]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define emul_to_vcpu(ctxt) \
94 ((struct kvm_vcpu *)(ctxt)->vcpu)
95
96 /* EFER defaults:
97 * - enable syscall per default because its emulated by KVM
98 * - enable LME and LMA per default on 64 bit KVM
99 */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121
122 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124
125 struct kvm_x86_ops kvm_x86_ops __read_mostly;
126 EXPORT_SYMBOL_GPL(kvm_x86_ops);
127
128 #define KVM_X86_OP(func) \
129 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
130 *(((struct kvm_x86_ops *)0)->func));
131 #define KVM_X86_OP_NULL KVM_X86_OP
132 #include <asm/kvm-x86-ops.h>
133 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
134 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
136
137 static bool __read_mostly ignore_msrs = 0;
138 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
139
140 bool __read_mostly report_ignored_msrs = true;
141 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(report_ignored_msrs);
143
144 unsigned int min_timer_period_us = 200;
145 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly kvmclock_periodic_sync = true;
148 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
149
150 bool __read_mostly kvm_has_tsc_control;
151 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
152 u32 __read_mostly kvm_max_guest_tsc_khz;
153 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
154 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
155 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
156 u64 __read_mostly kvm_max_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
158 u64 __read_mostly kvm_default_tsc_scaling_ratio;
159 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
160 bool __read_mostly kvm_has_bus_lock_exit;
161 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166
167 /*
168 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
169 * adaptive tuning starting from default advancement of 1000ns. '0' disables
170 * advancement entirely. Any other value is used as-is and disables adaptive
171 * tuning, i.e. allows privileged userspace to set an exact advancement time.
172 */
173 static int __read_mostly lapic_timer_advance_ns = -1;
174 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
175
176 static bool __read_mostly vector_hashing = true;
177 module_param(vector_hashing, bool, S_IRUGO);
178
179 bool __read_mostly enable_vmware_backdoor = false;
180 module_param(enable_vmware_backdoor, bool, S_IRUGO);
181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
182
183 static bool __read_mostly force_emulation_prefix = false;
184 module_param(force_emulation_prefix, bool, S_IRUGO);
185
186 int __read_mostly pi_inject_timer = -1;
187 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188
189 /*
190 * Restoring the host value for MSRs that are only consumed when running in
191 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
192 * returns to userspace, i.e. the kernel can run with the guest's value.
193 */
194 #define KVM_MAX_NR_USER_RETURN_MSRS 16
195
196 struct kvm_user_return_msrs {
197 struct user_return_notifier urn;
198 bool registered;
199 struct kvm_user_return_msr_values {
200 u64 host;
201 u64 curr;
202 } values[KVM_MAX_NR_USER_RETURN_MSRS];
203 };
204
205 u32 __read_mostly kvm_nr_uret_msrs;
206 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
207 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
208 static struct kvm_user_return_msrs __percpu *user_return_msrs;
209
210 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
211 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
212 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
213 | XFEATURE_MASK_PKRU)
214
215 u64 __read_mostly host_efer;
216 EXPORT_SYMBOL_GPL(host_efer);
217
218 bool __read_mostly allow_smaller_maxphyaddr = 0;
219 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
220
221 bool __read_mostly enable_apicv = true;
222 EXPORT_SYMBOL_GPL(enable_apicv);
223
224 u64 __read_mostly host_xss;
225 EXPORT_SYMBOL_GPL(host_xss);
226 u64 __read_mostly supported_xss;
227 EXPORT_SYMBOL_GPL(supported_xss);
228
229 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
230 KVM_GENERIC_VM_STATS(),
231 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
232 STATS_DESC_COUNTER(VM, mmu_pte_write),
233 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
234 STATS_DESC_COUNTER(VM, mmu_flooded),
235 STATS_DESC_COUNTER(VM, mmu_recycled),
236 STATS_DESC_COUNTER(VM, mmu_cache_miss),
237 STATS_DESC_ICOUNTER(VM, mmu_unsync),
238 STATS_DESC_ICOUNTER(VM, pages_4k),
239 STATS_DESC_ICOUNTER(VM, pages_2m),
240 STATS_DESC_ICOUNTER(VM, pages_1g),
241 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
242 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
243 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 };
245
246 const struct kvm_stats_header kvm_vm_stats_header = {
247 .name_size = KVM_STATS_NAME_SIZE,
248 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
249 .id_offset = sizeof(struct kvm_stats_header),
250 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
251 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
252 sizeof(kvm_vm_stats_desc),
253 };
254
255 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
256 KVM_GENERIC_VCPU_STATS(),
257 STATS_DESC_COUNTER(VCPU, pf_fixed),
258 STATS_DESC_COUNTER(VCPU, pf_guest),
259 STATS_DESC_COUNTER(VCPU, tlb_flush),
260 STATS_DESC_COUNTER(VCPU, invlpg),
261 STATS_DESC_COUNTER(VCPU, exits),
262 STATS_DESC_COUNTER(VCPU, io_exits),
263 STATS_DESC_COUNTER(VCPU, mmio_exits),
264 STATS_DESC_COUNTER(VCPU, signal_exits),
265 STATS_DESC_COUNTER(VCPU, irq_window_exits),
266 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
267 STATS_DESC_COUNTER(VCPU, l1d_flush),
268 STATS_DESC_COUNTER(VCPU, halt_exits),
269 STATS_DESC_COUNTER(VCPU, request_irq_exits),
270 STATS_DESC_COUNTER(VCPU, irq_exits),
271 STATS_DESC_COUNTER(VCPU, host_state_reload),
272 STATS_DESC_COUNTER(VCPU, fpu_reload),
273 STATS_DESC_COUNTER(VCPU, insn_emulation),
274 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
275 STATS_DESC_COUNTER(VCPU, hypercalls),
276 STATS_DESC_COUNTER(VCPU, irq_injections),
277 STATS_DESC_COUNTER(VCPU, nmi_injections),
278 STATS_DESC_COUNTER(VCPU, req_event),
279 STATS_DESC_COUNTER(VCPU, nested_run),
280 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
281 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
282 STATS_DESC_ICOUNTER(VCPU, guest_mode)
283 };
284
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286 .name_size = KVM_STATS_NAME_SIZE,
287 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288 .id_offset = sizeof(struct kvm_stats_header),
289 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291 sizeof(kvm_vcpu_stats_desc),
292 };
293
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
852 vcpu->arch.pdptrs_from_userspace = false;
853
854 out:
855
856 return ret;
857 }
858 EXPORT_SYMBOL_GPL(load_pdptrs);
859
860 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
861 {
862 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
863 kvm_clear_async_pf_completion_queue(vcpu);
864 kvm_async_pf_hash_reset(vcpu);
865 }
866
867 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
868 kvm_mmu_reset_context(vcpu);
869
870 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
871 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
872 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
873 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
874 }
875 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
876
877 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
878 {
879 unsigned long old_cr0 = kvm_read_cr0(vcpu);
880 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
881
882 cr0 |= X86_CR0_ET;
883
884 #ifdef CONFIG_X86_64
885 if (cr0 & 0xffffffff00000000UL)
886 return 1;
887 #endif
888
889 cr0 &= ~CR0_RESERVED_BITS;
890
891 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
892 return 1;
893
894 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
895 return 1;
896
897 #ifdef CONFIG_X86_64
898 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
899 (cr0 & X86_CR0_PG)) {
900 int cs_db, cs_l;
901
902 if (!is_pae(vcpu))
903 return 1;
904 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
905 if (cs_l)
906 return 1;
907 }
908 #endif
909 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
910 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
911 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
912 return 1;
913
914 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
915 return 1;
916
917 static_call(kvm_x86_set_cr0)(vcpu, cr0);
918
919 kvm_post_set_cr0(vcpu, old_cr0, cr0);
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_set_cr0);
924
925 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
926 {
927 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
928 }
929 EXPORT_SYMBOL_GPL(kvm_lmsw);
930
931 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
932 {
933 if (vcpu->arch.guest_state_protected)
934 return;
935
936 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
937
938 if (vcpu->arch.xcr0 != host_xcr0)
939 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
940
941 if (vcpu->arch.xsaves_enabled &&
942 vcpu->arch.ia32_xss != host_xss)
943 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
944 }
945
946 if (static_cpu_has(X86_FEATURE_PKU) &&
947 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
948 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
949 vcpu->arch.pkru != vcpu->arch.host_pkru)
950 write_pkru(vcpu->arch.pkru);
951 }
952 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
953
954 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
955 {
956 if (vcpu->arch.guest_state_protected)
957 return;
958
959 if (static_cpu_has(X86_FEATURE_PKU) &&
960 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
961 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
962 vcpu->arch.pkru = rdpkru();
963 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
964 write_pkru(vcpu->arch.host_pkru);
965 }
966
967 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
968
969 if (vcpu->arch.xcr0 != host_xcr0)
970 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
971
972 if (vcpu->arch.xsaves_enabled &&
973 vcpu->arch.ia32_xss != host_xss)
974 wrmsrl(MSR_IA32_XSS, host_xss);
975 }
976
977 }
978 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
979
980 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
981 {
982 u64 xcr0 = xcr;
983 u64 old_xcr0 = vcpu->arch.xcr0;
984 u64 valid_bits;
985
986 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
987 if (index != XCR_XFEATURE_ENABLED_MASK)
988 return 1;
989 if (!(xcr0 & XFEATURE_MASK_FP))
990 return 1;
991 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
992 return 1;
993
994 /*
995 * Do not allow the guest to set bits that we do not support
996 * saving. However, xcr0 bit 0 is always set, even if the
997 * emulated CPU does not support XSAVE (see fx_init).
998 */
999 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1000 if (xcr0 & ~valid_bits)
1001 return 1;
1002
1003 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1004 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1005 return 1;
1006
1007 if (xcr0 & XFEATURE_MASK_AVX512) {
1008 if (!(xcr0 & XFEATURE_MASK_YMM))
1009 return 1;
1010 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1011 return 1;
1012 }
1013 vcpu->arch.xcr0 = xcr0;
1014
1015 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1016 kvm_update_cpuid_runtime(vcpu);
1017 return 0;
1018 }
1019
1020 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1021 {
1022 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1023 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1024 kvm_inject_gp(vcpu, 0);
1025 return 1;
1026 }
1027
1028 return kvm_skip_emulated_instruction(vcpu);
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1031
1032 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1033 {
1034 if (cr4 & cr4_reserved_bits)
1035 return false;
1036
1037 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1038 return false;
1039
1040 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1043
1044 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1045 {
1046 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1047 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1048 kvm_mmu_reset_context(vcpu);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1051
1052 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1053 {
1054 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1055 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1056 X86_CR4_SMEP;
1057
1058 if (!kvm_is_valid_cr4(vcpu, cr4))
1059 return 1;
1060
1061 if (is_long_mode(vcpu)) {
1062 if (!(cr4 & X86_CR4_PAE))
1063 return 1;
1064 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1065 return 1;
1066 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1067 && ((cr4 ^ old_cr4) & pdptr_bits)
1068 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1069 kvm_read_cr3(vcpu)))
1070 return 1;
1071
1072 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1073 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1074 return 1;
1075
1076 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1077 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1078 return 1;
1079 }
1080
1081 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1082
1083 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1084
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1088
1089 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1090 {
1091 struct kvm_mmu *mmu = vcpu->arch.mmu;
1092 unsigned long roots_to_free = 0;
1093 int i;
1094
1095 /*
1096 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1097 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1098 * also via the emulator. KVM's TDP page tables are not in the scope of
1099 * the invalidation, but the guest's TLB entries need to be flushed as
1100 * the CPU may have cached entries in its TLB for the target PCID.
1101 */
1102 if (unlikely(tdp_enabled)) {
1103 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1104 return;
1105 }
1106
1107 /*
1108 * If neither the current CR3 nor any of the prev_roots use the given
1109 * PCID, then nothing needs to be done here because a resync will
1110 * happen anyway before switching to any other CR3.
1111 */
1112 if (kvm_get_active_pcid(vcpu) == pcid) {
1113 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1114 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1115 }
1116
1117 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1118 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1119 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1120
1121 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1122 }
1123
1124 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1125 {
1126 bool skip_tlb_flush = false;
1127 unsigned long pcid = 0;
1128 #ifdef CONFIG_X86_64
1129 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1130
1131 if (pcid_enabled) {
1132 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1133 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1134 pcid = cr3 & X86_CR3_PCID_MASK;
1135 }
1136 #endif
1137
1138 /* PDPTRs are always reloaded for PAE paging. */
1139 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1140 goto handle_tlb_flush;
1141
1142 /*
1143 * Do not condition the GPA check on long mode, this helper is used to
1144 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1145 * the current vCPU mode is accurate.
1146 */
1147 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1148 return 1;
1149
1150 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1151 return 1;
1152
1153 if (cr3 != kvm_read_cr3(vcpu))
1154 kvm_mmu_new_pgd(vcpu, cr3);
1155
1156 vcpu->arch.cr3 = cr3;
1157 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1158
1159 handle_tlb_flush:
1160 /*
1161 * A load of CR3 that flushes the TLB flushes only the current PCID,
1162 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1163 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1164 * and it's impossible to use a non-zero PCID when PCID is disabled,
1165 * i.e. only PCID=0 can be relevant.
1166 */
1167 if (!skip_tlb_flush)
1168 kvm_invalidate_pcid(vcpu, pcid);
1169
1170 return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1173
1174 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1175 {
1176 if (cr8 & CR8_RESERVED_BITS)
1177 return 1;
1178 if (lapic_in_kernel(vcpu))
1179 kvm_lapic_set_tpr(vcpu, cr8);
1180 else
1181 vcpu->arch.cr8 = cr8;
1182 return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1185
1186 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1187 {
1188 if (lapic_in_kernel(vcpu))
1189 return kvm_lapic_get_cr8(vcpu);
1190 else
1191 return vcpu->arch.cr8;
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1194
1195 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1196 {
1197 int i;
1198
1199 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1200 for (i = 0; i < KVM_NR_DB_REGS; i++)
1201 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1202 }
1203 }
1204
1205 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1206 {
1207 unsigned long dr7;
1208
1209 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1210 dr7 = vcpu->arch.guest_debug_dr7;
1211 else
1212 dr7 = vcpu->arch.dr7;
1213 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1214 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1215 if (dr7 & DR7_BP_EN_MASK)
1216 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1219
1220 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1221 {
1222 u64 fixed = DR6_FIXED_1;
1223
1224 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1225 fixed |= DR6_RTM;
1226
1227 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1228 fixed |= DR6_BUS_LOCK;
1229 return fixed;
1230 }
1231
1232 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1233 {
1234 size_t size = ARRAY_SIZE(vcpu->arch.db);
1235
1236 switch (dr) {
1237 case 0 ... 3:
1238 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1239 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1240 vcpu->arch.eff_db[dr] = val;
1241 break;
1242 case 4:
1243 case 6:
1244 if (!kvm_dr6_valid(val))
1245 return 1; /* #GP */
1246 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1247 break;
1248 case 5:
1249 default: /* 7 */
1250 if (!kvm_dr7_valid(val))
1251 return 1; /* #GP */
1252 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1253 kvm_update_dr7(vcpu);
1254 break;
1255 }
1256
1257 return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_dr);
1260
1261 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1262 {
1263 size_t size = ARRAY_SIZE(vcpu->arch.db);
1264
1265 switch (dr) {
1266 case 0 ... 3:
1267 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1268 break;
1269 case 4:
1270 case 6:
1271 *val = vcpu->arch.dr6;
1272 break;
1273 case 5:
1274 default: /* 7 */
1275 *val = vcpu->arch.dr7;
1276 break;
1277 }
1278 }
1279 EXPORT_SYMBOL_GPL(kvm_get_dr);
1280
1281 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1282 {
1283 u32 ecx = kvm_rcx_read(vcpu);
1284 u64 data;
1285
1286 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1287 kvm_inject_gp(vcpu, 0);
1288 return 1;
1289 }
1290
1291 kvm_rax_write(vcpu, (u32)data);
1292 kvm_rdx_write(vcpu, data >> 32);
1293 return kvm_skip_emulated_instruction(vcpu);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1296
1297 /*
1298 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1299 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1300 *
1301 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1302 * extract the supported MSRs from the related const lists.
1303 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1304 * capabilities of the host cpu. This capabilities test skips MSRs that are
1305 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1306 * may depend on host virtualization features rather than host cpu features.
1307 */
1308
1309 static const u32 msrs_to_save_all[] = {
1310 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1311 MSR_STAR,
1312 #ifdef CONFIG_X86_64
1313 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1314 #endif
1315 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1316 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1317 MSR_IA32_SPEC_CTRL,
1318 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1319 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1320 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1321 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1322 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1323 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1324 MSR_IA32_UMWAIT_CONTROL,
1325
1326 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1327 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1328 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1329 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1330 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1331 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1332 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1333 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1334 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1335 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1336 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1337 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1338 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1339 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1340 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1341 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1342 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1343 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1344 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1345 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1346 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1347 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1348
1349 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1350 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1351 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1352 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1353 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1354 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1355 };
1356
1357 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1358 static unsigned num_msrs_to_save;
1359
1360 static const u32 emulated_msrs_all[] = {
1361 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1362 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1363 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1364 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1365 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1366 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1367 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1368 HV_X64_MSR_RESET,
1369 HV_X64_MSR_VP_INDEX,
1370 HV_X64_MSR_VP_RUNTIME,
1371 HV_X64_MSR_SCONTROL,
1372 HV_X64_MSR_STIMER0_CONFIG,
1373 HV_X64_MSR_VP_ASSIST_PAGE,
1374 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1375 HV_X64_MSR_TSC_EMULATION_STATUS,
1376 HV_X64_MSR_SYNDBG_OPTIONS,
1377 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1378 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1379 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1380
1381 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1382 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1383
1384 MSR_IA32_TSC_ADJUST,
1385 MSR_IA32_TSC_DEADLINE,
1386 MSR_IA32_ARCH_CAPABILITIES,
1387 MSR_IA32_PERF_CAPABILITIES,
1388 MSR_IA32_MISC_ENABLE,
1389 MSR_IA32_MCG_STATUS,
1390 MSR_IA32_MCG_CTL,
1391 MSR_IA32_MCG_EXT_CTL,
1392 MSR_IA32_SMBASE,
1393 MSR_SMI_COUNT,
1394 MSR_PLATFORM_INFO,
1395 MSR_MISC_FEATURES_ENABLES,
1396 MSR_AMD64_VIRT_SPEC_CTRL,
1397 MSR_IA32_POWER_CTL,
1398 MSR_IA32_UCODE_REV,
1399
1400 /*
1401 * The following list leaves out MSRs whose values are determined
1402 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1403 * We always support the "true" VMX control MSRs, even if the host
1404 * processor does not, so I am putting these registers here rather
1405 * than in msrs_to_save_all.
1406 */
1407 MSR_IA32_VMX_BASIC,
1408 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1410 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1411 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1412 MSR_IA32_VMX_MISC,
1413 MSR_IA32_VMX_CR0_FIXED0,
1414 MSR_IA32_VMX_CR4_FIXED0,
1415 MSR_IA32_VMX_VMCS_ENUM,
1416 MSR_IA32_VMX_PROCBASED_CTLS2,
1417 MSR_IA32_VMX_EPT_VPID_CAP,
1418 MSR_IA32_VMX_VMFUNC,
1419
1420 MSR_K7_HWCR,
1421 MSR_KVM_POLL_CONTROL,
1422 };
1423
1424 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1425 static unsigned num_emulated_msrs;
1426
1427 /*
1428 * List of msr numbers which are used to expose MSR-based features that
1429 * can be used by a hypervisor to validate requested CPU features.
1430 */
1431 static const u32 msr_based_features_all[] = {
1432 MSR_IA32_VMX_BASIC,
1433 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1434 MSR_IA32_VMX_PINBASED_CTLS,
1435 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1436 MSR_IA32_VMX_PROCBASED_CTLS,
1437 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1438 MSR_IA32_VMX_EXIT_CTLS,
1439 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1440 MSR_IA32_VMX_ENTRY_CTLS,
1441 MSR_IA32_VMX_MISC,
1442 MSR_IA32_VMX_CR0_FIXED0,
1443 MSR_IA32_VMX_CR0_FIXED1,
1444 MSR_IA32_VMX_CR4_FIXED0,
1445 MSR_IA32_VMX_CR4_FIXED1,
1446 MSR_IA32_VMX_VMCS_ENUM,
1447 MSR_IA32_VMX_PROCBASED_CTLS2,
1448 MSR_IA32_VMX_EPT_VPID_CAP,
1449 MSR_IA32_VMX_VMFUNC,
1450
1451 MSR_F10H_DECFG,
1452 MSR_IA32_UCODE_REV,
1453 MSR_IA32_ARCH_CAPABILITIES,
1454 MSR_IA32_PERF_CAPABILITIES,
1455 };
1456
1457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1458 static unsigned int num_msr_based_features;
1459
1460 static u64 kvm_get_arch_capabilities(void)
1461 {
1462 u64 data = 0;
1463
1464 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1465 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1466
1467 /*
1468 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1469 * the nested hypervisor runs with NX huge pages. If it is not,
1470 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1471 * L1 guests, so it need not worry about its own (L2) guests.
1472 */
1473 data |= ARCH_CAP_PSCHANGE_MC_NO;
1474
1475 /*
1476 * If we're doing cache flushes (either "always" or "cond")
1477 * we will do one whenever the guest does a vmlaunch/vmresume.
1478 * If an outer hypervisor is doing the cache flush for us
1479 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1480 * capability to the guest too, and if EPT is disabled we're not
1481 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1482 * require a nested hypervisor to do a flush of its own.
1483 */
1484 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1485 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1486
1487 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1488 data |= ARCH_CAP_RDCL_NO;
1489 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1490 data |= ARCH_CAP_SSB_NO;
1491 if (!boot_cpu_has_bug(X86_BUG_MDS))
1492 data |= ARCH_CAP_MDS_NO;
1493
1494 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1495 /*
1496 * If RTM=0 because the kernel has disabled TSX, the host might
1497 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1498 * and therefore knows that there cannot be TAA) but keep
1499 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1500 * and we want to allow migrating those guests to tsx=off hosts.
1501 */
1502 data &= ~ARCH_CAP_TAA_NO;
1503 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1504 data |= ARCH_CAP_TAA_NO;
1505 } else {
1506 /*
1507 * Nothing to do here; we emulate TSX_CTRL if present on the
1508 * host so the guest can choose between disabling TSX or
1509 * using VERW to clear CPU buffers.
1510 */
1511 }
1512
1513 return data;
1514 }
1515
1516 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1517 {
1518 switch (msr->index) {
1519 case MSR_IA32_ARCH_CAPABILITIES:
1520 msr->data = kvm_get_arch_capabilities();
1521 break;
1522 case MSR_IA32_UCODE_REV:
1523 rdmsrl_safe(msr->index, &msr->data);
1524 break;
1525 default:
1526 return static_call(kvm_x86_get_msr_feature)(msr);
1527 }
1528 return 0;
1529 }
1530
1531 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1532 {
1533 struct kvm_msr_entry msr;
1534 int r;
1535
1536 msr.index = index;
1537 r = kvm_get_msr_feature(&msr);
1538
1539 if (r == KVM_MSR_RET_INVALID) {
1540 /* Unconditionally clear the output for simplicity */
1541 *data = 0;
1542 if (kvm_msr_ignored_check(index, 0, false))
1543 r = 0;
1544 }
1545
1546 if (r)
1547 return r;
1548
1549 *data = msr.data;
1550
1551 return 0;
1552 }
1553
1554 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1555 {
1556 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1557 return false;
1558
1559 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1560 return false;
1561
1562 if (efer & (EFER_LME | EFER_LMA) &&
1563 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1564 return false;
1565
1566 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1567 return false;
1568
1569 return true;
1570
1571 }
1572 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1573 {
1574 if (efer & efer_reserved_bits)
1575 return false;
1576
1577 return __kvm_valid_efer(vcpu, efer);
1578 }
1579 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1580
1581 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1582 {
1583 u64 old_efer = vcpu->arch.efer;
1584 u64 efer = msr_info->data;
1585 int r;
1586
1587 if (efer & efer_reserved_bits)
1588 return 1;
1589
1590 if (!msr_info->host_initiated) {
1591 if (!__kvm_valid_efer(vcpu, efer))
1592 return 1;
1593
1594 if (is_paging(vcpu) &&
1595 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1596 return 1;
1597 }
1598
1599 efer &= ~EFER_LMA;
1600 efer |= vcpu->arch.efer & EFER_LMA;
1601
1602 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1603 if (r) {
1604 WARN_ON(r > 0);
1605 return r;
1606 }
1607
1608 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1609 kvm_mmu_reset_context(vcpu);
1610
1611 return 0;
1612 }
1613
1614 void kvm_enable_efer_bits(u64 mask)
1615 {
1616 efer_reserved_bits &= ~mask;
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1619
1620 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1621 {
1622 struct kvm_x86_msr_filter *msr_filter;
1623 struct msr_bitmap_range *ranges;
1624 struct kvm *kvm = vcpu->kvm;
1625 bool allowed;
1626 int idx;
1627 u32 i;
1628
1629 /* x2APIC MSRs do not support filtering. */
1630 if (index >= 0x800 && index <= 0x8ff)
1631 return true;
1632
1633 idx = srcu_read_lock(&kvm->srcu);
1634
1635 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1636 if (!msr_filter) {
1637 allowed = true;
1638 goto out;
1639 }
1640
1641 allowed = msr_filter->default_allow;
1642 ranges = msr_filter->ranges;
1643
1644 for (i = 0; i < msr_filter->count; i++) {
1645 u32 start = ranges[i].base;
1646 u32 end = start + ranges[i].nmsrs;
1647 u32 flags = ranges[i].flags;
1648 unsigned long *bitmap = ranges[i].bitmap;
1649
1650 if ((index >= start) && (index < end) && (flags & type)) {
1651 allowed = !!test_bit(index - start, bitmap);
1652 break;
1653 }
1654 }
1655
1656 out:
1657 srcu_read_unlock(&kvm->srcu, idx);
1658
1659 return allowed;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1662
1663 /*
1664 * Write @data into the MSR specified by @index. Select MSR specific fault
1665 * checks are bypassed if @host_initiated is %true.
1666 * Returns 0 on success, non-0 otherwise.
1667 * Assumes vcpu_load() was already called.
1668 */
1669 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1670 bool host_initiated)
1671 {
1672 struct msr_data msr;
1673
1674 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1675 return KVM_MSR_RET_FILTERED;
1676
1677 switch (index) {
1678 case MSR_FS_BASE:
1679 case MSR_GS_BASE:
1680 case MSR_KERNEL_GS_BASE:
1681 case MSR_CSTAR:
1682 case MSR_LSTAR:
1683 if (is_noncanonical_address(data, vcpu))
1684 return 1;
1685 break;
1686 case MSR_IA32_SYSENTER_EIP:
1687 case MSR_IA32_SYSENTER_ESP:
1688 /*
1689 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1690 * non-canonical address is written on Intel but not on
1691 * AMD (which ignores the top 32-bits, because it does
1692 * not implement 64-bit SYSENTER).
1693 *
1694 * 64-bit code should hence be able to write a non-canonical
1695 * value on AMD. Making the address canonical ensures that
1696 * vmentry does not fail on Intel after writing a non-canonical
1697 * value, and that something deterministic happens if the guest
1698 * invokes 64-bit SYSENTER.
1699 */
1700 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1701 break;
1702 case MSR_TSC_AUX:
1703 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1704 return 1;
1705
1706 if (!host_initiated &&
1707 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1708 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1709 return 1;
1710
1711 /*
1712 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1713 * incomplete and conflicting architectural behavior. Current
1714 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1715 * reserved and always read as zeros. Enforce Intel's reserved
1716 * bits check if and only if the guest CPU is Intel, and clear
1717 * the bits in all other cases. This ensures cross-vendor
1718 * migration will provide consistent behavior for the guest.
1719 */
1720 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1721 return 1;
1722
1723 data = (u32)data;
1724 break;
1725 }
1726
1727 msr.data = data;
1728 msr.index = index;
1729 msr.host_initiated = host_initiated;
1730
1731 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1732 }
1733
1734 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1735 u32 index, u64 data, bool host_initiated)
1736 {
1737 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1738
1739 if (ret == KVM_MSR_RET_INVALID)
1740 if (kvm_msr_ignored_check(index, data, true))
1741 ret = 0;
1742
1743 return ret;
1744 }
1745
1746 /*
1747 * Read the MSR specified by @index into @data. Select MSR specific fault
1748 * checks are bypassed if @host_initiated is %true.
1749 * Returns 0 on success, non-0 otherwise.
1750 * Assumes vcpu_load() was already called.
1751 */
1752 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1753 bool host_initiated)
1754 {
1755 struct msr_data msr;
1756 int ret;
1757
1758 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1759 return KVM_MSR_RET_FILTERED;
1760
1761 switch (index) {
1762 case MSR_TSC_AUX:
1763 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1764 return 1;
1765
1766 if (!host_initiated &&
1767 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1768 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1769 return 1;
1770 break;
1771 }
1772
1773 msr.index = index;
1774 msr.host_initiated = host_initiated;
1775
1776 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1777 if (!ret)
1778 *data = msr.data;
1779 return ret;
1780 }
1781
1782 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1783 u32 index, u64 *data, bool host_initiated)
1784 {
1785 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1786
1787 if (ret == KVM_MSR_RET_INVALID) {
1788 /* Unconditionally clear *data for simplicity */
1789 *data = 0;
1790 if (kvm_msr_ignored_check(index, 0, false))
1791 ret = 0;
1792 }
1793
1794 return ret;
1795 }
1796
1797 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1798 {
1799 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_get_msr);
1802
1803 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1804 {
1805 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_set_msr);
1808
1809 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1810 {
1811 int err = vcpu->run->msr.error;
1812 if (!err) {
1813 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1814 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1815 }
1816
1817 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1818 }
1819
1820 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1821 {
1822 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1823 }
1824
1825 static u64 kvm_msr_reason(int r)
1826 {
1827 switch (r) {
1828 case KVM_MSR_RET_INVALID:
1829 return KVM_MSR_EXIT_REASON_UNKNOWN;
1830 case KVM_MSR_RET_FILTERED:
1831 return KVM_MSR_EXIT_REASON_FILTER;
1832 default:
1833 return KVM_MSR_EXIT_REASON_INVAL;
1834 }
1835 }
1836
1837 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1838 u32 exit_reason, u64 data,
1839 int (*completion)(struct kvm_vcpu *vcpu),
1840 int r)
1841 {
1842 u64 msr_reason = kvm_msr_reason(r);
1843
1844 /* Check if the user wanted to know about this MSR fault */
1845 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1846 return 0;
1847
1848 vcpu->run->exit_reason = exit_reason;
1849 vcpu->run->msr.error = 0;
1850 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1851 vcpu->run->msr.reason = msr_reason;
1852 vcpu->run->msr.index = index;
1853 vcpu->run->msr.data = data;
1854 vcpu->arch.complete_userspace_io = completion;
1855
1856 return 1;
1857 }
1858
1859 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1860 {
1861 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1862 complete_emulated_rdmsr, r);
1863 }
1864
1865 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1866 {
1867 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1868 complete_emulated_wrmsr, r);
1869 }
1870
1871 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1872 {
1873 u32 ecx = kvm_rcx_read(vcpu);
1874 u64 data;
1875 int r;
1876
1877 r = kvm_get_msr(vcpu, ecx, &data);
1878
1879 /* MSR read failed? See if we should ask user space */
1880 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1881 /* Bounce to user space */
1882 return 0;
1883 }
1884
1885 if (!r) {
1886 trace_kvm_msr_read(ecx, data);
1887
1888 kvm_rax_write(vcpu, data & -1u);
1889 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1890 } else {
1891 trace_kvm_msr_read_ex(ecx);
1892 }
1893
1894 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1897
1898 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1899 {
1900 u32 ecx = kvm_rcx_read(vcpu);
1901 u64 data = kvm_read_edx_eax(vcpu);
1902 int r;
1903
1904 r = kvm_set_msr(vcpu, ecx, data);
1905
1906 /* MSR write failed? See if we should ask user space */
1907 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1908 /* Bounce to user space */
1909 return 0;
1910
1911 /* Signal all other negative errors to userspace */
1912 if (r < 0)
1913 return r;
1914
1915 if (!r)
1916 trace_kvm_msr_write(ecx, data);
1917 else
1918 trace_kvm_msr_write_ex(ecx, data);
1919
1920 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1923
1924 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1925 {
1926 return kvm_skip_emulated_instruction(vcpu);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1929
1930 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1931 {
1932 /* Treat an INVD instruction as a NOP and just skip it. */
1933 return kvm_emulate_as_nop(vcpu);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1936
1937 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1938 {
1939 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1940 return kvm_emulate_as_nop(vcpu);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1943
1944 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1945 {
1946 kvm_queue_exception(vcpu, UD_VECTOR);
1947 return 1;
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1950
1951 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1952 {
1953 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1954 return kvm_emulate_as_nop(vcpu);
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1957
1958 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1959 {
1960 xfer_to_guest_mode_prepare();
1961 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1962 xfer_to_guest_mode_work_pending();
1963 }
1964
1965 /*
1966 * The fast path for frequent and performance sensitive wrmsr emulation,
1967 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1968 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1969 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1970 * other cases which must be called after interrupts are enabled on the host.
1971 */
1972 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1973 {
1974 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1975 return 1;
1976
1977 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1978 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1979 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1980 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1981
1982 data &= ~(1 << 12);
1983 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1984 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1985 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1986 trace_kvm_apic_write(APIC_ICR, (u32)data);
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1994 {
1995 if (!kvm_can_use_hv_timer(vcpu))
1996 return 1;
1997
1998 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1999 return 0;
2000 }
2001
2002 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2003 {
2004 u32 msr = kvm_rcx_read(vcpu);
2005 u64 data;
2006 fastpath_t ret = EXIT_FASTPATH_NONE;
2007
2008 switch (msr) {
2009 case APIC_BASE_MSR + (APIC_ICR >> 4):
2010 data = kvm_read_edx_eax(vcpu);
2011 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2012 kvm_skip_emulated_instruction(vcpu);
2013 ret = EXIT_FASTPATH_EXIT_HANDLED;
2014 }
2015 break;
2016 case MSR_IA32_TSC_DEADLINE:
2017 data = kvm_read_edx_eax(vcpu);
2018 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2019 kvm_skip_emulated_instruction(vcpu);
2020 ret = EXIT_FASTPATH_REENTER_GUEST;
2021 }
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 if (ret != EXIT_FASTPATH_NONE)
2028 trace_kvm_msr_write(msr, data);
2029
2030 return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2033
2034 /*
2035 * Adapt set_msr() to msr_io()'s calling convention
2036 */
2037 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2038 {
2039 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2040 }
2041
2042 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2043 {
2044 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2045 }
2046
2047 #ifdef CONFIG_X86_64
2048 struct pvclock_clock {
2049 int vclock_mode;
2050 u64 cycle_last;
2051 u64 mask;
2052 u32 mult;
2053 u32 shift;
2054 u64 base_cycles;
2055 u64 offset;
2056 };
2057
2058 struct pvclock_gtod_data {
2059 seqcount_t seq;
2060
2061 struct pvclock_clock clock; /* extract of a clocksource struct */
2062 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2063
2064 ktime_t offs_boot;
2065 u64 wall_time_sec;
2066 };
2067
2068 static struct pvclock_gtod_data pvclock_gtod_data;
2069
2070 static void update_pvclock_gtod(struct timekeeper *tk)
2071 {
2072 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2073
2074 write_seqcount_begin(&vdata->seq);
2075
2076 /* copy pvclock gtod data */
2077 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2078 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2079 vdata->clock.mask = tk->tkr_mono.mask;
2080 vdata->clock.mult = tk->tkr_mono.mult;
2081 vdata->clock.shift = tk->tkr_mono.shift;
2082 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2083 vdata->clock.offset = tk->tkr_mono.base;
2084
2085 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2086 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2087 vdata->raw_clock.mask = tk->tkr_raw.mask;
2088 vdata->raw_clock.mult = tk->tkr_raw.mult;
2089 vdata->raw_clock.shift = tk->tkr_raw.shift;
2090 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2091 vdata->raw_clock.offset = tk->tkr_raw.base;
2092
2093 vdata->wall_time_sec = tk->xtime_sec;
2094
2095 vdata->offs_boot = tk->offs_boot;
2096
2097 write_seqcount_end(&vdata->seq);
2098 }
2099
2100 static s64 get_kvmclock_base_ns(void)
2101 {
2102 /* Count up from boot time, but with the frequency of the raw clock. */
2103 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2104 }
2105 #else
2106 static s64 get_kvmclock_base_ns(void)
2107 {
2108 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2109 return ktime_get_boottime_ns();
2110 }
2111 #endif
2112
2113 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2114 {
2115 int version;
2116 int r;
2117 struct pvclock_wall_clock wc;
2118 u32 wc_sec_hi;
2119 u64 wall_nsec;
2120
2121 if (!wall_clock)
2122 return;
2123
2124 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2125 if (r)
2126 return;
2127
2128 if (version & 1)
2129 ++version; /* first time write, random junk */
2130
2131 ++version;
2132
2133 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2134 return;
2135
2136 /*
2137 * The guest calculates current wall clock time by adding
2138 * system time (updated by kvm_guest_time_update below) to the
2139 * wall clock specified here. We do the reverse here.
2140 */
2141 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2142
2143 wc.nsec = do_div(wall_nsec, 1000000000);
2144 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2145 wc.version = version;
2146
2147 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2148
2149 if (sec_hi_ofs) {
2150 wc_sec_hi = wall_nsec >> 32;
2151 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2152 &wc_sec_hi, sizeof(wc_sec_hi));
2153 }
2154
2155 version++;
2156 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2157 }
2158
2159 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2160 bool old_msr, bool host_initiated)
2161 {
2162 struct kvm_arch *ka = &vcpu->kvm->arch;
2163
2164 if (vcpu->vcpu_id == 0 && !host_initiated) {
2165 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2166 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2167
2168 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2169 }
2170
2171 vcpu->arch.time = system_time;
2172 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2173
2174 /* we verify if the enable bit is set... */
2175 vcpu->arch.pv_time_enabled = false;
2176 if (!(system_time & 1))
2177 return;
2178
2179 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2180 &vcpu->arch.pv_time, system_time & ~1ULL,
2181 sizeof(struct pvclock_vcpu_time_info)))
2182 vcpu->arch.pv_time_enabled = true;
2183
2184 return;
2185 }
2186
2187 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2188 {
2189 do_shl32_div32(dividend, divisor);
2190 return dividend;
2191 }
2192
2193 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2194 s8 *pshift, u32 *pmultiplier)
2195 {
2196 uint64_t scaled64;
2197 int32_t shift = 0;
2198 uint64_t tps64;
2199 uint32_t tps32;
2200
2201 tps64 = base_hz;
2202 scaled64 = scaled_hz;
2203 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2204 tps64 >>= 1;
2205 shift--;
2206 }
2207
2208 tps32 = (uint32_t)tps64;
2209 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2210 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2211 scaled64 >>= 1;
2212 else
2213 tps32 <<= 1;
2214 shift++;
2215 }
2216
2217 *pshift = shift;
2218 *pmultiplier = div_frac(scaled64, tps32);
2219 }
2220
2221 #ifdef CONFIG_X86_64
2222 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2223 #endif
2224
2225 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2226 static unsigned long max_tsc_khz;
2227
2228 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2229 {
2230 u64 v = (u64)khz * (1000000 + ppm);
2231 do_div(v, 1000000);
2232 return v;
2233 }
2234
2235 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2236
2237 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2238 {
2239 u64 ratio;
2240
2241 /* Guest TSC same frequency as host TSC? */
2242 if (!scale) {
2243 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2244 return 0;
2245 }
2246
2247 /* TSC scaling supported? */
2248 if (!kvm_has_tsc_control) {
2249 if (user_tsc_khz > tsc_khz) {
2250 vcpu->arch.tsc_catchup = 1;
2251 vcpu->arch.tsc_always_catchup = 1;
2252 return 0;
2253 } else {
2254 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2255 return -1;
2256 }
2257 }
2258
2259 /* TSC scaling required - calculate ratio */
2260 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2261 user_tsc_khz, tsc_khz);
2262
2263 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2264 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2265 user_tsc_khz);
2266 return -1;
2267 }
2268
2269 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2270 return 0;
2271 }
2272
2273 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2274 {
2275 u32 thresh_lo, thresh_hi;
2276 int use_scaling = 0;
2277
2278 /* tsc_khz can be zero if TSC calibration fails */
2279 if (user_tsc_khz == 0) {
2280 /* set tsc_scaling_ratio to a safe value */
2281 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2282 return -1;
2283 }
2284
2285 /* Compute a scale to convert nanoseconds in TSC cycles */
2286 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2287 &vcpu->arch.virtual_tsc_shift,
2288 &vcpu->arch.virtual_tsc_mult);
2289 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2290
2291 /*
2292 * Compute the variation in TSC rate which is acceptable
2293 * within the range of tolerance and decide if the
2294 * rate being applied is within that bounds of the hardware
2295 * rate. If so, no scaling or compensation need be done.
