]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'docs-4.10-2' of git://git.lwn.net/linux
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
83 */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32 __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 int i;
203 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 unsigned slot;
210 struct kvm_shared_msrs *locals
211 = container_of(urn, struct kvm_shared_msrs, urn);
212 struct kvm_shared_msr_values *values;
213 unsigned long flags;
214
215 /*
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
218 */
219 local_irq_save(flags);
220 if (locals->registered) {
221 locals->registered = false;
222 user_return_notifier_unregister(urn);
223 }
224 local_irq_restore(flags);
225 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 values = &locals->values[slot];
227 if (values->host != values->curr) {
228 wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 values->curr = values->host;
230 }
231 }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 u64 value;
237 unsigned int cpu = smp_processor_id();
238 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot >= shared_msrs_global.nr) {
243 printk(KERN_ERR "kvm: invalid MSR slot!");
244 return;
245 }
246 rdmsrl_safe(msr, &value);
247 smsr->values[slot].host = value;
248 smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 shared_msrs_global.msrs[slot] = msr;
255 if (slot >= shared_msrs_global.nr)
256 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262 unsigned i;
263
264 for (i = 0; i < shared_msrs_global.nr; ++i)
265 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 unsigned int cpu = smp_processor_id();
271 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 int err;
273
274 if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 return 0;
276 smsr->values[slot].curr = value;
277 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 if (err)
279 return 1;
280
281 if (!smsr->registered) {
282 smsr->urn.on_user_return = kvm_on_user_return;
283 user_return_notifier_register(&smsr->urn);
284 smsr->registered = true;
285 }
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292 unsigned int cpu = smp_processor_id();
293 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295 if (smsr->registered)
296 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 u64 old_state = vcpu->arch.apic_base &
308 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 u64 new_state = msr_info->data &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314 if (!msr_info->host_initiated &&
315 ((msr_info->data & reserved_bits) != 0 ||
316 new_state == X2APIC_ENABLE ||
317 (new_state == MSR_IA32_APICBASE_ENABLE &&
318 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 old_state == 0)))
321 return 1;
322
323 kvm_lapic_set_base(vcpu, msr_info->data);
324 return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 /* Fault while not rebooting. We want the trace. */
331 BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
337 #define EXCPT_PF 2
338
339 static int exception_class(int vector)
340 {
341 switch (vector) {
342 case PF_VECTOR:
343 return EXCPT_PF;
344 case DE_VECTOR:
345 case TS_VECTOR:
346 case NP_VECTOR:
347 case SS_VECTOR:
348 case GP_VECTOR:
349 return EXCPT_CONTRIBUTORY;
350 default:
351 break;
352 }
353 return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT 0
357 #define EXCPT_TRAP 1
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
360
361 static int exception_type(int vector)
362 {
363 unsigned int mask;
364
365 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 return EXCPT_INTERRUPT;
367
368 mask = 1 << vector;
369
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 return EXCPT_TRAP;
373
374 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 return EXCPT_ABORT;
376
377 /* Reserved exceptions will result in fault */
378 return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 unsigned nr, bool has_error, u32 error_code,
383 bool reinject)
384 {
385 u32 prev_nr;
386 int class1, class2;
387
388 kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390 if (!vcpu->arch.exception.pending) {
391 queue:
392 if (has_error && !is_protmode(vcpu))
393 has_error = false;
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = has_error;
396 vcpu->arch.exception.nr = nr;
397 vcpu->arch.exception.error_code = error_code;
398 vcpu->arch.exception.reinject = reinject;
399 return;
400 }
401
402 /* to check exception */
403 prev_nr = vcpu->arch.exception.nr;
404 if (prev_nr == DF_VECTOR) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 return;
408 }
409 class1 = exception_class(prev_nr);
410 class2 = exception_class(nr);
411 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu->arch.exception.pending = true;
415 vcpu->arch.exception.has_error_code = true;
416 vcpu->arch.exception.nr = DF_VECTOR;
417 vcpu->arch.exception.error_code = 0;
418 } else
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
421 exception */
422 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 if (err)
440 kvm_inject_gp(vcpu, 0);
441 else
442 return kvm_skip_emulated_instruction(vcpu);
443
444 return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450 ++vcpu->stat.pf_guest;
451 vcpu->arch.cr2 = fault->address;
452 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460 else
461 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463 return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468 atomic_inc(&vcpu->arch.nmi_queued);
469 kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475 kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481 kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
487 * a #GP and return false.
488 */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492 return true;
493 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494 return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501 return true;
502
503 kvm_queue_exception(vcpu, UD_VECTOR);
504 return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509 * This function will be used to read from the physical memory of the currently
510 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511 * can read from guest physical or from the guest's guest physical memory.
512 */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514 gfn_t ngfn, void *data, int offset, int len,
515 u32 access)
516 {
517 struct x86_exception exception;
518 gfn_t real_gfn;
519 gpa_t ngpa;
520
521 ngpa = gfn_to_gpa(ngfn);
522 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523 if (real_gfn == UNMAPPED_GVA)
524 return -EFAULT;
525
526 real_gfn = gpa_to_gfn(real_gfn);
527
528 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533 void *data, int offset, int len, u32 access)
534 {
535 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536 data, offset, len, access);
537 }
538
539 /*
540 * Load the pae pdptrs. Return true is they are all valid.
541 */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546 int i;
547 int ret;
548 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551 offset * sizeof(u64), sizeof(pdpte),
552 PFERR_USER_MASK|PFERR_WRITE_MASK);
553 if (ret < 0) {
554 ret = 0;
555 goto out;
556 }
557 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558 if ((pdpte[i] & PT_PRESENT_MASK) &&
559 (pdpte[i] &
560 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561 ret = 0;
562 goto out;
563 }
564 }
565 ret = 1;
566
567 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568 __set_bit(VCPU_EXREG_PDPTR,
569 (unsigned long *)&vcpu->arch.regs_avail);
570 __set_bit(VCPU_EXREG_PDPTR,
571 (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574 return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581 bool changed = true;
582 int offset;
583 gfn_t gfn;
584 int r;
585
586 if (is_long_mode(vcpu) || !is_pae(vcpu))
587 return false;
588
589 if (!test_bit(VCPU_EXREG_PDPTR,
590 (unsigned long *)&vcpu->arch.regs_avail))
591 return true;
592
593 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596 PFERR_USER_MASK | PFERR_WRITE_MASK);
597 if (r < 0)
598 goto out;
599 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602 return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608 unsigned long old_cr0 = kvm_read_cr0(vcpu);
609 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611 cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614 if (cr0 & 0xffffffff00000000UL)
615 return 1;
616 #endif
617
618 cr0 &= ~CR0_RESERVED_BITS;
619
620 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621 return 1;
622
623 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624 return 1;
625
626 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628 if ((vcpu->arch.efer & EFER_LME)) {
629 int cs_db, cs_l;
630
631 if (!is_pae(vcpu))
632 return 1;
633 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634 if (cs_l)
635 return 1;
636 } else
637 #endif
638 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639 kvm_read_cr3(vcpu)))
640 return 1;
641 }
642
643 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644 return 1;
645
646 kvm_x86_ops->set_cr0(vcpu, cr0);
647
648 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649 kvm_clear_async_pf_completion_queue(vcpu);
650 kvm_async_pf_hash_reset(vcpu);
651 }
652
653 if ((cr0 ^ old_cr0) & update_bits)
654 kvm_mmu_reset_context(vcpu);
655
656 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661 return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674 !vcpu->guest_xcr0_loaded) {
675 /* kvm_set_xcr() also depends on this */
676 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677 vcpu->guest_xcr0_loaded = 1;
678 }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683 if (vcpu->guest_xcr0_loaded) {
684 if (vcpu->arch.xcr0 != host_xcr0)
685 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686 vcpu->guest_xcr0_loaded = 0;
687 }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692 u64 xcr0 = xcr;
693 u64 old_xcr0 = vcpu->arch.xcr0;
694 u64 valid_bits;
695
696 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
697 if (index != XCR_XFEATURE_ENABLED_MASK)
698 return 1;
699 if (!(xcr0 & XFEATURE_MASK_FP))
700 return 1;
701 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702 return 1;
703
704 /*
705 * Do not allow the guest to set bits that we do not support
706 * saving. However, xcr0 bit 0 is always set, even if the
707 * emulated CPU does not support XSAVE (see fx_init).
708 */
709 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710 if (xcr0 & ~valid_bits)
711 return 1;
712
713 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715 return 1;
716
717 if (xcr0 & XFEATURE_MASK_AVX512) {
718 if (!(xcr0 & XFEATURE_MASK_YMM))
719 return 1;
720 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721 return 1;
722 }
723 vcpu->arch.xcr0 = xcr0;
724
725 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726 kvm_update_cpuid(vcpu);
727 return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733 __kvm_set_xcr(vcpu, index, xcr)) {
734 kvm_inject_gp(vcpu, 0);
735 return 1;
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743 unsigned long old_cr4 = kvm_read_cr4(vcpu);
744 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747 if (cr4 & CR4_RESERVED_BITS)
748 return 1;
749
750 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751 return 1;
752
753 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754 return 1;
755
756 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757 return 1;
758
759 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760 return 1;
761
762 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763 return 1;
764
765 if (is_long_mode(vcpu)) {
766 if (!(cr4 & X86_CR4_PAE))
767 return 1;
768 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769 && ((cr4 ^ old_cr4) & pdptr_bits)
770 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 kvm_read_cr3(vcpu)))
772 return 1;
773
774 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775 if (!guest_cpuid_has_pcid(vcpu))
776 return 1;
777
778 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780 return 1;
781 }
782
783 if (kvm_x86_ops->set_cr4(vcpu, cr4))
784 return 1;
785
786 if (((cr4 ^ old_cr4) & pdptr_bits) ||
787 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788 kvm_mmu_reset_context(vcpu);
789
790 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791 kvm_update_cpuid(vcpu);
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800 cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804 kvm_mmu_sync_roots(vcpu);
805 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806 return 0;
807 }
808
809 if (is_long_mode(vcpu)) {
810 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811 return 1;
812 } else if (is_pae(vcpu) && is_paging(vcpu) &&
813 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814 return 1;
815
816 vcpu->arch.cr3 = cr3;
817 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818 kvm_mmu_new_cr3(vcpu);
819 return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825 if (cr8 & CR8_RESERVED_BITS)
826 return 1;
827 if (lapic_in_kernel(vcpu))
828 kvm_lapic_set_tpr(vcpu, cr8);
829 else
830 vcpu->arch.cr8 = cr8;
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837 if (lapic_in_kernel(vcpu))
838 return kvm_lapic_get_cr8(vcpu);
839 else
840 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846 int i;
847
848 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849 for (i = 0; i < KVM_NR_DB_REGS; i++)
850 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852 }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863 unsigned long dr7;
864
865 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866 dr7 = vcpu->arch.guest_debug_dr7;
867 else
868 dr7 = vcpu->arch.dr7;
869 kvm_x86_ops->set_dr7(vcpu, dr7);
870 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871 if (dr7 & DR7_BP_EN_MASK)
872 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877 u64 fixed = DR6_FIXED_1;
878
879 if (!guest_cpuid_has_rtm(vcpu))
880 fixed |= DR6_RTM;
881 return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886 switch (dr) {
887 case 0 ... 3:
888 vcpu->arch.db[dr] = val;
889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 vcpu->arch.eff_db[dr] = val;
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (val & 0xffffffff00000000ULL)
896 return -1; /* #GP */
897 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898 kvm_update_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 if (val & 0xffffffff00000000ULL)
904 return -1; /* #GP */
905 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906 kvm_update_dr7(vcpu);
907 break;
908 }
909
910 return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 if (__kvm_set_dr(vcpu, dr, val)) {
916 kvm_inject_gp(vcpu, 0);
917 return 1;
918 }
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925 switch (dr) {
926 case 0 ... 3:
927 *val = vcpu->arch.db[dr];
928 break;
929 case 4:
930 /* fall through */
931 case 6:
932 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933 *val = vcpu->arch.dr6;
934 else
935 *val = kvm_x86_ops->get_dr6(vcpu);
936 break;
937 case 5:
938 /* fall through */
939 default: /* 7 */
940 *val = vcpu->arch.dr7;
941 break;
942 }
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950 u64 data;
951 int err;
952
953 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954 if (err)
955 return err;
956 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958 return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965 *
966 * This list is modified at module load time to reflect the
967 * capabilities of the host cpu. This capabilities test skips MSRs that are
968 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969 * may depend on host virtualization features rather than host cpu features.
970 */
971
972 static u32 msrs_to_save[] = {
973 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974 MSR_STAR,
975 #ifdef CONFIG_X86_64
976 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991 HV_X64_MSR_RESET,
992 HV_X64_MSR_VP_INDEX,
993 HV_X64_MSR_VP_RUNTIME,
994 HV_X64_MSR_SCONTROL,
995 HV_X64_MSR_STIMER0_CONFIG,
996 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997 MSR_KVM_PV_EOI_EN,
998
999 MSR_IA32_TSC_ADJUST,
1000 MSR_IA32_TSCDEADLINE,
1001 MSR_IA32_MISC_ENABLE,
1002 MSR_IA32_MCG_STATUS,
1003 MSR_IA32_MCG_CTL,
1004 MSR_IA32_MCG_EXT_CTL,
1005 MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012 if (efer & efer_reserved_bits)
1013 return false;
1014
1015 if (efer & EFER_FFXSR) {
1016 struct kvm_cpuid_entry2 *feat;
1017
1018 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020 return false;
1021 }
1022
1023 if (efer & EFER_SVME) {
1024 struct kvm_cpuid_entry2 *feat;
1025
1026 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028 return false;
1029 }
1030
1031 return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037 u64 old_efer = vcpu->arch.efer;
1038
1039 if (!kvm_valid_efer(vcpu, efer))
1040 return 1;
1041
1042 if (is_paging(vcpu)
1043 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044 return 1;
1045
1046 efer &= ~EFER_LMA;
1047 efer |= vcpu->arch.efer & EFER_LMA;
1048
1049 kvm_x86_ops->set_efer(vcpu, efer);
1050
1051 /* Update reserved bits */
1052 if ((efer ^ old_efer) & EFER_NX)
1053 kvm_mmu_reset_context(vcpu);
1054
1055 return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060 efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065 * Writes msr value into into the appropriate "register".
1066 * Returns 0 on success, non-0 otherwise.
1067 * Assumes vcpu_load() was already called.
1068 */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071 switch (msr->index) {
1072 case MSR_FS_BASE:
1073 case MSR_GS_BASE:
1074 case MSR_KERNEL_GS_BASE:
1075 case MSR_CSTAR:
1076 case MSR_LSTAR:
1077 if (is_noncanonical_address(msr->data))
1078 return 1;
1079 break;
1080 case MSR_IA32_SYSENTER_EIP:
1081 case MSR_IA32_SYSENTER_ESP:
1082 /*
1083 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 * non-canonical address is written on Intel but not on
1085 * AMD (which ignores the top 32-bits, because it does
1086 * not implement 64-bit SYSENTER).
1087 *
1088 * 64-bit code should hence be able to write a non-canonical
1089 * value on AMD. Making the address canonical ensures that
1090 * vmentry does not fail on Intel after writing a non-canonical
1091 * value, and that something deterministic happens if the guest
1092 * invokes 64-bit SYSENTER.
1093 */
1094 msr->data = get_canonical(msr->data);
1095 }
1096 return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101 * Adapt set_msr() to msr_io()'s calling convention
1102 */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105 struct msr_data msr;
1106 int r;
1107
1108 msr.index = index;
1109 msr.host_initiated = true;
1110 r = kvm_get_msr(vcpu, &msr);
1111 if (r)
1112 return r;
1113
1114 *data = msr.data;
1115 return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120 struct msr_data msr;
1121
1122 msr.data = *data;
1123 msr.index = index;
1124 msr.host_initiated = true;
1125 return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130 seqcount_t seq;
1131
1132 struct { /* extract of a clocksource struct */
1133 int vclock_mode;
1134 cycle_t cycle_last;
1135 cycle_t mask;
1136 u32 mult;
1137 u32 shift;
1138 } clock;
1139
1140 u64 boot_ns;
1141 u64 nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149 u64 boot_ns;
1150
1151 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153 write_seqcount_begin(&vdata->seq);
1154
1155 /* copy pvclock gtod data */
1156 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1157 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1158 vdata->clock.mask = tk->tkr_mono.mask;
1159 vdata->clock.mult = tk->tkr_mono.mult;
1160 vdata->clock.shift = tk->tkr_mono.shift;
1161
1162 vdata->boot_ns = boot_ns;
1163 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1164
1165 write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171 /*
1172 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173 * vcpu_enter_guest. This function is only called from
1174 * the physical CPU that is running vcpu.
1175 */
1176 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181 int version;
1182 int r;
1183 struct pvclock_wall_clock wc;
1184 struct timespec64 boot;
1185
1186 if (!wall_clock)
1187 return;
1188
1189 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190 if (r)
1191 return;
1192
1193 if (version & 1)
1194 ++version; /* first time write, random junk */
1195
1196 ++version;
1197
1198 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199 return;
1200
1201 /*
1202 * The guest calculates current wall clock time by adding
1203 * system time (updated by kvm_guest_time_update below) to the
1204 * wall clock specified here. guest system time equals host
1205 * system time for us, thus we must fill in host boot time here.
1206 */
1207 getboottime64(&boot);
1208
1209 if (kvm->arch.kvmclock_offset) {
1210 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211 boot = timespec64_sub(boot, ts);
1212 }
1213 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214 wc.nsec = boot.tv_nsec;
1215 wc.version = version;
1216
1217 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219 version++;
1220 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225 do_shl32_div32(dividend, divisor);
1226 return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230 s8 *pshift, u32 *pmultiplier)
1231 {
1232 uint64_t scaled64;
1233 int32_t shift = 0;
1234 uint64_t tps64;
1235 uint32_t tps32;
1236
1237 tps64 = base_hz;
1238 scaled64 = scaled_hz;
1239 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240 tps64 >>= 1;
1241 shift--;
1242 }
1243
1244 tps32 = (uint32_t)tps64;
1245 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247 scaled64 >>= 1;
1248 else
1249 tps32 <<= 1;
1250 shift++;
1251 }
1252
1253 *pshift = shift;
1254 *pmultiplier = div_frac(scaled64, tps32);
1255
1256 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269 u64 v = (u64)khz * (1000000 + ppm);
1270 do_div(v, 1000000);
1271 return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276 u64 ratio;
1277
1278 /* Guest TSC same frequency as host TSC? */
1279 if (!scale) {
1280 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281 return 0;
1282 }
1283
1284 /* TSC scaling supported? */
1285 if (!kvm_has_tsc_control) {
1286 if (user_tsc_khz > tsc_khz) {
1287 vcpu->arch.tsc_catchup = 1;
1288 vcpu->arch.tsc_always_catchup = 1;
1289 return 0;
1290 } else {
1291 WARN(1, "user requested TSC rate below hardware speed\n");
1292 return -1;
1293 }
1294 }
1295
1296 /* TSC scaling required - calculate ratio */
1297 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298 user_tsc_khz, tsc_khz);
1299
1300 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302 user_tsc_khz);
1303 return -1;
1304 }
1305
1306 vcpu->arch.tsc_scaling_ratio = ratio;
1307 return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312 u32 thresh_lo, thresh_hi;
1313 int use_scaling = 0;
1314
1315 /* tsc_khz can be zero if TSC calibration fails */
1316 if (user_tsc_khz == 0) {
1317 /* set tsc_scaling_ratio to a safe value */
1318 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319 return -1;
1320 }
1321
1322 /* Compute a scale to convert nanoseconds in TSC cycles */
1323 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324 &vcpu->arch.virtual_tsc_shift,
1325 &vcpu->arch.virtual_tsc_mult);
1326 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328 /*
1329 * Compute the variation in TSC rate which is acceptable
1330 * within the range of tolerance and decide if the
1331 * rate being applied is within that bounds of the hardware
1332 * rate. If so, no scaling or compensation need be done.
1333 */
1334 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338 use_scaling = 1;
1339 }
1340 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346 vcpu->arch.virtual_tsc_mult,
1347 vcpu->arch.virtual_tsc_shift);
1348 tsc += vcpu->arch.this_tsc_write;
1349 return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355 bool vcpus_matched;
1356 struct kvm_arch *ka = &vcpu->kvm->arch;
1357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360 atomic_read(&vcpu->kvm->online_vcpus));
1361
1362 /*
1363 * Once the masterclock is enabled, always perform request in
1364 * order to update it.
1365 *
1366 * In order to enable masterclock, the host clocksource must be TSC
1367 * and the vcpus need to have matched TSCs. When that happens,
1368 * perform request to enable masterclock.
1369 */
1370 if (ka->use_master_clock ||
1371 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375 atomic_read(&vcpu->kvm->online_vcpus),
1376 ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382 u64 curr_offset = vcpu->arch.tsc_offset;
1383 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387 * Multiply tsc by a fixed point number represented by ratio.
1388 *
1389 * The most significant 64-N bits (mult) of ratio represent the
1390 * integral part of the fixed point number; the remaining N bits
1391 * (frac) represent the fractional part, ie. ratio represents a fixed
1392 * point number (mult + frac * 2^(-N)).
1393 *
1394 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395 */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403 u64 _tsc = tsc;
1404 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406 if (ratio != kvm_default_tsc_scaling_ratio)
1407 _tsc = __scale_tsc(ratio, tsc);
1408
1409 return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415 u64 tsc;
1416
1417 tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419 return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431 vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436 struct kvm *kvm = vcpu->kvm;
1437 u64 offset, ns, elapsed;
1438 unsigned long flags;
1439 s64 usdiff;
1440 bool matched;
1441 bool already_matched;
1442 u64 data = msr->data;
1443
1444 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445 offset = kvm_compute_tsc_offset(vcpu, data);
1446 ns = ktime_get_boot_ns();
1447 elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449 if (vcpu->arch.virtual_tsc_khz) {
1450 int faulted = 0;
1451
1452 /* n.b - signed multiplication and division required */
1453 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457 /* do_div() only does unsigned */
1458 asm("1: idivl %[divisor]\n"
1459 "2: xor %%edx, %%edx\n"
1460 " movl $0, %[faulted]\n"
1461 "3:\n"
1462 ".section .fixup,\"ax\"\n"
1463 "4: movl $1, %[faulted]\n"
1464 " jmp 3b\n"
1465 ".previous\n"
1466
1467 _ASM_EXTABLE(1b, 4b)
1468
1469 : "=A"(usdiff), [faulted] "=r" (faulted)
1470 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473 do_div(elapsed, 1000);
1474 usdiff -= elapsed;
1475 if (usdiff < 0)
1476 usdiff = -usdiff;
1477
1478 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479 if (faulted)
1480 usdiff = USEC_PER_SEC;
1481 } else
1482 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484 /*
1485 * Special case: TSC write with a small delta (1 second) of virtual
1486 * cycle time against real time is interpreted as an attempt to
1487 * synchronize the CPU.
1488 *
1489 * For a reliable TSC, we can match TSC offsets, and for an unstable
1490 * TSC, we add elapsed time in this computation. We could let the
1491 * compensation code attempt to catch up if we fall behind, but
1492 * it's better to try to match offsets from the beginning.
1493 */
1494 if (usdiff < USEC_PER_SEC &&
1495 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496 if (!check_tsc_unstable()) {
1497 offset = kvm->arch.cur_tsc_offset;
1498 pr_debug("kvm: matched tsc offset for %llu\n", data);
1499 } else {
1500 u64 delta = nsec_to_cycles(vcpu, elapsed);
1501 data += delta;
1502 offset = kvm_compute_tsc_offset(vcpu, data);
1503 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504 }
1505 matched = true;
1506 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507 } else {
1508 /*
1509 * We split periods of matched TSC writes into generations.
1510 * For each generation, we track the original measured
1511 * nanosecond time, offset, and write, so if TSCs are in
1512 * sync, we can match exact offset, and if not, we can match
1513 * exact software computation in compute_guest_tsc()
1514 *
1515 * These values are tracked in kvm->arch.cur_xxx variables.
1516 */
1517 kvm->arch.cur_tsc_generation++;
1518 kvm->arch.cur_tsc_nsec = ns;
1519 kvm->arch.cur_tsc_write = data;
1520 kvm->arch.cur_tsc_offset = offset;
1521 matched = false;
1522 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523 kvm->arch.cur_tsc_generation, data);
1524 }
1525
1526 /*
1527 * We also track th most recent recorded KHZ, write and time to
1528 * allow the matching interval to be extended at each write.
1529 */
1530 kvm->arch.last_tsc_nsec = ns;
1531 kvm->arch.last_tsc_write = data;
1532 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534 vcpu->arch.last_guest_tsc = data;
1535
1536 /* Keep track of which generation this VCPU has synchronized to */
1537 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542 update_ia32_tsc_adjust_msr(vcpu, offset);
1543 kvm_vcpu_write_tsc_offset(vcpu, offset);
1544 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547 if (!matched) {
1548 kvm->arch.nr_vcpus_matched_tsc = 0;
1549 } else if (!already_matched) {
1550 kvm->arch.nr_vcpus_matched_tsc++;
1551 }
1552
1553 kvm_track_tsc_matching(vcpu);
1554 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560 s64 adjustment)
1561 {
1562 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568 WARN_ON(adjustment < 0);
1569 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570 adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static cycle_t read_tsc(void)
1576 {
1577 cycle_t ret = (cycle_t)rdtsc_ordered();
1578 u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580 if (likely(ret >= last))
1581 return ret;
1582
1583 /*
1584 * GCC likes to generate cmov here, but this branch is extremely
1585 * predictable (it's just a function of time and the likely is
1586 * very likely) and there's a data dependence, so force GCC
1587 * to generate a branch instead. I don't barrier() because
1588 * we don't actually need a barrier, and if this function
1589 * ever gets inlined it will generate worse code.
1590 */
1591 asm volatile ("");
1592 return last;
1593 }
1594
1595 static inline u64 vgettsc(cycle_t *cycle_now)
1596 {
1597 long v;
1598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600 *cycle_now = read_tsc();
1601
1602 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603 return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1607 {
1608 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609 unsigned long seq;
1610 int mode;
1611 u64 ns;
1612
1613 do {
1614 seq = read_seqcount_begin(&gtod->seq);
1615 mode = gtod->clock.vclock_mode;
1616 ns = gtod->nsec_base;
1617 ns += vgettsc(cycle_now);
1618 ns >>= gtod->clock.shift;
1619 ns += gtod->boot_ns;
1620 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621 *t = ns;
1622
1623 return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1628 {
1629 /* checked again under seqlock below */
1630 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631 return false;
1632
1633 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638 *
1639 * Assuming a stable TSC across physical CPUS, and a stable TSC
1640 * across virtual CPUs, the following condition is possible.
