]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Fix recording of guest steal time / preempted status
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * If neither the current CR3 nor any of the prev_roots use the given
1096 * PCID, then nothing needs to be done here because a resync will
1097 * happen anyway before switching to any other CR3.
1098 */
1099 if (kvm_get_active_pcid(vcpu) == pcid) {
1100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 }
1103
1104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 bool skip_tlb_flush = false;
1114 unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118 if (pcid_enabled) {
1119 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 pcid = cr3 & X86_CR3_PCID_MASK;
1122 }
1123 #endif
1124
1125 /* PDPTRs are always reloaded for PAE paging. */
1126 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 goto handle_tlb_flush;
1128
1129 /*
1130 * Do not condition the GPA check on long mode, this helper is used to
1131 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 * the current vCPU mode is accurate.
1133 */
1134 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 return 1;
1136
1137 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 return 1;
1139
1140 if (cr3 != kvm_read_cr3(vcpu))
1141 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143 vcpu->arch.cr3 = cr3;
1144 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147 /*
1148 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1150 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 * i.e. only PCID=0 can be relevant.
1153 */
1154 if (!skip_tlb_flush)
1155 kvm_invalidate_pcid(vcpu, pcid);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 if (cr8 & CR8_RESERVED_BITS)
1164 return 1;
1165 if (lapic_in_kernel(vcpu))
1166 kvm_lapic_set_tpr(vcpu, cr8);
1167 else
1168 vcpu->arch.cr8 = cr8;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 if (lapic_in_kernel(vcpu))
1176 return kvm_lapic_get_cr8(vcpu);
1177 else
1178 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 int i;
1185
1186 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 unsigned long dr7;
1195
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 dr7 = vcpu->arch.guest_debug_dr7;
1198 else
1199 dr7 = vcpu->arch.dr7;
1200 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 if (dr7 & DR7_BP_EN_MASK)
1203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 u64 fixed = DR6_FIXED_1;
1210
1211 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 fixed |= DR6_RTM;
1213
1214 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 fixed |= DR6_BUS_LOCK;
1216 return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223 switch (dr) {
1224 case 0 ... 3:
1225 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 vcpu->arch.eff_db[dr] = val;
1228 break;
1229 case 4:
1230 case 6:
1231 if (!kvm_dr6_valid(val))
1232 return 1; /* #GP */
1233 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 break;
1235 case 5:
1236 default: /* 7 */
1237 if (!kvm_dr7_valid(val))
1238 return 1; /* #GP */
1239 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 kvm_update_dr7(vcpu);
1241 break;
1242 }
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 break;
1256 case 4:
1257 case 6:
1258 *val = vcpu->arch.dr6;
1259 break;
1260 case 5:
1261 default: /* 7 */
1262 *val = vcpu->arch.dr7;
1263 break;
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 u32 ecx = kvm_rcx_read(vcpu);
1271 u64 data;
1272
1273 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 kvm_inject_gp(vcpu, 0);
1275 return 1;
1276 }
1277
1278 kvm_rax_write(vcpu, (u32)data);
1279 kvm_rdx_write(vcpu, data >> 32);
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296 static const u32 msrs_to_save_all[] = {
1297 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 MSR_IA32_SPEC_CTRL,
1305 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 MSR_IA32_UMWAIT_CONTROL,
1312
1313 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342 };
1343
1344 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345 static unsigned num_msrs_to_save;
1346
1347 static const u32 emulated_msrs_all[] = {
1348 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355 HV_X64_MSR_RESET,
1356 HV_X64_MSR_VP_INDEX,
1357 HV_X64_MSR_VP_RUNTIME,
1358 HV_X64_MSR_SCONTROL,
1359 HV_X64_MSR_STIMER0_CONFIG,
1360 HV_X64_MSR_VP_ASSIST_PAGE,
1361 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362 HV_X64_MSR_TSC_EMULATION_STATUS,
1363 HV_X64_MSR_SYNDBG_OPTIONS,
1364 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371 MSR_IA32_TSC_ADJUST,
1372 MSR_IA32_TSC_DEADLINE,
1373 MSR_IA32_ARCH_CAPABILITIES,
1374 MSR_IA32_PERF_CAPABILITIES,
1375 MSR_IA32_MISC_ENABLE,
1376 MSR_IA32_MCG_STATUS,
1377 MSR_IA32_MCG_CTL,
1378 MSR_IA32_MCG_EXT_CTL,
1379 MSR_IA32_SMBASE,
1380 MSR_SMI_COUNT,
1381 MSR_PLATFORM_INFO,
1382 MSR_MISC_FEATURES_ENABLES,
1383 MSR_AMD64_VIRT_SPEC_CTRL,
1384 MSR_IA32_POWER_CTL,
1385 MSR_IA32_UCODE_REV,
1386
1387 /*
1388 * The following list leaves out MSRs whose values are determined
1389 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390 * We always support the "true" VMX control MSRs, even if the host
1391 * processor does not, so I am putting these registers here rather
1392 * than in msrs_to_save_all.
1393 */
1394 MSR_IA32_VMX_BASIC,
1395 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399 MSR_IA32_VMX_MISC,
1400 MSR_IA32_VMX_CR0_FIXED0,
1401 MSR_IA32_VMX_CR4_FIXED0,
1402 MSR_IA32_VMX_VMCS_ENUM,
1403 MSR_IA32_VMX_PROCBASED_CTLS2,
1404 MSR_IA32_VMX_EPT_VPID_CAP,
1405 MSR_IA32_VMX_VMFUNC,
1406
1407 MSR_K7_HWCR,
1408 MSR_KVM_POLL_CONTROL,
1409 };
1410
1411 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412 static unsigned num_emulated_msrs;
1413
1414 /*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418 static const u32 msr_based_features_all[] = {
1419 MSR_IA32_VMX_BASIC,
1420 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421 MSR_IA32_VMX_PINBASED_CTLS,
1422 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423 MSR_IA32_VMX_PROCBASED_CTLS,
1424 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425 MSR_IA32_VMX_EXIT_CTLS,
1426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427 MSR_IA32_VMX_ENTRY_CTLS,
1428 MSR_IA32_VMX_MISC,
1429 MSR_IA32_VMX_CR0_FIXED0,
1430 MSR_IA32_VMX_CR0_FIXED1,
1431 MSR_IA32_VMX_CR4_FIXED0,
1432 MSR_IA32_VMX_CR4_FIXED1,
1433 MSR_IA32_VMX_VMCS_ENUM,
1434 MSR_IA32_VMX_PROCBASED_CTLS2,
1435 MSR_IA32_VMX_EPT_VPID_CAP,
1436 MSR_IA32_VMX_VMFUNC,
1437
1438 MSR_F10H_DECFG,
1439 MSR_IA32_UCODE_REV,
1440 MSR_IA32_ARCH_CAPABILITIES,
1441 MSR_IA32_PERF_CAPABILITIES,
1442 };
1443
1444 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445 static unsigned int num_msr_based_features;
1446
1447 static u64 kvm_get_arch_capabilities(void)
1448 {
1449 u64 data = 0;
1450
1451 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454 /*
1455 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456 * the nested hypervisor runs with NX huge pages. If it is not,
1457 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458 * L1 guests, so it need not worry about its own (L2) guests.
1459 */
1460 data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462 /*
1463 * If we're doing cache flushes (either "always" or "cond")
1464 * we will do one whenever the guest does a vmlaunch/vmresume.
1465 * If an outer hypervisor is doing the cache flush for us
1466 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467 * capability to the guest too, and if EPT is disabled we're not
1468 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1469 * require a nested hypervisor to do a flush of its own.
1470 */
1471 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475 data |= ARCH_CAP_RDCL_NO;
1476 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477 data |= ARCH_CAP_SSB_NO;
1478 if (!boot_cpu_has_bug(X86_BUG_MDS))
1479 data |= ARCH_CAP_MDS_NO;
1480
1481 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482 /*
1483 * If RTM=0 because the kernel has disabled TSX, the host might
1484 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1485 * and therefore knows that there cannot be TAA) but keep
1486 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487 * and we want to allow migrating those guests to tsx=off hosts.
1488 */
1489 data &= ~ARCH_CAP_TAA_NO;
1490 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491 data |= ARCH_CAP_TAA_NO;
1492 } else {
1493 /*
1494 * Nothing to do here; we emulate TSX_CTRL if present on the
1495 * host so the guest can choose between disabling TSX or
1496 * using VERW to clear CPU buffers.
1497 */
1498 }
1499
1500 return data;
1501 }
1502
1503 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504 {
1505 switch (msr->index) {
1506 case MSR_IA32_ARCH_CAPABILITIES:
1507 msr->data = kvm_get_arch_capabilities();
1508 break;
1509 case MSR_IA32_UCODE_REV:
1510 rdmsrl_safe(msr->index, &msr->data);
1511 break;
1512 default:
1513 return static_call(kvm_x86_get_msr_feature)(msr);
1514 }
1515 return 0;
1516 }
1517
1518 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520 struct kvm_msr_entry msr;
1521 int r;
1522
1523 msr.index = index;
1524 r = kvm_get_msr_feature(&msr);
1525
1526 if (r == KVM_MSR_RET_INVALID) {
1527 /* Unconditionally clear the output for simplicity */
1528 *data = 0;
1529 if (kvm_msr_ignored_check(index, 0, false))
1530 r = 0;
1531 }
1532
1533 if (r)
1534 return r;
1535
1536 *data = msr.data;
1537
1538 return 0;
1539 }
1540
1541 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542 {
1543 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544 return false;
1545
1546 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547 return false;
1548
1549 if (efer & (EFER_LME | EFER_LMA) &&
1550 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551 return false;
1552
1553 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554 return false;
1555
1556 return true;
1557
1558 }
1559 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560 {
1561 if (efer & efer_reserved_bits)
1562 return false;
1563
1564 return __kvm_valid_efer(vcpu, efer);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569 {
1570 u64 old_efer = vcpu->arch.efer;
1571 u64 efer = msr_info->data;
1572 int r;
1573
1574 if (efer & efer_reserved_bits)
1575 return 1;
1576
1577 if (!msr_info->host_initiated) {
1578 if (!__kvm_valid_efer(vcpu, efer))
1579 return 1;
1580
1581 if (is_paging(vcpu) &&
1582 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583 return 1;
1584 }
1585
1586 efer &= ~EFER_LMA;
1587 efer |= vcpu->arch.efer & EFER_LMA;
1588
1589 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590 if (r) {
1591 WARN_ON(r > 0);
1592 return r;
1593 }
1594
1595 /* Update reserved bits */
1596 if ((efer ^ old_efer) & EFER_NX)
1597 kvm_mmu_reset_context(vcpu);
1598
1599 return 0;
1600 }
1601
1602 void kvm_enable_efer_bits(u64 mask)
1603 {
1604 efer_reserved_bits &= ~mask;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609 {
1610 struct kvm_x86_msr_filter *msr_filter;
1611 struct msr_bitmap_range *ranges;
1612 struct kvm *kvm = vcpu->kvm;
1613 bool allowed;
1614 int idx;
1615 u32 i;
1616
1617 /* x2APIC MSRs do not support filtering. */
1618 if (index >= 0x800 && index <= 0x8ff)
1619 return true;
1620
1621 idx = srcu_read_lock(&kvm->srcu);
1622
1623 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624 if (!msr_filter) {
1625 allowed = true;
1626 goto out;
1627 }
1628
1629 allowed = msr_filter->default_allow;
1630 ranges = msr_filter->ranges;
1631
1632 for (i = 0; i < msr_filter->count; i++) {
1633 u32 start = ranges[i].base;
1634 u32 end = start + ranges[i].nmsrs;
1635 u32 flags = ranges[i].flags;
1636 unsigned long *bitmap = ranges[i].bitmap;
1637
1638 if ((index >= start) && (index < end) && (flags & type)) {
1639 allowed = !!test_bit(index - start, bitmap);
1640 break;
1641 }
1642 }
1643
1644 out:
1645 srcu_read_unlock(&kvm->srcu, idx);
1646
1647 return allowed;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651 /*
1652 * Write @data into the MSR specified by @index. Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658 bool host_initiated)
1659 {
1660 struct msr_data msr;
1661
1662 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663 return KVM_MSR_RET_FILTERED;
1664
1665 switch (index) {
1666 case MSR_FS_BASE:
1667 case MSR_GS_BASE:
1668 case MSR_KERNEL_GS_BASE:
1669 case MSR_CSTAR:
1670 case MSR_LSTAR:
1671 if (is_noncanonical_address(data, vcpu))
1672 return 1;
1673 break;
1674 case MSR_IA32_SYSENTER_EIP:
1675 case MSR_IA32_SYSENTER_ESP:
1676 /*
1677 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678 * non-canonical address is written on Intel but not on
1679 * AMD (which ignores the top 32-bits, because it does
1680 * not implement 64-bit SYSENTER).
