]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
83 */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32 __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 int i;
203 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 unsigned slot;
210 struct kvm_shared_msrs *locals
211 = container_of(urn, struct kvm_shared_msrs, urn);
212 struct kvm_shared_msr_values *values;
213 unsigned long flags;
214
215 /*
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
218 */
219 local_irq_save(flags);
220 if (locals->registered) {
221 locals->registered = false;
222 user_return_notifier_unregister(urn);
223 }
224 local_irq_restore(flags);
225 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 values = &locals->values[slot];
227 if (values->host != values->curr) {
228 wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 values->curr = values->host;
230 }
231 }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 u64 value;
237 unsigned int cpu = smp_processor_id();
238 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot >= shared_msrs_global.nr) {
243 printk(KERN_ERR "kvm: invalid MSR slot!");
244 return;
245 }
246 rdmsrl_safe(msr, &value);
247 smsr->values[slot].host = value;
248 smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 shared_msrs_global.msrs[slot] = msr;
255 if (slot >= shared_msrs_global.nr)
256 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262 unsigned i;
263
264 for (i = 0; i < shared_msrs_global.nr; ++i)
265 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 unsigned int cpu = smp_processor_id();
271 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 int err;
273
274 if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 return 0;
276 smsr->values[slot].curr = value;
277 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 if (err)
279 return 1;
280
281 if (!smsr->registered) {
282 smsr->urn.on_user_return = kvm_on_user_return;
283 user_return_notifier_register(&smsr->urn);
284 smsr->registered = true;
285 }
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292 unsigned int cpu = smp_processor_id();
293 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295 if (smsr->registered)
296 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 u64 old_state = vcpu->arch.apic_base &
308 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 u64 new_state = msr_info->data &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314 if (!msr_info->host_initiated &&
315 ((msr_info->data & reserved_bits) != 0 ||
316 new_state == X2APIC_ENABLE ||
317 (new_state == MSR_IA32_APICBASE_ENABLE &&
318 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 old_state == 0)))
321 return 1;
322
323 kvm_lapic_set_base(vcpu, msr_info->data);
324 return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 /* Fault while not rebooting. We want the trace. */
331 BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
337 #define EXCPT_PF 2
338
339 static int exception_class(int vector)
340 {
341 switch (vector) {
342 case PF_VECTOR:
343 return EXCPT_PF;
344 case DE_VECTOR:
345 case TS_VECTOR:
346 case NP_VECTOR:
347 case SS_VECTOR:
348 case GP_VECTOR:
349 return EXCPT_CONTRIBUTORY;
350 default:
351 break;
352 }
353 return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT 0
357 #define EXCPT_TRAP 1
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
360
361 static int exception_type(int vector)
362 {
363 unsigned int mask;
364
365 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 return EXCPT_INTERRUPT;
367
368 mask = 1 << vector;
369
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 return EXCPT_TRAP;
373
374 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 return EXCPT_ABORT;
376
377 /* Reserved exceptions will result in fault */
378 return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 unsigned nr, bool has_error, u32 error_code,
383 bool reinject)
384 {
385 u32 prev_nr;
386 int class1, class2;
387
388 kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390 if (!vcpu->arch.exception.pending) {
391 queue:
392 if (has_error && !is_protmode(vcpu))
393 has_error = false;
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = has_error;
396 vcpu->arch.exception.nr = nr;
397 vcpu->arch.exception.error_code = error_code;
398 vcpu->arch.exception.reinject = reinject;
399 return;
400 }
401
402 /* to check exception */
403 prev_nr = vcpu->arch.exception.nr;
404 if (prev_nr == DF_VECTOR) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 return;
408 }
409 class1 = exception_class(prev_nr);
410 class2 = exception_class(nr);
411 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu->arch.exception.pending = true;
415 vcpu->arch.exception.has_error_code = true;
416 vcpu->arch.exception.nr = DF_VECTOR;
417 vcpu->arch.exception.error_code = 0;
418 } else
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
421 exception */
422 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 if (err)
440 kvm_inject_gp(vcpu, 0);
441 else
442 return kvm_skip_emulated_instruction(vcpu);
443
444 return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450 ++vcpu->stat.pf_guest;
451 vcpu->arch.cr2 = fault->address;
452 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460 else
461 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463 return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468 atomic_inc(&vcpu->arch.nmi_queued);
469 kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475 kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481 kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
487 * a #GP and return false.
488 */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492 return true;
493 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494 return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501 return true;
502
503 kvm_queue_exception(vcpu, UD_VECTOR);
504 return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509 * This function will be used to read from the physical memory of the currently
510 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511 * can read from guest physical or from the guest's guest physical memory.
512 */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514 gfn_t ngfn, void *data, int offset, int len,
515 u32 access)
516 {
517 struct x86_exception exception;
518 gfn_t real_gfn;
519 gpa_t ngpa;
520
521 ngpa = gfn_to_gpa(ngfn);
522 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523 if (real_gfn == UNMAPPED_GVA)
524 return -EFAULT;
525
526 real_gfn = gpa_to_gfn(real_gfn);
527
528 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533 void *data, int offset, int len, u32 access)
534 {
535 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536 data, offset, len, access);
537 }
538
539 /*
540 * Load the pae pdptrs. Return true is they are all valid.
541 */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546 int i;
547 int ret;
548 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551 offset * sizeof(u64), sizeof(pdpte),
552 PFERR_USER_MASK|PFERR_WRITE_MASK);
553 if (ret < 0) {
554 ret = 0;
555 goto out;
556 }
557 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558 if ((pdpte[i] & PT_PRESENT_MASK) &&
559 (pdpte[i] &
560 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561 ret = 0;
562 goto out;
563 }
564 }
565 ret = 1;
566
567 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568 __set_bit(VCPU_EXREG_PDPTR,
569 (unsigned long *)&vcpu->arch.regs_avail);
570 __set_bit(VCPU_EXREG_PDPTR,
571 (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574 return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581 bool changed = true;
582 int offset;
583 gfn_t gfn;
584 int r;
585
586 if (is_long_mode(vcpu) || !is_pae(vcpu))
587 return false;
588
589 if (!test_bit(VCPU_EXREG_PDPTR,
590 (unsigned long *)&vcpu->arch.regs_avail))
591 return true;
592
593 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596 PFERR_USER_MASK | PFERR_WRITE_MASK);
597 if (r < 0)
598 goto out;
599 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602 return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608 unsigned long old_cr0 = kvm_read_cr0(vcpu);
609 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611 cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614 if (cr0 & 0xffffffff00000000UL)
615 return 1;
616 #endif
617
618 cr0 &= ~CR0_RESERVED_BITS;
619
620 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621 return 1;
622
623 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624 return 1;
625
626 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628 if ((vcpu->arch.efer & EFER_LME)) {
629 int cs_db, cs_l;
630
631 if (!is_pae(vcpu))
632 return 1;
633 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634 if (cs_l)
635 return 1;
636 } else
637 #endif
638 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639 kvm_read_cr3(vcpu)))
640 return 1;
641 }
642
643 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644 return 1;
645
646 kvm_x86_ops->set_cr0(vcpu, cr0);
647
648 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649 kvm_clear_async_pf_completion_queue(vcpu);
650 kvm_async_pf_hash_reset(vcpu);
651 }
652
653 if ((cr0 ^ old_cr0) & update_bits)
654 kvm_mmu_reset_context(vcpu);
655
656 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661 return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674 !vcpu->guest_xcr0_loaded) {
675 /* kvm_set_xcr() also depends on this */
676 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677 vcpu->guest_xcr0_loaded = 1;
678 }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683 if (vcpu->guest_xcr0_loaded) {
684 if (vcpu->arch.xcr0 != host_xcr0)
685 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686 vcpu->guest_xcr0_loaded = 0;
687 }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692 u64 xcr0 = xcr;
693 u64 old_xcr0 = vcpu->arch.xcr0;
694 u64 valid_bits;
695
696 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
697 if (index != XCR_XFEATURE_ENABLED_MASK)
698 return 1;
699 if (!(xcr0 & XFEATURE_MASK_FP))
700 return 1;
701 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702 return 1;
703
704 /*
705 * Do not allow the guest to set bits that we do not support
706 * saving. However, xcr0 bit 0 is always set, even if the
707 * emulated CPU does not support XSAVE (see fx_init).
708 */
709 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710 if (xcr0 & ~valid_bits)
711 return 1;
712
713 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715 return 1;
716
717 if (xcr0 & XFEATURE_MASK_AVX512) {
718 if (!(xcr0 & XFEATURE_MASK_YMM))
719 return 1;
720 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721 return 1;
722 }
723 vcpu->arch.xcr0 = xcr0;
724
725 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726 kvm_update_cpuid(vcpu);
727 return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733 __kvm_set_xcr(vcpu, index, xcr)) {
734 kvm_inject_gp(vcpu, 0);
735 return 1;
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743 unsigned long old_cr4 = kvm_read_cr4(vcpu);
744 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747 if (cr4 & CR4_RESERVED_BITS)
748 return 1;
749
750 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751 return 1;
752
753 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754 return 1;
755
756 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757 return 1;
758
759 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760 return 1;
761
762 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763 return 1;
764
765 if (is_long_mode(vcpu)) {
766 if (!(cr4 & X86_CR4_PAE))
767 return 1;
768 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769 && ((cr4 ^ old_cr4) & pdptr_bits)
770 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 kvm_read_cr3(vcpu)))
772 return 1;
773
774 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775 if (!guest_cpuid_has_pcid(vcpu))
776 return 1;
777
778 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780 return 1;
781 }
782
783 if (kvm_x86_ops->set_cr4(vcpu, cr4))
784 return 1;
785
786 if (((cr4 ^ old_cr4) & pdptr_bits) ||
787 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788 kvm_mmu_reset_context(vcpu);
789
790 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791 kvm_update_cpuid(vcpu);
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800 cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804 kvm_mmu_sync_roots(vcpu);
805 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806 return 0;
807 }
808
809 if (is_long_mode(vcpu)) {
810 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811 return 1;
812 } else if (is_pae(vcpu) && is_paging(vcpu) &&
813 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814 return 1;
815
816 vcpu->arch.cr3 = cr3;
817 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818 kvm_mmu_new_cr3(vcpu);
819 return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825 if (cr8 & CR8_RESERVED_BITS)
826 return 1;
827 if (lapic_in_kernel(vcpu))
828 kvm_lapic_set_tpr(vcpu, cr8);
829 else
830 vcpu->arch.cr8 = cr8;
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837 if (lapic_in_kernel(vcpu))
838 return kvm_lapic_get_cr8(vcpu);
839 else
840 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846 int i;
847
848 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849 for (i = 0; i < KVM_NR_DB_REGS; i++)
850 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852 }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863 unsigned long dr7;
864
865 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866 dr7 = vcpu->arch.guest_debug_dr7;
867 else
868 dr7 = vcpu->arch.dr7;
869 kvm_x86_ops->set_dr7(vcpu, dr7);
870 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871 if (dr7 & DR7_BP_EN_MASK)
872 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877 u64 fixed = DR6_FIXED_1;
878
879 if (!guest_cpuid_has_rtm(vcpu))
880 fixed |= DR6_RTM;
881 return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886 switch (dr) {
887 case 0 ... 3:
888 vcpu->arch.db[dr] = val;
889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 vcpu->arch.eff_db[dr] = val;
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (val & 0xffffffff00000000ULL)
896 return -1; /* #GP */
897 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898 kvm_update_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 if (val & 0xffffffff00000000ULL)
904 return -1; /* #GP */
905 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906 kvm_update_dr7(vcpu);
907 break;
908 }
909
910 return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 if (__kvm_set_dr(vcpu, dr, val)) {
916 kvm_inject_gp(vcpu, 0);
917 return 1;
918 }
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925 switch (dr) {
926 case 0 ... 3:
927 *val = vcpu->arch.db[dr];
928 break;
929 case 4:
930 /* fall through */
931 case 6:
932 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933 *val = vcpu->arch.dr6;
934 else
935 *val = kvm_x86_ops->get_dr6(vcpu);
936 break;
937 case 5:
938 /* fall through */
939 default: /* 7 */
940 *val = vcpu->arch.dr7;
941 break;
942 }
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950 u64 data;
951 int err;
952
953 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954 if (err)
955 return err;
956 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958 return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965 *
966 * This list is modified at module load time to reflect the
967 * capabilities of the host cpu. This capabilities test skips MSRs that are
968 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969 * may depend on host virtualization features rather than host cpu features.
970 */
971
972 static u32 msrs_to_save[] = {
973 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974 MSR_STAR,
975 #ifdef CONFIG_X86_64
976 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991 HV_X64_MSR_RESET,
992 HV_X64_MSR_VP_INDEX,
993 HV_X64_MSR_VP_RUNTIME,
994 HV_X64_MSR_SCONTROL,
995 HV_X64_MSR_STIMER0_CONFIG,
996 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997 MSR_KVM_PV_EOI_EN,
998
999 MSR_IA32_TSC_ADJUST,
1000 MSR_IA32_TSCDEADLINE,
1001 MSR_IA32_MISC_ENABLE,
1002 MSR_IA32_MCG_STATUS,
1003 MSR_IA32_MCG_CTL,
1004 MSR_IA32_MCG_EXT_CTL,
1005 MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012 if (efer & efer_reserved_bits)
1013 return false;
1014
1015 if (efer & EFER_FFXSR) {
1016 struct kvm_cpuid_entry2 *feat;
1017
1018 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020 return false;
1021 }
1022
1023 if (efer & EFER_SVME) {
1024 struct kvm_cpuid_entry2 *feat;
1025
1026 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028 return false;
1029 }
1030
1031 return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037 u64 old_efer = vcpu->arch.efer;
1038
1039 if (!kvm_valid_efer(vcpu, efer))
1040 return 1;
1041
1042 if (is_paging(vcpu)
1043 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044 return 1;
1045
1046 efer &= ~EFER_LMA;
1047 efer |= vcpu->arch.efer & EFER_LMA;
1048
1049 kvm_x86_ops->set_efer(vcpu, efer);
1050
1051 /* Update reserved bits */
1052 if ((efer ^ old_efer) & EFER_NX)
1053 kvm_mmu_reset_context(vcpu);
1054
1055 return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060 efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065 * Writes msr value into into the appropriate "register".
1066 * Returns 0 on success, non-0 otherwise.
1067 * Assumes vcpu_load() was already called.
1068 */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071 switch (msr->index) {
1072 case MSR_FS_BASE:
1073 case MSR_GS_BASE:
1074 case MSR_KERNEL_GS_BASE:
1075 case MSR_CSTAR:
1076 case MSR_LSTAR:
1077 if (is_noncanonical_address(msr->data))
1078 return 1;
1079 break;
1080 case MSR_IA32_SYSENTER_EIP:
1081 case MSR_IA32_SYSENTER_ESP:
1082 /*
1083 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 * non-canonical address is written on Intel but not on
1085 * AMD (which ignores the top 32-bits, because it does
1086 * not implement 64-bit SYSENTER).
1087 *
1088 * 64-bit code should hence be able to write a non-canonical
1089 * value on AMD. Making the address canonical ensures that
1090 * vmentry does not fail on Intel after writing a non-canonical
1091 * value, and that something deterministic happens if the guest
1092 * invokes 64-bit SYSENTER.
1093 */
1094 msr->data = get_canonical(msr->data);
1095 }
1096 return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101 * Adapt set_msr() to msr_io()'s calling convention
1102 */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105 struct msr_data msr;
1106 int r;
1107
1108 msr.index = index;
1109 msr.host_initiated = true;
1110 r = kvm_get_msr(vcpu, &msr);
1111 if (r)
1112 return r;
1113
1114 *data = msr.data;
1115 return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120 struct msr_data msr;
1121
1122 msr.data = *data;
1123 msr.index = index;
1124 msr.host_initiated = true;
1125 return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130 seqcount_t seq;
1131
1132 struct { /* extract of a clocksource struct */
1133 int vclock_mode;
1134 cycle_t cycle_last;
1135 cycle_t mask;
1136 u32 mult;
1137 u32 shift;
1138 } clock;
1139
1140 u64 boot_ns;
1141 u64 nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149 u64 boot_ns;
1150
1151 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153 write_seqcount_begin(&vdata->seq);
1154
1155 /* copy pvclock gtod data */
1156 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1157 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1158 vdata->clock.mask = tk->tkr_mono.mask;
1159 vdata->clock.mult = tk->tkr_mono.mult;
1160 vdata->clock.shift = tk->tkr_mono.shift;
1161
1162 vdata->boot_ns = boot_ns;
1163 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1164
1165 write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171 /*
1172 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173 * vcpu_enter_guest. This function is only called from
1174 * the physical CPU that is running vcpu.
1175 */
1176 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181 int version;
1182 int r;
1183 struct pvclock_wall_clock wc;
1184 struct timespec64 boot;
1185
1186 if (!wall_clock)
1187 return;
1188
1189 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190 if (r)
1191 return;
1192
1193 if (version & 1)
1194 ++version; /* first time write, random junk */
1195
1196 ++version;
1197
1198 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199 return;
1200
1201 /*
1202 * The guest calculates current wall clock time by adding
1203 * system time (updated by kvm_guest_time_update below) to the
1204 * wall clock specified here. guest system time equals host
1205 * system time for us, thus we must fill in host boot time here.
1206 */
1207 getboottime64(&boot);
1208
1209 if (kvm->arch.kvmclock_offset) {
1210 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211 boot = timespec64_sub(boot, ts);
1212 }
1213 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214 wc.nsec = boot.tv_nsec;
1215 wc.version = version;
1216
1217 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219 version++;
1220 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225 do_shl32_div32(dividend, divisor);
1226 return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230 s8 *pshift, u32 *pmultiplier)
1231 {
1232 uint64_t scaled64;
1233 int32_t shift = 0;
1234 uint64_t tps64;
1235 uint32_t tps32;
1236
1237 tps64 = base_hz;
1238 scaled64 = scaled_hz;
1239 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240 tps64 >>= 1;
1241 shift--;
1242 }
1243
1244 tps32 = (uint32_t)tps64;
1245 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247 scaled64 >>= 1;
1248 else
1249 tps32 <<= 1;
1250 shift++;
1251 }
1252
1253 *pshift = shift;
1254 *pmultiplier = div_frac(scaled64, tps32);
1255
1256 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269 u64 v = (u64)khz * (1000000 + ppm);
1270 do_div(v, 1000000);
1271 return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276 u64 ratio;
1277
1278 /* Guest TSC same frequency as host TSC? */
1279 if (!scale) {
1280 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281 return 0;
1282 }
1283
1284 /* TSC scaling supported? */
1285 if (!kvm_has_tsc_control) {
1286 if (user_tsc_khz > tsc_khz) {
1287 vcpu->arch.tsc_catchup = 1;
1288 vcpu->arch.tsc_always_catchup = 1;
1289 return 0;
1290 } else {
1291 WARN(1, "user requested TSC rate below hardware speed\n");
1292 return -1;
1293 }
1294 }
1295
1296 /* TSC scaling required - calculate ratio */
1297 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298 user_tsc_khz, tsc_khz);
1299
1300 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302 user_tsc_khz);
1303 return -1;
1304 }
1305
1306 vcpu->arch.tsc_scaling_ratio = ratio;
1307 return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312 u32 thresh_lo, thresh_hi;
1313 int use_scaling = 0;
1314
1315 /* tsc_khz can be zero if TSC calibration fails */
1316 if (user_tsc_khz == 0) {
1317 /* set tsc_scaling_ratio to a safe value */
1318 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319 return -1;
1320 }
1321
1322 /* Compute a scale to convert nanoseconds in TSC cycles */
1323 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324 &vcpu->arch.virtual_tsc_shift,
1325 &vcpu->arch.virtual_tsc_mult);
1326 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328 /*
1329 * Compute the variation in TSC rate which is acceptable
1330 * within the range of tolerance and decide if the
1331 * rate being applied is within that bounds of the hardware
1332 * rate. If so, no scaling or compensation need be done.
1333 */
1334 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338 use_scaling = 1;
1339 }
1340 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346 vcpu->arch.virtual_tsc_mult,
1347 vcpu->arch.virtual_tsc_shift);
1348 tsc += vcpu->arch.this_tsc_write;
1349 return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355 bool vcpus_matched;
1356 struct kvm_arch *ka = &vcpu->kvm->arch;
1357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360 atomic_read(&vcpu->kvm->online_vcpus));
1361
1362 /*
1363 * Once the masterclock is enabled, always perform request in
1364 * order to update it.
1365 *
1366 * In order to enable masterclock, the host clocksource must be TSC
1367 * and the vcpus need to have matched TSCs. When that happens,
1368 * perform request to enable masterclock.
1369 */
1370 if (ka->use_master_clock ||
1371 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375 atomic_read(&vcpu->kvm->online_vcpus),
1376 ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382 u64 curr_offset = vcpu->arch.tsc_offset;
1383 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387 * Multiply tsc by a fixed point number represented by ratio.
1388 *
1389 * The most significant 64-N bits (mult) of ratio represent the
1390 * integral part of the fixed point number; the remaining N bits
1391 * (frac) represent the fractional part, ie. ratio represents a fixed
1392 * point number (mult + frac * 2^(-N)).
1393 *
1394 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395 */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403 u64 _tsc = tsc;
1404 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406 if (ratio != kvm_default_tsc_scaling_ratio)
1407 _tsc = __scale_tsc(ratio, tsc);
1408
1409 return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415 u64 tsc;
1416
1417 tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419 return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431 vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436 struct kvm *kvm = vcpu->kvm;
1437 u64 offset, ns, elapsed;
1438 unsigned long flags;
1439 s64 usdiff;
1440 bool matched;
1441 bool already_matched;
1442 u64 data = msr->data;
1443
1444 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445 offset = kvm_compute_tsc_offset(vcpu, data);
1446 ns = ktime_get_boot_ns();
1447 elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449 if (vcpu->arch.virtual_tsc_khz) {
1450 int faulted = 0;
1451
1452 /* n.b - signed multiplication and division required */
1453 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457 /* do_div() only does unsigned */
1458 asm("1: idivl %[divisor]\n"
1459 "2: xor %%edx, %%edx\n"
1460 " movl $0, %[faulted]\n"
1461 "3:\n"
1462 ".section .fixup,\"ax\"\n"
1463 "4: movl $1, %[faulted]\n"
1464 " jmp 3b\n"
1465 ".previous\n"
1466
1467 _ASM_EXTABLE(1b, 4b)
1468
1469 : "=A"(usdiff), [faulted] "=r" (faulted)
1470 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473 do_div(elapsed, 1000);
1474 usdiff -= elapsed;
1475 if (usdiff < 0)
1476 usdiff = -usdiff;
1477
1478 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479 if (faulted)
1480 usdiff = USEC_PER_SEC;
1481 } else
1482 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484 /*
1485 * Special case: TSC write with a small delta (1 second) of virtual
1486 * cycle time against real time is interpreted as an attempt to
1487 * synchronize the CPU.
1488 *
1489 * For a reliable TSC, we can match TSC offsets, and for an unstable
1490 * TSC, we add elapsed time in this computation. We could let the
1491 * compensation code attempt to catch up if we fall behind, but
1492 * it's better to try to match offsets from the beginning.
1493 */
1494 if (usdiff < USEC_PER_SEC &&
1495 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496 if (!check_tsc_unstable()) {
1497 offset = kvm->arch.cur_tsc_offset;
1498 pr_debug("kvm: matched tsc offset for %llu\n", data);
1499 } else {
1500 u64 delta = nsec_to_cycles(vcpu, elapsed);
1501 data += delta;
1502 offset = kvm_compute_tsc_offset(vcpu, data);
1503 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504 }
1505 matched = true;
1506 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507 } else {
1508 /*
1509 * We split periods of matched TSC writes into generations.
1510 * For each generation, we track the original measured
1511 * nanosecond time, offset, and write, so if TSCs are in
1512 * sync, we can match exact offset, and if not, we can match
1513 * exact software computation in compute_guest_tsc()
1514 *
1515 * These values are tracked in kvm->arch.cur_xxx variables.
1516 */
1517 kvm->arch.cur_tsc_generation++;
1518 kvm->arch.cur_tsc_nsec = ns;
1519 kvm->arch.cur_tsc_write = data;
1520 kvm->arch.cur_tsc_offset = offset;
1521 matched = false;
1522 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523 kvm->arch.cur_tsc_generation, data);
1524 }
1525
1526 /*
1527 * We also track th most recent recorded KHZ, write and time to
1528 * allow the matching interval to be extended at each write.
1529 */
1530 kvm->arch.last_tsc_nsec = ns;
1531 kvm->arch.last_tsc_write = data;
1532 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534 vcpu->arch.last_guest_tsc = data;
1535
1536 /* Keep track of which generation this VCPU has synchronized to */
1537 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542 update_ia32_tsc_adjust_msr(vcpu, offset);
1543 kvm_vcpu_write_tsc_offset(vcpu, offset);
1544 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547 if (!matched) {
1548 kvm->arch.nr_vcpus_matched_tsc = 0;
1549 } else if (!already_matched) {
1550 kvm->arch.nr_vcpus_matched_tsc++;
1551 }
1552
1553 kvm_track_tsc_matching(vcpu);
1554 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560 s64 adjustment)
1561 {
1562 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568 WARN_ON(adjustment < 0);
1569 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570 adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static cycle_t read_tsc(void)
1576 {
1577 cycle_t ret = (cycle_t)rdtsc_ordered();
1578 u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580 if (likely(ret >= last))
1581 return ret;
1582
1583 /*
1584 * GCC likes to generate cmov here, but this branch is extremely
1585 * predictable (it's just a function of time and the likely is
1586 * very likely) and there's a data dependence, so force GCC
1587 * to generate a branch instead. I don't barrier() because
1588 * we don't actually need a barrier, and if this function
1589 * ever gets inlined it will generate worse code.
1590 */
1591 asm volatile ("");
1592 return last;
1593 }
1594
1595 static inline u64 vgettsc(cycle_t *cycle_now)
1596 {
1597 long v;
1598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600 *cycle_now = read_tsc();
1601
1602 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603 return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1607 {
1608 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609 unsigned long seq;
1610 int mode;
1611 u64 ns;
1612
1613 do {
1614 seq = read_seqcount_begin(&gtod->seq);
1615 mode = gtod->clock.vclock_mode;
1616 ns = gtod->nsec_base;
1617 ns += vgettsc(cycle_now);
1618 ns >>= gtod->clock.shift;
1619 ns += gtod->boot_ns;
1620 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621 *t = ns;
1622
1623 return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1628 {
1629 /* checked again under seqlock below */
1630 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631 return false;
1632
1633 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638 *
1639 * Assuming a stable TSC across physical CPUS, and a stable TSC
1640 * across virtual CPUs, the following condition is possible.