1641 * Each numbered line represents an event visible to both
1642 * CPUs at the next numbered event.
1643 *
1644 * "timespecX" represents host monotonic time. "tscX" represents
1645 * RDTSC value.
1646 *
1647 * VCPU0 on CPU0 | VCPU1 on CPU1
1648 *
1649 * 1. read timespec0,tsc0
1650 * 2. | timespec1 = timespec0 + N
1651 * | tsc1 = tsc0 + M
1652 * 3. transition to guest | transition to guest
1653 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1655 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656 *
1657 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658 *
1659 * - ret0 < ret1
1660 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661 * ...
1662 * - 0 < N - M => M < N
1663 *
1664 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665 * always the case (the difference between two distinct xtime instances
1666 * might be smaller then the difference between corresponding TSC reads,
1667 * when updating guest vcpus pvclock areas).
1668 *
1669 * To avoid that problem, do not allow visibility of distinct
1670 * system_timestamp/tsc_timestamp values simultaneously: use a master
1671 * copy of host monotonic time values. Update that master copy
1672 * in lockstep.
1673 *
1674 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675 *
1676 */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681 struct kvm_arch *ka = &kvm->arch;
1682 int vclock_mode;
1683 bool host_tsc_clocksource, vcpus_matched;
1684
1685 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686 atomic_read(&kvm->online_vcpus));
1687
1688 /*
1689 * If the host uses TSC clock, then passthrough TSC as stable
1690 * to the guest.
1691 */
1692 host_tsc_clocksource = kvm_get_time_and_clockread(
1693 &ka->master_kernel_ns,
1694 &ka->master_cycle_now);
1695
1696 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697 && !backwards_tsc_observed
1698 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700 if (ka->use_master_clock)
1701 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705 vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717 int i;
1718 struct kvm_vcpu *vcpu;
1719 struct kvm_arch *ka = &kvm->arch;
1720
1721 spin_lock(&ka->pvclock_gtod_sync_lock);
1722 kvm_make_mclock_inprogress_request(kvm);
1723 /* no guest entries from this point */
1724 pvclock_update_vm_gtod_copy(kvm);
1725
1726 kvm_for_each_vcpu(i, vcpu, kvm)
1727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729 /* guest entries allowed */
1730 kvm_for_each_vcpu(i, vcpu, kvm)
1731 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733 spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739 struct kvm_arch *ka = &kvm->arch;
1740 struct pvclock_vcpu_time_info hv_clock;
1741
1742 spin_lock(&ka->pvclock_gtod_sync_lock);
1743 if (!ka->use_master_clock) {
1744 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746 }
1747
1748 hv_clock.tsc_timestamp = ka->master_cycle_now;
1749 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750 spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753 &hv_clock.tsc_shift,
1754 &hv_clock.tsc_to_system_mul);
1755 return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760 unsigned long flags;
1761 s64 ns;
1762
1763 local_irq_save(flags);
1764 ns = __get_kvmclock_ns(kvm);
1765 local_irq_restore(flags);
1766
1767 return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772 struct kvm_vcpu_arch *vcpu = &v->arch;
1773 struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776 &guest_hv_clock, sizeof(guest_hv_clock))))
1777 return;
1778
1779 /* This VCPU is paused, but it's legal for a guest to read another
1780 * VCPU's kvmclock, so we really have to follow the specification where
1781 * it says that version is odd if data is being modified, and even after
1782 * it is consistent.
1783 *
1784 * Version field updates must be kept separate. This is because
1785 * kvm_write_guest_cached might use a "rep movs" instruction, and
1786 * writes within a string instruction are weakly ordered. So there
1787 * are three writes overall.
1788 *
1789 * As a small optimization, only write the version field in the first
1790 * and third write. The vcpu->pv_time cache is still valid, because the
1791 * version field is the first in the struct.
1792 */
1793 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797 &vcpu->hv_clock,
1798 sizeof(vcpu->hv_clock.version));
1799
1800 smp_wmb();
1801
1802 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805 if (vcpu->pvclock_set_guest_stopped_request) {
1806 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807 vcpu->pvclock_set_guest_stopped_request = false;
1808 }
1809
1810 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 &vcpu->hv_clock,
1814 sizeof(vcpu->hv_clock));
1815
1816 smp_wmb();
1817
1818 vcpu->hv_clock.version++;
1819 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820 &vcpu->hv_clock,
1821 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826 unsigned long flags, tgt_tsc_khz;
1827 struct kvm_vcpu_arch *vcpu = &v->arch;
1828 struct kvm_arch *ka = &v->kvm->arch;
1829 s64 kernel_ns;
1830 u64 tsc_timestamp, host_tsc;
1831 u8 pvclock_flags;
1832 bool use_master_clock;
1833
1834 kernel_ns = 0;
1835 host_tsc = 0;
1836
1837 /*
1838 * If the host uses TSC clock, then passthrough TSC as stable
1839 * to the guest.
1840 */
1841 spin_lock(&ka->pvclock_gtod_sync_lock);
1842 use_master_clock = ka->use_master_clock;
1843 if (use_master_clock) {
1844 host_tsc = ka->master_cycle_now;
1845 kernel_ns = ka->master_kernel_ns;
1846 }
1847 spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849 /* Keep irq disabled to prevent changes to the clock */
1850 local_irq_save(flags);
1851 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852 if (unlikely(tgt_tsc_khz == 0)) {
1853 local_irq_restore(flags);
1854 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855 return 1;
1856 }
1857 if (!use_master_clock) {
1858 host_tsc = rdtsc();
1859 kernel_ns = ktime_get_boot_ns();
1860 }
1861
1862 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864 /*
1865 * We may have to catch up the TSC to match elapsed wall clock
1866 * time for two reasons, even if kvmclock is used.
1867 * 1) CPU could have been running below the maximum TSC rate
1868 * 2) Broken TSC compensation resets the base at each VCPU
1869 * entry to avoid unknown leaps of TSC even when running
1870 * again on the same CPU. This may cause apparent elapsed
1871 * time to disappear, and the guest to stand still or run
1872 * very slowly.
1873 */
1874 if (vcpu->tsc_catchup) {
1875 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876 if (tsc > tsc_timestamp) {
1877 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878 tsc_timestamp = tsc;
1879 }
1880 }
1881
1882 local_irq_restore(flags);
1883
1884 /* With all the info we got, fill in the values */
1885
1886 if (kvm_has_tsc_control)
1887 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891 &vcpu->hv_clock.tsc_shift,
1892 &vcpu->hv_clock.tsc_to_system_mul);
1893 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894 }
1895
1896 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898 vcpu->last_guest_tsc = tsc_timestamp;
1899
1900 /* If the host uses TSC clocksource, then it is stable */
1901 pvclock_flags = 0;
1902 if (use_master_clock)
1903 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905 vcpu->hv_clock.flags = pvclock_flags;
1906
1907 if (vcpu->pv_time_enabled)
1908 kvm_setup_pvclock_page(v);
1909 if (v == kvm_get_vcpu(v->kvm, 0))
1910 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911 return 0;
1912 }
1913
1914 /*
1915 * kvmclock updates which are isolated to a given vcpu, such as
1916 * vcpu->cpu migration, should not allow system_timestamp from
1917 * the rest of the vcpus to remain static. Otherwise ntp frequency
1918 * correction applies to one vcpu's system_timestamp but not
1919 * the others.
1920 *
1921 * So in those cases, request a kvmclock update for all vcpus.
1922 * We need to rate-limit these requests though, as they can
1923 * considerably slow guests that have a large number of vcpus.
1924 * The time for a remote vcpu to update its kvmclock is bound
1925 * by the delay we use to rate-limit the updates.
1926 */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932 int i;
1933 struct delayed_work *dwork = to_delayed_work(work);
1934 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935 kvmclock_update_work);
1936 struct kvm *kvm = container_of(ka, struct kvm, arch);
1937 struct kvm_vcpu *vcpu;
1938
1939 kvm_for_each_vcpu(i, vcpu, kvm) {
1940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941 kvm_vcpu_kick(vcpu);
1942 }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947 struct kvm *kvm = v->kvm;
1948
1949 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951 KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958 struct delayed_work *dwork = to_delayed_work(work);
1959 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 kvmclock_sync_work);
1961 struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963 if (!kvmclock_periodic_sync)
1964 return;
1965
1966 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968 KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973 u64 mcg_cap = vcpu->arch.mcg_cap;
1974 unsigned bank_num = mcg_cap & 0xff;
1975
1976 switch (msr) {
1977 case MSR_IA32_MCG_STATUS:
1978 vcpu->arch.mcg_status = data;
1979 break;
1980 case MSR_IA32_MCG_CTL:
1981 if (!(mcg_cap & MCG_CTL_P))
1982 return 1;
1983 if (data != 0 && data != ~(u64)0)
1984 return -1;
1985 vcpu->arch.mcg_ctl = data;
1986 break;
1987 default:
1988 if (msr >= MSR_IA32_MC0_CTL &&
1989 msr < MSR_IA32_MCx_CTL(bank_num)) {
1990 u32 offset = msr - MSR_IA32_MC0_CTL;
1991 /* only 0 or all 1s can be written to IA32_MCi_CTL
1992 * some Linux kernels though clear bit 10 in bank 4 to
1993 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994 * this to avoid an uncatched #GP in the guest
1995 */
1996 if ((offset & 0x3) == 0 &&
1997 data != 0 && (data | (1 << 10)) != ~(u64)0)
1998 return -1;
1999 vcpu->arch.mce_banks[offset] = data;
2000 break;
2001 }
2002 return 1;
2003 }
2004 return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009 struct kvm *kvm = vcpu->kvm;
2010 int lm = is_long_mode(vcpu);
2011 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014 : kvm->arch.xen_hvm_config.blob_size_32;
2015 u32 page_num = data & ~PAGE_MASK;
2016 u64 page_addr = data & PAGE_MASK;
2017 u8 *page;
2018 int r;
2019
2020 r = -E2BIG;
2021 if (page_num >= blob_size)
2022 goto out;
2023 r = -ENOMEM;
2024 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025 if (IS_ERR(page)) {
2026 r = PTR_ERR(page);
2027 goto out;
2028 }
2029 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030 goto out_free;
2031 r = 0;
2032 out_free:
2033 kfree(page);
2034 out:
2035 return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040 gpa_t gpa = data & ~0x3f;
2041
2042 /* Bits 2:5 are reserved, Should be zero */
2043 if (data & 0x3c)
2044 return 1;
2045
2046 vcpu->arch.apf.msr_val = data;
2047
2048 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049 kvm_clear_async_pf_completion_queue(vcpu);
2050 kvm_async_pf_hash_reset(vcpu);
2051 return 0;
2052 }
2053
2054 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055 sizeof(u32)))
2056 return 1;
2057
2058 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059 kvm_async_pf_wakeup_all(vcpu);
2060 return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065 vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071 return;
2072
2073 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075 return;
2076
2077 vcpu->arch.st.steal.preempted = 0;
2078
2079 if (vcpu->arch.st.steal.version & 1)
2080 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2081
2082 vcpu->arch.st.steal.version += 1;
2083
2084 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087 smp_wmb();
2088
2089 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090 vcpu->arch.st.last_steal;
2091 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096 smp_wmb();
2097
2098 vcpu->arch.st.steal.version += 1;
2099
2100 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106 bool pr = false;
2107 u32 msr = msr_info->index;
2108 u64 data = msr_info->data;
2109
2110 switch (msr) {
2111 case MSR_AMD64_NB_CFG:
2112 case MSR_IA32_UCODE_REV:
2113 case MSR_IA32_UCODE_WRITE:
2114 case MSR_VM_HSAVE_PA:
2115 case MSR_AMD64_PATCH_LOADER:
2116 case MSR_AMD64_BU_CFG2:
2117 break;
2118
2119 case MSR_EFER:
2120 return set_efer(vcpu, data);
2121 case MSR_K7_HWCR:
2122 data &= ~(u64)0x40; /* ignore flush filter disable */
2123 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2124 data &= ~(u64)0x8; /* ignore TLB cache disable */
2125 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2126 if (data != 0) {
2127 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128 data);
2129 return 1;
2130 }
2131 break;
2132 case MSR_FAM10H_MMIO_CONF_BASE:
2133 if (data != 0) {
2134 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135 "0x%llx\n", data);
2136 return 1;
2137 }
2138 break;
2139 case MSR_IA32_DEBUGCTLMSR:
2140 if (!data) {
2141 /* We support the non-activated case already */
2142 break;
2143 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144 /* Values other than LBR and BTF are vendor-specific,
2145 thus reserved and should throw a #GP */
2146 return 1;
2147 }
2148 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149 __func__, data);
2150 break;
2151 case 0x200 ... 0x2ff:
2152 return kvm_mtrr_set_msr(vcpu, msr, data);
2153 case MSR_IA32_APICBASE:
2154 return kvm_set_apic_base(vcpu, msr_info);
2155 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156 return kvm_x2apic_msr_write(vcpu, msr, data);
2157 case MSR_IA32_TSCDEADLINE:
2158 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159 break;
2160 case MSR_IA32_TSC_ADJUST:
2161 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162 if (!msr_info->host_initiated) {
2163 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164 adjust_tsc_offset_guest(vcpu, adj);
2165 }
2166 vcpu->arch.ia32_tsc_adjust_msr = data;
2167 }
2168 break;
2169 case MSR_IA32_MISC_ENABLE:
2170 vcpu->arch.ia32_misc_enable_msr = data;
2171 break;
2172 case MSR_IA32_SMBASE:
2173 if (!msr_info->host_initiated)
2174 return 1;
2175 vcpu->arch.smbase = data;
2176 break;
2177 case MSR_KVM_WALL_CLOCK_NEW:
2178 case MSR_KVM_WALL_CLOCK:
2179 vcpu->kvm->arch.wall_clock = data;
2180 kvm_write_wall_clock(vcpu->kvm, data);
2181 break;
2182 case MSR_KVM_SYSTEM_TIME_NEW:
2183 case MSR_KVM_SYSTEM_TIME: {
2184 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186 kvmclock_reset(vcpu);
2187
2188 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193 &vcpu->requests);
2194
2195 ka->boot_vcpu_runs_old_kvmclock = tmp;
2196 }
2197
2198 vcpu->arch.time = data;
2199 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201 /* we verify if the enable bit is set... */
2202 if (!(data & 1))
2203 break;
2204
2205 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206 &vcpu->arch.pv_time, data & ~1ULL,
2207 sizeof(struct pvclock_vcpu_time_info)))
2208 vcpu->arch.pv_time_enabled = false;
2209 else
2210 vcpu->arch.pv_time_enabled = true;
2211
2212 break;
2213 }
2214 case MSR_KVM_ASYNC_PF_EN:
2215 if (kvm_pv_enable_async_pf(vcpu, data))
2216 return 1;
2217 break;
2218 case MSR_KVM_STEAL_TIME:
2219
2220 if (unlikely(!sched_info_on()))
2221 return 1;
2222
2223 if (data & KVM_STEAL_RESERVED_MASK)
2224 return 1;
2225
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227 data & KVM_STEAL_VALID_BITS,
2228 sizeof(struct kvm_steal_time)))
2229 return 1;
2230
2231 vcpu->arch.st.msr_val = data;
2232
2233 if (!(data & KVM_MSR_ENABLED))
2234 break;
2235
2236 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238 break;
2239 case MSR_KVM_PV_EOI_EN:
2240 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241 return 1;
2242 break;
2243
2244 case MSR_IA32_MCG_CTL:
2245 case MSR_IA32_MCG_STATUS:
2246 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247 return set_msr_mce(vcpu, msr, data);
2248
2249 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251 pr = true; /* fall through */
2252 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255 return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257 if (pr || data != 0)
2258 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259 "0x%x data 0x%llx\n", msr, data);
2260 break;
2261 case MSR_K7_CLK_CTL:
2262 /*
2263 * Ignore all writes to this no longer documented MSR.
2264 * Writes are only relevant for old K7 processors,
2265 * all pre-dating SVM, but a recommended workaround from
2266 * AMD for these chips. It is possible to specify the
2267 * affected processor models on the command line, hence
2268 * the need to ignore the workaround.
2269 */
2270 break;
2271 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273 case HV_X64_MSR_CRASH_CTL:
2274 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275 return kvm_hv_set_msr_common(vcpu, msr, data,
2276 msr_info->host_initiated);
2277 case MSR_IA32_BBL_CR_CTL3:
2278 /* Drop writes to this legacy MSR -- see rdmsr
2279 * counterpart for further detail.
2280 */
2281 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282 break;
2283 case MSR_AMD64_OSVW_ID_LENGTH:
2284 if (!guest_cpuid_has_osvw(vcpu))
2285 return 1;
2286 vcpu->arch.osvw.length = data;
2287 break;
2288 case MSR_AMD64_OSVW_STATUS:
2289 if (!guest_cpuid_has_osvw(vcpu))
2290 return 1;
2291 vcpu->arch.osvw.status = data;
2292 break;
2293 default:
2294 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295 return xen_hvm_config(vcpu, data);
2296 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297 return kvm_pmu_set_msr(vcpu, msr_info);
2298 if (!ignore_msrs) {
2299 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300 msr, data);
2301 return 1;
2302 } else {
2303 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304 msr, data);
2305 break;
2306 }
2307 }
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314 * Reads an msr value (of 'msr_index') into 'pdata'.
2315 * Returns 0 on success, non-0 otherwise.
2316 * Assumes vcpu_load() was already called.
2317 */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320 return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 u64 data;
2327 u64 mcg_cap = vcpu->arch.mcg_cap;
2328 unsigned bank_num = mcg_cap & 0xff;
2329
2330 switch (msr) {
2331 case MSR_IA32_P5_MC_ADDR:
2332 case MSR_IA32_P5_MC_TYPE:
2333 data = 0;
2334 break;
2335 case MSR_IA32_MCG_CAP:
2336 data = vcpu->arch.mcg_cap;
2337 break;
2338 case MSR_IA32_MCG_CTL:
2339 if (!(mcg_cap & MCG_CTL_P))
2340 return 1;
2341 data = vcpu->arch.mcg_ctl;
2342 break;
2343 case MSR_IA32_MCG_STATUS:
2344 data = vcpu->arch.mcg_status;
2345 break;
2346 default:
2347 if (msr >= MSR_IA32_MC0_CTL &&
2348 msr < MSR_IA32_MCx_CTL(bank_num)) {
2349 u32 offset = msr - MSR_IA32_MC0_CTL;
2350 data = vcpu->arch.mce_banks[offset];
2351 break;
2352 }
2353 return 1;
2354 }
2355 *pdata = data;
2356 return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361 switch (msr_info->index) {
2362 case MSR_IA32_PLATFORM_ID:
2363 case MSR_IA32_EBL_CR_POWERON:
2364 case MSR_IA32_DEBUGCTLMSR:
2365 case MSR_IA32_LASTBRANCHFROMIP:
2366 case MSR_IA32_LASTBRANCHTOIP:
2367 case MSR_IA32_LASTINTFROMIP:
2368 case MSR_IA32_LASTINTTOIP:
2369 case MSR_K8_SYSCFG:
2370 case MSR_K8_TSEG_ADDR:
2371 case MSR_K8_TSEG_MASK:
2372 case MSR_K7_HWCR:
2373 case MSR_VM_HSAVE_PA:
2374 case MSR_K8_INT_PENDING_MSG:
2375 case MSR_AMD64_NB_CFG:
2376 case MSR_FAM10H_MMIO_CONF_BASE:
2377 case MSR_AMD64_BU_CFG2:
2378 case MSR_IA32_PERF_CTL:
2379 msr_info->data = 0;
2380 break;
2381 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387 msr_info->data = 0;
2388 break;
2389 case MSR_IA32_UCODE_REV:
2390 msr_info->data = 0x100000000ULL;
2391 break;
2392 case MSR_MTRRcap:
2393 case 0x200 ... 0x2ff:
2394 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395 case 0xcd: /* fsb frequency */
2396 msr_info->data = 3;
2397 break;
2398 /*
2399 * MSR_EBC_FREQUENCY_ID
2400 * Conservative value valid for even the basic CPU models.
2401 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403 * and 266MHz for model 3, or 4. Set Core Clock
2404 * Frequency to System Bus Frequency Ratio to 1 (bits
2405 * 31:24) even though these are only valid for CPU
2406 * models > 2, however guests may end up dividing or
2407 * multiplying by zero otherwise.
2408 */
2409 case MSR_EBC_FREQUENCY_ID:
2410 msr_info->data = 1 << 24;
2411 break;
2412 case MSR_IA32_APICBASE:
2413 msr_info->data = kvm_get_apic_base(vcpu);
2414 break;
2415 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417 break;
2418 case MSR_IA32_TSCDEADLINE:
2419 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420 break;
2421 case MSR_IA32_TSC_ADJUST:
2422 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423 break;
2424 case MSR_IA32_MISC_ENABLE:
2425 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426 break;
2427 case MSR_IA32_SMBASE:
2428 if (!msr_info->host_initiated)
2429 return 1;
2430 msr_info->data = vcpu->arch.smbase;
2431 break;
2432 case MSR_IA32_PERF_STATUS:
2433 /* TSC increment by tick */
2434 msr_info->data = 1000ULL;
2435 /* CPU multiplier */
2436 msr_info->data |= (((uint64_t)4ULL) << 40);
2437 break;
2438 case MSR_EFER:
2439 msr_info->data = vcpu->arch.efer;
2440 break;
2441 case MSR_KVM_WALL_CLOCK:
2442 case MSR_KVM_WALL_CLOCK_NEW:
2443 msr_info->data = vcpu->kvm->arch.wall_clock;
2444 break;
2445 case MSR_KVM_SYSTEM_TIME:
2446 case MSR_KVM_SYSTEM_TIME_NEW:
2447 msr_info->data = vcpu->arch.time;
2448 break;
2449 case MSR_KVM_ASYNC_PF_EN:
2450 msr_info->data = vcpu->arch.apf.msr_val;
2451 break;
2452 case MSR_KVM_STEAL_TIME:
2453 msr_info->data = vcpu->arch.st.msr_val;
2454 break;
2455 case MSR_KVM_PV_EOI_EN:
2456 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457 break;
2458 case MSR_IA32_P5_MC_ADDR:
2459 case MSR_IA32_P5_MC_TYPE:
2460 case MSR_IA32_MCG_CAP:
2461 case MSR_IA32_MCG_CTL:
2462 case MSR_IA32_MCG_STATUS:
2463 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465 case MSR_K7_CLK_CTL:
2466 /*
2467 * Provide expected ramp-up count for K7. All other
2468 * are set to zero, indicating minimum divisors for
2469 * every field.
2470 *
2471 * This prevents guest kernels on AMD host with CPU
2472 * type 6, model 8 and higher from exploding due to
2473 * the rdmsr failing.
2474 */
2475 msr_info->data = 0x20000000;
2476 break;
2477 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479 case HV_X64_MSR_CRASH_CTL:
2480 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481 return kvm_hv_get_msr_common(vcpu,
2482 msr_info->index, &msr_info->data);
2483 break;
2484 case MSR_IA32_BBL_CR_CTL3:
2485 /* This legacy MSR exists but isn't fully documented in current
2486 * silicon. It is however accessed by winxp in very narrow
2487 * scenarios where it sets bit #19, itself documented as
2488 * a "reserved" bit. Best effort attempt to source coherent
2489 * read data here should the balance of the register be
2490 * interpreted by the guest:
2491 *
2492 * L2 cache control register 3: 64GB range, 256KB size,
2493 * enabled, latency 0x1, configured
2494 */
2495 msr_info->data = 0xbe702111;
2496 break;
2497 case MSR_AMD64_OSVW_ID_LENGTH:
2498 if (!guest_cpuid_has_osvw(vcpu))
2499 return 1;
2500 msr_info->data = vcpu->arch.osvw.length;
2501 break;
2502 case MSR_AMD64_OSVW_STATUS:
2503 if (!guest_cpuid_has_osvw(vcpu))
2504 return 1;
2505 msr_info->data = vcpu->arch.osvw.status;
2506 break;
2507 default:
2508 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510 if (!ignore_msrs) {
2511 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512 msr_info->index);
2513 return 1;
2514 } else {
2515 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516 msr_info->data = 0;
2517 }
2518 break;
2519 }
2520 return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525 * Read or write a bunch of msrs. All parameters are kernel addresses.
2526 *
2527 * @return number of msrs set successfully.
2528 */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530 struct kvm_msr_entry *entries,
2531 int (*do_msr)(struct kvm_vcpu *vcpu,
2532 unsigned index, u64 *data))
2533 {
2534 int i, idx;
2535
2536 idx = srcu_read_lock(&vcpu->kvm->srcu);
2537 for (i = 0; i < msrs->nmsrs; ++i)
2538 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539 break;
2540 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542 return i;
2543 }
2544
2545 /*
2546 * Read or write a bunch of msrs. Parameters are user addresses.
2547 *
2548 * @return number of msrs set successfully.