2296 */
2297 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2298 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2299 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2300 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2301 use_scaling = 1;
2302 }
2303 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2304 }
2305
2306 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2307 {
2308 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2309 vcpu->arch.virtual_tsc_mult,
2310 vcpu->arch.virtual_tsc_shift);
2311 tsc += vcpu->arch.this_tsc_write;
2312 return tsc;
2313 }
2314
2315 static inline int gtod_is_based_on_tsc(int mode)
2316 {
2317 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2318 }
2319
2320 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2321 {
2322 #ifdef CONFIG_X86_64
2323 bool vcpus_matched;
2324 struct kvm_arch *ka = &vcpu->kvm->arch;
2325 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2326
2327 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2328 atomic_read(&vcpu->kvm->online_vcpus));
2329
2330 /*
2331 * Once the masterclock is enabled, always perform request in
2332 * order to update it.
2333 *
2334 * In order to enable masterclock, the host clocksource must be TSC
2335 * and the vcpus need to have matched TSCs. When that happens,
2336 * perform request to enable masterclock.
2337 */
2338 if (ka->use_master_clock ||
2339 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2340 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2341
2342 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2343 atomic_read(&vcpu->kvm->online_vcpus),
2344 ka->use_master_clock, gtod->clock.vclock_mode);
2345 #endif
2346 }
2347
2348 /*
2349 * Multiply tsc by a fixed point number represented by ratio.
2350 *
2351 * The most significant 64-N bits (mult) of ratio represent the
2352 * integral part of the fixed point number; the remaining N bits
2353 * (frac) represent the fractional part, ie. ratio represents a fixed
2354 * point number (mult + frac * 2^(-N)).
2355 *
2356 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2357 */
2358 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2359 {
2360 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2361 }
2362
2363 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2364 {
2365 u64 _tsc = tsc;
2366
2367 if (ratio != kvm_default_tsc_scaling_ratio)
2368 _tsc = __scale_tsc(ratio, tsc);
2369
2370 return _tsc;
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2373
2374 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2375 {
2376 u64 tsc;
2377
2378 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2379
2380 return target_tsc - tsc;
2381 }
2382
2383 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2384 {
2385 return vcpu->arch.l1_tsc_offset +
2386 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2389
2390 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2391 {
2392 u64 nested_offset;
2393
2394 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2395 nested_offset = l1_offset;
2396 else
2397 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2398 kvm_tsc_scaling_ratio_frac_bits);
2399
2400 nested_offset += l2_offset;
2401 return nested_offset;
2402 }
2403 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2404
2405 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2406 {
2407 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2408 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2409 kvm_tsc_scaling_ratio_frac_bits);
2410
2411 return l1_multiplier;
2412 }
2413 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2414
2415 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2416 {
2417 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2418 vcpu->arch.l1_tsc_offset,
2419 l1_offset);
2420
2421 vcpu->arch.l1_tsc_offset = l1_offset;
2422
2423 /*
2424 * If we are here because L1 chose not to trap WRMSR to TSC then
2425 * according to the spec this should set L1's TSC (as opposed to
2426 * setting L1's offset for L2).
2427 */
2428 if (is_guest_mode(vcpu))
2429 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2430 l1_offset,
2431 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2432 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2433 else
2434 vcpu->arch.tsc_offset = l1_offset;
2435
2436 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2437 }
2438
2439 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2440 {
2441 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2442
2443 /* Userspace is changing the multiplier while L2 is active */
2444 if (is_guest_mode(vcpu))
2445 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2446 l1_multiplier,
2447 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2448 else
2449 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2450
2451 if (kvm_has_tsc_control)
2452 static_call(kvm_x86_write_tsc_multiplier)(
2453 vcpu, vcpu->arch.tsc_scaling_ratio);
2454 }
2455
2456 static inline bool kvm_check_tsc_unstable(void)
2457 {
2458 #ifdef CONFIG_X86_64
2459 /*
2460 * TSC is marked unstable when we're running on Hyper-V,
2461 * 'TSC page' clocksource is good.
2462 */
2463 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2464 return false;
2465 #endif
2466 return check_tsc_unstable();
2467 }
2468
2469 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2470 {
2471 struct kvm *kvm = vcpu->kvm;
2472 u64 offset, ns, elapsed;
2473 unsigned long flags;
2474 bool matched;
2475 bool already_matched;
2476 bool synchronizing = false;
2477
2478 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2479 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2480 ns = get_kvmclock_base_ns();
2481 elapsed = ns - kvm->arch.last_tsc_nsec;
2482
2483 if (vcpu->arch.virtual_tsc_khz) {
2484 if (data == 0) {
2485 /*
2486 * detection of vcpu initialization -- need to sync
2487 * with other vCPUs. This particularly helps to keep
2488 * kvm_clock stable after CPU hotplug
2489 */
2490 synchronizing = true;
2491 } else {
2492 u64 tsc_exp = kvm->arch.last_tsc_write +
2493 nsec_to_cycles(vcpu, elapsed);
2494 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2495 /*
2496 * Special case: TSC write with a small delta (1 second)
2497 * of virtual cycle time against real time is
2498 * interpreted as an attempt to synchronize the CPU.
2499 */
2500 synchronizing = data < tsc_exp + tsc_hz &&
2501 data + tsc_hz > tsc_exp;
2502 }
2503 }
2504
2505 /*
2506 * For a reliable TSC, we can match TSC offsets, and for an unstable
2507 * TSC, we add elapsed time in this computation. We could let the
2508 * compensation code attempt to catch up if we fall behind, but
2509 * it's better to try to match offsets from the beginning.
2510 */
2511 if (synchronizing &&
2512 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2513 if (!kvm_check_tsc_unstable()) {
2514 offset = kvm->arch.cur_tsc_offset;
2515 } else {
2516 u64 delta = nsec_to_cycles(vcpu, elapsed);
2517 data += delta;
2518 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2519 }
2520 matched = true;
2521 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2522 } else {
2523 /*
2524 * We split periods of matched TSC writes into generations.
2525 * For each generation, we track the original measured
2526 * nanosecond time, offset, and write, so if TSCs are in
2527 * sync, we can match exact offset, and if not, we can match
2528 * exact software computation in compute_guest_tsc()
2529 *
2530 * These values are tracked in kvm->arch.cur_xxx variables.
2531 */
2532 kvm->arch.cur_tsc_generation++;
2533 kvm->arch.cur_tsc_nsec = ns;
2534 kvm->arch.cur_tsc_write = data;
2535 kvm->arch.cur_tsc_offset = offset;
2536 matched = false;
2537 }
2538
2539 /*
2540 * We also track th most recent recorded KHZ, write and time to
2541 * allow the matching interval to be extended at each write.
2542 */
2543 kvm->arch.last_tsc_nsec = ns;
2544 kvm->arch.last_tsc_write = data;
2545 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2546
2547 vcpu->arch.last_guest_tsc = data;
2548
2549 /* Keep track of which generation this VCPU has synchronized to */
2550 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2551 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2552 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2553
2554 kvm_vcpu_write_tsc_offset(vcpu, offset);
2555 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2556
2557 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2558 if (!matched) {
2559 kvm->arch.nr_vcpus_matched_tsc = 0;
2560 } else if (!already_matched) {
2561 kvm->arch.nr_vcpus_matched_tsc++;
2562 }
2563
2564 kvm_track_tsc_matching(vcpu);
2565 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2566 }
2567
2568 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2569 s64 adjustment)
2570 {
2571 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2572 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2573 }
2574
2575 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2576 {
2577 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2578 WARN_ON(adjustment < 0);
2579 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2580 vcpu->arch.l1_tsc_scaling_ratio);
2581 adjust_tsc_offset_guest(vcpu, adjustment);
2582 }
2583
2584 #ifdef CONFIG_X86_64
2585
2586 static u64 read_tsc(void)
2587 {
2588 u64 ret = (u64)rdtsc_ordered();
2589 u64 last = pvclock_gtod_data.clock.cycle_last;
2590
2591 if (likely(ret >= last))
2592 return ret;
2593
2594 /*
2595 * GCC likes to generate cmov here, but this branch is extremely
2596 * predictable (it's just a function of time and the likely is
2597 * very likely) and there's a data dependence, so force GCC
2598 * to generate a branch instead. I don't barrier() because
2599 * we don't actually need a barrier, and if this function
2600 * ever gets inlined it will generate worse code.
2601 */
2602 asm volatile ("");
2603 return last;
2604 }
2605
2606 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2607 int *mode)
2608 {
2609 long v;
2610 u64 tsc_pg_val;
2611
2612 switch (clock->vclock_mode) {
2613 case VDSO_CLOCKMODE_HVCLOCK:
2614 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2615 tsc_timestamp);
2616 if (tsc_pg_val != U64_MAX) {
2617 /* TSC page valid */
2618 *mode = VDSO_CLOCKMODE_HVCLOCK;
2619 v = (tsc_pg_val - clock->cycle_last) &
2620 clock->mask;
2621 } else {
2622 /* TSC page invalid */
2623 *mode = VDSO_CLOCKMODE_NONE;
2624 }
2625 break;
2626 case VDSO_CLOCKMODE_TSC:
2627 *mode = VDSO_CLOCKMODE_TSC;
2628 *tsc_timestamp = read_tsc();
2629 v = (*tsc_timestamp - clock->cycle_last) &
2630 clock->mask;
2631 break;
2632 default:
2633 *mode = VDSO_CLOCKMODE_NONE;
2634 }
2635
2636 if (*mode == VDSO_CLOCKMODE_NONE)
2637 *tsc_timestamp = v = 0;
2638
2639 return v * clock->mult;
2640 }
2641
2642 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2643 {
2644 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2645 unsigned long seq;
2646 int mode;
2647 u64 ns;
2648
2649 do {
2650 seq = read_seqcount_begin(&gtod->seq);
2651 ns = gtod->raw_clock.base_cycles;
2652 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2653 ns >>= gtod->raw_clock.shift;
2654 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2655 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2656 *t = ns;
2657
2658 return mode;
2659 }
2660
2661 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2662 {
2663 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2664 unsigned long seq;
2665 int mode;
2666 u64 ns;
2667
2668 do {
2669 seq = read_seqcount_begin(&gtod->seq);
2670 ts->tv_sec = gtod->wall_time_sec;
2671 ns = gtod->clock.base_cycles;
2672 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2673 ns >>= gtod->clock.shift;
2674 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2675
2676 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2677 ts->tv_nsec = ns;
2678
2679 return mode;
2680 }
2681
2682 /* returns true if host is using TSC based clocksource */
2683 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2690 tsc_timestamp));
2691 }
2692
2693 /* returns true if host is using TSC based clocksource */
2694 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2695 u64 *tsc_timestamp)
2696 {
2697 /* checked again under seqlock below */
2698 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2699 return false;
2700
2701 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2702 }
2703 #endif
2704
2705 /*
2706 *
2707 * Assuming a stable TSC across physical CPUS, and a stable TSC
2708 * across virtual CPUs, the following condition is possible.
2709 * Each numbered line represents an event visible to both
2710 * CPUs at the next numbered event.
2711 *
2712 * "timespecX" represents host monotonic time. "tscX" represents
2713 * RDTSC value.
2714 *
2715 * VCPU0 on CPU0 | VCPU1 on CPU1
2716 *
2717 * 1. read timespec0,tsc0
2718 * 2. | timespec1 = timespec0 + N
2719 * | tsc1 = tsc0 + M
2720 * 3. transition to guest | transition to guest
2721 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2722 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2723 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2724 *
2725 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2726 *
2727 * - ret0 < ret1
2728 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2729 * ...
2730 * - 0 < N - M => M < N
2731 *
2732 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2733 * always the case (the difference between two distinct xtime instances
2734 * might be smaller then the difference between corresponding TSC reads,
2735 * when updating guest vcpus pvclock areas).
2736 *
2737 * To avoid that problem, do not allow visibility of distinct
2738 * system_timestamp/tsc_timestamp values simultaneously: use a master
2739 * copy of host monotonic time values. Update that master copy
2740 * in lockstep.
2741 *
2742 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2743 *
2744 */
2745
2746 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2747 {
2748 #ifdef CONFIG_X86_64
2749 struct kvm_arch *ka = &kvm->arch;
2750 int vclock_mode;
2751 bool host_tsc_clocksource, vcpus_matched;
2752
2753 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2754 atomic_read(&kvm->online_vcpus));
2755
2756 /*
2757 * If the host uses TSC clock, then passthrough TSC as stable
2758 * to the guest.
2759 */
2760 host_tsc_clocksource = kvm_get_time_and_clockread(
2761 &ka->master_kernel_ns,
2762 &ka->master_cycle_now);
2763
2764 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2765 && !ka->backwards_tsc_observed
2766 && !ka->boot_vcpu_runs_old_kvmclock;
2767
2768 if (ka->use_master_clock)
2769 atomic_set(&kvm_guest_has_master_clock, 1);
2770
2771 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2772 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2773 vcpus_matched);
2774 #endif
2775 }
2776
2777 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2778 {
2779 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2780 }
2781
2782 static void kvm_gen_update_masterclock(struct kvm *kvm)
2783 {
2784 #ifdef CONFIG_X86_64
2785 int i;
2786 struct kvm_vcpu *vcpu;
2787 struct kvm_arch *ka = &kvm->arch;
2788 unsigned long flags;
2789
2790 kvm_hv_invalidate_tsc_page(kvm);
2791
2792 kvm_make_mclock_inprogress_request(kvm);
2793
2794 /* no guest entries from this point */
2795 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2796 pvclock_update_vm_gtod_copy(kvm);
2797 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2798
2799 kvm_for_each_vcpu(i, vcpu, kvm)
2800 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2801
2802 /* guest entries allowed */
2803 kvm_for_each_vcpu(i, vcpu, kvm)
2804 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2805 #endif
2806 }
2807
2808 u64 get_kvmclock_ns(struct kvm *kvm)
2809 {
2810 struct kvm_arch *ka = &kvm->arch;
2811 struct pvclock_vcpu_time_info hv_clock;
2812 unsigned long flags;
2813 u64 ret;
2814
2815 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2816 if (!ka->use_master_clock) {
2817 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2818 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2819 }
2820
2821 hv_clock.tsc_timestamp = ka->master_cycle_now;
2822 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2823 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2824
2825 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2826 get_cpu();
2827
2828 if (__this_cpu_read(cpu_tsc_khz)) {
2829 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2830 &hv_clock.tsc_shift,
2831 &hv_clock.tsc_to_system_mul);
2832 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2833 } else
2834 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2835
2836 put_cpu();
2837
2838 return ret;
2839 }
2840
2841 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2842 struct gfn_to_hva_cache *cache,
2843 unsigned int offset)
2844 {
2845 struct kvm_vcpu_arch *vcpu = &v->arch;
2846 struct pvclock_vcpu_time_info guest_hv_clock;
2847
2848 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2849 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2850 return;
2851
2852 /* This VCPU is paused, but it's legal for a guest to read another
2853 * VCPU's kvmclock, so we really have to follow the specification where
2854 * it says that version is odd if data is being modified, and even after
2855 * it is consistent.
2856 *
2857 * Version field updates must be kept separate. This is because
2858 * kvm_write_guest_cached might use a "rep movs" instruction, and
2859 * writes within a string instruction are weakly ordered. So there
2860 * are three writes overall.
2861 *
2862 * As a small optimization, only write the version field in the first
2863 * and third write. The vcpu->pv_time cache is still valid, because the
2864 * version field is the first in the struct.
2865 */
2866 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2867
2868 if (guest_hv_clock.version & 1)
2869 ++guest_hv_clock.version; /* first time write, random junk */
2870
2871 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2872 kvm_write_guest_offset_cached(v->kvm, cache,
2873 &vcpu->hv_clock, offset,
2874 sizeof(vcpu->hv_clock.version));
2875
2876 smp_wmb();
2877
2878 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2879 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2880
2881 if (vcpu->pvclock_set_guest_stopped_request) {
2882 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2883 vcpu->pvclock_set_guest_stopped_request = false;
2884 }
2885
2886 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2887
2888 kvm_write_guest_offset_cached(v->kvm, cache,
2889 &vcpu->hv_clock, offset,
2890 sizeof(vcpu->hv_clock));
2891
2892 smp_wmb();
2893
2894 vcpu->hv_clock.version++;
2895 kvm_write_guest_offset_cached(v->kvm, cache,
2896 &vcpu->hv_clock, offset,
2897 sizeof(vcpu->hv_clock.version));
2898 }
2899
2900 static int kvm_guest_time_update(struct kvm_vcpu *v)
2901 {
2902 unsigned long flags, tgt_tsc_khz;
2903 struct kvm_vcpu_arch *vcpu = &v->arch;
2904 struct kvm_arch *ka = &v->kvm->arch;
2905 s64 kernel_ns;
2906 u64 tsc_timestamp, host_tsc;
2907 u8 pvclock_flags;
2908 bool use_master_clock;
2909
2910 kernel_ns = 0;
2911 host_tsc = 0;
2912
2913 /*
2914 * If the host uses TSC clock, then passthrough TSC as stable
2915 * to the guest.
2916 */
2917 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2918 use_master_clock = ka->use_master_clock;
2919 if (use_master_clock) {
2920 host_tsc = ka->master_cycle_now;
2921 kernel_ns = ka->master_kernel_ns;
2922 }
2923 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2924
2925 /* Keep irq disabled to prevent changes to the clock */
2926 local_irq_save(flags);
2927 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2928 if (unlikely(tgt_tsc_khz == 0)) {
2929 local_irq_restore(flags);
2930 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2931 return 1;
2932 }
2933 if (!use_master_clock) {
2934 host_tsc = rdtsc();
2935 kernel_ns = get_kvmclock_base_ns();
2936 }
2937
2938 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2939
2940 /*
2941 * We may have to catch up the TSC to match elapsed wall clock
2942 * time for two reasons, even if kvmclock is used.
2943 * 1) CPU could have been running below the maximum TSC rate
2944 * 2) Broken TSC compensation resets the base at each VCPU
2945 * entry to avoid unknown leaps of TSC even when running
2946 * again on the same CPU. This may cause apparent elapsed
2947 * time to disappear, and the guest to stand still or run
2948 * very slowly.
2949 */
2950 if (vcpu->tsc_catchup) {
2951 u64 tsc = compute_guest_tsc(v, kernel_ns);
2952 if (tsc > tsc_timestamp) {
2953 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2954 tsc_timestamp = tsc;
2955 }
2956 }
2957
2958 local_irq_restore(flags);
2959
2960 /* With all the info we got, fill in the values */
2961
2962 if (kvm_has_tsc_control)
2963 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2964 v->arch.l1_tsc_scaling_ratio);
2965
2966 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2967 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2968 &vcpu->hv_clock.tsc_shift,
2969 &vcpu->hv_clock.tsc_to_system_mul);
2970 vcpu->hw_tsc_khz = tgt_tsc_khz;
2971 }
2972
2973 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2974 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2975 vcpu->last_guest_tsc = tsc_timestamp;
2976
2977 /* If the host uses TSC clocksource, then it is stable */
2978 pvclock_flags = 0;
2979 if (use_master_clock)
2980 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2981
2982 vcpu->hv_clock.flags = pvclock_flags;
2983
2984 if (vcpu->pv_time_enabled)
2985 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2986 if (vcpu->xen.vcpu_info_set)
2987 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2988 offsetof(struct compat_vcpu_info, time));
2989 if (vcpu->xen.vcpu_time_info_set)
2990 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2991 if (!v->vcpu_idx)
2992 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2993 return 0;
2994 }
2995
2996 /*
2997 * kvmclock updates which are isolated to a given vcpu, such as
2998 * vcpu->cpu migration, should not allow system_timestamp from
2999 * the rest of the vcpus to remain static. Otherwise ntp frequency
3000 * correction applies to one vcpu's system_timestamp but not
3001 * the others.
3002 *
3003 * So in those cases, request a kvmclock update for all vcpus.
3004 * We need to rate-limit these requests though, as they can
3005 * considerably slow guests that have a large number of vcpus.
3006 * The time for a remote vcpu to update its kvmclock is bound
3007 * by the delay we use to rate-limit the updates.
3008 */
3009
3010 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3011
3012 static void kvmclock_update_fn(struct work_struct *work)
3013 {
3014 int i;
3015 struct delayed_work *dwork = to_delayed_work(work);
3016 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3017 kvmclock_update_work);
3018 struct kvm *kvm = container_of(ka, struct kvm, arch);
3019 struct kvm_vcpu *vcpu;
3020
3021 kvm_for_each_vcpu(i, vcpu, kvm) {
3022 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3023 kvm_vcpu_kick(vcpu);
3024 }
3025 }
3026
3027 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3028 {
3029 struct kvm *kvm = v->kvm;
3030
3031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3032 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3033 KVMCLOCK_UPDATE_DELAY);
3034 }
3035
3036 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3037
3038 static void kvmclock_sync_fn(struct work_struct *work)
3039 {
3040 struct delayed_work *dwork = to_delayed_work(work);
3041 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3042 kvmclock_sync_work);
3043 struct kvm *kvm = container_of(ka, struct kvm, arch);
3044
3045 if (!kvmclock_periodic_sync)
3046 return;
3047
3048 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3049 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3050 KVMCLOCK_SYNC_PERIOD);
3051 }
3052
3053 /*
3054 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3055 */
3056 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3057 {
3058 /* McStatusWrEn enabled? */
3059 if (guest_cpuid_is_amd_or_hygon(vcpu))
3060 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3061
3062 return false;
3063 }
3064
3065 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3066 {
3067 u64 mcg_cap = vcpu->arch.mcg_cap;
3068 unsigned bank_num = mcg_cap & 0xff;
3069 u32 msr = msr_info->index;
3070 u64 data = msr_info->data;
3071
3072 switch (msr) {
3073 case MSR_IA32_MCG_STATUS:
3074 vcpu->arch.mcg_status = data;
3075 break;
3076 case MSR_IA32_MCG_CTL:
3077 if (!(mcg_cap & MCG_CTL_P) &&
3078 (data || !msr_info->host_initiated))
3079 return 1;
3080 if (data != 0 && data != ~(u64)0)
3081 return 1;
3082 vcpu->arch.mcg_ctl = data;
3083 break;
3084 default:
3085 if (msr >= MSR_IA32_MC0_CTL &&
3086 msr < MSR_IA32_MCx_CTL(bank_num)) {
3087 u32 offset = array_index_nospec(
3088 msr - MSR_IA32_MC0_CTL,
3089 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3090
3091 /* only 0 or all 1s can be written to IA32_MCi_CTL
3092 * some Linux kernels though clear bit 10 in bank 4 to
3093 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3094 * this to avoid an uncatched #GP in the guest
3095 */
3096 if ((offset & 0x3) == 0 &&
3097 data != 0 && (data | (1 << 10)) != ~(u64)0)
3098 return -1;
3099
3100 /* MCi_STATUS */
3101 if (!msr_info->host_initiated &&
3102 (offset & 0x3) == 1 && data != 0) {
3103 if (!can_set_mci_status(vcpu))
3104 return -1;
3105 }
3106
3107 vcpu->arch.mce_banks[offset] = data;
3108 break;
3109 }
3110 return 1;
3111 }
3112 return 0;
3113 }
3114
3115 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3116 {
3117 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3118
3119 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3120 }
3121
3122 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3123 {
3124 gpa_t gpa = data & ~0x3f;
3125
3126 /* Bits 4:5 are reserved, Should be zero */
3127 if (data & 0x30)
3128 return 1;
3129
3130 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3131 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3132 return 1;
3133
3134 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3135 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3136 return 1;
3137
3138 if (!lapic_in_kernel(vcpu))
3139 return data ? 1 : 0;
3140
3141 vcpu->arch.apf.msr_en_val = data;
3142
3143 if (!kvm_pv_async_pf_enabled(vcpu)) {
3144 kvm_clear_async_pf_completion_queue(vcpu);
3145 kvm_async_pf_hash_reset(vcpu);
3146 return 0;
3147 }
3148
3149 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3150 sizeof(u64)))
3151 return 1;
3152
3153 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3154 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3155
3156 kvm_async_pf_wakeup_all(vcpu);
3157
3158 return 0;
3159 }
3160
3161 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3162 {
3163 /* Bits 8-63 are reserved */
3164 if (data >> 8)
3165 return 1;
3166
3167 if (!lapic_in_kernel(vcpu))
3168 return 1;
3169
3170 vcpu->arch.apf.msr_int_val = data;
3171
3172 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3173
3174 return 0;
3175 }
3176
3177 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3178 {
3179 vcpu->arch.pv_time_enabled = false;
3180 vcpu->arch.time = 0;
3181 }
3182
3183 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3184 {
3185 ++vcpu->stat.tlb_flush;
3186 static_call(kvm_x86_tlb_flush_all)(vcpu);
3187 }
3188
3189 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3190 {
3191 ++vcpu->stat.tlb_flush;
3192
3193 if (!tdp_enabled) {
3194 /*
3195 * A TLB flush on behalf of the guest is equivalent to
3196 * INVPCID(all), toggling CR4.PGE, etc., which requires
3197 * a forced sync of the shadow page tables. Unload the
3198 * entire MMU here and the subsequent load will sync the
3199 * shadow page tables, and also flush the TLB.
3200 */
3201 kvm_mmu_unload(vcpu);
3202 return;
3203 }
3204
3205 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3206 }
3207
3208
3209 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3210 {
3211 ++vcpu->stat.tlb_flush;
3212 static_call(kvm_x86_tlb_flush_current)(vcpu);
3213 }
3214
3215 /*
3216 * Service "local" TLB flush requests, which are specific to the current MMU
3217 * context. In addition to the generic event handling in vcpu_enter_guest(),
3218 * TLB flushes that are targeted at an MMU context also need to be serviced
3219 * prior before nested VM-Enter/VM-Exit.
3220 */
3221 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3222 {
3223 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3224 kvm_vcpu_flush_tlb_current(vcpu);
3225
3226 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3227 kvm_vcpu_flush_tlb_guest(vcpu);
3228 }
3229 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3230
3231 static void record_steal_time(struct kvm_vcpu *vcpu)
3232 {
3233 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3234 struct kvm_steal_time __user *st;
3235 struct kvm_memslots *slots;
3236 u64 steal;
3237 u32 version;
3238
3239 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3240 kvm_xen_runstate_set_running(vcpu);
3241 return;
3242 }
3243
3244 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3245 return;
3246
3247 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3248 return;
3249
3250 slots = kvm_memslots(vcpu->kvm);
3251
3252 if (unlikely(slots->generation != ghc->generation ||
3253 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3254 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3255
3256 /* We rely on the fact that it fits in a single page. */
3257 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3258
3259 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3260 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3261 return;
3262 }
3263
3264 st = (struct kvm_steal_time __user *)ghc->hva;
3265 /*
3266 * Doing a TLB flush here, on the guest's behalf, can avoid
3267 * expensive IPIs.
3268 */
3269 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3270 u8 st_preempted = 0;
3271 int err = -EFAULT;
3272
3273 if (!user_access_begin(st, sizeof(*st)))
3274 return;
3275
3276 asm volatile("1: xchgb %0, %2\n"
3277 "xor %1, %1\n"
3278 "2:\n"
3279 _ASM_EXTABLE_UA(1b, 2b)
3280 : "+q" (st_preempted),
3281 "+&r" (err),
3282 "+m" (st->preempted));
3283 if (err)
3284 goto out;
3285
3286 user_access_end();
3287
3288 vcpu->arch.st.preempted = 0;
3289
3290 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3291 st_preempted & KVM_VCPU_FLUSH_TLB);
3292 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3293 kvm_vcpu_flush_tlb_guest(vcpu);
3294
3295 if (!user_access_begin(st, sizeof(*st)))
3296 goto dirty;
3297 } else {
3298 if (!user_access_begin(st, sizeof(*st)))
3299 return;
3300
3301 unsafe_put_user(0, &st->preempted, out);
3302 vcpu->arch.st.preempted = 0;
3303 }
3304
3305 unsafe_get_user(version, &st->version, out);
3306 if (version & 1)
3307 version += 1; /* first time write, random junk */
3308
3309 version += 1;
3310 unsafe_put_user(version, &st->version, out);
3311
3312 smp_wmb();
3313
3314 unsafe_get_user(steal, &st->steal, out);
3315 steal += current->sched_info.run_delay -
3316 vcpu->arch.st.last_steal;
3317 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3318 unsafe_put_user(steal, &st->steal, out);
3319
3320 version += 1;
3321 unsafe_put_user(version, &st->version, out);
3322
3323 out:
3324 user_access_end();
3325 dirty:
3326 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3327 }
3328
3329 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3330 {
3331 bool pr = false;
3332 u32 msr = msr_info->index;
3333 u64 data = msr_info->data;
3334
3335 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3336 return kvm_xen_write_hypercall_page(vcpu, data);
3337
3338 switch (msr) {
3339 case MSR_AMD64_NB_CFG:
3340 case MSR_IA32_UCODE_WRITE:
3341 case MSR_VM_HSAVE_PA:
3342 case MSR_AMD64_PATCH_LOADER:
3343 case MSR_AMD64_BU_CFG2:
3344 case MSR_AMD64_DC_CFG:
3345 case MSR_F15H_EX_CFG:
3346 break;
3347
3348 case MSR_IA32_UCODE_REV:
3349 if (msr_info->host_initiated)
3350 vcpu->arch.microcode_version = data;
3351 break;
3352 case MSR_IA32_ARCH_CAPABILITIES:
3353 if (!msr_info->host_initiated)
3354 return 1;
3355 vcpu->arch.arch_capabilities = data;
3356 break;
3357 case MSR_IA32_PERF_CAPABILITIES: {
3358 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3359
3360 if (!msr_info->host_initiated)
3361 return 1;
3362 if (kvm_get_msr_feature(&msr_ent))
3363 return 1;
3364 if (data & ~msr_ent.data)
3365 return 1;
3366
3367 vcpu->arch.perf_capabilities = data;
3368
3369 return 0;
3370 }
3371 case MSR_EFER:
3372 return set_efer(vcpu, msr_info);
3373 case MSR_K7_HWCR:
3374 data &= ~(u64)0x40; /* ignore flush filter disable */
3375 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3376 data &= ~(u64)0x8; /* ignore TLB cache disable */
3377
3378 /* Handle McStatusWrEn */
3379 if (data == BIT_ULL(18)) {
3380 vcpu->arch.msr_hwcr = data;
3381 } else if (data != 0) {
3382 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3383 data);
3384 return 1;
3385 }
3386 break;
3387 case MSR_FAM10H_MMIO_CONF_BASE:
3388 if (data != 0) {
3389 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3390 "0x%llx\n", data);
3391 return 1;
3392 }
3393 break;
3394 case 0x200 ... 0x2ff:
3395 return kvm_mtrr_set_msr(vcpu, msr, data);
3396 case MSR_IA32_APICBASE:
3397 return kvm_set_apic_base(vcpu, msr_info);
3398 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3399 return kvm_x2apic_msr_write(vcpu, msr, data);
3400 case MSR_IA32_TSC_DEADLINE:
3401 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3402 break;
3403 case MSR_IA32_TSC_ADJUST:
3404 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3405 if (!msr_info->host_initiated) {
3406 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3407 adjust_tsc_offset_guest(vcpu, adj);
3408 /* Before back to guest, tsc_timestamp must be adjusted
3409 * as well, otherwise guest's percpu pvclock time could jump.
3410 */
3411 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3412 }
3413 vcpu->arch.ia32_tsc_adjust_msr = data;
3414 }
3415 break;
3416 case MSR_IA32_MISC_ENABLE:
3417 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3418 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3419 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3420 return 1;
3421 vcpu->arch.ia32_misc_enable_msr = data;
3422 kvm_update_cpuid_runtime(vcpu);
3423 } else {
3424 vcpu->arch.ia32_misc_enable_msr = data;
3425 }
3426 break;
3427 case MSR_IA32_SMBASE:
3428 if (!msr_info->host_initiated)
3429 return 1;
3430 vcpu->arch.smbase = data;
3431 break;
3432 case MSR_IA32_POWER_CTL:
3433 vcpu->arch.msr_ia32_power_ctl = data;
3434 break;
3435 case MSR_IA32_TSC:
3436 if (msr_info->host_initiated) {
3437 kvm_synchronize_tsc(vcpu, data);
3438 } else {
3439 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3440 adjust_tsc_offset_guest(vcpu, adj);
3441 vcpu->arch.ia32_tsc_adjust_msr += adj;
3442 }
3443 break;
3444 case MSR_IA32_XSS:
3445 if (!msr_info->host_initiated &&
3446 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3447 return 1;
3448 /*
3449 * KVM supports exposing PT to the guest, but does not support
3450 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3451 * XSAVES/XRSTORS to save/restore PT MSRs.
3452 */
3453 if (data & ~supported_xss)
3454 return 1;
3455 vcpu->arch.ia32_xss = data;
3456 kvm_update_cpuid_runtime(vcpu);
3457 break;
3458 case MSR_SMI_COUNT:
3459 if (!msr_info->host_initiated)
3460 return 1;
3461 vcpu->arch.smi_count = data;
3462 break;
3463 case MSR_KVM_WALL_CLOCK_NEW:
3464 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3465 return 1;
3466
3467 vcpu->kvm->arch.wall_clock = data;
3468 kvm_write_wall_clock(vcpu->kvm, data, 0);
3469 break;
3470 case MSR_KVM_WALL_CLOCK:
3471 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3472 return 1;
3473
3474 vcpu->kvm->arch.wall_clock = data;
3475 kvm_write_wall_clock(vcpu->kvm, data, 0);
3476 break;
3477 case MSR_KVM_SYSTEM_TIME_NEW:
3478 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3479 return 1;
3480
3481 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3482 break;
3483 case MSR_KVM_SYSTEM_TIME:
3484 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3485 return 1;
3486
3487 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3488 break;
3489 case MSR_KVM_ASYNC_PF_EN:
3490 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3491 return 1;
3492
3493 if (kvm_pv_enable_async_pf(vcpu, data))
3494 return 1;
3495 break;
3496 case MSR_KVM_ASYNC_PF_INT:
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3498 return 1;
3499
3500 if (kvm_pv_enable_async_pf_int(vcpu, data))
3501 return 1;
3502 break;
3503 case MSR_KVM_ASYNC_PF_ACK:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3505 return 1;
3506 if (data & 0x1) {
3507 vcpu->arch.apf.pageready_pending = false;
3508 kvm_check_async_pf_completion(vcpu);
3509 }
3510 break;
3511 case MSR_KVM_STEAL_TIME:
3512 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3513 return 1;
3514
3515 if (unlikely(!sched_info_on()))
3516 return 1;
3517
3518 if (data & KVM_STEAL_RESERVED_MASK)
3519 return 1;
3520
3521 vcpu->arch.st.msr_val = data;
3522
3523 if (!(data & KVM_MSR_ENABLED))
3524 break;
3525
3526 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3527
3528 break;
3529 case MSR_KVM_PV_EOI_EN:
3530 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3531 return 1;
3532
3533 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3534 return 1;
3535 break;
3536
3537 case MSR_KVM_POLL_CONTROL:
3538 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3539 return 1;
3540
3541 /* only enable bit supported */
3542 if (data & (-1ULL << 1))
3543 return 1;
3544
3545 vcpu->arch.msr_kvm_poll_control = data;
3546 break;
3547
3548 case MSR_IA32_MCG_CTL:
3549 case MSR_IA32_MCG_STATUS:
3550 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3551 return set_msr_mce(vcpu, msr_info);
3552
3553 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3554 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3555 pr = true;
3556 fallthrough;
3557 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3558 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3559 if (kvm_pmu_is_valid_msr(vcpu, msr))
3560 return kvm_pmu_set_msr(vcpu, msr_info);
3561
3562 if (pr || data != 0)
3563 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3564 "0x%x data 0x%llx\n", msr, data);
3565 break;
3566 case MSR_K7_CLK_CTL:
3567 /*
3568 * Ignore all writes to this no longer documented MSR.
3569 * Writes are only relevant for old K7 processors,
3570 * all pre-dating SVM, but a recommended workaround from
3571 * AMD for these chips. It is possible to specify the
3572 * affected processor models on the command line, hence
3573 * the need to ignore the workaround.
3574 */
3575 break;
3576 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3577 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3578 case HV_X64_MSR_SYNDBG_OPTIONS:
3579 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3580 case HV_X64_MSR_CRASH_CTL:
3581 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3582 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3583 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3584 case HV_X64_MSR_TSC_EMULATION_STATUS:
3585 return kvm_hv_set_msr_common(vcpu, msr, data,
3586 msr_info->host_initiated);
3587 case MSR_IA32_BBL_CR_CTL3:
3588 /* Drop writes to this legacy MSR -- see rdmsr
3589 * counterpart for further detail.