1641 * Each numbered line represents an event visible to both
1642 * CPUs at the next numbered event.
1643 *
1644 * "timespecX" represents host monotonic time. "tscX" represents
1645 * RDTSC value.
1646 *
1647 * VCPU0 on CPU0 | VCPU1 on CPU1
1648 *
1649 * 1. read timespec0,tsc0
1650 * 2. | timespec1 = timespec0 + N
1651 * | tsc1 = tsc0 + M
1652 * 3. transition to guest | transition to guest
1653 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1655 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656 *
1657 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658 *
1659 * - ret0 < ret1
1660 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661 * ...
1662 * - 0 < N - M => M < N
1663 *
1664 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665 * always the case (the difference between two distinct xtime instances
1666 * might be smaller then the difference between corresponding TSC reads,
1667 * when updating guest vcpus pvclock areas).
1668 *
1669 * To avoid that problem, do not allow visibility of distinct
1670 * system_timestamp/tsc_timestamp values simultaneously: use a master
1671 * copy of host monotonic time values. Update that master copy
1672 * in lockstep.
1673 *
1674 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675 *
1676 */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681 struct kvm_arch *ka = &kvm->arch;
1682 int vclock_mode;
1683 bool host_tsc_clocksource, vcpus_matched;
1684
1685 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686 atomic_read(&kvm->online_vcpus));
1687
1688 /*
1689 * If the host uses TSC clock, then passthrough TSC as stable
1690 * to the guest.
1691 */
1692 host_tsc_clocksource = kvm_get_time_and_clockread(
1693 &ka->master_kernel_ns,
1694 &ka->master_cycle_now);
1695
1696 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697 && !backwards_tsc_observed
1698 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700 if (ka->use_master_clock)
1701 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705 vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717 int i;
1718 struct kvm_vcpu *vcpu;
1719 struct kvm_arch *ka = &kvm->arch;
1720
1721 spin_lock(&ka->pvclock_gtod_sync_lock);
1722 kvm_make_mclock_inprogress_request(kvm);
1723 /* no guest entries from this point */
1724 pvclock_update_vm_gtod_copy(kvm);
1725
1726 kvm_for_each_vcpu(i, vcpu, kvm)
1727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729 /* guest entries allowed */
1730 kvm_for_each_vcpu(i, vcpu, kvm)
1731 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733 spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739 struct kvm_arch *ka = &kvm->arch;
1740 struct pvclock_vcpu_time_info hv_clock;
1741
1742 spin_lock(&ka->pvclock_gtod_sync_lock);
1743 if (!ka->use_master_clock) {
1744 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746 }
1747
1748 hv_clock.tsc_timestamp = ka->master_cycle_now;
1749 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750 spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753 &hv_clock.tsc_shift,
1754 &hv_clock.tsc_to_system_mul);
1755 return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760 unsigned long flags;
1761 s64 ns;
1762
1763 local_irq_save(flags);
1764 ns = __get_kvmclock_ns(kvm);
1765 local_irq_restore(flags);
1766
1767 return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772 struct kvm_vcpu_arch *vcpu = &v->arch;
1773 struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776 &guest_hv_clock, sizeof(guest_hv_clock))))
1777 return;
1778
1779 /* This VCPU is paused, but it's legal for a guest to read another
1780 * VCPU's kvmclock, so we really have to follow the specification where
1781 * it says that version is odd if data is being modified, and even after
1782 * it is consistent.
1783 *
1784 * Version field updates must be kept separate. This is because
1785 * kvm_write_guest_cached might use a "rep movs" instruction, and
1786 * writes within a string instruction are weakly ordered. So there
1787 * are three writes overall.
1788 *
1789 * As a small optimization, only write the version field in the first
1790 * and third write. The vcpu->pv_time cache is still valid, because the
1791 * version field is the first in the struct.
1792 */
1793 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797 &vcpu->hv_clock,
1798 sizeof(vcpu->hv_clock.version));
1799
1800 smp_wmb();
1801
1802 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805 if (vcpu->pvclock_set_guest_stopped_request) {
1806 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807 vcpu->pvclock_set_guest_stopped_request = false;
1808 }
1809
1810 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 &vcpu->hv_clock,
1814 sizeof(vcpu->hv_clock));
1815
1816 smp_wmb();
1817
1818 vcpu->hv_clock.version++;
1819 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820 &vcpu->hv_clock,
1821 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826 unsigned long flags, tgt_tsc_khz;
1827 struct kvm_vcpu_arch *vcpu = &v->arch;
1828 struct kvm_arch *ka = &v->kvm->arch;
1829 s64 kernel_ns;
1830 u64 tsc_timestamp, host_tsc;
1831 u8 pvclock_flags;
1832 bool use_master_clock;
1833
1834 kernel_ns = 0;
1835 host_tsc = 0;
1836
1837 /*
1838 * If the host uses TSC clock, then passthrough TSC as stable
1839 * to the guest.
1840 */
1841 spin_lock(&ka->pvclock_gtod_sync_lock);
1842 use_master_clock = ka->use_master_clock;
1843 if (use_master_clock) {
1844 host_tsc = ka->master_cycle_now;
1845 kernel_ns = ka->master_kernel_ns;
1846 }
1847 spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849 /* Keep irq disabled to prevent changes to the clock */
1850 local_irq_save(flags);
1851 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852 if (unlikely(tgt_tsc_khz == 0)) {
1853 local_irq_restore(flags);
1854 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855 return 1;
1856 }
1857 if (!use_master_clock) {
1858 host_tsc = rdtsc();
1859 kernel_ns = ktime_get_boot_ns();
1860 }
1861
1862 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864 /*
1865 * We may have to catch up the TSC to match elapsed wall clock
1866 * time for two reasons, even if kvmclock is used.
1867 * 1) CPU could have been running below the maximum TSC rate
1868 * 2) Broken TSC compensation resets the base at each VCPU
1869 * entry to avoid unknown leaps of TSC even when running
1870 * again on the same CPU. This may cause apparent elapsed
1871 * time to disappear, and the guest to stand still or run
1872 * very slowly.
1873 */
1874 if (vcpu->tsc_catchup) {
1875 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876 if (tsc > tsc_timestamp) {
1877 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878 tsc_timestamp = tsc;
1879 }
1880 }
1881
1882 local_irq_restore(flags);
1883
1884 /* With all the info we got, fill in the values */
1885
1886 if (kvm_has_tsc_control)
1887 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891 &vcpu->hv_clock.tsc_shift,
1892 &vcpu->hv_clock.tsc_to_system_mul);
1893 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894 }
1895
1896 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898 vcpu->last_guest_tsc = tsc_timestamp;
1899
1900 /* If the host uses TSC clocksource, then it is stable */
1901 pvclock_flags = 0;
1902 if (use_master_clock)
1903 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905 vcpu->hv_clock.flags = pvclock_flags;
1906
1907 if (vcpu->pv_time_enabled)
1908 kvm_setup_pvclock_page(v);
1909 if (v == kvm_get_vcpu(v->kvm, 0))
1910 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911 return 0;
1912 }
1913
1914 /*
1915 * kvmclock updates which are isolated to a given vcpu, such as
1916 * vcpu->cpu migration, should not allow system_timestamp from
1917 * the rest of the vcpus to remain static. Otherwise ntp frequency
1918 * correction applies to one vcpu's system_timestamp but not
1919 * the others.
1920 *
1921 * So in those cases, request a kvmclock update for all vcpus.
1922 * We need to rate-limit these requests though, as they can
1923 * considerably slow guests that have a large number of vcpus.
1924 * The time for a remote vcpu to update its kvmclock is bound
1925 * by the delay we use to rate-limit the updates.
1926 */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932 int i;
1933 struct delayed_work *dwork = to_delayed_work(work);
1934 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935 kvmclock_update_work);
1936 struct kvm *kvm = container_of(ka, struct kvm, arch);
1937 struct kvm_vcpu *vcpu;
1938
1939 kvm_for_each_vcpu(i, vcpu, kvm) {
1940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941 kvm_vcpu_kick(vcpu);
1942 }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947 struct kvm *kvm = v->kvm;
1948
1949 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951 KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958 struct delayed_work *dwork = to_delayed_work(work);
1959 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 kvmclock_sync_work);
1961 struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963 if (!kvmclock_periodic_sync)
1964 return;
1965
1966 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968 KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973 u64 mcg_cap = vcpu->arch.mcg_cap;
1974 unsigned bank_num = mcg_cap & 0xff;
1975
1976 switch (msr) {
1977 case MSR_IA32_MCG_STATUS:
1978 vcpu->arch.mcg_status = data;
1979 break;
1980 case MSR_IA32_MCG_CTL:
1981 if (!(mcg_cap & MCG_CTL_P))
1982 return 1;
1983 if (data != 0 && data != ~(u64)0)
1984 return -1;
1985 vcpu->arch.mcg_ctl = data;
1986 break;
1987 default:
1988 if (msr >= MSR_IA32_MC0_CTL &&
1989 msr < MSR_IA32_MCx_CTL(bank_num)) {
1990 u32 offset = msr - MSR_IA32_MC0_CTL;
1991 /* only 0 or all 1s can be written to IA32_MCi_CTL
1992 * some Linux kernels though clear bit 10 in bank 4 to
1993 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994 * this to avoid an uncatched #GP in the guest
1995 */
1996 if ((offset & 0x3) == 0 &&
1997 data != 0 && (data | (1 << 10)) != ~(u64)0)
1998 return -1;
1999 vcpu->arch.mce_banks[offset] = data;
2000 break;
2001 }
2002 return 1;
2003 }
2004 return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009 struct kvm *kvm = vcpu->kvm;
2010 int lm = is_long_mode(vcpu);
2011 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014 : kvm->arch.xen_hvm_config.blob_size_32;
2015 u32 page_num = data & ~PAGE_MASK;
2016 u64 page_addr = data & PAGE_MASK;
2017 u8 *page;
2018 int r;
2019
2020 r = -E2BIG;
2021 if (page_num >= blob_size)
2022 goto out;
2023 r = -ENOMEM;
2024 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025 if (IS_ERR(page)) {
2026 r = PTR_ERR(page);
2027 goto out;
2028 }
2029 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030 goto out_free;
2031 r = 0;
2032 out_free:
2033 kfree(page);
2034 out:
2035 return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040 gpa_t gpa = data & ~0x3f;
2041
2042 /* Bits 2:5 are reserved, Should be zero */
2043 if (data & 0x3c)
2044 return 1;
2045
2046 vcpu->arch.apf.msr_val = data;
2047
2048 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049 kvm_clear_async_pf_completion_queue(vcpu);
2050 kvm_async_pf_hash_reset(vcpu);
2051 return 0;
2052 }
2053
2054 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055 sizeof(u32)))
2056 return 1;
2057
2058 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059 kvm_async_pf_wakeup_all(vcpu);
2060 return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065 vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071 return;
2072
2073 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075 return;
2076
2077 vcpu->arch.st.steal.preempted = 0;
2078
2079 if (vcpu->arch.st.steal.version & 1)
2080 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2081
2082 vcpu->arch.st.steal.version += 1;
2083
2084 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087 smp_wmb();
2088
2089 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090 vcpu->arch.st.last_steal;
2091 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096 smp_wmb();
2097
2098 vcpu->arch.st.steal.version += 1;
2099
2100 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106 bool pr = false;
2107 u32 msr = msr_info->index;
2108 u64 data = msr_info->data;
2109
2110 switch (msr) {
2111 case MSR_AMD64_NB_CFG:
2112 case MSR_IA32_UCODE_REV:
2113 case MSR_IA32_UCODE_WRITE:
2114 case MSR_VM_HSAVE_PA:
2115 case MSR_AMD64_PATCH_LOADER:
2116 case MSR_AMD64_BU_CFG2:
2117 break;
2118
2119 case MSR_EFER:
2120 return set_efer(vcpu, data);
2121 case MSR_K7_HWCR:
2122 data &= ~(u64)0x40; /* ignore flush filter disable */
2123 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2124 data &= ~(u64)0x8; /* ignore TLB cache disable */
2125 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2126 if (data != 0) {
2127 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128 data);
2129 return 1;
2130 }
2131 break;
2132 case MSR_FAM10H_MMIO_CONF_BASE:
2133 if (data != 0) {
2134 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135 "0x%llx\n", data);
2136 return 1;
2137 }
2138 break;
2139 case MSR_IA32_DEBUGCTLMSR:
2140 if (!data) {
2141 /* We support the non-activated case already */
2142 break;
2143 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144 /* Values other than LBR and BTF are vendor-specific,
2145 thus reserved and should throw a #GP */
2146 return 1;
2147 }
2148 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149 __func__, data);
2150 break;
2151 case 0x200 ... 0x2ff:
2152 return kvm_mtrr_set_msr(vcpu, msr, data);
2153 case MSR_IA32_APICBASE:
2154 return kvm_set_apic_base(vcpu, msr_info);
2155 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156 return kvm_x2apic_msr_write(vcpu, msr, data);
2157 case MSR_IA32_TSCDEADLINE:
2158 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159 break;
2160 case MSR_IA32_TSC_ADJUST:
2161 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162 if (!msr_info->host_initiated) {
2163 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164 adjust_tsc_offset_guest(vcpu, adj);
2165 }
2166 vcpu->arch.ia32_tsc_adjust_msr = data;
2167 }
2168 break;
2169 case MSR_IA32_MISC_ENABLE:
2170 vcpu->arch.ia32_misc_enable_msr = data;
2171 break;
2172 case MSR_IA32_SMBASE:
2173 if (!msr_info->host_initiated)
2174 return 1;
2175 vcpu->arch.smbase = data;
2176 break;
2177 case MSR_KVM_WALL_CLOCK_NEW:
2178 case MSR_KVM_WALL_CLOCK:
2179 vcpu->kvm->arch.wall_clock = data;
2180 kvm_write_wall_clock(vcpu->kvm, data);
2181 break;
2182 case MSR_KVM_SYSTEM_TIME_NEW:
2183 case MSR_KVM_SYSTEM_TIME: {
2184 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186 kvmclock_reset(vcpu);
2187
2188 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193 &vcpu->requests);
2194
2195 ka->boot_vcpu_runs_old_kvmclock = tmp;
2196 }
2197
2198 vcpu->arch.time = data;
2199 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201 /* we verify if the enable bit is set... */
2202 if (!(data & 1))
2203 break;
2204
2205 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206 &vcpu->arch.pv_time, data & ~1ULL,
2207 sizeof(struct pvclock_vcpu_time_info)))
2208 vcpu->arch.pv_time_enabled = false;
2209 else
2210 vcpu->arch.pv_time_enabled = true;
2211
2212 break;
2213 }
2214 case MSR_KVM_ASYNC_PF_EN:
2215 if (kvm_pv_enable_async_pf(vcpu, data))
2216 return 1;
2217 break;
2218 case MSR_KVM_STEAL_TIME:
2219
2220 if (unlikely(!sched_info_on()))
2221 return 1;
2222
2223 if (data & KVM_STEAL_RESERVED_MASK)
2224 return 1;
2225
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227 data & KVM_STEAL_VALID_BITS,
2228 sizeof(struct kvm_steal_time)))
2229 return 1;
2230
2231 vcpu->arch.st.msr_val = data;
2232
2233 if (!(data & KVM_MSR_ENABLED))
2234 break;
2235
2236 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238 break;
2239 case MSR_KVM_PV_EOI_EN:
2240 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241 return 1;
2242 break;
2243
2244 case MSR_IA32_MCG_CTL:
2245 case MSR_IA32_MCG_STATUS:
2246 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247 return set_msr_mce(vcpu, msr, data);
2248
2249 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251 pr = true; /* fall through */
2252 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255 return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257 if (pr || data != 0)
2258 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259 "0x%x data 0x%llx\n", msr, data);
2260 break;
2261 case MSR_K7_CLK_CTL:
2262 /*
2263 * Ignore all writes to this no longer documented MSR.
2264 * Writes are only relevant for old K7 processors,
2265 * all pre-dating SVM, but a recommended workaround from
2266 * AMD for these chips. It is possible to specify the
2267 * affected processor models on the command line, hence
2268 * the need to ignore the workaround.
2269 */
2270 break;
2271 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273 case HV_X64_MSR_CRASH_CTL:
2274 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275 return kvm_hv_set_msr_common(vcpu, msr, data,
2276 msr_info->host_initiated);
2277 case MSR_IA32_BBL_CR_CTL3:
2278 /* Drop writes to this legacy MSR -- see rdmsr
2279 * counterpart for further detail.
2280 */
2281 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282 break;
2283 case MSR_AMD64_OSVW_ID_LENGTH:
2284 if (!guest_cpuid_has_osvw(vcpu))
2285 return 1;
2286 vcpu->arch.osvw.length = data;
2287 break;
2288 case MSR_AMD64_OSVW_STATUS:
2289 if (!guest_cpuid_has_osvw(vcpu))
2290 return 1;
2291 vcpu->arch.osvw.status = data;
2292 break;
2293 default:
2294 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295 return xen_hvm_config(vcpu, data);
2296 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297 return kvm_pmu_set_msr(vcpu, msr_info);
2298 if (!ignore_msrs) {
2299 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300 msr, data);
2301 return 1;
2302 } else {
2303 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304 msr, data);
2305 break;
2306 }
2307 }
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314 * Reads an msr value (of 'msr_index') into 'pdata'.
2315 * Returns 0 on success, non-0 otherwise.
2316 * Assumes vcpu_load() was already called.
2317 */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320 return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 u64 data;
2327 u64 mcg_cap = vcpu->arch.mcg_cap;
2328 unsigned bank_num = mcg_cap & 0xff;
2329
2330 switch (msr) {
2331 case MSR_IA32_P5_MC_ADDR:
2332 case MSR_IA32_P5_MC_TYPE:
2333 data = 0;
2334 break;
2335 case MSR_IA32_MCG_CAP:
2336 data = vcpu->arch.mcg_cap;
2337 break;
2338 case MSR_IA32_MCG_CTL:
2339 if (!(mcg_cap & MCG_CTL_P))
2340 return 1;
2341 data = vcpu->arch.mcg_ctl;
2342 break;
2343 case MSR_IA32_MCG_STATUS:
2344 data = vcpu->arch.mcg_status;
2345 break;
2346 default:
2347 if (msr >= MSR_IA32_MC0_CTL &&
2348 msr < MSR_IA32_MCx_CTL(bank_num)) {
2349 u32 offset = msr - MSR_IA32_MC0_CTL;
2350 data = vcpu->arch.mce_banks[offset];
2351 break;
2352 }
2353 return 1;
2354 }
2355 *pdata = data;
2356 return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361 switch (msr_info->index) {
2362 case MSR_IA32_PLATFORM_ID:
2363 case MSR_IA32_EBL_CR_POWERON:
2364 case MSR_IA32_DEBUGCTLMSR:
2365 case MSR_IA32_LASTBRANCHFROMIP:
2366 case MSR_IA32_LASTBRANCHTOIP:
2367 case MSR_IA32_LASTINTFROMIP:
2368 case MSR_IA32_LASTINTTOIP:
2369 case MSR_K8_SYSCFG:
2370 case MSR_K8_TSEG_ADDR:
2371 case MSR_K8_TSEG_MASK:
2372 case MSR_K7_HWCR:
2373 case MSR_VM_HSAVE_PA:
2374 case MSR_K8_INT_PENDING_MSG:
2375 case MSR_AMD64_NB_CFG:
2376 case MSR_FAM10H_MMIO_CONF_BASE:
2377 case MSR_AMD64_BU_CFG2:
2378 case MSR_IA32_PERF_CTL:
2379 msr_info->data = 0;
2380 break;
2381 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387 msr_info->data = 0;
2388 break;
2389 case MSR_IA32_UCODE_REV:
2390 msr_info->data = 0x100000000ULL;
2391 break;
2392 case MSR_MTRRcap:
2393 case 0x200 ... 0x2ff:
2394 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395 case 0xcd: /* fsb frequency */
2396 msr_info->data = 3;
2397 break;
2398 /*
2399 * MSR_EBC_FREQUENCY_ID
2400 * Conservative value valid for even the basic CPU models.
2401 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403 * and 266MHz for model 3, or 4. Set Core Clock
2404 * Frequency to System Bus Frequency Ratio to 1 (bits
2405 * 31:24) even though these are only valid for CPU
2406 * models > 2, however guests may end up dividing or
2407 * multiplying by zero otherwise.
2408 */
2409 case MSR_EBC_FREQUENCY_ID:
2410 msr_info->data = 1 << 24;
2411 break;
2412 case MSR_IA32_APICBASE:
2413 msr_info->data = kvm_get_apic_base(vcpu);
2414 break;
2415 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417 break;
2418 case MSR_IA32_TSCDEADLINE:
2419 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420 break;
2421 case MSR_IA32_TSC_ADJUST:
2422 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423 break;
2424 case MSR_IA32_MISC_ENABLE:
2425 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426 break;
2427 case MSR_IA32_SMBASE:
2428 if (!msr_info->host_initiated)
2429 return 1;
2430 msr_info->data = vcpu->arch.smbase;
2431 break;
2432 case MSR_IA32_PERF_STATUS:
2433 /* TSC increment by tick */
2434 msr_info->data = 1000ULL;
2435 /* CPU multiplier */
2436 msr_info->data |= (((uint64_t)4ULL) << 40);
2437 break;
2438 case MSR_EFER:
2439 msr_info->data = vcpu->arch.efer;
2440 break;
2441 case MSR_KVM_WALL_CLOCK:
2442 case MSR_KVM_WALL_CLOCK_NEW:
2443 msr_info->data = vcpu->kvm->arch.wall_clock;
2444 break;
2445 case MSR_KVM_SYSTEM_TIME:
2446 case MSR_KVM_SYSTEM_TIME_NEW:
2447 msr_info->data = vcpu->arch.time;
2448 break;
2449 case MSR_KVM_ASYNC_PF_EN:
2450 msr_info->data = vcpu->arch.apf.msr_val;
2451 break;
2452 case MSR_KVM_STEAL_TIME:
2453 msr_info->data = vcpu->arch.st.msr_val;
2454 break;
2455 case MSR_KVM_PV_EOI_EN:
2456 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457 break;
2458 case MSR_IA32_P5_MC_ADDR:
2459 case MSR_IA32_P5_MC_TYPE:
2460 case MSR_IA32_MCG_CAP:
2461 case MSR_IA32_MCG_CTL:
2462 case MSR_IA32_MCG_STATUS:
2463 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465 case MSR_K7_CLK_CTL:
2466 /*
2467 * Provide expected ramp-up count for K7. All other
2468 * are set to zero, indicating minimum divisors for
2469 * every field.
2470 *
2471 * This prevents guest kernels on AMD host with CPU
2472 * type 6, model 8 and higher from exploding due to
2473 * the rdmsr failing.
2474 */
2475 msr_info->data = 0x20000000;
2476 break;
2477 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479 case HV_X64_MSR_CRASH_CTL:
2480 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481 return kvm_hv_get_msr_common(vcpu,
2482 msr_info->index, &msr_info->data);
2483 break;
2484 case MSR_IA32_BBL_CR_CTL3:
2485 /* This legacy MSR exists but isn't fully documented in current
2486 * silicon. It is however accessed by winxp in very narrow
2487 * scenarios where it sets bit #19, itself documented as
2488 * a "reserved" bit. Best effort attempt to source coherent
2489 * read data here should the balance of the register be
2490 * interpreted by the guest:
2491 *
2492 * L2 cache control register 3: 64GB range, 256KB size,
2493 * enabled, latency 0x1, configured
2494 */
2495 msr_info->data = 0xbe702111;
2496 break;
2497 case MSR_AMD64_OSVW_ID_LENGTH:
2498 if (!guest_cpuid_has_osvw(vcpu))
2499 return 1;
2500 msr_info->data = vcpu->arch.osvw.length;
2501 break;
2502 case MSR_AMD64_OSVW_STATUS:
2503 if (!guest_cpuid_has_osvw(vcpu))
2504 return 1;
2505 msr_info->data = vcpu->arch.osvw.status;
2506 break;
2507 default:
2508 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510 if (!ignore_msrs) {
2511 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512 msr_info->index);
2513 return 1;
2514 } else {
2515 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516 msr_info->data = 0;
2517 }
2518 break;
2519 }
2520 return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525 * Read or write a bunch of msrs. All parameters are kernel addresses.
2526 *
2527 * @return number of msrs set successfully.
2528 */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530 struct kvm_msr_entry *entries,
2531 int (*do_msr)(struct kvm_vcpu *vcpu,
2532 unsigned index, u64 *data))
2533 {
2534 int i, idx;
2535
2536 idx = srcu_read_lock(&vcpu->kvm->srcu);
2537 for (i = 0; i < msrs->nmsrs; ++i)
2538 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539 break;
2540 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542 return i;
2543 }
2544
2545 /*
2546 * Read or write a bunch of msrs. Parameters are user addresses.
2547 *
2548 * @return number of msrs set successfully.
