]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: split the two parts of emulator_pio_in
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * If neither the current CR3 nor any of the prev_roots use the given
1096 * PCID, then nothing needs to be done here because a resync will
1097 * happen anyway before switching to any other CR3.
1098 */
1099 if (kvm_get_active_pcid(vcpu) == pcid) {
1100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 }
1103
1104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 bool skip_tlb_flush = false;
1114 unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118 if (pcid_enabled) {
1119 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 pcid = cr3 & X86_CR3_PCID_MASK;
1122 }
1123 #endif
1124
1125 /* PDPTRs are always reloaded for PAE paging. */
1126 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 goto handle_tlb_flush;
1128
1129 /*
1130 * Do not condition the GPA check on long mode, this helper is used to
1131 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 * the current vCPU mode is accurate.
1133 */
1134 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 return 1;
1136
1137 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 return 1;
1139
1140 if (cr3 != kvm_read_cr3(vcpu))
1141 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143 vcpu->arch.cr3 = cr3;
1144 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147 /*
1148 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1150 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 * i.e. only PCID=0 can be relevant.
1153 */
1154 if (!skip_tlb_flush)
1155 kvm_invalidate_pcid(vcpu, pcid);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 if (cr8 & CR8_RESERVED_BITS)
1164 return 1;
1165 if (lapic_in_kernel(vcpu))
1166 kvm_lapic_set_tpr(vcpu, cr8);
1167 else
1168 vcpu->arch.cr8 = cr8;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 if (lapic_in_kernel(vcpu))
1176 return kvm_lapic_get_cr8(vcpu);
1177 else
1178 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 int i;
1185
1186 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 unsigned long dr7;
1195
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 dr7 = vcpu->arch.guest_debug_dr7;
1198 else
1199 dr7 = vcpu->arch.dr7;
1200 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 if (dr7 & DR7_BP_EN_MASK)
1203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 u64 fixed = DR6_FIXED_1;
1210
1211 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 fixed |= DR6_RTM;
1213
1214 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 fixed |= DR6_BUS_LOCK;
1216 return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223 switch (dr) {
1224 case 0 ... 3:
1225 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 vcpu->arch.eff_db[dr] = val;
1228 break;
1229 case 4:
1230 case 6:
1231 if (!kvm_dr6_valid(val))
1232 return 1; /* #GP */
1233 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 break;
1235 case 5:
1236 default: /* 7 */
1237 if (!kvm_dr7_valid(val))
1238 return 1; /* #GP */
1239 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 kvm_update_dr7(vcpu);
1241 break;
1242 }
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 break;
1256 case 4:
1257 case 6:
1258 *val = vcpu->arch.dr6;
1259 break;
1260 case 5:
1261 default: /* 7 */
1262 *val = vcpu->arch.dr7;
1263 break;
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 u32 ecx = kvm_rcx_read(vcpu);
1271 u64 data;
1272
1273 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 kvm_inject_gp(vcpu, 0);
1275 return 1;
1276 }
1277
1278 kvm_rax_write(vcpu, (u32)data);
1279 kvm_rdx_write(vcpu, data >> 32);
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296 static const u32 msrs_to_save_all[] = {
1297 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 MSR_IA32_SPEC_CTRL,
1305 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 MSR_IA32_UMWAIT_CONTROL,
1312
1313 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342 };
1343
1344 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345 static unsigned num_msrs_to_save;
1346
1347 static const u32 emulated_msrs_all[] = {
1348 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355 HV_X64_MSR_RESET,
1356 HV_X64_MSR_VP_INDEX,
1357 HV_X64_MSR_VP_RUNTIME,
1358 HV_X64_MSR_SCONTROL,
1359 HV_X64_MSR_STIMER0_CONFIG,
1360 HV_X64_MSR_VP_ASSIST_PAGE,
1361 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362 HV_X64_MSR_TSC_EMULATION_STATUS,
1363 HV_X64_MSR_SYNDBG_OPTIONS,
1364 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371 MSR_IA32_TSC_ADJUST,
1372 MSR_IA32_TSC_DEADLINE,
1373 MSR_IA32_ARCH_CAPABILITIES,
1374 MSR_IA32_PERF_CAPABILITIES,
1375 MSR_IA32_MISC_ENABLE,
1376 MSR_IA32_MCG_STATUS,
1377 MSR_IA32_MCG_CTL,
1378 MSR_IA32_MCG_EXT_CTL,
1379 MSR_IA32_SMBASE,
1380 MSR_SMI_COUNT,
1381 MSR_PLATFORM_INFO,
1382 MSR_MISC_FEATURES_ENABLES,
1383 MSR_AMD64_VIRT_SPEC_CTRL,
1384 MSR_IA32_POWER_CTL,
1385 MSR_IA32_UCODE_REV,
1386
1387 /*
1388 * The following list leaves out MSRs whose values are determined
1389 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390 * We always support the "true" VMX control MSRs, even if the host
1391 * processor does not, so I am putting these registers here rather
1392 * than in msrs_to_save_all.
1393 */
1394 MSR_IA32_VMX_BASIC,
1395 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399 MSR_IA32_VMX_MISC,
1400 MSR_IA32_VMX_CR0_FIXED0,
1401 MSR_IA32_VMX_CR4_FIXED0,
1402 MSR_IA32_VMX_VMCS_ENUM,
1403 MSR_IA32_VMX_PROCBASED_CTLS2,
1404 MSR_IA32_VMX_EPT_VPID_CAP,
1405 MSR_IA32_VMX_VMFUNC,
1406
1407 MSR_K7_HWCR,
1408 MSR_KVM_POLL_CONTROL,
1409 };
1410
1411 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412 static unsigned num_emulated_msrs;
1413
1414 /*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418 static const u32 msr_based_features_all[] = {
1419 MSR_IA32_VMX_BASIC,
1420 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421 MSR_IA32_VMX_PINBASED_CTLS,
1422 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423 MSR_IA32_VMX_PROCBASED_CTLS,
1424 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425 MSR_IA32_VMX_EXIT_CTLS,
1426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427 MSR_IA32_VMX_ENTRY_CTLS,
1428 MSR_IA32_VMX_MISC,
1429 MSR_IA32_VMX_CR0_FIXED0,
1430 MSR_IA32_VMX_CR0_FIXED1,
1431 MSR_IA32_VMX_CR4_FIXED0,
1432 MSR_IA32_VMX_CR4_FIXED1,
1433 MSR_IA32_VMX_VMCS_ENUM,
1434 MSR_IA32_VMX_PROCBASED_CTLS2,
1435 MSR_IA32_VMX_EPT_VPID_CAP,
1436 MSR_IA32_VMX_VMFUNC,
1437
1438 MSR_F10H_DECFG,
1439 MSR_IA32_UCODE_REV,
1440 MSR_IA32_ARCH_CAPABILITIES,
1441 MSR_IA32_PERF_CAPABILITIES,
1442 };
1443
1444 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445 static unsigned int num_msr_based_features;
1446
1447 static u64 kvm_get_arch_capabilities(void)
1448 {
1449 u64 data = 0;
1450
1451 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454 /*
1455 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456 * the nested hypervisor runs with NX huge pages. If it is not,
1457 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458 * L1 guests, so it need not worry about its own (L2) guests.
1459 */
1460 data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462 /*
1463 * If we're doing cache flushes (either "always" or "cond")
1464 * we will do one whenever the guest does a vmlaunch/vmresume.
1465 * If an outer hypervisor is doing the cache flush for us
1466 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467 * capability to the guest too, and if EPT is disabled we're not
1468 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1469 * require a nested hypervisor to do a flush of its own.
1470 */
1471 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475 data |= ARCH_CAP_RDCL_NO;
1476 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477 data |= ARCH_CAP_SSB_NO;
1478 if (!boot_cpu_has_bug(X86_BUG_MDS))
1479 data |= ARCH_CAP_MDS_NO;
1480
1481 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482 /*
1483 * If RTM=0 because the kernel has disabled TSX, the host might
1484 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1485 * and therefore knows that there cannot be TAA) but keep
1486 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487 * and we want to allow migrating those guests to tsx=off hosts.
1488 */
1489 data &= ~ARCH_CAP_TAA_NO;
1490 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491 data |= ARCH_CAP_TAA_NO;
1492 } else {
1493 /*
1494 * Nothing to do here; we emulate TSX_CTRL if present on the
1495 * host so the guest can choose between disabling TSX or
1496 * using VERW to clear CPU buffers.
1497 */
1498 }
1499
1500 return data;
1501 }
1502
1503 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504 {
1505 switch (msr->index) {
1506 case MSR_IA32_ARCH_CAPABILITIES:
1507 msr->data = kvm_get_arch_capabilities();
1508 break;
1509 case MSR_IA32_UCODE_REV:
1510 rdmsrl_safe(msr->index, &msr->data);
1511 break;
1512 default:
1513 return static_call(kvm_x86_get_msr_feature)(msr);
1514 }
1515 return 0;
1516 }
1517
1518 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520 struct kvm_msr_entry msr;
1521 int r;
1522
1523 msr.index = index;
1524 r = kvm_get_msr_feature(&msr);
1525
1526 if (r == KVM_MSR_RET_INVALID) {
1527 /* Unconditionally clear the output for simplicity */
1528 *data = 0;
1529 if (kvm_msr_ignored_check(index, 0, false))
1530 r = 0;
1531 }
1532
1533 if (r)
1534 return r;
1535
1536 *data = msr.data;
1537
1538 return 0;
1539 }
1540
1541 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542 {
1543 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544 return false;
1545
1546 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547 return false;
1548
1549 if (efer & (EFER_LME | EFER_LMA) &&
1550 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551 return false;
1552
1553 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554 return false;
1555
1556 return true;
1557
1558 }
1559 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560 {
1561 if (efer & efer_reserved_bits)
1562 return false;
1563
1564 return __kvm_valid_efer(vcpu, efer);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569 {
1570 u64 old_efer = vcpu->arch.efer;
1571 u64 efer = msr_info->data;
1572 int r;
1573
1574 if (efer & efer_reserved_bits)
1575 return 1;
1576
1577 if (!msr_info->host_initiated) {
1578 if (!__kvm_valid_efer(vcpu, efer))
1579 return 1;
1580
1581 if (is_paging(vcpu) &&
1582 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583 return 1;
1584 }
1585
1586 efer &= ~EFER_LMA;
1587 efer |= vcpu->arch.efer & EFER_LMA;
1588
1589 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590 if (r) {
1591 WARN_ON(r > 0);
1592 return r;
1593 }
1594
1595 /* Update reserved bits */
1596 if ((efer ^ old_efer) & EFER_NX)
1597 kvm_mmu_reset_context(vcpu);
1598
1599 return 0;
1600 }
1601
1602 void kvm_enable_efer_bits(u64 mask)
1603 {
1604 efer_reserved_bits &= ~mask;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609 {
1610 struct kvm_x86_msr_filter *msr_filter;
1611 struct msr_bitmap_range *ranges;
1612 struct kvm *kvm = vcpu->kvm;
1613 bool allowed;
1614 int idx;
1615 u32 i;
1616
1617 /* x2APIC MSRs do not support filtering. */
1618 if (index >= 0x800 && index <= 0x8ff)
1619 return true;
1620
1621 idx = srcu_read_lock(&kvm->srcu);
1622
1623 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624 if (!msr_filter) {
1625 allowed = true;
1626 goto out;
1627 }
1628
1629 allowed = msr_filter->default_allow;
1630 ranges = msr_filter->ranges;
1631
1632 for (i = 0; i < msr_filter->count; i++) {
1633 u32 start = ranges[i].base;
1634 u32 end = start + ranges[i].nmsrs;
1635 u32 flags = ranges[i].flags;
1636 unsigned long *bitmap = ranges[i].bitmap;
1637
1638 if ((index >= start) && (index < end) && (flags & type)) {
1639 allowed = !!test_bit(index - start, bitmap);
1640 break;
1641 }
1642 }
1643
1644 out:
1645 srcu_read_unlock(&kvm->srcu, idx);
1646
1647 return allowed;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651 /*
1652 * Write @data into the MSR specified by @index. Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658 bool host_initiated)
1659 {
1660 struct msr_data msr;
1661
1662 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663 return KVM_MSR_RET_FILTERED;
1664
1665 switch (index) {
1666 case MSR_FS_BASE:
1667 case MSR_GS_BASE:
1668 case MSR_KERNEL_GS_BASE:
1669 case MSR_CSTAR:
1670 case MSR_LSTAR:
1671 if (is_noncanonical_address(data, vcpu))
1672 return 1;
1673 break;
1674 case MSR_IA32_SYSENTER_EIP:
1675 case MSR_IA32_SYSENTER_ESP:
1676 /*
1677 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678 * non-canonical address is written on Intel but not on
1679 * AMD (which ignores the top 32-bits, because it does
1680 * not implement 64-bit SYSENTER).
1681 *
1682 * 64-bit code should hence be able to write a non-canonical
1683 * value on AMD. Making the address canonical ensures that
1684 * vmentry does not fail on Intel after writing a non-canonical
1685 * value, and that something deterministic happens if the guest
1686 * invokes 64-bit SYSENTER.
1687 */
1688 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689 break;
1690 case MSR_TSC_AUX:
1691 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692 return 1;
1693
1694 if (!host_initiated &&
1695 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697 return 1;
1698
1699 /*
1700 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701 * incomplete and conflicting architectural behavior. Current
1702 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703 * reserved and always read as zeros. Enforce Intel's reserved
1704 * bits check if and only if the guest CPU is Intel, and clear
1705 * the bits in all other cases. This ensures cross-vendor
1706 * migration will provide consistent behavior for the guest.
1707 */
1708 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709 return 1;
1710
1711 data = (u32)data;
1712 break;
1713 }
1714
1715 msr.data = data;
1716 msr.index = index;
1717 msr.host_initiated = host_initiated;
1718
1719 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720 }
1721
1722 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723 u32 index, u64 data, bool host_initiated)
1724 {
1725 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727 if (ret == KVM_MSR_RET_INVALID)
1728 if (kvm_msr_ignored_check(index, data, true))
1729 ret = 0;
1730
1731 return ret;
1732 }
1733
1734 /*
1735 * Read the MSR specified by @index into @data. Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741 bool host_initiated)
1742 {
1743 struct msr_data msr;
1744 int ret;
1745
1746 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747 return KVM_MSR_RET_FILTERED;
1748
1749 switch (index) {
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758 break;
1759 }
1760
1761 msr.index = index;
1762 msr.host_initiated = host_initiated;
1763
1764 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765 if (!ret)
1766 *data = msr.data;
1767 return ret;
1768 }
1769
1770 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771 u32 index, u64 *data, bool host_initiated)
1772 {
1773 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775 if (ret == KVM_MSR_RET_INVALID) {
1776 /* Unconditionally clear *data for simplicity */
1777 *data = 0;
1778 if (kvm_msr_ignored_check(index, 0, false))
1779 ret = 0;
1780 }
1781
1782 return ret;
1783 }
1784
1785 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786 {
1787 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792 {
1793 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798 {
1799 int err = vcpu->run->msr.error;
1800 if (!err) {
1801 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803 }
1804
1805 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806 }
1807
1808 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811 }
1812
1813 static u64 kvm_msr_reason(int r)
1814 {
1815 switch (r) {
1816 case KVM_MSR_RET_INVALID:
1817 return KVM_MSR_EXIT_REASON_UNKNOWN;
1818 case KVM_MSR_RET_FILTERED:
1819 return KVM_MSR_EXIT_REASON_FILTER;
1820 default:
1821 return KVM_MSR_EXIT_REASON_INVAL;
1822 }
1823 }
1824
1825 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826 u32 exit_reason, u64 data,
1827 int (*completion)(struct kvm_vcpu *vcpu),
1828 int r)
1829 {
1830 u64 msr_reason = kvm_msr_reason(r);
1831
1832 /* Check if the user wanted to know about this MSR fault */
1833 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834 return 0;
1835
1836 vcpu->run->exit_reason = exit_reason;
1837 vcpu->run->msr.error = 0;
1838 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839 vcpu->run->msr.reason = msr_reason;
1840 vcpu->run->msr.index = index;
1841 vcpu->run->msr.data = data;
1842 vcpu->arch.complete_userspace_io = completion;
1843
1844 return 1;
1845 }
1846
1847 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848 {
1849 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850 complete_emulated_rdmsr, r);
1851 }
1852
1853 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854 {
1855 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856 complete_emulated_wrmsr, r);
1857 }
1858
1859 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860 {
1861 u32 ecx = kvm_rcx_read(vcpu);
1862 u64 data;
1863 int r;
1864
1865 r = kvm_get_msr(vcpu, ecx, &data);
1866
1867 /* MSR read failed? See if we should ask user space */
1868 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869 /* Bounce to user space */
1870 return 0;
1871 }
1872
1873 if (!r) {
1874 trace_kvm_msr_read(ecx, data);
1875
1876 kvm_rax_write(vcpu, data & -1u);
1877 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878 } else {
1879 trace_kvm_msr_read_ex(ecx);
1880 }
1881
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887 {
1888 u32 ecx = kvm_rcx_read(vcpu);
1889 u64 data = kvm_read_edx_eax(vcpu);
1890 int r;
1891
1892 r = kvm_set_msr(vcpu, ecx, data);
1893
1894 /* MSR write failed? See if we should ask user space */
1895 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896 /* Bounce to user space */
1897 return 0;
1898
1899 /* Signal all other negative errors to userspace */
1900 if (r < 0)
1901 return r;
1902
1903 if (!r)
1904 trace_kvm_msr_write(ecx, data);
1905 else
1906 trace_kvm_msr_write_ex(ecx, data);
1907
1908 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913 {
1914 return kvm_skip_emulated_instruction(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919 {
1920 /* Treat an INVD instruction as a NOP and just skip it. */
1921 return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926 {
1927 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928 return kvm_emulate_as_nop(vcpu);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933 {
1934 kvm_queue_exception(vcpu, UD_VECTOR);
1935 return 1;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940 {
1941 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942 return kvm_emulate_as_nop(vcpu);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947 {
1948 xfer_to_guest_mode_prepare();
1949 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950 xfer_to_guest_mode_work_pending();
1951 }
1952
1953 /*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961 {
1962 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963 return 1;
1964
1965 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970 data &= ~(1 << 12);
1971 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974 trace_kvm_apic_write(APIC_ICR, (u32)data);
1975 return 0;
1976 }
1977
1978 return 1;
1979 }
1980
1981 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982 {
1983 if (!kvm_can_use_hv_timer(vcpu))
1984 return 1;
1985
1986 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987 return 0;
1988 }
1989
1990 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991 {
1992 u32 msr = kvm_rcx_read(vcpu);
1993 u64 data;
1994 fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996 switch (msr) {
1997 case APIC_BASE_MSR + (APIC_ICR >> 4):
1998 data = kvm_read_edx_eax(vcpu);
1999 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000 kvm_skip_emulated_instruction(vcpu);
2001 ret = EXIT_FASTPATH_EXIT_HANDLED;
2002 }
2003 break;
2004 case MSR_IA32_TSC_DEADLINE:
2005 data = kvm_read_edx_eax(vcpu);
2006 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007 kvm_skip_emulated_instruction(vcpu);
2008 ret = EXIT_FASTPATH_REENTER_GUEST;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (ret != EXIT_FASTPATH_NONE)
2016 trace_kvm_msr_write(msr, data);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022 /*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026 {
2027 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028 }
2029
2030 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031 {
2032 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033 }
2034
2035 #ifdef CONFIG_X86_64
2036 struct pvclock_clock {
2037 int vclock_mode;
2038 u64 cycle_last;
2039 u64 mask;
2040 u32 mult;
2041 u32 shift;
2042 u64 base_cycles;
2043 u64 offset;
2044 };
2045
2046 struct pvclock_gtod_data {
2047 seqcount_t seq;
2048
2049 struct pvclock_clock clock; /* extract of a clocksource struct */
2050 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052 ktime_t offs_boot;
2053 u64 wall_time_sec;
2054 };
2055
2056 static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058 static void update_pvclock_gtod(struct timekeeper *tk)
2059 {
2060 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062 write_seqcount_begin(&vdata->seq);
2063
2064 /* copy pvclock gtod data */
2065 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2066 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2067 vdata->clock.mask = tk->tkr_mono.mask;
2068 vdata->clock.mult = tk->tkr_mono.mult;
2069 vdata->clock.shift = tk->tkr_mono.shift;
2070 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2071 vdata->clock.offset = tk->tkr_mono.base;
2072
2073 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2074 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2075 vdata->raw_clock.mask = tk->tkr_raw.mask;
2076 vdata->raw_clock.mult = tk->tkr_raw.mult;
2077 vdata->raw_clock.shift = tk->tkr_raw.shift;
2078 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2079 vdata->raw_clock.offset = tk->tkr_raw.base;
2080
2081 vdata->wall_time_sec = tk->xtime_sec;
2082
2083 vdata->offs_boot = tk->offs_boot;
2084
2085 write_seqcount_end(&vdata->seq);
2086 }
2087
2088 static s64 get_kvmclock_base_ns(void)
2089 {
2090 /* Count up from boot time, but with the frequency of the raw clock. */
2091 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092 }
2093 #else
2094 static s64 get_kvmclock_base_ns(void)
2095 {
2096 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2097 return ktime_get_boottime_ns();
2098 }
2099 #endif
2100
2101 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102 {
2103 int version;
2104 int r;
2105 struct pvclock_wall_clock wc;
2106 u32 wc_sec_hi;
2107 u64 wall_nsec;
2108
2109 if (!wall_clock)
2110 return;
2111
2112 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113 if (r)
2114 return;
2115
2116 if (version & 1)
2117 ++version; /* first time write, random junk */
2118
2119 ++version;
2120
2121 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122 return;
2123
2124 /*
2125 * The guest calculates current wall clock time by adding
2126 * system time (updated by kvm_guest_time_update below) to the
2127 * wall clock specified here. We do the reverse here.
2128 */
2129 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131 wc.nsec = do_div(wall_nsec, 1000000000);
2132 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133 wc.version = version;
2134
2135 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137 if (sec_hi_ofs) {
2138 wc_sec_hi = wall_nsec >> 32;
2139 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140 &wc_sec_hi, sizeof(wc_sec_hi));
2141 }
2142
2143 version++;
2144 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145 }
2146
2147 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148 bool old_msr, bool host_initiated)
2149 {
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152 if (vcpu->vcpu_id == 0 && !host_initiated) {
2153 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157 }
2158
2159 vcpu->arch.time = system_time;
2160 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162 /* we verify if the enable bit is set... */
2163 vcpu->arch.pv_time_enabled = false;
2164 if (!(system_time & 1))
2165 return;
2166
2167 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168 &vcpu->arch.pv_time, system_time & ~1ULL,
2169 sizeof(struct pvclock_vcpu_time_info)))
2170 vcpu->arch.pv_time_enabled = true;
2171
2172 return;
2173 }
2174
2175 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176 {
2177 do_shl32_div32(dividend, divisor);
2178 return dividend;
2179 }
2180
2181 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182 s8 *pshift, u32 *pmultiplier)
2183 {
2184 uint64_t scaled64;
2185 int32_t shift = 0;
2186 uint64_t tps64;
2187 uint32_t tps32;
2188
2189 tps64 = base_hz;
2190 scaled64 = scaled_hz;
2191 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192 tps64 >>= 1;
2193 shift--;
2194 }
2195
2196 tps32 = (uint32_t)tps64;
2197 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199 scaled64 >>= 1;
2200 else
2201 tps32 <<= 1;
2202 shift++;
2203 }
2204
2205 *pshift = shift;
2206 *pmultiplier = div_frac(scaled64, tps32);
2207 }
2208
2209 #ifdef CONFIG_X86_64
2210 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211 #endif
2212
2213 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214 static unsigned long max_tsc_khz;
2215
2216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217 {
2218 u64 v = (u64)khz * (1000000 + ppm);
2219 do_div(v, 1000000);
2220 return v;
2221 }
2222
2223 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226 {
2227 u64 ratio;
2228
2229 /* Guest TSC same frequency as host TSC? */
2230 if (!scale) {
2231 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232 return 0;
2233 }
2234
2235 /* TSC scaling supported? */
2236 if (!kvm_has_tsc_control) {
2237 if (user_tsc_khz > tsc_khz) {
2238 vcpu->arch.tsc_catchup = 1;
2239 vcpu->arch.tsc_always_catchup = 1;
2240 return 0;
2241 } else {
2242 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243 return -1;
2244 }
2245 }
2246
2247 /* TSC scaling required - calculate ratio */
2248 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249 user_tsc_khz, tsc_khz);
2250
2251 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253 user_tsc_khz);
2254 return -1;
2255 }
2256
2257 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258 return 0;
2259 }
2260
2261 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262 {
2263 u32 thresh_lo, thresh_hi;
2264 int use_scaling = 0;
2265
2266 /* tsc_khz can be zero if TSC calibration fails */
2267 if (user_tsc_khz == 0) {
2268 /* set tsc_scaling_ratio to a safe value */
2269 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270 return -1;
2271 }
2272
2273 /* Compute a scale to convert nanoseconds in TSC cycles */
2274 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275 &vcpu->arch.virtual_tsc_shift,
2276 &vcpu->arch.virtual_tsc_mult);
2277 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279 /*
2280 * Compute the variation in TSC rate which is acceptable
2281 * within the range of tolerance and decide if the
2282 * rate being applied is within that bounds of the hardware
2283 * rate. If so, no scaling or compensation need be done.
2284 */
2285 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289 use_scaling = 1;
2290 }
2291 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292 }
2293
2294 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295 {
2296 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297 vcpu->arch.virtual_tsc_mult,
2298 vcpu->arch.virtual_tsc_shift);
2299 tsc += vcpu->arch.this_tsc_write;
2300 return tsc;
2301 }
2302
2303 static inline int gtod_is_based_on_tsc(int mode)
2304 {
2305 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306 }
2307
2308 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309 {
2310 #ifdef CONFIG_X86_64
2311 bool vcpus_matched;
2312 struct kvm_arch *ka = &vcpu->kvm->arch;
2313 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316 atomic_read(&vcpu->kvm->online_vcpus));
2317
2318 /*
2319 * Once the masterclock is enabled, always perform request in
2320 * order to update it.
2321 *
2322 * In order to enable masterclock, the host clocksource must be TSC
2323 * and the vcpus need to have matched TSCs. When that happens,
2324 * perform request to enable masterclock.
2325 */
2326 if (ka->use_master_clock ||
2327 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331 atomic_read(&vcpu->kvm->online_vcpus),
2332 ka->use_master_clock, gtod->clock.vclock_mode);
2333 #endif
2334 }
2335
2336 /*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347 {
2348 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349 }
2350
2351 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352 {
2353 u64 _tsc = tsc;
2354
2355 if (ratio != kvm_default_tsc_scaling_ratio)
2356 _tsc = __scale_tsc(ratio, tsc);
2357
2358 return _tsc;
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363 {
2364 u64 tsc;
2365
2366 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368 return target_tsc - tsc;
2369 }
2370
2371 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372 {
2373 return vcpu->arch.l1_tsc_offset +
2374 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379 {
2380 u64 nested_offset;
2381
2382 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383 nested_offset = l1_offset;
2384 else
2385 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 nested_offset += l2_offset;
2389 return nested_offset;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394 {
2395 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397 kvm_tsc_scaling_ratio_frac_bits);
2398
2399 return l1_multiplier;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404 {
2405 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406 vcpu->arch.l1_tsc_offset,
2407 l1_offset);
2408
2409 vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411 /*
2412 * If we are here because L1 chose not to trap WRMSR to TSC then
2413 * according to the spec this should set L1's TSC (as opposed to
2414 * setting L1's offset for L2).
2415 */
2416 if (is_guest_mode(vcpu))
2417 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418 l1_offset,
2419 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421 else
2422 vcpu->arch.tsc_offset = l1_offset;
2423
2424 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425 }
2426
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428 {
2429 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431 /* Userspace is changing the multiplier while L2 is active */
2432 if (is_guest_mode(vcpu))
2433 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434 l1_multiplier,
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439 if (kvm_has_tsc_control)
2440 static_call(kvm_x86_write_tsc_multiplier)(
2441 vcpu, vcpu->arch.tsc_scaling_ratio);
2442 }
2443
2444 static inline bool kvm_check_tsc_unstable(void)
2445 {
2446 #ifdef CONFIG_X86_64
2447 /*
2448 * TSC is marked unstable when we're running on Hyper-V,
2449 * 'TSC page' clocksource is good.
2450 */
2451 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452 return false;
2453 #endif
2454 return check_tsc_unstable();
2455 }
2456
2457 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458 {
2459 struct kvm *kvm = vcpu->kvm;
2460 u64 offset, ns, elapsed;
2461 unsigned long flags;
2462 bool matched;
2463 bool already_matched;
2464 bool synchronizing = false;
2465
2466 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468 ns = get_kvmclock_base_ns();
2469 elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471 if (vcpu->arch.virtual_tsc_khz) {
2472 if (data == 0) {
2473 /*
2474 * detection of vcpu initialization -- need to sync
2475 * with other vCPUs. This particularly helps to keep
2476 * kvm_clock stable after CPU hotplug
2477 */
2478 synchronizing = true;
2479 } else {
2480 u64 tsc_exp = kvm->arch.last_tsc_write +
2481 nsec_to_cycles(vcpu, elapsed);
2482 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483 /*
2484 * Special case: TSC write with a small delta (1 second)
2485 * of virtual cycle time against real time is
2486 * interpreted as an attempt to synchronize the CPU.
2487 */
2488 synchronizing = data < tsc_exp + tsc_hz &&
2489 data + tsc_hz > tsc_exp;
2490 }
2491 }
2492
2493 /*
2494 * For a reliable TSC, we can match TSC offsets, and for an unstable
2495 * TSC, we add elapsed time in this computation. We could let the
2496 * compensation code attempt to catch up if we fall behind, but
2497 * it's better to try to match offsets from the beginning.
2498 */
2499 if (synchronizing &&
2500 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501 if (!kvm_check_tsc_unstable()) {
2502 offset = kvm->arch.cur_tsc_offset;
2503 } else {
2504 u64 delta = nsec_to_cycles(vcpu, elapsed);
2505 data += delta;
2506 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507 }
2508 matched = true;
2509 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510 } else {
2511 /*
2512 * We split periods of matched TSC writes into generations.
2513 * For each generation, we track the original measured
2514 * nanosecond time, offset, and write, so if TSCs are in
2515 * sync, we can match exact offset, and if not, we can match
2516 * exact software computation in compute_guest_tsc()
2517 *
2518 * These values are tracked in kvm->arch.cur_xxx variables.
2519 */
2520 kvm->arch.cur_tsc_generation++;
2521 kvm->arch.cur_tsc_nsec = ns;
2522 kvm->arch.cur_tsc_write = data;
2523 kvm->arch.cur_tsc_offset = offset;
2524 matched = false;
2525 }
2526
2527 /*
2528 * We also track th most recent recorded KHZ, write and time to
2529 * allow the matching interval to be extended at each write.
2530 */
2531 kvm->arch.last_tsc_nsec = ns;
2532 kvm->arch.last_tsc_write = data;
2533 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535 vcpu->arch.last_guest_tsc = data;
2536
2537 /* Keep track of which generation this VCPU has synchronized to */
2538 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542 kvm_vcpu_write_tsc_offset(vcpu, offset);
2543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546 if (!matched) {
2547 kvm->arch.nr_vcpus_matched_tsc = 0;
2548 } else if (!already_matched) {
2549 kvm->arch.nr_vcpus_matched_tsc++;
2550 }
2551
2552 kvm_track_tsc_matching(vcpu);
2553 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554 }
2555
2556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557 s64 adjustment)
2558 {
2559 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561 }
2562
2563 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564 {
2565 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566 WARN_ON(adjustment < 0);
2567 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568 vcpu->arch.l1_tsc_scaling_ratio);
2569 adjust_tsc_offset_guest(vcpu, adjustment);
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573
2574 static u64 read_tsc(void)
2575 {
2576 u64 ret = (u64)rdtsc_ordered();
2577 u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579 if (likely(ret >= last))
2580 return ret;
2581
2582 /*
2583 * GCC likes to generate cmov here, but this branch is extremely
2584 * predictable (it's just a function of time and the likely is
2585 * very likely) and there's a data dependence, so force GCC
2586 * to generate a branch instead. I don't barrier() because
2587 * we don't actually need a barrier, and if this function
2588 * ever gets inlined it will generate worse code.
2589 */
2590 asm volatile ("");
2591 return last;
2592 }
2593
2594 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595 int *mode)
2596 {
2597 long v;
2598 u64 tsc_pg_val;
2599
2600 switch (clock->vclock_mode) {
2601 case VDSO_CLOCKMODE_HVCLOCK:
2602 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603 tsc_timestamp);
2604 if (tsc_pg_val != U64_MAX) {
2605 /* TSC page valid */
2606 *mode = VDSO_CLOCKMODE_HVCLOCK;
2607 v = (tsc_pg_val - clock->cycle_last) &
2608 clock->mask;
2609 } else {
2610 /* TSC page invalid */
2611 *mode = VDSO_CLOCKMODE_NONE;
2612 }
2613 break;
2614 case VDSO_CLOCKMODE_TSC:
2615 *mode = VDSO_CLOCKMODE_TSC;
2616 *tsc_timestamp = read_tsc();
2617 v = (*tsc_timestamp - clock->cycle_last) &
2618 clock->mask;
2619 break;
2620 default:
2621 *mode = VDSO_CLOCKMODE_NONE;
2622 }
2623
2624 if (*mode == VDSO_CLOCKMODE_NONE)
2625 *tsc_timestamp = v = 0;
2626
2627 return v * clock->mult;
2628 }
2629
2630 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631 {
2632 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633 unsigned long seq;
2634 int mode;
2635 u64 ns;
2636
2637 do {
2638 seq = read_seqcount_begin(&gtod->seq);
2639 ns = gtod->raw_clock.base_cycles;
2640 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641 ns >>= gtod->raw_clock.shift;
2642 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644 *t = ns;
2645
2646 return mode;
2647 }
2648
2649 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650 {
2651 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652 unsigned long seq;
2653 int mode;
2654 u64 ns;
2655
2656 do {
2657 seq = read_seqcount_begin(&gtod->seq);
2658 ts->tv_sec = gtod->wall_time_sec;
2659 ns = gtod->clock.base_cycles;
2660 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661 ns >>= gtod->clock.shift;
2662 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665 ts->tv_nsec = ns;
2666
2667 return mode;
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672 {
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 return false;
2676
2677 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678 tsc_timestamp));
2679 }
2680
2681 /* returns true if host is using TSC based clocksource */
2682 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683 u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690 }
2691 #endif
2692
2693 /*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 * VCPU0 on CPU0 | VCPU1 on CPU1
2704 *
2705 * 1. read timespec0,tsc0
2706 * 2. | timespec1 = timespec0 + N
2707 * | tsc1 = tsc0 + M
2708 * 3. transition to guest | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2711 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 * - ret0 < ret1
2716 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 * ...
2718 * - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735 {
2736 #ifdef CONFIG_X86_64
2737 struct kvm_arch *ka = &kvm->arch;
2738 int vclock_mode;
2739 bool host_tsc_clocksource, vcpus_matched;
2740
2741 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742 atomic_read(&kvm->online_vcpus));
2743
2744 /*
2745 * If the host uses TSC clock, then passthrough TSC as stable
2746 * to the guest.
2747 */
2748 host_tsc_clocksource = kvm_get_time_and_clockread(
2749 &ka->master_kernel_ns,
2750 &ka->master_cycle_now);
2751
2752 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753 && !ka->backwards_tsc_observed
2754 && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756 if (ka->use_master_clock)
2757 atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761 vcpus_matched);
2762 #endif
2763 }
2764
2765 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766 {
2767 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768 }
2769
2770 static void kvm_gen_update_masterclock(struct kvm *kvm)
2771 {
2772 #ifdef CONFIG_X86_64
2773 int i;
2774 struct kvm_vcpu *vcpu;
2775 struct kvm_arch *ka = &kvm->arch;
2776 unsigned long flags;
2777
2778 kvm_hv_invalidate_tsc_page(kvm);
2779
2780 kvm_make_mclock_inprogress_request(kvm);
2781
2782 /* no guest entries from this point */
2783 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784 pvclock_update_vm_gtod_copy(kvm);
2785 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787 kvm_for_each_vcpu(i, vcpu, kvm)
2788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790 /* guest entries allowed */
2791 kvm_for_each_vcpu(i, vcpu, kvm)
2792 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793 #endif
2794 }
2795
2796 u64 get_kvmclock_ns(struct kvm *kvm)
2797 {
2798 struct kvm_arch *ka = &kvm->arch;
2799 struct pvclock_vcpu_time_info hv_clock;
2800 unsigned long flags;
2801 u64 ret;
2802
2803 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804 if (!ka->use_master_clock) {
2805 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807 }
2808
2809 hv_clock.tsc_timestamp = ka->master_cycle_now;
2810 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814 get_cpu();
2815
2816 if (__this_cpu_read(cpu_tsc_khz)) {
2817 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818 &hv_clock.tsc_shift,
2819 &hv_clock.tsc_to_system_mul);
2820 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821 } else
2822 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824 put_cpu();
2825
2826 return ret;
2827 }
2828
2829 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830 struct gfn_to_hva_cache *cache,
2831 unsigned int offset)
2832 {
2833 struct kvm_vcpu_arch *vcpu = &v->arch;
2834 struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838 return;
2839
2840 /* This VCPU is paused, but it's legal for a guest to read another
2841 * VCPU's kvmclock, so we really have to follow the specification where
2842 * it says that version is odd if data is being modified, and even after
2843 * it is consistent.
