985 if (!vcpu->mmio_nr_fragments)
4986 return rc;
4987
4988 gpa = vcpu->mmio_fragments[0].gpa;
4989
4990 vcpu->mmio_needed = 1;
4991 vcpu->mmio_cur_fragment = 0;
4992
4993 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4994 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4995 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4996 vcpu->run->mmio.phys_addr = gpa;
4997
4998 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4999 }
5000
5001 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5002 unsigned long addr,
5003 void *val,
5004 unsigned int bytes,
5005 struct x86_exception *exception)
5006 {
5007 return emulator_read_write(ctxt, addr, val, bytes,
5008 exception, &read_emultor);
5009 }
5010
5011 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5012 unsigned long addr,
5013 const void *val,
5014 unsigned int bytes,
5015 struct x86_exception *exception)
5016 {
5017 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5018 exception, &write_emultor);
5019 }
5020
5021 #define CMPXCHG_TYPE(t, ptr, old, new) \
5022 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5023
5024 #ifdef CONFIG_X86_64
5025 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5026 #else
5027 # define CMPXCHG64(ptr, old, new) \
5028 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5029 #endif
5030
5031 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5032 unsigned long addr,
5033 const void *old,
5034 const void *new,
5035 unsigned int bytes,
5036 struct x86_exception *exception)
5037 {
5038 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5039 gpa_t gpa;
5040 struct page *page;
5041 char *kaddr;
5042 bool exchanged;
5043
5044 /* guests cmpxchg8b have to be emulated atomically */
5045 if (bytes > 8 || (bytes & (bytes - 1)))
5046 goto emul_write;
5047
5048 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5049
5050 if (gpa == UNMAPPED_GVA ||
5051 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5052 goto emul_write;
5053
5054 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5055 goto emul_write;
5056
5057 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5058 if (is_error_page(page))
5059 goto emul_write;
5060
5061 kaddr = kmap_atomic(page);
5062 kaddr += offset_in_page(gpa);
5063 switch (bytes) {
5064 case 1:
5065 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5066 break;
5067 case 2:
5068 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5069 break;
5070 case 4:
5071 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5072 break;
5073 case 8:
5074 exchanged = CMPXCHG64(kaddr, old, new);
5075 break;
5076 default:
5077 BUG();
5078 }
5079 kunmap_atomic(kaddr);
5080 kvm_release_page_dirty(page);
5081
5082 if (!exchanged)
5083 return X86EMUL_CMPXCHG_FAILED;
5084
5085 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5086 kvm_page_track_write(vcpu, gpa, new, bytes);
5087
5088 return X86EMUL_CONTINUE;
5089
5090 emul_write:
5091 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5092
5093 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5094 }
5095
5096 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5097 {
5098 int r = 0, i;
5099
5100 for (i = 0; i < vcpu->arch.pio.count; i++) {
5101 if (vcpu->arch.pio.in)
5102 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5103 vcpu->arch.pio.size, pd);
5104 else
5105 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5106 vcpu->arch.pio.port, vcpu->arch.pio.size,
5107 pd);
5108 if (r)
5109 break;
5110 pd += vcpu->arch.pio.size;
5111 }
5112 return r;
5113 }
5114
5115 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5116 unsigned short port, void *val,
5117 unsigned int count, bool in)
5118 {
5119 vcpu->arch.pio.port = port;
5120 vcpu->arch.pio.in = in;
5121 vcpu->arch.pio.count = count;
5122 vcpu->arch.pio.size = size;
5123
5124 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5125 vcpu->arch.pio.count = 0;
5126 return 1;
5127 }
5128
5129 vcpu->run->exit_reason = KVM_EXIT_IO;
5130 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5131 vcpu->run->io.size = size;
5132 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5133 vcpu->run->io.count = count;
5134 vcpu->run->io.port = port;
5135
5136 return 0;
5137 }
5138
5139 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5140 int size, unsigned short port, void *val,
5141 unsigned int count)
5142 {
5143 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5144 int ret;
5145
5146 if (vcpu->arch.pio.count)
5147 goto data_avail;
5148
5149 memset(vcpu->arch.pio_data, 0, size * count);
5150
5151 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5152 if (ret) {
5153 data_avail:
5154 memcpy(val, vcpu->arch.pio_data, size * count);
5155 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5156 vcpu->arch.pio.count = 0;
5157 return 1;
5158 }
5159
5160 return 0;
5161 }
5162
5163 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5164 int size, unsigned short port,
5165 const void *val, unsigned int count)
5166 {
5167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5168
5169 memcpy(vcpu->arch.pio_data, val, size * count);
5170 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5171 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5172 }
5173
5174 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5175 {
5176 return kvm_x86_ops->get_segment_base(vcpu, seg);
5177 }
5178
5179 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5180 {
5181 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5182 }
5183
5184 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5185 {
5186 if (!need_emulate_wbinvd(vcpu))
5187 return X86EMUL_CONTINUE;
5188
5189 if (kvm_x86_ops->has_wbinvd_exit()) {
5190 int cpu = get_cpu();
5191
5192 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5193 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5194 wbinvd_ipi, NULL, 1);
5195 put_cpu();
5196 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5197 } else
5198 wbinvd();
5199 return X86EMUL_CONTINUE;
5200 }
5201
5202 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5203 {
5204 kvm_emulate_wbinvd_noskip(vcpu);
5205 return kvm_skip_emulated_instruction(vcpu);
5206 }
5207 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5208
5209
5210
5211 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5212 {
5213 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5214 }
5215
5216 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5217 unsigned long *dest)
5218 {
5219 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5220 }
5221
5222 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5223 unsigned long value)
5224 {
5225
5226 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5227 }
5228
5229 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5230 {
5231 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5232 }
5233
5234 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5235 {
5236 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5237 unsigned long value;
5238
5239 switch (cr) {
5240 case 0:
5241 value = kvm_read_cr0(vcpu);
5242 break;
5243 case 2:
5244 value = vcpu->arch.cr2;
5245 break;
5246 case 3:
5247 value = kvm_read_cr3(vcpu);
5248 break;
5249 case 4:
5250 value = kvm_read_cr4(vcpu);
5251 break;
5252 case 8:
5253 value = kvm_get_cr8(vcpu);
5254 break;
5255 default:
5256 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5257 return 0;
5258 }
5259
5260 return value;
5261 }
5262
5263 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5264 {
5265 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5266 int res = 0;
5267
5268 switch (cr) {
5269 case 0:
5270 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5271 break;
5272 case 2:
5273 vcpu->arch.cr2 = val;
5274 break;
5275 case 3:
5276 res = kvm_set_cr3(vcpu, val);
5277 break;
5278 case 4:
5279 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5280 break;
5281 case 8:
5282 res = kvm_set_cr8(vcpu, val);
5283 break;
5284 default:
5285 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5286 res = -1;
5287 }
5288
5289 return res;
5290 }
5291
5292 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5293 {
5294 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5295 }
5296
5297 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5298 {
5299 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5300 }
5301
5302 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5303 {
5304 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5305 }
5306
5307 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5308 {
5309 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5310 }
5311
5312 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5313 {
5314 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5315 }
5316
5317 static unsigned long emulator_get_cached_segment_base(
5318 struct x86_emulate_ctxt *ctxt, int seg)
5319 {
5320 return get_segment_base(emul_to_vcpu(ctxt), seg);
5321 }
5322
5323 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5324 struct desc_struct *desc, u32 *base3,
5325 int seg)
5326 {
5327 struct kvm_segment var;
5328
5329 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5330 *selector = var.selector;
5331
5332 if (var.unusable) {
5333 memset(desc, 0, sizeof(*desc));
5334 if (base3)
5335 *base3 = 0;
5336 return false;
5337 }
5338
5339 if (var.g)
5340 var.limit >>= 12;
5341 set_desc_limit(desc, var.limit);
5342 set_desc_base(desc, (unsigned long)var.base);
5343 #ifdef CONFIG_X86_64
5344 if (base3)
5345 *base3 = var.base >> 32;
5346 #endif
5347 desc->type = var.type;
5348 desc->s = var.s;
5349 desc->dpl = var.dpl;
5350 desc->p = var.present;
5351 desc->avl = var.avl;
5352 desc->l = var.l;
5353 desc->d = var.db;
5354 desc->g = var.g;
5355
5356 return true;
5357 }
5358
5359 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5360 struct desc_struct *desc, u32 base3,
5361 int seg)
5362 {
5363 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5364 struct kvm_segment var;
5365
5366 var.selector = selector;
5367 var.base = get_desc_base(desc);
5368 #ifdef CONFIG_X86_64
5369 var.base |= ((u64)base3) << 32;
5370 #endif
5371 var.limit = get_desc_limit(desc);
5372 if (desc->g)
5373 var.limit = (var.limit << 12) | 0xfff;
5374 var.type = desc->type;
5375 var.dpl = desc->dpl;
5376 var.db = desc->d;
5377 var.s = desc->s;
5378 var.l = desc->l;
5379 var.g = desc->g;
5380 var.avl = desc->avl;
5381 var.present = desc->p;
5382 var.unusable = !var.present;
5383 var.padding = 0;
5384
5385 kvm_set_segment(vcpu, &var, seg);
5386 return;
5387 }
5388
5389 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5390 u32 msr_index, u64 *pdata)
5391 {
5392 struct msr_data msr;
5393 int r;
5394
5395 msr.index = msr_index;
5396 msr.host_initiated = false;
5397 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5398 if (r)
5399 return r;
5400
5401 *pdata = msr.data;
5402 return 0;
5403 }
5404
5405 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5406 u32 msr_index, u64 data)
5407 {
5408 struct msr_data msr;
5409
5410 msr.data = data;
5411 msr.index = msr_index;
5412 msr.host_initiated = false;
5413 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5414 }
5415
5416 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5417 {
5418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5419
5420 return vcpu->arch.smbase;
5421 }
5422
5423 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5424 {
5425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426
5427 vcpu->arch.smbase = smbase;
5428 }
5429
5430 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5431 u32 pmc)
5432 {
5433 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5434 }
5435
5436 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5437 u32 pmc, u64 *pdata)
5438 {
5439 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5440 }
5441
5442 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5443 {
5444 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5445 }
5446
5447 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5448 struct x86_instruction_info *info,
5449 enum x86_intercept_stage stage)
5450 {
5451 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5452 }
5453
5454 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5455 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5456 {
5457 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5458 }
5459
5460 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5461 {
5462 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5463 }
5464
5465 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5466 {
5467 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5468 }
5469
5470 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5471 {
5472 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5473 }
5474
5475 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5476 {
5477 return emul_to_vcpu(ctxt)->arch.hflags;
5478 }
5479
5480 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5481 {
5482 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5483 }
5484
5485 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5486 {
5487 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5488 }
5489
5490 static const struct x86_emulate_ops emulate_ops = {
5491 .read_gpr = emulator_read_gpr,
5492 .write_gpr = emulator_write_gpr,
5493 .read_std = kvm_read_guest_virt_system,
5494 .write_std = kvm_write_guest_virt_system,
5495 .read_phys = kvm_read_guest_phys_system,
5496 .fetch = kvm_fetch_guest_virt,
5497 .read_emulated = emulator_read_emulated,
5498 .write_emulated = emulator_write_emulated,
5499 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5500 .invlpg = emulator_invlpg,
5501 .pio_in_emulated = emulator_pio_in_emulated,
5502 .pio_out_emulated = emulator_pio_out_emulated,
5503 .get_segment = emulator_get_segment,
5504 .set_segment = emulator_set_segment,
5505 .get_cached_segment_base = emulator_get_cached_segment_base,
5506 .get_gdt = emulator_get_gdt,
5507 .get_idt = emulator_get_idt,
5508 .set_gdt = emulator_set_gdt,
5509 .set_idt = emulator_set_idt,
5510 .get_cr = emulator_get_cr,
5511 .set_cr = emulator_set_cr,
5512 .cpl = emulator_get_cpl,
5513 .get_dr = emulator_get_dr,
5514 .set_dr = emulator_set_dr,
5515 .get_smbase = emulator_get_smbase,
5516 .set_smbase = emulator_set_smbase,
5517 .set_msr = emulator_set_msr,
5518 .get_msr = emulator_get_msr,
5519 .check_pmc = emulator_check_pmc,
5520 .read_pmc = emulator_read_pmc,
5521 .halt = emulator_halt,
5522 .wbinvd = emulator_wbinvd,
5523 .fix_hypercall = emulator_fix_hypercall,
5524 .intercept = emulator_intercept,
5525 .get_cpuid = emulator_get_cpuid,
5526 .set_nmi_mask = emulator_set_nmi_mask,
5527 .get_hflags = emulator_get_hflags,
5528 .set_hflags = emulator_set_hflags,
5529 .pre_leave_smm = emulator_pre_leave_smm,
5530 };
5531
5532 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5533 {
5534 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5535 /*
5536 * an sti; sti; sequence only disable interrupts for the first
5537 * instruction. So, if the last instruction, be it emulated or
5538 * not, left the system with the INT_STI flag enabled, it
5539 * means that the last instruction is an sti. We should not
5540 * leave the flag on in this case. The same goes for mov ss
5541 */
5542 if (int_shadow & mask)
5543 mask = 0;
5544 if (unlikely(int_shadow || mask)) {
5545 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5546 if (!mask)
5547 kvm_make_request(KVM_REQ_EVENT, vcpu);
5548 }
5549 }
5550
5551 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5552 {
5553 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5554 if (ctxt->exception.vector == PF_VECTOR)
5555 return kvm_propagate_fault(vcpu, &ctxt->exception);
5556
5557 if (ctxt->exception.error_code_valid)
5558 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5559 ctxt->exception.error_code);
5560 else
5561 kvm_queue_exception(vcpu, ctxt->exception.vector);
5562 return false;
5563 }
5564
5565 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5566 {
5567 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5568 int cs_db, cs_l;
5569
5570 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5571
5572 ctxt->eflags = kvm_get_rflags(vcpu);
5573 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5574
5575 ctxt->eip = kvm_rip_read(vcpu);
5576 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5577 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5578 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5579 cs_db ? X86EMUL_MODE_PROT32 :
5580 X86EMUL_MODE_PROT16;
5581 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5582 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5583 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5584
5585 init_decode_cache(ctxt);
5586 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5587 }
5588
5589 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5590 {
5591 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5592 int ret;
5593
5594 init_emulate_ctxt(vcpu);
5595
5596 ctxt->op_bytes = 2;
5597 ctxt->ad_bytes = 2;
5598 ctxt->_eip = ctxt->eip + inc_eip;
5599 ret = emulate_int_real(ctxt, irq);
5600
5601 if (ret != X86EMUL_CONTINUE)
5602 return EMULATE_FAIL;
5603
5604 ctxt->eip = ctxt->_eip;
5605 kvm_rip_write(vcpu, ctxt->eip);
5606 kvm_set_rflags(vcpu, ctxt->eflags);
5607
5608 if (irq == NMI_VECTOR)
5609 vcpu->arch.nmi_pending = 0;
5610 else
5611 vcpu->arch.interrupt.pending = false;
5612
5613 return EMULATE_DONE;
5614 }
5615 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5616
5617 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5618 {
5619 int r = EMULATE_DONE;
5620
5621 ++vcpu->stat.insn_emulation_fail;
5622 trace_kvm_emulate_insn_failed(vcpu);
5623 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5624 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5625 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5626 vcpu->run->internal.ndata = 0;
5627 r = EMULATE_USER_EXIT;
5628 }
5629 kvm_queue_exception(vcpu, UD_VECTOR);
5630
5631 return r;
5632 }
5633
5634 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5635 bool write_fault_to_shadow_pgtable,
5636 int emulation_type)
5637 {
5638 gpa_t gpa = cr2;
5639 kvm_pfn_t pfn;
5640
5641 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5642 return false;
5643
5644 if (!vcpu->arch.mmu.direct_map) {
5645 /*
5646 * Write permission should be allowed since only
5647 * write access need to be emulated.