2549 */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551 int (*do_msr)(struct kvm_vcpu *vcpu,
2552 unsigned index, u64 *data),
2553 int writeback)
2554 {
2555 struct kvm_msrs msrs;
2556 struct kvm_msr_entry *entries;
2557 int r, n;
2558 unsigned size;
2559
2560 r = -EFAULT;
2561 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562 goto out;
2563
2564 r = -E2BIG;
2565 if (msrs.nmsrs >= MAX_IO_MSRS)
2566 goto out;
2567
2568 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569 entries = memdup_user(user_msrs->entries, size);
2570 if (IS_ERR(entries)) {
2571 r = PTR_ERR(entries);
2572 goto out;
2573 }
2574
2575 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576 if (r < 0)
2577 goto out_free;
2578
2579 r = -EFAULT;
2580 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581 goto out_free;
2582
2583 r = n;
2584
2585 out_free:
2586 kfree(entries);
2587 out:
2588 return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593 int r;
2594
2595 switch (ext) {
2596 case KVM_CAP_IRQCHIP:
2597 case KVM_CAP_HLT:
2598 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599 case KVM_CAP_SET_TSS_ADDR:
2600 case KVM_CAP_EXT_CPUID:
2601 case KVM_CAP_EXT_EMUL_CPUID:
2602 case KVM_CAP_CLOCKSOURCE:
2603 case KVM_CAP_PIT:
2604 case KVM_CAP_NOP_IO_DELAY:
2605 case KVM_CAP_MP_STATE:
2606 case KVM_CAP_SYNC_MMU:
2607 case KVM_CAP_USER_NMI:
2608 case KVM_CAP_REINJECT_CONTROL:
2609 case KVM_CAP_IRQ_INJECT_STATUS:
2610 case KVM_CAP_IOEVENTFD:
2611 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612 case KVM_CAP_PIT2:
2613 case KVM_CAP_PIT_STATE2:
2614 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615 case KVM_CAP_XEN_HVM:
2616 case KVM_CAP_VCPU_EVENTS:
2617 case KVM_CAP_HYPERV:
2618 case KVM_CAP_HYPERV_VAPIC:
2619 case KVM_CAP_HYPERV_SPIN:
2620 case KVM_CAP_HYPERV_SYNIC:
2621 case KVM_CAP_PCI_SEGMENT:
2622 case KVM_CAP_DEBUGREGS:
2623 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624 case KVM_CAP_XSAVE:
2625 case KVM_CAP_ASYNC_PF:
2626 case KVM_CAP_GET_TSC_KHZ:
2627 case KVM_CAP_KVMCLOCK_CTRL:
2628 case KVM_CAP_READONLY_MEM:
2629 case KVM_CAP_HYPERV_TIME:
2630 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631 case KVM_CAP_TSC_DEADLINE_TIMER:
2632 case KVM_CAP_ENABLE_CAP_VM:
2633 case KVM_CAP_DISABLE_QUIRKS:
2634 case KVM_CAP_SET_BOOT_CPU_ID:
2635 case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637 case KVM_CAP_ASSIGN_DEV_IRQ:
2638 case KVM_CAP_PCI_2_3:
2639 #endif
2640 r = 1;
2641 break;
2642 case KVM_CAP_ADJUST_CLOCK:
2643 r = KVM_CLOCK_TSC_STABLE;
2644 break;
2645 case KVM_CAP_X86_SMM:
2646 /* SMBASE is usually relocated above 1M on modern chipsets,
2647 * and SMM handlers might indeed rely on 4G segment limits,
2648 * so do not report SMM to be available if real mode is
2649 * emulated via vm86 mode. Still, do not go to great lengths
2650 * to avoid userspace's usage of the feature, because it is a
2651 * fringe case that is not enabled except via specific settings
2652 * of the module parameters.
2653 */
2654 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655 break;
2656 case KVM_CAP_COALESCED_MMIO:
2657 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658 break;
2659 case KVM_CAP_VAPIC:
2660 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661 break;
2662 case KVM_CAP_NR_VCPUS:
2663 r = KVM_SOFT_MAX_VCPUS;
2664 break;
2665 case KVM_CAP_MAX_VCPUS:
2666 r = KVM_MAX_VCPUS;
2667 break;
2668 case KVM_CAP_NR_MEMSLOTS:
2669 r = KVM_USER_MEM_SLOTS;
2670 break;
2671 case KVM_CAP_PV_MMU: /* obsolete */
2672 r = 0;
2673 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675 case KVM_CAP_IOMMU:
2676 r = iommu_present(&pci_bus_type);
2677 break;
2678 #endif
2679 case KVM_CAP_MCE:
2680 r = KVM_MAX_MCE_BANKS;
2681 break;
2682 case KVM_CAP_XCRS:
2683 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684 break;
2685 case KVM_CAP_TSC_CONTROL:
2686 r = kvm_has_tsc_control;
2687 break;
2688 case KVM_CAP_X2APIC_API:
2689 r = KVM_X2APIC_API_VALID_FLAGS;
2690 break;
2691 default:
2692 r = 0;
2693 break;
2694 }
2695 return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700 unsigned int ioctl, unsigned long arg)
2701 {
2702 void __user *argp = (void __user *)arg;
2703 long r;
2704
2705 switch (ioctl) {
2706 case KVM_GET_MSR_INDEX_LIST: {
2707 struct kvm_msr_list __user *user_msr_list = argp;
2708 struct kvm_msr_list msr_list;
2709 unsigned n;
2710
2711 r = -EFAULT;
2712 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713 goto out;
2714 n = msr_list.nmsrs;
2715 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717 goto out;
2718 r = -E2BIG;
2719 if (n < msr_list.nmsrs)
2720 goto out;
2721 r = -EFAULT;
2722 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723 num_msrs_to_save * sizeof(u32)))
2724 goto out;
2725 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726 &emulated_msrs,
2727 num_emulated_msrs * sizeof(u32)))
2728 goto out;
2729 r = 0;
2730 break;
2731 }
2732 case KVM_GET_SUPPORTED_CPUID:
2733 case KVM_GET_EMULATED_CPUID: {
2734 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 struct kvm_cpuid2 cpuid;
2736
2737 r = -EFAULT;
2738 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 goto out;
2740
2741 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742 ioctl);
2743 if (r)
2744 goto out;
2745
2746 r = -EFAULT;
2747 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748 goto out;
2749 r = 0;
2750 break;
2751 }
2752 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753 r = -EFAULT;
2754 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755 sizeof(kvm_mce_cap_supported)))
2756 goto out;
2757 r = 0;
2758 break;
2759 }
2760 default:
2761 r = -EINVAL;
2762 }
2763 out:
2764 return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769 wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784 /* Address WBINVD may be executed by guest */
2785 if (need_emulate_wbinvd(vcpu)) {
2786 if (kvm_x86_ops->has_wbinvd_exit())
2787 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789 smp_call_function_single(vcpu->cpu,
2790 wbinvd_ipi, NULL, 1);
2791 }
2792
2793 kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795 /* Apply any externally detected TSC adjustments (due to suspend) */
2796 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798 vcpu->arch.tsc_offset_adjustment = 0;
2799 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800 }
2801
2802 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804 rdtsc() - vcpu->arch.last_host_tsc;
2805 if (tsc_delta < 0)
2806 mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808 if (check_tsc_unstable()) {
2809 u64 offset = kvm_compute_tsc_offset(vcpu,
2810 vcpu->arch.last_guest_tsc);
2811 kvm_vcpu_write_tsc_offset(vcpu, offset);
2812 vcpu->arch.tsc_catchup = 1;
2813 }
2814 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815 kvm_x86_ops->set_hv_timer(vcpu,
2816 kvm_get_lapic_target_expiration_tsc(vcpu)))
2817 kvm_lapic_switch_to_sw_timer(vcpu);
2818 /*
2819 * On a host with synchronized TSC, there is no need to update
2820 * kvmclock on vcpu->cpu migration
2821 */
2822 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824 if (vcpu->cpu != cpu)
2825 kvm_migrate_timers(vcpu);
2826 vcpu->cpu = cpu;
2827 }
2828
2829 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835 return;
2836
2837 vcpu->arch.st.steal.preempted = 1;
2838
2839 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840 &vcpu->arch.st.steal.preempted,
2841 offsetof(struct kvm_steal_time, preempted),
2842 sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847 int idx;
2848 /*
2849 * Disable page faults because we're in atomic context here.
2850 * kvm_write_guest_offset_cached() would call might_fault()
2851 * that relies on pagefault_disable() to tell if there's a
2852 * bug. NOTE: the write to guest memory may not go through if
2853 * during postcopy live migration or if there's heavy guest
2854 * paging.
2855 */
2856 pagefault_disable();
2857 /*
2858 * kvm_memslots() will be called by
2859 * kvm_write_guest_offset_cached() so take the srcu lock.
2860 */
2861 idx = srcu_read_lock(&vcpu->kvm->srcu);
2862 kvm_steal_time_set_preempted(vcpu);
2863 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2864 pagefault_enable();
2865 kvm_x86_ops->vcpu_put(vcpu);
2866 kvm_put_guest_fpu(vcpu);
2867 vcpu->arch.last_host_tsc = rdtsc();
2868 }
2869
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2871 struct kvm_lapic_state *s)
2872 {
2873 if (vcpu->arch.apicv_active)
2874 kvm_x86_ops->sync_pir_to_irr(vcpu);
2875
2876 return kvm_apic_get_state(vcpu, s);
2877 }
2878
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2880 struct kvm_lapic_state *s)
2881 {
2882 int r;
2883
2884 r = kvm_apic_set_state(vcpu, s);
2885 if (r)
2886 return r;
2887 update_cr8_intercept(vcpu);
2888
2889 return 0;
2890 }
2891
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2893 {
2894 return (!lapic_in_kernel(vcpu) ||
2895 kvm_apic_accept_pic_intr(vcpu));
2896 }
2897
2898 /*
2899 * if userspace requested an interrupt window, check that the
2900 * interrupt window is open.
2901 *
2902 * No need to exit to userspace if we already have an interrupt queued.
2903 */
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2905 {
2906 return kvm_arch_interrupt_allowed(vcpu) &&
2907 !kvm_cpu_has_interrupt(vcpu) &&
2908 !kvm_event_needs_reinjection(vcpu) &&
2909 kvm_cpu_accept_dm_intr(vcpu);
2910 }
2911
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2913 struct kvm_interrupt *irq)
2914 {
2915 if (irq->irq >= KVM_NR_INTERRUPTS)
2916 return -EINVAL;
2917
2918 if (!irqchip_in_kernel(vcpu->kvm)) {
2919 kvm_queue_interrupt(vcpu, irq->irq, false);
2920 kvm_make_request(KVM_REQ_EVENT, vcpu);
2921 return 0;
2922 }
2923
2924 /*
2925 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926 * fail for in-kernel 8259.
2927 */
2928 if (pic_in_kernel(vcpu->kvm))
2929 return -ENXIO;
2930
2931 if (vcpu->arch.pending_external_vector != -1)
2932 return -EEXIST;
2933
2934 vcpu->arch.pending_external_vector = irq->irq;
2935 kvm_make_request(KVM_REQ_EVENT, vcpu);
2936 return 0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2940 {
2941 kvm_inject_nmi(vcpu);
2942
2943 return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2947 {
2948 kvm_make_request(KVM_REQ_SMI, vcpu);
2949
2950 return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954 struct kvm_tpr_access_ctl *tac)
2955 {
2956 if (tac->flags)
2957 return -EINVAL;
2958 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959 return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963 u64 mcg_cap)
2964 {
2965 int r;
2966 unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968 r = -EINVAL;
2969 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970 goto out;
2971 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2972 goto out;
2973 r = 0;
2974 vcpu->arch.mcg_cap = mcg_cap;
2975 /* Init IA32_MCG_CTL to all 1s */
2976 if (mcg_cap & MCG_CTL_P)
2977 vcpu->arch.mcg_ctl = ~(u64)0;
2978 /* Init IA32_MCi_CTL to all 1s */
2979 for (bank = 0; bank < bank_num; bank++)
2980 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981
2982 if (kvm_x86_ops->setup_mce)
2983 kvm_x86_ops->setup_mce(vcpu);
2984 out:
2985 return r;
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2989 struct kvm_x86_mce *mce)
2990 {
2991 u64 mcg_cap = vcpu->arch.mcg_cap;
2992 unsigned bank_num = mcg_cap & 0xff;
2993 u64 *banks = vcpu->arch.mce_banks;
2994
2995 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2996 return -EINVAL;
2997 /*
2998 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999 * reporting is disabled
3000 */
3001 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3002 vcpu->arch.mcg_ctl != ~(u64)0)
3003 return 0;
3004 banks += 4 * mce->bank;
3005 /*
3006 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007 * reporting is disabled for the bank
3008 */
3009 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3010 return 0;
3011 if (mce->status & MCI_STATUS_UC) {
3012 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3013 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3014 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3015 return 0;
3016 }
3017 if (banks[1] & MCI_STATUS_VAL)
3018 mce->status |= MCI_STATUS_OVER;
3019 banks[2] = mce->addr;
3020 banks[3] = mce->misc;
3021 vcpu->arch.mcg_status = mce->mcg_status;
3022 banks[1] = mce->status;
3023 kvm_queue_exception(vcpu, MC_VECTOR);
3024 } else if (!(banks[1] & MCI_STATUS_VAL)
3025 || !(banks[1] & MCI_STATUS_UC)) {
3026 if (banks[1] & MCI_STATUS_VAL)
3027 mce->status |= MCI_STATUS_OVER;
3028 banks[2] = mce->addr;
3029 banks[3] = mce->misc;
3030 banks[1] = mce->status;
3031 } else
3032 banks[1] |= MCI_STATUS_OVER;
3033 return 0;
3034 }
3035
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3037 struct kvm_vcpu_events *events)
3038 {
3039 process_nmi(vcpu);
3040 events->exception.injected =
3041 vcpu->arch.exception.pending &&
3042 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3043 events->exception.nr = vcpu->arch.exception.nr;
3044 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3045 events->exception.pad = 0;
3046 events->exception.error_code = vcpu->arch.exception.error_code;
3047
3048 events->interrupt.injected =
3049 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3050 events->interrupt.nr = vcpu->arch.interrupt.nr;
3051 events->interrupt.soft = 0;
3052 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3053
3054 events->nmi.injected = vcpu->arch.nmi_injected;
3055 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3056 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3057 events->nmi.pad = 0;
3058
3059 events->sipi_vector = 0; /* never valid when reporting to user space */
3060
3061 events->smi.smm = is_smm(vcpu);
3062 events->smi.pending = vcpu->arch.smi_pending;
3063 events->smi.smm_inside_nmi =
3064 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3065 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3066
3067 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 | KVM_VCPUEVENT_VALID_SHADOW
3069 | KVM_VCPUEVENT_VALID_SMM);
3070 memset(&events->reserved, 0, sizeof(events->reserved));
3071 }
3072
3073 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3074 struct kvm_vcpu_events *events)
3075 {
3076 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3077 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3078 | KVM_VCPUEVENT_VALID_SHADOW
3079 | KVM_VCPUEVENT_VALID_SMM))
3080 return -EINVAL;
3081
3082 if (events->exception.injected &&
3083 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3084 return -EINVAL;
3085
3086 process_nmi(vcpu);
3087 vcpu->arch.exception.pending = events->exception.injected;
3088 vcpu->arch.exception.nr = events->exception.nr;
3089 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3090 vcpu->arch.exception.error_code = events->exception.error_code;
3091
3092 vcpu->arch.interrupt.pending = events->interrupt.injected;
3093 vcpu->arch.interrupt.nr = events->interrupt.nr;
3094 vcpu->arch.interrupt.soft = events->interrupt.soft;
3095 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3096 kvm_x86_ops->set_interrupt_shadow(vcpu,
3097 events->interrupt.shadow);
3098
3099 vcpu->arch.nmi_injected = events->nmi.injected;
3100 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3101 vcpu->arch.nmi_pending = events->nmi.pending;
3102 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3103
3104 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3105 lapic_in_kernel(vcpu))
3106 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3107
3108 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3109 if (events->smi.smm)
3110 vcpu->arch.hflags |= HF_SMM_MASK;
3111 else
3112 vcpu->arch.hflags &= ~HF_SMM_MASK;
3113 vcpu->arch.smi_pending = events->smi.pending;
3114 if (events->smi.smm_inside_nmi)
3115 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3116 else
3117 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3118 if (lapic_in_kernel(vcpu)) {
3119 if (events->smi.latched_init)
3120 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3121 else
3122 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3123 }
3124 }
3125
3126 kvm_make_request(KVM_REQ_EVENT, vcpu);
3127
3128 return 0;
3129 }
3130
3131 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3132 struct kvm_debugregs *dbgregs)
3133 {
3134 unsigned long val;
3135
3136 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3137 kvm_get_dr(vcpu, 6, &val);
3138 dbgregs->dr6 = val;
3139 dbgregs->dr7 = vcpu->arch.dr7;
3140 dbgregs->flags = 0;
3141 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3142 }
3143
3144 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3145 struct kvm_debugregs *dbgregs)
3146 {
3147 if (dbgregs->flags)
3148 return -EINVAL;
3149
3150 if (dbgregs->dr6 & ~0xffffffffull)
3151 return -EINVAL;
3152 if (dbgregs->dr7 & ~0xffffffffull)
3153 return -EINVAL;
3154
3155 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3156 kvm_update_dr0123(vcpu);
3157 vcpu->arch.dr6 = dbgregs->dr6;
3158 kvm_update_dr6(vcpu);
3159 vcpu->arch.dr7 = dbgregs->dr7;
3160 kvm_update_dr7(vcpu);
3161
3162 return 0;
3163 }
3164
3165 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3166
3167 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3168 {
3169 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3170 u64 xstate_bv = xsave->header.xfeatures;
3171 u64 valid;
3172
3173 /*
3174 * Copy legacy XSAVE area, to avoid complications with CPUID
3175 * leaves 0 and 1 in the loop below.
3176 */
3177 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3178
3179 /* Set XSTATE_BV */
3180 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3181
3182 /*
3183 * Copy each region from the possibly compacted offset to the
3184 * non-compacted offset.
3185 */
3186 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3187 while (valid) {
3188 u64 feature = valid & -valid;
3189 int index = fls64(feature) - 1;
3190 void *src = get_xsave_addr(xsave, feature);
3191
3192 if (src) {
3193 u32 size, offset, ecx, edx;
3194 cpuid_count(XSTATE_CPUID, index,
3195 &size, &offset, &ecx, &edx);
3196 memcpy(dest + offset, src, size);
3197 }
3198
3199 valid -= feature;
3200 }
3201 }
3202
3203 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3204 {
3205 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3206 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3207 u64 valid;
3208
3209 /*
3210 * Copy legacy XSAVE area, to avoid complications with CPUID
3211 * leaves 0 and 1 in the loop below.
3212 */
3213 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3214
3215 /* Set XSTATE_BV and possibly XCOMP_BV. */
3216 xsave->header.xfeatures = xstate_bv;
3217 if (boot_cpu_has(X86_FEATURE_XSAVES))
3218 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3219
3220 /*
3221 * Copy each region from the non-compacted offset to the
3222 * possibly compacted offset.
3223 */
3224 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3225 while (valid) {
3226 u64 feature = valid & -valid;
3227 int index = fls64(feature) - 1;
3228 void *dest = get_xsave_addr(xsave, feature);
3229
3230 if (dest) {
3231 u32 size, offset, ecx, edx;
3232 cpuid_count(XSTATE_CPUID, index,
3233 &size, &offset, &ecx, &edx);
3234 memcpy(dest, src + offset, size);
3235 }
3236
3237 valid -= feature;
3238 }
3239 }
3240
3241 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3242 struct kvm_xsave *guest_xsave)
3243 {
3244 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3245 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3246 fill_xsave((u8 *) guest_xsave->region, vcpu);
3247 } else {
3248 memcpy(guest_xsave->region,
3249 &vcpu->arch.guest_fpu.state.fxsave,
3250 sizeof(struct fxregs_state));
3251 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3252 XFEATURE_MASK_FPSSE;
3253 }
3254 }
3255
3256 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3257 struct kvm_xsave *guest_xsave)
3258 {
3259 u64 xstate_bv =
3260 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3261
3262 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3263 /*
3264 * Here we allow setting states that are not present in
3265 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3266 * with old userspace.
3267 */
3268 if (xstate_bv & ~kvm_supported_xcr0())
3269 return -EINVAL;
3270 load_xsave(vcpu, (u8 *)guest_xsave->region);
3271 } else {
3272 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3273 return -EINVAL;
3274 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3275 guest_xsave->region, sizeof(struct fxregs_state));
3276 }
3277 return 0;
3278 }
3279
3280 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3281 struct kvm_xcrs *guest_xcrs)
3282 {
3283 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3284 guest_xcrs->nr_xcrs = 0;
3285 return;
3286 }
3287
3288 guest_xcrs->nr_xcrs = 1;
3289 guest_xcrs->flags = 0;
3290 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3291 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3292 }
3293
3294 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3295 struct kvm_xcrs *guest_xcrs)
3296 {
3297 int i, r = 0;
3298
3299 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3300 return -EINVAL;
3301
3302 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3303 return -EINVAL;
3304
3305 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3306 /* Only support XCR0 currently */
3307 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3308 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3309 guest_xcrs->xcrs[i].value);
3310 break;
3311 }
3312 if (r)
3313 r = -EINVAL;
3314 return r;
3315 }
3316
3317 /*
3318 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3319 * stopped by the hypervisor. This function will be called from the host only.
3320 * EINVAL is returned when the host attempts to set the flag for a guest that
3321 * does not support pv clocks.
3322 */
3323 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3324 {
3325 if (!vcpu->arch.pv_time_enabled)
3326 return -EINVAL;
3327 vcpu->arch.pvclock_set_guest_stopped_request = true;
3328 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3329 return 0;
3330 }
3331
3332 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3333 struct kvm_enable_cap *cap)
3334 {
3335 if (cap->flags)
3336 return -EINVAL;
3337
3338 switch (cap->cap) {
3339 case KVM_CAP_HYPERV_SYNIC:
3340 return kvm_hv_activate_synic(vcpu);
3341 default:
3342 return -EINVAL;
3343 }
3344 }
3345
3346 long kvm_arch_vcpu_ioctl(struct file *filp,
3347 unsigned int ioctl, unsigned long arg)
3348 {
3349 struct kvm_vcpu *vcpu = filp->private_data;
3350 void __user *argp = (void __user *)arg;
3351 int r;
3352 union {
3353 struct kvm_lapic_state *lapic;
3354 struct kvm_xsave *xsave;
3355 struct kvm_xcrs *xcrs;
3356 void *buffer;
3357 } u;
3358
3359 u.buffer = NULL;
3360 switch (ioctl) {
3361 case KVM_GET_LAPIC: {
3362 r = -EINVAL;
3363 if (!lapic_in_kernel(vcpu))
3364 goto out;
3365 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3366
3367 r = -ENOMEM;
3368 if (!u.lapic)
3369 goto out;
3370 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3371 if (r)
3372 goto out;
3373 r = -EFAULT;
3374 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3375 goto out;
3376 r = 0;
3377 break;
3378 }
3379 case KVM_SET_LAPIC: {
3380 r = -EINVAL;
3381 if (!lapic_in_kernel(vcpu))
3382 goto out;
3383 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3384 if (IS_ERR(u.lapic))
3385 return PTR_ERR(u.lapic);
3386
3387 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3388 break;
3389 }
3390 case KVM_INTERRUPT: {
3391 struct kvm_interrupt irq;
3392
3393 r = -EFAULT;
3394 if (copy_from_user(&irq, argp, sizeof irq))
3395 goto out;
3396 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3397 break;
3398 }
3399 case KVM_NMI: {
3400 r = kvm_vcpu_ioctl_nmi(vcpu);
3401 break;
3402 }
3403 case KVM_SMI: {
3404 r = kvm_vcpu_ioctl_smi(vcpu);
3405 break;
3406 }
3407 case KVM_SET_CPUID: {
3408 struct kvm_cpuid __user *cpuid_arg = argp;
3409 struct kvm_cpuid cpuid;
3410
3411 r = -EFAULT;
3412 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413 goto out;
3414 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3415 break;
3416 }
3417 case KVM_SET_CPUID2: {
3418 struct kvm_cpuid2 __user *cpuid_arg = argp;
3419 struct kvm_cpuid2 cpuid;
3420
3421 r = -EFAULT;
3422 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3423 goto out;
3424 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3425 cpuid_arg->entries);
3426 break;
3427 }
3428 case KVM_GET_CPUID2: {
3429 struct kvm_cpuid2 __user *cpuid_arg = argp;
3430 struct kvm_cpuid2 cpuid;
3431
3432 r = -EFAULT;
3433 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3434 goto out;
3435 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3436 cpuid_arg->entries);
3437 if (r)
3438 goto out;
3439 r = -EFAULT;
3440 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3441 goto out;
3442 r = 0;
3443 break;
3444 }
3445 case KVM_GET_MSRS:
3446 r = msr_io(vcpu, argp, do_get_msr, 1);
3447 break;
3448 case KVM_SET_MSRS:
3449 r = msr_io(vcpu, argp, do_set_msr, 0);
3450 break;
3451 case KVM_TPR_ACCESS_REPORTING: {
3452 struct kvm_tpr_access_ctl tac;
3453
3454 r = -EFAULT;
3455 if (copy_from_user(&tac, argp, sizeof tac))
3456 goto out;
3457 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3458 if (r)
3459 goto out;
3460 r = -EFAULT;
3461 if (copy_to_user(argp, &tac, sizeof tac))
3462 goto out;
3463 r = 0;
3464 break;
3465 };
3466 case KVM_SET_VAPIC_ADDR: {
3467 struct kvm_vapic_addr va;
3468 int idx;
3469
3470 r = -EINVAL;
3471 if (!lapic_in_kernel(vcpu))
3472 goto out;
3473 r = -EFAULT;
3474 if (copy_from_user(&va, argp, sizeof va))
3475 goto out;
3476 idx = srcu_read_lock(&vcpu->kvm->srcu);
3477 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3478 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3479 break;
3480 }
3481 case KVM_X86_SETUP_MCE: {
3482 u64 mcg_cap;
3483
3484 r = -EFAULT;
3485 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3486 goto out;
3487 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3488 break;
3489 }
3490 case KVM_X86_SET_MCE: {
3491 struct kvm_x86_mce mce;
3492
3493 r = -EFAULT;
3494 if (copy_from_user(&mce, argp, sizeof mce))
3495 goto out;
3496 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3497 break;
3498 }
3499 case KVM_GET_VCPU_EVENTS: {
3500 struct kvm_vcpu_events events;
3501
3502 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3503
3504 r = -EFAULT;
3505 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3506 break;
3507 r = 0;
3508 break;
3509 }
3510 case KVM_SET_VCPU_EVENTS: {
3511 struct kvm_vcpu_events events;
3512
3513 r = -EFAULT;
3514 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3515 break;
3516
3517 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3518 break;
3519 }
3520 case KVM_GET_DEBUGREGS: {
3521 struct kvm_debugregs dbgregs;
3522
3523 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3524
3525 r = -EFAULT;
3526 if (copy_to_user(argp, &dbgregs,
3527 sizeof(struct kvm_debugregs)))
3528 break;
3529 r = 0;
3530 break;
3531 }
3532 case KVM_SET_DEBUGREGS: {
3533 struct kvm_debugregs dbgregs;
3534
3535 r = -EFAULT;
3536 if (copy_from_user(&dbgregs, argp,
3537 sizeof(struct kvm_debugregs)))
3538 break;
3539
3540 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3541 break;
3542 }
3543 case KVM_GET_XSAVE: {
3544 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3545 r = -ENOMEM;
3546 if (!u.xsave)
3547 break;
3548
3549 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3550
3551 r = -EFAULT;
3552 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3553 break;
3554 r = 0;
3555 break;
3556 }
3557 case KVM_SET_XSAVE: {
3558 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3559 if (IS_ERR(u.xsave))
3560 return PTR_ERR(u.xsave);
3561
3562 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3563 break;
3564 }
3565 case KVM_GET_XCRS: {
3566 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3567 r = -ENOMEM;
3568 if (!u.xcrs)
3569 break;
3570
3571 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3572
3573 r = -EFAULT;
3574 if (copy_to_user(argp, u.xcrs,
3575 sizeof(struct kvm_xcrs)))
3576 break;
3577 r = 0;
3578 break;
3579 }
3580 case KVM_SET_XCRS: {
3581 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3582 if (IS_ERR(u.xcrs))
3583 return PTR_ERR(u.xcrs);
3584
3585 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3586 break;
3587 }
3588 case KVM_SET_TSC_KHZ: {
3589 u32 user_tsc_khz;
3590
3591 r = -EINVAL;
3592 user_tsc_khz = (u32)arg;
3593
3594 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3595 goto out;
3596
3597 if (user_tsc_khz == 0)
3598 user_tsc_khz = tsc_khz;
3599
3600 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3601 r = 0;
3602
3603 goto out;
3604 }
3605 case KVM_GET_TSC_KHZ: {
3606 r = vcpu->arch.virtual_tsc_khz;
3607 goto out;
3608 }
3609 case KVM_KVMCLOCK_CTRL: {
3610 r = kvm_set_guest_paused(vcpu);
3611 goto out;
3612 }
3613 case KVM_ENABLE_CAP: {
3614 struct kvm_enable_cap cap;
3615
3616 r = -EFAULT;
3617 if (copy_from_user(&cap, argp, sizeof(cap)))
3618 goto out;
3619 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3620 break;
3621 }
3622 default:
3623 r = -EINVAL;
3624 }
3625 out:
3626 kfree(u.buffer);
3627 return r;
3628 }
3629
3630 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3631 {
3632 return VM_FAULT_SIGBUS;
3633 }
3634
3635 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3636 {
3637 int ret;
3638
3639 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3640 return -EINVAL;
3641 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3642 return ret;
3643 }
3644
3645 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3646 u64 ident_addr)
3647 {
3648 kvm->arch.ept_identity_map_addr = ident_addr;
3649 return 0;
3650 }
3651
3652 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3653 u32 kvm_nr_mmu_pages)
3654 {
3655 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3656 return -EINVAL;
3657
3658 mutex_lock(&kvm->slots_lock);
3659
3660 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3661 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3662
3663 mutex_unlock(&kvm->slots_lock);
3664 return 0;
3665 }
3666
3667 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3668 {
3669 return kvm->arch.n_max_mmu_pages;
3670 }
3671
3672 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3673 {
3674 int r;
3675
3676 r = 0;
3677 switch (chip->chip_id) {
3678 case KVM_IRQCHIP_PIC_MASTER:
3679 memcpy(&chip->chip.pic,
3680 &pic_irqchip(kvm)->pics[0],
3681 sizeof(struct kvm_pic_state));
3682 break;
3683 case KVM_IRQCHIP_PIC_SLAVE:
3684 memcpy(&chip->chip.pic,
3685 &pic_irqchip(kvm)->pics[1],
3686 sizeof(struct kvm_pic_state));
3687 break;
3688 case KVM_IRQCHIP_IOAPIC:
3689 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3690 break;
3691 default:
3692 r = -EINVAL;
3693 break;
3694 }
3695 return r;
3696 }
3697
3698 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3699 {
3700 int r;
3701
3702 r = 0;
3703 switch (chip->chip_id) {
3704 case KVM_IRQCHIP_PIC_MASTER:
3705 spin_lock(&pic_irqchip(kvm)->lock);
3706 memcpy(&pic_irqchip(kvm)->pics[0],
3707 &chip->chip.pic,
3708 sizeof(struct kvm_pic_state));
3709 spin_unlock(&pic_irqchip(kvm)->lock);
3710 break;
3711 case KVM_IRQCHIP_PIC_SLAVE:
3712 spin_lock(&pic_irqchip(kvm)->lock);
3713 memcpy(&pic_irqchip(kvm)->pics[1],
3714 &chip->chip.pic,
3715 sizeof(struct kvm_pic_state));
3716 spin_unlock(&pic_irqchip(kvm)->lock);
3717 break;
3718 case KVM_IRQCHIP_IOAPIC:
3719 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3720 break;
3721 default:
3722 r = -EINVAL;
3723 break;
3724 }
3725 kvm_pic_update_irq(pic_irqchip(kvm));
3726 return r;
3727 }
3728
3729 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3730 {
3731 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3732
3733 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3734
3735 mutex_lock(&kps->lock);
3736 memcpy(ps, &kps->channels, sizeof(*ps));
3737 mutex_unlock(&kps->lock);
3738 return 0;
3739 }
3740
3741 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3742 {
3743 int i;
3744 struct kvm_pit *pit = kvm->arch.vpit;
3745
3746 mutex_lock(&pit->pit_state.lock);
3747 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3748 for (i = 0; i < 3; i++)
3749 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3750 mutex_unlock(&pit->pit_state.lock);
3751 return 0;
3752 }
3753
3754 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3755 {
3756 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3757 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3758 sizeof(ps->channels));
3759 ps->flags = kvm->arch.vpit->pit_state.flags;
3760 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3761 memset(&ps->reserved, 0, sizeof(ps->reserved));
3762 return 0;
3763 }
3764
3765 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3766 {
3767 int start = 0;
3768 int i;
3769 u32 prev_legacy, cur_legacy;
3770 struct kvm_pit *pit = kvm->arch.vpit;
3771
3772 mutex_lock(&pit->pit_state.lock);
3773 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3774 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3775 if (!prev_legacy && cur_legacy)
3776 start = 1;
3777 memcpy(&pit->pit_state.channels, &ps->channels,
3778 sizeof(pit->pit_state.channels));
3779 pit->pit_state.flags = ps->flags;
3780 for (i = 0; i < 3; i++)
3781 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3782 start && i == 0);
3783 mutex_unlock(&pit->pit_state.lock);
3784 return 0;
3785 }
3786
3787 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3788 struct kvm_reinject_control *control)
3789 {
3790 struct kvm_pit *pit = kvm->arch.vpit;
3791
3792 if (!pit)
3793 return -ENXIO;
3794
3795 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3796 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3797 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3798 */
3799 mutex_lock(&pit->pit_state.lock);
3800 kvm_pit_set_reinject(pit, control->pit_reinject);
3801 mutex_unlock(&pit->pit_state.lock);
3802
3803 return 0;
3804 }
3805
3806 /**
3807 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3808 * @kvm: kvm instance
3809 * @log: slot id and address to which we copy the log
3810 *
3811 * Steps 1-4 below provide general overview of dirty page logging. See
3812 * kvm_get_dirty_log_protect() function description for additional details.