3590 */
3591 if (report_ignored_msrs)
3592 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3593 msr, data);
3594 break;
3595 case MSR_AMD64_OSVW_ID_LENGTH:
3596 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3597 return 1;
3598 vcpu->arch.osvw.length = data;
3599 break;
3600 case MSR_AMD64_OSVW_STATUS:
3601 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3602 return 1;
3603 vcpu->arch.osvw.status = data;
3604 break;
3605 case MSR_PLATFORM_INFO:
3606 if (!msr_info->host_initiated ||
3607 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3608 cpuid_fault_enabled(vcpu)))
3609 return 1;
3610 vcpu->arch.msr_platform_info = data;
3611 break;
3612 case MSR_MISC_FEATURES_ENABLES:
3613 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3614 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3615 !supports_cpuid_fault(vcpu)))
3616 return 1;
3617 vcpu->arch.msr_misc_features_enables = data;
3618 break;
3619 default:
3620 if (kvm_pmu_is_valid_msr(vcpu, msr))
3621 return kvm_pmu_set_msr(vcpu, msr_info);
3622 return KVM_MSR_RET_INVALID;
3623 }
3624 return 0;
3625 }
3626 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3627
3628 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3629 {
3630 u64 data;
3631 u64 mcg_cap = vcpu->arch.mcg_cap;
3632 unsigned bank_num = mcg_cap & 0xff;
3633
3634 switch (msr) {
3635 case MSR_IA32_P5_MC_ADDR:
3636 case MSR_IA32_P5_MC_TYPE:
3637 data = 0;
3638 break;
3639 case MSR_IA32_MCG_CAP:
3640 data = vcpu->arch.mcg_cap;
3641 break;
3642 case MSR_IA32_MCG_CTL:
3643 if (!(mcg_cap & MCG_CTL_P) && !host)
3644 return 1;
3645 data = vcpu->arch.mcg_ctl;
3646 break;
3647 case MSR_IA32_MCG_STATUS:
3648 data = vcpu->arch.mcg_status;
3649 break;
3650 default:
3651 if (msr >= MSR_IA32_MC0_CTL &&
3652 msr < MSR_IA32_MCx_CTL(bank_num)) {
3653 u32 offset = array_index_nospec(
3654 msr - MSR_IA32_MC0_CTL,
3655 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3656
3657 data = vcpu->arch.mce_banks[offset];
3658 break;
3659 }
3660 return 1;
3661 }
3662 *pdata = data;
3663 return 0;
3664 }
3665
3666 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3667 {
3668 switch (msr_info->index) {
3669 case MSR_IA32_PLATFORM_ID:
3670 case MSR_IA32_EBL_CR_POWERON:
3671 case MSR_IA32_LASTBRANCHFROMIP:
3672 case MSR_IA32_LASTBRANCHTOIP:
3673 case MSR_IA32_LASTINTFROMIP:
3674 case MSR_IA32_LASTINTTOIP:
3675 case MSR_AMD64_SYSCFG:
3676 case MSR_K8_TSEG_ADDR:
3677 case MSR_K8_TSEG_MASK:
3678 case MSR_VM_HSAVE_PA:
3679 case MSR_K8_INT_PENDING_MSG:
3680 case MSR_AMD64_NB_CFG:
3681 case MSR_FAM10H_MMIO_CONF_BASE:
3682 case MSR_AMD64_BU_CFG2:
3683 case MSR_IA32_PERF_CTL:
3684 case MSR_AMD64_DC_CFG:
3685 case MSR_F15H_EX_CFG:
3686 /*
3687 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3688 * limit) MSRs. Just return 0, as we do not want to expose the host
3689 * data here. Do not conditionalize this on CPUID, as KVM does not do
3690 * so for existing CPU-specific MSRs.
3691 */
3692 case MSR_RAPL_POWER_UNIT:
3693 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3694 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3695 case MSR_PKG_ENERGY_STATUS: /* Total package */
3696 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3697 msr_info->data = 0;
3698 break;
3699 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3700 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3701 return kvm_pmu_get_msr(vcpu, msr_info);
3702 if (!msr_info->host_initiated)
3703 return 1;
3704 msr_info->data = 0;
3705 break;
3706 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3707 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3708 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3709 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3710 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3711 return kvm_pmu_get_msr(vcpu, msr_info);
3712 msr_info->data = 0;
3713 break;
3714 case MSR_IA32_UCODE_REV:
3715 msr_info->data = vcpu->arch.microcode_version;
3716 break;
3717 case MSR_IA32_ARCH_CAPABILITIES:
3718 if (!msr_info->host_initiated &&
3719 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3720 return 1;
3721 msr_info->data = vcpu->arch.arch_capabilities;
3722 break;
3723 case MSR_IA32_PERF_CAPABILITIES:
3724 if (!msr_info->host_initiated &&
3725 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3726 return 1;
3727 msr_info->data = vcpu->arch.perf_capabilities;
3728 break;
3729 case MSR_IA32_POWER_CTL:
3730 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3731 break;
3732 case MSR_IA32_TSC: {
3733 /*
3734 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3735 * even when not intercepted. AMD manual doesn't explicitly
3736 * state this but appears to behave the same.
3737 *
3738 * On userspace reads and writes, however, we unconditionally
3739 * return L1's TSC value to ensure backwards-compatible
3740 * behavior for migration.
3741 */
3742 u64 offset, ratio;
3743
3744 if (msr_info->host_initiated) {
3745 offset = vcpu->arch.l1_tsc_offset;
3746 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3747 } else {
3748 offset = vcpu->arch.tsc_offset;
3749 ratio = vcpu->arch.tsc_scaling_ratio;
3750 }
3751
3752 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3753 break;
3754 }
3755 case MSR_MTRRcap:
3756 case 0x200 ... 0x2ff:
3757 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3758 case 0xcd: /* fsb frequency */
3759 msr_info->data = 3;
3760 break;
3761 /*
3762 * MSR_EBC_FREQUENCY_ID
3763 * Conservative value valid for even the basic CPU models.
3764 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3765 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3766 * and 266MHz for model 3, or 4. Set Core Clock
3767 * Frequency to System Bus Frequency Ratio to 1 (bits
3768 * 31:24) even though these are only valid for CPU
3769 * models > 2, however guests may end up dividing or
3770 * multiplying by zero otherwise.
3771 */
3772 case MSR_EBC_FREQUENCY_ID:
3773 msr_info->data = 1 << 24;
3774 break;
3775 case MSR_IA32_APICBASE:
3776 msr_info->data = kvm_get_apic_base(vcpu);
3777 break;
3778 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3779 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3780 case MSR_IA32_TSC_DEADLINE:
3781 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3782 break;
3783 case MSR_IA32_TSC_ADJUST:
3784 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3785 break;
3786 case MSR_IA32_MISC_ENABLE:
3787 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3788 break;
3789 case MSR_IA32_SMBASE:
3790 if (!msr_info->host_initiated)
3791 return 1;
3792 msr_info->data = vcpu->arch.smbase;
3793 break;
3794 case MSR_SMI_COUNT:
3795 msr_info->data = vcpu->arch.smi_count;
3796 break;
3797 case MSR_IA32_PERF_STATUS:
3798 /* TSC increment by tick */
3799 msr_info->data = 1000ULL;
3800 /* CPU multiplier */
3801 msr_info->data |= (((uint64_t)4ULL) << 40);
3802 break;
3803 case MSR_EFER:
3804 msr_info->data = vcpu->arch.efer;
3805 break;
3806 case MSR_KVM_WALL_CLOCK:
3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3808 return 1;
3809
3810 msr_info->data = vcpu->kvm->arch.wall_clock;
3811 break;
3812 case MSR_KVM_WALL_CLOCK_NEW:
3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3814 return 1;
3815
3816 msr_info->data = vcpu->kvm->arch.wall_clock;
3817 break;
3818 case MSR_KVM_SYSTEM_TIME:
3819 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3820 return 1;
3821
3822 msr_info->data = vcpu->arch.time;
3823 break;
3824 case MSR_KVM_SYSTEM_TIME_NEW:
3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826 return 1;
3827
3828 msr_info->data = vcpu->arch.time;
3829 break;
3830 case MSR_KVM_ASYNC_PF_EN:
3831 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3832 return 1;
3833
3834 msr_info->data = vcpu->arch.apf.msr_en_val;
3835 break;
3836 case MSR_KVM_ASYNC_PF_INT:
3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3838 return 1;
3839
3840 msr_info->data = vcpu->arch.apf.msr_int_val;
3841 break;
3842 case MSR_KVM_ASYNC_PF_ACK:
3843 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3844 return 1;
3845
3846 msr_info->data = 0;
3847 break;
3848 case MSR_KVM_STEAL_TIME:
3849 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3850 return 1;
3851
3852 msr_info->data = vcpu->arch.st.msr_val;
3853 break;
3854 case MSR_KVM_PV_EOI_EN:
3855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3856 return 1;
3857
3858 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3859 break;
3860 case MSR_KVM_POLL_CONTROL:
3861 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3862 return 1;
3863
3864 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3865 break;
3866 case MSR_IA32_P5_MC_ADDR:
3867 case MSR_IA32_P5_MC_TYPE:
3868 case MSR_IA32_MCG_CAP:
3869 case MSR_IA32_MCG_CTL:
3870 case MSR_IA32_MCG_STATUS:
3871 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3872 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3873 msr_info->host_initiated);
3874 case MSR_IA32_XSS:
3875 if (!msr_info->host_initiated &&
3876 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3877 return 1;
3878 msr_info->data = vcpu->arch.ia32_xss;
3879 break;
3880 case MSR_K7_CLK_CTL:
3881 /*
3882 * Provide expected ramp-up count for K7. All other
3883 * are set to zero, indicating minimum divisors for
3884 * every field.
3885 *
3886 * This prevents guest kernels on AMD host with CPU
3887 * type 6, model 8 and higher from exploding due to
3888 * the rdmsr failing.
3889 */
3890 msr_info->data = 0x20000000;
3891 break;
3892 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3893 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3894 case HV_X64_MSR_SYNDBG_OPTIONS:
3895 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3896 case HV_X64_MSR_CRASH_CTL:
3897 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3898 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3899 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3900 case HV_X64_MSR_TSC_EMULATION_STATUS:
3901 return kvm_hv_get_msr_common(vcpu,
3902 msr_info->index, &msr_info->data,
3903 msr_info->host_initiated);
3904 case MSR_IA32_BBL_CR_CTL3:
3905 /* This legacy MSR exists but isn't fully documented in current
3906 * silicon. It is however accessed by winxp in very narrow
3907 * scenarios where it sets bit #19, itself documented as
3908 * a "reserved" bit. Best effort attempt to source coherent
3909 * read data here should the balance of the register be
3910 * interpreted by the guest:
3911 *
3912 * L2 cache control register 3: 64GB range, 256KB size,
3913 * enabled, latency 0x1, configured
3914 */
3915 msr_info->data = 0xbe702111;
3916 break;
3917 case MSR_AMD64_OSVW_ID_LENGTH:
3918 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3919 return 1;
3920 msr_info->data = vcpu->arch.osvw.length;
3921 break;
3922 case MSR_AMD64_OSVW_STATUS:
3923 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3924 return 1;
3925 msr_info->data = vcpu->arch.osvw.status;
3926 break;
3927 case MSR_PLATFORM_INFO:
3928 if (!msr_info->host_initiated &&
3929 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3930 return 1;
3931 msr_info->data = vcpu->arch.msr_platform_info;
3932 break;
3933 case MSR_MISC_FEATURES_ENABLES:
3934 msr_info->data = vcpu->arch.msr_misc_features_enables;
3935 break;
3936 case MSR_K7_HWCR:
3937 msr_info->data = vcpu->arch.msr_hwcr;
3938 break;
3939 default:
3940 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3941 return kvm_pmu_get_msr(vcpu, msr_info);
3942 return KVM_MSR_RET_INVALID;
3943 }
3944 return 0;
3945 }
3946 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3947
3948 /*
3949 * Read or write a bunch of msrs. All parameters are kernel addresses.
3950 *
3951 * @return number of msrs set successfully.
3952 */
3953 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3954 struct kvm_msr_entry *entries,
3955 int (*do_msr)(struct kvm_vcpu *vcpu,
3956 unsigned index, u64 *data))
3957 {
3958 int i;
3959
3960 for (i = 0; i < msrs->nmsrs; ++i)
3961 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3962 break;
3963
3964 return i;
3965 }
3966
3967 /*
3968 * Read or write a bunch of msrs. Parameters are user addresses.
3969 *
3970 * @return number of msrs set successfully.
3971 */
3972 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3973 int (*do_msr)(struct kvm_vcpu *vcpu,
3974 unsigned index, u64 *data),
3975 int writeback)
3976 {
3977 struct kvm_msrs msrs;
3978 struct kvm_msr_entry *entries;
3979 int r, n;
3980 unsigned size;
3981
3982 r = -EFAULT;
3983 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3984 goto out;
3985
3986 r = -E2BIG;
3987 if (msrs.nmsrs >= MAX_IO_MSRS)
3988 goto out;
3989
3990 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3991 entries = memdup_user(user_msrs->entries, size);
3992 if (IS_ERR(entries)) {
3993 r = PTR_ERR(entries);
3994 goto out;
3995 }
3996
3997 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3998 if (r < 0)
3999 goto out_free;
4000
4001 r = -EFAULT;
4002 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4003 goto out_free;
4004
4005 r = n;
4006
4007 out_free:
4008 kfree(entries);
4009 out:
4010 return r;
4011 }
4012
4013 static inline bool kvm_can_mwait_in_guest(void)
4014 {
4015 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4016 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4017 boot_cpu_has(X86_FEATURE_ARAT);
4018 }
4019
4020 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4021 struct kvm_cpuid2 __user *cpuid_arg)
4022 {
4023 struct kvm_cpuid2 cpuid;
4024 int r;
4025
4026 r = -EFAULT;
4027 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4028 return r;
4029
4030 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4031 if (r)
4032 return r;
4033
4034 r = -EFAULT;
4035 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4036 return r;
4037
4038 return 0;
4039 }
4040
4041 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4042 {
4043 int r = 0;
4044
4045 switch (ext) {
4046 case KVM_CAP_IRQCHIP:
4047 case KVM_CAP_HLT:
4048 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4049 case KVM_CAP_SET_TSS_ADDR:
4050 case KVM_CAP_EXT_CPUID:
4051 case KVM_CAP_EXT_EMUL_CPUID:
4052 case KVM_CAP_CLOCKSOURCE:
4053 case KVM_CAP_PIT:
4054 case KVM_CAP_NOP_IO_DELAY:
4055 case KVM_CAP_MP_STATE:
4056 case KVM_CAP_SYNC_MMU:
4057 case KVM_CAP_USER_NMI:
4058 case KVM_CAP_REINJECT_CONTROL:
4059 case KVM_CAP_IRQ_INJECT_STATUS:
4060 case KVM_CAP_IOEVENTFD:
4061 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4062 case KVM_CAP_PIT2:
4063 case KVM_CAP_PIT_STATE2:
4064 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4065 case KVM_CAP_VCPU_EVENTS:
4066 case KVM_CAP_HYPERV:
4067 case KVM_CAP_HYPERV_VAPIC:
4068 case KVM_CAP_HYPERV_SPIN:
4069 case KVM_CAP_HYPERV_SYNIC:
4070 case KVM_CAP_HYPERV_SYNIC2:
4071 case KVM_CAP_HYPERV_VP_INDEX:
4072 case KVM_CAP_HYPERV_EVENTFD:
4073 case KVM_CAP_HYPERV_TLBFLUSH:
4074 case KVM_CAP_HYPERV_SEND_IPI:
4075 case KVM_CAP_HYPERV_CPUID:
4076 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4077 case KVM_CAP_SYS_HYPERV_CPUID:
4078 case KVM_CAP_PCI_SEGMENT:
4079 case KVM_CAP_DEBUGREGS:
4080 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4081 case KVM_CAP_XSAVE:
4082 case KVM_CAP_ASYNC_PF:
4083 case KVM_CAP_ASYNC_PF_INT:
4084 case KVM_CAP_GET_TSC_KHZ:
4085 case KVM_CAP_KVMCLOCK_CTRL:
4086 case KVM_CAP_READONLY_MEM:
4087 case KVM_CAP_HYPERV_TIME:
4088 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4089 case KVM_CAP_TSC_DEADLINE_TIMER:
4090 case KVM_CAP_DISABLE_QUIRKS:
4091 case KVM_CAP_SET_BOOT_CPU_ID:
4092 case KVM_CAP_SPLIT_IRQCHIP:
4093 case KVM_CAP_IMMEDIATE_EXIT:
4094 case KVM_CAP_PMU_EVENT_FILTER:
4095 case KVM_CAP_GET_MSR_FEATURES:
4096 case KVM_CAP_MSR_PLATFORM_INFO:
4097 case KVM_CAP_EXCEPTION_PAYLOAD:
4098 case KVM_CAP_SET_GUEST_DEBUG:
4099 case KVM_CAP_LAST_CPU:
4100 case KVM_CAP_X86_USER_SPACE_MSR:
4101 case KVM_CAP_X86_MSR_FILTER:
4102 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4103 #ifdef CONFIG_X86_SGX_KVM
4104 case KVM_CAP_SGX_ATTRIBUTE:
4105 #endif
4106 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4107 case KVM_CAP_SREGS2:
4108 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4109 r = 1;
4110 break;
4111 case KVM_CAP_EXIT_HYPERCALL:
4112 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4113 break;
4114 case KVM_CAP_SET_GUEST_DEBUG2:
4115 return KVM_GUESTDBG_VALID_MASK;
4116 #ifdef CONFIG_KVM_XEN
4117 case KVM_CAP_XEN_HVM:
4118 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4119 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4120 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4121 if (sched_info_on())
4122 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4123 break;
4124 #endif
4125 case KVM_CAP_SYNC_REGS:
4126 r = KVM_SYNC_X86_VALID_FIELDS;
4127 break;
4128 case KVM_CAP_ADJUST_CLOCK:
4129 r = KVM_CLOCK_TSC_STABLE;
4130 break;
4131 case KVM_CAP_X86_DISABLE_EXITS:
4132 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4133 KVM_X86_DISABLE_EXITS_CSTATE;
4134 if(kvm_can_mwait_in_guest())
4135 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4136 break;
4137 case KVM_CAP_X86_SMM:
4138 /* SMBASE is usually relocated above 1M on modern chipsets,
4139 * and SMM handlers might indeed rely on 4G segment limits,
4140 * so do not report SMM to be available if real mode is
4141 * emulated via vm86 mode. Still, do not go to great lengths
4142 * to avoid userspace's usage of the feature, because it is a
4143 * fringe case that is not enabled except via specific settings
4144 * of the module parameters.
4145 */
4146 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4147 break;
4148 case KVM_CAP_VAPIC:
4149 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4150 break;
4151 case KVM_CAP_NR_VCPUS:
4152 r = KVM_SOFT_MAX_VCPUS;
4153 break;
4154 case KVM_CAP_MAX_VCPUS:
4155 r = KVM_MAX_VCPUS;
4156 break;
4157 case KVM_CAP_MAX_VCPU_ID:
4158 r = KVM_MAX_VCPU_ID;
4159 break;
4160 case KVM_CAP_PV_MMU: /* obsolete */
4161 r = 0;
4162 break;
4163 case KVM_CAP_MCE:
4164 r = KVM_MAX_MCE_BANKS;
4165 break;
4166 case KVM_CAP_XCRS:
4167 r = boot_cpu_has(X86_FEATURE_XSAVE);
4168 break;
4169 case KVM_CAP_TSC_CONTROL:
4170 r = kvm_has_tsc_control;
4171 break;
4172 case KVM_CAP_X2APIC_API:
4173 r = KVM_X2APIC_API_VALID_FLAGS;
4174 break;
4175 case KVM_CAP_NESTED_STATE:
4176 r = kvm_x86_ops.nested_ops->get_state ?
4177 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4178 break;
4179 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4180 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4181 break;
4182 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4183 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4184 break;
4185 case KVM_CAP_SMALLER_MAXPHYADDR:
4186 r = (int) allow_smaller_maxphyaddr;
4187 break;
4188 case KVM_CAP_STEAL_TIME:
4189 r = sched_info_on();
4190 break;
4191 case KVM_CAP_X86_BUS_LOCK_EXIT:
4192 if (kvm_has_bus_lock_exit)
4193 r = KVM_BUS_LOCK_DETECTION_OFF |
4194 KVM_BUS_LOCK_DETECTION_EXIT;
4195 else
4196 r = 0;
4197 break;
4198 default:
4199 break;
4200 }
4201 return r;
4202
4203 }
4204
4205 long kvm_arch_dev_ioctl(struct file *filp,
4206 unsigned int ioctl, unsigned long arg)
4207 {
4208 void __user *argp = (void __user *)arg;
4209 long r;
4210
4211 switch (ioctl) {
4212 case KVM_GET_MSR_INDEX_LIST: {
4213 struct kvm_msr_list __user *user_msr_list = argp;
4214 struct kvm_msr_list msr_list;
4215 unsigned n;
4216
4217 r = -EFAULT;
4218 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4219 goto out;
4220 n = msr_list.nmsrs;
4221 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4222 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4223 goto out;
4224 r = -E2BIG;
4225 if (n < msr_list.nmsrs)
4226 goto out;
4227 r = -EFAULT;
4228 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4229 num_msrs_to_save * sizeof(u32)))
4230 goto out;
4231 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4232 &emulated_msrs,
4233 num_emulated_msrs * sizeof(u32)))
4234 goto out;
4235 r = 0;
4236 break;
4237 }
4238 case KVM_GET_SUPPORTED_CPUID:
4239 case KVM_GET_EMULATED_CPUID: {
4240 struct kvm_cpuid2 __user *cpuid_arg = argp;
4241 struct kvm_cpuid2 cpuid;
4242
4243 r = -EFAULT;
4244 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4245 goto out;
4246
4247 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4248 ioctl);
4249 if (r)
4250 goto out;
4251
4252 r = -EFAULT;
4253 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4254 goto out;
4255 r = 0;
4256 break;
4257 }
4258 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4259 r = -EFAULT;
4260 if (copy_to_user(argp, &kvm_mce_cap_supported,
4261 sizeof(kvm_mce_cap_supported)))
4262 goto out;
4263 r = 0;
4264 break;
4265 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4266 struct kvm_msr_list __user *user_msr_list = argp;
4267 struct kvm_msr_list msr_list;
4268 unsigned int n;
4269
4270 r = -EFAULT;
4271 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4272 goto out;
4273 n = msr_list.nmsrs;
4274 msr_list.nmsrs = num_msr_based_features;
4275 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4276 goto out;
4277 r = -E2BIG;
4278 if (n < msr_list.nmsrs)
4279 goto out;
4280 r = -EFAULT;
4281 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4282 num_msr_based_features * sizeof(u32)))
4283 goto out;
4284 r = 0;
4285 break;
4286 }
4287 case KVM_GET_MSRS:
4288 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4289 break;
4290 case KVM_GET_SUPPORTED_HV_CPUID:
4291 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4292 break;
4293 default:
4294 r = -EINVAL;
4295 break;
4296 }
4297 out:
4298 return r;
4299 }
4300
4301 static void wbinvd_ipi(void *garbage)
4302 {
4303 wbinvd();
4304 }
4305
4306 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4307 {
4308 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4309 }
4310
4311 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4312 {
4313 /* Address WBINVD may be executed by guest */
4314 if (need_emulate_wbinvd(vcpu)) {
4315 if (static_call(kvm_x86_has_wbinvd_exit)())
4316 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4317 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4318 smp_call_function_single(vcpu->cpu,
4319 wbinvd_ipi, NULL, 1);
4320 }
4321
4322 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4323
4324 /* Save host pkru register if supported */
4325 vcpu->arch.host_pkru = read_pkru();
4326
4327 /* Apply any externally detected TSC adjustments (due to suspend) */
4328 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4329 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4330 vcpu->arch.tsc_offset_adjustment = 0;
4331 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4332 }
4333
4334 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4335 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4336 rdtsc() - vcpu->arch.last_host_tsc;
4337 if (tsc_delta < 0)
4338 mark_tsc_unstable("KVM discovered backwards TSC");
4339
4340 if (kvm_check_tsc_unstable()) {
4341 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4342 vcpu->arch.last_guest_tsc);
4343 kvm_vcpu_write_tsc_offset(vcpu, offset);
4344 vcpu->arch.tsc_catchup = 1;
4345 }
4346
4347 if (kvm_lapic_hv_timer_in_use(vcpu))
4348 kvm_lapic_restart_hv_timer(vcpu);
4349
4350 /*
4351 * On a host with synchronized TSC, there is no need to update
4352 * kvmclock on vcpu->cpu migration
4353 */
4354 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4355 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4356 if (vcpu->cpu != cpu)
4357 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4358 vcpu->cpu = cpu;
4359 }
4360
4361 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4362 }
4363
4364 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4365 {
4366 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4367 struct kvm_steal_time __user *st;
4368 struct kvm_memslots *slots;
4369 static const u8 preempted = KVM_VCPU_PREEMPTED;
4370
4371 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4372 return;
4373
4374 if (vcpu->arch.st.preempted)
4375 return;
4376
4377 /* This happens on process exit */
4378 if (unlikely(current->mm != vcpu->kvm->mm))
4379 return;
4380
4381 slots = kvm_memslots(vcpu->kvm);
4382
4383 if (unlikely(slots->generation != ghc->generation ||
4384 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4385 return;
4386
4387 st = (struct kvm_steal_time __user *)ghc->hva;
4388 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4389
4390 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4391 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4392
4393 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4394 }
4395
4396 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4397 {
4398 int idx;
4399
4400 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4401 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4402
4403 /*
4404 * Take the srcu lock as memslots will be accessed to check the gfn
4405 * cache generation against the memslots generation.
4406 */
4407 idx = srcu_read_lock(&vcpu->kvm->srcu);
4408 if (kvm_xen_msr_enabled(vcpu->kvm))
4409 kvm_xen_runstate_set_preempted(vcpu);
4410 else
4411 kvm_steal_time_set_preempted(vcpu);
4412 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4413
4414 static_call(kvm_x86_vcpu_put)(vcpu);
4415 vcpu->arch.last_host_tsc = rdtsc();
4416 }
4417
4418 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4419 struct kvm_lapic_state *s)
4420 {
4421 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4422
4423 return kvm_apic_get_state(vcpu, s);
4424 }
4425
4426 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4427 struct kvm_lapic_state *s)
4428 {
4429 int r;
4430
4431 r = kvm_apic_set_state(vcpu, s);
4432 if (r)
4433 return r;
4434 update_cr8_intercept(vcpu);
4435
4436 return 0;
4437 }
4438
4439 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4440 {
4441 /*
4442 * We can accept userspace's request for interrupt injection
4443 * as long as we have a place to store the interrupt number.
4444 * The actual injection will happen when the CPU is able to
4445 * deliver the interrupt.
4446 */
4447 if (kvm_cpu_has_extint(vcpu))
4448 return false;
4449
4450 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4451 return (!lapic_in_kernel(vcpu) ||
4452 kvm_apic_accept_pic_intr(vcpu));
4453 }
4454
4455 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4456 {
4457 /*
4458 * Do not cause an interrupt window exit if an exception
4459 * is pending or an event needs reinjection; userspace
4460 * might want to inject the interrupt manually using KVM_SET_REGS
4461 * or KVM_SET_SREGS. For that to work, we must be at an
4462 * instruction boundary and with no events half-injected.
4463 */
4464 return (kvm_arch_interrupt_allowed(vcpu) &&
4465 kvm_cpu_accept_dm_intr(vcpu) &&
4466 !kvm_event_needs_reinjection(vcpu) &&
4467 !vcpu->arch.exception.pending);
4468 }
4469
4470 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4471 struct kvm_interrupt *irq)
4472 {
4473 if (irq->irq >= KVM_NR_INTERRUPTS)
4474 return -EINVAL;
4475
4476 if (!irqchip_in_kernel(vcpu->kvm)) {
4477 kvm_queue_interrupt(vcpu, irq->irq, false);
4478 kvm_make_request(KVM_REQ_EVENT, vcpu);
4479 return 0;
4480 }
4481
4482 /*
4483 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4484 * fail for in-kernel 8259.
4485 */
4486 if (pic_in_kernel(vcpu->kvm))
4487 return -ENXIO;
4488
4489 if (vcpu->arch.pending_external_vector != -1)
4490 return -EEXIST;
4491
4492 vcpu->arch.pending_external_vector = irq->irq;
4493 kvm_make_request(KVM_REQ_EVENT, vcpu);
4494 return 0;
4495 }
4496
4497 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4498 {
4499 kvm_inject_nmi(vcpu);
4500
4501 return 0;
4502 }
4503
4504 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4505 {
4506 kvm_make_request(KVM_REQ_SMI, vcpu);
4507
4508 return 0;
4509 }
4510
4511 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4512 struct kvm_tpr_access_ctl *tac)
4513 {
4514 if (tac->flags)
4515 return -EINVAL;
4516 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4517 return 0;
4518 }
4519
4520 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4521 u64 mcg_cap)
4522 {
4523 int r;
4524 unsigned bank_num = mcg_cap & 0xff, bank;
4525
4526 r = -EINVAL;
4527 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4528 goto out;
4529 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4530 goto out;
4531 r = 0;
4532 vcpu->arch.mcg_cap = mcg_cap;
4533 /* Init IA32_MCG_CTL to all 1s */
4534 if (mcg_cap & MCG_CTL_P)
4535 vcpu->arch.mcg_ctl = ~(u64)0;
4536 /* Init IA32_MCi_CTL to all 1s */
4537 for (bank = 0; bank < bank_num; bank++)
4538 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4539
4540 static_call(kvm_x86_setup_mce)(vcpu);
4541 out:
4542 return r;
4543 }
4544
4545 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4546 struct kvm_x86_mce *mce)
4547 {
4548 u64 mcg_cap = vcpu->arch.mcg_cap;
4549 unsigned bank_num = mcg_cap & 0xff;
4550 u64 *banks = vcpu->arch.mce_banks;
4551
4552 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4553 return -EINVAL;
4554 /*
4555 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4556 * reporting is disabled
4557 */
4558 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4559 vcpu->arch.mcg_ctl != ~(u64)0)
4560 return 0;
4561 banks += 4 * mce->bank;
4562 /*
4563 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4564 * reporting is disabled for the bank
4565 */
4566 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4567 return 0;
4568 if (mce->status & MCI_STATUS_UC) {
4569 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4570 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4571 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4572 return 0;
4573 }
4574 if (banks[1] & MCI_STATUS_VAL)
4575 mce->status |= MCI_STATUS_OVER;
4576 banks[2] = mce->addr;
4577 banks[3] = mce->misc;
4578 vcpu->arch.mcg_status = mce->mcg_status;
4579 banks[1] = mce->status;
4580 kvm_queue_exception(vcpu, MC_VECTOR);
4581 } else if (!(banks[1] & MCI_STATUS_VAL)
4582 || !(banks[1] & MCI_STATUS_UC)) {
4583 if (banks[1] & MCI_STATUS_VAL)
4584 mce->status |= MCI_STATUS_OVER;
4585 banks[2] = mce->addr;
4586 banks[3] = mce->misc;
4587 banks[1] = mce->status;
4588 } else
4589 banks[1] |= MCI_STATUS_OVER;
4590 return 0;
4591 }
4592
4593 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4594 struct kvm_vcpu_events *events)
4595 {
4596 process_nmi(vcpu);
4597
4598 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4599 process_smi(vcpu);
4600
4601 /*
4602 * In guest mode, payload delivery should be deferred,
4603 * so that the L1 hypervisor can intercept #PF before
4604 * CR2 is modified (or intercept #DB before DR6 is
4605 * modified under nVMX). Unless the per-VM capability,
4606 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4607 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4608 * opportunistically defer the exception payload, deliver it if the
4609 * capability hasn't been requested before processing a
4610 * KVM_GET_VCPU_EVENTS.
4611 */
4612 if (!vcpu->kvm->arch.exception_payload_enabled &&
4613 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4614 kvm_deliver_exception_payload(vcpu);
4615
4616 /*
4617 * The API doesn't provide the instruction length for software
4618 * exceptions, so don't report them. As long as the guest RIP
4619 * isn't advanced, we should expect to encounter the exception
4620 * again.
4621 */
4622 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4623 events->exception.injected = 0;
4624 events->exception.pending = 0;
4625 } else {
4626 events->exception.injected = vcpu->arch.exception.injected;
4627 events->exception.pending = vcpu->arch.exception.pending;
4628 /*
4629 * For ABI compatibility, deliberately conflate
4630 * pending and injected exceptions when
4631 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4632 */
4633 if (!vcpu->kvm->arch.exception_payload_enabled)
4634 events->exception.injected |=
4635 vcpu->arch.exception.pending;
4636 }
4637 events->exception.nr = vcpu->arch.exception.nr;
4638 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4639 events->exception.error_code = vcpu->arch.exception.error_code;
4640 events->exception_has_payload = vcpu->arch.exception.has_payload;
4641 events->exception_payload = vcpu->arch.exception.payload;
4642
4643 events->interrupt.injected =
4644 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4645 events->interrupt.nr = vcpu->arch.interrupt.nr;
4646 events->interrupt.soft = 0;
4647 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4648
4649 events->nmi.injected = vcpu->arch.nmi_injected;
4650 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4651 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4652 events->nmi.pad = 0;
4653
4654 events->sipi_vector = 0; /* never valid when reporting to user space */
4655
4656 events->smi.smm = is_smm(vcpu);
4657 events->smi.pending = vcpu->arch.smi_pending;
4658 events->smi.smm_inside_nmi =
4659 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4660 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4661
4662 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4663 | KVM_VCPUEVENT_VALID_SHADOW
4664 | KVM_VCPUEVENT_VALID_SMM);
4665 if (vcpu->kvm->arch.exception_payload_enabled)
4666 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4667
4668 memset(&events->reserved, 0, sizeof(events->reserved));
4669 }
4670
4671 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4672
4673 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4674 struct kvm_vcpu_events *events)
4675 {
4676 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4677 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4678 | KVM_VCPUEVENT_VALID_SHADOW
4679 | KVM_VCPUEVENT_VALID_SMM
4680 | KVM_VCPUEVENT_VALID_PAYLOAD))
4681 return -EINVAL;
4682
4683 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4684 if (!vcpu->kvm->arch.exception_payload_enabled)
4685 return -EINVAL;
4686 if (events->exception.pending)
4687 events->exception.injected = 0;
4688 else
4689 events->exception_has_payload = 0;
4690 } else {
4691 events->exception.pending = 0;
4692 events->exception_has_payload = 0;
4693 }
4694
4695 if ((events->exception.injected || events->exception.pending) &&
4696 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4697 return -EINVAL;
4698
4699 /* INITs are latched while in SMM */
4700 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4701 (events->smi.smm || events->smi.pending) &&
4702 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4703 return -EINVAL;
4704
4705 process_nmi(vcpu);
4706 vcpu->arch.exception.injected = events->exception.injected;
4707 vcpu->arch.exception.pending = events->exception.pending;
4708 vcpu->arch.exception.nr = events->exception.nr;
4709 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4710 vcpu->arch.exception.error_code = events->exception.error_code;
4711 vcpu->arch.exception.has_payload = events->exception_has_payload;
4712 vcpu->arch.exception.payload = events->exception_payload;
4713
4714 vcpu->arch.interrupt.injected = events->interrupt.injected;
4715 vcpu->arch.interrupt.nr = events->interrupt.nr;
4716 vcpu->arch.interrupt.soft = events->interrupt.soft;
4717 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4718 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4719 events->interrupt.shadow);
4720
4721 vcpu->arch.nmi_injected = events->nmi.injected;
4722 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4723 vcpu->arch.nmi_pending = events->nmi.pending;
4724 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4725
4726 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4727 lapic_in_kernel(vcpu))
4728 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4729
4730 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4731 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4732 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4733 kvm_smm_changed(vcpu, events->smi.smm);
4734 }
4735
4736 vcpu->arch.smi_pending = events->smi.pending;
4737
4738 if (events->smi.smm) {
4739 if (events->smi.smm_inside_nmi)
4740 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4741 else
4742 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4743 }
4744
4745 if (lapic_in_kernel(vcpu)) {
4746 if (events->smi.latched_init)
4747 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4748 else
4749 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4750 }
4751 }
4752
4753 kvm_make_request(KVM_REQ_EVENT, vcpu);
4754
4755 return 0;
4756 }
4757
4758 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4759 struct kvm_debugregs *dbgregs)
4760 {
4761 unsigned long val;
4762
4763 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4764 kvm_get_dr(vcpu, 6, &val);
4765 dbgregs->dr6 = val;
4766 dbgregs->dr7 = vcpu->arch.dr7;
4767 dbgregs->flags = 0;
4768 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4769 }
4770
4771 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4772 struct kvm_debugregs *dbgregs)
4773 {
4774 if (dbgregs->flags)
4775 return -EINVAL;
4776
4777 if (!kvm_dr6_valid(dbgregs->dr6))
4778 return -EINVAL;
4779 if (!kvm_dr7_valid(dbgregs->dr7))
4780 return -EINVAL;
4781
4782 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4783 kvm_update_dr0123(vcpu);
4784 vcpu->arch.dr6 = dbgregs->dr6;
4785 vcpu->arch.dr7 = dbgregs->dr7;
4786 kvm_update_dr7(vcpu);
4787
4788 return 0;
4789 }
4790
4791 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4792 struct kvm_xsave *guest_xsave)
4793 {
4794 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4795 return;
4796
4797 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4798 guest_xsave->region,
4799 sizeof(guest_xsave->region),
4800 vcpu->arch.pkru);
4801 }
4802
4803 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4804 struct kvm_xsave *guest_xsave)
4805 {
4806 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4807 return 0;
4808
4809 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4810 guest_xsave->region,
4811 supported_xcr0, &vcpu->arch.pkru);
4812 }
4813
4814 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4815 struct kvm_xcrs *guest_xcrs)
4816 {
4817 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4818 guest_xcrs->nr_xcrs = 0;
4819 return;
4820 }
4821
4822 guest_xcrs->nr_xcrs = 1;
4823 guest_xcrs->flags = 0;
4824 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4825 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4826 }
4827
4828 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4829 struct kvm_xcrs *guest_xcrs)
4830 {
4831 int i, r = 0;
4832
4833 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4834 return -EINVAL;
4835
4836 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4837 return -EINVAL;
4838
4839 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4840 /* Only support XCR0 currently */
4841 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4842 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4843 guest_xcrs->xcrs[i].value);
4844 break;
4845 }
4846 if (r)
4847 r = -EINVAL;
4848 return r;
4849 }
4850
4851 /*
4852 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4853 * stopped by the hypervisor. This function will be called from the host only.
4854 * EINVAL is returned when the host attempts to set the flag for a guest that
4855 * does not support pv clocks.