2549 */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551 int (*do_msr)(struct kvm_vcpu *vcpu,
2552 unsigned index, u64 *data),
2553 int writeback)
2554 {
2555 struct kvm_msrs msrs;
2556 struct kvm_msr_entry *entries;
2557 int r, n;
2558 unsigned size;
2559
2560 r = -EFAULT;
2561 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562 goto out;
2563
2564 r = -E2BIG;
2565 if (msrs.nmsrs >= MAX_IO_MSRS)
2566 goto out;
2567
2568 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569 entries = memdup_user(user_msrs->entries, size);
2570 if (IS_ERR(entries)) {
2571 r = PTR_ERR(entries);
2572 goto out;
2573 }
2574
2575 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576 if (r < 0)
2577 goto out_free;
2578
2579 r = -EFAULT;
2580 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581 goto out_free;
2582
2583 r = n;
2584
2585 out_free:
2586 kfree(entries);
2587 out:
2588 return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593 int r;
2594
2595 switch (ext) {
2596 case KVM_CAP_IRQCHIP:
2597 case KVM_CAP_HLT:
2598 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599 case KVM_CAP_SET_TSS_ADDR:
2600 case KVM_CAP_EXT_CPUID:
2601 case KVM_CAP_EXT_EMUL_CPUID:
2602 case KVM_CAP_CLOCKSOURCE:
2603 case KVM_CAP_PIT:
2604 case KVM_CAP_NOP_IO_DELAY:
2605 case KVM_CAP_MP_STATE:
2606 case KVM_CAP_SYNC_MMU:
2607 case KVM_CAP_USER_NMI:
2608 case KVM_CAP_REINJECT_CONTROL:
2609 case KVM_CAP_IRQ_INJECT_STATUS:
2610 case KVM_CAP_IOEVENTFD:
2611 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612 case KVM_CAP_PIT2:
2613 case KVM_CAP_PIT_STATE2:
2614 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615 case KVM_CAP_XEN_HVM:
2616 case KVM_CAP_VCPU_EVENTS:
2617 case KVM_CAP_HYPERV:
2618 case KVM_CAP_HYPERV_VAPIC:
2619 case KVM_CAP_HYPERV_SPIN:
2620 case KVM_CAP_HYPERV_SYNIC:
2621 case KVM_CAP_PCI_SEGMENT:
2622 case KVM_CAP_DEBUGREGS:
2623 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624 case KVM_CAP_XSAVE:
2625 case KVM_CAP_ASYNC_PF:
2626 case KVM_CAP_GET_TSC_KHZ:
2627 case KVM_CAP_KVMCLOCK_CTRL:
2628 case KVM_CAP_READONLY_MEM:
2629 case KVM_CAP_HYPERV_TIME:
2630 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631 case KVM_CAP_TSC_DEADLINE_TIMER:
2632 case KVM_CAP_ENABLE_CAP_VM:
2633 case KVM_CAP_DISABLE_QUIRKS:
2634 case KVM_CAP_SET_BOOT_CPU_ID:
2635 case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637 case KVM_CAP_ASSIGN_DEV_IRQ:
2638 case KVM_CAP_PCI_2_3:
2639 #endif
2640 r = 1;
2641 break;
2642 case KVM_CAP_ADJUST_CLOCK:
2643 r = KVM_CLOCK_TSC_STABLE;
2644 break;
2645 case KVM_CAP_X86_SMM:
2646 /* SMBASE is usually relocated above 1M on modern chipsets,
2647 * and SMM handlers might indeed rely on 4G segment limits,
2648 * so do not report SMM to be available if real mode is
2649 * emulated via vm86 mode. Still, do not go to great lengths
2650 * to avoid userspace's usage of the feature, because it is a
2651 * fringe case that is not enabled except via specific settings
2652 * of the module parameters.
2653 */
2654 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655 break;
2656 case KVM_CAP_COALESCED_MMIO:
2657 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658 break;
2659 case KVM_CAP_VAPIC:
2660 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661 break;
2662 case KVM_CAP_NR_VCPUS:
2663 r = KVM_SOFT_MAX_VCPUS;
2664 break;
2665 case KVM_CAP_MAX_VCPUS:
2666 r = KVM_MAX_VCPUS;
2667 break;
2668 case KVM_CAP_NR_MEMSLOTS:
2669 r = KVM_USER_MEM_SLOTS;
2670 break;
2671 case KVM_CAP_PV_MMU: /* obsolete */
2672 r = 0;
2673 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675 case KVM_CAP_IOMMU:
2676 r = iommu_present(&pci_bus_type);
2677 break;
2678 #endif
2679 case KVM_CAP_MCE:
2680 r = KVM_MAX_MCE_BANKS;
2681 break;
2682 case KVM_CAP_XCRS:
2683 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684 break;
2685 case KVM_CAP_TSC_CONTROL:
2686 r = kvm_has_tsc_control;
2687 break;
2688 case KVM_CAP_X2APIC_API:
2689 r = KVM_X2APIC_API_VALID_FLAGS;
2690 break;
2691 default:
2692 r = 0;
2693 break;
2694 }
2695 return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700 unsigned int ioctl, unsigned long arg)
2701 {
2702 void __user *argp = (void __user *)arg;
2703 long r;
2704
2705 switch (ioctl) {
2706 case KVM_GET_MSR_INDEX_LIST: {
2707 struct kvm_msr_list __user *user_msr_list = argp;
2708 struct kvm_msr_list msr_list;
2709 unsigned n;
2710
2711 r = -EFAULT;
2712 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713 goto out;
2714 n = msr_list.nmsrs;
2715 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717 goto out;
2718 r = -E2BIG;
2719 if (n < msr_list.nmsrs)
2720 goto out;
2721 r = -EFAULT;
2722 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723 num_msrs_to_save * sizeof(u32)))
2724 goto out;
2725 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726 &emulated_msrs,
2727 num_emulated_msrs * sizeof(u32)))
2728 goto out;
2729 r = 0;
2730 break;
2731 }
2732 case KVM_GET_SUPPORTED_CPUID:
2733 case KVM_GET_EMULATED_CPUID: {
2734 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 struct kvm_cpuid2 cpuid;
2736
2737 r = -EFAULT;
2738 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 goto out;
2740
2741 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742 ioctl);
2743 if (r)
2744 goto out;
2745
2746 r = -EFAULT;
2747 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748 goto out;
2749 r = 0;
2750 break;
2751 }
2752 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753 r = -EFAULT;
2754 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755 sizeof(kvm_mce_cap_supported)))
2756 goto out;
2757 r = 0;
2758 break;
2759 }
2760 default:
2761 r = -EINVAL;
2762 }
2763 out:
2764 return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769 wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784 /* Address WBINVD may be executed by guest */
2785 if (need_emulate_wbinvd(vcpu)) {
2786 if (kvm_x86_ops->has_wbinvd_exit())
2787 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789 smp_call_function_single(vcpu->cpu,
2790 wbinvd_ipi, NULL, 1);
2791 }
2792
2793 kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795 /* Apply any externally detected TSC adjustments (due to suspend) */
2796 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798 vcpu->arch.tsc_offset_adjustment = 0;
2799 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800 }
2801
2802 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804 rdtsc() - vcpu->arch.last_host_tsc;
2805 if (tsc_delta < 0)
2806 mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808 if (check_tsc_unstable()) {
2809 u64 offset = kvm_compute_tsc_offset(vcpu,
2810 vcpu->arch.last_guest_tsc);
2811 kvm_vcpu_write_tsc_offset(vcpu, offset);
2812 vcpu->arch.tsc_catchup = 1;
2813 }
2814 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815 kvm_x86_ops->set_hv_timer(vcpu,
2816 kvm_get_lapic_target_expiration_tsc(vcpu)))
2817 kvm_lapic_switch_to_sw_timer(vcpu);
2818 /*
2819 * On a host with synchronized TSC, there is no need to update
2820 * kvmclock on vcpu->cpu migration
2821 */
2822 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824 if (vcpu->cpu != cpu)
2825 kvm_migrate_timers(vcpu);
2826 vcpu->cpu = cpu;
2827 }
2828
2829 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835 return;
2836
2837 vcpu->arch.st.steal.preempted = 1;
2838
2839 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840 &vcpu->arch.st.steal.preempted,
2841 offsetof(struct kvm_steal_time, preempted),
2842 sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847 kvm_steal_time_set_preempted(vcpu);
2848 kvm_x86_ops->vcpu_put(vcpu);
2849 kvm_put_guest_fpu(vcpu);
2850 vcpu->arch.last_host_tsc = rdtsc();
2851 }
2852
2853 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2854 struct kvm_lapic_state *s)
2855 {
2856 if (vcpu->arch.apicv_active)
2857 kvm_x86_ops->sync_pir_to_irr(vcpu);
2858
2859 return kvm_apic_get_state(vcpu, s);
2860 }
2861
2862 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2863 struct kvm_lapic_state *s)
2864 {
2865 int r;
2866
2867 r = kvm_apic_set_state(vcpu, s);
2868 if (r)
2869 return r;
2870 update_cr8_intercept(vcpu);
2871
2872 return 0;
2873 }
2874
2875 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2876 {
2877 return (!lapic_in_kernel(vcpu) ||
2878 kvm_apic_accept_pic_intr(vcpu));
2879 }
2880
2881 /*
2882 * if userspace requested an interrupt window, check that the
2883 * interrupt window is open.
2884 *
2885 * No need to exit to userspace if we already have an interrupt queued.
2886 */
2887 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2888 {
2889 return kvm_arch_interrupt_allowed(vcpu) &&
2890 !kvm_cpu_has_interrupt(vcpu) &&
2891 !kvm_event_needs_reinjection(vcpu) &&
2892 kvm_cpu_accept_dm_intr(vcpu);
2893 }
2894
2895 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2896 struct kvm_interrupt *irq)
2897 {
2898 if (irq->irq >= KVM_NR_INTERRUPTS)
2899 return -EINVAL;
2900
2901 if (!irqchip_in_kernel(vcpu->kvm)) {
2902 kvm_queue_interrupt(vcpu, irq->irq, false);
2903 kvm_make_request(KVM_REQ_EVENT, vcpu);
2904 return 0;
2905 }
2906
2907 /*
2908 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2909 * fail for in-kernel 8259.
2910 */
2911 if (pic_in_kernel(vcpu->kvm))
2912 return -ENXIO;
2913
2914 if (vcpu->arch.pending_external_vector != -1)
2915 return -EEXIST;
2916
2917 vcpu->arch.pending_external_vector = irq->irq;
2918 kvm_make_request(KVM_REQ_EVENT, vcpu);
2919 return 0;
2920 }
2921
2922 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2923 {
2924 kvm_inject_nmi(vcpu);
2925
2926 return 0;
2927 }
2928
2929 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2930 {
2931 kvm_make_request(KVM_REQ_SMI, vcpu);
2932
2933 return 0;
2934 }
2935
2936 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2937 struct kvm_tpr_access_ctl *tac)
2938 {
2939 if (tac->flags)
2940 return -EINVAL;
2941 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2942 return 0;
2943 }
2944
2945 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2946 u64 mcg_cap)
2947 {
2948 int r;
2949 unsigned bank_num = mcg_cap & 0xff, bank;
2950
2951 r = -EINVAL;
2952 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2953 goto out;
2954 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2955 goto out;
2956 r = 0;
2957 vcpu->arch.mcg_cap = mcg_cap;
2958 /* Init IA32_MCG_CTL to all 1s */
2959 if (mcg_cap & MCG_CTL_P)
2960 vcpu->arch.mcg_ctl = ~(u64)0;
2961 /* Init IA32_MCi_CTL to all 1s */
2962 for (bank = 0; bank < bank_num; bank++)
2963 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2964
2965 if (kvm_x86_ops->setup_mce)
2966 kvm_x86_ops->setup_mce(vcpu);
2967 out:
2968 return r;
2969 }
2970
2971 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2972 struct kvm_x86_mce *mce)
2973 {
2974 u64 mcg_cap = vcpu->arch.mcg_cap;
2975 unsigned bank_num = mcg_cap & 0xff;
2976 u64 *banks = vcpu->arch.mce_banks;
2977
2978 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2979 return -EINVAL;
2980 /*
2981 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2982 * reporting is disabled
2983 */
2984 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2985 vcpu->arch.mcg_ctl != ~(u64)0)
2986 return 0;
2987 banks += 4 * mce->bank;
2988 /*
2989 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2990 * reporting is disabled for the bank
2991 */
2992 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2993 return 0;
2994 if (mce->status & MCI_STATUS_UC) {
2995 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2996 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2997 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2998 return 0;
2999 }
3000 if (banks[1] & MCI_STATUS_VAL)
3001 mce->status |= MCI_STATUS_OVER;
3002 banks[2] = mce->addr;
3003 banks[3] = mce->misc;
3004 vcpu->arch.mcg_status = mce->mcg_status;
3005 banks[1] = mce->status;
3006 kvm_queue_exception(vcpu, MC_VECTOR);
3007 } else if (!(banks[1] & MCI_STATUS_VAL)
3008 || !(banks[1] & MCI_STATUS_UC)) {
3009 if (banks[1] & MCI_STATUS_VAL)
3010 mce->status |= MCI_STATUS_OVER;
3011 banks[2] = mce->addr;
3012 banks[3] = mce->misc;
3013 banks[1] = mce->status;
3014 } else
3015 banks[1] |= MCI_STATUS_OVER;
3016 return 0;
3017 }
3018
3019 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3020 struct kvm_vcpu_events *events)
3021 {
3022 process_nmi(vcpu);
3023 events->exception.injected =
3024 vcpu->arch.exception.pending &&
3025 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3026 events->exception.nr = vcpu->arch.exception.nr;
3027 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3028 events->exception.pad = 0;
3029 events->exception.error_code = vcpu->arch.exception.error_code;
3030
3031 events->interrupt.injected =
3032 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3033 events->interrupt.nr = vcpu->arch.interrupt.nr;
3034 events->interrupt.soft = 0;
3035 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3036
3037 events->nmi.injected = vcpu->arch.nmi_injected;
3038 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3039 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3040 events->nmi.pad = 0;
3041
3042 events->sipi_vector = 0; /* never valid when reporting to user space */
3043
3044 events->smi.smm = is_smm(vcpu);
3045 events->smi.pending = vcpu->arch.smi_pending;
3046 events->smi.smm_inside_nmi =
3047 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3048 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3049
3050 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3051 | KVM_VCPUEVENT_VALID_SHADOW
3052 | KVM_VCPUEVENT_VALID_SMM);
3053 memset(&events->reserved, 0, sizeof(events->reserved));
3054 }
3055
3056 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3057 struct kvm_vcpu_events *events)
3058 {
3059 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3060 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3061 | KVM_VCPUEVENT_VALID_SHADOW
3062 | KVM_VCPUEVENT_VALID_SMM))
3063 return -EINVAL;
3064
3065 if (events->exception.injected &&
3066 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3067 return -EINVAL;
3068
3069 process_nmi(vcpu);
3070 vcpu->arch.exception.pending = events->exception.injected;
3071 vcpu->arch.exception.nr = events->exception.nr;
3072 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3073 vcpu->arch.exception.error_code = events->exception.error_code;
3074
3075 vcpu->arch.interrupt.pending = events->interrupt.injected;
3076 vcpu->arch.interrupt.nr = events->interrupt.nr;
3077 vcpu->arch.interrupt.soft = events->interrupt.soft;
3078 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3079 kvm_x86_ops->set_interrupt_shadow(vcpu,
3080 events->interrupt.shadow);
3081
3082 vcpu->arch.nmi_injected = events->nmi.injected;
3083 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3084 vcpu->arch.nmi_pending = events->nmi.pending;
3085 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3086
3087 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3088 lapic_in_kernel(vcpu))
3089 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3090
3091 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3092 if (events->smi.smm)
3093 vcpu->arch.hflags |= HF_SMM_MASK;
3094 else
3095 vcpu->arch.hflags &= ~HF_SMM_MASK;
3096 vcpu->arch.smi_pending = events->smi.pending;
3097 if (events->smi.smm_inside_nmi)
3098 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3099 else
3100 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3101 if (lapic_in_kernel(vcpu)) {
3102 if (events->smi.latched_init)
3103 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3104 else
3105 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3106 }
3107 }
3108
3109 kvm_make_request(KVM_REQ_EVENT, vcpu);
3110
3111 return 0;
3112 }
3113
3114 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3115 struct kvm_debugregs *dbgregs)
3116 {
3117 unsigned long val;
3118
3119 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3120 kvm_get_dr(vcpu, 6, &val);
3121 dbgregs->dr6 = val;
3122 dbgregs->dr7 = vcpu->arch.dr7;
3123 dbgregs->flags = 0;
3124 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3125 }
3126
3127 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3128 struct kvm_debugregs *dbgregs)
3129 {
3130 if (dbgregs->flags)
3131 return -EINVAL;
3132
3133 if (dbgregs->dr6 & ~0xffffffffull)
3134 return -EINVAL;
3135 if (dbgregs->dr7 & ~0xffffffffull)
3136 return -EINVAL;
3137
3138 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3139 kvm_update_dr0123(vcpu);
3140 vcpu->arch.dr6 = dbgregs->dr6;
3141 kvm_update_dr6(vcpu);
3142 vcpu->arch.dr7 = dbgregs->dr7;
3143 kvm_update_dr7(vcpu);
3144
3145 return 0;
3146 }
3147
3148 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3149
3150 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3151 {
3152 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3153 u64 xstate_bv = xsave->header.xfeatures;
3154 u64 valid;
3155
3156 /*
3157 * Copy legacy XSAVE area, to avoid complications with CPUID
3158 * leaves 0 and 1 in the loop below.
3159 */
3160 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3161
3162 /* Set XSTATE_BV */
3163 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3164
3165 /*
3166 * Copy each region from the possibly compacted offset to the
3167 * non-compacted offset.
3168 */
3169 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3170 while (valid) {
3171 u64 feature = valid & -valid;
3172 int index = fls64(feature) - 1;
3173 void *src = get_xsave_addr(xsave, feature);
3174
3175 if (src) {
3176 u32 size, offset, ecx, edx;
3177 cpuid_count(XSTATE_CPUID, index,
3178 &size, &offset, &ecx, &edx);
3179 memcpy(dest + offset, src, size);
3180 }
3181
3182 valid -= feature;
3183 }
3184 }
3185
3186 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3187 {
3188 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3189 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3190 u64 valid;
3191
3192 /*
3193 * Copy legacy XSAVE area, to avoid complications with CPUID
3194 * leaves 0 and 1 in the loop below.
3195 */
3196 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3197
3198 /* Set XSTATE_BV and possibly XCOMP_BV. */
3199 xsave->header.xfeatures = xstate_bv;
3200 if (boot_cpu_has(X86_FEATURE_XSAVES))
3201 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3202
3203 /*
3204 * Copy each region from the non-compacted offset to the
3205 * possibly compacted offset.
3206 */
3207 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3208 while (valid) {
3209 u64 feature = valid & -valid;
3210 int index = fls64(feature) - 1;
3211 void *dest = get_xsave_addr(xsave, feature);
3212
3213 if (dest) {
3214 u32 size, offset, ecx, edx;
3215 cpuid_count(XSTATE_CPUID, index,
3216 &size, &offset, &ecx, &edx);
3217 memcpy(dest, src + offset, size);
3218 }
3219
3220 valid -= feature;
3221 }
3222 }
3223
3224 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3225 struct kvm_xsave *guest_xsave)
3226 {
3227 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3228 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3229 fill_xsave((u8 *) guest_xsave->region, vcpu);
3230 } else {
3231 memcpy(guest_xsave->region,
3232 &vcpu->arch.guest_fpu.state.fxsave,
3233 sizeof(struct fxregs_state));
3234 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3235 XFEATURE_MASK_FPSSE;
3236 }
3237 }
3238
3239 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3240 struct kvm_xsave *guest_xsave)
3241 {
3242 u64 xstate_bv =
3243 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3244
3245 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3246 /*
3247 * Here we allow setting states that are not present in
3248 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3249 * with old userspace.
3250 */
3251 if (xstate_bv & ~kvm_supported_xcr0())
3252 return -EINVAL;
3253 load_xsave(vcpu, (u8 *)guest_xsave->region);
3254 } else {
3255 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3256 return -EINVAL;
3257 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3258 guest_xsave->region, sizeof(struct fxregs_state));
3259 }
3260 return 0;
3261 }
3262
3263 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3264 struct kvm_xcrs *guest_xcrs)
3265 {
3266 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3267 guest_xcrs->nr_xcrs = 0;
3268 return;
3269 }
3270
3271 guest_xcrs->nr_xcrs = 1;
3272 guest_xcrs->flags = 0;
3273 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3274 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3275 }
3276
3277 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3278 struct kvm_xcrs *guest_xcrs)
3279 {
3280 int i, r = 0;
3281
3282 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3283 return -EINVAL;
3284
3285 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3286 return -EINVAL;
3287
3288 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3289 /* Only support XCR0 currently */
3290 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3291 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3292 guest_xcrs->xcrs[i].value);
3293 break;
3294 }
3295 if (r)
3296 r = -EINVAL;
3297 return r;
3298 }
3299
3300 /*
3301 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3302 * stopped by the hypervisor. This function will be called from the host only.
3303 * EINVAL is returned when the host attempts to set the flag for a guest that
3304 * does not support pv clocks.
3305 */
3306 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3307 {
3308 if (!vcpu->arch.pv_time_enabled)
3309 return -EINVAL;
3310 vcpu->arch.pvclock_set_guest_stopped_request = true;
3311 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3312 return 0;
3313 }
3314
3315 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3316 struct kvm_enable_cap *cap)
3317 {
3318 if (cap->flags)
3319 return -EINVAL;
3320
3321 switch (cap->cap) {
3322 case KVM_CAP_HYPERV_SYNIC:
3323 return kvm_hv_activate_synic(vcpu);
3324 default:
3325 return -EINVAL;
3326 }
3327 }
3328
3329 long kvm_arch_vcpu_ioctl(struct file *filp,
3330 unsigned int ioctl, unsigned long arg)
3331 {
3332 struct kvm_vcpu *vcpu = filp->private_data;
3333 void __user *argp = (void __user *)arg;
3334 int r;
3335 union {
3336 struct kvm_lapic_state *lapic;
3337 struct kvm_xsave *xsave;
3338 struct kvm_xcrs *xcrs;
3339 void *buffer;
3340 } u;
3341
3342 u.buffer = NULL;
3343 switch (ioctl) {
3344 case KVM_GET_LAPIC: {
3345 r = -EINVAL;
3346 if (!lapic_in_kernel(vcpu))
3347 goto out;
3348 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3349
3350 r = -ENOMEM;
3351 if (!u.lapic)
3352 goto out;
3353 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3354 if (r)
3355 goto out;
3356 r = -EFAULT;
3357 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3358 goto out;
3359 r = 0;
3360 break;
3361 }
3362 case KVM_SET_LAPIC: {
3363 r = -EINVAL;
3364 if (!lapic_in_kernel(vcpu))
3365 goto out;
3366 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3367 if (IS_ERR(u.lapic))
3368 return PTR_ERR(u.lapic);
3369
3370 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3371 break;
3372 }
3373 case KVM_INTERRUPT: {
3374 struct kvm_interrupt irq;
3375
3376 r = -EFAULT;
3377 if (copy_from_user(&irq, argp, sizeof irq))
3378 goto out;
3379 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3380 break;
3381 }
3382 case KVM_NMI: {
3383 r = kvm_vcpu_ioctl_nmi(vcpu);
3384 break;
3385 }
3386 case KVM_SMI: {
3387 r = kvm_vcpu_ioctl_smi(vcpu);
3388 break;
3389 }
3390 case KVM_SET_CPUID: {
3391 struct kvm_cpuid __user *cpuid_arg = argp;
3392 struct kvm_cpuid cpuid;
3393
3394 r = -EFAULT;
3395 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3396 goto out;
3397 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3398 break;
3399 }
3400 case KVM_SET_CPUID2: {
3401 struct kvm_cpuid2 __user *cpuid_arg = argp;
3402 struct kvm_cpuid2 cpuid;
3403
3404 r = -EFAULT;
3405 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3406 goto out;
3407 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3408 cpuid_arg->entries);
3409 break;
3410 }
3411 case KVM_GET_CPUID2: {
3412 struct kvm_cpuid2 __user *cpuid_arg = argp;
3413 struct kvm_cpuid2 cpuid;
3414
3415 r = -EFAULT;
3416 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3417 goto out;
3418 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3419 cpuid_arg->entries);
3420 if (r)
3421 goto out;
3422 r = -EFAULT;
3423 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3424 goto out;
3425 r = 0;
3426 break;
3427 }
3428 case KVM_GET_MSRS:
3429 r = msr_io(vcpu, argp, do_get_msr, 1);
3430 break;
3431 case KVM_SET_MSRS:
3432 r = msr_io(vcpu, argp, do_set_msr, 0);
3433 break;
3434 case KVM_TPR_ACCESS_REPORTING: {
3435 struct kvm_tpr_access_ctl tac;
3436
3437 r = -EFAULT;
3438 if (copy_from_user(&tac, argp, sizeof tac))
3439 goto out;
3440 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3441 if (r)
3442 goto out;
3443 r = -EFAULT;
3444 if (copy_to_user(argp, &tac, sizeof tac))
3445 goto out;
3446 r = 0;
3447 break;
3448 };
3449 case KVM_SET_VAPIC_ADDR: {
3450 struct kvm_vapic_addr va;
3451 int idx;
3452
3453 r = -EINVAL;
3454 if (!lapic_in_kernel(vcpu))
3455 goto out;
3456 r = -EFAULT;
3457 if (copy_from_user(&va, argp, sizeof va))
3458 goto out;
3459 idx = srcu_read_lock(&vcpu->kvm->srcu);
3460 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3461 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3462 break;
3463 }
3464 case KVM_X86_SETUP_MCE: {
3465 u64 mcg_cap;
3466
3467 r = -EFAULT;
3468 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3469 goto out;
3470 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3471 break;
3472 }
3473 case KVM_X86_SET_MCE: {
3474 struct kvm_x86_mce mce;
3475
3476 r = -EFAULT;
3477 if (copy_from_user(&mce, argp, sizeof mce))
3478 goto out;
3479 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3480 break;
3481 }
3482 case KVM_GET_VCPU_EVENTS: {
3483 struct kvm_vcpu_events events;
3484
3485 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3486
3487 r = -EFAULT;
3488 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3489 break;
3490 r = 0;
3491 break;
3492 }
3493 case KVM_SET_VCPU_EVENTS: {
3494 struct kvm_vcpu_events events;
3495
3496 r = -EFAULT;
3497 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3498 break;
3499
3500 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3501 break;
3502 }
3503 case KVM_GET_DEBUGREGS: {
3504 struct kvm_debugregs dbgregs;
3505
3506 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3507
3508 r = -EFAULT;
3509 if (copy_to_user(argp, &dbgregs,
3510 sizeof(struct kvm_debugregs)))
3511 break;
3512 r = 0;
3513 break;
3514 }
3515 case KVM_SET_DEBUGREGS: {
3516 struct kvm_debugregs dbgregs;
3517
3518 r = -EFAULT;
3519 if (copy_from_user(&dbgregs, argp,
3520 sizeof(struct kvm_debugregs)))
3521 break;
3522
3523 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3524 break;
3525 }
3526 case KVM_GET_XSAVE: {
3527 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3528 r = -ENOMEM;
3529 if (!u.xsave)
3530 break;
3531
3532 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3533
3534 r = -EFAULT;
3535 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3536 break;
3537 r = 0;
3538 break;
3539 }
3540 case KVM_SET_XSAVE: {
3541 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3542 if (IS_ERR(u.xsave))
3543 return PTR_ERR(u.xsave);
3544
3545 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3546 break;
3547 }
3548 case KVM_GET_XCRS: {
3549 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3550 r = -ENOMEM;
3551 if (!u.xcrs)
3552 break;
3553
3554 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3555
3556 r = -EFAULT;
3557 if (copy_to_user(argp, u.xcrs,
3558 sizeof(struct kvm_xcrs)))
3559 break;
3560 r = 0;
3561 break;
3562 }
3563 case KVM_SET_XCRS: {
3564 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3565 if (IS_ERR(u.xcrs))
3566 return PTR_ERR(u.xcrs);
3567
3568 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3569 break;
3570 }
3571 case KVM_SET_TSC_KHZ: {
3572 u32 user_tsc_khz;
3573
3574 r = -EINVAL;
3575 user_tsc_khz = (u32)arg;
3576
3577 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3578 goto out;
3579
3580 if (user_tsc_khz == 0)
3581 user_tsc_khz = tsc_khz;
3582
3583 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3584 r = 0;
3585
3586 goto out;
3587 }
3588 case KVM_GET_TSC_KHZ: {
3589 r = vcpu->arch.virtual_tsc_khz;
3590 goto out;
3591 }
3592 case KVM_KVMCLOCK_CTRL: {
3593 r = kvm_set_guest_paused(vcpu);
3594 goto out;
3595 }
3596 case KVM_ENABLE_CAP: {
3597 struct kvm_enable_cap cap;
3598
3599 r = -EFAULT;
3600 if (copy_from_user(&cap, argp, sizeof(cap)))
3601 goto out;
3602 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3603 break;
3604 }
3605 default:
3606 r = -EINVAL;
3607 }
3608 out:
3609 kfree(u.buffer);
3610 return r;
3611 }
3612
3613 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3614 {
3615 return VM_FAULT_SIGBUS;
3616 }
3617
3618 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3619 {
3620 int ret;
3621
3622 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3623 return -EINVAL;
3624 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3625 return ret;
3626 }
3627
3628 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3629 u64 ident_addr)
3630 {
3631 kvm->arch.ept_identity_map_addr = ident_addr;
3632 return 0;
3633 }
3634
3635 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3636 u32 kvm_nr_mmu_pages)
3637 {
3638 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3639 return -EINVAL;
3640
3641 mutex_lock(&kvm->slots_lock);
3642
3643 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3644 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3645
3646 mutex_unlock(&kvm->slots_lock);
3647 return 0;
3648 }
3649
3650 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3651 {
3652 return kvm->arch.n_max_mmu_pages;
3653 }
3654
3655 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3656 {
3657 int r;
3658
3659 r = 0;
3660 switch (chip->chip_id) {
3661 case KVM_IRQCHIP_PIC_MASTER:
3662 memcpy(&chip->chip.pic,
3663 &pic_irqchip(kvm)->pics[0],
3664 sizeof(struct kvm_pic_state));
3665 break;
3666 case KVM_IRQCHIP_PIC_SLAVE:
3667 memcpy(&chip->chip.pic,
3668 &pic_irqchip(kvm)->pics[1],
3669 sizeof(struct kvm_pic_state));
3670 break;
3671 case KVM_IRQCHIP_IOAPIC:
3672 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3673 break;
3674 default:
3675 r = -EINVAL;
3676 break;
3677 }
3678 return r;
3679 }
3680
3681 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3682 {
3683 int r;
3684
3685 r = 0;
3686 switch (chip->chip_id) {
3687 case KVM_IRQCHIP_PIC_MASTER:
3688 spin_lock(&pic_irqchip(kvm)->lock);
3689 memcpy(&pic_irqchip(kvm)->pics[0],
3690 &chip->chip.pic,
3691 sizeof(struct kvm_pic_state));
3692 spin_unlock(&pic_irqchip(kvm)->lock);
3693 break;
3694 case KVM_IRQCHIP_PIC_SLAVE:
3695 spin_lock(&pic_irqchip(kvm)->lock);
3696 memcpy(&pic_irqchip(kvm)->pics[1],
3697 &chip->chip.pic,
3698 sizeof(struct kvm_pic_state));
3699 spin_unlock(&pic_irqchip(kvm)->lock);
3700 break;
3701 case KVM_IRQCHIP_IOAPIC:
3702 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3703 break;
3704 default:
3705 r = -EINVAL;
3706 break;
3707 }
3708 kvm_pic_update_irq(pic_irqchip(kvm));
3709 return r;
3710 }
3711
3712 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3713 {
3714 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3715
3716 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3717
3718 mutex_lock(&kps->lock);
3719 memcpy(ps, &kps->channels, sizeof(*ps));
3720 mutex_unlock(&kps->lock);
3721 return 0;
3722 }
3723
3724 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3725 {
3726 int i;
3727 struct kvm_pit *pit = kvm->arch.vpit;
3728
3729 mutex_lock(&pit->pit_state.lock);
3730 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3731 for (i = 0; i < 3; i++)
3732 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3733 mutex_unlock(&pit->pit_state.lock);
3734 return 0;
3735 }
3736
3737 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3738 {
3739 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3740 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3741 sizeof(ps->channels));
3742 ps->flags = kvm->arch.vpit->pit_state.flags;
3743 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3744 memset(&ps->reserved, 0, sizeof(ps->reserved));
3745 return 0;
3746 }
3747
3748 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3749 {
3750 int start = 0;
3751 int i;
3752 u32 prev_legacy, cur_legacy;
3753 struct kvm_pit *pit = kvm->arch.vpit;
3754
3755 mutex_lock(&pit->pit_state.lock);
3756 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3757 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3758 if (!prev_legacy && cur_legacy)
3759 start = 1;
3760 memcpy(&pit->pit_state.channels, &ps->channels,
3761 sizeof(pit->pit_state.channels));
3762 pit->pit_state.flags = ps->flags;
3763 for (i = 0; i < 3; i++)
3764 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3765 start && i == 0);
3766 mutex_unlock(&pit->pit_state.lock);
3767 return 0;
3768 }
3769
3770 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3771 struct kvm_reinject_control *control)
3772 {
3773 struct kvm_pit *pit = kvm->arch.vpit;
3774
3775 if (!pit)
3776 return -ENXIO;
3777
3778 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3779 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3780 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3781 */
3782 mutex_lock(&pit->pit_state.lock);
3783 kvm_pit_set_reinject(pit, control->pit_reinject);
3784 mutex_unlock(&pit->pit_state.lock);
3785
3786 return 0;
3787 }
3788
3789 /**
3790 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3791 * @kvm: kvm instance
3792 * @log: slot id and address to which we copy the log
3793 *
3794 * Steps 1-4 below provide general overview of dirty page logging. See
3795 * kvm_get_dirty_log_protect() function description for additional details.