3813 *
3814 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3815 * always flush the TLB (step 4) even if previous step failed and the dirty
3816 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3817 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3818 * writes will be marked dirty for next log read.
3819 *
3820 * 1. Take a snapshot of the bit and clear it if needed.
3821 * 2. Write protect the corresponding page.
3822 * 3. Copy the snapshot to the userspace.
3823 * 4. Flush TLB's if needed.
3824 */
3825 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3826 {
3827 bool is_dirty = false;
3828 int r;
3829
3830 mutex_lock(&kvm->slots_lock);
3831
3832 /*
3833 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3834 */
3835 if (kvm_x86_ops->flush_log_dirty)
3836 kvm_x86_ops->flush_log_dirty(kvm);
3837
3838 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3839
3840 /*
3841 * All the TLBs can be flushed out of mmu lock, see the comments in
3842 * kvm_mmu_slot_remove_write_access().
3843 */
3844 lockdep_assert_held(&kvm->slots_lock);
3845 if (is_dirty)
3846 kvm_flush_remote_tlbs(kvm);
3847
3848 mutex_unlock(&kvm->slots_lock);
3849 return r;
3850 }
3851
3852 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3853 bool line_status)
3854 {
3855 if (!irqchip_in_kernel(kvm))
3856 return -ENXIO;
3857
3858 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3859 irq_event->irq, irq_event->level,
3860 line_status);
3861 return 0;
3862 }
3863
3864 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3865 struct kvm_enable_cap *cap)
3866 {
3867 int r;
3868
3869 if (cap->flags)
3870 return -EINVAL;
3871
3872 switch (cap->cap) {
3873 case KVM_CAP_DISABLE_QUIRKS:
3874 kvm->arch.disabled_quirks = cap->args[0];
3875 r = 0;
3876 break;
3877 case KVM_CAP_SPLIT_IRQCHIP: {
3878 mutex_lock(&kvm->lock);
3879 r = -EINVAL;
3880 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3881 goto split_irqchip_unlock;
3882 r = -EEXIST;
3883 if (irqchip_in_kernel(kvm))
3884 goto split_irqchip_unlock;
3885 if (kvm->created_vcpus)
3886 goto split_irqchip_unlock;
3887 r = kvm_setup_empty_irq_routing(kvm);
3888 if (r)
3889 goto split_irqchip_unlock;
3890 /* Pairs with irqchip_in_kernel. */
3891 smp_wmb();
3892 kvm->arch.irqchip_split = true;
3893 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3894 r = 0;
3895 split_irqchip_unlock:
3896 mutex_unlock(&kvm->lock);
3897 break;
3898 }
3899 case KVM_CAP_X2APIC_API:
3900 r = -EINVAL;
3901 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3902 break;
3903
3904 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3905 kvm->arch.x2apic_format = true;
3906 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3907 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3908
3909 r = 0;
3910 break;
3911 default:
3912 r = -EINVAL;
3913 break;
3914 }
3915 return r;
3916 }
3917
3918 long kvm_arch_vm_ioctl(struct file *filp,
3919 unsigned int ioctl, unsigned long arg)
3920 {
3921 struct kvm *kvm = filp->private_data;
3922 void __user *argp = (void __user *)arg;
3923 int r = -ENOTTY;
3924 /*
3925 * This union makes it completely explicit to gcc-3.x
3926 * that these two variables' stack usage should be
3927 * combined, not added together.
3928 */
3929 union {
3930 struct kvm_pit_state ps;
3931 struct kvm_pit_state2 ps2;
3932 struct kvm_pit_config pit_config;
3933 } u;
3934
3935 switch (ioctl) {
3936 case KVM_SET_TSS_ADDR:
3937 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3938 break;
3939 case KVM_SET_IDENTITY_MAP_ADDR: {
3940 u64 ident_addr;
3941
3942 r = -EFAULT;
3943 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3944 goto out;
3945 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3946 break;
3947 }
3948 case KVM_SET_NR_MMU_PAGES:
3949 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3950 break;
3951 case KVM_GET_NR_MMU_PAGES:
3952 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3953 break;
3954 case KVM_CREATE_IRQCHIP: {
3955 struct kvm_pic *vpic;
3956
3957 mutex_lock(&kvm->lock);
3958 r = -EEXIST;
3959 if (kvm->arch.vpic)
3960 goto create_irqchip_unlock;
3961 r = -EINVAL;
3962 if (kvm->created_vcpus)
3963 goto create_irqchip_unlock;
3964 r = -ENOMEM;
3965 vpic = kvm_create_pic(kvm);
3966 if (vpic) {
3967 r = kvm_ioapic_init(kvm);
3968 if (r) {
3969 mutex_lock(&kvm->slots_lock);
3970 kvm_destroy_pic(vpic);
3971 mutex_unlock(&kvm->slots_lock);
3972 goto create_irqchip_unlock;
3973 }
3974 } else
3975 goto create_irqchip_unlock;
3976 r = kvm_setup_default_irq_routing(kvm);
3977 if (r) {
3978 mutex_lock(&kvm->slots_lock);
3979 mutex_lock(&kvm->irq_lock);
3980 kvm_ioapic_destroy(kvm);
3981 kvm_destroy_pic(vpic);
3982 mutex_unlock(&kvm->irq_lock);
3983 mutex_unlock(&kvm->slots_lock);
3984 goto create_irqchip_unlock;
3985 }
3986 /* Write kvm->irq_routing before kvm->arch.vpic. */
3987 smp_wmb();
3988 kvm->arch.vpic = vpic;
3989 create_irqchip_unlock:
3990 mutex_unlock(&kvm->lock);
3991 break;
3992 }
3993 case KVM_CREATE_PIT:
3994 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3995 goto create_pit;
3996 case KVM_CREATE_PIT2:
3997 r = -EFAULT;
3998 if (copy_from_user(&u.pit_config, argp,
3999 sizeof(struct kvm_pit_config)))
4000 goto out;
4001 create_pit:
4002 mutex_lock(&kvm->lock);
4003 r = -EEXIST;
4004 if (kvm->arch.vpit)
4005 goto create_pit_unlock;
4006 r = -ENOMEM;
4007 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4008 if (kvm->arch.vpit)
4009 r = 0;
4010 create_pit_unlock:
4011 mutex_unlock(&kvm->lock);
4012 break;
4013 case KVM_GET_IRQCHIP: {
4014 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4015 struct kvm_irqchip *chip;
4016
4017 chip = memdup_user(argp, sizeof(*chip));
4018 if (IS_ERR(chip)) {
4019 r = PTR_ERR(chip);
4020 goto out;
4021 }
4022
4023 r = -ENXIO;
4024 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4025 goto get_irqchip_out;
4026 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4027 if (r)
4028 goto get_irqchip_out;
4029 r = -EFAULT;
4030 if (copy_to_user(argp, chip, sizeof *chip))
4031 goto get_irqchip_out;
4032 r = 0;
4033 get_irqchip_out:
4034 kfree(chip);
4035 break;
4036 }
4037 case KVM_SET_IRQCHIP: {
4038 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4039 struct kvm_irqchip *chip;
4040
4041 chip = memdup_user(argp, sizeof(*chip));
4042 if (IS_ERR(chip)) {
4043 r = PTR_ERR(chip);
4044 goto out;
4045 }
4046
4047 r = -ENXIO;
4048 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4049 goto set_irqchip_out;
4050 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4051 if (r)
4052 goto set_irqchip_out;
4053 r = 0;
4054 set_irqchip_out:
4055 kfree(chip);
4056 break;
4057 }
4058 case KVM_GET_PIT: {
4059 r = -EFAULT;
4060 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4061 goto out;
4062 r = -ENXIO;
4063 if (!kvm->arch.vpit)
4064 goto out;
4065 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4066 if (r)
4067 goto out;
4068 r = -EFAULT;
4069 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4070 goto out;
4071 r = 0;
4072 break;
4073 }
4074 case KVM_SET_PIT: {
4075 r = -EFAULT;
4076 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4077 goto out;
4078 r = -ENXIO;
4079 if (!kvm->arch.vpit)
4080 goto out;
4081 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4082 break;
4083 }
4084 case KVM_GET_PIT2: {
4085 r = -ENXIO;
4086 if (!kvm->arch.vpit)
4087 goto out;
4088 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4089 if (r)
4090 goto out;
4091 r = -EFAULT;
4092 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4093 goto out;
4094 r = 0;
4095 break;
4096 }
4097 case KVM_SET_PIT2: {
4098 r = -EFAULT;
4099 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4100 goto out;
4101 r = -ENXIO;
4102 if (!kvm->arch.vpit)
4103 goto out;
4104 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4105 break;
4106 }
4107 case KVM_REINJECT_CONTROL: {
4108 struct kvm_reinject_control control;
4109 r = -EFAULT;
4110 if (copy_from_user(&control, argp, sizeof(control)))
4111 goto out;
4112 r = kvm_vm_ioctl_reinject(kvm, &control);
4113 break;
4114 }
4115 case KVM_SET_BOOT_CPU_ID:
4116 r = 0;
4117 mutex_lock(&kvm->lock);
4118 if (kvm->created_vcpus)
4119 r = -EBUSY;
4120 else
4121 kvm->arch.bsp_vcpu_id = arg;
4122 mutex_unlock(&kvm->lock);
4123 break;
4124 case KVM_XEN_HVM_CONFIG: {
4125 r = -EFAULT;
4126 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4127 sizeof(struct kvm_xen_hvm_config)))
4128 goto out;
4129 r = -EINVAL;
4130 if (kvm->arch.xen_hvm_config.flags)
4131 goto out;
4132 r = 0;
4133 break;
4134 }
4135 case KVM_SET_CLOCK: {
4136 struct kvm_clock_data user_ns;
4137 u64 now_ns;
4138
4139 r = -EFAULT;
4140 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4141 goto out;
4142
4143 r = -EINVAL;
4144 if (user_ns.flags)
4145 goto out;
4146
4147 r = 0;
4148 local_irq_disable();
4149 now_ns = __get_kvmclock_ns(kvm);
4150 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4151 local_irq_enable();
4152 kvm_gen_update_masterclock(kvm);
4153 break;
4154 }
4155 case KVM_GET_CLOCK: {
4156 struct kvm_clock_data user_ns;
4157 u64 now_ns;
4158
4159 local_irq_disable();
4160 now_ns = __get_kvmclock_ns(kvm);
4161 user_ns.clock = now_ns;
4162 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4163 local_irq_enable();
4164 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4165
4166 r = -EFAULT;
4167 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4168 goto out;
4169 r = 0;
4170 break;
4171 }
4172 case KVM_ENABLE_CAP: {
4173 struct kvm_enable_cap cap;
4174
4175 r = -EFAULT;
4176 if (copy_from_user(&cap, argp, sizeof(cap)))
4177 goto out;
4178 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4179 break;
4180 }
4181 default:
4182 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4183 }
4184 out:
4185 return r;
4186 }
4187
4188 static void kvm_init_msr_list(void)
4189 {
4190 u32 dummy[2];
4191 unsigned i, j;
4192
4193 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4194 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4195 continue;
4196
4197 /*
4198 * Even MSRs that are valid in the host may not be exposed
4199 * to the guests in some cases.
4200 */
4201 switch (msrs_to_save[i]) {
4202 case MSR_IA32_BNDCFGS:
4203 if (!kvm_x86_ops->mpx_supported())
4204 continue;
4205 break;
4206 case MSR_TSC_AUX:
4207 if (!kvm_x86_ops->rdtscp_supported())
4208 continue;
4209 break;
4210 default:
4211 break;
4212 }
4213
4214 if (j < i)
4215 msrs_to_save[j] = msrs_to_save[i];
4216 j++;
4217 }
4218 num_msrs_to_save = j;
4219
4220 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4221 switch (emulated_msrs[i]) {
4222 case MSR_IA32_SMBASE:
4223 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4224 continue;
4225 break;
4226 default:
4227 break;
4228 }
4229
4230 if (j < i)
4231 emulated_msrs[j] = emulated_msrs[i];
4232 j++;
4233 }
4234 num_emulated_msrs = j;
4235 }
4236
4237 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4238 const void *v)
4239 {
4240 int handled = 0;
4241 int n;
4242
4243 do {
4244 n = min(len, 8);
4245 if (!(lapic_in_kernel(vcpu) &&
4246 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4247 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4248 break;
4249 handled += n;
4250 addr += n;
4251 len -= n;
4252 v += n;
4253 } while (len);
4254
4255 return handled;
4256 }
4257
4258 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4259 {
4260 int handled = 0;
4261 int n;
4262
4263 do {
4264 n = min(len, 8);
4265 if (!(lapic_in_kernel(vcpu) &&
4266 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4267 addr, n, v))
4268 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4269 break;
4270 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4271 handled += n;
4272 addr += n;
4273 len -= n;
4274 v += n;
4275 } while (len);
4276
4277 return handled;
4278 }
4279
4280 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4281 struct kvm_segment *var, int seg)
4282 {
4283 kvm_x86_ops->set_segment(vcpu, var, seg);
4284 }
4285
4286 void kvm_get_segment(struct kvm_vcpu *vcpu,
4287 struct kvm_segment *var, int seg)
4288 {
4289 kvm_x86_ops->get_segment(vcpu, var, seg);
4290 }
4291
4292 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4293 struct x86_exception *exception)
4294 {
4295 gpa_t t_gpa;
4296
4297 BUG_ON(!mmu_is_nested(vcpu));
4298
4299 /* NPT walks are always user-walks */
4300 access |= PFERR_USER_MASK;
4301 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4302
4303 return t_gpa;
4304 }
4305
4306 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4307 struct x86_exception *exception)
4308 {
4309 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4310 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4311 }
4312
4313 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4314 struct x86_exception *exception)
4315 {
4316 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4317 access |= PFERR_FETCH_MASK;
4318 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4319 }
4320
4321 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4322 struct x86_exception *exception)
4323 {
4324 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4325 access |= PFERR_WRITE_MASK;
4326 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4327 }
4328
4329 /* uses this to access any guest's mapped memory without checking CPL */
4330 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4331 struct x86_exception *exception)
4332 {
4333 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4334 }
4335
4336 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4337 struct kvm_vcpu *vcpu, u32 access,
4338 struct x86_exception *exception)
4339 {
4340 void *data = val;
4341 int r = X86EMUL_CONTINUE;
4342
4343 while (bytes) {
4344 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4345 exception);
4346 unsigned offset = addr & (PAGE_SIZE-1);
4347 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4348 int ret;
4349
4350 if (gpa == UNMAPPED_GVA)
4351 return X86EMUL_PROPAGATE_FAULT;
4352 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4353 offset, toread);
4354 if (ret < 0) {
4355 r = X86EMUL_IO_NEEDED;
4356 goto out;
4357 }
4358
4359 bytes -= toread;
4360 data += toread;
4361 addr += toread;
4362 }
4363 out:
4364 return r;
4365 }
4366
4367 /* used for instruction fetching */
4368 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4369 gva_t addr, void *val, unsigned int bytes,
4370 struct x86_exception *exception)
4371 {
4372 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4373 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4374 unsigned offset;
4375 int ret;
4376
4377 /* Inline kvm_read_guest_virt_helper for speed. */
4378 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4379 exception);
4380 if (unlikely(gpa == UNMAPPED_GVA))
4381 return X86EMUL_PROPAGATE_FAULT;
4382
4383 offset = addr & (PAGE_SIZE-1);
4384 if (WARN_ON(offset + bytes > PAGE_SIZE))
4385 bytes = (unsigned)PAGE_SIZE - offset;
4386 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4387 offset, bytes);
4388 if (unlikely(ret < 0))
4389 return X86EMUL_IO_NEEDED;
4390
4391 return X86EMUL_CONTINUE;
4392 }
4393
4394 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4395 gva_t addr, void *val, unsigned int bytes,
4396 struct x86_exception *exception)
4397 {
4398 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4399 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4400
4401 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4402 exception);
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4405
4406 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4407 gva_t addr, void *val, unsigned int bytes,
4408 struct x86_exception *exception)
4409 {
4410 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4411 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4412 }
4413
4414 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4415 unsigned long addr, void *val, unsigned int bytes)
4416 {
4417 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4419
4420 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4421 }
4422
4423 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4424 gva_t addr, void *val,
4425 unsigned int bytes,
4426 struct x86_exception *exception)
4427 {
4428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4429 void *data = val;
4430 int r = X86EMUL_CONTINUE;
4431
4432 while (bytes) {
4433 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4434 PFERR_WRITE_MASK,
4435 exception);
4436 unsigned offset = addr & (PAGE_SIZE-1);
4437 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4438 int ret;
4439
4440 if (gpa == UNMAPPED_GVA)
4441 return X86EMUL_PROPAGATE_FAULT;
4442 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4443 if (ret < 0) {
4444 r = X86EMUL_IO_NEEDED;
4445 goto out;
4446 }
4447
4448 bytes -= towrite;
4449 data += towrite;
4450 addr += towrite;
4451 }
4452 out:
4453 return r;
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4456
4457 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4458 gpa_t *gpa, struct x86_exception *exception,
4459 bool write)
4460 {
4461 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4462 | (write ? PFERR_WRITE_MASK : 0);
4463
4464 /*
4465 * currently PKRU is only applied to ept enabled guest so
4466 * there is no pkey in EPT page table for L1 guest or EPT
4467 * shadow page table for L2 guest.
4468 */
4469 if (vcpu_match_mmio_gva(vcpu, gva)
4470 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4471 vcpu->arch.access, 0, access)) {
4472 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4473 (gva & (PAGE_SIZE - 1));
4474 trace_vcpu_match_mmio(gva, *gpa, write, false);
4475 return 1;
4476 }
4477
4478 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4479
4480 if (*gpa == UNMAPPED_GVA)
4481 return -1;
4482
4483 /* For APIC access vmexit */
4484 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4485 return 1;
4486
4487 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4488 trace_vcpu_match_mmio(gva, *gpa, write, true);
4489 return 1;
4490 }
4491
4492 return 0;
4493 }
4494
4495 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4496 const void *val, int bytes)
4497 {
4498 int ret;
4499
4500 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4501 if (ret < 0)
4502 return 0;
4503 kvm_page_track_write(vcpu, gpa, val, bytes);
4504 return 1;
4505 }
4506
4507 struct read_write_emulator_ops {
4508 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4509 int bytes);
4510 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4511 void *val, int bytes);
4512 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4513 int bytes, void *val);
4514 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4515 void *val, int bytes);
4516 bool write;
4517 };
4518
4519 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4520 {
4521 if (vcpu->mmio_read_completed) {
4522 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4523 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4524 vcpu->mmio_read_completed = 0;
4525 return 1;
4526 }
4527
4528 return 0;
4529 }
4530
4531 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4532 void *val, int bytes)
4533 {
4534 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4535 }
4536
4537 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4538 void *val, int bytes)
4539 {
4540 return emulator_write_phys(vcpu, gpa, val, bytes);
4541 }
4542
4543 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4544 {
4545 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4546 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4547 }
4548
4549 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4550 void *val, int bytes)
4551 {
4552 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4553 return X86EMUL_IO_NEEDED;
4554 }
4555
4556 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4557 void *val, int bytes)
4558 {
4559 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4560
4561 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4562 return X86EMUL_CONTINUE;
4563 }
4564
4565 static const struct read_write_emulator_ops read_emultor = {
4566 .read_write_prepare = read_prepare,
4567 .read_write_emulate = read_emulate,
4568 .read_write_mmio = vcpu_mmio_read,
4569 .read_write_exit_mmio = read_exit_mmio,
4570 };
4571
4572 static const struct read_write_emulator_ops write_emultor = {
4573 .read_write_emulate = write_emulate,
4574 .read_write_mmio = write_mmio,
4575 .read_write_exit_mmio = write_exit_mmio,
4576 .write = true,
4577 };
4578
4579 static int emulator_read_write_onepage(unsigned long addr, void *val,
4580 unsigned int bytes,
4581 struct x86_exception *exception,
4582 struct kvm_vcpu *vcpu,
4583 const struct read_write_emulator_ops *ops)
4584 {
4585 gpa_t gpa;
4586 int handled, ret;
4587 bool write = ops->write;
4588 struct kvm_mmio_fragment *frag;
4589
4590 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4591
4592 if (ret < 0)
4593 return X86EMUL_PROPAGATE_FAULT;
4594
4595 /* For APIC access vmexit */
4596 if (ret)
4597 goto mmio;
4598
4599 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4600 return X86EMUL_CONTINUE;
4601
4602 mmio:
4603 /*
4604 * Is this MMIO handled locally?