5648 */
5649 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5650
5651 /*
5652 * If the mapping is invalid in guest, let cpu retry
5653 * it to generate fault.
5654 */
5655 if (gpa == UNMAPPED_GVA)
5656 return true;
5657 }
5658
5659 /*
5660 * Do not retry the unhandleable instruction if it faults on the
5661 * readonly host memory, otherwise it will goto a infinite loop:
5662 * retry instruction -> write #PF -> emulation fail -> retry
5663 * instruction -> ...
5664 */
5665 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5666
5667 /*
5668 * If the instruction failed on the error pfn, it can not be fixed,
5669 * report the error to userspace.
5670 */
5671 if (is_error_noslot_pfn(pfn))
5672 return false;
5673
5674 kvm_release_pfn_clean(pfn);
5675
5676 /* The instructions are well-emulated on direct mmu. */
5677 if (vcpu->arch.mmu.direct_map) {
5678 unsigned int indirect_shadow_pages;
5679
5680 spin_lock(&vcpu->kvm->mmu_lock);
5681 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5682 spin_unlock(&vcpu->kvm->mmu_lock);
5683
5684 if (indirect_shadow_pages)
5685 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5686
5687 return true;
5688 }
5689
5690 /*
5691 * if emulation was due to access to shadowed page table
5692 * and it failed try to unshadow page and re-enter the
5693 * guest to let CPU execute the instruction.
5694 */
5695 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5696
5697 /*
5698 * If the access faults on its page table, it can not
5699 * be fixed by unprotecting shadow page and it should
5700 * be reported to userspace.
5701 */
5702 return !write_fault_to_shadow_pgtable;
5703 }
5704
5705 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5706 unsigned long cr2, int emulation_type)
5707 {
5708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5709 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5710
5711 last_retry_eip = vcpu->arch.last_retry_eip;
5712 last_retry_addr = vcpu->arch.last_retry_addr;
5713
5714 /*
5715 * If the emulation is caused by #PF and it is non-page_table
5716 * writing instruction, it means the VM-EXIT is caused by shadow
5717 * page protected, we can zap the shadow page and retry this
5718 * instruction directly.
5719 *
5720 * Note: if the guest uses a non-page-table modifying instruction
5721 * on the PDE that points to the instruction, then we will unmap
5722 * the instruction and go to an infinite loop. So, we cache the
5723 * last retried eip and the last fault address, if we meet the eip
5724 * and the address again, we can break out of the potential infinite
5725 * loop.
5726 */
5727 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5728
5729 if (!(emulation_type & EMULTYPE_RETRY))
5730 return false;
5731
5732 if (x86_page_table_writing_insn(ctxt))
5733 return false;
5734
5735 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5736 return false;
5737
5738 vcpu->arch.last_retry_eip = ctxt->eip;
5739 vcpu->arch.last_retry_addr = cr2;
5740
5741 if (!vcpu->arch.mmu.direct_map)
5742 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5743
5744 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5745
5746 return true;
5747 }
5748
5749 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5750 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5751
5752 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5753 {
5754 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5755 /* This is a good place to trace that we are exiting SMM. */
5756 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5757
5758 /* Process a latched INIT or SMI, if any. */
5759 kvm_make_request(KVM_REQ_EVENT, vcpu);
5760 }
5761
5762 kvm_mmu_reset_context(vcpu);
5763 }
5764
5765 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5766 {
5767 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5768
5769 vcpu->arch.hflags = emul_flags;
5770
5771 if (changed & HF_SMM_MASK)
5772 kvm_smm_changed(vcpu);
5773 }
5774
5775 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5776 unsigned long *db)
5777 {
5778 u32 dr6 = 0;
5779 int i;
5780 u32 enable, rwlen;
5781
5782 enable = dr7;
5783 rwlen = dr7 >> 16;
5784 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5785 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5786 dr6 |= (1 << i);
5787 return dr6;
5788 }
5789
5790 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5791 {
5792 struct kvm_run *kvm_run = vcpu->run;
5793
5794 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5795 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5796 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5797 kvm_run->debug.arch.exception = DB_VECTOR;
5798 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5799 *r = EMULATE_USER_EXIT;
5800 } else {
5801 /*
5802 * "Certain debug exceptions may clear bit 0-3. The
5803 * remaining contents of the DR6 register are never
5804 * cleared by the processor".
5805 */
5806 vcpu->arch.dr6 &= ~15;
5807 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5808 kvm_queue_exception(vcpu, DB_VECTOR);
5809 }
5810 }
5811
5812 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5813 {
5814 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5815 int r = EMULATE_DONE;
5816
5817 kvm_x86_ops->skip_emulated_instruction(vcpu);
5818
5819 /*
5820 * rflags is the old, "raw" value of the flags. The new value has
5821 * not been saved yet.
5822 *
5823 * This is correct even for TF set by the guest, because "the
5824 * processor will not generate this exception after the instruction
5825 * that sets the TF flag".
5826 */
5827 if (unlikely(rflags & X86_EFLAGS_TF))
5828 kvm_vcpu_do_singlestep(vcpu, &r);
5829 return r == EMULATE_DONE;
5830 }
5831 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5832
5833 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5834 {
5835 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5836 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5837 struct kvm_run *kvm_run = vcpu->run;
5838 unsigned long eip = kvm_get_linear_rip(vcpu);
5839 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5840 vcpu->arch.guest_debug_dr7,
5841 vcpu->arch.eff_db);
5842
5843 if (dr6 != 0) {
5844 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5845 kvm_run->debug.arch.pc = eip;
5846 kvm_run->debug.arch.exception = DB_VECTOR;
5847 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5848 *r = EMULATE_USER_EXIT;
5849 return true;
5850 }
5851 }
5852
5853 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5854 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5855 unsigned long eip = kvm_get_linear_rip(vcpu);
5856 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5857 vcpu->arch.dr7,
5858 vcpu->arch.db);
5859
5860 if (dr6 != 0) {
5861 vcpu->arch.dr6 &= ~15;
5862 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5863 kvm_queue_exception(vcpu, DB_VECTOR);
5864 *r = EMULATE_DONE;
5865 return true;
5866 }
5867 }
5868
5869 return false;
5870 }
5871
5872 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5873 unsigned long cr2,
5874 int emulation_type,
5875 void *insn,
5876 int insn_len)
5877 {
5878 int r;
5879 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5880 bool writeback = true;
5881 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5882
5883 /*
5884 * Clear write_fault_to_shadow_pgtable here to ensure it is
5885 * never reused.
5886 */
5887 vcpu->arch.write_fault_to_shadow_pgtable = false;
5888 kvm_clear_exception_queue(vcpu);
5889
5890 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5891 init_emulate_ctxt(vcpu);
5892
5893 /*
5894 * We will reenter on the same instruction since
5895 * we do not set complete_userspace_io. This does not
5896 * handle watchpoints yet, those would be handled in
5897 * the emulate_ops.
5898 */
5899 if (!(emulation_type & EMULTYPE_SKIP) &&
5900 kvm_vcpu_check_breakpoint(vcpu, &r))
5901 return r;
5902
5903 ctxt->interruptibility = 0;
5904 ctxt->have_exception = false;
5905 ctxt->exception.vector = -1;
5906 ctxt->perm_ok = false;
5907
5908 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5909
5910 r = x86_decode_insn(ctxt, insn, insn_len);
5911
5912 trace_kvm_emulate_insn_start(vcpu);
5913 ++vcpu->stat.insn_emulation;
5914 if (r != EMULATION_OK) {
5915 if (emulation_type & EMULTYPE_TRAP_UD)
5916 return EMULATE_FAIL;
5917 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5918 emulation_type))
5919 return EMULATE_DONE;
5920 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5921 return EMULATE_DONE;
5922 if (emulation_type & EMULTYPE_SKIP)
5923 return EMULATE_FAIL;
5924 return handle_emulation_failure(vcpu);
5925 }
5926 }
5927
5928 if (emulation_type & EMULTYPE_SKIP) {
5929 kvm_rip_write(vcpu, ctxt->_eip);
5930 if (ctxt->eflags & X86_EFLAGS_RF)
5931 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5932 return EMULATE_DONE;
5933 }
5934
5935 if (retry_instruction(ctxt, cr2, emulation_type))
5936 return EMULATE_DONE;
5937
5938 /* this is needed for vmware backdoor interface to work since it
5939 changes registers values during IO operation */
5940 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5941 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5942 emulator_invalidate_register_cache(ctxt);
5943 }
5944
5945 restart:
5946 /* Save the faulting GPA (cr2) in the address field */
5947 ctxt->exception.address = cr2;
5948
5949 r = x86_emulate_insn(ctxt);
5950
5951 if (r == EMULATION_INTERCEPTED)
5952 return EMULATE_DONE;
5953
5954 if (r == EMULATION_FAILED) {
5955 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5956 emulation_type))
5957 return EMULATE_DONE;
5958
5959 return handle_emulation_failure(vcpu);
5960 }
5961
5962 if (ctxt->have_exception) {
5963 r = EMULATE_DONE;
5964 if (inject_emulated_exception(vcpu))
5965 return r;
5966 } else if (vcpu->arch.pio.count) {
5967 if (!vcpu->arch.pio.in) {
5968 /* FIXME: return into emulator if single-stepping. */
5969 vcpu->arch.pio.count = 0;
5970 } else {
5971 writeback = false;
5972 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5973 }
5974 r = EMULATE_USER_EXIT;
5975 } else if (vcpu->mmio_needed) {
5976 if (!vcpu->mmio_is_write)
5977 writeback = false;
5978 r = EMULATE_USER_EXIT;
5979 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5980 } else if (r == EMULATION_RESTART)
5981 goto restart;
5982 else
5983 r = EMULATE_DONE;
5984
5985 if (writeback) {
5986 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5987 toggle_interruptibility(vcpu, ctxt->interruptibility);
5988 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5989 kvm_rip_write(vcpu, ctxt->eip);
5990 if (r == EMULATE_DONE &&
5991 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5992 kvm_vcpu_do_singlestep(vcpu, &r);
5993 if (!ctxt->have_exception ||
5994 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5995 __kvm_set_rflags(vcpu, ctxt->eflags);
5996
5997 /*
5998 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5999 * do nothing, and it will be requested again as soon as
6000 * the shadow expires. But we still need to check here,
6001 * because POPF has no interrupt shadow.
6002 */
6003 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6004 kvm_make_request(KVM_REQ_EVENT, vcpu);
6005 } else
6006 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6007
6008 return r;
6009 }
6010 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6011
6012 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6013 {
6014 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6015 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6016 size, port, &val, 1);
6017 /* do not return to emulator after return from userspace */
6018 vcpu->arch.pio.count = 0;
6019 return ret;
6020 }
6021 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6022
6023 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6024 {
6025 unsigned long val;
6026
6027 /* We should only ever be called with arch.pio.count equal to 1 */
6028 BUG_ON(vcpu->arch.pio.count != 1);
6029
6030 /* For size less than 4 we merge, else we zero extend */
6031 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6032 : 0;
6033
6034 /*
6035 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6036 * the copy and tracing
6037 */
6038 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6039 vcpu->arch.pio.port, &val, 1);
6040 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6041
6042 return 1;
6043 }
6044
6045 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6046 {
6047 unsigned long val;
6048 int ret;
6049
6050 /* For size less than 4 we merge, else we zero extend */
6051 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6052
6053 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6054 &val, 1);
6055 if (ret) {
6056 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6057 return ret;
6058 }
6059
6060 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6061
6062 return 0;
6063 }
6064 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6065
6066 static int kvmclock_cpu_down_prep(unsigned int cpu)
6067 {
6068 __this_cpu_write(cpu_tsc_khz, 0);
6069 return 0;
6070 }
6071
6072 static void tsc_khz_changed(void *data)
6073 {
6074 struct cpufreq_freqs *freq = data;
6075 unsigned long khz = 0;
6076
6077 if (data)
6078 khz = freq->new;
6079 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6080 khz = cpufreq_quick_get(raw_smp_processor_id());
6081 if (!khz)
6082 khz = tsc_khz;
6083 __this_cpu_write(cpu_tsc_khz, khz);
6084 }
6085
6086 #ifdef CONFIG_X86_64
6087 static void kvm_hyperv_tsc_notifier(void)
6088 {
6089 struct kvm *kvm;
6090 struct kvm_vcpu *vcpu;
6091 int cpu;
6092
6093 spin_lock(&kvm_lock);
6094 list_for_each_entry(kvm, &vm_list, vm_list)
6095 kvm_make_mclock_inprogress_request(kvm);
6096
6097 hyperv_stop_tsc_emulation();
6098
6099 /* TSC frequency always matches when on Hyper-V */
6100 for_each_present_cpu(cpu)
6101 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6102 kvm_max_guest_tsc_khz = tsc_khz;
6103
6104 list_for_each_entry(kvm, &vm_list, vm_list) {
6105 struct kvm_arch *ka = &kvm->arch;
6106
6107 spin_lock(&ka->pvclock_gtod_sync_lock);
6108
6109 pvclock_update_vm_gtod_copy(kvm);
6110
6111 kvm_for_each_vcpu(cpu, vcpu, kvm)
6112 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6113
6114 kvm_for_each_vcpu(cpu, vcpu, kvm)
6115 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6116
6117 spin_unlock(&ka->pvclock_gtod_sync_lock);
6118 }
6119 spin_unlock(&kvm_lock);
6120 }
6121 #endif
6122
6123 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6124 void *data)
6125 {
6126 struct cpufreq_freqs *freq = data;
6127 struct kvm *kvm;
6128 struct kvm_vcpu *vcpu;
6129 int i, send_ipi = 0;
6130
6131 /*
6132 * We allow guests to temporarily run on slowing clocks,
6133 * provided we notify them after, or to run on accelerating
6134 * clocks, provided we notify them before. Thus time never
6135 * goes backwards.