2844 *
2845 * Version field updates must be kept separate. This is because
2846 * kvm_write_guest_cached might use a "rep movs" instruction, and
2847 * writes within a string instruction are weakly ordered. So there
2848 * are three writes overall.
2849 *
2850 * As a small optimization, only write the version field in the first
2851 * and third write. The vcpu->pv_time cache is still valid, because the
2852 * version field is the first in the struct.
2853 */
2854 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856 if (guest_hv_clock.version & 1)
2857 ++guest_hv_clock.version; /* first time write, random junk */
2858
2859 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860 kvm_write_guest_offset_cached(v->kvm, cache,
2861 &vcpu->hv_clock, offset,
2862 sizeof(vcpu->hv_clock.version));
2863
2864 smp_wmb();
2865
2866 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869 if (vcpu->pvclock_set_guest_stopped_request) {
2870 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871 vcpu->pvclock_set_guest_stopped_request = false;
2872 }
2873
2874 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876 kvm_write_guest_offset_cached(v->kvm, cache,
2877 &vcpu->hv_clock, offset,
2878 sizeof(vcpu->hv_clock));
2879
2880 smp_wmb();
2881
2882 vcpu->hv_clock.version++;
2883 kvm_write_guest_offset_cached(v->kvm, cache,
2884 &vcpu->hv_clock, offset,
2885 sizeof(vcpu->hv_clock.version));
2886 }
2887
2888 static int kvm_guest_time_update(struct kvm_vcpu *v)
2889 {
2890 unsigned long flags, tgt_tsc_khz;
2891 struct kvm_vcpu_arch *vcpu = &v->arch;
2892 struct kvm_arch *ka = &v->kvm->arch;
2893 s64 kernel_ns;
2894 u64 tsc_timestamp, host_tsc;
2895 u8 pvclock_flags;
2896 bool use_master_clock;
2897
2898 kernel_ns = 0;
2899 host_tsc = 0;
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906 use_master_clock = ka->use_master_clock;
2907 if (use_master_clock) {
2908 host_tsc = ka->master_cycle_now;
2909 kernel_ns = ka->master_kernel_ns;
2910 }
2911 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913 /* Keep irq disabled to prevent changes to the clock */
2914 local_irq_save(flags);
2915 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916 if (unlikely(tgt_tsc_khz == 0)) {
2917 local_irq_restore(flags);
2918 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919 return 1;
2920 }
2921 if (!use_master_clock) {
2922 host_tsc = rdtsc();
2923 kernel_ns = get_kvmclock_base_ns();
2924 }
2925
2926 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928 /*
2929 * We may have to catch up the TSC to match elapsed wall clock
2930 * time for two reasons, even if kvmclock is used.
2931 * 1) CPU could have been running below the maximum TSC rate
2932 * 2) Broken TSC compensation resets the base at each VCPU
2933 * entry to avoid unknown leaps of TSC even when running
2934 * again on the same CPU. This may cause apparent elapsed
2935 * time to disappear, and the guest to stand still or run
2936 * very slowly.
2937 */
2938 if (vcpu->tsc_catchup) {
2939 u64 tsc = compute_guest_tsc(v, kernel_ns);
2940 if (tsc > tsc_timestamp) {
2941 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942 tsc_timestamp = tsc;
2943 }
2944 }
2945
2946 local_irq_restore(flags);
2947
2948 /* With all the info we got, fill in the values */
2949
2950 if (kvm_has_tsc_control)
2951 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952 v->arch.l1_tsc_scaling_ratio);
2953
2954 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956 &vcpu->hv_clock.tsc_shift,
2957 &vcpu->hv_clock.tsc_to_system_mul);
2958 vcpu->hw_tsc_khz = tgt_tsc_khz;
2959 }
2960
2961 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963 vcpu->last_guest_tsc = tsc_timestamp;
2964
2965 /* If the host uses TSC clocksource, then it is stable */
2966 pvclock_flags = 0;
2967 if (use_master_clock)
2968 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970 vcpu->hv_clock.flags = pvclock_flags;
2971
2972 if (vcpu->pv_time_enabled)
2973 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974 if (vcpu->xen.vcpu_info_set)
2975 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976 offsetof(struct compat_vcpu_info, time));
2977 if (vcpu->xen.vcpu_time_info_set)
2978 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979 if (!v->vcpu_idx)
2980 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981 return 0;
2982 }
2983
2984 /*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000 static void kvmclock_update_fn(struct work_struct *work)
3001 {
3002 int i;
3003 struct delayed_work *dwork = to_delayed_work(work);
3004 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005 kvmclock_update_work);
3006 struct kvm *kvm = container_of(ka, struct kvm, arch);
3007 struct kvm_vcpu *vcpu;
3008
3009 kvm_for_each_vcpu(i, vcpu, kvm) {
3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011 kvm_vcpu_kick(vcpu);
3012 }
3013 }
3014
3015 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016 {
3017 struct kvm *kvm = v->kvm;
3018
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021 KVMCLOCK_UPDATE_DELAY);
3022 }
3023
3024 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026 static void kvmclock_sync_fn(struct work_struct *work)
3027 {
3028 struct delayed_work *dwork = to_delayed_work(work);
3029 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030 kvmclock_sync_work);
3031 struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033 if (!kvmclock_periodic_sync)
3034 return;
3035
3036 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038 KVMCLOCK_SYNC_PERIOD);
3039 }
3040
3041 /*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045 {
3046 /* McStatusWrEn enabled? */
3047 if (guest_cpuid_is_amd_or_hygon(vcpu))
3048 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050 return false;
3051 }
3052
3053 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054 {
3055 u64 mcg_cap = vcpu->arch.mcg_cap;
3056 unsigned bank_num = mcg_cap & 0xff;
3057 u32 msr = msr_info->index;
3058 u64 data = msr_info->data;
3059
3060 switch (msr) {
3061 case MSR_IA32_MCG_STATUS:
3062 vcpu->arch.mcg_status = data;
3063 break;
3064 case MSR_IA32_MCG_CTL:
3065 if (!(mcg_cap & MCG_CTL_P) &&
3066 (data || !msr_info->host_initiated))
3067 return 1;
3068 if (data != 0 && data != ~(u64)0)
3069 return 1;
3070 vcpu->arch.mcg_ctl = data;
3071 break;
3072 default:
3073 if (msr >= MSR_IA32_MC0_CTL &&
3074 msr < MSR_IA32_MCx_CTL(bank_num)) {
3075 u32 offset = array_index_nospec(
3076 msr - MSR_IA32_MC0_CTL,
3077 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079 /* only 0 or all 1s can be written to IA32_MCi_CTL
3080 * some Linux kernels though clear bit 10 in bank 4 to
3081 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082 * this to avoid an uncatched #GP in the guest
3083 */
3084 if ((offset & 0x3) == 0 &&
3085 data != 0 && (data | (1 << 10)) != ~(u64)0)
3086 return -1;
3087
3088 /* MCi_STATUS */
3089 if (!msr_info->host_initiated &&
3090 (offset & 0x3) == 1 && data != 0) {
3091 if (!can_set_mci_status(vcpu))
3092 return -1;
3093 }
3094
3095 vcpu->arch.mce_banks[offset] = data;
3096 break;
3097 }
3098 return 1;
3099 }
3100 return 0;
3101 }
3102
3103 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104 {
3105 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108 }
3109
3110 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111 {
3112 gpa_t gpa = data & ~0x3f;
3113
3114 /* Bits 4:5 are reserved, Should be zero */
3115 if (data & 0x30)
3116 return 1;
3117
3118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120 return 1;
3121
3122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124 return 1;
3125
3126 if (!lapic_in_kernel(vcpu))
3127 return data ? 1 : 0;
3128
3129 vcpu->arch.apf.msr_en_val = data;
3130
3131 if (!kvm_pv_async_pf_enabled(vcpu)) {
3132 kvm_clear_async_pf_completion_queue(vcpu);
3133 kvm_async_pf_hash_reset(vcpu);
3134 return 0;
3135 }
3136
3137 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138 sizeof(u64)))
3139 return 1;
3140
3141 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144 kvm_async_pf_wakeup_all(vcpu);
3145
3146 return 0;
3147 }
3148
3149 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 /* Bits 8-63 are reserved */
3152 if (data >> 8)
3153 return 1;
3154
3155 if (!lapic_in_kernel(vcpu))
3156 return 1;
3157
3158 vcpu->arch.apf.msr_int_val = data;
3159
3160 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162 return 0;
3163 }
3164
3165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166 {
3167 vcpu->arch.pv_time_enabled = false;
3168 vcpu->arch.time = 0;
3169 }
3170
3171 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 ++vcpu->stat.tlb_flush;
3174 static_call(kvm_x86_tlb_flush_all)(vcpu);
3175 }
3176
3177 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178 {
3179 ++vcpu->stat.tlb_flush;
3180
3181 if (!tdp_enabled) {
3182 /*
3183 * A TLB flush on behalf of the guest is equivalent to
3184 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185 * a forced sync of the shadow page tables. Unload the
3186 * entire MMU here and the subsequent load will sync the
3187 * shadow page tables, and also flush the TLB.
3188 */
3189 kvm_mmu_unload(vcpu);
3190 return;
3191 }
3192
3193 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194 }
3195
3196 static void record_steal_time(struct kvm_vcpu *vcpu)
3197 {
3198 struct kvm_host_map map;
3199 struct kvm_steal_time *st;
3200
3201 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3202 kvm_xen_runstate_set_running(vcpu);
3203 return;
3204 }
3205
3206 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3207 return;
3208
3209 /* -EAGAIN is returned in atomic context so we can just return. */
3210 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3211 &map, &vcpu->arch.st.cache, false))
3212 return;
3213
3214 st = map.hva +
3215 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3216
3217 /*
3218 * Doing a TLB flush here, on the guest's behalf, can avoid
3219 * expensive IPIs.
3220 */
3221 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3222 u8 st_preempted = xchg(&st->preempted, 0);
3223
3224 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3225 st_preempted & KVM_VCPU_FLUSH_TLB);
3226 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3227 kvm_vcpu_flush_tlb_guest(vcpu);
3228 } else {
3229 st->preempted = 0;
3230 }
3231
3232 vcpu->arch.st.preempted = 0;
3233
3234 if (st->version & 1)
3235 st->version += 1; /* first time write, random junk */
3236
3237 st->version += 1;
3238
3239 smp_wmb();
3240
3241 st->steal += current->sched_info.run_delay -
3242 vcpu->arch.st.last_steal;
3243 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3244
3245 smp_wmb();
3246
3247 st->version += 1;
3248
3249 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3250 }
3251
3252 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3253 {
3254 bool pr = false;
3255 u32 msr = msr_info->index;
3256 u64 data = msr_info->data;
3257
3258 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3259 return kvm_xen_write_hypercall_page(vcpu, data);
3260
3261 switch (msr) {
3262 case MSR_AMD64_NB_CFG:
3263 case MSR_IA32_UCODE_WRITE:
3264 case MSR_VM_HSAVE_PA:
3265 case MSR_AMD64_PATCH_LOADER:
3266 case MSR_AMD64_BU_CFG2:
3267 case MSR_AMD64_DC_CFG:
3268 case MSR_F15H_EX_CFG:
3269 break;
3270
3271 case MSR_IA32_UCODE_REV:
3272 if (msr_info->host_initiated)
3273 vcpu->arch.microcode_version = data;
3274 break;
3275 case MSR_IA32_ARCH_CAPABILITIES:
3276 if (!msr_info->host_initiated)
3277 return 1;
3278 vcpu->arch.arch_capabilities = data;
3279 break;
3280 case MSR_IA32_PERF_CAPABILITIES: {
3281 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3282
3283 if (!msr_info->host_initiated)
3284 return 1;
3285 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3286 return 1;
3287 if (data & ~msr_ent.data)
3288 return 1;
3289
3290 vcpu->arch.perf_capabilities = data;
3291
3292 return 0;
3293 }
3294 case MSR_EFER:
3295 return set_efer(vcpu, msr_info);
3296 case MSR_K7_HWCR:
3297 data &= ~(u64)0x40; /* ignore flush filter disable */
3298 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3299 data &= ~(u64)0x8; /* ignore TLB cache disable */
3300
3301 /* Handle McStatusWrEn */
3302 if (data == BIT_ULL(18)) {
3303 vcpu->arch.msr_hwcr = data;
3304 } else if (data != 0) {
3305 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3306 data);
3307 return 1;
3308 }
3309 break;
3310 case MSR_FAM10H_MMIO_CONF_BASE:
3311 if (data != 0) {
3312 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3313 "0x%llx\n", data);
3314 return 1;
3315 }
3316 break;
3317 case 0x200 ... 0x2ff:
3318 return kvm_mtrr_set_msr(vcpu, msr, data);
3319 case MSR_IA32_APICBASE:
3320 return kvm_set_apic_base(vcpu, msr_info);
3321 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3322 return kvm_x2apic_msr_write(vcpu, msr, data);
3323 case MSR_IA32_TSC_DEADLINE:
3324 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3325 break;
3326 case MSR_IA32_TSC_ADJUST:
3327 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3328 if (!msr_info->host_initiated) {
3329 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3330 adjust_tsc_offset_guest(vcpu, adj);
3331 /* Before back to guest, tsc_timestamp must be adjusted
3332 * as well, otherwise guest's percpu pvclock time could jump.
3333 */
3334 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335 }
3336 vcpu->arch.ia32_tsc_adjust_msr = data;
3337 }
3338 break;
3339 case MSR_IA32_MISC_ENABLE:
3340 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3341 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3342 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3343 return 1;
3344 vcpu->arch.ia32_misc_enable_msr = data;
3345 kvm_update_cpuid_runtime(vcpu);
3346 } else {
3347 vcpu->arch.ia32_misc_enable_msr = data;
3348 }
3349 break;
3350 case MSR_IA32_SMBASE:
3351 if (!msr_info->host_initiated)
3352 return 1;
3353 vcpu->arch.smbase = data;
3354 break;
3355 case MSR_IA32_POWER_CTL:
3356 vcpu->arch.msr_ia32_power_ctl = data;
3357 break;
3358 case MSR_IA32_TSC:
3359 if (msr_info->host_initiated) {
3360 kvm_synchronize_tsc(vcpu, data);
3361 } else {
3362 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3363 adjust_tsc_offset_guest(vcpu, adj);
3364 vcpu->arch.ia32_tsc_adjust_msr += adj;
3365 }
3366 break;
3367 case MSR_IA32_XSS:
3368 if (!msr_info->host_initiated &&
3369 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3370 return 1;
3371 /*
3372 * KVM supports exposing PT to the guest, but does not support
3373 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3374 * XSAVES/XRSTORS to save/restore PT MSRs.
3375 */
3376 if (data & ~supported_xss)
3377 return 1;
3378 vcpu->arch.ia32_xss = data;
3379 break;
3380 case MSR_SMI_COUNT:
3381 if (!msr_info->host_initiated)
3382 return 1;
3383 vcpu->arch.smi_count = data;
3384 break;
3385 case MSR_KVM_WALL_CLOCK_NEW:
3386 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3387 return 1;
3388
3389 vcpu->kvm->arch.wall_clock = data;
3390 kvm_write_wall_clock(vcpu->kvm, data, 0);
3391 break;
3392 case MSR_KVM_WALL_CLOCK:
3393 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3394 return 1;
3395
3396 vcpu->kvm->arch.wall_clock = data;
3397 kvm_write_wall_clock(vcpu->kvm, data, 0);
3398 break;
3399 case MSR_KVM_SYSTEM_TIME_NEW:
3400 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3401 return 1;
3402
3403 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3404 break;
3405 case MSR_KVM_SYSTEM_TIME:
3406 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3407 return 1;
3408
3409 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3410 break;
3411 case MSR_KVM_ASYNC_PF_EN:
3412 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3413 return 1;
3414
3415 if (kvm_pv_enable_async_pf(vcpu, data))
3416 return 1;
3417 break;
3418 case MSR_KVM_ASYNC_PF_INT:
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420 return 1;
3421
3422 if (kvm_pv_enable_async_pf_int(vcpu, data))
3423 return 1;
3424 break;
3425 case MSR_KVM_ASYNC_PF_ACK:
3426 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3427 return 1;
3428 if (data & 0x1) {
3429 vcpu->arch.apf.pageready_pending = false;
3430 kvm_check_async_pf_completion(vcpu);
3431 }
3432 break;
3433 case MSR_KVM_STEAL_TIME:
3434 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3435 return 1;
3436
3437 if (unlikely(!sched_info_on()))
3438 return 1;
3439
3440 if (data & KVM_STEAL_RESERVED_MASK)
3441 return 1;
3442
3443 vcpu->arch.st.msr_val = data;
3444
3445 if (!(data & KVM_MSR_ENABLED))
3446 break;
3447
3448 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3449
3450 break;
3451 case MSR_KVM_PV_EOI_EN:
3452 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3453 return 1;
3454
3455 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3456 return 1;
3457 break;
3458
3459 case MSR_KVM_POLL_CONTROL:
3460 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3461 return 1;
3462
3463 /* only enable bit supported */
3464 if (data & (-1ULL << 1))
3465 return 1;
3466
3467 vcpu->arch.msr_kvm_poll_control = data;
3468 break;
3469
3470 case MSR_IA32_MCG_CTL:
3471 case MSR_IA32_MCG_STATUS:
3472 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3473 return set_msr_mce(vcpu, msr_info);
3474
3475 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3476 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3477 pr = true;
3478 fallthrough;
3479 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3480 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3481 if (kvm_pmu_is_valid_msr(vcpu, msr))
3482 return kvm_pmu_set_msr(vcpu, msr_info);
3483
3484 if (pr || data != 0)
3485 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3486 "0x%x data 0x%llx\n", msr, data);
3487 break;
3488 case MSR_K7_CLK_CTL:
3489 /*
3490 * Ignore all writes to this no longer documented MSR.
3491 * Writes are only relevant for old K7 processors,
3492 * all pre-dating SVM, but a recommended workaround from
3493 * AMD for these chips. It is possible to specify the
3494 * affected processor models on the command line, hence
3495 * the need to ignore the workaround.
3496 */
3497 break;
3498 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3499 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3500 case HV_X64_MSR_SYNDBG_OPTIONS:
3501 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3502 case HV_X64_MSR_CRASH_CTL:
3503 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3504 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3505 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3506 case HV_X64_MSR_TSC_EMULATION_STATUS:
3507 return kvm_hv_set_msr_common(vcpu, msr, data,
3508 msr_info->host_initiated);
3509 case MSR_IA32_BBL_CR_CTL3:
3510 /* Drop writes to this legacy MSR -- see rdmsr
3511 * counterpart for further detail.
3512 */
3513 if (report_ignored_msrs)
3514 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3515 msr, data);
3516 break;
3517 case MSR_AMD64_OSVW_ID_LENGTH:
3518 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3519 return 1;
3520 vcpu->arch.osvw.length = data;
3521 break;
3522 case MSR_AMD64_OSVW_STATUS:
3523 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3524 return 1;
3525 vcpu->arch.osvw.status = data;
3526 break;
3527 case MSR_PLATFORM_INFO:
3528 if (!msr_info->host_initiated ||
3529 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3530 cpuid_fault_enabled(vcpu)))
3531 return 1;
3532 vcpu->arch.msr_platform_info = data;
3533 break;
3534 case MSR_MISC_FEATURES_ENABLES:
3535 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3536 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3537 !supports_cpuid_fault(vcpu)))
3538 return 1;
3539 vcpu->arch.msr_misc_features_enables = data;
3540 break;
3541 default:
3542 if (kvm_pmu_is_valid_msr(vcpu, msr))
3543 return kvm_pmu_set_msr(vcpu, msr_info);
3544 return KVM_MSR_RET_INVALID;
3545 }
3546 return 0;
3547 }
3548 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3549
3550 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3551 {
3552 u64 data;
3553 u64 mcg_cap = vcpu->arch.mcg_cap;
3554 unsigned bank_num = mcg_cap & 0xff;
3555
3556 switch (msr) {
3557 case MSR_IA32_P5_MC_ADDR:
3558 case MSR_IA32_P5_MC_TYPE:
3559 data = 0;
3560 break;
3561 case MSR_IA32_MCG_CAP:
3562 data = vcpu->arch.mcg_cap;
3563 break;
3564 case MSR_IA32_MCG_CTL:
3565 if (!(mcg_cap & MCG_CTL_P) && !host)
3566 return 1;
3567 data = vcpu->arch.mcg_ctl;
3568 break;
3569 case MSR_IA32_MCG_STATUS:
3570 data = vcpu->arch.mcg_status;
3571 break;
3572 default:
3573 if (msr >= MSR_IA32_MC0_CTL &&
3574 msr < MSR_IA32_MCx_CTL(bank_num)) {
3575 u32 offset = array_index_nospec(
3576 msr - MSR_IA32_MC0_CTL,
3577 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3578
3579 data = vcpu->arch.mce_banks[offset];
3580 break;
3581 }
3582 return 1;
3583 }
3584 *pdata = data;
3585 return 0;
3586 }
3587
3588 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3589 {
3590 switch (msr_info->index) {
3591 case MSR_IA32_PLATFORM_ID:
3592 case MSR_IA32_EBL_CR_POWERON:
3593 case MSR_IA32_LASTBRANCHFROMIP:
3594 case MSR_IA32_LASTBRANCHTOIP:
3595 case MSR_IA32_LASTINTFROMIP:
3596 case MSR_IA32_LASTINTTOIP:
3597 case MSR_AMD64_SYSCFG:
3598 case MSR_K8_TSEG_ADDR:
3599 case MSR_K8_TSEG_MASK:
3600 case MSR_VM_HSAVE_PA:
3601 case MSR_K8_INT_PENDING_MSG:
3602 case MSR_AMD64_NB_CFG:
3603 case MSR_FAM10H_MMIO_CONF_BASE:
3604 case MSR_AMD64_BU_CFG2:
3605 case MSR_IA32_PERF_CTL:
3606 case MSR_AMD64_DC_CFG:
3607 case MSR_F15H_EX_CFG:
3608 /*
3609 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3610 * limit) MSRs. Just return 0, as we do not want to expose the host
3611 * data here. Do not conditionalize this on CPUID, as KVM does not do
3612 * so for existing CPU-specific MSRs.
3613 */
3614 case MSR_RAPL_POWER_UNIT:
3615 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3616 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3617 case MSR_PKG_ENERGY_STATUS: /* Total package */
3618 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3619 msr_info->data = 0;
3620 break;
3621 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3622 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3623 return kvm_pmu_get_msr(vcpu, msr_info);
3624 if (!msr_info->host_initiated)
3625 return 1;
3626 msr_info->data = 0;
3627 break;
3628 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3629 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3631 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3632 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3633 return kvm_pmu_get_msr(vcpu, msr_info);
3634 msr_info->data = 0;
3635 break;
3636 case MSR_IA32_UCODE_REV:
3637 msr_info->data = vcpu->arch.microcode_version;
3638 break;
3639 case MSR_IA32_ARCH_CAPABILITIES:
3640 if (!msr_info->host_initiated &&
3641 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3642 return 1;
3643 msr_info->data = vcpu->arch.arch_capabilities;
3644 break;
3645 case MSR_IA32_PERF_CAPABILITIES:
3646 if (!msr_info->host_initiated &&
3647 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3648 return 1;
3649 msr_info->data = vcpu->arch.perf_capabilities;
3650 break;
3651 case MSR_IA32_POWER_CTL:
3652 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3653 break;
3654 case MSR_IA32_TSC: {
3655 /*
3656 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3657 * even when not intercepted. AMD manual doesn't explicitly
3658 * state this but appears to behave the same.
3659 *
3660 * On userspace reads and writes, however, we unconditionally
3661 * return L1's TSC value to ensure backwards-compatible
3662 * behavior for migration.
3663 */
3664 u64 offset, ratio;
3665
3666 if (msr_info->host_initiated) {
3667 offset = vcpu->arch.l1_tsc_offset;
3668 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3669 } else {
3670 offset = vcpu->arch.tsc_offset;
3671 ratio = vcpu->arch.tsc_scaling_ratio;
3672 }
3673
3674 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3675 break;
3676 }
3677 case MSR_MTRRcap:
3678 case 0x200 ... 0x2ff:
3679 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3680 case 0xcd: /* fsb frequency */
3681 msr_info->data = 3;
3682 break;
3683 /*
3684 * MSR_EBC_FREQUENCY_ID
3685 * Conservative value valid for even the basic CPU models.
3686 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3687 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3688 * and 266MHz for model 3, or 4. Set Core Clock
3689 * Frequency to System Bus Frequency Ratio to 1 (bits
3690 * 31:24) even though these are only valid for CPU
3691 * models > 2, however guests may end up dividing or
3692 * multiplying by zero otherwise.
3693 */
3694 case MSR_EBC_FREQUENCY_ID:
3695 msr_info->data = 1 << 24;
3696 break;
3697 case MSR_IA32_APICBASE:
3698 msr_info->data = kvm_get_apic_base(vcpu);
3699 break;
3700 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3701 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3702 case MSR_IA32_TSC_DEADLINE:
3703 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3704 break;
3705 case MSR_IA32_TSC_ADJUST:
3706 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3707 break;
3708 case MSR_IA32_MISC_ENABLE:
3709 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3710 break;
3711 case MSR_IA32_SMBASE:
3712 if (!msr_info->host_initiated)
3713 return 1;
3714 msr_info->data = vcpu->arch.smbase;
3715 break;
3716 case MSR_SMI_COUNT:
3717 msr_info->data = vcpu->arch.smi_count;
3718 break;
3719 case MSR_IA32_PERF_STATUS:
3720 /* TSC increment by tick */
3721 msr_info->data = 1000ULL;
3722 /* CPU multiplier */
3723 msr_info->data |= (((uint64_t)4ULL) << 40);
3724 break;
3725 case MSR_EFER:
3726 msr_info->data = vcpu->arch.efer;
3727 break;
3728 case MSR_KVM_WALL_CLOCK:
3729 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3730 return 1;
3731
3732 msr_info->data = vcpu->kvm->arch.wall_clock;
3733 break;
3734 case MSR_KVM_WALL_CLOCK_NEW:
3735 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3736 return 1;
3737
3738 msr_info->data = vcpu->kvm->arch.wall_clock;
3739 break;
3740 case MSR_KVM_SYSTEM_TIME:
3741 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3742 return 1;
3743
3744 msr_info->data = vcpu->arch.time;
3745 break;
3746 case MSR_KVM_SYSTEM_TIME_NEW:
3747 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3748 return 1;
3749
3750 msr_info->data = vcpu->arch.time;
3751 break;
3752 case MSR_KVM_ASYNC_PF_EN:
3753 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3754 return 1;
3755
3756 msr_info->data = vcpu->arch.apf.msr_en_val;
3757 break;
3758 case MSR_KVM_ASYNC_PF_INT:
3759 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3760 return 1;
3761
3762 msr_info->data = vcpu->arch.apf.msr_int_val;
3763 break;
3764 case MSR_KVM_ASYNC_PF_ACK:
3765 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766 return 1;
3767
3768 msr_info->data = 0;
3769 break;
3770 case MSR_KVM_STEAL_TIME:
3771 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3772 return 1;
3773
3774 msr_info->data = vcpu->arch.st.msr_val;
3775 break;
3776 case MSR_KVM_PV_EOI_EN:
3777 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3778 return 1;
3779
3780 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3781 break;
3782 case MSR_KVM_POLL_CONTROL:
3783 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3784 return 1;
3785
3786 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3787 break;
3788 case MSR_IA32_P5_MC_ADDR:
3789 case MSR_IA32_P5_MC_TYPE:
3790 case MSR_IA32_MCG_CAP:
3791 case MSR_IA32_MCG_CTL:
3792 case MSR_IA32_MCG_STATUS:
3793 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3794 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3795 msr_info->host_initiated);
3796 case MSR_IA32_XSS:
3797 if (!msr_info->host_initiated &&
3798 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3799 return 1;
3800 msr_info->data = vcpu->arch.ia32_xss;
3801 break;
3802 case MSR_K7_CLK_CTL:
3803 /*
3804 * Provide expected ramp-up count for K7. All other
3805 * are set to zero, indicating minimum divisors for
3806 * every field.
3807 *
3808 * This prevents guest kernels on AMD host with CPU
3809 * type 6, model 8 and higher from exploding due to
3810 * the rdmsr failing.
3811 */
3812 msr_info->data = 0x20000000;
3813 break;
3814 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3815 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3816 case HV_X64_MSR_SYNDBG_OPTIONS:
3817 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3818 case HV_X64_MSR_CRASH_CTL:
3819 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3820 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3821 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3822 case HV_X64_MSR_TSC_EMULATION_STATUS:
3823 return kvm_hv_get_msr_common(vcpu,
3824 msr_info->index, &msr_info->data,
3825 msr_info->host_initiated);
3826 case MSR_IA32_BBL_CR_CTL3:
3827 /* This legacy MSR exists but isn't fully documented in current
3828 * silicon. It is however accessed by winxp in very narrow
3829 * scenarios where it sets bit #19, itself documented as
3830 * a "reserved" bit. Best effort attempt to source coherent
3831 * read data here should the balance of the register be
3832 * interpreted by the guest:
3833 *
3834 * L2 cache control register 3: 64GB range, 256KB size,
3835 * enabled, latency 0x1, configured
3836 */
3837 msr_info->data = 0xbe702111;
3838 break;
3839 case MSR_AMD64_OSVW_ID_LENGTH:
3840 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841 return 1;
3842 msr_info->data = vcpu->arch.osvw.length;
3843 break;
3844 case MSR_AMD64_OSVW_STATUS:
3845 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3846 return 1;
3847 msr_info->data = vcpu->arch.osvw.status;
3848 break;
3849 case MSR_PLATFORM_INFO:
3850 if (!msr_info->host_initiated &&
3851 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3852 return 1;
3853 msr_info->data = vcpu->arch.msr_platform_info;
3854 break;
3855 case MSR_MISC_FEATURES_ENABLES:
3856 msr_info->data = vcpu->arch.msr_misc_features_enables;
3857 break;
3858 case MSR_K7_HWCR:
3859 msr_info->data = vcpu->arch.msr_hwcr;
3860 break;
3861 default:
3862 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3863 return kvm_pmu_get_msr(vcpu, msr_info);
3864 return KVM_MSR_RET_INVALID;
3865 }
3866 return 0;
3867 }
3868 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3869
3870 /*
3871 * Read or write a bunch of msrs. All parameters are kernel addresses.
3872 *
3873 * @return number of msrs set successfully.
3874 */
3875 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3876 struct kvm_msr_entry *entries,
3877 int (*do_msr)(struct kvm_vcpu *vcpu,
3878 unsigned index, u64 *data))
3879 {
3880 int i;
3881
3882 for (i = 0; i < msrs->nmsrs; ++i)
3883 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3884 break;
3885
3886 return i;
3887 }
3888
3889 /*
3890 * Read or write a bunch of msrs. Parameters are user addresses.
3891 *
3892 * @return number of msrs set successfully.
3893 */
3894 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3895 int (*do_msr)(struct kvm_vcpu *vcpu,
3896 unsigned index, u64 *data),
3897 int writeback)
3898 {
3899 struct kvm_msrs msrs;
3900 struct kvm_msr_entry *entries;
3901 int r, n;
3902 unsigned size;
3903
3904 r = -EFAULT;
3905 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3906 goto out;
3907
3908 r = -E2BIG;
3909 if (msrs.nmsrs >= MAX_IO_MSRS)
3910 goto out;
3911
3912 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3913 entries = memdup_user(user_msrs->entries, size);
3914 if (IS_ERR(entries)) {
3915 r = PTR_ERR(entries);
3916 goto out;
3917 }
3918
3919 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3920 if (r < 0)
3921 goto out_free;
3922
3923 r = -EFAULT;
3924 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3925 goto out_free;
3926
3927 r = n;
3928
3929 out_free:
3930 kfree(entries);
3931 out:
3932 return r;
3933 }
3934
3935 static inline bool kvm_can_mwait_in_guest(void)
3936 {
3937 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3938 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3939 boot_cpu_has(X86_FEATURE_ARAT);
3940 }
3941
3942 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3943 struct kvm_cpuid2 __user *cpuid_arg)
3944 {
3945 struct kvm_cpuid2 cpuid;
3946 int r;
3947
3948 r = -EFAULT;
3949 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3950 return r;
3951
3952 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3953 if (r)
3954 return r;
3955
3956 r = -EFAULT;
3957 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3958 return r;
3959
3960 return 0;
3961 }
3962
3963 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3964 {
3965 int r = 0;
3966
3967 switch (ext) {
3968 case KVM_CAP_IRQCHIP:
3969 case KVM_CAP_HLT:
3970 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3971 case KVM_CAP_SET_TSS_ADDR:
3972 case KVM_CAP_EXT_CPUID:
3973 case KVM_CAP_EXT_EMUL_CPUID:
3974 case KVM_CAP_CLOCKSOURCE:
3975 case KVM_CAP_PIT:
3976 case KVM_CAP_NOP_IO_DELAY:
3977 case KVM_CAP_MP_STATE:
3978 case KVM_CAP_SYNC_MMU:
3979 case KVM_CAP_USER_NMI:
3980 case KVM_CAP_REINJECT_CONTROL:
3981 case KVM_CAP_IRQ_INJECT_STATUS:
3982 case KVM_CAP_IOEVENTFD:
3983 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3984 case KVM_CAP_PIT2:
3985 case KVM_CAP_PIT_STATE2:
3986 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3987 case KVM_CAP_VCPU_EVENTS:
3988 case KVM_CAP_HYPERV:
3989 case KVM_CAP_HYPERV_VAPIC:
3990 case KVM_CAP_HYPERV_SPIN:
3991 case KVM_CAP_HYPERV_SYNIC:
3992 case KVM_CAP_HYPERV_SYNIC2:
3993 case KVM_CAP_HYPERV_VP_INDEX:
3994 case KVM_CAP_HYPERV_EVENTFD:
3995 case KVM_CAP_HYPERV_TLBFLUSH:
3996 case KVM_CAP_HYPERV_SEND_IPI:
3997 case KVM_CAP_HYPERV_CPUID:
3998 case KVM_CAP_HYPERV_ENFORCE_CPUID:
3999 case KVM_CAP_SYS_HYPERV_CPUID:
4000 case KVM_CAP_PCI_SEGMENT:
4001 case KVM_CAP_DEBUGREGS:
4002 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4003 case KVM_CAP_XSAVE:
4004 case KVM_CAP_ASYNC_PF:
4005 case KVM_CAP_ASYNC_PF_INT:
4006 case KVM_CAP_GET_TSC_KHZ:
4007 case KVM_CAP_KVMCLOCK_CTRL:
4008 case KVM_CAP_READONLY_MEM:
4009 case KVM_CAP_HYPERV_TIME:
4010 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4011 case KVM_CAP_TSC_DEADLINE_TIMER:
4012 case KVM_CAP_DISABLE_QUIRKS:
4013 case KVM_CAP_SET_BOOT_CPU_ID:
4014 case KVM_CAP_SPLIT_IRQCHIP:
4015 case KVM_CAP_IMMEDIATE_EXIT:
4016 case KVM_CAP_PMU_EVENT_FILTER:
4017 case KVM_CAP_GET_MSR_FEATURES:
4018 case KVM_CAP_MSR_PLATFORM_INFO:
4019 case KVM_CAP_EXCEPTION_PAYLOAD:
4020 case KVM_CAP_SET_GUEST_DEBUG:
4021 case KVM_CAP_LAST_CPU:
4022 case KVM_CAP_X86_USER_SPACE_MSR:
4023 case KVM_CAP_X86_MSR_FILTER:
4024 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4025 #ifdef CONFIG_X86_SGX_KVM
4026 case KVM_CAP_SGX_ATTRIBUTE:
4027 #endif
4028 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4029 case KVM_CAP_SREGS2:
4030 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4031 r = 1;
4032 break;
4033 case KVM_CAP_EXIT_HYPERCALL:
4034 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4035 break;
4036 case KVM_CAP_SET_GUEST_DEBUG2:
4037 return KVM_GUESTDBG_VALID_MASK;
4038 #ifdef CONFIG_KVM_XEN
4039 case KVM_CAP_XEN_HVM:
4040 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4041 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4042 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4043 if (sched_info_on())
4044 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4045 break;
4046 #endif
4047 case KVM_CAP_SYNC_REGS:
4048 r = KVM_SYNC_X86_VALID_FIELDS;
4049 break;
4050 case KVM_CAP_ADJUST_CLOCK:
4051 r = KVM_CLOCK_TSC_STABLE;
4052 break;
4053 case KVM_CAP_X86_DISABLE_EXITS:
4054 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4055 KVM_X86_DISABLE_EXITS_CSTATE;
4056 if(kvm_can_mwait_in_guest())
4057 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4058 break;
4059 case KVM_CAP_X86_SMM:
4060 /* SMBASE is usually relocated above 1M on modern chipsets,
4061 * and SMM handlers might indeed rely on 4G segment limits,
4062 * so do not report SMM to be available if real mode is
4063 * emulated via vm86 mode. Still, do not go to great lengths
4064 * to avoid userspace's usage of the feature, because it is a
4065 * fringe case that is not enabled except via specific settings
4066 * of the module parameters.