4605 */
4606 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4607 if (handled == bytes)
4608 return X86EMUL_CONTINUE;
4609
4610 gpa += handled;
4611 bytes -= handled;
4612 val += handled;
4613
4614 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4615 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4616 frag->gpa = gpa;
4617 frag->data = val;
4618 frag->len = bytes;
4619 return X86EMUL_CONTINUE;
4620 }
4621
4622 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4623 unsigned long addr,
4624 void *val, unsigned int bytes,
4625 struct x86_exception *exception,
4626 const struct read_write_emulator_ops *ops)
4627 {
4628 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4629 gpa_t gpa;
4630 int rc;
4631
4632 if (ops->read_write_prepare &&
4633 ops->read_write_prepare(vcpu, val, bytes))
4634 return X86EMUL_CONTINUE;
4635
4636 vcpu->mmio_nr_fragments = 0;
4637
4638 /* Crossing a page boundary? */
4639 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4640 int now;
4641
4642 now = -addr & ~PAGE_MASK;
4643 rc = emulator_read_write_onepage(addr, val, now, exception,
4644 vcpu, ops);
4645
4646 if (rc != X86EMUL_CONTINUE)
4647 return rc;
4648 addr += now;
4649 if (ctxt->mode != X86EMUL_MODE_PROT64)
4650 addr = (u32)addr;
4651 val += now;
4652 bytes -= now;
4653 }
4654
4655 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4656 vcpu, ops);
4657 if (rc != X86EMUL_CONTINUE)
4658 return rc;
4659
4660 if (!vcpu->mmio_nr_fragments)
4661 return rc;
4662
4663 gpa = vcpu->mmio_fragments[0].gpa;
4664
4665 vcpu->mmio_needed = 1;
4666 vcpu->mmio_cur_fragment = 0;
4667
4668 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4669 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4670 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4671 vcpu->run->mmio.phys_addr = gpa;
4672
4673 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4674 }
4675
4676 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4677 unsigned long addr,
4678 void *val,
4679 unsigned int bytes,
4680 struct x86_exception *exception)
4681 {
4682 return emulator_read_write(ctxt, addr, val, bytes,
4683 exception, &read_emultor);
4684 }
4685
4686 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4687 unsigned long addr,
4688 const void *val,
4689 unsigned int bytes,
4690 struct x86_exception *exception)
4691 {
4692 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4693 exception, &write_emultor);
4694 }
4695
4696 #define CMPXCHG_TYPE(t, ptr, old, new) \
4697 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4698
4699 #ifdef CONFIG_X86_64
4700 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4701 #else
4702 # define CMPXCHG64(ptr, old, new) \
4703 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4704 #endif
4705
4706 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4707 unsigned long addr,
4708 const void *old,
4709 const void *new,
4710 unsigned int bytes,
4711 struct x86_exception *exception)
4712 {
4713 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4714 gpa_t gpa;
4715 struct page *page;
4716 char *kaddr;
4717 bool exchanged;
4718
4719 /* guests cmpxchg8b have to be emulated atomically */
4720 if (bytes > 8 || (bytes & (bytes - 1)))
4721 goto emul_write;
4722
4723 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4724
4725 if (gpa == UNMAPPED_GVA ||
4726 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4727 goto emul_write;
4728
4729 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4730 goto emul_write;
4731
4732 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4733 if (is_error_page(page))
4734 goto emul_write;
4735
4736 kaddr = kmap_atomic(page);
4737 kaddr += offset_in_page(gpa);
4738 switch (bytes) {
4739 case 1:
4740 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4741 break;
4742 case 2:
4743 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4744 break;
4745 case 4:
4746 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4747 break;
4748 case 8:
4749 exchanged = CMPXCHG64(kaddr, old, new);
4750 break;
4751 default:
4752 BUG();
4753 }
4754 kunmap_atomic(kaddr);
4755 kvm_release_page_dirty(page);
4756
4757 if (!exchanged)
4758 return X86EMUL_CMPXCHG_FAILED;
4759
4760 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4761 kvm_page_track_write(vcpu, gpa, new, bytes);
4762
4763 return X86EMUL_CONTINUE;
4764
4765 emul_write:
4766 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4767
4768 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4769 }
4770
4771 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4772 {
4773 /* TODO: String I/O for in kernel device */
4774 int r;
4775
4776 if (vcpu->arch.pio.in)
4777 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4778 vcpu->arch.pio.size, pd);
4779 else
4780 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4781 vcpu->arch.pio.port, vcpu->arch.pio.size,
4782 pd);
4783 return r;
4784 }
4785
4786 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4787 unsigned short port, void *val,
4788 unsigned int count, bool in)
4789 {
4790 vcpu->arch.pio.port = port;
4791 vcpu->arch.pio.in = in;
4792 vcpu->arch.pio.count = count;
4793 vcpu->arch.pio.size = size;
4794
4795 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4796 vcpu->arch.pio.count = 0;
4797 return 1;
4798 }
4799
4800 vcpu->run->exit_reason = KVM_EXIT_IO;
4801 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4802 vcpu->run->io.size = size;
4803 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4804 vcpu->run->io.count = count;
4805 vcpu->run->io.port = port;
4806
4807 return 0;
4808 }
4809
4810 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4811 int size, unsigned short port, void *val,
4812 unsigned int count)
4813 {
4814 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4815 int ret;
4816
4817 if (vcpu->arch.pio.count)
4818 goto data_avail;
4819
4820 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4821 if (ret) {
4822 data_avail:
4823 memcpy(val, vcpu->arch.pio_data, size * count);
4824 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4825 vcpu->arch.pio.count = 0;
4826 return 1;
4827 }
4828
4829 return 0;
4830 }
4831
4832 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4833 int size, unsigned short port,
4834 const void *val, unsigned int count)
4835 {
4836 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4837
4838 memcpy(vcpu->arch.pio_data, val, size * count);
4839 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4840 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4841 }
4842
4843 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4844 {
4845 return kvm_x86_ops->get_segment_base(vcpu, seg);
4846 }
4847
4848 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4849 {
4850 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4851 }
4852
4853 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4854 {
4855 if (!need_emulate_wbinvd(vcpu))
4856 return X86EMUL_CONTINUE;
4857
4858 if (kvm_x86_ops->has_wbinvd_exit()) {
4859 int cpu = get_cpu();
4860
4861 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4862 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4863 wbinvd_ipi, NULL, 1);
4864 put_cpu();
4865 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4866 } else
4867 wbinvd();
4868 return X86EMUL_CONTINUE;
4869 }
4870
4871 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4872 {
4873 kvm_emulate_wbinvd_noskip(vcpu);
4874 return kvm_skip_emulated_instruction(vcpu);
4875 }
4876 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4877
4878
4879
4880 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4881 {
4882 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4883 }
4884
4885 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4886 unsigned long *dest)
4887 {
4888 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4889 }
4890
4891 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4892 unsigned long value)
4893 {
4894
4895 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4896 }
4897
4898 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4899 {
4900 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4901 }
4902
4903 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4904 {
4905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4906 unsigned long value;
4907
4908 switch (cr) {
4909 case 0:
4910 value = kvm_read_cr0(vcpu);
4911 break;
4912 case 2:
4913 value = vcpu->arch.cr2;
4914 break;
4915 case 3:
4916 value = kvm_read_cr3(vcpu);
4917 break;
4918 case 4:
4919 value = kvm_read_cr4(vcpu);
4920 break;
4921 case 8:
4922 value = kvm_get_cr8(vcpu);
4923 break;
4924 default:
4925 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4926 return 0;
4927 }
4928
4929 return value;
4930 }
4931
4932 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4933 {
4934 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4935 int res = 0;
4936
4937 switch (cr) {
4938 case 0:
4939 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4940 break;
4941 case 2:
4942 vcpu->arch.cr2 = val;
4943 break;
4944 case 3:
4945 res = kvm_set_cr3(vcpu, val);
4946 break;
4947 case 4:
4948 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4949 break;
4950 case 8:
4951 res = kvm_set_cr8(vcpu, val);
4952 break;
4953 default:
4954 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4955 res = -1;
4956 }
4957
4958 return res;
4959 }
4960
4961 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4962 {
4963 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4964 }
4965
4966 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4967 {
4968 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4969 }
4970
4971 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4972 {
4973 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4974 }
4975
4976 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4977 {
4978 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4979 }
4980
4981 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4982 {
4983 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4984 }
4985
4986 static unsigned long emulator_get_cached_segment_base(
4987 struct x86_emulate_ctxt *ctxt, int seg)
4988 {
4989 return get_segment_base(emul_to_vcpu(ctxt), seg);
4990 }
4991
4992 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4993 struct desc_struct *desc, u32 *base3,
4994 int seg)
4995 {
4996 struct kvm_segment var;
4997
4998 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4999 *selector = var.selector;
5000
5001 if (var.unusable) {
5002 memset(desc, 0, sizeof(*desc));
5003 return false;
5004 }
5005
5006 if (var.g)
5007 var.limit >>= 12;
5008 set_desc_limit(desc, var.limit);
5009 set_desc_base(desc, (unsigned long)var.base);
5010 #ifdef CONFIG_X86_64
5011 if (base3)
5012 *base3 = var.base >> 32;
5013 #endif
5014 desc->type = var.type;
5015 desc->s = var.s;
5016 desc->dpl = var.dpl;
5017 desc->p = var.present;
5018 desc->avl = var.avl;
5019 desc->l = var.l;
5020 desc->d = var.db;
5021 desc->g = var.g;
5022
5023 return true;
5024 }
5025
5026 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5027 struct desc_struct *desc, u32 base3,
5028 int seg)
5029 {
5030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5031 struct kvm_segment var;
5032
5033 var.selector = selector;
5034 var.base = get_desc_base(desc);
5035 #ifdef CONFIG_X86_64
5036 var.base |= ((u64)base3) << 32;
5037 #endif
5038 var.limit = get_desc_limit(desc);
5039 if (desc->g)
5040 var.limit = (var.limit << 12) | 0xfff;
5041 var.type = desc->type;
5042 var.dpl = desc->dpl;
5043 var.db = desc->d;
5044 var.s = desc->s;
5045 var.l = desc->l;
5046 var.g = desc->g;
5047 var.avl = desc->avl;
5048 var.present = desc->p;
5049 var.unusable = !var.present;
5050 var.padding = 0;
5051
5052 kvm_set_segment(vcpu, &var, seg);
5053 return;
5054 }
5055
5056 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5057 u32 msr_index, u64 *pdata)
5058 {
5059 struct msr_data msr;
5060 int r;
5061
5062 msr.index = msr_index;
5063 msr.host_initiated = false;
5064 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5065 if (r)
5066 return r;
5067
5068 *pdata = msr.data;
5069 return 0;
5070 }
5071
5072 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5073 u32 msr_index, u64 data)
5074 {
5075 struct msr_data msr;
5076
5077 msr.data = data;
5078 msr.index = msr_index;
5079 msr.host_initiated = false;
5080 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5081 }
5082
5083 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5084 {
5085 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5086
5087 return vcpu->arch.smbase;
5088 }
5089
5090 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5091 {
5092 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5093
5094 vcpu->arch.smbase = smbase;
5095 }
5096
5097 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5098 u32 pmc)
5099 {
5100 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5101 }
5102
5103 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5104 u32 pmc, u64 *pdata)
5105 {
5106 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5107 }
5108
5109 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5110 {
5111 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5112 }
5113
5114 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5115 {
5116 preempt_disable();
5117 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5118 }
5119
5120 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5121 {
5122 preempt_enable();
5123 }
5124
5125 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5126 struct x86_instruction_info *info,
5127 enum x86_intercept_stage stage)
5128 {
5129 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5130 }
5131
5132 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5133 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5134 {
5135 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5136 }
5137
5138 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5139 {
5140 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5141 }
5142
5143 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5144 {
5145 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5146 }
5147
5148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5149 {
5150 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5151 }
5152
5153 static const struct x86_emulate_ops emulate_ops = {
5154 .read_gpr = emulator_read_gpr,
5155 .write_gpr = emulator_write_gpr,
5156 .read_std = kvm_read_guest_virt_system,
5157 .write_std = kvm_write_guest_virt_system,
5158 .read_phys = kvm_read_guest_phys_system,
5159 .fetch = kvm_fetch_guest_virt,
5160 .read_emulated = emulator_read_emulated,
5161 .write_emulated = emulator_write_emulated,
5162 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5163 .invlpg = emulator_invlpg,
5164 .pio_in_emulated = emulator_pio_in_emulated,
5165 .pio_out_emulated = emulator_pio_out_emulated,
5166 .get_segment = emulator_get_segment,
5167 .set_segment = emulator_set_segment,
5168 .get_cached_segment_base = emulator_get_cached_segment_base,
5169 .get_gdt = emulator_get_gdt,
5170 .get_idt = emulator_get_idt,
5171 .set_gdt = emulator_set_gdt,
5172 .set_idt = emulator_set_idt,
5173 .get_cr = emulator_get_cr,
5174 .set_cr = emulator_set_cr,
5175 .cpl = emulator_get_cpl,
5176 .get_dr = emulator_get_dr,
5177 .set_dr = emulator_set_dr,
5178 .get_smbase = emulator_get_smbase,
5179 .set_smbase = emulator_set_smbase,
5180 .set_msr = emulator_set_msr,
5181 .get_msr = emulator_get_msr,
5182 .check_pmc = emulator_check_pmc,
5183 .read_pmc = emulator_read_pmc,
5184 .halt = emulator_halt,
5185 .wbinvd = emulator_wbinvd,
5186 .fix_hypercall = emulator_fix_hypercall,
5187 .get_fpu = emulator_get_fpu,
5188 .put_fpu = emulator_put_fpu,
5189 .intercept = emulator_intercept,
5190 .get_cpuid = emulator_get_cpuid,
5191 .set_nmi_mask = emulator_set_nmi_mask,
5192 };
5193
5194 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5195 {
5196 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5197 /*
5198 * an sti; sti; sequence only disable interrupts for the first
5199 * instruction. So, if the last instruction, be it emulated or
5200 * not, left the system with the INT_STI flag enabled, it
5201 * means that the last instruction is an sti. We should not
5202 * leave the flag on in this case. The same goes for mov ss
5203 */
5204 if (int_shadow & mask)
5205 mask = 0;
5206 if (unlikely(int_shadow || mask)) {
5207 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5208 if (!mask)
5209 kvm_make_request(KVM_REQ_EVENT, vcpu);
5210 }
5211 }
5212
5213 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5214 {
5215 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5216 if (ctxt->exception.vector == PF_VECTOR)
5217 return kvm_propagate_fault(vcpu, &ctxt->exception);
5218
5219 if (ctxt->exception.error_code_valid)
5220 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5221 ctxt->exception.error_code);
5222 else
5223 kvm_queue_exception(vcpu, ctxt->exception.vector);
5224 return false;
5225 }
5226
5227 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5228 {
5229 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5230 int cs_db, cs_l;
5231
5232 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5233
5234 ctxt->eflags = kvm_get_rflags(vcpu);
5235 ctxt->eip = kvm_rip_read(vcpu);
5236 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5237 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5238 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5239 cs_db ? X86EMUL_MODE_PROT32 :
5240 X86EMUL_MODE_PROT16;
5241 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5242 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5243 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5244 ctxt->emul_flags = vcpu->arch.hflags;
5245
5246 init_decode_cache(ctxt);
5247 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5248 }
5249
5250 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5251 {
5252 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5253 int ret;
5254
5255 init_emulate_ctxt(vcpu);
5256
5257 ctxt->op_bytes = 2;
5258 ctxt->ad_bytes = 2;
5259 ctxt->_eip = ctxt->eip + inc_eip;
5260 ret = emulate_int_real(ctxt, irq);
5261
5262 if (ret != X86EMUL_CONTINUE)
5263 return EMULATE_FAIL;
5264
5265 ctxt->eip = ctxt->_eip;
5266 kvm_rip_write(vcpu, ctxt->eip);
5267 kvm_set_rflags(vcpu, ctxt->eflags);
5268
5269 if (irq == NMI_VECTOR)
5270 vcpu->arch.nmi_pending = 0;
5271 else
5272 vcpu->arch.interrupt.pending = false;
5273
5274 return EMULATE_DONE;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5277
5278 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5279 {
5280 int r = EMULATE_DONE;
5281
5282 ++vcpu->stat.insn_emulation_fail;
5283 trace_kvm_emulate_insn_failed(vcpu);
5284 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5285 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5286 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5287 vcpu->run->internal.ndata = 0;
5288 r = EMULATE_FAIL;
5289 }
5290 kvm_queue_exception(vcpu, UD_VECTOR);
5291
5292 return r;
5293 }
5294
5295 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5296 bool write_fault_to_shadow_pgtable,
5297 int emulation_type)
5298 {
5299 gpa_t gpa = cr2;
5300 kvm_pfn_t pfn;
5301
5302 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5303 return false;
5304
5305 if (!vcpu->arch.mmu.direct_map) {
5306 /*
5307 * Write permission should be allowed since only
5308 * write access need to be emulated.
5309 */
5310 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5311
5312 /*
5313 * If the mapping is invalid in guest, let cpu retry
5314 * it to generate fault.
5315 */
5316 if (gpa == UNMAPPED_GVA)
5317 return true;
5318 }
5319
5320 /*
5321 * Do not retry the unhandleable instruction if it faults on the
5322 * readonly host memory, otherwise it will goto a infinite loop:
5323 * retry instruction -> write #PF -> emulation fail -> retry
5324 * instruction -> ...
5325 */
5326 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5327
5328 /*
5329 * If the instruction failed on the error pfn, it can not be fixed,
5330 * report the error to userspace.
5331 */
5332 if (is_error_noslot_pfn(pfn))
5333 return false;
5334
5335 kvm_release_pfn_clean(pfn);
5336
5337 /* The instructions are well-emulated on direct mmu. */
5338 if (vcpu->arch.mmu.direct_map) {
5339 unsigned int indirect_shadow_pages;
5340
5341 spin_lock(&vcpu->kvm->mmu_lock);
5342 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5343 spin_unlock(&vcpu->kvm->mmu_lock);
5344
5345 if (indirect_shadow_pages)
5346 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5347
5348 return true;
5349 }
5350
5351 /*
5352 * if emulation was due to access to shadowed page table
5353 * and it failed try to unshadow page and re-enter the
5354 * guest to let CPU execute the instruction.
5355 */
5356 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5357
5358 /*
5359 * If the access faults on its page table, it can not
5360 * be fixed by unprotecting shadow page and it should
5361 * be reported to userspace.
5362 */
5363 return !write_fault_to_shadow_pgtable;
5364 }
5365
5366 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5367 unsigned long cr2, int emulation_type)
5368 {
5369 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5370 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5371
5372 last_retry_eip = vcpu->arch.last_retry_eip;
5373 last_retry_addr = vcpu->arch.last_retry_addr;
5374
5375 /*
5376 * If the emulation is caused by #PF and it is non-page_table
5377 * writing instruction, it means the VM-EXIT is caused by shadow
5378 * page protected, we can zap the shadow page and retry this
5379 * instruction directly.
5380 *
5381 * Note: if the guest uses a non-page-table modifying instruction
5382 * on the PDE that points to the instruction, then we will unmap
5383 * the instruction and go to an infinite loop. So, we cache the
5384 * last retried eip and the last fault address, if we meet the eip
5385 * and the address again, we can break out of the potential infinite
5386 * loop.
5387 */
5388 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5389
5390 if (!(emulation_type & EMULTYPE_RETRY))
5391 return false;
5392
5393 if (x86_page_table_writing_insn(ctxt))
5394 return false;
5395
5396 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5397 return false;
5398
5399 vcpu->arch.last_retry_eip = ctxt->eip;
5400 vcpu->arch.last_retry_addr = cr2;
5401
5402 if (!vcpu->arch.mmu.direct_map)
5403 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5404
5405 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5406
5407 return true;
5408 }
5409
5410 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5411 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5412
5413 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5414 {
5415 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5416 /* This is a good place to trace that we are exiting SMM. */
5417 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5418
5419 /* Process a latched INIT or SMI, if any. */
5420 kvm_make_request(KVM_REQ_EVENT, vcpu);
5421 }
5422
5423 kvm_mmu_reset_context(vcpu);
5424 }
5425
5426 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5427 {
5428 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5429
5430 vcpu->arch.hflags = emul_flags;
5431
5432 if (changed & HF_SMM_MASK)
5433 kvm_smm_changed(vcpu);
5434 }
5435
5436 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5437 unsigned long *db)
5438 {
5439 u32 dr6 = 0;
5440 int i;
5441 u32 enable, rwlen;
5442
5443 enable = dr7;
5444 rwlen = dr7 >> 16;
5445 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5446 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5447 dr6 |= (1 << i);
5448 return dr6;
5449 }
5450
5451 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5452 {
5453 struct kvm_run *kvm_run = vcpu->run;
5454
5455 /*
5456 * rflags is the old, "raw" value of the flags. The new value has
5457 * not been saved yet.
5458 *
5459 * This is correct even for TF set by the guest, because "the
5460 * processor will not generate this exception after the instruction
5461 * that sets the TF flag".
5462 */
5463 if (unlikely(rflags & X86_EFLAGS_TF)) {
5464 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5465 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5466 DR6_RTM;
5467 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5468 kvm_run->debug.arch.exception = DB_VECTOR;
5469 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5470 *r = EMULATE_USER_EXIT;
5471 } else {
5472 /*
5473 * "Certain debug exceptions may clear bit 0-3. The
5474 * remaining contents of the DR6 register are never
5475 * cleared by the processor".
5476 */
5477 vcpu->arch.dr6 &= ~15;
5478 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5479 kvm_queue_exception(vcpu, DB_VECTOR);
5480 }
5481 }
5482 }
5483
5484 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5485 {
5486 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5487 int r = EMULATE_DONE;
5488
5489 kvm_x86_ops->skip_emulated_instruction(vcpu);
5490 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5491 return r == EMULATE_DONE;
5492 }
5493 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5494
5495 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5496 {
5497 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5498 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5499 struct kvm_run *kvm_run = vcpu->run;
5500 unsigned long eip = kvm_get_linear_rip(vcpu);
5501 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5502 vcpu->arch.guest_debug_dr7,
5503 vcpu->arch.eff_db);
5504
5505 if (dr6 != 0) {
5506 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5507 kvm_run->debug.arch.pc = eip;
5508 kvm_run->debug.arch.exception = DB_VECTOR;
5509 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5510 *r = EMULATE_USER_EXIT;
5511 return true;
5512 }
5513 }
5514
5515 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5516 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5517 unsigned long eip = kvm_get_linear_rip(vcpu);
5518 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5519 vcpu->arch.dr7,
5520 vcpu->arch.db);
5521
5522 if (dr6 != 0) {
5523 vcpu->arch.dr6 &= ~15;
5524 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5525 kvm_queue_exception(vcpu, DB_VECTOR);
5526 *r = EMULATE_DONE;
5527 return true;
5528 }
5529 }
5530
5531 return false;
5532 }
5533
5534 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5535 unsigned long cr2,
5536 int emulation_type,
5537 void *insn,
5538 int insn_len)
5539 {
5540 int r;
5541 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5542 bool writeback = true;
5543 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5544
5545 /*
5546 * Clear write_fault_to_shadow_pgtable here to ensure it is
5547 * never reused.
5548 */
5549 vcpu->arch.write_fault_to_shadow_pgtable = false;
5550 kvm_clear_exception_queue(vcpu);
5551
5552 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5553 init_emulate_ctxt(vcpu);
5554
5555 /*
5556 * We will reenter on the same instruction since
5557 * we do not set complete_userspace_io. This does not
5558 * handle watchpoints yet, those would be handled in
5559 * the emulate_ops.
5560 */
5561 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5562 return r;
5563
5564 ctxt->interruptibility = 0;
5565 ctxt->have_exception = false;
5566 ctxt->exception.vector = -1;
5567 ctxt->perm_ok = false;
5568
5569 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5570
5571 r = x86_decode_insn(ctxt, insn, insn_len);
5572
5573 trace_kvm_emulate_insn_start(vcpu);
5574 ++vcpu->stat.insn_emulation;
5575 if (r != EMULATION_OK) {
5576 if (emulation_type & EMULTYPE_TRAP_UD)
5577 return EMULATE_FAIL;
5578 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5579 emulation_type))
5580 return EMULATE_DONE;
5581 if (emulation_type & EMULTYPE_SKIP)
5582 return EMULATE_FAIL;
5583 return handle_emulation_failure(vcpu);
5584 }
5585 }
5586
5587 if (emulation_type & EMULTYPE_SKIP) {
5588 kvm_rip_write(vcpu, ctxt->_eip);
5589 if (ctxt->eflags & X86_EFLAGS_RF)
5590 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5591 return EMULATE_DONE;
5592 }
5593
5594 if (retry_instruction(ctxt, cr2, emulation_type))
5595 return EMULATE_DONE;
5596
5597 /* this is needed for vmware backdoor interface to work since it
5598 changes registers values during IO operation */
5599 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5600 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5601 emulator_invalidate_register_cache(ctxt);
5602 }
5603
5604 restart:
5605 r = x86_emulate_insn(ctxt);
5606
5607 if (r == EMULATION_INTERCEPTED)
5608 return EMULATE_DONE;
5609
5610 if (r == EMULATION_FAILED) {
5611 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5612 emulation_type))
5613 return EMULATE_DONE;
5614
5615 return handle_emulation_failure(vcpu);
5616 }
5617
5618 if (ctxt->have_exception) {
5619 r = EMULATE_DONE;
5620 if (inject_emulated_exception(vcpu))
5621 return r;
5622 } else if (vcpu->arch.pio.count) {
5623 if (!vcpu->arch.pio.in) {
5624 /* FIXME: return into emulator if single-stepping. */
5625 vcpu->arch.pio.count = 0;
5626 } else {
5627 writeback = false;
5628 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5629 }
5630 r = EMULATE_USER_EXIT;
5631 } else if (vcpu->mmio_needed) {
5632 if (!vcpu->mmio_is_write)
5633 writeback = false;
5634 r = EMULATE_USER_EXIT;
5635 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5636 } else if (r == EMULATION_RESTART)
5637 goto restart;
5638 else
5639 r = EMULATE_DONE;
5640
5641 if (writeback) {
5642 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5643 toggle_interruptibility(vcpu, ctxt->interruptibility);
5644 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5645 if (vcpu->arch.hflags != ctxt->emul_flags)
5646 kvm_set_hflags(vcpu, ctxt->emul_flags);
5647 kvm_rip_write(vcpu, ctxt->eip);
5648 if (r == EMULATE_DONE)
5649 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5650 if (!ctxt->have_exception ||
5651 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5652 __kvm_set_rflags(vcpu, ctxt->eflags);
5653
5654 /*
5655 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5656 * do nothing, and it will be requested again as soon as
5657 * the shadow expires. But we still need to check here,
5658 * because POPF has no interrupt shadow.