3796 *
3797 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3798 * always flush the TLB (step 4) even if previous step failed and the dirty
3799 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3800 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3801 * writes will be marked dirty for next log read.
3802 *
3803 * 1. Take a snapshot of the bit and clear it if needed.
3804 * 2. Write protect the corresponding page.
3805 * 3. Copy the snapshot to the userspace.
3806 * 4. Flush TLB's if needed.
3807 */
3808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3809 {
3810 bool is_dirty = false;
3811 int r;
3812
3813 mutex_lock(&kvm->slots_lock);
3814
3815 /*
3816 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3817 */
3818 if (kvm_x86_ops->flush_log_dirty)
3819 kvm_x86_ops->flush_log_dirty(kvm);
3820
3821 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3822
3823 /*
3824 * All the TLBs can be flushed out of mmu lock, see the comments in
3825 * kvm_mmu_slot_remove_write_access().
3826 */
3827 lockdep_assert_held(&kvm->slots_lock);
3828 if (is_dirty)
3829 kvm_flush_remote_tlbs(kvm);
3830
3831 mutex_unlock(&kvm->slots_lock);
3832 return r;
3833 }
3834
3835 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3836 bool line_status)
3837 {
3838 if (!irqchip_in_kernel(kvm))
3839 return -ENXIO;
3840
3841 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3842 irq_event->irq, irq_event->level,
3843 line_status);
3844 return 0;
3845 }
3846
3847 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3848 struct kvm_enable_cap *cap)
3849 {
3850 int r;
3851
3852 if (cap->flags)
3853 return -EINVAL;
3854
3855 switch (cap->cap) {
3856 case KVM_CAP_DISABLE_QUIRKS:
3857 kvm->arch.disabled_quirks = cap->args[0];
3858 r = 0;
3859 break;
3860 case KVM_CAP_SPLIT_IRQCHIP: {
3861 mutex_lock(&kvm->lock);
3862 r = -EINVAL;
3863 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3864 goto split_irqchip_unlock;
3865 r = -EEXIST;
3866 if (irqchip_in_kernel(kvm))
3867 goto split_irqchip_unlock;
3868 if (kvm->created_vcpus)
3869 goto split_irqchip_unlock;
3870 r = kvm_setup_empty_irq_routing(kvm);
3871 if (r)
3872 goto split_irqchip_unlock;
3873 /* Pairs with irqchip_in_kernel. */
3874 smp_wmb();
3875 kvm->arch.irqchip_split = true;
3876 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3877 r = 0;
3878 split_irqchip_unlock:
3879 mutex_unlock(&kvm->lock);
3880 break;
3881 }
3882 case KVM_CAP_X2APIC_API:
3883 r = -EINVAL;
3884 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3885 break;
3886
3887 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3888 kvm->arch.x2apic_format = true;
3889 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3890 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3891
3892 r = 0;
3893 break;
3894 default:
3895 r = -EINVAL;
3896 break;
3897 }
3898 return r;
3899 }
3900
3901 long kvm_arch_vm_ioctl(struct file *filp,
3902 unsigned int ioctl, unsigned long arg)
3903 {
3904 struct kvm *kvm = filp->private_data;
3905 void __user *argp = (void __user *)arg;
3906 int r = -ENOTTY;
3907 /*
3908 * This union makes it completely explicit to gcc-3.x
3909 * that these two variables' stack usage should be
3910 * combined, not added together.
3911 */
3912 union {
3913 struct kvm_pit_state ps;
3914 struct kvm_pit_state2 ps2;
3915 struct kvm_pit_config pit_config;
3916 } u;
3917
3918 switch (ioctl) {
3919 case KVM_SET_TSS_ADDR:
3920 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3921 break;
3922 case KVM_SET_IDENTITY_MAP_ADDR: {
3923 u64 ident_addr;
3924
3925 r = -EFAULT;
3926 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3927 goto out;
3928 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3929 break;
3930 }
3931 case KVM_SET_NR_MMU_PAGES:
3932 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3933 break;
3934 case KVM_GET_NR_MMU_PAGES:
3935 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3936 break;
3937 case KVM_CREATE_IRQCHIP: {
3938 struct kvm_pic *vpic;
3939
3940 mutex_lock(&kvm->lock);
3941 r = -EEXIST;
3942 if (kvm->arch.vpic)
3943 goto create_irqchip_unlock;
3944 r = -EINVAL;
3945 if (kvm->created_vcpus)
3946 goto create_irqchip_unlock;
3947 r = -ENOMEM;
3948 vpic = kvm_create_pic(kvm);
3949 if (vpic) {
3950 r = kvm_ioapic_init(kvm);
3951 if (r) {
3952 mutex_lock(&kvm->slots_lock);
3953 kvm_destroy_pic(vpic);
3954 mutex_unlock(&kvm->slots_lock);
3955 goto create_irqchip_unlock;
3956 }
3957 } else
3958 goto create_irqchip_unlock;
3959 r = kvm_setup_default_irq_routing(kvm);
3960 if (r) {
3961 mutex_lock(&kvm->slots_lock);
3962 mutex_lock(&kvm->irq_lock);
3963 kvm_ioapic_destroy(kvm);
3964 kvm_destroy_pic(vpic);
3965 mutex_unlock(&kvm->irq_lock);
3966 mutex_unlock(&kvm->slots_lock);
3967 goto create_irqchip_unlock;
3968 }
3969 /* Write kvm->irq_routing before kvm->arch.vpic. */
3970 smp_wmb();
3971 kvm->arch.vpic = vpic;
3972 create_irqchip_unlock:
3973 mutex_unlock(&kvm->lock);
3974 break;
3975 }
3976 case KVM_CREATE_PIT:
3977 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3978 goto create_pit;
3979 case KVM_CREATE_PIT2:
3980 r = -EFAULT;
3981 if (copy_from_user(&u.pit_config, argp,
3982 sizeof(struct kvm_pit_config)))
3983 goto out;
3984 create_pit:
3985 mutex_lock(&kvm->lock);
3986 r = -EEXIST;
3987 if (kvm->arch.vpit)
3988 goto create_pit_unlock;
3989 r = -ENOMEM;
3990 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3991 if (kvm->arch.vpit)
3992 r = 0;
3993 create_pit_unlock:
3994 mutex_unlock(&kvm->lock);
3995 break;
3996 case KVM_GET_IRQCHIP: {
3997 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3998 struct kvm_irqchip *chip;
3999
4000 chip = memdup_user(argp, sizeof(*chip));
4001 if (IS_ERR(chip)) {
4002 r = PTR_ERR(chip);
4003 goto out;
4004 }
4005
4006 r = -ENXIO;
4007 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4008 goto get_irqchip_out;
4009 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4010 if (r)
4011 goto get_irqchip_out;
4012 r = -EFAULT;
4013 if (copy_to_user(argp, chip, sizeof *chip))
4014 goto get_irqchip_out;
4015 r = 0;
4016 get_irqchip_out:
4017 kfree(chip);
4018 break;
4019 }
4020 case KVM_SET_IRQCHIP: {
4021 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4022 struct kvm_irqchip *chip;
4023
4024 chip = memdup_user(argp, sizeof(*chip));
4025 if (IS_ERR(chip)) {
4026 r = PTR_ERR(chip);
4027 goto out;
4028 }
4029
4030 r = -ENXIO;
4031 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4032 goto set_irqchip_out;
4033 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4034 if (r)
4035 goto set_irqchip_out;
4036 r = 0;
4037 set_irqchip_out:
4038 kfree(chip);
4039 break;
4040 }
4041 case KVM_GET_PIT: {
4042 r = -EFAULT;
4043 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4044 goto out;
4045 r = -ENXIO;
4046 if (!kvm->arch.vpit)
4047 goto out;
4048 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4049 if (r)
4050 goto out;
4051 r = -EFAULT;
4052 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4053 goto out;
4054 r = 0;
4055 break;
4056 }
4057 case KVM_SET_PIT: {
4058 r = -EFAULT;
4059 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4060 goto out;
4061 r = -ENXIO;
4062 if (!kvm->arch.vpit)
4063 goto out;
4064 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4065 break;
4066 }
4067 case KVM_GET_PIT2: {
4068 r = -ENXIO;
4069 if (!kvm->arch.vpit)
4070 goto out;
4071 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4072 if (r)
4073 goto out;
4074 r = -EFAULT;
4075 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4076 goto out;
4077 r = 0;
4078 break;
4079 }
4080 case KVM_SET_PIT2: {
4081 r = -EFAULT;
4082 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4083 goto out;
4084 r = -ENXIO;
4085 if (!kvm->arch.vpit)
4086 goto out;
4087 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4088 break;
4089 }
4090 case KVM_REINJECT_CONTROL: {
4091 struct kvm_reinject_control control;
4092 r = -EFAULT;
4093 if (copy_from_user(&control, argp, sizeof(control)))
4094 goto out;
4095 r = kvm_vm_ioctl_reinject(kvm, &control);
4096 break;
4097 }
4098 case KVM_SET_BOOT_CPU_ID:
4099 r = 0;
4100 mutex_lock(&kvm->lock);
4101 if (kvm->created_vcpus)
4102 r = -EBUSY;
4103 else
4104 kvm->arch.bsp_vcpu_id = arg;
4105 mutex_unlock(&kvm->lock);
4106 break;
4107 case KVM_XEN_HVM_CONFIG: {
4108 r = -EFAULT;
4109 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4110 sizeof(struct kvm_xen_hvm_config)))
4111 goto out;
4112 r = -EINVAL;
4113 if (kvm->arch.xen_hvm_config.flags)
4114 goto out;
4115 r = 0;
4116 break;
4117 }
4118 case KVM_SET_CLOCK: {
4119 struct kvm_clock_data user_ns;
4120 u64 now_ns;
4121
4122 r = -EFAULT;
4123 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4124 goto out;
4125
4126 r = -EINVAL;
4127 if (user_ns.flags)
4128 goto out;
4129
4130 r = 0;
4131 local_irq_disable();
4132 now_ns = __get_kvmclock_ns(kvm);
4133 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4134 local_irq_enable();
4135 kvm_gen_update_masterclock(kvm);
4136 break;
4137 }
4138 case KVM_GET_CLOCK: {
4139 struct kvm_clock_data user_ns;
4140 u64 now_ns;
4141
4142 local_irq_disable();
4143 now_ns = __get_kvmclock_ns(kvm);
4144 user_ns.clock = now_ns;
4145 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4146 local_irq_enable();
4147 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4148
4149 r = -EFAULT;
4150 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4151 goto out;
4152 r = 0;
4153 break;
4154 }
4155 case KVM_ENABLE_CAP: {
4156 struct kvm_enable_cap cap;
4157
4158 r = -EFAULT;
4159 if (copy_from_user(&cap, argp, sizeof(cap)))
4160 goto out;
4161 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4162 break;
4163 }
4164 default:
4165 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4166 }
4167 out:
4168 return r;
4169 }
4170
4171 static void kvm_init_msr_list(void)
4172 {
4173 u32 dummy[2];
4174 unsigned i, j;
4175
4176 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4177 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4178 continue;
4179
4180 /*
4181 * Even MSRs that are valid in the host may not be exposed
4182 * to the guests in some cases.
4183 */
4184 switch (msrs_to_save[i]) {
4185 case MSR_IA32_BNDCFGS:
4186 if (!kvm_x86_ops->mpx_supported())
4187 continue;
4188 break;
4189 case MSR_TSC_AUX:
4190 if (!kvm_x86_ops->rdtscp_supported())
4191 continue;
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 if (j < i)
4198 msrs_to_save[j] = msrs_to_save[i];
4199 j++;
4200 }
4201 num_msrs_to_save = j;
4202
4203 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4204 switch (emulated_msrs[i]) {
4205 case MSR_IA32_SMBASE:
4206 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4207 continue;
4208 break;
4209 default:
4210 break;
4211 }
4212
4213 if (j < i)
4214 emulated_msrs[j] = emulated_msrs[i];
4215 j++;
4216 }
4217 num_emulated_msrs = j;
4218 }
4219
4220 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4221 const void *v)
4222 {
4223 int handled = 0;
4224 int n;
4225
4226 do {
4227 n = min(len, 8);
4228 if (!(lapic_in_kernel(vcpu) &&
4229 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4230 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4231 break;
4232 handled += n;
4233 addr += n;
4234 len -= n;
4235 v += n;
4236 } while (len);
4237
4238 return handled;
4239 }
4240
4241 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4242 {
4243 int handled = 0;
4244 int n;
4245
4246 do {
4247 n = min(len, 8);
4248 if (!(lapic_in_kernel(vcpu) &&
4249 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4250 addr, n, v))
4251 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4252 break;
4253 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4254 handled += n;
4255 addr += n;
4256 len -= n;
4257 v += n;
4258 } while (len);
4259
4260 return handled;
4261 }
4262
4263 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4264 struct kvm_segment *var, int seg)
4265 {
4266 kvm_x86_ops->set_segment(vcpu, var, seg);
4267 }
4268
4269 void kvm_get_segment(struct kvm_vcpu *vcpu,
4270 struct kvm_segment *var, int seg)
4271 {
4272 kvm_x86_ops->get_segment(vcpu, var, seg);
4273 }
4274
4275 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4276 struct x86_exception *exception)
4277 {
4278 gpa_t t_gpa;
4279
4280 BUG_ON(!mmu_is_nested(vcpu));
4281
4282 /* NPT walks are always user-walks */
4283 access |= PFERR_USER_MASK;
4284 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4285
4286 return t_gpa;
4287 }
4288
4289 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4290 struct x86_exception *exception)
4291 {
4292 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4293 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4294 }
4295
4296 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4297 struct x86_exception *exception)
4298 {
4299 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4300 access |= PFERR_FETCH_MASK;
4301 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4302 }
4303
4304 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4305 struct x86_exception *exception)
4306 {
4307 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4308 access |= PFERR_WRITE_MASK;
4309 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4310 }
4311
4312 /* uses this to access any guest's mapped memory without checking CPL */
4313 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4314 struct x86_exception *exception)
4315 {
4316 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4317 }
4318
4319 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4320 struct kvm_vcpu *vcpu, u32 access,
4321 struct x86_exception *exception)
4322 {
4323 void *data = val;
4324 int r = X86EMUL_CONTINUE;
4325
4326 while (bytes) {
4327 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4328 exception);
4329 unsigned offset = addr & (PAGE_SIZE-1);
4330 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4331 int ret;
4332
4333 if (gpa == UNMAPPED_GVA)
4334 return X86EMUL_PROPAGATE_FAULT;
4335 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4336 offset, toread);
4337 if (ret < 0) {
4338 r = X86EMUL_IO_NEEDED;
4339 goto out;
4340 }
4341
4342 bytes -= toread;
4343 data += toread;
4344 addr += toread;
4345 }
4346 out:
4347 return r;
4348 }
4349
4350 /* used for instruction fetching */
4351 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4352 gva_t addr, void *val, unsigned int bytes,
4353 struct x86_exception *exception)
4354 {
4355 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4357 unsigned offset;
4358 int ret;
4359
4360 /* Inline kvm_read_guest_virt_helper for speed. */
4361 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4362 exception);
4363 if (unlikely(gpa == UNMAPPED_GVA))
4364 return X86EMUL_PROPAGATE_FAULT;
4365
4366 offset = addr & (PAGE_SIZE-1);
4367 if (WARN_ON(offset + bytes > PAGE_SIZE))
4368 bytes = (unsigned)PAGE_SIZE - offset;
4369 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4370 offset, bytes);
4371 if (unlikely(ret < 0))
4372 return X86EMUL_IO_NEEDED;
4373
4374 return X86EMUL_CONTINUE;
4375 }
4376
4377 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4378 gva_t addr, void *val, unsigned int bytes,
4379 struct x86_exception *exception)
4380 {
4381 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4382 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4383
4384 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4385 exception);
4386 }
4387 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4388
4389 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4390 gva_t addr, void *val, unsigned int bytes,
4391 struct x86_exception *exception)
4392 {
4393 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4395 }
4396
4397 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4398 unsigned long addr, void *val, unsigned int bytes)
4399 {
4400 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4401 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4402
4403 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4404 }
4405
4406 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4407 gva_t addr, void *val,
4408 unsigned int bytes,
4409 struct x86_exception *exception)
4410 {
4411 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412 void *data = val;
4413 int r = X86EMUL_CONTINUE;
4414
4415 while (bytes) {
4416 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4417 PFERR_WRITE_MASK,
4418 exception);
4419 unsigned offset = addr & (PAGE_SIZE-1);
4420 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4421 int ret;
4422
4423 if (gpa == UNMAPPED_GVA)
4424 return X86EMUL_PROPAGATE_FAULT;
4425 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4426 if (ret < 0) {
4427 r = X86EMUL_IO_NEEDED;
4428 goto out;
4429 }
4430
4431 bytes -= towrite;
4432 data += towrite;
4433 addr += towrite;
4434 }
4435 out:
4436 return r;
4437 }
4438 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4439
4440 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4441 gpa_t *gpa, struct x86_exception *exception,
4442 bool write)
4443 {
4444 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4445 | (write ? PFERR_WRITE_MASK : 0);
4446
4447 /*
4448 * currently PKRU is only applied to ept enabled guest so
4449 * there is no pkey in EPT page table for L1 guest or EPT
4450 * shadow page table for L2 guest.
4451 */
4452 if (vcpu_match_mmio_gva(vcpu, gva)
4453 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4454 vcpu->arch.access, 0, access)) {
4455 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4456 (gva & (PAGE_SIZE - 1));
4457 trace_vcpu_match_mmio(gva, *gpa, write, false);
4458 return 1;
4459 }
4460
4461 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4462
4463 if (*gpa == UNMAPPED_GVA)
4464 return -1;
4465
4466 /* For APIC access vmexit */
4467 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4468 return 1;
4469
4470 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4471 trace_vcpu_match_mmio(gva, *gpa, write, true);
4472 return 1;
4473 }
4474
4475 return 0;
4476 }
4477
4478 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4479 const void *val, int bytes)
4480 {
4481 int ret;
4482
4483 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4484 if (ret < 0)
4485 return 0;
4486 kvm_page_track_write(vcpu, gpa, val, bytes);
4487 return 1;
4488 }
4489
4490 struct read_write_emulator_ops {
4491 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4492 int bytes);
4493 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4494 void *val, int bytes);
4495 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4496 int bytes, void *val);
4497 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4498 void *val, int bytes);
4499 bool write;
4500 };
4501
4502 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4503 {
4504 if (vcpu->mmio_read_completed) {
4505 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4506 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4507 vcpu->mmio_read_completed = 0;
4508 return 1;
4509 }
4510
4511 return 0;
4512 }
4513
4514 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4515 void *val, int bytes)
4516 {
4517 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4518 }
4519
4520 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4521 void *val, int bytes)
4522 {
4523 return emulator_write_phys(vcpu, gpa, val, bytes);
4524 }
4525
4526 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4527 {
4528 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4529 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4530 }
4531
4532 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4533 void *val, int bytes)
4534 {
4535 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4536 return X86EMUL_IO_NEEDED;
4537 }
4538
4539 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4540 void *val, int bytes)
4541 {
4542 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4543
4544 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4545 return X86EMUL_CONTINUE;
4546 }
4547
4548 static const struct read_write_emulator_ops read_emultor = {
4549 .read_write_prepare = read_prepare,
4550 .read_write_emulate = read_emulate,
4551 .read_write_mmio = vcpu_mmio_read,
4552 .read_write_exit_mmio = read_exit_mmio,
4553 };
4554
4555 static const struct read_write_emulator_ops write_emultor = {
4556 .read_write_emulate = write_emulate,
4557 .read_write_mmio = write_mmio,
4558 .read_write_exit_mmio = write_exit_mmio,
4559 .write = true,
4560 };
4561
4562 static int emulator_read_write_onepage(unsigned long addr, void *val,
4563 unsigned int bytes,
4564 struct x86_exception *exception,
4565 struct kvm_vcpu *vcpu,
4566 const struct read_write_emulator_ops *ops)
4567 {
4568 gpa_t gpa;
4569 int handled, ret;
4570 bool write = ops->write;
4571 struct kvm_mmio_fragment *frag;
4572
4573 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4574
4575 if (ret < 0)
4576 return X86EMUL_PROPAGATE_FAULT;
4577
4578 /* For APIC access vmexit */
4579 if (ret)
4580 goto mmio;
4581
4582 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4583 return X86EMUL_CONTINUE;
4584
4585 mmio:
4586 /*
4587 * Is this MMIO handled locally?
