]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: Fix leak vCPU's VMCS value into other pCPU
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 200;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "l1d_flush", VCPU_STAT(l1d_flush) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 /*
570 * Load the pae pdptrs. Return true is they are all valid.
571 */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
586 }
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
593 }
594 }
595 ret = 1;
596
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
615
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
618
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
622
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632 return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641 cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
647
648 cr0 &= ~CR0_RESERVED_BITS;
649
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
652
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
655
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
660
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
671 }
672
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
675
676 kvm_x86_ops->set_cr0(vcpu, cr0);
677
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
681 }
682
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
685
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
707 vcpu->guest_xcr0_loaded = 1;
708 }
709 }
710
711 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
712 {
713 if (vcpu->guest_xcr0_loaded) {
714 if (vcpu->arch.xcr0 != host_xcr0)
715 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
716 vcpu->guest_xcr0_loaded = 0;
717 }
718 }
719
720 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
721 {
722 u64 xcr0 = xcr;
723 u64 old_xcr0 = vcpu->arch.xcr0;
724 u64 valid_bits;
725
726 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
727 if (index != XCR_XFEATURE_ENABLED_MASK)
728 return 1;
729 if (!(xcr0 & XFEATURE_MASK_FP))
730 return 1;
731 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
732 return 1;
733
734 /*
735 * Do not allow the guest to set bits that we do not support
736 * saving. However, xcr0 bit 0 is always set, even if the
737 * emulated CPU does not support XSAVE (see fx_init).
738 */
739 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
740 if (xcr0 & ~valid_bits)
741 return 1;
742
743 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
744 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
745 return 1;
746
747 if (xcr0 & XFEATURE_MASK_AVX512) {
748 if (!(xcr0 & XFEATURE_MASK_YMM))
749 return 1;
750 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
751 return 1;
752 }
753 vcpu->arch.xcr0 = xcr0;
754
755 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
756 kvm_update_cpuid(vcpu);
757 return 0;
758 }
759
760 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
761 {
762 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
763 __kvm_set_xcr(vcpu, index, xcr)) {
764 kvm_inject_gp(vcpu, 0);
765 return 1;
766 }
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_xcr);
770
771 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
772 {
773 unsigned long old_cr4 = kvm_read_cr4(vcpu);
774 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
775 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
776
777 if (cr4 & CR4_RESERVED_BITS)
778 return 1;
779
780 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
781 return 1;
782
783 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
784 return 1;
785
786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
787 return 1;
788
789 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
790 return 1;
791
792 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
793 return 1;
794
795 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
796 return 1;
797
798 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
799 return 1;
800
801 if (is_long_mode(vcpu)) {
802 if (!(cr4 & X86_CR4_PAE))
803 return 1;
804 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
805 && ((cr4 ^ old_cr4) & pdptr_bits)
806 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
807 kvm_read_cr3(vcpu)))
808 return 1;
809
810 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
812 return 1;
813
814 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
815 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
816 return 1;
817 }
818
819 if (kvm_x86_ops->set_cr4(vcpu, cr4))
820 return 1;
821
822 if (((cr4 ^ old_cr4) & pdptr_bits) ||
823 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
824 kvm_mmu_reset_context(vcpu);
825
826 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
827 kvm_update_cpuid(vcpu);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_set_cr4);
832
833 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
834 {
835 #ifdef CONFIG_X86_64
836 cr3 &= ~CR3_PCID_INVD;
837 #endif
838
839 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
840 kvm_mmu_sync_roots(vcpu);
841 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
842 return 0;
843 }
844
845 if (is_long_mode(vcpu) &&
846 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
847 return 1;
848 else if (is_pae(vcpu) && is_paging(vcpu) &&
849 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
850 return 1;
851
852 vcpu->arch.cr3 = cr3;
853 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
854 kvm_mmu_new_cr3(vcpu);
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(kvm_set_cr3);
858
859 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
860 {
861 if (cr8 & CR8_RESERVED_BITS)
862 return 1;
863 if (lapic_in_kernel(vcpu))
864 kvm_lapic_set_tpr(vcpu, cr8);
865 else
866 vcpu->arch.cr8 = cr8;
867 return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_set_cr8);
870
871 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
872 {
873 if (lapic_in_kernel(vcpu))
874 return kvm_lapic_get_cr8(vcpu);
875 else
876 return vcpu->arch.cr8;
877 }
878 EXPORT_SYMBOL_GPL(kvm_get_cr8);
879
880 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
881 {
882 int i;
883
884 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
885 for (i = 0; i < KVM_NR_DB_REGS; i++)
886 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
887 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
888 }
889 }
890
891 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
892 {
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
895 }
896
897 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
898 {
899 unsigned long dr7;
900
901 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
902 dr7 = vcpu->arch.guest_debug_dr7;
903 else
904 dr7 = vcpu->arch.dr7;
905 kvm_x86_ops->set_dr7(vcpu, dr7);
906 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
907 if (dr7 & DR7_BP_EN_MASK)
908 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
909 }
910
911 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
912 {
913 u64 fixed = DR6_FIXED_1;
914
915 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
916 fixed |= DR6_RTM;
917 return fixed;
918 }
919
920 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 switch (dr) {
923 case 0 ... 3:
924 vcpu->arch.db[dr] = val;
925 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
926 vcpu->arch.eff_db[dr] = val;
927 break;
928 case 4:
929 /* fall through */
930 case 6:
931 if (val & 0xffffffff00000000ULL)
932 return -1; /* #GP */
933 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
934 kvm_update_dr6(vcpu);
935 break;
936 case 5:
937 /* fall through */
938 default: /* 7 */
939 if (val & 0xffffffff00000000ULL)
940 return -1; /* #GP */
941 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
942 kvm_update_dr7(vcpu);
943 break;
944 }
945
946 return 0;
947 }
948
949 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
950 {
951 if (__kvm_set_dr(vcpu, dr, val)) {
952 kvm_inject_gp(vcpu, 0);
953 return 1;
954 }
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_dr);
958
959 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
960 {
961 switch (dr) {
962 case 0 ... 3:
963 *val = vcpu->arch.db[dr];
964 break;
965 case 4:
966 /* fall through */
967 case 6:
968 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
969 *val = vcpu->arch.dr6;
970 else
971 *val = kvm_x86_ops->get_dr6(vcpu);
972 break;
973 case 5:
974 /* fall through */
975 default: /* 7 */
976 *val = vcpu->arch.dr7;
977 break;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_get_dr);
982
983 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
984 {
985 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
986 u64 data;
987 int err;
988
989 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
990 if (err)
991 return err;
992 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
993 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
994 return err;
995 }
996 EXPORT_SYMBOL_GPL(kvm_rdpmc);
997
998 /*
999 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1000 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1001 *
1002 * This list is modified at module load time to reflect the
1003 * capabilities of the host cpu. This capabilities test skips MSRs that are
1004 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1005 * may depend on host virtualization features rather than host cpu features.
1006 */
1007
1008 static u32 msrs_to_save[] = {
1009 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1010 MSR_STAR,
1011 #ifdef CONFIG_X86_64
1012 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1013 #endif
1014 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1015 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1016 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1017 };
1018
1019 static unsigned num_msrs_to_save;
1020
1021 static u32 emulated_msrs[] = {
1022 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1023 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1024 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1025 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1026 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1027 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1028 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1029 HV_X64_MSR_RESET,
1030 HV_X64_MSR_VP_INDEX,
1031 HV_X64_MSR_VP_RUNTIME,
1032 HV_X64_MSR_SCONTROL,
1033 HV_X64_MSR_STIMER0_CONFIG,
1034 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1035 MSR_KVM_PV_EOI_EN,
1036
1037 MSR_IA32_TSC_ADJUST,
1038 MSR_IA32_TSCDEADLINE,
1039 MSR_IA32_MISC_ENABLE,
1040 MSR_IA32_MCG_STATUS,
1041 MSR_IA32_MCG_CTL,
1042 MSR_IA32_MCG_EXT_CTL,
1043 MSR_IA32_SMBASE,
1044 MSR_PLATFORM_INFO,
1045 MSR_MISC_FEATURES_ENABLES,
1046 MSR_AMD64_VIRT_SPEC_CTRL,
1047 };
1048
1049 static unsigned num_emulated_msrs;
1050
1051 /*
1052 * List of msr numbers which are used to expose MSR-based features that
1053 * can be used by a hypervisor to validate requested CPU features.
1054 */
1055 static u32 msr_based_features[] = {
1056 MSR_F10H_DECFG,
1057 MSR_IA32_UCODE_REV,
1058 MSR_IA32_ARCH_CAPABILITIES,
1059 };
1060
1061 static unsigned int num_msr_based_features;
1062
1063 u64 kvm_get_arch_capabilities(void)
1064 {
1065 u64 data;
1066
1067 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1068
1069 /*
1070 * If we're doing cache flushes (either "always" or "cond")
1071 * we will do one whenever the guest does a vmlaunch/vmresume.
1072 * If an outer hypervisor is doing the cache flush for us
1073 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1074 * capability to the guest too, and if EPT is disabled we're not
1075 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1076 * require a nested hypervisor to do a flush of its own.
1077 */
1078 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1079 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1080
1081 return data;
1082 }
1083 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1084
1085 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1086 {
1087 switch (msr->index) {
1088 case MSR_IA32_ARCH_CAPABILITIES:
1089 msr->data = kvm_get_arch_capabilities();
1090 break;
1091 case MSR_IA32_UCODE_REV:
1092 rdmsrl_safe(msr->index, &msr->data);
1093 break;
1094 default:
1095 if (kvm_x86_ops->get_msr_feature(msr))
1096 return 1;
1097 }
1098 return 0;
1099 }
1100
1101 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1102 {
1103 struct kvm_msr_entry msr;
1104 int r;
1105
1106 msr.index = index;
1107 r = kvm_get_msr_feature(&msr);
1108 if (r)
1109 return r;
1110
1111 *data = msr.data;
1112
1113 return 0;
1114 }
1115
1116 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1117 {
1118 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1119 return false;
1120
1121 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1122 return false;
1123
1124 return true;
1125
1126 }
1127 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1128 {
1129 if (efer & efer_reserved_bits)
1130 return false;
1131
1132 return __kvm_valid_efer(vcpu, efer);
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1135
1136 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1137 {
1138 u64 old_efer = vcpu->arch.efer;
1139 u64 efer = msr_info->data;
1140
1141 if (efer & efer_reserved_bits)
1142 return 1;
1143
1144 if (!msr_info->host_initiated) {
1145 if (!__kvm_valid_efer(vcpu, efer))
1146 return 1;
1147
1148 if (is_paging(vcpu) &&
1149 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1150 return 1;
1151 }
1152
1153 efer &= ~EFER_LMA;
1154 efer |= vcpu->arch.efer & EFER_LMA;
1155
1156 kvm_x86_ops->set_efer(vcpu, efer);
1157
1158 /* Update reserved bits */
1159 if ((efer ^ old_efer) & EFER_NX)
1160 kvm_mmu_reset_context(vcpu);
1161
1162 return 0;
1163 }
1164
1165 void kvm_enable_efer_bits(u64 mask)
1166 {
1167 efer_reserved_bits &= ~mask;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1170
1171 /*
1172 * Writes msr value into into the appropriate "register".
1173 * Returns 0 on success, non-0 otherwise.
1174 * Assumes vcpu_load() was already called.
1175 */
1176 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1177 {
1178 switch (msr->index) {
1179 case MSR_FS_BASE:
1180 case MSR_GS_BASE:
1181 case MSR_KERNEL_GS_BASE:
1182 case MSR_CSTAR:
1183 case MSR_LSTAR:
1184 if (is_noncanonical_address(msr->data, vcpu))
1185 return 1;
1186 break;
1187 case MSR_IA32_SYSENTER_EIP:
1188 case MSR_IA32_SYSENTER_ESP:
1189 /*
1190 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1191 * non-canonical address is written on Intel but not on
1192 * AMD (which ignores the top 32-bits, because it does
1193 * not implement 64-bit SYSENTER).
1194 *
1195 * 64-bit code should hence be able to write a non-canonical
1196 * value on AMD. Making the address canonical ensures that
1197 * vmentry does not fail on Intel after writing a non-canonical
1198 * value, and that something deterministic happens if the guest
1199 * invokes 64-bit SYSENTER.
1200 */
1201 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1202 }
1203 return kvm_x86_ops->set_msr(vcpu, msr);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_set_msr);
1206
1207 /*
1208 * Adapt set_msr() to msr_io()'s calling convention
1209 */
1210 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1211 {
1212 struct msr_data msr;
1213 int r;
1214
1215 msr.index = index;
1216 msr.host_initiated = true;
1217 r = kvm_get_msr(vcpu, &msr);
1218 if (r)
1219 return r;
1220
1221 *data = msr.data;
1222 return 0;
1223 }
1224
1225 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1226 {
1227 struct msr_data msr;
1228
1229 msr.data = *data;
1230 msr.index = index;
1231 msr.host_initiated = true;
1232 return kvm_set_msr(vcpu, &msr);
1233 }
1234
1235 #ifdef CONFIG_X86_64
1236 struct pvclock_gtod_data {
1237 seqcount_t seq;
1238
1239 struct { /* extract of a clocksource struct */
1240 int vclock_mode;
1241 u64 cycle_last;
1242 u64 mask;
1243 u32 mult;
1244 u32 shift;
1245 } clock;
1246
1247 u64 boot_ns;
1248 u64 nsec_base;
1249 u64 wall_time_sec;
1250 };
1251
1252 static struct pvclock_gtod_data pvclock_gtod_data;
1253
1254 static void update_pvclock_gtod(struct timekeeper *tk)
1255 {
1256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1257 u64 boot_ns;
1258
1259 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1260
1261 write_seqcount_begin(&vdata->seq);
1262
1263 /* copy pvclock gtod data */
1264 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1265 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1266 vdata->clock.mask = tk->tkr_mono.mask;
1267 vdata->clock.mult = tk->tkr_mono.mult;
1268 vdata->clock.shift = tk->tkr_mono.shift;
1269
1270 vdata->boot_ns = boot_ns;
1271 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1272
1273 vdata->wall_time_sec = tk->xtime_sec;
1274
1275 write_seqcount_end(&vdata->seq);
1276 }
1277 #endif
1278
1279 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1280 {
1281 /*
1282 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1283 * vcpu_enter_guest. This function is only called from
1284 * the physical CPU that is running vcpu.
1285 */
1286 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1287 }
1288
1289 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1290 {
1291 int version;
1292 int r;
1293 struct pvclock_wall_clock wc;
1294 struct timespec64 boot;
1295
1296 if (!wall_clock)
1297 return;
1298
1299 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1300 if (r)
1301 return;
1302
1303 if (version & 1)
1304 ++version; /* first time write, random junk */
1305
1306 ++version;
1307
1308 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1309 return;
1310
1311 /*
1312 * The guest calculates current wall clock time by adding
1313 * system time (updated by kvm_guest_time_update below) to the
1314 * wall clock specified here. guest system time equals host
1315 * system time for us, thus we must fill in host boot time here.
1316 */
1317 getboottime64(&boot);
1318
1319 if (kvm->arch.kvmclock_offset) {
1320 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1321 boot = timespec64_sub(boot, ts);
1322 }
1323 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1324 wc.nsec = boot.tv_nsec;
1325 wc.version = version;
1326
1327 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1328
1329 version++;
1330 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1331 }
1332
1333 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1334 {
1335 do_shl32_div32(dividend, divisor);
1336 return dividend;
1337 }
1338
1339 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1340 s8 *pshift, u32 *pmultiplier)
1341 {
1342 uint64_t scaled64;
1343 int32_t shift = 0;
1344 uint64_t tps64;
1345 uint32_t tps32;
1346
1347 tps64 = base_hz;
1348 scaled64 = scaled_hz;
1349 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1350 tps64 >>= 1;
1351 shift--;
1352 }
1353
1354 tps32 = (uint32_t)tps64;
1355 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1356 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1357 scaled64 >>= 1;
1358 else
1359 tps32 <<= 1;
1360 shift++;
1361 }
1362
1363 *pshift = shift;
1364 *pmultiplier = div_frac(scaled64, tps32);
1365
1366 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1367 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1368 }
1369
1370 #ifdef CONFIG_X86_64
1371 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1372 #endif
1373
1374 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1375 static unsigned long max_tsc_khz;
1376
1377 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1378 {
1379 u64 v = (u64)khz * (1000000 + ppm);
1380 do_div(v, 1000000);
1381 return v;
1382 }
1383
1384 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1385 {
1386 u64 ratio;
1387
1388 /* Guest TSC same frequency as host TSC? */
1389 if (!scale) {
1390 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1391 return 0;
1392 }
1393
1394 /* TSC scaling supported? */
1395 if (!kvm_has_tsc_control) {
1396 if (user_tsc_khz > tsc_khz) {
1397 vcpu->arch.tsc_catchup = 1;
1398 vcpu->arch.tsc_always_catchup = 1;
1399 return 0;
1400 } else {
1401 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1402 return -1;
1403 }
1404 }
1405
1406 /* TSC scaling required - calculate ratio */
1407 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1408 user_tsc_khz, tsc_khz);
1409
1410 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1411 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1412 user_tsc_khz);
1413 return -1;
1414 }
1415
1416 vcpu->arch.tsc_scaling_ratio = ratio;
1417 return 0;
1418 }
1419
1420 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1421 {
1422 u32 thresh_lo, thresh_hi;
1423 int use_scaling = 0;
1424
1425 /* tsc_khz can be zero if TSC calibration fails */
1426 if (user_tsc_khz == 0) {
1427 /* set tsc_scaling_ratio to a safe value */
1428 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429 return -1;
1430 }
1431
1432 /* Compute a scale to convert nanoseconds in TSC cycles */
1433 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1434 &vcpu->arch.virtual_tsc_shift,
1435 &vcpu->arch.virtual_tsc_mult);
1436 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1437
1438 /*
1439 * Compute the variation in TSC rate which is acceptable
1440 * within the range of tolerance and decide if the
1441 * rate being applied is within that bounds of the hardware
1442 * rate. If so, no scaling or compensation need be done.
1443 */
1444 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1445 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1446 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1447 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1448 use_scaling = 1;
1449 }
1450 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1451 }
1452
1453 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1454 {
1455 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1456 vcpu->arch.virtual_tsc_mult,
1457 vcpu->arch.virtual_tsc_shift);
1458 tsc += vcpu->arch.this_tsc_write;
1459 return tsc;
1460 }
1461
1462 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1463 {
1464 #ifdef CONFIG_X86_64
1465 bool vcpus_matched;
1466 struct kvm_arch *ka = &vcpu->kvm->arch;
1467 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1468
1469 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1470 atomic_read(&vcpu->kvm->online_vcpus));
1471
1472 /*
1473 * Once the masterclock is enabled, always perform request in
1474 * order to update it.
1475 *
1476 * In order to enable masterclock, the host clocksource must be TSC
1477 * and the vcpus need to have matched TSCs. When that happens,
1478 * perform request to enable masterclock.
1479 */
1480 if (ka->use_master_clock ||
1481 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1482 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1483
1484 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1485 atomic_read(&vcpu->kvm->online_vcpus),
1486 ka->use_master_clock, gtod->clock.vclock_mode);
1487 #endif
1488 }
1489
1490 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1491 {
1492 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1493 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1494 }
1495
1496 /*
1497 * Multiply tsc by a fixed point number represented by ratio.
1498 *
1499 * The most significant 64-N bits (mult) of ratio represent the
1500 * integral part of the fixed point number; the remaining N bits
1501 * (frac) represent the fractional part, ie. ratio represents a fixed
1502 * point number (mult + frac * 2^(-N)).
1503 *
1504 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1505 */
1506 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1507 {
1508 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1509 }
1510
1511 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1512 {
1513 u64 _tsc = tsc;
1514 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1515
1516 if (ratio != kvm_default_tsc_scaling_ratio)
1517 _tsc = __scale_tsc(ratio, tsc);
1518
1519 return _tsc;
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1522
1523 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1524 {
1525 u64 tsc;
1526
1527 tsc = kvm_scale_tsc(vcpu, rdtsc());
1528
1529 return target_tsc - tsc;
1530 }
1531
1532 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1533 {
1534 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1535
1536 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1539
1540 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1541 {
1542 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1543 }
1544
1545 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1546 {
1547 struct kvm *kvm = vcpu->kvm;
1548 u64 offset, ns, elapsed;
1549 unsigned long flags;
1550 bool matched;
1551 bool already_matched;
1552 u64 data = msr->data;
1553 bool synchronizing = false;
1554
1555 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1556 offset = kvm_compute_tsc_offset(vcpu, data);
1557 ns = ktime_get_boot_ns();
1558 elapsed = ns - kvm->arch.last_tsc_nsec;
1559
1560 if (vcpu->arch.virtual_tsc_khz) {
1561 if (data == 0 && msr->host_initiated) {
1562 /*
1563 * detection of vcpu initialization -- need to sync
1564 * with other vCPUs. This particularly helps to keep
1565 * kvm_clock stable after CPU hotplug
1566 */
1567 synchronizing = true;
1568 } else {
1569 u64 tsc_exp = kvm->arch.last_tsc_write +
1570 nsec_to_cycles(vcpu, elapsed);
1571 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1572 /*
1573 * Special case: TSC write with a small delta (1 second)
1574 * of virtual cycle time against real time is
1575 * interpreted as an attempt to synchronize the CPU.
1576 */
1577 synchronizing = data < tsc_exp + tsc_hz &&
1578 data + tsc_hz > tsc_exp;
1579 }
1580 }
1581
1582 /*
1583 * For a reliable TSC, we can match TSC offsets, and for an unstable
1584 * TSC, we add elapsed time in this computation. We could let the
1585 * compensation code attempt to catch up if we fall behind, but
1586 * it's better to try to match offsets from the beginning.
1587 */
1588 if (synchronizing &&
1589 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1590 if (!check_tsc_unstable()) {
1591 offset = kvm->arch.cur_tsc_offset;
1592 pr_debug("kvm: matched tsc offset for %llu\n", data);
1593 } else {
1594 u64 delta = nsec_to_cycles(vcpu, elapsed);
1595 data += delta;
1596 offset = kvm_compute_tsc_offset(vcpu, data);
1597 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1598 }
1599 matched = true;
1600 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1601 } else {
1602 /*
1603 * We split periods of matched TSC writes into generations.
1604 * For each generation, we track the original measured
1605 * nanosecond time, offset, and write, so if TSCs are in
1606 * sync, we can match exact offset, and if not, we can match
1607 * exact software computation in compute_guest_tsc()
1608 *
1609 * These values are tracked in kvm->arch.cur_xxx variables.
1610 */
1611 kvm->arch.cur_tsc_generation++;
1612 kvm->arch.cur_tsc_nsec = ns;
1613 kvm->arch.cur_tsc_write = data;
1614 kvm->arch.cur_tsc_offset = offset;
1615 matched = false;
1616 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1617 kvm->arch.cur_tsc_generation, data);
1618 }
1619
1620 /*
1621 * We also track th most recent recorded KHZ, write and time to
1622 * allow the matching interval to be extended at each write.
1623 */
1624 kvm->arch.last_tsc_nsec = ns;
1625 kvm->arch.last_tsc_write = data;
1626 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1627
1628 vcpu->arch.last_guest_tsc = data;
1629
1630 /* Keep track of which generation this VCPU has synchronized to */
1631 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1632 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1633 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1634
1635 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1636 update_ia32_tsc_adjust_msr(vcpu, offset);
1637
1638 kvm_vcpu_write_tsc_offset(vcpu, offset);
1639 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1640
1641 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1642 if (!matched) {
1643 kvm->arch.nr_vcpus_matched_tsc = 0;
1644 } else if (!already_matched) {
1645 kvm->arch.nr_vcpus_matched_tsc++;
1646 }
1647
1648 kvm_track_tsc_matching(vcpu);
1649 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1650 }
1651
1652 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1653
1654 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1655 s64 adjustment)
1656 {
1657 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1658 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1659 }
1660
1661 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1662 {
1663 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1664 WARN_ON(adjustment < 0);
1665 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1666 adjust_tsc_offset_guest(vcpu, adjustment);
1667 }
1668
1669 #ifdef CONFIG_X86_64
1670
1671 static u64 read_tsc(void)
1672 {
1673 u64 ret = (u64)rdtsc_ordered();
1674 u64 last = pvclock_gtod_data.clock.cycle_last;
1675
1676 if (likely(ret >= last))
1677 return ret;
1678
1679 /*
1680 * GCC likes to generate cmov here, but this branch is extremely
1681 * predictable (it's just a function of time and the likely is
1682 * very likely) and there's a data dependence, so force GCC
1683 * to generate a branch instead. I don't barrier() because
1684 * we don't actually need a barrier, and if this function
1685 * ever gets inlined it will generate worse code.
1686 */
1687 asm volatile ("");
1688 return last;
1689 }
1690
1691 static inline u64 vgettsc(u64 *cycle_now)
1692 {
1693 long v;
1694 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1695
1696 *cycle_now = read_tsc();
1697
1698 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1699 return v * gtod->clock.mult;
1700 }
1701
1702 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1703 {
1704 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1705 unsigned long seq;
1706 int mode;
1707 u64 ns;
1708
1709 do {
1710 seq = read_seqcount_begin(&gtod->seq);
1711 mode = gtod->clock.vclock_mode;
1712 ns = gtod->nsec_base;
1713 ns += vgettsc(cycle_now);
1714 ns >>= gtod->clock.shift;
1715 ns += gtod->boot_ns;
1716 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1717 *t = ns;
1718
1719 return mode;
1720 }
1721
1722 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1723 {
1724 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1725 unsigned long seq;
1726 int mode;
1727 u64 ns;
1728
1729 do {
1730 seq = read_seqcount_begin(&gtod->seq);
1731 mode = gtod->clock.vclock_mode;
1732 ts->tv_sec = gtod->wall_time_sec;
1733 ns = gtod->nsec_base;
1734 ns += vgettsc(cycle_now);
1735 ns >>= gtod->clock.shift;
1736 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1737
1738 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1739 ts->tv_nsec = ns;
1740
1741 return mode;
1742 }
1743
1744 /* returns true if host is using tsc clocksource */
1745 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1746 {
1747 /* checked again under seqlock below */
1748 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1749 return false;
1750
1751 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1752 }
1753
1754 /* returns true if host is using tsc clocksource */
1755 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1756 u64 *cycle_now)
1757 {
1758 /* checked again under seqlock below */
1759 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1760 return false;
1761
1762 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1763 }
1764 #endif
1765
1766 /*
1767 *
1768 * Assuming a stable TSC across physical CPUS, and a stable TSC
1769 * across virtual CPUs, the following condition is possible.
1770 * Each numbered line represents an event visible to both
1771 * CPUs at the next numbered event.
1772 *
1773 * "timespecX" represents host monotonic time. "tscX" represents
1774 * RDTSC value.
1775 *
1776 * VCPU0 on CPU0 | VCPU1 on CPU1
1777 *
1778 * 1. read timespec0,tsc0
1779 * 2. | timespec1 = timespec0 + N
1780 * | tsc1 = tsc0 + M
1781 * 3. transition to guest | transition to guest
1782 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1783 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1784 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1785 *
1786 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1787 *
1788 * - ret0 < ret1
1789 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1790 * ...
1791 * - 0 < N - M => M < N
1792 *
1793 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1794 * always the case (the difference between two distinct xtime instances
1795 * might be smaller then the difference between corresponding TSC reads,
1796 * when updating guest vcpus pvclock areas).
1797 *
1798 * To avoid that problem, do not allow visibility of distinct
1799 * system_timestamp/tsc_timestamp values simultaneously: use a master
1800 * copy of host monotonic time values. Update that master copy
1801 * in lockstep.
1802 *
1803 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1804 *
1805 */
1806
1807 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1808 {
1809 #ifdef CONFIG_X86_64
1810 struct kvm_arch *ka = &kvm->arch;
1811 int vclock_mode;
1812 bool host_tsc_clocksource, vcpus_matched;
1813
1814 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1815 atomic_read(&kvm->online_vcpus));
1816
1817 /*
1818 * If the host uses TSC clock, then passthrough TSC as stable
1819 * to the guest.