1681 *
1682 * 64-bit code should hence be able to write a non-canonical
1683 * value on AMD. Making the address canonical ensures that
1684 * vmentry does not fail on Intel after writing a non-canonical
1685 * value, and that something deterministic happens if the guest
1686 * invokes 64-bit SYSENTER.
1687 */
1688 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689 break;
1690 case MSR_TSC_AUX:
1691 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692 return 1;
1693
1694 if (!host_initiated &&
1695 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697 return 1;
1698
1699 /*
1700 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701 * incomplete and conflicting architectural behavior. Current
1702 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703 * reserved and always read as zeros. Enforce Intel's reserved
1704 * bits check if and only if the guest CPU is Intel, and clear
1705 * the bits in all other cases. This ensures cross-vendor
1706 * migration will provide consistent behavior for the guest.
1707 */
1708 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709 return 1;
1710
1711 data = (u32)data;
1712 break;
1713 }
1714
1715 msr.data = data;
1716 msr.index = index;
1717 msr.host_initiated = host_initiated;
1718
1719 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720 }
1721
1722 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723 u32 index, u64 data, bool host_initiated)
1724 {
1725 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727 if (ret == KVM_MSR_RET_INVALID)
1728 if (kvm_msr_ignored_check(index, data, true))
1729 ret = 0;
1730
1731 return ret;
1732 }
1733
1734 /*
1735 * Read the MSR specified by @index into @data. Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741 bool host_initiated)
1742 {
1743 struct msr_data msr;
1744 int ret;
1745
1746 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747 return KVM_MSR_RET_FILTERED;
1748
1749 switch (index) {
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758 break;
1759 }
1760
1761 msr.index = index;
1762 msr.host_initiated = host_initiated;
1763
1764 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765 if (!ret)
1766 *data = msr.data;
1767 return ret;
1768 }
1769
1770 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771 u32 index, u64 *data, bool host_initiated)
1772 {
1773 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775 if (ret == KVM_MSR_RET_INVALID) {
1776 /* Unconditionally clear *data for simplicity */
1777 *data = 0;
1778 if (kvm_msr_ignored_check(index, 0, false))
1779 ret = 0;
1780 }
1781
1782 return ret;
1783 }
1784
1785 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786 {
1787 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792 {
1793 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798 {
1799 int err = vcpu->run->msr.error;
1800 if (!err) {
1801 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803 }
1804
1805 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806 }
1807
1808 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811 }
1812
1813 static u64 kvm_msr_reason(int r)
1814 {
1815 switch (r) {
1816 case KVM_MSR_RET_INVALID:
1817 return KVM_MSR_EXIT_REASON_UNKNOWN;
1818 case KVM_MSR_RET_FILTERED:
1819 return KVM_MSR_EXIT_REASON_FILTER;
1820 default:
1821 return KVM_MSR_EXIT_REASON_INVAL;
1822 }
1823 }
1824
1825 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826 u32 exit_reason, u64 data,
1827 int (*completion)(struct kvm_vcpu *vcpu),
1828 int r)
1829 {
1830 u64 msr_reason = kvm_msr_reason(r);
1831
1832 /* Check if the user wanted to know about this MSR fault */
1833 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834 return 0;
1835
1836 vcpu->run->exit_reason = exit_reason;
1837 vcpu->run->msr.error = 0;
1838 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839 vcpu->run->msr.reason = msr_reason;
1840 vcpu->run->msr.index = index;
1841 vcpu->run->msr.data = data;
1842 vcpu->arch.complete_userspace_io = completion;
1843
1844 return 1;
1845 }
1846
1847 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848 {
1849 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850 complete_emulated_rdmsr, r);
1851 }
1852
1853 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854 {
1855 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856 complete_emulated_wrmsr, r);
1857 }
1858
1859 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860 {
1861 u32 ecx = kvm_rcx_read(vcpu);
1862 u64 data;
1863 int r;
1864
1865 r = kvm_get_msr(vcpu, ecx, &data);
1866
1867 /* MSR read failed? See if we should ask user space */
1868 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869 /* Bounce to user space */
1870 return 0;
1871 }
1872
1873 if (!r) {
1874 trace_kvm_msr_read(ecx, data);
1875
1876 kvm_rax_write(vcpu, data & -1u);
1877 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878 } else {
1879 trace_kvm_msr_read_ex(ecx);
1880 }
1881
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887 {
1888 u32 ecx = kvm_rcx_read(vcpu);
1889 u64 data = kvm_read_edx_eax(vcpu);
1890 int r;
1891
1892 r = kvm_set_msr(vcpu, ecx, data);
1893
1894 /* MSR write failed? See if we should ask user space */
1895 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896 /* Bounce to user space */
1897 return 0;
1898
1899 /* Signal all other negative errors to userspace */
1900 if (r < 0)
1901 return r;
1902
1903 if (!r)
1904 trace_kvm_msr_write(ecx, data);
1905 else
1906 trace_kvm_msr_write_ex(ecx, data);
1907
1908 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913 {
1914 return kvm_skip_emulated_instruction(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919 {
1920 /* Treat an INVD instruction as a NOP and just skip it. */
1921 return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926 {
1927 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928 return kvm_emulate_as_nop(vcpu);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933 {
1934 kvm_queue_exception(vcpu, UD_VECTOR);
1935 return 1;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940 {
1941 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942 return kvm_emulate_as_nop(vcpu);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947 {
1948 xfer_to_guest_mode_prepare();
1949 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950 xfer_to_guest_mode_work_pending();
1951 }
1952
1953 /*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961 {
1962 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963 return 1;
1964
1965 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970 data &= ~(1 << 12);
1971 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974 trace_kvm_apic_write(APIC_ICR, (u32)data);
1975 return 0;
1976 }
1977
1978 return 1;
1979 }
1980
1981 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982 {
1983 if (!kvm_can_use_hv_timer(vcpu))
1984 return 1;
1985
1986 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987 return 0;
1988 }
1989
1990 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991 {
1992 u32 msr = kvm_rcx_read(vcpu);
1993 u64 data;
1994 fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996 switch (msr) {
1997 case APIC_BASE_MSR + (APIC_ICR >> 4):
1998 data = kvm_read_edx_eax(vcpu);
1999 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000 kvm_skip_emulated_instruction(vcpu);
2001 ret = EXIT_FASTPATH_EXIT_HANDLED;
2002 }
2003 break;
2004 case MSR_IA32_TSC_DEADLINE:
2005 data = kvm_read_edx_eax(vcpu);
2006 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007 kvm_skip_emulated_instruction(vcpu);
2008 ret = EXIT_FASTPATH_REENTER_GUEST;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (ret != EXIT_FASTPATH_NONE)
2016 trace_kvm_msr_write(msr, data);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022 /*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026 {
2027 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028 }
2029
2030 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031 {
2032 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033 }
2034
2035 #ifdef CONFIG_X86_64
2036 struct pvclock_clock {
2037 int vclock_mode;
2038 u64 cycle_last;
2039 u64 mask;
2040 u32 mult;
2041 u32 shift;
2042 u64 base_cycles;
2043 u64 offset;
2044 };
2045
2046 struct pvclock_gtod_data {
2047 seqcount_t seq;
2048
2049 struct pvclock_clock clock; /* extract of a clocksource struct */
2050 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052 ktime_t offs_boot;
2053 u64 wall_time_sec;
2054 };
2055
2056 static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058 static void update_pvclock_gtod(struct timekeeper *tk)
2059 {
2060 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062 write_seqcount_begin(&vdata->seq);
2063
2064 /* copy pvclock gtod data */
2065 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2066 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2067 vdata->clock.mask = tk->tkr_mono.mask;
2068 vdata->clock.mult = tk->tkr_mono.mult;
2069 vdata->clock.shift = tk->tkr_mono.shift;
2070 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2071 vdata->clock.offset = tk->tkr_mono.base;
2072
2073 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2074 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2075 vdata->raw_clock.mask = tk->tkr_raw.mask;
2076 vdata->raw_clock.mult = tk->tkr_raw.mult;
2077 vdata->raw_clock.shift = tk->tkr_raw.shift;
2078 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2079 vdata->raw_clock.offset = tk->tkr_raw.base;
2080
2081 vdata->wall_time_sec = tk->xtime_sec;
2082
2083 vdata->offs_boot = tk->offs_boot;
2084
2085 write_seqcount_end(&vdata->seq);
2086 }
2087
2088 static s64 get_kvmclock_base_ns(void)
2089 {
2090 /* Count up from boot time, but with the frequency of the raw clock. */
2091 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092 }
2093 #else
2094 static s64 get_kvmclock_base_ns(void)
2095 {
2096 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2097 return ktime_get_boottime_ns();
2098 }
2099 #endif
2100
2101 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102 {
2103 int version;
2104 int r;
2105 struct pvclock_wall_clock wc;
2106 u32 wc_sec_hi;
2107 u64 wall_nsec;
2108
2109 if (!wall_clock)
2110 return;
2111
2112 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113 if (r)
2114 return;
2115
2116 if (version & 1)
2117 ++version; /* first time write, random junk */
2118
2119 ++version;
2120
2121 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122 return;
2123
2124 /*
2125 * The guest calculates current wall clock time by adding
2126 * system time (updated by kvm_guest_time_update below) to the
2127 * wall clock specified here. We do the reverse here.
2128 */
2129 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131 wc.nsec = do_div(wall_nsec, 1000000000);
2132 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133 wc.version = version;
2134
2135 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137 if (sec_hi_ofs) {
2138 wc_sec_hi = wall_nsec >> 32;
2139 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140 &wc_sec_hi, sizeof(wc_sec_hi));
2141 }
2142
2143 version++;
2144 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145 }
2146
2147 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148 bool old_msr, bool host_initiated)
2149 {
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152 if (vcpu->vcpu_id == 0 && !host_initiated) {
2153 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157 }
2158
2159 vcpu->arch.time = system_time;
2160 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162 /* we verify if the enable bit is set... */
2163 vcpu->arch.pv_time_enabled = false;
2164 if (!(system_time & 1))
2165 return;
2166
2167 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168 &vcpu->arch.pv_time, system_time & ~1ULL,
2169 sizeof(struct pvclock_vcpu_time_info)))
2170 vcpu->arch.pv_time_enabled = true;
2171
2172 return;
2173 }
2174
2175 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176 {
2177 do_shl32_div32(dividend, divisor);
2178 return dividend;
2179 }
2180
2181 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182 s8 *pshift, u32 *pmultiplier)
2183 {
2184 uint64_t scaled64;
2185 int32_t shift = 0;
2186 uint64_t tps64;
2187 uint32_t tps32;
2188
2189 tps64 = base_hz;
2190 scaled64 = scaled_hz;
2191 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192 tps64 >>= 1;
2193 shift--;
2194 }
2195
2196 tps32 = (uint32_t)tps64;
2197 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199 scaled64 >>= 1;
2200 else
2201 tps32 <<= 1;
2202 shift++;
2203 }
2204
2205 *pshift = shift;
2206 *pmultiplier = div_frac(scaled64, tps32);
2207 }
2208
2209 #ifdef CONFIG_X86_64
2210 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211 #endif
2212
2213 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214 static unsigned long max_tsc_khz;
2215
2216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217 {
2218 u64 v = (u64)khz * (1000000 + ppm);
2219 do_div(v, 1000000);
2220 return v;
2221 }
2222
2223 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226 {
2227 u64 ratio;
2228
2229 /* Guest TSC same frequency as host TSC? */
2230 if (!scale) {
2231 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232 return 0;
2233 }
2234
2235 /* TSC scaling supported? */
2236 if (!kvm_has_tsc_control) {
2237 if (user_tsc_khz > tsc_khz) {
2238 vcpu->arch.tsc_catchup = 1;
2239 vcpu->arch.tsc_always_catchup = 1;
2240 return 0;
2241 } else {
2242 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243 return -1;
2244 }
2245 }
2246
2247 /* TSC scaling required - calculate ratio */
2248 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249 user_tsc_khz, tsc_khz);
2250
2251 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253 user_tsc_khz);
2254 return -1;
2255 }
2256
2257 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258 return 0;
2259 }
2260
2261 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262 {
2263 u32 thresh_lo, thresh_hi;
2264 int use_scaling = 0;
2265
2266 /* tsc_khz can be zero if TSC calibration fails */
2267 if (user_tsc_khz == 0) {
2268 /* set tsc_scaling_ratio to a safe value */
2269 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270 return -1;
2271 }
2272
2273 /* Compute a scale to convert nanoseconds in TSC cycles */
2274 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275 &vcpu->arch.virtual_tsc_shift,
2276 &vcpu->arch.virtual_tsc_mult);
2277 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279 /*
2280 * Compute the variation in TSC rate which is acceptable
2281 * within the range of tolerance and decide if the
2282 * rate being applied is within that bounds of the hardware
2283 * rate. If so, no scaling or compensation need be done.