4856 */
4857 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4858 {
4859 if (!vcpu->arch.pv_time_enabled)
4860 return -EINVAL;
4861 vcpu->arch.pvclock_set_guest_stopped_request = true;
4862 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4863 return 0;
4864 }
4865
4866 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4867 struct kvm_enable_cap *cap)
4868 {
4869 int r;
4870 uint16_t vmcs_version;
4871 void __user *user_ptr;
4872
4873 if (cap->flags)
4874 return -EINVAL;
4875
4876 switch (cap->cap) {
4877 case KVM_CAP_HYPERV_SYNIC2:
4878 if (cap->args[0])
4879 return -EINVAL;
4880 fallthrough;
4881
4882 case KVM_CAP_HYPERV_SYNIC:
4883 if (!irqchip_in_kernel(vcpu->kvm))
4884 return -EINVAL;
4885 return kvm_hv_activate_synic(vcpu, cap->cap ==
4886 KVM_CAP_HYPERV_SYNIC2);
4887 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4888 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4889 return -ENOTTY;
4890 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4891 if (!r) {
4892 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4893 if (copy_to_user(user_ptr, &vmcs_version,
4894 sizeof(vmcs_version)))
4895 r = -EFAULT;
4896 }
4897 return r;
4898 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4899 if (!kvm_x86_ops.enable_direct_tlbflush)
4900 return -ENOTTY;
4901
4902 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4903
4904 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4905 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4906
4907 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4908 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4909 if (vcpu->arch.pv_cpuid.enforce)
4910 kvm_update_pv_runtime(vcpu);
4911
4912 return 0;
4913 default:
4914 return -EINVAL;
4915 }
4916 }
4917
4918 long kvm_arch_vcpu_ioctl(struct file *filp,
4919 unsigned int ioctl, unsigned long arg)
4920 {
4921 struct kvm_vcpu *vcpu = filp->private_data;
4922 void __user *argp = (void __user *)arg;
4923 int r;
4924 union {
4925 struct kvm_sregs2 *sregs2;
4926 struct kvm_lapic_state *lapic;
4927 struct kvm_xsave *xsave;
4928 struct kvm_xcrs *xcrs;
4929 void *buffer;
4930 } u;
4931
4932 vcpu_load(vcpu);
4933
4934 u.buffer = NULL;
4935 switch (ioctl) {
4936 case KVM_GET_LAPIC: {
4937 r = -EINVAL;
4938 if (!lapic_in_kernel(vcpu))
4939 goto out;
4940 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4941 GFP_KERNEL_ACCOUNT);
4942
4943 r = -ENOMEM;
4944 if (!u.lapic)
4945 goto out;
4946 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4947 if (r)
4948 goto out;
4949 r = -EFAULT;
4950 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4951 goto out;
4952 r = 0;
4953 break;
4954 }
4955 case KVM_SET_LAPIC: {
4956 r = -EINVAL;
4957 if (!lapic_in_kernel(vcpu))
4958 goto out;
4959 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4960 if (IS_ERR(u.lapic)) {
4961 r = PTR_ERR(u.lapic);
4962 goto out_nofree;
4963 }
4964
4965 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4966 break;
4967 }
4968 case KVM_INTERRUPT: {
4969 struct kvm_interrupt irq;
4970
4971 r = -EFAULT;
4972 if (copy_from_user(&irq, argp, sizeof(irq)))
4973 goto out;
4974 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4975 break;
4976 }
4977 case KVM_NMI: {
4978 r = kvm_vcpu_ioctl_nmi(vcpu);
4979 break;
4980 }
4981 case KVM_SMI: {
4982 r = kvm_vcpu_ioctl_smi(vcpu);
4983 break;
4984 }
4985 case KVM_SET_CPUID: {
4986 struct kvm_cpuid __user *cpuid_arg = argp;
4987 struct kvm_cpuid cpuid;
4988
4989 r = -EFAULT;
4990 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4991 goto out;
4992 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4993 break;
4994 }
4995 case KVM_SET_CPUID2: {
4996 struct kvm_cpuid2 __user *cpuid_arg = argp;
4997 struct kvm_cpuid2 cpuid;
4998
4999 r = -EFAULT;
5000 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5001 goto out;
5002 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5003 cpuid_arg->entries);
5004 break;
5005 }
5006 case KVM_GET_CPUID2: {
5007 struct kvm_cpuid2 __user *cpuid_arg = argp;
5008 struct kvm_cpuid2 cpuid;
5009
5010 r = -EFAULT;
5011 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5012 goto out;
5013 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5014 cpuid_arg->entries);
5015 if (r)
5016 goto out;
5017 r = -EFAULT;
5018 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5019 goto out;
5020 r = 0;
5021 break;
5022 }
5023 case KVM_GET_MSRS: {
5024 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5025 r = msr_io(vcpu, argp, do_get_msr, 1);
5026 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5027 break;
5028 }
5029 case KVM_SET_MSRS: {
5030 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5031 r = msr_io(vcpu, argp, do_set_msr, 0);
5032 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5033 break;
5034 }
5035 case KVM_TPR_ACCESS_REPORTING: {
5036 struct kvm_tpr_access_ctl tac;
5037
5038 r = -EFAULT;
5039 if (copy_from_user(&tac, argp, sizeof(tac)))
5040 goto out;
5041 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5042 if (r)
5043 goto out;
5044 r = -EFAULT;
5045 if (copy_to_user(argp, &tac, sizeof(tac)))
5046 goto out;
5047 r = 0;
5048 break;
5049 };
5050 case KVM_SET_VAPIC_ADDR: {
5051 struct kvm_vapic_addr va;
5052 int idx;
5053
5054 r = -EINVAL;
5055 if (!lapic_in_kernel(vcpu))
5056 goto out;
5057 r = -EFAULT;
5058 if (copy_from_user(&va, argp, sizeof(va)))
5059 goto out;
5060 idx = srcu_read_lock(&vcpu->kvm->srcu);
5061 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5062 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5063 break;
5064 }
5065 case KVM_X86_SETUP_MCE: {
5066 u64 mcg_cap;
5067
5068 r = -EFAULT;
5069 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5070 goto out;
5071 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5072 break;
5073 }
5074 case KVM_X86_SET_MCE: {
5075 struct kvm_x86_mce mce;
5076
5077 r = -EFAULT;
5078 if (copy_from_user(&mce, argp, sizeof(mce)))
5079 goto out;
5080 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5081 break;
5082 }
5083 case KVM_GET_VCPU_EVENTS: {
5084 struct kvm_vcpu_events events;
5085
5086 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5087
5088 r = -EFAULT;
5089 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5090 break;
5091 r = 0;
5092 break;
5093 }
5094 case KVM_SET_VCPU_EVENTS: {
5095 struct kvm_vcpu_events events;
5096
5097 r = -EFAULT;
5098 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5099 break;
5100
5101 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5102 break;
5103 }
5104 case KVM_GET_DEBUGREGS: {
5105 struct kvm_debugregs dbgregs;
5106
5107 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5108
5109 r = -EFAULT;
5110 if (copy_to_user(argp, &dbgregs,
5111 sizeof(struct kvm_debugregs)))
5112 break;
5113 r = 0;
5114 break;
5115 }
5116 case KVM_SET_DEBUGREGS: {
5117 struct kvm_debugregs dbgregs;
5118
5119 r = -EFAULT;
5120 if (copy_from_user(&dbgregs, argp,
5121 sizeof(struct kvm_debugregs)))
5122 break;
5123
5124 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5125 break;
5126 }
5127 case KVM_GET_XSAVE: {
5128 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5129 r = -ENOMEM;
5130 if (!u.xsave)
5131 break;
5132
5133 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5134
5135 r = -EFAULT;
5136 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5137 break;
5138 r = 0;
5139 break;
5140 }
5141 case KVM_SET_XSAVE: {
5142 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5143 if (IS_ERR(u.xsave)) {
5144 r = PTR_ERR(u.xsave);
5145 goto out_nofree;
5146 }
5147
5148 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5149 break;
5150 }
5151 case KVM_GET_XCRS: {
5152 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5153 r = -ENOMEM;
5154 if (!u.xcrs)
5155 break;
5156
5157 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5158
5159 r = -EFAULT;
5160 if (copy_to_user(argp, u.xcrs,
5161 sizeof(struct kvm_xcrs)))
5162 break;
5163 r = 0;
5164 break;
5165 }
5166 case KVM_SET_XCRS: {
5167 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5168 if (IS_ERR(u.xcrs)) {
5169 r = PTR_ERR(u.xcrs);
5170 goto out_nofree;
5171 }
5172
5173 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5174 break;
5175 }
5176 case KVM_SET_TSC_KHZ: {
5177 u32 user_tsc_khz;
5178
5179 r = -EINVAL;
5180 user_tsc_khz = (u32)arg;
5181
5182 if (kvm_has_tsc_control &&
5183 user_tsc_khz >= kvm_max_guest_tsc_khz)
5184 goto out;
5185
5186 if (user_tsc_khz == 0)
5187 user_tsc_khz = tsc_khz;
5188
5189 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5190 r = 0;
5191
5192 goto out;
5193 }
5194 case KVM_GET_TSC_KHZ: {
5195 r = vcpu->arch.virtual_tsc_khz;
5196 goto out;
5197 }
5198 case KVM_KVMCLOCK_CTRL: {
5199 r = kvm_set_guest_paused(vcpu);
5200 goto out;
5201 }
5202 case KVM_ENABLE_CAP: {
5203 struct kvm_enable_cap cap;
5204
5205 r = -EFAULT;
5206 if (copy_from_user(&cap, argp, sizeof(cap)))
5207 goto out;
5208 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5209 break;
5210 }
5211 case KVM_GET_NESTED_STATE: {
5212 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5213 u32 user_data_size;
5214
5215 r = -EINVAL;
5216 if (!kvm_x86_ops.nested_ops->get_state)
5217 break;
5218
5219 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5220 r = -EFAULT;
5221 if (get_user(user_data_size, &user_kvm_nested_state->size))
5222 break;
5223
5224 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5225 user_data_size);
5226 if (r < 0)
5227 break;
5228
5229 if (r > user_data_size) {
5230 if (put_user(r, &user_kvm_nested_state->size))
5231 r = -EFAULT;
5232 else
5233 r = -E2BIG;
5234 break;
5235 }
5236
5237 r = 0;
5238 break;
5239 }
5240 case KVM_SET_NESTED_STATE: {
5241 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5242 struct kvm_nested_state kvm_state;
5243 int idx;
5244
5245 r = -EINVAL;
5246 if (!kvm_x86_ops.nested_ops->set_state)
5247 break;
5248
5249 r = -EFAULT;
5250 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5251 break;
5252
5253 r = -EINVAL;
5254 if (kvm_state.size < sizeof(kvm_state))
5255 break;
5256
5257 if (kvm_state.flags &
5258 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5259 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5260 | KVM_STATE_NESTED_GIF_SET))
5261 break;
5262
5263 /* nested_run_pending implies guest_mode. */
5264 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5265 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5266 break;
5267
5268 idx = srcu_read_lock(&vcpu->kvm->srcu);
5269 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5270 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5271 break;
5272 }
5273 case KVM_GET_SUPPORTED_HV_CPUID:
5274 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5275 break;
5276 #ifdef CONFIG_KVM_XEN
5277 case KVM_XEN_VCPU_GET_ATTR: {
5278 struct kvm_xen_vcpu_attr xva;
5279
5280 r = -EFAULT;
5281 if (copy_from_user(&xva, argp, sizeof(xva)))
5282 goto out;
5283 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5284 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5285 r = -EFAULT;
5286 break;
5287 }
5288 case KVM_XEN_VCPU_SET_ATTR: {
5289 struct kvm_xen_vcpu_attr xva;
5290
5291 r = -EFAULT;
5292 if (copy_from_user(&xva, argp, sizeof(xva)))
5293 goto out;
5294 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5295 break;
5296 }
5297 #endif
5298 case KVM_GET_SREGS2: {
5299 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5300 r = -ENOMEM;
5301 if (!u.sregs2)
5302 goto out;
5303 __get_sregs2(vcpu, u.sregs2);
5304 r = -EFAULT;
5305 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5306 goto out;
5307 r = 0;
5308 break;
5309 }
5310 case KVM_SET_SREGS2: {
5311 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5312 if (IS_ERR(u.sregs2)) {
5313 r = PTR_ERR(u.sregs2);
5314 u.sregs2 = NULL;
5315 goto out;
5316 }
5317 r = __set_sregs2(vcpu, u.sregs2);
5318 break;
5319 }
5320 default:
5321 r = -EINVAL;
5322 }
5323 out:
5324 kfree(u.buffer);
5325 out_nofree:
5326 vcpu_put(vcpu);
5327 return r;
5328 }
5329
5330 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5331 {
5332 return VM_FAULT_SIGBUS;
5333 }
5334
5335 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5336 {
5337 int ret;
5338
5339 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5340 return -EINVAL;
5341 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5342 return ret;
5343 }
5344
5345 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5346 u64 ident_addr)
5347 {
5348 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5349 }
5350
5351 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5352 unsigned long kvm_nr_mmu_pages)
5353 {
5354 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5355 return -EINVAL;
5356
5357 mutex_lock(&kvm->slots_lock);
5358
5359 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5360 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5361
5362 mutex_unlock(&kvm->slots_lock);
5363 return 0;
5364 }
5365
5366 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5367 {
5368 return kvm->arch.n_max_mmu_pages;
5369 }
5370
5371 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5372 {
5373 struct kvm_pic *pic = kvm->arch.vpic;
5374 int r;
5375
5376 r = 0;
5377 switch (chip->chip_id) {
5378 case KVM_IRQCHIP_PIC_MASTER:
5379 memcpy(&chip->chip.pic, &pic->pics[0],
5380 sizeof(struct kvm_pic_state));
5381 break;
5382 case KVM_IRQCHIP_PIC_SLAVE:
5383 memcpy(&chip->chip.pic, &pic->pics[1],
5384 sizeof(struct kvm_pic_state));
5385 break;
5386 case KVM_IRQCHIP_IOAPIC:
5387 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5388 break;
5389 default:
5390 r = -EINVAL;
5391 break;
5392 }
5393 return r;
5394 }
5395
5396 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5397 {
5398 struct kvm_pic *pic = kvm->arch.vpic;
5399 int r;
5400
5401 r = 0;
5402 switch (chip->chip_id) {
5403 case KVM_IRQCHIP_PIC_MASTER:
5404 spin_lock(&pic->lock);
5405 memcpy(&pic->pics[0], &chip->chip.pic,
5406 sizeof(struct kvm_pic_state));
5407 spin_unlock(&pic->lock);
5408 break;
5409 case KVM_IRQCHIP_PIC_SLAVE:
5410 spin_lock(&pic->lock);
5411 memcpy(&pic->pics[1], &chip->chip.pic,
5412 sizeof(struct kvm_pic_state));
5413 spin_unlock(&pic->lock);
5414 break;
5415 case KVM_IRQCHIP_IOAPIC:
5416 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5417 break;
5418 default:
5419 r = -EINVAL;
5420 break;
5421 }
5422 kvm_pic_update_irq(pic);
5423 return r;
5424 }
5425
5426 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5427 {
5428 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5429
5430 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5431
5432 mutex_lock(&kps->lock);
5433 memcpy(ps, &kps->channels, sizeof(*ps));
5434 mutex_unlock(&kps->lock);
5435 return 0;
5436 }
5437
5438 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5439 {
5440 int i;
5441 struct kvm_pit *pit = kvm->arch.vpit;
5442
5443 mutex_lock(&pit->pit_state.lock);
5444 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5445 for (i = 0; i < 3; i++)
5446 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5447 mutex_unlock(&pit->pit_state.lock);
5448 return 0;
5449 }
5450
5451 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5452 {
5453 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5454 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5455 sizeof(ps->channels));
5456 ps->flags = kvm->arch.vpit->pit_state.flags;
5457 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5458 memset(&ps->reserved, 0, sizeof(ps->reserved));
5459 return 0;
5460 }
5461
5462 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5463 {
5464 int start = 0;
5465 int i;
5466 u32 prev_legacy, cur_legacy;
5467 struct kvm_pit *pit = kvm->arch.vpit;
5468
5469 mutex_lock(&pit->pit_state.lock);
5470 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5471 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5472 if (!prev_legacy && cur_legacy)
5473 start = 1;
5474 memcpy(&pit->pit_state.channels, &ps->channels,
5475 sizeof(pit->pit_state.channels));
5476 pit->pit_state.flags = ps->flags;
5477 for (i = 0; i < 3; i++)
5478 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5479 start && i == 0);
5480 mutex_unlock(&pit->pit_state.lock);
5481 return 0;
5482 }
5483
5484 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5485 struct kvm_reinject_control *control)
5486 {
5487 struct kvm_pit *pit = kvm->arch.vpit;
5488
5489 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5490 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5491 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5492 */
5493 mutex_lock(&pit->pit_state.lock);
5494 kvm_pit_set_reinject(pit, control->pit_reinject);
5495 mutex_unlock(&pit->pit_state.lock);
5496
5497 return 0;
5498 }
5499
5500 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5501 {
5502
5503 /*
5504 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5505 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5506 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5507 * VM-Exit.
5508 */
5509 struct kvm_vcpu *vcpu;
5510 int i;
5511
5512 kvm_for_each_vcpu(i, vcpu, kvm)
5513 kvm_vcpu_kick(vcpu);
5514 }
5515
5516 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5517 bool line_status)
5518 {
5519 if (!irqchip_in_kernel(kvm))
5520 return -ENXIO;
5521
5522 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5523 irq_event->irq, irq_event->level,
5524 line_status);
5525 return 0;
5526 }
5527
5528 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5529 struct kvm_enable_cap *cap)
5530 {
5531 int r;
5532
5533 if (cap->flags)
5534 return -EINVAL;
5535
5536 switch (cap->cap) {
5537 case KVM_CAP_DISABLE_QUIRKS:
5538 kvm->arch.disabled_quirks = cap->args[0];
5539 r = 0;
5540 break;
5541 case KVM_CAP_SPLIT_IRQCHIP: {
5542 mutex_lock(&kvm->lock);
5543 r = -EINVAL;
5544 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5545 goto split_irqchip_unlock;
5546 r = -EEXIST;
5547 if (irqchip_in_kernel(kvm))
5548 goto split_irqchip_unlock;
5549 if (kvm->created_vcpus)
5550 goto split_irqchip_unlock;
5551 r = kvm_setup_empty_irq_routing(kvm);
5552 if (r)
5553 goto split_irqchip_unlock;
5554 /* Pairs with irqchip_in_kernel. */
5555 smp_wmb();
5556 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5557 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5558 r = 0;
5559 split_irqchip_unlock:
5560 mutex_unlock(&kvm->lock);
5561 break;
5562 }
5563 case KVM_CAP_X2APIC_API:
5564 r = -EINVAL;
5565 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5566 break;
5567
5568 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5569 kvm->arch.x2apic_format = true;
5570 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5571 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5572
5573 r = 0;
5574 break;
5575 case KVM_CAP_X86_DISABLE_EXITS:
5576 r = -EINVAL;
5577 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5578 break;
5579
5580 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5581 kvm_can_mwait_in_guest())
5582 kvm->arch.mwait_in_guest = true;
5583 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5584 kvm->arch.hlt_in_guest = true;
5585 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5586 kvm->arch.pause_in_guest = true;
5587 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5588 kvm->arch.cstate_in_guest = true;
5589 r = 0;
5590 break;
5591 case KVM_CAP_MSR_PLATFORM_INFO:
5592 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5593 r = 0;
5594 break;
5595 case KVM_CAP_EXCEPTION_PAYLOAD:
5596 kvm->arch.exception_payload_enabled = cap->args[0];
5597 r = 0;
5598 break;
5599 case KVM_CAP_X86_USER_SPACE_MSR:
5600 kvm->arch.user_space_msr_mask = cap->args[0];
5601 r = 0;
5602 break;
5603 case KVM_CAP_X86_BUS_LOCK_EXIT:
5604 r = -EINVAL;
5605 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5606 break;
5607
5608 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5609 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5610 break;
5611
5612 if (kvm_has_bus_lock_exit &&
5613 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5614 kvm->arch.bus_lock_detection_enabled = true;
5615 r = 0;
5616 break;
5617 #ifdef CONFIG_X86_SGX_KVM
5618 case KVM_CAP_SGX_ATTRIBUTE: {
5619 unsigned long allowed_attributes = 0;
5620
5621 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5622 if (r)
5623 break;
5624
5625 /* KVM only supports the PROVISIONKEY privileged attribute. */
5626 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5627 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5628 kvm->arch.sgx_provisioning_allowed = true;
5629 else
5630 r = -EINVAL;
5631 break;
5632 }
5633 #endif
5634 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5635 r = -EINVAL;
5636 if (kvm_x86_ops.vm_copy_enc_context_from)
5637 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5638 return r;
5639 case KVM_CAP_EXIT_HYPERCALL:
5640 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5641 r = -EINVAL;
5642 break;
5643 }
5644 kvm->arch.hypercall_exit_enabled = cap->args[0];
5645 r = 0;
5646 break;
5647 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5648 r = -EINVAL;
5649 if (cap->args[0] & ~1)
5650 break;
5651 kvm->arch.exit_on_emulation_error = cap->args[0];
5652 r = 0;
5653 break;
5654 default:
5655 r = -EINVAL;
5656 break;
5657 }
5658 return r;
5659 }
5660
5661 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5662 {
5663 struct kvm_x86_msr_filter *msr_filter;
5664
5665 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5666 if (!msr_filter)
5667 return NULL;
5668
5669 msr_filter->default_allow = default_allow;
5670 return msr_filter;
5671 }
5672
5673 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5674 {
5675 u32 i;
5676
5677 if (!msr_filter)
5678 return;
5679
5680 for (i = 0; i < msr_filter->count; i++)
5681 kfree(msr_filter->ranges[i].bitmap);
5682
5683 kfree(msr_filter);
5684 }
5685
5686 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5687 struct kvm_msr_filter_range *user_range)
5688 {
5689 unsigned long *bitmap = NULL;
5690 size_t bitmap_size;
5691
5692 if (!user_range->nmsrs)
5693 return 0;
5694
5695 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5696 return -EINVAL;
5697
5698 if (!user_range->flags)
5699 return -EINVAL;
5700
5701 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5702 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5703 return -EINVAL;
5704
5705 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5706 if (IS_ERR(bitmap))
5707 return PTR_ERR(bitmap);
5708
5709 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5710 .flags = user_range->flags,
5711 .base = user_range->base,
5712 .nmsrs = user_range->nmsrs,
5713 .bitmap = bitmap,
5714 };
5715
5716 msr_filter->count++;
5717 return 0;
5718 }
5719
5720 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5721 {
5722 struct kvm_msr_filter __user *user_msr_filter = argp;
5723 struct kvm_x86_msr_filter *new_filter, *old_filter;
5724 struct kvm_msr_filter filter;
5725 bool default_allow;
5726 bool empty = true;
5727 int r = 0;
5728 u32 i;
5729
5730 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5731 return -EFAULT;
5732
5733 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5734 empty &= !filter.ranges[i].nmsrs;
5735
5736 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5737 if (empty && !default_allow)
5738 return -EINVAL;
5739
5740 new_filter = kvm_alloc_msr_filter(default_allow);
5741 if (!new_filter)
5742 return -ENOMEM;
5743
5744 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5745 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5746 if (r) {
5747 kvm_free_msr_filter(new_filter);
5748 return r;
5749 }
5750 }
5751
5752 mutex_lock(&kvm->lock);
5753
5754 /* The per-VM filter is protected by kvm->lock... */
5755 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5756
5757 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5758 synchronize_srcu(&kvm->srcu);
5759
5760 kvm_free_msr_filter(old_filter);
5761
5762 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5763 mutex_unlock(&kvm->lock);
5764
5765 return 0;
5766 }
5767
5768 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5769 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5770 {
5771 struct kvm_vcpu *vcpu;
5772 int i, ret = 0;
5773
5774 mutex_lock(&kvm->lock);
5775 kvm_for_each_vcpu(i, vcpu, kvm) {
5776 if (!vcpu->arch.pv_time_enabled)
5777 continue;
5778
5779 ret = kvm_set_guest_paused(vcpu);
5780 if (ret) {
5781 kvm_err("Failed to pause guest VCPU%d: %d\n",
5782 vcpu->vcpu_id, ret);
5783 break;
5784 }
5785 }
5786 mutex_unlock(&kvm->lock);
5787
5788 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5789 }
5790
5791 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5792 {
5793 switch (state) {
5794 case PM_HIBERNATION_PREPARE:
5795 case PM_SUSPEND_PREPARE:
5796 return kvm_arch_suspend_notifier(kvm);
5797 }
5798
5799 return NOTIFY_DONE;
5800 }
5801 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5802
5803 long kvm_arch_vm_ioctl(struct file *filp,
5804 unsigned int ioctl, unsigned long arg)
5805 {
5806 struct kvm *kvm = filp->private_data;
5807 void __user *argp = (void __user *)arg;
5808 int r = -ENOTTY;
5809 /*
5810 * This union makes it completely explicit to gcc-3.x
5811 * that these two variables' stack usage should be
5812 * combined, not added together.
5813 */
5814 union {
5815 struct kvm_pit_state ps;
5816 struct kvm_pit_state2 ps2;
5817 struct kvm_pit_config pit_config;
5818 } u;
5819
5820 switch (ioctl) {
5821 case KVM_SET_TSS_ADDR:
5822 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5823 break;
5824 case KVM_SET_IDENTITY_MAP_ADDR: {
5825 u64 ident_addr;
5826
5827 mutex_lock(&kvm->lock);
5828 r = -EINVAL;
5829 if (kvm->created_vcpus)
5830 goto set_identity_unlock;
5831 r = -EFAULT;
5832 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5833 goto set_identity_unlock;
5834 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5835 set_identity_unlock:
5836 mutex_unlock(&kvm->lock);
5837 break;
5838 }
5839 case KVM_SET_NR_MMU_PAGES:
5840 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5841 break;
5842 case KVM_GET_NR_MMU_PAGES:
5843 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5844 break;
5845 case KVM_CREATE_IRQCHIP: {
5846 mutex_lock(&kvm->lock);
5847
5848 r = -EEXIST;
5849 if (irqchip_in_kernel(kvm))
5850 goto create_irqchip_unlock;
5851
5852 r = -EINVAL;
5853 if (kvm->created_vcpus)
5854 goto create_irqchip_unlock;
5855
5856 r = kvm_pic_init(kvm);
5857 if (r)
5858 goto create_irqchip_unlock;
5859
5860 r = kvm_ioapic_init(kvm);
5861 if (r) {
5862 kvm_pic_destroy(kvm);
5863 goto create_irqchip_unlock;
5864 }
5865
5866 r = kvm_setup_default_irq_routing(kvm);
5867 if (r) {
5868 kvm_ioapic_destroy(kvm);
5869 kvm_pic_destroy(kvm);
5870 goto create_irqchip_unlock;
5871 }
5872 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5873 smp_wmb();
5874 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5875 create_irqchip_unlock:
5876 mutex_unlock(&kvm->lock);
5877 break;
5878 }
5879 case KVM_CREATE_PIT:
5880 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5881 goto create_pit;
5882 case KVM_CREATE_PIT2:
5883 r = -EFAULT;
5884 if (copy_from_user(&u.pit_config, argp,
5885 sizeof(struct kvm_pit_config)))
5886 goto out;
5887 create_pit:
5888 mutex_lock(&kvm->lock);
5889 r = -EEXIST;
5890 if (kvm->arch.vpit)
5891 goto create_pit_unlock;
5892 r = -ENOMEM;
5893 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5894 if (kvm->arch.vpit)
5895 r = 0;
5896 create_pit_unlock:
5897 mutex_unlock(&kvm->lock);
5898 break;
5899 case KVM_GET_IRQCHIP: {
5900 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5901 struct kvm_irqchip *chip;
5902
5903 chip = memdup_user(argp, sizeof(*chip));
5904 if (IS_ERR(chip)) {
5905 r = PTR_ERR(chip);
5906 goto out;
5907 }
5908
5909 r = -ENXIO;
5910 if (!irqchip_kernel(kvm))
5911 goto get_irqchip_out;
5912 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5913 if (r)
5914 goto get_irqchip_out;
5915 r = -EFAULT;
5916 if (copy_to_user(argp, chip, sizeof(*chip)))
5917 goto get_irqchip_out;
5918 r = 0;
5919 get_irqchip_out:
5920 kfree(chip);
5921 break;
5922 }
5923 case KVM_SET_IRQCHIP: {
5924 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5925 struct kvm_irqchip *chip;
5926
5927 chip = memdup_user(argp, sizeof(*chip));
5928 if (IS_ERR(chip)) {
5929 r = PTR_ERR(chip);
5930 goto out;
5931 }
5932
5933 r = -ENXIO;
5934 if (!irqchip_kernel(kvm))
5935 goto set_irqchip_out;
5936 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5937 set_irqchip_out:
5938 kfree(chip);
5939 break;
5940 }
5941 case KVM_GET_PIT: {
5942 r = -EFAULT;
5943 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5944 goto out;
5945 r = -ENXIO;
5946 if (!kvm->arch.vpit)
5947 goto out;
5948 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5949 if (r)
5950 goto out;
5951 r = -EFAULT;
5952 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5953 goto out;
5954 r = 0;
5955 break;
5956 }
5957 case KVM_SET_PIT: {
5958 r = -EFAULT;
5959 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5960 goto out;
5961 mutex_lock(&kvm->lock);
5962 r = -ENXIO;
5963 if (!kvm->arch.vpit)
5964 goto set_pit_out;
5965 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5966 set_pit_out:
5967 mutex_unlock(&kvm->lock);
5968 break;
5969 }
5970 case KVM_GET_PIT2: {
5971 r = -ENXIO;
5972 if (!kvm->arch.vpit)
5973 goto out;
5974 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5975 if (r)
5976 goto out;
5977 r = -EFAULT;
5978 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5979 goto out;
5980 r = 0;
5981 break;
5982 }
5983 case KVM_SET_PIT2: {
5984 r = -EFAULT;
5985 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5986 goto out;
5987 mutex_lock(&kvm->lock);
5988 r = -ENXIO;
5989 if (!kvm->arch.vpit)
5990 goto set_pit2_out;
5991 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5992 set_pit2_out:
5993 mutex_unlock(&kvm->lock);
5994 break;
5995 }
5996 case KVM_REINJECT_CONTROL: {
5997 struct kvm_reinject_control control;
5998 r = -EFAULT;
5999 if (copy_from_user(&control, argp, sizeof(control)))
6000 goto out;
6001 r = -ENXIO;
6002 if (!kvm->arch.vpit)
6003 goto out;
6004 r = kvm_vm_ioctl_reinject(kvm, &control);
6005 break;
6006 }
6007 case KVM_SET_BOOT_CPU_ID:
6008 r = 0;
6009 mutex_lock(&kvm->lock);
6010 if (kvm->created_vcpus)
6011 r = -EBUSY;
6012 else
6013 kvm->arch.bsp_vcpu_id = arg;
6014 mutex_unlock(&kvm->lock);
6015 break;
6016 #ifdef CONFIG_KVM_XEN
6017 case KVM_XEN_HVM_CONFIG: {
6018 struct kvm_xen_hvm_config xhc;
6019 r = -EFAULT;
6020 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6021 goto out;
6022 r = kvm_xen_hvm_config(kvm, &xhc);
6023 break;
6024 }
6025 case KVM_XEN_HVM_GET_ATTR: {
6026 struct kvm_xen_hvm_attr xha;
6027
6028 r = -EFAULT;
6029 if (copy_from_user(&xha, argp, sizeof(xha)))
6030 goto out;
6031 r = kvm_xen_hvm_get_attr(kvm, &xha);
6032 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6033 r = -EFAULT;
6034 break;
6035 }
6036 case KVM_XEN_HVM_SET_ATTR: {
6037 struct kvm_xen_hvm_attr xha;
6038
6039 r = -EFAULT;
6040 if (copy_from_user(&xha, argp, sizeof(xha)))
6041 goto out;
6042 r = kvm_xen_hvm_set_attr(kvm, &xha);
6043 break;
6044 }
6045 #endif
6046 case KVM_SET_CLOCK: {
6047 struct kvm_arch *ka = &kvm->arch;
6048 struct kvm_clock_data user_ns;
6049 u64 now_ns;
6050
6051 r = -EFAULT;
6052 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6053 goto out;
6054
6055 r = -EINVAL;
6056 if (user_ns.flags)
6057 goto out;
6058
6059 r = 0;
6060 /*
6061 * TODO: userspace has to take care of races with VCPU_RUN, so
6062 * kvm_gen_update_masterclock() can be cut down to locked
6063 * pvclock_update_vm_gtod_copy().
6064 */
6065 kvm_gen_update_masterclock(kvm);
6066
6067 /*
6068 * This pairs with kvm_guest_time_update(): when masterclock is
6069 * in use, we use master_kernel_ns + kvmclock_offset to set
6070 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6071 * is slightly ahead) here we risk going negative on unsigned
6072 * 'system_time' when 'user_ns.clock' is very small.
6073 */
6074 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6075 if (kvm->arch.use_master_clock)
6076 now_ns = ka->master_kernel_ns;
6077 else
6078 now_ns = get_kvmclock_base_ns();
6079 ka->kvmclock_offset = user_ns.clock - now_ns;
6080 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6081
6082 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6083 break;
6084 }
6085 case KVM_GET_CLOCK: {
6086 struct kvm_clock_data user_ns;
6087 u64 now_ns;
6088
6089 now_ns = get_kvmclock_ns(kvm);
6090 user_ns.clock = now_ns;
6091 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6092 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6093
6094 r = -EFAULT;
6095 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6096 goto out;
6097 r = 0;
6098 break;
6099 }
6100 case KVM_MEMORY_ENCRYPT_OP: {
6101 r = -ENOTTY;
6102 if (kvm_x86_ops.mem_enc_op)
6103 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6104 break;
6105 }
6106 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6107 struct kvm_enc_region region;
6108
6109 r = -EFAULT;
6110 if (copy_from_user(&region, argp, sizeof(region)))
6111 goto out;
6112
6113 r = -ENOTTY;
6114 if (kvm_x86_ops.mem_enc_reg_region)
6115 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6116 break;
6117 }
6118 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6119 struct kvm_enc_region region;
6120
6121 r = -EFAULT;
6122 if (copy_from_user(&region, argp, sizeof(region)))
6123 goto out;
6124
6125 r = -ENOTTY;
6126 if (kvm_x86_ops.mem_enc_unreg_region)
6127 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6128 break;
6129 }
6130 case KVM_HYPERV_EVENTFD: {
6131 struct kvm_hyperv_eventfd hvevfd;
6132
6133 r = -EFAULT;
6134 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6135 goto out;
6136 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6137 break;
6138 }
6139 case KVM_SET_PMU_EVENT_FILTER:
6140 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6141 break;
6142 case KVM_X86_SET_MSR_FILTER:
6143 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6144 break;
6145 default:
6146 r = -ENOTTY;
6147 }
6148 out:
6149 return r;
6150 }
6151
6152 static void kvm_init_msr_list(void)
6153 {
6154 struct x86_pmu_capability x86_pmu;
6155 u32 dummy[2];
6156 unsigned i;
6157
6158 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6159 "Please update the fixed PMCs in msrs_to_saved_all[]");
6160
6161 perf_get_x86_pmu_capability(&x86_pmu);
6162
6163 num_msrs_to_save = 0;
6164 num_emulated_msrs = 0;
6165 num_msr_based_features = 0;
6166
6167 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6168 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6169 continue;
6170
6171 /*
6172 * Even MSRs that are valid in the host may not be exposed
6173 * to the guests in some cases.
6174 */
6175 switch (msrs_to_save_all[i]) {
6176 case MSR_IA32_BNDCFGS:
6177 if (!kvm_mpx_supported())
6178 continue;
6179 break;
6180 case MSR_TSC_AUX:
6181 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6182 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6183 continue;
6184 break;
6185 case MSR_IA32_UMWAIT_CONTROL:
6186 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6187 continue;
6188 break;
6189 case MSR_IA32_RTIT_CTL:
6190 case MSR_IA32_RTIT_STATUS:
6191 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6192 continue;
6193 break;
6194 case MSR_IA32_RTIT_CR3_MATCH:
6195 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6196 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6197 continue;
6198 break;
6199 case MSR_IA32_RTIT_OUTPUT_BASE:
6200 case MSR_IA32_RTIT_OUTPUT_MASK:
6201 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6202 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6203 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6204 continue;
6205 break;
6206 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6207 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6208 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6209 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6210 continue;
6211 break;
6212 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6213 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6214 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6215 continue;
6216 break;
6217 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6218 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6219 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6220 continue;
6221 break;
6222 default:
6223 break;
6224 }
6225
6226 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6227 }
6228
6229 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6230 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6231 continue;
6232
6233 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6234 }
6235
6236 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6237 struct kvm_msr_entry msr;
6238
6239 msr.index = msr_based_features_all[i];
6240 if (kvm_get_msr_feature(&msr))
6241 continue;
6242
6243 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6244 }
6245 }
6246
6247 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6248 const void *v)
6249 {
6250 int handled = 0;
6251 int n;
6252
6253 do {
6254 n = min(len, 8);
6255 if (!(lapic_in_kernel(vcpu) &&
6256 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6257 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6258 break;
6259 handled += n;
6260 addr += n;
6261 len -= n;
6262 v += n;
6263 } while (len);
6264
6265 return handled;
6266 }
6267
6268 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6269 {
6270 int handled = 0;
6271 int n;
6272
6273 do {
6274 n = min(len, 8);
6275 if (!(lapic_in_kernel(vcpu) &&
6276 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6277 addr, n, v))
6278 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6279 break;
6280 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6281 handled += n;
6282 addr += n;
6283 len -= n;
6284 v += n;
6285 } while (len);
6286
6287 return handled;
6288 }
6289
6290 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6291 struct kvm_segment *var, int seg)
6292 {
6293 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6294 }
6295
6296 void kvm_get_segment(struct kvm_vcpu *vcpu,
6297 struct kvm_segment *var, int seg)
6298 {
6299 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6300 }
6301
6302 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6303 struct x86_exception *exception)
6304 {
6305 gpa_t t_gpa;
6306
6307 BUG_ON(!mmu_is_nested(vcpu));
6308
6309 /* NPT walks are always user-walks */
6310 access |= PFERR_USER_MASK;
6311 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6312
6313 return t_gpa;
6314 }
6315
6316 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6317 struct x86_exception *exception)
6318 {
6319 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6320 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6321 }
6322 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6323
6324 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6325 struct x86_exception *exception)
6326 {
6327 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6328 access |= PFERR_FETCH_MASK;
6329 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6330 }
6331
6332 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6333 struct x86_exception *exception)
6334 {
6335 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6336 access |= PFERR_WRITE_MASK;
6337 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6338 }
6339 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6340
6341 /* uses this to access any guest's mapped memory without checking CPL */
6342 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6343 struct x86_exception *exception)
6344 {
6345 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6346 }
6347
6348 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6349 struct kvm_vcpu *vcpu, u32 access,
6350 struct x86_exception *exception)
6351 {
6352 void *data = val;
6353 int r = X86EMUL_CONTINUE;
6354
6355 while (bytes) {
6356 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6357 exception);
6358 unsigned offset = addr & (PAGE_SIZE-1);
6359 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6360 int ret;
6361
6362 if (gpa == UNMAPPED_GVA)
6363 return X86EMUL_PROPAGATE_FAULT;
6364 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6365 offset, toread);
6366 if (ret < 0) {
6367 r = X86EMUL_IO_NEEDED;
6368 goto out;
6369 }
6370
6371 bytes -= toread;
6372 data += toread;
6373 addr += toread;
6374 }
6375 out:
6376 return r;
6377 }
6378
6379 /* used for instruction fetching */
6380 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6381 gva_t addr, void *val, unsigned int bytes,
6382 struct x86_exception *exception)
6383 {
6384 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6385 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6386 unsigned offset;
6387 int ret;
6388
6389 /* Inline kvm_read_guest_virt_helper for speed. */
6390 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6391 exception);
6392 if (unlikely(gpa == UNMAPPED_GVA))
6393 return X86EMUL_PROPAGATE_FAULT;
6394
6395 offset = addr & (PAGE_SIZE-1);
6396 if (WARN_ON(offset + bytes > PAGE_SIZE))
6397 bytes = (unsigned)PAGE_SIZE - offset;
6398 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6399 offset, bytes);
6400 if (unlikely(ret < 0))
6401 return X86EMUL_IO_NEEDED;
6402
6403 return X86EMUL_CONTINUE;
6404 }
6405
6406 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6407 gva_t addr, void *val, unsigned int bytes,
6408 struct x86_exception *exception)
6409 {
6410 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6411
6412 /*
6413 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6414 * is returned, but our callers are not ready for that and they blindly
6415 * call kvm_inject_page_fault. Ensure that they at least do not leak
6416 * uninitialized kernel stack memory into cr2 and error code.