6136 *
6137 * However, we have a problem. We can't atomically update
6138 * the frequency of a given CPU from this function; it is
6139 * merely a notifier, which can be called from any CPU.
6140 * Changing the TSC frequency at arbitrary points in time
6141 * requires a recomputation of local variables related to
6142 * the TSC for each VCPU. We must flag these local variables
6143 * to be updated and be sure the update takes place with the
6144 * new frequency before any guests proceed.
6145 *
6146 * Unfortunately, the combination of hotplug CPU and frequency
6147 * change creates an intractable locking scenario; the order
6148 * of when these callouts happen is undefined with respect to
6149 * CPU hotplug, and they can race with each other. As such,
6150 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6151 * undefined; you can actually have a CPU frequency change take
6152 * place in between the computation of X and the setting of the
6153 * variable. To protect against this problem, all updates of
6154 * the per_cpu tsc_khz variable are done in an interrupt
6155 * protected IPI, and all callers wishing to update the value
6156 * must wait for a synchronous IPI to complete (which is trivial
6157 * if the caller is on the CPU already). This establishes the
6158 * necessary total order on variable updates.
6159 *
6160 * Note that because a guest time update may take place
6161 * anytime after the setting of the VCPU's request bit, the
6162 * correct TSC value must be set before the request. However,
6163 * to ensure the update actually makes it to any guest which
6164 * starts running in hardware virtualization between the set
6165 * and the acquisition of the spinlock, we must also ping the
6166 * CPU after setting the request bit.
6167 *
6168 */
6169
6170 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6171 return 0;
6172 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6173 return 0;
6174
6175 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6176
6177 spin_lock(&kvm_lock);
6178 list_for_each_entry(kvm, &vm_list, vm_list) {
6179 kvm_for_each_vcpu(i, vcpu, kvm) {
6180 if (vcpu->cpu != freq->cpu)
6181 continue;
6182 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6183 if (vcpu->cpu != smp_processor_id())
6184 send_ipi = 1;
6185 }
6186 }
6187 spin_unlock(&kvm_lock);
6188
6189 if (freq->old < freq->new && send_ipi) {
6190 /*
6191 * We upscale the frequency. Must make the guest
6192 * doesn't see old kvmclock values while running with
6193 * the new frequency, otherwise we risk the guest sees
6194 * time go backwards.
6195 *
6196 * In case we update the frequency for another cpu
6197 * (which might be in guest context) send an interrupt
6198 * to kick the cpu out of guest context. Next time
6199 * guest context is entered kvmclock will be updated,
6200 * so the guest will not see stale values.
6201 */
6202 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6203 }
6204 return 0;
6205 }
6206
6207 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6208 .notifier_call = kvmclock_cpufreq_notifier
6209 };
6210
6211 static int kvmclock_cpu_online(unsigned int cpu)
6212 {
6213 tsc_khz_changed(NULL);
6214 return 0;
6215 }
6216
6217 static void kvm_timer_init(void)
6218 {
6219 max_tsc_khz = tsc_khz;
6220
6221 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6222 #ifdef CONFIG_CPU_FREQ
6223 struct cpufreq_policy policy;
6224 int cpu;
6225
6226 memset(&policy, 0, sizeof(policy));
6227 cpu = get_cpu();
6228 cpufreq_get_policy(&policy, cpu);
6229 if (policy.cpuinfo.max_freq)
6230 max_tsc_khz = policy.cpuinfo.max_freq;
6231 put_cpu();
6232 #endif
6233 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6234 CPUFREQ_TRANSITION_NOTIFIER);
6235 }
6236 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6237
6238 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6239 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6240 }
6241
6242 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6243
6244 int kvm_is_in_guest(void)
6245 {
6246 return __this_cpu_read(current_vcpu) != NULL;
6247 }
6248
6249 static int kvm_is_user_mode(void)
6250 {
6251 int user_mode = 3;
6252
6253 if (__this_cpu_read(current_vcpu))
6254 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6255
6256 return user_mode != 0;
6257 }
6258
6259 static unsigned long kvm_get_guest_ip(void)
6260 {
6261 unsigned long ip = 0;
6262
6263 if (__this_cpu_read(current_vcpu))
6264 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6265
6266 return ip;
6267 }
6268
6269 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6270 .is_in_guest = kvm_is_in_guest,
6271 .is_user_mode = kvm_is_user_mode,
6272 .get_guest_ip = kvm_get_guest_ip,
6273 };
6274
6275 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6276 {
6277 __this_cpu_write(current_vcpu, vcpu);
6278 }
6279 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6280
6281 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6282 {
6283 __this_cpu_write(current_vcpu, NULL);
6284 }
6285 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6286
6287 static void kvm_set_mmio_spte_mask(void)
6288 {
6289 u64 mask;
6290 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6291
6292 /*
6293 * Set the reserved bits and the present bit of an paging-structure
6294 * entry to generate page fault with PFER.RSV = 1.
6295 */
6296 /* Mask the reserved physical address bits. */
6297 mask = rsvd_bits(maxphyaddr, 51);
6298
6299 /* Set the present bit. */
6300 mask |= 1ull;
6301
6302 #ifdef CONFIG_X86_64
6303 /*
6304 * If reserved bit is not supported, clear the present bit to disable
6305 * mmio page fault.
6306 */
6307 if (maxphyaddr == 52)
6308 mask &= ~1ull;
6309 #endif
6310
6311 kvm_mmu_set_mmio_spte_mask(mask, mask);
6312 }
6313
6314 #ifdef CONFIG_X86_64
6315 static void pvclock_gtod_update_fn(struct work_struct *work)
6316 {
6317 struct kvm *kvm;
6318
6319 struct kvm_vcpu *vcpu;
6320 int i;
6321
6322 spin_lock(&kvm_lock);
6323 list_for_each_entry(kvm, &vm_list, vm_list)
6324 kvm_for_each_vcpu(i, vcpu, kvm)
6325 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6326 atomic_set(&kvm_guest_has_master_clock, 0);
6327 spin_unlock(&kvm_lock);
6328 }
6329
6330 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6331
6332 /*
6333 * Notification about pvclock gtod data update.
6334 */
6335 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6336 void *priv)
6337 {
6338 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6339 struct timekeeper *tk = priv;
6340
6341 update_pvclock_gtod(tk);
6342
6343 /* disable master clock if host does not trust, or does not
6344 * use, TSC based clocksource.
6345 */
6346 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6347 atomic_read(&kvm_guest_has_master_clock) != 0)
6348 queue_work(system_long_wq, &pvclock_gtod_work);
6349
6350 return 0;
6351 }
6352
6353 static struct notifier_block pvclock_gtod_notifier = {
6354 .notifier_call = pvclock_gtod_notify,
6355 };
6356 #endif
6357
6358 int kvm_arch_init(void *opaque)
6359 {
6360 int r;
6361 struct kvm_x86_ops *ops = opaque;
6362
6363 if (kvm_x86_ops) {
6364 printk(KERN_ERR "kvm: already loaded the other module\n");
6365 r = -EEXIST;
6366 goto out;
6367 }
6368
6369 if (!ops->cpu_has_kvm_support()) {
6370 printk(KERN_ERR "kvm: no hardware support\n");
6371 r = -EOPNOTSUPP;
6372 goto out;
6373 }
6374 if (ops->disabled_by_bios()) {
6375 printk(KERN_ERR "kvm: disabled by bios\n");
6376 r = -EOPNOTSUPP;
6377 goto out;
6378 }
6379
6380 r = -ENOMEM;
6381 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6382 if (!shared_msrs) {
6383 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6384 goto out;
6385 }
6386
6387 r = kvm_mmu_module_init();
6388 if (r)
6389 goto out_free_percpu;
6390
6391 kvm_set_mmio_spte_mask();
6392
6393 kvm_x86_ops = ops;
6394
6395 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6396 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6397 PT_PRESENT_MASK, 0, sme_me_mask);
6398 kvm_timer_init();
6399
6400 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6401
6402 if (boot_cpu_has(X86_FEATURE_XSAVE))
6403 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6404
6405 kvm_lapic_init();
6406 #ifdef CONFIG_X86_64
6407 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6408
6409 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6410 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6411 #endif
6412
6413 return 0;
6414
6415 out_free_percpu:
6416 free_percpu(shared_msrs);
6417 out:
6418 return r;
6419 }
6420
6421 void kvm_arch_exit(void)
6422 {
6423 #ifdef CONFIG_X86_64
6424 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6425 clear_hv_tscchange_cb();
6426 #endif
6427 kvm_lapic_exit();
6428 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6429
6430 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6431 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6432 CPUFREQ_TRANSITION_NOTIFIER);
6433 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6434 #ifdef CONFIG_X86_64
6435 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6436 #endif
6437 kvm_x86_ops = NULL;
6438 kvm_mmu_module_exit();
6439 free_percpu(shared_msrs);
6440 }
6441
6442 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6443 {
6444 ++vcpu->stat.halt_exits;
6445 if (lapic_in_kernel(vcpu)) {
6446 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6447 return 1;
6448 } else {
6449 vcpu->run->exit_reason = KVM_EXIT_HLT;
6450 return 0;
6451 }
6452 }
6453 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6454
6455 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6456 {
6457 int ret = kvm_skip_emulated_instruction(vcpu);
6458 /*
6459 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6460 * KVM_EXIT_DEBUG here.
6461 */
6462 return kvm_vcpu_halt(vcpu) && ret;
6463 }
6464 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6465
6466 #ifdef CONFIG_X86_64
6467 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6468 unsigned long clock_type)
6469 {
6470 struct kvm_clock_pairing clock_pairing;
6471 struct timespec ts;
6472 u64 cycle;
6473 int ret;
6474
6475 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6476 return -KVM_EOPNOTSUPP;
6477
6478 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6479 return -KVM_EOPNOTSUPP;
6480
6481 clock_pairing.sec = ts.tv_sec;
6482 clock_pairing.nsec = ts.tv_nsec;
6483 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6484 clock_pairing.flags = 0;
6485
6486 ret = 0;
6487 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6488 sizeof(struct kvm_clock_pairing)))
6489 ret = -KVM_EFAULT;
6490
6491 return ret;
6492 }
6493 #endif
6494
6495 /*
6496 * kvm_pv_kick_cpu_op: Kick a vcpu.
6497 *
6498 * @apicid - apicid of vcpu to be kicked.
6499 */
6500 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6501 {
6502 struct kvm_lapic_irq lapic_irq;
6503
6504 lapic_irq.shorthand = 0;
6505 lapic_irq.dest_mode = 0;
6506 lapic_irq.level = 0;
6507 lapic_irq.dest_id = apicid;
6508 lapic_irq.msi_redir_hint = false;
6509
6510 lapic_irq.delivery_mode = APIC_DM_REMRD;
6511 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6512 }
6513
6514 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6515 {
6516 vcpu->arch.apicv_active = false;
6517 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6518 }
6519
6520 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6521 {
6522 unsigned long nr, a0, a1, a2, a3, ret;
6523 int op_64_bit, r;
6524
6525 r = kvm_skip_emulated_instruction(vcpu);
6526
6527 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6528 return kvm_hv_hypercall(vcpu);
6529
6530 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6531 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6532 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6533 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6534 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6535
6536 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6537
6538 op_64_bit = is_64_bit_mode(vcpu);
6539 if (!op_64_bit) {
6540 nr &= 0xFFFFFFFF;
6541 a0 &= 0xFFFFFFFF;
6542 a1 &= 0xFFFFFFFF;
6543 a2 &= 0xFFFFFFFF;
6544 a3 &= 0xFFFFFFFF;
6545 }
6546
6547 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6548 ret = -KVM_EPERM;
6549 goto out;
6550 }
6551
6552 switch (nr) {
6553 case KVM_HC_VAPIC_POLL_IRQ:
6554 ret = 0;
6555 break;
6556 case KVM_HC_KICK_CPU:
6557 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6558 ret = 0;
6559 break;
6560 #ifdef CONFIG_X86_64
6561 case KVM_HC_CLOCK_PAIRING:
6562 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6563 break;
6564 #endif
6565 default:
6566 ret = -KVM_ENOSYS;
6567 break;
6568 }
6569 out:
6570 if (!op_64_bit)
6571 ret = (u32)ret;
6572 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6573 ++vcpu->stat.hypercalls;
6574 return r;
6575 }
6576 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6577
6578 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6579 {
6580 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6581 char instruction[3];
6582 unsigned long rip = kvm_rip_read(vcpu);
6583
6584 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6585
6586 return emulator_write_emulated(ctxt, rip, instruction, 3,
6587 &ctxt->exception);
6588 }
6589
6590 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6591 {
6592 return vcpu->run->request_interrupt_window &&
6593 likely(!pic_in_kernel(vcpu->kvm));
6594 }
6595
6596 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6597 {
6598 struct kvm_run *kvm_run = vcpu->run;
6599
6600 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6601 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6602 kvm_run->cr8 = kvm_get_cr8(vcpu);
6603 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6604 kvm_run->ready_for_interrupt_injection =
6605 pic_in_kernel(vcpu->kvm) ||
6606 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6607 }
6608
6609 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6610 {
6611 int max_irr, tpr;
6612
6613 if (!kvm_x86_ops->update_cr8_intercept)
6614 return;
6615
6616 if (!lapic_in_kernel(vcpu))
6617 return;
6618
6619 if (vcpu->arch.apicv_active)
6620 return;
6621
6622 if (!vcpu->arch.apic->vapic_addr)
6623 max_irr = kvm_lapic_find_highest_irr(vcpu);
6624 else
6625 max_irr = -1;
6626
6627 if (max_irr != -1)
6628 max_irr >>= 4;
6629
6630 tpr = kvm_lapic_get_cr8(vcpu);
6631
6632 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6633 }
6634
6635 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6636 {
6637 int r;
6638
6639 /* try to reinject previous events if any */
6640 if (vcpu->arch.exception.injected) {
6641 kvm_x86_ops->queue_exception(vcpu);
6642 return 0;
6643 }
6644
6645 /*
6646 * Exceptions must be injected immediately, or the exception
6647 * frame will have the address of the NMI or interrupt handler.