1820 */
1821 host_tsc_clocksource = kvm_get_time_and_clockread(
1822 &ka->master_kernel_ns,
1823 &ka->master_cycle_now);
1824
1825 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1826 && !ka->backwards_tsc_observed
1827 && !ka->boot_vcpu_runs_old_kvmclock;
1828
1829 if (ka->use_master_clock)
1830 atomic_set(&kvm_guest_has_master_clock, 1);
1831
1832 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1833 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1834 vcpus_matched);
1835 #endif
1836 }
1837
1838 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1839 {
1840 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1841 }
1842
1843 static void kvm_gen_update_masterclock(struct kvm *kvm)
1844 {
1845 #ifdef CONFIG_X86_64
1846 int i;
1847 struct kvm_vcpu *vcpu;
1848 struct kvm_arch *ka = &kvm->arch;
1849
1850 spin_lock(&ka->pvclock_gtod_sync_lock);
1851 kvm_make_mclock_inprogress_request(kvm);
1852 /* no guest entries from this point */
1853 pvclock_update_vm_gtod_copy(kvm);
1854
1855 kvm_for_each_vcpu(i, vcpu, kvm)
1856 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1857
1858 /* guest entries allowed */
1859 kvm_for_each_vcpu(i, vcpu, kvm)
1860 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1861
1862 spin_unlock(&ka->pvclock_gtod_sync_lock);
1863 #endif
1864 }
1865
1866 u64 get_kvmclock_ns(struct kvm *kvm)
1867 {
1868 struct kvm_arch *ka = &kvm->arch;
1869 struct pvclock_vcpu_time_info hv_clock;
1870 u64 ret;
1871
1872 spin_lock(&ka->pvclock_gtod_sync_lock);
1873 if (!ka->use_master_clock) {
1874 spin_unlock(&ka->pvclock_gtod_sync_lock);
1875 return ktime_get_boot_ns() + ka->kvmclock_offset;
1876 }
1877
1878 hv_clock.tsc_timestamp = ka->master_cycle_now;
1879 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1880 spin_unlock(&ka->pvclock_gtod_sync_lock);
1881
1882 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1883 get_cpu();
1884
1885 if (__this_cpu_read(cpu_tsc_khz)) {
1886 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1887 &hv_clock.tsc_shift,
1888 &hv_clock.tsc_to_system_mul);
1889 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1890 } else
1891 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1892
1893 put_cpu();
1894
1895 return ret;
1896 }
1897
1898 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1899 {
1900 struct kvm_vcpu_arch *vcpu = &v->arch;
1901 struct pvclock_vcpu_time_info guest_hv_clock;
1902
1903 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1904 &guest_hv_clock, sizeof(guest_hv_clock))))
1905 return;
1906
1907 /* This VCPU is paused, but it's legal for a guest to read another
1908 * VCPU's kvmclock, so we really have to follow the specification where
1909 * it says that version is odd if data is being modified, and even after
1910 * it is consistent.
1911 *
1912 * Version field updates must be kept separate. This is because
1913 * kvm_write_guest_cached might use a "rep movs" instruction, and
1914 * writes within a string instruction are weakly ordered. So there
1915 * are three writes overall.
1916 *
1917 * As a small optimization, only write the version field in the first
1918 * and third write. The vcpu->pv_time cache is still valid, because the
1919 * version field is the first in the struct.
1920 */
1921 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1922
1923 if (guest_hv_clock.version & 1)
1924 ++guest_hv_clock.version; /* first time write, random junk */
1925
1926 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1927 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1928 &vcpu->hv_clock,
1929 sizeof(vcpu->hv_clock.version));
1930
1931 smp_wmb();
1932
1933 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1934 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1935
1936 if (vcpu->pvclock_set_guest_stopped_request) {
1937 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1938 vcpu->pvclock_set_guest_stopped_request = false;
1939 }
1940
1941 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1942
1943 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1944 &vcpu->hv_clock,
1945 sizeof(vcpu->hv_clock));
1946
1947 smp_wmb();
1948
1949 vcpu->hv_clock.version++;
1950 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1951 &vcpu->hv_clock,
1952 sizeof(vcpu->hv_clock.version));
1953 }
1954
1955 static int kvm_guest_time_update(struct kvm_vcpu *v)
1956 {
1957 unsigned long flags, tgt_tsc_khz;
1958 struct kvm_vcpu_arch *vcpu = &v->arch;
1959 struct kvm_arch *ka = &v->kvm->arch;
1960 s64 kernel_ns;
1961 u64 tsc_timestamp, host_tsc;
1962 u8 pvclock_flags;
1963 bool use_master_clock;
1964
1965 kernel_ns = 0;
1966 host_tsc = 0;
1967
1968 /*
1969 * If the host uses TSC clock, then passthrough TSC as stable
1970 * to the guest.
1971 */
1972 spin_lock(&ka->pvclock_gtod_sync_lock);
1973 use_master_clock = ka->use_master_clock;
1974 if (use_master_clock) {
1975 host_tsc = ka->master_cycle_now;
1976 kernel_ns = ka->master_kernel_ns;
1977 }
1978 spin_unlock(&ka->pvclock_gtod_sync_lock);
1979
1980 /* Keep irq disabled to prevent changes to the clock */
1981 local_irq_save(flags);
1982 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1983 if (unlikely(tgt_tsc_khz == 0)) {
1984 local_irq_restore(flags);
1985 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1986 return 1;
1987 }
1988 if (!use_master_clock) {
1989 host_tsc = rdtsc();
1990 kernel_ns = ktime_get_boot_ns();
1991 }
1992
1993 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1994
1995 /*
1996 * We may have to catch up the TSC to match elapsed wall clock
1997 * time for two reasons, even if kvmclock is used.
1998 * 1) CPU could have been running below the maximum TSC rate
1999 * 2) Broken TSC compensation resets the base at each VCPU
2000 * entry to avoid unknown leaps of TSC even when running
2001 * again on the same CPU. This may cause apparent elapsed
2002 * time to disappear, and the guest to stand still or run
2003 * very slowly.
2004 */
2005 if (vcpu->tsc_catchup) {
2006 u64 tsc = compute_guest_tsc(v, kernel_ns);
2007 if (tsc > tsc_timestamp) {
2008 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2009 tsc_timestamp = tsc;
2010 }
2011 }
2012
2013 local_irq_restore(flags);
2014
2015 /* With all the info we got, fill in the values */
2016
2017 if (kvm_has_tsc_control)
2018 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2019
2020 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2021 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2022 &vcpu->hv_clock.tsc_shift,
2023 &vcpu->hv_clock.tsc_to_system_mul);
2024 vcpu->hw_tsc_khz = tgt_tsc_khz;
2025 }
2026
2027 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2028 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2029 vcpu->last_guest_tsc = tsc_timestamp;
2030
2031 /* If the host uses TSC clocksource, then it is stable */
2032 pvclock_flags = 0;
2033 if (use_master_clock)
2034 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2035
2036 vcpu->hv_clock.flags = pvclock_flags;
2037
2038 if (vcpu->pv_time_enabled)
2039 kvm_setup_pvclock_page(v);
2040 if (v == kvm_get_vcpu(v->kvm, 0))
2041 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2042 return 0;
2043 }
2044
2045 /*
2046 * kvmclock updates which are isolated to a given vcpu, such as
2047 * vcpu->cpu migration, should not allow system_timestamp from
2048 * the rest of the vcpus to remain static. Otherwise ntp frequency
2049 * correction applies to one vcpu's system_timestamp but not
2050 * the others.
2051 *
2052 * So in those cases, request a kvmclock update for all vcpus.
2053 * We need to rate-limit these requests though, as they can
2054 * considerably slow guests that have a large number of vcpus.
2055 * The time for a remote vcpu to update its kvmclock is bound
2056 * by the delay we use to rate-limit the updates.
2057 */
2058
2059 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2060
2061 static void kvmclock_update_fn(struct work_struct *work)
2062 {
2063 int i;
2064 struct delayed_work *dwork = to_delayed_work(work);
2065 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2066 kvmclock_update_work);
2067 struct kvm *kvm = container_of(ka, struct kvm, arch);
2068 struct kvm_vcpu *vcpu;
2069
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2072 kvm_vcpu_kick(vcpu);
2073 }
2074 }
2075
2076 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2077 {
2078 struct kvm *kvm = v->kvm;
2079
2080 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2081 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2082 KVMCLOCK_UPDATE_DELAY);
2083 }
2084
2085 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2086
2087 static void kvmclock_sync_fn(struct work_struct *work)
2088 {
2089 struct delayed_work *dwork = to_delayed_work(work);
2090 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2091 kvmclock_sync_work);
2092 struct kvm *kvm = container_of(ka, struct kvm, arch);
2093
2094 if (!kvmclock_periodic_sync)
2095 return;
2096
2097 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2098 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2099 KVMCLOCK_SYNC_PERIOD);
2100 }
2101
2102 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2103 {
2104 u64 mcg_cap = vcpu->arch.mcg_cap;
2105 unsigned bank_num = mcg_cap & 0xff;
2106 u32 msr = msr_info->index;
2107 u64 data = msr_info->data;
2108
2109 switch (msr) {
2110 case MSR_IA32_MCG_STATUS:
2111 vcpu->arch.mcg_status = data;
2112 break;
2113 case MSR_IA32_MCG_CTL:
2114 if (!(mcg_cap & MCG_CTL_P) &&
2115 (data || !msr_info->host_initiated))
2116 return 1;
2117 if (data != 0 && data != ~(u64)0)
2118 return 1;
2119 vcpu->arch.mcg_ctl = data;
2120 break;
2121 default:
2122 if (msr >= MSR_IA32_MC0_CTL &&
2123 msr < MSR_IA32_MCx_CTL(bank_num)) {
2124 u32 offset = msr - MSR_IA32_MC0_CTL;
2125 /* only 0 or all 1s can be written to IA32_MCi_CTL
2126 * some Linux kernels though clear bit 10 in bank 4 to
2127 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2128 * this to avoid an uncatched #GP in the guest
2129 */
2130 if ((offset & 0x3) == 0 &&
2131 data != 0 && (data | (1 << 10)) != ~(u64)0)
2132 return -1;
2133 if (!msr_info->host_initiated &&
2134 (offset & 0x3) == 1 && data != 0)
2135 return -1;
2136 vcpu->arch.mce_banks[offset] = data;
2137 break;
2138 }
2139 return 1;
2140 }
2141 return 0;
2142 }
2143
2144 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2145 {
2146 struct kvm *kvm = vcpu->kvm;
2147 int lm = is_long_mode(vcpu);
2148 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2149 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2150 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2151 : kvm->arch.xen_hvm_config.blob_size_32;
2152 u32 page_num = data & ~PAGE_MASK;
2153 u64 page_addr = data & PAGE_MASK;
2154 u8 *page;
2155 int r;
2156
2157 r = -E2BIG;
2158 if (page_num >= blob_size)
2159 goto out;
2160 r = -ENOMEM;
2161 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2162 if (IS_ERR(page)) {
2163 r = PTR_ERR(page);
2164 goto out;
2165 }
2166 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2167 goto out_free;
2168 r = 0;
2169 out_free:
2170 kfree(page);
2171 out:
2172 return r;
2173 }
2174
2175 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2176 {
2177 gpa_t gpa = data & ~0x3f;
2178
2179 /* Bits 3:5 are reserved, Should be zero */
2180 if (data & 0x38)
2181 return 1;
2182
2183 vcpu->arch.apf.msr_val = data;
2184
2185 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2186 kvm_clear_async_pf_completion_queue(vcpu);
2187 kvm_async_pf_hash_reset(vcpu);
2188 return 0;
2189 }
2190
2191 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2192 sizeof(u32)))
2193 return 1;
2194
2195 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2196 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2197 kvm_async_pf_wakeup_all(vcpu);
2198 return 0;
2199 }
2200
2201 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2202 {
2203 vcpu->arch.pv_time_enabled = false;
2204 }
2205
2206 static void record_steal_time(struct kvm_vcpu *vcpu)
2207 {
2208 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2209 return;
2210
2211 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2212 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2213 return;
2214
2215 vcpu->arch.st.steal.preempted = 0;
2216
2217 if (vcpu->arch.st.steal.version & 1)
2218 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2219
2220 vcpu->arch.st.steal.version += 1;
2221
2222 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2223 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2224
2225 smp_wmb();
2226
2227 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2228 vcpu->arch.st.last_steal;
2229 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2230
2231 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2232 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2233
2234 smp_wmb();
2235
2236 vcpu->arch.st.steal.version += 1;
2237
2238 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2239 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2240 }
2241
2242 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2243 {
2244 bool pr = false;
2245 u32 msr = msr_info->index;
2246 u64 data = msr_info->data;
2247
2248 switch (msr) {
2249 case MSR_AMD64_NB_CFG:
2250 case MSR_IA32_UCODE_WRITE:
2251 case MSR_VM_HSAVE_PA:
2252 case MSR_AMD64_PATCH_LOADER:
2253 case MSR_AMD64_BU_CFG2:
2254 case MSR_AMD64_DC_CFG:
2255 case MSR_F15H_EX_CFG:
2256 break;
2257
2258 case MSR_IA32_UCODE_REV:
2259 if (msr_info->host_initiated)
2260 vcpu->arch.microcode_version = data;
2261 break;
2262 case MSR_IA32_ARCH_CAPABILITIES:
2263 if (!msr_info->host_initiated)
2264 return 1;
2265 vcpu->arch.arch_capabilities = data;
2266 break;
2267 case MSR_EFER:
2268 return set_efer(vcpu, msr_info);
2269 case MSR_K7_HWCR:
2270 data &= ~(u64)0x40; /* ignore flush filter disable */
2271 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2272 data &= ~(u64)0x8; /* ignore TLB cache disable */
2273 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2274 if (data != 0) {
2275 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2276 data);
2277 return 1;
2278 }
2279 break;
2280 case MSR_FAM10H_MMIO_CONF_BASE:
2281 if (data != 0) {
2282 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2283 "0x%llx\n", data);
2284 return 1;
2285 }
2286 break;
2287 case MSR_IA32_DEBUGCTLMSR:
2288 if (!data) {
2289 /* We support the non-activated case already */
2290 break;
2291 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2292 /* Values other than LBR and BTF are vendor-specific,
2293 thus reserved and should throw a #GP */
2294 return 1;
2295 }
2296 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2297 __func__, data);
2298 break;
2299 case 0x200 ... 0x2ff:
2300 return kvm_mtrr_set_msr(vcpu, msr, data);
2301 case MSR_IA32_APICBASE:
2302 return kvm_set_apic_base(vcpu, msr_info);
2303 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2304 return kvm_x2apic_msr_write(vcpu, msr, data);
2305 case MSR_IA32_TSCDEADLINE:
2306 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2307 break;
2308 case MSR_IA32_TSC_ADJUST:
2309 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2310 if (!msr_info->host_initiated) {
2311 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2312 adjust_tsc_offset_guest(vcpu, adj);
2313 }
2314 vcpu->arch.ia32_tsc_adjust_msr = data;
2315 }
2316 break;
2317 case MSR_IA32_MISC_ENABLE:
2318 vcpu->arch.ia32_misc_enable_msr = data;
2319 break;
2320 case MSR_IA32_SMBASE:
2321 if (!msr_info->host_initiated)
2322 return 1;
2323 vcpu->arch.smbase = data;
2324 break;
2325 case MSR_IA32_TSC:
2326 kvm_write_tsc(vcpu, msr_info);
2327 break;
2328 case MSR_KVM_WALL_CLOCK_NEW:
2329 case MSR_KVM_WALL_CLOCK:
2330 vcpu->kvm->arch.wall_clock = data;
2331 kvm_write_wall_clock(vcpu->kvm, data);
2332 break;
2333 case MSR_KVM_SYSTEM_TIME_NEW:
2334 case MSR_KVM_SYSTEM_TIME: {
2335 struct kvm_arch *ka = &vcpu->kvm->arch;
2336
2337 kvmclock_reset(vcpu);
2338
2339 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2340 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2341
2342 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2343 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2344
2345 ka->boot_vcpu_runs_old_kvmclock = tmp;
2346 }
2347
2348 vcpu->arch.time = data;
2349 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2350
2351 /* we verify if the enable bit is set... */
2352 if (!(data & 1))
2353 break;
2354
2355 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2356 &vcpu->arch.pv_time, data & ~1ULL,
2357 sizeof(struct pvclock_vcpu_time_info)))
2358 vcpu->arch.pv_time_enabled = false;
2359 else
2360 vcpu->arch.pv_time_enabled = true;
2361
2362 break;
2363 }
2364 case MSR_KVM_ASYNC_PF_EN:
2365 if (kvm_pv_enable_async_pf(vcpu, data))
2366 return 1;
2367 break;
2368 case MSR_KVM_STEAL_TIME:
2369
2370 if (unlikely(!sched_info_on()))
2371 return 1;
2372
2373 if (data & KVM_STEAL_RESERVED_MASK)
2374 return 1;
2375
2376 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2377 data & KVM_STEAL_VALID_BITS,
2378 sizeof(struct kvm_steal_time)))
2379 return 1;
2380
2381 vcpu->arch.st.msr_val = data;
2382
2383 if (!(data & KVM_MSR_ENABLED))
2384 break;
2385
2386 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2387
2388 break;
2389 case MSR_KVM_PV_EOI_EN:
2390 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2391 return 1;
2392 break;
2393
2394 case MSR_IA32_MCG_CTL:
2395 case MSR_IA32_MCG_STATUS:
2396 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2397 return set_msr_mce(vcpu, msr_info);
2398
2399 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2400 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2401 pr = true; /* fall through */
2402 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2403 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2404 if (kvm_pmu_is_valid_msr(vcpu, msr))
2405 return kvm_pmu_set_msr(vcpu, msr_info);
2406
2407 if (pr || data != 0)
2408 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2409 "0x%x data 0x%llx\n", msr, data);
2410 break;
2411 case MSR_K7_CLK_CTL:
2412 /*
2413 * Ignore all writes to this no longer documented MSR.
2414 * Writes are only relevant for old K7 processors,
2415 * all pre-dating SVM, but a recommended workaround from
2416 * AMD for these chips. It is possible to specify the
2417 * affected processor models on the command line, hence
2418 * the need to ignore the workaround.
2419 */
2420 break;
2421 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2422 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2423 case HV_X64_MSR_CRASH_CTL:
2424 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2425 return kvm_hv_set_msr_common(vcpu, msr, data,
2426 msr_info->host_initiated);
2427 case MSR_IA32_BBL_CR_CTL3:
2428 /* Drop writes to this legacy MSR -- see rdmsr
2429 * counterpart for further detail.
2430 */
2431 if (report_ignored_msrs)
2432 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2433 msr, data);
2434 break;
2435 case MSR_AMD64_OSVW_ID_LENGTH:
2436 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2437 return 1;
2438 vcpu->arch.osvw.length = data;
2439 break;
2440 case MSR_AMD64_OSVW_STATUS:
2441 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2442 return 1;
2443 vcpu->arch.osvw.status = data;
2444 break;
2445 case MSR_PLATFORM_INFO:
2446 if (!msr_info->host_initiated ||
2447 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2448 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2449 cpuid_fault_enabled(vcpu)))
2450 return 1;
2451 vcpu->arch.msr_platform_info = data;
2452 break;
2453 case MSR_MISC_FEATURES_ENABLES:
2454 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2455 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2456 !supports_cpuid_fault(vcpu)))
2457 return 1;
2458 vcpu->arch.msr_misc_features_enables = data;
2459 break;
2460 default:
2461 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2462 return xen_hvm_config(vcpu, data);
2463 if (kvm_pmu_is_valid_msr(vcpu, msr))
2464 return kvm_pmu_set_msr(vcpu, msr_info);
2465 if (!ignore_msrs) {
2466 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2467 msr, data);
2468 return 1;
2469 } else {
2470 if (report_ignored_msrs)
2471 vcpu_unimpl(vcpu,
2472 "ignored wrmsr: 0x%x data 0x%llx\n",
2473 msr, data);
2474 break;
2475 }
2476 }
2477 return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2480
2481
2482 /*
2483 * Reads an msr value (of 'msr_index') into 'pdata'.
2484 * Returns 0 on success, non-0 otherwise.
2485 * Assumes vcpu_load() was already called.
2486 */
2487 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2488 {
2489 return kvm_x86_ops->get_msr(vcpu, msr);
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_get_msr);
2492
2493 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2494 {
2495 u64 data;
2496 u64 mcg_cap = vcpu->arch.mcg_cap;
2497 unsigned bank_num = mcg_cap & 0xff;
2498
2499 switch (msr) {
2500 case MSR_IA32_P5_MC_ADDR:
2501 case MSR_IA32_P5_MC_TYPE:
2502 data = 0;
2503 break;
2504 case MSR_IA32_MCG_CAP:
2505 data = vcpu->arch.mcg_cap;
2506 break;
2507 case MSR_IA32_MCG_CTL:
2508 if (!(mcg_cap & MCG_CTL_P) && !host)
2509 return 1;
2510 data = vcpu->arch.mcg_ctl;
2511 break;
2512 case MSR_IA32_MCG_STATUS:
2513 data = vcpu->arch.mcg_status;
2514 break;
2515 default:
2516 if (msr >= MSR_IA32_MC0_CTL &&
2517 msr < MSR_IA32_MCx_CTL(bank_num)) {
2518 u32 offset = msr - MSR_IA32_MC0_CTL;
2519 data = vcpu->arch.mce_banks[offset];
2520 break;
2521 }
2522 return 1;
2523 }
2524 *pdata = data;
2525 return 0;
2526 }
2527
2528 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2529 {
2530 switch (msr_info->index) {
2531 case MSR_IA32_PLATFORM_ID:
2532 case MSR_IA32_EBL_CR_POWERON:
2533 case MSR_IA32_DEBUGCTLMSR:
2534 case MSR_IA32_LASTBRANCHFROMIP:
2535 case MSR_IA32_LASTBRANCHTOIP:
2536 case MSR_IA32_LASTINTFROMIP:
2537 case MSR_IA32_LASTINTTOIP:
2538 case MSR_K8_SYSCFG:
2539 case MSR_K8_TSEG_ADDR:
2540 case MSR_K8_TSEG_MASK:
2541 case MSR_K7_HWCR:
2542 case MSR_VM_HSAVE_PA:
2543 case MSR_K8_INT_PENDING_MSG:
2544 case MSR_AMD64_NB_CFG:
2545 case MSR_FAM10H_MMIO_CONF_BASE:
2546 case MSR_AMD64_BU_CFG2:
2547 case MSR_IA32_PERF_CTL:
2548 case MSR_AMD64_DC_CFG:
2549 case MSR_F15H_EX_CFG:
2550 msr_info->data = 0;
2551 break;
2552 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2553 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2554 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2555 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2556 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2557 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2558 msr_info->data = 0;
2559 break;
2560 case MSR_IA32_UCODE_REV:
2561 msr_info->data = vcpu->arch.microcode_version;
2562 break;
2563 case MSR_IA32_TSC:
2564 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2565 break;
2566 case MSR_IA32_ARCH_CAPABILITIES:
2567 if (!msr_info->host_initiated &&
2568 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2569 return 1;
2570 msr_info->data = vcpu->arch.arch_capabilities;
2571 break;
2572 case MSR_MTRRcap:
2573 case 0x200 ... 0x2ff:
2574 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2575 case 0xcd: /* fsb frequency */
2576 msr_info->data = 3;
2577 break;
2578 /*
2579 * MSR_EBC_FREQUENCY_ID
2580 * Conservative value valid for even the basic CPU models.
2581 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2582 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2583 * and 266MHz for model 3, or 4. Set Core Clock
2584 * Frequency to System Bus Frequency Ratio to 1 (bits
2585 * 31:24) even though these are only valid for CPU
2586 * models > 2, however guests may end up dividing or
2587 * multiplying by zero otherwise.
2588 */
2589 case MSR_EBC_FREQUENCY_ID:
2590 msr_info->data = 1 << 24;
2591 break;
2592 case MSR_IA32_APICBASE:
2593 msr_info->data = kvm_get_apic_base(vcpu);
2594 break;
2595 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2596 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2597 break;
2598 case MSR_IA32_TSCDEADLINE:
2599 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2600 break;
2601 case MSR_IA32_TSC_ADJUST:
2602 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2603 break;
2604 case MSR_IA32_MISC_ENABLE:
2605 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2606 break;
2607 case MSR_IA32_SMBASE:
2608 if (!msr_info->host_initiated)
2609 return 1;
2610 msr_info->data = vcpu->arch.smbase;
2611 break;
2612 case MSR_IA32_PERF_STATUS:
2613 /* TSC increment by tick */
2614 msr_info->data = 1000ULL;
2615 /* CPU multiplier */
2616 msr_info->data |= (((uint64_t)4ULL) << 40);
2617 break;
2618 case MSR_EFER:
2619 msr_info->data = vcpu->arch.efer;
2620 break;
2621 case MSR_KVM_WALL_CLOCK:
2622 case MSR_KVM_WALL_CLOCK_NEW:
2623 msr_info->data = vcpu->kvm->arch.wall_clock;
2624 break;
2625 case MSR_KVM_SYSTEM_TIME:
2626 case MSR_KVM_SYSTEM_TIME_NEW:
2627 msr_info->data = vcpu->arch.time;
2628 break;
2629 case MSR_KVM_ASYNC_PF_EN:
2630 msr_info->data = vcpu->arch.apf.msr_val;
2631 break;
2632 case MSR_KVM_STEAL_TIME:
2633 msr_info->data = vcpu->arch.st.msr_val;
2634 break;
2635 case MSR_KVM_PV_EOI_EN:
2636 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2637 break;
2638 case MSR_IA32_P5_MC_ADDR:
2639 case MSR_IA32_P5_MC_TYPE:
2640 case MSR_IA32_MCG_CAP:
2641 case MSR_IA32_MCG_CTL:
2642 case MSR_IA32_MCG_STATUS:
2643 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2644 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2645 msr_info->host_initiated);
2646 case MSR_K7_CLK_CTL:
2647 /*
2648 * Provide expected ramp-up count for K7. All other
2649 * are set to zero, indicating minimum divisors for
2650 * every field.
2651 *
2652 * This prevents guest kernels on AMD host with CPU
2653 * type 6, model 8 and higher from exploding due to
2654 * the rdmsr failing.
2655 */
2656 msr_info->data = 0x20000000;
2657 break;
2658 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660 case HV_X64_MSR_CRASH_CTL:
2661 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662 return kvm_hv_get_msr_common(vcpu,
2663 msr_info->index, &msr_info->data,
2664 msr_info->host_initiated);
2665 break;
2666 case MSR_IA32_BBL_CR_CTL3:
2667 /* This legacy MSR exists but isn't fully documented in current
2668 * silicon. It is however accessed by winxp in very narrow
2669 * scenarios where it sets bit #19, itself documented as
2670 * a "reserved" bit. Best effort attempt to source coherent
2671 * read data here should the balance of the register be
2672 * interpreted by the guest:
2673 *
2674 * L2 cache control register 3: 64GB range, 256KB size,
2675 * enabled, latency 0x1, configured
2676 */
2677 msr_info->data = 0xbe702111;
2678 break;
2679 case MSR_AMD64_OSVW_ID_LENGTH:
2680 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2681 return 1;
2682 msr_info->data = vcpu->arch.osvw.length;
2683 break;
2684 case MSR_AMD64_OSVW_STATUS:
2685 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2686 return 1;
2687 msr_info->data = vcpu->arch.osvw.status;
2688 break;
2689 case MSR_PLATFORM_INFO:
2690 msr_info->data = vcpu->arch.msr_platform_info;
2691 break;
2692 case MSR_MISC_FEATURES_ENABLES:
2693 msr_info->data = vcpu->arch.msr_misc_features_enables;
2694 break;
2695 default:
2696 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2697 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2698 if (!ignore_msrs) {
2699 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2700 msr_info->index);
2701 return 1;
2702 } else {
2703 if (report_ignored_msrs)
2704 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2705 msr_info->index);
2706 msr_info->data = 0;
2707 }
2708 break;
2709 }
2710 return 0;
2711 }
2712 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2713
2714 /*
2715 * Read or write a bunch of msrs. All parameters are kernel addresses.
2716 *
2717 * @return number of msrs set successfully.
2718 */
2719 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2720 struct kvm_msr_entry *entries,
2721 int (*do_msr)(struct kvm_vcpu *vcpu,
2722 unsigned index, u64 *data))
2723 {
2724 int i;
2725
2726 for (i = 0; i < msrs->nmsrs; ++i)
2727 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2728 break;
2729
2730 return i;
2731 }
2732
2733 /*
2734 * Read or write a bunch of msrs. Parameters are user addresses.
2735 *
2736 * @return number of msrs set successfully.