6417 */
6418 memset(exception, 0, sizeof(*exception));
6419 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6420 exception);
6421 }
6422 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6423
6424 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6425 gva_t addr, void *val, unsigned int bytes,
6426 struct x86_exception *exception, bool system)
6427 {
6428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6429 u32 access = 0;
6430
6431 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6432 access |= PFERR_USER_MASK;
6433
6434 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6435 }
6436
6437 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6438 unsigned long addr, void *val, unsigned int bytes)
6439 {
6440 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6441 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6442
6443 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6444 }
6445
6446 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6447 struct kvm_vcpu *vcpu, u32 access,
6448 struct x86_exception *exception)
6449 {
6450 void *data = val;
6451 int r = X86EMUL_CONTINUE;
6452
6453 while (bytes) {
6454 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6455 access,
6456 exception);
6457 unsigned offset = addr & (PAGE_SIZE-1);
6458 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6459 int ret;
6460
6461 if (gpa == UNMAPPED_GVA)
6462 return X86EMUL_PROPAGATE_FAULT;
6463 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6464 if (ret < 0) {
6465 r = X86EMUL_IO_NEEDED;
6466 goto out;
6467 }
6468
6469 bytes -= towrite;
6470 data += towrite;
6471 addr += towrite;
6472 }
6473 out:
6474 return r;
6475 }
6476
6477 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6478 unsigned int bytes, struct x86_exception *exception,
6479 bool system)
6480 {
6481 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6482 u32 access = PFERR_WRITE_MASK;
6483
6484 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6485 access |= PFERR_USER_MASK;
6486
6487 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6488 access, exception);
6489 }
6490
6491 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6492 unsigned int bytes, struct x86_exception *exception)
6493 {
6494 /* kvm_write_guest_virt_system can pull in tons of pages. */
6495 vcpu->arch.l1tf_flush_l1d = true;
6496
6497 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6498 PFERR_WRITE_MASK, exception);
6499 }
6500 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6501
6502 int handle_ud(struct kvm_vcpu *vcpu)
6503 {
6504 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6505 int emul_type = EMULTYPE_TRAP_UD;
6506 char sig[5]; /* ud2; .ascii "kvm" */
6507 struct x86_exception e;
6508
6509 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6510 return 1;
6511
6512 if (force_emulation_prefix &&
6513 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6514 sig, sizeof(sig), &e) == 0 &&
6515 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6516 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6517 emul_type = EMULTYPE_TRAP_UD_FORCED;
6518 }
6519
6520 return kvm_emulate_instruction(vcpu, emul_type);
6521 }
6522 EXPORT_SYMBOL_GPL(handle_ud);
6523
6524 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6525 gpa_t gpa, bool write)
6526 {
6527 /* For APIC access vmexit */
6528 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6529 return 1;
6530
6531 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6532 trace_vcpu_match_mmio(gva, gpa, write, true);
6533 return 1;
6534 }
6535
6536 return 0;
6537 }
6538
6539 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6540 gpa_t *gpa, struct x86_exception *exception,
6541 bool write)
6542 {
6543 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6544 | (write ? PFERR_WRITE_MASK : 0);
6545
6546 /*
6547 * currently PKRU is only applied to ept enabled guest so
6548 * there is no pkey in EPT page table for L1 guest or EPT
6549 * shadow page table for L2 guest.
6550 */
6551 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6552 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6553 vcpu->arch.mmio_access, 0, access))) {
6554 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6555 (gva & (PAGE_SIZE - 1));
6556 trace_vcpu_match_mmio(gva, *gpa, write, false);
6557 return 1;
6558 }
6559
6560 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6561
6562 if (*gpa == UNMAPPED_GVA)
6563 return -1;
6564
6565 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6566 }
6567
6568 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6569 const void *val, int bytes)
6570 {
6571 int ret;
6572
6573 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6574 if (ret < 0)
6575 return 0;
6576 kvm_page_track_write(vcpu, gpa, val, bytes);
6577 return 1;
6578 }
6579
6580 struct read_write_emulator_ops {
6581 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6582 int bytes);
6583 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6584 void *val, int bytes);
6585 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6586 int bytes, void *val);
6587 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6588 void *val, int bytes);
6589 bool write;
6590 };
6591
6592 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6593 {
6594 if (vcpu->mmio_read_completed) {
6595 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6596 vcpu->mmio_fragments[0].gpa, val);
6597 vcpu->mmio_read_completed = 0;
6598 return 1;
6599 }
6600
6601 return 0;
6602 }
6603
6604 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6605 void *val, int bytes)
6606 {
6607 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6608 }
6609
6610 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6611 void *val, int bytes)
6612 {
6613 return emulator_write_phys(vcpu, gpa, val, bytes);
6614 }
6615
6616 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6617 {
6618 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6619 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6620 }
6621
6622 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6623 void *val, int bytes)
6624 {
6625 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6626 return X86EMUL_IO_NEEDED;
6627 }
6628
6629 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6630 void *val, int bytes)
6631 {
6632 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6633
6634 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6635 return X86EMUL_CONTINUE;
6636 }
6637
6638 static const struct read_write_emulator_ops read_emultor = {
6639 .read_write_prepare = read_prepare,
6640 .read_write_emulate = read_emulate,
6641 .read_write_mmio = vcpu_mmio_read,
6642 .read_write_exit_mmio = read_exit_mmio,
6643 };
6644
6645 static const struct read_write_emulator_ops write_emultor = {
6646 .read_write_emulate = write_emulate,
6647 .read_write_mmio = write_mmio,
6648 .read_write_exit_mmio = write_exit_mmio,
6649 .write = true,
6650 };
6651
6652 static int emulator_read_write_onepage(unsigned long addr, void *val,
6653 unsigned int bytes,
6654 struct x86_exception *exception,
6655 struct kvm_vcpu *vcpu,
6656 const struct read_write_emulator_ops *ops)
6657 {
6658 gpa_t gpa;
6659 int handled, ret;
6660 bool write = ops->write;
6661 struct kvm_mmio_fragment *frag;
6662 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6663
6664 /*
6665 * If the exit was due to a NPF we may already have a GPA.
6666 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6667 * Note, this cannot be used on string operations since string
6668 * operation using rep will only have the initial GPA from the NPF
6669 * occurred.
6670 */
6671 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6672 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6673 gpa = ctxt->gpa_val;
6674 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6675 } else {
6676 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6677 if (ret < 0)
6678 return X86EMUL_PROPAGATE_FAULT;
6679 }
6680
6681 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6682 return X86EMUL_CONTINUE;
6683
6684 /*
6685 * Is this MMIO handled locally?
6686 */
6687 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6688 if (handled == bytes)
6689 return X86EMUL_CONTINUE;
6690
6691 gpa += handled;
6692 bytes -= handled;
6693 val += handled;
6694
6695 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6696 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6697 frag->gpa = gpa;
6698 frag->data = val;
6699 frag->len = bytes;
6700 return X86EMUL_CONTINUE;
6701 }
6702
6703 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6704 unsigned long addr,
6705 void *val, unsigned int bytes,
6706 struct x86_exception *exception,
6707 const struct read_write_emulator_ops *ops)
6708 {
6709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6710 gpa_t gpa;
6711 int rc;
6712
6713 if (ops->read_write_prepare &&
6714 ops->read_write_prepare(vcpu, val, bytes))
6715 return X86EMUL_CONTINUE;
6716
6717 vcpu->mmio_nr_fragments = 0;
6718
6719 /* Crossing a page boundary? */
6720 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6721 int now;
6722
6723 now = -addr & ~PAGE_MASK;
6724 rc = emulator_read_write_onepage(addr, val, now, exception,
6725 vcpu, ops);
6726
6727 if (rc != X86EMUL_CONTINUE)
6728 return rc;
6729 addr += now;
6730 if (ctxt->mode != X86EMUL_MODE_PROT64)
6731 addr = (u32)addr;
6732 val += now;
6733 bytes -= now;
6734 }
6735
6736 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6737 vcpu, ops);
6738 if (rc != X86EMUL_CONTINUE)
6739 return rc;
6740
6741 if (!vcpu->mmio_nr_fragments)
6742 return rc;
6743
6744 gpa = vcpu->mmio_fragments[0].gpa;
6745
6746 vcpu->mmio_needed = 1;
6747 vcpu->mmio_cur_fragment = 0;
6748
6749 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6750 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6751 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6752 vcpu->run->mmio.phys_addr = gpa;
6753
6754 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6755 }
6756
6757 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6758 unsigned long addr,
6759 void *val,
6760 unsigned int bytes,
6761 struct x86_exception *exception)
6762 {
6763 return emulator_read_write(ctxt, addr, val, bytes,
6764 exception, &read_emultor);
6765 }
6766
6767 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6768 unsigned long addr,
6769 const void *val,
6770 unsigned int bytes,
6771 struct x86_exception *exception)
6772 {
6773 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6774 exception, &write_emultor);
6775 }
6776
6777 #define CMPXCHG_TYPE(t, ptr, old, new) \
6778 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6779
6780 #ifdef CONFIG_X86_64
6781 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6782 #else
6783 # define CMPXCHG64(ptr, old, new) \
6784 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6785 #endif
6786
6787 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6788 unsigned long addr,
6789 const void *old,
6790 const void *new,
6791 unsigned int bytes,
6792 struct x86_exception *exception)
6793 {
6794 struct kvm_host_map map;
6795 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6796 u64 page_line_mask;
6797 gpa_t gpa;
6798 char *kaddr;
6799 bool exchanged;
6800
6801 /* guests cmpxchg8b have to be emulated atomically */
6802 if (bytes > 8 || (bytes & (bytes - 1)))
6803 goto emul_write;
6804
6805 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6806
6807 if (gpa == UNMAPPED_GVA ||
6808 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6809 goto emul_write;
6810
6811 /*
6812 * Emulate the atomic as a straight write to avoid #AC if SLD is
6813 * enabled in the host and the access splits a cache line.
6814 */
6815 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6816 page_line_mask = ~(cache_line_size() - 1);
6817 else
6818 page_line_mask = PAGE_MASK;
6819
6820 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6821 goto emul_write;
6822
6823 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6824 goto emul_write;
6825
6826 kaddr = map.hva + offset_in_page(gpa);
6827
6828 switch (bytes) {
6829 case 1:
6830 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6831 break;
6832 case 2:
6833 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6834 break;
6835 case 4:
6836 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6837 break;
6838 case 8:
6839 exchanged = CMPXCHG64(kaddr, old, new);
6840 break;
6841 default:
6842 BUG();
6843 }
6844
6845 kvm_vcpu_unmap(vcpu, &map, true);
6846
6847 if (!exchanged)
6848 return X86EMUL_CMPXCHG_FAILED;
6849
6850 kvm_page_track_write(vcpu, gpa, new, bytes);
6851
6852 return X86EMUL_CONTINUE;
6853
6854 emul_write:
6855 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6856
6857 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6858 }
6859
6860 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6861 {
6862 int r = 0, i;
6863
6864 for (i = 0; i < vcpu->arch.pio.count; i++) {
6865 if (vcpu->arch.pio.in)
6866 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6867 vcpu->arch.pio.size, pd);
6868 else
6869 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6870 vcpu->arch.pio.port, vcpu->arch.pio.size,
6871 pd);
6872 if (r)
6873 break;
6874 pd += vcpu->arch.pio.size;
6875 }
6876 return r;
6877 }
6878
6879 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6880 unsigned short port,
6881 unsigned int count, bool in)
6882 {
6883 vcpu->arch.pio.port = port;
6884 vcpu->arch.pio.in = in;
6885 vcpu->arch.pio.count = count;
6886 vcpu->arch.pio.size = size;
6887
6888 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6889 return 1;
6890
6891 vcpu->run->exit_reason = KVM_EXIT_IO;
6892 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6893 vcpu->run->io.size = size;
6894 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6895 vcpu->run->io.count = count;
6896 vcpu->run->io.port = port;
6897
6898 return 0;
6899 }
6900
6901 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6902 unsigned short port, unsigned int count)
6903 {
6904 WARN_ON(vcpu->arch.pio.count);
6905 memset(vcpu->arch.pio_data, 0, size * count);
6906 return emulator_pio_in_out(vcpu, size, port, count, true);
6907 }
6908
6909 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6910 {
6911 int size = vcpu->arch.pio.size;
6912 unsigned count = vcpu->arch.pio.count;
6913 memcpy(val, vcpu->arch.pio_data, size * count);
6914 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6915 vcpu->arch.pio.count = 0;
6916 }
6917
6918 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6919 unsigned short port, void *val, unsigned int count)
6920 {
6921 if (vcpu->arch.pio.count) {
6922 /*
6923 * Complete a previous iteration that required userspace I/O.
6924 * Note, @count isn't guaranteed to match pio.count as userspace
6925 * can modify ECX before rerunning the vCPU. Ignore any such
6926 * shenanigans as KVM doesn't support modifying the rep count,
6927 * and the emulator ensures @count doesn't overflow the buffer.
6928 */
6929 } else {
6930 int r = __emulator_pio_in(vcpu, size, port, count);
6931 if (!r)
6932 return r;
6933
6934 /* Results already available, fall through. */
6935 }
6936
6937 complete_emulator_pio_in(vcpu, val);
6938 return 1;
6939 }
6940
6941 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6942 int size, unsigned short port, void *val,
6943 unsigned int count)
6944 {
6945 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6946
6947 }
6948
6949 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6950 unsigned short port, const void *val,
6951 unsigned int count)
6952 {
6953 int ret;
6954
6955 memcpy(vcpu->arch.pio_data, val, size * count);
6956 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6957 ret = emulator_pio_in_out(vcpu, size, port, count, false);
6958 if (ret)
6959 vcpu->arch.pio.count = 0;
6960
6961 return ret;
6962 }
6963
6964 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6965 int size, unsigned short port,
6966 const void *val, unsigned int count)
6967 {
6968 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6969 }
6970
6971 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6972 {
6973 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6974 }
6975
6976 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6977 {
6978 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6979 }
6980
6981 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6982 {
6983 if (!need_emulate_wbinvd(vcpu))
6984 return X86EMUL_CONTINUE;
6985
6986 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6987 int cpu = get_cpu();
6988
6989 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6990 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6991 wbinvd_ipi, NULL, 1);
6992 put_cpu();
6993 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6994 } else
6995 wbinvd();
6996 return X86EMUL_CONTINUE;
6997 }
6998
6999 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7000 {
7001 kvm_emulate_wbinvd_noskip(vcpu);
7002 return kvm_skip_emulated_instruction(vcpu);
7003 }
7004 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7005
7006
7007
7008 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7009 {
7010 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7011 }
7012
7013 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7014 unsigned long *dest)
7015 {
7016 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7017 }
7018
7019 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7020 unsigned long value)
7021 {
7022
7023 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7024 }
7025
7026 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7027 {
7028 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7029 }
7030
7031 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7032 {
7033 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7034 unsigned long value;
7035
7036 switch (cr) {
7037 case 0:
7038 value = kvm_read_cr0(vcpu);
7039 break;
7040 case 2:
7041 value = vcpu->arch.cr2;
7042 break;
7043 case 3:
7044 value = kvm_read_cr3(vcpu);
7045 break;
7046 case 4:
7047 value = kvm_read_cr4(vcpu);
7048 break;
7049 case 8:
7050 value = kvm_get_cr8(vcpu);
7051 break;
7052 default:
7053 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7054 return 0;
7055 }
7056
7057 return value;
7058 }
7059
7060 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7061 {
7062 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7063 int res = 0;
7064
7065 switch (cr) {
7066 case 0:
7067 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7068 break;
7069 case 2:
7070 vcpu->arch.cr2 = val;
7071 break;
7072 case 3:
7073 res = kvm_set_cr3(vcpu, val);
7074 break;
7075 case 4:
7076 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7077 break;
7078 case 8:
7079 res = kvm_set_cr8(vcpu, val);
7080 break;
7081 default:
7082 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7083 res = -1;
7084 }
7085
7086 return res;
7087 }
7088
7089 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7090 {
7091 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7092 }
7093
7094 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7095 {
7096 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7097 }
7098
7099 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7100 {
7101 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7102 }
7103
7104 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7105 {
7106 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7107 }
7108
7109 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7110 {
7111 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7112 }
7113
7114 static unsigned long emulator_get_cached_segment_base(
7115 struct x86_emulate_ctxt *ctxt, int seg)
7116 {
7117 return get_segment_base(emul_to_vcpu(ctxt), seg);
7118 }
7119
7120 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7121 struct desc_struct *desc, u32 *base3,
7122 int seg)
7123 {
7124 struct kvm_segment var;
7125
7126 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7127 *selector = var.selector;
7128
7129 if (var.unusable) {
7130 memset(desc, 0, sizeof(*desc));
7131 if (base3)
7132 *base3 = 0;
7133 return false;
7134 }
7135
7136 if (var.g)
7137 var.limit >>= 12;
7138 set_desc_limit(desc, var.limit);
7139 set_desc_base(desc, (unsigned long)var.base);
7140 #ifdef CONFIG_X86_64
7141 if (base3)
7142 *base3 = var.base >> 32;
7143 #endif
7144 desc->type = var.type;
7145 desc->s = var.s;
7146 desc->dpl = var.dpl;
7147 desc->p = var.present;
7148 desc->avl = var.avl;
7149 desc->l = var.l;
7150 desc->d = var.db;
7151 desc->g = var.g;
7152
7153 return true;
7154 }
7155
7156 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7157 struct desc_struct *desc, u32 base3,
7158 int seg)
7159 {
7160 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7161 struct kvm_segment var;
7162
7163 var.selector = selector;
7164 var.base = get_desc_base(desc);
7165 #ifdef CONFIG_X86_64
7166 var.base |= ((u64)base3) << 32;
7167 #endif
7168 var.limit = get_desc_limit(desc);
7169 if (desc->g)
7170 var.limit = (var.limit << 12) | 0xfff;
7171 var.type = desc->type;
7172 var.dpl = desc->dpl;
7173 var.db = desc->d;
7174 var.s = desc->s;
7175 var.l = desc->l;
7176 var.g = desc->g;
7177 var.avl = desc->avl;
7178 var.present = desc->p;
7179 var.unusable = !var.present;
7180 var.padding = 0;
7181
7182 kvm_set_segment(vcpu, &var, seg);
7183 return;
7184 }
7185
7186 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7187 u32 msr_index, u64 *pdata)
7188 {
7189 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7190 int r;
7191
7192 r = kvm_get_msr(vcpu, msr_index, pdata);
7193
7194 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7195 /* Bounce to user space */
7196 return X86EMUL_IO_NEEDED;
7197 }
7198
7199 return r;
7200 }
7201
7202 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7203 u32 msr_index, u64 data)
7204 {
7205 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7206 int r;
7207
7208 r = kvm_set_msr(vcpu, msr_index, data);
7209
7210 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7211 /* Bounce to user space */
7212 return X86EMUL_IO_NEEDED;
7213 }
7214
7215 return r;
7216 }
7217
7218 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7219 {
7220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7221
7222 return vcpu->arch.smbase;
7223 }
7224
7225 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7226 {
7227 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228
7229 vcpu->arch.smbase = smbase;
7230 }
7231
7232 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7233 u32 pmc)
7234 {
7235 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7236 }
7237
7238 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7239 u32 pmc, u64 *pdata)
7240 {
7241 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7242 }
7243
7244 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7245 {
7246 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7247 }
7248
7249 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7250 struct x86_instruction_info *info,
7251 enum x86_intercept_stage stage)
7252 {
7253 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7254 &ctxt->exception);
7255 }
7256
7257 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7258 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7259 bool exact_only)
7260 {
7261 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7262 }
7263
7264 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7265 {
7266 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7267 }
7268
7269 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7270 {
7271 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7272 }
7273
7274 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7275 {
7276 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7277 }
7278
7279 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7280 {
7281 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7282 }
7283
7284 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7285 {
7286 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7287 }
7288
7289 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7290 {
7291 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7292 }
7293
7294 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7295 {
7296 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7297 }
7298
7299 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7300 {
7301 return emul_to_vcpu(ctxt)->arch.hflags;
7302 }
7303
7304 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7305 {
7306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7307
7308 kvm_smm_changed(vcpu, false);
7309 }
7310
7311 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7312 const char *smstate)
7313 {
7314 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7315 }
7316
7317 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7318 {
7319 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7320 }
7321
7322 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7323 {
7324 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7325 }
7326
7327 static const struct x86_emulate_ops emulate_ops = {
7328 .read_gpr = emulator_read_gpr,
7329 .write_gpr = emulator_write_gpr,
7330 .read_std = emulator_read_std,
7331 .write_std = emulator_write_std,
7332 .read_phys = kvm_read_guest_phys_system,
7333 .fetch = kvm_fetch_guest_virt,
7334 .read_emulated = emulator_read_emulated,
7335 .write_emulated = emulator_write_emulated,
7336 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7337 .invlpg = emulator_invlpg,
7338 .pio_in_emulated = emulator_pio_in_emulated,
7339 .pio_out_emulated = emulator_pio_out_emulated,
7340 .get_segment = emulator_get_segment,
7341 .set_segment = emulator_set_segment,
7342 .get_cached_segment_base = emulator_get_cached_segment_base,
7343 .get_gdt = emulator_get_gdt,
7344 .get_idt = emulator_get_idt,
7345 .set_gdt = emulator_set_gdt,
7346 .set_idt = emulator_set_idt,
7347 .get_cr = emulator_get_cr,
7348 .set_cr = emulator_set_cr,
7349 .cpl = emulator_get_cpl,
7350 .get_dr = emulator_get_dr,
7351 .set_dr = emulator_set_dr,
7352 .get_smbase = emulator_get_smbase,
7353 .set_smbase = emulator_set_smbase,
7354 .set_msr = emulator_set_msr,
7355 .get_msr = emulator_get_msr,
7356 .check_pmc = emulator_check_pmc,
7357 .read_pmc = emulator_read_pmc,
7358 .halt = emulator_halt,
7359 .wbinvd = emulator_wbinvd,
7360 .fix_hypercall = emulator_fix_hypercall,
7361 .intercept = emulator_intercept,
7362 .get_cpuid = emulator_get_cpuid,
7363 .guest_has_long_mode = emulator_guest_has_long_mode,
7364 .guest_has_movbe = emulator_guest_has_movbe,
7365 .guest_has_fxsr = emulator_guest_has_fxsr,
7366 .guest_has_rdpid = emulator_guest_has_rdpid,
7367 .set_nmi_mask = emulator_set_nmi_mask,
7368 .get_hflags = emulator_get_hflags,
7369 .exiting_smm = emulator_exiting_smm,
7370 .leave_smm = emulator_leave_smm,
7371 .triple_fault = emulator_triple_fault,
7372 .set_xcr = emulator_set_xcr,
7373 };
7374
7375 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7376 {
7377 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7378 /*
7379 * an sti; sti; sequence only disable interrupts for the first
7380 * instruction. So, if the last instruction, be it emulated or
7381 * not, left the system with the INT_STI flag enabled, it
7382 * means that the last instruction is an sti. We should not
7383 * leave the flag on in this case. The same goes for mov ss
7384 */
7385 if (int_shadow & mask)
7386 mask = 0;
7387 if (unlikely(int_shadow || mask)) {
7388 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7389 if (!mask)
7390 kvm_make_request(KVM_REQ_EVENT, vcpu);
7391 }
7392 }
7393
7394 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7395 {
7396 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7397 if (ctxt->exception.vector == PF_VECTOR)
7398 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7399
7400 if (ctxt->exception.error_code_valid)
7401 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7402 ctxt->exception.error_code);
7403 else
7404 kvm_queue_exception(vcpu, ctxt->exception.vector);
7405 return false;
7406 }
7407
7408 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7409 {
7410 struct x86_emulate_ctxt *ctxt;
7411
7412 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7413 if (!ctxt) {
7414 pr_err("kvm: failed to allocate vcpu's emulator\n");
7415 return NULL;
7416 }
7417
7418 ctxt->vcpu = vcpu;
7419 ctxt->ops = &emulate_ops;
7420 vcpu->arch.emulate_ctxt = ctxt;
7421
7422 return ctxt;
7423 }
7424
7425 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7426 {
7427 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7428 int cs_db, cs_l;
7429
7430 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7431
7432 ctxt->gpa_available = false;
7433 ctxt->eflags = kvm_get_rflags(vcpu);
7434 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7435
7436 ctxt->eip = kvm_rip_read(vcpu);
7437 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7438 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7439 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7440 cs_db ? X86EMUL_MODE_PROT32 :
7441 X86EMUL_MODE_PROT16;
7442 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7443 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7444 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7445
7446 ctxt->interruptibility = 0;
7447 ctxt->have_exception = false;
7448 ctxt->exception.vector = -1;
7449 ctxt->perm_ok = false;
7450
7451 init_decode_cache(ctxt);
7452 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7453 }
7454
7455 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7456 {
7457 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7458 int ret;
7459
7460 init_emulate_ctxt(vcpu);
7461
7462 ctxt->op_bytes = 2;
7463 ctxt->ad_bytes = 2;
7464 ctxt->_eip = ctxt->eip + inc_eip;
7465 ret = emulate_int_real(ctxt, irq);
7466
7467 if (ret != X86EMUL_CONTINUE) {
7468 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7469 } else {
7470 ctxt->eip = ctxt->_eip;
7471 kvm_rip_write(vcpu, ctxt->eip);
7472 kvm_set_rflags(vcpu, ctxt->eflags);
7473 }
7474 }
7475 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7476
7477 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7478 {
7479 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7480 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7481 struct kvm_run *run = vcpu->run;
7482
7483 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7484 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7485 run->emulation_failure.ndata = 0;
7486 run->emulation_failure.flags = 0;
7487
7488 if (insn_size) {
7489 run->emulation_failure.ndata = 3;
7490 run->emulation_failure.flags |=
7491 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7492 run->emulation_failure.insn_size = insn_size;
7493 memset(run->emulation_failure.insn_bytes, 0x90,
7494 sizeof(run->emulation_failure.insn_bytes));
7495 memcpy(run->emulation_failure.insn_bytes,
7496 ctxt->fetch.data, insn_size);
7497 }
7498 }
7499
7500 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7501 {
7502 struct kvm *kvm = vcpu->kvm;
7503
7504 ++vcpu->stat.insn_emulation_fail;
7505 trace_kvm_emulate_insn_failed(vcpu);
7506
7507 if (emulation_type & EMULTYPE_VMWARE_GP) {
7508 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7509 return 1;
7510 }
7511
7512 if (kvm->arch.exit_on_emulation_error ||
7513 (emulation_type & EMULTYPE_SKIP)) {
7514 prepare_emulation_failure_exit(vcpu);
7515 return 0;
7516 }
7517
7518 kvm_queue_exception(vcpu, UD_VECTOR);
7519
7520 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7521 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7522 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7523 vcpu->run->internal.ndata = 0;
7524 return 0;
7525 }
7526
7527 return 1;
7528 }
7529
7530 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7531 bool write_fault_to_shadow_pgtable,
7532 int emulation_type)
7533 {
7534 gpa_t gpa = cr2_or_gpa;
7535 kvm_pfn_t pfn;
7536
7537 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7538 return false;
7539
7540 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7541 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7542 return false;
7543
7544 if (!vcpu->arch.mmu->direct_map) {
7545 /*
7546 * Write permission should be allowed since only
7547 * write access need to be emulated.
7548 */
7549 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7550
7551 /*
7552 * If the mapping is invalid in guest, let cpu retry
7553 * it to generate fault.
7554 */
7555 if (gpa == UNMAPPED_GVA)
7556 return true;
7557 }
7558
7559 /*
7560 * Do not retry the unhandleable instruction if it faults on the
7561 * readonly host memory, otherwise it will goto a infinite loop:
7562 * retry instruction -> write #PF -> emulation fail -> retry
7563 * instruction -> ...
7564 */
7565 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7566
7567 /*
7568 * If the instruction failed on the error pfn, it can not be fixed,
7569 * report the error to userspace.
7570 */
7571 if (is_error_noslot_pfn(pfn))
7572 return false;
7573
7574 kvm_release_pfn_clean(pfn);
7575
7576 /* The instructions are well-emulated on direct mmu. */
7577 if (vcpu->arch.mmu->direct_map) {
7578 unsigned int indirect_shadow_pages;
7579
7580 write_lock(&vcpu->kvm->mmu_lock);
7581 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7582 write_unlock(&vcpu->kvm->mmu_lock);
7583
7584 if (indirect_shadow_pages)
7585 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7586
7587 return true;
7588 }
7589
7590 /*
7591 * if emulation was due to access to shadowed page table
7592 * and it failed try to unshadow page and re-enter the
7593 * guest to let CPU execute the instruction.
7594 */
7595 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7596
7597 /*
7598 * If the access faults on its page table, it can not
7599 * be fixed by unprotecting shadow page and it should
7600 * be reported to userspace.
7601 */
7602 return !write_fault_to_shadow_pgtable;
7603 }
7604
7605 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7606 gpa_t cr2_or_gpa, int emulation_type)
7607 {
7608 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7609 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7610
7611 last_retry_eip = vcpu->arch.last_retry_eip;
7612 last_retry_addr = vcpu->arch.last_retry_addr;
7613
7614 /*
7615 * If the emulation is caused by #PF and it is non-page_table
7616 * writing instruction, it means the VM-EXIT is caused by shadow
7617 * page protected, we can zap the shadow page and retry this
7618 * instruction directly.
7619 *
7620 * Note: if the guest uses a non-page-table modifying instruction
7621 * on the PDE that points to the instruction, then we will unmap
7622 * the instruction and go to an infinite loop. So, we cache the
7623 * last retried eip and the last fault address, if we meet the eip
7624 * and the address again, we can break out of the potential infinite
7625 * loop.
7626 */
7627 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7628
7629 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7630 return false;
7631
7632 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7633 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7634 return false;
7635
7636 if (x86_page_table_writing_insn(ctxt))
7637 return false;
7638
7639 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7640 return false;
7641
7642 vcpu->arch.last_retry_eip = ctxt->eip;
7643 vcpu->arch.last_retry_addr = cr2_or_gpa;
7644
7645 if (!vcpu->arch.mmu->direct_map)
7646 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7647
7648 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7649
7650 return true;
7651 }
7652
7653 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7654 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7655
7656 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7657 {
7658 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7659
7660 if (entering_smm) {
7661 vcpu->arch.hflags |= HF_SMM_MASK;
7662 } else {
7663 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7664
7665 /* Process a latched INIT or SMI, if any. */
7666 kvm_make_request(KVM_REQ_EVENT, vcpu);
7667
7668 /*
7669 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7670 * on SMM exit we still need to reload them from
7671 * guest memory
7672 */
7673 vcpu->arch.pdptrs_from_userspace = false;
7674 }
7675
7676 kvm_mmu_reset_context(vcpu);
7677 }
7678
7679 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7680 unsigned long *db)
7681 {
7682 u32 dr6 = 0;
7683 int i;
7684 u32 enable, rwlen;
7685
7686 enable = dr7;
7687 rwlen = dr7 >> 16;
7688 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7689 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7690 dr6 |= (1 << i);
7691 return dr6;
7692 }
7693
7694 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7695 {
7696 struct kvm_run *kvm_run = vcpu->run;
7697
7698 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7699 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7700 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7701 kvm_run->debug.arch.exception = DB_VECTOR;
7702 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7703 return 0;
7704 }
7705 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7706 return 1;
7707 }
7708
7709 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7710 {
7711 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7712 int r;
7713
7714 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7715 if (unlikely(!r))
7716 return 0;
7717
7718 /*
7719 * rflags is the old, "raw" value of the flags. The new value has
7720 * not been saved yet.
7721 *
7722 * This is correct even for TF set by the guest, because "the
7723 * processor will not generate this exception after the instruction
7724 * that sets the TF flag".
7725 */
7726 if (unlikely(rflags & X86_EFLAGS_TF))
7727 r = kvm_vcpu_do_singlestep(vcpu);
7728 return r;
7729 }
7730 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7731
7732 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7733 {
7734 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7735 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7736 struct kvm_run *kvm_run = vcpu->run;
7737 unsigned long eip = kvm_get_linear_rip(vcpu);
7738 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7739 vcpu->arch.guest_debug_dr7,
7740 vcpu->arch.eff_db);
7741
7742 if (dr6 != 0) {
7743 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7744 kvm_run->debug.arch.pc = eip;
7745 kvm_run->debug.arch.exception = DB_VECTOR;
7746 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7747 *r = 0;
7748 return true;
7749 }
7750 }
7751
7752 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7753 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7754 unsigned long eip = kvm_get_linear_rip(vcpu);
7755 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7756 vcpu->arch.dr7,
7757 vcpu->arch.db);
7758
7759 if (dr6 != 0) {
7760 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7761 *r = 1;
7762 return true;
7763 }
7764 }
7765
7766 return false;
7767 }
7768
7769 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7770 {
7771 switch (ctxt->opcode_len) {
7772 case 1:
7773 switch (ctxt->b) {
7774 case 0xe4: /* IN */
7775 case 0xe5:
7776 case 0xec:
7777 case 0xed:
7778 case 0xe6: /* OUT */
7779 case 0xe7:
7780 case 0xee:
7781 case 0xef:
7782 case 0x6c: /* INS */
7783 case 0x6d:
7784 case 0x6e: /* OUTS */
7785 case 0x6f:
7786 return true;
7787 }
7788 break;
7789 case 2:
7790 switch (ctxt->b) {
7791 case 0x33: /* RDPMC */
7792 return true;
7793 }
7794 break;
7795 }
7796
7797 return false;
7798 }
7799
7800 /*
7801 * Decode to be emulated instruction. Return EMULATION_OK if success.
7802 */
7803 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7804 void *insn, int insn_len)
7805 {
7806 int r = EMULATION_OK;
7807 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7808
7809 init_emulate_ctxt(vcpu);
7810
7811 /*
7812 * We will reenter on the same instruction since we do not set
7813 * complete_userspace_io. This does not handle watchpoints yet,
7814 * those would be handled in the emulate_ops.
7815 */
7816 if (!(emulation_type & EMULTYPE_SKIP) &&
7817 kvm_vcpu_check_breakpoint(vcpu, &r))
7818 return r;
7819
7820 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7821
7822 trace_kvm_emulate_insn_start(vcpu);
7823 ++vcpu->stat.insn_emulation;
7824
7825 return r;
7826 }
7827 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7828
7829 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7830 int emulation_type, void *insn, int insn_len)
7831 {
7832 int r;
7833 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7834 bool writeback = true;
7835 bool write_fault_to_spt;
7836
7837 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7838 return 1;
7839
7840 vcpu->arch.l1tf_flush_l1d = true;
7841
7842 /*
7843 * Clear write_fault_to_shadow_pgtable here to ensure it is
7844 * never reused.
7845 */
7846 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7847 vcpu->arch.write_fault_to_shadow_pgtable = false;
7848
7849 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7850 kvm_clear_exception_queue(vcpu);
7851
7852 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7853 insn, insn_len);
7854 if (r != EMULATION_OK) {
7855 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7856 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7857 kvm_queue_exception(vcpu, UD_VECTOR);
7858 return 1;
7859 }
7860 if (reexecute_instruction(vcpu, cr2_or_gpa,
7861 write_fault_to_spt,
7862 emulation_type))
7863 return 1;
7864 if (ctxt->have_exception) {
7865 /*
7866 * #UD should result in just EMULATION_FAILED, and trap-like
7867 * exception should not be encountered during decode.
7868 */
7869 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7870 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7871 inject_emulated_exception(vcpu);
7872 return 1;
7873 }
7874 return handle_emulation_failure(vcpu, emulation_type);
7875 }
7876 }
7877
7878 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7879 !is_vmware_backdoor_opcode(ctxt)) {
7880 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7881 return 1;
7882 }
7883
7884 /*
7885 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7886 * for kvm_skip_emulated_instruction(). The caller is responsible for
7887 * updating interruptibility state and injecting single-step #DBs.
7888 */
7889 if (emulation_type & EMULTYPE_SKIP) {
7890 if (ctxt->mode != X86EMUL_MODE_PROT64)
7891 ctxt->eip = (u32)ctxt->_eip;
7892 else
7893 ctxt->eip = ctxt->_eip;
7894
7895 kvm_rip_write(vcpu, ctxt->eip);
7896 if (ctxt->eflags & X86_EFLAGS_RF)
7897 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7898 return 1;
7899 }
7900
7901 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7902 return 1;
7903
7904 /* this is needed for vmware backdoor interface to work since it
7905 changes registers values during IO operation */
7906 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7907 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7908 emulator_invalidate_register_cache(ctxt);
7909 }
7910
7911 restart:
7912 if (emulation_type & EMULTYPE_PF) {
7913 /* Save the faulting GPA (cr2) in the address field */
7914 ctxt->exception.address = cr2_or_gpa;
7915
7916 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7917 if (vcpu->arch.mmu->direct_map) {
7918 ctxt->gpa_available = true;
7919 ctxt->gpa_val = cr2_or_gpa;
7920 }
7921 } else {
7922 /* Sanitize the address out of an abundance of paranoia. */
7923 ctxt->exception.address = 0;
7924 }
7925
7926 r = x86_emulate_insn(ctxt);
7927
7928 if (r == EMULATION_INTERCEPTED)
7929 return 1;
7930
7931 if (r == EMULATION_FAILED) {
7932 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7933 emulation_type))
7934 return 1;
7935
7936 return handle_emulation_failure(vcpu, emulation_type);
7937 }
7938
7939 if (ctxt->have_exception) {
7940 r = 1;
7941 if (inject_emulated_exception(vcpu))
7942 return r;
7943 } else if (vcpu->arch.pio.count) {
7944 if (!vcpu->arch.pio.in) {
7945 /* FIXME: return into emulator if single-stepping. */
7946 vcpu->arch.pio.count = 0;
7947 } else {
7948 writeback = false;
7949 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7950 }
7951 r = 0;
7952 } else if (vcpu->mmio_needed) {
7953 ++vcpu->stat.mmio_exits;
7954
7955 if (!vcpu->mmio_is_write)
7956 writeback = false;
7957 r = 0;
7958 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7959 } else if (vcpu->arch.complete_userspace_io) {
7960 writeback = false;
7961 r = 0;
7962 } else if (r == EMULATION_RESTART)
7963 goto restart;
7964 else
7965 r = 1;
7966
7967 if (writeback) {
7968 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7969 toggle_interruptibility(vcpu, ctxt->interruptibility);
7970 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7971 if (!ctxt->have_exception ||
7972 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7973 kvm_rip_write(vcpu, ctxt->eip);
7974 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7975 r = kvm_vcpu_do_singlestep(vcpu);
7976 if (kvm_x86_ops.update_emulated_instruction)
7977 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7978 __kvm_set_rflags(vcpu, ctxt->eflags);
7979 }
7980
7981 /*
7982 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7983 * do nothing, and it will be requested again as soon as
7984 * the shadow expires. But we still need to check here,
7985 * because POPF has no interrupt shadow.