4067 */
4068 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4069 break;
4070 case KVM_CAP_VAPIC:
4071 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4072 break;
4073 case KVM_CAP_NR_VCPUS:
4074 r = KVM_SOFT_MAX_VCPUS;
4075 break;
4076 case KVM_CAP_MAX_VCPUS:
4077 r = KVM_MAX_VCPUS;
4078 break;
4079 case KVM_CAP_MAX_VCPU_ID:
4080 r = KVM_MAX_VCPU_ID;
4081 break;
4082 case KVM_CAP_PV_MMU: /* obsolete */
4083 r = 0;
4084 break;
4085 case KVM_CAP_MCE:
4086 r = KVM_MAX_MCE_BANKS;
4087 break;
4088 case KVM_CAP_XCRS:
4089 r = boot_cpu_has(X86_FEATURE_XSAVE);
4090 break;
4091 case KVM_CAP_TSC_CONTROL:
4092 r = kvm_has_tsc_control;
4093 break;
4094 case KVM_CAP_X2APIC_API:
4095 r = KVM_X2APIC_API_VALID_FLAGS;
4096 break;
4097 case KVM_CAP_NESTED_STATE:
4098 r = kvm_x86_ops.nested_ops->get_state ?
4099 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4100 break;
4101 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4102 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4103 break;
4104 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4105 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4106 break;
4107 case KVM_CAP_SMALLER_MAXPHYADDR:
4108 r = (int) allow_smaller_maxphyaddr;
4109 break;
4110 case KVM_CAP_STEAL_TIME:
4111 r = sched_info_on();
4112 break;
4113 case KVM_CAP_X86_BUS_LOCK_EXIT:
4114 if (kvm_has_bus_lock_exit)
4115 r = KVM_BUS_LOCK_DETECTION_OFF |
4116 KVM_BUS_LOCK_DETECTION_EXIT;
4117 else
4118 r = 0;
4119 break;
4120 default:
4121 break;
4122 }
4123 return r;
4124
4125 }
4126
4127 long kvm_arch_dev_ioctl(struct file *filp,
4128 unsigned int ioctl, unsigned long arg)
4129 {
4130 void __user *argp = (void __user *)arg;
4131 long r;
4132
4133 switch (ioctl) {
4134 case KVM_GET_MSR_INDEX_LIST: {
4135 struct kvm_msr_list __user *user_msr_list = argp;
4136 struct kvm_msr_list msr_list;
4137 unsigned n;
4138
4139 r = -EFAULT;
4140 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4141 goto out;
4142 n = msr_list.nmsrs;
4143 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4144 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4145 goto out;
4146 r = -E2BIG;
4147 if (n < msr_list.nmsrs)
4148 goto out;
4149 r = -EFAULT;
4150 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4151 num_msrs_to_save * sizeof(u32)))
4152 goto out;
4153 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4154 &emulated_msrs,
4155 num_emulated_msrs * sizeof(u32)))
4156 goto out;
4157 r = 0;
4158 break;
4159 }
4160 case KVM_GET_SUPPORTED_CPUID:
4161 case KVM_GET_EMULATED_CPUID: {
4162 struct kvm_cpuid2 __user *cpuid_arg = argp;
4163 struct kvm_cpuid2 cpuid;
4164
4165 r = -EFAULT;
4166 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4167 goto out;
4168
4169 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4170 ioctl);
4171 if (r)
4172 goto out;
4173
4174 r = -EFAULT;
4175 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4176 goto out;
4177 r = 0;
4178 break;
4179 }
4180 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4181 r = -EFAULT;
4182 if (copy_to_user(argp, &kvm_mce_cap_supported,
4183 sizeof(kvm_mce_cap_supported)))
4184 goto out;
4185 r = 0;
4186 break;
4187 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4188 struct kvm_msr_list __user *user_msr_list = argp;
4189 struct kvm_msr_list msr_list;
4190 unsigned int n;
4191
4192 r = -EFAULT;
4193 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4194 goto out;
4195 n = msr_list.nmsrs;
4196 msr_list.nmsrs = num_msr_based_features;
4197 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4198 goto out;
4199 r = -E2BIG;
4200 if (n < msr_list.nmsrs)
4201 goto out;
4202 r = -EFAULT;
4203 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4204 num_msr_based_features * sizeof(u32)))
4205 goto out;
4206 r = 0;
4207 break;
4208 }
4209 case KVM_GET_MSRS:
4210 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4211 break;
4212 case KVM_GET_SUPPORTED_HV_CPUID:
4213 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4214 break;
4215 default:
4216 r = -EINVAL;
4217 break;
4218 }
4219 out:
4220 return r;
4221 }
4222
4223 static void wbinvd_ipi(void *garbage)
4224 {
4225 wbinvd();
4226 }
4227
4228 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4229 {
4230 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4231 }
4232
4233 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4234 {
4235 /* Address WBINVD may be executed by guest */
4236 if (need_emulate_wbinvd(vcpu)) {
4237 if (static_call(kvm_x86_has_wbinvd_exit)())
4238 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4239 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4240 smp_call_function_single(vcpu->cpu,
4241 wbinvd_ipi, NULL, 1);
4242 }
4243
4244 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4245
4246 /* Save host pkru register if supported */
4247 vcpu->arch.host_pkru = read_pkru();
4248
4249 /* Apply any externally detected TSC adjustments (due to suspend) */
4250 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4251 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4252 vcpu->arch.tsc_offset_adjustment = 0;
4253 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4254 }
4255
4256 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4257 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4258 rdtsc() - vcpu->arch.last_host_tsc;
4259 if (tsc_delta < 0)
4260 mark_tsc_unstable("KVM discovered backwards TSC");
4261
4262 if (kvm_check_tsc_unstable()) {
4263 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4264 vcpu->arch.last_guest_tsc);
4265 kvm_vcpu_write_tsc_offset(vcpu, offset);
4266 vcpu->arch.tsc_catchup = 1;
4267 }
4268
4269 if (kvm_lapic_hv_timer_in_use(vcpu))
4270 kvm_lapic_restart_hv_timer(vcpu);
4271
4272 /*
4273 * On a host with synchronized TSC, there is no need to update
4274 * kvmclock on vcpu->cpu migration
4275 */
4276 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4277 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4278 if (vcpu->cpu != cpu)
4279 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4280 vcpu->cpu = cpu;
4281 }
4282
4283 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4284 }
4285
4286 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4287 {
4288 struct kvm_host_map map;
4289 struct kvm_steal_time *st;
4290
4291 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4292 return;
4293
4294 if (vcpu->arch.st.preempted)
4295 return;
4296
4297 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4298 &vcpu->arch.st.cache, true))
4299 return;
4300
4301 st = map.hva +
4302 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4303
4304 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4305
4306 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4307 }
4308
4309 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4310 {
4311 int idx;
4312
4313 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4314 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4315
4316 /*
4317 * Take the srcu lock as memslots will be accessed to check the gfn
4318 * cache generation against the memslots generation.
4319 */
4320 idx = srcu_read_lock(&vcpu->kvm->srcu);
4321 if (kvm_xen_msr_enabled(vcpu->kvm))
4322 kvm_xen_runstate_set_preempted(vcpu);
4323 else
4324 kvm_steal_time_set_preempted(vcpu);
4325 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4326
4327 static_call(kvm_x86_vcpu_put)(vcpu);
4328 vcpu->arch.last_host_tsc = rdtsc();
4329 }
4330
4331 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4332 struct kvm_lapic_state *s)
4333 {
4334 if (vcpu->arch.apicv_active)
4335 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4336
4337 return kvm_apic_get_state(vcpu, s);
4338 }
4339
4340 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4341 struct kvm_lapic_state *s)
4342 {
4343 int r;
4344
4345 r = kvm_apic_set_state(vcpu, s);
4346 if (r)
4347 return r;
4348 update_cr8_intercept(vcpu);
4349
4350 return 0;
4351 }
4352
4353 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4354 {
4355 /*
4356 * We can accept userspace's request for interrupt injection
4357 * as long as we have a place to store the interrupt number.
4358 * The actual injection will happen when the CPU is able to
4359 * deliver the interrupt.
4360 */
4361 if (kvm_cpu_has_extint(vcpu))
4362 return false;
4363
4364 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4365 return (!lapic_in_kernel(vcpu) ||
4366 kvm_apic_accept_pic_intr(vcpu));
4367 }
4368
4369 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4370 {
4371 /*
4372 * Do not cause an interrupt window exit if an exception
4373 * is pending or an event needs reinjection; userspace
4374 * might want to inject the interrupt manually using KVM_SET_REGS
4375 * or KVM_SET_SREGS. For that to work, we must be at an
4376 * instruction boundary and with no events half-injected.
4377 */
4378 return (kvm_arch_interrupt_allowed(vcpu) &&
4379 kvm_cpu_accept_dm_intr(vcpu) &&
4380 !kvm_event_needs_reinjection(vcpu) &&
4381 !vcpu->arch.exception.pending);
4382 }
4383
4384 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4385 struct kvm_interrupt *irq)
4386 {
4387 if (irq->irq >= KVM_NR_INTERRUPTS)
4388 return -EINVAL;
4389
4390 if (!irqchip_in_kernel(vcpu->kvm)) {
4391 kvm_queue_interrupt(vcpu, irq->irq, false);
4392 kvm_make_request(KVM_REQ_EVENT, vcpu);
4393 return 0;
4394 }
4395
4396 /*
4397 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4398 * fail for in-kernel 8259.
4399 */
4400 if (pic_in_kernel(vcpu->kvm))
4401 return -ENXIO;
4402
4403 if (vcpu->arch.pending_external_vector != -1)
4404 return -EEXIST;
4405
4406 vcpu->arch.pending_external_vector = irq->irq;
4407 kvm_make_request(KVM_REQ_EVENT, vcpu);
4408 return 0;
4409 }
4410
4411 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4412 {
4413 kvm_inject_nmi(vcpu);
4414
4415 return 0;
4416 }
4417
4418 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4419 {
4420 kvm_make_request(KVM_REQ_SMI, vcpu);
4421
4422 return 0;
4423 }
4424
4425 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4426 struct kvm_tpr_access_ctl *tac)
4427 {
4428 if (tac->flags)
4429 return -EINVAL;
4430 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4431 return 0;
4432 }
4433
4434 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4435 u64 mcg_cap)
4436 {
4437 int r;
4438 unsigned bank_num = mcg_cap & 0xff, bank;
4439
4440 r = -EINVAL;
4441 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4442 goto out;
4443 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4444 goto out;
4445 r = 0;
4446 vcpu->arch.mcg_cap = mcg_cap;
4447 /* Init IA32_MCG_CTL to all 1s */
4448 if (mcg_cap & MCG_CTL_P)
4449 vcpu->arch.mcg_ctl = ~(u64)0;
4450 /* Init IA32_MCi_CTL to all 1s */
4451 for (bank = 0; bank < bank_num; bank++)
4452 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4453
4454 static_call(kvm_x86_setup_mce)(vcpu);
4455 out:
4456 return r;
4457 }
4458
4459 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4460 struct kvm_x86_mce *mce)
4461 {
4462 u64 mcg_cap = vcpu->arch.mcg_cap;
4463 unsigned bank_num = mcg_cap & 0xff;
4464 u64 *banks = vcpu->arch.mce_banks;
4465
4466 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4467 return -EINVAL;
4468 /*
4469 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4470 * reporting is disabled
4471 */
4472 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4473 vcpu->arch.mcg_ctl != ~(u64)0)
4474 return 0;
4475 banks += 4 * mce->bank;
4476 /*
4477 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4478 * reporting is disabled for the bank
4479 */
4480 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4481 return 0;
4482 if (mce->status & MCI_STATUS_UC) {
4483 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4484 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4485 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4486 return 0;
4487 }
4488 if (banks[1] & MCI_STATUS_VAL)
4489 mce->status |= MCI_STATUS_OVER;
4490 banks[2] = mce->addr;
4491 banks[3] = mce->misc;
4492 vcpu->arch.mcg_status = mce->mcg_status;
4493 banks[1] = mce->status;
4494 kvm_queue_exception(vcpu, MC_VECTOR);
4495 } else if (!(banks[1] & MCI_STATUS_VAL)
4496 || !(banks[1] & MCI_STATUS_UC)) {
4497 if (banks[1] & MCI_STATUS_VAL)
4498 mce->status |= MCI_STATUS_OVER;
4499 banks[2] = mce->addr;
4500 banks[3] = mce->misc;
4501 banks[1] = mce->status;
4502 } else
4503 banks[1] |= MCI_STATUS_OVER;
4504 return 0;
4505 }
4506
4507 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4508 struct kvm_vcpu_events *events)
4509 {
4510 process_nmi(vcpu);
4511
4512 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4513 process_smi(vcpu);
4514
4515 /*
4516 * In guest mode, payload delivery should be deferred,
4517 * so that the L1 hypervisor can intercept #PF before
4518 * CR2 is modified (or intercept #DB before DR6 is
4519 * modified under nVMX). Unless the per-VM capability,
4520 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4521 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4522 * opportunistically defer the exception payload, deliver it if the
4523 * capability hasn't been requested before processing a
4524 * KVM_GET_VCPU_EVENTS.
4525 */
4526 if (!vcpu->kvm->arch.exception_payload_enabled &&
4527 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4528 kvm_deliver_exception_payload(vcpu);
4529
4530 /*
4531 * The API doesn't provide the instruction length for software
4532 * exceptions, so don't report them. As long as the guest RIP
4533 * isn't advanced, we should expect to encounter the exception
4534 * again.
4535 */
4536 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4537 events->exception.injected = 0;
4538 events->exception.pending = 0;
4539 } else {
4540 events->exception.injected = vcpu->arch.exception.injected;
4541 events->exception.pending = vcpu->arch.exception.pending;
4542 /*
4543 * For ABI compatibility, deliberately conflate
4544 * pending and injected exceptions when
4545 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4546 */
4547 if (!vcpu->kvm->arch.exception_payload_enabled)
4548 events->exception.injected |=
4549 vcpu->arch.exception.pending;
4550 }
4551 events->exception.nr = vcpu->arch.exception.nr;
4552 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4553 events->exception.error_code = vcpu->arch.exception.error_code;
4554 events->exception_has_payload = vcpu->arch.exception.has_payload;
4555 events->exception_payload = vcpu->arch.exception.payload;
4556
4557 events->interrupt.injected =
4558 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4559 events->interrupt.nr = vcpu->arch.interrupt.nr;
4560 events->interrupt.soft = 0;
4561 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4562
4563 events->nmi.injected = vcpu->arch.nmi_injected;
4564 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4565 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4566 events->nmi.pad = 0;
4567
4568 events->sipi_vector = 0; /* never valid when reporting to user space */
4569
4570 events->smi.smm = is_smm(vcpu);
4571 events->smi.pending = vcpu->arch.smi_pending;
4572 events->smi.smm_inside_nmi =
4573 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4574 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4575
4576 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4577 | KVM_VCPUEVENT_VALID_SHADOW
4578 | KVM_VCPUEVENT_VALID_SMM);
4579 if (vcpu->kvm->arch.exception_payload_enabled)
4580 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4581
4582 memset(&events->reserved, 0, sizeof(events->reserved));
4583 }
4584
4585 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4586
4587 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4588 struct kvm_vcpu_events *events)
4589 {
4590 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4591 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4592 | KVM_VCPUEVENT_VALID_SHADOW
4593 | KVM_VCPUEVENT_VALID_SMM
4594 | KVM_VCPUEVENT_VALID_PAYLOAD))
4595 return -EINVAL;
4596
4597 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4598 if (!vcpu->kvm->arch.exception_payload_enabled)
4599 return -EINVAL;
4600 if (events->exception.pending)
4601 events->exception.injected = 0;
4602 else
4603 events->exception_has_payload = 0;
4604 } else {
4605 events->exception.pending = 0;
4606 events->exception_has_payload = 0;
4607 }
4608
4609 if ((events->exception.injected || events->exception.pending) &&
4610 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4611 return -EINVAL;
4612
4613 /* INITs are latched while in SMM */
4614 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4615 (events->smi.smm || events->smi.pending) &&
4616 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4617 return -EINVAL;
4618
4619 process_nmi(vcpu);
4620 vcpu->arch.exception.injected = events->exception.injected;
4621 vcpu->arch.exception.pending = events->exception.pending;
4622 vcpu->arch.exception.nr = events->exception.nr;
4623 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4624 vcpu->arch.exception.error_code = events->exception.error_code;
4625 vcpu->arch.exception.has_payload = events->exception_has_payload;
4626 vcpu->arch.exception.payload = events->exception_payload;
4627
4628 vcpu->arch.interrupt.injected = events->interrupt.injected;
4629 vcpu->arch.interrupt.nr = events->interrupt.nr;
4630 vcpu->arch.interrupt.soft = events->interrupt.soft;
4631 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4632 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4633 events->interrupt.shadow);
4634
4635 vcpu->arch.nmi_injected = events->nmi.injected;
4636 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4637 vcpu->arch.nmi_pending = events->nmi.pending;
4638 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4639
4640 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4641 lapic_in_kernel(vcpu))
4642 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4643
4644 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4645 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4646 kvm_smm_changed(vcpu, events->smi.smm);
4647
4648 vcpu->arch.smi_pending = events->smi.pending;
4649
4650 if (events->smi.smm) {
4651 if (events->smi.smm_inside_nmi)
4652 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4653 else
4654 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4655 }
4656
4657 if (lapic_in_kernel(vcpu)) {
4658 if (events->smi.latched_init)
4659 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4660 else
4661 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4662 }
4663 }
4664
4665 kvm_make_request(KVM_REQ_EVENT, vcpu);
4666
4667 return 0;
4668 }
4669
4670 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4671 struct kvm_debugregs *dbgregs)
4672 {
4673 unsigned long val;
4674
4675 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4676 kvm_get_dr(vcpu, 6, &val);
4677 dbgregs->dr6 = val;
4678 dbgregs->dr7 = vcpu->arch.dr7;
4679 dbgregs->flags = 0;
4680 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4681 }
4682
4683 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4684 struct kvm_debugregs *dbgregs)
4685 {
4686 if (dbgregs->flags)
4687 return -EINVAL;
4688
4689 if (!kvm_dr6_valid(dbgregs->dr6))
4690 return -EINVAL;
4691 if (!kvm_dr7_valid(dbgregs->dr7))
4692 return -EINVAL;
4693
4694 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4695 kvm_update_dr0123(vcpu);
4696 vcpu->arch.dr6 = dbgregs->dr6;
4697 vcpu->arch.dr7 = dbgregs->dr7;
4698 kvm_update_dr7(vcpu);
4699
4700 return 0;
4701 }
4702
4703 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4704
4705 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4706 {
4707 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4708 u64 xstate_bv = xsave->header.xfeatures;
4709 u64 valid;
4710
4711 /*
4712 * Copy legacy XSAVE area, to avoid complications with CPUID
4713 * leaves 0 and 1 in the loop below.
4714 */
4715 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4716
4717 /* Set XSTATE_BV */
4718 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4719 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4720
4721 /*
4722 * Copy each region from the possibly compacted offset to the
4723 * non-compacted offset.
4724 */
4725 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4726 while (valid) {
4727 u32 size, offset, ecx, edx;
4728 u64 xfeature_mask = valid & -valid;
4729 int xfeature_nr = fls64(xfeature_mask) - 1;
4730 void *src;
4731
4732 cpuid_count(XSTATE_CPUID, xfeature_nr,
4733 &size, &offset, &ecx, &edx);
4734
4735 if (xfeature_nr == XFEATURE_PKRU) {
4736 memcpy(dest + offset, &vcpu->arch.pkru,
4737 sizeof(vcpu->arch.pkru));
4738 } else {
4739 src = get_xsave_addr(xsave, xfeature_nr);
4740 if (src)
4741 memcpy(dest + offset, src, size);
4742 }
4743
4744 valid -= xfeature_mask;
4745 }
4746 }
4747
4748 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4749 {
4750 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4751 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4752 u64 valid;
4753
4754 /*
4755 * Copy legacy XSAVE area, to avoid complications with CPUID
4756 * leaves 0 and 1 in the loop below.
4757 */
4758 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4759
4760 /* Set XSTATE_BV and possibly XCOMP_BV. */
4761 xsave->header.xfeatures = xstate_bv;
4762 if (boot_cpu_has(X86_FEATURE_XSAVES))
4763 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4764
4765 /*
4766 * Copy each region from the non-compacted offset to the
4767 * possibly compacted offset.
4768 */
4769 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4770 while (valid) {
4771 u32 size, offset, ecx, edx;
4772 u64 xfeature_mask = valid & -valid;
4773 int xfeature_nr = fls64(xfeature_mask) - 1;
4774
4775 cpuid_count(XSTATE_CPUID, xfeature_nr,
4776 &size, &offset, &ecx, &edx);
4777
4778 if (xfeature_nr == XFEATURE_PKRU) {
4779 memcpy(&vcpu->arch.pkru, src + offset,
4780 sizeof(vcpu->arch.pkru));
4781 } else {
4782 void *dest = get_xsave_addr(xsave, xfeature_nr);
4783
4784 if (dest)
4785 memcpy(dest, src + offset, size);
4786 }
4787
4788 valid -= xfeature_mask;
4789 }
4790 }
4791
4792 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4793 struct kvm_xsave *guest_xsave)
4794 {
4795 if (!vcpu->arch.guest_fpu)
4796 return;
4797
4798 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4799 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4800 fill_xsave((u8 *) guest_xsave->region, vcpu);
4801 } else {
4802 memcpy(guest_xsave->region,
4803 &vcpu->arch.guest_fpu->state.fxsave,
4804 sizeof(struct fxregs_state));
4805 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4806 XFEATURE_MASK_FPSSE;
4807 }
4808 }
4809
4810 #define XSAVE_MXCSR_OFFSET 24
4811
4812 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4813 struct kvm_xsave *guest_xsave)
4814 {
4815 u64 xstate_bv;
4816 u32 mxcsr;
4817
4818 if (!vcpu->arch.guest_fpu)
4819 return 0;
4820
4821 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4822 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4823
4824 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4825 /*
4826 * Here we allow setting states that are not present in
4827 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4828 * with old userspace.
4829 */
4830 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4831 return -EINVAL;
4832 load_xsave(vcpu, (u8 *)guest_xsave->region);
4833 } else {
4834 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4835 mxcsr & ~mxcsr_feature_mask)
4836 return -EINVAL;
4837 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4838 guest_xsave->region, sizeof(struct fxregs_state));
4839 }
4840 return 0;
4841 }
4842
4843 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4844 struct kvm_xcrs *guest_xcrs)
4845 {
4846 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4847 guest_xcrs->nr_xcrs = 0;
4848 return;
4849 }
4850
4851 guest_xcrs->nr_xcrs = 1;
4852 guest_xcrs->flags = 0;
4853 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4854 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4855 }
4856
4857 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4858 struct kvm_xcrs *guest_xcrs)
4859 {
4860 int i, r = 0;
4861
4862 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4863 return -EINVAL;
4864
4865 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4866 return -EINVAL;
4867
4868 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4869 /* Only support XCR0 currently */
4870 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4871 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4872 guest_xcrs->xcrs[i].value);
4873 break;
4874 }
4875 if (r)
4876 r = -EINVAL;
4877 return r;
4878 }
4879
4880 /*
4881 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4882 * stopped by the hypervisor. This function will be called from the host only.
4883 * EINVAL is returned when the host attempts to set the flag for a guest that
4884 * does not support pv clocks.
4885 */
4886 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4887 {
4888 if (!vcpu->arch.pv_time_enabled)
4889 return -EINVAL;
4890 vcpu->arch.pvclock_set_guest_stopped_request = true;
4891 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4892 return 0;
4893 }
4894
4895 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4896 struct kvm_enable_cap *cap)
4897 {
4898 int r;
4899 uint16_t vmcs_version;
4900 void __user *user_ptr;
4901
4902 if (cap->flags)
4903 return -EINVAL;
4904
4905 switch (cap->cap) {
4906 case KVM_CAP_HYPERV_SYNIC2:
4907 if (cap->args[0])
4908 return -EINVAL;
4909 fallthrough;
4910
4911 case KVM_CAP_HYPERV_SYNIC:
4912 if (!irqchip_in_kernel(vcpu->kvm))
4913 return -EINVAL;
4914 return kvm_hv_activate_synic(vcpu, cap->cap ==
4915 KVM_CAP_HYPERV_SYNIC2);
4916 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4917 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4918 return -ENOTTY;
4919 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4920 if (!r) {
4921 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4922 if (copy_to_user(user_ptr, &vmcs_version,
4923 sizeof(vmcs_version)))
4924 r = -EFAULT;
4925 }
4926 return r;
4927 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4928 if (!kvm_x86_ops.enable_direct_tlbflush)
4929 return -ENOTTY;
4930
4931 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4932
4933 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4934 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4935
4936 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4937 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4938 if (vcpu->arch.pv_cpuid.enforce)
4939 kvm_update_pv_runtime(vcpu);
4940
4941 return 0;
4942 default:
4943 return -EINVAL;
4944 }
4945 }
4946
4947 long kvm_arch_vcpu_ioctl(struct file *filp,
4948 unsigned int ioctl, unsigned long arg)
4949 {
4950 struct kvm_vcpu *vcpu = filp->private_data;
4951 void __user *argp = (void __user *)arg;
4952 int r;
4953 union {
4954 struct kvm_sregs2 *sregs2;
4955 struct kvm_lapic_state *lapic;
4956 struct kvm_xsave *xsave;
4957 struct kvm_xcrs *xcrs;
4958 void *buffer;
4959 } u;
4960
4961 vcpu_load(vcpu);
4962
4963 u.buffer = NULL;
4964 switch (ioctl) {
4965 case KVM_GET_LAPIC: {
4966 r = -EINVAL;
4967 if (!lapic_in_kernel(vcpu))
4968 goto out;
4969 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4970 GFP_KERNEL_ACCOUNT);
4971
4972 r = -ENOMEM;
4973 if (!u.lapic)
4974 goto out;
4975 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4976 if (r)
4977 goto out;
4978 r = -EFAULT;
4979 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4980 goto out;
4981 r = 0;
4982 break;
4983 }
4984 case KVM_SET_LAPIC: {
4985 r = -EINVAL;
4986 if (!lapic_in_kernel(vcpu))
4987 goto out;
4988 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4989 if (IS_ERR(u.lapic)) {
4990 r = PTR_ERR(u.lapic);
4991 goto out_nofree;
4992 }
4993
4994 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4995 break;
4996 }
4997 case KVM_INTERRUPT: {
4998 struct kvm_interrupt irq;
4999
5000 r = -EFAULT;
5001 if (copy_from_user(&irq, argp, sizeof(irq)))
5002 goto out;
5003 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5004 break;
5005 }
5006 case KVM_NMI: {
5007 r = kvm_vcpu_ioctl_nmi(vcpu);
5008 break;
5009 }
5010 case KVM_SMI: {
5011 r = kvm_vcpu_ioctl_smi(vcpu);
5012 break;
5013 }
5014 case KVM_SET_CPUID: {
5015 struct kvm_cpuid __user *cpuid_arg = argp;
5016 struct kvm_cpuid cpuid;
5017
5018 r = -EFAULT;
5019 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020 goto out;
5021 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5022 break;
5023 }
5024 case KVM_SET_CPUID2: {
5025 struct kvm_cpuid2 __user *cpuid_arg = argp;
5026 struct kvm_cpuid2 cpuid;
5027
5028 r = -EFAULT;
5029 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5030 goto out;
5031 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5032 cpuid_arg->entries);
5033 break;
5034 }
5035 case KVM_GET_CPUID2: {
5036 struct kvm_cpuid2 __user *cpuid_arg = argp;
5037 struct kvm_cpuid2 cpuid;
5038
5039 r = -EFAULT;
5040 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5041 goto out;
5042 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5043 cpuid_arg->entries);
5044 if (r)
5045 goto out;
5046 r = -EFAULT;
5047 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5048 goto out;
5049 r = 0;
5050 break;
5051 }
5052 case KVM_GET_MSRS: {
5053 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5054 r = msr_io(vcpu, argp, do_get_msr, 1);
5055 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5056 break;
5057 }
5058 case KVM_SET_MSRS: {
5059 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5060 r = msr_io(vcpu, argp, do_set_msr, 0);
5061 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5062 break;
5063 }
5064 case KVM_TPR_ACCESS_REPORTING: {
5065 struct kvm_tpr_access_ctl tac;
5066
5067 r = -EFAULT;
5068 if (copy_from_user(&tac, argp, sizeof(tac)))
5069 goto out;
5070 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5071 if (r)
5072 goto out;
5073 r = -EFAULT;
5074 if (copy_to_user(argp, &tac, sizeof(tac)))
5075 goto out;
5076 r = 0;
5077 break;
5078 };
5079 case KVM_SET_VAPIC_ADDR: {
5080 struct kvm_vapic_addr va;
5081 int idx;
5082
5083 r = -EINVAL;
5084 if (!lapic_in_kernel(vcpu))
5085 goto out;
5086 r = -EFAULT;
5087 if (copy_from_user(&va, argp, sizeof(va)))
5088 goto out;
5089 idx = srcu_read_lock(&vcpu->kvm->srcu);
5090 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5091 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5092 break;
5093 }
5094 case KVM_X86_SETUP_MCE: {
5095 u64 mcg_cap;
5096
5097 r = -EFAULT;
5098 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5099 goto out;
5100 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5101 break;
5102 }
5103 case KVM_X86_SET_MCE: {
5104 struct kvm_x86_mce mce;
5105
5106 r = -EFAULT;
5107 if (copy_from_user(&mce, argp, sizeof(mce)))
5108 goto out;
5109 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5110 break;
5111 }
5112 case KVM_GET_VCPU_EVENTS: {
5113 struct kvm_vcpu_events events;
5114
5115 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5116
5117 r = -EFAULT;
5118 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5119 break;
5120 r = 0;
5121 break;
5122 }
5123 case KVM_SET_VCPU_EVENTS: {
5124 struct kvm_vcpu_events events;
5125
5126 r = -EFAULT;
5127 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5128 break;
5129
5130 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5131 break;
5132 }
5133 case KVM_GET_DEBUGREGS: {
5134 struct kvm_debugregs dbgregs;
5135
5136 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5137
5138 r = -EFAULT;
5139 if (copy_to_user(argp, &dbgregs,
5140 sizeof(struct kvm_debugregs)))
5141 break;
5142 r = 0;
5143 break;
5144 }
5145 case KVM_SET_DEBUGREGS: {
5146 struct kvm_debugregs dbgregs;
5147
5148 r = -EFAULT;
5149 if (copy_from_user(&dbgregs, argp,
5150 sizeof(struct kvm_debugregs)))
5151 break;
5152
5153 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5154 break;
5155 }
5156 case KVM_GET_XSAVE: {
5157 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5158 r = -ENOMEM;
5159 if (!u.xsave)
5160 break;
5161
5162 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5163
5164 r = -EFAULT;
5165 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5166 break;
5167 r = 0;
5168 break;
5169 }
5170 case KVM_SET_XSAVE: {
5171 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5172 if (IS_ERR(u.xsave)) {
5173 r = PTR_ERR(u.xsave);
5174 goto out_nofree;
5175 }
5176
5177 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5178 break;
5179 }
5180 case KVM_GET_XCRS: {
5181 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5182 r = -ENOMEM;
5183 if (!u.xcrs)
5184 break;
5185
5186 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5187
5188 r = -EFAULT;
5189 if (copy_to_user(argp, u.xcrs,
5190 sizeof(struct kvm_xcrs)))
5191 break;
5192 r = 0;
5193 break;
5194 }
5195 case KVM_SET_XCRS: {
5196 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5197 if (IS_ERR(u.xcrs)) {
5198 r = PTR_ERR(u.xcrs);
5199 goto out_nofree;
5200 }
5201
5202 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5203 break;
5204 }
5205 case KVM_SET_TSC_KHZ: {
5206 u32 user_tsc_khz;
5207
5208 r = -EINVAL;
5209 user_tsc_khz = (u32)arg;
5210
5211 if (kvm_has_tsc_control &&
5212 user_tsc_khz >= kvm_max_guest_tsc_khz)
5213 goto out;
5214
5215 if (user_tsc_khz == 0)
5216 user_tsc_khz = tsc_khz;
5217
5218 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5219 r = 0;
5220
5221 goto out;
5222 }
5223 case KVM_GET_TSC_KHZ: {
5224 r = vcpu->arch.virtual_tsc_khz;
5225 goto out;
5226 }
5227 case KVM_KVMCLOCK_CTRL: {
5228 r = kvm_set_guest_paused(vcpu);
5229 goto out;
5230 }
5231 case KVM_ENABLE_CAP: {
5232 struct kvm_enable_cap cap;
5233
5234 r = -EFAULT;
5235 if (copy_from_user(&cap, argp, sizeof(cap)))
5236 goto out;
5237 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5238 break;
5239 }
5240 case KVM_GET_NESTED_STATE: {
5241 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5242 u32 user_data_size;
5243
5244 r = -EINVAL;
5245 if (!kvm_x86_ops.nested_ops->get_state)
5246 break;
5247
5248 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5249 r = -EFAULT;
5250 if (get_user(user_data_size, &user_kvm_nested_state->size))
5251 break;
5252
5253 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5254 user_data_size);
5255 if (r < 0)
5256 break;
5257
5258 if (r > user_data_size) {
5259 if (put_user(r, &user_kvm_nested_state->size))
5260 r = -EFAULT;
5261 else
5262 r = -E2BIG;
5263 break;
5264 }
5265
5266 r = 0;
5267 break;
5268 }
5269 case KVM_SET_NESTED_STATE: {
5270 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5271 struct kvm_nested_state kvm_state;
5272 int idx;
5273
5274 r = -EINVAL;
5275 if (!kvm_x86_ops.nested_ops->set_state)
5276 break;
5277
5278 r = -EFAULT;
5279 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5280 break;
5281
5282 r = -EINVAL;
5283 if (kvm_state.size < sizeof(kvm_state))
5284 break;
5285
5286 if (kvm_state.flags &
5287 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5288 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5289 | KVM_STATE_NESTED_GIF_SET))
5290 break;
5291
5292 /* nested_run_pending implies guest_mode. */
5293 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5294 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5295 break;
5296
5297 idx = srcu_read_lock(&vcpu->kvm->srcu);
5298 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5299 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5300 break;
5301 }
5302 case KVM_GET_SUPPORTED_HV_CPUID:
5303 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5304 break;
5305 #ifdef CONFIG_KVM_XEN
5306 case KVM_XEN_VCPU_GET_ATTR: {
5307 struct kvm_xen_vcpu_attr xva;
5308
5309 r = -EFAULT;
5310 if (copy_from_user(&xva, argp, sizeof(xva)))
5311 goto out;
5312 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5313 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5314 r = -EFAULT;
5315 break;
5316 }
5317 case KVM_XEN_VCPU_SET_ATTR: {
5318 struct kvm_xen_vcpu_attr xva;
5319
5320 r = -EFAULT;
5321 if (copy_from_user(&xva, argp, sizeof(xva)))
5322 goto out;
5323 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5324 break;
5325 }
5326 #endif
5327 case KVM_GET_SREGS2: {
5328 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5329 r = -ENOMEM;
5330 if (!u.sregs2)
5331 goto out;
5332 __get_sregs2(vcpu, u.sregs2);
5333 r = -EFAULT;
5334 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5335 goto out;
5336 r = 0;
5337 break;
5338 }
5339 case KVM_SET_SREGS2: {
5340 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5341 if (IS_ERR(u.sregs2)) {
5342 r = PTR_ERR(u.sregs2);
5343 u.sregs2 = NULL;
5344 goto out;
5345 }
5346 r = __set_sregs2(vcpu, u.sregs2);
5347 break;
5348 }
5349 default:
5350 r = -EINVAL;
5351 }
5352 out:
5353 kfree(u.buffer);
5354 out_nofree:
5355 vcpu_put(vcpu);
5356 return r;
5357 }
5358
5359 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5360 {
5361 return VM_FAULT_SIGBUS;
5362 }
5363
5364 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5365 {
5366 int ret;
5367
5368 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5369 return -EINVAL;
5370 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5371 return ret;
5372 }
5373
5374 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5375 u64 ident_addr)
5376 {
5377 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5378 }
5379
5380 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5381 unsigned long kvm_nr_mmu_pages)
5382 {
5383 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5384 return -EINVAL;
5385
5386 mutex_lock(&kvm->slots_lock);
5387
5388 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5389 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5390
5391 mutex_unlock(&kvm->slots_lock);
5392 return 0;
5393 }
5394
5395 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5396 {
5397 return kvm->arch.n_max_mmu_pages;
5398 }
5399
5400 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5401 {
5402 struct kvm_pic *pic = kvm->arch.vpic;
5403 int r;
5404
5405 r = 0;
5406 switch (chip->chip_id) {
5407 case KVM_IRQCHIP_PIC_MASTER:
5408 memcpy(&chip->chip.pic, &pic->pics[0],
5409 sizeof(struct kvm_pic_state));
5410 break;
5411 case KVM_IRQCHIP_PIC_SLAVE:
5412 memcpy(&chip->chip.pic, &pic->pics[1],
5413 sizeof(struct kvm_pic_state));
5414 break;
5415 case KVM_IRQCHIP_IOAPIC:
5416 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5417 break;
5418 default:
5419 r = -EINVAL;
5420 break;
5421 }
5422 return r;
5423 }
5424
5425 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5426 {
5427 struct kvm_pic *pic = kvm->arch.vpic;
5428 int r;
5429
5430 r = 0;
5431 switch (chip->chip_id) {
5432 case KVM_IRQCHIP_PIC_MASTER:
5433 spin_lock(&pic->lock);
5434 memcpy(&pic->pics[0], &chip->chip.pic,
5435 sizeof(struct kvm_pic_state));
5436 spin_unlock(&pic->lock);
5437 break;
5438 case KVM_IRQCHIP_PIC_SLAVE:
5439 spin_lock(&pic->lock);
5440 memcpy(&pic->pics[1], &chip->chip.pic,
5441 sizeof(struct kvm_pic_state));
5442 spin_unlock(&pic->lock);
5443 break;
5444 case KVM_IRQCHIP_IOAPIC:
5445 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5446 break;
5447 default:
5448 r = -EINVAL;
5449 break;
5450 }
5451 kvm_pic_update_irq(pic);
5452 return r;
5453 }
5454
5455 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5456 {
5457 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5458
5459 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5460
5461 mutex_lock(&kps->lock);
5462 memcpy(ps, &kps->channels, sizeof(*ps));
5463 mutex_unlock(&kps->lock);
5464 return 0;
5465 }
5466
5467 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5468 {
5469 int i;
5470 struct kvm_pit *pit = kvm->arch.vpit;
5471
5472 mutex_lock(&pit->pit_state.lock);
5473 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5474 for (i = 0; i < 3; i++)
5475 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5476 mutex_unlock(&pit->pit_state.lock);
5477 return 0;
5478 }
5479
5480 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5481 {
5482 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5483 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5484 sizeof(ps->channels));
5485 ps->flags = kvm->arch.vpit->pit_state.flags;
5486 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5487 memset(&ps->reserved, 0, sizeof(ps->reserved));
5488 return 0;
5489 }
5490
5491 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5492 {
5493 int start = 0;
5494 int i;
5495 u32 prev_legacy, cur_legacy;
5496 struct kvm_pit *pit = kvm->arch.vpit;
5497
5498 mutex_lock(&pit->pit_state.lock);
5499 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5500 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5501 if (!prev_legacy && cur_legacy)
5502 start = 1;
5503 memcpy(&pit->pit_state.channels, &ps->channels,
5504 sizeof(pit->pit_state.channels));
5505 pit->pit_state.flags = ps->flags;
5506 for (i = 0; i < 3; i++)
5507 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5508 start && i == 0);
5509 mutex_unlock(&pit->pit_state.lock);
5510 return 0;
5511 }
5512
5513 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5514 struct kvm_reinject_control *control)
5515 {
5516 struct kvm_pit *pit = kvm->arch.vpit;
5517
5518 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5519 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5520 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5521 */
5522 mutex_lock(&pit->pit_state.lock);
5523 kvm_pit_set_reinject(pit, control->pit_reinject);
5524 mutex_unlock(&pit->pit_state.lock);
5525
5526 return 0;
5527 }
5528
5529 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5530 {
5531
5532 /*
5533 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5534 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5535 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5536 * VM-Exit.