4588 */
4589 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4590 if (handled == bytes)
4591 return X86EMUL_CONTINUE;
4592
4593 gpa += handled;
4594 bytes -= handled;
4595 val += handled;
4596
4597 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4598 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4599 frag->gpa = gpa;
4600 frag->data = val;
4601 frag->len = bytes;
4602 return X86EMUL_CONTINUE;
4603 }
4604
4605 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4606 unsigned long addr,
4607 void *val, unsigned int bytes,
4608 struct x86_exception *exception,
4609 const struct read_write_emulator_ops *ops)
4610 {
4611 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4612 gpa_t gpa;
4613 int rc;
4614
4615 if (ops->read_write_prepare &&
4616 ops->read_write_prepare(vcpu, val, bytes))
4617 return X86EMUL_CONTINUE;
4618
4619 vcpu->mmio_nr_fragments = 0;
4620
4621 /* Crossing a page boundary? */
4622 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4623 int now;
4624
4625 now = -addr & ~PAGE_MASK;
4626 rc = emulator_read_write_onepage(addr, val, now, exception,
4627 vcpu, ops);
4628
4629 if (rc != X86EMUL_CONTINUE)
4630 return rc;
4631 addr += now;
4632 if (ctxt->mode != X86EMUL_MODE_PROT64)
4633 addr = (u32)addr;
4634 val += now;
4635 bytes -= now;
4636 }
4637
4638 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4639 vcpu, ops);
4640 if (rc != X86EMUL_CONTINUE)
4641 return rc;
4642
4643 if (!vcpu->mmio_nr_fragments)
4644 return rc;
4645
4646 gpa = vcpu->mmio_fragments[0].gpa;
4647
4648 vcpu->mmio_needed = 1;
4649 vcpu->mmio_cur_fragment = 0;
4650
4651 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4652 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4653 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4654 vcpu->run->mmio.phys_addr = gpa;
4655
4656 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4657 }
4658
4659 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4660 unsigned long addr,
4661 void *val,
4662 unsigned int bytes,
4663 struct x86_exception *exception)
4664 {
4665 return emulator_read_write(ctxt, addr, val, bytes,
4666 exception, &read_emultor);
4667 }
4668
4669 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4670 unsigned long addr,
4671 const void *val,
4672 unsigned int bytes,
4673 struct x86_exception *exception)
4674 {
4675 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4676 exception, &write_emultor);
4677 }
4678
4679 #define CMPXCHG_TYPE(t, ptr, old, new) \
4680 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4681
4682 #ifdef CONFIG_X86_64
4683 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4684 #else
4685 # define CMPXCHG64(ptr, old, new) \
4686 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4687 #endif
4688
4689 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4690 unsigned long addr,
4691 const void *old,
4692 const void *new,
4693 unsigned int bytes,
4694 struct x86_exception *exception)
4695 {
4696 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4697 gpa_t gpa;
4698 struct page *page;
4699 char *kaddr;
4700 bool exchanged;
4701
4702 /* guests cmpxchg8b have to be emulated atomically */
4703 if (bytes > 8 || (bytes & (bytes - 1)))
4704 goto emul_write;
4705
4706 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4707
4708 if (gpa == UNMAPPED_GVA ||
4709 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4710 goto emul_write;
4711
4712 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4713 goto emul_write;
4714
4715 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4716 if (is_error_page(page))
4717 goto emul_write;
4718
4719 kaddr = kmap_atomic(page);
4720 kaddr += offset_in_page(gpa);
4721 switch (bytes) {
4722 case 1:
4723 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4724 break;
4725 case 2:
4726 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4727 break;
4728 case 4:
4729 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4730 break;
4731 case 8:
4732 exchanged = CMPXCHG64(kaddr, old, new);
4733 break;
4734 default:
4735 BUG();
4736 }
4737 kunmap_atomic(kaddr);
4738 kvm_release_page_dirty(page);
4739
4740 if (!exchanged)
4741 return X86EMUL_CMPXCHG_FAILED;
4742
4743 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4744 kvm_page_track_write(vcpu, gpa, new, bytes);
4745
4746 return X86EMUL_CONTINUE;
4747
4748 emul_write:
4749 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4750
4751 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4752 }
4753
4754 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4755 {
4756 /* TODO: String I/O for in kernel device */
4757 int r;
4758
4759 if (vcpu->arch.pio.in)
4760 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4761 vcpu->arch.pio.size, pd);
4762 else
4763 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4764 vcpu->arch.pio.port, vcpu->arch.pio.size,
4765 pd);
4766 return r;
4767 }
4768
4769 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4770 unsigned short port, void *val,
4771 unsigned int count, bool in)
4772 {
4773 vcpu->arch.pio.port = port;
4774 vcpu->arch.pio.in = in;
4775 vcpu->arch.pio.count = count;
4776 vcpu->arch.pio.size = size;
4777
4778 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4779 vcpu->arch.pio.count = 0;
4780 return 1;
4781 }
4782
4783 vcpu->run->exit_reason = KVM_EXIT_IO;
4784 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4785 vcpu->run->io.size = size;
4786 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4787 vcpu->run->io.count = count;
4788 vcpu->run->io.port = port;
4789
4790 return 0;
4791 }
4792
4793 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4794 int size, unsigned short port, void *val,
4795 unsigned int count)
4796 {
4797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 int ret;
4799
4800 if (vcpu->arch.pio.count)
4801 goto data_avail;
4802
4803 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4804 if (ret) {
4805 data_avail:
4806 memcpy(val, vcpu->arch.pio_data, size * count);
4807 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4808 vcpu->arch.pio.count = 0;
4809 return 1;
4810 }
4811
4812 return 0;
4813 }
4814
4815 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4816 int size, unsigned short port,
4817 const void *val, unsigned int count)
4818 {
4819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820
4821 memcpy(vcpu->arch.pio_data, val, size * count);
4822 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4823 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4824 }
4825
4826 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4827 {
4828 return kvm_x86_ops->get_segment_base(vcpu, seg);
4829 }
4830
4831 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4832 {
4833 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4834 }
4835
4836 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4837 {
4838 if (!need_emulate_wbinvd(vcpu))
4839 return X86EMUL_CONTINUE;
4840
4841 if (kvm_x86_ops->has_wbinvd_exit()) {
4842 int cpu = get_cpu();
4843
4844 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4845 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4846 wbinvd_ipi, NULL, 1);
4847 put_cpu();
4848 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4849 } else
4850 wbinvd();
4851 return X86EMUL_CONTINUE;
4852 }
4853
4854 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4855 {
4856 kvm_emulate_wbinvd_noskip(vcpu);
4857 return kvm_skip_emulated_instruction(vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4860
4861
4862
4863 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4864 {
4865 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4866 }
4867
4868 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4869 unsigned long *dest)
4870 {
4871 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4872 }
4873
4874 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4875 unsigned long value)
4876 {
4877
4878 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4879 }
4880
4881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4882 {
4883 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4884 }
4885
4886 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4887 {
4888 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 unsigned long value;
4890
4891 switch (cr) {
4892 case 0:
4893 value = kvm_read_cr0(vcpu);
4894 break;
4895 case 2:
4896 value = vcpu->arch.cr2;
4897 break;
4898 case 3:
4899 value = kvm_read_cr3(vcpu);
4900 break;
4901 case 4:
4902 value = kvm_read_cr4(vcpu);
4903 break;
4904 case 8:
4905 value = kvm_get_cr8(vcpu);
4906 break;
4907 default:
4908 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4909 return 0;
4910 }
4911
4912 return value;
4913 }
4914
4915 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4916 {
4917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918 int res = 0;
4919
4920 switch (cr) {
4921 case 0:
4922 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4923 break;
4924 case 2:
4925 vcpu->arch.cr2 = val;
4926 break;
4927 case 3:
4928 res = kvm_set_cr3(vcpu, val);
4929 break;
4930 case 4:
4931 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4932 break;
4933 case 8:
4934 res = kvm_set_cr8(vcpu, val);
4935 break;
4936 default:
4937 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4938 res = -1;
4939 }
4940
4941 return res;
4942 }
4943
4944 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4945 {
4946 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4947 }
4948
4949 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4950 {
4951 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4952 }
4953
4954 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4955 {
4956 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4957 }
4958
4959 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4960 {
4961 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4962 }
4963
4964 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4965 {
4966 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4967 }
4968
4969 static unsigned long emulator_get_cached_segment_base(
4970 struct x86_emulate_ctxt *ctxt, int seg)
4971 {
4972 return get_segment_base(emul_to_vcpu(ctxt), seg);
4973 }
4974
4975 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4976 struct desc_struct *desc, u32 *base3,
4977 int seg)
4978 {
4979 struct kvm_segment var;
4980
4981 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4982 *selector = var.selector;
4983
4984 if (var.unusable) {
4985 memset(desc, 0, sizeof(*desc));
4986 return false;
4987 }
4988
4989 if (var.g)
4990 var.limit >>= 12;
4991 set_desc_limit(desc, var.limit);
4992 set_desc_base(desc, (unsigned long)var.base);
4993 #ifdef CONFIG_X86_64
4994 if (base3)
4995 *base3 = var.base >> 32;
4996 #endif
4997 desc->type = var.type;
4998 desc->s = var.s;
4999 desc->dpl = var.dpl;
5000 desc->p = var.present;
5001 desc->avl = var.avl;
5002 desc->l = var.l;
5003 desc->d = var.db;
5004 desc->g = var.g;
5005
5006 return true;
5007 }
5008
5009 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5010 struct desc_struct *desc, u32 base3,
5011 int seg)
5012 {
5013 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5014 struct kvm_segment var;
5015
5016 var.selector = selector;
5017 var.base = get_desc_base(desc);
5018 #ifdef CONFIG_X86_64
5019 var.base |= ((u64)base3) << 32;
5020 #endif
5021 var.limit = get_desc_limit(desc);
5022 if (desc->g)
5023 var.limit = (var.limit << 12) | 0xfff;
5024 var.type = desc->type;
5025 var.dpl = desc->dpl;
5026 var.db = desc->d;
5027 var.s = desc->s;
5028 var.l = desc->l;
5029 var.g = desc->g;
5030 var.avl = desc->avl;
5031 var.present = desc->p;
5032 var.unusable = !var.present;
5033 var.padding = 0;
5034
5035 kvm_set_segment(vcpu, &var, seg);
5036 return;
5037 }
5038
5039 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5040 u32 msr_index, u64 *pdata)
5041 {
5042 struct msr_data msr;
5043 int r;
5044
5045 msr.index = msr_index;
5046 msr.host_initiated = false;
5047 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5048 if (r)
5049 return r;
5050
5051 *pdata = msr.data;
5052 return 0;
5053 }
5054
5055 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5056 u32 msr_index, u64 data)
5057 {
5058 struct msr_data msr;
5059
5060 msr.data = data;
5061 msr.index = msr_index;
5062 msr.host_initiated = false;
5063 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5064 }
5065
5066 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5067 {
5068 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069
5070 return vcpu->arch.smbase;
5071 }
5072
5073 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5074 {
5075 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5076
5077 vcpu->arch.smbase = smbase;
5078 }
5079
5080 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5081 u32 pmc)
5082 {
5083 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5084 }
5085
5086 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5087 u32 pmc, u64 *pdata)
5088 {
5089 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5090 }
5091
5092 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5093 {
5094 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5095 }
5096
5097 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5098 {
5099 preempt_disable();
5100 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5101 }
5102
5103 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5104 {
5105 preempt_enable();
5106 }
5107
5108 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5109 struct x86_instruction_info *info,
5110 enum x86_intercept_stage stage)
5111 {
5112 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5113 }
5114
5115 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5116 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5117 {
5118 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5119 }
5120
5121 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5122 {
5123 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5124 }
5125
5126 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5127 {
5128 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5129 }
5130
5131 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5132 {
5133 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5134 }
5135
5136 static const struct x86_emulate_ops emulate_ops = {
5137 .read_gpr = emulator_read_gpr,
5138 .write_gpr = emulator_write_gpr,
5139 .read_std = kvm_read_guest_virt_system,
5140 .write_std = kvm_write_guest_virt_system,
5141 .read_phys = kvm_read_guest_phys_system,
5142 .fetch = kvm_fetch_guest_virt,
5143 .read_emulated = emulator_read_emulated,
5144 .write_emulated = emulator_write_emulated,
5145 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5146 .invlpg = emulator_invlpg,
5147 .pio_in_emulated = emulator_pio_in_emulated,
5148 .pio_out_emulated = emulator_pio_out_emulated,
5149 .get_segment = emulator_get_segment,
5150 .set_segment = emulator_set_segment,
5151 .get_cached_segment_base = emulator_get_cached_segment_base,
5152 .get_gdt = emulator_get_gdt,
5153 .get_idt = emulator_get_idt,
5154 .set_gdt = emulator_set_gdt,
5155 .set_idt = emulator_set_idt,
5156 .get_cr = emulator_get_cr,
5157 .set_cr = emulator_set_cr,
5158 .cpl = emulator_get_cpl,
5159 .get_dr = emulator_get_dr,
5160 .set_dr = emulator_set_dr,
5161 .get_smbase = emulator_get_smbase,
5162 .set_smbase = emulator_set_smbase,
5163 .set_msr = emulator_set_msr,
5164 .get_msr = emulator_get_msr,
5165 .check_pmc = emulator_check_pmc,
5166 .read_pmc = emulator_read_pmc,
5167 .halt = emulator_halt,
5168 .wbinvd = emulator_wbinvd,
5169 .fix_hypercall = emulator_fix_hypercall,
5170 .get_fpu = emulator_get_fpu,
5171 .put_fpu = emulator_put_fpu,
5172 .intercept = emulator_intercept,
5173 .get_cpuid = emulator_get_cpuid,
5174 .set_nmi_mask = emulator_set_nmi_mask,
5175 };
5176
5177 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5178 {
5179 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5180 /*
5181 * an sti; sti; sequence only disable interrupts for the first
5182 * instruction. So, if the last instruction, be it emulated or
5183 * not, left the system with the INT_STI flag enabled, it
5184 * means that the last instruction is an sti. We should not
5185 * leave the flag on in this case. The same goes for mov ss
5186 */
5187 if (int_shadow & mask)
5188 mask = 0;
5189 if (unlikely(int_shadow || mask)) {
5190 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5191 if (!mask)
5192 kvm_make_request(KVM_REQ_EVENT, vcpu);
5193 }
5194 }
5195
5196 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5197 {
5198 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5199 if (ctxt->exception.vector == PF_VECTOR)
5200 return kvm_propagate_fault(vcpu, &ctxt->exception);
5201
5202 if (ctxt->exception.error_code_valid)
5203 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5204 ctxt->exception.error_code);
5205 else
5206 kvm_queue_exception(vcpu, ctxt->exception.vector);
5207 return false;
5208 }
5209
5210 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5211 {
5212 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5213 int cs_db, cs_l;
5214
5215 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5216
5217 ctxt->eflags = kvm_get_rflags(vcpu);
5218 ctxt->eip = kvm_rip_read(vcpu);
5219 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5220 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5221 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5222 cs_db ? X86EMUL_MODE_PROT32 :
5223 X86EMUL_MODE_PROT16;
5224 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5225 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5226 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5227 ctxt->emul_flags = vcpu->arch.hflags;
5228
5229 init_decode_cache(ctxt);
5230 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5231 }
5232
5233 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5234 {
5235 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5236 int ret;
5237
5238 init_emulate_ctxt(vcpu);
5239
5240 ctxt->op_bytes = 2;
5241 ctxt->ad_bytes = 2;
5242 ctxt->_eip = ctxt->eip + inc_eip;
5243 ret = emulate_int_real(ctxt, irq);
5244
5245 if (ret != X86EMUL_CONTINUE)
5246 return EMULATE_FAIL;
5247
5248 ctxt->eip = ctxt->_eip;
5249 kvm_rip_write(vcpu, ctxt->eip);
5250 kvm_set_rflags(vcpu, ctxt->eflags);
5251
5252 if (irq == NMI_VECTOR)
5253 vcpu->arch.nmi_pending = 0;
5254 else
5255 vcpu->arch.interrupt.pending = false;
5256
5257 return EMULATE_DONE;
5258 }
5259 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5260
5261 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5262 {
5263 int r = EMULATE_DONE;
5264
5265 ++vcpu->stat.insn_emulation_fail;
5266 trace_kvm_emulate_insn_failed(vcpu);
5267 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5268 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5269 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5270 vcpu->run->internal.ndata = 0;
5271 r = EMULATE_FAIL;
5272 }
5273 kvm_queue_exception(vcpu, UD_VECTOR);
5274
5275 return r;
5276 }
5277
5278 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5279 bool write_fault_to_shadow_pgtable,
5280 int emulation_type)
5281 {
5282 gpa_t gpa = cr2;
5283 kvm_pfn_t pfn;
5284
5285 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5286 return false;
5287
5288 if (!vcpu->arch.mmu.direct_map) {
5289 /*
5290 * Write permission should be allowed since only
5291 * write access need to be emulated.
5292 */
5293 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5294
5295 /*
5296 * If the mapping is invalid in guest, let cpu retry
5297 * it to generate fault.
5298 */
5299 if (gpa == UNMAPPED_GVA)
5300 return true;
5301 }
5302
5303 /*
5304 * Do not retry the unhandleable instruction if it faults on the
5305 * readonly host memory, otherwise it will goto a infinite loop:
5306 * retry instruction -> write #PF -> emulation fail -> retry
5307 * instruction -> ...
5308 */
5309 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5310
5311 /*
5312 * If the instruction failed on the error pfn, it can not be fixed,
5313 * report the error to userspace.
5314 */
5315 if (is_error_noslot_pfn(pfn))
5316 return false;
5317
5318 kvm_release_pfn_clean(pfn);
5319
5320 /* The instructions are well-emulated on direct mmu. */
5321 if (vcpu->arch.mmu.direct_map) {
5322 unsigned int indirect_shadow_pages;
5323
5324 spin_lock(&vcpu->kvm->mmu_lock);
5325 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5326 spin_unlock(&vcpu->kvm->mmu_lock);
5327
5328 if (indirect_shadow_pages)
5329 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5330
5331 return true;
5332 }
5333
5334 /*
5335 * if emulation was due to access to shadowed page table
5336 * and it failed try to unshadow page and re-enter the
5337 * guest to let CPU execute the instruction.
5338 */
5339 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5340
5341 /*
5342 * If the access faults on its page table, it can not
5343 * be fixed by unprotecting shadow page and it should
5344 * be reported to userspace.
5345 */
5346 return !write_fault_to_shadow_pgtable;
5347 }
5348
5349 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5350 unsigned long cr2, int emulation_type)
5351 {
5352 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5353 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5354
5355 last_retry_eip = vcpu->arch.last_retry_eip;
5356 last_retry_addr = vcpu->arch.last_retry_addr;
5357
5358 /*
5359 * If the emulation is caused by #PF and it is non-page_table
5360 * writing instruction, it means the VM-EXIT is caused by shadow
5361 * page protected, we can zap the shadow page and retry this
5362 * instruction directly.
5363 *
5364 * Note: if the guest uses a non-page-table modifying instruction
5365 * on the PDE that points to the instruction, then we will unmap
5366 * the instruction and go to an infinite loop. So, we cache the
5367 * last retried eip and the last fault address, if we meet the eip
5368 * and the address again, we can break out of the potential infinite
5369 * loop.
5370 */
5371 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5372
5373 if (!(emulation_type & EMULTYPE_RETRY))
5374 return false;
5375
5376 if (x86_page_table_writing_insn(ctxt))
5377 return false;
5378
5379 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5380 return false;
5381
5382 vcpu->arch.last_retry_eip = ctxt->eip;
5383 vcpu->arch.last_retry_addr = cr2;
5384
5385 if (!vcpu->arch.mmu.direct_map)
5386 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5387
5388 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5389
5390 return true;
5391 }
5392
5393 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5394 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5395
5396 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5397 {
5398 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5399 /* This is a good place to trace that we are exiting SMM. */
5400 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5401
5402 /* Process a latched INIT or SMI, if any. */
5403 kvm_make_request(KVM_REQ_EVENT, vcpu);
5404 }
5405
5406 kvm_mmu_reset_context(vcpu);
5407 }
5408
5409 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5410 {
5411 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5412
5413 vcpu->arch.hflags = emul_flags;
5414
5415 if (changed & HF_SMM_MASK)
5416 kvm_smm_changed(vcpu);
5417 }
5418
5419 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5420 unsigned long *db)
5421 {
5422 u32 dr6 = 0;
5423 int i;
5424 u32 enable, rwlen;
5425
5426 enable = dr7;
5427 rwlen = dr7 >> 16;
5428 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5429 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5430 dr6 |= (1 << i);
5431 return dr6;
5432 }
5433
5434 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5435 {
5436 struct kvm_run *kvm_run = vcpu->run;
5437
5438 /*
5439 * rflags is the old, "raw" value of the flags. The new value has
5440 * not been saved yet.
5441 *
5442 * This is correct even for TF set by the guest, because "the
5443 * processor will not generate this exception after the instruction
5444 * that sets the TF flag".
5445 */
5446 if (unlikely(rflags & X86_EFLAGS_TF)) {
5447 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5448 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5449 DR6_RTM;
5450 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5451 kvm_run->debug.arch.exception = DB_VECTOR;
5452 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5453 *r = EMULATE_USER_EXIT;
5454 } else {
5455 /*
5456 * "Certain debug exceptions may clear bit 0-3. The
5457 * remaining contents of the DR6 register are never
5458 * cleared by the processor".
5459 */
5460 vcpu->arch.dr6 &= ~15;
5461 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5462 kvm_queue_exception(vcpu, DB_VECTOR);
5463 }
5464 }
5465 }
5466
5467 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5468 {
5469 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5470 int r = EMULATE_DONE;
5471
5472 kvm_x86_ops->skip_emulated_instruction(vcpu);
5473 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5474 return r == EMULATE_DONE;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5477
5478 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5479 {
5480 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5481 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5482 struct kvm_run *kvm_run = vcpu->run;
5483 unsigned long eip = kvm_get_linear_rip(vcpu);
5484 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5485 vcpu->arch.guest_debug_dr7,
5486 vcpu->arch.eff_db);
5487
5488 if (dr6 != 0) {
5489 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5490 kvm_run->debug.arch.pc = eip;
5491 kvm_run->debug.arch.exception = DB_VECTOR;
5492 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5493 *r = EMULATE_USER_EXIT;
5494 return true;
5495 }
5496 }
5497
5498 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5499 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5500 unsigned long eip = kvm_get_linear_rip(vcpu);
5501 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5502 vcpu->arch.dr7,
5503 vcpu->arch.db);
5504
5505 if (dr6 != 0) {
5506 vcpu->arch.dr6 &= ~15;
5507 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5508 kvm_queue_exception(vcpu, DB_VECTOR);
5509 *r = EMULATE_DONE;
5510 return true;
5511 }
5512 }
5513
5514 return false;
5515 }
5516
5517 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5518 unsigned long cr2,
5519 int emulation_type,
5520 void *insn,
5521 int insn_len)
5522 {
5523 int r;
5524 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5525 bool writeback = true;
5526 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5527
5528 /*
5529 * Clear write_fault_to_shadow_pgtable here to ensure it is
5530 * never reused.
5531 */
5532 vcpu->arch.write_fault_to_shadow_pgtable = false;
5533 kvm_clear_exception_queue(vcpu);
5534
5535 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5536 init_emulate_ctxt(vcpu);
5537
5538 /*
5539 * We will reenter on the same instruction since
5540 * we do not set complete_userspace_io. This does not
5541 * handle watchpoints yet, those would be handled in
5542 * the emulate_ops.
5543 */
5544 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5545 return r;
5546
5547 ctxt->interruptibility = 0;
5548 ctxt->have_exception = false;
5549 ctxt->exception.vector = -1;
5550 ctxt->perm_ok = false;
5551
5552 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5553
5554 r = x86_decode_insn(ctxt, insn, insn_len);
5555
5556 trace_kvm_emulate_insn_start(vcpu);
5557 ++vcpu->stat.insn_emulation;
5558 if (r != EMULATION_OK) {
5559 if (emulation_type & EMULTYPE_TRAP_UD)
5560 return EMULATE_FAIL;
5561 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5562 emulation_type))
5563 return EMULATE_DONE;
5564 if (emulation_type & EMULTYPE_SKIP)
5565 return EMULATE_FAIL;
5566 return handle_emulation_failure(vcpu);
5567 }
5568 }
5569
5570 if (emulation_type & EMULTYPE_SKIP) {
5571 kvm_rip_write(vcpu, ctxt->_eip);
5572 if (ctxt->eflags & X86_EFLAGS_RF)
5573 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5574 return EMULATE_DONE;
5575 }
5576
5577 if (retry_instruction(ctxt, cr2, emulation_type))
5578 return EMULATE_DONE;
5579
5580 /* this is needed for vmware backdoor interface to work since it
5581 changes registers values during IO operation */
5582 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5583 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5584 emulator_invalidate_register_cache(ctxt);
5585 }
5586
5587 restart:
5588 r = x86_emulate_insn(ctxt);
5589
5590 if (r == EMULATION_INTERCEPTED)
5591 return EMULATE_DONE;
5592
5593 if (r == EMULATION_FAILED) {
5594 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5595 emulation_type))
5596 return EMULATE_DONE;
5597
5598 return handle_emulation_failure(vcpu);
5599 }
5600
5601 if (ctxt->have_exception) {
5602 r = EMULATE_DONE;
5603 if (inject_emulated_exception(vcpu))
5604 return r;
5605 } else if (vcpu->arch.pio.count) {
5606 if (!vcpu->arch.pio.in) {
5607 /* FIXME: return into emulator if single-stepping. */
5608 vcpu->arch.pio.count = 0;
5609 } else {
5610 writeback = false;
5611 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5612 }
5613 r = EMULATE_USER_EXIT;
5614 } else if (vcpu->mmio_needed) {
5615 if (!vcpu->mmio_is_write)
5616 writeback = false;
5617 r = EMULATE_USER_EXIT;
5618 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5619 } else if (r == EMULATION_RESTART)
5620 goto restart;
5621 else
5622 r = EMULATE_DONE;
5623
5624 if (writeback) {
5625 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5626 toggle_interruptibility(vcpu, ctxt->interruptibility);
5627 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5628 if (vcpu->arch.hflags != ctxt->emul_flags)
5629 kvm_set_hflags(vcpu, ctxt->emul_flags);
5630 kvm_rip_write(vcpu, ctxt->eip);
5631 if (r == EMULATE_DONE)
5632 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5633 if (!ctxt->have_exception ||
5634 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5635 __kvm_set_rflags(vcpu, ctxt->eflags);
5636
5637 /*
5638 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5639 * do nothing, and it will be requested again as soon as
5640 * the shadow expires. But we still need to check here,
5641 * because POPF has no interrupt shadow.