2737 */
2738 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2739 int (*do_msr)(struct kvm_vcpu *vcpu,
2740 unsigned index, u64 *data),
2741 int writeback)
2742 {
2743 struct kvm_msrs msrs;
2744 struct kvm_msr_entry *entries;
2745 int r, n;
2746 unsigned size;
2747
2748 r = -EFAULT;
2749 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2750 goto out;
2751
2752 r = -E2BIG;
2753 if (msrs.nmsrs >= MAX_IO_MSRS)
2754 goto out;
2755
2756 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2757 entries = memdup_user(user_msrs->entries, size);
2758 if (IS_ERR(entries)) {
2759 r = PTR_ERR(entries);
2760 goto out;
2761 }
2762
2763 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2764 if (r < 0)
2765 goto out_free;
2766
2767 r = -EFAULT;
2768 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2769 goto out_free;
2770
2771 r = n;
2772
2773 out_free:
2774 kfree(entries);
2775 out:
2776 return r;
2777 }
2778
2779 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2780 {
2781 int r;
2782
2783 switch (ext) {
2784 case KVM_CAP_IRQCHIP:
2785 case KVM_CAP_HLT:
2786 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2787 case KVM_CAP_SET_TSS_ADDR:
2788 case KVM_CAP_EXT_CPUID:
2789 case KVM_CAP_EXT_EMUL_CPUID:
2790 case KVM_CAP_CLOCKSOURCE:
2791 case KVM_CAP_PIT:
2792 case KVM_CAP_NOP_IO_DELAY:
2793 case KVM_CAP_MP_STATE:
2794 case KVM_CAP_SYNC_MMU:
2795 case KVM_CAP_USER_NMI:
2796 case KVM_CAP_REINJECT_CONTROL:
2797 case KVM_CAP_IRQ_INJECT_STATUS:
2798 case KVM_CAP_IOEVENTFD:
2799 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2800 case KVM_CAP_PIT2:
2801 case KVM_CAP_PIT_STATE2:
2802 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2803 case KVM_CAP_XEN_HVM:
2804 case KVM_CAP_VCPU_EVENTS:
2805 case KVM_CAP_HYPERV:
2806 case KVM_CAP_HYPERV_VAPIC:
2807 case KVM_CAP_HYPERV_SPIN:
2808 case KVM_CAP_HYPERV_SYNIC:
2809 case KVM_CAP_HYPERV_SYNIC2:
2810 case KVM_CAP_HYPERV_VP_INDEX:
2811 case KVM_CAP_PCI_SEGMENT:
2812 case KVM_CAP_DEBUGREGS:
2813 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2814 case KVM_CAP_XSAVE:
2815 case KVM_CAP_ASYNC_PF:
2816 case KVM_CAP_GET_TSC_KHZ:
2817 case KVM_CAP_KVMCLOCK_CTRL:
2818 case KVM_CAP_READONLY_MEM:
2819 case KVM_CAP_HYPERV_TIME:
2820 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2821 case KVM_CAP_TSC_DEADLINE_TIMER:
2822 case KVM_CAP_ENABLE_CAP_VM:
2823 case KVM_CAP_DISABLE_QUIRKS:
2824 case KVM_CAP_SET_BOOT_CPU_ID:
2825 case KVM_CAP_SPLIT_IRQCHIP:
2826 case KVM_CAP_IMMEDIATE_EXIT:
2827 case KVM_CAP_GET_MSR_FEATURES:
2828 r = 1;
2829 break;
2830 case KVM_CAP_ADJUST_CLOCK:
2831 r = KVM_CLOCK_TSC_STABLE;
2832 break;
2833 case KVM_CAP_X86_GUEST_MWAIT:
2834 r = kvm_mwait_in_guest();
2835 break;
2836 case KVM_CAP_X86_SMM:
2837 /* SMBASE is usually relocated above 1M on modern chipsets,
2838 * and SMM handlers might indeed rely on 4G segment limits,
2839 * so do not report SMM to be available if real mode is
2840 * emulated via vm86 mode. Still, do not go to great lengths
2841 * to avoid userspace's usage of the feature, because it is a
2842 * fringe case that is not enabled except via specific settings
2843 * of the module parameters.
2844 */
2845 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2846 break;
2847 case KVM_CAP_VAPIC:
2848 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2849 break;
2850 case KVM_CAP_NR_VCPUS:
2851 r = KVM_SOFT_MAX_VCPUS;
2852 break;
2853 case KVM_CAP_MAX_VCPUS:
2854 r = KVM_MAX_VCPUS;
2855 break;
2856 case KVM_CAP_MAX_VCPU_ID:
2857 r = KVM_MAX_VCPU_ID;
2858 break;
2859 case KVM_CAP_NR_MEMSLOTS:
2860 r = KVM_USER_MEM_SLOTS;
2861 break;
2862 case KVM_CAP_PV_MMU: /* obsolete */
2863 r = 0;
2864 break;
2865 case KVM_CAP_MCE:
2866 r = KVM_MAX_MCE_BANKS;
2867 break;
2868 case KVM_CAP_XCRS:
2869 r = boot_cpu_has(X86_FEATURE_XSAVE);
2870 break;
2871 case KVM_CAP_TSC_CONTROL:
2872 r = kvm_has_tsc_control;
2873 break;
2874 case KVM_CAP_X2APIC_API:
2875 r = KVM_X2APIC_API_VALID_FLAGS;
2876 break;
2877 default:
2878 r = 0;
2879 break;
2880 }
2881 return r;
2882
2883 }
2884
2885 long kvm_arch_dev_ioctl(struct file *filp,
2886 unsigned int ioctl, unsigned long arg)
2887 {
2888 void __user *argp = (void __user *)arg;
2889 long r;
2890
2891 switch (ioctl) {
2892 case KVM_GET_MSR_INDEX_LIST: {
2893 struct kvm_msr_list __user *user_msr_list = argp;
2894 struct kvm_msr_list msr_list;
2895 unsigned n;
2896
2897 r = -EFAULT;
2898 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2899 goto out;
2900 n = msr_list.nmsrs;
2901 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2902 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2903 goto out;
2904 r = -E2BIG;
2905 if (n < msr_list.nmsrs)
2906 goto out;
2907 r = -EFAULT;
2908 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2909 num_msrs_to_save * sizeof(u32)))
2910 goto out;
2911 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2912 &emulated_msrs,
2913 num_emulated_msrs * sizeof(u32)))
2914 goto out;
2915 r = 0;
2916 break;
2917 }
2918 case KVM_GET_SUPPORTED_CPUID:
2919 case KVM_GET_EMULATED_CPUID: {
2920 struct kvm_cpuid2 __user *cpuid_arg = argp;
2921 struct kvm_cpuid2 cpuid;
2922
2923 r = -EFAULT;
2924 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2925 goto out;
2926
2927 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2928 ioctl);
2929 if (r)
2930 goto out;
2931
2932 r = -EFAULT;
2933 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2934 goto out;
2935 r = 0;
2936 break;
2937 }
2938 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2939 r = -EFAULT;
2940 if (copy_to_user(argp, &kvm_mce_cap_supported,
2941 sizeof(kvm_mce_cap_supported)))
2942 goto out;
2943 r = 0;
2944 break;
2945 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2946 struct kvm_msr_list __user *user_msr_list = argp;
2947 struct kvm_msr_list msr_list;
2948 unsigned int n;
2949
2950 r = -EFAULT;
2951 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2952 goto out;
2953 n = msr_list.nmsrs;
2954 msr_list.nmsrs = num_msr_based_features;
2955 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2956 goto out;
2957 r = -E2BIG;
2958 if (n < msr_list.nmsrs)
2959 goto out;
2960 r = -EFAULT;
2961 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2962 num_msr_based_features * sizeof(u32)))
2963 goto out;
2964 r = 0;
2965 break;
2966 }
2967 case KVM_GET_MSRS:
2968 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2969 break;
2970 }
2971 default:
2972 r = -EINVAL;
2973 }
2974 out:
2975 return r;
2976 }
2977
2978 static void wbinvd_ipi(void *garbage)
2979 {
2980 wbinvd();
2981 }
2982
2983 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2984 {
2985 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2986 }
2987
2988 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2989 {
2990 /* Address WBINVD may be executed by guest */
2991 if (need_emulate_wbinvd(vcpu)) {
2992 if (kvm_x86_ops->has_wbinvd_exit())
2993 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2994 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2995 smp_call_function_single(vcpu->cpu,
2996 wbinvd_ipi, NULL, 1);
2997 }
2998
2999 kvm_x86_ops->vcpu_load(vcpu, cpu);
3000
3001 /* Apply any externally detected TSC adjustments (due to suspend) */
3002 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3003 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3004 vcpu->arch.tsc_offset_adjustment = 0;
3005 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3006 }
3007
3008 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3009 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3010 rdtsc() - vcpu->arch.last_host_tsc;
3011 if (tsc_delta < 0)
3012 mark_tsc_unstable("KVM discovered backwards TSC");
3013
3014 if (check_tsc_unstable()) {
3015 u64 offset = kvm_compute_tsc_offset(vcpu,
3016 vcpu->arch.last_guest_tsc);
3017 kvm_vcpu_write_tsc_offset(vcpu, offset);
3018 vcpu->arch.tsc_catchup = 1;
3019 }
3020
3021 if (kvm_lapic_hv_timer_in_use(vcpu))
3022 kvm_lapic_restart_hv_timer(vcpu);
3023
3024 /*
3025 * On a host with synchronized TSC, there is no need to update
3026 * kvmclock on vcpu->cpu migration
3027 */
3028 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3029 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3030 if (vcpu->cpu != cpu)
3031 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3032 vcpu->cpu = cpu;
3033 }
3034
3035 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3036 }
3037
3038 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3039 {
3040 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3041 return;
3042
3043 vcpu->arch.st.steal.preempted = 1;
3044
3045 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3046 &vcpu->arch.st.steal.preempted,
3047 offsetof(struct kvm_steal_time, preempted),
3048 sizeof(vcpu->arch.st.steal.preempted));
3049 }
3050
3051 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3052 {
3053 int idx;
3054
3055 if (vcpu->preempted)
3056 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3057
3058 /*
3059 * Disable page faults because we're in atomic context here.
3060 * kvm_write_guest_offset_cached() would call might_fault()
3061 * that relies on pagefault_disable() to tell if there's a
3062 * bug. NOTE: the write to guest memory may not go through if
3063 * during postcopy live migration or if there's heavy guest
3064 * paging.
3065 */
3066 pagefault_disable();
3067 /*
3068 * kvm_memslots() will be called by
3069 * kvm_write_guest_offset_cached() so take the srcu lock.
3070 */
3071 idx = srcu_read_lock(&vcpu->kvm->srcu);
3072 kvm_steal_time_set_preempted(vcpu);
3073 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3074 pagefault_enable();
3075 kvm_x86_ops->vcpu_put(vcpu);
3076 vcpu->arch.last_host_tsc = rdtsc();
3077 /*
3078 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3079 * on every vmexit, but if not, we might have a stale dr6 from the
3080 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3081 */
3082 set_debugreg(0, 6);
3083 }
3084
3085 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3086 struct kvm_lapic_state *s)
3087 {
3088 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3089 kvm_x86_ops->sync_pir_to_irr(vcpu);
3090
3091 return kvm_apic_get_state(vcpu, s);
3092 }
3093
3094 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3095 struct kvm_lapic_state *s)
3096 {
3097 int r;
3098
3099 r = kvm_apic_set_state(vcpu, s);
3100 if (r)
3101 return r;
3102 update_cr8_intercept(vcpu);
3103
3104 return 0;
3105 }
3106
3107 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3108 {
3109 return (!lapic_in_kernel(vcpu) ||
3110 kvm_apic_accept_pic_intr(vcpu));
3111 }
3112
3113 /*
3114 * if userspace requested an interrupt window, check that the
3115 * interrupt window is open.
3116 *
3117 * No need to exit to userspace if we already have an interrupt queued.
3118 */
3119 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3120 {
3121 return kvm_arch_interrupt_allowed(vcpu) &&
3122 !kvm_cpu_has_interrupt(vcpu) &&
3123 !kvm_event_needs_reinjection(vcpu) &&
3124 kvm_cpu_accept_dm_intr(vcpu);
3125 }
3126
3127 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3128 struct kvm_interrupt *irq)
3129 {
3130 if (irq->irq >= KVM_NR_INTERRUPTS)
3131 return -EINVAL;
3132
3133 if (!irqchip_in_kernel(vcpu->kvm)) {
3134 kvm_queue_interrupt(vcpu, irq->irq, false);
3135 kvm_make_request(KVM_REQ_EVENT, vcpu);
3136 return 0;
3137 }
3138
3139 /*
3140 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3141 * fail for in-kernel 8259.
3142 */
3143 if (pic_in_kernel(vcpu->kvm))
3144 return -ENXIO;
3145
3146 if (vcpu->arch.pending_external_vector != -1)
3147 return -EEXIST;
3148
3149 vcpu->arch.pending_external_vector = irq->irq;
3150 kvm_make_request(KVM_REQ_EVENT, vcpu);
3151 return 0;
3152 }
3153
3154 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3155 {
3156 kvm_inject_nmi(vcpu);
3157
3158 return 0;
3159 }
3160
3161 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3162 {
3163 kvm_make_request(KVM_REQ_SMI, vcpu);
3164
3165 return 0;
3166 }
3167
3168 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3169 struct kvm_tpr_access_ctl *tac)
3170 {
3171 if (tac->flags)
3172 return -EINVAL;
3173 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3174 return 0;
3175 }
3176
3177 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3178 u64 mcg_cap)
3179 {
3180 int r;
3181 unsigned bank_num = mcg_cap & 0xff, bank;
3182
3183 r = -EINVAL;
3184 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3185 goto out;
3186 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3187 goto out;
3188 r = 0;
3189 vcpu->arch.mcg_cap = mcg_cap;
3190 /* Init IA32_MCG_CTL to all 1s */
3191 if (mcg_cap & MCG_CTL_P)
3192 vcpu->arch.mcg_ctl = ~(u64)0;
3193 /* Init IA32_MCi_CTL to all 1s */
3194 for (bank = 0; bank < bank_num; bank++)
3195 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3196
3197 if (kvm_x86_ops->setup_mce)
3198 kvm_x86_ops->setup_mce(vcpu);
3199 out:
3200 return r;
3201 }
3202
3203 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3204 struct kvm_x86_mce *mce)
3205 {
3206 u64 mcg_cap = vcpu->arch.mcg_cap;
3207 unsigned bank_num = mcg_cap & 0xff;
3208 u64 *banks = vcpu->arch.mce_banks;
3209
3210 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3211 return -EINVAL;
3212 /*
3213 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3214 * reporting is disabled
3215 */
3216 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3217 vcpu->arch.mcg_ctl != ~(u64)0)
3218 return 0;
3219 banks += 4 * mce->bank;
3220 /*
3221 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3222 * reporting is disabled for the bank
3223 */
3224 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3225 return 0;
3226 if (mce->status & MCI_STATUS_UC) {
3227 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3228 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3229 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3230 return 0;
3231 }
3232 if (banks[1] & MCI_STATUS_VAL)
3233 mce->status |= MCI_STATUS_OVER;
3234 banks[2] = mce->addr;
3235 banks[3] = mce->misc;
3236 vcpu->arch.mcg_status = mce->mcg_status;
3237 banks[1] = mce->status;
3238 kvm_queue_exception(vcpu, MC_VECTOR);
3239 } else if (!(banks[1] & MCI_STATUS_VAL)
3240 || !(banks[1] & MCI_STATUS_UC)) {
3241 if (banks[1] & MCI_STATUS_VAL)
3242 mce->status |= MCI_STATUS_OVER;
3243 banks[2] = mce->addr;
3244 banks[3] = mce->misc;
3245 banks[1] = mce->status;
3246 } else
3247 banks[1] |= MCI_STATUS_OVER;
3248 return 0;
3249 }
3250
3251 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3252 struct kvm_vcpu_events *events)
3253 {
3254 process_nmi(vcpu);
3255 /*
3256 * FIXME: pass injected and pending separately. This is only
3257 * needed for nested virtualization, whose state cannot be
3258 * migrated yet. For now we can combine them.
3259 */
3260 events->exception.injected =
3261 (vcpu->arch.exception.pending ||
3262 vcpu->arch.exception.injected) &&
3263 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3264 events->exception.nr = vcpu->arch.exception.nr;
3265 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3266 events->exception.pad = 0;
3267 events->exception.error_code = vcpu->arch.exception.error_code;
3268
3269 events->interrupt.injected =
3270 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3271 events->interrupt.nr = vcpu->arch.interrupt.nr;
3272 events->interrupt.soft = 0;
3273 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3274
3275 events->nmi.injected = vcpu->arch.nmi_injected;
3276 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3277 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3278 events->nmi.pad = 0;
3279
3280 events->sipi_vector = 0; /* never valid when reporting to user space */
3281
3282 events->smi.smm = is_smm(vcpu);
3283 events->smi.pending = vcpu->arch.smi_pending;
3284 events->smi.smm_inside_nmi =
3285 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3286 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3287
3288 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3289 | KVM_VCPUEVENT_VALID_SHADOW
3290 | KVM_VCPUEVENT_VALID_SMM);
3291 memset(&events->reserved, 0, sizeof(events->reserved));
3292 }
3293
3294 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3295
3296 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3297 struct kvm_vcpu_events *events)
3298 {
3299 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3300 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3301 | KVM_VCPUEVENT_VALID_SHADOW
3302 | KVM_VCPUEVENT_VALID_SMM))
3303 return -EINVAL;
3304
3305 if (events->exception.injected &&
3306 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3307 is_guest_mode(vcpu)))
3308 return -EINVAL;
3309
3310 /* INITs are latched while in SMM */
3311 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3312 (events->smi.smm || events->smi.pending) &&
3313 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3314 return -EINVAL;
3315
3316 process_nmi(vcpu);
3317 vcpu->arch.exception.injected = false;
3318 vcpu->arch.exception.pending = events->exception.injected;
3319 vcpu->arch.exception.nr = events->exception.nr;
3320 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3321 vcpu->arch.exception.error_code = events->exception.error_code;
3322
3323 vcpu->arch.interrupt.pending = events->interrupt.injected;
3324 vcpu->arch.interrupt.nr = events->interrupt.nr;
3325 vcpu->arch.interrupt.soft = events->interrupt.soft;
3326 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3327 kvm_x86_ops->set_interrupt_shadow(vcpu,
3328 events->interrupt.shadow);
3329
3330 vcpu->arch.nmi_injected = events->nmi.injected;
3331 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3332 vcpu->arch.nmi_pending = events->nmi.pending;
3333 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3334
3335 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3336 lapic_in_kernel(vcpu))
3337 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3338
3339 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3340 u32 hflags = vcpu->arch.hflags;
3341 if (events->smi.smm)
3342 hflags |= HF_SMM_MASK;
3343 else
3344 hflags &= ~HF_SMM_MASK;
3345 kvm_set_hflags(vcpu, hflags);
3346
3347 vcpu->arch.smi_pending = events->smi.pending;
3348
3349 if (events->smi.smm) {
3350 if (events->smi.smm_inside_nmi)
3351 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3352 else
3353 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3354 if (lapic_in_kernel(vcpu)) {
3355 if (events->smi.latched_init)
3356 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3357 else
3358 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3359 }
3360 }
3361 }
3362
3363 kvm_make_request(KVM_REQ_EVENT, vcpu);
3364
3365 return 0;
3366 }
3367
3368 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3369 struct kvm_debugregs *dbgregs)
3370 {
3371 unsigned long val;
3372
3373 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3374 kvm_get_dr(vcpu, 6, &val);
3375 dbgregs->dr6 = val;
3376 dbgregs->dr7 = vcpu->arch.dr7;
3377 dbgregs->flags = 0;
3378 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3379 }
3380
3381 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3382 struct kvm_debugregs *dbgregs)
3383 {
3384 if (dbgregs->flags)
3385 return -EINVAL;
3386
3387 if (dbgregs->dr6 & ~0xffffffffull)
3388 return -EINVAL;
3389 if (dbgregs->dr7 & ~0xffffffffull)
3390 return -EINVAL;
3391
3392 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3393 kvm_update_dr0123(vcpu);
3394 vcpu->arch.dr6 = dbgregs->dr6;
3395 kvm_update_dr6(vcpu);
3396 vcpu->arch.dr7 = dbgregs->dr7;
3397 kvm_update_dr7(vcpu);
3398
3399 return 0;
3400 }
3401
3402 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3403
3404 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3405 {
3406 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3407 u64 xstate_bv = xsave->header.xfeatures;
3408 u64 valid;
3409
3410 /*
3411 * Copy legacy XSAVE area, to avoid complications with CPUID
3412 * leaves 0 and 1 in the loop below.
3413 */
3414 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3415
3416 /* Set XSTATE_BV */
3417 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3418 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3419
3420 /*
3421 * Copy each region from the possibly compacted offset to the
3422 * non-compacted offset.
3423 */
3424 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3425 while (valid) {
3426 u64 feature = valid & -valid;
3427 int index = fls64(feature) - 1;
3428 void *src = get_xsave_addr(xsave, feature);
3429
3430 if (src) {
3431 u32 size, offset, ecx, edx;
3432 cpuid_count(XSTATE_CPUID, index,
3433 &size, &offset, &ecx, &edx);
3434 if (feature == XFEATURE_MASK_PKRU)
3435 memcpy(dest + offset, &vcpu->arch.pkru,
3436 sizeof(vcpu->arch.pkru));
3437 else
3438 memcpy(dest + offset, src, size);
3439
3440 }
3441
3442 valid -= feature;
3443 }
3444 }
3445
3446 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3447 {
3448 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3449 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3450 u64 valid;
3451
3452 /*
3453 * Copy legacy XSAVE area, to avoid complications with CPUID
3454 * leaves 0 and 1 in the loop below.
3455 */
3456 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3457
3458 /* Set XSTATE_BV and possibly XCOMP_BV. */
3459 xsave->header.xfeatures = xstate_bv;
3460 if (boot_cpu_has(X86_FEATURE_XSAVES))
3461 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3462
3463 /*
3464 * Copy each region from the non-compacted offset to the
3465 * possibly compacted offset.
3466 */
3467 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3468 while (valid) {
3469 u64 feature = valid & -valid;
3470 int index = fls64(feature) - 1;
3471 void *dest = get_xsave_addr(xsave, feature);
3472
3473 if (dest) {
3474 u32 size, offset, ecx, edx;
3475 cpuid_count(XSTATE_CPUID, index,
3476 &size, &offset, &ecx, &edx);
3477 if (feature == XFEATURE_MASK_PKRU)
3478 memcpy(&vcpu->arch.pkru, src + offset,
3479 sizeof(vcpu->arch.pkru));
3480 else
3481 memcpy(dest, src + offset, size);
3482 }
3483
3484 valid -= feature;
3485 }
3486 }
3487
3488 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3489 struct kvm_xsave *guest_xsave)
3490 {
3491 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3492 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3493 fill_xsave((u8 *) guest_xsave->region, vcpu);
3494 } else {
3495 memcpy(guest_xsave->region,
3496 &vcpu->arch.guest_fpu.state.fxsave,
3497 sizeof(struct fxregs_state));
3498 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3499 XFEATURE_MASK_FPSSE;
3500 }
3501 }
3502
3503 #define XSAVE_MXCSR_OFFSET 24
3504
3505 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3506 struct kvm_xsave *guest_xsave)
3507 {
3508 u64 xstate_bv =
3509 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3510 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3511
3512 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3513 /*
3514 * Here we allow setting states that are not present in
3515 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3516 * with old userspace.
3517 */
3518 if (xstate_bv & ~kvm_supported_xcr0() ||
3519 mxcsr & ~mxcsr_feature_mask)
3520 return -EINVAL;
3521 load_xsave(vcpu, (u8 *)guest_xsave->region);
3522 } else {
3523 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3524 mxcsr & ~mxcsr_feature_mask)
3525 return -EINVAL;
3526 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3527 guest_xsave->region, sizeof(struct fxregs_state));
3528 }
3529 return 0;
3530 }
3531
3532 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3533 struct kvm_xcrs *guest_xcrs)
3534 {
3535 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3536 guest_xcrs->nr_xcrs = 0;
3537 return;
3538 }
3539
3540 guest_xcrs->nr_xcrs = 1;
3541 guest_xcrs->flags = 0;
3542 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3543 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3544 }
3545
3546 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3547 struct kvm_xcrs *guest_xcrs)
3548 {
3549 int i, r = 0;
3550
3551 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3552 return -EINVAL;
3553
3554 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3555 return -EINVAL;
3556
3557 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3558 /* Only support XCR0 currently */
3559 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3560 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3561 guest_xcrs->xcrs[i].value);
3562 break;
3563 }
3564 if (r)
3565 r = -EINVAL;
3566 return r;
3567 }
3568
3569 /*
3570 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3571 * stopped by the hypervisor. This function will be called from the host only.
3572 * EINVAL is returned when the host attempts to set the flag for a guest that
3573 * does not support pv clocks.