2284 */
2285 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289 use_scaling = 1;
2290 }
2291 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292 }
2293
2294 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295 {
2296 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297 vcpu->arch.virtual_tsc_mult,
2298 vcpu->arch.virtual_tsc_shift);
2299 tsc += vcpu->arch.this_tsc_write;
2300 return tsc;
2301 }
2302
2303 static inline int gtod_is_based_on_tsc(int mode)
2304 {
2305 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306 }
2307
2308 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309 {
2310 #ifdef CONFIG_X86_64
2311 bool vcpus_matched;
2312 struct kvm_arch *ka = &vcpu->kvm->arch;
2313 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316 atomic_read(&vcpu->kvm->online_vcpus));
2317
2318 /*
2319 * Once the masterclock is enabled, always perform request in
2320 * order to update it.
2321 *
2322 * In order to enable masterclock, the host clocksource must be TSC
2323 * and the vcpus need to have matched TSCs. When that happens,
2324 * perform request to enable masterclock.
2325 */
2326 if (ka->use_master_clock ||
2327 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331 atomic_read(&vcpu->kvm->online_vcpus),
2332 ka->use_master_clock, gtod->clock.vclock_mode);
2333 #endif
2334 }
2335
2336 /*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347 {
2348 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349 }
2350
2351 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352 {
2353 u64 _tsc = tsc;
2354
2355 if (ratio != kvm_default_tsc_scaling_ratio)
2356 _tsc = __scale_tsc(ratio, tsc);
2357
2358 return _tsc;
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363 {
2364 u64 tsc;
2365
2366 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368 return target_tsc - tsc;
2369 }
2370
2371 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372 {
2373 return vcpu->arch.l1_tsc_offset +
2374 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379 {
2380 u64 nested_offset;
2381
2382 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383 nested_offset = l1_offset;
2384 else
2385 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 nested_offset += l2_offset;
2389 return nested_offset;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394 {
2395 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397 kvm_tsc_scaling_ratio_frac_bits);
2398
2399 return l1_multiplier;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404 {
2405 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406 vcpu->arch.l1_tsc_offset,
2407 l1_offset);
2408
2409 vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411 /*
2412 * If we are here because L1 chose not to trap WRMSR to TSC then
2413 * according to the spec this should set L1's TSC (as opposed to
2414 * setting L1's offset for L2).
2415 */
2416 if (is_guest_mode(vcpu))
2417 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418 l1_offset,
2419 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421 else
2422 vcpu->arch.tsc_offset = l1_offset;
2423
2424 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425 }
2426
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428 {
2429 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431 /* Userspace is changing the multiplier while L2 is active */
2432 if (is_guest_mode(vcpu))
2433 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434 l1_multiplier,
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439 if (kvm_has_tsc_control)
2440 static_call(kvm_x86_write_tsc_multiplier)(
2441 vcpu, vcpu->arch.tsc_scaling_ratio);
2442 }
2443
2444 static inline bool kvm_check_tsc_unstable(void)
2445 {
2446 #ifdef CONFIG_X86_64
2447 /*
2448 * TSC is marked unstable when we're running on Hyper-V,
2449 * 'TSC page' clocksource is good.
2450 */
2451 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452 return false;
2453 #endif
2454 return check_tsc_unstable();
2455 }
2456
2457 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458 {
2459 struct kvm *kvm = vcpu->kvm;
2460 u64 offset, ns, elapsed;
2461 unsigned long flags;
2462 bool matched;
2463 bool already_matched;
2464 bool synchronizing = false;
2465
2466 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468 ns = get_kvmclock_base_ns();
2469 elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471 if (vcpu->arch.virtual_tsc_khz) {
2472 if (data == 0) {
2473 /*
2474 * detection of vcpu initialization -- need to sync
2475 * with other vCPUs. This particularly helps to keep
2476 * kvm_clock stable after CPU hotplug
2477 */
2478 synchronizing = true;
2479 } else {
2480 u64 tsc_exp = kvm->arch.last_tsc_write +
2481 nsec_to_cycles(vcpu, elapsed);
2482 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483 /*
2484 * Special case: TSC write with a small delta (1 second)
2485 * of virtual cycle time against real time is
2486 * interpreted as an attempt to synchronize the CPU.
2487 */
2488 synchronizing = data < tsc_exp + tsc_hz &&
2489 data + tsc_hz > tsc_exp;
2490 }
2491 }
2492
2493 /*
2494 * For a reliable TSC, we can match TSC offsets, and for an unstable
2495 * TSC, we add elapsed time in this computation. We could let the
2496 * compensation code attempt to catch up if we fall behind, but
2497 * it's better to try to match offsets from the beginning.
2498 */
2499 if (synchronizing &&
2500 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501 if (!kvm_check_tsc_unstable()) {
2502 offset = kvm->arch.cur_tsc_offset;
2503 } else {
2504 u64 delta = nsec_to_cycles(vcpu, elapsed);
2505 data += delta;
2506 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507 }
2508 matched = true;
2509 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510 } else {
2511 /*
2512 * We split periods of matched TSC writes into generations.
2513 * For each generation, we track the original measured
2514 * nanosecond time, offset, and write, so if TSCs are in
2515 * sync, we can match exact offset, and if not, we can match
2516 * exact software computation in compute_guest_tsc()
2517 *
2518 * These values are tracked in kvm->arch.cur_xxx variables.
2519 */
2520 kvm->arch.cur_tsc_generation++;
2521 kvm->arch.cur_tsc_nsec = ns;
2522 kvm->arch.cur_tsc_write = data;
2523 kvm->arch.cur_tsc_offset = offset;
2524 matched = false;
2525 }
2526
2527 /*
2528 * We also track th most recent recorded KHZ, write and time to
2529 * allow the matching interval to be extended at each write.
2530 */
2531 kvm->arch.last_tsc_nsec = ns;
2532 kvm->arch.last_tsc_write = data;
2533 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535 vcpu->arch.last_guest_tsc = data;
2536
2537 /* Keep track of which generation this VCPU has synchronized to */
2538 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542 kvm_vcpu_write_tsc_offset(vcpu, offset);
2543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546 if (!matched) {
2547 kvm->arch.nr_vcpus_matched_tsc = 0;
2548 } else if (!already_matched) {
2549 kvm->arch.nr_vcpus_matched_tsc++;
2550 }
2551
2552 kvm_track_tsc_matching(vcpu);
2553 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554 }
2555
2556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557 s64 adjustment)
2558 {
2559 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561 }
2562
2563 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564 {
2565 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566 WARN_ON(adjustment < 0);
2567 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568 vcpu->arch.l1_tsc_scaling_ratio);
2569 adjust_tsc_offset_guest(vcpu, adjustment);
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573
2574 static u64 read_tsc(void)
2575 {
2576 u64 ret = (u64)rdtsc_ordered();
2577 u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579 if (likely(ret >= last))
2580 return ret;
2581
2582 /*
2583 * GCC likes to generate cmov here, but this branch is extremely
2584 * predictable (it's just a function of time and the likely is
2585 * very likely) and there's a data dependence, so force GCC
2586 * to generate a branch instead. I don't barrier() because
2587 * we don't actually need a barrier, and if this function
2588 * ever gets inlined it will generate worse code.
2589 */
2590 asm volatile ("");
2591 return last;
2592 }
2593
2594 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595 int *mode)
2596 {
2597 long v;
2598 u64 tsc_pg_val;
2599
2600 switch (clock->vclock_mode) {
2601 case VDSO_CLOCKMODE_HVCLOCK:
2602 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603 tsc_timestamp);
2604 if (tsc_pg_val != U64_MAX) {
2605 /* TSC page valid */
2606 *mode = VDSO_CLOCKMODE_HVCLOCK;
2607 v = (tsc_pg_val - clock->cycle_last) &
2608 clock->mask;
2609 } else {
2610 /* TSC page invalid */
2611 *mode = VDSO_CLOCKMODE_NONE;
2612 }
2613 break;
2614 case VDSO_CLOCKMODE_TSC:
2615 *mode = VDSO_CLOCKMODE_TSC;
2616 *tsc_timestamp = read_tsc();
2617 v = (*tsc_timestamp - clock->cycle_last) &
2618 clock->mask;
2619 break;
2620 default:
2621 *mode = VDSO_CLOCKMODE_NONE;
2622 }
2623
2624 if (*mode == VDSO_CLOCKMODE_NONE)
2625 *tsc_timestamp = v = 0;
2626
2627 return v * clock->mult;
2628 }
2629
2630 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631 {
2632 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633 unsigned long seq;
2634 int mode;
2635 u64 ns;
2636
2637 do {
2638 seq = read_seqcount_begin(&gtod->seq);
2639 ns = gtod->raw_clock.base_cycles;
2640 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641 ns >>= gtod->raw_clock.shift;
2642 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644 *t = ns;
2645
2646 return mode;
2647 }
2648
2649 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650 {
2651 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652 unsigned long seq;
2653 int mode;
2654 u64 ns;
2655
2656 do {
2657 seq = read_seqcount_begin(&gtod->seq);
2658 ts->tv_sec = gtod->wall_time_sec;
2659 ns = gtod->clock.base_cycles;
2660 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661 ns >>= gtod->clock.shift;
2662 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665 ts->tv_nsec = ns;
2666
2667 return mode;
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672 {
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 return false;
2676
2677 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678 tsc_timestamp));
2679 }
2680
2681 /* returns true if host is using TSC based clocksource */
2682 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683 u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690 }
2691 #endif
2692
2693 /*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 * VCPU0 on CPU0 | VCPU1 on CPU1
2704 *
2705 * 1. read timespec0,tsc0
2706 * 2. | timespec1 = timespec0 + N
2707 * | tsc1 = tsc0 + M
2708 * 3. transition to guest | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2711 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 * - ret0 < ret1
2716 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 * ...
2718 * - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735 {
2736 #ifdef CONFIG_X86_64
2737 struct kvm_arch *ka = &kvm->arch;
2738 int vclock_mode;
2739 bool host_tsc_clocksource, vcpus_matched;
2740
2741 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742 atomic_read(&kvm->online_vcpus));
2743
2744 /*
2745 * If the host uses TSC clock, then passthrough TSC as stable
2746 * to the guest.