5537 */
5538 struct kvm_vcpu *vcpu;
5539 int i;
5540
5541 kvm_for_each_vcpu(i, vcpu, kvm)
5542 kvm_vcpu_kick(vcpu);
5543 }
5544
5545 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5546 bool line_status)
5547 {
5548 if (!irqchip_in_kernel(kvm))
5549 return -ENXIO;
5550
5551 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5552 irq_event->irq, irq_event->level,
5553 line_status);
5554 return 0;
5555 }
5556
5557 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5558 struct kvm_enable_cap *cap)
5559 {
5560 int r;
5561
5562 if (cap->flags)
5563 return -EINVAL;
5564
5565 switch (cap->cap) {
5566 case KVM_CAP_DISABLE_QUIRKS:
5567 kvm->arch.disabled_quirks = cap->args[0];
5568 r = 0;
5569 break;
5570 case KVM_CAP_SPLIT_IRQCHIP: {
5571 mutex_lock(&kvm->lock);
5572 r = -EINVAL;
5573 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5574 goto split_irqchip_unlock;
5575 r = -EEXIST;
5576 if (irqchip_in_kernel(kvm))
5577 goto split_irqchip_unlock;
5578 if (kvm->created_vcpus)
5579 goto split_irqchip_unlock;
5580 r = kvm_setup_empty_irq_routing(kvm);
5581 if (r)
5582 goto split_irqchip_unlock;
5583 /* Pairs with irqchip_in_kernel. */
5584 smp_wmb();
5585 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5586 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5587 r = 0;
5588 split_irqchip_unlock:
5589 mutex_unlock(&kvm->lock);
5590 break;
5591 }
5592 case KVM_CAP_X2APIC_API:
5593 r = -EINVAL;
5594 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5595 break;
5596
5597 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5598 kvm->arch.x2apic_format = true;
5599 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5600 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5601
5602 r = 0;
5603 break;
5604 case KVM_CAP_X86_DISABLE_EXITS:
5605 r = -EINVAL;
5606 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5607 break;
5608
5609 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5610 kvm_can_mwait_in_guest())
5611 kvm->arch.mwait_in_guest = true;
5612 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5613 kvm->arch.hlt_in_guest = true;
5614 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5615 kvm->arch.pause_in_guest = true;
5616 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5617 kvm->arch.cstate_in_guest = true;
5618 r = 0;
5619 break;
5620 case KVM_CAP_MSR_PLATFORM_INFO:
5621 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5622 r = 0;
5623 break;
5624 case KVM_CAP_EXCEPTION_PAYLOAD:
5625 kvm->arch.exception_payload_enabled = cap->args[0];
5626 r = 0;
5627 break;
5628 case KVM_CAP_X86_USER_SPACE_MSR:
5629 kvm->arch.user_space_msr_mask = cap->args[0];
5630 r = 0;
5631 break;
5632 case KVM_CAP_X86_BUS_LOCK_EXIT:
5633 r = -EINVAL;
5634 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5635 break;
5636
5637 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5638 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5639 break;
5640
5641 if (kvm_has_bus_lock_exit &&
5642 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5643 kvm->arch.bus_lock_detection_enabled = true;
5644 r = 0;
5645 break;
5646 #ifdef CONFIG_X86_SGX_KVM
5647 case KVM_CAP_SGX_ATTRIBUTE: {
5648 unsigned long allowed_attributes = 0;
5649
5650 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5651 if (r)
5652 break;
5653
5654 /* KVM only supports the PROVISIONKEY privileged attribute. */
5655 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5656 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5657 kvm->arch.sgx_provisioning_allowed = true;
5658 else
5659 r = -EINVAL;
5660 break;
5661 }
5662 #endif
5663 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5664 r = -EINVAL;
5665 if (kvm_x86_ops.vm_copy_enc_context_from)
5666 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5667 return r;
5668 case KVM_CAP_EXIT_HYPERCALL:
5669 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5670 r = -EINVAL;
5671 break;
5672 }
5673 kvm->arch.hypercall_exit_enabled = cap->args[0];
5674 r = 0;
5675 break;
5676 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5677 r = -EINVAL;
5678 if (cap->args[0] & ~1)
5679 break;
5680 kvm->arch.exit_on_emulation_error = cap->args[0];
5681 r = 0;
5682 break;
5683 default:
5684 r = -EINVAL;
5685 break;
5686 }
5687 return r;
5688 }
5689
5690 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5691 {
5692 struct kvm_x86_msr_filter *msr_filter;
5693
5694 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5695 if (!msr_filter)
5696 return NULL;
5697
5698 msr_filter->default_allow = default_allow;
5699 return msr_filter;
5700 }
5701
5702 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5703 {
5704 u32 i;
5705
5706 if (!msr_filter)
5707 return;
5708
5709 for (i = 0; i < msr_filter->count; i++)
5710 kfree(msr_filter->ranges[i].bitmap);
5711
5712 kfree(msr_filter);
5713 }
5714
5715 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5716 struct kvm_msr_filter_range *user_range)
5717 {
5718 unsigned long *bitmap = NULL;
5719 size_t bitmap_size;
5720
5721 if (!user_range->nmsrs)
5722 return 0;
5723
5724 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5725 return -EINVAL;
5726
5727 if (!user_range->flags)
5728 return -EINVAL;
5729
5730 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5731 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5732 return -EINVAL;
5733
5734 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5735 if (IS_ERR(bitmap))
5736 return PTR_ERR(bitmap);
5737
5738 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5739 .flags = user_range->flags,
5740 .base = user_range->base,
5741 .nmsrs = user_range->nmsrs,
5742 .bitmap = bitmap,
5743 };
5744
5745 msr_filter->count++;
5746 return 0;
5747 }
5748
5749 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5750 {
5751 struct kvm_msr_filter __user *user_msr_filter = argp;
5752 struct kvm_x86_msr_filter *new_filter, *old_filter;
5753 struct kvm_msr_filter filter;
5754 bool default_allow;
5755 bool empty = true;
5756 int r = 0;
5757 u32 i;
5758
5759 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5760 return -EFAULT;
5761
5762 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5763 empty &= !filter.ranges[i].nmsrs;
5764
5765 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5766 if (empty && !default_allow)
5767 return -EINVAL;
5768
5769 new_filter = kvm_alloc_msr_filter(default_allow);
5770 if (!new_filter)
5771 return -ENOMEM;
5772
5773 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5774 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5775 if (r) {
5776 kvm_free_msr_filter(new_filter);
5777 return r;
5778 }
5779 }
5780
5781 mutex_lock(&kvm->lock);
5782
5783 /* The per-VM filter is protected by kvm->lock... */
5784 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5785
5786 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5787 synchronize_srcu(&kvm->srcu);
5788
5789 kvm_free_msr_filter(old_filter);
5790
5791 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5792 mutex_unlock(&kvm->lock);
5793
5794 return 0;
5795 }
5796
5797 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5798 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5799 {
5800 struct kvm_vcpu *vcpu;
5801 int i, ret = 0;
5802
5803 mutex_lock(&kvm->lock);
5804 kvm_for_each_vcpu(i, vcpu, kvm) {
5805 if (!vcpu->arch.pv_time_enabled)
5806 continue;
5807
5808 ret = kvm_set_guest_paused(vcpu);
5809 if (ret) {
5810 kvm_err("Failed to pause guest VCPU%d: %d\n",
5811 vcpu->vcpu_id, ret);
5812 break;
5813 }
5814 }
5815 mutex_unlock(&kvm->lock);
5816
5817 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5818 }
5819
5820 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5821 {
5822 switch (state) {
5823 case PM_HIBERNATION_PREPARE:
5824 case PM_SUSPEND_PREPARE:
5825 return kvm_arch_suspend_notifier(kvm);
5826 }
5827
5828 return NOTIFY_DONE;
5829 }
5830 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5831
5832 long kvm_arch_vm_ioctl(struct file *filp,
5833 unsigned int ioctl, unsigned long arg)
5834 {
5835 struct kvm *kvm = filp->private_data;
5836 void __user *argp = (void __user *)arg;
5837 int r = -ENOTTY;
5838 /*
5839 * This union makes it completely explicit to gcc-3.x
5840 * that these two variables' stack usage should be
5841 * combined, not added together.
5842 */
5843 union {
5844 struct kvm_pit_state ps;
5845 struct kvm_pit_state2 ps2;
5846 struct kvm_pit_config pit_config;
5847 } u;
5848
5849 switch (ioctl) {
5850 case KVM_SET_TSS_ADDR:
5851 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5852 break;
5853 case KVM_SET_IDENTITY_MAP_ADDR: {
5854 u64 ident_addr;
5855
5856 mutex_lock(&kvm->lock);
5857 r = -EINVAL;
5858 if (kvm->created_vcpus)
5859 goto set_identity_unlock;
5860 r = -EFAULT;
5861 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5862 goto set_identity_unlock;
5863 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5864 set_identity_unlock:
5865 mutex_unlock(&kvm->lock);
5866 break;
5867 }
5868 case KVM_SET_NR_MMU_PAGES:
5869 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5870 break;
5871 case KVM_GET_NR_MMU_PAGES:
5872 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5873 break;
5874 case KVM_CREATE_IRQCHIP: {
5875 mutex_lock(&kvm->lock);
5876
5877 r = -EEXIST;
5878 if (irqchip_in_kernel(kvm))
5879 goto create_irqchip_unlock;
5880
5881 r = -EINVAL;
5882 if (kvm->created_vcpus)
5883 goto create_irqchip_unlock;
5884
5885 r = kvm_pic_init(kvm);
5886 if (r)
5887 goto create_irqchip_unlock;
5888
5889 r = kvm_ioapic_init(kvm);
5890 if (r) {
5891 kvm_pic_destroy(kvm);
5892 goto create_irqchip_unlock;
5893 }
5894
5895 r = kvm_setup_default_irq_routing(kvm);
5896 if (r) {
5897 kvm_ioapic_destroy(kvm);
5898 kvm_pic_destroy(kvm);
5899 goto create_irqchip_unlock;
5900 }
5901 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5902 smp_wmb();
5903 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5904 create_irqchip_unlock:
5905 mutex_unlock(&kvm->lock);
5906 break;
5907 }
5908 case KVM_CREATE_PIT:
5909 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5910 goto create_pit;
5911 case KVM_CREATE_PIT2:
5912 r = -EFAULT;
5913 if (copy_from_user(&u.pit_config, argp,
5914 sizeof(struct kvm_pit_config)))
5915 goto out;
5916 create_pit:
5917 mutex_lock(&kvm->lock);
5918 r = -EEXIST;
5919 if (kvm->arch.vpit)
5920 goto create_pit_unlock;
5921 r = -ENOMEM;
5922 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5923 if (kvm->arch.vpit)
5924 r = 0;
5925 create_pit_unlock:
5926 mutex_unlock(&kvm->lock);
5927 break;
5928 case KVM_GET_IRQCHIP: {
5929 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5930 struct kvm_irqchip *chip;
5931
5932 chip = memdup_user(argp, sizeof(*chip));
5933 if (IS_ERR(chip)) {
5934 r = PTR_ERR(chip);
5935 goto out;
5936 }
5937
5938 r = -ENXIO;
5939 if (!irqchip_kernel(kvm))
5940 goto get_irqchip_out;
5941 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5942 if (r)
5943 goto get_irqchip_out;
5944 r = -EFAULT;
5945 if (copy_to_user(argp, chip, sizeof(*chip)))
5946 goto get_irqchip_out;
5947 r = 0;
5948 get_irqchip_out:
5949 kfree(chip);
5950 break;
5951 }
5952 case KVM_SET_IRQCHIP: {
5953 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5954 struct kvm_irqchip *chip;
5955
5956 chip = memdup_user(argp, sizeof(*chip));
5957 if (IS_ERR(chip)) {
5958 r = PTR_ERR(chip);
5959 goto out;
5960 }
5961
5962 r = -ENXIO;
5963 if (!irqchip_kernel(kvm))
5964 goto set_irqchip_out;
5965 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5966 set_irqchip_out:
5967 kfree(chip);
5968 break;
5969 }
5970 case KVM_GET_PIT: {
5971 r = -EFAULT;
5972 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5973 goto out;
5974 r = -ENXIO;
5975 if (!kvm->arch.vpit)
5976 goto out;
5977 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5978 if (r)
5979 goto out;
5980 r = -EFAULT;
5981 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5982 goto out;
5983 r = 0;
5984 break;
5985 }
5986 case KVM_SET_PIT: {
5987 r = -EFAULT;
5988 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5989 goto out;
5990 mutex_lock(&kvm->lock);
5991 r = -ENXIO;
5992 if (!kvm->arch.vpit)
5993 goto set_pit_out;
5994 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5995 set_pit_out:
5996 mutex_unlock(&kvm->lock);
5997 break;
5998 }
5999 case KVM_GET_PIT2: {
6000 r = -ENXIO;
6001 if (!kvm->arch.vpit)
6002 goto out;
6003 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6004 if (r)
6005 goto out;
6006 r = -EFAULT;
6007 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6008 goto out;
6009 r = 0;
6010 break;
6011 }
6012 case KVM_SET_PIT2: {
6013 r = -EFAULT;
6014 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6015 goto out;
6016 mutex_lock(&kvm->lock);
6017 r = -ENXIO;
6018 if (!kvm->arch.vpit)
6019 goto set_pit2_out;
6020 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6021 set_pit2_out:
6022 mutex_unlock(&kvm->lock);
6023 break;
6024 }
6025 case KVM_REINJECT_CONTROL: {
6026 struct kvm_reinject_control control;
6027 r = -EFAULT;
6028 if (copy_from_user(&control, argp, sizeof(control)))
6029 goto out;
6030 r = -ENXIO;
6031 if (!kvm->arch.vpit)
6032 goto out;
6033 r = kvm_vm_ioctl_reinject(kvm, &control);
6034 break;
6035 }
6036 case KVM_SET_BOOT_CPU_ID:
6037 r = 0;
6038 mutex_lock(&kvm->lock);
6039 if (kvm->created_vcpus)
6040 r = -EBUSY;
6041 else
6042 kvm->arch.bsp_vcpu_id = arg;
6043 mutex_unlock(&kvm->lock);
6044 break;
6045 #ifdef CONFIG_KVM_XEN
6046 case KVM_XEN_HVM_CONFIG: {
6047 struct kvm_xen_hvm_config xhc;
6048 r = -EFAULT;
6049 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6050 goto out;
6051 r = kvm_xen_hvm_config(kvm, &xhc);
6052 break;
6053 }
6054 case KVM_XEN_HVM_GET_ATTR: {
6055 struct kvm_xen_hvm_attr xha;
6056
6057 r = -EFAULT;
6058 if (copy_from_user(&xha, argp, sizeof(xha)))
6059 goto out;
6060 r = kvm_xen_hvm_get_attr(kvm, &xha);
6061 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6062 r = -EFAULT;
6063 break;
6064 }
6065 case KVM_XEN_HVM_SET_ATTR: {
6066 struct kvm_xen_hvm_attr xha;
6067
6068 r = -EFAULT;
6069 if (copy_from_user(&xha, argp, sizeof(xha)))
6070 goto out;
6071 r = kvm_xen_hvm_set_attr(kvm, &xha);
6072 break;
6073 }
6074 #endif
6075 case KVM_SET_CLOCK: {
6076 struct kvm_arch *ka = &kvm->arch;
6077 struct kvm_clock_data user_ns;
6078 u64 now_ns;
6079
6080 r = -EFAULT;
6081 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6082 goto out;
6083
6084 r = -EINVAL;
6085 if (user_ns.flags)
6086 goto out;
6087
6088 r = 0;
6089 /*
6090 * TODO: userspace has to take care of races with VCPU_RUN, so
6091 * kvm_gen_update_masterclock() can be cut down to locked
6092 * pvclock_update_vm_gtod_copy().
6093 */
6094 kvm_gen_update_masterclock(kvm);
6095
6096 /*
6097 * This pairs with kvm_guest_time_update(): when masterclock is
6098 * in use, we use master_kernel_ns + kvmclock_offset to set
6099 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6100 * is slightly ahead) here we risk going negative on unsigned
6101 * 'system_time' when 'user_ns.clock' is very small.
6102 */
6103 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6104 if (kvm->arch.use_master_clock)
6105 now_ns = ka->master_kernel_ns;
6106 else
6107 now_ns = get_kvmclock_base_ns();
6108 ka->kvmclock_offset = user_ns.clock - now_ns;
6109 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6110
6111 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6112 break;
6113 }
6114 case KVM_GET_CLOCK: {
6115 struct kvm_clock_data user_ns;
6116 u64 now_ns;
6117
6118 now_ns = get_kvmclock_ns(kvm);
6119 user_ns.clock = now_ns;
6120 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6121 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6122
6123 r = -EFAULT;
6124 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6125 goto out;
6126 r = 0;
6127 break;
6128 }
6129 case KVM_MEMORY_ENCRYPT_OP: {
6130 r = -ENOTTY;
6131 if (kvm_x86_ops.mem_enc_op)
6132 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6133 break;
6134 }
6135 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6136 struct kvm_enc_region region;
6137
6138 r = -EFAULT;
6139 if (copy_from_user(&region, argp, sizeof(region)))
6140 goto out;
6141
6142 r = -ENOTTY;
6143 if (kvm_x86_ops.mem_enc_reg_region)
6144 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6145 break;
6146 }
6147 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6148 struct kvm_enc_region region;
6149
6150 r = -EFAULT;
6151 if (copy_from_user(&region, argp, sizeof(region)))
6152 goto out;
6153
6154 r = -ENOTTY;
6155 if (kvm_x86_ops.mem_enc_unreg_region)
6156 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6157 break;
6158 }
6159 case KVM_HYPERV_EVENTFD: {
6160 struct kvm_hyperv_eventfd hvevfd;
6161
6162 r = -EFAULT;
6163 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6164 goto out;
6165 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6166 break;
6167 }
6168 case KVM_SET_PMU_EVENT_FILTER:
6169 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6170 break;
6171 case KVM_X86_SET_MSR_FILTER:
6172 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6173 break;
6174 default:
6175 r = -ENOTTY;
6176 }
6177 out:
6178 return r;
6179 }
6180
6181 static void kvm_init_msr_list(void)
6182 {
6183 struct x86_pmu_capability x86_pmu;
6184 u32 dummy[2];
6185 unsigned i;
6186
6187 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6188 "Please update the fixed PMCs in msrs_to_saved_all[]");
6189
6190 perf_get_x86_pmu_capability(&x86_pmu);
6191
6192 num_msrs_to_save = 0;
6193 num_emulated_msrs = 0;
6194 num_msr_based_features = 0;
6195
6196 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6197 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6198 continue;
6199
6200 /*
6201 * Even MSRs that are valid in the host may not be exposed
6202 * to the guests in some cases.
6203 */
6204 switch (msrs_to_save_all[i]) {
6205 case MSR_IA32_BNDCFGS:
6206 if (!kvm_mpx_supported())
6207 continue;
6208 break;
6209 case MSR_TSC_AUX:
6210 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6211 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6212 continue;
6213 break;
6214 case MSR_IA32_UMWAIT_CONTROL:
6215 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6216 continue;
6217 break;
6218 case MSR_IA32_RTIT_CTL:
6219 case MSR_IA32_RTIT_STATUS:
6220 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6221 continue;
6222 break;
6223 case MSR_IA32_RTIT_CR3_MATCH:
6224 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6225 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6226 continue;
6227 break;
6228 case MSR_IA32_RTIT_OUTPUT_BASE:
6229 case MSR_IA32_RTIT_OUTPUT_MASK:
6230 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6231 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6232 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6233 continue;
6234 break;
6235 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6236 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6237 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6238 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6239 continue;
6240 break;
6241 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6242 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6243 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6244 continue;
6245 break;
6246 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6247 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6248 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6249 continue;
6250 break;
6251 default:
6252 break;
6253 }
6254
6255 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6256 }
6257
6258 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6259 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6260 continue;
6261
6262 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6263 }
6264
6265 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6266 struct kvm_msr_entry msr;
6267
6268 msr.index = msr_based_features_all[i];
6269 if (kvm_get_msr_feature(&msr))
6270 continue;
6271
6272 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6273 }
6274 }
6275
6276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6277 const void *v)
6278 {
6279 int handled = 0;
6280 int n;
6281
6282 do {
6283 n = min(len, 8);
6284 if (!(lapic_in_kernel(vcpu) &&
6285 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6286 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6287 break;
6288 handled += n;
6289 addr += n;
6290 len -= n;
6291 v += n;
6292 } while (len);
6293
6294 return handled;
6295 }
6296
6297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6298 {
6299 int handled = 0;
6300 int n;
6301
6302 do {
6303 n = min(len, 8);
6304 if (!(lapic_in_kernel(vcpu) &&
6305 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6306 addr, n, v))
6307 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6308 break;
6309 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6310 handled += n;
6311 addr += n;
6312 len -= n;
6313 v += n;
6314 } while (len);
6315
6316 return handled;
6317 }
6318
6319 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6320 struct kvm_segment *var, int seg)
6321 {
6322 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6323 }
6324
6325 void kvm_get_segment(struct kvm_vcpu *vcpu,
6326 struct kvm_segment *var, int seg)
6327 {
6328 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6329 }
6330
6331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6332 struct x86_exception *exception)
6333 {
6334 gpa_t t_gpa;
6335
6336 BUG_ON(!mmu_is_nested(vcpu));
6337
6338 /* NPT walks are always user-walks */
6339 access |= PFERR_USER_MASK;
6340 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6341
6342 return t_gpa;
6343 }
6344
6345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6346 struct x86_exception *exception)
6347 {
6348 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6352
6353 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6354 struct x86_exception *exception)
6355 {
6356 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6357 access |= PFERR_FETCH_MASK;
6358 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6359 }
6360
6361 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6362 struct x86_exception *exception)
6363 {
6364 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6365 access |= PFERR_WRITE_MASK;
6366 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6367 }
6368 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6369
6370 /* uses this to access any guest's mapped memory without checking CPL */
6371 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6372 struct x86_exception *exception)
6373 {
6374 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6375 }
6376
6377 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6378 struct kvm_vcpu *vcpu, u32 access,
6379 struct x86_exception *exception)
6380 {
6381 void *data = val;
6382 int r = X86EMUL_CONTINUE;
6383
6384 while (bytes) {
6385 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6386 exception);
6387 unsigned offset = addr & (PAGE_SIZE-1);
6388 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6389 int ret;
6390
6391 if (gpa == UNMAPPED_GVA)
6392 return X86EMUL_PROPAGATE_FAULT;
6393 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6394 offset, toread);
6395 if (ret < 0) {
6396 r = X86EMUL_IO_NEEDED;
6397 goto out;
6398 }
6399
6400 bytes -= toread;
6401 data += toread;
6402 addr += toread;
6403 }
6404 out:
6405 return r;
6406 }
6407
6408 /* used for instruction fetching */
6409 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6410 gva_t addr, void *val, unsigned int bytes,
6411 struct x86_exception *exception)
6412 {
6413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6414 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6415 unsigned offset;
6416 int ret;
6417
6418 /* Inline kvm_read_guest_virt_helper for speed. */
6419 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6420 exception);
6421 if (unlikely(gpa == UNMAPPED_GVA))
6422 return X86EMUL_PROPAGATE_FAULT;
6423
6424 offset = addr & (PAGE_SIZE-1);
6425 if (WARN_ON(offset + bytes > PAGE_SIZE))
6426 bytes = (unsigned)PAGE_SIZE - offset;
6427 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6428 offset, bytes);
6429 if (unlikely(ret < 0))
6430 return X86EMUL_IO_NEEDED;
6431
6432 return X86EMUL_CONTINUE;
6433 }
6434
6435 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6436 gva_t addr, void *val, unsigned int bytes,
6437 struct x86_exception *exception)
6438 {
6439 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6440
6441 /*
6442 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6443 * is returned, but our callers are not ready for that and they blindly
6444 * call kvm_inject_page_fault. Ensure that they at least do not leak
6445 * uninitialized kernel stack memory into cr2 and error code.
6446 */
6447 memset(exception, 0, sizeof(*exception));
6448 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6449 exception);
6450 }
6451 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6452
6453 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6454 gva_t addr, void *val, unsigned int bytes,
6455 struct x86_exception *exception, bool system)
6456 {
6457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6458 u32 access = 0;
6459
6460 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6461 access |= PFERR_USER_MASK;
6462
6463 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6464 }
6465
6466 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6467 unsigned long addr, void *val, unsigned int bytes)
6468 {
6469 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6470 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6471
6472 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6473 }
6474
6475 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6476 struct kvm_vcpu *vcpu, u32 access,
6477 struct x86_exception *exception)
6478 {
6479 void *data = val;
6480 int r = X86EMUL_CONTINUE;
6481
6482 while (bytes) {
6483 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6484 access,
6485 exception);
6486 unsigned offset = addr & (PAGE_SIZE-1);
6487 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6488 int ret;
6489
6490 if (gpa == UNMAPPED_GVA)
6491 return X86EMUL_PROPAGATE_FAULT;
6492 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6493 if (ret < 0) {
6494 r = X86EMUL_IO_NEEDED;
6495 goto out;
6496 }
6497
6498 bytes -= towrite;
6499 data += towrite;
6500 addr += towrite;
6501 }
6502 out:
6503 return r;
6504 }
6505
6506 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6507 unsigned int bytes, struct x86_exception *exception,
6508 bool system)
6509 {
6510 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6511 u32 access = PFERR_WRITE_MASK;
6512
6513 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6514 access |= PFERR_USER_MASK;
6515
6516 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6517 access, exception);
6518 }
6519
6520 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6521 unsigned int bytes, struct x86_exception *exception)
6522 {
6523 /* kvm_write_guest_virt_system can pull in tons of pages. */
6524 vcpu->arch.l1tf_flush_l1d = true;
6525
6526 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6527 PFERR_WRITE_MASK, exception);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6530
6531 int handle_ud(struct kvm_vcpu *vcpu)
6532 {
6533 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6534 int emul_type = EMULTYPE_TRAP_UD;
6535 char sig[5]; /* ud2; .ascii "kvm" */
6536 struct x86_exception e;
6537
6538 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6539 return 1;
6540
6541 if (force_emulation_prefix &&
6542 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6543 sig, sizeof(sig), &e) == 0 &&
6544 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6545 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6546 emul_type = EMULTYPE_TRAP_UD_FORCED;
6547 }
6548
6549 return kvm_emulate_instruction(vcpu, emul_type);
6550 }
6551 EXPORT_SYMBOL_GPL(handle_ud);
6552
6553 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6554 gpa_t gpa, bool write)
6555 {
6556 /* For APIC access vmexit */
6557 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6558 return 1;
6559
6560 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6561 trace_vcpu_match_mmio(gva, gpa, write, true);
6562 return 1;
6563 }
6564
6565 return 0;
6566 }
6567
6568 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6569 gpa_t *gpa, struct x86_exception *exception,
6570 bool write)
6571 {
6572 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6573 | (write ? PFERR_WRITE_MASK : 0);
6574
6575 /*
6576 * currently PKRU is only applied to ept enabled guest so
6577 * there is no pkey in EPT page table for L1 guest or EPT
6578 * shadow page table for L2 guest.
6579 */
6580 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6581 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6582 vcpu->arch.mmio_access, 0, access))) {
6583 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6584 (gva & (PAGE_SIZE - 1));
6585 trace_vcpu_match_mmio(gva, *gpa, write, false);
6586 return 1;
6587 }
6588
6589 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6590
6591 if (*gpa == UNMAPPED_GVA)
6592 return -1;
6593
6594 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6595 }
6596
6597 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6598 const void *val, int bytes)
6599 {
6600 int ret;
6601
6602 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6603 if (ret < 0)
6604 return 0;
6605 kvm_page_track_write(vcpu, gpa, val, bytes);
6606 return 1;
6607 }
6608
6609 struct read_write_emulator_ops {
6610 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6611 int bytes);
6612 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6613 void *val, int bytes);
6614 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6615 int bytes, void *val);
6616 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6617 void *val, int bytes);
6618 bool write;
6619 };
6620
6621 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6622 {
6623 if (vcpu->mmio_read_completed) {
6624 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6625 vcpu->mmio_fragments[0].gpa, val);
6626 vcpu->mmio_read_completed = 0;
6627 return 1;
6628 }
6629
6630 return 0;
6631 }
6632
6633 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6634 void *val, int bytes)
6635 {
6636 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6637 }
6638
6639 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6640 void *val, int bytes)
6641 {
6642 return emulator_write_phys(vcpu, gpa, val, bytes);
6643 }
6644
6645 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6646 {
6647 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6648 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6649 }
6650
6651 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6652 void *val, int bytes)
6653 {
6654 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6655 return X86EMUL_IO_NEEDED;
6656 }
6657
6658 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6659 void *val, int bytes)
6660 {
6661 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6662
6663 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6664 return X86EMUL_CONTINUE;
6665 }
6666
6667 static const struct read_write_emulator_ops read_emultor = {
6668 .read_write_prepare = read_prepare,
6669 .read_write_emulate = read_emulate,
6670 .read_write_mmio = vcpu_mmio_read,
6671 .read_write_exit_mmio = read_exit_mmio,
6672 };
6673
6674 static const struct read_write_emulator_ops write_emultor = {
6675 .read_write_emulate = write_emulate,
6676 .read_write_mmio = write_mmio,
6677 .read_write_exit_mmio = write_exit_mmio,
6678 .write = true,
6679 };
6680
6681 static int emulator_read_write_onepage(unsigned long addr, void *val,
6682 unsigned int bytes,
6683 struct x86_exception *exception,
6684 struct kvm_vcpu *vcpu,
6685 const struct read_write_emulator_ops *ops)
6686 {
6687 gpa_t gpa;
6688 int handled, ret;
6689 bool write = ops->write;
6690 struct kvm_mmio_fragment *frag;
6691 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6692
6693 /*
6694 * If the exit was due to a NPF we may already have a GPA.
6695 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6696 * Note, this cannot be used on string operations since string
6697 * operation using rep will only have the initial GPA from the NPF
6698 * occurred.
6699 */
6700 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6701 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6702 gpa = ctxt->gpa_val;
6703 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6704 } else {
6705 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6706 if (ret < 0)
6707 return X86EMUL_PROPAGATE_FAULT;
6708 }
6709
6710 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6711 return X86EMUL_CONTINUE;
6712
6713 /*
6714 * Is this MMIO handled locally?
6715 */
6716 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6717 if (handled == bytes)
6718 return X86EMUL_CONTINUE;
6719
6720 gpa += handled;
6721 bytes -= handled;
6722 val += handled;
6723
6724 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6725 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6726 frag->gpa = gpa;
6727 frag->data = val;
6728 frag->len = bytes;
6729 return X86EMUL_CONTINUE;
6730 }
6731
6732 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6733 unsigned long addr,
6734 void *val, unsigned int bytes,
6735 struct x86_exception *exception,
6736 const struct read_write_emulator_ops *ops)
6737 {
6738 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6739 gpa_t gpa;
6740 int rc;
6741
6742 if (ops->read_write_prepare &&
6743 ops->read_write_prepare(vcpu, val, bytes))
6744 return X86EMUL_CONTINUE;
6745
6746 vcpu->mmio_nr_fragments = 0;
6747
6748 /* Crossing a page boundary? */
6749 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6750 int now;
6751
6752 now = -addr & ~PAGE_MASK;
6753 rc = emulator_read_write_onepage(addr, val, now, exception,
6754 vcpu, ops);
6755
6756 if (rc != X86EMUL_CONTINUE)
6757 return rc;
6758 addr += now;
6759 if (ctxt->mode != X86EMUL_MODE_PROT64)
6760 addr = (u32)addr;
6761 val += now;
6762 bytes -= now;
6763 }
6764
6765 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6766 vcpu, ops);
6767 if (rc != X86EMUL_CONTINUE)
6768 return rc;
6769
6770 if (!vcpu->mmio_nr_fragments)
6771 return rc;
6772
6773 gpa = vcpu->mmio_fragments[0].gpa;
6774
6775 vcpu->mmio_needed = 1;
6776 vcpu->mmio_cur_fragment = 0;
6777
6778 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6779 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6780 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6781 vcpu->run->mmio.phys_addr = gpa;
6782
6783 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6784 }
6785
6786 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6787 unsigned long addr,
6788 void *val,
6789 unsigned int bytes,
6790 struct x86_exception *exception)
6791 {
6792 return emulator_read_write(ctxt, addr, val, bytes,
6793 exception, &read_emultor);
6794 }
6795
6796 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6797 unsigned long addr,
6798 const void *val,
6799 unsigned int bytes,
6800 struct x86_exception *exception)
6801 {
6802 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6803 exception, &write_emultor);
6804 }
6805
6806 #define CMPXCHG_TYPE(t, ptr, old, new) \
6807 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6808
6809 #ifdef CONFIG_X86_64
6810 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6811 #else
6812 # define CMPXCHG64(ptr, old, new) \
6813 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6814 #endif
6815
6816 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6817 unsigned long addr,
6818 const void *old,
6819 const void *new,
6820 unsigned int bytes,
6821 struct x86_exception *exception)
6822 {
6823 struct kvm_host_map map;
6824 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6825 u64 page_line_mask;
6826 gpa_t gpa;
6827 char *kaddr;
6828 bool exchanged;
6829
6830 /* guests cmpxchg8b have to be emulated atomically */
6831 if (bytes > 8 || (bytes & (bytes - 1)))
6832 goto emul_write;
6833
6834 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6835
6836 if (gpa == UNMAPPED_GVA ||
6837 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6838 goto emul_write;
6839
6840 /*
6841 * Emulate the atomic as a straight write to avoid #AC if SLD is
6842 * enabled in the host and the access splits a cache line.