6648 */
6649 if (!vcpu->arch.exception.pending) {
6650 if (vcpu->arch.nmi_injected) {
6651 kvm_x86_ops->set_nmi(vcpu);
6652 return 0;
6653 }
6654
6655 if (vcpu->arch.interrupt.pending) {
6656 kvm_x86_ops->set_irq(vcpu);
6657 return 0;
6658 }
6659 }
6660
6661 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6662 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6663 if (r != 0)
6664 return r;
6665 }
6666
6667 /* try to inject new event if pending */
6668 if (vcpu->arch.exception.pending) {
6669 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6670 vcpu->arch.exception.has_error_code,
6671 vcpu->arch.exception.error_code);
6672
6673 vcpu->arch.exception.pending = false;
6674 vcpu->arch.exception.injected = true;
6675
6676 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6677 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6678 X86_EFLAGS_RF);
6679
6680 if (vcpu->arch.exception.nr == DB_VECTOR &&
6681 (vcpu->arch.dr7 & DR7_GD)) {
6682 vcpu->arch.dr7 &= ~DR7_GD;
6683 kvm_update_dr7(vcpu);
6684 }
6685
6686 kvm_x86_ops->queue_exception(vcpu);
6687 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6688 vcpu->arch.smi_pending = false;
6689 ++vcpu->arch.smi_count;
6690 enter_smm(vcpu);
6691 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6692 --vcpu->arch.nmi_pending;
6693 vcpu->arch.nmi_injected = true;
6694 kvm_x86_ops->set_nmi(vcpu);
6695 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6696 /*
6697 * Because interrupts can be injected asynchronously, we are
6698 * calling check_nested_events again here to avoid a race condition.
6699 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6700 * proposal and current concerns. Perhaps we should be setting
6701 * KVM_REQ_EVENT only on certain events and not unconditionally?
6702 */
6703 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6704 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6705 if (r != 0)
6706 return r;
6707 }
6708 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6709 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6710 false);
6711 kvm_x86_ops->set_irq(vcpu);
6712 }
6713 }
6714
6715 return 0;
6716 }
6717
6718 static void process_nmi(struct kvm_vcpu *vcpu)
6719 {
6720 unsigned limit = 2;
6721
6722 /*
6723 * x86 is limited to one NMI running, and one NMI pending after it.
6724 * If an NMI is already in progress, limit further NMIs to just one.
6725 * Otherwise, allow two (and we'll inject the first one immediately).
6726 */
6727 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6728 limit = 1;
6729
6730 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6731 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6732 kvm_make_request(KVM_REQ_EVENT, vcpu);
6733 }
6734
6735 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6736 {
6737 u32 flags = 0;
6738 flags |= seg->g << 23;
6739 flags |= seg->db << 22;
6740 flags |= seg->l << 21;
6741 flags |= seg->avl << 20;
6742 flags |= seg->present << 15;
6743 flags |= seg->dpl << 13;
6744 flags |= seg->s << 12;
6745 flags |= seg->type << 8;
6746 return flags;
6747 }
6748
6749 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6750 {
6751 struct kvm_segment seg;
6752 int offset;
6753
6754 kvm_get_segment(vcpu, &seg, n);
6755 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6756
6757 if (n < 3)
6758 offset = 0x7f84 + n * 12;
6759 else
6760 offset = 0x7f2c + (n - 3) * 12;
6761
6762 put_smstate(u32, buf, offset + 8, seg.base);
6763 put_smstate(u32, buf, offset + 4, seg.limit);
6764 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6765 }
6766
6767 #ifdef CONFIG_X86_64
6768 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6769 {
6770 struct kvm_segment seg;
6771 int offset;
6772 u16 flags;
6773
6774 kvm_get_segment(vcpu, &seg, n);
6775 offset = 0x7e00 + n * 16;
6776
6777 flags = enter_smm_get_segment_flags(&seg) >> 8;
6778 put_smstate(u16, buf, offset, seg.selector);
6779 put_smstate(u16, buf, offset + 2, flags);
6780 put_smstate(u32, buf, offset + 4, seg.limit);
6781 put_smstate(u64, buf, offset + 8, seg.base);
6782 }
6783 #endif
6784
6785 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6786 {
6787 struct desc_ptr dt;
6788 struct kvm_segment seg;
6789 unsigned long val;
6790 int i;
6791
6792 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6793 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6794 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6795 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6796
6797 for (i = 0; i < 8; i++)
6798 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6799
6800 kvm_get_dr(vcpu, 6, &val);
6801 put_smstate(u32, buf, 0x7fcc, (u32)val);
6802 kvm_get_dr(vcpu, 7, &val);
6803 put_smstate(u32, buf, 0x7fc8, (u32)val);
6804
6805 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6806 put_smstate(u32, buf, 0x7fc4, seg.selector);
6807 put_smstate(u32, buf, 0x7f64, seg.base);
6808 put_smstate(u32, buf, 0x7f60, seg.limit);
6809 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6810
6811 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6812 put_smstate(u32, buf, 0x7fc0, seg.selector);
6813 put_smstate(u32, buf, 0x7f80, seg.base);
6814 put_smstate(u32, buf, 0x7f7c, seg.limit);
6815 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6816
6817 kvm_x86_ops->get_gdt(vcpu, &dt);
6818 put_smstate(u32, buf, 0x7f74, dt.address);
6819 put_smstate(u32, buf, 0x7f70, dt.size);
6820
6821 kvm_x86_ops->get_idt(vcpu, &dt);
6822 put_smstate(u32, buf, 0x7f58, dt.address);
6823 put_smstate(u32, buf, 0x7f54, dt.size);
6824
6825 for (i = 0; i < 6; i++)
6826 enter_smm_save_seg_32(vcpu, buf, i);
6827
6828 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6829
6830 /* revision id */
6831 put_smstate(u32, buf, 0x7efc, 0x00020000);
6832 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6833 }
6834
6835 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6836 {
6837 #ifdef CONFIG_X86_64
6838 struct desc_ptr dt;
6839 struct kvm_segment seg;
6840 unsigned long val;
6841 int i;
6842
6843 for (i = 0; i < 16; i++)
6844 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6845
6846 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6847 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6848
6849 kvm_get_dr(vcpu, 6, &val);
6850 put_smstate(u64, buf, 0x7f68, val);
6851 kvm_get_dr(vcpu, 7, &val);
6852 put_smstate(u64, buf, 0x7f60, val);
6853
6854 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6855 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6856 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6857
6858 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6859
6860 /* revision id */
6861 put_smstate(u32, buf, 0x7efc, 0x00020064);
6862
6863 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6864
6865 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6866 put_smstate(u16, buf, 0x7e90, seg.selector);
6867 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6868 put_smstate(u32, buf, 0x7e94, seg.limit);
6869 put_smstate(u64, buf, 0x7e98, seg.base);
6870
6871 kvm_x86_ops->get_idt(vcpu, &dt);
6872 put_smstate(u32, buf, 0x7e84, dt.size);
6873 put_smstate(u64, buf, 0x7e88, dt.address);
6874
6875 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6876 put_smstate(u16, buf, 0x7e70, seg.selector);
6877 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6878 put_smstate(u32, buf, 0x7e74, seg.limit);
6879 put_smstate(u64, buf, 0x7e78, seg.base);
6880
6881 kvm_x86_ops->get_gdt(vcpu, &dt);
6882 put_smstate(u32, buf, 0x7e64, dt.size);
6883 put_smstate(u64, buf, 0x7e68, dt.address);
6884
6885 for (i = 0; i < 6; i++)
6886 enter_smm_save_seg_64(vcpu, buf, i);
6887 #else
6888 WARN_ON_ONCE(1);
6889 #endif
6890 }
6891
6892 static void enter_smm(struct kvm_vcpu *vcpu)
6893 {
6894 struct kvm_segment cs, ds;
6895 struct desc_ptr dt;
6896 char buf[512];
6897 u32 cr0;
6898
6899 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6900 memset(buf, 0, 512);
6901 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6902 enter_smm_save_state_64(vcpu, buf);
6903 else
6904 enter_smm_save_state_32(vcpu, buf);
6905
6906 /*
6907 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6908 * vCPU state (e.g. leave guest mode) after we've saved the state into
6909 * the SMM state-save area.
6910 */
6911 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6912
6913 vcpu->arch.hflags |= HF_SMM_MASK;
6914 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6915
6916 if (kvm_x86_ops->get_nmi_mask(vcpu))
6917 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6918 else
6919 kvm_x86_ops->set_nmi_mask(vcpu, true);
6920
6921 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6922 kvm_rip_write(vcpu, 0x8000);
6923
6924 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6925 kvm_x86_ops->set_cr0(vcpu, cr0);
6926 vcpu->arch.cr0 = cr0;
6927
6928 kvm_x86_ops->set_cr4(vcpu, 0);
6929
6930 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6931 dt.address = dt.size = 0;
6932 kvm_x86_ops->set_idt(vcpu, &dt);
6933
6934 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6935
6936 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6937 cs.base = vcpu->arch.smbase;
6938
6939 ds.selector = 0;
6940 ds.base = 0;
6941
6942 cs.limit = ds.limit = 0xffffffff;
6943 cs.type = ds.type = 0x3;
6944 cs.dpl = ds.dpl = 0;
6945 cs.db = ds.db = 0;
6946 cs.s = ds.s = 1;
6947 cs.l = ds.l = 0;
6948 cs.g = ds.g = 1;
6949 cs.avl = ds.avl = 0;
6950 cs.present = ds.present = 1;
6951 cs.unusable = ds.unusable = 0;
6952 cs.padding = ds.padding = 0;
6953
6954 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6955 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6956 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6957 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6958 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6959 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6960
6961 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6962 kvm_x86_ops->set_efer(vcpu, 0);
6963
6964 kvm_update_cpuid(vcpu);
6965 kvm_mmu_reset_context(vcpu);
6966 }
6967
6968 static void process_smi(struct kvm_vcpu *vcpu)
6969 {
6970 vcpu->arch.smi_pending = true;
6971 kvm_make_request(KVM_REQ_EVENT, vcpu);
6972 }
6973
6974 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6975 {
6976 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6977 }
6978
6979 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6980 {
6981 u64 eoi_exit_bitmap[4];
6982
6983 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6984 return;
6985
6986 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6987
6988 if (irqchip_split(vcpu->kvm))
6989 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6990 else {
6991 if (vcpu->arch.apicv_active)
6992 kvm_x86_ops->sync_pir_to_irr(vcpu);
6993 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6994 }
6995 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6996 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6997 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6998 }
6999
7000 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7001 unsigned long start, unsigned long end)
7002 {
7003 unsigned long apic_address;
7004
7005 /*
7006 * The physical address of apic access page is stored in the VMCS.
7007 * Update it when it becomes invalid.
7008 */
7009 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7010 if (start <= apic_address && apic_address < end)
7011 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7012 }
7013
7014 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7015 {
7016 struct page *page = NULL;
7017
7018 if (!lapic_in_kernel(vcpu))
7019 return;
7020
7021 if (!kvm_x86_ops->set_apic_access_page_addr)
7022 return;
7023
7024 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7025 if (is_error_page(page))
7026 return;
7027 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7028
7029 /*
7030 * Do not pin apic access page in memory, the MMU notifier
7031 * will call us again if it is migrated or swapped out.
7032 */
7033 put_page(page);
7034 }
7035 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7036
7037 /*
7038 * Returns 1 to let vcpu_run() continue the guest execution loop without
7039 * exiting to the userspace. Otherwise, the value will be returned to the
7040 * userspace.