2747 */
2748 host_tsc_clocksource = kvm_get_time_and_clockread(
2749 &ka->master_kernel_ns,
2750 &ka->master_cycle_now);
2751
2752 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753 && !ka->backwards_tsc_observed
2754 && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756 if (ka->use_master_clock)
2757 atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761 vcpus_matched);
2762 #endif
2763 }
2764
2765 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766 {
2767 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768 }
2769
2770 static void kvm_gen_update_masterclock(struct kvm *kvm)
2771 {
2772 #ifdef CONFIG_X86_64
2773 int i;
2774 struct kvm_vcpu *vcpu;
2775 struct kvm_arch *ka = &kvm->arch;
2776 unsigned long flags;
2777
2778 kvm_hv_invalidate_tsc_page(kvm);
2779
2780 kvm_make_mclock_inprogress_request(kvm);
2781
2782 /* no guest entries from this point */
2783 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784 pvclock_update_vm_gtod_copy(kvm);
2785 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787 kvm_for_each_vcpu(i, vcpu, kvm)
2788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790 /* guest entries allowed */
2791 kvm_for_each_vcpu(i, vcpu, kvm)
2792 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793 #endif
2794 }
2795
2796 u64 get_kvmclock_ns(struct kvm *kvm)
2797 {
2798 struct kvm_arch *ka = &kvm->arch;
2799 struct pvclock_vcpu_time_info hv_clock;
2800 unsigned long flags;
2801 u64 ret;
2802
2803 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804 if (!ka->use_master_clock) {
2805 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807 }
2808
2809 hv_clock.tsc_timestamp = ka->master_cycle_now;
2810 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814 get_cpu();
2815
2816 if (__this_cpu_read(cpu_tsc_khz)) {
2817 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818 &hv_clock.tsc_shift,
2819 &hv_clock.tsc_to_system_mul);
2820 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821 } else
2822 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824 put_cpu();
2825
2826 return ret;
2827 }
2828
2829 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830 struct gfn_to_hva_cache *cache,
2831 unsigned int offset)
2832 {
2833 struct kvm_vcpu_arch *vcpu = &v->arch;
2834 struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838 return;
2839
2840 /* This VCPU is paused, but it's legal for a guest to read another
2841 * VCPU's kvmclock, so we really have to follow the specification where
2842 * it says that version is odd if data is being modified, and even after
2843 * it is consistent.
2844 *
2845 * Version field updates must be kept separate. This is because
2846 * kvm_write_guest_cached might use a "rep movs" instruction, and
2847 * writes within a string instruction are weakly ordered. So there
2848 * are three writes overall.
2849 *
2850 * As a small optimization, only write the version field in the first
2851 * and third write. The vcpu->pv_time cache is still valid, because the
2852 * version field is the first in the struct.
2853 */
2854 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856 if (guest_hv_clock.version & 1)
2857 ++guest_hv_clock.version; /* first time write, random junk */
2858
2859 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860 kvm_write_guest_offset_cached(v->kvm, cache,
2861 &vcpu->hv_clock, offset,
2862 sizeof(vcpu->hv_clock.version));
2863
2864 smp_wmb();
2865
2866 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869 if (vcpu->pvclock_set_guest_stopped_request) {
2870 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871 vcpu->pvclock_set_guest_stopped_request = false;
2872 }
2873
2874 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876 kvm_write_guest_offset_cached(v->kvm, cache,
2877 &vcpu->hv_clock, offset,
2878 sizeof(vcpu->hv_clock));
2879
2880 smp_wmb();
2881
2882 vcpu->hv_clock.version++;
2883 kvm_write_guest_offset_cached(v->kvm, cache,
2884 &vcpu->hv_clock, offset,
2885 sizeof(vcpu->hv_clock.version));
2886 }
2887
2888 static int kvm_guest_time_update(struct kvm_vcpu *v)
2889 {
2890 unsigned long flags, tgt_tsc_khz;
2891 struct kvm_vcpu_arch *vcpu = &v->arch;
2892 struct kvm_arch *ka = &v->kvm->arch;
2893 s64 kernel_ns;
2894 u64 tsc_timestamp, host_tsc;
2895 u8 pvclock_flags;
2896 bool use_master_clock;
2897
2898 kernel_ns = 0;
2899 host_tsc = 0;
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906 use_master_clock = ka->use_master_clock;
2907 if (use_master_clock) {
2908 host_tsc = ka->master_cycle_now;
2909 kernel_ns = ka->master_kernel_ns;
2910 }
2911 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913 /* Keep irq disabled to prevent changes to the clock */
2914 local_irq_save(flags);
2915 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916 if (unlikely(tgt_tsc_khz == 0)) {
2917 local_irq_restore(flags);
2918 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919 return 1;
2920 }
2921 if (!use_master_clock) {
2922 host_tsc = rdtsc();
2923 kernel_ns = get_kvmclock_base_ns();
2924 }
2925
2926 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928 /*
2929 * We may have to catch up the TSC to match elapsed wall clock
2930 * time for two reasons, even if kvmclock is used.
2931 * 1) CPU could have been running below the maximum TSC rate
2932 * 2) Broken TSC compensation resets the base at each VCPU
2933 * entry to avoid unknown leaps of TSC even when running
2934 * again on the same CPU. This may cause apparent elapsed
2935 * time to disappear, and the guest to stand still or run
2936 * very slowly.
2937 */
2938 if (vcpu->tsc_catchup) {
2939 u64 tsc = compute_guest_tsc(v, kernel_ns);
2940 if (tsc > tsc_timestamp) {
2941 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942 tsc_timestamp = tsc;
2943 }
2944 }
2945
2946 local_irq_restore(flags);
2947
2948 /* With all the info we got, fill in the values */
2949
2950 if (kvm_has_tsc_control)
2951 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952 v->arch.l1_tsc_scaling_ratio);
2953
2954 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956 &vcpu->hv_clock.tsc_shift,
2957 &vcpu->hv_clock.tsc_to_system_mul);
2958 vcpu->hw_tsc_khz = tgt_tsc_khz;
2959 }
2960
2961 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963 vcpu->last_guest_tsc = tsc_timestamp;
2964
2965 /* If the host uses TSC clocksource, then it is stable */
2966 pvclock_flags = 0;
2967 if (use_master_clock)
2968 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970 vcpu->hv_clock.flags = pvclock_flags;
2971
2972 if (vcpu->pv_time_enabled)
2973 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974 if (vcpu->xen.vcpu_info_set)
2975 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976 offsetof(struct compat_vcpu_info, time));
2977 if (vcpu->xen.vcpu_time_info_set)
2978 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979 if (!v->vcpu_idx)
2980 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981 return 0;
2982 }
2983
2984 /*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000 static void kvmclock_update_fn(struct work_struct *work)
3001 {
3002 int i;
3003 struct delayed_work *dwork = to_delayed_work(work);
3004 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005 kvmclock_update_work);
3006 struct kvm *kvm = container_of(ka, struct kvm, arch);
3007 struct kvm_vcpu *vcpu;
3008
3009 kvm_for_each_vcpu(i, vcpu, kvm) {
3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011 kvm_vcpu_kick(vcpu);
3012 }
3013 }
3014
3015 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016 {
3017 struct kvm *kvm = v->kvm;
3018
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021 KVMCLOCK_UPDATE_DELAY);
3022 }
3023
3024 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026 static void kvmclock_sync_fn(struct work_struct *work)
3027 {
3028 struct delayed_work *dwork = to_delayed_work(work);
3029 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030 kvmclock_sync_work);
3031 struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033 if (!kvmclock_periodic_sync)
3034 return;
3035
3036 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038 KVMCLOCK_SYNC_PERIOD);
3039 }
3040
3041 /*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045 {
3046 /* McStatusWrEn enabled? */
3047 if (guest_cpuid_is_amd_or_hygon(vcpu))
3048 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050 return false;
3051 }
3052
3053 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054 {
3055 u64 mcg_cap = vcpu->arch.mcg_cap;
3056 unsigned bank_num = mcg_cap & 0xff;
3057 u32 msr = msr_info->index;
3058 u64 data = msr_info->data;
3059
3060 switch (msr) {
3061 case MSR_IA32_MCG_STATUS:
3062 vcpu->arch.mcg_status = data;
3063 break;
3064 case MSR_IA32_MCG_CTL:
3065 if (!(mcg_cap & MCG_CTL_P) &&
3066 (data || !msr_info->host_initiated))
3067 return 1;
3068 if (data != 0 && data != ~(u64)0)
3069 return 1;
3070 vcpu->arch.mcg_ctl = data;
3071 break;
3072 default:
3073 if (msr >= MSR_IA32_MC0_CTL &&
3074 msr < MSR_IA32_MCx_CTL(bank_num)) {
3075 u32 offset = array_index_nospec(
3076 msr - MSR_IA32_MC0_CTL,
3077 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079 /* only 0 or all 1s can be written to IA32_MCi_CTL
3080 * some Linux kernels though clear bit 10 in bank 4 to
3081 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082 * this to avoid an uncatched #GP in the guest
3083 */
3084 if ((offset & 0x3) == 0 &&
3085 data != 0 && (data | (1 << 10)) != ~(u64)0)
3086 return -1;
3087
3088 /* MCi_STATUS */
3089 if (!msr_info->host_initiated &&
3090 (offset & 0x3) == 1 && data != 0) {
3091 if (!can_set_mci_status(vcpu))
3092 return -1;
3093 }
3094
3095 vcpu->arch.mce_banks[offset] = data;
3096 break;
3097 }
3098 return 1;
3099 }
3100 return 0;
3101 }
3102
3103 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104 {
3105 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108 }
3109
3110 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111 {
3112 gpa_t gpa = data & ~0x3f;
3113
3114 /* Bits 4:5 are reserved, Should be zero */
3115 if (data & 0x30)
3116 return 1;
3117
3118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120 return 1;
3121
3122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124 return 1;
3125
3126 if (!lapic_in_kernel(vcpu))
3127 return data ? 1 : 0;
3128
3129 vcpu->arch.apf.msr_en_val = data;
3130
3131 if (!kvm_pv_async_pf_enabled(vcpu)) {
3132 kvm_clear_async_pf_completion_queue(vcpu);
3133 kvm_async_pf_hash_reset(vcpu);
3134 return 0;
3135 }
3136
3137 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138 sizeof(u64)))
3139 return 1;
3140
3141 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144 kvm_async_pf_wakeup_all(vcpu);
3145
3146 return 0;
3147 }
3148
3149 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 /* Bits 8-63 are reserved */
3152 if (data >> 8)
3153 return 1;
3154
3155 if (!lapic_in_kernel(vcpu))
3156 return 1;
3157
3158 vcpu->arch.apf.msr_int_val = data;
3159
3160 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162 return 0;
3163 }
3164
3165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166 {
3167 vcpu->arch.pv_time_enabled = false;
3168 vcpu->arch.time = 0;
3169 }
3170
3171 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 ++vcpu->stat.tlb_flush;
3174 static_call(kvm_x86_tlb_flush_all)(vcpu);
3175 }
3176
3177 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178 {
3179 ++vcpu->stat.tlb_flush;
3180
3181 if (!tdp_enabled) {
3182 /*
3183 * A TLB flush on behalf of the guest is equivalent to
3184 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185 * a forced sync of the shadow page tables. Unload the
3186 * entire MMU here and the subsequent load will sync the
3187 * shadow page tables, and also flush the TLB.
3188 */
3189 kvm_mmu_unload(vcpu);
3190 return;
3191 }
3192
3193 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194 }
3195
3196 static void record_steal_time(struct kvm_vcpu *vcpu)
3197 {
3198 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3199 struct kvm_steal_time __user *st;
3200 struct kvm_memslots *slots;
3201 u64 steal;
3202 u32 version;
3203
3204 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3205 kvm_xen_runstate_set_running(vcpu);
3206 return;
3207 }
3208
3209 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3210 return;
3211
3212 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3213 return;
3214
3215 slots = kvm_memslots(vcpu->kvm);
3216
3217 if (unlikely(slots->generation != ghc->generation ||
3218 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3219 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3220
3221 /* We rely on the fact that it fits in a single page. */
3222 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3223
3224 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3225 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3226 return;
3227 }
3228
3229 st = (struct kvm_steal_time __user *)ghc->hva;
3230 if (!user_access_begin(st, sizeof(*st)))
3231 return;
3232
3233 /*
3234 * Doing a TLB flush here, on the guest's behalf, can avoid
3235 * expensive IPIs.