5659 */
5660 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5661 kvm_make_request(KVM_REQ_EVENT, vcpu);
5662 } else
5663 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5664
5665 return r;
5666 }
5667 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5668
5669 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5670 {
5671 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5672 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5673 size, port, &val, 1);
5674 /* do not return to emulator after return from userspace */
5675 vcpu->arch.pio.count = 0;
5676 return ret;
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5679
5680 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5681 {
5682 unsigned long val;
5683
5684 /* We should only ever be called with arch.pio.count equal to 1 */
5685 BUG_ON(vcpu->arch.pio.count != 1);
5686
5687 /* For size less than 4 we merge, else we zero extend */
5688 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5689 : 0;
5690
5691 /*
5692 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5693 * the copy and tracing
5694 */
5695 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5696 vcpu->arch.pio.port, &val, 1);
5697 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5698
5699 return 1;
5700 }
5701
5702 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5703 {
5704 unsigned long val;
5705 int ret;
5706
5707 /* For size less than 4 we merge, else we zero extend */
5708 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5709
5710 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5711 &val, 1);
5712 if (ret) {
5713 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5714 return ret;
5715 }
5716
5717 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5718
5719 return 0;
5720 }
5721 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5722
5723 static int kvmclock_cpu_down_prep(unsigned int cpu)
5724 {
5725 __this_cpu_write(cpu_tsc_khz, 0);
5726 return 0;
5727 }
5728
5729 static void tsc_khz_changed(void *data)
5730 {
5731 struct cpufreq_freqs *freq = data;
5732 unsigned long khz = 0;
5733
5734 if (data)
5735 khz = freq->new;
5736 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5737 khz = cpufreq_quick_get(raw_smp_processor_id());
5738 if (!khz)
5739 khz = tsc_khz;
5740 __this_cpu_write(cpu_tsc_khz, khz);
5741 }
5742
5743 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5744 void *data)
5745 {
5746 struct cpufreq_freqs *freq = data;
5747 struct kvm *kvm;
5748 struct kvm_vcpu *vcpu;
5749 int i, send_ipi = 0;
5750
5751 /*
5752 * We allow guests to temporarily run on slowing clocks,
5753 * provided we notify them after, or to run on accelerating
5754 * clocks, provided we notify them before. Thus time never
5755 * goes backwards.
5756 *
5757 * However, we have a problem. We can't atomically update
5758 * the frequency of a given CPU from this function; it is
5759 * merely a notifier, which can be called from any CPU.
5760 * Changing the TSC frequency at arbitrary points in time
5761 * requires a recomputation of local variables related to
5762 * the TSC for each VCPU. We must flag these local variables
5763 * to be updated and be sure the update takes place with the
5764 * new frequency before any guests proceed.
5765 *
5766 * Unfortunately, the combination of hotplug CPU and frequency
5767 * change creates an intractable locking scenario; the order
5768 * of when these callouts happen is undefined with respect to
5769 * CPU hotplug, and they can race with each other. As such,
5770 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5771 * undefined; you can actually have a CPU frequency change take
5772 * place in between the computation of X and the setting of the
5773 * variable. To protect against this problem, all updates of
5774 * the per_cpu tsc_khz variable are done in an interrupt
5775 * protected IPI, and all callers wishing to update the value
5776 * must wait for a synchronous IPI to complete (which is trivial
5777 * if the caller is on the CPU already). This establishes the
5778 * necessary total order on variable updates.
5779 *
5780 * Note that because a guest time update may take place
5781 * anytime after the setting of the VCPU's request bit, the
5782 * correct TSC value must be set before the request. However,
5783 * to ensure the update actually makes it to any guest which
5784 * starts running in hardware virtualization between the set
5785 * and the acquisition of the spinlock, we must also ping the
5786 * CPU after setting the request bit.
5787 *
5788 */
5789
5790 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5791 return 0;
5792 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5793 return 0;
5794
5795 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5796
5797 spin_lock(&kvm_lock);
5798 list_for_each_entry(kvm, &vm_list, vm_list) {
5799 kvm_for_each_vcpu(i, vcpu, kvm) {
5800 if (vcpu->cpu != freq->cpu)
5801 continue;
5802 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5803 if (vcpu->cpu != smp_processor_id())
5804 send_ipi = 1;
5805 }
5806 }
5807 spin_unlock(&kvm_lock);
5808
5809 if (freq->old < freq->new && send_ipi) {
5810 /*
5811 * We upscale the frequency. Must make the guest
5812 * doesn't see old kvmclock values while running with
5813 * the new frequency, otherwise we risk the guest sees
5814 * time go backwards.
5815 *
5816 * In case we update the frequency for another cpu
5817 * (which might be in guest context) send an interrupt
5818 * to kick the cpu out of guest context. Next time
5819 * guest context is entered kvmclock will be updated,
5820 * so the guest will not see stale values.
5821 */
5822 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5823 }
5824 return 0;
5825 }
5826
5827 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5828 .notifier_call = kvmclock_cpufreq_notifier
5829 };
5830
5831 static int kvmclock_cpu_online(unsigned int cpu)
5832 {
5833 tsc_khz_changed(NULL);
5834 return 0;
5835 }
5836
5837 static void kvm_timer_init(void)
5838 {
5839 max_tsc_khz = tsc_khz;
5840
5841 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5842 #ifdef CONFIG_CPU_FREQ
5843 struct cpufreq_policy policy;
5844 int cpu;
5845
5846 memset(&policy, 0, sizeof(policy));
5847 cpu = get_cpu();
5848 cpufreq_get_policy(&policy, cpu);
5849 if (policy.cpuinfo.max_freq)
5850 max_tsc_khz = policy.cpuinfo.max_freq;
5851 put_cpu();
5852 #endif
5853 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5854 CPUFREQ_TRANSITION_NOTIFIER);
5855 }
5856 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5857
5858 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5859 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5860 }
5861
5862 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5863
5864 int kvm_is_in_guest(void)
5865 {
5866 return __this_cpu_read(current_vcpu) != NULL;
5867 }
5868
5869 static int kvm_is_user_mode(void)
5870 {
5871 int user_mode = 3;
5872
5873 if (__this_cpu_read(current_vcpu))
5874 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5875
5876 return user_mode != 0;
5877 }
5878
5879 static unsigned long kvm_get_guest_ip(void)
5880 {
5881 unsigned long ip = 0;
5882
5883 if (__this_cpu_read(current_vcpu))
5884 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5885
5886 return ip;
5887 }
5888
5889 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5890 .is_in_guest = kvm_is_in_guest,
5891 .is_user_mode = kvm_is_user_mode,
5892 .get_guest_ip = kvm_get_guest_ip,
5893 };
5894
5895 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5896 {
5897 __this_cpu_write(current_vcpu, vcpu);
5898 }
5899 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5900
5901 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5902 {
5903 __this_cpu_write(current_vcpu, NULL);
5904 }
5905 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5906
5907 static void kvm_set_mmio_spte_mask(void)
5908 {
5909 u64 mask;
5910 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5911
5912 /*
5913 * Set the reserved bits and the present bit of an paging-structure
5914 * entry to generate page fault with PFER.RSV = 1.
5915 */
5916 /* Mask the reserved physical address bits. */
5917 mask = rsvd_bits(maxphyaddr, 51);
5918
5919 /* Bit 62 is always reserved for 32bit host. */
5920 mask |= 0x3ull << 62;
5921
5922 /* Set the present bit. */
5923 mask |= 1ull;
5924
5925 #ifdef CONFIG_X86_64
5926 /*
5927 * If reserved bit is not supported, clear the present bit to disable
5928 * mmio page fault.
5929 */
5930 if (maxphyaddr == 52)
5931 mask &= ~1ull;
5932 #endif
5933
5934 kvm_mmu_set_mmio_spte_mask(mask);
5935 }
5936
5937 #ifdef CONFIG_X86_64
5938 static void pvclock_gtod_update_fn(struct work_struct *work)
5939 {
5940 struct kvm *kvm;
5941
5942 struct kvm_vcpu *vcpu;
5943 int i;
5944
5945 spin_lock(&kvm_lock);
5946 list_for_each_entry(kvm, &vm_list, vm_list)
5947 kvm_for_each_vcpu(i, vcpu, kvm)
5948 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5949 atomic_set(&kvm_guest_has_master_clock, 0);
5950 spin_unlock(&kvm_lock);
5951 }
5952
5953 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5954
5955 /*
5956 * Notification about pvclock gtod data update.
5957 */
5958 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5959 void *priv)
5960 {
5961 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5962 struct timekeeper *tk = priv;
5963
5964 update_pvclock_gtod(tk);
5965
5966 /* disable master clock if host does not trust, or does not
5967 * use, TSC clocksource
5968 */
5969 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5970 atomic_read(&kvm_guest_has_master_clock) != 0)
5971 queue_work(system_long_wq, &pvclock_gtod_work);
5972
5973 return 0;
5974 }
5975
5976 static struct notifier_block pvclock_gtod_notifier = {
5977 .notifier_call = pvclock_gtod_notify,
5978 };
5979 #endif
5980
5981 int kvm_arch_init(void *opaque)
5982 {
5983 int r;
5984 struct kvm_x86_ops *ops = opaque;
5985
5986 if (kvm_x86_ops) {
5987 printk(KERN_ERR "kvm: already loaded the other module\n");
5988 r = -EEXIST;
5989 goto out;
5990 }
5991
5992 if (!ops->cpu_has_kvm_support()) {
5993 printk(KERN_ERR "kvm: no hardware support\n");
5994 r = -EOPNOTSUPP;
5995 goto out;
5996 }
5997 if (ops->disabled_by_bios()) {
5998 printk(KERN_ERR "kvm: disabled by bios\n");
5999 r = -EOPNOTSUPP;
6000 goto out;
6001 }
6002
6003 r = -ENOMEM;
6004 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6005 if (!shared_msrs) {
6006 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6007 goto out;
6008 }
6009
6010 r = kvm_mmu_module_init();
6011 if (r)
6012 goto out_free_percpu;
6013
6014 kvm_set_mmio_spte_mask();
6015
6016 kvm_x86_ops = ops;
6017
6018 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6019 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6020 PT_PRESENT_MASK);
6021 kvm_timer_init();
6022
6023 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6024
6025 if (boot_cpu_has(X86_FEATURE_XSAVE))
6026 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6027
6028 kvm_lapic_init();
6029 #ifdef CONFIG_X86_64
6030 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6031 #endif
6032
6033 return 0;
6034
6035 out_free_percpu:
6036 free_percpu(shared_msrs);
6037 out:
6038 return r;
6039 }
6040
6041 void kvm_arch_exit(void)
6042 {
6043 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6044
6045 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6046 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6047 CPUFREQ_TRANSITION_NOTIFIER);
6048 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6049 #ifdef CONFIG_X86_64
6050 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6051 #endif
6052 kvm_x86_ops = NULL;
6053 kvm_mmu_module_exit();
6054 free_percpu(shared_msrs);
6055 }
6056
6057 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6058 {
6059 ++vcpu->stat.halt_exits;
6060 if (lapic_in_kernel(vcpu)) {
6061 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6062 return 1;
6063 } else {
6064 vcpu->run->exit_reason = KVM_EXIT_HLT;
6065 return 0;
6066 }
6067 }
6068 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6069
6070 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6071 {
6072 int ret = kvm_skip_emulated_instruction(vcpu);
6073 /*
6074 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6075 * KVM_EXIT_DEBUG here.
6076 */
6077 return kvm_vcpu_halt(vcpu) && ret;
6078 }
6079 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6080
6081 /*
6082 * kvm_pv_kick_cpu_op: Kick a vcpu.
6083 *
6084 * @apicid - apicid of vcpu to be kicked.
6085 */
6086 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6087 {
6088 struct kvm_lapic_irq lapic_irq;
6089
6090 lapic_irq.shorthand = 0;
6091 lapic_irq.dest_mode = 0;
6092 lapic_irq.dest_id = apicid;
6093 lapic_irq.msi_redir_hint = false;
6094
6095 lapic_irq.delivery_mode = APIC_DM_REMRD;
6096 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6097 }
6098
6099 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6100 {
6101 vcpu->arch.apicv_active = false;
6102 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6103 }
6104
6105 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6106 {
6107 unsigned long nr, a0, a1, a2, a3, ret;
6108 int op_64_bit, r;
6109
6110 r = kvm_skip_emulated_instruction(vcpu);
6111
6112 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6113 return kvm_hv_hypercall(vcpu);
6114
6115 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6116 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6117 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6118 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6119 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6120
6121 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6122
6123 op_64_bit = is_64_bit_mode(vcpu);
6124 if (!op_64_bit) {
6125 nr &= 0xFFFFFFFF;
6126 a0 &= 0xFFFFFFFF;
6127 a1 &= 0xFFFFFFFF;
6128 a2 &= 0xFFFFFFFF;
6129 a3 &= 0xFFFFFFFF;
6130 }
6131
6132 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6133 ret = -KVM_EPERM;
6134 goto out;
6135 }
6136
6137 switch (nr) {
6138 case KVM_HC_VAPIC_POLL_IRQ:
6139 ret = 0;
6140 break;
6141 case KVM_HC_KICK_CPU:
6142 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6143 ret = 0;
6144 break;
6145 default:
6146 ret = -KVM_ENOSYS;
6147 break;
6148 }
6149 out:
6150 if (!op_64_bit)
6151 ret = (u32)ret;
6152 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6153 ++vcpu->stat.hypercalls;
6154 return r;
6155 }
6156 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6157
6158 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6159 {
6160 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6161 char instruction[3];
6162 unsigned long rip = kvm_rip_read(vcpu);
6163
6164 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6165
6166 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6167 }
6168
6169 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6170 {
6171 return vcpu->run->request_interrupt_window &&
6172 likely(!pic_in_kernel(vcpu->kvm));
6173 }
6174
6175 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6176 {
6177 struct kvm_run *kvm_run = vcpu->run;
6178
6179 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6180 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6181 kvm_run->cr8 = kvm_get_cr8(vcpu);
6182 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6183 kvm_run->ready_for_interrupt_injection =
6184 pic_in_kernel(vcpu->kvm) ||
6185 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6186 }
6187
6188 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6189 {
6190 int max_irr, tpr;
6191
6192 if (!kvm_x86_ops->update_cr8_intercept)
6193 return;
6194
6195 if (!lapic_in_kernel(vcpu))
6196 return;
6197
6198 if (vcpu->arch.apicv_active)
6199 return;
6200
6201 if (!vcpu->arch.apic->vapic_addr)
6202 max_irr = kvm_lapic_find_highest_irr(vcpu);
6203 else
6204 max_irr = -1;
6205
6206 if (max_irr != -1)
6207 max_irr >>= 4;
6208
6209 tpr = kvm_lapic_get_cr8(vcpu);
6210
6211 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6212 }
6213
6214 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6215 {
6216 int r;
6217
6218 /* try to reinject previous events if any */
6219 if (vcpu->arch.exception.pending) {
6220 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6221 vcpu->arch.exception.has_error_code,
6222 vcpu->arch.exception.error_code);
6223
6224 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6225 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6226 X86_EFLAGS_RF);
6227
6228 if (vcpu->arch.exception.nr == DB_VECTOR &&
6229 (vcpu->arch.dr7 & DR7_GD)) {
6230 vcpu->arch.dr7 &= ~DR7_GD;
6231 kvm_update_dr7(vcpu);
6232 }
6233
6234 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6235 vcpu->arch.exception.has_error_code,
6236 vcpu->arch.exception.error_code,
6237 vcpu->arch.exception.reinject);
6238 return 0;
6239 }
6240
6241 if (vcpu->arch.nmi_injected) {
6242 kvm_x86_ops->set_nmi(vcpu);
6243 return 0;
6244 }
6245
6246 if (vcpu->arch.interrupt.pending) {
6247 kvm_x86_ops->set_irq(vcpu);
6248 return 0;
6249 }
6250
6251 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6252 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6253 if (r != 0)
6254 return r;
6255 }
6256
6257 /* try to inject new event if pending */
6258 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6259 vcpu->arch.smi_pending = false;
6260 enter_smm(vcpu);
6261 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6262 --vcpu->arch.nmi_pending;
6263 vcpu->arch.nmi_injected = true;
6264 kvm_x86_ops->set_nmi(vcpu);
6265 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6266 /*
6267 * Because interrupts can be injected asynchronously, we are
6268 * calling check_nested_events again here to avoid a race condition.
6269 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6270 * proposal and current concerns. Perhaps we should be setting
6271 * KVM_REQ_EVENT only on certain events and not unconditionally?
6272 */
6273 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6274 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6275 if (r != 0)
6276 return r;
6277 }
6278 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6279 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6280 false);
6281 kvm_x86_ops->set_irq(vcpu);
6282 }
6283 }
6284
6285 return 0;
6286 }
6287
6288 static void process_nmi(struct kvm_vcpu *vcpu)
6289 {
6290 unsigned limit = 2;
6291
6292 /*
6293 * x86 is limited to one NMI running, and one NMI pending after it.
6294 * If an NMI is already in progress, limit further NMIs to just one.
6295 * Otherwise, allow two (and we'll inject the first one immediately).
6296 */
6297 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6298 limit = 1;
6299
6300 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6301 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6302 kvm_make_request(KVM_REQ_EVENT, vcpu);
6303 }
6304
6305 #define put_smstate(type, buf, offset, val) \
6306 *(type *)((buf) + (offset) - 0x7e00) = val
6307
6308 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6309 {
6310 u32 flags = 0;
6311 flags |= seg->g << 23;
6312 flags |= seg->db << 22;
6313 flags |= seg->l << 21;
6314 flags |= seg->avl << 20;
6315 flags |= seg->present << 15;
6316 flags |= seg->dpl << 13;
6317 flags |= seg->s << 12;
6318 flags |= seg->type << 8;
6319 return flags;
6320 }
6321
6322 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6323 {
6324 struct kvm_segment seg;
6325 int offset;
6326
6327 kvm_get_segment(vcpu, &seg, n);
6328 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6329
6330 if (n < 3)
6331 offset = 0x7f84 + n * 12;
6332 else
6333 offset = 0x7f2c + (n - 3) * 12;
6334
6335 put_smstate(u32, buf, offset + 8, seg.base);
6336 put_smstate(u32, buf, offset + 4, seg.limit);
6337 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6338 }
6339
6340 #ifdef CONFIG_X86_64
6341 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6342 {
6343 struct kvm_segment seg;
6344 int offset;
6345 u16 flags;
6346
6347 kvm_get_segment(vcpu, &seg, n);
6348 offset = 0x7e00 + n * 16;
6349
6350 flags = enter_smm_get_segment_flags(&seg) >> 8;
6351 put_smstate(u16, buf, offset, seg.selector);
6352 put_smstate(u16, buf, offset + 2, flags);
6353 put_smstate(u32, buf, offset + 4, seg.limit);
6354 put_smstate(u64, buf, offset + 8, seg.base);
6355 }
6356 #endif
6357
6358 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6359 {
6360 struct desc_ptr dt;
6361 struct kvm_segment seg;
6362 unsigned long val;
6363 int i;
6364
6365 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6366 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6367 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6368 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6369
6370 for (i = 0; i < 8; i++)
6371 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6372
6373 kvm_get_dr(vcpu, 6, &val);
6374 put_smstate(u32, buf, 0x7fcc, (u32)val);
6375 kvm_get_dr(vcpu, 7, &val);
6376 put_smstate(u32, buf, 0x7fc8, (u32)val);
6377
6378 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6379 put_smstate(u32, buf, 0x7fc4, seg.selector);
6380 put_smstate(u32, buf, 0x7f64, seg.base);
6381 put_smstate(u32, buf, 0x7f60, seg.limit);
6382 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6383
6384 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6385 put_smstate(u32, buf, 0x7fc0, seg.selector);
6386 put_smstate(u32, buf, 0x7f80, seg.base);
6387 put_smstate(u32, buf, 0x7f7c, seg.limit);
6388 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6389
6390 kvm_x86_ops->get_gdt(vcpu, &dt);
6391 put_smstate(u32, buf, 0x7f74, dt.address);
6392 put_smstate(u32, buf, 0x7f70, dt.size);
6393
6394 kvm_x86_ops->get_idt(vcpu, &dt);
6395 put_smstate(u32, buf, 0x7f58, dt.address);
6396 put_smstate(u32, buf, 0x7f54, dt.size);
6397
6398 for (i = 0; i < 6; i++)
6399 enter_smm_save_seg_32(vcpu, buf, i);
6400
6401 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6402
6403 /* revision id */
6404 put_smstate(u32, buf, 0x7efc, 0x00020000);
6405 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6406 }
6407
6408 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6409 {
6410 #ifdef CONFIG_X86_64
6411 struct desc_ptr dt;
6412 struct kvm_segment seg;
6413 unsigned long val;
6414 int i;
6415
6416 for (i = 0; i < 16; i++)
6417 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6418
6419 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6420 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6421
6422 kvm_get_dr(vcpu, 6, &val);
6423 put_smstate(u64, buf, 0x7f68, val);
6424 kvm_get_dr(vcpu, 7, &val);
6425 put_smstate(u64, buf, 0x7f60, val);
6426
6427 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6428 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6429 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6430
6431 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6432
6433 /* revision id */
6434 put_smstate(u32, buf, 0x7efc, 0x00020064);
6435
6436 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6437
6438 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6439 put_smstate(u16, buf, 0x7e90, seg.selector);
6440 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6441 put_smstate(u32, buf, 0x7e94, seg.limit);
6442 put_smstate(u64, buf, 0x7e98, seg.base);
6443
6444 kvm_x86_ops->get_idt(vcpu, &dt);
6445 put_smstate(u32, buf, 0x7e84, dt.size);
6446 put_smstate(u64, buf, 0x7e88, dt.address);
6447
6448 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6449 put_smstate(u16, buf, 0x7e70, seg.selector);
6450 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6451 put_smstate(u32, buf, 0x7e74, seg.limit);
6452 put_smstate(u64, buf, 0x7e78, seg.base);
6453
6454 kvm_x86_ops->get_gdt(vcpu, &dt);
6455 put_smstate(u32, buf, 0x7e64, dt.size);
6456 put_smstate(u64, buf, 0x7e68, dt.address);
6457
6458 for (i = 0; i < 6; i++)
6459 enter_smm_save_seg_64(vcpu, buf, i);
6460 #else
6461 WARN_ON_ONCE(1);
6462 #endif
6463 }
6464
6465 static void enter_smm(struct kvm_vcpu *vcpu)
6466 {
6467 struct kvm_segment cs, ds;
6468 struct desc_ptr dt;
6469 char buf[512];
6470 u32 cr0;
6471
6472 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6473 vcpu->arch.hflags |= HF_SMM_MASK;
6474 memset(buf, 0, 512);
6475 if (guest_cpuid_has_longmode(vcpu))
6476 enter_smm_save_state_64(vcpu, buf);
6477 else
6478 enter_smm_save_state_32(vcpu, buf);
6479
6480 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6481
6482 if (kvm_x86_ops->get_nmi_mask(vcpu))
6483 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6484 else
6485 kvm_x86_ops->set_nmi_mask(vcpu, true);
6486
6487 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6488 kvm_rip_write(vcpu, 0x8000);
6489
6490 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6491 kvm_x86_ops->set_cr0(vcpu, cr0);
6492 vcpu->arch.cr0 = cr0;
6493
6494 kvm_x86_ops->set_cr4(vcpu, 0);
6495
6496 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6497 dt.address = dt.size = 0;
6498 kvm_x86_ops->set_idt(vcpu, &dt);
6499
6500 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6501
6502 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6503 cs.base = vcpu->arch.smbase;
6504
6505 ds.selector = 0;
6506 ds.base = 0;
6507
6508 cs.limit = ds.limit = 0xffffffff;
6509 cs.type = ds.type = 0x3;
6510 cs.dpl = ds.dpl = 0;
6511 cs.db = ds.db = 0;
6512 cs.s = ds.s = 1;
6513 cs.l = ds.l = 0;
6514 cs.g = ds.g = 1;
6515 cs.avl = ds.avl = 0;
6516 cs.present = ds.present = 1;
6517 cs.unusable = ds.unusable = 0;
6518 cs.padding = ds.padding = 0;
6519
6520 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6521 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6522 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6523 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6524 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6525 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6526
6527 if (guest_cpuid_has_longmode(vcpu))
6528 kvm_x86_ops->set_efer(vcpu, 0);
6529
6530 kvm_update_cpuid(vcpu);
6531 kvm_mmu_reset_context(vcpu);
6532 }
6533
6534 static void process_smi(struct kvm_vcpu *vcpu)
6535 {
6536 vcpu->arch.smi_pending = true;
6537 kvm_make_request(KVM_REQ_EVENT, vcpu);
6538 }
6539
6540 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6541 {
6542 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6543 }
6544
6545 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6546 {
6547 u64 eoi_exit_bitmap[4];
6548
6549 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6550 return;
6551
6552 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6553
6554 if (irqchip_split(vcpu->kvm))
6555 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6556 else {
6557 if (vcpu->arch.apicv_active)
6558 kvm_x86_ops->sync_pir_to_irr(vcpu);
6559 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6560 }
6561 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6562 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6563 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6564 }
6565
6566 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6567 {
6568 ++vcpu->stat.tlb_flush;
6569 kvm_x86_ops->tlb_flush(vcpu);
6570 }
6571
6572 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6573 {
6574 struct page *page = NULL;
6575
6576 if (!lapic_in_kernel(vcpu))
6577 return;
6578
6579 if (!kvm_x86_ops->set_apic_access_page_addr)
6580 return;
6581
6582 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6583 if (is_error_page(page))
6584 return;
6585 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6586
6587 /*
6588 * Do not pin apic access page in memory, the MMU notifier
6589 * will call us again if it is migrated or swapped out.
6590 */
6591 put_page(page);
6592 }
6593 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6594
6595 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6596 unsigned long address)
6597 {
6598 /*
6599 * The physical address of apic access page is stored in the VMCS.
6600 * Update it when it becomes invalid.
6601 */
6602 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6603 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6604 }
6605
6606 /*
6607 * Returns 1 to let vcpu_run() continue the guest execution loop without
6608 * exiting to the userspace. Otherwise, the value will be returned to the
6609 * userspace.