7041 */
7042 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7043 {
7044 int r;
7045 bool req_int_win =
7046 dm_request_for_irq_injection(vcpu) &&
7047 kvm_cpu_accept_dm_intr(vcpu);
7048
7049 bool req_immediate_exit = false;
7050
7051 if (kvm_request_pending(vcpu)) {
7052 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7053 kvm_mmu_unload(vcpu);
7054 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7055 __kvm_migrate_timers(vcpu);
7056 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7057 kvm_gen_update_masterclock(vcpu->kvm);
7058 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7059 kvm_gen_kvmclock_update(vcpu);
7060 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7061 r = kvm_guest_time_update(vcpu);
7062 if (unlikely(r))
7063 goto out;
7064 }
7065 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7066 kvm_mmu_sync_roots(vcpu);
7067 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7068 kvm_vcpu_flush_tlb(vcpu, true);
7069 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7070 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7071 r = 0;
7072 goto out;
7073 }
7074 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7075 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7076 vcpu->mmio_needed = 0;
7077 r = 0;
7078 goto out;
7079 }
7080 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7081 /* Page is swapped out. Do synthetic halt */
7082 vcpu->arch.apf.halted = true;
7083 r = 1;
7084 goto out;
7085 }
7086 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7087 record_steal_time(vcpu);
7088 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7089 process_smi(vcpu);
7090 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7091 process_nmi(vcpu);
7092 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7093 kvm_pmu_handle_event(vcpu);
7094 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7095 kvm_pmu_deliver_pmi(vcpu);
7096 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7097 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7098 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7099 vcpu->arch.ioapic_handled_vectors)) {
7100 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7101 vcpu->run->eoi.vector =
7102 vcpu->arch.pending_ioapic_eoi;
7103 r = 0;
7104 goto out;
7105 }
7106 }
7107 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7108 vcpu_scan_ioapic(vcpu);
7109 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7110 kvm_vcpu_reload_apic_access_page(vcpu);
7111 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7112 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7113 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7114 r = 0;
7115 goto out;
7116 }
7117 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7118 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7119 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7120 r = 0;
7121 goto out;
7122 }
7123 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7124 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7125 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7126 r = 0;
7127 goto out;
7128 }
7129
7130 /*
7131 * KVM_REQ_HV_STIMER has to be processed after
7132 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7133 * depend on the guest clock being up-to-date
7134 */
7135 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7136 kvm_hv_process_stimers(vcpu);
7137 }
7138
7139 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7140 ++vcpu->stat.req_event;
7141 kvm_apic_accept_events(vcpu);
7142 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7143 r = 1;
7144 goto out;
7145 }
7146
7147 if (inject_pending_event(vcpu, req_int_win) != 0)
7148 req_immediate_exit = true;
7149 else {
7150 /* Enable SMI/NMI/IRQ window open exits if needed.
7151 *
7152 * SMIs have three cases:
7153 * 1) They can be nested, and then there is nothing to
7154 * do here because RSM will cause a vmexit anyway.
7155 * 2) There is an ISA-specific reason why SMI cannot be
7156 * injected, and the moment when this changes can be
7157 * intercepted.
7158 * 3) Or the SMI can be pending because
7159 * inject_pending_event has completed the injection
7160 * of an IRQ or NMI from the previous vmexit, and
7161 * then we request an immediate exit to inject the
7162 * SMI.
7163 */
7164 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7165 if (!kvm_x86_ops->enable_smi_window(vcpu))
7166 req_immediate_exit = true;
7167 if (vcpu->arch.nmi_pending)
7168 kvm_x86_ops->enable_nmi_window(vcpu);
7169 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7170 kvm_x86_ops->enable_irq_window(vcpu);
7171 WARN_ON(vcpu->arch.exception.pending);
7172 }
7173
7174 if (kvm_lapic_enabled(vcpu)) {
7175 update_cr8_intercept(vcpu);
7176 kvm_lapic_sync_to_vapic(vcpu);
7177 }
7178 }
7179
7180 r = kvm_mmu_reload(vcpu);
7181 if (unlikely(r)) {
7182 goto cancel_injection;
7183 }
7184
7185 preempt_disable();
7186
7187 kvm_x86_ops->prepare_guest_switch(vcpu);
7188
7189 /*
7190 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7191 * IPI are then delayed after guest entry, which ensures that they
7192 * result in virtual interrupt delivery.
7193 */
7194 local_irq_disable();
7195 vcpu->mode = IN_GUEST_MODE;
7196
7197 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7198
7199 /*
7200 * 1) We should set ->mode before checking ->requests. Please see
7201 * the comment in kvm_vcpu_exiting_guest_mode().
7202 *
7203 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7204 * pairs with the memory barrier implicit in pi_test_and_set_on
7205 * (see vmx_deliver_posted_interrupt).
7206 *
7207 * 3) This also orders the write to mode from any reads to the page
7208 * tables done while the VCPU is running. Please see the comment
7209 * in kvm_flush_remote_tlbs.
7210 */
7211 smp_mb__after_srcu_read_unlock();
7212
7213 /*
7214 * This handles the case where a posted interrupt was
7215 * notified with kvm_vcpu_kick.
7216 */
7217 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7218 kvm_x86_ops->sync_pir_to_irr(vcpu);
7219
7220 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7221 || need_resched() || signal_pending(current)) {
7222 vcpu->mode = OUTSIDE_GUEST_MODE;
7223 smp_wmb();
7224 local_irq_enable();
7225 preempt_enable();
7226 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7227 r = 1;
7228 goto cancel_injection;
7229 }
7230
7231 kvm_load_guest_xcr0(vcpu);
7232
7233 if (req_immediate_exit) {
7234 kvm_make_request(KVM_REQ_EVENT, vcpu);
7235 smp_send_reschedule(vcpu->cpu);
7236 }
7237
7238 trace_kvm_entry(vcpu->vcpu_id);
7239 if (lapic_timer_advance_ns)
7240 wait_lapic_expire(vcpu);
7241 guest_enter_irqoff();
7242
7243 if (unlikely(vcpu->arch.switch_db_regs)) {
7244 set_debugreg(0, 7);
7245 set_debugreg(vcpu->arch.eff_db[0], 0);
7246 set_debugreg(vcpu->arch.eff_db[1], 1);
7247 set_debugreg(vcpu->arch.eff_db[2], 2);
7248 set_debugreg(vcpu->arch.eff_db[3], 3);
7249 set_debugreg(vcpu->arch.dr6, 6);
7250 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7251 }
7252
7253 kvm_x86_ops->run(vcpu);
7254
7255 /*
7256 * Do this here before restoring debug registers on the host. And
7257 * since we do this before handling the vmexit, a DR access vmexit
7258 * can (a) read the correct value of the debug registers, (b) set
7259 * KVM_DEBUGREG_WONT_EXIT again.
7260 */
7261 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7262 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7263 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7264 kvm_update_dr0123(vcpu);
7265 kvm_update_dr6(vcpu);
7266 kvm_update_dr7(vcpu);
7267 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7268 }
7269
7270 /*
7271 * If the guest has used debug registers, at least dr7
7272 * will be disabled while returning to the host.
7273 * If we don't have active breakpoints in the host, we don't
7274 * care about the messed up debug address registers. But if
7275 * we have some of them active, restore the old state.
7276 */
7277 if (hw_breakpoint_active())
7278 hw_breakpoint_restore();
7279
7280 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7281
7282 vcpu->mode = OUTSIDE_GUEST_MODE;
7283 smp_wmb();
7284
7285 kvm_put_guest_xcr0(vcpu);
7286
7287 kvm_x86_ops->handle_external_intr(vcpu);
7288
7289 ++vcpu->stat.exits;
7290
7291 guest_exit_irqoff();
7292
7293 local_irq_enable();
7294 preempt_enable();
7295
7296 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7297
7298 /*
7299 * Profile KVM exit RIPs:
7300 */
7301 if (unlikely(prof_on == KVM_PROFILING)) {
7302 unsigned long rip = kvm_rip_read(vcpu);
7303 profile_hit(KVM_PROFILING, (void *)rip);
7304 }
7305
7306 if (unlikely(vcpu->arch.tsc_always_catchup))
7307 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7308
7309 if (vcpu->arch.apic_attention)
7310 kvm_lapic_sync_from_vapic(vcpu);
7311
7312 vcpu->arch.gpa_available = false;
7313 r = kvm_x86_ops->handle_exit(vcpu);
7314 return r;
7315
7316 cancel_injection:
7317 kvm_x86_ops->cancel_injection(vcpu);
7318 if (unlikely(vcpu->arch.apic_attention))
7319 kvm_lapic_sync_from_vapic(vcpu);
7320 out:
7321 return r;
7322 }
7323
7324 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7325 {
7326 if (!kvm_arch_vcpu_runnable(vcpu) &&
7327 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7328 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7329 kvm_vcpu_block(vcpu);
7330 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7331
7332 if (kvm_x86_ops->post_block)
7333 kvm_x86_ops->post_block(vcpu);
7334
7335 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7336 return 1;
7337 }
7338
7339 kvm_apic_accept_events(vcpu);
7340 switch(vcpu->arch.mp_state) {
7341 case KVM_MP_STATE_HALTED:
7342 vcpu->arch.pv.pv_unhalted = false;
7343 vcpu->arch.mp_state =
7344 KVM_MP_STATE_RUNNABLE;
7345 case KVM_MP_STATE_RUNNABLE:
7346 vcpu->arch.apf.halted = false;
7347 break;
7348 case KVM_MP_STATE_INIT_RECEIVED:
7349 break;
7350 default:
7351 return -EINTR;
7352 break;
7353 }
7354 return 1;
7355 }
7356
7357 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7358 {
7359 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7360 kvm_x86_ops->check_nested_events(vcpu, false);
7361
7362 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7363 !vcpu->arch.apf.halted);
7364 }
7365
7366 static int vcpu_run(struct kvm_vcpu *vcpu)
7367 {
7368 int r;
7369 struct kvm *kvm = vcpu->kvm;
7370
7371 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7372
7373 for (;;) {
7374 if (kvm_vcpu_running(vcpu)) {
7375 r = vcpu_enter_guest(vcpu);
7376 } else {
7377 r = vcpu_block(kvm, vcpu);
7378 }
7379
7380 if (r <= 0)
7381 break;
7382
7383 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7384 if (kvm_cpu_has_pending_timer(vcpu))
7385 kvm_inject_pending_timer_irqs(vcpu);
7386
7387 if (dm_request_for_irq_injection(vcpu) &&
7388 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7389 r = 0;
7390 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7391 ++vcpu->stat.request_irq_exits;
7392 break;
7393 }
7394
7395 kvm_check_async_pf_completion(vcpu);
7396
7397 if (signal_pending(current)) {
7398 r = -EINTR;
7399 vcpu->run->exit_reason = KVM_EXIT_INTR;
7400 ++vcpu->stat.signal_exits;
7401 break;
7402 }
7403 if (need_resched()) {
7404 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7405 cond_resched();
7406 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7407 }
7408 }
7409
7410 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7411
7412 return r;
7413 }
7414
7415 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7416 {
7417 int r;
7418 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7419 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7420 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7421 if (r != EMULATE_DONE)
7422 return 0;
7423 return 1;
7424 }
7425
7426 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7427 {
7428 BUG_ON(!vcpu->arch.pio.count);
7429
7430 return complete_emulated_io(vcpu);
7431 }
7432
7433 /*
7434 * Implements the following, as a state machine:
7435 *
7436 * read:
7437 * for each fragment
7438 * for each mmio piece in the fragment
7439 * write gpa, len
7440 * exit
7441 * copy data
7442 * execute insn
7443 *
7444 * write:
7445 * for each fragment
7446 * for each mmio piece in the fragment
7447 * write gpa, len
7448 * copy data
7449 * exit
7450 */
7451 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7452 {
7453 struct kvm_run *run = vcpu->run;
7454 struct kvm_mmio_fragment *frag;
7455 unsigned len;
7456
7457 BUG_ON(!vcpu->mmio_needed);
7458
7459 /* Complete previous fragment */
7460 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7461 len = min(8u, frag->len);
7462 if (!vcpu->mmio_is_write)
7463 memcpy(frag->data, run->mmio.data, len);
7464
7465 if (frag->len <= 8) {
7466 /* Switch to the next fragment. */
7467 frag++;
7468 vcpu->mmio_cur_fragment++;
7469 } else {
7470 /* Go forward to the next mmio piece. */
7471 frag->data += len;
7472 frag->gpa += len;
7473 frag->len -= len;
7474 }
7475
7476 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7477 vcpu->mmio_needed = 0;
7478
7479 /* FIXME: return into emulator if single-stepping. */
7480 if (vcpu->mmio_is_write)
7481 return 1;
7482 vcpu->mmio_read_completed = 1;
7483 return complete_emulated_io(vcpu);
7484 }
7485
7486 run->exit_reason = KVM_EXIT_MMIO;
7487 run->mmio.phys_addr = frag->gpa;
7488 if (vcpu->mmio_is_write)
7489 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7490 run->mmio.len = min(8u, frag->len);
7491 run->mmio.is_write = vcpu->mmio_is_write;
7492 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7493 return 0;
7494 }
7495
7496
7497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7498 {
7499 int r;
7500
7501 vcpu_load(vcpu);
7502 kvm_sigset_activate(vcpu);
7503 kvm_load_guest_fpu(vcpu);
7504
7505 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7506 if (kvm_run->immediate_exit) {
7507 r = -EINTR;
7508 goto out;
7509 }
7510 kvm_vcpu_block(vcpu);
7511 kvm_apic_accept_events(vcpu);
7512 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7513 r = -EAGAIN;
7514 if (signal_pending(current)) {
7515 r = -EINTR;
7516 vcpu->run->exit_reason = KVM_EXIT_INTR;
7517 ++vcpu->stat.signal_exits;
7518 }
7519 goto out;
7520 }
7521
7522 /* re-sync apic's tpr */
7523 if (!lapic_in_kernel(vcpu)) {
7524 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7525 r = -EINVAL;
7526 goto out;
7527 }
7528 }
7529
7530 if (unlikely(vcpu->arch.complete_userspace_io)) {
7531 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7532 vcpu->arch.complete_userspace_io = NULL;
7533 r = cui(vcpu);
7534 if (r <= 0)
7535 goto out;
7536 } else
7537 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7538
7539 if (kvm_run->immediate_exit)
7540 r = -EINTR;
7541 else
7542 r = vcpu_run(vcpu);
7543
7544 out:
7545 kvm_put_guest_fpu(vcpu);
7546 post_kvm_run_save(vcpu);
7547 kvm_sigset_deactivate(vcpu);
7548
7549 vcpu_put(vcpu);
7550 return r;
7551 }
7552
7553 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7554 {
7555 vcpu_load(vcpu);
7556
7557 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7558 /*
7559 * We are here if userspace calls get_regs() in the middle of
7560 * instruction emulation. Registers state needs to be copied
7561 * back from emulation context to vcpu. Userspace shouldn't do
7562 * that usually, but some bad designed PV devices (vmware
7563 * backdoor interface) need this to work
7564 */
7565 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7566 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7567 }
7568 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7569 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7570 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7571 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7572 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7573 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7574 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7575 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7576 #ifdef CONFIG_X86_64
7577 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7578 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7579 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7580 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7581 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7582 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7583 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7584 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7585 #endif
7586
7587 regs->rip = kvm_rip_read(vcpu);
7588 regs->rflags = kvm_get_rflags(vcpu);
7589
7590 vcpu_put(vcpu);
7591 return 0;
7592 }
7593
7594 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7595 {
7596 vcpu_load(vcpu);
7597
7598 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7599 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7600
7601 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7602 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7603 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7604 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7605 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7606 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7607 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7608 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7609 #ifdef CONFIG_X86_64
7610 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7611 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7612 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7613 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7614 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7615 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7616 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7617 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7618 #endif
7619
7620 kvm_rip_write(vcpu, regs->rip);
7621 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7622
7623 vcpu->arch.exception.pending = false;
7624
7625 kvm_make_request(KVM_REQ_EVENT, vcpu);
7626
7627 vcpu_put(vcpu);
7628 return 0;
7629 }
7630
7631 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7632 {
7633 struct kvm_segment cs;
7634
7635 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7636 *db = cs.db;
7637 *l = cs.l;
7638 }
7639 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7640
7641 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7642 struct kvm_sregs *sregs)
7643 {
7644 struct desc_ptr dt;
7645
7646 vcpu_load(vcpu);
7647
7648 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7649 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7650 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7651 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7652 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7653 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7654
7655 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7656 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7657
7658 kvm_x86_ops->get_idt(vcpu, &dt);
7659 sregs->idt.limit = dt.size;
7660 sregs->idt.base = dt.address;
7661 kvm_x86_ops->get_gdt(vcpu, &dt);
7662 sregs->gdt.limit = dt.size;
7663 sregs->gdt.base = dt.address;
7664
7665 sregs->cr0 = kvm_read_cr0(vcpu);
7666 sregs->cr2 = vcpu->arch.cr2;
7667 sregs->cr3 = kvm_read_cr3(vcpu);
7668 sregs->cr4 = kvm_read_cr4(vcpu);
7669 sregs->cr8 = kvm_get_cr8(vcpu);
7670 sregs->efer = vcpu->arch.efer;
7671 sregs->apic_base = kvm_get_apic_base(vcpu);
7672
7673 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7674
7675 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7676 set_bit(vcpu->arch.interrupt.nr,
7677 (unsigned long *)sregs->interrupt_bitmap);
7678
7679 vcpu_put(vcpu);
7680 return 0;
7681 }
7682
7683 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7684 struct kvm_mp_state *mp_state)
7685 {
7686 vcpu_load(vcpu);
7687
7688 kvm_apic_accept_events(vcpu);
7689 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7690 vcpu->arch.pv.pv_unhalted)
7691 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7692 else
7693 mp_state->mp_state = vcpu->arch.mp_state;
7694
7695 vcpu_put(vcpu);
7696 return 0;
7697 }
7698
7699 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7700 struct kvm_mp_state *mp_state)
7701 {
7702 int ret = -EINVAL;
7703
7704 vcpu_load(vcpu);
7705
7706 if (!lapic_in_kernel(vcpu) &&
7707 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7708 goto out;
7709
7710 /* INITs are latched while in SMM */
7711 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7712 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7713 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7714 goto out;
7715
7716 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7717 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7718 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7719 } else
7720 vcpu->arch.mp_state = mp_state->mp_state;
7721 kvm_make_request(KVM_REQ_EVENT, vcpu);
7722
7723 ret = 0;
7724 out:
7725 vcpu_put(vcpu);
7726 return ret;
7727 }
7728
7729 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7730 int reason, bool has_error_code, u32 error_code)
7731 {
7732 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7733 int ret;
7734
7735 init_emulate_ctxt(vcpu);
7736
7737 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7738 has_error_code, error_code);
7739
7740 if (ret)
7741 return EMULATE_FAIL;
7742
7743 kvm_rip_write(vcpu, ctxt->eip);
7744 kvm_set_rflags(vcpu, ctxt->eflags);
7745 kvm_make_request(KVM_REQ_EVENT, vcpu);
7746 return EMULATE_DONE;
7747 }
7748 EXPORT_SYMBOL_GPL(kvm_task_switch);
7749
7750 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7751 {
7752 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7753 /*
7754 * When EFER.LME and CR0.PG are set, the processor is in
7755 * 64-bit mode (though maybe in a 32-bit code segment).