3236 */
3237 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3238 u8 st_preempted = 0;
3239 int err = -EFAULT;
3240
3241 asm volatile("1: xchgb %0, %2\n"
3242 "xor %1, %1\n"
3243 "2:\n"
3244 _ASM_EXTABLE_UA(1b, 2b)
3245 : "+r" (st_preempted),
3246 "+&r" (err)
3247 : "m" (st->preempted));
3248 if (err)
3249 goto out;
3250
3251 user_access_end();
3252
3253 vcpu->arch.st.preempted = 0;
3254
3255 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3256 st_preempted & KVM_VCPU_FLUSH_TLB);
3257 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3258 kvm_vcpu_flush_tlb_guest(vcpu);
3259
3260 if (!user_access_begin(st, sizeof(*st)))
3261 goto dirty;
3262 } else {
3263 unsafe_put_user(0, &st->preempted, out);
3264 vcpu->arch.st.preempted = 0;
3265 }
3266
3267 unsafe_get_user(version, &st->version, out);
3268 if (version & 1)
3269 version += 1; /* first time write, random junk */
3270
3271 version += 1;
3272 unsafe_put_user(version, &st->version, out);
3273
3274 smp_wmb();
3275
3276 unsafe_get_user(steal, &st->steal, out);
3277 steal += current->sched_info.run_delay -
3278 vcpu->arch.st.last_steal;
3279 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3280 unsafe_put_user(steal, &st->steal, out);
3281
3282 version += 1;
3283 unsafe_put_user(version, &st->version, out);
3284
3285 out:
3286 user_access_end();
3287 dirty:
3288 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3289 }
3290
3291 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3292 {
3293 bool pr = false;
3294 u32 msr = msr_info->index;
3295 u64 data = msr_info->data;
3296
3297 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3298 return kvm_xen_write_hypercall_page(vcpu, data);
3299
3300 switch (msr) {
3301 case MSR_AMD64_NB_CFG:
3302 case MSR_IA32_UCODE_WRITE:
3303 case MSR_VM_HSAVE_PA:
3304 case MSR_AMD64_PATCH_LOADER:
3305 case MSR_AMD64_BU_CFG2:
3306 case MSR_AMD64_DC_CFG:
3307 case MSR_F15H_EX_CFG:
3308 break;
3309
3310 case MSR_IA32_UCODE_REV:
3311 if (msr_info->host_initiated)
3312 vcpu->arch.microcode_version = data;
3313 break;
3314 case MSR_IA32_ARCH_CAPABILITIES:
3315 if (!msr_info->host_initiated)
3316 return 1;
3317 vcpu->arch.arch_capabilities = data;
3318 break;
3319 case MSR_IA32_PERF_CAPABILITIES: {
3320 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3321
3322 if (!msr_info->host_initiated)
3323 return 1;
3324 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3325 return 1;
3326 if (data & ~msr_ent.data)
3327 return 1;
3328
3329 vcpu->arch.perf_capabilities = data;
3330
3331 return 0;
3332 }
3333 case MSR_EFER:
3334 return set_efer(vcpu, msr_info);
3335 case MSR_K7_HWCR:
3336 data &= ~(u64)0x40; /* ignore flush filter disable */
3337 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3338 data &= ~(u64)0x8; /* ignore TLB cache disable */
3339
3340 /* Handle McStatusWrEn */
3341 if (data == BIT_ULL(18)) {
3342 vcpu->arch.msr_hwcr = data;
3343 } else if (data != 0) {
3344 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3345 data);
3346 return 1;
3347 }
3348 break;
3349 case MSR_FAM10H_MMIO_CONF_BASE:
3350 if (data != 0) {
3351 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3352 "0x%llx\n", data);
3353 return 1;
3354 }
3355 break;
3356 case 0x200 ... 0x2ff:
3357 return kvm_mtrr_set_msr(vcpu, msr, data);
3358 case MSR_IA32_APICBASE:
3359 return kvm_set_apic_base(vcpu, msr_info);
3360 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3361 return kvm_x2apic_msr_write(vcpu, msr, data);
3362 case MSR_IA32_TSC_DEADLINE:
3363 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3364 break;
3365 case MSR_IA32_TSC_ADJUST:
3366 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3367 if (!msr_info->host_initiated) {
3368 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3369 adjust_tsc_offset_guest(vcpu, adj);
3370 /* Before back to guest, tsc_timestamp must be adjusted
3371 * as well, otherwise guest's percpu pvclock time could jump.
3372 */
3373 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3374 }
3375 vcpu->arch.ia32_tsc_adjust_msr = data;
3376 }
3377 break;
3378 case MSR_IA32_MISC_ENABLE:
3379 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3380 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3381 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3382 return 1;
3383 vcpu->arch.ia32_misc_enable_msr = data;
3384 kvm_update_cpuid_runtime(vcpu);
3385 } else {
3386 vcpu->arch.ia32_misc_enable_msr = data;
3387 }
3388 break;
3389 case MSR_IA32_SMBASE:
3390 if (!msr_info->host_initiated)
3391 return 1;
3392 vcpu->arch.smbase = data;
3393 break;
3394 case MSR_IA32_POWER_CTL:
3395 vcpu->arch.msr_ia32_power_ctl = data;
3396 break;
3397 case MSR_IA32_TSC:
3398 if (msr_info->host_initiated) {
3399 kvm_synchronize_tsc(vcpu, data);
3400 } else {
3401 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3402 adjust_tsc_offset_guest(vcpu, adj);
3403 vcpu->arch.ia32_tsc_adjust_msr += adj;
3404 }
3405 break;
3406 case MSR_IA32_XSS:
3407 if (!msr_info->host_initiated &&
3408 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3409 return 1;
3410 /*
3411 * KVM supports exposing PT to the guest, but does not support
3412 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3413 * XSAVES/XRSTORS to save/restore PT MSRs.
3414 */
3415 if (data & ~supported_xss)
3416 return 1;
3417 vcpu->arch.ia32_xss = data;
3418 break;
3419 case MSR_SMI_COUNT:
3420 if (!msr_info->host_initiated)
3421 return 1;
3422 vcpu->arch.smi_count = data;
3423 break;
3424 case MSR_KVM_WALL_CLOCK_NEW:
3425 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3426 return 1;
3427
3428 vcpu->kvm->arch.wall_clock = data;
3429 kvm_write_wall_clock(vcpu->kvm, data, 0);
3430 break;
3431 case MSR_KVM_WALL_CLOCK:
3432 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3433 return 1;
3434
3435 vcpu->kvm->arch.wall_clock = data;
3436 kvm_write_wall_clock(vcpu->kvm, data, 0);
3437 break;
3438 case MSR_KVM_SYSTEM_TIME_NEW:
3439 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3440 return 1;
3441
3442 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3443 break;
3444 case MSR_KVM_SYSTEM_TIME:
3445 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3446 return 1;
3447
3448 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3449 break;
3450 case MSR_KVM_ASYNC_PF_EN:
3451 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3452 return 1;
3453
3454 if (kvm_pv_enable_async_pf(vcpu, data))
3455 return 1;
3456 break;
3457 case MSR_KVM_ASYNC_PF_INT:
3458 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3459 return 1;
3460
3461 if (kvm_pv_enable_async_pf_int(vcpu, data))
3462 return 1;
3463 break;
3464 case MSR_KVM_ASYNC_PF_ACK:
3465 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3466 return 1;
3467 if (data & 0x1) {
3468 vcpu->arch.apf.pageready_pending = false;
3469 kvm_check_async_pf_completion(vcpu);
3470 }
3471 break;
3472 case MSR_KVM_STEAL_TIME:
3473 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3474 return 1;
3475
3476 if (unlikely(!sched_info_on()))
3477 return 1;
3478
3479 if (data & KVM_STEAL_RESERVED_MASK)
3480 return 1;
3481
3482 vcpu->arch.st.msr_val = data;
3483
3484 if (!(data & KVM_MSR_ENABLED))
3485 break;
3486
3487 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3488
3489 break;
3490 case MSR_KVM_PV_EOI_EN:
3491 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3492 return 1;
3493
3494 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3495 return 1;
3496 break;
3497
3498 case MSR_KVM_POLL_CONTROL:
3499 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3500 return 1;
3501
3502 /* only enable bit supported */
3503 if (data & (-1ULL << 1))
3504 return 1;
3505
3506 vcpu->arch.msr_kvm_poll_control = data;
3507 break;
3508
3509 case MSR_IA32_MCG_CTL:
3510 case MSR_IA32_MCG_STATUS:
3511 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3512 return set_msr_mce(vcpu, msr_info);
3513
3514 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3515 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3516 pr = true;
3517 fallthrough;
3518 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3519 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3520 if (kvm_pmu_is_valid_msr(vcpu, msr))
3521 return kvm_pmu_set_msr(vcpu, msr_info);
3522
3523 if (pr || data != 0)
3524 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3525 "0x%x data 0x%llx\n", msr, data);
3526 break;
3527 case MSR_K7_CLK_CTL:
3528 /*
3529 * Ignore all writes to this no longer documented MSR.
3530 * Writes are only relevant for old K7 processors,
3531 * all pre-dating SVM, but a recommended workaround from
3532 * AMD for these chips. It is possible to specify the
3533 * affected processor models on the command line, hence
3534 * the need to ignore the workaround.
3535 */
3536 break;
3537 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3538 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3539 case HV_X64_MSR_SYNDBG_OPTIONS:
3540 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3541 case HV_X64_MSR_CRASH_CTL:
3542 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3543 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3544 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3545 case HV_X64_MSR_TSC_EMULATION_STATUS:
3546 return kvm_hv_set_msr_common(vcpu, msr, data,
3547 msr_info->host_initiated);
3548 case MSR_IA32_BBL_CR_CTL3:
3549 /* Drop writes to this legacy MSR -- see rdmsr
3550 * counterpart for further detail.
3551 */
3552 if (report_ignored_msrs)
3553 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3554 msr, data);
3555 break;
3556 case MSR_AMD64_OSVW_ID_LENGTH:
3557 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3558 return 1;
3559 vcpu->arch.osvw.length = data;
3560 break;
3561 case MSR_AMD64_OSVW_STATUS:
3562 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3563 return 1;
3564 vcpu->arch.osvw.status = data;
3565 break;
3566 case MSR_PLATFORM_INFO:
3567 if (!msr_info->host_initiated ||
3568 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3569 cpuid_fault_enabled(vcpu)))
3570 return 1;
3571 vcpu->arch.msr_platform_info = data;
3572 break;
3573 case MSR_MISC_FEATURES_ENABLES:
3574 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3575 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3576 !supports_cpuid_fault(vcpu)))
3577 return 1;
3578 vcpu->arch.msr_misc_features_enables = data;
3579 break;
3580 default:
3581 if (kvm_pmu_is_valid_msr(vcpu, msr))
3582 return kvm_pmu_set_msr(vcpu, msr_info);
3583 return KVM_MSR_RET_INVALID;
3584 }
3585 return 0;
3586 }
3587 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3588
3589 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3590 {
3591 u64 data;
3592 u64 mcg_cap = vcpu->arch.mcg_cap;
3593 unsigned bank_num = mcg_cap & 0xff;
3594
3595 switch (msr) {
3596 case MSR_IA32_P5_MC_ADDR:
3597 case MSR_IA32_P5_MC_TYPE:
3598 data = 0;
3599 break;
3600 case MSR_IA32_MCG_CAP:
3601 data = vcpu->arch.mcg_cap;
3602 break;
3603 case MSR_IA32_MCG_CTL:
3604 if (!(mcg_cap & MCG_CTL_P) && !host)
3605 return 1;
3606 data = vcpu->arch.mcg_ctl;
3607 break;
3608 case MSR_IA32_MCG_STATUS:
3609 data = vcpu->arch.mcg_status;
3610 break;
3611 default:
3612 if (msr >= MSR_IA32_MC0_CTL &&
3613 msr < MSR_IA32_MCx_CTL(bank_num)) {
3614 u32 offset = array_index_nospec(
3615 msr - MSR_IA32_MC0_CTL,
3616 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3617
3618 data = vcpu->arch.mce_banks[offset];
3619 break;
3620 }
3621 return 1;
3622 }
3623 *pdata = data;
3624 return 0;
3625 }
3626
3627 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3628 {
3629 switch (msr_info->index) {
3630 case MSR_IA32_PLATFORM_ID:
3631 case MSR_IA32_EBL_CR_POWERON:
3632 case MSR_IA32_LASTBRANCHFROMIP:
3633 case MSR_IA32_LASTBRANCHTOIP:
3634 case MSR_IA32_LASTINTFROMIP:
3635 case MSR_IA32_LASTINTTOIP:
3636 case MSR_AMD64_SYSCFG:
3637 case MSR_K8_TSEG_ADDR:
3638 case MSR_K8_TSEG_MASK:
3639 case MSR_VM_HSAVE_PA:
3640 case MSR_K8_INT_PENDING_MSG:
3641 case MSR_AMD64_NB_CFG:
3642 case MSR_FAM10H_MMIO_CONF_BASE:
3643 case MSR_AMD64_BU_CFG2:
3644 case MSR_IA32_PERF_CTL:
3645 case MSR_AMD64_DC_CFG:
3646 case MSR_F15H_EX_CFG:
3647 /*
3648 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3649 * limit) MSRs. Just return 0, as we do not want to expose the host
3650 * data here. Do not conditionalize this on CPUID, as KVM does not do
3651 * so for existing CPU-specific MSRs.