6610 */
6611 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6612 {
6613 int r;
6614 bool req_int_win =
6615 dm_request_for_irq_injection(vcpu) &&
6616 kvm_cpu_accept_dm_intr(vcpu);
6617
6618 bool req_immediate_exit = false;
6619
6620 if (vcpu->requests) {
6621 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6622 kvm_mmu_unload(vcpu);
6623 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6624 __kvm_migrate_timers(vcpu);
6625 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6626 kvm_gen_update_masterclock(vcpu->kvm);
6627 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6628 kvm_gen_kvmclock_update(vcpu);
6629 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6630 r = kvm_guest_time_update(vcpu);
6631 if (unlikely(r))
6632 goto out;
6633 }
6634 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6635 kvm_mmu_sync_roots(vcpu);
6636 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6637 kvm_vcpu_flush_tlb(vcpu);
6638 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6639 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6640 r = 0;
6641 goto out;
6642 }
6643 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6644 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6645 r = 0;
6646 goto out;
6647 }
6648 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6649 vcpu->fpu_active = 0;
6650 kvm_x86_ops->fpu_deactivate(vcpu);
6651 }
6652 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6653 /* Page is swapped out. Do synthetic halt */
6654 vcpu->arch.apf.halted = true;
6655 r = 1;
6656 goto out;
6657 }
6658 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6659 record_steal_time(vcpu);
6660 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6661 process_smi(vcpu);
6662 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6663 process_nmi(vcpu);
6664 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6665 kvm_pmu_handle_event(vcpu);
6666 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6667 kvm_pmu_deliver_pmi(vcpu);
6668 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6669 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6670 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6671 vcpu->arch.ioapic_handled_vectors)) {
6672 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6673 vcpu->run->eoi.vector =
6674 vcpu->arch.pending_ioapic_eoi;
6675 r = 0;
6676 goto out;
6677 }
6678 }
6679 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6680 vcpu_scan_ioapic(vcpu);
6681 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6682 kvm_vcpu_reload_apic_access_page(vcpu);
6683 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6684 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6685 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6686 r = 0;
6687 goto out;
6688 }
6689 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6690 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6691 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6692 r = 0;
6693 goto out;
6694 }
6695 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6696 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6697 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6698 r = 0;
6699 goto out;
6700 }
6701
6702 /*
6703 * KVM_REQ_HV_STIMER has to be processed after
6704 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6705 * depend on the guest clock being up-to-date
6706 */
6707 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6708 kvm_hv_process_stimers(vcpu);
6709 }
6710
6711 /*
6712 * KVM_REQ_EVENT is not set when posted interrupts are set by
6713 * VT-d hardware, so we have to update RVI unconditionally.
6714 */
6715 if (kvm_lapic_enabled(vcpu)) {
6716 /*
6717 * Update architecture specific hints for APIC
6718 * virtual interrupt delivery.
6719 */
6720 if (vcpu->arch.apicv_active)
6721 kvm_x86_ops->hwapic_irr_update(vcpu,
6722 kvm_lapic_find_highest_irr(vcpu));
6723 }
6724
6725 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6726 kvm_apic_accept_events(vcpu);
6727 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6728 r = 1;
6729 goto out;
6730 }
6731
6732 if (inject_pending_event(vcpu, req_int_win) != 0)
6733 req_immediate_exit = true;
6734 else {
6735 /* Enable NMI/IRQ window open exits if needed.
6736 *
6737 * SMIs have two cases: 1) they can be nested, and
6738 * then there is nothing to do here because RSM will
6739 * cause a vmexit anyway; 2) or the SMI can be pending
6740 * because inject_pending_event has completed the
6741 * injection of an IRQ or NMI from the previous vmexit,
6742 * and then we request an immediate exit to inject the SMI.
6743 */
6744 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6745 req_immediate_exit = true;
6746 if (vcpu->arch.nmi_pending)
6747 kvm_x86_ops->enable_nmi_window(vcpu);
6748 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6749 kvm_x86_ops->enable_irq_window(vcpu);
6750 }
6751
6752 if (kvm_lapic_enabled(vcpu)) {
6753 update_cr8_intercept(vcpu);
6754 kvm_lapic_sync_to_vapic(vcpu);
6755 }
6756 }
6757
6758 r = kvm_mmu_reload(vcpu);
6759 if (unlikely(r)) {
6760 goto cancel_injection;
6761 }
6762
6763 preempt_disable();
6764
6765 kvm_x86_ops->prepare_guest_switch(vcpu);
6766 if (vcpu->fpu_active)
6767 kvm_load_guest_fpu(vcpu);
6768 vcpu->mode = IN_GUEST_MODE;
6769
6770 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6771
6772 /*
6773 * We should set ->mode before check ->requests,
6774 * Please see the comment in kvm_make_all_cpus_request.
6775 * This also orders the write to mode from any reads
6776 * to the page tables done while the VCPU is running.
6777 * Please see the comment in kvm_flush_remote_tlbs.
6778 */
6779 smp_mb__after_srcu_read_unlock();
6780
6781 local_irq_disable();
6782
6783 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6784 || need_resched() || signal_pending(current)) {
6785 vcpu->mode = OUTSIDE_GUEST_MODE;
6786 smp_wmb();
6787 local_irq_enable();
6788 preempt_enable();
6789 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6790 r = 1;
6791 goto cancel_injection;
6792 }
6793
6794 kvm_load_guest_xcr0(vcpu);
6795
6796 if (req_immediate_exit) {
6797 kvm_make_request(KVM_REQ_EVENT, vcpu);
6798 smp_send_reschedule(vcpu->cpu);
6799 }
6800
6801 trace_kvm_entry(vcpu->vcpu_id);
6802 wait_lapic_expire(vcpu);
6803 guest_enter_irqoff();
6804
6805 if (unlikely(vcpu->arch.switch_db_regs)) {
6806 set_debugreg(0, 7);
6807 set_debugreg(vcpu->arch.eff_db[0], 0);
6808 set_debugreg(vcpu->arch.eff_db[1], 1);
6809 set_debugreg(vcpu->arch.eff_db[2], 2);
6810 set_debugreg(vcpu->arch.eff_db[3], 3);
6811 set_debugreg(vcpu->arch.dr6, 6);
6812 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813 }
6814
6815 kvm_x86_ops->run(vcpu);
6816
6817 /*
6818 * Do this here before restoring debug registers on the host. And
6819 * since we do this before handling the vmexit, a DR access vmexit
6820 * can (a) read the correct value of the debug registers, (b) set
6821 * KVM_DEBUGREG_WONT_EXIT again.
6822 */
6823 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6824 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6825 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6826 kvm_update_dr0123(vcpu);
6827 kvm_update_dr6(vcpu);
6828 kvm_update_dr7(vcpu);
6829 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6830 }
6831
6832 /*
6833 * If the guest has used debug registers, at least dr7
6834 * will be disabled while returning to the host.
6835 * If we don't have active breakpoints in the host, we don't
6836 * care about the messed up debug address registers. But if
6837 * we have some of them active, restore the old state.
6838 */
6839 if (hw_breakpoint_active())
6840 hw_breakpoint_restore();
6841
6842 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6843
6844 vcpu->mode = OUTSIDE_GUEST_MODE;
6845 smp_wmb();
6846
6847 kvm_put_guest_xcr0(vcpu);
6848
6849 kvm_x86_ops->handle_external_intr(vcpu);
6850
6851 ++vcpu->stat.exits;
6852
6853 guest_exit_irqoff();
6854
6855 local_irq_enable();
6856 preempt_enable();
6857
6858 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6859
6860 /*
6861 * Profile KVM exit RIPs:
6862 */
6863 if (unlikely(prof_on == KVM_PROFILING)) {
6864 unsigned long rip = kvm_rip_read(vcpu);
6865 profile_hit(KVM_PROFILING, (void *)rip);
6866 }
6867
6868 if (unlikely(vcpu->arch.tsc_always_catchup))
6869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6870
6871 if (vcpu->arch.apic_attention)
6872 kvm_lapic_sync_from_vapic(vcpu);
6873
6874 r = kvm_x86_ops->handle_exit(vcpu);
6875 return r;
6876
6877 cancel_injection:
6878 kvm_x86_ops->cancel_injection(vcpu);
6879 if (unlikely(vcpu->arch.apic_attention))
6880 kvm_lapic_sync_from_vapic(vcpu);
6881 out:
6882 return r;
6883 }
6884
6885 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6886 {
6887 if (!kvm_arch_vcpu_runnable(vcpu) &&
6888 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6889 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6890 kvm_vcpu_block(vcpu);
6891 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6892
6893 if (kvm_x86_ops->post_block)
6894 kvm_x86_ops->post_block(vcpu);
6895
6896 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6897 return 1;
6898 }
6899
6900 kvm_apic_accept_events(vcpu);
6901 switch(vcpu->arch.mp_state) {
6902 case KVM_MP_STATE_HALTED:
6903 vcpu->arch.pv.pv_unhalted = false;
6904 vcpu->arch.mp_state =
6905 KVM_MP_STATE_RUNNABLE;
6906 case KVM_MP_STATE_RUNNABLE:
6907 vcpu->arch.apf.halted = false;
6908 break;
6909 case KVM_MP_STATE_INIT_RECEIVED:
6910 break;
6911 default:
6912 return -EINTR;
6913 break;
6914 }
6915 return 1;
6916 }
6917
6918 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6919 {
6920 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6921 !vcpu->arch.apf.halted);
6922 }
6923
6924 static int vcpu_run(struct kvm_vcpu *vcpu)
6925 {
6926 int r;
6927 struct kvm *kvm = vcpu->kvm;
6928
6929 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6930
6931 for (;;) {
6932 if (kvm_vcpu_running(vcpu)) {
6933 r = vcpu_enter_guest(vcpu);
6934 } else {
6935 r = vcpu_block(kvm, vcpu);
6936 }
6937
6938 if (r <= 0)
6939 break;
6940
6941 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6942 if (kvm_cpu_has_pending_timer(vcpu))
6943 kvm_inject_pending_timer_irqs(vcpu);
6944
6945 if (dm_request_for_irq_injection(vcpu) &&
6946 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6947 r = 0;
6948 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6949 ++vcpu->stat.request_irq_exits;
6950 break;
6951 }
6952
6953 kvm_check_async_pf_completion(vcpu);
6954
6955 if (signal_pending(current)) {
6956 r = -EINTR;
6957 vcpu->run->exit_reason = KVM_EXIT_INTR;
6958 ++vcpu->stat.signal_exits;
6959 break;
6960 }
6961 if (need_resched()) {
6962 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6963 cond_resched();
6964 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6965 }
6966 }
6967
6968 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6969
6970 return r;
6971 }
6972
6973 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6974 {
6975 int r;
6976 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6977 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6978 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6979 if (r != EMULATE_DONE)
6980 return 0;
6981 return 1;
6982 }
6983
6984 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6985 {
6986 BUG_ON(!vcpu->arch.pio.count);
6987
6988 return complete_emulated_io(vcpu);
6989 }
6990
6991 /*
6992 * Implements the following, as a state machine:
6993 *
6994 * read:
6995 * for each fragment
6996 * for each mmio piece in the fragment
6997 * write gpa, len
6998 * exit
6999 * copy data
7000 * execute insn
7001 *
7002 * write:
7003 * for each fragment
7004 * for each mmio piece in the fragment
7005 * write gpa, len
7006 * copy data
7007 * exit
7008 */
7009 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7010 {
7011 struct kvm_run *run = vcpu->run;
7012 struct kvm_mmio_fragment *frag;
7013 unsigned len;
7014
7015 BUG_ON(!vcpu->mmio_needed);
7016
7017 /* Complete previous fragment */
7018 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7019 len = min(8u, frag->len);
7020 if (!vcpu->mmio_is_write)
7021 memcpy(frag->data, run->mmio.data, len);
7022
7023 if (frag->len <= 8) {
7024 /* Switch to the next fragment. */
7025 frag++;
7026 vcpu->mmio_cur_fragment++;
7027 } else {
7028 /* Go forward to the next mmio piece. */
7029 frag->data += len;
7030 frag->gpa += len;
7031 frag->len -= len;
7032 }
7033
7034 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7035 vcpu->mmio_needed = 0;
7036
7037 /* FIXME: return into emulator if single-stepping. */
7038 if (vcpu->mmio_is_write)
7039 return 1;
7040 vcpu->mmio_read_completed = 1;
7041 return complete_emulated_io(vcpu);
7042 }
7043
7044 run->exit_reason = KVM_EXIT_MMIO;
7045 run->mmio.phys_addr = frag->gpa;
7046 if (vcpu->mmio_is_write)
7047 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7048 run->mmio.len = min(8u, frag->len);
7049 run->mmio.is_write = vcpu->mmio_is_write;
7050 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7051 return 0;
7052 }
7053
7054
7055 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7056 {
7057 struct fpu *fpu = &current->thread.fpu;
7058 int r;
7059 sigset_t sigsaved;
7060
7061 fpu__activate_curr(fpu);
7062
7063 if (vcpu->sigset_active)
7064 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7065
7066 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7067 kvm_vcpu_block(vcpu);
7068 kvm_apic_accept_events(vcpu);
7069 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7070 r = -EAGAIN;
7071 goto out;
7072 }
7073
7074 /* re-sync apic's tpr */
7075 if (!lapic_in_kernel(vcpu)) {
7076 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7077 r = -EINVAL;
7078 goto out;
7079 }
7080 }
7081
7082 if (unlikely(vcpu->arch.complete_userspace_io)) {
7083 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7084 vcpu->arch.complete_userspace_io = NULL;
7085 r = cui(vcpu);
7086 if (r <= 0)
7087 goto out;
7088 } else
7089 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7090
7091 r = vcpu_run(vcpu);
7092
7093 out:
7094 post_kvm_run_save(vcpu);
7095 if (vcpu->sigset_active)
7096 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7097
7098 return r;
7099 }
7100
7101 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7102 {
7103 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7104 /*
7105 * We are here if userspace calls get_regs() in the middle of
7106 * instruction emulation. Registers state needs to be copied
7107 * back from emulation context to vcpu. Userspace shouldn't do
7108 * that usually, but some bad designed PV devices (vmware
7109 * backdoor interface) need this to work
7110 */
7111 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7112 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7113 }
7114 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7115 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7116 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7117 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7118 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7119 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7120 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7121 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7122 #ifdef CONFIG_X86_64
7123 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7124 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7125 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7126 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7127 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7128 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7129 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7130 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7131 #endif
7132
7133 regs->rip = kvm_rip_read(vcpu);
7134 regs->rflags = kvm_get_rflags(vcpu);
7135
7136 return 0;
7137 }
7138
7139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7140 {
7141 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7142 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7143
7144 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7145 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7146 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7147 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7148 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7149 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7150 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7151 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7152 #ifdef CONFIG_X86_64
7153 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7154 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7155 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7156 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7157 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7158 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7159 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7160 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7161 #endif
7162
7163 kvm_rip_write(vcpu, regs->rip);
7164 kvm_set_rflags(vcpu, regs->rflags);
7165
7166 vcpu->arch.exception.pending = false;
7167
7168 kvm_make_request(KVM_REQ_EVENT, vcpu);
7169
7170 return 0;
7171 }
7172
7173 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7174 {
7175 struct kvm_segment cs;
7176
7177 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7178 *db = cs.db;
7179 *l = cs.l;
7180 }
7181 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7182
7183 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7184 struct kvm_sregs *sregs)
7185 {
7186 struct desc_ptr dt;
7187
7188 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7189 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7190 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7191 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7192 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7193 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7194
7195 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7196 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7197
7198 kvm_x86_ops->get_idt(vcpu, &dt);
7199 sregs->idt.limit = dt.size;
7200 sregs->idt.base = dt.address;
7201 kvm_x86_ops->get_gdt(vcpu, &dt);
7202 sregs->gdt.limit = dt.size;
7203 sregs->gdt.base = dt.address;
7204
7205 sregs->cr0 = kvm_read_cr0(vcpu);
7206 sregs->cr2 = vcpu->arch.cr2;
7207 sregs->cr3 = kvm_read_cr3(vcpu);
7208 sregs->cr4 = kvm_read_cr4(vcpu);
7209 sregs->cr8 = kvm_get_cr8(vcpu);
7210 sregs->efer = vcpu->arch.efer;
7211 sregs->apic_base = kvm_get_apic_base(vcpu);
7212
7213 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7214
7215 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7216 set_bit(vcpu->arch.interrupt.nr,
7217 (unsigned long *)sregs->interrupt_bitmap);
7218
7219 return 0;
7220 }
7221
7222 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7223 struct kvm_mp_state *mp_state)
7224 {
7225 kvm_apic_accept_events(vcpu);
7226 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7227 vcpu->arch.pv.pv_unhalted)
7228 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7229 else
7230 mp_state->mp_state = vcpu->arch.mp_state;
7231
7232 return 0;
7233 }
7234
7235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7236 struct kvm_mp_state *mp_state)
7237 {
7238 if (!lapic_in_kernel(vcpu) &&
7239 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7240 return -EINVAL;
7241
7242 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7243 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7244 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7245 } else
7246 vcpu->arch.mp_state = mp_state->mp_state;
7247 kvm_make_request(KVM_REQ_EVENT, vcpu);
7248 return 0;
7249 }
7250
7251 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7252 int reason, bool has_error_code, u32 error_code)
7253 {
7254 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7255 int ret;
7256
7257 init_emulate_ctxt(vcpu);
7258
7259 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7260 has_error_code, error_code);
7261
7262 if (ret)
7263 return EMULATE_FAIL;
7264
7265 kvm_rip_write(vcpu, ctxt->eip);
7266 kvm_set_rflags(vcpu, ctxt->eflags);
7267 kvm_make_request(KVM_REQ_EVENT, vcpu);
7268 return EMULATE_DONE;
7269 }
7270 EXPORT_SYMBOL_GPL(kvm_task_switch);
7271
7272 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7273 struct kvm_sregs *sregs)
7274 {
7275 struct msr_data apic_base_msr;
7276 int mmu_reset_needed = 0;
7277 int pending_vec, max_bits, idx;
7278 struct desc_ptr dt;
7279
7280 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7281 return -EINVAL;
7282
7283 dt.size = sregs->idt.limit;
7284 dt.address = sregs->idt.base;
7285 kvm_x86_ops->set_idt(vcpu, &dt);
7286 dt.size = sregs->gdt.limit;
7287 dt.address = sregs->gdt.base;
7288 kvm_x86_ops->set_gdt(vcpu, &dt);
7289
7290 vcpu->arch.cr2 = sregs->cr2;
7291 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7292 vcpu->arch.cr3 = sregs->cr3;
7293 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7294
7295 kvm_set_cr8(vcpu, sregs->cr8);
7296
7297 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7298 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7299 apic_base_msr.data = sregs->apic_base;
7300 apic_base_msr.host_initiated = true;
7301 kvm_set_apic_base(vcpu, &apic_base_msr);
7302
7303 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7304 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7305 vcpu->arch.cr0 = sregs->cr0;
7306
7307 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7308 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7309 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7310 kvm_update_cpuid(vcpu);
7311
7312 idx = srcu_read_lock(&vcpu->kvm->srcu);
7313 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7314 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7315 mmu_reset_needed = 1;
7316 }
7317 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7318
7319 if (mmu_reset_needed)
7320 kvm_mmu_reset_context(vcpu);
7321
7322 max_bits = KVM_NR_INTERRUPTS;
7323 pending_vec = find_first_bit(
7324 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7325 if (pending_vec < max_bits) {
7326 kvm_queue_interrupt(vcpu, pending_vec, false);
7327 pr_debug("Set back pending irq %d\n", pending_vec);
7328 }
7329
7330 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7331 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7332 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7333 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7334 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7335 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7336
7337 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7338 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7339
7340 update_cr8_intercept(vcpu);
7341
7342 /* Older userspace won't unhalt the vcpu on reset. */
7343 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7344 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7345 !is_protmode(vcpu))
7346 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7347
7348 kvm_make_request(KVM_REQ_EVENT, vcpu);
7349
7350 return 0;
7351 }
7352
7353 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7354 struct kvm_guest_debug *dbg)
7355 {
7356 unsigned long rflags;
7357 int i, r;
7358
7359 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7360 r = -EBUSY;
7361 if (vcpu->arch.exception.pending)
7362 goto out;
7363 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7364 kvm_queue_exception(vcpu, DB_VECTOR);
7365 else
7366 kvm_queue_exception(vcpu, BP_VECTOR);
7367 }
7368
7369 /*
7370 * Read rflags as long as potentially injected trace flags are still
7371 * filtered out.
7372 */
7373 rflags = kvm_get_rflags(vcpu);
7374
7375 vcpu->guest_debug = dbg->control;
7376 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7377 vcpu->guest_debug = 0;
7378
7379 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7380 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7381 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7382 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7383 } else {
7384 for (i = 0; i < KVM_NR_DB_REGS; i++)
7385 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7386 }
7387 kvm_update_dr7(vcpu);
7388
7389 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7390 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7391 get_segment_base(vcpu, VCPU_SREG_CS);
7392
7393 /*
7394 * Trigger an rflags update that will inject or remove the trace
7395 * flags.
7396 */
7397 kvm_set_rflags(vcpu, rflags);
7398
7399 kvm_x86_ops->update_bp_intercept(vcpu);
7400
7401 r = 0;
7402
7403 out:
7404
7405 return r;
7406 }
7407
7408 /*
7409 * Translate a guest virtual address to a guest physical address.
7410 */
7411 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7412 struct kvm_translation *tr)
7413 {
7414 unsigned long vaddr = tr->linear_address;
7415 gpa_t gpa;
7416 int idx;
7417
7418 idx = srcu_read_lock(&vcpu->kvm->srcu);
7419 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7420 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7421 tr->physical_address = gpa;
7422 tr->valid = gpa != UNMAPPED_GVA;
7423 tr->writeable = 1;
7424 tr->usermode = 0;
7425
7426 return 0;
7427 }
7428
7429 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7430 {
7431 struct fxregs_state *fxsave =
7432 &vcpu->arch.guest_fpu.state.fxsave;
7433
7434 memcpy(fpu->fpr, fxsave->st_space, 128);
7435 fpu->fcw = fxsave->cwd;
7436 fpu->fsw = fxsave->swd;
7437 fpu->ftwx = fxsave->twd;
7438 fpu->last_opcode = fxsave->fop;
7439 fpu->last_ip = fxsave->rip;
7440 fpu->last_dp = fxsave->rdp;
7441 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7442
7443 return 0;
7444 }
7445
7446 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7447 {
7448 struct fxregs_state *fxsave =
7449 &vcpu->arch.guest_fpu.state.fxsave;
7450
7451 memcpy(fxsave->st_space, fpu->fpr, 128);
7452 fxsave->cwd = fpu->fcw;
7453 fxsave->swd = fpu->fsw;
7454 fxsave->twd = fpu->ftwx;
7455 fxsave->fop = fpu->last_opcode;
7456 fxsave->rip = fpu->last_ip;
7457 fxsave->rdp = fpu->last_dp;
7458 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7459
7460 return 0;
7461 }
7462
7463 static void fx_init(struct kvm_vcpu *vcpu)
7464 {
7465 fpstate_init(&vcpu->arch.guest_fpu.state);
7466 if (boot_cpu_has(X86_FEATURE_XSAVES))
7467 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7468 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7469
7470 /*
7471 * Ensure guest xcr0 is valid for loading
7472 */
7473 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7474
7475 vcpu->arch.cr0 |= X86_CR0_ET;
7476 }
7477
7478 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7479 {
7480 if (vcpu->guest_fpu_loaded)
7481 return;
7482
7483 /*
7484 * Restore all possible states in the guest,
7485 * and assume host would use all available bits.
7486 * Guest xcr0 would be loaded later.
7487 */
7488 vcpu->guest_fpu_loaded = 1;
7489 __kernel_fpu_begin();
7490 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7491 trace_kvm_fpu(1);
7492 }
7493
7494 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7495 {
7496 if (!vcpu->guest_fpu_loaded)
7497 return;
7498
7499 vcpu->guest_fpu_loaded = 0;
7500 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7501 __kernel_fpu_end();
7502 ++vcpu->stat.fpu_reload;
7503 trace_kvm_fpu(0);
7504 }
7505
7506 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7507 {
7508 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7509
7510 kvmclock_reset(vcpu);
7511
7512 kvm_x86_ops->vcpu_free(vcpu);
7513 free_cpumask_var(wbinvd_dirty_mask);
7514 }
7515
7516 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7517 unsigned int id)
7518 {
7519 struct kvm_vcpu *vcpu;
7520
7521 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7522 printk_once(KERN_WARNING
7523 "kvm: SMP vm created on host with unstable TSC; "
7524 "guest TSC will not be reliable\n");
7525
7526 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7527
7528 return vcpu;
7529 }
7530
7531 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7532 {
7533 int r;
7534
7535 kvm_vcpu_mtrr_init(vcpu);
7536 r = vcpu_load(vcpu);
7537 if (r)
7538 return r;
7539 kvm_vcpu_reset(vcpu, false);
7540 kvm_mmu_setup(vcpu);
7541 vcpu_put(vcpu);
7542 return r;
7543 }
7544
7545 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7546 {
7547 struct msr_data msr;
7548 struct kvm *kvm = vcpu->kvm;
7549
7550 if (vcpu_load(vcpu))
7551 return;
7552 msr.data = 0x0;
7553 msr.index = MSR_IA32_TSC;
7554 msr.host_initiated = true;
7555 kvm_write_tsc(vcpu, &msr);
7556 vcpu_put(vcpu);
7557
7558 if (!kvmclock_periodic_sync)
7559 return;
7560
7561 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7562 KVMCLOCK_SYNC_PERIOD);
7563 }
7564
7565 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7566 {
7567 int r;
7568 vcpu->arch.apf.msr_val = 0;
7569
7570 r = vcpu_load(vcpu);
7571 BUG_ON(r);
7572 kvm_mmu_unload(vcpu);
7573 vcpu_put(vcpu);
7574
7575 kvm_x86_ops->vcpu_free(vcpu);
7576 }
7577
7578 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7579 {
7580 vcpu->arch.hflags = 0;
7581
7582 vcpu->arch.smi_pending = 0;
7583 atomic_set(&vcpu->arch.nmi_queued, 0);
7584 vcpu->arch.nmi_pending = 0;
7585 vcpu->arch.nmi_injected = false;
7586 kvm_clear_interrupt_queue(vcpu);
7587 kvm_clear_exception_queue(vcpu);
7588
7589 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7590 kvm_update_dr0123(vcpu);
7591 vcpu->arch.dr6 = DR6_INIT;
7592 kvm_update_dr6(vcpu);
7593 vcpu->arch.dr7 = DR7_FIXED_1;
7594 kvm_update_dr7(vcpu);
7595
7596 vcpu->arch.cr2 = 0;
7597
7598 kvm_make_request(KVM_REQ_EVENT, vcpu);
7599 vcpu->arch.apf.msr_val = 0;
7600 vcpu->arch.st.msr_val = 0;
7601
7602 kvmclock_reset(vcpu);
7603
7604 kvm_clear_async_pf_completion_queue(vcpu);
7605 kvm_async_pf_hash_reset(vcpu);
7606 vcpu->arch.apf.halted = false;
7607
7608 if (!init_event) {
7609 kvm_pmu_reset(vcpu);
7610 vcpu->arch.smbase = 0x30000;
7611 }
7612
7613 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7614 vcpu->arch.regs_avail = ~0;
7615 vcpu->arch.regs_dirty = ~0;
7616
7617 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7618 }
7619
7620 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7621 {
7622 struct kvm_segment cs;
7623
7624 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7625 cs.selector = vector << 8;
7626 cs.base = vector << 12;
7627 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7628 kvm_rip_write(vcpu, 0);
7629 }
7630
7631 int kvm_arch_hardware_enable(void)
7632 {
7633 struct kvm *kvm;
7634 struct kvm_vcpu *vcpu;
7635 int i;
7636 int ret;
7637 u64 local_tsc;
7638 u64 max_tsc = 0;
7639 bool stable, backwards_tsc = false;
7640
7641 kvm_shared_msr_cpu_online();
7642 ret = kvm_x86_ops->hardware_enable();
7643 if (ret != 0)
7644 return ret;
7645
7646 local_tsc = rdtsc();
7647 stable = !check_tsc_unstable();
7648 list_for_each_entry(kvm, &vm_list, vm_list) {
7649 kvm_for_each_vcpu(i, vcpu, kvm) {
7650 if (!stable && vcpu->cpu == smp_processor_id())
7651 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7652 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7653 backwards_tsc = true;
7654 if (vcpu->arch.last_host_tsc > max_tsc)
7655 max_tsc = vcpu->arch.last_host_tsc;
7656 }
7657 }
7658 }
7659
7660 /*
7661 * Sometimes, even reliable TSCs go backwards. This happens on
7662 * platforms that reset TSC during suspend or hibernate actions, but
7663 * maintain synchronization. We must compensate. Fortunately, we can
7664 * detect that condition here, which happens early in CPU bringup,
7665 * before any KVM threads can be running. Unfortunately, we can't
7666 * bring the TSCs fully up to date with real time, as we aren't yet far
7667 * enough into CPU bringup that we know how much real time has actually
7668 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7669 * variables that haven't been updated yet.