7756 * CR4.PAE and EFER.LMA must be set.
7757 */
7758 if (!(sregs->cr4 & X86_CR4_PAE)
7759 || !(sregs->efer & EFER_LMA))
7760 return -EINVAL;
7761 } else {
7762 /*
7763 * Not in 64-bit mode: EFER.LMA is clear and the code
7764 * segment cannot be 64-bit.
7765 */
7766 if (sregs->efer & EFER_LMA || sregs->cs.l)
7767 return -EINVAL;
7768 }
7769
7770 return 0;
7771 }
7772
7773 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7774 struct kvm_sregs *sregs)
7775 {
7776 struct msr_data apic_base_msr;
7777 int mmu_reset_needed = 0;
7778 int pending_vec, max_bits, idx;
7779 struct desc_ptr dt;
7780 int ret = -EINVAL;
7781
7782 vcpu_load(vcpu);
7783
7784 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7785 (sregs->cr4 & X86_CR4_OSXSAVE))
7786 goto out;
7787
7788 if (kvm_valid_sregs(vcpu, sregs))
7789 goto out;
7790
7791 apic_base_msr.data = sregs->apic_base;
7792 apic_base_msr.host_initiated = true;
7793 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7794 goto out;
7795
7796 dt.size = sregs->idt.limit;
7797 dt.address = sregs->idt.base;
7798 kvm_x86_ops->set_idt(vcpu, &dt);
7799 dt.size = sregs->gdt.limit;
7800 dt.address = sregs->gdt.base;
7801 kvm_x86_ops->set_gdt(vcpu, &dt);
7802
7803 vcpu->arch.cr2 = sregs->cr2;
7804 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7805 vcpu->arch.cr3 = sregs->cr3;
7806 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7807
7808 kvm_set_cr8(vcpu, sregs->cr8);
7809
7810 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7811 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7812
7813 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7814 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7815 vcpu->arch.cr0 = sregs->cr0;
7816
7817 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7818 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7819 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7820 kvm_update_cpuid(vcpu);
7821
7822 idx = srcu_read_lock(&vcpu->kvm->srcu);
7823 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7824 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7825 mmu_reset_needed = 1;
7826 }
7827 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7828
7829 if (mmu_reset_needed)
7830 kvm_mmu_reset_context(vcpu);
7831
7832 max_bits = KVM_NR_INTERRUPTS;
7833 pending_vec = find_first_bit(
7834 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7835 if (pending_vec < max_bits) {
7836 kvm_queue_interrupt(vcpu, pending_vec, false);
7837 pr_debug("Set back pending irq %d\n", pending_vec);
7838 }
7839
7840 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7841 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7842 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7843 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7844 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7845 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7846
7847 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7848 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7849
7850 update_cr8_intercept(vcpu);
7851
7852 /* Older userspace won't unhalt the vcpu on reset. */
7853 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7854 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7855 !is_protmode(vcpu))
7856 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7857
7858 kvm_make_request(KVM_REQ_EVENT, vcpu);
7859
7860 ret = 0;
7861 out:
7862 vcpu_put(vcpu);
7863 return ret;
7864 }
7865
7866 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7867 struct kvm_guest_debug *dbg)
7868 {
7869 unsigned long rflags;
7870 int i, r;
7871
7872 vcpu_load(vcpu);
7873
7874 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7875 r = -EBUSY;
7876 if (vcpu->arch.exception.pending)
7877 goto out;
7878 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7879 kvm_queue_exception(vcpu, DB_VECTOR);
7880 else
7881 kvm_queue_exception(vcpu, BP_VECTOR);
7882 }
7883
7884 /*
7885 * Read rflags as long as potentially injected trace flags are still
7886 * filtered out.
7887 */
7888 rflags = kvm_get_rflags(vcpu);
7889
7890 vcpu->guest_debug = dbg->control;
7891 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7892 vcpu->guest_debug = 0;
7893
7894 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7895 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7896 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7897 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7898 } else {
7899 for (i = 0; i < KVM_NR_DB_REGS; i++)
7900 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7901 }
7902 kvm_update_dr7(vcpu);
7903
7904 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7905 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7906 get_segment_base(vcpu, VCPU_SREG_CS);
7907
7908 /*
7909 * Trigger an rflags update that will inject or remove the trace
7910 * flags.
7911 */
7912 kvm_set_rflags(vcpu, rflags);
7913
7914 kvm_x86_ops->update_bp_intercept(vcpu);
7915
7916 r = 0;
7917
7918 out:
7919 vcpu_put(vcpu);
7920 return r;
7921 }
7922
7923 /*
7924 * Translate a guest virtual address to a guest physical address.
7925 */
7926 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7927 struct kvm_translation *tr)
7928 {
7929 unsigned long vaddr = tr->linear_address;
7930 gpa_t gpa;
7931 int idx;
7932
7933 vcpu_load(vcpu);
7934
7935 idx = srcu_read_lock(&vcpu->kvm->srcu);
7936 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7937 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7938 tr->physical_address = gpa;
7939 tr->valid = gpa != UNMAPPED_GVA;
7940 tr->writeable = 1;
7941 tr->usermode = 0;
7942
7943 vcpu_put(vcpu);
7944 return 0;
7945 }
7946
7947 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7948 {
7949 struct fxregs_state *fxsave;
7950
7951 vcpu_load(vcpu);
7952
7953 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7954 memcpy(fpu->fpr, fxsave->st_space, 128);
7955 fpu->fcw = fxsave->cwd;
7956 fpu->fsw = fxsave->swd;
7957 fpu->ftwx = fxsave->twd;
7958 fpu->last_opcode = fxsave->fop;
7959 fpu->last_ip = fxsave->rip;
7960 fpu->last_dp = fxsave->rdp;
7961 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7962
7963 vcpu_put(vcpu);
7964 return 0;
7965 }
7966
7967 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7968 {
7969 struct fxregs_state *fxsave;
7970
7971 vcpu_load(vcpu);
7972
7973 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7974
7975 memcpy(fxsave->st_space, fpu->fpr, 128);
7976 fxsave->cwd = fpu->fcw;
7977 fxsave->swd = fpu->fsw;
7978 fxsave->twd = fpu->ftwx;
7979 fxsave->fop = fpu->last_opcode;
7980 fxsave->rip = fpu->last_ip;
7981 fxsave->rdp = fpu->last_dp;
7982 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7983
7984 vcpu_put(vcpu);
7985 return 0;
7986 }
7987
7988 static void fx_init(struct kvm_vcpu *vcpu)
7989 {
7990 fpstate_init(&vcpu->arch.guest_fpu.state);
7991 if (boot_cpu_has(X86_FEATURE_XSAVES))
7992 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7993 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7994
7995 /*
7996 * Ensure guest xcr0 is valid for loading
7997 */
7998 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7999
8000 vcpu->arch.cr0 |= X86_CR0_ET;
8001 }
8002
8003 /* Swap (qemu) user FPU context for the guest FPU context. */
8004 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8005 {
8006 preempt_disable();
8007 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8008 /* PKRU is separately restored in kvm_x86_ops->run. */
8009 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8010 ~XFEATURE_MASK_PKRU);
8011 preempt_enable();
8012 trace_kvm_fpu(1);
8013 }
8014
8015 /* When vcpu_run ends, restore user space FPU context. */
8016 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8017 {
8018 preempt_disable();
8019 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8020 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8021 preempt_enable();
8022 ++vcpu->stat.fpu_reload;
8023 trace_kvm_fpu(0);
8024 }
8025
8026 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8027 {
8028 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8029
8030 kvmclock_reset(vcpu);
8031
8032 kvm_x86_ops->vcpu_free(vcpu);
8033 free_cpumask_var(wbinvd_dirty_mask);
8034 }
8035
8036 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8037 unsigned int id)
8038 {
8039 struct kvm_vcpu *vcpu;
8040
8041 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8042 printk_once(KERN_WARNING
8043 "kvm: SMP vm created on host with unstable TSC; "
8044 "guest TSC will not be reliable\n");
8045
8046 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8047
8048 return vcpu;
8049 }
8050
8051 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8052 {
8053 kvm_vcpu_mtrr_init(vcpu);
8054 vcpu_load(vcpu);
8055 kvm_vcpu_reset(vcpu, false);
8056 kvm_lapic_reset(vcpu, false);
8057 kvm_mmu_setup(vcpu);
8058 vcpu_put(vcpu);
8059 return 0;
8060 }
8061
8062 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8063 {
8064 struct msr_data msr;
8065 struct kvm *kvm = vcpu->kvm;
8066
8067 kvm_hv_vcpu_postcreate(vcpu);
8068
8069 if (mutex_lock_killable(&vcpu->mutex))
8070 return;
8071 vcpu_load(vcpu);
8072 msr.data = 0x0;
8073 msr.index = MSR_IA32_TSC;
8074 msr.host_initiated = true;
8075 kvm_write_tsc(vcpu, &msr);
8076 vcpu_put(vcpu);
8077 mutex_unlock(&vcpu->mutex);
8078
8079 if (!kvmclock_periodic_sync)
8080 return;
8081
8082 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8083 KVMCLOCK_SYNC_PERIOD);
8084 }
8085
8086 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8087 {
8088 vcpu->arch.apf.msr_val = 0;
8089
8090 vcpu_load(vcpu);
8091 kvm_mmu_unload(vcpu);
8092 vcpu_put(vcpu);
8093
8094 kvm_x86_ops->vcpu_free(vcpu);
8095 }
8096
8097 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8098 {
8099 vcpu->arch.hflags = 0;
8100
8101 vcpu->arch.smi_pending = 0;
8102 vcpu->arch.smi_count = 0;
8103 atomic_set(&vcpu->arch.nmi_queued, 0);
8104 vcpu->arch.nmi_pending = 0;
8105 vcpu->arch.nmi_injected = false;
8106 kvm_clear_interrupt_queue(vcpu);
8107 kvm_clear_exception_queue(vcpu);
8108 vcpu->arch.exception.pending = false;
8109
8110 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8111 kvm_update_dr0123(vcpu);
8112 vcpu->arch.dr6 = DR6_INIT;
8113 kvm_update_dr6(vcpu);
8114 vcpu->arch.dr7 = DR7_FIXED_1;
8115 kvm_update_dr7(vcpu);
8116
8117 vcpu->arch.cr2 = 0;
8118
8119 kvm_make_request(KVM_REQ_EVENT, vcpu);
8120 vcpu->arch.apf.msr_val = 0;
8121 vcpu->arch.st.msr_val = 0;
8122
8123 kvmclock_reset(vcpu);
8124
8125 kvm_clear_async_pf_completion_queue(vcpu);
8126 kvm_async_pf_hash_reset(vcpu);
8127 vcpu->arch.apf.halted = false;
8128
8129 if (kvm_mpx_supported()) {
8130 void *mpx_state_buffer;
8131
8132 /*
8133 * To avoid have the INIT path from kvm_apic_has_events() that be
8134 * called with loaded FPU and does not let userspace fix the state.