3652 */
3653 case MSR_RAPL_POWER_UNIT:
3654 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3655 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3656 case MSR_PKG_ENERGY_STATUS: /* Total package */
3657 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3658 msr_info->data = 0;
3659 break;
3660 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3661 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3662 return kvm_pmu_get_msr(vcpu, msr_info);
3663 if (!msr_info->host_initiated)
3664 return 1;
3665 msr_info->data = 0;
3666 break;
3667 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3668 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3669 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3670 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3671 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3672 return kvm_pmu_get_msr(vcpu, msr_info);
3673 msr_info->data = 0;
3674 break;
3675 case MSR_IA32_UCODE_REV:
3676 msr_info->data = vcpu->arch.microcode_version;
3677 break;
3678 case MSR_IA32_ARCH_CAPABILITIES:
3679 if (!msr_info->host_initiated &&
3680 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3681 return 1;
3682 msr_info->data = vcpu->arch.arch_capabilities;
3683 break;
3684 case MSR_IA32_PERF_CAPABILITIES:
3685 if (!msr_info->host_initiated &&
3686 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3687 return 1;
3688 msr_info->data = vcpu->arch.perf_capabilities;
3689 break;
3690 case MSR_IA32_POWER_CTL:
3691 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3692 break;
3693 case MSR_IA32_TSC: {
3694 /*
3695 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3696 * even when not intercepted. AMD manual doesn't explicitly
3697 * state this but appears to behave the same.
3698 *
3699 * On userspace reads and writes, however, we unconditionally
3700 * return L1's TSC value to ensure backwards-compatible
3701 * behavior for migration.
3702 */
3703 u64 offset, ratio;
3704
3705 if (msr_info->host_initiated) {
3706 offset = vcpu->arch.l1_tsc_offset;
3707 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3708 } else {
3709 offset = vcpu->arch.tsc_offset;
3710 ratio = vcpu->arch.tsc_scaling_ratio;
3711 }
3712
3713 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3714 break;
3715 }
3716 case MSR_MTRRcap:
3717 case 0x200 ... 0x2ff:
3718 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3719 case 0xcd: /* fsb frequency */
3720 msr_info->data = 3;
3721 break;
3722 /*
3723 * MSR_EBC_FREQUENCY_ID
3724 * Conservative value valid for even the basic CPU models.
3725 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3726 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3727 * and 266MHz for model 3, or 4. Set Core Clock
3728 * Frequency to System Bus Frequency Ratio to 1 (bits
3729 * 31:24) even though these are only valid for CPU
3730 * models > 2, however guests may end up dividing or
3731 * multiplying by zero otherwise.
3732 */
3733 case MSR_EBC_FREQUENCY_ID:
3734 msr_info->data = 1 << 24;
3735 break;
3736 case MSR_IA32_APICBASE:
3737 msr_info->data = kvm_get_apic_base(vcpu);
3738 break;
3739 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3740 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3741 case MSR_IA32_TSC_DEADLINE:
3742 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3743 break;
3744 case MSR_IA32_TSC_ADJUST:
3745 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3746 break;
3747 case MSR_IA32_MISC_ENABLE:
3748 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3749 break;
3750 case MSR_IA32_SMBASE:
3751 if (!msr_info->host_initiated)
3752 return 1;
3753 msr_info->data = vcpu->arch.smbase;
3754 break;
3755 case MSR_SMI_COUNT:
3756 msr_info->data = vcpu->arch.smi_count;
3757 break;
3758 case MSR_IA32_PERF_STATUS:
3759 /* TSC increment by tick */
3760 msr_info->data = 1000ULL;
3761 /* CPU multiplier */
3762 msr_info->data |= (((uint64_t)4ULL) << 40);
3763 break;
3764 case MSR_EFER:
3765 msr_info->data = vcpu->arch.efer;
3766 break;
3767 case MSR_KVM_WALL_CLOCK:
3768 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3769 return 1;
3770
3771 msr_info->data = vcpu->kvm->arch.wall_clock;
3772 break;
3773 case MSR_KVM_WALL_CLOCK_NEW:
3774 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3775 return 1;
3776
3777 msr_info->data = vcpu->kvm->arch.wall_clock;
3778 break;
3779 case MSR_KVM_SYSTEM_TIME:
3780 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3781 return 1;
3782
3783 msr_info->data = vcpu->arch.time;
3784 break;
3785 case MSR_KVM_SYSTEM_TIME_NEW:
3786 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3787 return 1;
3788
3789 msr_info->data = vcpu->arch.time;
3790 break;
3791 case MSR_KVM_ASYNC_PF_EN:
3792 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3793 return 1;
3794
3795 msr_info->data = vcpu->arch.apf.msr_en_val;
3796 break;
3797 case MSR_KVM_ASYNC_PF_INT:
3798 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3799 return 1;
3800
3801 msr_info->data = vcpu->arch.apf.msr_int_val;
3802 break;
3803 case MSR_KVM_ASYNC_PF_ACK:
3804 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3805 return 1;
3806
3807 msr_info->data = 0;
3808 break;
3809 case MSR_KVM_STEAL_TIME:
3810 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3811 return 1;
3812
3813 msr_info->data = vcpu->arch.st.msr_val;
3814 break;
3815 case MSR_KVM_PV_EOI_EN:
3816 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3817 return 1;
3818
3819 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3820 break;
3821 case MSR_KVM_POLL_CONTROL:
3822 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3823 return 1;
3824
3825 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3826 break;
3827 case MSR_IA32_P5_MC_ADDR:
3828 case MSR_IA32_P5_MC_TYPE:
3829 case MSR_IA32_MCG_CAP:
3830 case MSR_IA32_MCG_CTL:
3831 case MSR_IA32_MCG_STATUS:
3832 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3833 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3834 msr_info->host_initiated);
3835 case MSR_IA32_XSS:
3836 if (!msr_info->host_initiated &&
3837 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3838 return 1;
3839 msr_info->data = vcpu->arch.ia32_xss;
3840 break;
3841 case MSR_K7_CLK_CTL:
3842 /*
3843 * Provide expected ramp-up count for K7. All other
3844 * are set to zero, indicating minimum divisors for
3845 * every field.
3846 *
3847 * This prevents guest kernels on AMD host with CPU
3848 * type 6, model 8 and higher from exploding due to
3849 * the rdmsr failing.
3850 */
3851 msr_info->data = 0x20000000;
3852 break;
3853 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3854 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3855 case HV_X64_MSR_SYNDBG_OPTIONS:
3856 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3857 case HV_X64_MSR_CRASH_CTL:
3858 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3859 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3860 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3861 case HV_X64_MSR_TSC_EMULATION_STATUS:
3862 return kvm_hv_get_msr_common(vcpu,
3863 msr_info->index, &msr_info->data,
3864 msr_info->host_initiated);
3865 case MSR_IA32_BBL_CR_CTL3:
3866 /* This legacy MSR exists but isn't fully documented in current
3867 * silicon. It is however accessed by winxp in very narrow
3868 * scenarios where it sets bit #19, itself documented as
3869 * a "reserved" bit. Best effort attempt to source coherent
3870 * read data here should the balance of the register be
3871 * interpreted by the guest:
3872 *
3873 * L2 cache control register 3: 64GB range, 256KB size,
3874 * enabled, latency 0x1, configured
3875 */
3876 msr_info->data = 0xbe702111;
3877 break;
3878 case MSR_AMD64_OSVW_ID_LENGTH:
3879 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3880 return 1;
3881 msr_info->data = vcpu->arch.osvw.length;
3882 break;
3883 case MSR_AMD64_OSVW_STATUS:
3884 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3885 return 1;
3886 msr_info->data = vcpu->arch.osvw.status;
3887 break;
3888 case MSR_PLATFORM_INFO:
3889 if (!msr_info->host_initiated &&
3890 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3891 return 1;
3892 msr_info->data = vcpu->arch.msr_platform_info;
3893 break;
3894 case MSR_MISC_FEATURES_ENABLES:
3895 msr_info->data = vcpu->arch.msr_misc_features_enables;
3896 break;
3897 case MSR_K7_HWCR:
3898 msr_info->data = vcpu->arch.msr_hwcr;
3899 break;
3900 default:
3901 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3902 return kvm_pmu_get_msr(vcpu, msr_info);
3903 return KVM_MSR_RET_INVALID;
3904 }
3905 return 0;
3906 }
3907 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3908
3909 /*
3910 * Read or write a bunch of msrs. All parameters are kernel addresses.
3911 *
3912 * @return number of msrs set successfully.
3913 */
3914 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3915 struct kvm_msr_entry *entries,
3916 int (*do_msr)(struct kvm_vcpu *vcpu,
3917 unsigned index, u64 *data))
3918 {
3919 int i;
3920
3921 for (i = 0; i < msrs->nmsrs; ++i)
3922 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3923 break;
3924
3925 return i;
3926 }
3927
3928 /*
3929 * Read or write a bunch of msrs. Parameters are user addresses.
3930 *
3931 * @return number of msrs set successfully.