5642 */
5643 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5644 kvm_make_request(KVM_REQ_EVENT, vcpu);
5645 } else
5646 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5647
5648 return r;
5649 }
5650 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5651
5652 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5653 {
5654 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5655 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5656 size, port, &val, 1);
5657 /* do not return to emulator after return from userspace */
5658 vcpu->arch.pio.count = 0;
5659 return ret;
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5662
5663 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5664 {
5665 unsigned long val;
5666
5667 /* We should only ever be called with arch.pio.count equal to 1 */
5668 BUG_ON(vcpu->arch.pio.count != 1);
5669
5670 /* For size less than 4 we merge, else we zero extend */
5671 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5672 : 0;
5673
5674 /*
5675 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5676 * the copy and tracing
5677 */
5678 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5679 vcpu->arch.pio.port, &val, 1);
5680 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5681
5682 return 1;
5683 }
5684
5685 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5686 {
5687 unsigned long val;
5688 int ret;
5689
5690 /* For size less than 4 we merge, else we zero extend */
5691 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5692
5693 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5694 &val, 1);
5695 if (ret) {
5696 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5697 return ret;
5698 }
5699
5700 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5701
5702 return 0;
5703 }
5704 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5705
5706 static int kvmclock_cpu_down_prep(unsigned int cpu)
5707 {
5708 __this_cpu_write(cpu_tsc_khz, 0);
5709 return 0;
5710 }
5711
5712 static void tsc_khz_changed(void *data)
5713 {
5714 struct cpufreq_freqs *freq = data;
5715 unsigned long khz = 0;
5716
5717 if (data)
5718 khz = freq->new;
5719 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5720 khz = cpufreq_quick_get(raw_smp_processor_id());
5721 if (!khz)
5722 khz = tsc_khz;
5723 __this_cpu_write(cpu_tsc_khz, khz);
5724 }
5725
5726 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5727 void *data)
5728 {
5729 struct cpufreq_freqs *freq = data;
5730 struct kvm *kvm;
5731 struct kvm_vcpu *vcpu;
5732 int i, send_ipi = 0;
5733
5734 /*
5735 * We allow guests to temporarily run on slowing clocks,
5736 * provided we notify them after, or to run on accelerating
5737 * clocks, provided we notify them before. Thus time never
5738 * goes backwards.
5739 *
5740 * However, we have a problem. We can't atomically update
5741 * the frequency of a given CPU from this function; it is
5742 * merely a notifier, which can be called from any CPU.
5743 * Changing the TSC frequency at arbitrary points in time
5744 * requires a recomputation of local variables related to
5745 * the TSC for each VCPU. We must flag these local variables
5746 * to be updated and be sure the update takes place with the
5747 * new frequency before any guests proceed.
5748 *
5749 * Unfortunately, the combination of hotplug CPU and frequency
5750 * change creates an intractable locking scenario; the order
5751 * of when these callouts happen is undefined with respect to
5752 * CPU hotplug, and they can race with each other. As such,
5753 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5754 * undefined; you can actually have a CPU frequency change take
5755 * place in between the computation of X and the setting of the
5756 * variable. To protect against this problem, all updates of
5757 * the per_cpu tsc_khz variable are done in an interrupt
5758 * protected IPI, and all callers wishing to update the value
5759 * must wait for a synchronous IPI to complete (which is trivial
5760 * if the caller is on the CPU already). This establishes the
5761 * necessary total order on variable updates.
5762 *
5763 * Note that because a guest time update may take place
5764 * anytime after the setting of the VCPU's request bit, the
5765 * correct TSC value must be set before the request. However,
5766 * to ensure the update actually makes it to any guest which
5767 * starts running in hardware virtualization between the set
5768 * and the acquisition of the spinlock, we must also ping the
5769 * CPU after setting the request bit.
5770 *
5771 */
5772
5773 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5774 return 0;
5775 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5776 return 0;
5777
5778 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5779
5780 spin_lock(&kvm_lock);
5781 list_for_each_entry(kvm, &vm_list, vm_list) {
5782 kvm_for_each_vcpu(i, vcpu, kvm) {
5783 if (vcpu->cpu != freq->cpu)
5784 continue;
5785 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5786 if (vcpu->cpu != smp_processor_id())
5787 send_ipi = 1;
5788 }
5789 }
5790 spin_unlock(&kvm_lock);
5791
5792 if (freq->old < freq->new && send_ipi) {
5793 /*
5794 * We upscale the frequency. Must make the guest
5795 * doesn't see old kvmclock values while running with
5796 * the new frequency, otherwise we risk the guest sees
5797 * time go backwards.
5798 *
5799 * In case we update the frequency for another cpu
5800 * (which might be in guest context) send an interrupt
5801 * to kick the cpu out of guest context. Next time
5802 * guest context is entered kvmclock will be updated,
5803 * so the guest will not see stale values.
5804 */
5805 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5806 }
5807 return 0;
5808 }
5809
5810 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5811 .notifier_call = kvmclock_cpufreq_notifier
5812 };
5813
5814 static int kvmclock_cpu_online(unsigned int cpu)
5815 {
5816 tsc_khz_changed(NULL);
5817 return 0;
5818 }
5819
5820 static void kvm_timer_init(void)
5821 {
5822 max_tsc_khz = tsc_khz;
5823
5824 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5825 #ifdef CONFIG_CPU_FREQ
5826 struct cpufreq_policy policy;
5827 int cpu;
5828
5829 memset(&policy, 0, sizeof(policy));
5830 cpu = get_cpu();
5831 cpufreq_get_policy(&policy, cpu);
5832 if (policy.cpuinfo.max_freq)
5833 max_tsc_khz = policy.cpuinfo.max_freq;
5834 put_cpu();
5835 #endif
5836 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5837 CPUFREQ_TRANSITION_NOTIFIER);
5838 }
5839 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5840
5841 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5842 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5843 }
5844
5845 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5846
5847 int kvm_is_in_guest(void)
5848 {
5849 return __this_cpu_read(current_vcpu) != NULL;
5850 }
5851
5852 static int kvm_is_user_mode(void)
5853 {
5854 int user_mode = 3;
5855
5856 if (__this_cpu_read(current_vcpu))
5857 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5858
5859 return user_mode != 0;
5860 }
5861
5862 static unsigned long kvm_get_guest_ip(void)
5863 {
5864 unsigned long ip = 0;
5865
5866 if (__this_cpu_read(current_vcpu))
5867 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5868
5869 return ip;
5870 }
5871
5872 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5873 .is_in_guest = kvm_is_in_guest,
5874 .is_user_mode = kvm_is_user_mode,
5875 .get_guest_ip = kvm_get_guest_ip,
5876 };
5877
5878 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5879 {
5880 __this_cpu_write(current_vcpu, vcpu);
5881 }
5882 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5883
5884 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5885 {
5886 __this_cpu_write(current_vcpu, NULL);
5887 }
5888 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5889
5890 static void kvm_set_mmio_spte_mask(void)
5891 {
5892 u64 mask;
5893 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5894
5895 /*
5896 * Set the reserved bits and the present bit of an paging-structure
5897 * entry to generate page fault with PFER.RSV = 1.
5898 */
5899 /* Mask the reserved physical address bits. */
5900 mask = rsvd_bits(maxphyaddr, 51);
5901
5902 /* Bit 62 is always reserved for 32bit host. */
5903 mask |= 0x3ull << 62;
5904
5905 /* Set the present bit. */
5906 mask |= 1ull;
5907
5908 #ifdef CONFIG_X86_64
5909 /*
5910 * If reserved bit is not supported, clear the present bit to disable
5911 * mmio page fault.
5912 */
5913 if (maxphyaddr == 52)
5914 mask &= ~1ull;
5915 #endif
5916
5917 kvm_mmu_set_mmio_spte_mask(mask);
5918 }
5919
5920 #ifdef CONFIG_X86_64
5921 static void pvclock_gtod_update_fn(struct work_struct *work)
5922 {
5923 struct kvm *kvm;
5924
5925 struct kvm_vcpu *vcpu;
5926 int i;
5927
5928 spin_lock(&kvm_lock);
5929 list_for_each_entry(kvm, &vm_list, vm_list)
5930 kvm_for_each_vcpu(i, vcpu, kvm)
5931 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5932 atomic_set(&kvm_guest_has_master_clock, 0);
5933 spin_unlock(&kvm_lock);
5934 }
5935
5936 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5937
5938 /*
5939 * Notification about pvclock gtod data update.
5940 */
5941 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5942 void *priv)
5943 {
5944 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5945 struct timekeeper *tk = priv;
5946
5947 update_pvclock_gtod(tk);
5948
5949 /* disable master clock if host does not trust, or does not
5950 * use, TSC clocksource
5951 */
5952 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5953 atomic_read(&kvm_guest_has_master_clock) != 0)
5954 queue_work(system_long_wq, &pvclock_gtod_work);
5955
5956 return 0;
5957 }
5958
5959 static struct notifier_block pvclock_gtod_notifier = {
5960 .notifier_call = pvclock_gtod_notify,
5961 };
5962 #endif
5963
5964 int kvm_arch_init(void *opaque)
5965 {
5966 int r;
5967 struct kvm_x86_ops *ops = opaque;
5968
5969 if (kvm_x86_ops) {
5970 printk(KERN_ERR "kvm: already loaded the other module\n");
5971 r = -EEXIST;
5972 goto out;
5973 }
5974
5975 if (!ops->cpu_has_kvm_support()) {
5976 printk(KERN_ERR "kvm: no hardware support\n");
5977 r = -EOPNOTSUPP;
5978 goto out;
5979 }
5980 if (ops->disabled_by_bios()) {
5981 printk(KERN_ERR "kvm: disabled by bios\n");
5982 r = -EOPNOTSUPP;
5983 goto out;
5984 }
5985
5986 r = -ENOMEM;
5987 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5988 if (!shared_msrs) {
5989 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5990 goto out;
5991 }
5992
5993 r = kvm_mmu_module_init();
5994 if (r)
5995 goto out_free_percpu;
5996
5997 kvm_set_mmio_spte_mask();
5998
5999 kvm_x86_ops = ops;
6000
6001 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6002 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6003 PT_PRESENT_MASK);
6004 kvm_timer_init();
6005
6006 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6007
6008 if (boot_cpu_has(X86_FEATURE_XSAVE))
6009 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6010
6011 kvm_lapic_init();
6012 #ifdef CONFIG_X86_64
6013 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6014 #endif
6015
6016 return 0;
6017
6018 out_free_percpu:
6019 free_percpu(shared_msrs);
6020 out:
6021 return r;
6022 }
6023
6024 void kvm_arch_exit(void)
6025 {
6026 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6027
6028 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6029 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6030 CPUFREQ_TRANSITION_NOTIFIER);
6031 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6032 #ifdef CONFIG_X86_64
6033 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6034 #endif
6035 kvm_x86_ops = NULL;
6036 kvm_mmu_module_exit();
6037 free_percpu(shared_msrs);
6038 }
6039
6040 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6041 {
6042 ++vcpu->stat.halt_exits;
6043 if (lapic_in_kernel(vcpu)) {
6044 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6045 return 1;
6046 } else {
6047 vcpu->run->exit_reason = KVM_EXIT_HLT;
6048 return 0;
6049 }
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6052
6053 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6054 {
6055 int ret = kvm_skip_emulated_instruction(vcpu);
6056 /*
6057 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6058 * KVM_EXIT_DEBUG here.
6059 */
6060 return kvm_vcpu_halt(vcpu) && ret;
6061 }
6062 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6063
6064 /*
6065 * kvm_pv_kick_cpu_op: Kick a vcpu.
6066 *
6067 * @apicid - apicid of vcpu to be kicked.
6068 */
6069 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6070 {
6071 struct kvm_lapic_irq lapic_irq;
6072
6073 lapic_irq.shorthand = 0;
6074 lapic_irq.dest_mode = 0;
6075 lapic_irq.dest_id = apicid;
6076 lapic_irq.msi_redir_hint = false;
6077
6078 lapic_irq.delivery_mode = APIC_DM_REMRD;
6079 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6080 }
6081
6082 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6083 {
6084 vcpu->arch.apicv_active = false;
6085 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6086 }
6087
6088 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6089 {
6090 unsigned long nr, a0, a1, a2, a3, ret;
6091 int op_64_bit, r;
6092
6093 r = kvm_skip_emulated_instruction(vcpu);
6094
6095 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6096 return kvm_hv_hypercall(vcpu);
6097
6098 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103
6104 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6105
6106 op_64_bit = is_64_bit_mode(vcpu);
6107 if (!op_64_bit) {
6108 nr &= 0xFFFFFFFF;
6109 a0 &= 0xFFFFFFFF;
6110 a1 &= 0xFFFFFFFF;
6111 a2 &= 0xFFFFFFFF;
6112 a3 &= 0xFFFFFFFF;
6113 }
6114
6115 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6116 ret = -KVM_EPERM;
6117 goto out;
6118 }
6119
6120 switch (nr) {
6121 case KVM_HC_VAPIC_POLL_IRQ:
6122 ret = 0;
6123 break;
6124 case KVM_HC_KICK_CPU:
6125 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6126 ret = 0;
6127 break;
6128 default:
6129 ret = -KVM_ENOSYS;
6130 break;
6131 }
6132 out:
6133 if (!op_64_bit)
6134 ret = (u32)ret;
6135 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6136 ++vcpu->stat.hypercalls;
6137 return r;
6138 }
6139 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6140
6141 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6142 {
6143 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6144 char instruction[3];
6145 unsigned long rip = kvm_rip_read(vcpu);
6146
6147 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6148
6149 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6150 }
6151
6152 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6153 {
6154 return vcpu->run->request_interrupt_window &&
6155 likely(!pic_in_kernel(vcpu->kvm));
6156 }
6157
6158 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6159 {
6160 struct kvm_run *kvm_run = vcpu->run;
6161
6162 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6163 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6164 kvm_run->cr8 = kvm_get_cr8(vcpu);
6165 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6166 kvm_run->ready_for_interrupt_injection =
6167 pic_in_kernel(vcpu->kvm) ||
6168 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6169 }
6170
6171 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6172 {
6173 int max_irr, tpr;
6174
6175 if (!kvm_x86_ops->update_cr8_intercept)
6176 return;
6177
6178 if (!lapic_in_kernel(vcpu))
6179 return;
6180
6181 if (vcpu->arch.apicv_active)
6182 return;
6183
6184 if (!vcpu->arch.apic->vapic_addr)
6185 max_irr = kvm_lapic_find_highest_irr(vcpu);
6186 else
6187 max_irr = -1;
6188
6189 if (max_irr != -1)
6190 max_irr >>= 4;
6191
6192 tpr = kvm_lapic_get_cr8(vcpu);
6193
6194 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6195 }
6196
6197 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6198 {
6199 int r;
6200
6201 /* try to reinject previous events if any */
6202 if (vcpu->arch.exception.pending) {
6203 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6204 vcpu->arch.exception.has_error_code,
6205 vcpu->arch.exception.error_code);
6206
6207 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6208 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6209 X86_EFLAGS_RF);
6210
6211 if (vcpu->arch.exception.nr == DB_VECTOR &&
6212 (vcpu->arch.dr7 & DR7_GD)) {
6213 vcpu->arch.dr7 &= ~DR7_GD;
6214 kvm_update_dr7(vcpu);
6215 }
6216
6217 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6218 vcpu->arch.exception.has_error_code,
6219 vcpu->arch.exception.error_code,
6220 vcpu->arch.exception.reinject);
6221 return 0;
6222 }
6223
6224 if (vcpu->arch.nmi_injected) {
6225 kvm_x86_ops->set_nmi(vcpu);
6226 return 0;
6227 }
6228
6229 if (vcpu->arch.interrupt.pending) {
6230 kvm_x86_ops->set_irq(vcpu);
6231 return 0;
6232 }
6233
6234 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6235 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6236 if (r != 0)
6237 return r;
6238 }
6239
6240 /* try to inject new event if pending */
6241 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6242 vcpu->arch.smi_pending = false;
6243 enter_smm(vcpu);
6244 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6245 --vcpu->arch.nmi_pending;
6246 vcpu->arch.nmi_injected = true;
6247 kvm_x86_ops->set_nmi(vcpu);
6248 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6249 /*
6250 * Because interrupts can be injected asynchronously, we are
6251 * calling check_nested_events again here to avoid a race condition.
6252 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6253 * proposal and current concerns. Perhaps we should be setting
6254 * KVM_REQ_EVENT only on certain events and not unconditionally?
6255 */
6256 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6257 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6258 if (r != 0)
6259 return r;
6260 }
6261 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6262 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6263 false);
6264 kvm_x86_ops->set_irq(vcpu);
6265 }
6266 }
6267
6268 return 0;
6269 }
6270
6271 static void process_nmi(struct kvm_vcpu *vcpu)
6272 {
6273 unsigned limit = 2;
6274
6275 /*
6276 * x86 is limited to one NMI running, and one NMI pending after it.
6277 * If an NMI is already in progress, limit further NMIs to just one.
6278 * Otherwise, allow two (and we'll inject the first one immediately).
6279 */
6280 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6281 limit = 1;
6282
6283 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6284 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6285 kvm_make_request(KVM_REQ_EVENT, vcpu);
6286 }
6287
6288 #define put_smstate(type, buf, offset, val) \
6289 *(type *)((buf) + (offset) - 0x7e00) = val
6290
6291 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6292 {
6293 u32 flags = 0;
6294 flags |= seg->g << 23;
6295 flags |= seg->db << 22;
6296 flags |= seg->l << 21;
6297 flags |= seg->avl << 20;
6298 flags |= seg->present << 15;
6299 flags |= seg->dpl << 13;
6300 flags |= seg->s << 12;
6301 flags |= seg->type << 8;
6302 return flags;
6303 }
6304
6305 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6306 {
6307 struct kvm_segment seg;
6308 int offset;
6309
6310 kvm_get_segment(vcpu, &seg, n);
6311 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6312
6313 if (n < 3)
6314 offset = 0x7f84 + n * 12;
6315 else
6316 offset = 0x7f2c + (n - 3) * 12;
6317
6318 put_smstate(u32, buf, offset + 8, seg.base);
6319 put_smstate(u32, buf, offset + 4, seg.limit);
6320 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6321 }
6322
6323 #ifdef CONFIG_X86_64
6324 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6325 {
6326 struct kvm_segment seg;
6327 int offset;
6328 u16 flags;
6329
6330 kvm_get_segment(vcpu, &seg, n);
6331 offset = 0x7e00 + n * 16;
6332
6333 flags = enter_smm_get_segment_flags(&seg) >> 8;
6334 put_smstate(u16, buf, offset, seg.selector);
6335 put_smstate(u16, buf, offset + 2, flags);
6336 put_smstate(u32, buf, offset + 4, seg.limit);
6337 put_smstate(u64, buf, offset + 8, seg.base);
6338 }
6339 #endif
6340
6341 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6342 {
6343 struct desc_ptr dt;
6344 struct kvm_segment seg;
6345 unsigned long val;
6346 int i;
6347
6348 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6349 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6350 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6351 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6352
6353 for (i = 0; i < 8; i++)
6354 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6355
6356 kvm_get_dr(vcpu, 6, &val);
6357 put_smstate(u32, buf, 0x7fcc, (u32)val);
6358 kvm_get_dr(vcpu, 7, &val);
6359 put_smstate(u32, buf, 0x7fc8, (u32)val);
6360
6361 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6362 put_smstate(u32, buf, 0x7fc4, seg.selector);
6363 put_smstate(u32, buf, 0x7f64, seg.base);
6364 put_smstate(u32, buf, 0x7f60, seg.limit);
6365 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6366
6367 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6368 put_smstate(u32, buf, 0x7fc0, seg.selector);
6369 put_smstate(u32, buf, 0x7f80, seg.base);
6370 put_smstate(u32, buf, 0x7f7c, seg.limit);
6371 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6372
6373 kvm_x86_ops->get_gdt(vcpu, &dt);
6374 put_smstate(u32, buf, 0x7f74, dt.address);
6375 put_smstate(u32, buf, 0x7f70, dt.size);
6376
6377 kvm_x86_ops->get_idt(vcpu, &dt);
6378 put_smstate(u32, buf, 0x7f58, dt.address);
6379 put_smstate(u32, buf, 0x7f54, dt.size);
6380
6381 for (i = 0; i < 6; i++)
6382 enter_smm_save_seg_32(vcpu, buf, i);
6383
6384 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6385
6386 /* revision id */
6387 put_smstate(u32, buf, 0x7efc, 0x00020000);
6388 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6389 }
6390
6391 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6392 {
6393 #ifdef CONFIG_X86_64
6394 struct desc_ptr dt;
6395 struct kvm_segment seg;
6396 unsigned long val;
6397 int i;
6398
6399 for (i = 0; i < 16; i++)
6400 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6401
6402 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6403 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6404
6405 kvm_get_dr(vcpu, 6, &val);
6406 put_smstate(u64, buf, 0x7f68, val);
6407 kvm_get_dr(vcpu, 7, &val);
6408 put_smstate(u64, buf, 0x7f60, val);
6409
6410 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6411 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6412 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6413
6414 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6415
6416 /* revision id */
6417 put_smstate(u32, buf, 0x7efc, 0x00020064);
6418
6419 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6420
6421 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6422 put_smstate(u16, buf, 0x7e90, seg.selector);
6423 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6424 put_smstate(u32, buf, 0x7e94, seg.limit);
6425 put_smstate(u64, buf, 0x7e98, seg.base);
6426
6427 kvm_x86_ops->get_idt(vcpu, &dt);
6428 put_smstate(u32, buf, 0x7e84, dt.size);
6429 put_smstate(u64, buf, 0x7e88, dt.address);
6430
6431 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6432 put_smstate(u16, buf, 0x7e70, seg.selector);
6433 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6434 put_smstate(u32, buf, 0x7e74, seg.limit);
6435 put_smstate(u64, buf, 0x7e78, seg.base);
6436
6437 kvm_x86_ops->get_gdt(vcpu, &dt);
6438 put_smstate(u32, buf, 0x7e64, dt.size);
6439 put_smstate(u64, buf, 0x7e68, dt.address);
6440
6441 for (i = 0; i < 6; i++)
6442 enter_smm_save_seg_64(vcpu, buf, i);
6443 #else
6444 WARN_ON_ONCE(1);
6445 #endif
6446 }
6447
6448 static void enter_smm(struct kvm_vcpu *vcpu)
6449 {
6450 struct kvm_segment cs, ds;
6451 struct desc_ptr dt;
6452 char buf[512];
6453 u32 cr0;
6454
6455 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6456 vcpu->arch.hflags |= HF_SMM_MASK;
6457 memset(buf, 0, 512);
6458 if (guest_cpuid_has_longmode(vcpu))
6459 enter_smm_save_state_64(vcpu, buf);
6460 else
6461 enter_smm_save_state_32(vcpu, buf);
6462
6463 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6464
6465 if (kvm_x86_ops->get_nmi_mask(vcpu))
6466 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6467 else
6468 kvm_x86_ops->set_nmi_mask(vcpu, true);
6469
6470 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6471 kvm_rip_write(vcpu, 0x8000);
6472
6473 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6474 kvm_x86_ops->set_cr0(vcpu, cr0);
6475 vcpu->arch.cr0 = cr0;
6476
6477 kvm_x86_ops->set_cr4(vcpu, 0);
6478
6479 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6480 dt.address = dt.size = 0;
6481 kvm_x86_ops->set_idt(vcpu, &dt);
6482
6483 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6484
6485 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6486 cs.base = vcpu->arch.smbase;
6487
6488 ds.selector = 0;
6489 ds.base = 0;
6490
6491 cs.limit = ds.limit = 0xffffffff;
6492 cs.type = ds.type = 0x3;
6493 cs.dpl = ds.dpl = 0;
6494 cs.db = ds.db = 0;
6495 cs.s = ds.s = 1;
6496 cs.l = ds.l = 0;
6497 cs.g = ds.g = 1;
6498 cs.avl = ds.avl = 0;
6499 cs.present = ds.present = 1;
6500 cs.unusable = ds.unusable = 0;
6501 cs.padding = ds.padding = 0;
6502
6503 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6504 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6505 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6506 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6507 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6508 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6509
6510 if (guest_cpuid_has_longmode(vcpu))
6511 kvm_x86_ops->set_efer(vcpu, 0);
6512
6513 kvm_update_cpuid(vcpu);
6514 kvm_mmu_reset_context(vcpu);
6515 }
6516
6517 static void process_smi(struct kvm_vcpu *vcpu)
6518 {
6519 vcpu->arch.smi_pending = true;
6520 kvm_make_request(KVM_REQ_EVENT, vcpu);
6521 }
6522
6523 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6524 {
6525 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6526 }
6527
6528 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6529 {
6530 u64 eoi_exit_bitmap[4];
6531
6532 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6533 return;
6534
6535 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6536
6537 if (irqchip_split(vcpu->kvm))
6538 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6539 else {
6540 if (vcpu->arch.apicv_active)
6541 kvm_x86_ops->sync_pir_to_irr(vcpu);
6542 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6543 }
6544 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6545 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6546 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6547 }
6548
6549 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6550 {
6551 ++vcpu->stat.tlb_flush;
6552 kvm_x86_ops->tlb_flush(vcpu);
6553 }
6554
6555 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6556 {
6557 struct page *page = NULL;
6558
6559 if (!lapic_in_kernel(vcpu))
6560 return;
6561
6562 if (!kvm_x86_ops->set_apic_access_page_addr)
6563 return;
6564
6565 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6566 if (is_error_page(page))
6567 return;
6568 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6569
6570 /*
6571 * Do not pin apic access page in memory, the MMU notifier
6572 * will call us again if it is migrated or swapped out.
6573 */
6574 put_page(page);
6575 }
6576 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6577
6578 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6579 unsigned long address)
6580 {
6581 /*
6582 * The physical address of apic access page is stored in the VMCS.
6583 * Update it when it becomes invalid.
6584 */
6585 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6586 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6587 }
6588
6589 /*
6590 * Returns 1 to let vcpu_run() continue the guest execution loop without
6591 * exiting to the userspace. Otherwise, the value will be returned to the
6592 * userspace.