3574 */
3575 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3576 {
3577 if (!vcpu->arch.pv_time_enabled)
3578 return -EINVAL;
3579 vcpu->arch.pvclock_set_guest_stopped_request = true;
3580 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3581 return 0;
3582 }
3583
3584 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3585 struct kvm_enable_cap *cap)
3586 {
3587 if (cap->flags)
3588 return -EINVAL;
3589
3590 switch (cap->cap) {
3591 case KVM_CAP_HYPERV_SYNIC2:
3592 if (cap->args[0])
3593 return -EINVAL;
3594 case KVM_CAP_HYPERV_SYNIC:
3595 if (!irqchip_in_kernel(vcpu->kvm))
3596 return -EINVAL;
3597 return kvm_hv_activate_synic(vcpu, cap->cap ==
3598 KVM_CAP_HYPERV_SYNIC2);
3599 default:
3600 return -EINVAL;
3601 }
3602 }
3603
3604 long kvm_arch_vcpu_ioctl(struct file *filp,
3605 unsigned int ioctl, unsigned long arg)
3606 {
3607 struct kvm_vcpu *vcpu = filp->private_data;
3608 void __user *argp = (void __user *)arg;
3609 int r;
3610 union {
3611 struct kvm_lapic_state *lapic;
3612 struct kvm_xsave *xsave;
3613 struct kvm_xcrs *xcrs;
3614 void *buffer;
3615 } u;
3616
3617 u.buffer = NULL;
3618 switch (ioctl) {
3619 case KVM_GET_LAPIC: {
3620 r = -EINVAL;
3621 if (!lapic_in_kernel(vcpu))
3622 goto out;
3623 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3624
3625 r = -ENOMEM;
3626 if (!u.lapic)
3627 goto out;
3628 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3629 if (r)
3630 goto out;
3631 r = -EFAULT;
3632 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3633 goto out;
3634 r = 0;
3635 break;
3636 }
3637 case KVM_SET_LAPIC: {
3638 r = -EINVAL;
3639 if (!lapic_in_kernel(vcpu))
3640 goto out;
3641 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3642 if (IS_ERR(u.lapic))
3643 return PTR_ERR(u.lapic);
3644
3645 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3646 break;
3647 }
3648 case KVM_INTERRUPT: {
3649 struct kvm_interrupt irq;
3650
3651 r = -EFAULT;
3652 if (copy_from_user(&irq, argp, sizeof irq))
3653 goto out;
3654 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3655 break;
3656 }
3657 case KVM_NMI: {
3658 r = kvm_vcpu_ioctl_nmi(vcpu);
3659 break;
3660 }
3661 case KVM_SMI: {
3662 r = kvm_vcpu_ioctl_smi(vcpu);
3663 break;
3664 }
3665 case KVM_SET_CPUID: {
3666 struct kvm_cpuid __user *cpuid_arg = argp;
3667 struct kvm_cpuid cpuid;
3668
3669 r = -EFAULT;
3670 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3671 goto out;
3672 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3673 break;
3674 }
3675 case KVM_SET_CPUID2: {
3676 struct kvm_cpuid2 __user *cpuid_arg = argp;
3677 struct kvm_cpuid2 cpuid;
3678
3679 r = -EFAULT;
3680 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3681 goto out;
3682 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3683 cpuid_arg->entries);
3684 break;
3685 }
3686 case KVM_GET_CPUID2: {
3687 struct kvm_cpuid2 __user *cpuid_arg = argp;
3688 struct kvm_cpuid2 cpuid;
3689
3690 r = -EFAULT;
3691 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3692 goto out;
3693 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3694 cpuid_arg->entries);
3695 if (r)
3696 goto out;
3697 r = -EFAULT;
3698 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3699 goto out;
3700 r = 0;
3701 break;
3702 }
3703 case KVM_GET_MSRS: {
3704 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3705 r = msr_io(vcpu, argp, do_get_msr, 1);
3706 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3707 break;
3708 }
3709 case KVM_SET_MSRS: {
3710 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3711 r = msr_io(vcpu, argp, do_set_msr, 0);
3712 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3713 break;
3714 }
3715 case KVM_TPR_ACCESS_REPORTING: {
3716 struct kvm_tpr_access_ctl tac;
3717
3718 r = -EFAULT;
3719 if (copy_from_user(&tac, argp, sizeof tac))
3720 goto out;
3721 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3722 if (r)
3723 goto out;
3724 r = -EFAULT;
3725 if (copy_to_user(argp, &tac, sizeof tac))
3726 goto out;
3727 r = 0;
3728 break;
3729 };
3730 case KVM_SET_VAPIC_ADDR: {
3731 struct kvm_vapic_addr va;
3732 int idx;
3733
3734 r = -EINVAL;
3735 if (!lapic_in_kernel(vcpu))
3736 goto out;
3737 r = -EFAULT;
3738 if (copy_from_user(&va, argp, sizeof va))
3739 goto out;
3740 idx = srcu_read_lock(&vcpu->kvm->srcu);
3741 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3742 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3743 break;
3744 }
3745 case KVM_X86_SETUP_MCE: {
3746 u64 mcg_cap;
3747
3748 r = -EFAULT;
3749 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3750 goto out;
3751 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3752 break;
3753 }
3754 case KVM_X86_SET_MCE: {
3755 struct kvm_x86_mce mce;
3756
3757 r = -EFAULT;
3758 if (copy_from_user(&mce, argp, sizeof mce))
3759 goto out;
3760 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3761 break;
3762 }
3763 case KVM_GET_VCPU_EVENTS: {
3764 struct kvm_vcpu_events events;
3765
3766 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3767
3768 r = -EFAULT;
3769 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3770 break;
3771 r = 0;
3772 break;
3773 }
3774 case KVM_SET_VCPU_EVENTS: {
3775 struct kvm_vcpu_events events;
3776
3777 r = -EFAULT;
3778 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3779 break;
3780
3781 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3782 break;
3783 }
3784 case KVM_GET_DEBUGREGS: {
3785 struct kvm_debugregs dbgregs;
3786
3787 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3788
3789 r = -EFAULT;
3790 if (copy_to_user(argp, &dbgregs,
3791 sizeof(struct kvm_debugregs)))
3792 break;
3793 r = 0;
3794 break;
3795 }
3796 case KVM_SET_DEBUGREGS: {
3797 struct kvm_debugregs dbgregs;
3798
3799 r = -EFAULT;
3800 if (copy_from_user(&dbgregs, argp,
3801 sizeof(struct kvm_debugregs)))
3802 break;
3803
3804 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3805 break;
3806 }
3807 case KVM_GET_XSAVE: {
3808 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3809 r = -ENOMEM;
3810 if (!u.xsave)
3811 break;
3812
3813 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3814
3815 r = -EFAULT;
3816 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3817 break;
3818 r = 0;
3819 break;
3820 }
3821 case KVM_SET_XSAVE: {
3822 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3823 if (IS_ERR(u.xsave))
3824 return PTR_ERR(u.xsave);
3825
3826 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3827 break;
3828 }
3829 case KVM_GET_XCRS: {
3830 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3831 r = -ENOMEM;
3832 if (!u.xcrs)
3833 break;
3834
3835 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3836
3837 r = -EFAULT;
3838 if (copy_to_user(argp, u.xcrs,
3839 sizeof(struct kvm_xcrs)))
3840 break;
3841 r = 0;
3842 break;
3843 }
3844 case KVM_SET_XCRS: {
3845 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3846 if (IS_ERR(u.xcrs))
3847 return PTR_ERR(u.xcrs);
3848
3849 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3850 break;
3851 }
3852 case KVM_SET_TSC_KHZ: {
3853 u32 user_tsc_khz;
3854
3855 r = -EINVAL;
3856 user_tsc_khz = (u32)arg;
3857
3858 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3859 goto out;
3860
3861 if (user_tsc_khz == 0)
3862 user_tsc_khz = tsc_khz;
3863
3864 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3865 r = 0;
3866
3867 goto out;
3868 }
3869 case KVM_GET_TSC_KHZ: {
3870 r = vcpu->arch.virtual_tsc_khz;
3871 goto out;
3872 }
3873 case KVM_KVMCLOCK_CTRL: {
3874 r = kvm_set_guest_paused(vcpu);
3875 goto out;
3876 }
3877 case KVM_ENABLE_CAP: {
3878 struct kvm_enable_cap cap;
3879
3880 r = -EFAULT;
3881 if (copy_from_user(&cap, argp, sizeof(cap)))
3882 goto out;
3883 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3884 break;
3885 }
3886 default:
3887 r = -EINVAL;
3888 }
3889 out:
3890 kfree(u.buffer);
3891 return r;
3892 }
3893
3894 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3895 {
3896 return VM_FAULT_SIGBUS;
3897 }
3898
3899 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3900 {
3901 int ret;
3902
3903 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3904 return -EINVAL;
3905 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3906 return ret;
3907 }
3908
3909 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3910 u64 ident_addr)
3911 {
3912 kvm->arch.ept_identity_map_addr = ident_addr;
3913 return 0;
3914 }
3915
3916 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3917 u32 kvm_nr_mmu_pages)
3918 {
3919 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3920 return -EINVAL;
3921
3922 mutex_lock(&kvm->slots_lock);
3923
3924 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3925 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3926
3927 mutex_unlock(&kvm->slots_lock);
3928 return 0;
3929 }
3930
3931 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3932 {
3933 return kvm->arch.n_max_mmu_pages;
3934 }
3935
3936 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3937 {
3938 struct kvm_pic *pic = kvm->arch.vpic;
3939 int r;
3940
3941 r = 0;
3942 switch (chip->chip_id) {
3943 case KVM_IRQCHIP_PIC_MASTER:
3944 memcpy(&chip->chip.pic, &pic->pics[0],
3945 sizeof(struct kvm_pic_state));
3946 break;
3947 case KVM_IRQCHIP_PIC_SLAVE:
3948 memcpy(&chip->chip.pic, &pic->pics[1],
3949 sizeof(struct kvm_pic_state));
3950 break;
3951 case KVM_IRQCHIP_IOAPIC:
3952 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3953 break;
3954 default:
3955 r = -EINVAL;
3956 break;
3957 }
3958 return r;
3959 }
3960
3961 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3962 {
3963 struct kvm_pic *pic = kvm->arch.vpic;
3964 int r;
3965
3966 r = 0;
3967 switch (chip->chip_id) {
3968 case KVM_IRQCHIP_PIC_MASTER:
3969 spin_lock(&pic->lock);
3970 memcpy(&pic->pics[0], &chip->chip.pic,
3971 sizeof(struct kvm_pic_state));
3972 spin_unlock(&pic->lock);
3973 break;
3974 case KVM_IRQCHIP_PIC_SLAVE:
3975 spin_lock(&pic->lock);
3976 memcpy(&pic->pics[1], &chip->chip.pic,
3977 sizeof(struct kvm_pic_state));
3978 spin_unlock(&pic->lock);
3979 break;
3980 case KVM_IRQCHIP_IOAPIC:
3981 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3982 break;
3983 default:
3984 r = -EINVAL;
3985 break;
3986 }
3987 kvm_pic_update_irq(pic);
3988 return r;
3989 }
3990
3991 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3992 {
3993 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3994
3995 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3996
3997 mutex_lock(&kps->lock);
3998 memcpy(ps, &kps->channels, sizeof(*ps));
3999 mutex_unlock(&kps->lock);
4000 return 0;
4001 }
4002
4003 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4004 {
4005 int i;
4006 struct kvm_pit *pit = kvm->arch.vpit;
4007
4008 mutex_lock(&pit->pit_state.lock);
4009 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4010 for (i = 0; i < 3; i++)
4011 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4012 mutex_unlock(&pit->pit_state.lock);
4013 return 0;
4014 }
4015
4016 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4017 {
4018 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4019 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4020 sizeof(ps->channels));
4021 ps->flags = kvm->arch.vpit->pit_state.flags;
4022 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4023 memset(&ps->reserved, 0, sizeof(ps->reserved));
4024 return 0;
4025 }
4026
4027 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4028 {
4029 int start = 0;
4030 int i;
4031 u32 prev_legacy, cur_legacy;
4032 struct kvm_pit *pit = kvm->arch.vpit;
4033
4034 mutex_lock(&pit->pit_state.lock);
4035 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4036 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4037 if (!prev_legacy && cur_legacy)
4038 start = 1;
4039 memcpy(&pit->pit_state.channels, &ps->channels,
4040 sizeof(pit->pit_state.channels));
4041 pit->pit_state.flags = ps->flags;
4042 for (i = 0; i < 3; i++)
4043 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4044 start && i == 0);
4045 mutex_unlock(&pit->pit_state.lock);
4046 return 0;
4047 }
4048
4049 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4050 struct kvm_reinject_control *control)
4051 {
4052 struct kvm_pit *pit = kvm->arch.vpit;
4053
4054 if (!pit)
4055 return -ENXIO;
4056
4057 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4058 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4059 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4060 */
4061 mutex_lock(&pit->pit_state.lock);
4062 kvm_pit_set_reinject(pit, control->pit_reinject);
4063 mutex_unlock(&pit->pit_state.lock);
4064
4065 return 0;
4066 }
4067
4068 /**
4069 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4070 * @kvm: kvm instance
4071 * @log: slot id and address to which we copy the log
4072 *
4073 * Steps 1-4 below provide general overview of dirty page logging. See
4074 * kvm_get_dirty_log_protect() function description for additional details.
4075 *
4076 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4077 * always flush the TLB (step 4) even if previous step failed and the dirty
4078 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4079 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4080 * writes will be marked dirty for next log read.
4081 *
4082 * 1. Take a snapshot of the bit and clear it if needed.
4083 * 2. Write protect the corresponding page.
4084 * 3. Copy the snapshot to the userspace.
4085 * 4. Flush TLB's if needed.
4086 */
4087 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4088 {
4089 bool is_dirty = false;
4090 int r;
4091
4092 mutex_lock(&kvm->slots_lock);
4093
4094 /*
4095 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4096 */
4097 if (kvm_x86_ops->flush_log_dirty)
4098 kvm_x86_ops->flush_log_dirty(kvm);
4099
4100 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4101
4102 /*
4103 * All the TLBs can be flushed out of mmu lock, see the comments in
4104 * kvm_mmu_slot_remove_write_access().
4105 */
4106 lockdep_assert_held(&kvm->slots_lock);
4107 if (is_dirty)
4108 kvm_flush_remote_tlbs(kvm);
4109
4110 mutex_unlock(&kvm->slots_lock);
4111 return r;
4112 }
4113
4114 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4115 bool line_status)
4116 {
4117 if (!irqchip_in_kernel(kvm))
4118 return -ENXIO;
4119
4120 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4121 irq_event->irq, irq_event->level,
4122 line_status);
4123 return 0;
4124 }
4125
4126 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4127 struct kvm_enable_cap *cap)
4128 {
4129 int r;
4130
4131 if (cap->flags)
4132 return -EINVAL;
4133
4134 switch (cap->cap) {
4135 case KVM_CAP_DISABLE_QUIRKS:
4136 kvm->arch.disabled_quirks = cap->args[0];
4137 r = 0;
4138 break;
4139 case KVM_CAP_SPLIT_IRQCHIP: {
4140 mutex_lock(&kvm->lock);
4141 r = -EINVAL;
4142 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4143 goto split_irqchip_unlock;
4144 r = -EEXIST;
4145 if (irqchip_in_kernel(kvm))
4146 goto split_irqchip_unlock;
4147 if (kvm->created_vcpus)
4148 goto split_irqchip_unlock;
4149 r = kvm_setup_empty_irq_routing(kvm);
4150 if (r)
4151 goto split_irqchip_unlock;
4152 /* Pairs with irqchip_in_kernel. */
4153 smp_wmb();
4154 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4155 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4156 r = 0;
4157 split_irqchip_unlock:
4158 mutex_unlock(&kvm->lock);
4159 break;
4160 }
4161 case KVM_CAP_X2APIC_API:
4162 r = -EINVAL;
4163 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4164 break;
4165
4166 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4167 kvm->arch.x2apic_format = true;
4168 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4169 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4170
4171 r = 0;
4172 break;
4173 default:
4174 r = -EINVAL;
4175 break;
4176 }
4177 return r;
4178 }
4179
4180 long kvm_arch_vm_ioctl(struct file *filp,
4181 unsigned int ioctl, unsigned long arg)
4182 {
4183 struct kvm *kvm = filp->private_data;
4184 void __user *argp = (void __user *)arg;
4185 int r = -ENOTTY;
4186 /*
4187 * This union makes it completely explicit to gcc-3.x
4188 * that these two variables' stack usage should be
4189 * combined, not added together.
4190 */
4191 union {
4192 struct kvm_pit_state ps;
4193 struct kvm_pit_state2 ps2;
4194 struct kvm_pit_config pit_config;
4195 } u;
4196
4197 switch (ioctl) {
4198 case KVM_SET_TSS_ADDR:
4199 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4200 break;
4201 case KVM_SET_IDENTITY_MAP_ADDR: {
4202 u64 ident_addr;
4203
4204 mutex_lock(&kvm->lock);
4205 r = -EINVAL;
4206 if (kvm->created_vcpus)
4207 goto set_identity_unlock;
4208 r = -EFAULT;
4209 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4210 goto set_identity_unlock;
4211 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4212 set_identity_unlock:
4213 mutex_unlock(&kvm->lock);
4214 break;
4215 }
4216 case KVM_SET_NR_MMU_PAGES:
4217 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4218 break;
4219 case KVM_GET_NR_MMU_PAGES:
4220 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4221 break;
4222 case KVM_CREATE_IRQCHIP: {
4223 mutex_lock(&kvm->lock);
4224
4225 r = -EEXIST;
4226 if (irqchip_in_kernel(kvm))
4227 goto create_irqchip_unlock;
4228
4229 r = -EINVAL;
4230 if (kvm->created_vcpus)
4231 goto create_irqchip_unlock;
4232
4233 r = kvm_pic_init(kvm);
4234 if (r)
4235 goto create_irqchip_unlock;
4236
4237 r = kvm_ioapic_init(kvm);
4238 if (r) {
4239 kvm_pic_destroy(kvm);
4240 goto create_irqchip_unlock;
4241 }
4242
4243 r = kvm_setup_default_irq_routing(kvm);
4244 if (r) {
4245 kvm_ioapic_destroy(kvm);
4246 kvm_pic_destroy(kvm);
4247 goto create_irqchip_unlock;
4248 }
4249 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4250 smp_wmb();
4251 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4252 create_irqchip_unlock:
4253 mutex_unlock(&kvm->lock);
4254 break;
4255 }
4256 case KVM_CREATE_PIT:
4257 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4258 goto create_pit;
4259 case KVM_CREATE_PIT2:
4260 r = -EFAULT;
4261 if (copy_from_user(&u.pit_config, argp,
4262 sizeof(struct kvm_pit_config)))
4263 goto out;
4264 create_pit:
4265 mutex_lock(&kvm->lock);
4266 r = -EEXIST;
4267 if (kvm->arch.vpit)
4268 goto create_pit_unlock;
4269 r = -ENOMEM;
4270 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4271 if (kvm->arch.vpit)
4272 r = 0;
4273 create_pit_unlock:
4274 mutex_unlock(&kvm->lock);
4275 break;
4276 case KVM_GET_IRQCHIP: {
4277 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4278 struct kvm_irqchip *chip;
4279
4280 chip = memdup_user(argp, sizeof(*chip));
4281 if (IS_ERR(chip)) {
4282 r = PTR_ERR(chip);
4283 goto out;
4284 }
4285
4286 r = -ENXIO;
4287 if (!irqchip_kernel(kvm))
4288 goto get_irqchip_out;
4289 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4290 if (r)
4291 goto get_irqchip_out;
4292 r = -EFAULT;
4293 if (copy_to_user(argp, chip, sizeof *chip))
4294 goto get_irqchip_out;
4295 r = 0;
4296 get_irqchip_out:
4297 kfree(chip);
4298 break;
4299 }
4300 case KVM_SET_IRQCHIP: {
4301 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4302 struct kvm_irqchip *chip;
4303
4304 chip = memdup_user(argp, sizeof(*chip));
4305 if (IS_ERR(chip)) {
4306 r = PTR_ERR(chip);
4307 goto out;
4308 }
4309
4310 r = -ENXIO;
4311 if (!irqchip_kernel(kvm))
4312 goto set_irqchip_out;
4313 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4314 if (r)
4315 goto set_irqchip_out;
4316 r = 0;
4317 set_irqchip_out:
4318 kfree(chip);
4319 break;
4320 }
4321 case KVM_GET_PIT: {
4322 r = -EFAULT;
4323 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4324 goto out;
4325 r = -ENXIO;
4326 if (!kvm->arch.vpit)
4327 goto out;
4328 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4329 if (r)
4330 goto out;
4331 r = -EFAULT;
4332 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4333 goto out;
4334 r = 0;
4335 break;
4336 }
4337 case KVM_SET_PIT: {
4338 r = -EFAULT;
4339 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4340 goto out;
4341 r = -ENXIO;
4342 if (!kvm->arch.vpit)
4343 goto out;
4344 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4345 break;
4346 }
4347 case KVM_GET_PIT2: {
4348 r = -ENXIO;
4349 if (!kvm->arch.vpit)
4350 goto out;
4351 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4352 if (r)
4353 goto out;
4354 r = -EFAULT;
4355 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4356 goto out;
4357 r = 0;
4358 break;
4359 }
4360 case KVM_SET_PIT2: {
4361 r = -EFAULT;
4362 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4363 goto out;
4364 r = -ENXIO;
4365 if (!kvm->arch.vpit)
4366 goto out;
4367 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4368 break;
4369 }
4370 case KVM_REINJECT_CONTROL: {
4371 struct kvm_reinject_control control;
4372 r = -EFAULT;
4373 if (copy_from_user(&control, argp, sizeof(control)))
4374 goto out;
4375 r = kvm_vm_ioctl_reinject(kvm, &control);
4376 break;
4377 }
4378 case KVM_SET_BOOT_CPU_ID:
4379 r = 0;
4380 mutex_lock(&kvm->lock);
4381 if (kvm->created_vcpus)
4382 r = -EBUSY;
4383 else
4384 kvm->arch.bsp_vcpu_id = arg;
4385 mutex_unlock(&kvm->lock);
4386 break;
4387 case KVM_XEN_HVM_CONFIG: {
4388 struct kvm_xen_hvm_config xhc;
4389 r = -EFAULT;
4390 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4391 goto out;
4392 r = -EINVAL;
4393 if (xhc.flags)
4394 goto out;
4395 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4396 r = 0;
4397 break;
4398 }
4399 case KVM_SET_CLOCK: {
4400 struct kvm_clock_data user_ns;
4401 u64 now_ns;
4402
4403 r = -EFAULT;
4404 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4405 goto out;
4406
4407 r = -EINVAL;
4408 if (user_ns.flags)
4409 goto out;
4410
4411 r = 0;
4412 /*
4413 * TODO: userspace has to take care of races with VCPU_RUN, so
4414 * kvm_gen_update_masterclock() can be cut down to locked
4415 * pvclock_update_vm_gtod_copy().
4416 */
4417 kvm_gen_update_masterclock(kvm);
4418 now_ns = get_kvmclock_ns(kvm);
4419 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4420 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4421 break;
4422 }
4423 case KVM_GET_CLOCK: {
4424 struct kvm_clock_data user_ns;
4425 u64 now_ns;
4426
4427 now_ns = get_kvmclock_ns(kvm);
4428 user_ns.clock = now_ns;
4429 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4430 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4431
4432 r = -EFAULT;
4433 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4434 goto out;
4435 r = 0;
4436 break;
4437 }
4438 case KVM_ENABLE_CAP: {
4439 struct kvm_enable_cap cap;
4440
4441 r = -EFAULT;
4442 if (copy_from_user(&cap, argp, sizeof(cap)))
4443 goto out;
4444 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4445 break;
4446 }
4447 default:
4448 r = -ENOTTY;
4449 }
4450 out:
4451 return r;
4452 }
4453
4454 static void kvm_init_msr_list(void)
4455 {
4456 u32 dummy[2];
4457 unsigned i, j;
4458
4459 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4460 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4461 continue;
4462
4463 /*
4464 * Even MSRs that are valid in the host may not be exposed
4465 * to the guests in some cases.
4466 */
4467 switch (msrs_to_save[i]) {
4468 case MSR_IA32_BNDCFGS:
4469 if (!kvm_x86_ops->mpx_supported())
4470 continue;
4471 break;
4472 case MSR_TSC_AUX:
4473 if (!kvm_x86_ops->rdtscp_supported())
4474 continue;
4475 break;
4476 default:
4477 break;
4478 }
4479
4480 if (j < i)
4481 msrs_to_save[j] = msrs_to_save[i];
4482 j++;
4483 }
4484 num_msrs_to_save = j;
4485
4486 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4487 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4488 continue;
4489
4490 if (j < i)
4491 emulated_msrs[j] = emulated_msrs[i];
4492 j++;
4493 }
4494 num_emulated_msrs = j;
4495
4496 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4497 struct kvm_msr_entry msr;
4498
4499 msr.index = msr_based_features[i];
4500 if (kvm_get_msr_feature(&msr))
4501 continue;
4502
4503 if (j < i)
4504 msr_based_features[j] = msr_based_features[i];
4505 j++;
4506 }
4507 num_msr_based_features = j;
4508 }
4509
4510 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4511 const void *v)
4512 {
4513 int handled = 0;
4514 int n;
4515
4516 do {
4517 n = min(len, 8);
4518 if (!(lapic_in_kernel(vcpu) &&
4519 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4520 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4521 break;
4522 handled += n;
4523 addr += n;
4524 len -= n;
4525 v += n;
4526 } while (len);
4527
4528 return handled;
4529 }
4530
4531 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4532 {
4533 int handled = 0;
4534 int n;
4535
4536 do {
4537 n = min(len, 8);
4538 if (!(lapic_in_kernel(vcpu) &&
4539 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4540 addr, n, v))
4541 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4542 break;
4543 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4544 handled += n;
4545 addr += n;
4546 len -= n;
4547 v += n;
4548 } while (len);
4549
4550 return handled;
4551 }
4552
4553 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4554 struct kvm_segment *var, int seg)
4555 {
4556 kvm_x86_ops->set_segment(vcpu, var, seg);
4557 }
4558
4559 void kvm_get_segment(struct kvm_vcpu *vcpu,
4560 struct kvm_segment *var, int seg)
4561 {
4562 kvm_x86_ops->get_segment(vcpu, var, seg);
4563 }
4564
4565 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4566 struct x86_exception *exception)
4567 {
4568 gpa_t t_gpa;
4569
4570 BUG_ON(!mmu_is_nested(vcpu));
4571
4572 /* NPT walks are always user-walks */
4573 access |= PFERR_USER_MASK;
4574 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4575
4576 return t_gpa;
4577 }
4578
4579 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4580 struct x86_exception *exception)
4581 {
4582 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4583 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4584 }
4585
4586 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4587 struct x86_exception *exception)
4588 {
4589 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4590 access |= PFERR_FETCH_MASK;
4591 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4592 }
4593
4594 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4595 struct x86_exception *exception)
4596 {
4597 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4598 access |= PFERR_WRITE_MASK;
4599 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4600 }
4601
4602 /* uses this to access any guest's mapped memory without checking CPL */
4603 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4604 struct x86_exception *exception)
4605 {
4606 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4607 }
4608
4609 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4610 struct kvm_vcpu *vcpu, u32 access,
4611 struct x86_exception *exception)
4612 {
4613 void *data = val;
4614 int r = X86EMUL_CONTINUE;
4615
4616 while (bytes) {
4617 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4618 exception);
4619 unsigned offset = addr & (PAGE_SIZE-1);
4620 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4621 int ret;
4622
4623 if (gpa == UNMAPPED_GVA)
4624 return X86EMUL_PROPAGATE_FAULT;
4625 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4626 offset, toread);
4627 if (ret < 0) {
4628 r = X86EMUL_IO_NEEDED;
4629 goto out;
4630 }
4631
4632 bytes -= toread;
4633 data += toread;
4634 addr += toread;
4635 }
4636 out:
4637 return r;
4638 }
4639
4640 /* used for instruction fetching */
4641 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4642 gva_t addr, void *val, unsigned int bytes,
4643 struct x86_exception *exception)
4644 {
4645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4646 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4647 unsigned offset;
4648 int ret;
4649
4650 /* Inline kvm_read_guest_virt_helper for speed. */
4651 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4652 exception);
4653 if (unlikely(gpa == UNMAPPED_GVA))
4654 return X86EMUL_PROPAGATE_FAULT;
4655
4656 offset = addr & (PAGE_SIZE-1);
4657 if (WARN_ON(offset + bytes > PAGE_SIZE))
4658 bytes = (unsigned)PAGE_SIZE - offset;
4659 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4660 offset, bytes);
4661 if (unlikely(ret < 0))
4662 return X86EMUL_IO_NEEDED;
4663
4664 return X86EMUL_CONTINUE;
4665 }
4666
4667 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4668 gva_t addr, void *val, unsigned int bytes,
4669 struct x86_exception *exception)
4670 {
4671 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4672
4673 /*
4674 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4675 * is returned, but our callers are not ready for that and they blindly
4676 * call kvm_inject_page_fault. Ensure that they at least do not leak
4677 * uninitialized kernel stack memory into cr2 and error code.
4678 */
4679 memset(exception, 0, sizeof(*exception));
4680 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4681 exception);
4682 }
4683 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4684
4685 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4686 gva_t addr, void *val, unsigned int bytes,
4687 struct x86_exception *exception, bool system)
4688 {
4689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690 u32 access = 0;
4691
4692 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4693 access |= PFERR_USER_MASK;
4694
4695 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4696 }
4697
4698 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4699 unsigned long addr, void *val, unsigned int bytes)
4700 {
4701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4702 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4703
4704 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4705 }
4706
4707 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4708 struct kvm_vcpu *vcpu, u32 access,
4709 struct x86_exception *exception)
4710 {
4711 void *data = val;
4712 int r = X86EMUL_CONTINUE;
4713
4714 while (bytes) {
4715 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4716 access,
4717 exception);
4718 unsigned offset = addr & (PAGE_SIZE-1);
4719 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4720 int ret;
4721
4722 if (gpa == UNMAPPED_GVA)
4723 return X86EMUL_PROPAGATE_FAULT;
4724 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4725 if (ret < 0) {
4726 r = X86EMUL_IO_NEEDED;
4727 goto out;
4728 }
4729
4730 bytes -= towrite;
4731 data += towrite;
4732 addr += towrite;
4733 }
4734 out:
4735 return r;
4736 }
4737
4738 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4739 unsigned int bytes, struct x86_exception *exception,
4740 bool system)
4741 {
4742 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4743 u32 access = PFERR_WRITE_MASK;
4744
4745 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4746 access |= PFERR_USER_MASK;
4747
4748 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4749 access, exception);
4750 }
4751
4752 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4753 unsigned int bytes, struct x86_exception *exception)
4754 {
4755 /* kvm_write_guest_virt_system can pull in tons of pages. */
4756 vcpu->arch.l1tf_flush_l1d = true;
4757
4758 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4759 PFERR_WRITE_MASK, exception);
4760 }
4761 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4762
4763 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4764 gpa_t gpa, bool write)
4765 {
4766 /* For APIC access vmexit */
4767 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4768 return 1;
4769
4770 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4771 trace_vcpu_match_mmio(gva, gpa, write, true);
4772 return 1;
4773 }
4774
4775 return 0;
4776 }
4777
4778 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4779 gpa_t *gpa, struct x86_exception *exception,
4780 bool write)
4781 {
4782 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4783 | (write ? PFERR_WRITE_MASK : 0);
4784
4785 /*
4786 * currently PKRU is only applied to ept enabled guest so
4787 * there is no pkey in EPT page table for L1 guest or EPT
4788 * shadow page table for L2 guest.