7986 */
7987 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7988 kvm_make_request(KVM_REQ_EVENT, vcpu);
7989 } else
7990 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7991
7992 return r;
7993 }
7994
7995 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7996 {
7997 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7998 }
7999 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8000
8001 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8002 void *insn, int insn_len)
8003 {
8004 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8005 }
8006 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8007
8008 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8009 {
8010 vcpu->arch.pio.count = 0;
8011 return 1;
8012 }
8013
8014 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8015 {
8016 vcpu->arch.pio.count = 0;
8017
8018 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8019 return 1;
8020
8021 return kvm_skip_emulated_instruction(vcpu);
8022 }
8023
8024 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8025 unsigned short port)
8026 {
8027 unsigned long val = kvm_rax_read(vcpu);
8028 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8029
8030 if (ret)
8031 return ret;
8032
8033 /*
8034 * Workaround userspace that relies on old KVM behavior of %rip being
8035 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8036 */
8037 if (port == 0x7e &&
8038 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8039 vcpu->arch.complete_userspace_io =
8040 complete_fast_pio_out_port_0x7e;
8041 kvm_skip_emulated_instruction(vcpu);
8042 } else {
8043 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8044 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8045 }
8046 return 0;
8047 }
8048
8049 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8050 {
8051 unsigned long val;
8052
8053 /* We should only ever be called with arch.pio.count equal to 1 */
8054 BUG_ON(vcpu->arch.pio.count != 1);
8055
8056 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8057 vcpu->arch.pio.count = 0;
8058 return 1;
8059 }
8060
8061 /* For size less than 4 we merge, else we zero extend */
8062 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8063
8064 /*
8065 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8066 * the copy and tracing
8067 */
8068 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8069 kvm_rax_write(vcpu, val);
8070
8071 return kvm_skip_emulated_instruction(vcpu);
8072 }
8073
8074 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8075 unsigned short port)
8076 {
8077 unsigned long val;
8078 int ret;
8079
8080 /* For size less than 4 we merge, else we zero extend */
8081 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8082
8083 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8084 if (ret) {
8085 kvm_rax_write(vcpu, val);
8086 return ret;
8087 }
8088
8089 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8090 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8091
8092 return 0;
8093 }
8094
8095 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8096 {
8097 int ret;
8098
8099 if (in)
8100 ret = kvm_fast_pio_in(vcpu, size, port);
8101 else
8102 ret = kvm_fast_pio_out(vcpu, size, port);
8103 return ret && kvm_skip_emulated_instruction(vcpu);
8104 }
8105 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8106
8107 static int kvmclock_cpu_down_prep(unsigned int cpu)
8108 {
8109 __this_cpu_write(cpu_tsc_khz, 0);
8110 return 0;
8111 }
8112
8113 static void tsc_khz_changed(void *data)
8114 {
8115 struct cpufreq_freqs *freq = data;
8116 unsigned long khz = 0;
8117
8118 if (data)
8119 khz = freq->new;
8120 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8121 khz = cpufreq_quick_get(raw_smp_processor_id());
8122 if (!khz)
8123 khz = tsc_khz;
8124 __this_cpu_write(cpu_tsc_khz, khz);
8125 }
8126
8127 #ifdef CONFIG_X86_64
8128 static void kvm_hyperv_tsc_notifier(void)
8129 {
8130 struct kvm *kvm;
8131 struct kvm_vcpu *vcpu;
8132 int cpu;
8133 unsigned long flags;
8134
8135 mutex_lock(&kvm_lock);
8136 list_for_each_entry(kvm, &vm_list, vm_list)
8137 kvm_make_mclock_inprogress_request(kvm);
8138
8139 hyperv_stop_tsc_emulation();
8140
8141 /* TSC frequency always matches when on Hyper-V */
8142 for_each_present_cpu(cpu)
8143 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8144 kvm_max_guest_tsc_khz = tsc_khz;
8145
8146 list_for_each_entry(kvm, &vm_list, vm_list) {
8147 struct kvm_arch *ka = &kvm->arch;
8148
8149 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8150 pvclock_update_vm_gtod_copy(kvm);
8151 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8152
8153 kvm_for_each_vcpu(cpu, vcpu, kvm)
8154 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8155
8156 kvm_for_each_vcpu(cpu, vcpu, kvm)
8157 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8158 }
8159 mutex_unlock(&kvm_lock);
8160 }
8161 #endif
8162
8163 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8164 {
8165 struct kvm *kvm;
8166 struct kvm_vcpu *vcpu;
8167 int i, send_ipi = 0;
8168
8169 /*
8170 * We allow guests to temporarily run on slowing clocks,
8171 * provided we notify them after, or to run on accelerating
8172 * clocks, provided we notify them before. Thus time never
8173 * goes backwards.
8174 *
8175 * However, we have a problem. We can't atomically update
8176 * the frequency of a given CPU from this function; it is
8177 * merely a notifier, which can be called from any CPU.
8178 * Changing the TSC frequency at arbitrary points in time
8179 * requires a recomputation of local variables related to
8180 * the TSC for each VCPU. We must flag these local variables
8181 * to be updated and be sure the update takes place with the
8182 * new frequency before any guests proceed.
8183 *
8184 * Unfortunately, the combination of hotplug CPU and frequency
8185 * change creates an intractable locking scenario; the order
8186 * of when these callouts happen is undefined with respect to
8187 * CPU hotplug, and they can race with each other. As such,
8188 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8189 * undefined; you can actually have a CPU frequency change take
8190 * place in between the computation of X and the setting of the
8191 * variable. To protect against this problem, all updates of
8192 * the per_cpu tsc_khz variable are done in an interrupt
8193 * protected IPI, and all callers wishing to update the value
8194 * must wait for a synchronous IPI to complete (which is trivial
8195 * if the caller is on the CPU already). This establishes the
8196 * necessary total order on variable updates.
8197 *
8198 * Note that because a guest time update may take place
8199 * anytime after the setting of the VCPU's request bit, the
8200 * correct TSC value must be set before the request. However,
8201 * to ensure the update actually makes it to any guest which
8202 * starts running in hardware virtualization between the set
8203 * and the acquisition of the spinlock, we must also ping the
8204 * CPU after setting the request bit.
8205 *
8206 */
8207
8208 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8209
8210 mutex_lock(&kvm_lock);
8211 list_for_each_entry(kvm, &vm_list, vm_list) {
8212 kvm_for_each_vcpu(i, vcpu, kvm) {
8213 if (vcpu->cpu != cpu)
8214 continue;
8215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8216 if (vcpu->cpu != raw_smp_processor_id())
8217 send_ipi = 1;
8218 }
8219 }
8220 mutex_unlock(&kvm_lock);
8221
8222 if (freq->old < freq->new && send_ipi) {
8223 /*
8224 * We upscale the frequency. Must make the guest
8225 * doesn't see old kvmclock values while running with
8226 * the new frequency, otherwise we risk the guest sees
8227 * time go backwards.
8228 *
8229 * In case we update the frequency for another cpu
8230 * (which might be in guest context) send an interrupt
8231 * to kick the cpu out of guest context. Next time
8232 * guest context is entered kvmclock will be updated,
8233 * so the guest will not see stale values.
8234 */
8235 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8236 }
8237 }
8238
8239 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8240 void *data)
8241 {
8242 struct cpufreq_freqs *freq = data;
8243 int cpu;
8244
8245 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8246 return 0;
8247 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8248 return 0;
8249
8250 for_each_cpu(cpu, freq->policy->cpus)
8251 __kvmclock_cpufreq_notifier(freq, cpu);
8252
8253 return 0;
8254 }
8255
8256 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8257 .notifier_call = kvmclock_cpufreq_notifier
8258 };
8259
8260 static int kvmclock_cpu_online(unsigned int cpu)
8261 {
8262 tsc_khz_changed(NULL);
8263 return 0;
8264 }
8265
8266 static void kvm_timer_init(void)
8267 {
8268 max_tsc_khz = tsc_khz;
8269
8270 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8271 #ifdef CONFIG_CPU_FREQ
8272 struct cpufreq_policy *policy;
8273 int cpu;
8274
8275 cpu = get_cpu();
8276 policy = cpufreq_cpu_get(cpu);
8277 if (policy) {
8278 if (policy->cpuinfo.max_freq)
8279 max_tsc_khz = policy->cpuinfo.max_freq;
8280 cpufreq_cpu_put(policy);
8281 }
8282 put_cpu();
8283 #endif
8284 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8285 CPUFREQ_TRANSITION_NOTIFIER);
8286 }
8287
8288 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8289 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8290 }
8291
8292 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8293 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8294
8295 int kvm_is_in_guest(void)
8296 {
8297 return __this_cpu_read(current_vcpu) != NULL;
8298 }
8299
8300 static int kvm_is_user_mode(void)
8301 {
8302 int user_mode = 3;
8303
8304 if (__this_cpu_read(current_vcpu))
8305 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8306
8307 return user_mode != 0;
8308 }
8309
8310 static unsigned long kvm_get_guest_ip(void)
8311 {
8312 unsigned long ip = 0;
8313
8314 if (__this_cpu_read(current_vcpu))
8315 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8316
8317 return ip;
8318 }
8319
8320 static void kvm_handle_intel_pt_intr(void)
8321 {
8322 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8323
8324 kvm_make_request(KVM_REQ_PMI, vcpu);
8325 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8326 (unsigned long *)&vcpu->arch.pmu.global_status);
8327 }
8328
8329 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8330 .is_in_guest = kvm_is_in_guest,
8331 .is_user_mode = kvm_is_user_mode,
8332 .get_guest_ip = kvm_get_guest_ip,
8333 .handle_intel_pt_intr = NULL,
8334 };
8335
8336 #ifdef CONFIG_X86_64
8337 static void pvclock_gtod_update_fn(struct work_struct *work)
8338 {
8339 struct kvm *kvm;
8340
8341 struct kvm_vcpu *vcpu;
8342 int i;
8343
8344 mutex_lock(&kvm_lock);
8345 list_for_each_entry(kvm, &vm_list, vm_list)
8346 kvm_for_each_vcpu(i, vcpu, kvm)
8347 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8348 atomic_set(&kvm_guest_has_master_clock, 0);
8349 mutex_unlock(&kvm_lock);
8350 }
8351
8352 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8353
8354 /*
8355 * Indirection to move queue_work() out of the tk_core.seq write held
8356 * region to prevent possible deadlocks against time accessors which
8357 * are invoked with work related locks held.
8358 */
8359 static void pvclock_irq_work_fn(struct irq_work *w)
8360 {
8361 queue_work(system_long_wq, &pvclock_gtod_work);
8362 }
8363
8364 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8365
8366 /*
8367 * Notification about pvclock gtod data update.
8368 */
8369 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8370 void *priv)
8371 {
8372 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8373 struct timekeeper *tk = priv;
8374
8375 update_pvclock_gtod(tk);
8376
8377 /*
8378 * Disable master clock if host does not trust, or does not use,
8379 * TSC based clocksource. Delegate queue_work() to irq_work as
8380 * this is invoked with tk_core.seq write held.
8381 */
8382 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8383 atomic_read(&kvm_guest_has_master_clock) != 0)
8384 irq_work_queue(&pvclock_irq_work);
8385 return 0;
8386 }
8387
8388 static struct notifier_block pvclock_gtod_notifier = {
8389 .notifier_call = pvclock_gtod_notify,
8390 };
8391 #endif
8392
8393 int kvm_arch_init(void *opaque)
8394 {
8395 struct kvm_x86_init_ops *ops = opaque;
8396 int r;
8397
8398 if (kvm_x86_ops.hardware_enable) {
8399 printk(KERN_ERR "kvm: already loaded the other module\n");
8400 r = -EEXIST;
8401 goto out;
8402 }
8403
8404 if (!ops->cpu_has_kvm_support()) {
8405 pr_err_ratelimited("kvm: no hardware support\n");
8406 r = -EOPNOTSUPP;
8407 goto out;
8408 }
8409 if (ops->disabled_by_bios()) {
8410 pr_warn_ratelimited("kvm: disabled by bios\n");
8411 r = -EOPNOTSUPP;
8412 goto out;
8413 }
8414
8415 /*
8416 * KVM explicitly assumes that the guest has an FPU and
8417 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8418 * vCPU's FPU state as a fxregs_state struct.
8419 */
8420 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8421 printk(KERN_ERR "kvm: inadequate fpu\n");
8422 r = -EOPNOTSUPP;
8423 goto out;
8424 }
8425
8426 r = -ENOMEM;
8427
8428 x86_emulator_cache = kvm_alloc_emulator_cache();
8429 if (!x86_emulator_cache) {
8430 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8431 goto out;
8432 }
8433
8434 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8435 if (!user_return_msrs) {
8436 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8437 goto out_free_x86_emulator_cache;
8438 }
8439 kvm_nr_uret_msrs = 0;
8440
8441 r = kvm_mmu_module_init();
8442 if (r)
8443 goto out_free_percpu;
8444
8445 kvm_timer_init();
8446
8447 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8448 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8449 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8450 }
8451
8452 if (pi_inject_timer == -1)
8453 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8454 #ifdef CONFIG_X86_64
8455 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8456
8457 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8458 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8459 #endif
8460
8461 return 0;
8462
8463 out_free_percpu:
8464 free_percpu(user_return_msrs);
8465 out_free_x86_emulator_cache:
8466 kmem_cache_destroy(x86_emulator_cache);
8467 out:
8468 return r;
8469 }
8470
8471 void kvm_arch_exit(void)
8472 {
8473 #ifdef CONFIG_X86_64
8474 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8475 clear_hv_tscchange_cb();
8476 #endif
8477 kvm_lapic_exit();
8478
8479 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8480 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8481 CPUFREQ_TRANSITION_NOTIFIER);
8482 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8483 #ifdef CONFIG_X86_64
8484 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8485 irq_work_sync(&pvclock_irq_work);
8486 cancel_work_sync(&pvclock_gtod_work);
8487 #endif
8488 kvm_x86_ops.hardware_enable = NULL;
8489 kvm_mmu_module_exit();
8490 free_percpu(user_return_msrs);
8491 kmem_cache_destroy(x86_emulator_cache);
8492 #ifdef CONFIG_KVM_XEN
8493 static_key_deferred_flush(&kvm_xen_enabled);
8494 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8495 #endif
8496 }
8497
8498 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8499 {
8500 ++vcpu->stat.halt_exits;
8501 if (lapic_in_kernel(vcpu)) {
8502 vcpu->arch.mp_state = state;
8503 return 1;
8504 } else {
8505 vcpu->run->exit_reason = reason;
8506 return 0;
8507 }
8508 }
8509
8510 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8511 {
8512 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8513 }
8514 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8515
8516 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8517 {
8518 int ret = kvm_skip_emulated_instruction(vcpu);
8519 /*
8520 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8521 * KVM_EXIT_DEBUG here.
8522 */
8523 return kvm_vcpu_halt(vcpu) && ret;
8524 }
8525 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8526
8527 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8528 {
8529 int ret = kvm_skip_emulated_instruction(vcpu);
8530
8531 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8532 }
8533 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8534
8535 #ifdef CONFIG_X86_64
8536 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8537 unsigned long clock_type)
8538 {
8539 struct kvm_clock_pairing clock_pairing;
8540 struct timespec64 ts;
8541 u64 cycle;
8542 int ret;
8543
8544 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8545 return -KVM_EOPNOTSUPP;
8546
8547 /*
8548 * When tsc is in permanent catchup mode guests won't be able to use
8549 * pvclock_read_retry loop to get consistent view of pvclock
8550 */
8551 if (vcpu->arch.tsc_always_catchup)
8552 return -KVM_EOPNOTSUPP;
8553
8554 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8555 return -KVM_EOPNOTSUPP;
8556
8557 clock_pairing.sec = ts.tv_sec;
8558 clock_pairing.nsec = ts.tv_nsec;
8559 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8560 clock_pairing.flags = 0;
8561 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8562
8563 ret = 0;
8564 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8565 sizeof(struct kvm_clock_pairing)))
8566 ret = -KVM_EFAULT;
8567
8568 return ret;
8569 }
8570 #endif
8571
8572 /*
8573 * kvm_pv_kick_cpu_op: Kick a vcpu.
8574 *
8575 * @apicid - apicid of vcpu to be kicked.
8576 */
8577 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8578 {
8579 struct kvm_lapic_irq lapic_irq;
8580
8581 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8582 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8583 lapic_irq.level = 0;
8584 lapic_irq.dest_id = apicid;
8585 lapic_irq.msi_redir_hint = false;
8586
8587 lapic_irq.delivery_mode = APIC_DM_REMRD;
8588 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8589 }
8590
8591 bool kvm_apicv_activated(struct kvm *kvm)
8592 {
8593 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8594 }
8595 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8596
8597 static void kvm_apicv_init(struct kvm *kvm)
8598 {
8599 mutex_init(&kvm->arch.apicv_update_lock);
8600
8601 if (enable_apicv)
8602 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8603 &kvm->arch.apicv_inhibit_reasons);
8604 else
8605 set_bit(APICV_INHIBIT_REASON_DISABLE,
8606 &kvm->arch.apicv_inhibit_reasons);
8607 }
8608
8609 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8610 {
8611 struct kvm_vcpu *target = NULL;
8612 struct kvm_apic_map *map;
8613
8614 vcpu->stat.directed_yield_attempted++;
8615
8616 if (single_task_running())
8617 goto no_yield;
8618
8619 rcu_read_lock();
8620 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8621
8622 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8623 target = map->phys_map[dest_id]->vcpu;
8624
8625 rcu_read_unlock();
8626
8627 if (!target || !READ_ONCE(target->ready))
8628 goto no_yield;
8629
8630 /* Ignore requests to yield to self */
8631 if (vcpu == target)
8632 goto no_yield;
8633
8634 if (kvm_vcpu_yield_to(target) <= 0)
8635 goto no_yield;
8636
8637 vcpu->stat.directed_yield_successful++;
8638
8639 no_yield:
8640 return;
8641 }
8642
8643 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8644 {
8645 u64 ret = vcpu->run->hypercall.ret;
8646
8647 if (!is_64_bit_mode(vcpu))
8648 ret = (u32)ret;
8649 kvm_rax_write(vcpu, ret);
8650 ++vcpu->stat.hypercalls;
8651 return kvm_skip_emulated_instruction(vcpu);
8652 }
8653
8654 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8655 {
8656 unsigned long nr, a0, a1, a2, a3, ret;
8657 int op_64_bit;
8658
8659 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8660 return kvm_xen_hypercall(vcpu);
8661
8662 if (kvm_hv_hypercall_enabled(vcpu))
8663 return kvm_hv_hypercall(vcpu);
8664
8665 nr = kvm_rax_read(vcpu);
8666 a0 = kvm_rbx_read(vcpu);
8667 a1 = kvm_rcx_read(vcpu);
8668 a2 = kvm_rdx_read(vcpu);
8669 a3 = kvm_rsi_read(vcpu);
8670
8671 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8672
8673 op_64_bit = is_64_bit_hypercall(vcpu);
8674 if (!op_64_bit) {
8675 nr &= 0xFFFFFFFF;
8676 a0 &= 0xFFFFFFFF;
8677 a1 &= 0xFFFFFFFF;
8678 a2 &= 0xFFFFFFFF;
8679 a3 &= 0xFFFFFFFF;
8680 }
8681
8682 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8683 ret = -KVM_EPERM;
8684 goto out;
8685 }
8686
8687 ret = -KVM_ENOSYS;
8688
8689 switch (nr) {
8690 case KVM_HC_VAPIC_POLL_IRQ:
8691 ret = 0;
8692 break;
8693 case KVM_HC_KICK_CPU:
8694 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8695 break;
8696
8697 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8698 kvm_sched_yield(vcpu, a1);
8699 ret = 0;
8700 break;
8701 #ifdef CONFIG_X86_64
8702 case KVM_HC_CLOCK_PAIRING:
8703 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8704 break;
8705 #endif
8706 case KVM_HC_SEND_IPI:
8707 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8708 break;
8709
8710 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8711 break;
8712 case KVM_HC_SCHED_YIELD:
8713 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8714 break;
8715
8716 kvm_sched_yield(vcpu, a0);
8717 ret = 0;
8718 break;
8719 case KVM_HC_MAP_GPA_RANGE: {
8720 u64 gpa = a0, npages = a1, attrs = a2;
8721
8722 ret = -KVM_ENOSYS;
8723 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8724 break;
8725
8726 if (!PAGE_ALIGNED(gpa) || !npages ||
8727 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8728 ret = -KVM_EINVAL;
8729 break;
8730 }
8731
8732 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8733 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8734 vcpu->run->hypercall.args[0] = gpa;
8735 vcpu->run->hypercall.args[1] = npages;
8736 vcpu->run->hypercall.args[2] = attrs;
8737 vcpu->run->hypercall.longmode = op_64_bit;
8738 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8739 return 0;
8740 }
8741 default:
8742 ret = -KVM_ENOSYS;
8743 break;
8744 }
8745 out:
8746 if (!op_64_bit)
8747 ret = (u32)ret;
8748 kvm_rax_write(vcpu, ret);
8749
8750 ++vcpu->stat.hypercalls;
8751 return kvm_skip_emulated_instruction(vcpu);
8752 }
8753 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8754
8755 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8756 {
8757 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8758 char instruction[3];
8759 unsigned long rip = kvm_rip_read(vcpu);
8760
8761 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8762
8763 return emulator_write_emulated(ctxt, rip, instruction, 3,
8764 &ctxt->exception);
8765 }
8766
8767 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8768 {
8769 return vcpu->run->request_interrupt_window &&
8770 likely(!pic_in_kernel(vcpu->kvm));
8771 }
8772
8773 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8774 {
8775 struct kvm_run *kvm_run = vcpu->run;
8776
8777 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
8778 kvm_run->cr8 = kvm_get_cr8(vcpu);
8779 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8780
8781 /*
8782 * The call to kvm_ready_for_interrupt_injection() may end up in
8783 * kvm_xen_has_interrupt() which may require the srcu lock to be
8784 * held, to protect against changes in the vcpu_info address.
8785 */
8786 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8787 kvm_run->ready_for_interrupt_injection =
8788 pic_in_kernel(vcpu->kvm) ||
8789 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8790 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8791
8792 if (is_smm(vcpu))
8793 kvm_run->flags |= KVM_RUN_X86_SMM;
8794 }
8795
8796 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8797 {
8798 int max_irr, tpr;
8799
8800 if (!kvm_x86_ops.update_cr8_intercept)
8801 return;
8802
8803 if (!lapic_in_kernel(vcpu))
8804 return;
8805
8806 if (vcpu->arch.apicv_active)
8807 return;
8808
8809 if (!vcpu->arch.apic->vapic_addr)
8810 max_irr = kvm_lapic_find_highest_irr(vcpu);
8811 else
8812 max_irr = -1;
8813
8814 if (max_irr != -1)
8815 max_irr >>= 4;
8816
8817 tpr = kvm_lapic_get_cr8(vcpu);
8818
8819 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8820 }
8821
8822
8823 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8824 {
8825 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8826 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8827 return 1;
8828 }
8829
8830 return kvm_x86_ops.nested_ops->check_events(vcpu);
8831 }
8832
8833 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8834 {
8835 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8836 vcpu->arch.exception.error_code = false;
8837 static_call(kvm_x86_queue_exception)(vcpu);
8838 }
8839
8840 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8841 {
8842 int r;
8843 bool can_inject = true;
8844
8845 /* try to reinject previous events if any */
8846
8847 if (vcpu->arch.exception.injected) {
8848 kvm_inject_exception(vcpu);
8849 can_inject = false;
8850 }
8851 /*
8852 * Do not inject an NMI or interrupt if there is a pending
8853 * exception. Exceptions and interrupts are recognized at
8854 * instruction boundaries, i.e. the start of an instruction.
8855 * Trap-like exceptions, e.g. #DB, have higher priority than
8856 * NMIs and interrupts, i.e. traps are recognized before an
8857 * NMI/interrupt that's pending on the same instruction.
8858 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8859 * priority, but are only generated (pended) during instruction
8860 * execution, i.e. a pending fault-like exception means the
8861 * fault occurred on the *previous* instruction and must be
8862 * serviced prior to recognizing any new events in order to
8863 * fully complete the previous instruction.
8864 */
8865 else if (!vcpu->arch.exception.pending) {
8866 if (vcpu->arch.nmi_injected) {
8867 static_call(kvm_x86_set_nmi)(vcpu);
8868 can_inject = false;
8869 } else if (vcpu->arch.interrupt.injected) {
8870 static_call(kvm_x86_set_irq)(vcpu);
8871 can_inject = false;
8872 }
8873 }
8874
8875 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8876 vcpu->arch.exception.pending);
8877
8878 /*
8879 * Call check_nested_events() even if we reinjected a previous event
8880 * in order for caller to determine if it should require immediate-exit
8881 * from L2 to L1 due to pending L1 events which require exit
8882 * from L2 to L1.
8883 */
8884 if (is_guest_mode(vcpu)) {
8885 r = kvm_check_nested_events(vcpu);
8886 if (r < 0)
8887 goto out;
8888 }
8889
8890 /* try to inject new event if pending */
8891 if (vcpu->arch.exception.pending) {
8892 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8893 vcpu->arch.exception.has_error_code,
8894 vcpu->arch.exception.error_code);
8895
8896 vcpu->arch.exception.pending = false;
8897 vcpu->arch.exception.injected = true;
8898
8899 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8900 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8901 X86_EFLAGS_RF);
8902
8903 if (vcpu->arch.exception.nr == DB_VECTOR) {
8904 kvm_deliver_exception_payload(vcpu);
8905 if (vcpu->arch.dr7 & DR7_GD) {
8906 vcpu->arch.dr7 &= ~DR7_GD;
8907 kvm_update_dr7(vcpu);
8908 }
8909 }
8910
8911 kvm_inject_exception(vcpu);
8912 can_inject = false;
8913 }
8914
8915 /* Don't inject interrupts if the user asked to avoid doing so */
8916 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8917 return 0;
8918
8919 /*
8920 * Finally, inject interrupt events. If an event cannot be injected
8921 * due to architectural conditions (e.g. IF=0) a window-open exit
8922 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8923 * and can architecturally be injected, but we cannot do it right now:
8924 * an interrupt could have arrived just now and we have to inject it
8925 * as a vmexit, or there could already an event in the queue, which is
8926 * indicated by can_inject. In that case we request an immediate exit
8927 * in order to make progress and get back here for another iteration.
8928 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8929 */
8930 if (vcpu->arch.smi_pending) {
8931 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8932 if (r < 0)
8933 goto out;
8934 if (r) {
8935 vcpu->arch.smi_pending = false;
8936 ++vcpu->arch.smi_count;
8937 enter_smm(vcpu);
8938 can_inject = false;
8939 } else
8940 static_call(kvm_x86_enable_smi_window)(vcpu);
8941 }
8942
8943 if (vcpu->arch.nmi_pending) {
8944 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8945 if (r < 0)
8946 goto out;
8947 if (r) {
8948 --vcpu->arch.nmi_pending;
8949 vcpu->arch.nmi_injected = true;
8950 static_call(kvm_x86_set_nmi)(vcpu);
8951 can_inject = false;
8952 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8953 }
8954 if (vcpu->arch.nmi_pending)
8955 static_call(kvm_x86_enable_nmi_window)(vcpu);
8956 }
8957
8958 if (kvm_cpu_has_injectable_intr(vcpu)) {
8959 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8960 if (r < 0)
8961 goto out;
8962 if (r) {
8963 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8964 static_call(kvm_x86_set_irq)(vcpu);
8965 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8966 }
8967 if (kvm_cpu_has_injectable_intr(vcpu))
8968 static_call(kvm_x86_enable_irq_window)(vcpu);
8969 }
8970
8971 if (is_guest_mode(vcpu) &&
8972 kvm_x86_ops.nested_ops->hv_timer_pending &&
8973 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8974 *req_immediate_exit = true;
8975
8976 WARN_ON(vcpu->arch.exception.pending);
8977 return 0;
8978
8979 out:
8980 if (r == -EBUSY) {
8981 *req_immediate_exit = true;
8982 r = 0;
8983 }
8984 return r;
8985 }
8986
8987 static void process_nmi(struct kvm_vcpu *vcpu)
8988 {
8989 unsigned limit = 2;
8990
8991 /*
8992 * x86 is limited to one NMI running, and one NMI pending after it.
8993 * If an NMI is already in progress, limit further NMIs to just one.
8994 * Otherwise, allow two (and we'll inject the first one immediately).
8995 */
8996 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8997 limit = 1;
8998
8999 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9000 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9001 kvm_make_request(KVM_REQ_EVENT, vcpu);
9002 }
9003
9004 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9005 {
9006 u32 flags = 0;
9007 flags |= seg->g << 23;
9008 flags |= seg->db << 22;
9009 flags |= seg->l << 21;
9010 flags |= seg->avl << 20;
9011 flags |= seg->present << 15;
9012 flags |= seg->dpl << 13;
9013 flags |= seg->s << 12;
9014 flags |= seg->type << 8;
9015 return flags;
9016 }
9017
9018 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9019 {
9020 struct kvm_segment seg;
9021 int offset;
9022
9023 kvm_get_segment(vcpu, &seg, n);
9024 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9025
9026 if (n < 3)
9027 offset = 0x7f84 + n * 12;
9028 else
9029 offset = 0x7f2c + (n - 3) * 12;
9030
9031 put_smstate(u32, buf, offset + 8, seg.base);
9032 put_smstate(u32, buf, offset + 4, seg.limit);
9033 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9034 }
9035
9036 #ifdef CONFIG_X86_64
9037 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9038 {
9039 struct kvm_segment seg;
9040 int offset;
9041 u16 flags;
9042
9043 kvm_get_segment(vcpu, &seg, n);
9044 offset = 0x7e00 + n * 16;
9045
9046 flags = enter_smm_get_segment_flags(&seg) >> 8;
9047 put_smstate(u16, buf, offset, seg.selector);
9048 put_smstate(u16, buf, offset + 2, flags);
9049 put_smstate(u32, buf, offset + 4, seg.limit);
9050 put_smstate(u64, buf, offset + 8, seg.base);
9051 }
9052 #endif
9053
9054 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9055 {
9056 struct desc_ptr dt;
9057 struct kvm_segment seg;
9058 unsigned long val;
9059 int i;
9060
9061 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9062 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9063 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9064 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9065
9066 for (i = 0; i < 8; i++)
9067 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9068
9069 kvm_get_dr(vcpu, 6, &val);
9070 put_smstate(u32, buf, 0x7fcc, (u32)val);
9071 kvm_get_dr(vcpu, 7, &val);
9072 put_smstate(u32, buf, 0x7fc8, (u32)val);
9073
9074 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9075 put_smstate(u32, buf, 0x7fc4, seg.selector);
9076 put_smstate(u32, buf, 0x7f64, seg.base);
9077 put_smstate(u32, buf, 0x7f60, seg.limit);
9078 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9079
9080 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9081 put_smstate(u32, buf, 0x7fc0, seg.selector);
9082 put_smstate(u32, buf, 0x7f80, seg.base);
9083 put_smstate(u32, buf, 0x7f7c, seg.limit);
9084 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9085
9086 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9087 put_smstate(u32, buf, 0x7f74, dt.address);
9088 put_smstate(u32, buf, 0x7f70, dt.size);
9089
9090 static_call(kvm_x86_get_idt)(vcpu, &dt);
9091 put_smstate(u32, buf, 0x7f58, dt.address);
9092 put_smstate(u32, buf, 0x7f54, dt.size);
9093
9094 for (i = 0; i < 6; i++)
9095 enter_smm_save_seg_32(vcpu, buf, i);
9096
9097 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9098
9099 /* revision id */
9100 put_smstate(u32, buf, 0x7efc, 0x00020000);
9101 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9102 }
9103
9104 #ifdef CONFIG_X86_64
9105 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9106 {
9107 struct desc_ptr dt;
9108 struct kvm_segment seg;
9109 unsigned long val;
9110 int i;
9111
9112 for (i = 0; i < 16; i++)
9113 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9114
9115 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9116 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9117
9118 kvm_get_dr(vcpu, 6, &val);
9119 put_smstate(u64, buf, 0x7f68, val);
9120 kvm_get_dr(vcpu, 7, &val);
9121 put_smstate(u64, buf, 0x7f60, val);
9122
9123 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9124 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9125 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9126
9127 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9128
9129 /* revision id */
9130 put_smstate(u32, buf, 0x7efc, 0x00020064);
9131
9132 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9133
9134 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9135 put_smstate(u16, buf, 0x7e90, seg.selector);
9136 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9137 put_smstate(u32, buf, 0x7e94, seg.limit);
9138 put_smstate(u64, buf, 0x7e98, seg.base);
9139
9140 static_call(kvm_x86_get_idt)(vcpu, &dt);
9141 put_smstate(u32, buf, 0x7e84, dt.size);
9142 put_smstate(u64, buf, 0x7e88, dt.address);
9143
9144 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9145 put_smstate(u16, buf, 0x7e70, seg.selector);
9146 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9147 put_smstate(u32, buf, 0x7e74, seg.limit);
9148 put_smstate(u64, buf, 0x7e78, seg.base);
9149
9150 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9151 put_smstate(u32, buf, 0x7e64, dt.size);
9152 put_smstate(u64, buf, 0x7e68, dt.address);
9153
9154 for (i = 0; i < 6; i++)
9155 enter_smm_save_seg_64(vcpu, buf, i);
9156 }
9157 #endif
9158
9159 static void enter_smm(struct kvm_vcpu *vcpu)
9160 {
9161 struct kvm_segment cs, ds;
9162 struct desc_ptr dt;
9163 unsigned long cr0;
9164 char buf[512];
9165
9166 memset(buf, 0, 512);
9167 #ifdef CONFIG_X86_64
9168 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9169 enter_smm_save_state_64(vcpu, buf);
9170 else
9171 #endif
9172 enter_smm_save_state_32(vcpu, buf);
9173
9174 /*
9175 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9176 * state (e.g. leave guest mode) after we've saved the state into the
9177 * SMM state-save area.
9178 */
9179 static_call(kvm_x86_enter_smm)(vcpu, buf);
9180
9181 kvm_smm_changed(vcpu, true);
9182 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9183
9184 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9185 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9186 else
9187 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9188
9189 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9190 kvm_rip_write(vcpu, 0x8000);
9191
9192 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9193 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9194 vcpu->arch.cr0 = cr0;
9195
9196 static_call(kvm_x86_set_cr4)(vcpu, 0);
9197
9198 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9199 dt.address = dt.size = 0;
9200 static_call(kvm_x86_set_idt)(vcpu, &dt);
9201
9202 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9203
9204 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9205 cs.base = vcpu->arch.smbase;
9206
9207 ds.selector = 0;
9208 ds.base = 0;
9209
9210 cs.limit = ds.limit = 0xffffffff;
9211 cs.type = ds.type = 0x3;
9212 cs.dpl = ds.dpl = 0;
9213 cs.db = ds.db = 0;
9214 cs.s = ds.s = 1;
9215 cs.l = ds.l = 0;
9216 cs.g = ds.g = 1;
9217 cs.avl = ds.avl = 0;
9218 cs.present = ds.present = 1;
9219 cs.unusable = ds.unusable = 0;
9220 cs.padding = ds.padding = 0;
9221
9222 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9223 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9224 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9225 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9226 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9227 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9228
9229 #ifdef CONFIG_X86_64
9230 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9231 static_call(kvm_x86_set_efer)(vcpu, 0);
9232 #endif
9233
9234 kvm_update_cpuid_runtime(vcpu);
9235 kvm_mmu_reset_context(vcpu);
9236 }
9237
9238 static void process_smi(struct kvm_vcpu *vcpu)
9239 {
9240 vcpu->arch.smi_pending = true;
9241 kvm_make_request(KVM_REQ_EVENT, vcpu);
9242 }
9243
9244 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9245 unsigned long *vcpu_bitmap)
9246 {
9247 cpumask_var_t cpus;
9248
9249 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9250
9251 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9252 NULL, vcpu_bitmap, cpus);
9253
9254 free_cpumask_var(cpus);
9255 }
9256
9257 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9258 {
9259 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9260 }
9261
9262 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9263 {
9264 bool activate;
9265
9266 if (!lapic_in_kernel(vcpu))
9267 return;
9268
9269 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9270
9271 activate = kvm_apicv_activated(vcpu->kvm);
9272 if (vcpu->arch.apicv_active == activate)
9273 goto out;
9274
9275 vcpu->arch.apicv_active = activate;
9276 kvm_apic_update_apicv(vcpu);
9277 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9278
9279 /*
9280 * When APICv gets disabled, we may still have injected interrupts
9281 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9282 * still active when the interrupt got accepted. Make sure
9283 * inject_pending_event() is called to check for that.
9284 */
9285 if (!vcpu->arch.apicv_active)
9286 kvm_make_request(KVM_REQ_EVENT, vcpu);
9287
9288 out:
9289 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9290 }
9291 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9292
9293 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9294 {
9295 unsigned long old, new;
9296
9297 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9298 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9299 return;
9300
9301 old = new = kvm->arch.apicv_inhibit_reasons;
9302
9303 if (activate)
9304 __clear_bit(bit, &new);
9305 else
9306 __set_bit(bit, &new);
9307
9308 if (!!old != !!new) {
9309 trace_kvm_apicv_update_request(activate, bit);
9310 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9311 kvm->arch.apicv_inhibit_reasons = new;
9312 if (new) {
9313 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9314 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9315 }
9316 } else
9317 kvm->arch.apicv_inhibit_reasons = new;
9318 }
9319 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9320
9321 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9322 {
9323 mutex_lock(&kvm->arch.apicv_update_lock);
9324 __kvm_request_apicv_update(kvm, activate, bit);
9325 mutex_unlock(&kvm->arch.apicv_update_lock);
9326 }
9327 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9328
9329 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9330 {
9331 if (!kvm_apic_present(vcpu))
9332 return;
9333
9334 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9335
9336 if (irqchip_split(vcpu->kvm))
9337 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9338 else {
9339 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9340 if (ioapic_in_kernel(vcpu->kvm))
9341 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9342 }
9343
9344 if (is_guest_mode(vcpu))
9345 vcpu->arch.load_eoi_exitmap_pending = true;
9346 else
9347 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9348 }
9349
9350 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9351 {
9352 u64 eoi_exit_bitmap[4];
9353
9354 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9355 return;
9356
9357 if (to_hv_vcpu(vcpu)) {
9358 bitmap_or((ulong *)eoi_exit_bitmap,
9359 vcpu->arch.ioapic_handled_vectors,
9360 to_hv_synic(vcpu)->vec_bitmap, 256);
9361 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9362 return;
9363 }
9364
9365 static_call(kvm_x86_load_eoi_exitmap)(
9366 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9367 }
9368
9369 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9370 unsigned long start, unsigned long end)
9371 {
9372 unsigned long apic_address;
9373
9374 /*
9375 * The physical address of apic access page is stored in the VMCS.
9376 * Update it when it becomes invalid.
9377 */
9378 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9379 if (start <= apic_address && apic_address < end)
9380 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9381 }
9382
9383 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9384 {
9385 if (!lapic_in_kernel(vcpu))
9386 return;
9387
9388 if (!kvm_x86_ops.set_apic_access_page_addr)
9389 return;
9390
9391 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9392 }
9393
9394 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9395 {
9396 smp_send_reschedule(vcpu->cpu);
9397 }
9398 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9399
9400 /*
9401 * Returns 1 to let vcpu_run() continue the guest execution loop without
9402 * exiting to the userspace. Otherwise, the value will be returned to the
9403 * userspace.