7670 *
7671 * So we simply find the maximum observed TSC above, then record the
7672 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7673 * the adjustment will be applied. Note that we accumulate
7674 * adjustments, in case multiple suspend cycles happen before some VCPU
7675 * gets a chance to run again. In the event that no KVM threads get a
7676 * chance to run, we will miss the entire elapsed period, as we'll have
7677 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7678 * loose cycle time. This isn't too big a deal, since the loss will be
7679 * uniform across all VCPUs (not to mention the scenario is extremely
7680 * unlikely). It is possible that a second hibernate recovery happens
7681 * much faster than a first, causing the observed TSC here to be
7682 * smaller; this would require additional padding adjustment, which is
7683 * why we set last_host_tsc to the local tsc observed here.
7684 *
7685 * N.B. - this code below runs only on platforms with reliable TSC,
7686 * as that is the only way backwards_tsc is set above. Also note
7687 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7688 * have the same delta_cyc adjustment applied if backwards_tsc
7689 * is detected. Note further, this adjustment is only done once,
7690 * as we reset last_host_tsc on all VCPUs to stop this from being
7691 * called multiple times (one for each physical CPU bringup).
7692 *
7693 * Platforms with unreliable TSCs don't have to deal with this, they
7694 * will be compensated by the logic in vcpu_load, which sets the TSC to
7695 * catchup mode. This will catchup all VCPUs to real time, but cannot
7696 * guarantee that they stay in perfect synchronization.
7697 */
7698 if (backwards_tsc) {
7699 u64 delta_cyc = max_tsc - local_tsc;
7700 backwards_tsc_observed = true;
7701 list_for_each_entry(kvm, &vm_list, vm_list) {
7702 kvm_for_each_vcpu(i, vcpu, kvm) {
7703 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7704 vcpu->arch.last_host_tsc = local_tsc;
7705 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7706 }
7707
7708 /*
7709 * We have to disable TSC offset matching.. if you were
7710 * booting a VM while issuing an S4 host suspend....
7711 * you may have some problem. Solving this issue is
7712 * left as an exercise to the reader.
7713 */
7714 kvm->arch.last_tsc_nsec = 0;
7715 kvm->arch.last_tsc_write = 0;
7716 }
7717
7718 }
7719 return 0;
7720 }
7721
7722 void kvm_arch_hardware_disable(void)
7723 {
7724 kvm_x86_ops->hardware_disable();
7725 drop_user_return_notifiers();
7726 }
7727
7728 int kvm_arch_hardware_setup(void)
7729 {
7730 int r;
7731
7732 r = kvm_x86_ops->hardware_setup();
7733 if (r != 0)
7734 return r;
7735
7736 if (kvm_has_tsc_control) {
7737 /*
7738 * Make sure the user can only configure tsc_khz values that
7739 * fit into a signed integer.
7740 * A min value is not calculated needed because it will always
7741 * be 1 on all machines.
7742 */
7743 u64 max = min(0x7fffffffULL,
7744 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7745 kvm_max_guest_tsc_khz = max;
7746
7747 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7748 }
7749
7750 kvm_init_msr_list();
7751 return 0;
7752 }
7753
7754 void kvm_arch_hardware_unsetup(void)
7755 {
7756 kvm_x86_ops->hardware_unsetup();
7757 }
7758
7759 void kvm_arch_check_processor_compat(void *rtn)
7760 {
7761 kvm_x86_ops->check_processor_compatibility(rtn);
7762 }
7763
7764 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7765 {
7766 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7767 }
7768 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7769
7770 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7771 {
7772 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7773 }
7774
7775 struct static_key kvm_no_apic_vcpu __read_mostly;
7776 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7777
7778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7779 {
7780 struct page *page;
7781 struct kvm *kvm;
7782 int r;
7783
7784 BUG_ON(vcpu->kvm == NULL);
7785 kvm = vcpu->kvm;
7786
7787 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7788 vcpu->arch.pv.pv_unhalted = false;
7789 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7790 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7791 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7792 else
7793 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7794
7795 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7796 if (!page) {
7797 r = -ENOMEM;
7798 goto fail;
7799 }
7800 vcpu->arch.pio_data = page_address(page);
7801
7802 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7803
7804 r = kvm_mmu_create(vcpu);
7805 if (r < 0)
7806 goto fail_free_pio_data;
7807
7808 if (irqchip_in_kernel(kvm)) {
7809 r = kvm_create_lapic(vcpu);
7810 if (r < 0)
7811 goto fail_mmu_destroy;
7812 } else
7813 static_key_slow_inc(&kvm_no_apic_vcpu);
7814
7815 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7816 GFP_KERNEL);
7817 if (!vcpu->arch.mce_banks) {
7818 r = -ENOMEM;
7819 goto fail_free_lapic;
7820 }
7821 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7822
7823 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7824 r = -ENOMEM;
7825 goto fail_free_mce_banks;
7826 }
7827
7828 fx_init(vcpu);
7829
7830 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7831 vcpu->arch.pv_time_enabled = false;
7832
7833 vcpu->arch.guest_supported_xcr0 = 0;
7834 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7835
7836 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7837
7838 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7839
7840 kvm_async_pf_hash_reset(vcpu);
7841 kvm_pmu_init(vcpu);
7842
7843 vcpu->arch.pending_external_vector = -1;
7844
7845 kvm_hv_vcpu_init(vcpu);
7846
7847 return 0;
7848
7849 fail_free_mce_banks:
7850 kfree(vcpu->arch.mce_banks);
7851 fail_free_lapic:
7852 kvm_free_lapic(vcpu);
7853 fail_mmu_destroy:
7854 kvm_mmu_destroy(vcpu);
7855 fail_free_pio_data:
7856 free_page((unsigned long)vcpu->arch.pio_data);
7857 fail:
7858 return r;
7859 }
7860
7861 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7862 {
7863 int idx;
7864
7865 kvm_hv_vcpu_uninit(vcpu);
7866 kvm_pmu_destroy(vcpu);
7867 kfree(vcpu->arch.mce_banks);
7868 kvm_free_lapic(vcpu);
7869 idx = srcu_read_lock(&vcpu->kvm->srcu);
7870 kvm_mmu_destroy(vcpu);
7871 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7872 free_page((unsigned long)vcpu->arch.pio_data);
7873 if (!lapic_in_kernel(vcpu))
7874 static_key_slow_dec(&kvm_no_apic_vcpu);
7875 }
7876
7877 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7878 {
7879 kvm_x86_ops->sched_in(vcpu, cpu);
7880 }
7881
7882 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7883 {
7884 if (type)
7885 return -EINVAL;
7886
7887 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7888 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7889 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7890 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7891 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7892
7893 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7894 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7895 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7896 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7897 &kvm->arch.irq_sources_bitmap);
7898
7899 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7900 mutex_init(&kvm->arch.apic_map_lock);
7901 mutex_init(&kvm->arch.hyperv.hv_lock);
7902 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7903
7904 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7905 pvclock_update_vm_gtod_copy(kvm);
7906
7907 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7908 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7909
7910 kvm_page_track_init(kvm);
7911 kvm_mmu_init_vm(kvm);
7912
7913 if (kvm_x86_ops->vm_init)
7914 return kvm_x86_ops->vm_init(kvm);
7915
7916 return 0;
7917 }
7918
7919 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7920 {
7921 int r;
7922 r = vcpu_load(vcpu);
7923 BUG_ON(r);
7924 kvm_mmu_unload(vcpu);
7925 vcpu_put(vcpu);
7926 }
7927
7928 static void kvm_free_vcpus(struct kvm *kvm)
7929 {
7930 unsigned int i;
7931 struct kvm_vcpu *vcpu;
7932
7933 /*
7934 * Unpin any mmu pages first.
7935 */
7936 kvm_for_each_vcpu(i, vcpu, kvm) {
7937 kvm_clear_async_pf_completion_queue(vcpu);
7938 kvm_unload_vcpu_mmu(vcpu);
7939 }
7940 kvm_for_each_vcpu(i, vcpu, kvm)
7941 kvm_arch_vcpu_free(vcpu);
7942
7943 mutex_lock(&kvm->lock);
7944 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7945 kvm->vcpus[i] = NULL;
7946
7947 atomic_set(&kvm->online_vcpus, 0);
7948 mutex_unlock(&kvm->lock);
7949 }
7950
7951 void kvm_arch_sync_events(struct kvm *kvm)
7952 {
7953 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7954 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7955 kvm_free_all_assigned_devices(kvm);
7956 kvm_free_pit(kvm);
7957 }
7958
7959 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7960 {
7961 int i, r;
7962 unsigned long hva;
7963 struct kvm_memslots *slots = kvm_memslots(kvm);
7964 struct kvm_memory_slot *slot, old;
7965
7966 /* Called with kvm->slots_lock held. */
7967 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7968 return -EINVAL;
7969
7970 slot = id_to_memslot(slots, id);
7971 if (size) {
7972 if (slot->npages)
7973 return -EEXIST;
7974
7975 /*
7976 * MAP_SHARED to prevent internal slot pages from being moved
7977 * by fork()/COW.
7978 */
7979 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7980 MAP_SHARED | MAP_ANONYMOUS, 0);
7981 if (IS_ERR((void *)hva))
7982 return PTR_ERR((void *)hva);
7983 } else {
7984 if (!slot->npages)
7985 return 0;
7986
7987 hva = 0;
7988 }
7989
7990 old = *slot;
7991 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7992 struct kvm_userspace_memory_region m;
7993
7994 m.slot = id | (i << 16);
7995 m.flags = 0;
7996 m.guest_phys_addr = gpa;
7997 m.userspace_addr = hva;
7998 m.memory_size = size;
7999 r = __kvm_set_memory_region(kvm, &m);
8000 if (r < 0)
8001 return r;
8002 }
8003
8004 if (!size) {
8005 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8006 WARN_ON(r < 0);
8007 }
8008
8009 return 0;
8010 }
8011 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8012
8013 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8014 {
8015 int r;
8016
8017 mutex_lock(&kvm->slots_lock);
8018 r = __x86_set_memory_region(kvm, id, gpa, size);
8019 mutex_unlock(&kvm->slots_lock);
8020
8021 return r;
8022 }
8023 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8024
8025 void kvm_arch_destroy_vm(struct kvm *kvm)
8026 {
8027 if (current->mm == kvm->mm) {
8028 /*
8029 * Free memory regions allocated on behalf of userspace,
8030 * unless the the memory map has changed due to process exit
8031 * or fd copying.
8032 */
8033 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8034 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8035 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8036 }
8037 if (kvm_x86_ops->vm_destroy)
8038 kvm_x86_ops->vm_destroy(kvm);
8039 kvm_iommu_unmap_guest(kvm);
8040 kfree(kvm->arch.vpic);
8041 kfree(kvm->arch.vioapic);
8042 kvm_free_vcpus(kvm);
8043 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8044 kvm_mmu_uninit_vm(kvm);
8045 }
8046
8047 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8048 struct kvm_memory_slot *dont)
8049 {
8050 int i;
8051
8052 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8053 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8054 kvfree(free->arch.rmap[i]);
8055 free->arch.rmap[i] = NULL;
8056 }
8057 if (i == 0)
8058 continue;
8059
8060 if (!dont || free->arch.lpage_info[i - 1] !=
8061 dont->arch.lpage_info[i - 1]) {
8062 kvfree(free->arch.lpage_info[i - 1]);
8063 free->arch.lpage_info[i - 1] = NULL;
8064 }
8065 }
8066
8067 kvm_page_track_free_memslot(free, dont);
8068 }
8069
8070 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8071 unsigned long npages)
8072 {
8073 int i;
8074
8075 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8076 struct kvm_lpage_info *linfo;
8077 unsigned long ugfn;
8078 int lpages;
8079 int level = i + 1;
8080
8081 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8082 slot->base_gfn, level) + 1;
8083
8084 slot->arch.rmap[i] =
8085 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8086 if (!slot->arch.rmap[i])
8087 goto out_free;
8088 if (i == 0)
8089 continue;
8090
8091 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8092 if (!linfo)
8093 goto out_free;
8094
8095 slot->arch.lpage_info[i - 1] = linfo;
8096
8097 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8098 linfo[0].disallow_lpage = 1;
8099 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8100 linfo[lpages - 1].disallow_lpage = 1;
8101 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8102 /*
8103 * If the gfn and userspace address are not aligned wrt each
8104 * other, or if explicitly asked to, disable large page
8105 * support for this slot
8106 */
8107 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8108 !kvm_largepages_enabled()) {
8109 unsigned long j;
8110
8111 for (j = 0; j < lpages; ++j)
8112 linfo[j].disallow_lpage = 1;
8113 }
8114 }
8115
8116 if (kvm_page_track_create_memslot(slot, npages))
8117 goto out_free;
8118
8119 return 0;
8120
8121 out_free:
8122 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8123 kvfree(slot->arch.rmap[i]);
8124 slot->arch.rmap[i] = NULL;
8125 if (i == 0)
8126 continue;
8127
8128 kvfree(slot->arch.lpage_info[i - 1]);
8129 slot->arch.lpage_info[i - 1] = NULL;
8130 }
8131 return -ENOMEM;
8132 }
8133
8134 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8135 {
8136 /*
8137 * memslots->generation has been incremented.
8138 * mmio generation may have reached its maximum value.
8139 */
8140 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8141 }
8142
8143 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8144 struct kvm_memory_slot *memslot,
8145 const struct kvm_userspace_memory_region *mem,
8146 enum kvm_mr_change change)
8147 {
8148 return 0;
8149 }
8150
8151 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8152 struct kvm_memory_slot *new)
8153 {
8154 /* Still write protect RO slot */
8155 if (new->flags & KVM_MEM_READONLY) {
8156 kvm_mmu_slot_remove_write_access(kvm, new);
8157 return;
8158 }
8159
8160 /*
8161 * Call kvm_x86_ops dirty logging hooks when they are valid.
8162 *
8163 * kvm_x86_ops->slot_disable_log_dirty is called when:
8164 *
8165 * - KVM_MR_CREATE with dirty logging is disabled
8166 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8167 *
8168 * The reason is, in case of PML, we need to set D-bit for any slots
8169 * with dirty logging disabled in order to eliminate unnecessary GPA
8170 * logging in PML buffer (and potential PML buffer full VMEXT). This
8171 * guarantees leaving PML enabled during guest's lifetime won't have
8172 * any additonal overhead from PML when guest is running with dirty
8173 * logging disabled for memory slots.
8174 *
8175 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8176 * to dirty logging mode.
8177 *
8178 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8179 *
8180 * In case of write protect:
8181 *
8182 * Write protect all pages for dirty logging.
8183 *
8184 * All the sptes including the large sptes which point to this
8185 * slot are set to readonly. We can not create any new large
8186 * spte on this slot until the end of the logging.
8187 *
8188 * See the comments in fast_page_fault().
8189 */
8190 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8191 if (kvm_x86_ops->slot_enable_log_dirty)
8192 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8193 else
8194 kvm_mmu_slot_remove_write_access(kvm, new);
8195 } else {
8196 if (kvm_x86_ops->slot_disable_log_dirty)
8197 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8198 }
8199 }
8200
8201 void kvm_arch_commit_memory_region(struct kvm *kvm,
8202 const struct kvm_userspace_memory_region *mem,
8203 const struct kvm_memory_slot *old,
8204 const struct kvm_memory_slot *new,
8205 enum kvm_mr_change change)
8206 {
8207 int nr_mmu_pages = 0;
8208
8209 if (!kvm->arch.n_requested_mmu_pages)
8210 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8211
8212 if (nr_mmu_pages)
8213 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8214
8215 /*
8216 * Dirty logging tracks sptes in 4k granularity, meaning that large
8217 * sptes have to be split. If live migration is successful, the guest
8218 * in the source machine will be destroyed and large sptes will be
8219 * created in the destination. However, if the guest continues to run
8220 * in the source machine (for example if live migration fails), small
8221 * sptes will remain around and cause bad performance.
8222 *
8223 * Scan sptes if dirty logging has been stopped, dropping those
8224 * which can be collapsed into a single large-page spte. Later
8225 * page faults will create the large-page sptes.
8226 */
8227 if ((change != KVM_MR_DELETE) &&
8228 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8229 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8230 kvm_mmu_zap_collapsible_sptes(kvm, new);
8231
8232 /*
8233 * Set up write protection and/or dirty logging for the new slot.
8234 *
8235 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8236 * been zapped so no dirty logging staff is needed for old slot. For
8237 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8238 * new and it's also covered when dealing with the new slot.
8239 *
8240 * FIXME: const-ify all uses of struct kvm_memory_slot.
8241 */
8242 if (change != KVM_MR_DELETE)
8243 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8244 }
8245
8246 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8247 {
8248 kvm_mmu_invalidate_zap_all_pages(kvm);
8249 }
8250
8251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8252 struct kvm_memory_slot *slot)
8253 {
8254 kvm_page_track_flush_slot(kvm, slot);
8255 }
8256
8257 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8258 {
8259 if (!list_empty_careful(&vcpu->async_pf.done))
8260 return true;
8261
8262 if (kvm_apic_has_events(vcpu))
8263 return true;
8264
8265 if (vcpu->arch.pv.pv_unhalted)
8266 return true;
8267
8268 if (atomic_read(&vcpu->arch.nmi_queued))
8269 return true;
8270
8271 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8272 return true;
8273
8274 if (kvm_arch_interrupt_allowed(vcpu) &&
8275 kvm_cpu_has_interrupt(vcpu))
8276 return true;
8277
8278 if (kvm_hv_has_stimer_pending(vcpu))
8279 return true;
8280
8281 return false;
8282 }
8283
8284 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8285 {
8286 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8287 kvm_x86_ops->check_nested_events(vcpu, false);
8288
8289 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8290 }
8291
8292 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8293 {
8294 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8295 }
8296
8297 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8298 {
8299 return kvm_x86_ops->interrupt_allowed(vcpu);
8300 }
8301
8302 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8303 {
8304 if (is_64_bit_mode(vcpu))
8305 return kvm_rip_read(vcpu);
8306 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8307 kvm_rip_read(vcpu));
8308 }
8309 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8310
8311 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8312 {
8313 return kvm_get_linear_rip(vcpu) == linear_rip;
8314 }
8315 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8316
8317 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8318 {
8319 unsigned long rflags;
8320
8321 rflags = kvm_x86_ops->get_rflags(vcpu);
8322 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8323 rflags &= ~X86_EFLAGS_TF;
8324 return rflags;
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8327
8328 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8329 {
8330 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8331 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8332 rflags |= X86_EFLAGS_TF;
8333 kvm_x86_ops->set_rflags(vcpu, rflags);
8334 }
8335
8336 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8337 {
8338 __kvm_set_rflags(vcpu, rflags);
8339 kvm_make_request(KVM_REQ_EVENT, vcpu);
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8342
8343 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8344 {
8345 int r;
8346
8347 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8348 work->wakeup_all)
8349 return;
8350
8351 r = kvm_mmu_reload(vcpu);
8352 if (unlikely(r))
8353 return;
8354
8355 if (!vcpu->arch.mmu.direct_map &&
8356 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8357 return;
8358
8359 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8360 }
8361
8362 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8363 {
8364 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8365 }
8366
8367 static inline u32 kvm_async_pf_next_probe(u32 key)
8368 {
8369 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8370 }
8371
8372 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8373 {
8374 u32 key = kvm_async_pf_hash_fn(gfn);
8375
8376 while (vcpu->arch.apf.gfns[key] != ~0)
8377 key = kvm_async_pf_next_probe(key);
8378
8379 vcpu->arch.apf.gfns[key] = gfn;
8380 }
8381
8382 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384 int i;
8385 u32 key = kvm_async_pf_hash_fn(gfn);
8386
8387 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8388 (vcpu->arch.apf.gfns[key] != gfn &&
8389 vcpu->arch.apf.gfns[key] != ~0); i++)
8390 key = kvm_async_pf_next_probe(key);
8391
8392 return key;
8393 }
8394
8395 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8396 {
8397 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8398 }
8399
8400 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8401 {
8402 u32 i, j, k;
8403
8404 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8405 while (true) {
8406 vcpu->arch.apf.gfns[i] = ~0;
8407 do {
8408 j = kvm_async_pf_next_probe(j);
8409 if (vcpu->arch.apf.gfns[j] == ~0)
8410 return;
8411 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8412 /*
8413 * k lies cyclically in ]i,j]
8414 * | i.k.j |
8415 * |....j i.k.| or |.k..j i...|
8416 */
8417 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8418 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8419 i = j;
8420 }
8421 }
8422
8423 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8424 {
8425
8426 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8427 sizeof(val));
8428 }
8429
8430 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8431 struct kvm_async_pf *work)
8432 {
8433 struct x86_exception fault;
8434
8435 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8436 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8437
8438 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8439 (vcpu->arch.apf.send_user_only &&
8440 kvm_x86_ops->get_cpl(vcpu) == 0))
8441 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8442 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8443 fault.vector = PF_VECTOR;
8444 fault.error_code_valid = true;
8445 fault.error_code = 0;
8446 fault.nested_page_fault = false;
8447 fault.address = work->arch.token;
8448 kvm_inject_page_fault(vcpu, &fault);
8449 }
8450 }
8451
8452 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8453 struct kvm_async_pf *work)
8454 {
8455 struct x86_exception fault;
8456
8457 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8458 if (work->wakeup_all)
8459 work->arch.token = ~0; /* broadcast wakeup */
8460 else
8461 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8462
8463 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8464 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8465 fault.vector = PF_VECTOR;
8466 fault.error_code_valid = true;
8467 fault.error_code = 0;
8468 fault.nested_page_fault = false;
8469 fault.address = work->arch.token;
8470 kvm_inject_page_fault(vcpu, &fault);
8471 }
8472 vcpu->arch.apf.halted = false;
8473 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8474 }
8475
8476 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8477 {
8478 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8479 return true;
8480 else
8481 return !kvm_event_needs_reinjection(vcpu) &&
8482 kvm_x86_ops->interrupt_allowed(vcpu);
8483 }
8484
8485 void kvm_arch_start_assignment(struct kvm *kvm)
8486 {
8487 atomic_inc(&kvm->arch.assigned_device_count);
8488 }
8489 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8490
8491 void kvm_arch_end_assignment(struct kvm *kvm)
8492 {
8493 atomic_dec(&kvm->arch.assigned_device_count);
8494 }
8495 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8496
8497 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8498 {
8499 return atomic_read(&kvm->arch.assigned_device_count);
8500 }
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8502
8503 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8504 {
8505 atomic_inc(&kvm->arch.noncoherent_dma_count);
8506 }
8507 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8508
8509 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8510 {
8511 atomic_dec(&kvm->arch.noncoherent_dma_count);
8512 }
8513 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8514
8515 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8516 {
8517 return atomic_read(&kvm->arch.noncoherent_dma_count);
8518 }
8519 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8520
8521 bool kvm_arch_has_irq_bypass(void)
8522 {
8523 return kvm_x86_ops->update_pi_irte != NULL;
8524 }
8525
8526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8527 struct irq_bypass_producer *prod)
8528 {
8529 struct kvm_kernel_irqfd *irqfd =
8530 container_of(cons, struct kvm_kernel_irqfd, consumer);
8531
8532 irqfd->producer = prod;
8533
8534 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8535 prod->irq, irqfd->gsi, 1);
8536 }
8537
8538 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8539 struct irq_bypass_producer *prod)
8540 {
8541 int ret;
8542 struct kvm_kernel_irqfd *irqfd =
8543 container_of(cons, struct kvm_kernel_irqfd, consumer);
8544
8545 WARN_ON(irqfd->producer != prod);
8546 irqfd->producer = NULL;
8547
8548 /*
8549 * When producer of consumer is unregistered, we change back to
8550 * remapped mode, so we can re-use the current implementation
8551 * when the irq is masked/disabled or the consumer side (KVM
8552 * int this case doesn't want to receive the interrupts.
8553 */
8554 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8555 if (ret)
8556 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8557 " fails: %d\n", irqfd->consumer.token, ret);
8558 }
8559
8560 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8561 uint32_t guest_irq, bool set)
8562 {
8563 if (!kvm_x86_ops->update_pi_irte)
8564 return -EINVAL;
8565
8566 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8567 }
8568
8569 bool kvm_vector_hashing_enabled(void)
8570 {
8571 return vector_hashing;
8572 }
8573 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8574
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);