4789 */
4790 if (vcpu_match_mmio_gva(vcpu, gva)
4791 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4792 vcpu->arch.access, 0, access)) {
4793 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4794 (gva & (PAGE_SIZE - 1));
4795 trace_vcpu_match_mmio(gva, *gpa, write, false);
4796 return 1;
4797 }
4798
4799 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4800
4801 if (*gpa == UNMAPPED_GVA)
4802 return -1;
4803
4804 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4805 }
4806
4807 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4808 const void *val, int bytes)
4809 {
4810 int ret;
4811
4812 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4813 if (ret < 0)
4814 return 0;
4815 kvm_page_track_write(vcpu, gpa, val, bytes);
4816 return 1;
4817 }
4818
4819 struct read_write_emulator_ops {
4820 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4821 int bytes);
4822 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4823 void *val, int bytes);
4824 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4825 int bytes, void *val);
4826 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4827 void *val, int bytes);
4828 bool write;
4829 };
4830
4831 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4832 {
4833 if (vcpu->mmio_read_completed) {
4834 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4835 vcpu->mmio_fragments[0].gpa, val);
4836 vcpu->mmio_read_completed = 0;
4837 return 1;
4838 }
4839
4840 return 0;
4841 }
4842
4843 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4844 void *val, int bytes)
4845 {
4846 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4847 }
4848
4849 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4850 void *val, int bytes)
4851 {
4852 return emulator_write_phys(vcpu, gpa, val, bytes);
4853 }
4854
4855 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4856 {
4857 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4858 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4859 }
4860
4861 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4862 void *val, int bytes)
4863 {
4864 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4865 return X86EMUL_IO_NEEDED;
4866 }
4867
4868 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4869 void *val, int bytes)
4870 {
4871 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4872
4873 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4874 return X86EMUL_CONTINUE;
4875 }
4876
4877 static const struct read_write_emulator_ops read_emultor = {
4878 .read_write_prepare = read_prepare,
4879 .read_write_emulate = read_emulate,
4880 .read_write_mmio = vcpu_mmio_read,
4881 .read_write_exit_mmio = read_exit_mmio,
4882 };
4883
4884 static const struct read_write_emulator_ops write_emultor = {
4885 .read_write_emulate = write_emulate,
4886 .read_write_mmio = write_mmio,
4887 .read_write_exit_mmio = write_exit_mmio,
4888 .write = true,
4889 };
4890
4891 static int emulator_read_write_onepage(unsigned long addr, void *val,
4892 unsigned int bytes,
4893 struct x86_exception *exception,
4894 struct kvm_vcpu *vcpu,
4895 const struct read_write_emulator_ops *ops)
4896 {
4897 gpa_t gpa;
4898 int handled, ret;
4899 bool write = ops->write;
4900 struct kvm_mmio_fragment *frag;
4901 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4902
4903 /*
4904 * If the exit was due to a NPF we may already have a GPA.
4905 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4906 * Note, this cannot be used on string operations since string
4907 * operation using rep will only have the initial GPA from the NPF
4908 * occurred.
4909 */
4910 if (vcpu->arch.gpa_available &&
4911 emulator_can_use_gpa(ctxt) &&
4912 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4913 gpa = vcpu->arch.gpa_val;
4914 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4915 } else {
4916 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4917 if (ret < 0)
4918 return X86EMUL_PROPAGATE_FAULT;
4919 }
4920
4921 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4922 return X86EMUL_CONTINUE;
4923
4924 /*
4925 * Is this MMIO handled locally?
4926 */
4927 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4928 if (handled == bytes)
4929 return X86EMUL_CONTINUE;
4930
4931 gpa += handled;
4932 bytes -= handled;
4933 val += handled;
4934
4935 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4936 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4937 frag->gpa = gpa;
4938 frag->data = val;
4939 frag->len = bytes;
4940 return X86EMUL_CONTINUE;
4941 }
4942
4943 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4944 unsigned long addr,
4945 void *val, unsigned int bytes,
4946 struct x86_exception *exception,
4947 const struct read_write_emulator_ops *ops)
4948 {
4949 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4950 gpa_t gpa;
4951 int rc;
4952
4953 if (ops->read_write_prepare &&
4954 ops->read_write_prepare(vcpu, val, bytes))
4955 return X86EMUL_CONTINUE;
4956
4957 vcpu->mmio_nr_fragments = 0;
4958
4959 /* Crossing a page boundary? */
4960 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4961 int now;
4962
4963 now = -addr & ~PAGE_MASK;
4964 rc = emulator_read_write_onepage(addr, val, now, exception,
4965 vcpu, ops);
4966
4967 if (rc != X86EMUL_CONTINUE)
4968 return rc;
4969 addr += now;
4970 if (ctxt->mode != X86EMUL_MODE_PROT64)
4971 addr = (u32)addr;
4972 val += now;
4973 bytes -= now;
4974 }
4975
4976 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4977 vcpu, ops);
4978 if (rc != X86EMUL_CONTINUE)
4979 return rc;
4980
4981 if (!vcpu->mmio_nr_fragments)
4982 return rc;
4983
4984 gpa = vcpu->mmio_fragments[0].gpa;
4985
4986 vcpu->mmio_needed = 1;
4987 vcpu->mmio_cur_fragment = 0;
4988
4989 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4990 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4991 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4992 vcpu->run->mmio.phys_addr = gpa;
4993
4994 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4995 }
4996
4997 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4998 unsigned long addr,
4999 void *val,
5000 unsigned int bytes,
5001 struct x86_exception *exception)
5002 {
5003 return emulator_read_write(ctxt, addr, val, bytes,
5004 exception, &read_emultor);
5005 }
5006
5007 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5008 unsigned long addr,
5009 const void *val,
5010 unsigned int bytes,
5011 struct x86_exception *exception)
5012 {
5013 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5014 exception, &write_emultor);
5015 }
5016
5017 #define CMPXCHG_TYPE(t, ptr, old, new) \
5018 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5019
5020 #ifdef CONFIG_X86_64
5021 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5022 #else
5023 # define CMPXCHG64(ptr, old, new) \
5024 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5025 #endif
5026
5027 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5028 unsigned long addr,
5029 const void *old,
5030 const void *new,
5031 unsigned int bytes,
5032 struct x86_exception *exception)
5033 {
5034 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5035 gpa_t gpa;
5036 struct page *page;
5037 char *kaddr;
5038 bool exchanged;
5039
5040 /* guests cmpxchg8b have to be emulated atomically */
5041 if (bytes > 8 || (bytes & (bytes - 1)))
5042 goto emul_write;
5043
5044 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5045
5046 if (gpa == UNMAPPED_GVA ||
5047 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5048 goto emul_write;
5049
5050 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5051 goto emul_write;
5052
5053 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5054 if (is_error_page(page))
5055 goto emul_write;
5056
5057 kaddr = kmap_atomic(page);
5058 kaddr += offset_in_page(gpa);
5059 switch (bytes) {
5060 case 1:
5061 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5062 break;
5063 case 2:
5064 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5065 break;
5066 case 4:
5067 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5068 break;
5069 case 8:
5070 exchanged = CMPXCHG64(kaddr, old, new);
5071 break;
5072 default:
5073 BUG();
5074 }
5075 kunmap_atomic(kaddr);
5076 kvm_release_page_dirty(page);
5077
5078 if (!exchanged)
5079 return X86EMUL_CMPXCHG_FAILED;
5080
5081 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5082 kvm_page_track_write(vcpu, gpa, new, bytes);
5083
5084 return X86EMUL_CONTINUE;
5085
5086 emul_write:
5087 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5088
5089 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5090 }
5091
5092 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5093 {
5094 int r = 0, i;
5095
5096 for (i = 0; i < vcpu->arch.pio.count; i++) {
5097 if (vcpu->arch.pio.in)
5098 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5099 vcpu->arch.pio.size, pd);
5100 else
5101 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5102 vcpu->arch.pio.port, vcpu->arch.pio.size,
5103 pd);
5104 if (r)
5105 break;
5106 pd += vcpu->arch.pio.size;
5107 }
5108 return r;
5109 }
5110
5111 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5112 unsigned short port, void *val,
5113 unsigned int count, bool in)
5114 {
5115 vcpu->arch.pio.port = port;
5116 vcpu->arch.pio.in = in;
5117 vcpu->arch.pio.count = count;
5118 vcpu->arch.pio.size = size;
5119
5120 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5121 vcpu->arch.pio.count = 0;
5122 return 1;
5123 }
5124
5125 vcpu->run->exit_reason = KVM_EXIT_IO;
5126 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5127 vcpu->run->io.size = size;
5128 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5129 vcpu->run->io.count = count;
5130 vcpu->run->io.port = port;
5131
5132 return 0;
5133 }
5134
5135 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5136 int size, unsigned short port, void *val,
5137 unsigned int count)
5138 {
5139 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5140 int ret;
5141
5142 if (vcpu->arch.pio.count)
5143 goto data_avail;
5144
5145 memset(vcpu->arch.pio_data, 0, size * count);
5146
5147 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5148 if (ret) {
5149 data_avail:
5150 memcpy(val, vcpu->arch.pio_data, size * count);
5151 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5152 vcpu->arch.pio.count = 0;
5153 return 1;
5154 }
5155
5156 return 0;
5157 }
5158
5159 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5160 int size, unsigned short port,
5161 const void *val, unsigned int count)
5162 {
5163 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5164
5165 memcpy(vcpu->arch.pio_data, val, size * count);
5166 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5167 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5168 }
5169
5170 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5171 {
5172 return kvm_x86_ops->get_segment_base(vcpu, seg);
5173 }
5174
5175 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5176 {
5177 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5178 }
5179
5180 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5181 {
5182 if (!need_emulate_wbinvd(vcpu))
5183 return X86EMUL_CONTINUE;
5184
5185 if (kvm_x86_ops->has_wbinvd_exit()) {
5186 int cpu = get_cpu();
5187
5188 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5189 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5190 wbinvd_ipi, NULL, 1);
5191 put_cpu();
5192 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5193 } else
5194 wbinvd();
5195 return X86EMUL_CONTINUE;
5196 }
5197
5198 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5199 {
5200 kvm_emulate_wbinvd_noskip(vcpu);
5201 return kvm_skip_emulated_instruction(vcpu);
5202 }
5203 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5204
5205
5206
5207 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5208 {
5209 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5210 }
5211
5212 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5213 unsigned long *dest)
5214 {
5215 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5216 }
5217
5218 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5219 unsigned long value)
5220 {
5221
5222 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5223 }
5224
5225 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5226 {
5227 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5228 }
5229
5230 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5231 {
5232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5233 unsigned long value;
5234
5235 switch (cr) {
5236 case 0:
5237 value = kvm_read_cr0(vcpu);
5238 break;
5239 case 2:
5240 value = vcpu->arch.cr2;
5241 break;
5242 case 3:
5243 value = kvm_read_cr3(vcpu);
5244 break;
5245 case 4:
5246 value = kvm_read_cr4(vcpu);
5247 break;
5248 case 8:
5249 value = kvm_get_cr8(vcpu);
5250 break;
5251 default:
5252 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5253 return 0;
5254 }
5255
5256 return value;
5257 }
5258
5259 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5260 {
5261 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5262 int res = 0;
5263
5264 switch (cr) {
5265 case 0:
5266 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5267 break;
5268 case 2:
5269 vcpu->arch.cr2 = val;
5270 break;
5271 case 3:
5272 res = kvm_set_cr3(vcpu, val);
5273 break;
5274 case 4:
5275 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5276 break;
5277 case 8:
5278 res = kvm_set_cr8(vcpu, val);
5279 break;
5280 default:
5281 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5282 res = -1;
5283 }
5284
5285 return res;
5286 }
5287
5288 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5289 {
5290 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5291 }
5292
5293 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5294 {
5295 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5296 }
5297
5298 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5299 {
5300 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5301 }
5302
5303 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5304 {
5305 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5306 }
5307
5308 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5309 {
5310 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5311 }
5312
5313 static unsigned long emulator_get_cached_segment_base(
5314 struct x86_emulate_ctxt *ctxt, int seg)
5315 {
5316 return get_segment_base(emul_to_vcpu(ctxt), seg);
5317 }
5318
5319 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5320 struct desc_struct *desc, u32 *base3,
5321 int seg)
5322 {
5323 struct kvm_segment var;
5324
5325 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5326 *selector = var.selector;
5327
5328 if (var.unusable) {
5329 memset(desc, 0, sizeof(*desc));
5330 if (base3)
5331 *base3 = 0;
5332 return false;
5333 }
5334
5335 if (var.g)
5336 var.limit >>= 12;
5337 set_desc_limit(desc, var.limit);
5338 set_desc_base(desc, (unsigned long)var.base);
5339 #ifdef CONFIG_X86_64
5340 if (base3)
5341 *base3 = var.base >> 32;
5342 #endif
5343 desc->type = var.type;
5344 desc->s = var.s;
5345 desc->dpl = var.dpl;
5346 desc->p = var.present;
5347 desc->avl = var.avl;
5348 desc->l = var.l;
5349 desc->d = var.db;
5350 desc->g = var.g;
5351
5352 return true;
5353 }
5354
5355 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5356 struct desc_struct *desc, u32 base3,
5357 int seg)
5358 {
5359 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5360 struct kvm_segment var;
5361
5362 var.selector = selector;
5363 var.base = get_desc_base(desc);
5364 #ifdef CONFIG_X86_64
5365 var.base |= ((u64)base3) << 32;
5366 #endif
5367 var.limit = get_desc_limit(desc);
5368 if (desc->g)
5369 var.limit = (var.limit << 12) | 0xfff;
5370 var.type = desc->type;
5371 var.dpl = desc->dpl;
5372 var.db = desc->d;
5373 var.s = desc->s;
5374 var.l = desc->l;
5375 var.g = desc->g;
5376 var.avl = desc->avl;
5377 var.present = desc->p;
5378 var.unusable = !var.present;
5379 var.padding = 0;
5380
5381 kvm_set_segment(vcpu, &var, seg);
5382 return;
5383 }
5384
5385 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5386 u32 msr_index, u64 *pdata)
5387 {
5388 struct msr_data msr;
5389 int r;
5390
5391 msr.index = msr_index;
5392 msr.host_initiated = false;
5393 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5394 if (r)
5395 return r;
5396
5397 *pdata = msr.data;
5398 return 0;
5399 }
5400
5401 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5402 u32 msr_index, u64 data)
5403 {
5404 struct msr_data msr;
5405
5406 msr.data = data;
5407 msr.index = msr_index;
5408 msr.host_initiated = false;
5409 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5410 }
5411
5412 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5413 {
5414 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5415
5416 return vcpu->arch.smbase;
5417 }
5418
5419 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5420 {
5421 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5422
5423 vcpu->arch.smbase = smbase;
5424 }
5425
5426 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5427 u32 pmc)
5428 {
5429 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5430 }
5431
5432 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5433 u32 pmc, u64 *pdata)
5434 {
5435 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5436 }
5437
5438 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5439 {
5440 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5441 }
5442
5443 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5444 struct x86_instruction_info *info,
5445 enum x86_intercept_stage stage)
5446 {
5447 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5448 }
5449
5450 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5451 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5452 {
5453 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5454 }
5455
5456 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5457 {
5458 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5459 }
5460
5461 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5462 {
5463 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5464 }
5465
5466 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5467 {
5468 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5469 }
5470
5471 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5472 {
5473 return emul_to_vcpu(ctxt)->arch.hflags;
5474 }
5475
5476 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5477 {
5478 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5479 }
5480
5481 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5482 {
5483 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5484 }
5485
5486 static const struct x86_emulate_ops emulate_ops = {
5487 .read_gpr = emulator_read_gpr,
5488 .write_gpr = emulator_write_gpr,
5489 .read_std = emulator_read_std,
5490 .write_std = emulator_write_std,
5491 .read_phys = kvm_read_guest_phys_system,
5492 .fetch = kvm_fetch_guest_virt,
5493 .read_emulated = emulator_read_emulated,
5494 .write_emulated = emulator_write_emulated,
5495 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5496 .invlpg = emulator_invlpg,
5497 .pio_in_emulated = emulator_pio_in_emulated,
5498 .pio_out_emulated = emulator_pio_out_emulated,
5499 .get_segment = emulator_get_segment,
5500 .set_segment = emulator_set_segment,
5501 .get_cached_segment_base = emulator_get_cached_segment_base,
5502 .get_gdt = emulator_get_gdt,
5503 .get_idt = emulator_get_idt,
5504 .set_gdt = emulator_set_gdt,
5505 .set_idt = emulator_set_idt,
5506 .get_cr = emulator_get_cr,
5507 .set_cr = emulator_set_cr,
5508 .cpl = emulator_get_cpl,
5509 .get_dr = emulator_get_dr,
5510 .set_dr = emulator_set_dr,
5511 .get_smbase = emulator_get_smbase,
5512 .set_smbase = emulator_set_smbase,
5513 .set_msr = emulator_set_msr,
5514 .get_msr = emulator_get_msr,
5515 .check_pmc = emulator_check_pmc,
5516 .read_pmc = emulator_read_pmc,
5517 .halt = emulator_halt,
5518 .wbinvd = emulator_wbinvd,
5519 .fix_hypercall = emulator_fix_hypercall,
5520 .intercept = emulator_intercept,
5521 .get_cpuid = emulator_get_cpuid,
5522 .set_nmi_mask = emulator_set_nmi_mask,
5523 .get_hflags = emulator_get_hflags,
5524 .set_hflags = emulator_set_hflags,
5525 .pre_leave_smm = emulator_pre_leave_smm,
5526 };
5527
5528 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5529 {
5530 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5531 /*
5532 * an sti; sti; sequence only disable interrupts for the first
5533 * instruction. So, if the last instruction, be it emulated or
5534 * not, left the system with the INT_STI flag enabled, it
5535 * means that the last instruction is an sti. We should not
5536 * leave the flag on in this case. The same goes for mov ss
5537 */
5538 if (int_shadow & mask)
5539 mask = 0;
5540 if (unlikely(int_shadow || mask)) {
5541 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5542 if (!mask)
5543 kvm_make_request(KVM_REQ_EVENT, vcpu);
5544 }
5545 }
5546
5547 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5548 {
5549 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5550 if (ctxt->exception.vector == PF_VECTOR)
5551 return kvm_propagate_fault(vcpu, &ctxt->exception);
5552
5553 if (ctxt->exception.error_code_valid)
5554 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5555 ctxt->exception.error_code);
5556 else
5557 kvm_queue_exception(vcpu, ctxt->exception.vector);
5558 return false;
5559 }
5560
5561 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5562 {
5563 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5564 int cs_db, cs_l;
5565
5566 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5567
5568 ctxt->eflags = kvm_get_rflags(vcpu);
5569 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5570
5571 ctxt->eip = kvm_rip_read(vcpu);
5572 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5573 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5574 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5575 cs_db ? X86EMUL_MODE_PROT32 :
5576 X86EMUL_MODE_PROT16;
5577 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5578 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5579 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5580
5581 init_decode_cache(ctxt);
5582 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5583 }
5584
5585 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5586 {
5587 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5588 int ret;
5589
5590 init_emulate_ctxt(vcpu);
5591
5592 ctxt->op_bytes = 2;
5593 ctxt->ad_bytes = 2;
5594 ctxt->_eip = ctxt->eip + inc_eip;
5595 ret = emulate_int_real(ctxt, irq);
5596
5597 if (ret != X86EMUL_CONTINUE)
5598 return EMULATE_FAIL;
5599
5600 ctxt->eip = ctxt->_eip;
5601 kvm_rip_write(vcpu, ctxt->eip);
5602 kvm_set_rflags(vcpu, ctxt->eflags);
5603
5604 if (irq == NMI_VECTOR)
5605 vcpu->arch.nmi_pending = 0;
5606 else
5607 vcpu->arch.interrupt.pending = false;
5608
5609 return EMULATE_DONE;
5610 }
5611 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5612
5613 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5614 {
5615 int r = EMULATE_DONE;
5616
5617 ++vcpu->stat.insn_emulation_fail;
5618 trace_kvm_emulate_insn_failed(vcpu);
5619 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5620 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5621 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5622 vcpu->run->internal.ndata = 0;
5623 r = EMULATE_USER_EXIT;
5624 }
5625 kvm_queue_exception(vcpu, UD_VECTOR);
5626
5627 return r;
5628 }
5629
5630 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5631 bool write_fault_to_shadow_pgtable,
5632 int emulation_type)
5633 {
5634 gpa_t gpa = cr2;
5635 kvm_pfn_t pfn;
5636
5637 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5638 return false;
5639
5640 if (!vcpu->arch.mmu.direct_map) {
5641 /*
5642 * Write permission should be allowed since only
5643 * write access need to be emulated.
5644 */
5645 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5646
5647 /*
5648 * If the mapping is invalid in guest, let cpu retry
5649 * it to generate fault.
5650 */
5651 if (gpa == UNMAPPED_GVA)
5652 return true;
5653 }
5654
5655 /*
5656 * Do not retry the unhandleable instruction if it faults on the
5657 * readonly host memory, otherwise it will goto a infinite loop:
5658 * retry instruction -> write #PF -> emulation fail -> retry
5659 * instruction -> ...
5660 */
5661 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5662
5663 /*
5664 * If the instruction failed on the error pfn, it can not be fixed,
5665 * report the error to userspace.
5666 */
5667 if (is_error_noslot_pfn(pfn))
5668 return false;
5669
5670 kvm_release_pfn_clean(pfn);
5671
5672 /* The instructions are well-emulated on direct mmu. */
5673 if (vcpu->arch.mmu.direct_map) {
5674 unsigned int indirect_shadow_pages;
5675
5676 spin_lock(&vcpu->kvm->mmu_lock);
5677 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5678 spin_unlock(&vcpu->kvm->mmu_lock);
5679
5680 if (indirect_shadow_pages)
5681 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5682
5683 return true;
5684 }
5685
5686 /*
5687 * if emulation was due to access to shadowed page table
5688 * and it failed try to unshadow page and re-enter the
5689 * guest to let CPU execute the instruction.
5690 */
5691 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5692
5693 /*
5694 * If the access faults on its page table, it can not
5695 * be fixed by unprotecting shadow page and it should
5696 * be reported to userspace.
5697 */
5698 return !write_fault_to_shadow_pgtable;
5699 }
5700
5701 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5702 unsigned long cr2, int emulation_type)
5703 {
5704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5705 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5706
5707 last_retry_eip = vcpu->arch.last_retry_eip;
5708 last_retry_addr = vcpu->arch.last_retry_addr;
5709
5710 /*
5711 * If the emulation is caused by #PF and it is non-page_table
5712 * writing instruction, it means the VM-EXIT is caused by shadow
5713 * page protected, we can zap the shadow page and retry this
5714 * instruction directly.
5715 *
5716 * Note: if the guest uses a non-page-table modifying instruction
5717 * on the PDE that points to the instruction, then we will unmap
5718 * the instruction and go to an infinite loop. So, we cache the
5719 * last retried eip and the last fault address, if we meet the eip
5720 * and the address again, we can break out of the potential infinite
5721 * loop.
5722 */
5723 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5724
5725 if (!(emulation_type & EMULTYPE_RETRY))
5726 return false;
5727
5728 if (x86_page_table_writing_insn(ctxt))
5729 return false;
5730
5731 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5732 return false;
5733
5734 vcpu->arch.last_retry_eip = ctxt->eip;
5735 vcpu->arch.last_retry_addr = cr2;
5736
5737 if (!vcpu->arch.mmu.direct_map)
5738 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5739
5740 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5741
5742 return true;
5743 }
5744
5745 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5746 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5747
5748 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5749 {
5750 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5751 /* This is a good place to trace that we are exiting SMM. */
5752 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5753
5754 /* Process a latched INIT or SMI, if any. */
5755 kvm_make_request(KVM_REQ_EVENT, vcpu);
5756 }
5757
5758 kvm_mmu_reset_context(vcpu);
5759 }
5760
5761 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5762 {
5763 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5764
5765 vcpu->arch.hflags = emul_flags;
5766
5767 if (changed & HF_SMM_MASK)
5768 kvm_smm_changed(vcpu);
5769 }
5770
5771 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5772 unsigned long *db)
5773 {
5774 u32 dr6 = 0;
5775 int i;
5776 u32 enable, rwlen;
5777
5778 enable = dr7;
5779 rwlen = dr7 >> 16;
5780 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5781 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5782 dr6 |= (1 << i);
5783 return dr6;
5784 }
5785
5786 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5787 {
5788 struct kvm_run *kvm_run = vcpu->run;
5789
5790 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5791 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5792 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5793 kvm_run->debug.arch.exception = DB_VECTOR;
5794 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5795 *r = EMULATE_USER_EXIT;
5796 } else {
5797 /*
5798 * "Certain debug exceptions may clear bit 0-3. The
5799 * remaining contents of the DR6 register are never
5800 * cleared by the processor".
5801 */
5802 vcpu->arch.dr6 &= ~15;
5803 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5804 kvm_queue_exception(vcpu, DB_VECTOR);
5805 }
5806 }
5807
5808 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5809 {
5810 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5811 int r = EMULATE_DONE;
5812
5813 kvm_x86_ops->skip_emulated_instruction(vcpu);
5814
5815 /*
5816 * rflags is the old, "raw" value of the flags. The new value has
5817 * not been saved yet.
5818 *
5819 * This is correct even for TF set by the guest, because "the
5820 * processor will not generate this exception after the instruction
5821 * that sets the TF flag".
5822 */
5823 if (unlikely(rflags & X86_EFLAGS_TF))
5824 kvm_vcpu_do_singlestep(vcpu, &r);
5825 return r == EMULATE_DONE;
5826 }
5827 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5828
5829 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5830 {
5831 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5832 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5833 struct kvm_run *kvm_run = vcpu->run;
5834 unsigned long eip = kvm_get_linear_rip(vcpu);
5835 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5836 vcpu->arch.guest_debug_dr7,
5837 vcpu->arch.eff_db);
5838
5839 if (dr6 != 0) {
5840 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5841 kvm_run->debug.arch.pc = eip;
5842 kvm_run->debug.arch.exception = DB_VECTOR;
5843 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5844 *r = EMULATE_USER_EXIT;
5845 return true;
5846 }
5847 }
5848
5849 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5850 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5851 unsigned long eip = kvm_get_linear_rip(vcpu);
5852 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5853 vcpu->arch.dr7,
5854 vcpu->arch.db);
5855
5856 if (dr6 != 0) {
5857 vcpu->arch.dr6 &= ~15;
5858 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5859 kvm_queue_exception(vcpu, DB_VECTOR);
5860 *r = EMULATE_DONE;
5861 return true;
5862 }
5863 }
5864
5865 return false;
5866 }
5867
5868 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5869 unsigned long cr2,
5870 int emulation_type,
5871 void *insn,
5872 int insn_len)
5873 {
5874 int r;
5875 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5876 bool writeback = true;
5877 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5878
5879 vcpu->arch.l1tf_flush_l1d = true;
5880
5881 /*
5882 * Clear write_fault_to_shadow_pgtable here to ensure it is
5883 * never reused.
5884 */
5885 vcpu->arch.write_fault_to_shadow_pgtable = false;
5886 kvm_clear_exception_queue(vcpu);
5887
5888 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5889 init_emulate_ctxt(vcpu);
5890
5891 /*
5892 * We will reenter on the same instruction since
5893 * we do not set complete_userspace_io. This does not
5894 * handle watchpoints yet, those would be handled in
5895 * the emulate_ops.
5896 */
5897 if (!(emulation_type & EMULTYPE_SKIP) &&
5898 kvm_vcpu_check_breakpoint(vcpu, &r))
5899 return r;
5900
5901 ctxt->interruptibility = 0;
5902 ctxt->have_exception = false;
5903 ctxt->exception.vector = -1;
5904 ctxt->perm_ok = false;
5905
5906 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5907
5908 r = x86_decode_insn(ctxt, insn, insn_len);
5909
5910 trace_kvm_emulate_insn_start(vcpu);
5911 ++vcpu->stat.insn_emulation;
5912 if (r != EMULATION_OK) {
5913 if (emulation_type & EMULTYPE_TRAP_UD)
5914 return EMULATE_FAIL;
5915 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5916 emulation_type))
5917 return EMULATE_DONE;
5918 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5919 return EMULATE_DONE;
5920 if (emulation_type & EMULTYPE_SKIP)
5921 return EMULATE_FAIL;
5922 return handle_emulation_failure(vcpu);
5923 }
5924 }
5925
5926 if (emulation_type & EMULTYPE_SKIP) {
5927 kvm_rip_write(vcpu, ctxt->_eip);
5928 if (ctxt->eflags & X86_EFLAGS_RF)
5929 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5930 return EMULATE_DONE;
5931 }
5932
5933 if (retry_instruction(ctxt, cr2, emulation_type))
5934 return EMULATE_DONE;
5935
5936 /* this is needed for vmware backdoor interface to work since it
5937 changes registers values during IO operation */
5938 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5939 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5940 emulator_invalidate_register_cache(ctxt);
5941 }
5942
5943 restart:
5944 /* Save the faulting GPA (cr2) in the address field */
5945 ctxt->exception.address = cr2;
5946
5947 r = x86_emulate_insn(ctxt);
5948
5949 if (r == EMULATION_INTERCEPTED)
5950 return EMULATE_DONE;
5951
5952 if (r == EMULATION_FAILED) {
5953 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5954 emulation_type))
5955 return EMULATE_DONE;
5956
5957 return handle_emulation_failure(vcpu);
5958 }
5959
5960 if (ctxt->have_exception) {
5961 r = EMULATE_DONE;
5962 if (inject_emulated_exception(vcpu))
5963 return r;
5964 } else if (vcpu->arch.pio.count) {
5965 if (!vcpu->arch.pio.in) {
5966 /* FIXME: return into emulator if single-stepping. */
5967 vcpu->arch.pio.count = 0;
5968 } else {
5969 writeback = false;
5970 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5971 }
5972 r = EMULATE_USER_EXIT;
5973 } else if (vcpu->mmio_needed) {
5974 if (!vcpu->mmio_is_write)
5975 writeback = false;
5976 r = EMULATE_USER_EXIT;
5977 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5978 } else if (r == EMULATION_RESTART)
5979 goto restart;
5980 else
5981 r = EMULATE_DONE;
5982
5983 if (writeback) {
5984 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5985 toggle_interruptibility(vcpu, ctxt->interruptibility);
5986 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5987 kvm_rip_write(vcpu, ctxt->eip);
5988 if (r == EMULATE_DONE && ctxt->tf)
5989 kvm_vcpu_do_singlestep(vcpu, &r);
5990 if (!ctxt->have_exception ||
5991 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5992 __kvm_set_rflags(vcpu, ctxt->eflags);
5993
5994 /*
5995 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5996 * do nothing, and it will be requested again as soon as
5997 * the shadow expires. But we still need to check here,
5998 * because POPF has no interrupt shadow.