6843 */
6844 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6845 page_line_mask = ~(cache_line_size() - 1);
6846 else
6847 page_line_mask = PAGE_MASK;
6848
6849 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6850 goto emul_write;
6851
6852 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6853 goto emul_write;
6854
6855 kaddr = map.hva + offset_in_page(gpa);
6856
6857 switch (bytes) {
6858 case 1:
6859 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6860 break;
6861 case 2:
6862 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6863 break;
6864 case 4:
6865 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6866 break;
6867 case 8:
6868 exchanged = CMPXCHG64(kaddr, old, new);
6869 break;
6870 default:
6871 BUG();
6872 }
6873
6874 kvm_vcpu_unmap(vcpu, &map, true);
6875
6876 if (!exchanged)
6877 return X86EMUL_CMPXCHG_FAILED;
6878
6879 kvm_page_track_write(vcpu, gpa, new, bytes);
6880
6881 return X86EMUL_CONTINUE;
6882
6883 emul_write:
6884 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6885
6886 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6887 }
6888
6889 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6890 {
6891 int r = 0, i;
6892
6893 for (i = 0; i < vcpu->arch.pio.count; i++) {
6894 if (vcpu->arch.pio.in)
6895 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6896 vcpu->arch.pio.size, pd);
6897 else
6898 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6899 vcpu->arch.pio.port, vcpu->arch.pio.size,
6900 pd);
6901 if (r)
6902 break;
6903 pd += vcpu->arch.pio.size;
6904 }
6905 return r;
6906 }
6907
6908 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6909 unsigned short port,
6910 unsigned int count, bool in)
6911 {
6912 vcpu->arch.pio.port = port;
6913 vcpu->arch.pio.in = in;
6914 vcpu->arch.pio.count = count;
6915 vcpu->arch.pio.size = size;
6916
6917 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6918 return 1;
6919
6920 vcpu->run->exit_reason = KVM_EXIT_IO;
6921 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6922 vcpu->run->io.size = size;
6923 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6924 vcpu->run->io.count = count;
6925 vcpu->run->io.port = port;
6926
6927 return 0;
6928 }
6929
6930 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6931 unsigned short port, unsigned int count)
6932 {
6933 WARN_ON(vcpu->arch.pio.count);
6934 memset(vcpu->arch.pio_data, 0, size * count);
6935 return emulator_pio_in_out(vcpu, size, port, count, true);
6936 }
6937
6938 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6939 unsigned short port, void *val)
6940 {
6941 memcpy(val, vcpu->arch.pio_data, size * vcpu->arch.pio.count);
6942 trace_kvm_pio(KVM_PIO_IN, port, size, vcpu->arch.pio.count, vcpu->arch.pio_data);
6943 vcpu->arch.pio.count = 0;
6944 }
6945
6946 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6947 unsigned short port, void *val, unsigned int count)
6948 {
6949 if (vcpu->arch.pio.count) {
6950 /* Complete previous iteration. */
6951 } else {
6952 int r = __emulator_pio_in(vcpu, size, port, count);
6953 if (!r)
6954 return r;
6955
6956 /* Results already available, fall through. */
6957 }
6958
6959 WARN_ON(count != vcpu->arch.pio.count);
6960 complete_emulator_pio_in(vcpu, size, port, val);
6961 return 1;
6962 }
6963
6964 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6965 int size, unsigned short port, void *val,
6966 unsigned int count)
6967 {
6968 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6969
6970 }
6971
6972 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6973 unsigned short port, const void *val,
6974 unsigned int count)
6975 {
6976 int ret;
6977
6978 memcpy(vcpu->arch.pio_data, val, size * count);
6979 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6980 ret = emulator_pio_in_out(vcpu, size, port, count, false);
6981 if (ret)
6982 vcpu->arch.pio.count = 0;
6983
6984 return ret;
6985 }
6986
6987 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6988 int size, unsigned short port,
6989 const void *val, unsigned int count)
6990 {
6991 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6992 }
6993
6994 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6995 {
6996 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6997 }
6998
6999 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7000 {
7001 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7002 }
7003
7004 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7005 {
7006 if (!need_emulate_wbinvd(vcpu))
7007 return X86EMUL_CONTINUE;
7008
7009 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7010 int cpu = get_cpu();
7011
7012 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7013 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7014 wbinvd_ipi, NULL, 1);
7015 put_cpu();
7016 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7017 } else
7018 wbinvd();
7019 return X86EMUL_CONTINUE;
7020 }
7021
7022 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7023 {
7024 kvm_emulate_wbinvd_noskip(vcpu);
7025 return kvm_skip_emulated_instruction(vcpu);
7026 }
7027 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7028
7029
7030
7031 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7032 {
7033 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7034 }
7035
7036 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7037 unsigned long *dest)
7038 {
7039 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7040 }
7041
7042 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7043 unsigned long value)
7044 {
7045
7046 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7047 }
7048
7049 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7050 {
7051 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7052 }
7053
7054 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7055 {
7056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7057 unsigned long value;
7058
7059 switch (cr) {
7060 case 0:
7061 value = kvm_read_cr0(vcpu);
7062 break;
7063 case 2:
7064 value = vcpu->arch.cr2;
7065 break;
7066 case 3:
7067 value = kvm_read_cr3(vcpu);
7068 break;
7069 case 4:
7070 value = kvm_read_cr4(vcpu);
7071 break;
7072 case 8:
7073 value = kvm_get_cr8(vcpu);
7074 break;
7075 default:
7076 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7077 return 0;
7078 }
7079
7080 return value;
7081 }
7082
7083 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7084 {
7085 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7086 int res = 0;
7087
7088 switch (cr) {
7089 case 0:
7090 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7091 break;
7092 case 2:
7093 vcpu->arch.cr2 = val;
7094 break;
7095 case 3:
7096 res = kvm_set_cr3(vcpu, val);
7097 break;
7098 case 4:
7099 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7100 break;
7101 case 8:
7102 res = kvm_set_cr8(vcpu, val);
7103 break;
7104 default:
7105 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7106 res = -1;
7107 }
7108
7109 return res;
7110 }
7111
7112 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7113 {
7114 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7115 }
7116
7117 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7118 {
7119 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7120 }
7121
7122 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7123 {
7124 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7125 }
7126
7127 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7128 {
7129 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7130 }
7131
7132 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7133 {
7134 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7135 }
7136
7137 static unsigned long emulator_get_cached_segment_base(
7138 struct x86_emulate_ctxt *ctxt, int seg)
7139 {
7140 return get_segment_base(emul_to_vcpu(ctxt), seg);
7141 }
7142
7143 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7144 struct desc_struct *desc, u32 *base3,
7145 int seg)
7146 {
7147 struct kvm_segment var;
7148
7149 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7150 *selector = var.selector;
7151
7152 if (var.unusable) {
7153 memset(desc, 0, sizeof(*desc));
7154 if (base3)
7155 *base3 = 0;
7156 return false;
7157 }
7158
7159 if (var.g)
7160 var.limit >>= 12;
7161 set_desc_limit(desc, var.limit);
7162 set_desc_base(desc, (unsigned long)var.base);
7163 #ifdef CONFIG_X86_64
7164 if (base3)
7165 *base3 = var.base >> 32;
7166 #endif
7167 desc->type = var.type;
7168 desc->s = var.s;
7169 desc->dpl = var.dpl;
7170 desc->p = var.present;
7171 desc->avl = var.avl;
7172 desc->l = var.l;
7173 desc->d = var.db;
7174 desc->g = var.g;
7175
7176 return true;
7177 }
7178
7179 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7180 struct desc_struct *desc, u32 base3,
7181 int seg)
7182 {
7183 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7184 struct kvm_segment var;
7185
7186 var.selector = selector;
7187 var.base = get_desc_base(desc);
7188 #ifdef CONFIG_X86_64
7189 var.base |= ((u64)base3) << 32;
7190 #endif
7191 var.limit = get_desc_limit(desc);
7192 if (desc->g)
7193 var.limit = (var.limit << 12) | 0xfff;
7194 var.type = desc->type;
7195 var.dpl = desc->dpl;
7196 var.db = desc->d;
7197 var.s = desc->s;
7198 var.l = desc->l;
7199 var.g = desc->g;
7200 var.avl = desc->avl;
7201 var.present = desc->p;
7202 var.unusable = !var.present;
7203 var.padding = 0;
7204
7205 kvm_set_segment(vcpu, &var, seg);
7206 return;
7207 }
7208
7209 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7210 u32 msr_index, u64 *pdata)
7211 {
7212 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7213 int r;
7214
7215 r = kvm_get_msr(vcpu, msr_index, pdata);
7216
7217 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7218 /* Bounce to user space */
7219 return X86EMUL_IO_NEEDED;
7220 }
7221
7222 return r;
7223 }
7224
7225 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7226 u32 msr_index, u64 data)
7227 {
7228 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7229 int r;
7230
7231 r = kvm_set_msr(vcpu, msr_index, data);
7232
7233 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7234 /* Bounce to user space */
7235 return X86EMUL_IO_NEEDED;
7236 }
7237
7238 return r;
7239 }
7240
7241 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7242 {
7243 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7244
7245 return vcpu->arch.smbase;
7246 }
7247
7248 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7249 {
7250 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7251
7252 vcpu->arch.smbase = smbase;
7253 }
7254
7255 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7256 u32 pmc)
7257 {
7258 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7259 }
7260
7261 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7262 u32 pmc, u64 *pdata)
7263 {
7264 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7265 }
7266
7267 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7268 {
7269 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7270 }
7271
7272 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7273 struct x86_instruction_info *info,
7274 enum x86_intercept_stage stage)
7275 {
7276 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7277 &ctxt->exception);
7278 }
7279
7280 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7281 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7282 bool exact_only)
7283 {
7284 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7285 }
7286
7287 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7288 {
7289 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7290 }
7291
7292 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7293 {
7294 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7295 }
7296
7297 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7298 {
7299 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7300 }
7301
7302 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7303 {
7304 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7305 }
7306
7307 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7308 {
7309 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7310 }
7311
7312 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7313 {
7314 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7315 }
7316
7317 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7318 {
7319 return emul_to_vcpu(ctxt)->arch.hflags;
7320 }
7321
7322 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7323 {
7324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7325
7326 kvm_smm_changed(vcpu, false);
7327 }
7328
7329 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7330 const char *smstate)
7331 {
7332 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7333 }
7334
7335 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7336 {
7337 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7338 }
7339
7340 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7341 {
7342 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7343 }
7344
7345 static const struct x86_emulate_ops emulate_ops = {
7346 .read_gpr = emulator_read_gpr,
7347 .write_gpr = emulator_write_gpr,
7348 .read_std = emulator_read_std,
7349 .write_std = emulator_write_std,
7350 .read_phys = kvm_read_guest_phys_system,
7351 .fetch = kvm_fetch_guest_virt,
7352 .read_emulated = emulator_read_emulated,
7353 .write_emulated = emulator_write_emulated,
7354 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7355 .invlpg = emulator_invlpg,
7356 .pio_in_emulated = emulator_pio_in_emulated,
7357 .pio_out_emulated = emulator_pio_out_emulated,
7358 .get_segment = emulator_get_segment,
7359 .set_segment = emulator_set_segment,
7360 .get_cached_segment_base = emulator_get_cached_segment_base,
7361 .get_gdt = emulator_get_gdt,
7362 .get_idt = emulator_get_idt,
7363 .set_gdt = emulator_set_gdt,
7364 .set_idt = emulator_set_idt,
7365 .get_cr = emulator_get_cr,
7366 .set_cr = emulator_set_cr,
7367 .cpl = emulator_get_cpl,
7368 .get_dr = emulator_get_dr,
7369 .set_dr = emulator_set_dr,
7370 .get_smbase = emulator_get_smbase,
7371 .set_smbase = emulator_set_smbase,
7372 .set_msr = emulator_set_msr,
7373 .get_msr = emulator_get_msr,
7374 .check_pmc = emulator_check_pmc,
7375 .read_pmc = emulator_read_pmc,
7376 .halt = emulator_halt,
7377 .wbinvd = emulator_wbinvd,
7378 .fix_hypercall = emulator_fix_hypercall,
7379 .intercept = emulator_intercept,
7380 .get_cpuid = emulator_get_cpuid,
7381 .guest_has_long_mode = emulator_guest_has_long_mode,
7382 .guest_has_movbe = emulator_guest_has_movbe,
7383 .guest_has_fxsr = emulator_guest_has_fxsr,
7384 .set_nmi_mask = emulator_set_nmi_mask,
7385 .get_hflags = emulator_get_hflags,
7386 .exiting_smm = emulator_exiting_smm,
7387 .leave_smm = emulator_leave_smm,
7388 .triple_fault = emulator_triple_fault,
7389 .set_xcr = emulator_set_xcr,
7390 };
7391
7392 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7393 {
7394 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7395 /*
7396 * an sti; sti; sequence only disable interrupts for the first
7397 * instruction. So, if the last instruction, be it emulated or
7398 * not, left the system with the INT_STI flag enabled, it
7399 * means that the last instruction is an sti. We should not
7400 * leave the flag on in this case. The same goes for mov ss
7401 */
7402 if (int_shadow & mask)
7403 mask = 0;
7404 if (unlikely(int_shadow || mask)) {
7405 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7406 if (!mask)
7407 kvm_make_request(KVM_REQ_EVENT, vcpu);
7408 }
7409 }
7410
7411 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7412 {
7413 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7414 if (ctxt->exception.vector == PF_VECTOR)
7415 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7416
7417 if (ctxt->exception.error_code_valid)
7418 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7419 ctxt->exception.error_code);
7420 else
7421 kvm_queue_exception(vcpu, ctxt->exception.vector);
7422 return false;
7423 }
7424
7425 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7426 {
7427 struct x86_emulate_ctxt *ctxt;
7428
7429 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7430 if (!ctxt) {
7431 pr_err("kvm: failed to allocate vcpu's emulator\n");
7432 return NULL;
7433 }
7434
7435 ctxt->vcpu = vcpu;
7436 ctxt->ops = &emulate_ops;
7437 vcpu->arch.emulate_ctxt = ctxt;
7438
7439 return ctxt;
7440 }
7441
7442 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7443 {
7444 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7445 int cs_db, cs_l;
7446
7447 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7448
7449 ctxt->gpa_available = false;
7450 ctxt->eflags = kvm_get_rflags(vcpu);
7451 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7452
7453 ctxt->eip = kvm_rip_read(vcpu);
7454 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7455 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7456 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7457 cs_db ? X86EMUL_MODE_PROT32 :
7458 X86EMUL_MODE_PROT16;
7459 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7460 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7461 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7462
7463 ctxt->interruptibility = 0;
7464 ctxt->have_exception = false;
7465 ctxt->exception.vector = -1;
7466 ctxt->perm_ok = false;
7467
7468 init_decode_cache(ctxt);
7469 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7470 }
7471
7472 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7473 {
7474 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7475 int ret;
7476
7477 init_emulate_ctxt(vcpu);
7478
7479 ctxt->op_bytes = 2;
7480 ctxt->ad_bytes = 2;
7481 ctxt->_eip = ctxt->eip + inc_eip;
7482 ret = emulate_int_real(ctxt, irq);
7483
7484 if (ret != X86EMUL_CONTINUE) {
7485 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7486 } else {
7487 ctxt->eip = ctxt->_eip;
7488 kvm_rip_write(vcpu, ctxt->eip);
7489 kvm_set_rflags(vcpu, ctxt->eflags);
7490 }
7491 }
7492 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7493
7494 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7495 {
7496 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7497 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7498 struct kvm_run *run = vcpu->run;
7499
7500 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7501 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7502 run->emulation_failure.ndata = 0;
7503 run->emulation_failure.flags = 0;
7504
7505 if (insn_size) {
7506 run->emulation_failure.ndata = 3;
7507 run->emulation_failure.flags |=
7508 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7509 run->emulation_failure.insn_size = insn_size;
7510 memset(run->emulation_failure.insn_bytes, 0x90,
7511 sizeof(run->emulation_failure.insn_bytes));
7512 memcpy(run->emulation_failure.insn_bytes,
7513 ctxt->fetch.data, insn_size);
7514 }
7515 }
7516
7517 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7518 {
7519 struct kvm *kvm = vcpu->kvm;
7520
7521 ++vcpu->stat.insn_emulation_fail;
7522 trace_kvm_emulate_insn_failed(vcpu);
7523
7524 if (emulation_type & EMULTYPE_VMWARE_GP) {
7525 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7526 return 1;
7527 }
7528
7529 if (kvm->arch.exit_on_emulation_error ||
7530 (emulation_type & EMULTYPE_SKIP)) {
7531 prepare_emulation_failure_exit(vcpu);
7532 return 0;
7533 }
7534
7535 kvm_queue_exception(vcpu, UD_VECTOR);
7536
7537 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7538 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7539 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7540 vcpu->run->internal.ndata = 0;
7541 return 0;
7542 }
7543
7544 return 1;
7545 }
7546
7547 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7548 bool write_fault_to_shadow_pgtable,
7549 int emulation_type)
7550 {
7551 gpa_t gpa = cr2_or_gpa;
7552 kvm_pfn_t pfn;
7553
7554 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7555 return false;
7556
7557 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7558 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7559 return false;
7560
7561 if (!vcpu->arch.mmu->direct_map) {
7562 /*
7563 * Write permission should be allowed since only
7564 * write access need to be emulated.
7565 */
7566 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7567
7568 /*
7569 * If the mapping is invalid in guest, let cpu retry
7570 * it to generate fault.
7571 */
7572 if (gpa == UNMAPPED_GVA)
7573 return true;
7574 }
7575
7576 /*
7577 * Do not retry the unhandleable instruction if it faults on the
7578 * readonly host memory, otherwise it will goto a infinite loop:
7579 * retry instruction -> write #PF -> emulation fail -> retry
7580 * instruction -> ...
7581 */
7582 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7583
7584 /*
7585 * If the instruction failed on the error pfn, it can not be fixed,
7586 * report the error to userspace.
7587 */
7588 if (is_error_noslot_pfn(pfn))
7589 return false;
7590
7591 kvm_release_pfn_clean(pfn);
7592
7593 /* The instructions are well-emulated on direct mmu. */
7594 if (vcpu->arch.mmu->direct_map) {
7595 unsigned int indirect_shadow_pages;
7596
7597 write_lock(&vcpu->kvm->mmu_lock);
7598 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7599 write_unlock(&vcpu->kvm->mmu_lock);
7600
7601 if (indirect_shadow_pages)
7602 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7603
7604 return true;
7605 }
7606
7607 /*
7608 * if emulation was due to access to shadowed page table
7609 * and it failed try to unshadow page and re-enter the
7610 * guest to let CPU execute the instruction.
7611 */
7612 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7613
7614 /*
7615 * If the access faults on its page table, it can not
7616 * be fixed by unprotecting shadow page and it should
7617 * be reported to userspace.
7618 */
7619 return !write_fault_to_shadow_pgtable;
7620 }
7621
7622 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7623 gpa_t cr2_or_gpa, int emulation_type)
7624 {
7625 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7626 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7627
7628 last_retry_eip = vcpu->arch.last_retry_eip;
7629 last_retry_addr = vcpu->arch.last_retry_addr;
7630
7631 /*
7632 * If the emulation is caused by #PF and it is non-page_table
7633 * writing instruction, it means the VM-EXIT is caused by shadow
7634 * page protected, we can zap the shadow page and retry this
7635 * instruction directly.
7636 *
7637 * Note: if the guest uses a non-page-table modifying instruction
7638 * on the PDE that points to the instruction, then we will unmap
7639 * the instruction and go to an infinite loop. So, we cache the
7640 * last retried eip and the last fault address, if we meet the eip
7641 * and the address again, we can break out of the potential infinite
7642 * loop.
7643 */
7644 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7645
7646 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7647 return false;
7648
7649 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7650 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7651 return false;
7652
7653 if (x86_page_table_writing_insn(ctxt))
7654 return false;
7655
7656 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7657 return false;
7658
7659 vcpu->arch.last_retry_eip = ctxt->eip;
7660 vcpu->arch.last_retry_addr = cr2_or_gpa;
7661
7662 if (!vcpu->arch.mmu->direct_map)
7663 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7664
7665 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7666
7667 return true;
7668 }
7669
7670 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7671 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7672
7673 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7674 {
7675 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7676
7677 if (entering_smm) {
7678 vcpu->arch.hflags |= HF_SMM_MASK;
7679 } else {
7680 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7681
7682 /* Process a latched INIT or SMI, if any. */
7683 kvm_make_request(KVM_REQ_EVENT, vcpu);
7684
7685 /*
7686 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7687 * on SMM exit we still need to reload them from
7688 * guest memory
7689 */
7690 vcpu->arch.pdptrs_from_userspace = false;
7691 }
7692
7693 kvm_mmu_reset_context(vcpu);
7694 }
7695
7696 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7697 unsigned long *db)
7698 {
7699 u32 dr6 = 0;
7700 int i;
7701 u32 enable, rwlen;
7702
7703 enable = dr7;
7704 rwlen = dr7 >> 16;
7705 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7706 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7707 dr6 |= (1 << i);
7708 return dr6;
7709 }
7710
7711 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7712 {
7713 struct kvm_run *kvm_run = vcpu->run;
7714
7715 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7716 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7717 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7718 kvm_run->debug.arch.exception = DB_VECTOR;
7719 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7720 return 0;
7721 }
7722 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7723 return 1;
7724 }
7725
7726 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7727 {
7728 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7729 int r;
7730
7731 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7732 if (unlikely(!r))
7733 return 0;
7734
7735 /*
7736 * rflags is the old, "raw" value of the flags. The new value has
7737 * not been saved yet.
7738 *
7739 * This is correct even for TF set by the guest, because "the
7740 * processor will not generate this exception after the instruction
7741 * that sets the TF flag".
7742 */
7743 if (unlikely(rflags & X86_EFLAGS_TF))
7744 r = kvm_vcpu_do_singlestep(vcpu);
7745 return r;
7746 }
7747 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7748
7749 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7750 {
7751 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7752 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7753 struct kvm_run *kvm_run = vcpu->run;
7754 unsigned long eip = kvm_get_linear_rip(vcpu);
7755 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7756 vcpu->arch.guest_debug_dr7,
7757 vcpu->arch.eff_db);
7758
7759 if (dr6 != 0) {
7760 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7761 kvm_run->debug.arch.pc = eip;
7762 kvm_run->debug.arch.exception = DB_VECTOR;
7763 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7764 *r = 0;
7765 return true;
7766 }
7767 }
7768
7769 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7770 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7771 unsigned long eip = kvm_get_linear_rip(vcpu);
7772 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7773 vcpu->arch.dr7,
7774 vcpu->arch.db);
7775
7776 if (dr6 != 0) {
7777 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7778 *r = 1;
7779 return true;
7780 }
7781 }
7782
7783 return false;
7784 }
7785
7786 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7787 {
7788 switch (ctxt->opcode_len) {
7789 case 1:
7790 switch (ctxt->b) {
7791 case 0xe4: /* IN */
7792 case 0xe5:
7793 case 0xec:
7794 case 0xed:
7795 case 0xe6: /* OUT */
7796 case 0xe7:
7797 case 0xee:
7798 case 0xef:
7799 case 0x6c: /* INS */
7800 case 0x6d:
7801 case 0x6e: /* OUTS */
7802 case 0x6f:
7803 return true;
7804 }
7805 break;
7806 case 2:
7807 switch (ctxt->b) {
7808 case 0x33: /* RDPMC */
7809 return true;
7810 }
7811 break;
7812 }
7813
7814 return false;
7815 }
7816
7817 /*
7818 * Decode to be emulated instruction. Return EMULATION_OK if success.
7819 */
7820 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7821 void *insn, int insn_len)
7822 {
7823 int r = EMULATION_OK;
7824 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7825
7826 init_emulate_ctxt(vcpu);
7827
7828 /*
7829 * We will reenter on the same instruction since we do not set
7830 * complete_userspace_io. This does not handle watchpoints yet,
7831 * those would be handled in the emulate_ops.
7832 */
7833 if (!(emulation_type & EMULTYPE_SKIP) &&
7834 kvm_vcpu_check_breakpoint(vcpu, &r))
7835 return r;
7836
7837 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7838
7839 trace_kvm_emulate_insn_start(vcpu);
7840 ++vcpu->stat.insn_emulation;
7841
7842 return r;
7843 }
7844 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7845
7846 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7847 int emulation_type, void *insn, int insn_len)
7848 {
7849 int r;
7850 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7851 bool writeback = true;
7852 bool write_fault_to_spt;
7853
7854 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7855 return 1;
7856
7857 vcpu->arch.l1tf_flush_l1d = true;
7858
7859 /*
7860 * Clear write_fault_to_shadow_pgtable here to ensure it is
7861 * never reused.
7862 */
7863 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7864 vcpu->arch.write_fault_to_shadow_pgtable = false;
7865
7866 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7867 kvm_clear_exception_queue(vcpu);
7868
7869 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7870 insn, insn_len);
7871 if (r != EMULATION_OK) {
7872 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7873 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7874 kvm_queue_exception(vcpu, UD_VECTOR);
7875 return 1;
7876 }
7877 if (reexecute_instruction(vcpu, cr2_or_gpa,
7878 write_fault_to_spt,
7879 emulation_type))
7880 return 1;
7881 if (ctxt->have_exception) {
7882 /*
7883 * #UD should result in just EMULATION_FAILED, and trap-like
7884 * exception should not be encountered during decode.
7885 */
7886 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7887 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7888 inject_emulated_exception(vcpu);
7889 return 1;
7890 }
7891 return handle_emulation_failure(vcpu, emulation_type);
7892 }
7893 }
7894
7895 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7896 !is_vmware_backdoor_opcode(ctxt)) {
7897 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7898 return 1;
7899 }
7900
7901 /*
7902 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7903 * for kvm_skip_emulated_instruction(). The caller is responsible for
7904 * updating interruptibility state and injecting single-step #DBs.
7905 */
7906 if (emulation_type & EMULTYPE_SKIP) {
7907 kvm_rip_write(vcpu, ctxt->_eip);
7908 if (ctxt->eflags & X86_EFLAGS_RF)
7909 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7910 return 1;
7911 }
7912
7913 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7914 return 1;
7915
7916 /* this is needed for vmware backdoor interface to work since it
7917 changes registers values during IO operation */
7918 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7919 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7920 emulator_invalidate_register_cache(ctxt);
7921 }
7922
7923 restart:
7924 if (emulation_type & EMULTYPE_PF) {
7925 /* Save the faulting GPA (cr2) in the address field */
7926 ctxt->exception.address = cr2_or_gpa;
7927
7928 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7929 if (vcpu->arch.mmu->direct_map) {
7930 ctxt->gpa_available = true;
7931 ctxt->gpa_val = cr2_or_gpa;
7932 }
7933 } else {
7934 /* Sanitize the address out of an abundance of paranoia. */
7935 ctxt->exception.address = 0;
7936 }
7937
7938 r = x86_emulate_insn(ctxt);
7939
7940 if (r == EMULATION_INTERCEPTED)
7941 return 1;
7942
7943 if (r == EMULATION_FAILED) {
7944 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7945 emulation_type))
7946 return 1;
7947
7948 return handle_emulation_failure(vcpu, emulation_type);
7949 }
7950
7951 if (ctxt->have_exception) {
7952 r = 1;
7953 if (inject_emulated_exception(vcpu))
7954 return r;
7955 } else if (vcpu->arch.pio.count) {
7956 if (!vcpu->arch.pio.in) {
7957 /* FIXME: return into emulator if single-stepping. */
7958 vcpu->arch.pio.count = 0;
7959 } else {
7960 writeback = false;
7961 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7962 }
7963 r = 0;
7964 } else if (vcpu->mmio_needed) {
7965 ++vcpu->stat.mmio_exits;
7966
7967 if (!vcpu->mmio_is_write)
7968 writeback = false;
7969 r = 0;
7970 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7971 } else if (r == EMULATION_RESTART)
7972 goto restart;
7973 else
7974 r = 1;
7975
7976 if (writeback) {
7977 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7978 toggle_interruptibility(vcpu, ctxt->interruptibility);
7979 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7980 if (!ctxt->have_exception ||
7981 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7982 kvm_rip_write(vcpu, ctxt->eip);
7983 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7984 r = kvm_vcpu_do_singlestep(vcpu);
7985 if (kvm_x86_ops.update_emulated_instruction)
7986 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7987 __kvm_set_rflags(vcpu, ctxt->eflags);
7988 }
7989
7990 /*
7991 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7992 * do nothing, and it will be requested again as soon as
7993 * the shadow expires. But we still need to check here,
7994 * because POPF has no interrupt shadow.
7995 */
7996 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7997 kvm_make_request(KVM_REQ_EVENT, vcpu);
7998 } else
7999 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8000
8001 return r;
8002 }
8003
8004 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8005 {
8006 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8007 }
8008 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8009
8010 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8011 void *insn, int insn_len)
8012 {
8013 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8014 }
8015 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8016
8017 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8018 {
8019 vcpu->arch.pio.count = 0;
8020 return 1;
8021 }
8022
8023 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8024 {
8025 vcpu->arch.pio.count = 0;
8026
8027 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8028 return 1;
8029
8030 return kvm_skip_emulated_instruction(vcpu);
8031 }
8032
8033 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8034 unsigned short port)
8035 {
8036 unsigned long val = kvm_rax_read(vcpu);
8037 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8038
8039 if (ret)
8040 return ret;
8041
8042 /*
8043 * Workaround userspace that relies on old KVM behavior of %rip being
8044 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8045 */
8046 if (port == 0x7e &&
8047 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8048 vcpu->arch.complete_userspace_io =
8049 complete_fast_pio_out_port_0x7e;
8050 kvm_skip_emulated_instruction(vcpu);
8051 } else {
8052 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8053 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8054 }
8055 return 0;
8056 }
8057
8058 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8059 {
8060 unsigned long val;
8061
8062 /* We should only ever be called with arch.pio.count equal to 1 */
8063 BUG_ON(vcpu->arch.pio.count != 1);
8064
8065 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8066 vcpu->arch.pio.count = 0;
8067 return 1;
8068 }
8069
8070 /* For size less than 4 we merge, else we zero extend */
8071 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8072
8073 /*
8074 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8075 * the copy and tracing
8076 */
8077 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8078 kvm_rax_write(vcpu, val);
8079
8080 return kvm_skip_emulated_instruction(vcpu);
8081 }
8082
8083 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8084 unsigned short port)
8085 {
8086 unsigned long val;
8087 int ret;
8088
8089 /* For size less than 4 we merge, else we zero extend */
8090 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8091
8092 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8093 if (ret) {
8094 kvm_rax_write(vcpu, val);
8095 return ret;
8096 }
8097
8098 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8099 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8100
8101 return 0;
8102 }
8103
8104 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8105 {
8106 int ret;
8107
8108 if (in)
8109 ret = kvm_fast_pio_in(vcpu, size, port);
8110 else
8111 ret = kvm_fast_pio_out(vcpu, size, port);
8112 return ret && kvm_skip_emulated_instruction(vcpu);
8113 }
8114 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8115
8116 static int kvmclock_cpu_down_prep(unsigned int cpu)
8117 {
8118 __this_cpu_write(cpu_tsc_khz, 0);
8119 return 0;
8120 }
8121
8122 static void tsc_khz_changed(void *data)
8123 {
8124 struct cpufreq_freqs *freq = data;
8125 unsigned long khz = 0;
8126
8127 if (data)
8128 khz = freq->new;
8129 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8130 khz = cpufreq_quick_get(raw_smp_processor_id());
8131 if (!khz)
8132 khz = tsc_khz;
8133 __this_cpu_write(cpu_tsc_khz, khz);
8134 }
8135
8136 #ifdef CONFIG_X86_64
8137 static void kvm_hyperv_tsc_notifier(void)
8138 {
8139 struct kvm *kvm;
8140 struct kvm_vcpu *vcpu;
8141 int cpu;
8142 unsigned long flags;
8143
8144 mutex_lock(&kvm_lock);
8145 list_for_each_entry(kvm, &vm_list, vm_list)
8146 kvm_make_mclock_inprogress_request(kvm);
8147
8148 hyperv_stop_tsc_emulation();
8149
8150 /* TSC frequency always matches when on Hyper-V */
8151 for_each_present_cpu(cpu)
8152 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8153 kvm_max_guest_tsc_khz = tsc_khz;
8154
8155 list_for_each_entry(kvm, &vm_list, vm_list) {
8156 struct kvm_arch *ka = &kvm->arch;
8157
8158 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8159 pvclock_update_vm_gtod_copy(kvm);
8160 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8161
8162 kvm_for_each_vcpu(cpu, vcpu, kvm)
8163 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8164
8165 kvm_for_each_vcpu(cpu, vcpu, kvm)
8166 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8167 }
8168 mutex_unlock(&kvm_lock);
8169 }
8170 #endif
8171
8172 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8173 {
8174 struct kvm *kvm;
8175 struct kvm_vcpu *vcpu;
8176 int i, send_ipi = 0;
8177
8178 /*
8179 * We allow guests to temporarily run on slowing clocks,
8180 * provided we notify them after, or to run on accelerating
8181 * clocks, provided we notify them before. Thus time never
8182 * goes backwards.
8183 *
8184 * However, we have a problem. We can't atomically update
8185 * the frequency of a given CPU from this function; it is
8186 * merely a notifier, which can be called from any CPU.
8187 * Changing the TSC frequency at arbitrary points in time
8188 * requires a recomputation of local variables related to
8189 * the TSC for each VCPU. We must flag these local variables
8190 * to be updated and be sure the update takes place with the
8191 * new frequency before any guests proceed.
8192 *
8193 * Unfortunately, the combination of hotplug CPU and frequency
8194 * change creates an intractable locking scenario; the order
8195 * of when these callouts happen is undefined with respect to
8196 * CPU hotplug, and they can race with each other. As such,
8197 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8198 * undefined; you can actually have a CPU frequency change take
8199 * place in between the computation of X and the setting of the
8200 * variable. To protect against this problem, all updates of
8201 * the per_cpu tsc_khz variable are done in an interrupt
8202 * protected IPI, and all callers wishing to update the value
8203 * must wait for a synchronous IPI to complete (which is trivial
8204 * if the caller is on the CPU already). This establishes the
8205 * necessary total order on variable updates.
8206 *
8207 * Note that because a guest time update may take place
8208 * anytime after the setting of the VCPU's request bit, the
8209 * correct TSC value must be set before the request. However,
8210 * to ensure the update actually makes it to any guest which
8211 * starts running in hardware virtualization between the set
8212 * and the acquisition of the spinlock, we must also ping the
8213 * CPU after setting the request bit.
8214 *
8215 */
8216
8217 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8218
8219 mutex_lock(&kvm_lock);
8220 list_for_each_entry(kvm, &vm_list, vm_list) {
8221 kvm_for_each_vcpu(i, vcpu, kvm) {
8222 if (vcpu->cpu != cpu)
8223 continue;
8224 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8225 if (vcpu->cpu != raw_smp_processor_id())
8226 send_ipi = 1;
8227 }
8228 }
8229 mutex_unlock(&kvm_lock);
8230
8231 if (freq->old < freq->new && send_ipi) {
8232 /*
8233 * We upscale the frequency. Must make the guest
8234 * doesn't see old kvmclock values while running with
8235 * the new frequency, otherwise we risk the guest sees
8236 * time go backwards.
8237 *
8238 * In case we update the frequency for another cpu
8239 * (which might be in guest context) send an interrupt
8240 * to kick the cpu out of guest context. Next time
8241 * guest context is entered kvmclock will be updated,
8242 * so the guest will not see stale values.
8243 */
8244 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8245 }
8246 }
8247
8248 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8249 void *data)
8250 {
8251 struct cpufreq_freqs *freq = data;
8252 int cpu;
8253
8254 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8255 return 0;
8256 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8257 return 0;
8258
8259 for_each_cpu(cpu, freq->policy->cpus)
8260 __kvmclock_cpufreq_notifier(freq, cpu);
8261
8262 return 0;
8263 }
8264
8265 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8266 .notifier_call = kvmclock_cpufreq_notifier
8267 };
8268
8269 static int kvmclock_cpu_online(unsigned int cpu)
8270 {
8271 tsc_khz_changed(NULL);
8272 return 0;
8273 }
8274
8275 static void kvm_timer_init(void)
8276 {
8277 max_tsc_khz = tsc_khz;
8278
8279 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8280 #ifdef CONFIG_CPU_FREQ
8281 struct cpufreq_policy *policy;
8282 int cpu;
8283
8284 cpu = get_cpu();
8285 policy = cpufreq_cpu_get(cpu);
8286 if (policy) {
8287 if (policy->cpuinfo.max_freq)
8288 max_tsc_khz = policy->cpuinfo.max_freq;
8289 cpufreq_cpu_put(policy);
8290 }
8291 put_cpu();
8292 #endif
8293 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8294 CPUFREQ_TRANSITION_NOTIFIER);
8295 }
8296
8297 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8298 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8299 }
8300
8301 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8302 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8303
8304 int kvm_is_in_guest(void)
8305 {
8306 return __this_cpu_read(current_vcpu) != NULL;
8307 }
8308
8309 static int kvm_is_user_mode(void)
8310 {
8311 int user_mode = 3;
8312
8313 if (__this_cpu_read(current_vcpu))
8314 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8315
8316 return user_mode != 0;
8317 }
8318
8319 static unsigned long kvm_get_guest_ip(void)
8320 {
8321 unsigned long ip = 0;
8322
8323 if (__this_cpu_read(current_vcpu))
8324 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8325
8326 return ip;
8327 }
8328
8329 static void kvm_handle_intel_pt_intr(void)
8330 {
8331 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8332
8333 kvm_make_request(KVM_REQ_PMI, vcpu);
8334 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8335 (unsigned long *)&vcpu->arch.pmu.global_status);
8336 }
8337
8338 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8339 .is_in_guest = kvm_is_in_guest,
8340 .is_user_mode = kvm_is_user_mode,
8341 .get_guest_ip = kvm_get_guest_ip,
8342 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8343 };
8344
8345 #ifdef CONFIG_X86_64
8346 static void pvclock_gtod_update_fn(struct work_struct *work)
8347 {
8348 struct kvm *kvm;
8349
8350 struct kvm_vcpu *vcpu;
8351 int i;
8352
8353 mutex_lock(&kvm_lock);
8354 list_for_each_entry(kvm, &vm_list, vm_list)
8355 kvm_for_each_vcpu(i, vcpu, kvm)
8356 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8357 atomic_set(&kvm_guest_has_master_clock, 0);
8358 mutex_unlock(&kvm_lock);
8359 }
8360
8361 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8362
8363 /*
8364 * Indirection to move queue_work() out of the tk_core.seq write held
8365 * region to prevent possible deadlocks against time accessors which
8366 * are invoked with work related locks held.