9404 */
9405 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9406 {
9407 int r;
9408 bool req_int_win =
9409 dm_request_for_irq_injection(vcpu) &&
9410 kvm_cpu_accept_dm_intr(vcpu);
9411 fastpath_t exit_fastpath;
9412
9413 bool req_immediate_exit = false;
9414
9415 /* Forbid vmenter if vcpu dirty ring is soft-full */
9416 if (unlikely(vcpu->kvm->dirty_ring_size &&
9417 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9418 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9419 trace_kvm_dirty_ring_exit(vcpu);
9420 r = 0;
9421 goto out;
9422 }
9423
9424 if (kvm_request_pending(vcpu)) {
9425 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9426 r = -EIO;
9427 goto out;
9428 }
9429 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9430 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9431 r = 0;
9432 goto out;
9433 }
9434 }
9435 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9436 kvm_mmu_unload(vcpu);
9437 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9438 __kvm_migrate_timers(vcpu);
9439 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9440 kvm_gen_update_masterclock(vcpu->kvm);
9441 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9442 kvm_gen_kvmclock_update(vcpu);
9443 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9444 r = kvm_guest_time_update(vcpu);
9445 if (unlikely(r))
9446 goto out;
9447 }
9448 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9449 kvm_mmu_sync_roots(vcpu);
9450 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9451 kvm_mmu_load_pgd(vcpu);
9452 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9453 kvm_vcpu_flush_tlb_all(vcpu);
9454
9455 /* Flushing all ASIDs flushes the current ASID... */
9456 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9457 }
9458 kvm_service_local_tlb_flush_requests(vcpu);
9459
9460 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9461 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9462 r = 0;
9463 goto out;
9464 }
9465 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9466 if (is_guest_mode(vcpu)) {
9467 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9468 } else {
9469 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9470 vcpu->mmio_needed = 0;
9471 r = 0;
9472 goto out;
9473 }
9474 }
9475 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9476 /* Page is swapped out. Do synthetic halt */
9477 vcpu->arch.apf.halted = true;
9478 r = 1;
9479 goto out;
9480 }
9481 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9482 record_steal_time(vcpu);
9483 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9484 process_smi(vcpu);
9485 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9486 process_nmi(vcpu);
9487 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9488 kvm_pmu_handle_event(vcpu);
9489 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9490 kvm_pmu_deliver_pmi(vcpu);
9491 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9492 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9493 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9494 vcpu->arch.ioapic_handled_vectors)) {
9495 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9496 vcpu->run->eoi.vector =
9497 vcpu->arch.pending_ioapic_eoi;
9498 r = 0;
9499 goto out;
9500 }
9501 }
9502 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9503 vcpu_scan_ioapic(vcpu);
9504 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9505 vcpu_load_eoi_exitmap(vcpu);
9506 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9507 kvm_vcpu_reload_apic_access_page(vcpu);
9508 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9509 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9510 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9511 r = 0;
9512 goto out;
9513 }
9514 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9515 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9516 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9517 r = 0;
9518 goto out;
9519 }
9520 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9521 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9522
9523 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9524 vcpu->run->hyperv = hv_vcpu->exit;
9525 r = 0;
9526 goto out;
9527 }
9528
9529 /*
9530 * KVM_REQ_HV_STIMER has to be processed after
9531 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9532 * depend on the guest clock being up-to-date
9533 */
9534 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9535 kvm_hv_process_stimers(vcpu);
9536 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9537 kvm_vcpu_update_apicv(vcpu);
9538 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9539 kvm_check_async_pf_completion(vcpu);
9540 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9541 static_call(kvm_x86_msr_filter_changed)(vcpu);
9542
9543 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9544 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9545 }
9546
9547 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9548 kvm_xen_has_interrupt(vcpu)) {
9549 ++vcpu->stat.req_event;
9550 r = kvm_apic_accept_events(vcpu);
9551 if (r < 0) {
9552 r = 0;
9553 goto out;
9554 }
9555 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9556 r = 1;
9557 goto out;
9558 }
9559
9560 r = inject_pending_event(vcpu, &req_immediate_exit);
9561 if (r < 0) {
9562 r = 0;
9563 goto out;
9564 }
9565 if (req_int_win)
9566 static_call(kvm_x86_enable_irq_window)(vcpu);
9567
9568 if (kvm_lapic_enabled(vcpu)) {
9569 update_cr8_intercept(vcpu);
9570 kvm_lapic_sync_to_vapic(vcpu);
9571 }
9572 }
9573
9574 r = kvm_mmu_reload(vcpu);
9575 if (unlikely(r)) {
9576 goto cancel_injection;
9577 }
9578
9579 preempt_disable();
9580
9581 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9582
9583 /*
9584 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9585 * IPI are then delayed after guest entry, which ensures that they
9586 * result in virtual interrupt delivery.
9587 */
9588 local_irq_disable();
9589 vcpu->mode = IN_GUEST_MODE;
9590
9591 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9592
9593 /*
9594 * 1) We should set ->mode before checking ->requests. Please see
9595 * the comment in kvm_vcpu_exiting_guest_mode().
9596 *
9597 * 2) For APICv, we should set ->mode before checking PID.ON. This
9598 * pairs with the memory barrier implicit in pi_test_and_set_on
9599 * (see vmx_deliver_posted_interrupt).
9600 *
9601 * 3) This also orders the write to mode from any reads to the page
9602 * tables done while the VCPU is running. Please see the comment
9603 * in kvm_flush_remote_tlbs.
9604 */
9605 smp_mb__after_srcu_read_unlock();
9606
9607 /*
9608 * This handles the case where a posted interrupt was
9609 * notified with kvm_vcpu_kick. Assigned devices can
9610 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9611 * so do it even if APICv is disabled on this vCPU.
9612 */
9613 if (kvm_lapic_enabled(vcpu))
9614 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9615
9616 if (kvm_vcpu_exit_request(vcpu)) {
9617 vcpu->mode = OUTSIDE_GUEST_MODE;
9618 smp_wmb();
9619 local_irq_enable();
9620 preempt_enable();
9621 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9622 r = 1;
9623 goto cancel_injection;
9624 }
9625
9626 if (req_immediate_exit) {
9627 kvm_make_request(KVM_REQ_EVENT, vcpu);
9628 static_call(kvm_x86_request_immediate_exit)(vcpu);
9629 }
9630
9631 fpregs_assert_state_consistent();
9632 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9633 switch_fpu_return();
9634
9635 if (unlikely(vcpu->arch.switch_db_regs)) {
9636 set_debugreg(0, 7);
9637 set_debugreg(vcpu->arch.eff_db[0], 0);
9638 set_debugreg(vcpu->arch.eff_db[1], 1);
9639 set_debugreg(vcpu->arch.eff_db[2], 2);
9640 set_debugreg(vcpu->arch.eff_db[3], 3);
9641 } else if (unlikely(hw_breakpoint_active())) {
9642 set_debugreg(0, 7);
9643 }
9644
9645 for (;;) {
9646 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9647 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9648 break;
9649
9650 if (kvm_lapic_enabled(vcpu))
9651 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9652
9653 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9654 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9655 break;
9656 }
9657 }
9658
9659 /*
9660 * Do this here before restoring debug registers on the host. And
9661 * since we do this before handling the vmexit, a DR access vmexit
9662 * can (a) read the correct value of the debug registers, (b) set
9663 * KVM_DEBUGREG_WONT_EXIT again.
9664 */
9665 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9666 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9667 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9668 kvm_update_dr0123(vcpu);
9669 kvm_update_dr7(vcpu);
9670 }
9671
9672 /*
9673 * If the guest has used debug registers, at least dr7
9674 * will be disabled while returning to the host.
9675 * If we don't have active breakpoints in the host, we don't
9676 * care about the messed up debug address registers. But if
9677 * we have some of them active, restore the old state.
9678 */
9679 if (hw_breakpoint_active())
9680 hw_breakpoint_restore();
9681
9682 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9683 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9684
9685 vcpu->mode = OUTSIDE_GUEST_MODE;
9686 smp_wmb();
9687
9688 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9689
9690 /*
9691 * Consume any pending interrupts, including the possible source of
9692 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9693 * An instruction is required after local_irq_enable() to fully unblock
9694 * interrupts on processors that implement an interrupt shadow, the
9695 * stat.exits increment will do nicely.
9696 */
9697 kvm_before_interrupt(vcpu);
9698 local_irq_enable();
9699 ++vcpu->stat.exits;
9700 local_irq_disable();
9701 kvm_after_interrupt(vcpu);
9702
9703 /*
9704 * Wait until after servicing IRQs to account guest time so that any
9705 * ticks that occurred while running the guest are properly accounted
9706 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9707 * of accounting via context tracking, but the loss of accuracy is
9708 * acceptable for all known use cases.
9709 */
9710 vtime_account_guest_exit();
9711
9712 if (lapic_in_kernel(vcpu)) {
9713 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9714 if (delta != S64_MIN) {
9715 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9716 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9717 }
9718 }
9719
9720 local_irq_enable();
9721 preempt_enable();
9722
9723 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9724
9725 /*
9726 * Profile KVM exit RIPs:
9727 */
9728 if (unlikely(prof_on == KVM_PROFILING)) {
9729 unsigned long rip = kvm_rip_read(vcpu);
9730 profile_hit(KVM_PROFILING, (void *)rip);
9731 }
9732
9733 if (unlikely(vcpu->arch.tsc_always_catchup))
9734 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9735
9736 if (vcpu->arch.apic_attention)
9737 kvm_lapic_sync_from_vapic(vcpu);
9738
9739 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9740 return r;
9741
9742 cancel_injection:
9743 if (req_immediate_exit)
9744 kvm_make_request(KVM_REQ_EVENT, vcpu);
9745 static_call(kvm_x86_cancel_injection)(vcpu);
9746 if (unlikely(vcpu->arch.apic_attention))
9747 kvm_lapic_sync_from_vapic(vcpu);
9748 out:
9749 return r;
9750 }
9751
9752 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9753 {
9754 if (!kvm_arch_vcpu_runnable(vcpu) &&
9755 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9756 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9757 kvm_vcpu_block(vcpu);
9758 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9759
9760 if (kvm_x86_ops.post_block)
9761 static_call(kvm_x86_post_block)(vcpu);
9762
9763 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9764 return 1;
9765 }
9766
9767 if (kvm_apic_accept_events(vcpu) < 0)
9768 return 0;
9769 switch(vcpu->arch.mp_state) {
9770 case KVM_MP_STATE_HALTED:
9771 case KVM_MP_STATE_AP_RESET_HOLD:
9772 vcpu->arch.pv.pv_unhalted = false;
9773 vcpu->arch.mp_state =
9774 KVM_MP_STATE_RUNNABLE;
9775 fallthrough;
9776 case KVM_MP_STATE_RUNNABLE:
9777 vcpu->arch.apf.halted = false;
9778 break;
9779 case KVM_MP_STATE_INIT_RECEIVED:
9780 break;
9781 default:
9782 return -EINTR;
9783 }
9784 return 1;
9785 }
9786
9787 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9788 {
9789 if (is_guest_mode(vcpu))
9790 kvm_check_nested_events(vcpu);
9791
9792 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9793 !vcpu->arch.apf.halted);
9794 }
9795
9796 static int vcpu_run(struct kvm_vcpu *vcpu)
9797 {
9798 int r;
9799 struct kvm *kvm = vcpu->kvm;
9800
9801 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9802 vcpu->arch.l1tf_flush_l1d = true;
9803
9804 for (;;) {
9805 if (kvm_vcpu_running(vcpu)) {
9806 r = vcpu_enter_guest(vcpu);
9807 } else {
9808 r = vcpu_block(kvm, vcpu);
9809 }
9810
9811 if (r <= 0)
9812 break;
9813
9814 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9815 if (kvm_cpu_has_pending_timer(vcpu))
9816 kvm_inject_pending_timer_irqs(vcpu);
9817
9818 if (dm_request_for_irq_injection(vcpu) &&
9819 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9820 r = 0;
9821 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9822 ++vcpu->stat.request_irq_exits;
9823 break;
9824 }
9825
9826 if (__xfer_to_guest_mode_work_pending()) {
9827 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9828 r = xfer_to_guest_mode_handle_work(vcpu);
9829 if (r)
9830 return r;
9831 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9832 }
9833 }
9834
9835 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9836
9837 return r;
9838 }
9839
9840 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9841 {
9842 int r;
9843
9844 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9845 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9846 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9847 return r;
9848 }
9849
9850 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9851 {
9852 BUG_ON(!vcpu->arch.pio.count);
9853
9854 return complete_emulated_io(vcpu);
9855 }
9856
9857 /*
9858 * Implements the following, as a state machine:
9859 *
9860 * read:
9861 * for each fragment
9862 * for each mmio piece in the fragment
9863 * write gpa, len
9864 * exit
9865 * copy data
9866 * execute insn
9867 *
9868 * write:
9869 * for each fragment
9870 * for each mmio piece in the fragment
9871 * write gpa, len
9872 * copy data
9873 * exit
9874 */
9875 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9876 {
9877 struct kvm_run *run = vcpu->run;
9878 struct kvm_mmio_fragment *frag;
9879 unsigned len;
9880
9881 BUG_ON(!vcpu->mmio_needed);
9882
9883 /* Complete previous fragment */
9884 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9885 len = min(8u, frag->len);
9886 if (!vcpu->mmio_is_write)
9887 memcpy(frag->data, run->mmio.data, len);
9888
9889 if (frag->len <= 8) {
9890 /* Switch to the next fragment. */
9891 frag++;
9892 vcpu->mmio_cur_fragment++;
9893 } else {
9894 /* Go forward to the next mmio piece. */
9895 frag->data += len;
9896 frag->gpa += len;
9897 frag->len -= len;
9898 }
9899
9900 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9901 vcpu->mmio_needed = 0;
9902
9903 /* FIXME: return into emulator if single-stepping. */
9904 if (vcpu->mmio_is_write)
9905 return 1;
9906 vcpu->mmio_read_completed = 1;
9907 return complete_emulated_io(vcpu);
9908 }
9909
9910 run->exit_reason = KVM_EXIT_MMIO;
9911 run->mmio.phys_addr = frag->gpa;
9912 if (vcpu->mmio_is_write)
9913 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9914 run->mmio.len = min(8u, frag->len);
9915 run->mmio.is_write = vcpu->mmio_is_write;
9916 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9917 return 0;
9918 }
9919
9920 /* Swap (qemu) user FPU context for the guest FPU context. */
9921 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9922 {
9923 /*
9924 * Exclude PKRU from restore as restored separately in
9925 * kvm_x86_ops.run().
9926 */
9927 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
9928 trace_kvm_fpu(1);
9929 }
9930
9931 /* When vcpu_run ends, restore user space FPU context. */
9932 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9933 {
9934 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
9935 ++vcpu->stat.fpu_reload;
9936 trace_kvm_fpu(0);
9937 }
9938
9939 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9940 {
9941 struct kvm_run *kvm_run = vcpu->run;
9942 int r;
9943
9944 vcpu_load(vcpu);
9945 kvm_sigset_activate(vcpu);
9946 kvm_run->flags = 0;
9947 kvm_load_guest_fpu(vcpu);
9948
9949 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9950 if (kvm_run->immediate_exit) {
9951 r = -EINTR;
9952 goto out;
9953 }
9954 kvm_vcpu_block(vcpu);
9955 if (kvm_apic_accept_events(vcpu) < 0) {
9956 r = 0;
9957 goto out;
9958 }
9959 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9960 r = -EAGAIN;
9961 if (signal_pending(current)) {
9962 r = -EINTR;
9963 kvm_run->exit_reason = KVM_EXIT_INTR;
9964 ++vcpu->stat.signal_exits;
9965 }
9966 goto out;
9967 }
9968
9969 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9970 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9971 r = -EINVAL;
9972 goto out;
9973 }
9974
9975 if (kvm_run->kvm_dirty_regs) {
9976 r = sync_regs(vcpu);
9977 if (r != 0)
9978 goto out;
9979 }
9980
9981 /* re-sync apic's tpr */
9982 if (!lapic_in_kernel(vcpu)) {
9983 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9984 r = -EINVAL;
9985 goto out;
9986 }
9987 }
9988
9989 if (unlikely(vcpu->arch.complete_userspace_io)) {
9990 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9991 vcpu->arch.complete_userspace_io = NULL;
9992 r = cui(vcpu);
9993 if (r <= 0)
9994 goto out;
9995 } else
9996 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9997
9998 if (kvm_run->immediate_exit)
9999 r = -EINTR;
10000 else
10001 r = vcpu_run(vcpu);
10002
10003 out:
10004 kvm_put_guest_fpu(vcpu);
10005 if (kvm_run->kvm_valid_regs)
10006 store_regs(vcpu);
10007 post_kvm_run_save(vcpu);
10008 kvm_sigset_deactivate(vcpu);
10009
10010 vcpu_put(vcpu);
10011 return r;
10012 }
10013
10014 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10015 {
10016 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10017 /*
10018 * We are here if userspace calls get_regs() in the middle of
10019 * instruction emulation. Registers state needs to be copied
10020 * back from emulation context to vcpu. Userspace shouldn't do
10021 * that usually, but some bad designed PV devices (vmware
10022 * backdoor interface) need this to work
10023 */
10024 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10025 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10026 }
10027 regs->rax = kvm_rax_read(vcpu);
10028 regs->rbx = kvm_rbx_read(vcpu);
10029 regs->rcx = kvm_rcx_read(vcpu);
10030 regs->rdx = kvm_rdx_read(vcpu);
10031 regs->rsi = kvm_rsi_read(vcpu);
10032 regs->rdi = kvm_rdi_read(vcpu);
10033 regs->rsp = kvm_rsp_read(vcpu);
10034 regs->rbp = kvm_rbp_read(vcpu);
10035 #ifdef CONFIG_X86_64
10036 regs->r8 = kvm_r8_read(vcpu);
10037 regs->r9 = kvm_r9_read(vcpu);
10038 regs->r10 = kvm_r10_read(vcpu);
10039 regs->r11 = kvm_r11_read(vcpu);
10040 regs->r12 = kvm_r12_read(vcpu);
10041 regs->r13 = kvm_r13_read(vcpu);
10042 regs->r14 = kvm_r14_read(vcpu);
10043 regs->r15 = kvm_r15_read(vcpu);
10044 #endif
10045
10046 regs->rip = kvm_rip_read(vcpu);
10047 regs->rflags = kvm_get_rflags(vcpu);
10048 }
10049
10050 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10051 {
10052 vcpu_load(vcpu);
10053 __get_regs(vcpu, regs);
10054 vcpu_put(vcpu);
10055 return 0;
10056 }
10057
10058 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10059 {
10060 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10061 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10062
10063 kvm_rax_write(vcpu, regs->rax);
10064 kvm_rbx_write(vcpu, regs->rbx);
10065 kvm_rcx_write(vcpu, regs->rcx);
10066 kvm_rdx_write(vcpu, regs->rdx);
10067 kvm_rsi_write(vcpu, regs->rsi);
10068 kvm_rdi_write(vcpu, regs->rdi);
10069 kvm_rsp_write(vcpu, regs->rsp);
10070 kvm_rbp_write(vcpu, regs->rbp);
10071 #ifdef CONFIG_X86_64
10072 kvm_r8_write(vcpu, regs->r8);
10073 kvm_r9_write(vcpu, regs->r9);
10074 kvm_r10_write(vcpu, regs->r10);
10075 kvm_r11_write(vcpu, regs->r11);
10076 kvm_r12_write(vcpu, regs->r12);
10077 kvm_r13_write(vcpu, regs->r13);
10078 kvm_r14_write(vcpu, regs->r14);
10079 kvm_r15_write(vcpu, regs->r15);
10080 #endif
10081
10082 kvm_rip_write(vcpu, regs->rip);
10083 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10084
10085 vcpu->arch.exception.pending = false;
10086
10087 kvm_make_request(KVM_REQ_EVENT, vcpu);
10088 }
10089
10090 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10091 {
10092 vcpu_load(vcpu);
10093 __set_regs(vcpu, regs);
10094 vcpu_put(vcpu);
10095 return 0;
10096 }
10097
10098 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10099 {
10100 struct kvm_segment cs;
10101
10102 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10103 *db = cs.db;
10104 *l = cs.l;
10105 }
10106 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10107
10108 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10109 {
10110 struct desc_ptr dt;
10111
10112 if (vcpu->arch.guest_state_protected)
10113 goto skip_protected_regs;
10114
10115 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10116 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10117 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10118 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10119 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10120 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10121
10122 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10123 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10124
10125 static_call(kvm_x86_get_idt)(vcpu, &dt);
10126 sregs->idt.limit = dt.size;
10127 sregs->idt.base = dt.address;
10128 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10129 sregs->gdt.limit = dt.size;
10130 sregs->gdt.base = dt.address;
10131
10132 sregs->cr2 = vcpu->arch.cr2;
10133 sregs->cr3 = kvm_read_cr3(vcpu);
10134
10135 skip_protected_regs:
10136 sregs->cr0 = kvm_read_cr0(vcpu);
10137 sregs->cr4 = kvm_read_cr4(vcpu);
10138 sregs->cr8 = kvm_get_cr8(vcpu);
10139 sregs->efer = vcpu->arch.efer;
10140 sregs->apic_base = kvm_get_apic_base(vcpu);
10141 }
10142
10143 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10144 {
10145 __get_sregs_common(vcpu, sregs);
10146
10147 if (vcpu->arch.guest_state_protected)
10148 return;
10149
10150 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10151 set_bit(vcpu->arch.interrupt.nr,
10152 (unsigned long *)sregs->interrupt_bitmap);
10153 }
10154
10155 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10156 {
10157 int i;
10158
10159 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10160
10161 if (vcpu->arch.guest_state_protected)
10162 return;
10163
10164 if (is_pae_paging(vcpu)) {
10165 for (i = 0 ; i < 4 ; i++)
10166 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10167 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10168 }
10169 }
10170
10171 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10172 struct kvm_sregs *sregs)
10173 {
10174 vcpu_load(vcpu);
10175 __get_sregs(vcpu, sregs);
10176 vcpu_put(vcpu);
10177 return 0;
10178 }
10179
10180 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10181 struct kvm_mp_state *mp_state)
10182 {
10183 int r;
10184
10185 vcpu_load(vcpu);
10186 if (kvm_mpx_supported())
10187 kvm_load_guest_fpu(vcpu);
10188
10189 r = kvm_apic_accept_events(vcpu);
10190 if (r < 0)
10191 goto out;
10192 r = 0;
10193
10194 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10195 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10196 vcpu->arch.pv.pv_unhalted)
10197 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10198 else
10199 mp_state->mp_state = vcpu->arch.mp_state;
10200
10201 out:
10202 if (kvm_mpx_supported())
10203 kvm_put_guest_fpu(vcpu);
10204 vcpu_put(vcpu);
10205 return r;
10206 }
10207
10208 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10209 struct kvm_mp_state *mp_state)
10210 {
10211 int ret = -EINVAL;
10212
10213 vcpu_load(vcpu);
10214
10215 if (!lapic_in_kernel(vcpu) &&
10216 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10217 goto out;
10218
10219 /*
10220 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10221 * INIT state; latched init should be reported using
10222 * KVM_SET_VCPU_EVENTS, so reject it here.
10223 */
10224 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10225 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10226 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10227 goto out;
10228
10229 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10230 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10231 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10232 } else
10233 vcpu->arch.mp_state = mp_state->mp_state;
10234 kvm_make_request(KVM_REQ_EVENT, vcpu);
10235
10236 ret = 0;
10237 out:
10238 vcpu_put(vcpu);
10239 return ret;
10240 }
10241
10242 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10243 int reason, bool has_error_code, u32 error_code)
10244 {
10245 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10246 int ret;
10247
10248 init_emulate_ctxt(vcpu);
10249
10250 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10251 has_error_code, error_code);
10252 if (ret) {
10253 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10254 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10255 vcpu->run->internal.ndata = 0;
10256 return 0;
10257 }
10258
10259 kvm_rip_write(vcpu, ctxt->eip);
10260 kvm_set_rflags(vcpu, ctxt->eflags);
10261 return 1;
10262 }
10263 EXPORT_SYMBOL_GPL(kvm_task_switch);
10264
10265 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10266 {
10267 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10268 /*
10269 * When EFER.LME and CR0.PG are set, the processor is in
10270 * 64-bit mode (though maybe in a 32-bit code segment).
10271 * CR4.PAE and EFER.LMA must be set.
10272 */
10273 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10274 return false;
10275 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10276 return false;
10277 } else {
10278 /*
10279 * Not in 64-bit mode: EFER.LMA is clear and the code
10280 * segment cannot be 64-bit.
10281 */
10282 if (sregs->efer & EFER_LMA || sregs->cs.l)
10283 return false;
10284 }
10285
10286 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10287 }
10288
10289 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10290 int *mmu_reset_needed, bool update_pdptrs)
10291 {
10292 struct msr_data apic_base_msr;
10293 int idx;
10294 struct desc_ptr dt;
10295
10296 if (!kvm_is_valid_sregs(vcpu, sregs))
10297 return -EINVAL;
10298
10299 apic_base_msr.data = sregs->apic_base;
10300 apic_base_msr.host_initiated = true;
10301 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10302 return -EINVAL;
10303
10304 if (vcpu->arch.guest_state_protected)
10305 return 0;
10306
10307 dt.size = sregs->idt.limit;
10308 dt.address = sregs->idt.base;
10309 static_call(kvm_x86_set_idt)(vcpu, &dt);
10310 dt.size = sregs->gdt.limit;
10311 dt.address = sregs->gdt.base;
10312 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10313
10314 vcpu->arch.cr2 = sregs->cr2;
10315 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10316 vcpu->arch.cr3 = sregs->cr3;
10317 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10318
10319 kvm_set_cr8(vcpu, sregs->cr8);
10320
10321 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10322 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10323
10324 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10325 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10326 vcpu->arch.cr0 = sregs->cr0;
10327
10328 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10329 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10330
10331 if (update_pdptrs) {
10332 idx = srcu_read_lock(&vcpu->kvm->srcu);
10333 if (is_pae_paging(vcpu)) {
10334 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10335 *mmu_reset_needed = 1;
10336 }
10337 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10338 }
10339
10340 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10341 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10342 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10343 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10344 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10345 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10346
10347 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10348 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10349
10350 update_cr8_intercept(vcpu);
10351
10352 /* Older userspace won't unhalt the vcpu on reset. */
10353 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10354 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10355 !is_protmode(vcpu))
10356 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10357
10358 return 0;
10359 }
10360
10361 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10362 {
10363 int pending_vec, max_bits;
10364 int mmu_reset_needed = 0;
10365 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10366
10367 if (ret)
10368 return ret;
10369
10370 if (mmu_reset_needed)
10371 kvm_mmu_reset_context(vcpu);
10372
10373 max_bits = KVM_NR_INTERRUPTS;
10374 pending_vec = find_first_bit(
10375 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10376
10377 if (pending_vec < max_bits) {
10378 kvm_queue_interrupt(vcpu, pending_vec, false);
10379 pr_debug("Set back pending irq %d\n", pending_vec);
10380 kvm_make_request(KVM_REQ_EVENT, vcpu);
10381 }
10382 return 0;
10383 }
10384
10385 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10386 {
10387 int mmu_reset_needed = 0;
10388 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10389 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10390 !(sregs2->efer & EFER_LMA);
10391 int i, ret;
10392
10393 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10394 return -EINVAL;
10395
10396 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10397 return -EINVAL;
10398
10399 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10400 &mmu_reset_needed, !valid_pdptrs);
10401 if (ret)
10402 return ret;
10403
10404 if (valid_pdptrs) {
10405 for (i = 0; i < 4 ; i++)
10406 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10407
10408 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10409 mmu_reset_needed = 1;
10410 vcpu->arch.pdptrs_from_userspace = true;
10411 }
10412 if (mmu_reset_needed)
10413 kvm_mmu_reset_context(vcpu);
10414 return 0;
10415 }
10416
10417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10418 struct kvm_sregs *sregs)
10419 {
10420 int ret;
10421
10422 vcpu_load(vcpu);
10423 ret = __set_sregs(vcpu, sregs);
10424 vcpu_put(vcpu);
10425 return ret;
10426 }
10427
10428 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10429 struct kvm_guest_debug *dbg)
10430 {
10431 unsigned long rflags;
10432 int i, r;
10433
10434 if (vcpu->arch.guest_state_protected)
10435 return -EINVAL;
10436
10437 vcpu_load(vcpu);
10438
10439 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10440 r = -EBUSY;
10441 if (vcpu->arch.exception.pending)
10442 goto out;
10443 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10444 kvm_queue_exception(vcpu, DB_VECTOR);
10445 else
10446 kvm_queue_exception(vcpu, BP_VECTOR);
10447 }
10448
10449 /*
10450 * Read rflags as long as potentially injected trace flags are still
10451 * filtered out.
10452 */
10453 rflags = kvm_get_rflags(vcpu);
10454
10455 vcpu->guest_debug = dbg->control;
10456 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10457 vcpu->guest_debug = 0;
10458
10459 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10460 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10461 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10462 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10463 } else {
10464 for (i = 0; i < KVM_NR_DB_REGS; i++)
10465 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10466 }
10467 kvm_update_dr7(vcpu);
10468
10469 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10470 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10471
10472 /*
10473 * Trigger an rflags update that will inject or remove the trace
10474 * flags.
10475 */
10476 kvm_set_rflags(vcpu, rflags);
10477
10478 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10479
10480 r = 0;
10481
10482 out:
10483 vcpu_put(vcpu);
10484 return r;
10485 }
10486
10487 /*
10488 * Translate a guest virtual address to a guest physical address.
10489 */
10490 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10491 struct kvm_translation *tr)
10492 {
10493 unsigned long vaddr = tr->linear_address;
10494 gpa_t gpa;
10495 int idx;
10496
10497 vcpu_load(vcpu);
10498
10499 idx = srcu_read_lock(&vcpu->kvm->srcu);
10500 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10501 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10502 tr->physical_address = gpa;
10503 tr->valid = gpa != UNMAPPED_GVA;
10504 tr->writeable = 1;
10505 tr->usermode = 0;
10506
10507 vcpu_put(vcpu);
10508 return 0;
10509 }
10510
10511 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10512 {
10513 struct fxregs_state *fxsave;
10514
10515 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10516 return 0;
10517
10518 vcpu_load(vcpu);
10519
10520 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10521 memcpy(fpu->fpr, fxsave->st_space, 128);
10522 fpu->fcw = fxsave->cwd;
10523 fpu->fsw = fxsave->swd;
10524 fpu->ftwx = fxsave->twd;
10525 fpu->last_opcode = fxsave->fop;
10526 fpu->last_ip = fxsave->rip;
10527 fpu->last_dp = fxsave->rdp;
10528 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10529
10530 vcpu_put(vcpu);
10531 return 0;
10532 }
10533
10534 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10535 {
10536 struct fxregs_state *fxsave;
10537
10538 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10539 return 0;
10540
10541 vcpu_load(vcpu);
10542
10543 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10544
10545 memcpy(fxsave->st_space, fpu->fpr, 128);
10546 fxsave->cwd = fpu->fcw;
10547 fxsave->swd = fpu->fsw;
10548 fxsave->twd = fpu->ftwx;
10549 fxsave->fop = fpu->last_opcode;
10550 fxsave->rip = fpu->last_ip;
10551 fxsave->rdp = fpu->last_dp;
10552 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10553
10554 vcpu_put(vcpu);
10555 return 0;
10556 }
10557
10558 static void store_regs(struct kvm_vcpu *vcpu)
10559 {
10560 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10561
10562 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10563 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10564
10565 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10566 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10567
10568 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10569 kvm_vcpu_ioctl_x86_get_vcpu_events(
10570 vcpu, &vcpu->run->s.regs.events);
10571 }
10572
10573 static int sync_regs(struct kvm_vcpu *vcpu)
10574 {
10575 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10576 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10577 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10578 }
10579 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10580 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10581 return -EINVAL;
10582 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10583 }
10584 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10585 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10586 vcpu, &vcpu->run->s.regs.events))
10587 return -EINVAL;
10588 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10589 }
10590
10591 return 0;
10592 }
10593
10594 static void fx_init(struct kvm_vcpu *vcpu)
10595 {
10596 /*
10597 * Ensure guest xcr0 is valid for loading
10598 */
10599 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10600
10601 vcpu->arch.cr0 |= X86_CR0_ET;
10602 }
10603
10604 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10605 {
10606 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10607 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10608 "guest TSC will not be reliable\n");
10609
10610 return 0;
10611 }
10612
10613 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10614 {
10615 struct page *page;
10616 int r;
10617
10618 vcpu->arch.last_vmentry_cpu = -1;
10619 vcpu->arch.regs_avail = ~0;
10620 vcpu->arch.regs_dirty = ~0;
10621
10622 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10623 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10624 else
10625 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10626
10627 r = kvm_mmu_create(vcpu);
10628 if (r < 0)
10629 return r;
10630
10631 if (irqchip_in_kernel(vcpu->kvm)) {
10632 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10633 if (r < 0)
10634 goto fail_mmu_destroy;
10635 if (kvm_apicv_activated(vcpu->kvm))
10636 vcpu->arch.apicv_active = true;
10637 } else
10638 static_branch_inc(&kvm_has_noapic_vcpu);
10639
10640 r = -ENOMEM;
10641
10642 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10643 if (!page)
10644 goto fail_free_lapic;
10645 vcpu->arch.pio_data = page_address(page);
10646
10647 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10648 GFP_KERNEL_ACCOUNT);
10649 if (!vcpu->arch.mce_banks)
10650 goto fail_free_pio_data;
10651 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10652
10653 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10654 GFP_KERNEL_ACCOUNT))
10655 goto fail_free_mce_banks;
10656
10657 if (!alloc_emulate_ctxt(vcpu))
10658 goto free_wbinvd_dirty_mask;
10659
10660 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
10661 pr_err("kvm: failed to allocate vcpu's fpu\n");
10662 goto free_emulate_ctxt;
10663 }
10664
10665 fx_init(vcpu);
10666
10667 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10668 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10669
10670 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10671
10672 kvm_async_pf_hash_reset(vcpu);
10673 kvm_pmu_init(vcpu);
10674
10675 vcpu->arch.pending_external_vector = -1;
10676 vcpu->arch.preempted_in_kernel = false;
10677
10678 #if IS_ENABLED(CONFIG_HYPERV)
10679 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10680 #endif
10681
10682 r = static_call(kvm_x86_vcpu_create)(vcpu);
10683 if (r)
10684 goto free_guest_fpu;
10685
10686 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10687 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10688 kvm_vcpu_mtrr_init(vcpu);
10689 vcpu_load(vcpu);
10690 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10691 kvm_vcpu_reset(vcpu, false);
10692 kvm_init_mmu(vcpu);
10693 vcpu_put(vcpu);
10694 return 0;
10695
10696 free_guest_fpu:
10697 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10698 free_emulate_ctxt:
10699 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10700 free_wbinvd_dirty_mask:
10701 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10702 fail_free_mce_banks:
10703 kfree(vcpu->arch.mce_banks);
10704 fail_free_pio_data:
10705 free_page((unsigned long)vcpu->arch.pio_data);
10706 fail_free_lapic:
10707 kvm_free_lapic(vcpu);
10708 fail_mmu_destroy:
10709 kvm_mmu_destroy(vcpu);
10710 return r;
10711 }
10712
10713 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10714 {
10715 struct kvm *kvm = vcpu->kvm;
10716
10717 if (mutex_lock_killable(&vcpu->mutex))
10718 return;
10719 vcpu_load(vcpu);
10720 kvm_synchronize_tsc(vcpu, 0);
10721 vcpu_put(vcpu);
10722
10723 /* poll control enabled by default */
10724 vcpu->arch.msr_kvm_poll_control = 1;
10725
10726 mutex_unlock(&vcpu->mutex);
10727
10728 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10729 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10730 KVMCLOCK_SYNC_PERIOD);
10731 }
10732
10733 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10734 {
10735 int idx;
10736
10737 kvmclock_reset(vcpu);
10738
10739 static_call(kvm_x86_vcpu_free)(vcpu);
10740
10741 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10742 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10743 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10744
10745 kvm_hv_vcpu_uninit(vcpu);
10746 kvm_pmu_destroy(vcpu);
10747 kfree(vcpu->arch.mce_banks);
10748 kvm_free_lapic(vcpu);
10749 idx = srcu_read_lock(&vcpu->kvm->srcu);
10750 kvm_mmu_destroy(vcpu);
10751 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10752 free_page((unsigned long)vcpu->arch.pio_data);
10753 kvfree(vcpu->arch.cpuid_entries);
10754 if (!lapic_in_kernel(vcpu))
10755 static_branch_dec(&kvm_has_noapic_vcpu);
10756 }
10757
10758 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10759 {
10760 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10761 unsigned long new_cr0;
10762 u32 eax, dummy;
10763
10764 kvm_lapic_reset(vcpu, init_event);
10765
10766 vcpu->arch.hflags = 0;
10767
10768 vcpu->arch.smi_pending = 0;
10769 vcpu->arch.smi_count = 0;
10770 atomic_set(&vcpu->arch.nmi_queued, 0);
10771 vcpu->arch.nmi_pending = 0;
10772 vcpu->arch.nmi_injected = false;
10773 kvm_clear_interrupt_queue(vcpu);
10774 kvm_clear_exception_queue(vcpu);
10775
10776 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10777 kvm_update_dr0123(vcpu);
10778 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10779 vcpu->arch.dr7 = DR7_FIXED_1;
10780 kvm_update_dr7(vcpu);
10781
10782 vcpu->arch.cr2 = 0;
10783
10784 kvm_make_request(KVM_REQ_EVENT, vcpu);
10785 vcpu->arch.apf.msr_en_val = 0;
10786 vcpu->arch.apf.msr_int_val = 0;
10787 vcpu->arch.st.msr_val = 0;
10788
10789 kvmclock_reset(vcpu);
10790
10791 kvm_clear_async_pf_completion_queue(vcpu);
10792 kvm_async_pf_hash_reset(vcpu);
10793 vcpu->arch.apf.halted = false;
10794
10795 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
10796 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
10797
10798 /*
10799 * To avoid have the INIT path from kvm_apic_has_events() that be
10800 * called with loaded FPU and does not let userspace fix the state.
10801 */
10802 if (init_event)
10803 kvm_put_guest_fpu(vcpu);
10804
10805 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
10806 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
10807
10808 if (init_event)
10809 kvm_load_guest_fpu(vcpu);
10810 }
10811
10812 if (!init_event) {
10813 kvm_pmu_reset(vcpu);
10814 vcpu->arch.smbase = 0x30000;
10815
10816 vcpu->arch.msr_misc_features_enables = 0;
10817
10818 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
10819 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
10820 }
10821
10822 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10823 vcpu->arch.regs_avail = ~0;
10824 vcpu->arch.regs_dirty = ~0;
10825
10826 /*
10827 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10828 * if no CPUID match is found. Note, it's impossible to get a match at
10829 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10830 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10831 * But, go through the motions in case that's ever remedied.
10832 */
10833 eax = 1;
10834 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10835 eax = 0x600;
10836 kvm_rdx_write(vcpu, eax);
10837
10838 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10839
10840 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10841 kvm_rip_write(vcpu, 0xfff0);
10842
10843 vcpu->arch.cr3 = 0;
10844 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10845
10846 /*
10847 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10848 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10849 * (or qualify) that with a footnote stating that CD/NW are preserved.
10850 */
10851 new_cr0 = X86_CR0_ET;
10852 if (init_event)
10853 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10854 else
10855 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10856
10857 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10858 static_call(kvm_x86_set_cr4)(vcpu, 0);
10859 static_call(kvm_x86_set_efer)(vcpu, 0);
10860 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10861
10862 /*
10863 * Reset the MMU context if paging was enabled prior to INIT (which is
10864 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10865 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10866 * checked because it is unconditionally cleared on INIT and all other
10867 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10868 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10869 */
10870 if (old_cr0 & X86_CR0_PG)
10871 kvm_mmu_reset_context(vcpu);
10872
10873 /*
10874 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
10875 * APM states the TLBs are untouched by INIT, but it also states that
10876 * the TLBs are flushed on "External initialization of the processor."
10877 * Flush the guest TLB regardless of vendor, there is no meaningful
10878 * benefit in relying on the guest to flush the TLB immediately after
10879 * INIT. A spurious TLB flush is benign and likely negligible from a
10880 * performance perspective.