8135 */
8136 if (init_event)
8137 kvm_put_guest_fpu(vcpu);
8138 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8139 XFEATURE_MASK_BNDREGS);
8140 if (mpx_state_buffer)
8141 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8142 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8143 XFEATURE_MASK_BNDCSR);
8144 if (mpx_state_buffer)
8145 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8146 if (init_event)
8147 kvm_load_guest_fpu(vcpu);
8148 }
8149
8150 if (!init_event) {
8151 kvm_pmu_reset(vcpu);
8152 vcpu->arch.smbase = 0x30000;
8153
8154 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8155 vcpu->arch.msr_misc_features_enables = 0;
8156
8157 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8158 }
8159
8160 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8161 vcpu->arch.regs_avail = ~0;
8162 vcpu->arch.regs_dirty = ~0;
8163
8164 vcpu->arch.ia32_xss = 0;
8165
8166 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8167 }
8168
8169 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8170 {
8171 struct kvm_segment cs;
8172
8173 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8174 cs.selector = vector << 8;
8175 cs.base = vector << 12;
8176 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8177 kvm_rip_write(vcpu, 0);
8178 }
8179
8180 int kvm_arch_hardware_enable(void)
8181 {
8182 struct kvm *kvm;
8183 struct kvm_vcpu *vcpu;
8184 int i;
8185 int ret;
8186 u64 local_tsc;
8187 u64 max_tsc = 0;
8188 bool stable, backwards_tsc = false;
8189
8190 kvm_shared_msr_cpu_online();
8191 ret = kvm_x86_ops->hardware_enable();
8192 if (ret != 0)
8193 return ret;
8194
8195 local_tsc = rdtsc();
8196 stable = !kvm_check_tsc_unstable();
8197 list_for_each_entry(kvm, &vm_list, vm_list) {
8198 kvm_for_each_vcpu(i, vcpu, kvm) {
8199 if (!stable && vcpu->cpu == smp_processor_id())
8200 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8201 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8202 backwards_tsc = true;
8203 if (vcpu->arch.last_host_tsc > max_tsc)
8204 max_tsc = vcpu->arch.last_host_tsc;
8205 }
8206 }
8207 }
8208
8209 /*
8210 * Sometimes, even reliable TSCs go backwards. This happens on
8211 * platforms that reset TSC during suspend or hibernate actions, but
8212 * maintain synchronization. We must compensate. Fortunately, we can
8213 * detect that condition here, which happens early in CPU bringup,
8214 * before any KVM threads can be running. Unfortunately, we can't
8215 * bring the TSCs fully up to date with real time, as we aren't yet far
8216 * enough into CPU bringup that we know how much real time has actually
8217 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8218 * variables that haven't been updated yet.
8219 *
8220 * So we simply find the maximum observed TSC above, then record the
8221 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8222 * the adjustment will be applied. Note that we accumulate
8223 * adjustments, in case multiple suspend cycles happen before some VCPU
8224 * gets a chance to run again. In the event that no KVM threads get a
8225 * chance to run, we will miss the entire elapsed period, as we'll have
8226 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8227 * loose cycle time. This isn't too big a deal, since the loss will be
8228 * uniform across all VCPUs (not to mention the scenario is extremely
8229 * unlikely). It is possible that a second hibernate recovery happens
8230 * much faster than a first, causing the observed TSC here to be
8231 * smaller; this would require additional padding adjustment, which is
8232 * why we set last_host_tsc to the local tsc observed here.
8233 *
8234 * N.B. - this code below runs only on platforms with reliable TSC,
8235 * as that is the only way backwards_tsc is set above. Also note
8236 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8237 * have the same delta_cyc adjustment applied if backwards_tsc
8238 * is detected. Note further, this adjustment is only done once,
8239 * as we reset last_host_tsc on all VCPUs to stop this from being
8240 * called multiple times (one for each physical CPU bringup).
8241 *
8242 * Platforms with unreliable TSCs don't have to deal with this, they
8243 * will be compensated by the logic in vcpu_load, which sets the TSC to
8244 * catchup mode. This will catchup all VCPUs to real time, but cannot
8245 * guarantee that they stay in perfect synchronization.
8246 */
8247 if (backwards_tsc) {
8248 u64 delta_cyc = max_tsc - local_tsc;
8249 list_for_each_entry(kvm, &vm_list, vm_list) {
8250 kvm->arch.backwards_tsc_observed = true;
8251 kvm_for_each_vcpu(i, vcpu, kvm) {
8252 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8253 vcpu->arch.last_host_tsc = local_tsc;
8254 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8255 }
8256
8257 /*
8258 * We have to disable TSC offset matching.. if you were
8259 * booting a VM while issuing an S4 host suspend....
8260 * you may have some problem. Solving this issue is
8261 * left as an exercise to the reader.
8262 */
8263 kvm->arch.last_tsc_nsec = 0;
8264 kvm->arch.last_tsc_write = 0;
8265 }
8266
8267 }
8268 return 0;
8269 }
8270
8271 void kvm_arch_hardware_disable(void)
8272 {
8273 kvm_x86_ops->hardware_disable();
8274 drop_user_return_notifiers();
8275 }
8276
8277 int kvm_arch_hardware_setup(void)
8278 {
8279 int r;
8280
8281 r = kvm_x86_ops->hardware_setup();
8282 if (r != 0)
8283 return r;
8284
8285 if (kvm_has_tsc_control) {
8286 /*
8287 * Make sure the user can only configure tsc_khz values that
8288 * fit into a signed integer.
8289 * A min value is not calculated needed because it will always
8290 * be 1 on all machines.
8291 */
8292 u64 max = min(0x7fffffffULL,
8293 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8294 kvm_max_guest_tsc_khz = max;
8295
8296 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8297 }
8298
8299 kvm_init_msr_list();
8300 return 0;
8301 }
8302
8303 void kvm_arch_hardware_unsetup(void)
8304 {
8305 kvm_x86_ops->hardware_unsetup();
8306 }
8307
8308 void kvm_arch_check_processor_compat(void *rtn)
8309 {
8310 kvm_x86_ops->check_processor_compatibility(rtn);
8311 }
8312
8313 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8314 {
8315 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8318
8319 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8320 {
8321 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8322 }
8323
8324 struct static_key kvm_no_apic_vcpu __read_mostly;
8325 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8326
8327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8328 {
8329 struct page *page;
8330 int r;
8331
8332 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8333 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8334 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8335 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8336 else
8337 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8338
8339 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8340 if (!page) {
8341 r = -ENOMEM;
8342 goto fail;
8343 }
8344 vcpu->arch.pio_data = page_address(page);
8345
8346 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8347
8348 r = kvm_mmu_create(vcpu);
8349 if (r < 0)
8350 goto fail_free_pio_data;
8351
8352 if (irqchip_in_kernel(vcpu->kvm)) {
8353 r = kvm_create_lapic(vcpu);
8354 if (r < 0)
8355 goto fail_mmu_destroy;
8356 } else
8357 static_key_slow_inc(&kvm_no_apic_vcpu);
8358
8359 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8360 GFP_KERNEL);
8361 if (!vcpu->arch.mce_banks) {
8362 r = -ENOMEM;
8363 goto fail_free_lapic;
8364 }
8365 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8366
8367 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8368 r = -ENOMEM;
8369 goto fail_free_mce_banks;
8370 }
8371
8372 fx_init(vcpu);
8373
8374 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8375
8376 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8377
8378 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8379
8380 kvm_async_pf_hash_reset(vcpu);
8381 kvm_pmu_init(vcpu);
8382
8383 vcpu->arch.pending_external_vector = -1;
8384 vcpu->arch.preempted_in_kernel = false;
8385
8386 kvm_hv_vcpu_init(vcpu);
8387
8388 return 0;
8389
8390 fail_free_mce_banks:
8391 kfree(vcpu->arch.mce_banks);
8392 fail_free_lapic:
8393 kvm_free_lapic(vcpu);
8394 fail_mmu_destroy:
8395 kvm_mmu_destroy(vcpu);
8396 fail_free_pio_data:
8397 free_page((unsigned long)vcpu->arch.pio_data);
8398 fail:
8399 return r;
8400 }
8401
8402 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8403 {
8404 int idx;
8405
8406 kvm_hv_vcpu_uninit(vcpu);
8407 kvm_pmu_destroy(vcpu);
8408 kfree(vcpu->arch.mce_banks);
8409 kvm_free_lapic(vcpu);
8410 idx = srcu_read_lock(&vcpu->kvm->srcu);
8411 kvm_mmu_destroy(vcpu);
8412 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8413 free_page((unsigned long)vcpu->arch.pio_data);
8414 if (!lapic_in_kernel(vcpu))
8415 static_key_slow_dec(&kvm_no_apic_vcpu);
8416 }
8417
8418 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8419 {
8420 kvm_x86_ops->sched_in(vcpu, cpu);
8421 }
8422
8423 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8424 {
8425 if (type)
8426 return -EINVAL;
8427
8428 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8429 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8430 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8431 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8432 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8433
8434 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8435 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8436 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8437 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8438 &kvm->arch.irq_sources_bitmap);
8439
8440 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8441 mutex_init(&kvm->arch.apic_map_lock);
8442 mutex_init(&kvm->arch.hyperv.hv_lock);
8443 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8444
8445 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8446 pvclock_update_vm_gtod_copy(kvm);
8447
8448 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8449 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8450
8451 kvm_page_track_init(kvm);
8452 kvm_mmu_init_vm(kvm);
8453
8454 if (kvm_x86_ops->vm_init)
8455 return kvm_x86_ops->vm_init(kvm);
8456
8457 return 0;
8458 }
8459
8460 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8461 {
8462 vcpu_load(vcpu);
8463 kvm_mmu_unload(vcpu);
8464 vcpu_put(vcpu);
8465 }
8466
8467 static void kvm_free_vcpus(struct kvm *kvm)
8468 {
8469 unsigned int i;
8470 struct kvm_vcpu *vcpu;
8471
8472 /*
8473 * Unpin any mmu pages first.
8474 */
8475 kvm_for_each_vcpu(i, vcpu, kvm) {
8476 kvm_clear_async_pf_completion_queue(vcpu);
8477 kvm_unload_vcpu_mmu(vcpu);
8478 }
8479 kvm_for_each_vcpu(i, vcpu, kvm)
8480 kvm_arch_vcpu_free(vcpu);
8481
8482 mutex_lock(&kvm->lock);
8483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8484 kvm->vcpus[i] = NULL;
8485
8486 atomic_set(&kvm->online_vcpus, 0);
8487 mutex_unlock(&kvm->lock);
8488 }
8489
8490 void kvm_arch_sync_events(struct kvm *kvm)
8491 {
8492 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8493 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8494 kvm_free_pit(kvm);
8495 }
8496
8497 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8498 {
8499 int i, r;
8500 unsigned long hva;
8501 struct kvm_memslots *slots = kvm_memslots(kvm);
8502 struct kvm_memory_slot *slot, old;
8503
8504 /* Called with kvm->slots_lock held. */
8505 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8506 return -EINVAL;
8507
8508 slot = id_to_memslot(slots, id);
8509 if (size) {
8510 if (slot->npages)
8511 return -EEXIST;
8512
8513 /*
8514 * MAP_SHARED to prevent internal slot pages from being moved
8515 * by fork()/COW.
8516 */
8517 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8518 MAP_SHARED | MAP_ANONYMOUS, 0);
8519 if (IS_ERR((void *)hva))
8520 return PTR_ERR((void *)hva);
8521 } else {
8522 if (!slot->npages)
8523 return 0;
8524
8525 hva = 0;
8526 }
8527
8528 old = *slot;
8529 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8530 struct kvm_userspace_memory_region m;
8531
8532 m.slot = id | (i << 16);
8533 m.flags = 0;
8534 m.guest_phys_addr = gpa;
8535 m.userspace_addr = hva;
8536 m.memory_size = size;
8537 r = __kvm_set_memory_region(kvm, &m);
8538 if (r < 0)
8539 return r;
8540 }
8541
8542 if (!size)
8543 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8544
8545 return 0;
8546 }
8547 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8548
8549 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8550 {
8551 int r;
8552
8553 mutex_lock(&kvm->slots_lock);
8554 r = __x86_set_memory_region(kvm, id, gpa, size);
8555 mutex_unlock(&kvm->slots_lock);
8556
8557 return r;
8558 }
8559 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8560
8561 void kvm_arch_destroy_vm(struct kvm *kvm)
8562 {
8563 if (current->mm == kvm->mm) {
8564 /*
8565 * Free memory regions allocated on behalf of userspace,
8566 * unless the the memory map has changed due to process exit
8567 * or fd copying.