8367 */
8368 static void pvclock_irq_work_fn(struct irq_work *w)
8369 {
8370 queue_work(system_long_wq, &pvclock_gtod_work);
8371 }
8372
8373 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8374
8375 /*
8376 * Notification about pvclock gtod data update.
8377 */
8378 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8379 void *priv)
8380 {
8381 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8382 struct timekeeper *tk = priv;
8383
8384 update_pvclock_gtod(tk);
8385
8386 /*
8387 * Disable master clock if host does not trust, or does not use,
8388 * TSC based clocksource. Delegate queue_work() to irq_work as
8389 * this is invoked with tk_core.seq write held.
8390 */
8391 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8392 atomic_read(&kvm_guest_has_master_clock) != 0)
8393 irq_work_queue(&pvclock_irq_work);
8394 return 0;
8395 }
8396
8397 static struct notifier_block pvclock_gtod_notifier = {
8398 .notifier_call = pvclock_gtod_notify,
8399 };
8400 #endif
8401
8402 int kvm_arch_init(void *opaque)
8403 {
8404 struct kvm_x86_init_ops *ops = opaque;
8405 int r;
8406
8407 if (kvm_x86_ops.hardware_enable) {
8408 printk(KERN_ERR "kvm: already loaded the other module\n");
8409 r = -EEXIST;
8410 goto out;
8411 }
8412
8413 if (!ops->cpu_has_kvm_support()) {
8414 pr_err_ratelimited("kvm: no hardware support\n");
8415 r = -EOPNOTSUPP;
8416 goto out;
8417 }
8418 if (ops->disabled_by_bios()) {
8419 pr_err_ratelimited("kvm: disabled by bios\n");
8420 r = -EOPNOTSUPP;
8421 goto out;
8422 }
8423
8424 /*
8425 * KVM explicitly assumes that the guest has an FPU and
8426 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8427 * vCPU's FPU state as a fxregs_state struct.
8428 */
8429 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8430 printk(KERN_ERR "kvm: inadequate fpu\n");
8431 r = -EOPNOTSUPP;
8432 goto out;
8433 }
8434
8435 r = -ENOMEM;
8436 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8437 __alignof__(struct fpu), SLAB_ACCOUNT,
8438 NULL);
8439 if (!x86_fpu_cache) {
8440 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8441 goto out;
8442 }
8443
8444 x86_emulator_cache = kvm_alloc_emulator_cache();
8445 if (!x86_emulator_cache) {
8446 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8447 goto out_free_x86_fpu_cache;
8448 }
8449
8450 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8451 if (!user_return_msrs) {
8452 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8453 goto out_free_x86_emulator_cache;
8454 }
8455 kvm_nr_uret_msrs = 0;
8456
8457 r = kvm_mmu_module_init();
8458 if (r)
8459 goto out_free_percpu;
8460
8461 kvm_timer_init();
8462
8463 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8464
8465 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8466 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8467 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8468 }
8469
8470 if (pi_inject_timer == -1)
8471 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8472 #ifdef CONFIG_X86_64
8473 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8474
8475 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8476 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8477 #endif
8478
8479 return 0;
8480
8481 out_free_percpu:
8482 free_percpu(user_return_msrs);
8483 out_free_x86_emulator_cache:
8484 kmem_cache_destroy(x86_emulator_cache);
8485 out_free_x86_fpu_cache:
8486 kmem_cache_destroy(x86_fpu_cache);
8487 out:
8488 return r;
8489 }
8490
8491 void kvm_arch_exit(void)
8492 {
8493 #ifdef CONFIG_X86_64
8494 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8495 clear_hv_tscchange_cb();
8496 #endif
8497 kvm_lapic_exit();
8498 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8499
8500 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8501 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8502 CPUFREQ_TRANSITION_NOTIFIER);
8503 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8504 #ifdef CONFIG_X86_64
8505 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8506 irq_work_sync(&pvclock_irq_work);
8507 cancel_work_sync(&pvclock_gtod_work);
8508 #endif
8509 kvm_x86_ops.hardware_enable = NULL;
8510 kvm_mmu_module_exit();
8511 free_percpu(user_return_msrs);
8512 kmem_cache_destroy(x86_emulator_cache);
8513 kmem_cache_destroy(x86_fpu_cache);
8514 #ifdef CONFIG_KVM_XEN
8515 static_key_deferred_flush(&kvm_xen_enabled);
8516 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8517 #endif
8518 }
8519
8520 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8521 {
8522 ++vcpu->stat.halt_exits;
8523 if (lapic_in_kernel(vcpu)) {
8524 vcpu->arch.mp_state = state;
8525 return 1;
8526 } else {
8527 vcpu->run->exit_reason = reason;
8528 return 0;
8529 }
8530 }
8531
8532 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8533 {
8534 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8535 }
8536 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8537
8538 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8539 {
8540 int ret = kvm_skip_emulated_instruction(vcpu);
8541 /*
8542 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8543 * KVM_EXIT_DEBUG here.
8544 */
8545 return kvm_vcpu_halt(vcpu) && ret;
8546 }
8547 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8548
8549 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8550 {
8551 int ret = kvm_skip_emulated_instruction(vcpu);
8552
8553 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8556
8557 #ifdef CONFIG_X86_64
8558 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8559 unsigned long clock_type)
8560 {
8561 struct kvm_clock_pairing clock_pairing;
8562 struct timespec64 ts;
8563 u64 cycle;
8564 int ret;
8565
8566 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8567 return -KVM_EOPNOTSUPP;
8568
8569 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8570 return -KVM_EOPNOTSUPP;
8571
8572 clock_pairing.sec = ts.tv_sec;
8573 clock_pairing.nsec = ts.tv_nsec;
8574 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8575 clock_pairing.flags = 0;
8576 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8577
8578 ret = 0;
8579 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8580 sizeof(struct kvm_clock_pairing)))
8581 ret = -KVM_EFAULT;
8582
8583 return ret;
8584 }
8585 #endif
8586
8587 /*
8588 * kvm_pv_kick_cpu_op: Kick a vcpu.
8589 *
8590 * @apicid - apicid of vcpu to be kicked.
8591 */
8592 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8593 {
8594 struct kvm_lapic_irq lapic_irq;
8595
8596 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8597 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8598 lapic_irq.level = 0;
8599 lapic_irq.dest_id = apicid;
8600 lapic_irq.msi_redir_hint = false;
8601
8602 lapic_irq.delivery_mode = APIC_DM_REMRD;
8603 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8604 }
8605
8606 bool kvm_apicv_activated(struct kvm *kvm)
8607 {
8608 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8609 }
8610 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8611
8612 static void kvm_apicv_init(struct kvm *kvm)
8613 {
8614 mutex_init(&kvm->arch.apicv_update_lock);
8615
8616 if (enable_apicv)
8617 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8618 &kvm->arch.apicv_inhibit_reasons);
8619 else
8620 set_bit(APICV_INHIBIT_REASON_DISABLE,
8621 &kvm->arch.apicv_inhibit_reasons);
8622 }
8623
8624 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8625 {
8626 struct kvm_vcpu *target = NULL;
8627 struct kvm_apic_map *map;
8628
8629 vcpu->stat.directed_yield_attempted++;
8630
8631 if (single_task_running())
8632 goto no_yield;
8633
8634 rcu_read_lock();
8635 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8636
8637 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8638 target = map->phys_map[dest_id]->vcpu;
8639
8640 rcu_read_unlock();
8641
8642 if (!target || !READ_ONCE(target->ready))
8643 goto no_yield;
8644
8645 /* Ignore requests to yield to self */
8646 if (vcpu == target)
8647 goto no_yield;
8648
8649 if (kvm_vcpu_yield_to(target) <= 0)
8650 goto no_yield;
8651
8652 vcpu->stat.directed_yield_successful++;
8653
8654 no_yield:
8655 return;
8656 }
8657
8658 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8659 {
8660 u64 ret = vcpu->run->hypercall.ret;
8661
8662 if (!is_64_bit_mode(vcpu))
8663 ret = (u32)ret;
8664 kvm_rax_write(vcpu, ret);
8665 ++vcpu->stat.hypercalls;
8666 return kvm_skip_emulated_instruction(vcpu);
8667 }
8668
8669 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8670 {
8671 unsigned long nr, a0, a1, a2, a3, ret;
8672 int op_64_bit;
8673
8674 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8675 return kvm_xen_hypercall(vcpu);
8676
8677 if (kvm_hv_hypercall_enabled(vcpu))
8678 return kvm_hv_hypercall(vcpu);
8679
8680 nr = kvm_rax_read(vcpu);
8681 a0 = kvm_rbx_read(vcpu);
8682 a1 = kvm_rcx_read(vcpu);
8683 a2 = kvm_rdx_read(vcpu);
8684 a3 = kvm_rsi_read(vcpu);
8685
8686 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8687
8688 op_64_bit = is_64_bit_mode(vcpu);
8689 if (!op_64_bit) {
8690 nr &= 0xFFFFFFFF;
8691 a0 &= 0xFFFFFFFF;
8692 a1 &= 0xFFFFFFFF;
8693 a2 &= 0xFFFFFFFF;
8694 a3 &= 0xFFFFFFFF;
8695 }
8696
8697 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8698 ret = -KVM_EPERM;
8699 goto out;
8700 }
8701
8702 ret = -KVM_ENOSYS;
8703
8704 switch (nr) {
8705 case KVM_HC_VAPIC_POLL_IRQ:
8706 ret = 0;
8707 break;
8708 case KVM_HC_KICK_CPU:
8709 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8710 break;
8711
8712 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8713 kvm_sched_yield(vcpu, a1);
8714 ret = 0;
8715 break;
8716 #ifdef CONFIG_X86_64
8717 case KVM_HC_CLOCK_PAIRING:
8718 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8719 break;
8720 #endif
8721 case KVM_HC_SEND_IPI:
8722 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8723 break;
8724
8725 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8726 break;
8727 case KVM_HC_SCHED_YIELD:
8728 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8729 break;
8730
8731 kvm_sched_yield(vcpu, a0);
8732 ret = 0;
8733 break;
8734 case KVM_HC_MAP_GPA_RANGE: {
8735 u64 gpa = a0, npages = a1, attrs = a2;
8736
8737 ret = -KVM_ENOSYS;
8738 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8739 break;
8740
8741 if (!PAGE_ALIGNED(gpa) || !npages ||
8742 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8743 ret = -KVM_EINVAL;
8744 break;
8745 }
8746
8747 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8748 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8749 vcpu->run->hypercall.args[0] = gpa;
8750 vcpu->run->hypercall.args[1] = npages;
8751 vcpu->run->hypercall.args[2] = attrs;
8752 vcpu->run->hypercall.longmode = op_64_bit;
8753 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8754 return 0;
8755 }
8756 default:
8757 ret = -KVM_ENOSYS;
8758 break;
8759 }
8760 out:
8761 if (!op_64_bit)
8762 ret = (u32)ret;
8763 kvm_rax_write(vcpu, ret);
8764
8765 ++vcpu->stat.hypercalls;
8766 return kvm_skip_emulated_instruction(vcpu);
8767 }
8768 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8769
8770 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8771 {
8772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8773 char instruction[3];
8774 unsigned long rip = kvm_rip_read(vcpu);
8775
8776 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8777
8778 return emulator_write_emulated(ctxt, rip, instruction, 3,
8779 &ctxt->exception);
8780 }
8781
8782 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8783 {
8784 return vcpu->run->request_interrupt_window &&
8785 likely(!pic_in_kernel(vcpu->kvm));
8786 }
8787
8788 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8789 {
8790 struct kvm_run *kvm_run = vcpu->run;
8791
8792 /*
8793 * if_flag is obsolete and useless, so do not bother
8794 * setting it for SEV-ES guests. Userspace can just
8795 * use kvm_run->ready_for_interrupt_injection.
8796 */
8797 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8798 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8799
8800 kvm_run->cr8 = kvm_get_cr8(vcpu);
8801 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8802 kvm_run->ready_for_interrupt_injection =
8803 pic_in_kernel(vcpu->kvm) ||
8804 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8805
8806 if (is_smm(vcpu))
8807 kvm_run->flags |= KVM_RUN_X86_SMM;
8808 }
8809
8810 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8811 {
8812 int max_irr, tpr;
8813
8814 if (!kvm_x86_ops.update_cr8_intercept)
8815 return;
8816
8817 if (!lapic_in_kernel(vcpu))
8818 return;
8819
8820 if (vcpu->arch.apicv_active)
8821 return;
8822
8823 if (!vcpu->arch.apic->vapic_addr)
8824 max_irr = kvm_lapic_find_highest_irr(vcpu);
8825 else
8826 max_irr = -1;
8827
8828 if (max_irr != -1)
8829 max_irr >>= 4;
8830
8831 tpr = kvm_lapic_get_cr8(vcpu);
8832
8833 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8834 }
8835
8836
8837 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8838 {
8839 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8840 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8841 return 1;
8842 }
8843
8844 return kvm_x86_ops.nested_ops->check_events(vcpu);
8845 }
8846
8847 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8848 {
8849 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8850 vcpu->arch.exception.error_code = false;
8851 static_call(kvm_x86_queue_exception)(vcpu);
8852 }
8853
8854 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8855 {
8856 int r;
8857 bool can_inject = true;
8858
8859 /* try to reinject previous events if any */
8860
8861 if (vcpu->arch.exception.injected) {
8862 kvm_inject_exception(vcpu);
8863 can_inject = false;
8864 }
8865 /*
8866 * Do not inject an NMI or interrupt if there is a pending
8867 * exception. Exceptions and interrupts are recognized at
8868 * instruction boundaries, i.e. the start of an instruction.
8869 * Trap-like exceptions, e.g. #DB, have higher priority than
8870 * NMIs and interrupts, i.e. traps are recognized before an
8871 * NMI/interrupt that's pending on the same instruction.
8872 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8873 * priority, but are only generated (pended) during instruction
8874 * execution, i.e. a pending fault-like exception means the
8875 * fault occurred on the *previous* instruction and must be
8876 * serviced prior to recognizing any new events in order to
8877 * fully complete the previous instruction.
8878 */
8879 else if (!vcpu->arch.exception.pending) {
8880 if (vcpu->arch.nmi_injected) {
8881 static_call(kvm_x86_set_nmi)(vcpu);
8882 can_inject = false;
8883 } else if (vcpu->arch.interrupt.injected) {
8884 static_call(kvm_x86_set_irq)(vcpu);
8885 can_inject = false;
8886 }
8887 }
8888
8889 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8890 vcpu->arch.exception.pending);
8891
8892 /*
8893 * Call check_nested_events() even if we reinjected a previous event
8894 * in order for caller to determine if it should require immediate-exit
8895 * from L2 to L1 due to pending L1 events which require exit
8896 * from L2 to L1.
8897 */
8898 if (is_guest_mode(vcpu)) {
8899 r = kvm_check_nested_events(vcpu);
8900 if (r < 0)
8901 goto out;
8902 }
8903
8904 /* try to inject new event if pending */
8905 if (vcpu->arch.exception.pending) {
8906 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8907 vcpu->arch.exception.has_error_code,
8908 vcpu->arch.exception.error_code);
8909
8910 vcpu->arch.exception.pending = false;
8911 vcpu->arch.exception.injected = true;
8912
8913 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8914 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8915 X86_EFLAGS_RF);
8916
8917 if (vcpu->arch.exception.nr == DB_VECTOR) {
8918 kvm_deliver_exception_payload(vcpu);
8919 if (vcpu->arch.dr7 & DR7_GD) {
8920 vcpu->arch.dr7 &= ~DR7_GD;
8921 kvm_update_dr7(vcpu);
8922 }
8923 }
8924
8925 kvm_inject_exception(vcpu);
8926 can_inject = false;
8927 }
8928
8929 /* Don't inject interrupts if the user asked to avoid doing so */
8930 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8931 return 0;
8932
8933 /*
8934 * Finally, inject interrupt events. If an event cannot be injected
8935 * due to architectural conditions (e.g. IF=0) a window-open exit
8936 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8937 * and can architecturally be injected, but we cannot do it right now:
8938 * an interrupt could have arrived just now and we have to inject it
8939 * as a vmexit, or there could already an event in the queue, which is
8940 * indicated by can_inject. In that case we request an immediate exit
8941 * in order to make progress and get back here for another iteration.
8942 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8943 */
8944 if (vcpu->arch.smi_pending) {
8945 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8946 if (r < 0)
8947 goto out;
8948 if (r) {
8949 vcpu->arch.smi_pending = false;
8950 ++vcpu->arch.smi_count;
8951 enter_smm(vcpu);
8952 can_inject = false;
8953 } else
8954 static_call(kvm_x86_enable_smi_window)(vcpu);
8955 }
8956
8957 if (vcpu->arch.nmi_pending) {
8958 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8959 if (r < 0)
8960 goto out;
8961 if (r) {
8962 --vcpu->arch.nmi_pending;
8963 vcpu->arch.nmi_injected = true;
8964 static_call(kvm_x86_set_nmi)(vcpu);
8965 can_inject = false;
8966 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8967 }
8968 if (vcpu->arch.nmi_pending)
8969 static_call(kvm_x86_enable_nmi_window)(vcpu);
8970 }
8971
8972 if (kvm_cpu_has_injectable_intr(vcpu)) {
8973 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8974 if (r < 0)
8975 goto out;
8976 if (r) {
8977 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8978 static_call(kvm_x86_set_irq)(vcpu);
8979 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8980 }
8981 if (kvm_cpu_has_injectable_intr(vcpu))
8982 static_call(kvm_x86_enable_irq_window)(vcpu);
8983 }
8984
8985 if (is_guest_mode(vcpu) &&
8986 kvm_x86_ops.nested_ops->hv_timer_pending &&
8987 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8988 *req_immediate_exit = true;
8989
8990 WARN_ON(vcpu->arch.exception.pending);
8991 return 0;
8992
8993 out:
8994 if (r == -EBUSY) {
8995 *req_immediate_exit = true;
8996 r = 0;
8997 }
8998 return r;
8999 }
9000
9001 static void process_nmi(struct kvm_vcpu *vcpu)
9002 {
9003 unsigned limit = 2;
9004
9005 /*
9006 * x86 is limited to one NMI running, and one NMI pending after it.
9007 * If an NMI is already in progress, limit further NMIs to just one.
9008 * Otherwise, allow two (and we'll inject the first one immediately).
9009 */
9010 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9011 limit = 1;
9012
9013 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9014 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9015 kvm_make_request(KVM_REQ_EVENT, vcpu);
9016 }
9017
9018 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9019 {
9020 u32 flags = 0;
9021 flags |= seg->g << 23;
9022 flags |= seg->db << 22;
9023 flags |= seg->l << 21;
9024 flags |= seg->avl << 20;
9025 flags |= seg->present << 15;
9026 flags |= seg->dpl << 13;
9027 flags |= seg->s << 12;
9028 flags |= seg->type << 8;
9029 return flags;
9030 }
9031
9032 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9033 {
9034 struct kvm_segment seg;
9035 int offset;
9036
9037 kvm_get_segment(vcpu, &seg, n);
9038 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9039
9040 if (n < 3)
9041 offset = 0x7f84 + n * 12;
9042 else
9043 offset = 0x7f2c + (n - 3) * 12;
9044
9045 put_smstate(u32, buf, offset + 8, seg.base);
9046 put_smstate(u32, buf, offset + 4, seg.limit);
9047 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9048 }
9049
9050 #ifdef CONFIG_X86_64
9051 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9052 {
9053 struct kvm_segment seg;
9054 int offset;
9055 u16 flags;
9056
9057 kvm_get_segment(vcpu, &seg, n);
9058 offset = 0x7e00 + n * 16;
9059
9060 flags = enter_smm_get_segment_flags(&seg) >> 8;
9061 put_smstate(u16, buf, offset, seg.selector);
9062 put_smstate(u16, buf, offset + 2, flags);
9063 put_smstate(u32, buf, offset + 4, seg.limit);
9064 put_smstate(u64, buf, offset + 8, seg.base);
9065 }
9066 #endif
9067
9068 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9069 {
9070 struct desc_ptr dt;
9071 struct kvm_segment seg;
9072 unsigned long val;
9073 int i;
9074
9075 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9076 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9077 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9078 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9079
9080 for (i = 0; i < 8; i++)
9081 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9082
9083 kvm_get_dr(vcpu, 6, &val);
9084 put_smstate(u32, buf, 0x7fcc, (u32)val);
9085 kvm_get_dr(vcpu, 7, &val);
9086 put_smstate(u32, buf, 0x7fc8, (u32)val);
9087
9088 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9089 put_smstate(u32, buf, 0x7fc4, seg.selector);
9090 put_smstate(u32, buf, 0x7f64, seg.base);
9091 put_smstate(u32, buf, 0x7f60, seg.limit);
9092 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9093
9094 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9095 put_smstate(u32, buf, 0x7fc0, seg.selector);
9096 put_smstate(u32, buf, 0x7f80, seg.base);
9097 put_smstate(u32, buf, 0x7f7c, seg.limit);
9098 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9099
9100 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9101 put_smstate(u32, buf, 0x7f74, dt.address);
9102 put_smstate(u32, buf, 0x7f70, dt.size);
9103
9104 static_call(kvm_x86_get_idt)(vcpu, &dt);
9105 put_smstate(u32, buf, 0x7f58, dt.address);
9106 put_smstate(u32, buf, 0x7f54, dt.size);
9107
9108 for (i = 0; i < 6; i++)
9109 enter_smm_save_seg_32(vcpu, buf, i);
9110
9111 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9112
9113 /* revision id */
9114 put_smstate(u32, buf, 0x7efc, 0x00020000);
9115 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9116 }
9117
9118 #ifdef CONFIG_X86_64
9119 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9120 {
9121 struct desc_ptr dt;
9122 struct kvm_segment seg;
9123 unsigned long val;
9124 int i;
9125
9126 for (i = 0; i < 16; i++)
9127 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9128
9129 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9130 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9131
9132 kvm_get_dr(vcpu, 6, &val);
9133 put_smstate(u64, buf, 0x7f68, val);
9134 kvm_get_dr(vcpu, 7, &val);
9135 put_smstate(u64, buf, 0x7f60, val);
9136
9137 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9138 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9139 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9140
9141 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9142
9143 /* revision id */
9144 put_smstate(u32, buf, 0x7efc, 0x00020064);
9145
9146 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9147
9148 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9149 put_smstate(u16, buf, 0x7e90, seg.selector);
9150 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9151 put_smstate(u32, buf, 0x7e94, seg.limit);
9152 put_smstate(u64, buf, 0x7e98, seg.base);
9153
9154 static_call(kvm_x86_get_idt)(vcpu, &dt);
9155 put_smstate(u32, buf, 0x7e84, dt.size);
9156 put_smstate(u64, buf, 0x7e88, dt.address);
9157
9158 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9159 put_smstate(u16, buf, 0x7e70, seg.selector);
9160 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9161 put_smstate(u32, buf, 0x7e74, seg.limit);
9162 put_smstate(u64, buf, 0x7e78, seg.base);
9163
9164 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9165 put_smstate(u32, buf, 0x7e64, dt.size);
9166 put_smstate(u64, buf, 0x7e68, dt.address);
9167
9168 for (i = 0; i < 6; i++)
9169 enter_smm_save_seg_64(vcpu, buf, i);
9170 }
9171 #endif
9172
9173 static void enter_smm(struct kvm_vcpu *vcpu)
9174 {
9175 struct kvm_segment cs, ds;
9176 struct desc_ptr dt;
9177 unsigned long cr0;
9178 char buf[512];
9179
9180 memset(buf, 0, 512);
9181 #ifdef CONFIG_X86_64
9182 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9183 enter_smm_save_state_64(vcpu, buf);
9184 else
9185 #endif
9186 enter_smm_save_state_32(vcpu, buf);
9187
9188 /*
9189 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9190 * state (e.g. leave guest mode) after we've saved the state into the
9191 * SMM state-save area.
9192 */
9193 static_call(kvm_x86_enter_smm)(vcpu, buf);
9194
9195 kvm_smm_changed(vcpu, true);
9196 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9197
9198 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9199 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9200 else
9201 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9202
9203 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9204 kvm_rip_write(vcpu, 0x8000);
9205
9206 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9207 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9208 vcpu->arch.cr0 = cr0;
9209
9210 static_call(kvm_x86_set_cr4)(vcpu, 0);
9211
9212 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9213 dt.address = dt.size = 0;
9214 static_call(kvm_x86_set_idt)(vcpu, &dt);
9215
9216 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9217
9218 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9219 cs.base = vcpu->arch.smbase;
9220
9221 ds.selector = 0;
9222 ds.base = 0;
9223
9224 cs.limit = ds.limit = 0xffffffff;
9225 cs.type = ds.type = 0x3;
9226 cs.dpl = ds.dpl = 0;
9227 cs.db = ds.db = 0;
9228 cs.s = ds.s = 1;
9229 cs.l = ds.l = 0;
9230 cs.g = ds.g = 1;
9231 cs.avl = ds.avl = 0;
9232 cs.present = ds.present = 1;
9233 cs.unusable = ds.unusable = 0;
9234 cs.padding = ds.padding = 0;
9235
9236 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9237 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9238 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9239 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9240 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9241 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9242
9243 #ifdef CONFIG_X86_64
9244 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9245 static_call(kvm_x86_set_efer)(vcpu, 0);
9246 #endif
9247
9248 kvm_update_cpuid_runtime(vcpu);
9249 kvm_mmu_reset_context(vcpu);
9250 }
9251
9252 static void process_smi(struct kvm_vcpu *vcpu)
9253 {
9254 vcpu->arch.smi_pending = true;
9255 kvm_make_request(KVM_REQ_EVENT, vcpu);
9256 }
9257
9258 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9259 unsigned long *vcpu_bitmap)
9260 {
9261 cpumask_var_t cpus;
9262
9263 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9264
9265 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9266 NULL, vcpu_bitmap, cpus);
9267
9268 free_cpumask_var(cpus);
9269 }
9270
9271 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9272 {
9273 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9274 }
9275
9276 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9277 {
9278 bool activate;
9279
9280 if (!lapic_in_kernel(vcpu))
9281 return;
9282
9283 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9284
9285 activate = kvm_apicv_activated(vcpu->kvm);
9286 if (vcpu->arch.apicv_active == activate)
9287 goto out;
9288
9289 vcpu->arch.apicv_active = activate;
9290 kvm_apic_update_apicv(vcpu);
9291 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9292
9293 /*
9294 * When APICv gets disabled, we may still have injected interrupts
9295 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9296 * still active when the interrupt got accepted. Make sure
9297 * inject_pending_event() is called to check for that.
9298 */
9299 if (!vcpu->arch.apicv_active)
9300 kvm_make_request(KVM_REQ_EVENT, vcpu);
9301
9302 out:
9303 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9304 }
9305 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9306
9307 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9308 {
9309 unsigned long old, new;
9310
9311 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9312 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9313 return;
9314
9315 old = new = kvm->arch.apicv_inhibit_reasons;
9316
9317 if (activate)
9318 __clear_bit(bit, &new);
9319 else
9320 __set_bit(bit, &new);
9321
9322 if (!!old != !!new) {
9323 trace_kvm_apicv_update_request(activate, bit);
9324 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9325 kvm->arch.apicv_inhibit_reasons = new;
9326 if (new) {
9327 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9328 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9329 }
9330 } else
9331 kvm->arch.apicv_inhibit_reasons = new;
9332 }
9333 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9334
9335 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9336 {
9337 mutex_lock(&kvm->arch.apicv_update_lock);
9338 __kvm_request_apicv_update(kvm, activate, bit);
9339 mutex_unlock(&kvm->arch.apicv_update_lock);
9340 }
9341 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9342
9343 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9344 {
9345 if (!kvm_apic_present(vcpu))
9346 return;
9347
9348 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9349
9350 if (irqchip_split(vcpu->kvm))
9351 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9352 else {
9353 if (vcpu->arch.apicv_active)
9354 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9355 if (ioapic_in_kernel(vcpu->kvm))
9356 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9357 }
9358
9359 if (is_guest_mode(vcpu))
9360 vcpu->arch.load_eoi_exitmap_pending = true;
9361 else
9362 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9363 }
9364
9365 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9366 {
9367 u64 eoi_exit_bitmap[4];
9368
9369 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9370 return;
9371
9372 if (to_hv_vcpu(vcpu))
9373 bitmap_or((ulong *)eoi_exit_bitmap,
9374 vcpu->arch.ioapic_handled_vectors,
9375 to_hv_synic(vcpu)->vec_bitmap, 256);
9376
9377 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9378 }
9379
9380 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9381 unsigned long start, unsigned long end)
9382 {
9383 unsigned long apic_address;
9384
9385 /*
9386 * The physical address of apic access page is stored in the VMCS.
9387 * Update it when it becomes invalid.
9388 */
9389 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9390 if (start <= apic_address && apic_address < end)
9391 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9392 }
9393
9394 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9395 {
9396 if (!lapic_in_kernel(vcpu))
9397 return;
9398
9399 if (!kvm_x86_ops.set_apic_access_page_addr)
9400 return;
9401
9402 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9403 }
9404
9405 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9406 {
9407 smp_send_reschedule(vcpu->cpu);
9408 }
9409 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9410
9411 /*
9412 * Returns 1 to let vcpu_run() continue the guest execution loop without
9413 * exiting to the userspace. Otherwise, the value will be returned to the
9414 * userspace.
9415 */
9416 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9417 {
9418 int r;
9419 bool req_int_win =
9420 dm_request_for_irq_injection(vcpu) &&
9421 kvm_cpu_accept_dm_intr(vcpu);
9422 fastpath_t exit_fastpath;
9423
9424 bool req_immediate_exit = false;
9425
9426 /* Forbid vmenter if vcpu dirty ring is soft-full */
9427 if (unlikely(vcpu->kvm->dirty_ring_size &&
9428 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9429 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9430 trace_kvm_dirty_ring_exit(vcpu);
9431 r = 0;
9432 goto out;
9433 }
9434
9435 if (kvm_request_pending(vcpu)) {
9436 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9437 r = -EIO;
9438 goto out;
9439 }
9440 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9441 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9442 r = 0;
9443 goto out;
9444 }
9445 }
9446 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9447 kvm_mmu_unload(vcpu);
9448 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9449 __kvm_migrate_timers(vcpu);
9450 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9451 kvm_gen_update_masterclock(vcpu->kvm);
9452 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9453 kvm_gen_kvmclock_update(vcpu);
9454 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9455 r = kvm_guest_time_update(vcpu);
9456 if (unlikely(r))
9457 goto out;
9458 }
9459 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9460 kvm_mmu_sync_roots(vcpu);
9461 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9462 kvm_mmu_load_pgd(vcpu);
9463 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9464 kvm_vcpu_flush_tlb_all(vcpu);
9465
9466 /* Flushing all ASIDs flushes the current ASID... */
9467 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9468 }
9469 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9470 kvm_vcpu_flush_tlb_current(vcpu);
9471 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9472 kvm_vcpu_flush_tlb_guest(vcpu);
9473
9474 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9475 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9476 r = 0;
9477 goto out;
9478 }
9479 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9480 if (is_guest_mode(vcpu)) {
9481 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9482 } else {
9483 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9484 vcpu->mmio_needed = 0;
9485 r = 0;
9486 goto out;
9487 }
9488 }
9489 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9490 /* Page is swapped out. Do synthetic halt */
9491 vcpu->arch.apf.halted = true;
9492 r = 1;
9493 goto out;
9494 }
9495 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9496 record_steal_time(vcpu);
9497 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9498 process_smi(vcpu);
9499 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9500 process_nmi(vcpu);
9501 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9502 kvm_pmu_handle_event(vcpu);
9503 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9504 kvm_pmu_deliver_pmi(vcpu);
9505 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9506 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9507 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9508 vcpu->arch.ioapic_handled_vectors)) {
9509 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9510 vcpu->run->eoi.vector =
9511 vcpu->arch.pending_ioapic_eoi;
9512 r = 0;
9513 goto out;
9514 }
9515 }
9516 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9517 vcpu_scan_ioapic(vcpu);
9518 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9519 vcpu_load_eoi_exitmap(vcpu);
9520 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9521 kvm_vcpu_reload_apic_access_page(vcpu);
9522 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9523 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9524 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9525 r = 0;
9526 goto out;
9527 }
9528 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9529 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9530 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9531 r = 0;
9532 goto out;
9533 }
9534 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9535 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9536
9537 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9538 vcpu->run->hyperv = hv_vcpu->exit;
9539 r = 0;
9540 goto out;
9541 }
9542
9543 /*
9544 * KVM_REQ_HV_STIMER has to be processed after
9545 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9546 * depend on the guest clock being up-to-date
9547 */
9548 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9549 kvm_hv_process_stimers(vcpu);
9550 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9551 kvm_vcpu_update_apicv(vcpu);
9552 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9553 kvm_check_async_pf_completion(vcpu);
9554 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9555 static_call(kvm_x86_msr_filter_changed)(vcpu);
9556
9557 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9558 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9559 }
9560
9561 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9562 kvm_xen_has_interrupt(vcpu)) {
9563 ++vcpu->stat.req_event;
9564 r = kvm_apic_accept_events(vcpu);
9565 if (r < 0) {
9566 r = 0;
9567 goto out;
9568 }
9569 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9570 r = 1;
9571 goto out;
9572 }
9573
9574 r = inject_pending_event(vcpu, &req_immediate_exit);
9575 if (r < 0) {
9576 r = 0;
9577 goto out;
9578 }
9579 if (req_int_win)
9580 static_call(kvm_x86_enable_irq_window)(vcpu);
9581
9582 if (kvm_lapic_enabled(vcpu)) {
9583 update_cr8_intercept(vcpu);
9584 kvm_lapic_sync_to_vapic(vcpu);
9585 }
9586 }
9587
9588 r = kvm_mmu_reload(vcpu);
9589 if (unlikely(r)) {
9590 goto cancel_injection;
9591 }
9592
9593 preempt_disable();
9594
9595 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9596
9597 /*
9598 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9599 * IPI are then delayed after guest entry, which ensures that they
9600 * result in virtual interrupt delivery.
9601 */
9602 local_irq_disable();
9603 vcpu->mode = IN_GUEST_MODE;
9604
9605 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9606
9607 /*
9608 * 1) We should set ->mode before checking ->requests. Please see
9609 * the comment in kvm_vcpu_exiting_guest_mode().
9610 *
9611 * 2) For APICv, we should set ->mode before checking PID.ON. This
9612 * pairs with the memory barrier implicit in pi_test_and_set_on
9613 * (see vmx_deliver_posted_interrupt).
9614 *
9615 * 3) This also orders the write to mode from any reads to the page
9616 * tables done while the VCPU is running. Please see the comment
9617 * in kvm_flush_remote_tlbs.
9618 */
9619 smp_mb__after_srcu_read_unlock();
9620
9621 /*
9622 * This handles the case where a posted interrupt was
9623 * notified with kvm_vcpu_kick.
9624 */
9625 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9626 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9627
9628 if (kvm_vcpu_exit_request(vcpu)) {
9629 vcpu->mode = OUTSIDE_GUEST_MODE;
9630 smp_wmb();
9631 local_irq_enable();
9632 preempt_enable();
9633 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9634 r = 1;
9635 goto cancel_injection;
9636 }
9637
9638 if (req_immediate_exit) {
9639 kvm_make_request(KVM_REQ_EVENT, vcpu);
9640 static_call(kvm_x86_request_immediate_exit)(vcpu);
9641 }
9642
9643 fpregs_assert_state_consistent();
9644 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9645 switch_fpu_return();
9646
9647 if (unlikely(vcpu->arch.switch_db_regs)) {
9648 set_debugreg(0, 7);
9649 set_debugreg(vcpu->arch.eff_db[0], 0);
9650 set_debugreg(vcpu->arch.eff_db[1], 1);
9651 set_debugreg(vcpu->arch.eff_db[2], 2);
9652 set_debugreg(vcpu->arch.eff_db[3], 3);
9653 } else if (unlikely(hw_breakpoint_active())) {
9654 set_debugreg(0, 7);
9655 }
9656
9657 for (;;) {
9658 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9659 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9660 break;
9661
9662 if (vcpu->arch.apicv_active)
9663 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9664
9665 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9666 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9667 break;
9668 }
9669 }
9670
9671 /*
9672 * Do this here before restoring debug registers on the host. And
9673 * since we do this before handling the vmexit, a DR access vmexit
9674 * can (a) read the correct value of the debug registers, (b) set
9675 * KVM_DEBUGREG_WONT_EXIT again.