3932 */
3933 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3934 int (*do_msr)(struct kvm_vcpu *vcpu,
3935 unsigned index, u64 *data),
3936 int writeback)
3937 {
3938 struct kvm_msrs msrs;
3939 struct kvm_msr_entry *entries;
3940 int r, n;
3941 unsigned size;
3942
3943 r = -EFAULT;
3944 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3945 goto out;
3946
3947 r = -E2BIG;
3948 if (msrs.nmsrs >= MAX_IO_MSRS)
3949 goto out;
3950
3951 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3952 entries = memdup_user(user_msrs->entries, size);
3953 if (IS_ERR(entries)) {
3954 r = PTR_ERR(entries);
3955 goto out;
3956 }
3957
3958 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3959 if (r < 0)
3960 goto out_free;
3961
3962 r = -EFAULT;
3963 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3964 goto out_free;
3965
3966 r = n;
3967
3968 out_free:
3969 kfree(entries);
3970 out:
3971 return r;
3972 }
3973
3974 static inline bool kvm_can_mwait_in_guest(void)
3975 {
3976 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3977 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3978 boot_cpu_has(X86_FEATURE_ARAT);
3979 }
3980
3981 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3982 struct kvm_cpuid2 __user *cpuid_arg)
3983 {
3984 struct kvm_cpuid2 cpuid;
3985 int r;
3986
3987 r = -EFAULT;
3988 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3989 return r;
3990
3991 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3992 if (r)
3993 return r;
3994
3995 r = -EFAULT;
3996 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3997 return r;
3998
3999 return 0;
4000 }
4001
4002 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4003 {
4004 int r = 0;
4005
4006 switch (ext) {
4007 case KVM_CAP_IRQCHIP:
4008 case KVM_CAP_HLT:
4009 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4010 case KVM_CAP_SET_TSS_ADDR:
4011 case KVM_CAP_EXT_CPUID:
4012 case KVM_CAP_EXT_EMUL_CPUID:
4013 case KVM_CAP_CLOCKSOURCE:
4014 case KVM_CAP_PIT:
4015 case KVM_CAP_NOP_IO_DELAY:
4016 case KVM_CAP_MP_STATE:
4017 case KVM_CAP_SYNC_MMU:
4018 case KVM_CAP_USER_NMI:
4019 case KVM_CAP_REINJECT_CONTROL:
4020 case KVM_CAP_IRQ_INJECT_STATUS:
4021 case KVM_CAP_IOEVENTFD:
4022 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4023 case KVM_CAP_PIT2:
4024 case KVM_CAP_PIT_STATE2:
4025 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4026 case KVM_CAP_VCPU_EVENTS:
4027 case KVM_CAP_HYPERV:
4028 case KVM_CAP_HYPERV_VAPIC:
4029 case KVM_CAP_HYPERV_SPIN:
4030 case KVM_CAP_HYPERV_SYNIC:
4031 case KVM_CAP_HYPERV_SYNIC2:
4032 case KVM_CAP_HYPERV_VP_INDEX:
4033 case KVM_CAP_HYPERV_EVENTFD:
4034 case KVM_CAP_HYPERV_TLBFLUSH:
4035 case KVM_CAP_HYPERV_SEND_IPI:
4036 case KVM_CAP_HYPERV_CPUID:
4037 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4038 case KVM_CAP_SYS_HYPERV_CPUID:
4039 case KVM_CAP_PCI_SEGMENT:
4040 case KVM_CAP_DEBUGREGS:
4041 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4042 case KVM_CAP_XSAVE:
4043 case KVM_CAP_ASYNC_PF:
4044 case KVM_CAP_ASYNC_PF_INT:
4045 case KVM_CAP_GET_TSC_KHZ:
4046 case KVM_CAP_KVMCLOCK_CTRL:
4047 case KVM_CAP_READONLY_MEM:
4048 case KVM_CAP_HYPERV_TIME:
4049 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4050 case KVM_CAP_TSC_DEADLINE_TIMER:
4051 case KVM_CAP_DISABLE_QUIRKS:
4052 case KVM_CAP_SET_BOOT_CPU_ID:
4053 case KVM_CAP_SPLIT_IRQCHIP:
4054 case KVM_CAP_IMMEDIATE_EXIT:
4055 case KVM_CAP_PMU_EVENT_FILTER:
4056 case KVM_CAP_GET_MSR_FEATURES:
4057 case KVM_CAP_MSR_PLATFORM_INFO:
4058 case KVM_CAP_EXCEPTION_PAYLOAD:
4059 case KVM_CAP_SET_GUEST_DEBUG:
4060 case KVM_CAP_LAST_CPU:
4061 case KVM_CAP_X86_USER_SPACE_MSR:
4062 case KVM_CAP_X86_MSR_FILTER:
4063 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4064 #ifdef CONFIG_X86_SGX_KVM
4065 case KVM_CAP_SGX_ATTRIBUTE:
4066 #endif
4067 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4068 case KVM_CAP_SREGS2:
4069 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4070 r = 1;
4071 break;
4072 case KVM_CAP_EXIT_HYPERCALL:
4073 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4074 break;
4075 case KVM_CAP_SET_GUEST_DEBUG2:
4076 return KVM_GUESTDBG_VALID_MASK;
4077 #ifdef CONFIG_KVM_XEN
4078 case KVM_CAP_XEN_HVM:
4079 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4080 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4081 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4082 if (sched_info_on())
4083 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4084 break;
4085 #endif
4086 case KVM_CAP_SYNC_REGS:
4087 r = KVM_SYNC_X86_VALID_FIELDS;
4088 break;
4089 case KVM_CAP_ADJUST_CLOCK:
4090 r = KVM_CLOCK_TSC_STABLE;
4091 break;
4092 case KVM_CAP_X86_DISABLE_EXITS:
4093 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4094 KVM_X86_DISABLE_EXITS_CSTATE;
4095 if(kvm_can_mwait_in_guest())
4096 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4097 break;
4098 case KVM_CAP_X86_SMM:
4099 /* SMBASE is usually relocated above 1M on modern chipsets,
4100 * and SMM handlers might indeed rely on 4G segment limits,
4101 * so do not report SMM to be available if real mode is
4102 * emulated via vm86 mode. Still, do not go to great lengths
4103 * to avoid userspace's usage of the feature, because it is a
4104 * fringe case that is not enabled except via specific settings
4105 * of the module parameters.
4106 */
4107 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4108 break;
4109 case KVM_CAP_VAPIC:
4110 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4111 break;
4112 case KVM_CAP_NR_VCPUS:
4113 r = KVM_SOFT_MAX_VCPUS;
4114 break;
4115 case KVM_CAP_MAX_VCPUS:
4116 r = KVM_MAX_VCPUS;
4117 break;
4118 case KVM_CAP_MAX_VCPU_ID:
4119 r = KVM_MAX_VCPU_ID;
4120 break;
4121 case KVM_CAP_PV_MMU: /* obsolete */
4122 r = 0;
4123 break;
4124 case KVM_CAP_MCE:
4125 r = KVM_MAX_MCE_BANKS;
4126 break;
4127 case KVM_CAP_XCRS:
4128 r = boot_cpu_has(X86_FEATURE_XSAVE);
4129 break;
4130 case KVM_CAP_TSC_CONTROL:
4131 r = kvm_has_tsc_control;
4132 break;
4133 case KVM_CAP_X2APIC_API:
4134 r = KVM_X2APIC_API_VALID_FLAGS;
4135 break;
4136 case KVM_CAP_NESTED_STATE:
4137 r = kvm_x86_ops.nested_ops->get_state ?
4138 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4139 break;
4140 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4141 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4142 break;
4143 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4144 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4145 break;
4146 case KVM_CAP_SMALLER_MAXPHYADDR:
4147 r = (int) allow_smaller_maxphyaddr;
4148 break;
4149 case KVM_CAP_STEAL_TIME:
4150 r = sched_info_on();
4151 break;
4152 case KVM_CAP_X86_BUS_LOCK_EXIT:
4153 if (kvm_has_bus_lock_exit)
4154 r = KVM_BUS_LOCK_DETECTION_OFF |
4155 KVM_BUS_LOCK_DETECTION_EXIT;
4156 else
4157 r = 0;
4158 break;
4159 default:
4160 break;
4161 }
4162 return r;
4163
4164 }
4165
4166 long kvm_arch_dev_ioctl(struct file *filp,
4167 unsigned int ioctl, unsigned long arg)
4168 {
4169 void __user *argp = (void __user *)arg;
4170 long r;
4171
4172 switch (ioctl) {
4173 case KVM_GET_MSR_INDEX_LIST: {
4174 struct kvm_msr_list __user *user_msr_list = argp;
4175 struct kvm_msr_list msr_list;
4176 unsigned n;
4177
4178 r = -EFAULT;
4179 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4180 goto out;
4181 n = msr_list.nmsrs;
4182 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4183 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4184 goto out;
4185 r = -E2BIG;
4186 if (n < msr_list.nmsrs)
4187 goto out;
4188 r = -EFAULT;
4189 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4190 num_msrs_to_save * sizeof(u32)))
4191 goto out;
4192 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4193 &emulated_msrs,
4194 num_emulated_msrs * sizeof(u32)))
4195 goto out;
4196 r = 0;
4197 break;
4198 }
4199 case KVM_GET_SUPPORTED_CPUID:
4200 case KVM_GET_EMULATED_CPUID: {
4201 struct kvm_cpuid2 __user *cpuid_arg = argp;
4202 struct kvm_cpuid2 cpuid;
4203
4204 r = -EFAULT;
4205 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4206 goto out;
4207
4208 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4209 ioctl);
4210 if (r)
4211 goto out;
4212
4213 r = -EFAULT;
4214 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4215 goto out;
4216 r = 0;
4217 break;
4218 }
4219 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4220 r = -EFAULT;
4221 if (copy_to_user(argp, &kvm_mce_cap_supported,
4222 sizeof(kvm_mce_cap_supported)))
4223 goto out;
4224 r = 0;
4225 break;
4226 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4227 struct kvm_msr_list __user *user_msr_list = argp;
4228 struct kvm_msr_list msr_list;
4229 unsigned int n;
4230
4231 r = -EFAULT;
4232 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4233 goto out;
4234 n = msr_list.nmsrs;
4235 msr_list.nmsrs = num_msr_based_features;
4236 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4237 goto out;
4238 r = -E2BIG;
4239 if (n < msr_list.nmsrs)
4240 goto out;
4241 r = -EFAULT;
4242 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4243 num_msr_based_features * sizeof(u32)))
4244 goto out;
4245 r = 0;
4246 break;
4247 }
4248 case KVM_GET_MSRS:
4249 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4250 break;
4251 case KVM_GET_SUPPORTED_HV_CPUID:
4252 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4253 break;
4254 default:
4255 r = -EINVAL;
4256 break;
4257 }
4258 out:
4259 return r;
4260 }
4261
4262 static void wbinvd_ipi(void *garbage)
4263 {
4264 wbinvd();
4265 }
4266
4267 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4268 {
4269 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4270 }
4271
4272 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4273 {
4274 /* Address WBINVD may be executed by guest */
4275 if (need_emulate_wbinvd(vcpu)) {
4276 if (static_call(kvm_x86_has_wbinvd_exit)())
4277 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4278 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4279 smp_call_function_single(vcpu->cpu,
4280 wbinvd_ipi, NULL, 1);
4281 }
4282
4283 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4284
4285 /* Save host pkru register if supported */
4286 vcpu->arch.host_pkru = read_pkru();
4287
4288 /* Apply any externally detected TSC adjustments (due to suspend) */
4289 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4290 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4291 vcpu->arch.tsc_offset_adjustment = 0;
4292 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4293 }
4294
4295 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4296 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4297 rdtsc() - vcpu->arch.last_host_tsc;
4298 if (tsc_delta < 0)
4299 mark_tsc_unstable("KVM discovered backwards TSC");
4300
4301 if (kvm_check_tsc_unstable()) {
4302 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4303 vcpu->arch.last_guest_tsc);
4304 kvm_vcpu_write_tsc_offset(vcpu, offset);
4305 vcpu->arch.tsc_catchup = 1;
4306 }
4307
4308 if (kvm_lapic_hv_timer_in_use(vcpu))
4309 kvm_lapic_restart_hv_timer(vcpu);
4310
4311 /*
4312 * On a host with synchronized TSC, there is no need to update
4313 * kvmclock on vcpu->cpu migration
4314 */
4315 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4317 if (vcpu->cpu != cpu)
4318 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4319 vcpu->cpu = cpu;
4320 }
4321
4322 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4323 }
4324
4325 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4326 {
4327 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4328 struct kvm_steal_time __user *st;
4329 struct kvm_memslots *slots;
4330 static const u8 preempted = KVM_VCPU_PREEMPTED;
4331
4332 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4333 return;
4334
4335 if (vcpu->arch.st.preempted)
4336 return;
4337
4338 /* This happens on process exit */
4339 if (unlikely(current->mm != vcpu->kvm->mm))
4340 return;
4341
4342 slots = kvm_memslots(vcpu->kvm);
4343
4344 if (unlikely(slots->generation != ghc->generation ||
4345 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4346 return;
4347
4348 st = (struct kvm_steal_time __user *)ghc->hva;
4349 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4350
4351 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4352 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4353
4354 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4355 }
4356
4357 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4358 {
4359 int idx;
4360
4361 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4362 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4363
4364 /*
4365 * Take the srcu lock as memslots will be accessed to check the gfn
4366 * cache generation against the memslots generation.