8568 */
8569 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8570 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8571 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8572 }
8573 if (kvm_x86_ops->vm_destroy)
8574 kvm_x86_ops->vm_destroy(kvm);
8575 kvm_pic_destroy(kvm);
8576 kvm_ioapic_destroy(kvm);
8577 kvm_free_vcpus(kvm);
8578 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8579 kvm_mmu_uninit_vm(kvm);
8580 kvm_page_track_cleanup(kvm);
8581 }
8582
8583 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8584 struct kvm_memory_slot *dont)
8585 {
8586 int i;
8587
8588 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8589 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8590 kvfree(free->arch.rmap[i]);
8591 free->arch.rmap[i] = NULL;
8592 }
8593 if (i == 0)
8594 continue;
8595
8596 if (!dont || free->arch.lpage_info[i - 1] !=
8597 dont->arch.lpage_info[i - 1]) {
8598 kvfree(free->arch.lpage_info[i - 1]);
8599 free->arch.lpage_info[i - 1] = NULL;
8600 }
8601 }
8602
8603 kvm_page_track_free_memslot(free, dont);
8604 }
8605
8606 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8607 unsigned long npages)
8608 {
8609 int i;
8610
8611 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8612 struct kvm_lpage_info *linfo;
8613 unsigned long ugfn;
8614 int lpages;
8615 int level = i + 1;
8616
8617 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8618 slot->base_gfn, level) + 1;
8619
8620 slot->arch.rmap[i] =
8621 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8622 if (!slot->arch.rmap[i])
8623 goto out_free;
8624 if (i == 0)
8625 continue;
8626
8627 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8628 if (!linfo)
8629 goto out_free;
8630
8631 slot->arch.lpage_info[i - 1] = linfo;
8632
8633 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8634 linfo[0].disallow_lpage = 1;
8635 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8636 linfo[lpages - 1].disallow_lpage = 1;
8637 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8638 /*
8639 * If the gfn and userspace address are not aligned wrt each
8640 * other, or if explicitly asked to, disable large page
8641 * support for this slot
8642 */
8643 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8644 !kvm_largepages_enabled()) {
8645 unsigned long j;
8646
8647 for (j = 0; j < lpages; ++j)
8648 linfo[j].disallow_lpage = 1;
8649 }
8650 }
8651
8652 if (kvm_page_track_create_memslot(slot, npages))
8653 goto out_free;
8654
8655 return 0;
8656
8657 out_free:
8658 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8659 kvfree(slot->arch.rmap[i]);
8660 slot->arch.rmap[i] = NULL;
8661 if (i == 0)
8662 continue;
8663
8664 kvfree(slot->arch.lpage_info[i - 1]);
8665 slot->arch.lpage_info[i - 1] = NULL;
8666 }
8667 return -ENOMEM;
8668 }
8669
8670 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8671 {
8672 /*
8673 * memslots->generation has been incremented.
8674 * mmio generation may have reached its maximum value.
8675 */
8676 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8677 }
8678
8679 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8680 struct kvm_memory_slot *memslot,
8681 const struct kvm_userspace_memory_region *mem,
8682 enum kvm_mr_change change)
8683 {
8684 return 0;
8685 }
8686
8687 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8688 struct kvm_memory_slot *new)
8689 {
8690 /* Still write protect RO slot */
8691 if (new->flags & KVM_MEM_READONLY) {
8692 kvm_mmu_slot_remove_write_access(kvm, new);
8693 return;
8694 }
8695
8696 /*
8697 * Call kvm_x86_ops dirty logging hooks when they are valid.
8698 *
8699 * kvm_x86_ops->slot_disable_log_dirty is called when:
8700 *
8701 * - KVM_MR_CREATE with dirty logging is disabled
8702 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8703 *
8704 * The reason is, in case of PML, we need to set D-bit for any slots
8705 * with dirty logging disabled in order to eliminate unnecessary GPA
8706 * logging in PML buffer (and potential PML buffer full VMEXT). This
8707 * guarantees leaving PML enabled during guest's lifetime won't have
8708 * any additonal overhead from PML when guest is running with dirty
8709 * logging disabled for memory slots.
8710 *
8711 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8712 * to dirty logging mode.
8713 *
8714 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8715 *
8716 * In case of write protect:
8717 *
8718 * Write protect all pages for dirty logging.
8719 *
8720 * All the sptes including the large sptes which point to this
8721 * slot are set to readonly. We can not create any new large
8722 * spte on this slot until the end of the logging.
8723 *
8724 * See the comments in fast_page_fault().
8725 */
8726 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8727 if (kvm_x86_ops->slot_enable_log_dirty)
8728 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8729 else
8730 kvm_mmu_slot_remove_write_access(kvm, new);
8731 } else {
8732 if (kvm_x86_ops->slot_disable_log_dirty)
8733 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8734 }
8735 }
8736
8737 void kvm_arch_commit_memory_region(struct kvm *kvm,
8738 const struct kvm_userspace_memory_region *mem,
8739 const struct kvm_memory_slot *old,
8740 const struct kvm_memory_slot *new,
8741 enum kvm_mr_change change)
8742 {
8743 int nr_mmu_pages = 0;
8744
8745 if (!kvm->arch.n_requested_mmu_pages)
8746 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8747
8748 if (nr_mmu_pages)
8749 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8750
8751 /*
8752 * Dirty logging tracks sptes in 4k granularity, meaning that large
8753 * sptes have to be split. If live migration is successful, the guest
8754 * in the source machine will be destroyed and large sptes will be
8755 * created in the destination. However, if the guest continues to run
8756 * in the source machine (for example if live migration fails), small
8757 * sptes will remain around and cause bad performance.
8758 *
8759 * Scan sptes if dirty logging has been stopped, dropping those
8760 * which can be collapsed into a single large-page spte. Later
8761 * page faults will create the large-page sptes.
8762 */
8763 if ((change != KVM_MR_DELETE) &&
8764 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8765 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8766 kvm_mmu_zap_collapsible_sptes(kvm, new);
8767
8768 /*
8769 * Set up write protection and/or dirty logging for the new slot.
8770 *
8771 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8772 * been zapped so no dirty logging staff is needed for old slot. For
8773 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8774 * new and it's also covered when dealing with the new slot.
8775 *
8776 * FIXME: const-ify all uses of struct kvm_memory_slot.
8777 */
8778 if (change != KVM_MR_DELETE)
8779 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8780 }
8781
8782 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8783 {
8784 kvm_mmu_invalidate_zap_all_pages(kvm);
8785 }
8786
8787 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8788 struct kvm_memory_slot *slot)
8789 {
8790 kvm_page_track_flush_slot(kvm, slot);
8791 }
8792
8793 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8794 {
8795 if (!list_empty_careful(&vcpu->async_pf.done))
8796 return true;
8797
8798 if (kvm_apic_has_events(vcpu))
8799 return true;
8800
8801 if (vcpu->arch.pv.pv_unhalted)
8802 return true;
8803
8804 if (vcpu->arch.exception.pending)
8805 return true;
8806
8807 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8808 (vcpu->arch.nmi_pending &&
8809 kvm_x86_ops->nmi_allowed(vcpu)))
8810 return true;
8811
8812 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8813 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8814 return true;
8815
8816 if (kvm_arch_interrupt_allowed(vcpu) &&
8817 kvm_cpu_has_interrupt(vcpu))
8818 return true;
8819
8820 if (kvm_hv_has_stimer_pending(vcpu))
8821 return true;
8822
8823 return false;
8824 }
8825
8826 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8827 {
8828 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8829 }
8830
8831 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8832 {
8833 return vcpu->arch.preempted_in_kernel;
8834 }
8835
8836 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8837 {
8838 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8839 }
8840
8841 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8842 {
8843 return kvm_x86_ops->interrupt_allowed(vcpu);
8844 }
8845
8846 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8847 {
8848 if (is_64_bit_mode(vcpu))
8849 return kvm_rip_read(vcpu);
8850 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8851 kvm_rip_read(vcpu));
8852 }
8853 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8854
8855 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8856 {
8857 return kvm_get_linear_rip(vcpu) == linear_rip;
8858 }
8859 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8860
8861 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8862 {
8863 unsigned long rflags;
8864
8865 rflags = kvm_x86_ops->get_rflags(vcpu);
8866 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8867 rflags &= ~X86_EFLAGS_TF;
8868 return rflags;
8869 }
8870 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8871
8872 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8873 {
8874 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8875 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8876 rflags |= X86_EFLAGS_TF;
8877 kvm_x86_ops->set_rflags(vcpu, rflags);
8878 }
8879
8880 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8881 {
8882 __kvm_set_rflags(vcpu, rflags);
8883 kvm_make_request(KVM_REQ_EVENT, vcpu);
8884 }
8885 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8886
8887 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8888 {
8889 int r;
8890
8891 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8892 work->wakeup_all)
8893 return;
8894
8895 r = kvm_mmu_reload(vcpu);
8896 if (unlikely(r))
8897 return;
8898
8899 if (!vcpu->arch.mmu.direct_map &&
8900 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8901 return;
8902
8903 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8904 }
8905
8906 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8907 {
8908 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8909 }
8910
8911 static inline u32 kvm_async_pf_next_probe(u32 key)
8912 {
8913 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8914 }
8915
8916 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8917 {
8918 u32 key = kvm_async_pf_hash_fn(gfn);
8919
8920 while (vcpu->arch.apf.gfns[key] != ~0)
8921 key = kvm_async_pf_next_probe(key);
8922
8923 vcpu->arch.apf.gfns[key] = gfn;
8924 }
8925
8926 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8927 {
8928 int i;
8929 u32 key = kvm_async_pf_hash_fn(gfn);
8930
8931 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8932 (vcpu->arch.apf.gfns[key] != gfn &&
8933 vcpu->arch.apf.gfns[key] != ~0); i++)
8934 key = kvm_async_pf_next_probe(key);
8935
8936 return key;
8937 }
8938
8939 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8940 {
8941 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8942 }
8943
8944 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8945 {
8946 u32 i, j, k;
8947
8948 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8949 while (true) {
8950 vcpu->arch.apf.gfns[i] = ~0;
8951 do {
8952 j = kvm_async_pf_next_probe(j);
8953 if (vcpu->arch.apf.gfns[j] == ~0)
8954 return;
8955 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8956 /*
8957 * k lies cyclically in ]i,j]
8958 * | i.k.j |
8959 * |....j i.k.| or |.k..j i...|
8960 */
8961 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8962 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8963 i = j;
8964 }
8965 }
8966
8967 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8968 {
8969
8970 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8971 sizeof(val));
8972 }
8973
8974 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8975 {
8976
8977 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8978 sizeof(u32));
8979 }
8980
8981 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8982 struct kvm_async_pf *work)
8983 {
8984 struct x86_exception fault;
8985
8986 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8987 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8988
8989 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8990 (vcpu->arch.apf.send_user_only &&
8991 kvm_x86_ops->get_cpl(vcpu) == 0))
8992 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8993 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8994 fault.vector = PF_VECTOR;
8995 fault.error_code_valid = true;
8996 fault.error_code = 0;
8997 fault.nested_page_fault = false;
8998 fault.address = work->arch.token;
8999 fault.async_page_fault = true;
9000 kvm_inject_page_fault(vcpu, &fault);
9001 }
9002 }
9003
9004 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9005 struct kvm_async_pf *work)
9006 {
9007 struct x86_exception fault;
9008 u32 val;
9009
9010 if (work->wakeup_all)
9011 work->arch.token = ~0; /* broadcast wakeup */
9012 else
9013 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9014 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9015
9016 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9017 !apf_get_user(vcpu, &val)) {
9018 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9019 vcpu->arch.exception.pending &&
9020 vcpu->arch.exception.nr == PF_VECTOR &&
9021 !apf_put_user(vcpu, 0)) {
9022 vcpu->arch.exception.injected = false;
9023 vcpu->arch.exception.pending = false;
9024 vcpu->arch.exception.nr = 0;
9025 vcpu->arch.exception.has_error_code = false;
9026 vcpu->arch.exception.error_code = 0;
9027 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9028 fault.vector = PF_VECTOR;
9029 fault.error_code_valid = true;
9030 fault.error_code = 0;
9031 fault.nested_page_fault = false;
9032 fault.address = work->arch.token;
9033 fault.async_page_fault = true;
9034 kvm_inject_page_fault(vcpu, &fault);
9035 }
9036 }
9037 vcpu->arch.apf.halted = false;
9038 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9039 }
9040
9041 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9042 {
9043 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9044 return true;
9045 else
9046 return kvm_can_do_async_pf(vcpu);
9047 }
9048
9049 void kvm_arch_start_assignment(struct kvm *kvm)
9050 {
9051 atomic_inc(&kvm->arch.assigned_device_count);
9052 }
9053 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9054
9055 void kvm_arch_end_assignment(struct kvm *kvm)
9056 {
9057 atomic_dec(&kvm->arch.assigned_device_count);
9058 }
9059 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9060
9061 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9062 {
9063 return atomic_read(&kvm->arch.assigned_device_count);
9064 }
9065 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9066
9067 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9068 {
9069 atomic_inc(&kvm->arch.noncoherent_dma_count);
9070 }
9071 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9072
9073 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9074 {
9075 atomic_dec(&kvm->arch.noncoherent_dma_count);
9076 }
9077 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9078
9079 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9080 {
9081 return atomic_read(&kvm->arch.noncoherent_dma_count);
9082 }
9083 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9084
9085 bool kvm_arch_has_irq_bypass(void)
9086 {
9087 return kvm_x86_ops->update_pi_irte != NULL;
9088 }
9089
9090 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9091 struct irq_bypass_producer *prod)
9092 {
9093 struct kvm_kernel_irqfd *irqfd =
9094 container_of(cons, struct kvm_kernel_irqfd, consumer);
9095
9096 irqfd->producer = prod;
9097
9098 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9099 prod->irq, irqfd->gsi, 1);
9100 }
9101
9102 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9103 struct irq_bypass_producer *prod)
9104 {
9105 int ret;
9106 struct kvm_kernel_irqfd *irqfd =
9107 container_of(cons, struct kvm_kernel_irqfd, consumer);
9108
9109 WARN_ON(irqfd->producer != prod);
9110 irqfd->producer = NULL;
9111
9112 /*
9113 * When producer of consumer is unregistered, we change back to
9114 * remapped mode, so we can re-use the current implementation
9115 * when the irq is masked/disabled or the consumer side (KVM
9116 * int this case doesn't want to receive the interrupts.
9117 */
9118 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9119 if (ret)
9120 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9121 " fails: %d\n", irqfd->consumer.token, ret);
9122 }
9123
9124 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9125 uint32_t guest_irq, bool set)
9126 {
9127 if (!kvm_x86_ops->update_pi_irte)
9128 return -EINVAL;
9129
9130 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9131 }
9132
9133 bool kvm_vector_hashing_enabled(void)
9134 {
9135 return vector_hashing;
9136 }
9137 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9138
9139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9157 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);