5999 */
6000 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6001 kvm_make_request(KVM_REQ_EVENT, vcpu);
6002 } else
6003 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6004
6005 return r;
6006 }
6007 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6008
6009 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6010 {
6011 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6012 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6013 size, port, &val, 1);
6014 /* do not return to emulator after return from userspace */
6015 vcpu->arch.pio.count = 0;
6016 return ret;
6017 }
6018 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6019
6020 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6021 {
6022 unsigned long val;
6023
6024 /* We should only ever be called with arch.pio.count equal to 1 */
6025 BUG_ON(vcpu->arch.pio.count != 1);
6026
6027 /* For size less than 4 we merge, else we zero extend */
6028 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6029 : 0;
6030
6031 /*
6032 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6033 * the copy and tracing
6034 */
6035 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6036 vcpu->arch.pio.port, &val, 1);
6037 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6038
6039 return 1;
6040 }
6041
6042 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6043 {
6044 unsigned long val;
6045 int ret;
6046
6047 /* For size less than 4 we merge, else we zero extend */
6048 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6049
6050 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6051 &val, 1);
6052 if (ret) {
6053 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6054 return ret;
6055 }
6056
6057 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6058
6059 return 0;
6060 }
6061 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6062
6063 static int kvmclock_cpu_down_prep(unsigned int cpu)
6064 {
6065 __this_cpu_write(cpu_tsc_khz, 0);
6066 return 0;
6067 }
6068
6069 static void tsc_khz_changed(void *data)
6070 {
6071 struct cpufreq_freqs *freq = data;
6072 unsigned long khz = 0;
6073
6074 if (data)
6075 khz = freq->new;
6076 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6077 khz = cpufreq_quick_get(raw_smp_processor_id());
6078 if (!khz)
6079 khz = tsc_khz;
6080 __this_cpu_write(cpu_tsc_khz, khz);
6081 }
6082
6083 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6084 void *data)
6085 {
6086 struct cpufreq_freqs *freq = data;
6087 struct kvm *kvm;
6088 struct kvm_vcpu *vcpu;
6089 int i, send_ipi = 0;
6090
6091 /*
6092 * We allow guests to temporarily run on slowing clocks,
6093 * provided we notify them after, or to run on accelerating
6094 * clocks, provided we notify them before. Thus time never
6095 * goes backwards.
6096 *
6097 * However, we have a problem. We can't atomically update
6098 * the frequency of a given CPU from this function; it is
6099 * merely a notifier, which can be called from any CPU.
6100 * Changing the TSC frequency at arbitrary points in time
6101 * requires a recomputation of local variables related to
6102 * the TSC for each VCPU. We must flag these local variables
6103 * to be updated and be sure the update takes place with the
6104 * new frequency before any guests proceed.
6105 *
6106 * Unfortunately, the combination of hotplug CPU and frequency
6107 * change creates an intractable locking scenario; the order
6108 * of when these callouts happen is undefined with respect to
6109 * CPU hotplug, and they can race with each other. As such,
6110 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6111 * undefined; you can actually have a CPU frequency change take
6112 * place in between the computation of X and the setting of the
6113 * variable. To protect against this problem, all updates of
6114 * the per_cpu tsc_khz variable are done in an interrupt
6115 * protected IPI, and all callers wishing to update the value
6116 * must wait for a synchronous IPI to complete (which is trivial
6117 * if the caller is on the CPU already). This establishes the
6118 * necessary total order on variable updates.
6119 *
6120 * Note that because a guest time update may take place
6121 * anytime after the setting of the VCPU's request bit, the
6122 * correct TSC value must be set before the request. However,
6123 * to ensure the update actually makes it to any guest which
6124 * starts running in hardware virtualization between the set
6125 * and the acquisition of the spinlock, we must also ping the
6126 * CPU after setting the request bit.
6127 *
6128 */
6129
6130 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6131 return 0;
6132 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6133 return 0;
6134
6135 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6136
6137 spin_lock(&kvm_lock);
6138 list_for_each_entry(kvm, &vm_list, vm_list) {
6139 kvm_for_each_vcpu(i, vcpu, kvm) {
6140 if (vcpu->cpu != freq->cpu)
6141 continue;
6142 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6143 if (vcpu->cpu != smp_processor_id())
6144 send_ipi = 1;
6145 }
6146 }
6147 spin_unlock(&kvm_lock);
6148
6149 if (freq->old < freq->new && send_ipi) {
6150 /*
6151 * We upscale the frequency. Must make the guest
6152 * doesn't see old kvmclock values while running with
6153 * the new frequency, otherwise we risk the guest sees
6154 * time go backwards.
6155 *
6156 * In case we update the frequency for another cpu
6157 * (which might be in guest context) send an interrupt
6158 * to kick the cpu out of guest context. Next time
6159 * guest context is entered kvmclock will be updated,
6160 * so the guest will not see stale values.
6161 */
6162 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6163 }
6164 return 0;
6165 }
6166
6167 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6168 .notifier_call = kvmclock_cpufreq_notifier
6169 };
6170
6171 static int kvmclock_cpu_online(unsigned int cpu)
6172 {
6173 tsc_khz_changed(NULL);
6174 return 0;
6175 }
6176
6177 static void kvm_timer_init(void)
6178 {
6179 max_tsc_khz = tsc_khz;
6180
6181 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6182 #ifdef CONFIG_CPU_FREQ
6183 struct cpufreq_policy policy;
6184 int cpu;
6185
6186 memset(&policy, 0, sizeof(policy));
6187 cpu = get_cpu();
6188 cpufreq_get_policy(&policy, cpu);
6189 if (policy.cpuinfo.max_freq)
6190 max_tsc_khz = policy.cpuinfo.max_freq;
6191 put_cpu();
6192 #endif
6193 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6194 CPUFREQ_TRANSITION_NOTIFIER);
6195 }
6196 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6197
6198 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6199 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6200 }
6201
6202 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6203
6204 int kvm_is_in_guest(void)
6205 {
6206 return __this_cpu_read(current_vcpu) != NULL;
6207 }
6208
6209 static int kvm_is_user_mode(void)
6210 {
6211 int user_mode = 3;
6212
6213 if (__this_cpu_read(current_vcpu))
6214 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6215
6216 return user_mode != 0;
6217 }
6218
6219 static unsigned long kvm_get_guest_ip(void)
6220 {
6221 unsigned long ip = 0;
6222
6223 if (__this_cpu_read(current_vcpu))
6224 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6225
6226 return ip;
6227 }
6228
6229 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6230 .is_in_guest = kvm_is_in_guest,
6231 .is_user_mode = kvm_is_user_mode,
6232 .get_guest_ip = kvm_get_guest_ip,
6233 };
6234
6235 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6236 {
6237 __this_cpu_write(current_vcpu, vcpu);
6238 }
6239 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6240
6241 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6242 {
6243 __this_cpu_write(current_vcpu, NULL);
6244 }
6245 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6246
6247 static void kvm_set_mmio_spte_mask(void)
6248 {
6249 u64 mask;
6250 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6251
6252 /*
6253 * Set the reserved bits and the present bit of an paging-structure
6254 * entry to generate page fault with PFER.RSV = 1.
6255 */
6256
6257 /*
6258 * Mask the uppermost physical address bit, which would be reserved as
6259 * long as the supported physical address width is less than 52.
6260 */
6261 mask = 1ull << 51;
6262
6263 /* Set the present bit. */
6264 mask |= 1ull;
6265
6266 /*
6267 * If reserved bit is not supported, clear the present bit to disable
6268 * mmio page fault.
6269 */
6270 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6271 mask &= ~1ull;
6272
6273 kvm_mmu_set_mmio_spte_mask(mask, mask);
6274 }
6275
6276 #ifdef CONFIG_X86_64
6277 static void pvclock_gtod_update_fn(struct work_struct *work)
6278 {
6279 struct kvm *kvm;
6280
6281 struct kvm_vcpu *vcpu;
6282 int i;
6283
6284 spin_lock(&kvm_lock);
6285 list_for_each_entry(kvm, &vm_list, vm_list)
6286 kvm_for_each_vcpu(i, vcpu, kvm)
6287 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6288 atomic_set(&kvm_guest_has_master_clock, 0);
6289 spin_unlock(&kvm_lock);
6290 }
6291
6292 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6293
6294 /*
6295 * Notification about pvclock gtod data update.
6296 */
6297 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6298 void *priv)
6299 {
6300 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6301 struct timekeeper *tk = priv;
6302
6303 update_pvclock_gtod(tk);
6304
6305 /* disable master clock if host does not trust, or does not
6306 * use, TSC clocksource
6307 */
6308 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6309 atomic_read(&kvm_guest_has_master_clock) != 0)
6310 queue_work(system_long_wq, &pvclock_gtod_work);
6311
6312 return 0;
6313 }
6314
6315 static struct notifier_block pvclock_gtod_notifier = {
6316 .notifier_call = pvclock_gtod_notify,
6317 };
6318 #endif
6319
6320 int kvm_arch_init(void *opaque)
6321 {
6322 int r;
6323 struct kvm_x86_ops *ops = opaque;
6324
6325 if (kvm_x86_ops) {
6326 printk(KERN_ERR "kvm: already loaded the other module\n");
6327 r = -EEXIST;
6328 goto out;
6329 }
6330
6331 if (!ops->cpu_has_kvm_support()) {
6332 printk(KERN_ERR "kvm: no hardware support\n");
6333 r = -EOPNOTSUPP;
6334 goto out;
6335 }
6336 if (ops->disabled_by_bios()) {
6337 printk(KERN_WARNING "kvm: disabled by bios\n");
6338 r = -EOPNOTSUPP;
6339 goto out;
6340 }
6341
6342 r = -ENOMEM;
6343 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6344 if (!shared_msrs) {
6345 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6346 goto out;
6347 }
6348
6349 r = kvm_mmu_module_init();
6350 if (r)
6351 goto out_free_percpu;
6352
6353 kvm_set_mmio_spte_mask();
6354
6355 kvm_x86_ops = ops;
6356
6357 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6358 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6359 PT_PRESENT_MASK, 0, sme_me_mask);
6360 kvm_timer_init();
6361
6362 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6363
6364 if (boot_cpu_has(X86_FEATURE_XSAVE))
6365 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6366
6367 kvm_lapic_init();
6368 #ifdef CONFIG_X86_64
6369 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6370 #endif
6371
6372 return 0;
6373
6374 out_free_percpu:
6375 free_percpu(shared_msrs);
6376 out:
6377 return r;
6378 }
6379
6380 void kvm_arch_exit(void)
6381 {
6382 kvm_lapic_exit();
6383 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6384
6385 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6386 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6387 CPUFREQ_TRANSITION_NOTIFIER);
6388 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6389 #ifdef CONFIG_X86_64
6390 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6391 #endif
6392 kvm_x86_ops = NULL;
6393 kvm_mmu_module_exit();
6394 free_percpu(shared_msrs);
6395 }
6396
6397 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6398 {
6399 ++vcpu->stat.halt_exits;
6400 if (lapic_in_kernel(vcpu)) {
6401 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6402 return 1;
6403 } else {
6404 vcpu->run->exit_reason = KVM_EXIT_HLT;
6405 return 0;
6406 }
6407 }
6408 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6409
6410 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6411 {
6412 int ret = kvm_skip_emulated_instruction(vcpu);
6413 /*
6414 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6415 * KVM_EXIT_DEBUG here.
6416 */
6417 return kvm_vcpu_halt(vcpu) && ret;
6418 }
6419 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6420
6421 #ifdef CONFIG_X86_64
6422 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6423 unsigned long clock_type)
6424 {
6425 struct kvm_clock_pairing clock_pairing;
6426 struct timespec ts;
6427 u64 cycle;
6428 int ret;
6429
6430 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6431 return -KVM_EOPNOTSUPP;
6432
6433 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6434 return -KVM_EOPNOTSUPP;
6435
6436 clock_pairing.sec = ts.tv_sec;
6437 clock_pairing.nsec = ts.tv_nsec;
6438 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6439 clock_pairing.flags = 0;
6440 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6441
6442 ret = 0;
6443 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6444 sizeof(struct kvm_clock_pairing)))
6445 ret = -KVM_EFAULT;
6446
6447 return ret;
6448 }
6449 #endif
6450
6451 /*
6452 * kvm_pv_kick_cpu_op: Kick a vcpu.
6453 *
6454 * @apicid - apicid of vcpu to be kicked.
6455 */
6456 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6457 {
6458 struct kvm_lapic_irq lapic_irq;
6459
6460 lapic_irq.shorthand = 0;
6461 lapic_irq.dest_mode = 0;
6462 lapic_irq.level = 0;
6463 lapic_irq.dest_id = apicid;
6464 lapic_irq.msi_redir_hint = false;
6465
6466 lapic_irq.delivery_mode = APIC_DM_REMRD;
6467 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6468 }
6469
6470 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6471 {
6472 vcpu->arch.apicv_active = false;
6473 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6474 }
6475
6476 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6477 {
6478 unsigned long nr, a0, a1, a2, a3, ret;
6479 int op_64_bit;
6480
6481 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6482 if (!kvm_hv_hypercall(vcpu))
6483 return 0;
6484 goto out;
6485 }
6486
6487 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6488 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6489 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6490 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6491 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6492
6493 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6494
6495 op_64_bit = is_64_bit_mode(vcpu);
6496 if (!op_64_bit) {
6497 nr &= 0xFFFFFFFF;
6498 a0 &= 0xFFFFFFFF;
6499 a1 &= 0xFFFFFFFF;
6500 a2 &= 0xFFFFFFFF;
6501 a3 &= 0xFFFFFFFF;
6502 }
6503
6504 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6505 ret = -KVM_EPERM;
6506 goto out_error;
6507 }
6508
6509 switch (nr) {
6510 case KVM_HC_VAPIC_POLL_IRQ:
6511 ret = 0;
6512 break;
6513 case KVM_HC_KICK_CPU:
6514 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6515 ret = 0;
6516 break;
6517 #ifdef CONFIG_X86_64
6518 case KVM_HC_CLOCK_PAIRING:
6519 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6520 break;
6521 #endif
6522 default:
6523 ret = -KVM_ENOSYS;
6524 break;
6525 }
6526 out_error:
6527 if (!op_64_bit)
6528 ret = (u32)ret;
6529 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6530
6531 out:
6532 ++vcpu->stat.hypercalls;
6533 return kvm_skip_emulated_instruction(vcpu);
6534 }
6535 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6536
6537 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6538 {
6539 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6540 char instruction[3];
6541 unsigned long rip = kvm_rip_read(vcpu);
6542
6543 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6544
6545 return emulator_write_emulated(ctxt, rip, instruction, 3,
6546 &ctxt->exception);
6547 }
6548
6549 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6550 {
6551 return vcpu->run->request_interrupt_window &&
6552 likely(!pic_in_kernel(vcpu->kvm));
6553 }
6554
6555 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6556 {
6557 struct kvm_run *kvm_run = vcpu->run;
6558
6559 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6560 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6561 kvm_run->cr8 = kvm_get_cr8(vcpu);
6562 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6563 kvm_run->ready_for_interrupt_injection =
6564 pic_in_kernel(vcpu->kvm) ||
6565 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6566 }
6567
6568 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6569 {
6570 int max_irr, tpr;
6571
6572 if (!kvm_x86_ops->update_cr8_intercept)
6573 return;
6574
6575 if (!lapic_in_kernel(vcpu))
6576 return;
6577
6578 if (vcpu->arch.apicv_active)
6579 return;
6580
6581 if (!vcpu->arch.apic->vapic_addr)
6582 max_irr = kvm_lapic_find_highest_irr(vcpu);
6583 else
6584 max_irr = -1;
6585
6586 if (max_irr != -1)
6587 max_irr >>= 4;
6588
6589 tpr = kvm_lapic_get_cr8(vcpu);
6590
6591 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6592 }
6593
6594 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6595 {
6596 int r;
6597
6598 /* try to reinject previous events if any */
6599 if (vcpu->arch.exception.injected) {
6600 kvm_x86_ops->queue_exception(vcpu);
6601 return 0;
6602 }
6603
6604 /*
6605 * Exceptions must be injected immediately, or the exception
6606 * frame will have the address of the NMI or interrupt handler.
6607 */
6608 if (!vcpu->arch.exception.pending) {
6609 if (vcpu->arch.nmi_injected) {
6610 kvm_x86_ops->set_nmi(vcpu);
6611 return 0;
6612 }
6613
6614 if (vcpu->arch.interrupt.pending) {
6615 kvm_x86_ops->set_irq(vcpu);
6616 return 0;
6617 }
6618 }
6619
6620 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6621 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6622 if (r != 0)
6623 return r;
6624 }
6625
6626 /* try to inject new event if pending */
6627 if (vcpu->arch.exception.pending) {
6628 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6629 vcpu->arch.exception.has_error_code,
6630 vcpu->arch.exception.error_code);
6631
6632 vcpu->arch.exception.pending = false;
6633 vcpu->arch.exception.injected = true;
6634
6635 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6636 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6637 X86_EFLAGS_RF);
6638
6639 if (vcpu->arch.exception.nr == DB_VECTOR &&
6640 (vcpu->arch.dr7 & DR7_GD)) {
6641 vcpu->arch.dr7 &= ~DR7_GD;
6642 kvm_update_dr7(vcpu);
6643 }
6644
6645 kvm_x86_ops->queue_exception(vcpu);
6646 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6647 vcpu->arch.smi_pending = false;
6648 enter_smm(vcpu);
6649 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6650 --vcpu->arch.nmi_pending;
6651 vcpu->arch.nmi_injected = true;
6652 kvm_x86_ops->set_nmi(vcpu);
6653 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6654 /*
6655 * Because interrupts can be injected asynchronously, we are
6656 * calling check_nested_events again here to avoid a race condition.
6657 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6658 * proposal and current concerns. Perhaps we should be setting
6659 * KVM_REQ_EVENT only on certain events and not unconditionally?
6660 */
6661 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6662 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6663 if (r != 0)
6664 return r;
6665 }
6666 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6667 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6668 false);
6669 kvm_x86_ops->set_irq(vcpu);
6670 }
6671 }
6672
6673 return 0;
6674 }
6675
6676 static void process_nmi(struct kvm_vcpu *vcpu)
6677 {
6678 unsigned limit = 2;
6679
6680 /*
6681 * x86 is limited to one NMI running, and one NMI pending after it.
6682 * If an NMI is already in progress, limit further NMIs to just one.
6683 * Otherwise, allow two (and we'll inject the first one immediately).
6684 */
6685 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6686 limit = 1;
6687
6688 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6689 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6690 kvm_make_request(KVM_REQ_EVENT, vcpu);
6691 }
6692
6693 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6694 {
6695 u32 flags = 0;
6696 flags |= seg->g << 23;
6697 flags |= seg->db << 22;
6698 flags |= seg->l << 21;
6699 flags |= seg->avl << 20;
6700 flags |= seg->present << 15;
6701 flags |= seg->dpl << 13;
6702 flags |= seg->s << 12;
6703 flags |= seg->type << 8;
6704 return flags;
6705 }
6706
6707 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6708 {
6709 struct kvm_segment seg;
6710 int offset;
6711
6712 kvm_get_segment(vcpu, &seg, n);
6713 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6714
6715 if (n < 3)
6716 offset = 0x7f84 + n * 12;
6717 else
6718 offset = 0x7f2c + (n - 3) * 12;
6719
6720 put_smstate(u32, buf, offset + 8, seg.base);
6721 put_smstate(u32, buf, offset + 4, seg.limit);
6722 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6723 }
6724
6725 #ifdef CONFIG_X86_64
6726 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6727 {
6728 struct kvm_segment seg;
6729 int offset;
6730 u16 flags;
6731
6732 kvm_get_segment(vcpu, &seg, n);
6733 offset = 0x7e00 + n * 16;
6734
6735 flags = enter_smm_get_segment_flags(&seg) >> 8;
6736 put_smstate(u16, buf, offset, seg.selector);
6737 put_smstate(u16, buf, offset + 2, flags);
6738 put_smstate(u32, buf, offset + 4, seg.limit);
6739 put_smstate(u64, buf, offset + 8, seg.base);
6740 }
6741 #endif
6742
6743 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6744 {
6745 struct desc_ptr dt;
6746 struct kvm_segment seg;
6747 unsigned long val;
6748 int i;
6749
6750 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6751 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6752 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6753 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6754
6755 for (i = 0; i < 8; i++)
6756 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6757
6758 kvm_get_dr(vcpu, 6, &val);
6759 put_smstate(u32, buf, 0x7fcc, (u32)val);
6760 kvm_get_dr(vcpu, 7, &val);
6761 put_smstate(u32, buf, 0x7fc8, (u32)val);
6762
6763 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6764 put_smstate(u32, buf, 0x7fc4, seg.selector);
6765 put_smstate(u32, buf, 0x7f64, seg.base);
6766 put_smstate(u32, buf, 0x7f60, seg.limit);
6767 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6768
6769 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6770 put_smstate(u32, buf, 0x7fc0, seg.selector);
6771 put_smstate(u32, buf, 0x7f80, seg.base);
6772 put_smstate(u32, buf, 0x7f7c, seg.limit);
6773 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6774
6775 kvm_x86_ops->get_gdt(vcpu, &dt);
6776 put_smstate(u32, buf, 0x7f74, dt.address);
6777 put_smstate(u32, buf, 0x7f70, dt.size);
6778
6779 kvm_x86_ops->get_idt(vcpu, &dt);
6780 put_smstate(u32, buf, 0x7f58, dt.address);
6781 put_smstate(u32, buf, 0x7f54, dt.size);
6782
6783 for (i = 0; i < 6; i++)
6784 enter_smm_save_seg_32(vcpu, buf, i);
6785
6786 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6787
6788 /* revision id */
6789 put_smstate(u32, buf, 0x7efc, 0x00020000);
6790 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6791 }
6792
6793 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6794 {
6795 #ifdef CONFIG_X86_64
6796 struct desc_ptr dt;
6797 struct kvm_segment seg;
6798 unsigned long val;
6799 int i;
6800
6801 for (i = 0; i < 16; i++)
6802 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6803
6804 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6805 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6806
6807 kvm_get_dr(vcpu, 6, &val);
6808 put_smstate(u64, buf, 0x7f68, val);
6809 kvm_get_dr(vcpu, 7, &val);
6810 put_smstate(u64, buf, 0x7f60, val);
6811
6812 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6813 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6814 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6815
6816 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6817
6818 /* revision id */
6819 put_smstate(u32, buf, 0x7efc, 0x00020064);
6820
6821 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6822
6823 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6824 put_smstate(u16, buf, 0x7e90, seg.selector);
6825 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6826 put_smstate(u32, buf, 0x7e94, seg.limit);
6827 put_smstate(u64, buf, 0x7e98, seg.base);
6828
6829 kvm_x86_ops->get_idt(vcpu, &dt);
6830 put_smstate(u32, buf, 0x7e84, dt.size);
6831 put_smstate(u64, buf, 0x7e88, dt.address);
6832
6833 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6834 put_smstate(u16, buf, 0x7e70, seg.selector);
6835 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6836 put_smstate(u32, buf, 0x7e74, seg.limit);
6837 put_smstate(u64, buf, 0x7e78, seg.base);
6838
6839 kvm_x86_ops->get_gdt(vcpu, &dt);
6840 put_smstate(u32, buf, 0x7e64, dt.size);
6841 put_smstate(u64, buf, 0x7e68, dt.address);
6842
6843 for (i = 0; i < 6; i++)
6844 enter_smm_save_seg_64(vcpu, buf, i);
6845 #else
6846 WARN_ON_ONCE(1);
6847 #endif
6848 }
6849
6850 static void enter_smm(struct kvm_vcpu *vcpu)
6851 {
6852 struct kvm_segment cs, ds;
6853 struct desc_ptr dt;
6854 char buf[512];
6855 u32 cr0;
6856
6857 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6858 memset(buf, 0, 512);
6859 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6860 enter_smm_save_state_64(vcpu, buf);
6861 else
6862 enter_smm_save_state_32(vcpu, buf);
6863
6864 /*
6865 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6866 * vCPU state (e.g. leave guest mode) after we've saved the state into
6867 * the SMM state-save area.
6868 */
6869 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6870
6871 vcpu->arch.hflags |= HF_SMM_MASK;
6872 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6873
6874 if (kvm_x86_ops->get_nmi_mask(vcpu))
6875 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6876 else
6877 kvm_x86_ops->set_nmi_mask(vcpu, true);
6878
6879 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6880 kvm_rip_write(vcpu, 0x8000);
6881
6882 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6883 kvm_x86_ops->set_cr0(vcpu, cr0);
6884 vcpu->arch.cr0 = cr0;
6885
6886 kvm_x86_ops->set_cr4(vcpu, 0);
6887
6888 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6889 dt.address = dt.size = 0;
6890 kvm_x86_ops->set_idt(vcpu, &dt);
6891
6892 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6893
6894 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6895 cs.base = vcpu->arch.smbase;
6896
6897 ds.selector = 0;
6898 ds.base = 0;
6899
6900 cs.limit = ds.limit = 0xffffffff;
6901 cs.type = ds.type = 0x3;
6902 cs.dpl = ds.dpl = 0;
6903 cs.db = ds.db = 0;
6904 cs.s = ds.s = 1;
6905 cs.l = ds.l = 0;
6906 cs.g = ds.g = 1;
6907 cs.avl = ds.avl = 0;
6908 cs.present = ds.present = 1;
6909 cs.unusable = ds.unusable = 0;
6910 cs.padding = ds.padding = 0;
6911
6912 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6913 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6914 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6915 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6916 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6917 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6918
6919 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6920 kvm_x86_ops->set_efer(vcpu, 0);
6921
6922 kvm_update_cpuid(vcpu);
6923 kvm_mmu_reset_context(vcpu);
6924 }
6925
6926 static void process_smi(struct kvm_vcpu *vcpu)
6927 {
6928 vcpu->arch.smi_pending = true;
6929 kvm_make_request(KVM_REQ_EVENT, vcpu);
6930 }
6931
6932 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6933 {
6934 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6935 }
6936
6937 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6938 {
6939 u64 eoi_exit_bitmap[4];
6940
6941 if (!kvm_apic_present(vcpu))
6942 return;
6943
6944 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6945
6946 if (irqchip_split(vcpu->kvm))
6947 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6948 else {
6949 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6950 kvm_x86_ops->sync_pir_to_irr(vcpu);
6951 if (ioapic_in_kernel(vcpu->kvm))
6952 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6953 }
6954 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6955 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6956 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6957 }
6958
6959 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6960 {
6961 ++vcpu->stat.tlb_flush;
6962 kvm_x86_ops->tlb_flush(vcpu);
6963 }
6964
6965 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6966 unsigned long start, unsigned long end)
6967 {
6968 unsigned long apic_address;
6969
6970 /*
6971 * The physical address of apic access page is stored in the VMCS.
6972 * Update it when it becomes invalid.
6973 */
6974 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6975 if (start <= apic_address && apic_address < end)
6976 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6977 }
6978
6979 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6980 {
6981 struct page *page = NULL;
6982
6983 if (!lapic_in_kernel(vcpu))
6984 return;
6985
6986 if (!kvm_x86_ops->set_apic_access_page_addr)
6987 return;
6988
6989 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6990 if (is_error_page(page))
6991 return;
6992 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6993
6994 /*
6995 * Do not pin apic access page in memory, the MMU notifier
6996 * will call us again if it is migrated or swapped out.