6593 */
6594 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6595 {
6596 int r;
6597 bool req_int_win =
6598 dm_request_for_irq_injection(vcpu) &&
6599 kvm_cpu_accept_dm_intr(vcpu);
6600
6601 bool req_immediate_exit = false;
6602
6603 if (vcpu->requests) {
6604 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6605 kvm_mmu_unload(vcpu);
6606 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6607 __kvm_migrate_timers(vcpu);
6608 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6609 kvm_gen_update_masterclock(vcpu->kvm);
6610 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6611 kvm_gen_kvmclock_update(vcpu);
6612 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6613 r = kvm_guest_time_update(vcpu);
6614 if (unlikely(r))
6615 goto out;
6616 }
6617 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6618 kvm_mmu_sync_roots(vcpu);
6619 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6620 kvm_vcpu_flush_tlb(vcpu);
6621 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6622 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6623 r = 0;
6624 goto out;
6625 }
6626 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6627 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6628 r = 0;
6629 goto out;
6630 }
6631 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6632 vcpu->fpu_active = 0;
6633 kvm_x86_ops->fpu_deactivate(vcpu);
6634 }
6635 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6636 /* Page is swapped out. Do synthetic halt */
6637 vcpu->arch.apf.halted = true;
6638 r = 1;
6639 goto out;
6640 }
6641 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6642 record_steal_time(vcpu);
6643 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6644 process_smi(vcpu);
6645 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6646 process_nmi(vcpu);
6647 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6648 kvm_pmu_handle_event(vcpu);
6649 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6650 kvm_pmu_deliver_pmi(vcpu);
6651 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6652 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6653 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6654 vcpu->arch.ioapic_handled_vectors)) {
6655 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6656 vcpu->run->eoi.vector =
6657 vcpu->arch.pending_ioapic_eoi;
6658 r = 0;
6659 goto out;
6660 }
6661 }
6662 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6663 vcpu_scan_ioapic(vcpu);
6664 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6665 kvm_vcpu_reload_apic_access_page(vcpu);
6666 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6667 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6668 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6669 r = 0;
6670 goto out;
6671 }
6672 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6673 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6674 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6675 r = 0;
6676 goto out;
6677 }
6678 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6679 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6680 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6681 r = 0;
6682 goto out;
6683 }
6684
6685 /*
6686 * KVM_REQ_HV_STIMER has to be processed after
6687 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6688 * depend on the guest clock being up-to-date
6689 */
6690 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6691 kvm_hv_process_stimers(vcpu);
6692 }
6693
6694 /*
6695 * KVM_REQ_EVENT is not set when posted interrupts are set by
6696 * VT-d hardware, so we have to update RVI unconditionally.
6697 */
6698 if (kvm_lapic_enabled(vcpu)) {
6699 /*
6700 * Update architecture specific hints for APIC
6701 * virtual interrupt delivery.
6702 */
6703 if (vcpu->arch.apicv_active)
6704 kvm_x86_ops->hwapic_irr_update(vcpu,
6705 kvm_lapic_find_highest_irr(vcpu));
6706 }
6707
6708 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6709 kvm_apic_accept_events(vcpu);
6710 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6711 r = 1;
6712 goto out;
6713 }
6714
6715 if (inject_pending_event(vcpu, req_int_win) != 0)
6716 req_immediate_exit = true;
6717 else {
6718 /* Enable NMI/IRQ window open exits if needed.
6719 *
6720 * SMIs have two cases: 1) they can be nested, and
6721 * then there is nothing to do here because RSM will
6722 * cause a vmexit anyway; 2) or the SMI can be pending
6723 * because inject_pending_event has completed the
6724 * injection of an IRQ or NMI from the previous vmexit,
6725 * and then we request an immediate exit to inject the SMI.
6726 */
6727 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6728 req_immediate_exit = true;
6729 if (vcpu->arch.nmi_pending)
6730 kvm_x86_ops->enable_nmi_window(vcpu);
6731 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6732 kvm_x86_ops->enable_irq_window(vcpu);
6733 }
6734
6735 if (kvm_lapic_enabled(vcpu)) {
6736 update_cr8_intercept(vcpu);
6737 kvm_lapic_sync_to_vapic(vcpu);
6738 }
6739 }
6740
6741 r = kvm_mmu_reload(vcpu);
6742 if (unlikely(r)) {
6743 goto cancel_injection;
6744 }
6745
6746 preempt_disable();
6747
6748 kvm_x86_ops->prepare_guest_switch(vcpu);
6749 if (vcpu->fpu_active)
6750 kvm_load_guest_fpu(vcpu);
6751 vcpu->mode = IN_GUEST_MODE;
6752
6753 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6754
6755 /*
6756 * We should set ->mode before check ->requests,
6757 * Please see the comment in kvm_make_all_cpus_request.
6758 * This also orders the write to mode from any reads
6759 * to the page tables done while the VCPU is running.
6760 * Please see the comment in kvm_flush_remote_tlbs.
6761 */
6762 smp_mb__after_srcu_read_unlock();
6763
6764 local_irq_disable();
6765
6766 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6767 || need_resched() || signal_pending(current)) {
6768 vcpu->mode = OUTSIDE_GUEST_MODE;
6769 smp_wmb();
6770 local_irq_enable();
6771 preempt_enable();
6772 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6773 r = 1;
6774 goto cancel_injection;
6775 }
6776
6777 kvm_load_guest_xcr0(vcpu);
6778
6779 if (req_immediate_exit) {
6780 kvm_make_request(KVM_REQ_EVENT, vcpu);
6781 smp_send_reschedule(vcpu->cpu);
6782 }
6783
6784 trace_kvm_entry(vcpu->vcpu_id);
6785 wait_lapic_expire(vcpu);
6786 guest_enter_irqoff();
6787
6788 if (unlikely(vcpu->arch.switch_db_regs)) {
6789 set_debugreg(0, 7);
6790 set_debugreg(vcpu->arch.eff_db[0], 0);
6791 set_debugreg(vcpu->arch.eff_db[1], 1);
6792 set_debugreg(vcpu->arch.eff_db[2], 2);
6793 set_debugreg(vcpu->arch.eff_db[3], 3);
6794 set_debugreg(vcpu->arch.dr6, 6);
6795 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6796 }
6797
6798 kvm_x86_ops->run(vcpu);
6799
6800 /*
6801 * Do this here before restoring debug registers on the host. And
6802 * since we do this before handling the vmexit, a DR access vmexit
6803 * can (a) read the correct value of the debug registers, (b) set
6804 * KVM_DEBUGREG_WONT_EXIT again.
6805 */
6806 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6807 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6808 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6809 kvm_update_dr0123(vcpu);
6810 kvm_update_dr6(vcpu);
6811 kvm_update_dr7(vcpu);
6812 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813 }
6814
6815 /*
6816 * If the guest has used debug registers, at least dr7
6817 * will be disabled while returning to the host.
6818 * If we don't have active breakpoints in the host, we don't
6819 * care about the messed up debug address registers. But if
6820 * we have some of them active, restore the old state.
6821 */
6822 if (hw_breakpoint_active())
6823 hw_breakpoint_restore();
6824
6825 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6826
6827 vcpu->mode = OUTSIDE_GUEST_MODE;
6828 smp_wmb();
6829
6830 kvm_put_guest_xcr0(vcpu);
6831
6832 kvm_x86_ops->handle_external_intr(vcpu);
6833
6834 ++vcpu->stat.exits;
6835
6836 guest_exit_irqoff();
6837
6838 local_irq_enable();
6839 preempt_enable();
6840
6841 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6842
6843 /*
6844 * Profile KVM exit RIPs:
6845 */
6846 if (unlikely(prof_on == KVM_PROFILING)) {
6847 unsigned long rip = kvm_rip_read(vcpu);
6848 profile_hit(KVM_PROFILING, (void *)rip);
6849 }
6850
6851 if (unlikely(vcpu->arch.tsc_always_catchup))
6852 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6853
6854 if (vcpu->arch.apic_attention)
6855 kvm_lapic_sync_from_vapic(vcpu);
6856
6857 r = kvm_x86_ops->handle_exit(vcpu);
6858 return r;
6859
6860 cancel_injection:
6861 kvm_x86_ops->cancel_injection(vcpu);
6862 if (unlikely(vcpu->arch.apic_attention))
6863 kvm_lapic_sync_from_vapic(vcpu);
6864 out:
6865 return r;
6866 }
6867
6868 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6869 {
6870 if (!kvm_arch_vcpu_runnable(vcpu) &&
6871 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6872 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6873 kvm_vcpu_block(vcpu);
6874 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6875
6876 if (kvm_x86_ops->post_block)
6877 kvm_x86_ops->post_block(vcpu);
6878
6879 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6880 return 1;
6881 }
6882
6883 kvm_apic_accept_events(vcpu);
6884 switch(vcpu->arch.mp_state) {
6885 case KVM_MP_STATE_HALTED:
6886 vcpu->arch.pv.pv_unhalted = false;
6887 vcpu->arch.mp_state =
6888 KVM_MP_STATE_RUNNABLE;
6889 case KVM_MP_STATE_RUNNABLE:
6890 vcpu->arch.apf.halted = false;
6891 break;
6892 case KVM_MP_STATE_INIT_RECEIVED:
6893 break;
6894 default:
6895 return -EINTR;
6896 break;
6897 }
6898 return 1;
6899 }
6900
6901 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6902 {
6903 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6904 !vcpu->arch.apf.halted);
6905 }
6906
6907 static int vcpu_run(struct kvm_vcpu *vcpu)
6908 {
6909 int r;
6910 struct kvm *kvm = vcpu->kvm;
6911
6912 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6913
6914 for (;;) {
6915 if (kvm_vcpu_running(vcpu)) {
6916 r = vcpu_enter_guest(vcpu);
6917 } else {
6918 r = vcpu_block(kvm, vcpu);
6919 }
6920
6921 if (r <= 0)
6922 break;
6923
6924 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6925 if (kvm_cpu_has_pending_timer(vcpu))
6926 kvm_inject_pending_timer_irqs(vcpu);
6927
6928 if (dm_request_for_irq_injection(vcpu) &&
6929 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6930 r = 0;
6931 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6932 ++vcpu->stat.request_irq_exits;
6933 break;
6934 }
6935
6936 kvm_check_async_pf_completion(vcpu);
6937
6938 if (signal_pending(current)) {
6939 r = -EINTR;
6940 vcpu->run->exit_reason = KVM_EXIT_INTR;
6941 ++vcpu->stat.signal_exits;
6942 break;
6943 }
6944 if (need_resched()) {
6945 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6946 cond_resched();
6947 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6948 }
6949 }
6950
6951 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6952
6953 return r;
6954 }
6955
6956 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6957 {
6958 int r;
6959 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6960 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6961 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6962 if (r != EMULATE_DONE)
6963 return 0;
6964 return 1;
6965 }
6966
6967 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6968 {
6969 BUG_ON(!vcpu->arch.pio.count);
6970
6971 return complete_emulated_io(vcpu);
6972 }
6973
6974 /*
6975 * Implements the following, as a state machine:
6976 *
6977 * read:
6978 * for each fragment
6979 * for each mmio piece in the fragment
6980 * write gpa, len
6981 * exit
6982 * copy data
6983 * execute insn
6984 *
6985 * write:
6986 * for each fragment
6987 * for each mmio piece in the fragment
6988 * write gpa, len
6989 * copy data
6990 * exit
6991 */
6992 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6993 {
6994 struct kvm_run *run = vcpu->run;
6995 struct kvm_mmio_fragment *frag;
6996 unsigned len;
6997
6998 BUG_ON(!vcpu->mmio_needed);
6999
7000 /* Complete previous fragment */
7001 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7002 len = min(8u, frag->len);
7003 if (!vcpu->mmio_is_write)
7004 memcpy(frag->data, run->mmio.data, len);
7005
7006 if (frag->len <= 8) {
7007 /* Switch to the next fragment. */
7008 frag++;
7009 vcpu->mmio_cur_fragment++;
7010 } else {
7011 /* Go forward to the next mmio piece. */
7012 frag->data += len;
7013 frag->gpa += len;
7014 frag->len -= len;
7015 }
7016
7017 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7018 vcpu->mmio_needed = 0;
7019
7020 /* FIXME: return into emulator if single-stepping. */
7021 if (vcpu->mmio_is_write)
7022 return 1;
7023 vcpu->mmio_read_completed = 1;
7024 return complete_emulated_io(vcpu);
7025 }
7026
7027 run->exit_reason = KVM_EXIT_MMIO;
7028 run->mmio.phys_addr = frag->gpa;
7029 if (vcpu->mmio_is_write)
7030 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7031 run->mmio.len = min(8u, frag->len);
7032 run->mmio.is_write = vcpu->mmio_is_write;
7033 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7034 return 0;
7035 }
7036
7037
7038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7039 {
7040 struct fpu *fpu = &current->thread.fpu;
7041 int r;
7042 sigset_t sigsaved;
7043
7044 fpu__activate_curr(fpu);
7045
7046 if (vcpu->sigset_active)
7047 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7048
7049 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7050 kvm_vcpu_block(vcpu);
7051 kvm_apic_accept_events(vcpu);
7052 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7053 r = -EAGAIN;
7054 goto out;
7055 }
7056
7057 /* re-sync apic's tpr */
7058 if (!lapic_in_kernel(vcpu)) {
7059 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7060 r = -EINVAL;
7061 goto out;
7062 }
7063 }
7064
7065 if (unlikely(vcpu->arch.complete_userspace_io)) {
7066 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7067 vcpu->arch.complete_userspace_io = NULL;
7068 r = cui(vcpu);
7069 if (r <= 0)
7070 goto out;
7071 } else
7072 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7073
7074 r = vcpu_run(vcpu);
7075
7076 out:
7077 post_kvm_run_save(vcpu);
7078 if (vcpu->sigset_active)
7079 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7080
7081 return r;
7082 }
7083
7084 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7085 {
7086 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7087 /*
7088 * We are here if userspace calls get_regs() in the middle of
7089 * instruction emulation. Registers state needs to be copied
7090 * back from emulation context to vcpu. Userspace shouldn't do
7091 * that usually, but some bad designed PV devices (vmware
7092 * backdoor interface) need this to work
7093 */
7094 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7095 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7096 }
7097 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7098 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7099 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7100 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7101 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7102 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7103 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7104 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7105 #ifdef CONFIG_X86_64
7106 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7107 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7108 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7109 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7110 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7111 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7112 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7113 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7114 #endif
7115
7116 regs->rip = kvm_rip_read(vcpu);
7117 regs->rflags = kvm_get_rflags(vcpu);
7118
7119 return 0;
7120 }
7121
7122 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7123 {
7124 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7125 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7126
7127 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7128 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7129 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7130 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7131 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7132 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7133 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7134 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7135 #ifdef CONFIG_X86_64
7136 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7137 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7138 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7139 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7140 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7141 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7142 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7143 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7144 #endif
7145
7146 kvm_rip_write(vcpu, regs->rip);
7147 kvm_set_rflags(vcpu, regs->rflags);
7148
7149 vcpu->arch.exception.pending = false;
7150
7151 kvm_make_request(KVM_REQ_EVENT, vcpu);
7152
7153 return 0;
7154 }
7155
7156 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7157 {
7158 struct kvm_segment cs;
7159
7160 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7161 *db = cs.db;
7162 *l = cs.l;
7163 }
7164 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7165
7166 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7167 struct kvm_sregs *sregs)
7168 {
7169 struct desc_ptr dt;
7170
7171 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7172 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7173 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7174 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7175 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7176 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7177
7178 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7179 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7180
7181 kvm_x86_ops->get_idt(vcpu, &dt);
7182 sregs->idt.limit = dt.size;
7183 sregs->idt.base = dt.address;
7184 kvm_x86_ops->get_gdt(vcpu, &dt);
7185 sregs->gdt.limit = dt.size;
7186 sregs->gdt.base = dt.address;
7187
7188 sregs->cr0 = kvm_read_cr0(vcpu);
7189 sregs->cr2 = vcpu->arch.cr2;
7190 sregs->cr3 = kvm_read_cr3(vcpu);
7191 sregs->cr4 = kvm_read_cr4(vcpu);
7192 sregs->cr8 = kvm_get_cr8(vcpu);
7193 sregs->efer = vcpu->arch.efer;
7194 sregs->apic_base = kvm_get_apic_base(vcpu);
7195
7196 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7197
7198 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7199 set_bit(vcpu->arch.interrupt.nr,
7200 (unsigned long *)sregs->interrupt_bitmap);
7201
7202 return 0;
7203 }
7204
7205 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7206 struct kvm_mp_state *mp_state)
7207 {
7208 kvm_apic_accept_events(vcpu);
7209 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7210 vcpu->arch.pv.pv_unhalted)
7211 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7212 else
7213 mp_state->mp_state = vcpu->arch.mp_state;
7214
7215 return 0;
7216 }
7217
7218 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7219 struct kvm_mp_state *mp_state)
7220 {
7221 if (!lapic_in_kernel(vcpu) &&
7222 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7223 return -EINVAL;
7224
7225 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7226 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7227 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7228 } else
7229 vcpu->arch.mp_state = mp_state->mp_state;
7230 kvm_make_request(KVM_REQ_EVENT, vcpu);
7231 return 0;
7232 }
7233
7234 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7235 int reason, bool has_error_code, u32 error_code)
7236 {
7237 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7238 int ret;
7239
7240 init_emulate_ctxt(vcpu);
7241
7242 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7243 has_error_code, error_code);
7244
7245 if (ret)
7246 return EMULATE_FAIL;
7247
7248 kvm_rip_write(vcpu, ctxt->eip);
7249 kvm_set_rflags(vcpu, ctxt->eflags);
7250 kvm_make_request(KVM_REQ_EVENT, vcpu);
7251 return EMULATE_DONE;
7252 }
7253 EXPORT_SYMBOL_GPL(kvm_task_switch);
7254
7255 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7256 struct kvm_sregs *sregs)
7257 {
7258 struct msr_data apic_base_msr;
7259 int mmu_reset_needed = 0;
7260 int pending_vec, max_bits, idx;
7261 struct desc_ptr dt;
7262
7263 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7264 return -EINVAL;
7265
7266 dt.size = sregs->idt.limit;
7267 dt.address = sregs->idt.base;
7268 kvm_x86_ops->set_idt(vcpu, &dt);
7269 dt.size = sregs->gdt.limit;
7270 dt.address = sregs->gdt.base;
7271 kvm_x86_ops->set_gdt(vcpu, &dt);
7272
7273 vcpu->arch.cr2 = sregs->cr2;
7274 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7275 vcpu->arch.cr3 = sregs->cr3;
7276 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7277
7278 kvm_set_cr8(vcpu, sregs->cr8);
7279
7280 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7281 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7282 apic_base_msr.data = sregs->apic_base;
7283 apic_base_msr.host_initiated = true;
7284 kvm_set_apic_base(vcpu, &apic_base_msr);
7285
7286 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7287 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7288 vcpu->arch.cr0 = sregs->cr0;
7289
7290 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7291 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7292 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7293 kvm_update_cpuid(vcpu);
7294
7295 idx = srcu_read_lock(&vcpu->kvm->srcu);
7296 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7297 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7298 mmu_reset_needed = 1;
7299 }
7300 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7301
7302 if (mmu_reset_needed)
7303 kvm_mmu_reset_context(vcpu);
7304
7305 max_bits = KVM_NR_INTERRUPTS;
7306 pending_vec = find_first_bit(
7307 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7308 if (pending_vec < max_bits) {
7309 kvm_queue_interrupt(vcpu, pending_vec, false);
7310 pr_debug("Set back pending irq %d\n", pending_vec);
7311 }
7312
7313 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7314 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7315 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7316 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7317 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7318 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7319
7320 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7321 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7322
7323 update_cr8_intercept(vcpu);
7324
7325 /* Older userspace won't unhalt the vcpu on reset. */
7326 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7327 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7328 !is_protmode(vcpu))
7329 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7330
7331 kvm_make_request(KVM_REQ_EVENT, vcpu);
7332
7333 return 0;
7334 }
7335
7336 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7337 struct kvm_guest_debug *dbg)
7338 {
7339 unsigned long rflags;
7340 int i, r;
7341
7342 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7343 r = -EBUSY;
7344 if (vcpu->arch.exception.pending)
7345 goto out;
7346 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7347 kvm_queue_exception(vcpu, DB_VECTOR);
7348 else
7349 kvm_queue_exception(vcpu, BP_VECTOR);
7350 }
7351
7352 /*
7353 * Read rflags as long as potentially injected trace flags are still
7354 * filtered out.
7355 */
7356 rflags = kvm_get_rflags(vcpu);
7357
7358 vcpu->guest_debug = dbg->control;
7359 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7360 vcpu->guest_debug = 0;
7361
7362 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7363 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7364 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7365 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7366 } else {
7367 for (i = 0; i < KVM_NR_DB_REGS; i++)
7368 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7369 }
7370 kvm_update_dr7(vcpu);
7371
7372 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7373 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7374 get_segment_base(vcpu, VCPU_SREG_CS);
7375
7376 /*
7377 * Trigger an rflags update that will inject or remove the trace
7378 * flags.
7379 */
7380 kvm_set_rflags(vcpu, rflags);
7381
7382 kvm_x86_ops->update_bp_intercept(vcpu);
7383
7384 r = 0;
7385
7386 out:
7387
7388 return r;
7389 }
7390
7391 /*
7392 * Translate a guest virtual address to a guest physical address.
7393 */
7394 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7395 struct kvm_translation *tr)
7396 {
7397 unsigned long vaddr = tr->linear_address;
7398 gpa_t gpa;
7399 int idx;
7400
7401 idx = srcu_read_lock(&vcpu->kvm->srcu);
7402 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7403 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7404 tr->physical_address = gpa;
7405 tr->valid = gpa != UNMAPPED_GVA;
7406 tr->writeable = 1;
7407 tr->usermode = 0;
7408
7409 return 0;
7410 }
7411
7412 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7413 {
7414 struct fxregs_state *fxsave =
7415 &vcpu->arch.guest_fpu.state.fxsave;
7416
7417 memcpy(fpu->fpr, fxsave->st_space, 128);
7418 fpu->fcw = fxsave->cwd;
7419 fpu->fsw = fxsave->swd;
7420 fpu->ftwx = fxsave->twd;
7421 fpu->last_opcode = fxsave->fop;
7422 fpu->last_ip = fxsave->rip;
7423 fpu->last_dp = fxsave->rdp;
7424 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7425
7426 return 0;
7427 }
7428
7429 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7430 {
7431 struct fxregs_state *fxsave =
7432 &vcpu->arch.guest_fpu.state.fxsave;
7433
7434 memcpy(fxsave->st_space, fpu->fpr, 128);
7435 fxsave->cwd = fpu->fcw;
7436 fxsave->swd = fpu->fsw;
7437 fxsave->twd = fpu->ftwx;
7438 fxsave->fop = fpu->last_opcode;
7439 fxsave->rip = fpu->last_ip;
7440 fxsave->rdp = fpu->last_dp;
7441 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7442
7443 return 0;
7444 }
7445
7446 static void fx_init(struct kvm_vcpu *vcpu)
7447 {
7448 fpstate_init(&vcpu->arch.guest_fpu.state);
7449 if (boot_cpu_has(X86_FEATURE_XSAVES))
7450 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7451 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7452
7453 /*
7454 * Ensure guest xcr0 is valid for loading
7455 */
7456 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7457
7458 vcpu->arch.cr0 |= X86_CR0_ET;
7459 }
7460
7461 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7462 {
7463 if (vcpu->guest_fpu_loaded)
7464 return;
7465
7466 /*
7467 * Restore all possible states in the guest,
7468 * and assume host would use all available bits.
7469 * Guest xcr0 would be loaded later.
7470 */
7471 vcpu->guest_fpu_loaded = 1;
7472 __kernel_fpu_begin();
7473 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7474 trace_kvm_fpu(1);
7475 }
7476
7477 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7478 {
7479 if (!vcpu->guest_fpu_loaded)
7480 return;
7481
7482 vcpu->guest_fpu_loaded = 0;
7483 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7484 __kernel_fpu_end();
7485 ++vcpu->stat.fpu_reload;
7486 trace_kvm_fpu(0);
7487 }
7488
7489 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7490 {
7491 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7492
7493 kvmclock_reset(vcpu);
7494
7495 kvm_x86_ops->vcpu_free(vcpu);
7496 free_cpumask_var(wbinvd_dirty_mask);
7497 }
7498
7499 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7500 unsigned int id)
7501 {
7502 struct kvm_vcpu *vcpu;
7503
7504 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7505 printk_once(KERN_WARNING
7506 "kvm: SMP vm created on host with unstable TSC; "
7507 "guest TSC will not be reliable\n");
7508
7509 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7510
7511 return vcpu;
7512 }
7513
7514 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7515 {
7516 int r;
7517
7518 kvm_vcpu_mtrr_init(vcpu);
7519 r = vcpu_load(vcpu);
7520 if (r)
7521 return r;
7522 kvm_vcpu_reset(vcpu, false);
7523 kvm_mmu_setup(vcpu);
7524 vcpu_put(vcpu);
7525 return r;
7526 }
7527
7528 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7529 {
7530 struct msr_data msr;
7531 struct kvm *kvm = vcpu->kvm;
7532
7533 if (vcpu_load(vcpu))
7534 return;
7535 msr.data = 0x0;
7536 msr.index = MSR_IA32_TSC;
7537 msr.host_initiated = true;
7538 kvm_write_tsc(vcpu, &msr);
7539 vcpu_put(vcpu);
7540
7541 if (!kvmclock_periodic_sync)
7542 return;
7543
7544 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7545 KVMCLOCK_SYNC_PERIOD);
7546 }
7547
7548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7549 {
7550 int r;
7551 vcpu->arch.apf.msr_val = 0;
7552
7553 r = vcpu_load(vcpu);
7554 BUG_ON(r);
7555 kvm_mmu_unload(vcpu);
7556 vcpu_put(vcpu);
7557
7558 kvm_x86_ops->vcpu_free(vcpu);
7559 }
7560
7561 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7562 {
7563 vcpu->arch.hflags = 0;
7564
7565 vcpu->arch.smi_pending = 0;
7566 atomic_set(&vcpu->arch.nmi_queued, 0);
7567 vcpu->arch.nmi_pending = 0;
7568 vcpu->arch.nmi_injected = false;
7569 kvm_clear_interrupt_queue(vcpu);
7570 kvm_clear_exception_queue(vcpu);
7571
7572 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7573 kvm_update_dr0123(vcpu);
7574 vcpu->arch.dr6 = DR6_INIT;
7575 kvm_update_dr6(vcpu);
7576 vcpu->arch.dr7 = DR7_FIXED_1;
7577 kvm_update_dr7(vcpu);
7578
7579 vcpu->arch.cr2 = 0;
7580
7581 kvm_make_request(KVM_REQ_EVENT, vcpu);
7582 vcpu->arch.apf.msr_val = 0;
7583 vcpu->arch.st.msr_val = 0;
7584
7585 kvmclock_reset(vcpu);
7586
7587 kvm_clear_async_pf_completion_queue(vcpu);
7588 kvm_async_pf_hash_reset(vcpu);
7589 vcpu->arch.apf.halted = false;
7590
7591 if (!init_event) {
7592 kvm_pmu_reset(vcpu);
7593 vcpu->arch.smbase = 0x30000;
7594 }
7595
7596 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7597 vcpu->arch.regs_avail = ~0;
7598 vcpu->arch.regs_dirty = ~0;
7599
7600 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7601 }
7602
7603 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7604 {
7605 struct kvm_segment cs;
7606
7607 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7608 cs.selector = vector << 8;
7609 cs.base = vector << 12;
7610 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7611 kvm_rip_write(vcpu, 0);
7612 }
7613
7614 int kvm_arch_hardware_enable(void)
7615 {
7616 struct kvm *kvm;
7617 struct kvm_vcpu *vcpu;
7618 int i;
7619 int ret;
7620 u64 local_tsc;
7621 u64 max_tsc = 0;
7622 bool stable, backwards_tsc = false;
7623
7624 kvm_shared_msr_cpu_online();
7625 ret = kvm_x86_ops->hardware_enable();
7626 if (ret != 0)
7627 return ret;
7628
7629 local_tsc = rdtsc();
7630 stable = !check_tsc_unstable();
7631 list_for_each_entry(kvm, &vm_list, vm_list) {
7632 kvm_for_each_vcpu(i, vcpu, kvm) {
7633 if (!stable && vcpu->cpu == smp_processor_id())
7634 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7635 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7636 backwards_tsc = true;
7637 if (vcpu->arch.last_host_tsc > max_tsc)
7638 max_tsc = vcpu->arch.last_host_tsc;
7639 }
7640 }
7641 }
7642
7643 /*
7644 * Sometimes, even reliable TSCs go backwards. This happens on
7645 * platforms that reset TSC during suspend or hibernate actions, but
7646 * maintain synchronization. We must compensate. Fortunately, we can
7647 * detect that condition here, which happens early in CPU bringup,
7648 * before any KVM threads can be running. Unfortunately, we can't
7649 * bring the TSCs fully up to date with real time, as we aren't yet far
7650 * enough into CPU bringup that we know how much real time has actually
7651 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7652 * variables that haven't been updated yet.