10881 */
10882 if (init_event)
10883 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10884 }
10885 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10886
10887 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10888 {
10889 struct kvm_segment cs;
10890
10891 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10892 cs.selector = vector << 8;
10893 cs.base = vector << 12;
10894 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10895 kvm_rip_write(vcpu, 0);
10896 }
10897 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10898
10899 int kvm_arch_hardware_enable(void)
10900 {
10901 struct kvm *kvm;
10902 struct kvm_vcpu *vcpu;
10903 int i;
10904 int ret;
10905 u64 local_tsc;
10906 u64 max_tsc = 0;
10907 bool stable, backwards_tsc = false;
10908
10909 kvm_user_return_msr_cpu_online();
10910 ret = static_call(kvm_x86_hardware_enable)();
10911 if (ret != 0)
10912 return ret;
10913
10914 local_tsc = rdtsc();
10915 stable = !kvm_check_tsc_unstable();
10916 list_for_each_entry(kvm, &vm_list, vm_list) {
10917 kvm_for_each_vcpu(i, vcpu, kvm) {
10918 if (!stable && vcpu->cpu == smp_processor_id())
10919 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10920 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10921 backwards_tsc = true;
10922 if (vcpu->arch.last_host_tsc > max_tsc)
10923 max_tsc = vcpu->arch.last_host_tsc;
10924 }
10925 }
10926 }
10927
10928 /*
10929 * Sometimes, even reliable TSCs go backwards. This happens on
10930 * platforms that reset TSC during suspend or hibernate actions, but
10931 * maintain synchronization. We must compensate. Fortunately, we can
10932 * detect that condition here, which happens early in CPU bringup,
10933 * before any KVM threads can be running. Unfortunately, we can't
10934 * bring the TSCs fully up to date with real time, as we aren't yet far
10935 * enough into CPU bringup that we know how much real time has actually
10936 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10937 * variables that haven't been updated yet.
10938 *
10939 * So we simply find the maximum observed TSC above, then record the
10940 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10941 * the adjustment will be applied. Note that we accumulate
10942 * adjustments, in case multiple suspend cycles happen before some VCPU
10943 * gets a chance to run again. In the event that no KVM threads get a
10944 * chance to run, we will miss the entire elapsed period, as we'll have
10945 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10946 * loose cycle time. This isn't too big a deal, since the loss will be
10947 * uniform across all VCPUs (not to mention the scenario is extremely
10948 * unlikely). It is possible that a second hibernate recovery happens
10949 * much faster than a first, causing the observed TSC here to be
10950 * smaller; this would require additional padding adjustment, which is
10951 * why we set last_host_tsc to the local tsc observed here.
10952 *
10953 * N.B. - this code below runs only on platforms with reliable TSC,
10954 * as that is the only way backwards_tsc is set above. Also note
10955 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10956 * have the same delta_cyc adjustment applied if backwards_tsc
10957 * is detected. Note further, this adjustment is only done once,
10958 * as we reset last_host_tsc on all VCPUs to stop this from being
10959 * called multiple times (one for each physical CPU bringup).
10960 *
10961 * Platforms with unreliable TSCs don't have to deal with this, they
10962 * will be compensated by the logic in vcpu_load, which sets the TSC to
10963 * catchup mode. This will catchup all VCPUs to real time, but cannot
10964 * guarantee that they stay in perfect synchronization.
10965 */
10966 if (backwards_tsc) {
10967 u64 delta_cyc = max_tsc - local_tsc;
10968 list_for_each_entry(kvm, &vm_list, vm_list) {
10969 kvm->arch.backwards_tsc_observed = true;
10970 kvm_for_each_vcpu(i, vcpu, kvm) {
10971 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10972 vcpu->arch.last_host_tsc = local_tsc;
10973 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10974 }
10975
10976 /*
10977 * We have to disable TSC offset matching.. if you were
10978 * booting a VM while issuing an S4 host suspend....
10979 * you may have some problem. Solving this issue is
10980 * left as an exercise to the reader.
10981 */
10982 kvm->arch.last_tsc_nsec = 0;
10983 kvm->arch.last_tsc_write = 0;
10984 }
10985
10986 }
10987 return 0;
10988 }
10989
10990 void kvm_arch_hardware_disable(void)
10991 {
10992 static_call(kvm_x86_hardware_disable)();
10993 drop_user_return_notifiers();
10994 }
10995
10996 int kvm_arch_hardware_setup(void *opaque)
10997 {
10998 struct kvm_x86_init_ops *ops = opaque;
10999 int r;
11000
11001 rdmsrl_safe(MSR_EFER, &host_efer);
11002
11003 if (boot_cpu_has(X86_FEATURE_XSAVES))
11004 rdmsrl(MSR_IA32_XSS, host_xss);
11005
11006 r = ops->hardware_setup();
11007 if (r != 0)
11008 return r;
11009
11010 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11011 kvm_ops_static_call_update();
11012
11013 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11014 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11015 perf_register_guest_info_callbacks(&kvm_guest_cbs);
11016
11017 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11018 supported_xss = 0;
11019
11020 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11021 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11022 #undef __kvm_cpu_cap_has
11023
11024 if (kvm_has_tsc_control) {
11025 /*
11026 * Make sure the user can only configure tsc_khz values that
11027 * fit into a signed integer.
11028 * A min value is not calculated because it will always
11029 * be 1 on all machines.
11030 */
11031 u64 max = min(0x7fffffffULL,
11032 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11033 kvm_max_guest_tsc_khz = max;
11034
11035 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11036 }
11037
11038 kvm_init_msr_list();
11039 return 0;
11040 }
11041
11042 void kvm_arch_hardware_unsetup(void)
11043 {
11044 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11045 kvm_guest_cbs.handle_intel_pt_intr = NULL;
11046
11047 static_call(kvm_x86_hardware_unsetup)();
11048 }
11049
11050 int kvm_arch_check_processor_compat(void *opaque)
11051 {
11052 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11053 struct kvm_x86_init_ops *ops = opaque;
11054
11055 WARN_ON(!irqs_disabled());
11056
11057 if (__cr4_reserved_bits(cpu_has, c) !=
11058 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11059 return -EIO;
11060
11061 return ops->check_processor_compatibility();
11062 }
11063
11064 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11065 {
11066 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11067 }
11068 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11069
11070 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11071 {
11072 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11073 }
11074
11075 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11076 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11077
11078 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11079 {
11080 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11081
11082 vcpu->arch.l1tf_flush_l1d = true;
11083 if (pmu->version && unlikely(pmu->event_count)) {
11084 pmu->need_cleanup = true;
11085 kvm_make_request(KVM_REQ_PMU, vcpu);
11086 }
11087 static_call(kvm_x86_sched_in)(vcpu, cpu);
11088 }
11089
11090 void kvm_arch_free_vm(struct kvm *kvm)
11091 {
11092 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11093 vfree(kvm);
11094 }
11095
11096
11097 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11098 {
11099 int ret;
11100
11101 if (type)
11102 return -EINVAL;
11103
11104 ret = kvm_page_track_init(kvm);
11105 if (ret)
11106 return ret;
11107
11108 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11109 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11110 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11111 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11112 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11113 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11114
11115 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11116 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11117 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11118 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11119 &kvm->arch.irq_sources_bitmap);
11120
11121 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11122 mutex_init(&kvm->arch.apic_map_lock);
11123 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11124
11125 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11126 pvclock_update_vm_gtod_copy(kvm);
11127
11128 kvm->arch.guest_can_read_msr_platform_info = true;
11129
11130 #if IS_ENABLED(CONFIG_HYPERV)
11131 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11132 kvm->arch.hv_root_tdp = INVALID_PAGE;
11133 #endif
11134
11135 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11136 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11137
11138 kvm_apicv_init(kvm);
11139 kvm_hv_init_vm(kvm);
11140 kvm_mmu_init_vm(kvm);
11141 kvm_xen_init_vm(kvm);
11142
11143 return static_call(kvm_x86_vm_init)(kvm);
11144 }
11145
11146 int kvm_arch_post_init_vm(struct kvm *kvm)
11147 {
11148 return kvm_mmu_post_init_vm(kvm);
11149 }
11150
11151 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11152 {
11153 vcpu_load(vcpu);
11154 kvm_mmu_unload(vcpu);
11155 vcpu_put(vcpu);
11156 }
11157
11158 static void kvm_free_vcpus(struct kvm *kvm)
11159 {
11160 unsigned int i;
11161 struct kvm_vcpu *vcpu;
11162
11163 /*
11164 * Unpin any mmu pages first.
11165 */
11166 kvm_for_each_vcpu(i, vcpu, kvm) {
11167 kvm_clear_async_pf_completion_queue(vcpu);
11168 kvm_unload_vcpu_mmu(vcpu);
11169 }
11170 kvm_for_each_vcpu(i, vcpu, kvm)
11171 kvm_vcpu_destroy(vcpu);
11172
11173 mutex_lock(&kvm->lock);
11174 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11175 kvm->vcpus[i] = NULL;
11176
11177 atomic_set(&kvm->online_vcpus, 0);
11178 mutex_unlock(&kvm->lock);
11179 }
11180
11181 void kvm_arch_sync_events(struct kvm *kvm)
11182 {
11183 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11184 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11185 kvm_free_pit(kvm);
11186 }
11187
11188 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11189
11190 /**
11191 * __x86_set_memory_region: Setup KVM internal memory slot
11192 *
11193 * @kvm: the kvm pointer to the VM.
11194 * @id: the slot ID to setup.
11195 * @gpa: the GPA to install the slot (unused when @size == 0).
11196 * @size: the size of the slot. Set to zero to uninstall a slot.
11197 *
11198 * This function helps to setup a KVM internal memory slot. Specify
11199 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11200 * slot. The return code can be one of the following:
11201 *
11202 * HVA: on success (uninstall will return a bogus HVA)
11203 * -errno: on error
11204 *
11205 * The caller should always use IS_ERR() to check the return value
11206 * before use. Note, the KVM internal memory slots are guaranteed to
11207 * remain valid and unchanged until the VM is destroyed, i.e., the
11208 * GPA->HVA translation will not change. However, the HVA is a user
11209 * address, i.e. its accessibility is not guaranteed, and must be
11210 * accessed via __copy_{to,from}_user().
11211 */
11212 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11213 u32 size)
11214 {
11215 int i, r;
11216 unsigned long hva, old_npages;
11217 struct kvm_memslots *slots = kvm_memslots(kvm);
11218 struct kvm_memory_slot *slot;
11219
11220 /* Called with kvm->slots_lock held. */
11221 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11222 return ERR_PTR_USR(-EINVAL);
11223
11224 slot = id_to_memslot(slots, id);
11225 if (size) {
11226 if (slot && slot->npages)
11227 return ERR_PTR_USR(-EEXIST);
11228
11229 /*
11230 * MAP_SHARED to prevent internal slot pages from being moved
11231 * by fork()/COW.
11232 */
11233 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11234 MAP_SHARED | MAP_ANONYMOUS, 0);
11235 if (IS_ERR((void *)hva))
11236 return (void __user *)hva;
11237 } else {
11238 if (!slot || !slot->npages)
11239 return NULL;
11240
11241 old_npages = slot->npages;
11242 hva = slot->userspace_addr;
11243 }
11244
11245 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11246 struct kvm_userspace_memory_region m;
11247
11248 m.slot = id | (i << 16);
11249 m.flags = 0;
11250 m.guest_phys_addr = gpa;
11251 m.userspace_addr = hva;
11252 m.memory_size = size;
11253 r = __kvm_set_memory_region(kvm, &m);
11254 if (r < 0)
11255 return ERR_PTR_USR(r);
11256 }
11257
11258 if (!size)
11259 vm_munmap(hva, old_npages * PAGE_SIZE);
11260
11261 return (void __user *)hva;
11262 }
11263 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11264
11265 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11266 {
11267 kvm_mmu_pre_destroy_vm(kvm);
11268 }
11269
11270 void kvm_arch_destroy_vm(struct kvm *kvm)
11271 {
11272 if (current->mm == kvm->mm) {
11273 /*
11274 * Free memory regions allocated on behalf of userspace,
11275 * unless the the memory map has changed due to process exit
11276 * or fd copying.
11277 */
11278 mutex_lock(&kvm->slots_lock);
11279 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11280 0, 0);
11281 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11282 0, 0);
11283 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11284 mutex_unlock(&kvm->slots_lock);
11285 }
11286 static_call_cond(kvm_x86_vm_destroy)(kvm);
11287 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11288 kvm_pic_destroy(kvm);
11289 kvm_ioapic_destroy(kvm);
11290 kvm_free_vcpus(kvm);
11291 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11292 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11293 kvm_mmu_uninit_vm(kvm);
11294 kvm_page_track_cleanup(kvm);
11295 kvm_xen_destroy_vm(kvm);
11296 kvm_hv_destroy_vm(kvm);
11297 }
11298
11299 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11300 {
11301 int i;
11302
11303 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11304 kvfree(slot->arch.rmap[i]);
11305 slot->arch.rmap[i] = NULL;
11306 }
11307 }
11308
11309 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11310 {
11311 int i;
11312
11313 memslot_rmap_free(slot);
11314
11315 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11316 kvfree(slot->arch.lpage_info[i - 1]);
11317 slot->arch.lpage_info[i - 1] = NULL;
11318 }
11319
11320 kvm_page_track_free_memslot(slot);
11321 }
11322
11323 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11324 unsigned long npages)
11325 {
11326 const int sz = sizeof(*slot->arch.rmap[0]);
11327 int i;
11328
11329 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11330 int level = i + 1;
11331 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11332
11333 if (slot->arch.rmap[i])
11334 continue;
11335
11336 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11337 if (!slot->arch.rmap[i]) {
11338 memslot_rmap_free(slot);
11339 return -ENOMEM;
11340 }
11341 }
11342
11343 return 0;
11344 }
11345
11346 int alloc_all_memslots_rmaps(struct kvm *kvm)
11347 {
11348 struct kvm_memslots *slots;
11349 struct kvm_memory_slot *slot;
11350 int r, i;
11351
11352 /*
11353 * Check if memslots alreday have rmaps early before acquiring
11354 * the slots_arch_lock below.
11355 */
11356 if (kvm_memslots_have_rmaps(kvm))
11357 return 0;
11358
11359 mutex_lock(&kvm->slots_arch_lock);
11360
11361 /*
11362 * Read memslots_have_rmaps again, under the slots arch lock,
11363 * before allocating the rmaps
11364 */
11365 if (kvm_memslots_have_rmaps(kvm)) {
11366 mutex_unlock(&kvm->slots_arch_lock);
11367 return 0;
11368 }
11369
11370 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11371 slots = __kvm_memslots(kvm, i);
11372 kvm_for_each_memslot(slot, slots) {
11373 r = memslot_rmap_alloc(slot, slot->npages);
11374 if (r) {
11375 mutex_unlock(&kvm->slots_arch_lock);
11376 return r;
11377 }
11378 }
11379 }
11380
11381 /*
11382 * Ensure that memslots_have_rmaps becomes true strictly after
11383 * all the rmap pointers are set.
11384 */
11385 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11386 mutex_unlock(&kvm->slots_arch_lock);
11387 return 0;
11388 }
11389
11390 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11391 struct kvm_memory_slot *slot,
11392 unsigned long npages)
11393 {
11394 int i, r;
11395
11396 /*
11397 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11398 * old arrays will be freed by __kvm_set_memory_region() if installing
11399 * the new memslot is successful.
11400 */
11401 memset(&slot->arch, 0, sizeof(slot->arch));
11402
11403 if (kvm_memslots_have_rmaps(kvm)) {
11404 r = memslot_rmap_alloc(slot, npages);
11405 if (r)
11406 return r;
11407 }
11408
11409 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11410 struct kvm_lpage_info *linfo;
11411 unsigned long ugfn;
11412 int lpages;
11413 int level = i + 1;
11414
11415 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11416
11417 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11418 if (!linfo)
11419 goto out_free;
11420
11421 slot->arch.lpage_info[i - 1] = linfo;
11422
11423 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11424 linfo[0].disallow_lpage = 1;
11425 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11426 linfo[lpages - 1].disallow_lpage = 1;
11427 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11428 /*
11429 * If the gfn and userspace address are not aligned wrt each
11430 * other, disable large page support for this slot.
11431 */
11432 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11433 unsigned long j;
11434
11435 for (j = 0; j < lpages; ++j)
11436 linfo[j].disallow_lpage = 1;
11437 }
11438 }
11439
11440 if (kvm_page_track_create_memslot(slot, npages))
11441 goto out_free;
11442
11443 return 0;
11444
11445 out_free:
11446 memslot_rmap_free(slot);
11447
11448 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11449 kvfree(slot->arch.lpage_info[i - 1]);
11450 slot->arch.lpage_info[i - 1] = NULL;
11451 }
11452 return -ENOMEM;
11453 }
11454
11455 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11456 {
11457 struct kvm_vcpu *vcpu;
11458 int i;
11459
11460 /*
11461 * memslots->generation has been incremented.
11462 * mmio generation may have reached its maximum value.
11463 */
11464 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11465
11466 /* Force re-initialization of steal_time cache */
11467 kvm_for_each_vcpu(i, vcpu, kvm)
11468 kvm_vcpu_kick(vcpu);
11469 }
11470
11471 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11472 struct kvm_memory_slot *memslot,
11473 const struct kvm_userspace_memory_region *mem,
11474 enum kvm_mr_change change)
11475 {
11476 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11477 return kvm_alloc_memslot_metadata(kvm, memslot,
11478 mem->memory_size >> PAGE_SHIFT);
11479 return 0;
11480 }
11481
11482
11483 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11484 {
11485 struct kvm_arch *ka = &kvm->arch;
11486
11487 if (!kvm_x86_ops.cpu_dirty_log_size)
11488 return;
11489
11490 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11491 (!enable && --ka->cpu_dirty_logging_count == 0))
11492 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11493
11494 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11495 }
11496
11497 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11498 struct kvm_memory_slot *old,
11499 const struct kvm_memory_slot *new,
11500 enum kvm_mr_change change)
11501 {
11502 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11503
11504 /*
11505 * Update CPU dirty logging if dirty logging is being toggled. This
11506 * applies to all operations.
11507 */
11508 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11509 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11510
11511 /*
11512 * Nothing more to do for RO slots (which can't be dirtied and can't be
11513 * made writable) or CREATE/MOVE/DELETE of a slot.
11514 *
11515 * For a memslot with dirty logging disabled:
11516 * CREATE: No dirty mappings will already exist.
11517 * MOVE/DELETE: The old mappings will already have been cleaned up by
11518 * kvm_arch_flush_shadow_memslot()
11519 *
11520 * For a memslot with dirty logging enabled:
11521 * CREATE: No shadow pages exist, thus nothing to write-protect
11522 * and no dirty bits to clear.
11523 * MOVE/DELETE: The old mappings will already have been cleaned up by
11524 * kvm_arch_flush_shadow_memslot().
11525 */
11526 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11527 return;
11528
11529 /*
11530 * READONLY and non-flags changes were filtered out above, and the only
11531 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11532 * logging isn't being toggled on or off.
11533 */
11534 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11535 return;
11536
11537 if (!log_dirty_pages) {
11538 /*
11539 * Dirty logging tracks sptes in 4k granularity, meaning that
11540 * large sptes have to be split. If live migration succeeds,
11541 * the guest in the source machine will be destroyed and large
11542 * sptes will be created in the destination. However, if the
11543 * guest continues to run in the source machine (for example if
11544 * live migration fails), small sptes will remain around and
11545 * cause bad performance.
11546 *
11547 * Scan sptes if dirty logging has been stopped, dropping those
11548 * which can be collapsed into a single large-page spte. Later
11549 * page faults will create the large-page sptes.
11550 */
11551 kvm_mmu_zap_collapsible_sptes(kvm, new);
11552 } else {
11553 /*
11554 * Initially-all-set does not require write protecting any page,
11555 * because they're all assumed to be dirty.
11556 */
11557 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11558 return;
11559
11560 if (kvm_x86_ops.cpu_dirty_log_size) {
11561 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11562 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11563 } else {
11564 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11565 }
11566 }
11567 }
11568
11569 void kvm_arch_commit_memory_region(struct kvm *kvm,
11570 const struct kvm_userspace_memory_region *mem,
11571 struct kvm_memory_slot *old,
11572 const struct kvm_memory_slot *new,
11573 enum kvm_mr_change change)
11574 {
11575 if (!kvm->arch.n_requested_mmu_pages)
11576 kvm_mmu_change_mmu_pages(kvm,
11577 kvm_mmu_calculate_default_mmu_pages(kvm));
11578
11579 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11580
11581 /* Free the arrays associated with the old memslot. */
11582 if (change == KVM_MR_MOVE)
11583 kvm_arch_free_memslot(kvm, old);
11584 }
11585
11586 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11587 {
11588 kvm_mmu_zap_all(kvm);
11589 }
11590
11591 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11592 struct kvm_memory_slot *slot)
11593 {
11594 kvm_page_track_flush_slot(kvm, slot);
11595 }
11596
11597 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11598 {
11599 return (is_guest_mode(vcpu) &&
11600 kvm_x86_ops.guest_apic_has_interrupt &&
11601 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11602 }
11603
11604 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11605 {
11606 if (!list_empty_careful(&vcpu->async_pf.done))
11607 return true;
11608
11609 if (kvm_apic_has_events(vcpu))
11610 return true;
11611
11612 if (vcpu->arch.pv.pv_unhalted)
11613 return true;
11614
11615 if (vcpu->arch.exception.pending)
11616 return true;
11617
11618 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11619 (vcpu->arch.nmi_pending &&
11620 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11621 return true;
11622
11623 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11624 (vcpu->arch.smi_pending &&
11625 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11626 return true;
11627
11628 if (kvm_arch_interrupt_allowed(vcpu) &&
11629 (kvm_cpu_has_interrupt(vcpu) ||
11630 kvm_guest_apic_has_interrupt(vcpu)))
11631 return true;
11632
11633 if (kvm_hv_has_stimer_pending(vcpu))
11634 return true;
11635
11636 if (is_guest_mode(vcpu) &&
11637 kvm_x86_ops.nested_ops->hv_timer_pending &&
11638 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11639 return true;
11640
11641 return false;
11642 }
11643
11644 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11645 {
11646 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11647 }
11648
11649 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11650 {
11651 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11652 return true;
11653
11654 return false;
11655 }
11656
11657 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11658 {
11659 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11660 return true;
11661
11662 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11663 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11664 kvm_test_request(KVM_REQ_EVENT, vcpu))
11665 return true;
11666
11667 return kvm_arch_dy_has_pending_interrupt(vcpu);
11668 }
11669
11670 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11671 {
11672 if (vcpu->arch.guest_state_protected)
11673 return true;
11674
11675 return vcpu->arch.preempted_in_kernel;
11676 }
11677
11678 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11679 {
11680 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11681 }
11682
11683 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11684 {
11685 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11686 }
11687
11688 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11689 {
11690 /* Can't read the RIP when guest state is protected, just return 0 */
11691 if (vcpu->arch.guest_state_protected)
11692 return 0;
11693
11694 if (is_64_bit_mode(vcpu))
11695 return kvm_rip_read(vcpu);
11696 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11697 kvm_rip_read(vcpu));
11698 }
11699 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11700
11701 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11702 {
11703 return kvm_get_linear_rip(vcpu) == linear_rip;
11704 }
11705 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11706
11707 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11708 {
11709 unsigned long rflags;
11710
11711 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11712 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11713 rflags &= ~X86_EFLAGS_TF;
11714 return rflags;
11715 }
11716 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11717
11718 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11719 {
11720 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11721 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11722 rflags |= X86_EFLAGS_TF;
11723 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11724 }
11725
11726 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11727 {
11728 __kvm_set_rflags(vcpu, rflags);
11729 kvm_make_request(KVM_REQ_EVENT, vcpu);
11730 }
11731 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11732
11733 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11734 {
11735 int r;
11736
11737 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11738 work->wakeup_all)
11739 return;
11740
11741 r = kvm_mmu_reload(vcpu);
11742 if (unlikely(r))
11743 return;
11744
11745 if (!vcpu->arch.mmu->direct_map &&
11746 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11747 return;
11748
11749 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11750 }
11751
11752 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11753 {
11754 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11755
11756 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11757 }
11758
11759 static inline u32 kvm_async_pf_next_probe(u32 key)
11760 {
11761 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11762 }
11763
11764 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11765 {
11766 u32 key = kvm_async_pf_hash_fn(gfn);
11767
11768 while (vcpu->arch.apf.gfns[key] != ~0)
11769 key = kvm_async_pf_next_probe(key);
11770
11771 vcpu->arch.apf.gfns[key] = gfn;
11772 }
11773
11774 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11775 {
11776 int i;
11777 u32 key = kvm_async_pf_hash_fn(gfn);
11778
11779 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11780 (vcpu->arch.apf.gfns[key] != gfn &&
11781 vcpu->arch.apf.gfns[key] != ~0); i++)
11782 key = kvm_async_pf_next_probe(key);
11783
11784 return key;
11785 }
11786
11787 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11788 {
11789 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11790 }
11791
11792 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11793 {
11794 u32 i, j, k;
11795
11796 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11797
11798 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11799 return;
11800
11801 while (true) {
11802 vcpu->arch.apf.gfns[i] = ~0;
11803 do {
11804 j = kvm_async_pf_next_probe(j);
11805 if (vcpu->arch.apf.gfns[j] == ~0)
11806 return;
11807 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11808 /*
11809 * k lies cyclically in ]i,j]
11810 * | i.k.j |
11811 * |....j i.k.| or |.k..j i...|
11812 */
11813 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11814 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11815 i = j;
11816 }
11817 }
11818
11819 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11820 {
11821 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11822
11823 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11824 sizeof(reason));
11825 }
11826
11827 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11828 {
11829 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11830
11831 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11832 &token, offset, sizeof(token));
11833 }
11834
11835 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11836 {
11837 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11838 u32 val;
11839
11840 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11841 &val, offset, sizeof(val)))
11842 return false;
11843
11844 return !val;
11845 }
11846
11847 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11848 {
11849 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11850 return false;
11851
11852 if (!kvm_pv_async_pf_enabled(vcpu) ||
11853 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11854 return false;
11855
11856 return true;
11857 }
11858
11859 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11860 {
11861 if (unlikely(!lapic_in_kernel(vcpu) ||
11862 kvm_event_needs_reinjection(vcpu) ||
11863 vcpu->arch.exception.pending))
11864 return false;
11865
11866 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11867 return false;
11868
11869 /*
11870 * If interrupts are off we cannot even use an artificial
11871 * halt state.
11872 */
11873 return kvm_arch_interrupt_allowed(vcpu);
11874 }
11875
11876 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11877 struct kvm_async_pf *work)
11878 {
11879 struct x86_exception fault;
11880
11881 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11882 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11883
11884 if (kvm_can_deliver_async_pf(vcpu) &&
11885 !apf_put_user_notpresent(vcpu)) {
11886 fault.vector = PF_VECTOR;
11887 fault.error_code_valid = true;
11888 fault.error_code = 0;
11889 fault.nested_page_fault = false;
11890 fault.address = work->arch.token;
11891 fault.async_page_fault = true;
11892 kvm_inject_page_fault(vcpu, &fault);
11893 return true;
11894 } else {
11895 /*
11896 * It is not possible to deliver a paravirtualized asynchronous
11897 * page fault, but putting the guest in an artificial halt state
11898 * can be beneficial nevertheless: if an interrupt arrives, we
11899 * can deliver it timely and perhaps the guest will schedule
11900 * another process. When the instruction that triggered a page
11901 * fault is retried, hopefully the page will be ready in the host.
11902 */
11903 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11904 return false;
11905 }
11906 }
11907
11908 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11909 struct kvm_async_pf *work)
11910 {
11911 struct kvm_lapic_irq irq = {
11912 .delivery_mode = APIC_DM_FIXED,
11913 .vector = vcpu->arch.apf.vec
11914 };
11915
11916 if (work->wakeup_all)
11917 work->arch.token = ~0; /* broadcast wakeup */
11918 else
11919 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11920 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11921
11922 if ((work->wakeup_all || work->notpresent_injected) &&
11923 kvm_pv_async_pf_enabled(vcpu) &&
11924 !apf_put_user_ready(vcpu, work->arch.token)) {
11925 vcpu->arch.apf.pageready_pending = true;
11926 kvm_apic_set_irq(vcpu, &irq, NULL);
11927 }
11928
11929 vcpu->arch.apf.halted = false;
11930 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11931 }
11932
11933 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11934 {
11935 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11936 if (!vcpu->arch.apf.pageready_pending)
11937 kvm_vcpu_kick(vcpu);
11938 }
11939
11940 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11941 {
11942 if (!kvm_pv_async_pf_enabled(vcpu))
11943 return true;
11944 else
11945 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11946 }
11947
11948 void kvm_arch_start_assignment(struct kvm *kvm)
11949 {
11950 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11951 static_call_cond(kvm_x86_start_assignment)(kvm);
11952 }
11953 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11954
11955 void kvm_arch_end_assignment(struct kvm *kvm)
11956 {
11957 atomic_dec(&kvm->arch.assigned_device_count);
11958 }
11959 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11960
11961 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11962 {
11963 return atomic_read(&kvm->arch.assigned_device_count);
11964 }
11965 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11966
11967 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11968 {
11969 atomic_inc(&kvm->arch.noncoherent_dma_count);
11970 }
11971 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11972
11973 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11974 {
11975 atomic_dec(&kvm->arch.noncoherent_dma_count);
11976 }
11977 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11978
11979 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11980 {
11981 return atomic_read(&kvm->arch.noncoherent_dma_count);
11982 }
11983 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11984
11985 bool kvm_arch_has_irq_bypass(void)
11986 {
11987 return true;
11988 }
11989
11990 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11991 struct irq_bypass_producer *prod)
11992 {
11993 struct kvm_kernel_irqfd *irqfd =
11994 container_of(cons, struct kvm_kernel_irqfd, consumer);
11995 int ret;
11996
11997 irqfd->producer = prod;
11998 kvm_arch_start_assignment(irqfd->kvm);
11999 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12000 prod->irq, irqfd->gsi, 1);
12001
12002 if (ret)
12003 kvm_arch_end_assignment(irqfd->kvm);
12004
12005 return ret;
12006 }
12007
12008 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12009 struct irq_bypass_producer *prod)
12010 {
12011 int ret;
12012 struct kvm_kernel_irqfd *irqfd =
12013 container_of(cons, struct kvm_kernel_irqfd, consumer);
12014
12015 WARN_ON(irqfd->producer != prod);
12016 irqfd->producer = NULL;
12017
12018 /*
12019 * When producer of consumer is unregistered, we change back to
12020 * remapped mode, so we can re-use the current implementation
12021 * when the irq is masked/disabled or the consumer side (KVM
12022 * int this case doesn't want to receive the interrupts.
12023 */
12024 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12025 if (ret)
12026 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12027 " fails: %d\n", irqfd->consumer.token, ret);
12028
12029 kvm_arch_end_assignment(irqfd->kvm);
12030 }
12031
12032 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12033 uint32_t guest_irq, bool set)
12034 {
12035 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12036 }
12037
12038 bool kvm_vector_hashing_enabled(void)
12039 {
12040 return vector_hashing;
12041 }
12042
12043 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12044 {
12045 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12046 }
12047 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12048
12049
12050 int kvm_spec_ctrl_test_value(u64 value)
12051 {
12052 /*
12053 * test that setting IA32_SPEC_CTRL to given value
12054 * is allowed by the host processor
12055 */
12056
12057 u64 saved_value;
12058 unsigned long flags;
12059 int ret = 0;
12060
12061 local_irq_save(flags);
12062
12063 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12064 ret = 1;
12065 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12066 ret = 1;
12067 else
12068 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12069
12070 local_irq_restore(flags);
12071
12072 return ret;
12073 }
12074 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12075
12076 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12077 {
12078 struct x86_exception fault;
12079 u32 access = error_code &
12080 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12081
12082 if (!(error_code & PFERR_PRESENT_MASK) ||
12083 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12084 /*
12085 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12086 * tables probably do not match the TLB. Just proceed
12087 * with the error code that the processor gave.
12088 */
12089 fault.vector = PF_VECTOR;
12090 fault.error_code_valid = true;
12091 fault.error_code = error_code;
12092 fault.nested_page_fault = false;
12093 fault.address = gva;
12094 }
12095 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12096 }
12097 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12098
12099 /*
12100 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12101 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12102 * indicates whether exit to userspace is needed.
12103 */
12104 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12105 struct x86_exception *e)
12106 {
12107 if (r == X86EMUL_PROPAGATE_FAULT) {
12108 kvm_inject_emulated_page_fault(vcpu, e);
12109 return 1;
12110 }
12111
12112 /*
12113 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12114 * while handling a VMX instruction KVM could've handled the request
12115 * correctly by exiting to userspace and performing I/O but there
12116 * doesn't seem to be a real use-case behind such requests, just return
12117 * KVM_EXIT_INTERNAL_ERROR for now.
12118 */
12119 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12120 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12121 vcpu->run->internal.ndata = 0;
12122
12123 return 0;
12124 }
12125 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12126
12127 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12128 {
12129 bool pcid_enabled;
12130 struct x86_exception e;
12131 struct {
12132 u64 pcid;
12133 u64 gla;
12134 } operand;
12135 int r;
12136
12137 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12138 if (r != X86EMUL_CONTINUE)
12139 return kvm_handle_memory_failure(vcpu, r, &e);
12140
12141 if (operand.pcid >> 12 != 0) {
12142 kvm_inject_gp(vcpu, 0);
12143 return 1;
12144 }
12145
12146 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12147
12148 switch (type) {
12149 case INVPCID_TYPE_INDIV_ADDR:
12150 if ((!pcid_enabled && (operand.pcid != 0)) ||
12151 is_noncanonical_address(operand.gla, vcpu)) {
12152 kvm_inject_gp(vcpu, 0);
12153 return 1;
12154 }
12155 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12156 return kvm_skip_emulated_instruction(vcpu);
12157
12158 case INVPCID_TYPE_SINGLE_CTXT:
12159 if (!pcid_enabled && (operand.pcid != 0)) {
12160 kvm_inject_gp(vcpu, 0);
12161 return 1;
12162 }
12163
12164 kvm_invalidate_pcid(vcpu, operand.pcid);
12165 return kvm_skip_emulated_instruction(vcpu);
12166
12167 case INVPCID_TYPE_ALL_NON_GLOBAL:
12168 /*
12169 * Currently, KVM doesn't mark global entries in the shadow
12170 * page tables, so a non-global flush just degenerates to a
12171 * global flush. If needed, we could optimize this later by
12172 * keeping track of global entries in shadow page tables.
12173 */
12174
12175 fallthrough;
12176 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12178 return kvm_skip_emulated_instruction(vcpu);
12179
12180 default:
12181 BUG(); /* We have already checked above that type <= 3 */
12182 }
12183 }
12184 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12185
12186 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12187 {
12188 struct kvm_run *run = vcpu->run;
12189 struct kvm_mmio_fragment *frag;
12190 unsigned int len;
12191
12192 BUG_ON(!vcpu->mmio_needed);
12193
12194 /* Complete previous fragment */
12195 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12196 len = min(8u, frag->len);
12197 if (!vcpu->mmio_is_write)
12198 memcpy(frag->data, run->mmio.data, len);
12199
12200 if (frag->len <= 8) {
12201 /* Switch to the next fragment. */
12202 frag++;
12203 vcpu->mmio_cur_fragment++;
12204 } else {
12205 /* Go forward to the next mmio piece. */
12206 frag->data += len;
12207 frag->gpa += len;
12208 frag->len -= len;
12209 }
12210
12211 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12212 vcpu->mmio_needed = 0;
12213
12214 // VMG change, at this point, we're always done
12215 // RIP has already been advanced
12216 return 1;
12217 }
12218
12219 // More MMIO is needed
12220 run->mmio.phys_addr = frag->gpa;
12221 run->mmio.len = min(8u, frag->len);
12222 run->mmio.is_write = vcpu->mmio_is_write;
12223 if (run->mmio.is_write)
12224 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12225 run->exit_reason = KVM_EXIT_MMIO;
12226
12227 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12228
12229 return 0;
12230 }
12231
12232 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12233 void *data)
12234 {
12235 int handled;
12236 struct kvm_mmio_fragment *frag;
12237
12238 if (!data)
12239 return -EINVAL;
12240
12241 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12242 if (handled == bytes)
12243 return 1;
12244
12245 bytes -= handled;
12246 gpa += handled;
12247 data += handled;
12248
12249 /*TODO: Check if need to increment number of frags */
12250 frag = vcpu->mmio_fragments;
12251 vcpu->mmio_nr_fragments = 1;
12252 frag->len = bytes;
12253 frag->gpa = gpa;
12254 frag->data = data;
12255
12256 vcpu->mmio_needed = 1;
12257 vcpu->mmio_cur_fragment = 0;
12258
12259 vcpu->run->mmio.phys_addr = gpa;
12260 vcpu->run->mmio.len = min(8u, frag->len);
12261 vcpu->run->mmio.is_write = 1;
12262 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12263 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12264
12265 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12266
12267 return 0;
12268 }
12269 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12270
12271 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12272 void *data)
12273 {
12274 int handled;
12275 struct kvm_mmio_fragment *frag;
12276
12277 if (!data)
12278 return -EINVAL;
12279
12280 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12281 if (handled == bytes)
12282 return 1;
12283
12284 bytes -= handled;
12285 gpa += handled;
12286 data += handled;
12287
12288 /*TODO: Check if need to increment number of frags */
12289 frag = vcpu->mmio_fragments;
12290 vcpu->mmio_nr_fragments = 1;
12291 frag->len = bytes;
12292 frag->gpa = gpa;
12293 frag->data = data;
12294
12295 vcpu->mmio_needed = 1;
12296 vcpu->mmio_cur_fragment = 0;
12297
12298 vcpu->run->mmio.phys_addr = gpa;
12299 vcpu->run->mmio.len = min(8u, frag->len);
12300 vcpu->run->mmio.is_write = 0;
12301 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12302
12303 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12304
12305 return 0;
12306 }
12307 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12308
12309 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12310 unsigned int port);
12311
12312 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12313 {
12314 int size = vcpu->arch.pio.size;
12315 int port = vcpu->arch.pio.port;
12316
12317 vcpu->arch.pio.count = 0;
12318 if (vcpu->arch.sev_pio_count)
12319 return kvm_sev_es_outs(vcpu, size, port);
12320 return 1;
12321 }
12322
12323 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12324 unsigned int port)
12325 {
12326 for (;;) {
12327 unsigned int count =
12328 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12329 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12330
12331 /* memcpy done already by emulator_pio_out. */
12332 vcpu->arch.sev_pio_count -= count;
12333 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12334 if (!ret)
12335 break;
12336
12337 /* Emulation done by the kernel. */
12338 if (!vcpu->arch.sev_pio_count)
12339 return 1;
12340 }
12341
12342 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12343 return 0;
12344 }
12345
12346 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12347 unsigned int port);
12348
12349 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12350 {
12351 unsigned count = vcpu->arch.pio.count;
12352 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12353 vcpu->arch.sev_pio_count -= count;
12354 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12355 }
12356
12357 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12358 {
12359 int size = vcpu->arch.pio.size;
12360 int port = vcpu->arch.pio.port;
12361
12362 advance_sev_es_emulated_ins(vcpu);
12363 if (vcpu->arch.sev_pio_count)
12364 return kvm_sev_es_ins(vcpu, size, port);
12365 return 1;
12366 }
12367
12368 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12369 unsigned int port)
12370 {
12371 for (;;) {
12372 unsigned int count =
12373 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12374 if (!__emulator_pio_in(vcpu, size, port, count))
12375 break;
12376
12377 /* Emulation done by the kernel. */
12378 advance_sev_es_emulated_ins(vcpu);
12379 if (!vcpu->arch.sev_pio_count)
12380 return 1;
12381 }
12382
12383 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12384 return 0;
12385 }
12386
12387 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12388 unsigned int port, void *data, unsigned int count,
12389 int in)
12390 {
12391 vcpu->arch.sev_pio_data = data;
12392 vcpu->arch.sev_pio_count = count;
12393 return in ? kvm_sev_es_ins(vcpu, size, port)
12394 : kvm_sev_es_outs(vcpu, size, port);
12395 }
12396 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12397
12398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);