6997 */
6998 put_page(page);
6999 }
7000 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7001
7002 /*
7003 * Returns 1 to let vcpu_run() continue the guest execution loop without
7004 * exiting to the userspace. Otherwise, the value will be returned to the
7005 * userspace.
7006 */
7007 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7008 {
7009 int r;
7010 bool req_int_win =
7011 dm_request_for_irq_injection(vcpu) &&
7012 kvm_cpu_accept_dm_intr(vcpu);
7013
7014 bool req_immediate_exit = false;
7015
7016 if (kvm_request_pending(vcpu)) {
7017 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7018 kvm_mmu_unload(vcpu);
7019 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7020 __kvm_migrate_timers(vcpu);
7021 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7022 kvm_gen_update_masterclock(vcpu->kvm);
7023 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7024 kvm_gen_kvmclock_update(vcpu);
7025 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7026 r = kvm_guest_time_update(vcpu);
7027 if (unlikely(r))
7028 goto out;
7029 }
7030 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7031 kvm_mmu_sync_roots(vcpu);
7032 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7033 kvm_vcpu_flush_tlb(vcpu);
7034 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7035 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7036 r = 0;
7037 goto out;
7038 }
7039 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7040 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7041 vcpu->mmio_needed = 0;
7042 r = 0;
7043 goto out;
7044 }
7045 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7046 /* Page is swapped out. Do synthetic halt */
7047 vcpu->arch.apf.halted = true;
7048 r = 1;
7049 goto out;
7050 }
7051 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7052 record_steal_time(vcpu);
7053 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7054 process_smi(vcpu);
7055 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7056 process_nmi(vcpu);
7057 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7058 kvm_pmu_handle_event(vcpu);
7059 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7060 kvm_pmu_deliver_pmi(vcpu);
7061 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7062 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7063 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7064 vcpu->arch.ioapic_handled_vectors)) {
7065 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7066 vcpu->run->eoi.vector =
7067 vcpu->arch.pending_ioapic_eoi;
7068 r = 0;
7069 goto out;
7070 }
7071 }
7072 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7073 vcpu_scan_ioapic(vcpu);
7074 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7075 kvm_vcpu_reload_apic_access_page(vcpu);
7076 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7077 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7078 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7079 r = 0;
7080 goto out;
7081 }
7082 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7083 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7084 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7085 r = 0;
7086 goto out;
7087 }
7088 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7089 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7090 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7091 r = 0;
7092 goto out;
7093 }
7094
7095 /*
7096 * KVM_REQ_HV_STIMER has to be processed after
7097 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7098 * depend on the guest clock being up-to-date
7099 */
7100 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7101 kvm_hv_process_stimers(vcpu);
7102 }
7103
7104 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7105 ++vcpu->stat.req_event;
7106 kvm_apic_accept_events(vcpu);
7107 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7108 r = 1;
7109 goto out;
7110 }
7111
7112 if (inject_pending_event(vcpu, req_int_win) != 0)
7113 req_immediate_exit = true;
7114 else {
7115 /* Enable SMI/NMI/IRQ window open exits if needed.
7116 *
7117 * SMIs have three cases:
7118 * 1) They can be nested, and then there is nothing to
7119 * do here because RSM will cause a vmexit anyway.
7120 * 2) There is an ISA-specific reason why SMI cannot be
7121 * injected, and the moment when this changes can be
7122 * intercepted.
7123 * 3) Or the SMI can be pending because
7124 * inject_pending_event has completed the injection
7125 * of an IRQ or NMI from the previous vmexit, and
7126 * then we request an immediate exit to inject the
7127 * SMI.
7128 */
7129 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7130 if (!kvm_x86_ops->enable_smi_window(vcpu))
7131 req_immediate_exit = true;
7132 if (vcpu->arch.nmi_pending)
7133 kvm_x86_ops->enable_nmi_window(vcpu);
7134 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7135 kvm_x86_ops->enable_irq_window(vcpu);
7136 WARN_ON(vcpu->arch.exception.pending);
7137 }
7138
7139 if (kvm_lapic_enabled(vcpu)) {
7140 update_cr8_intercept(vcpu);
7141 kvm_lapic_sync_to_vapic(vcpu);
7142 }
7143 }
7144
7145 r = kvm_mmu_reload(vcpu);
7146 if (unlikely(r)) {
7147 goto cancel_injection;
7148 }
7149
7150 preempt_disable();
7151
7152 kvm_x86_ops->prepare_guest_switch(vcpu);
7153
7154 /*
7155 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7156 * IPI are then delayed after guest entry, which ensures that they
7157 * result in virtual interrupt delivery.
7158 */
7159 local_irq_disable();
7160 vcpu->mode = IN_GUEST_MODE;
7161
7162 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7163
7164 /*
7165 * 1) We should set ->mode before checking ->requests. Please see
7166 * the comment in kvm_vcpu_exiting_guest_mode().
7167 *
7168 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7169 * pairs with the memory barrier implicit in pi_test_and_set_on
7170 * (see vmx_deliver_posted_interrupt).
7171 *
7172 * 3) This also orders the write to mode from any reads to the page
7173 * tables done while the VCPU is running. Please see the comment
7174 * in kvm_flush_remote_tlbs.
7175 */
7176 smp_mb__after_srcu_read_unlock();
7177
7178 /*
7179 * This handles the case where a posted interrupt was
7180 * notified with kvm_vcpu_kick.
7181 */
7182 if (kvm_lapic_enabled(vcpu)) {
7183 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7184 kvm_x86_ops->sync_pir_to_irr(vcpu);
7185 }
7186
7187 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7188 || need_resched() || signal_pending(current)) {
7189 vcpu->mode = OUTSIDE_GUEST_MODE;
7190 smp_wmb();
7191 local_irq_enable();
7192 preempt_enable();
7193 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7194 r = 1;
7195 goto cancel_injection;
7196 }
7197
7198 kvm_load_guest_xcr0(vcpu);
7199
7200 if (req_immediate_exit) {
7201 kvm_make_request(KVM_REQ_EVENT, vcpu);
7202 smp_send_reschedule(vcpu->cpu);
7203 }
7204
7205 trace_kvm_entry(vcpu->vcpu_id);
7206 wait_lapic_expire(vcpu);
7207 guest_enter_irqoff();
7208
7209 if (unlikely(vcpu->arch.switch_db_regs)) {
7210 set_debugreg(0, 7);
7211 set_debugreg(vcpu->arch.eff_db[0], 0);
7212 set_debugreg(vcpu->arch.eff_db[1], 1);
7213 set_debugreg(vcpu->arch.eff_db[2], 2);
7214 set_debugreg(vcpu->arch.eff_db[3], 3);
7215 set_debugreg(vcpu->arch.dr6, 6);
7216 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7217 }
7218
7219 kvm_x86_ops->run(vcpu);
7220
7221 /*
7222 * Do this here before restoring debug registers on the host. And
7223 * since we do this before handling the vmexit, a DR access vmexit
7224 * can (a) read the correct value of the debug registers, (b) set
7225 * KVM_DEBUGREG_WONT_EXIT again.
7226 */
7227 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7228 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7229 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7230 kvm_update_dr0123(vcpu);
7231 kvm_update_dr6(vcpu);
7232 kvm_update_dr7(vcpu);
7233 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7234 }
7235
7236 /*
7237 * If the guest has used debug registers, at least dr7
7238 * will be disabled while returning to the host.
7239 * If we don't have active breakpoints in the host, we don't
7240 * care about the messed up debug address registers. But if
7241 * we have some of them active, restore the old state.
7242 */
7243 if (hw_breakpoint_active())
7244 hw_breakpoint_restore();
7245
7246 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7247
7248 vcpu->mode = OUTSIDE_GUEST_MODE;
7249 smp_wmb();
7250
7251 kvm_put_guest_xcr0(vcpu);
7252
7253 kvm_x86_ops->handle_external_intr(vcpu);
7254
7255 ++vcpu->stat.exits;
7256
7257 guest_exit_irqoff();
7258
7259 local_irq_enable();
7260 preempt_enable();
7261
7262 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7263
7264 /*
7265 * Profile KVM exit RIPs:
7266 */
7267 if (unlikely(prof_on == KVM_PROFILING)) {
7268 unsigned long rip = kvm_rip_read(vcpu);
7269 profile_hit(KVM_PROFILING, (void *)rip);
7270 }
7271
7272 if (unlikely(vcpu->arch.tsc_always_catchup))
7273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7274
7275 if (vcpu->arch.apic_attention)
7276 kvm_lapic_sync_from_vapic(vcpu);
7277
7278 vcpu->arch.gpa_available = false;
7279 r = kvm_x86_ops->handle_exit(vcpu);
7280 return r;
7281
7282 cancel_injection:
7283 kvm_x86_ops->cancel_injection(vcpu);
7284 if (unlikely(vcpu->arch.apic_attention))
7285 kvm_lapic_sync_from_vapic(vcpu);
7286 out:
7287 return r;
7288 }
7289
7290 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7291 {
7292 if (!kvm_arch_vcpu_runnable(vcpu) &&
7293 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7294 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7295 kvm_vcpu_block(vcpu);
7296 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7297
7298 if (kvm_x86_ops->post_block)
7299 kvm_x86_ops->post_block(vcpu);
7300
7301 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7302 return 1;
7303 }
7304
7305 kvm_apic_accept_events(vcpu);
7306 switch(vcpu->arch.mp_state) {
7307 case KVM_MP_STATE_HALTED:
7308 vcpu->arch.pv.pv_unhalted = false;
7309 vcpu->arch.mp_state =
7310 KVM_MP_STATE_RUNNABLE;
7311 case KVM_MP_STATE_RUNNABLE:
7312 vcpu->arch.apf.halted = false;
7313 break;
7314 case KVM_MP_STATE_INIT_RECEIVED:
7315 break;
7316 default:
7317 return -EINTR;
7318 break;
7319 }
7320 return 1;
7321 }
7322
7323 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7324 {
7325 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7326 kvm_x86_ops->check_nested_events(vcpu, false);
7327
7328 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7329 !vcpu->arch.apf.halted);
7330 }
7331
7332 static int vcpu_run(struct kvm_vcpu *vcpu)
7333 {
7334 int r;
7335 struct kvm *kvm = vcpu->kvm;
7336
7337 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7338 vcpu->arch.l1tf_flush_l1d = true;
7339
7340 for (;;) {
7341 if (kvm_vcpu_running(vcpu)) {
7342 r = vcpu_enter_guest(vcpu);
7343 } else {
7344 r = vcpu_block(kvm, vcpu);
7345 }
7346
7347 if (r <= 0)
7348 break;
7349
7350 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7351 if (kvm_cpu_has_pending_timer(vcpu))
7352 kvm_inject_pending_timer_irqs(vcpu);
7353
7354 if (dm_request_for_irq_injection(vcpu) &&
7355 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7356 r = 0;
7357 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7358 ++vcpu->stat.request_irq_exits;
7359 break;
7360 }
7361
7362 kvm_check_async_pf_completion(vcpu);
7363
7364 if (signal_pending(current)) {
7365 r = -EINTR;
7366 vcpu->run->exit_reason = KVM_EXIT_INTR;
7367 ++vcpu->stat.signal_exits;
7368 break;
7369 }
7370 if (need_resched()) {
7371 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7372 cond_resched();
7373 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7374 }
7375 }
7376
7377 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7378
7379 return r;
7380 }
7381
7382 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7383 {
7384 int r;
7385 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7386 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7387 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7388 if (r != EMULATE_DONE)
7389 return 0;
7390 return 1;
7391 }
7392
7393 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7394 {
7395 BUG_ON(!vcpu->arch.pio.count);
7396
7397 return complete_emulated_io(vcpu);
7398 }
7399
7400 /*
7401 * Implements the following, as a state machine:
7402 *
7403 * read:
7404 * for each fragment
7405 * for each mmio piece in the fragment
7406 * write gpa, len
7407 * exit
7408 * copy data
7409 * execute insn
7410 *
7411 * write:
7412 * for each fragment
7413 * for each mmio piece in the fragment
7414 * write gpa, len
7415 * copy data
7416 * exit
7417 */
7418 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7419 {
7420 struct kvm_run *run = vcpu->run;
7421 struct kvm_mmio_fragment *frag;
7422 unsigned len;
7423
7424 BUG_ON(!vcpu->mmio_needed);
7425
7426 /* Complete previous fragment */
7427 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7428 len = min(8u, frag->len);
7429 if (!vcpu->mmio_is_write)
7430 memcpy(frag->data, run->mmio.data, len);
7431
7432 if (frag->len <= 8) {
7433 /* Switch to the next fragment. */
7434 frag++;
7435 vcpu->mmio_cur_fragment++;
7436 } else {
7437 /* Go forward to the next mmio piece. */
7438 frag->data += len;
7439 frag->gpa += len;
7440 frag->len -= len;
7441 }
7442
7443 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7444 vcpu->mmio_needed = 0;
7445
7446 /* FIXME: return into emulator if single-stepping. */
7447 if (vcpu->mmio_is_write)
7448 return 1;
7449 vcpu->mmio_read_completed = 1;
7450 return complete_emulated_io(vcpu);
7451 }
7452
7453 run->exit_reason = KVM_EXIT_MMIO;
7454 run->mmio.phys_addr = frag->gpa;
7455 if (vcpu->mmio_is_write)
7456 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7457 run->mmio.len = min(8u, frag->len);
7458 run->mmio.is_write = vcpu->mmio_is_write;
7459 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7460 return 0;
7461 }
7462
7463
7464 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7465 {
7466 int r;
7467
7468 kvm_sigset_activate(vcpu);
7469
7470 kvm_load_guest_fpu(vcpu);
7471
7472 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7473 if (kvm_run->immediate_exit) {
7474 r = -EINTR;
7475 goto out;
7476 }
7477 kvm_vcpu_block(vcpu);
7478 kvm_apic_accept_events(vcpu);
7479 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7480 r = -EAGAIN;
7481 if (signal_pending(current)) {
7482 r = -EINTR;
7483 vcpu->run->exit_reason = KVM_EXIT_INTR;
7484 ++vcpu->stat.signal_exits;
7485 }
7486 goto out;
7487 }
7488
7489 /* re-sync apic's tpr */
7490 if (!lapic_in_kernel(vcpu)) {
7491 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7492 r = -EINVAL;
7493 goto out;
7494 }
7495 }
7496
7497 if (unlikely(vcpu->arch.complete_userspace_io)) {
7498 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7499 vcpu->arch.complete_userspace_io = NULL;
7500 r = cui(vcpu);
7501 if (r <= 0)
7502 goto out;
7503 } else
7504 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7505
7506 if (kvm_run->immediate_exit)
7507 r = -EINTR;
7508 else
7509 r = vcpu_run(vcpu);
7510
7511 out:
7512 kvm_put_guest_fpu(vcpu);
7513 post_kvm_run_save(vcpu);
7514 kvm_sigset_deactivate(vcpu);
7515
7516 return r;
7517 }
7518
7519 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7520 {
7521 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7522 /*
7523 * We are here if userspace calls get_regs() in the middle of
7524 * instruction emulation. Registers state needs to be copied
7525 * back from emulation context to vcpu. Userspace shouldn't do
7526 * that usually, but some bad designed PV devices (vmware
7527 * backdoor interface) need this to work
7528 */
7529 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7530 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7531 }
7532 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7533 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7534 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7535 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7536 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7537 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7538 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7539 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7540 #ifdef CONFIG_X86_64
7541 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7542 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7543 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7544 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7545 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7546 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7547 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7548 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7549 #endif
7550
7551 regs->rip = kvm_rip_read(vcpu);
7552 regs->rflags = kvm_get_rflags(vcpu);
7553
7554 return 0;
7555 }
7556
7557 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7558 {
7559 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7560 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7561
7562 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7563 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7564 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7565 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7566 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7567 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7568 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7569 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7570 #ifdef CONFIG_X86_64
7571 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7572 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7573 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7574 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7575 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7576 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7577 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7578 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7579 #endif
7580
7581 kvm_rip_write(vcpu, regs->rip);
7582 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7583
7584 vcpu->arch.exception.pending = false;
7585
7586 kvm_make_request(KVM_REQ_EVENT, vcpu);
7587
7588 return 0;
7589 }
7590
7591 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7592 {
7593 struct kvm_segment cs;
7594
7595 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7596 *db = cs.db;
7597 *l = cs.l;
7598 }
7599 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7600
7601 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7602 struct kvm_sregs *sregs)
7603 {
7604 struct desc_ptr dt;
7605
7606 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7607 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7608 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7609 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7610 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7611 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7612
7613 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7614 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7615
7616 kvm_x86_ops->get_idt(vcpu, &dt);
7617 sregs->idt.limit = dt.size;
7618 sregs->idt.base = dt.address;
7619 kvm_x86_ops->get_gdt(vcpu, &dt);
7620 sregs->gdt.limit = dt.size;
7621 sregs->gdt.base = dt.address;
7622
7623 sregs->cr0 = kvm_read_cr0(vcpu);
7624 sregs->cr2 = vcpu->arch.cr2;
7625 sregs->cr3 = kvm_read_cr3(vcpu);
7626 sregs->cr4 = kvm_read_cr4(vcpu);
7627 sregs->cr8 = kvm_get_cr8(vcpu);
7628 sregs->efer = vcpu->arch.efer;
7629 sregs->apic_base = kvm_get_apic_base(vcpu);
7630
7631 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7632
7633 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7634 set_bit(vcpu->arch.interrupt.nr,
7635 (unsigned long *)sregs->interrupt_bitmap);
7636
7637 return 0;
7638 }
7639
7640 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7641 struct kvm_mp_state *mp_state)
7642 {
7643 kvm_apic_accept_events(vcpu);
7644 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7645 vcpu->arch.pv.pv_unhalted)
7646 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7647 else
7648 mp_state->mp_state = vcpu->arch.mp_state;
7649
7650 return 0;
7651 }
7652
7653 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7654 struct kvm_mp_state *mp_state)
7655 {
7656 if (!lapic_in_kernel(vcpu) &&
7657 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7658 return -EINVAL;
7659
7660 /* INITs are latched while in SMM */
7661 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7662 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7663 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7664 return -EINVAL;
7665
7666 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7667 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7668 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7669 } else
7670 vcpu->arch.mp_state = mp_state->mp_state;
7671 kvm_make_request(KVM_REQ_EVENT, vcpu);
7672 return 0;
7673 }
7674
7675 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7676 int reason, bool has_error_code, u32 error_code)
7677 {
7678 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7679 int ret;
7680
7681 init_emulate_ctxt(vcpu);
7682
7683 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7684 has_error_code, error_code);
7685
7686 if (ret)
7687 return EMULATE_FAIL;
7688
7689 kvm_rip_write(vcpu, ctxt->eip);
7690 kvm_set_rflags(vcpu, ctxt->eflags);
7691 kvm_make_request(KVM_REQ_EVENT, vcpu);
7692 return EMULATE_DONE;
7693 }
7694 EXPORT_SYMBOL_GPL(kvm_task_switch);
7695
7696 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7697 {
7698 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7699 /*
7700 * When EFER.LME and CR0.PG are set, the processor is in
7701 * 64-bit mode (though maybe in a 32-bit code segment).
7702 * CR4.PAE and EFER.LMA must be set.
7703 */
7704 if (!(sregs->cr4 & X86_CR4_PAE)
7705 || !(sregs->efer & EFER_LMA))
7706 return -EINVAL;
7707 } else {
7708 /*
7709 * Not in 64-bit mode: EFER.LMA is clear and the code
7710 * segment cannot be 64-bit.
7711 */
7712 if (sregs->efer & EFER_LMA || sregs->cs.l)
7713 return -EINVAL;
7714 }
7715
7716 return 0;
7717 }
7718
7719 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7720 struct kvm_sregs *sregs)
7721 {
7722 struct msr_data apic_base_msr;
7723 int mmu_reset_needed = 0;
7724 int cpuid_update_needed = 0;
7725 int pending_vec, max_bits, idx;
7726 struct desc_ptr dt;
7727
7728 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7729 (sregs->cr4 & X86_CR4_OSXSAVE))
7730 return -EINVAL;
7731
7732 if (kvm_valid_sregs(vcpu, sregs))
7733 return -EINVAL;
7734
7735 apic_base_msr.data = sregs->apic_base;
7736 apic_base_msr.host_initiated = true;
7737 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7738 return -EINVAL;
7739
7740 dt.size = sregs->idt.limit;
7741 dt.address = sregs->idt.base;
7742 kvm_x86_ops->set_idt(vcpu, &dt);
7743 dt.size = sregs->gdt.limit;
7744 dt.address = sregs->gdt.base;
7745 kvm_x86_ops->set_gdt(vcpu, &dt);
7746
7747 vcpu->arch.cr2 = sregs->cr2;
7748 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7749 vcpu->arch.cr3 = sregs->cr3;
7750 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7751
7752 kvm_set_cr8(vcpu, sregs->cr8);
7753
7754 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7755 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7756
7757 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7758 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7759 vcpu->arch.cr0 = sregs->cr0;
7760
7761 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7762 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7763 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7764 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7765 if (cpuid_update_needed)
7766 kvm_update_cpuid(vcpu);
7767
7768 idx = srcu_read_lock(&vcpu->kvm->srcu);
7769 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7770 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7771 mmu_reset_needed = 1;
7772 }
7773 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7774
7775 if (mmu_reset_needed)
7776 kvm_mmu_reset_context(vcpu);
7777
7778 max_bits = KVM_NR_INTERRUPTS;
7779 pending_vec = find_first_bit(
7780 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7781 if (pending_vec < max_bits) {
7782 kvm_queue_interrupt(vcpu, pending_vec, false);
7783 pr_debug("Set back pending irq %d\n", pending_vec);
7784 }
7785
7786 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7787 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7788 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7789 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7790 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7791 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7792
7793 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7794 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7795
7796 update_cr8_intercept(vcpu);
7797
7798 /* Older userspace won't unhalt the vcpu on reset. */
7799 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7800 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7801 !is_protmode(vcpu))
7802 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7803
7804 kvm_make_request(KVM_REQ_EVENT, vcpu);
7805
7806 return 0;
7807 }
7808
7809 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7810 struct kvm_guest_debug *dbg)
7811 {
7812 unsigned long rflags;
7813 int i, r;
7814
7815 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7816 r = -EBUSY;
7817 if (vcpu->arch.exception.pending)
7818 goto out;
7819 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7820 kvm_queue_exception(vcpu, DB_VECTOR);
7821 else
7822 kvm_queue_exception(vcpu, BP_VECTOR);
7823 }
7824
7825 /*
7826 * Read rflags as long as potentially injected trace flags are still
7827 * filtered out.
7828 */
7829 rflags = kvm_get_rflags(vcpu);
7830
7831 vcpu->guest_debug = dbg->control;
7832 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7833 vcpu->guest_debug = 0;
7834
7835 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7836 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7837 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7838 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7839 } else {
7840 for (i = 0; i < KVM_NR_DB_REGS; i++)
7841 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7842 }
7843 kvm_update_dr7(vcpu);
7844
7845 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7846 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7847 get_segment_base(vcpu, VCPU_SREG_CS);
7848
7849 /*
7850 * Trigger an rflags update that will inject or remove the trace
7851 * flags.
7852 */
7853 kvm_set_rflags(vcpu, rflags);
7854
7855 kvm_x86_ops->update_bp_intercept(vcpu);
7856
7857 r = 0;
7858
7859 out:
7860
7861 return r;
7862 }
7863
7864 /*
7865 * Translate a guest virtual address to a guest physical address.
7866 */
7867 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7868 struct kvm_translation *tr)
7869 {
7870 unsigned long vaddr = tr->linear_address;
7871 gpa_t gpa;
7872 int idx;
7873
7874 idx = srcu_read_lock(&vcpu->kvm->srcu);
7875 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7876 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7877 tr->physical_address = gpa;
7878 tr->valid = gpa != UNMAPPED_GVA;
7879 tr->writeable = 1;
7880 tr->usermode = 0;
7881
7882 return 0;
7883 }
7884
7885 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7886 {
7887 struct fxregs_state *fxsave =
7888 &vcpu->arch.guest_fpu.state.fxsave;
7889
7890 memcpy(fpu->fpr, fxsave->st_space, 128);
7891 fpu->fcw = fxsave->cwd;
7892 fpu->fsw = fxsave->swd;
7893 fpu->ftwx = fxsave->twd;
7894 fpu->last_opcode = fxsave->fop;
7895 fpu->last_ip = fxsave->rip;
7896 fpu->last_dp = fxsave->rdp;
7897 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7898
7899 return 0;
7900 }
7901
7902 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7903 {
7904 struct fxregs_state *fxsave =
7905 &vcpu->arch.guest_fpu.state.fxsave;
7906
7907 memcpy(fxsave->st_space, fpu->fpr, 128);
7908 fxsave->cwd = fpu->fcw;
7909 fxsave->swd = fpu->fsw;
7910 fxsave->twd = fpu->ftwx;
7911 fxsave->fop = fpu->last_opcode;
7912 fxsave->rip = fpu->last_ip;
7913 fxsave->rdp = fpu->last_dp;
7914 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7915
7916 return 0;
7917 }
7918
7919 static void fx_init(struct kvm_vcpu *vcpu)
7920 {
7921 fpstate_init(&vcpu->arch.guest_fpu.state);
7922 if (boot_cpu_has(X86_FEATURE_XSAVES))
7923 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7924 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7925
7926 /*
7927 * Ensure guest xcr0 is valid for loading
7928 */
7929 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7930
7931 vcpu->arch.cr0 |= X86_CR0_ET;
7932 }
7933
7934 /* Swap (qemu) user FPU context for the guest FPU context. */
7935 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7936 {
7937 preempt_disable();
7938 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7939 /* PKRU is separately restored in kvm_x86_ops->run. */
7940 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7941 ~XFEATURE_MASK_PKRU);
7942 preempt_enable();
7943 trace_kvm_fpu(1);
7944 }
7945
7946 /* When vcpu_run ends, restore user space FPU context. */
7947 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7948 {
7949 preempt_disable();
7950 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7951 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7952 preempt_enable();
7953 ++vcpu->stat.fpu_reload;
7954 trace_kvm_fpu(0);
7955 }
7956
7957 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7958 {
7959 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7960
7961 kvmclock_reset(vcpu);
7962
7963 kvm_x86_ops->vcpu_free(vcpu);
7964 free_cpumask_var(wbinvd_dirty_mask);
7965 }
7966
7967 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7968 unsigned int id)
7969 {
7970 struct kvm_vcpu *vcpu;
7971
7972 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7973 printk_once(KERN_WARNING
7974 "kvm: SMP vm created on host with unstable TSC; "
7975 "guest TSC will not be reliable\n");
7976
7977 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7978
7979 return vcpu;
7980 }
7981
7982 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7983 {
7984 int r;
7985
7986 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
7987 kvm_vcpu_mtrr_init(vcpu);
7988 r = vcpu_load(vcpu);
7989 if (r)
7990 return r;
7991 kvm_vcpu_reset(vcpu, false);
7992 kvm_mmu_setup(vcpu);
7993 vcpu_put(vcpu);
7994 return r;
7995 }
7996
7997 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7998 {
7999 struct msr_data msr;
8000 struct kvm *kvm = vcpu->kvm;
8001
8002 kvm_hv_vcpu_postcreate(vcpu);
8003
8004 if (vcpu_load(vcpu))
8005 return;
8006 msr.data = 0x0;
8007 msr.index = MSR_IA32_TSC;
8008 msr.host_initiated = true;
8009 kvm_write_tsc(vcpu, &msr);
8010 vcpu_put(vcpu);
8011
8012 if (!kvmclock_periodic_sync)
8013 return;
8014
8015 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8016 KVMCLOCK_SYNC_PERIOD);
8017 }
8018
8019 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8020 {
8021 int r;
8022 vcpu->arch.apf.msr_val = 0;
8023
8024 r = vcpu_load(vcpu);
8025 BUG_ON(r);
8026 kvm_mmu_unload(vcpu);
8027 vcpu_put(vcpu);
8028
8029 kvm_x86_ops->vcpu_free(vcpu);
8030 }
8031
8032 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8033 {
8034 kvm_lapic_reset(vcpu, init_event);
8035
8036 vcpu->arch.hflags = 0;
8037
8038 vcpu->arch.smi_pending = 0;
8039 atomic_set(&vcpu->arch.nmi_queued, 0);
8040 vcpu->arch.nmi_pending = 0;
8041 vcpu->arch.nmi_injected = false;
8042 kvm_clear_interrupt_queue(vcpu);
8043 kvm_clear_exception_queue(vcpu);
8044 vcpu->arch.exception.pending = false;
8045
8046 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8047 kvm_update_dr0123(vcpu);
8048 vcpu->arch.dr6 = DR6_INIT;
8049 kvm_update_dr6(vcpu);
8050 vcpu->arch.dr7 = DR7_FIXED_1;
8051 kvm_update_dr7(vcpu);
8052
8053 vcpu->arch.cr2 = 0;
8054
8055 kvm_make_request(KVM_REQ_EVENT, vcpu);
8056 vcpu->arch.apf.msr_val = 0;
8057 vcpu->arch.st.msr_val = 0;
8058
8059 kvmclock_reset(vcpu);
8060
8061 kvm_clear_async_pf_completion_queue(vcpu);
8062 kvm_async_pf_hash_reset(vcpu);
8063 vcpu->arch.apf.halted = false;
8064
8065 if (kvm_mpx_supported()) {
8066 void *mpx_state_buffer;
8067
8068 /*
8069 * To avoid have the INIT path from kvm_apic_has_events() that be
8070 * called with loaded FPU and does not let userspace fix the state.