9676 */
9677 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9678 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9679 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9680 kvm_update_dr0123(vcpu);
9681 kvm_update_dr7(vcpu);
9682 }
9683
9684 /*
9685 * If the guest has used debug registers, at least dr7
9686 * will be disabled while returning to the host.
9687 * If we don't have active breakpoints in the host, we don't
9688 * care about the messed up debug address registers. But if
9689 * we have some of them active, restore the old state.
9690 */
9691 if (hw_breakpoint_active())
9692 hw_breakpoint_restore();
9693
9694 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9695 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9696
9697 vcpu->mode = OUTSIDE_GUEST_MODE;
9698 smp_wmb();
9699
9700 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9701
9702 /*
9703 * Consume any pending interrupts, including the possible source of
9704 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9705 * An instruction is required after local_irq_enable() to fully unblock
9706 * interrupts on processors that implement an interrupt shadow, the
9707 * stat.exits increment will do nicely.
9708 */
9709 kvm_before_interrupt(vcpu);
9710 local_irq_enable();
9711 ++vcpu->stat.exits;
9712 local_irq_disable();
9713 kvm_after_interrupt(vcpu);
9714
9715 /*
9716 * Wait until after servicing IRQs to account guest time so that any
9717 * ticks that occurred while running the guest are properly accounted
9718 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9719 * of accounting via context tracking, but the loss of accuracy is
9720 * acceptable for all known use cases.
9721 */
9722 vtime_account_guest_exit();
9723
9724 if (lapic_in_kernel(vcpu)) {
9725 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9726 if (delta != S64_MIN) {
9727 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9728 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9729 }
9730 }
9731
9732 local_irq_enable();
9733 preempt_enable();
9734
9735 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9736
9737 /*
9738 * Profile KVM exit RIPs:
9739 */
9740 if (unlikely(prof_on == KVM_PROFILING)) {
9741 unsigned long rip = kvm_rip_read(vcpu);
9742 profile_hit(KVM_PROFILING, (void *)rip);
9743 }
9744
9745 if (unlikely(vcpu->arch.tsc_always_catchup))
9746 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9747
9748 if (vcpu->arch.apic_attention)
9749 kvm_lapic_sync_from_vapic(vcpu);
9750
9751 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9752 return r;
9753
9754 cancel_injection:
9755 if (req_immediate_exit)
9756 kvm_make_request(KVM_REQ_EVENT, vcpu);
9757 static_call(kvm_x86_cancel_injection)(vcpu);
9758 if (unlikely(vcpu->arch.apic_attention))
9759 kvm_lapic_sync_from_vapic(vcpu);
9760 out:
9761 return r;
9762 }
9763
9764 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9765 {
9766 if (!kvm_arch_vcpu_runnable(vcpu) &&
9767 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9768 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9769 kvm_vcpu_block(vcpu);
9770 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9771
9772 if (kvm_x86_ops.post_block)
9773 static_call(kvm_x86_post_block)(vcpu);
9774
9775 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9776 return 1;
9777 }
9778
9779 if (kvm_apic_accept_events(vcpu) < 0)
9780 return 0;
9781 switch(vcpu->arch.mp_state) {
9782 case KVM_MP_STATE_HALTED:
9783 case KVM_MP_STATE_AP_RESET_HOLD:
9784 vcpu->arch.pv.pv_unhalted = false;
9785 vcpu->arch.mp_state =
9786 KVM_MP_STATE_RUNNABLE;
9787 fallthrough;
9788 case KVM_MP_STATE_RUNNABLE:
9789 vcpu->arch.apf.halted = false;
9790 break;
9791 case KVM_MP_STATE_INIT_RECEIVED:
9792 break;
9793 default:
9794 return -EINTR;
9795 }
9796 return 1;
9797 }
9798
9799 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9800 {
9801 if (is_guest_mode(vcpu))
9802 kvm_check_nested_events(vcpu);
9803
9804 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9805 !vcpu->arch.apf.halted);
9806 }
9807
9808 static int vcpu_run(struct kvm_vcpu *vcpu)
9809 {
9810 int r;
9811 struct kvm *kvm = vcpu->kvm;
9812
9813 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9814 vcpu->arch.l1tf_flush_l1d = true;
9815
9816 for (;;) {
9817 if (kvm_vcpu_running(vcpu)) {
9818 r = vcpu_enter_guest(vcpu);
9819 } else {
9820 r = vcpu_block(kvm, vcpu);
9821 }
9822
9823 if (r <= 0)
9824 break;
9825
9826 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9827 if (kvm_cpu_has_pending_timer(vcpu))
9828 kvm_inject_pending_timer_irqs(vcpu);
9829
9830 if (dm_request_for_irq_injection(vcpu) &&
9831 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9832 r = 0;
9833 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9834 ++vcpu->stat.request_irq_exits;
9835 break;
9836 }
9837
9838 if (__xfer_to_guest_mode_work_pending()) {
9839 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9840 r = xfer_to_guest_mode_handle_work(vcpu);
9841 if (r)
9842 return r;
9843 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9844 }
9845 }
9846
9847 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9848
9849 return r;
9850 }
9851
9852 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9853 {
9854 int r;
9855
9856 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9857 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9858 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9859 return r;
9860 }
9861
9862 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9863 {
9864 BUG_ON(!vcpu->arch.pio.count);
9865
9866 return complete_emulated_io(vcpu);
9867 }
9868
9869 /*
9870 * Implements the following, as a state machine:
9871 *
9872 * read:
9873 * for each fragment
9874 * for each mmio piece in the fragment
9875 * write gpa, len
9876 * exit
9877 * copy data
9878 * execute insn
9879 *
9880 * write:
9881 * for each fragment
9882 * for each mmio piece in the fragment
9883 * write gpa, len
9884 * copy data
9885 * exit
9886 */
9887 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9888 {
9889 struct kvm_run *run = vcpu->run;
9890 struct kvm_mmio_fragment *frag;
9891 unsigned len;
9892
9893 BUG_ON(!vcpu->mmio_needed);
9894
9895 /* Complete previous fragment */
9896 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9897 len = min(8u, frag->len);
9898 if (!vcpu->mmio_is_write)
9899 memcpy(frag->data, run->mmio.data, len);
9900
9901 if (frag->len <= 8) {
9902 /* Switch to the next fragment. */
9903 frag++;
9904 vcpu->mmio_cur_fragment++;
9905 } else {
9906 /* Go forward to the next mmio piece. */
9907 frag->data += len;
9908 frag->gpa += len;
9909 frag->len -= len;
9910 }
9911
9912 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9913 vcpu->mmio_needed = 0;
9914
9915 /* FIXME: return into emulator if single-stepping. */
9916 if (vcpu->mmio_is_write)
9917 return 1;
9918 vcpu->mmio_read_completed = 1;
9919 return complete_emulated_io(vcpu);
9920 }
9921
9922 run->exit_reason = KVM_EXIT_MMIO;
9923 run->mmio.phys_addr = frag->gpa;
9924 if (vcpu->mmio_is_write)
9925 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9926 run->mmio.len = min(8u, frag->len);
9927 run->mmio.is_write = vcpu->mmio_is_write;
9928 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9929 return 0;
9930 }
9931
9932 static void kvm_save_current_fpu(struct fpu *fpu)
9933 {
9934 /*
9935 * If the target FPU state is not resident in the CPU registers, just
9936 * memcpy() from current, else save CPU state directly to the target.
9937 */
9938 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9939 memcpy(&fpu->state, &current->thread.fpu.state,
9940 fpu_kernel_xstate_size);
9941 else
9942 save_fpregs_to_fpstate(fpu);
9943 }
9944
9945 /* Swap (qemu) user FPU context for the guest FPU context. */
9946 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9947 {
9948 fpregs_lock();
9949
9950 kvm_save_current_fpu(vcpu->arch.user_fpu);
9951
9952 /*
9953 * Guests with protected state can't have it set by the hypervisor,
9954 * so skip trying to set it.
9955 */
9956 if (vcpu->arch.guest_fpu)
9957 /* PKRU is separately restored in kvm_x86_ops.run. */
9958 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9959 ~XFEATURE_MASK_PKRU);
9960
9961 fpregs_mark_activate();
9962 fpregs_unlock();
9963
9964 trace_kvm_fpu(1);
9965 }
9966
9967 /* When vcpu_run ends, restore user space FPU context. */
9968 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9969 {
9970 fpregs_lock();
9971
9972 /*
9973 * Guests with protected state can't have it read by the hypervisor,
9974 * so skip trying to save it.
9975 */
9976 if (vcpu->arch.guest_fpu)
9977 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9978
9979 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9980
9981 fpregs_mark_activate();
9982 fpregs_unlock();
9983
9984 ++vcpu->stat.fpu_reload;
9985 trace_kvm_fpu(0);
9986 }
9987
9988 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9989 {
9990 struct kvm_run *kvm_run = vcpu->run;
9991 int r;
9992
9993 vcpu_load(vcpu);
9994 kvm_sigset_activate(vcpu);
9995 kvm_run->flags = 0;
9996 kvm_load_guest_fpu(vcpu);
9997
9998 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9999 if (kvm_run->immediate_exit) {
10000 r = -EINTR;
10001 goto out;
10002 }
10003 kvm_vcpu_block(vcpu);
10004 if (kvm_apic_accept_events(vcpu) < 0) {
10005 r = 0;
10006 goto out;
10007 }
10008 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10009 r = -EAGAIN;
10010 if (signal_pending(current)) {
10011 r = -EINTR;
10012 kvm_run->exit_reason = KVM_EXIT_INTR;
10013 ++vcpu->stat.signal_exits;
10014 }
10015 goto out;
10016 }
10017
10018 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10019 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10020 r = -EINVAL;
10021 goto out;
10022 }
10023
10024 if (kvm_run->kvm_dirty_regs) {
10025 r = sync_regs(vcpu);
10026 if (r != 0)
10027 goto out;
10028 }
10029
10030 /* re-sync apic's tpr */
10031 if (!lapic_in_kernel(vcpu)) {
10032 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10033 r = -EINVAL;
10034 goto out;
10035 }
10036 }
10037
10038 if (unlikely(vcpu->arch.complete_userspace_io)) {
10039 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10040 vcpu->arch.complete_userspace_io = NULL;
10041 r = cui(vcpu);
10042 if (r <= 0)
10043 goto out;
10044 } else
10045 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10046
10047 if (kvm_run->immediate_exit)
10048 r = -EINTR;
10049 else
10050 r = vcpu_run(vcpu);
10051
10052 out:
10053 kvm_put_guest_fpu(vcpu);
10054 if (kvm_run->kvm_valid_regs)
10055 store_regs(vcpu);
10056 post_kvm_run_save(vcpu);
10057 kvm_sigset_deactivate(vcpu);
10058
10059 vcpu_put(vcpu);
10060 return r;
10061 }
10062
10063 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10064 {
10065 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10066 /*
10067 * We are here if userspace calls get_regs() in the middle of
10068 * instruction emulation. Registers state needs to be copied
10069 * back from emulation context to vcpu. Userspace shouldn't do
10070 * that usually, but some bad designed PV devices (vmware
10071 * backdoor interface) need this to work
10072 */
10073 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10074 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10075 }
10076 regs->rax = kvm_rax_read(vcpu);
10077 regs->rbx = kvm_rbx_read(vcpu);
10078 regs->rcx = kvm_rcx_read(vcpu);
10079 regs->rdx = kvm_rdx_read(vcpu);
10080 regs->rsi = kvm_rsi_read(vcpu);
10081 regs->rdi = kvm_rdi_read(vcpu);
10082 regs->rsp = kvm_rsp_read(vcpu);
10083 regs->rbp = kvm_rbp_read(vcpu);
10084 #ifdef CONFIG_X86_64
10085 regs->r8 = kvm_r8_read(vcpu);
10086 regs->r9 = kvm_r9_read(vcpu);
10087 regs->r10 = kvm_r10_read(vcpu);
10088 regs->r11 = kvm_r11_read(vcpu);
10089 regs->r12 = kvm_r12_read(vcpu);
10090 regs->r13 = kvm_r13_read(vcpu);
10091 regs->r14 = kvm_r14_read(vcpu);
10092 regs->r15 = kvm_r15_read(vcpu);
10093 #endif
10094
10095 regs->rip = kvm_rip_read(vcpu);
10096 regs->rflags = kvm_get_rflags(vcpu);
10097 }
10098
10099 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10100 {
10101 vcpu_load(vcpu);
10102 __get_regs(vcpu, regs);
10103 vcpu_put(vcpu);
10104 return 0;
10105 }
10106
10107 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10108 {
10109 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10110 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10111
10112 kvm_rax_write(vcpu, regs->rax);
10113 kvm_rbx_write(vcpu, regs->rbx);
10114 kvm_rcx_write(vcpu, regs->rcx);
10115 kvm_rdx_write(vcpu, regs->rdx);
10116 kvm_rsi_write(vcpu, regs->rsi);
10117 kvm_rdi_write(vcpu, regs->rdi);
10118 kvm_rsp_write(vcpu, regs->rsp);
10119 kvm_rbp_write(vcpu, regs->rbp);
10120 #ifdef CONFIG_X86_64
10121 kvm_r8_write(vcpu, regs->r8);
10122 kvm_r9_write(vcpu, regs->r9);
10123 kvm_r10_write(vcpu, regs->r10);
10124 kvm_r11_write(vcpu, regs->r11);
10125 kvm_r12_write(vcpu, regs->r12);
10126 kvm_r13_write(vcpu, regs->r13);
10127 kvm_r14_write(vcpu, regs->r14);
10128 kvm_r15_write(vcpu, regs->r15);
10129 #endif
10130
10131 kvm_rip_write(vcpu, regs->rip);
10132 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10133
10134 vcpu->arch.exception.pending = false;
10135
10136 kvm_make_request(KVM_REQ_EVENT, vcpu);
10137 }
10138
10139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10140 {
10141 vcpu_load(vcpu);
10142 __set_regs(vcpu, regs);
10143 vcpu_put(vcpu);
10144 return 0;
10145 }
10146
10147 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10148 {
10149 struct kvm_segment cs;
10150
10151 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10152 *db = cs.db;
10153 *l = cs.l;
10154 }
10155 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10156
10157 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10158 {
10159 struct desc_ptr dt;
10160
10161 if (vcpu->arch.guest_state_protected)
10162 goto skip_protected_regs;
10163
10164 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10165 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10166 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10167 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10168 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10169 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10170
10171 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10172 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10173
10174 static_call(kvm_x86_get_idt)(vcpu, &dt);
10175 sregs->idt.limit = dt.size;
10176 sregs->idt.base = dt.address;
10177 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10178 sregs->gdt.limit = dt.size;
10179 sregs->gdt.base = dt.address;
10180
10181 sregs->cr2 = vcpu->arch.cr2;
10182 sregs->cr3 = kvm_read_cr3(vcpu);
10183
10184 skip_protected_regs:
10185 sregs->cr0 = kvm_read_cr0(vcpu);
10186 sregs->cr4 = kvm_read_cr4(vcpu);
10187 sregs->cr8 = kvm_get_cr8(vcpu);
10188 sregs->efer = vcpu->arch.efer;
10189 sregs->apic_base = kvm_get_apic_base(vcpu);
10190 }
10191
10192 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10193 {
10194 __get_sregs_common(vcpu, sregs);
10195
10196 if (vcpu->arch.guest_state_protected)
10197 return;
10198
10199 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10200 set_bit(vcpu->arch.interrupt.nr,
10201 (unsigned long *)sregs->interrupt_bitmap);
10202 }
10203
10204 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10205 {
10206 int i;
10207
10208 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10209
10210 if (vcpu->arch.guest_state_protected)
10211 return;
10212
10213 if (is_pae_paging(vcpu)) {
10214 for (i = 0 ; i < 4 ; i++)
10215 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10216 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10217 }
10218 }
10219
10220 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10221 struct kvm_sregs *sregs)
10222 {
10223 vcpu_load(vcpu);
10224 __get_sregs(vcpu, sregs);
10225 vcpu_put(vcpu);
10226 return 0;
10227 }
10228
10229 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10230 struct kvm_mp_state *mp_state)
10231 {
10232 int r;
10233
10234 vcpu_load(vcpu);
10235 if (kvm_mpx_supported())
10236 kvm_load_guest_fpu(vcpu);
10237
10238 r = kvm_apic_accept_events(vcpu);
10239 if (r < 0)
10240 goto out;
10241 r = 0;
10242
10243 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10244 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10245 vcpu->arch.pv.pv_unhalted)
10246 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10247 else
10248 mp_state->mp_state = vcpu->arch.mp_state;
10249
10250 out:
10251 if (kvm_mpx_supported())
10252 kvm_put_guest_fpu(vcpu);
10253 vcpu_put(vcpu);
10254 return r;
10255 }
10256
10257 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10258 struct kvm_mp_state *mp_state)
10259 {
10260 int ret = -EINVAL;
10261
10262 vcpu_load(vcpu);
10263
10264 if (!lapic_in_kernel(vcpu) &&
10265 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10266 goto out;
10267
10268 /*
10269 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10270 * INIT state; latched init should be reported using
10271 * KVM_SET_VCPU_EVENTS, so reject it here.
10272 */
10273 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10274 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10275 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10276 goto out;
10277
10278 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10279 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10280 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10281 } else
10282 vcpu->arch.mp_state = mp_state->mp_state;
10283 kvm_make_request(KVM_REQ_EVENT, vcpu);
10284
10285 ret = 0;
10286 out:
10287 vcpu_put(vcpu);
10288 return ret;
10289 }
10290
10291 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10292 int reason, bool has_error_code, u32 error_code)
10293 {
10294 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10295 int ret;
10296
10297 init_emulate_ctxt(vcpu);
10298
10299 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10300 has_error_code, error_code);
10301 if (ret) {
10302 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10303 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10304 vcpu->run->internal.ndata = 0;
10305 return 0;
10306 }
10307
10308 kvm_rip_write(vcpu, ctxt->eip);
10309 kvm_set_rflags(vcpu, ctxt->eflags);
10310 return 1;
10311 }
10312 EXPORT_SYMBOL_GPL(kvm_task_switch);
10313
10314 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10315 {
10316 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10317 /*
10318 * When EFER.LME and CR0.PG are set, the processor is in
10319 * 64-bit mode (though maybe in a 32-bit code segment).
10320 * CR4.PAE and EFER.LMA must be set.
10321 */
10322 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10323 return false;
10324 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10325 return false;
10326 } else {
10327 /*
10328 * Not in 64-bit mode: EFER.LMA is clear and the code
10329 * segment cannot be 64-bit.
10330 */
10331 if (sregs->efer & EFER_LMA || sregs->cs.l)
10332 return false;
10333 }
10334
10335 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10336 }
10337
10338 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10339 int *mmu_reset_needed, bool update_pdptrs)
10340 {
10341 struct msr_data apic_base_msr;
10342 int idx;
10343 struct desc_ptr dt;
10344
10345 if (!kvm_is_valid_sregs(vcpu, sregs))
10346 return -EINVAL;
10347
10348 apic_base_msr.data = sregs->apic_base;
10349 apic_base_msr.host_initiated = true;
10350 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10351 return -EINVAL;
10352
10353 if (vcpu->arch.guest_state_protected)
10354 return 0;
10355
10356 dt.size = sregs->idt.limit;
10357 dt.address = sregs->idt.base;
10358 static_call(kvm_x86_set_idt)(vcpu, &dt);
10359 dt.size = sregs->gdt.limit;
10360 dt.address = sregs->gdt.base;
10361 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10362
10363 vcpu->arch.cr2 = sregs->cr2;
10364 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10365 vcpu->arch.cr3 = sregs->cr3;
10366 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10367
10368 kvm_set_cr8(vcpu, sregs->cr8);
10369
10370 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10371 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10372
10373 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10374 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10375 vcpu->arch.cr0 = sregs->cr0;
10376
10377 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10378 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10379
10380 if (update_pdptrs) {
10381 idx = srcu_read_lock(&vcpu->kvm->srcu);
10382 if (is_pae_paging(vcpu)) {
10383 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10384 *mmu_reset_needed = 1;
10385 }
10386 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10387 }
10388
10389 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10390 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10391 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10392 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10393 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10394 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10395
10396 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10397 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10398
10399 update_cr8_intercept(vcpu);
10400
10401 /* Older userspace won't unhalt the vcpu on reset. */
10402 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10403 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10404 !is_protmode(vcpu))
10405 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10406
10407 return 0;
10408 }
10409
10410 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10411 {
10412 int pending_vec, max_bits;
10413 int mmu_reset_needed = 0;
10414 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10415
10416 if (ret)
10417 return ret;
10418
10419 if (mmu_reset_needed)
10420 kvm_mmu_reset_context(vcpu);
10421
10422 max_bits = KVM_NR_INTERRUPTS;
10423 pending_vec = find_first_bit(
10424 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10425
10426 if (pending_vec < max_bits) {
10427 kvm_queue_interrupt(vcpu, pending_vec, false);
10428 pr_debug("Set back pending irq %d\n", pending_vec);
10429 kvm_make_request(KVM_REQ_EVENT, vcpu);
10430 }
10431 return 0;
10432 }
10433
10434 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10435 {
10436 int mmu_reset_needed = 0;
10437 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10438 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10439 !(sregs2->efer & EFER_LMA);
10440 int i, ret;
10441
10442 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10443 return -EINVAL;
10444
10445 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10446 return -EINVAL;
10447
10448 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10449 &mmu_reset_needed, !valid_pdptrs);
10450 if (ret)
10451 return ret;
10452
10453 if (valid_pdptrs) {
10454 for (i = 0; i < 4 ; i++)
10455 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10456
10457 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10458 mmu_reset_needed = 1;
10459 vcpu->arch.pdptrs_from_userspace = true;
10460 }
10461 if (mmu_reset_needed)
10462 kvm_mmu_reset_context(vcpu);
10463 return 0;
10464 }
10465
10466 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10467 struct kvm_sregs *sregs)
10468 {
10469 int ret;
10470
10471 vcpu_load(vcpu);
10472 ret = __set_sregs(vcpu, sregs);
10473 vcpu_put(vcpu);
10474 return ret;
10475 }
10476
10477 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10478 struct kvm_guest_debug *dbg)
10479 {
10480 unsigned long rflags;
10481 int i, r;
10482
10483 if (vcpu->arch.guest_state_protected)
10484 return -EINVAL;
10485
10486 vcpu_load(vcpu);
10487
10488 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10489 r = -EBUSY;
10490 if (vcpu->arch.exception.pending)
10491 goto out;
10492 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10493 kvm_queue_exception(vcpu, DB_VECTOR);
10494 else
10495 kvm_queue_exception(vcpu, BP_VECTOR);
10496 }
10497
10498 /*
10499 * Read rflags as long as potentially injected trace flags are still
10500 * filtered out.
10501 */
10502 rflags = kvm_get_rflags(vcpu);
10503
10504 vcpu->guest_debug = dbg->control;
10505 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10506 vcpu->guest_debug = 0;
10507
10508 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10509 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10510 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10511 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10512 } else {
10513 for (i = 0; i < KVM_NR_DB_REGS; i++)
10514 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10515 }
10516 kvm_update_dr7(vcpu);
10517
10518 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10519 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10520
10521 /*
10522 * Trigger an rflags update that will inject or remove the trace
10523 * flags.
10524 */
10525 kvm_set_rflags(vcpu, rflags);
10526
10527 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10528
10529 r = 0;
10530
10531 out:
10532 vcpu_put(vcpu);
10533 return r;
10534 }
10535
10536 /*
10537 * Translate a guest virtual address to a guest physical address.
10538 */
10539 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10540 struct kvm_translation *tr)
10541 {
10542 unsigned long vaddr = tr->linear_address;
10543 gpa_t gpa;
10544 int idx;
10545
10546 vcpu_load(vcpu);
10547
10548 idx = srcu_read_lock(&vcpu->kvm->srcu);
10549 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10550 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10551 tr->physical_address = gpa;
10552 tr->valid = gpa != UNMAPPED_GVA;
10553 tr->writeable = 1;
10554 tr->usermode = 0;
10555
10556 vcpu_put(vcpu);
10557 return 0;
10558 }
10559
10560 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10561 {
10562 struct fxregs_state *fxsave;
10563
10564 if (!vcpu->arch.guest_fpu)
10565 return 0;
10566
10567 vcpu_load(vcpu);
10568
10569 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10570 memcpy(fpu->fpr, fxsave->st_space, 128);
10571 fpu->fcw = fxsave->cwd;
10572 fpu->fsw = fxsave->swd;
10573 fpu->ftwx = fxsave->twd;
10574 fpu->last_opcode = fxsave->fop;
10575 fpu->last_ip = fxsave->rip;
10576 fpu->last_dp = fxsave->rdp;
10577 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10578
10579 vcpu_put(vcpu);
10580 return 0;
10581 }
10582
10583 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10584 {
10585 struct fxregs_state *fxsave;
10586
10587 if (!vcpu->arch.guest_fpu)
10588 return 0;
10589
10590 vcpu_load(vcpu);
10591
10592 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10593
10594 memcpy(fxsave->st_space, fpu->fpr, 128);
10595 fxsave->cwd = fpu->fcw;
10596 fxsave->swd = fpu->fsw;
10597 fxsave->twd = fpu->ftwx;
10598 fxsave->fop = fpu->last_opcode;
10599 fxsave->rip = fpu->last_ip;
10600 fxsave->rdp = fpu->last_dp;
10601 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10602
10603 vcpu_put(vcpu);
10604 return 0;
10605 }
10606
10607 static void store_regs(struct kvm_vcpu *vcpu)
10608 {
10609 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10610
10611 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10612 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10613
10614 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10615 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10616
10617 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10618 kvm_vcpu_ioctl_x86_get_vcpu_events(
10619 vcpu, &vcpu->run->s.regs.events);
10620 }
10621
10622 static int sync_regs(struct kvm_vcpu *vcpu)
10623 {
10624 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10625 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10626 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10627 }
10628 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10629 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10630 return -EINVAL;
10631 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10632 }
10633 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10634 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10635 vcpu, &vcpu->run->s.regs.events))
10636 return -EINVAL;
10637 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10638 }
10639
10640 return 0;
10641 }
10642
10643 static void fx_init(struct kvm_vcpu *vcpu)
10644 {
10645 if (!vcpu->arch.guest_fpu)
10646 return;
10647
10648 fpstate_init(&vcpu->arch.guest_fpu->state);
10649 if (boot_cpu_has(X86_FEATURE_XSAVES))
10650 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10651 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10652
10653 /*
10654 * Ensure guest xcr0 is valid for loading
10655 */
10656 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10657
10658 vcpu->arch.cr0 |= X86_CR0_ET;
10659 }
10660
10661 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10662 {
10663 if (vcpu->arch.guest_fpu) {
10664 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10665 vcpu->arch.guest_fpu = NULL;
10666 }
10667 }
10668 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10669
10670 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10671 {
10672 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10673 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10674 "guest TSC will not be reliable\n");
10675
10676 return 0;
10677 }
10678
10679 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10680 {
10681 struct page *page;
10682 int r;
10683
10684 vcpu->arch.last_vmentry_cpu = -1;
10685 vcpu->arch.regs_avail = ~0;
10686 vcpu->arch.regs_dirty = ~0;
10687
10688 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10689 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10690 else
10691 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10692
10693 r = kvm_mmu_create(vcpu);
10694 if (r < 0)
10695 return r;
10696
10697 if (irqchip_in_kernel(vcpu->kvm)) {
10698 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10699 if (r < 0)
10700 goto fail_mmu_destroy;
10701 if (kvm_apicv_activated(vcpu->kvm))
10702 vcpu->arch.apicv_active = true;
10703 } else
10704 static_branch_inc(&kvm_has_noapic_vcpu);
10705
10706 r = -ENOMEM;
10707
10708 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10709 if (!page)
10710 goto fail_free_lapic;
10711 vcpu->arch.pio_data = page_address(page);
10712
10713 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10714 GFP_KERNEL_ACCOUNT);
10715 if (!vcpu->arch.mce_banks)
10716 goto fail_free_pio_data;
10717 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10718
10719 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10720 GFP_KERNEL_ACCOUNT))
10721 goto fail_free_mce_banks;
10722
10723 if (!alloc_emulate_ctxt(vcpu))
10724 goto free_wbinvd_dirty_mask;
10725
10726 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10727 GFP_KERNEL_ACCOUNT);
10728 if (!vcpu->arch.user_fpu) {
10729 pr_err("kvm: failed to allocate userspace's fpu\n");
10730 goto free_emulate_ctxt;
10731 }
10732
10733 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10734 GFP_KERNEL_ACCOUNT);
10735 if (!vcpu->arch.guest_fpu) {
10736 pr_err("kvm: failed to allocate vcpu's fpu\n");
10737 goto free_user_fpu;
10738 }
10739 fx_init(vcpu);
10740
10741 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10742 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10743
10744 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10745
10746 kvm_async_pf_hash_reset(vcpu);
10747 kvm_pmu_init(vcpu);
10748
10749 vcpu->arch.pending_external_vector = -1;
10750 vcpu->arch.preempted_in_kernel = false;
10751
10752 #if IS_ENABLED(CONFIG_HYPERV)
10753 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10754 #endif
10755
10756 r = static_call(kvm_x86_vcpu_create)(vcpu);
10757 if (r)
10758 goto free_guest_fpu;
10759
10760 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10761 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10762 kvm_vcpu_mtrr_init(vcpu);
10763 vcpu_load(vcpu);
10764 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10765 kvm_vcpu_reset(vcpu, false);
10766 kvm_init_mmu(vcpu);
10767 vcpu_put(vcpu);
10768 return 0;
10769
10770 free_guest_fpu:
10771 kvm_free_guest_fpu(vcpu);
10772 free_user_fpu:
10773 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10774 free_emulate_ctxt:
10775 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10776 free_wbinvd_dirty_mask:
10777 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10778 fail_free_mce_banks:
10779 kfree(vcpu->arch.mce_banks);
10780 fail_free_pio_data:
10781 free_page((unsigned long)vcpu->arch.pio_data);
10782 fail_free_lapic:
10783 kvm_free_lapic(vcpu);
10784 fail_mmu_destroy:
10785 kvm_mmu_destroy(vcpu);
10786 return r;
10787 }
10788
10789 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10790 {
10791 struct kvm *kvm = vcpu->kvm;
10792
10793 if (mutex_lock_killable(&vcpu->mutex))
10794 return;
10795 vcpu_load(vcpu);
10796 kvm_synchronize_tsc(vcpu, 0);
10797 vcpu_put(vcpu);
10798
10799 /* poll control enabled by default */
10800 vcpu->arch.msr_kvm_poll_control = 1;
10801
10802 mutex_unlock(&vcpu->mutex);
10803
10804 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10805 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10806 KVMCLOCK_SYNC_PERIOD);
10807 }
10808
10809 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10810 {
10811 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10812 int idx;
10813
10814 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10815
10816 kvmclock_reset(vcpu);
10817
10818 static_call(kvm_x86_vcpu_free)(vcpu);
10819
10820 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10821 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10822 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10823 kvm_free_guest_fpu(vcpu);
10824
10825 kvm_hv_vcpu_uninit(vcpu);
10826 kvm_pmu_destroy(vcpu);
10827 kfree(vcpu->arch.mce_banks);
10828 kvm_free_lapic(vcpu);
10829 idx = srcu_read_lock(&vcpu->kvm->srcu);
10830 kvm_mmu_destroy(vcpu);
10831 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10832 free_page((unsigned long)vcpu->arch.pio_data);
10833 kvfree(vcpu->arch.cpuid_entries);
10834 if (!lapic_in_kernel(vcpu))
10835 static_branch_dec(&kvm_has_noapic_vcpu);
10836 }
10837
10838 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10839 {
10840 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10841 unsigned long new_cr0;
10842 u32 eax, dummy;
10843
10844 kvm_lapic_reset(vcpu, init_event);
10845
10846 vcpu->arch.hflags = 0;
10847
10848 vcpu->arch.smi_pending = 0;
10849 vcpu->arch.smi_count = 0;
10850 atomic_set(&vcpu->arch.nmi_queued, 0);
10851 vcpu->arch.nmi_pending = 0;
10852 vcpu->arch.nmi_injected = false;
10853 kvm_clear_interrupt_queue(vcpu);
10854 kvm_clear_exception_queue(vcpu);
10855
10856 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10857 kvm_update_dr0123(vcpu);
10858 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10859 vcpu->arch.dr7 = DR7_FIXED_1;
10860 kvm_update_dr7(vcpu);
10861
10862 vcpu->arch.cr2 = 0;
10863
10864 kvm_make_request(KVM_REQ_EVENT, vcpu);
10865 vcpu->arch.apf.msr_en_val = 0;
10866 vcpu->arch.apf.msr_int_val = 0;
10867 vcpu->arch.st.msr_val = 0;
10868
10869 kvmclock_reset(vcpu);
10870
10871 kvm_clear_async_pf_completion_queue(vcpu);
10872 kvm_async_pf_hash_reset(vcpu);
10873 vcpu->arch.apf.halted = false;
10874
10875 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10876 void *mpx_state_buffer;
10877
10878 /*
10879 * To avoid have the INIT path from kvm_apic_has_events() that be
10880 * called with loaded FPU and does not let userspace fix the state.
10881 */
10882 if (init_event)
10883 kvm_put_guest_fpu(vcpu);
10884 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10885 XFEATURE_BNDREGS);
10886 if (mpx_state_buffer)
10887 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10888 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10889 XFEATURE_BNDCSR);
10890 if (mpx_state_buffer)
10891 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10892 if (init_event)
10893 kvm_load_guest_fpu(vcpu);
10894 }
10895
10896 if (!init_event) {
10897 kvm_pmu_reset(vcpu);
10898 vcpu->arch.smbase = 0x30000;
10899
10900 vcpu->arch.msr_misc_features_enables = 0;
10901
10902 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10903 }
10904
10905 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10906 vcpu->arch.regs_avail = ~0;
10907 vcpu->arch.regs_dirty = ~0;
10908
10909 /*
10910 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10911 * if no CPUID match is found. Note, it's impossible to get a match at
10912 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10913 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10914 * But, go through the motions in case that's ever remedied.
10915 */
10916 eax = 1;
10917 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10918 eax = 0x600;
10919 kvm_rdx_write(vcpu, eax);
10920
10921 vcpu->arch.ia32_xss = 0;
10922
10923 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10924
10925 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10926 kvm_rip_write(vcpu, 0xfff0);
10927
10928 vcpu->arch.cr3 = 0;
10929 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10930
10931 /*
10932 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10933 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10934 * (or qualify) that with a footnote stating that CD/NW are preserved.
10935 */
10936 new_cr0 = X86_CR0_ET;
10937 if (init_event)
10938 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10939 else
10940 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10941
10942 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10943 static_call(kvm_x86_set_cr4)(vcpu, 0);
10944 static_call(kvm_x86_set_efer)(vcpu, 0);
10945 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10946
10947 /*
10948 * Reset the MMU context if paging was enabled prior to INIT (which is
10949 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10950 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10951 * checked because it is unconditionally cleared on INIT and all other
10952 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10953 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10954 */
10955 if (old_cr0 & X86_CR0_PG)
10956 kvm_mmu_reset_context(vcpu);
10957
10958 /*
10959 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
10960 * APM states the TLBs are untouched by INIT, but it also states that
10961 * the TLBs are flushed on "External initialization of the processor."
10962 * Flush the guest TLB regardless of vendor, there is no meaningful
10963 * benefit in relying on the guest to flush the TLB immediately after
10964 * INIT. A spurious TLB flush is benign and likely negligible from a
10965 * performance perspective.
10966 */
10967 if (init_event)
10968 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10969 }
10970 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10971
10972 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10973 {
10974 struct kvm_segment cs;
10975
10976 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10977 cs.selector = vector << 8;
10978 cs.base = vector << 12;
10979 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10980 kvm_rip_write(vcpu, 0);
10981 }
10982 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10983
10984 int kvm_arch_hardware_enable(void)
10985 {
10986 struct kvm *kvm;
10987 struct kvm_vcpu *vcpu;
10988 int i;
10989 int ret;
10990 u64 local_tsc;
10991 u64 max_tsc = 0;
10992 bool stable, backwards_tsc = false;
10993
10994 kvm_user_return_msr_cpu_online();
10995 ret = static_call(kvm_x86_hardware_enable)();
10996 if (ret != 0)
10997 return ret;
10998
10999 local_tsc = rdtsc();
11000 stable = !kvm_check_tsc_unstable();
11001 list_for_each_entry(kvm, &vm_list, vm_list) {
11002 kvm_for_each_vcpu(i, vcpu, kvm) {
11003 if (!stable && vcpu->cpu == smp_processor_id())
11004 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11005 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11006 backwards_tsc = true;
11007 if (vcpu->arch.last_host_tsc > max_tsc)
11008 max_tsc = vcpu->arch.last_host_tsc;
11009 }
11010 }
11011 }
11012
11013 /*
11014 * Sometimes, even reliable TSCs go backwards. This happens on
11015 * platforms that reset TSC during suspend or hibernate actions, but
11016 * maintain synchronization. We must compensate. Fortunately, we can
11017 * detect that condition here, which happens early in CPU bringup,
11018 * before any KVM threads can be running. Unfortunately, we can't
11019 * bring the TSCs fully up to date with real time, as we aren't yet far
11020 * enough into CPU bringup that we know how much real time has actually
11021 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11022 * variables that haven't been updated yet.