7653 *
7654 * So we simply find the maximum observed TSC above, then record the
7655 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7656 * the adjustment will be applied. Note that we accumulate
7657 * adjustments, in case multiple suspend cycles happen before some VCPU
7658 * gets a chance to run again. In the event that no KVM threads get a
7659 * chance to run, we will miss the entire elapsed period, as we'll have
7660 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7661 * loose cycle time. This isn't too big a deal, since the loss will be
7662 * uniform across all VCPUs (not to mention the scenario is extremely
7663 * unlikely). It is possible that a second hibernate recovery happens
7664 * much faster than a first, causing the observed TSC here to be
7665 * smaller; this would require additional padding adjustment, which is
7666 * why we set last_host_tsc to the local tsc observed here.
7667 *
7668 * N.B. - this code below runs only on platforms with reliable TSC,
7669 * as that is the only way backwards_tsc is set above. Also note
7670 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7671 * have the same delta_cyc adjustment applied if backwards_tsc
7672 * is detected. Note further, this adjustment is only done once,
7673 * as we reset last_host_tsc on all VCPUs to stop this from being
7674 * called multiple times (one for each physical CPU bringup).
7675 *
7676 * Platforms with unreliable TSCs don't have to deal with this, they
7677 * will be compensated by the logic in vcpu_load, which sets the TSC to
7678 * catchup mode. This will catchup all VCPUs to real time, but cannot
7679 * guarantee that they stay in perfect synchronization.
7680 */
7681 if (backwards_tsc) {
7682 u64 delta_cyc = max_tsc - local_tsc;
7683 backwards_tsc_observed = true;
7684 list_for_each_entry(kvm, &vm_list, vm_list) {
7685 kvm_for_each_vcpu(i, vcpu, kvm) {
7686 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7687 vcpu->arch.last_host_tsc = local_tsc;
7688 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7689 }
7690
7691 /*
7692 * We have to disable TSC offset matching.. if you were
7693 * booting a VM while issuing an S4 host suspend....
7694 * you may have some problem. Solving this issue is
7695 * left as an exercise to the reader.
7696 */
7697 kvm->arch.last_tsc_nsec = 0;
7698 kvm->arch.last_tsc_write = 0;
7699 }
7700
7701 }
7702 return 0;
7703 }
7704
7705 void kvm_arch_hardware_disable(void)
7706 {
7707 kvm_x86_ops->hardware_disable();
7708 drop_user_return_notifiers();
7709 }
7710
7711 int kvm_arch_hardware_setup(void)
7712 {
7713 int r;
7714
7715 r = kvm_x86_ops->hardware_setup();
7716 if (r != 0)
7717 return r;
7718
7719 if (kvm_has_tsc_control) {
7720 /*
7721 * Make sure the user can only configure tsc_khz values that
7722 * fit into a signed integer.
7723 * A min value is not calculated needed because it will always
7724 * be 1 on all machines.
7725 */
7726 u64 max = min(0x7fffffffULL,
7727 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7728 kvm_max_guest_tsc_khz = max;
7729
7730 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7731 }
7732
7733 kvm_init_msr_list();
7734 return 0;
7735 }
7736
7737 void kvm_arch_hardware_unsetup(void)
7738 {
7739 kvm_x86_ops->hardware_unsetup();
7740 }
7741
7742 void kvm_arch_check_processor_compat(void *rtn)
7743 {
7744 kvm_x86_ops->check_processor_compatibility(rtn);
7745 }
7746
7747 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7748 {
7749 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7750 }
7751 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7752
7753 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7754 {
7755 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7756 }
7757
7758 struct static_key kvm_no_apic_vcpu __read_mostly;
7759 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7760
7761 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7762 {
7763 struct page *page;
7764 struct kvm *kvm;
7765 int r;
7766
7767 BUG_ON(vcpu->kvm == NULL);
7768 kvm = vcpu->kvm;
7769
7770 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7771 vcpu->arch.pv.pv_unhalted = false;
7772 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7773 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7774 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7775 else
7776 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7777
7778 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7779 if (!page) {
7780 r = -ENOMEM;
7781 goto fail;
7782 }
7783 vcpu->arch.pio_data = page_address(page);
7784
7785 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7786
7787 r = kvm_mmu_create(vcpu);
7788 if (r < 0)
7789 goto fail_free_pio_data;
7790
7791 if (irqchip_in_kernel(kvm)) {
7792 r = kvm_create_lapic(vcpu);
7793 if (r < 0)
7794 goto fail_mmu_destroy;
7795 } else
7796 static_key_slow_inc(&kvm_no_apic_vcpu);
7797
7798 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7799 GFP_KERNEL);
7800 if (!vcpu->arch.mce_banks) {
7801 r = -ENOMEM;
7802 goto fail_free_lapic;
7803 }
7804 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7805
7806 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7807 r = -ENOMEM;
7808 goto fail_free_mce_banks;
7809 }
7810
7811 fx_init(vcpu);
7812
7813 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7814 vcpu->arch.pv_time_enabled = false;
7815
7816 vcpu->arch.guest_supported_xcr0 = 0;
7817 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7818
7819 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7820
7821 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7822
7823 kvm_async_pf_hash_reset(vcpu);
7824 kvm_pmu_init(vcpu);
7825
7826 vcpu->arch.pending_external_vector = -1;
7827
7828 kvm_hv_vcpu_init(vcpu);
7829
7830 return 0;
7831
7832 fail_free_mce_banks:
7833 kfree(vcpu->arch.mce_banks);
7834 fail_free_lapic:
7835 kvm_free_lapic(vcpu);
7836 fail_mmu_destroy:
7837 kvm_mmu_destroy(vcpu);
7838 fail_free_pio_data:
7839 free_page((unsigned long)vcpu->arch.pio_data);
7840 fail:
7841 return r;
7842 }
7843
7844 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7845 {
7846 int idx;
7847
7848 kvm_hv_vcpu_uninit(vcpu);
7849 kvm_pmu_destroy(vcpu);
7850 kfree(vcpu->arch.mce_banks);
7851 kvm_free_lapic(vcpu);
7852 idx = srcu_read_lock(&vcpu->kvm->srcu);
7853 kvm_mmu_destroy(vcpu);
7854 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7855 free_page((unsigned long)vcpu->arch.pio_data);
7856 if (!lapic_in_kernel(vcpu))
7857 static_key_slow_dec(&kvm_no_apic_vcpu);
7858 }
7859
7860 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7861 {
7862 kvm_x86_ops->sched_in(vcpu, cpu);
7863 }
7864
7865 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7866 {
7867 if (type)
7868 return -EINVAL;
7869
7870 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7871 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7872 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7873 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7874 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7875
7876 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7877 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7878 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7879 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7880 &kvm->arch.irq_sources_bitmap);
7881
7882 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7883 mutex_init(&kvm->arch.apic_map_lock);
7884 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7885
7886 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7887 pvclock_update_vm_gtod_copy(kvm);
7888
7889 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7890 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7891
7892 kvm_page_track_init(kvm);
7893 kvm_mmu_init_vm(kvm);
7894
7895 if (kvm_x86_ops->vm_init)
7896 return kvm_x86_ops->vm_init(kvm);
7897
7898 return 0;
7899 }
7900
7901 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7902 {
7903 int r;
7904 r = vcpu_load(vcpu);
7905 BUG_ON(r);
7906 kvm_mmu_unload(vcpu);
7907 vcpu_put(vcpu);
7908 }
7909
7910 static void kvm_free_vcpus(struct kvm *kvm)
7911 {
7912 unsigned int i;
7913 struct kvm_vcpu *vcpu;
7914
7915 /*
7916 * Unpin any mmu pages first.
7917 */
7918 kvm_for_each_vcpu(i, vcpu, kvm) {
7919 kvm_clear_async_pf_completion_queue(vcpu);
7920 kvm_unload_vcpu_mmu(vcpu);
7921 }
7922 kvm_for_each_vcpu(i, vcpu, kvm)
7923 kvm_arch_vcpu_free(vcpu);
7924
7925 mutex_lock(&kvm->lock);
7926 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7927 kvm->vcpus[i] = NULL;
7928
7929 atomic_set(&kvm->online_vcpus, 0);
7930 mutex_unlock(&kvm->lock);
7931 }
7932
7933 void kvm_arch_sync_events(struct kvm *kvm)
7934 {
7935 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7936 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7937 kvm_free_all_assigned_devices(kvm);
7938 kvm_free_pit(kvm);
7939 }
7940
7941 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7942 {
7943 int i, r;
7944 unsigned long hva;
7945 struct kvm_memslots *slots = kvm_memslots(kvm);
7946 struct kvm_memory_slot *slot, old;
7947
7948 /* Called with kvm->slots_lock held. */
7949 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7950 return -EINVAL;
7951
7952 slot = id_to_memslot(slots, id);
7953 if (size) {
7954 if (slot->npages)
7955 return -EEXIST;
7956
7957 /*
7958 * MAP_SHARED to prevent internal slot pages from being moved
7959 * by fork()/COW.
7960 */
7961 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7962 MAP_SHARED | MAP_ANONYMOUS, 0);
7963 if (IS_ERR((void *)hva))
7964 return PTR_ERR((void *)hva);
7965 } else {
7966 if (!slot->npages)
7967 return 0;
7968
7969 hva = 0;
7970 }
7971
7972 old = *slot;
7973 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7974 struct kvm_userspace_memory_region m;
7975
7976 m.slot = id | (i << 16);
7977 m.flags = 0;
7978 m.guest_phys_addr = gpa;
7979 m.userspace_addr = hva;
7980 m.memory_size = size;
7981 r = __kvm_set_memory_region(kvm, &m);
7982 if (r < 0)
7983 return r;
7984 }
7985
7986 if (!size) {
7987 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7988 WARN_ON(r < 0);
7989 }
7990
7991 return 0;
7992 }
7993 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7994
7995 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7996 {
7997 int r;
7998
7999 mutex_lock(&kvm->slots_lock);
8000 r = __x86_set_memory_region(kvm, id, gpa, size);
8001 mutex_unlock(&kvm->slots_lock);
8002
8003 return r;
8004 }
8005 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8006
8007 void kvm_arch_destroy_vm(struct kvm *kvm)
8008 {
8009 if (current->mm == kvm->mm) {
8010 /*
8011 * Free memory regions allocated on behalf of userspace,
8012 * unless the the memory map has changed due to process exit
8013 * or fd copying.
8014 */
8015 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8016 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8017 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8018 }
8019 if (kvm_x86_ops->vm_destroy)
8020 kvm_x86_ops->vm_destroy(kvm);
8021 kvm_iommu_unmap_guest(kvm);
8022 kfree(kvm->arch.vpic);
8023 kfree(kvm->arch.vioapic);
8024 kvm_free_vcpus(kvm);
8025 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8026 kvm_mmu_uninit_vm(kvm);
8027 }
8028
8029 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8030 struct kvm_memory_slot *dont)
8031 {
8032 int i;
8033
8034 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8035 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8036 kvfree(free->arch.rmap[i]);
8037 free->arch.rmap[i] = NULL;
8038 }
8039 if (i == 0)
8040 continue;
8041
8042 if (!dont || free->arch.lpage_info[i - 1] !=
8043 dont->arch.lpage_info[i - 1]) {
8044 kvfree(free->arch.lpage_info[i - 1]);
8045 free->arch.lpage_info[i - 1] = NULL;
8046 }
8047 }
8048
8049 kvm_page_track_free_memslot(free, dont);
8050 }
8051
8052 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8053 unsigned long npages)
8054 {
8055 int i;
8056
8057 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8058 struct kvm_lpage_info *linfo;
8059 unsigned long ugfn;
8060 int lpages;
8061 int level = i + 1;
8062
8063 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8064 slot->base_gfn, level) + 1;
8065
8066 slot->arch.rmap[i] =
8067 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8068 if (!slot->arch.rmap[i])
8069 goto out_free;
8070 if (i == 0)
8071 continue;
8072
8073 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8074 if (!linfo)
8075 goto out_free;
8076
8077 slot->arch.lpage_info[i - 1] = linfo;
8078
8079 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8080 linfo[0].disallow_lpage = 1;
8081 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8082 linfo[lpages - 1].disallow_lpage = 1;
8083 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8084 /*
8085 * If the gfn and userspace address are not aligned wrt each
8086 * other, or if explicitly asked to, disable large page
8087 * support for this slot
8088 */
8089 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8090 !kvm_largepages_enabled()) {
8091 unsigned long j;
8092
8093 for (j = 0; j < lpages; ++j)
8094 linfo[j].disallow_lpage = 1;
8095 }
8096 }
8097
8098 if (kvm_page_track_create_memslot(slot, npages))
8099 goto out_free;
8100
8101 return 0;
8102
8103 out_free:
8104 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8105 kvfree(slot->arch.rmap[i]);
8106 slot->arch.rmap[i] = NULL;
8107 if (i == 0)
8108 continue;
8109
8110 kvfree(slot->arch.lpage_info[i - 1]);
8111 slot->arch.lpage_info[i - 1] = NULL;
8112 }
8113 return -ENOMEM;
8114 }
8115
8116 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8117 {
8118 /*
8119 * memslots->generation has been incremented.
8120 * mmio generation may have reached its maximum value.
8121 */
8122 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8123 }
8124
8125 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8126 struct kvm_memory_slot *memslot,
8127 const struct kvm_userspace_memory_region *mem,
8128 enum kvm_mr_change change)
8129 {
8130 return 0;
8131 }
8132
8133 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8134 struct kvm_memory_slot *new)
8135 {
8136 /* Still write protect RO slot */
8137 if (new->flags & KVM_MEM_READONLY) {
8138 kvm_mmu_slot_remove_write_access(kvm, new);
8139 return;
8140 }
8141
8142 /*
8143 * Call kvm_x86_ops dirty logging hooks when they are valid.
8144 *
8145 * kvm_x86_ops->slot_disable_log_dirty is called when:
8146 *
8147 * - KVM_MR_CREATE with dirty logging is disabled
8148 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8149 *
8150 * The reason is, in case of PML, we need to set D-bit for any slots
8151 * with dirty logging disabled in order to eliminate unnecessary GPA
8152 * logging in PML buffer (and potential PML buffer full VMEXT). This
8153 * guarantees leaving PML enabled during guest's lifetime won't have
8154 * any additonal overhead from PML when guest is running with dirty
8155 * logging disabled for memory slots.
8156 *
8157 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8158 * to dirty logging mode.
8159 *
8160 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8161 *
8162 * In case of write protect:
8163 *
8164 * Write protect all pages for dirty logging.
8165 *
8166 * All the sptes including the large sptes which point to this
8167 * slot are set to readonly. We can not create any new large
8168 * spte on this slot until the end of the logging.
8169 *
8170 * See the comments in fast_page_fault().
8171 */
8172 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8173 if (kvm_x86_ops->slot_enable_log_dirty)
8174 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8175 else
8176 kvm_mmu_slot_remove_write_access(kvm, new);
8177 } else {
8178 if (kvm_x86_ops->slot_disable_log_dirty)
8179 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8180 }
8181 }
8182
8183 void kvm_arch_commit_memory_region(struct kvm *kvm,
8184 const struct kvm_userspace_memory_region *mem,
8185 const struct kvm_memory_slot *old,
8186 const struct kvm_memory_slot *new,
8187 enum kvm_mr_change change)
8188 {
8189 int nr_mmu_pages = 0;
8190
8191 if (!kvm->arch.n_requested_mmu_pages)
8192 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8193
8194 if (nr_mmu_pages)
8195 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8196
8197 /*
8198 * Dirty logging tracks sptes in 4k granularity, meaning that large
8199 * sptes have to be split. If live migration is successful, the guest
8200 * in the source machine will be destroyed and large sptes will be
8201 * created in the destination. However, if the guest continues to run
8202 * in the source machine (for example if live migration fails), small
8203 * sptes will remain around and cause bad performance.
8204 *
8205 * Scan sptes if dirty logging has been stopped, dropping those
8206 * which can be collapsed into a single large-page spte. Later
8207 * page faults will create the large-page sptes.
8208 */
8209 if ((change != KVM_MR_DELETE) &&
8210 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8211 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8212 kvm_mmu_zap_collapsible_sptes(kvm, new);
8213
8214 /*
8215 * Set up write protection and/or dirty logging for the new slot.
8216 *
8217 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8218 * been zapped so no dirty logging staff is needed for old slot. For
8219 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8220 * new and it's also covered when dealing with the new slot.
8221 *
8222 * FIXME: const-ify all uses of struct kvm_memory_slot.
8223 */
8224 if (change != KVM_MR_DELETE)
8225 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8226 }
8227
8228 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8229 {
8230 kvm_mmu_invalidate_zap_all_pages(kvm);
8231 }
8232
8233 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8234 struct kvm_memory_slot *slot)
8235 {
8236 kvm_page_track_flush_slot(kvm, slot);
8237 }
8238
8239 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8240 {
8241 if (!list_empty_careful(&vcpu->async_pf.done))
8242 return true;
8243
8244 if (kvm_apic_has_events(vcpu))
8245 return true;
8246
8247 if (vcpu->arch.pv.pv_unhalted)
8248 return true;
8249
8250 if (atomic_read(&vcpu->arch.nmi_queued))
8251 return true;
8252
8253 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8254 return true;
8255
8256 if (kvm_arch_interrupt_allowed(vcpu) &&
8257 kvm_cpu_has_interrupt(vcpu))
8258 return true;
8259
8260 if (kvm_hv_has_stimer_pending(vcpu))
8261 return true;
8262
8263 return false;
8264 }
8265
8266 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8267 {
8268 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8269 kvm_x86_ops->check_nested_events(vcpu, false);
8270
8271 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8272 }
8273
8274 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8275 {
8276 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8277 }
8278
8279 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8280 {
8281 return kvm_x86_ops->interrupt_allowed(vcpu);
8282 }
8283
8284 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8285 {
8286 if (is_64_bit_mode(vcpu))
8287 return kvm_rip_read(vcpu);
8288 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8289 kvm_rip_read(vcpu));
8290 }
8291 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8292
8293 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8294 {
8295 return kvm_get_linear_rip(vcpu) == linear_rip;
8296 }
8297 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8298
8299 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8300 {
8301 unsigned long rflags;
8302
8303 rflags = kvm_x86_ops->get_rflags(vcpu);
8304 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8305 rflags &= ~X86_EFLAGS_TF;
8306 return rflags;
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8309
8310 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8311 {
8312 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8313 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8314 rflags |= X86_EFLAGS_TF;
8315 kvm_x86_ops->set_rflags(vcpu, rflags);
8316 }
8317
8318 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8319 {
8320 __kvm_set_rflags(vcpu, rflags);
8321 kvm_make_request(KVM_REQ_EVENT, vcpu);
8322 }
8323 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8324
8325 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8326 {
8327 int r;
8328
8329 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8330 work->wakeup_all)
8331 return;
8332
8333 r = kvm_mmu_reload(vcpu);
8334 if (unlikely(r))
8335 return;
8336
8337 if (!vcpu->arch.mmu.direct_map &&
8338 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8339 return;
8340
8341 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8342 }
8343
8344 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8345 {
8346 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8347 }
8348
8349 static inline u32 kvm_async_pf_next_probe(u32 key)
8350 {
8351 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8352 }
8353
8354 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8355 {
8356 u32 key = kvm_async_pf_hash_fn(gfn);
8357
8358 while (vcpu->arch.apf.gfns[key] != ~0)
8359 key = kvm_async_pf_next_probe(key);
8360
8361 vcpu->arch.apf.gfns[key] = gfn;
8362 }
8363
8364 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8365 {
8366 int i;
8367 u32 key = kvm_async_pf_hash_fn(gfn);
8368
8369 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8370 (vcpu->arch.apf.gfns[key] != gfn &&
8371 vcpu->arch.apf.gfns[key] != ~0); i++)
8372 key = kvm_async_pf_next_probe(key);
8373
8374 return key;
8375 }
8376
8377 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8378 {
8379 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8380 }
8381
8382 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384 u32 i, j, k;
8385
8386 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8387 while (true) {
8388 vcpu->arch.apf.gfns[i] = ~0;
8389 do {
8390 j = kvm_async_pf_next_probe(j);
8391 if (vcpu->arch.apf.gfns[j] == ~0)
8392 return;
8393 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8394 /*
8395 * k lies cyclically in ]i,j]
8396 * | i.k.j |
8397 * |....j i.k.| or |.k..j i...|
8398 */
8399 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8400 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8401 i = j;
8402 }
8403 }
8404
8405 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8406 {
8407
8408 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8409 sizeof(val));
8410 }
8411
8412 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8413 struct kvm_async_pf *work)
8414 {
8415 struct x86_exception fault;
8416
8417 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8418 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8419
8420 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8421 (vcpu->arch.apf.send_user_only &&
8422 kvm_x86_ops->get_cpl(vcpu) == 0))
8423 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8424 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8425 fault.vector = PF_VECTOR;
8426 fault.error_code_valid = true;
8427 fault.error_code = 0;
8428 fault.nested_page_fault = false;
8429 fault.address = work->arch.token;
8430 kvm_inject_page_fault(vcpu, &fault);
8431 }
8432 }
8433
8434 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8435 struct kvm_async_pf *work)
8436 {
8437 struct x86_exception fault;
8438
8439 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8440 if (work->wakeup_all)
8441 work->arch.token = ~0; /* broadcast wakeup */
8442 else
8443 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8444
8445 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8446 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8447 fault.vector = PF_VECTOR;
8448 fault.error_code_valid = true;
8449 fault.error_code = 0;
8450 fault.nested_page_fault = false;
8451 fault.address = work->arch.token;
8452 kvm_inject_page_fault(vcpu, &fault);
8453 }
8454 vcpu->arch.apf.halted = false;
8455 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8456 }
8457
8458 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8459 {
8460 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8461 return true;
8462 else
8463 return !kvm_event_needs_reinjection(vcpu) &&
8464 kvm_x86_ops->interrupt_allowed(vcpu);
8465 }
8466
8467 void kvm_arch_start_assignment(struct kvm *kvm)
8468 {
8469 atomic_inc(&kvm->arch.assigned_device_count);
8470 }
8471 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8472
8473 void kvm_arch_end_assignment(struct kvm *kvm)
8474 {
8475 atomic_dec(&kvm->arch.assigned_device_count);
8476 }
8477 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8478
8479 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8480 {
8481 return atomic_read(&kvm->arch.assigned_device_count);
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8484
8485 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8486 {
8487 atomic_inc(&kvm->arch.noncoherent_dma_count);
8488 }
8489 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8490
8491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8492 {
8493 atomic_dec(&kvm->arch.noncoherent_dma_count);
8494 }
8495 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8496
8497 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8498 {
8499 return atomic_read(&kvm->arch.noncoherent_dma_count);
8500 }
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8502
8503 bool kvm_arch_has_irq_bypass(void)
8504 {
8505 return kvm_x86_ops->update_pi_irte != NULL;
8506 }
8507
8508 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8509 struct irq_bypass_producer *prod)
8510 {
8511 struct kvm_kernel_irqfd *irqfd =
8512 container_of(cons, struct kvm_kernel_irqfd, consumer);
8513
8514 irqfd->producer = prod;
8515
8516 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8517 prod->irq, irqfd->gsi, 1);
8518 }
8519
8520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8521 struct irq_bypass_producer *prod)
8522 {
8523 int ret;
8524 struct kvm_kernel_irqfd *irqfd =
8525 container_of(cons, struct kvm_kernel_irqfd, consumer);
8526
8527 WARN_ON(irqfd->producer != prod);
8528 irqfd->producer = NULL;
8529
8530 /*
8531 * When producer of consumer is unregistered, we change back to
8532 * remapped mode, so we can re-use the current implementation
8533 * when the irq is masked/disabled or the consumer side (KVM
8534 * int this case doesn't want to receive the interrupts.
8535 */
8536 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8537 if (ret)
8538 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8539 " fails: %d\n", irqfd->consumer.token, ret);
8540 }
8541
8542 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8543 uint32_t guest_irq, bool set)
8544 {
8545 if (!kvm_x86_ops->update_pi_irte)
8546 return -EINVAL;
8547
8548 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8549 }
8550
8551 bool kvm_vector_hashing_enabled(void)
8552 {
8553 return vector_hashing;
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8556
8557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);