8071 */
8072 if (init_event)
8073 kvm_put_guest_fpu(vcpu);
8074 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8075 XFEATURE_MASK_BNDREGS);
8076 if (mpx_state_buffer)
8077 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8078 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8079 XFEATURE_MASK_BNDCSR);
8080 if (mpx_state_buffer)
8081 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8082 if (init_event)
8083 kvm_load_guest_fpu(vcpu);
8084 }
8085
8086 if (!init_event) {
8087 kvm_pmu_reset(vcpu);
8088 vcpu->arch.smbase = 0x30000;
8089
8090 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8091 vcpu->arch.msr_misc_features_enables = 0;
8092
8093 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8094 }
8095
8096 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8097 vcpu->arch.regs_avail = ~0;
8098 vcpu->arch.regs_dirty = ~0;
8099
8100 vcpu->arch.ia32_xss = 0;
8101
8102 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8103 }
8104
8105 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8106 {
8107 struct kvm_segment cs;
8108
8109 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8110 cs.selector = vector << 8;
8111 cs.base = vector << 12;
8112 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8113 kvm_rip_write(vcpu, 0);
8114 }
8115
8116 int kvm_arch_hardware_enable(void)
8117 {
8118 struct kvm *kvm;
8119 struct kvm_vcpu *vcpu;
8120 int i;
8121 int ret;
8122 u64 local_tsc;
8123 u64 max_tsc = 0;
8124 bool stable, backwards_tsc = false;
8125
8126 kvm_shared_msr_cpu_online();
8127 ret = kvm_x86_ops->hardware_enable();
8128 if (ret != 0)
8129 return ret;
8130
8131 local_tsc = rdtsc();
8132 stable = !check_tsc_unstable();
8133 list_for_each_entry(kvm, &vm_list, vm_list) {
8134 kvm_for_each_vcpu(i, vcpu, kvm) {
8135 if (!stable && vcpu->cpu == smp_processor_id())
8136 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8137 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8138 backwards_tsc = true;
8139 if (vcpu->arch.last_host_tsc > max_tsc)
8140 max_tsc = vcpu->arch.last_host_tsc;
8141 }
8142 }
8143 }
8144
8145 /*
8146 * Sometimes, even reliable TSCs go backwards. This happens on
8147 * platforms that reset TSC during suspend or hibernate actions, but
8148 * maintain synchronization. We must compensate. Fortunately, we can
8149 * detect that condition here, which happens early in CPU bringup,
8150 * before any KVM threads can be running. Unfortunately, we can't
8151 * bring the TSCs fully up to date with real time, as we aren't yet far
8152 * enough into CPU bringup that we know how much real time has actually
8153 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8154 * variables that haven't been updated yet.
8155 *
8156 * So we simply find the maximum observed TSC above, then record the
8157 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8158 * the adjustment will be applied. Note that we accumulate
8159 * adjustments, in case multiple suspend cycles happen before some VCPU
8160 * gets a chance to run again. In the event that no KVM threads get a
8161 * chance to run, we will miss the entire elapsed period, as we'll have
8162 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8163 * loose cycle time. This isn't too big a deal, since the loss will be
8164 * uniform across all VCPUs (not to mention the scenario is extremely
8165 * unlikely). It is possible that a second hibernate recovery happens
8166 * much faster than a first, causing the observed TSC here to be
8167 * smaller; this would require additional padding adjustment, which is
8168 * why we set last_host_tsc to the local tsc observed here.
8169 *
8170 * N.B. - this code below runs only on platforms with reliable TSC,
8171 * as that is the only way backwards_tsc is set above. Also note
8172 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8173 * have the same delta_cyc adjustment applied if backwards_tsc
8174 * is detected. Note further, this adjustment is only done once,
8175 * as we reset last_host_tsc on all VCPUs to stop this from being
8176 * called multiple times (one for each physical CPU bringup).
8177 *
8178 * Platforms with unreliable TSCs don't have to deal with this, they
8179 * will be compensated by the logic in vcpu_load, which sets the TSC to
8180 * catchup mode. This will catchup all VCPUs to real time, but cannot
8181 * guarantee that they stay in perfect synchronization.
8182 */
8183 if (backwards_tsc) {
8184 u64 delta_cyc = max_tsc - local_tsc;
8185 list_for_each_entry(kvm, &vm_list, vm_list) {
8186 kvm->arch.backwards_tsc_observed = true;
8187 kvm_for_each_vcpu(i, vcpu, kvm) {
8188 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8189 vcpu->arch.last_host_tsc = local_tsc;
8190 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8191 }
8192
8193 /*
8194 * We have to disable TSC offset matching.. if you were
8195 * booting a VM while issuing an S4 host suspend....
8196 * you may have some problem. Solving this issue is
8197 * left as an exercise to the reader.
8198 */
8199 kvm->arch.last_tsc_nsec = 0;
8200 kvm->arch.last_tsc_write = 0;
8201 }
8202
8203 }
8204 return 0;
8205 }
8206
8207 void kvm_arch_hardware_disable(void)
8208 {
8209 kvm_x86_ops->hardware_disable();
8210 drop_user_return_notifiers();
8211 }
8212
8213 int kvm_arch_hardware_setup(void)
8214 {
8215 int r;
8216
8217 r = kvm_x86_ops->hardware_setup();
8218 if (r != 0)
8219 return r;
8220
8221 if (kvm_has_tsc_control) {
8222 /*
8223 * Make sure the user can only configure tsc_khz values that
8224 * fit into a signed integer.
8225 * A min value is not calculated needed because it will always
8226 * be 1 on all machines.
8227 */
8228 u64 max = min(0x7fffffffULL,
8229 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8230 kvm_max_guest_tsc_khz = max;
8231
8232 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8233 }
8234
8235 kvm_init_msr_list();
8236 return 0;
8237 }
8238
8239 void kvm_arch_hardware_unsetup(void)
8240 {
8241 kvm_x86_ops->hardware_unsetup();
8242 }
8243
8244 void kvm_arch_check_processor_compat(void *rtn)
8245 {
8246 kvm_x86_ops->check_processor_compatibility(rtn);
8247 }
8248
8249 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8250 {
8251 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8252 }
8253 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8254
8255 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8256 {
8257 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8258 }
8259
8260 struct static_key kvm_no_apic_vcpu __read_mostly;
8261 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8262
8263 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8264 {
8265 struct page *page;
8266 int r;
8267
8268 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8269 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8270 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8271 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8272 else
8273 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8274
8275 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8276 if (!page) {
8277 r = -ENOMEM;
8278 goto fail;
8279 }
8280 vcpu->arch.pio_data = page_address(page);
8281
8282 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8283
8284 r = kvm_mmu_create(vcpu);
8285 if (r < 0)
8286 goto fail_free_pio_data;
8287
8288 if (irqchip_in_kernel(vcpu->kvm)) {
8289 r = kvm_create_lapic(vcpu);
8290 if (r < 0)
8291 goto fail_mmu_destroy;
8292 } else
8293 static_key_slow_inc(&kvm_no_apic_vcpu);
8294
8295 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8296 GFP_KERNEL);
8297 if (!vcpu->arch.mce_banks) {
8298 r = -ENOMEM;
8299 goto fail_free_lapic;
8300 }
8301 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8302
8303 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8304 r = -ENOMEM;
8305 goto fail_free_mce_banks;
8306 }
8307
8308 fx_init(vcpu);
8309
8310 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8311
8312 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8313
8314 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8315
8316 kvm_async_pf_hash_reset(vcpu);
8317 kvm_pmu_init(vcpu);
8318
8319 vcpu->arch.pending_external_vector = -1;
8320 vcpu->arch.preempted_in_kernel = false;
8321
8322 kvm_hv_vcpu_init(vcpu);
8323
8324 return 0;
8325
8326 fail_free_mce_banks:
8327 kfree(vcpu->arch.mce_banks);
8328 fail_free_lapic:
8329 kvm_free_lapic(vcpu);
8330 fail_mmu_destroy:
8331 kvm_mmu_destroy(vcpu);
8332 fail_free_pio_data:
8333 free_page((unsigned long)vcpu->arch.pio_data);
8334 fail:
8335 return r;
8336 }
8337
8338 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8339 {
8340 int idx;
8341
8342 kvm_hv_vcpu_uninit(vcpu);
8343 kvm_pmu_destroy(vcpu);
8344 kfree(vcpu->arch.mce_banks);
8345 kvm_free_lapic(vcpu);
8346 idx = srcu_read_lock(&vcpu->kvm->srcu);
8347 kvm_mmu_destroy(vcpu);
8348 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8349 free_page((unsigned long)vcpu->arch.pio_data);
8350 if (!lapic_in_kernel(vcpu))
8351 static_key_slow_dec(&kvm_no_apic_vcpu);
8352 }
8353
8354 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8355 {
8356 vcpu->arch.l1tf_flush_l1d = true;
8357 kvm_x86_ops->sched_in(vcpu, cpu);
8358 }
8359
8360 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8361 {
8362 if (type)
8363 return -EINVAL;
8364
8365 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8366 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8367 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8368 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8369 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8370
8371 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8372 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8373 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8374 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8375 &kvm->arch.irq_sources_bitmap);
8376
8377 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8378 mutex_init(&kvm->arch.apic_map_lock);
8379 mutex_init(&kvm->arch.hyperv.hv_lock);
8380 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8381
8382 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8383 pvclock_update_vm_gtod_copy(kvm);
8384
8385 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8386 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8387
8388 kvm_page_track_init(kvm);
8389 kvm_mmu_init_vm(kvm);
8390
8391 if (kvm_x86_ops->vm_init)
8392 return kvm_x86_ops->vm_init(kvm);
8393
8394 return 0;
8395 }
8396
8397 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8398 {
8399 int r;
8400 r = vcpu_load(vcpu);
8401 BUG_ON(r);
8402 kvm_mmu_unload(vcpu);
8403 vcpu_put(vcpu);
8404 }
8405
8406 static void kvm_free_vcpus(struct kvm *kvm)
8407 {
8408 unsigned int i;
8409 struct kvm_vcpu *vcpu;
8410
8411 /*
8412 * Unpin any mmu pages first.
8413 */
8414 kvm_for_each_vcpu(i, vcpu, kvm) {
8415 kvm_clear_async_pf_completion_queue(vcpu);
8416 kvm_unload_vcpu_mmu(vcpu);
8417 }
8418 kvm_for_each_vcpu(i, vcpu, kvm)
8419 kvm_arch_vcpu_free(vcpu);
8420
8421 mutex_lock(&kvm->lock);
8422 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8423 kvm->vcpus[i] = NULL;
8424
8425 atomic_set(&kvm->online_vcpus, 0);
8426 mutex_unlock(&kvm->lock);
8427 }
8428
8429 void kvm_arch_sync_events(struct kvm *kvm)
8430 {
8431 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8432 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8433 kvm_free_pit(kvm);
8434 }
8435
8436 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8437 {
8438 int i, r;
8439 unsigned long hva;
8440 struct kvm_memslots *slots = kvm_memslots(kvm);
8441 struct kvm_memory_slot *slot, old;
8442
8443 /* Called with kvm->slots_lock held. */
8444 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8445 return -EINVAL;
8446
8447 slot = id_to_memslot(slots, id);
8448 if (size) {
8449 if (slot->npages)
8450 return -EEXIST;
8451
8452 /*
8453 * MAP_SHARED to prevent internal slot pages from being moved
8454 * by fork()/COW.
8455 */
8456 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8457 MAP_SHARED | MAP_ANONYMOUS, 0);
8458 if (IS_ERR((void *)hva))
8459 return PTR_ERR((void *)hva);
8460 } else {
8461 if (!slot->npages)
8462 return 0;
8463
8464 hva = 0;
8465 }
8466
8467 old = *slot;
8468 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8469 struct kvm_userspace_memory_region m;
8470
8471 m.slot = id | (i << 16);
8472 m.flags = 0;
8473 m.guest_phys_addr = gpa;
8474 m.userspace_addr = hva;
8475 m.memory_size = size;
8476 r = __kvm_set_memory_region(kvm, &m);
8477 if (r < 0)
8478 return r;
8479 }
8480
8481 if (!size)
8482 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8483
8484 return 0;
8485 }
8486 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8487
8488 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8489 {
8490 int r;
8491
8492 mutex_lock(&kvm->slots_lock);
8493 r = __x86_set_memory_region(kvm, id, gpa, size);
8494 mutex_unlock(&kvm->slots_lock);
8495
8496 return r;
8497 }
8498 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8499
8500 void kvm_arch_destroy_vm(struct kvm *kvm)
8501 {
8502 if (current->mm == kvm->mm) {
8503 /*
8504 * Free memory regions allocated on behalf of userspace,
8505 * unless the the memory map has changed due to process exit
8506 * or fd copying.
8507 */
8508 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8509 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8510 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8511 }
8512 if (kvm_x86_ops->vm_destroy)
8513 kvm_x86_ops->vm_destroy(kvm);
8514 kvm_pic_destroy(kvm);
8515 kvm_ioapic_destroy(kvm);
8516 kvm_free_vcpus(kvm);
8517 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8518 kvm_mmu_uninit_vm(kvm);
8519 kvm_page_track_cleanup(kvm);
8520 }
8521
8522 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8523 struct kvm_memory_slot *dont)
8524 {
8525 int i;
8526
8527 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8528 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8529 kvfree(free->arch.rmap[i]);
8530 free->arch.rmap[i] = NULL;
8531 }
8532 if (i == 0)
8533 continue;
8534
8535 if (!dont || free->arch.lpage_info[i - 1] !=
8536 dont->arch.lpage_info[i - 1]) {
8537 kvfree(free->arch.lpage_info[i - 1]);
8538 free->arch.lpage_info[i - 1] = NULL;
8539 }
8540 }
8541
8542 kvm_page_track_free_memslot(free, dont);
8543 }
8544
8545 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8546 unsigned long npages)
8547 {
8548 int i;
8549
8550 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8551 struct kvm_lpage_info *linfo;
8552 unsigned long ugfn;
8553 int lpages;
8554 int level = i + 1;
8555
8556 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8557 slot->base_gfn, level) + 1;
8558
8559 slot->arch.rmap[i] =
8560 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8561 if (!slot->arch.rmap[i])
8562 goto out_free;
8563 if (i == 0)
8564 continue;
8565
8566 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8567 if (!linfo)
8568 goto out_free;
8569
8570 slot->arch.lpage_info[i - 1] = linfo;
8571
8572 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8573 linfo[0].disallow_lpage = 1;
8574 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8575 linfo[lpages - 1].disallow_lpage = 1;
8576 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8577 /*
8578 * If the gfn and userspace address are not aligned wrt each
8579 * other, or if explicitly asked to, disable large page
8580 * support for this slot
8581 */
8582 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8583 !kvm_largepages_enabled()) {
8584 unsigned long j;
8585
8586 for (j = 0; j < lpages; ++j)
8587 linfo[j].disallow_lpage = 1;
8588 }
8589 }
8590
8591 if (kvm_page_track_create_memslot(slot, npages))
8592 goto out_free;
8593
8594 return 0;
8595
8596 out_free:
8597 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8598 kvfree(slot->arch.rmap[i]);
8599 slot->arch.rmap[i] = NULL;
8600 if (i == 0)
8601 continue;
8602
8603 kvfree(slot->arch.lpage_info[i - 1]);
8604 slot->arch.lpage_info[i - 1] = NULL;
8605 }
8606 return -ENOMEM;
8607 }
8608
8609 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
8610 {
8611 /*
8612 * memslots->generation has been incremented.
8613 * mmio generation may have reached its maximum value.
8614 */
8615 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
8616 }
8617
8618 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8619 struct kvm_memory_slot *memslot,
8620 const struct kvm_userspace_memory_region *mem,
8621 enum kvm_mr_change change)
8622 {
8623 return 0;
8624 }
8625
8626 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8627 struct kvm_memory_slot *new)
8628 {
8629 /* Still write protect RO slot */
8630 if (new->flags & KVM_MEM_READONLY) {
8631 kvm_mmu_slot_remove_write_access(kvm, new);
8632 return;
8633 }
8634
8635 /*
8636 * Call kvm_x86_ops dirty logging hooks when they are valid.
8637 *
8638 * kvm_x86_ops->slot_disable_log_dirty is called when:
8639 *
8640 * - KVM_MR_CREATE with dirty logging is disabled
8641 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8642 *
8643 * The reason is, in case of PML, we need to set D-bit for any slots
8644 * with dirty logging disabled in order to eliminate unnecessary GPA
8645 * logging in PML buffer (and potential PML buffer full VMEXT). This
8646 * guarantees leaving PML enabled during guest's lifetime won't have
8647 * any additonal overhead from PML when guest is running with dirty
8648 * logging disabled for memory slots.
8649 *
8650 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8651 * to dirty logging mode.
8652 *
8653 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8654 *
8655 * In case of write protect:
8656 *
8657 * Write protect all pages for dirty logging.
8658 *
8659 * All the sptes including the large sptes which point to this
8660 * slot are set to readonly. We can not create any new large
8661 * spte on this slot until the end of the logging.
8662 *
8663 * See the comments in fast_page_fault().
8664 */
8665 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8666 if (kvm_x86_ops->slot_enable_log_dirty)
8667 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8668 else
8669 kvm_mmu_slot_remove_write_access(kvm, new);
8670 } else {
8671 if (kvm_x86_ops->slot_disable_log_dirty)
8672 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8673 }
8674 }
8675
8676 void kvm_arch_commit_memory_region(struct kvm *kvm,
8677 const struct kvm_userspace_memory_region *mem,
8678 const struct kvm_memory_slot *old,
8679 const struct kvm_memory_slot *new,
8680 enum kvm_mr_change change)
8681 {
8682 int nr_mmu_pages = 0;
8683
8684 if (!kvm->arch.n_requested_mmu_pages)
8685 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8686
8687 if (nr_mmu_pages)
8688 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8689
8690 /*
8691 * Dirty logging tracks sptes in 4k granularity, meaning that large
8692 * sptes have to be split. If live migration is successful, the guest
8693 * in the source machine will be destroyed and large sptes will be
8694 * created in the destination. However, if the guest continues to run
8695 * in the source machine (for example if live migration fails), small
8696 * sptes will remain around and cause bad performance.
8697 *
8698 * Scan sptes if dirty logging has been stopped, dropping those
8699 * which can be collapsed into a single large-page spte. Later
8700 * page faults will create the large-page sptes.
8701 */
8702 if ((change != KVM_MR_DELETE) &&
8703 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8704 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8705 kvm_mmu_zap_collapsible_sptes(kvm, new);
8706
8707 /*
8708 * Set up write protection and/or dirty logging for the new slot.
8709 *
8710 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8711 * been zapped so no dirty logging staff is needed for old slot. For
8712 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8713 * new and it's also covered when dealing with the new slot.
8714 *
8715 * FIXME: const-ify all uses of struct kvm_memory_slot.
8716 */
8717 if (change != KVM_MR_DELETE)
8718 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8719 }
8720
8721 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8722 {
8723 kvm_mmu_invalidate_zap_all_pages(kvm);
8724 }
8725
8726 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8727 struct kvm_memory_slot *slot)
8728 {
8729 kvm_page_track_flush_slot(kvm, slot);
8730 }
8731
8732 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8733 {
8734 if (!list_empty_careful(&vcpu->async_pf.done))
8735 return true;
8736
8737 if (kvm_apic_has_events(vcpu))
8738 return true;
8739
8740 if (vcpu->arch.pv.pv_unhalted)
8741 return true;
8742
8743 if (vcpu->arch.exception.pending)
8744 return true;
8745
8746 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8747 (vcpu->arch.nmi_pending &&
8748 kvm_x86_ops->nmi_allowed(vcpu)))
8749 return true;
8750
8751 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8752 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8753 return true;
8754
8755 if (kvm_arch_interrupt_allowed(vcpu) &&
8756 kvm_cpu_has_interrupt(vcpu))
8757 return true;
8758
8759 if (kvm_hv_has_stimer_pending(vcpu))
8760 return true;
8761
8762 return false;
8763 }
8764
8765 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8766 {
8767 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8768 }
8769
8770 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
8771 {
8772 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
8773 return true;
8774
8775 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8776 kvm_test_request(KVM_REQ_SMI, vcpu) ||
8777 kvm_test_request(KVM_REQ_EVENT, vcpu))
8778 return true;
8779
8780 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
8781 return true;
8782
8783 return false;
8784 }
8785
8786 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8787 {
8788 return vcpu->arch.preempted_in_kernel;
8789 }
8790
8791 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8792 {
8793 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8794 }
8795
8796 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8797 {
8798 return kvm_x86_ops->interrupt_allowed(vcpu);
8799 }
8800
8801 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8802 {
8803 if (is_64_bit_mode(vcpu))
8804 return kvm_rip_read(vcpu);
8805 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8806 kvm_rip_read(vcpu));
8807 }
8808 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8809
8810 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8811 {
8812 return kvm_get_linear_rip(vcpu) == linear_rip;
8813 }
8814 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8815
8816 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8817 {
8818 unsigned long rflags;
8819
8820 rflags = kvm_x86_ops->get_rflags(vcpu);
8821 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8822 rflags &= ~X86_EFLAGS_TF;
8823 return rflags;
8824 }
8825 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8826
8827 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8828 {
8829 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8830 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8831 rflags |= X86_EFLAGS_TF;
8832 kvm_x86_ops->set_rflags(vcpu, rflags);
8833 }
8834
8835 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8836 {
8837 __kvm_set_rflags(vcpu, rflags);
8838 kvm_make_request(KVM_REQ_EVENT, vcpu);
8839 }
8840 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8841
8842 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8843 {
8844 int r;
8845
8846 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8847 work->wakeup_all)
8848 return;
8849
8850 r = kvm_mmu_reload(vcpu);
8851 if (unlikely(r))
8852 return;
8853
8854 if (!vcpu->arch.mmu.direct_map &&
8855 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8856 return;
8857
8858 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8859 }
8860
8861 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8862 {
8863 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8864 }
8865
8866 static inline u32 kvm_async_pf_next_probe(u32 key)
8867 {
8868 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8869 }
8870
8871 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8872 {
8873 u32 key = kvm_async_pf_hash_fn(gfn);
8874
8875 while (vcpu->arch.apf.gfns[key] != ~0)
8876 key = kvm_async_pf_next_probe(key);
8877
8878 vcpu->arch.apf.gfns[key] = gfn;
8879 }
8880
8881 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8882 {
8883 int i;
8884 u32 key = kvm_async_pf_hash_fn(gfn);
8885
8886 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8887 (vcpu->arch.apf.gfns[key] != gfn &&
8888 vcpu->arch.apf.gfns[key] != ~0); i++)
8889 key = kvm_async_pf_next_probe(key);
8890
8891 return key;
8892 }
8893
8894 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8895 {
8896 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8897 }
8898
8899 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8900 {
8901 u32 i, j, k;
8902
8903 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8904 while (true) {
8905 vcpu->arch.apf.gfns[i] = ~0;
8906 do {
8907 j = kvm_async_pf_next_probe(j);
8908 if (vcpu->arch.apf.gfns[j] == ~0)
8909 return;
8910 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8911 /*
8912 * k lies cyclically in ]i,j]
8913 * | i.k.j |
8914 * |....j i.k.| or |.k..j i...|
8915 */
8916 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8917 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8918 i = j;
8919 }
8920 }
8921
8922 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8923 {
8924
8925 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8926 sizeof(val));
8927 }
8928
8929 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8930 {
8931
8932 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8933 sizeof(u32));
8934 }
8935
8936 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8937 struct kvm_async_pf *work)
8938 {
8939 struct x86_exception fault;
8940
8941 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8942 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8943
8944 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8945 (vcpu->arch.apf.send_user_only &&
8946 kvm_x86_ops->get_cpl(vcpu) == 0))
8947 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8948 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8949 fault.vector = PF_VECTOR;
8950 fault.error_code_valid = true;
8951 fault.error_code = 0;
8952 fault.nested_page_fault = false;
8953 fault.address = work->arch.token;
8954 fault.async_page_fault = true;
8955 kvm_inject_page_fault(vcpu, &fault);
8956 }
8957 }
8958
8959 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8960 struct kvm_async_pf *work)
8961 {
8962 struct x86_exception fault;
8963 u32 val;
8964
8965 if (work->wakeup_all)
8966 work->arch.token = ~0; /* broadcast wakeup */
8967 else
8968 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8969 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8970
8971 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8972 !apf_get_user(vcpu, &val)) {
8973 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8974 vcpu->arch.exception.pending &&
8975 vcpu->arch.exception.nr == PF_VECTOR &&
8976 !apf_put_user(vcpu, 0)) {
8977 vcpu->arch.exception.injected = false;
8978 vcpu->arch.exception.pending = false;
8979 vcpu->arch.exception.nr = 0;
8980 vcpu->arch.exception.has_error_code = false;
8981 vcpu->arch.exception.error_code = 0;
8982 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8983 fault.vector = PF_VECTOR;
8984 fault.error_code_valid = true;
8985 fault.error_code = 0;
8986 fault.nested_page_fault = false;
8987 fault.address = work->arch.token;
8988 fault.async_page_fault = true;
8989 kvm_inject_page_fault(vcpu, &fault);
8990 }
8991 }
8992 vcpu->arch.apf.halted = false;
8993 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8994 }
8995
8996 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8997 {
8998 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8999 return true;
9000 else
9001 return kvm_can_do_async_pf(vcpu);
9002 }
9003
9004 void kvm_arch_start_assignment(struct kvm *kvm)
9005 {
9006 atomic_inc(&kvm->arch.assigned_device_count);
9007 }
9008 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9009
9010 void kvm_arch_end_assignment(struct kvm *kvm)
9011 {
9012 atomic_dec(&kvm->arch.assigned_device_count);
9013 }
9014 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9015
9016 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9017 {
9018 return atomic_read(&kvm->arch.assigned_device_count);
9019 }
9020 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9021
9022 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9023 {
9024 atomic_inc(&kvm->arch.noncoherent_dma_count);
9025 }
9026 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9027
9028 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9029 {
9030 atomic_dec(&kvm->arch.noncoherent_dma_count);
9031 }
9032 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9033
9034 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9035 {
9036 return atomic_read(&kvm->arch.noncoherent_dma_count);
9037 }
9038 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9039
9040 bool kvm_arch_has_irq_bypass(void)
9041 {
9042 return kvm_x86_ops->update_pi_irte != NULL;
9043 }
9044
9045 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9046 struct irq_bypass_producer *prod)
9047 {
9048 struct kvm_kernel_irqfd *irqfd =
9049 container_of(cons, struct kvm_kernel_irqfd, consumer);
9050
9051 irqfd->producer = prod;
9052
9053 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9054 prod->irq, irqfd->gsi, 1);
9055 }
9056
9057 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9058 struct irq_bypass_producer *prod)
9059 {
9060 int ret;
9061 struct kvm_kernel_irqfd *irqfd =
9062 container_of(cons, struct kvm_kernel_irqfd, consumer);
9063
9064 WARN_ON(irqfd->producer != prod);
9065 irqfd->producer = NULL;
9066
9067 /*
9068 * When producer of consumer is unregistered, we change back to
9069 * remapped mode, so we can re-use the current implementation
9070 * when the irq is masked/disabled or the consumer side (KVM
9071 * int this case doesn't want to receive the interrupts.
9072 */
9073 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9074 if (ret)
9075 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9076 " fails: %d\n", irqfd->consumer.token, ret);
9077 }
9078
9079 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9080 uint32_t guest_irq, bool set)
9081 {
9082 if (!kvm_x86_ops->update_pi_irte)
9083 return -EINVAL;
9084
9085 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9086 }
9087
9088 bool kvm_vector_hashing_enabled(void)
9089 {
9090 return vector_hashing;
9091 }
9092 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9093
9094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9108 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9109 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9110 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9111 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9112 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);