11023 *
11024 * So we simply find the maximum observed TSC above, then record the
11025 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11026 * the adjustment will be applied. Note that we accumulate
11027 * adjustments, in case multiple suspend cycles happen before some VCPU
11028 * gets a chance to run again. In the event that no KVM threads get a
11029 * chance to run, we will miss the entire elapsed period, as we'll have
11030 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11031 * loose cycle time. This isn't too big a deal, since the loss will be
11032 * uniform across all VCPUs (not to mention the scenario is extremely
11033 * unlikely). It is possible that a second hibernate recovery happens
11034 * much faster than a first, causing the observed TSC here to be
11035 * smaller; this would require additional padding adjustment, which is
11036 * why we set last_host_tsc to the local tsc observed here.
11037 *
11038 * N.B. - this code below runs only on platforms with reliable TSC,
11039 * as that is the only way backwards_tsc is set above. Also note
11040 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11041 * have the same delta_cyc adjustment applied if backwards_tsc
11042 * is detected. Note further, this adjustment is only done once,
11043 * as we reset last_host_tsc on all VCPUs to stop this from being
11044 * called multiple times (one for each physical CPU bringup).
11045 *
11046 * Platforms with unreliable TSCs don't have to deal with this, they
11047 * will be compensated by the logic in vcpu_load, which sets the TSC to
11048 * catchup mode. This will catchup all VCPUs to real time, but cannot
11049 * guarantee that they stay in perfect synchronization.
11050 */
11051 if (backwards_tsc) {
11052 u64 delta_cyc = max_tsc - local_tsc;
11053 list_for_each_entry(kvm, &vm_list, vm_list) {
11054 kvm->arch.backwards_tsc_observed = true;
11055 kvm_for_each_vcpu(i, vcpu, kvm) {
11056 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11057 vcpu->arch.last_host_tsc = local_tsc;
11058 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11059 }
11060
11061 /*
11062 * We have to disable TSC offset matching.. if you were
11063 * booting a VM while issuing an S4 host suspend....
11064 * you may have some problem. Solving this issue is
11065 * left as an exercise to the reader.
11066 */
11067 kvm->arch.last_tsc_nsec = 0;
11068 kvm->arch.last_tsc_write = 0;
11069 }
11070
11071 }
11072 return 0;
11073 }
11074
11075 void kvm_arch_hardware_disable(void)
11076 {
11077 static_call(kvm_x86_hardware_disable)();
11078 drop_user_return_notifiers();
11079 }
11080
11081 int kvm_arch_hardware_setup(void *opaque)
11082 {
11083 struct kvm_x86_init_ops *ops = opaque;
11084 int r;
11085
11086 rdmsrl_safe(MSR_EFER, &host_efer);
11087
11088 if (boot_cpu_has(X86_FEATURE_XSAVES))
11089 rdmsrl(MSR_IA32_XSS, host_xss);
11090
11091 r = ops->hardware_setup();
11092 if (r != 0)
11093 return r;
11094
11095 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11096 kvm_ops_static_call_update();
11097
11098 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11099 supported_xss = 0;
11100
11101 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11102 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11103 #undef __kvm_cpu_cap_has
11104
11105 if (kvm_has_tsc_control) {
11106 /*
11107 * Make sure the user can only configure tsc_khz values that
11108 * fit into a signed integer.
11109 * A min value is not calculated because it will always
11110 * be 1 on all machines.
11111 */
11112 u64 max = min(0x7fffffffULL,
11113 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11114 kvm_max_guest_tsc_khz = max;
11115
11116 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11117 }
11118
11119 kvm_init_msr_list();
11120 return 0;
11121 }
11122
11123 void kvm_arch_hardware_unsetup(void)
11124 {
11125 static_call(kvm_x86_hardware_unsetup)();
11126 }
11127
11128 int kvm_arch_check_processor_compat(void *opaque)
11129 {
11130 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11131 struct kvm_x86_init_ops *ops = opaque;
11132
11133 WARN_ON(!irqs_disabled());
11134
11135 if (__cr4_reserved_bits(cpu_has, c) !=
11136 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11137 return -EIO;
11138
11139 return ops->check_processor_compatibility();
11140 }
11141
11142 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11143 {
11144 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11145 }
11146 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11147
11148 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11149 {
11150 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11151 }
11152
11153 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11154 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11155
11156 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11157 {
11158 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11159
11160 vcpu->arch.l1tf_flush_l1d = true;
11161 if (pmu->version && unlikely(pmu->event_count)) {
11162 pmu->need_cleanup = true;
11163 kvm_make_request(KVM_REQ_PMU, vcpu);
11164 }
11165 static_call(kvm_x86_sched_in)(vcpu, cpu);
11166 }
11167
11168 void kvm_arch_free_vm(struct kvm *kvm)
11169 {
11170 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11171 vfree(kvm);
11172 }
11173
11174
11175 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11176 {
11177 int ret;
11178
11179 if (type)
11180 return -EINVAL;
11181
11182 ret = kvm_page_track_init(kvm);
11183 if (ret)
11184 return ret;
11185
11186 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11187 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11188 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11189 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11190 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11191 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11192
11193 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11194 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11195 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11196 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11197 &kvm->arch.irq_sources_bitmap);
11198
11199 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11200 mutex_init(&kvm->arch.apic_map_lock);
11201 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11202
11203 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11204 pvclock_update_vm_gtod_copy(kvm);
11205
11206 kvm->arch.guest_can_read_msr_platform_info = true;
11207
11208 #if IS_ENABLED(CONFIG_HYPERV)
11209 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11210 kvm->arch.hv_root_tdp = INVALID_PAGE;
11211 #endif
11212
11213 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11214 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11215
11216 kvm_apicv_init(kvm);
11217 kvm_hv_init_vm(kvm);
11218 kvm_mmu_init_vm(kvm);
11219 kvm_xen_init_vm(kvm);
11220
11221 return static_call(kvm_x86_vm_init)(kvm);
11222 }
11223
11224 int kvm_arch_post_init_vm(struct kvm *kvm)
11225 {
11226 return kvm_mmu_post_init_vm(kvm);
11227 }
11228
11229 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11230 {
11231 vcpu_load(vcpu);
11232 kvm_mmu_unload(vcpu);
11233 vcpu_put(vcpu);
11234 }
11235
11236 static void kvm_free_vcpus(struct kvm *kvm)
11237 {
11238 unsigned int i;
11239 struct kvm_vcpu *vcpu;
11240
11241 /*
11242 * Unpin any mmu pages first.
11243 */
11244 kvm_for_each_vcpu(i, vcpu, kvm) {
11245 kvm_clear_async_pf_completion_queue(vcpu);
11246 kvm_unload_vcpu_mmu(vcpu);
11247 }
11248 kvm_for_each_vcpu(i, vcpu, kvm)
11249 kvm_vcpu_destroy(vcpu);
11250
11251 mutex_lock(&kvm->lock);
11252 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11253 kvm->vcpus[i] = NULL;
11254
11255 atomic_set(&kvm->online_vcpus, 0);
11256 mutex_unlock(&kvm->lock);
11257 }
11258
11259 void kvm_arch_sync_events(struct kvm *kvm)
11260 {
11261 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11262 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11263 kvm_free_pit(kvm);
11264 }
11265
11266 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11267
11268 /**
11269 * __x86_set_memory_region: Setup KVM internal memory slot
11270 *
11271 * @kvm: the kvm pointer to the VM.
11272 * @id: the slot ID to setup.
11273 * @gpa: the GPA to install the slot (unused when @size == 0).
11274 * @size: the size of the slot. Set to zero to uninstall a slot.
11275 *
11276 * This function helps to setup a KVM internal memory slot. Specify
11277 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11278 * slot. The return code can be one of the following:
11279 *
11280 * HVA: on success (uninstall will return a bogus HVA)
11281 * -errno: on error
11282 *
11283 * The caller should always use IS_ERR() to check the return value
11284 * before use. Note, the KVM internal memory slots are guaranteed to
11285 * remain valid and unchanged until the VM is destroyed, i.e., the
11286 * GPA->HVA translation will not change. However, the HVA is a user
11287 * address, i.e. its accessibility is not guaranteed, and must be
11288 * accessed via __copy_{to,from}_user().
11289 */
11290 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11291 u32 size)
11292 {
11293 int i, r;
11294 unsigned long hva, old_npages;
11295 struct kvm_memslots *slots = kvm_memslots(kvm);
11296 struct kvm_memory_slot *slot;
11297
11298 /* Called with kvm->slots_lock held. */
11299 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11300 return ERR_PTR_USR(-EINVAL);
11301
11302 slot = id_to_memslot(slots, id);
11303 if (size) {
11304 if (slot && slot->npages)
11305 return ERR_PTR_USR(-EEXIST);
11306
11307 /*
11308 * MAP_SHARED to prevent internal slot pages from being moved
11309 * by fork()/COW.
11310 */
11311 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11312 MAP_SHARED | MAP_ANONYMOUS, 0);
11313 if (IS_ERR((void *)hva))
11314 return (void __user *)hva;
11315 } else {
11316 if (!slot || !slot->npages)
11317 return NULL;
11318
11319 old_npages = slot->npages;
11320 hva = slot->userspace_addr;
11321 }
11322
11323 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11324 struct kvm_userspace_memory_region m;
11325
11326 m.slot = id | (i << 16);
11327 m.flags = 0;
11328 m.guest_phys_addr = gpa;
11329 m.userspace_addr = hva;
11330 m.memory_size = size;
11331 r = __kvm_set_memory_region(kvm, &m);
11332 if (r < 0)
11333 return ERR_PTR_USR(r);
11334 }
11335
11336 if (!size)
11337 vm_munmap(hva, old_npages * PAGE_SIZE);
11338
11339 return (void __user *)hva;
11340 }
11341 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11342
11343 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11344 {
11345 kvm_mmu_pre_destroy_vm(kvm);
11346 }
11347
11348 void kvm_arch_destroy_vm(struct kvm *kvm)
11349 {
11350 if (current->mm == kvm->mm) {
11351 /*
11352 * Free memory regions allocated on behalf of userspace,
11353 * unless the the memory map has changed due to process exit
11354 * or fd copying.
11355 */
11356 mutex_lock(&kvm->slots_lock);
11357 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11358 0, 0);
11359 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11360 0, 0);
11361 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11362 mutex_unlock(&kvm->slots_lock);
11363 }
11364 static_call_cond(kvm_x86_vm_destroy)(kvm);
11365 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11366 kvm_pic_destroy(kvm);
11367 kvm_ioapic_destroy(kvm);
11368 kvm_free_vcpus(kvm);
11369 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11370 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11371 kvm_mmu_uninit_vm(kvm);
11372 kvm_page_track_cleanup(kvm);
11373 kvm_xen_destroy_vm(kvm);
11374 kvm_hv_destroy_vm(kvm);
11375 }
11376
11377 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11378 {
11379 int i;
11380
11381 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11382 kvfree(slot->arch.rmap[i]);
11383 slot->arch.rmap[i] = NULL;
11384 }
11385 }
11386
11387 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11388 {
11389 int i;
11390
11391 memslot_rmap_free(slot);
11392
11393 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11394 kvfree(slot->arch.lpage_info[i - 1]);
11395 slot->arch.lpage_info[i - 1] = NULL;
11396 }
11397
11398 kvm_page_track_free_memslot(slot);
11399 }
11400
11401 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11402 unsigned long npages)
11403 {
11404 const int sz = sizeof(*slot->arch.rmap[0]);
11405 int i;
11406
11407 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11408 int level = i + 1;
11409 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11410
11411 if (slot->arch.rmap[i])
11412 continue;
11413
11414 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11415 if (!slot->arch.rmap[i]) {
11416 memslot_rmap_free(slot);
11417 return -ENOMEM;
11418 }
11419 }
11420
11421 return 0;
11422 }
11423
11424 int alloc_all_memslots_rmaps(struct kvm *kvm)
11425 {
11426 struct kvm_memslots *slots;
11427 struct kvm_memory_slot *slot;
11428 int r, i;
11429
11430 /*
11431 * Check if memslots alreday have rmaps early before acquiring
11432 * the slots_arch_lock below.
11433 */
11434 if (kvm_memslots_have_rmaps(kvm))
11435 return 0;
11436
11437 mutex_lock(&kvm->slots_arch_lock);
11438
11439 /*
11440 * Read memslots_have_rmaps again, under the slots arch lock,
11441 * before allocating the rmaps
11442 */
11443 if (kvm_memslots_have_rmaps(kvm)) {
11444 mutex_unlock(&kvm->slots_arch_lock);
11445 return 0;
11446 }
11447
11448 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11449 slots = __kvm_memslots(kvm, i);
11450 kvm_for_each_memslot(slot, slots) {
11451 r = memslot_rmap_alloc(slot, slot->npages);
11452 if (r) {
11453 mutex_unlock(&kvm->slots_arch_lock);
11454 return r;
11455 }
11456 }
11457 }
11458
11459 /*
11460 * Ensure that memslots_have_rmaps becomes true strictly after
11461 * all the rmap pointers are set.
11462 */
11463 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11464 mutex_unlock(&kvm->slots_arch_lock);
11465 return 0;
11466 }
11467
11468 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11469 struct kvm_memory_slot *slot,
11470 unsigned long npages)
11471 {
11472 int i, r;
11473
11474 /*
11475 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11476 * old arrays will be freed by __kvm_set_memory_region() if installing
11477 * the new memslot is successful.
11478 */
11479 memset(&slot->arch, 0, sizeof(slot->arch));
11480
11481 if (kvm_memslots_have_rmaps(kvm)) {
11482 r = memslot_rmap_alloc(slot, npages);
11483 if (r)
11484 return r;
11485 }
11486
11487 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11488 struct kvm_lpage_info *linfo;
11489 unsigned long ugfn;
11490 int lpages;
11491 int level = i + 1;
11492
11493 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11494
11495 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11496 if (!linfo)
11497 goto out_free;
11498
11499 slot->arch.lpage_info[i - 1] = linfo;
11500
11501 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11502 linfo[0].disallow_lpage = 1;
11503 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11504 linfo[lpages - 1].disallow_lpage = 1;
11505 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11506 /*
11507 * If the gfn and userspace address are not aligned wrt each
11508 * other, disable large page support for this slot.
11509 */
11510 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11511 unsigned long j;
11512
11513 for (j = 0; j < lpages; ++j)
11514 linfo[j].disallow_lpage = 1;
11515 }
11516 }
11517
11518 if (kvm_page_track_create_memslot(slot, npages))
11519 goto out_free;
11520
11521 return 0;
11522
11523 out_free:
11524 memslot_rmap_free(slot);
11525
11526 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11527 kvfree(slot->arch.lpage_info[i - 1]);
11528 slot->arch.lpage_info[i - 1] = NULL;
11529 }
11530 return -ENOMEM;
11531 }
11532
11533 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11534 {
11535 struct kvm_vcpu *vcpu;
11536 int i;
11537
11538 /*
11539 * memslots->generation has been incremented.
11540 * mmio generation may have reached its maximum value.
11541 */
11542 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11543
11544 /* Force re-initialization of steal_time cache */
11545 kvm_for_each_vcpu(i, vcpu, kvm)
11546 kvm_vcpu_kick(vcpu);
11547 }
11548
11549 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11550 struct kvm_memory_slot *memslot,
11551 const struct kvm_userspace_memory_region *mem,
11552 enum kvm_mr_change change)
11553 {
11554 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11555 return kvm_alloc_memslot_metadata(kvm, memslot,
11556 mem->memory_size >> PAGE_SHIFT);
11557 return 0;
11558 }
11559
11560
11561 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11562 {
11563 struct kvm_arch *ka = &kvm->arch;
11564
11565 if (!kvm_x86_ops.cpu_dirty_log_size)
11566 return;
11567
11568 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11569 (!enable && --ka->cpu_dirty_logging_count == 0))
11570 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11571
11572 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11573 }
11574
11575 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11576 struct kvm_memory_slot *old,
11577 const struct kvm_memory_slot *new,
11578 enum kvm_mr_change change)
11579 {
11580 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11581
11582 /*
11583 * Update CPU dirty logging if dirty logging is being toggled. This
11584 * applies to all operations.
11585 */
11586 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11587 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11588
11589 /*
11590 * Nothing more to do for RO slots (which can't be dirtied and can't be
11591 * made writable) or CREATE/MOVE/DELETE of a slot.
11592 *
11593 * For a memslot with dirty logging disabled:
11594 * CREATE: No dirty mappings will already exist.
11595 * MOVE/DELETE: The old mappings will already have been cleaned up by
11596 * kvm_arch_flush_shadow_memslot()
11597 *
11598 * For a memslot with dirty logging enabled:
11599 * CREATE: No shadow pages exist, thus nothing to write-protect
11600 * and no dirty bits to clear.
11601 * MOVE/DELETE: The old mappings will already have been cleaned up by
11602 * kvm_arch_flush_shadow_memslot().
11603 */
11604 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11605 return;
11606
11607 /*
11608 * READONLY and non-flags changes were filtered out above, and the only
11609 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11610 * logging isn't being toggled on or off.
11611 */
11612 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11613 return;
11614
11615 if (!log_dirty_pages) {
11616 /*
11617 * Dirty logging tracks sptes in 4k granularity, meaning that
11618 * large sptes have to be split. If live migration succeeds,
11619 * the guest in the source machine will be destroyed and large
11620 * sptes will be created in the destination. However, if the
11621 * guest continues to run in the source machine (for example if
11622 * live migration fails), small sptes will remain around and
11623 * cause bad performance.
11624 *
11625 * Scan sptes if dirty logging has been stopped, dropping those
11626 * which can be collapsed into a single large-page spte. Later
11627 * page faults will create the large-page sptes.
11628 */
11629 kvm_mmu_zap_collapsible_sptes(kvm, new);
11630 } else {
11631 /*
11632 * Initially-all-set does not require write protecting any page,
11633 * because they're all assumed to be dirty.
11634 */
11635 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11636 return;
11637
11638 if (kvm_x86_ops.cpu_dirty_log_size) {
11639 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11640 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11641 } else {
11642 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11643 }
11644 }
11645 }
11646
11647 void kvm_arch_commit_memory_region(struct kvm *kvm,
11648 const struct kvm_userspace_memory_region *mem,
11649 struct kvm_memory_slot *old,
11650 const struct kvm_memory_slot *new,
11651 enum kvm_mr_change change)
11652 {
11653 if (!kvm->arch.n_requested_mmu_pages)
11654 kvm_mmu_change_mmu_pages(kvm,
11655 kvm_mmu_calculate_default_mmu_pages(kvm));
11656
11657 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11658
11659 /* Free the arrays associated with the old memslot. */
11660 if (change == KVM_MR_MOVE)
11661 kvm_arch_free_memslot(kvm, old);
11662 }
11663
11664 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11665 {
11666 kvm_mmu_zap_all(kvm);
11667 }
11668
11669 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11670 struct kvm_memory_slot *slot)
11671 {
11672 kvm_page_track_flush_slot(kvm, slot);
11673 }
11674
11675 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11676 {
11677 return (is_guest_mode(vcpu) &&
11678 kvm_x86_ops.guest_apic_has_interrupt &&
11679 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11680 }
11681
11682 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11683 {
11684 if (!list_empty_careful(&vcpu->async_pf.done))
11685 return true;
11686
11687 if (kvm_apic_has_events(vcpu))
11688 return true;
11689
11690 if (vcpu->arch.pv.pv_unhalted)
11691 return true;
11692
11693 if (vcpu->arch.exception.pending)
11694 return true;
11695
11696 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11697 (vcpu->arch.nmi_pending &&
11698 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11699 return true;
11700
11701 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11702 (vcpu->arch.smi_pending &&
11703 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11704 return true;
11705
11706 if (kvm_arch_interrupt_allowed(vcpu) &&
11707 (kvm_cpu_has_interrupt(vcpu) ||
11708 kvm_guest_apic_has_interrupt(vcpu)))
11709 return true;
11710
11711 if (kvm_hv_has_stimer_pending(vcpu))
11712 return true;
11713
11714 if (is_guest_mode(vcpu) &&
11715 kvm_x86_ops.nested_ops->hv_timer_pending &&
11716 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11717 return true;
11718
11719 return false;
11720 }
11721
11722 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11723 {
11724 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11725 }
11726
11727 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11728 {
11729 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11730 return true;
11731
11732 return false;
11733 }
11734
11735 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11736 {
11737 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11738 return true;
11739
11740 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11741 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11742 kvm_test_request(KVM_REQ_EVENT, vcpu))
11743 return true;
11744
11745 return kvm_arch_dy_has_pending_interrupt(vcpu);
11746 }
11747
11748 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11749 {
11750 if (vcpu->arch.guest_state_protected)
11751 return true;
11752
11753 return vcpu->arch.preempted_in_kernel;
11754 }
11755
11756 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11757 {
11758 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11759 }
11760
11761 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11762 {
11763 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11764 }
11765
11766 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11767 {
11768 /* Can't read the RIP when guest state is protected, just return 0 */
11769 if (vcpu->arch.guest_state_protected)
11770 return 0;
11771
11772 if (is_64_bit_mode(vcpu))
11773 return kvm_rip_read(vcpu);
11774 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11775 kvm_rip_read(vcpu));
11776 }
11777 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11778
11779 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11780 {
11781 return kvm_get_linear_rip(vcpu) == linear_rip;
11782 }
11783 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11784
11785 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11786 {
11787 unsigned long rflags;
11788
11789 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11790 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11791 rflags &= ~X86_EFLAGS_TF;
11792 return rflags;
11793 }
11794 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11795
11796 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11797 {
11798 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11799 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11800 rflags |= X86_EFLAGS_TF;
11801 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11802 }
11803
11804 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11805 {
11806 __kvm_set_rflags(vcpu, rflags);
11807 kvm_make_request(KVM_REQ_EVENT, vcpu);
11808 }
11809 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11810
11811 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11812 {
11813 int r;
11814
11815 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11816 work->wakeup_all)
11817 return;
11818
11819 r = kvm_mmu_reload(vcpu);
11820 if (unlikely(r))
11821 return;
11822
11823 if (!vcpu->arch.mmu->direct_map &&
11824 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11825 return;
11826
11827 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11828 }
11829
11830 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11831 {
11832 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11833
11834 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11835 }
11836
11837 static inline u32 kvm_async_pf_next_probe(u32 key)
11838 {
11839 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11840 }
11841
11842 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11843 {
11844 u32 key = kvm_async_pf_hash_fn(gfn);
11845
11846 while (vcpu->arch.apf.gfns[key] != ~0)
11847 key = kvm_async_pf_next_probe(key);
11848
11849 vcpu->arch.apf.gfns[key] = gfn;
11850 }
11851
11852 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11853 {
11854 int i;
11855 u32 key = kvm_async_pf_hash_fn(gfn);
11856
11857 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11858 (vcpu->arch.apf.gfns[key] != gfn &&
11859 vcpu->arch.apf.gfns[key] != ~0); i++)
11860 key = kvm_async_pf_next_probe(key);
11861
11862 return key;
11863 }
11864
11865 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11866 {
11867 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11868 }
11869
11870 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11871 {
11872 u32 i, j, k;
11873
11874 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11875
11876 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11877 return;
11878
11879 while (true) {
11880 vcpu->arch.apf.gfns[i] = ~0;
11881 do {
11882 j = kvm_async_pf_next_probe(j);
11883 if (vcpu->arch.apf.gfns[j] == ~0)
11884 return;
11885 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11886 /*
11887 * k lies cyclically in ]i,j]
11888 * | i.k.j |
11889 * |....j i.k.| or |.k..j i...|
11890 */
11891 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11892 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11893 i = j;
11894 }
11895 }
11896
11897 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11898 {
11899 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11900
11901 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11902 sizeof(reason));
11903 }
11904
11905 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11906 {
11907 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11908
11909 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11910 &token, offset, sizeof(token));
11911 }
11912
11913 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11914 {
11915 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11916 u32 val;
11917
11918 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11919 &val, offset, sizeof(val)))
11920 return false;
11921
11922 return !val;
11923 }
11924
11925 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11926 {
11927 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11928 return false;
11929
11930 if (!kvm_pv_async_pf_enabled(vcpu) ||
11931 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11932 return false;
11933
11934 return true;
11935 }
11936
11937 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11938 {
11939 if (unlikely(!lapic_in_kernel(vcpu) ||
11940 kvm_event_needs_reinjection(vcpu) ||
11941 vcpu->arch.exception.pending))
11942 return false;
11943
11944 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11945 return false;
11946
11947 /*
11948 * If interrupts are off we cannot even use an artificial
11949 * halt state.
11950 */
11951 return kvm_arch_interrupt_allowed(vcpu);
11952 }
11953
11954 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11955 struct kvm_async_pf *work)
11956 {
11957 struct x86_exception fault;
11958
11959 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11960 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11961
11962 if (kvm_can_deliver_async_pf(vcpu) &&
11963 !apf_put_user_notpresent(vcpu)) {
11964 fault.vector = PF_VECTOR;
11965 fault.error_code_valid = true;
11966 fault.error_code = 0;
11967 fault.nested_page_fault = false;
11968 fault.address = work->arch.token;
11969 fault.async_page_fault = true;
11970 kvm_inject_page_fault(vcpu, &fault);
11971 return true;
11972 } else {
11973 /*
11974 * It is not possible to deliver a paravirtualized asynchronous
11975 * page fault, but putting the guest in an artificial halt state
11976 * can be beneficial nevertheless: if an interrupt arrives, we
11977 * can deliver it timely and perhaps the guest will schedule
11978 * another process. When the instruction that triggered a page
11979 * fault is retried, hopefully the page will be ready in the host.
11980 */
11981 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11982 return false;
11983 }
11984 }
11985
11986 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11987 struct kvm_async_pf *work)
11988 {
11989 struct kvm_lapic_irq irq = {
11990 .delivery_mode = APIC_DM_FIXED,
11991 .vector = vcpu->arch.apf.vec
11992 };
11993
11994 if (work->wakeup_all)
11995 work->arch.token = ~0; /* broadcast wakeup */
11996 else
11997 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11998 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11999
12000 if ((work->wakeup_all || work->notpresent_injected) &&
12001 kvm_pv_async_pf_enabled(vcpu) &&
12002 !apf_put_user_ready(vcpu, work->arch.token)) {
12003 vcpu->arch.apf.pageready_pending = true;
12004 kvm_apic_set_irq(vcpu, &irq, NULL);
12005 }
12006
12007 vcpu->arch.apf.halted = false;
12008 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12009 }
12010
12011 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12012 {
12013 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12014 if (!vcpu->arch.apf.pageready_pending)
12015 kvm_vcpu_kick(vcpu);
12016 }
12017
12018 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12019 {
12020 if (!kvm_pv_async_pf_enabled(vcpu))
12021 return true;
12022 else
12023 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12024 }
12025
12026 void kvm_arch_start_assignment(struct kvm *kvm)
12027 {
12028 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12029 static_call_cond(kvm_x86_start_assignment)(kvm);
12030 }
12031 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12032
12033 void kvm_arch_end_assignment(struct kvm *kvm)
12034 {
12035 atomic_dec(&kvm->arch.assigned_device_count);
12036 }
12037 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12038
12039 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12040 {
12041 return atomic_read(&kvm->arch.assigned_device_count);
12042 }
12043 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12044
12045 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12046 {
12047 atomic_inc(&kvm->arch.noncoherent_dma_count);
12048 }
12049 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12050
12051 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12052 {
12053 atomic_dec(&kvm->arch.noncoherent_dma_count);
12054 }
12055 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12056
12057 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12058 {
12059 return atomic_read(&kvm->arch.noncoherent_dma_count);
12060 }
12061 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12062
12063 bool kvm_arch_has_irq_bypass(void)
12064 {
12065 return true;
12066 }
12067
12068 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12069 struct irq_bypass_producer *prod)
12070 {
12071 struct kvm_kernel_irqfd *irqfd =
12072 container_of(cons, struct kvm_kernel_irqfd, consumer);
12073 int ret;
12074
12075 irqfd->producer = prod;
12076 kvm_arch_start_assignment(irqfd->kvm);
12077 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12078 prod->irq, irqfd->gsi, 1);
12079
12080 if (ret)
12081 kvm_arch_end_assignment(irqfd->kvm);
12082
12083 return ret;
12084 }
12085
12086 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12087 struct irq_bypass_producer *prod)
12088 {
12089 int ret;
12090 struct kvm_kernel_irqfd *irqfd =
12091 container_of(cons, struct kvm_kernel_irqfd, consumer);
12092
12093 WARN_ON(irqfd->producer != prod);
12094 irqfd->producer = NULL;
12095
12096 /*
12097 * When producer of consumer is unregistered, we change back to
12098 * remapped mode, so we can re-use the current implementation
12099 * when the irq is masked/disabled or the consumer side (KVM
12100 * int this case doesn't want to receive the interrupts.
12101 */
12102 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12103 if (ret)
12104 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12105 " fails: %d\n", irqfd->consumer.token, ret);
12106
12107 kvm_arch_end_assignment(irqfd->kvm);
12108 }
12109
12110 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12111 uint32_t guest_irq, bool set)
12112 {
12113 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12114 }
12115
12116 bool kvm_vector_hashing_enabled(void)
12117 {
12118 return vector_hashing;
12119 }
12120
12121 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12122 {
12123 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12124 }
12125 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12126
12127
12128 int kvm_spec_ctrl_test_value(u64 value)
12129 {
12130 /*
12131 * test that setting IA32_SPEC_CTRL to given value
12132 * is allowed by the host processor
12133 */
12134
12135 u64 saved_value;
12136 unsigned long flags;
12137 int ret = 0;
12138
12139 local_irq_save(flags);
12140
12141 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12142 ret = 1;
12143 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12144 ret = 1;
12145 else
12146 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12147
12148 local_irq_restore(flags);
12149
12150 return ret;
12151 }
12152 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12153
12154 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12155 {
12156 struct x86_exception fault;
12157 u32 access = error_code &
12158 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12159
12160 if (!(error_code & PFERR_PRESENT_MASK) ||
12161 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12162 /*
12163 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12164 * tables probably do not match the TLB. Just proceed
12165 * with the error code that the processor gave.
12166 */
12167 fault.vector = PF_VECTOR;
12168 fault.error_code_valid = true;
12169 fault.error_code = error_code;
12170 fault.nested_page_fault = false;
12171 fault.address = gva;
12172 }
12173 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12174 }
12175 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12176
12177 /*
12178 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12179 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12180 * indicates whether exit to userspace is needed.
12181 */
12182 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12183 struct x86_exception *e)
12184 {
12185 if (r == X86EMUL_PROPAGATE_FAULT) {
12186 kvm_inject_emulated_page_fault(vcpu, e);
12187 return 1;
12188 }
12189
12190 /*
12191 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12192 * while handling a VMX instruction KVM could've handled the request
12193 * correctly by exiting to userspace and performing I/O but there
12194 * doesn't seem to be a real use-case behind such requests, just return
12195 * KVM_EXIT_INTERNAL_ERROR for now.
12196 */
12197 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12198 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12199 vcpu->run->internal.ndata = 0;
12200
12201 return 0;
12202 }
12203 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12204
12205 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12206 {
12207 bool pcid_enabled;
12208 struct x86_exception e;
12209 struct {
12210 u64 pcid;
12211 u64 gla;
12212 } operand;
12213 int r;
12214
12215 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12216 if (r != X86EMUL_CONTINUE)
12217 return kvm_handle_memory_failure(vcpu, r, &e);
12218
12219 if (operand.pcid >> 12 != 0) {
12220 kvm_inject_gp(vcpu, 0);
12221 return 1;
12222 }
12223
12224 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12225
12226 switch (type) {
12227 case INVPCID_TYPE_INDIV_ADDR:
12228 if ((!pcid_enabled && (operand.pcid != 0)) ||
12229 is_noncanonical_address(operand.gla, vcpu)) {
12230 kvm_inject_gp(vcpu, 0);
12231 return 1;
12232 }
12233 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12234 return kvm_skip_emulated_instruction(vcpu);
12235
12236 case INVPCID_TYPE_SINGLE_CTXT:
12237 if (!pcid_enabled && (operand.pcid != 0)) {
12238 kvm_inject_gp(vcpu, 0);
12239 return 1;
12240 }
12241
12242 kvm_invalidate_pcid(vcpu, operand.pcid);
12243 return kvm_skip_emulated_instruction(vcpu);
12244
12245 case INVPCID_TYPE_ALL_NON_GLOBAL:
12246 /*
12247 * Currently, KVM doesn't mark global entries in the shadow
12248 * page tables, so a non-global flush just degenerates to a
12249 * global flush. If needed, we could optimize this later by
12250 * keeping track of global entries in shadow page tables.
12251 */
12252
12253 fallthrough;
12254 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12255 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12256 return kvm_skip_emulated_instruction(vcpu);
12257
12258 default:
12259 BUG(); /* We have already checked above that type <= 3 */
12260 }
12261 }
12262 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12263
12264 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12265 {
12266 struct kvm_run *run = vcpu->run;
12267 struct kvm_mmio_fragment *frag;
12268 unsigned int len;
12269
12270 BUG_ON(!vcpu->mmio_needed);
12271
12272 /* Complete previous fragment */
12273 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12274 len = min(8u, frag->len);
12275 if (!vcpu->mmio_is_write)
12276 memcpy(frag->data, run->mmio.data, len);
12277
12278 if (frag->len <= 8) {
12279 /* Switch to the next fragment. */
12280 frag++;
12281 vcpu->mmio_cur_fragment++;
12282 } else {
12283 /* Go forward to the next mmio piece. */
12284 frag->data += len;
12285 frag->gpa += len;
12286 frag->len -= len;
12287 }
12288
12289 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12290 vcpu->mmio_needed = 0;
12291
12292 // VMG change, at this point, we're always done
12293 // RIP has already been advanced
12294 return 1;
12295 }
12296
12297 // More MMIO is needed
12298 run->mmio.phys_addr = frag->gpa;
12299 run->mmio.len = min(8u, frag->len);
12300 run->mmio.is_write = vcpu->mmio_is_write;
12301 if (run->mmio.is_write)
12302 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12303 run->exit_reason = KVM_EXIT_MMIO;
12304
12305 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12306
12307 return 0;
12308 }
12309
12310 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12311 void *data)
12312 {
12313 int handled;
12314 struct kvm_mmio_fragment *frag;
12315
12316 if (!data)
12317 return -EINVAL;
12318
12319 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12320 if (handled == bytes)
12321 return 1;
12322
12323 bytes -= handled;
12324 gpa += handled;
12325 data += handled;
12326
12327 /*TODO: Check if need to increment number of frags */
12328 frag = vcpu->mmio_fragments;
12329 vcpu->mmio_nr_fragments = 1;
12330 frag->len = bytes;
12331 frag->gpa = gpa;
12332 frag->data = data;
12333
12334 vcpu->mmio_needed = 1;
12335 vcpu->mmio_cur_fragment = 0;
12336
12337 vcpu->run->mmio.phys_addr = gpa;
12338 vcpu->run->mmio.len = min(8u, frag->len);
12339 vcpu->run->mmio.is_write = 1;
12340 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12341 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12342
12343 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12344
12345 return 0;
12346 }
12347 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12348
12349 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12350 void *data)
12351 {
12352 int handled;
12353 struct kvm_mmio_fragment *frag;
12354
12355 if (!data)
12356 return -EINVAL;
12357
12358 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12359 if (handled == bytes)
12360 return 1;
12361
12362 bytes -= handled;
12363 gpa += handled;
12364 data += handled;
12365
12366 /*TODO: Check if need to increment number of frags */
12367 frag = vcpu->mmio_fragments;
12368 vcpu->mmio_nr_fragments = 1;
12369 frag->len = bytes;
12370 frag->gpa = gpa;
12371 frag->data = data;
12372
12373 vcpu->mmio_needed = 1;
12374 vcpu->mmio_cur_fragment = 0;
12375
12376 vcpu->run->mmio.phys_addr = gpa;
12377 vcpu->run->mmio.len = min(8u, frag->len);
12378 vcpu->run->mmio.is_write = 0;
12379 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12380
12381 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12382
12383 return 0;
12384 }
12385 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12386
12387 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12388 {
12389 memcpy(vcpu->arch.sev_pio_data, vcpu->arch.pio_data,
12390 vcpu->arch.pio.count * vcpu->arch.pio.size);
12391 vcpu->arch.pio.count = 0;
12392
12393 return 1;
12394 }
12395
12396 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12397 unsigned int port, unsigned int count)
12398 {
12399 int ret = emulator_pio_out(vcpu, size, port,
12400 vcpu->arch.sev_pio_data, count);
12401
12402 if (ret) {
12403 /* Emulation done by the kernel. */
12404 return ret;
12405 }
12406
12407 vcpu->arch.pio.count = 0;
12408 return 0;
12409 }
12410
12411 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12412 unsigned int port, unsigned int count)
12413 {
12414 int ret = emulator_pio_in(vcpu, size, port,
12415 vcpu->arch.sev_pio_data, count);
12416
12417 if (ret) {
12418 /* Emulation done by the kernel. */
12419 return ret;
12420 }
12421
12422 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12423 return 0;
12424 }
12425
12426 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12427 unsigned int port, void *data, unsigned int count,
12428 int in)
12429 {
12430 vcpu->arch.sev_pio_data = data;
12431 return in ? kvm_sev_es_ins(vcpu, size, port, count)
12432 : kvm_sev_es_outs(vcpu, size, port, count);
12433 }
12434 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12435
12436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);