4367 */
4368 idx = srcu_read_lock(&vcpu->kvm->srcu);
4369 if (kvm_xen_msr_enabled(vcpu->kvm))
4370 kvm_xen_runstate_set_preempted(vcpu);
4371 else
4372 kvm_steal_time_set_preempted(vcpu);
4373 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4374
4375 static_call(kvm_x86_vcpu_put)(vcpu);
4376 vcpu->arch.last_host_tsc = rdtsc();
4377 }
4378
4379 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4380 struct kvm_lapic_state *s)
4381 {
4382 if (vcpu->arch.apicv_active)
4383 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4384
4385 return kvm_apic_get_state(vcpu, s);
4386 }
4387
4388 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4389 struct kvm_lapic_state *s)
4390 {
4391 int r;
4392
4393 r = kvm_apic_set_state(vcpu, s);
4394 if (r)
4395 return r;
4396 update_cr8_intercept(vcpu);
4397
4398 return 0;
4399 }
4400
4401 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4402 {
4403 /*
4404 * We can accept userspace's request for interrupt injection
4405 * as long as we have a place to store the interrupt number.
4406 * The actual injection will happen when the CPU is able to
4407 * deliver the interrupt.
4408 */
4409 if (kvm_cpu_has_extint(vcpu))
4410 return false;
4411
4412 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4413 return (!lapic_in_kernel(vcpu) ||
4414 kvm_apic_accept_pic_intr(vcpu));
4415 }
4416
4417 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4418 {
4419 /*
4420 * Do not cause an interrupt window exit if an exception
4421 * is pending or an event needs reinjection; userspace
4422 * might want to inject the interrupt manually using KVM_SET_REGS
4423 * or KVM_SET_SREGS. For that to work, we must be at an
4424 * instruction boundary and with no events half-injected.
4425 */
4426 return (kvm_arch_interrupt_allowed(vcpu) &&
4427 kvm_cpu_accept_dm_intr(vcpu) &&
4428 !kvm_event_needs_reinjection(vcpu) &&
4429 !vcpu->arch.exception.pending);
4430 }
4431
4432 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4433 struct kvm_interrupt *irq)
4434 {
4435 if (irq->irq >= KVM_NR_INTERRUPTS)
4436 return -EINVAL;
4437
4438 if (!irqchip_in_kernel(vcpu->kvm)) {
4439 kvm_queue_interrupt(vcpu, irq->irq, false);
4440 kvm_make_request(KVM_REQ_EVENT, vcpu);
4441 return 0;
4442 }
4443
4444 /*
4445 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4446 * fail for in-kernel 8259.
4447 */
4448 if (pic_in_kernel(vcpu->kvm))
4449 return -ENXIO;
4450
4451 if (vcpu->arch.pending_external_vector != -1)
4452 return -EEXIST;
4453
4454 vcpu->arch.pending_external_vector = irq->irq;
4455 kvm_make_request(KVM_REQ_EVENT, vcpu);
4456 return 0;
4457 }
4458
4459 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4460 {
4461 kvm_inject_nmi(vcpu);
4462
4463 return 0;
4464 }
4465
4466 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4467 {
4468 kvm_make_request(KVM_REQ_SMI, vcpu);
4469
4470 return 0;
4471 }
4472
4473 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4474 struct kvm_tpr_access_ctl *tac)
4475 {
4476 if (tac->flags)
4477 return -EINVAL;
4478 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4479 return 0;
4480 }
4481
4482 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4483 u64 mcg_cap)
4484 {
4485 int r;
4486 unsigned bank_num = mcg_cap & 0xff, bank;
4487
4488 r = -EINVAL;
4489 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4490 goto out;
4491 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4492 goto out;
4493 r = 0;
4494 vcpu->arch.mcg_cap = mcg_cap;
4495 /* Init IA32_MCG_CTL to all 1s */
4496 if (mcg_cap & MCG_CTL_P)
4497 vcpu->arch.mcg_ctl = ~(u64)0;
4498 /* Init IA32_MCi_CTL to all 1s */
4499 for (bank = 0; bank < bank_num; bank++)
4500 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4501
4502 static_call(kvm_x86_setup_mce)(vcpu);
4503 out:
4504 return r;
4505 }
4506
4507 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4508 struct kvm_x86_mce *mce)
4509 {
4510 u64 mcg_cap = vcpu->arch.mcg_cap;
4511 unsigned bank_num = mcg_cap & 0xff;
4512 u64 *banks = vcpu->arch.mce_banks;
4513
4514 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4515 return -EINVAL;
4516 /*
4517 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4518 * reporting is disabled
4519 */
4520 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4521 vcpu->arch.mcg_ctl != ~(u64)0)
4522 return 0;
4523 banks += 4 * mce->bank;
4524 /*
4525 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4526 * reporting is disabled for the bank
4527 */
4528 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4529 return 0;
4530 if (mce->status & MCI_STATUS_UC) {
4531 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4532 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4533 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4534 return 0;
4535 }
4536 if (banks[1] & MCI_STATUS_VAL)
4537 mce->status |= MCI_STATUS_OVER;
4538 banks[2] = mce->addr;
4539 banks[3] = mce->misc;
4540 vcpu->arch.mcg_status = mce->mcg_status;
4541 banks[1] = mce->status;
4542 kvm_queue_exception(vcpu, MC_VECTOR);
4543 } else if (!(banks[1] & MCI_STATUS_VAL)
4544 || !(banks[1] & MCI_STATUS_UC)) {
4545 if (banks[1] & MCI_STATUS_VAL)
4546 mce->status |= MCI_STATUS_OVER;
4547 banks[2] = mce->addr;
4548 banks[3] = mce->misc;
4549 banks[1] = mce->status;
4550 } else
4551 banks[1] |= MCI_STATUS_OVER;
4552 return 0;
4553 }
4554
4555 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4556 struct kvm_vcpu_events *events)
4557 {
4558 process_nmi(vcpu);
4559
4560 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4561 process_smi(vcpu);
4562
4563 /*
4564 * In guest mode, payload delivery should be deferred,
4565 * so that the L1 hypervisor can intercept #PF before
4566 * CR2 is modified (or intercept #DB before DR6 is
4567 * modified under nVMX). Unless the per-VM capability,
4568 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4569 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4570 * opportunistically defer the exception payload, deliver it if the
4571 * capability hasn't been requested before processing a
4572 * KVM_GET_VCPU_EVENTS.
4573 */
4574 if (!vcpu->kvm->arch.exception_payload_enabled &&
4575 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4576 kvm_deliver_exception_payload(vcpu);
4577
4578 /*
4579 * The API doesn't provide the instruction length for software
4580 * exceptions, so don't report them. As long as the guest RIP
4581 * isn't advanced, we should expect to encounter the exception
4582 * again.
4583 */
4584 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4585 events->exception.injected = 0;
4586 events->exception.pending = 0;
4587 } else {
4588 events->exception.injected = vcpu->arch.exception.injected;
4589 events->exception.pending = vcpu->arch.exception.pending;
4590 /*
4591 * For ABI compatibility, deliberately conflate
4592 * pending and injected exceptions when
4593 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4594 */
4595 if (!vcpu->kvm->arch.exception_payload_enabled)
4596 events->exception.injected |=
4597 vcpu->arch.exception.pending;
4598 }
4599 events->exception.nr = vcpu->arch.exception.nr;
4600 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4601 events->exception.error_code = vcpu->arch.exception.error_code;
4602 events->exception_has_payload = vcpu->arch.exception.has_payload;
4603 events->exception_payload = vcpu->arch.exception.payload;
4604
4605 events->interrupt.injected =
4606 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4607 events->interrupt.nr = vcpu->arch.interrupt.nr;
4608 events->interrupt.soft = 0;
4609 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4610
4611 events->nmi.injected = vcpu->arch.nmi_injected;
4612 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4613 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4614 events->nmi.pad = 0;
4615
4616 events->sipi_vector = 0; /* never valid when reporting to user space */
4617
4618 events->smi.smm = is_smm(vcpu);
4619 events->smi.pending = vcpu->arch.smi_pending;
4620 events->smi.smm_inside_nmi =
4621 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4622 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4623
4624 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4625 | KVM_VCPUEVENT_VALID_SHADOW
4626 | KVM_VCPUEVENT_VALID_SMM);
4627 if (vcpu->kvm->arch.exception_payload_enabled)
4628 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4629
4630 memset(&events->reserved, 0, sizeof(events->reserved));
4631 }
4632
4633 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4634
4635 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4636 struct kvm_vcpu_events *events)
4637 {
4638 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4639 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4640 | KVM_VCPUEVENT_VALID_SHADOW
4641 | KVM_VCPUEVENT_VALID_SMM
4642 | KVM_VCPUEVENT_VALID_PAYLOAD))
4643 return -EINVAL;
4644
4645 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4646 if (!vcpu->kvm->arch.exception_payload_enabled)
4647 return -EINVAL;
4648 if (events->exception.pending)
4649 events->exception.injected = 0;
4650 else
4651 events->exception_has_payload = 0;
4652 } else {
4653 events->exception.pending = 0;
4654 events->exception_has_payload = 0;
4655 }
4656
4657 if ((events->exception.injected || events->exception.pending) &&
4658 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4659 return -EINVAL;
4660
4661 /* INITs are latched while in SMM */
4662 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4663 (events->smi.smm || events->smi.pending) &&
4664 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4665 return -EINVAL;
4666
4667 process_nmi(vcpu);
4668 vcpu->arch.exception.injected = events->exception.injected;
4669 vcpu->arch.exception.pending = events->exception.pending;
4670 vcpu->arch.exception.nr = events->exception.nr;
4671 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4672 vcpu->arch.exception.error_code = events->exception.error_code;
4673 vcpu->arch.exception.has_payload = events->exception_has_payload;
4674 vcpu->arch.exception.payload = events->exception_payload;
4675
4676 vcpu->arch.interrupt.injected = events->interrupt.injected;
4677 vcpu->arch.interrupt.nr = events->interrupt.nr;
4678 vcpu->arch.interrupt.soft = events->interrupt.soft;
4679 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4680 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4681 events->interrupt.shadow);
4682
4683 vcpu->arch.nmi_injected = events->nmi.injected;
4684 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4685 vcpu->arch.nmi_pending = events->nmi.pending;
4686 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4687
4688 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4689 lapic_in_kernel(vcpu))
4690 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4691
4692 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4693 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4694 kvm_smm_changed(vcpu, events->smi.smm);
4695
4696 vcpu->arch.smi_pending = events->smi.pending;
4697
4698 if (events->smi.smm) {
4699 if (events->smi.smm_inside_nmi)
4700 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4701 else
4702 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4703 }
4704
4705 if (lapic_in_kernel(vcpu)) {
4706 if (events->smi.latched_init)
4707 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4708 else
4709 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4710 }
4711 }
4712
4713 kvm_make_request(KVM_REQ_EVENT, vcpu);
4714
4715 return 0;
4716 }
4717
4718 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4719 struct kvm_debugregs *dbgregs)
4720 {
4721 unsigned long val;
4722
4723 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4724 kvm_get_dr(vcpu, 6, &val);
4725 dbgregs->dr6 = val;
4726 dbgregs->dr7 = vcpu->arch.dr7;
4727 dbgregs->flags = 0;
4728 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4729 }
4730
4731 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4732 struct kvm_debugregs *dbgregs)
4733 {
4734 if (dbgregs->flags)
4735 return -EINVAL;
4736
4737 if (!kvm_dr6_valid(dbgregs->dr6))
4738 return -EINVAL;
4739 if (!kvm_dr7_valid(dbgregs->dr7))
4740 return -EINVAL;
4741
4742 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4743 kvm_update_dr0123(vcpu);
4744 vcpu->arch.dr6 = dbgregs->dr6;
4745 vcpu->arch.dr7 = dbgregs->dr7;
4746 kvm_update_dr7(vcpu);
4747
4748 return 0;
4749 }
4750
4751 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4752
4753 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4754 {
4755 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4756 u64 xstate_bv = xsave->header.xfeatures;
4757 u64 valid;
4758
4759 /*
4760 * Copy legacy XSAVE area, to avoid complications with CPUID
4761 * leaves 0 and 1 in the loop below.
4762 */
4763 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4764
4765 /* Set XSTATE_BV */
4766 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4767 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4768
4769 /*
4770 * Copy each region from the possibly compacted offset to the
4771 * non-compacted offset.
4772 */
4773 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4774 while (valid) {
4775 u32 size, offset, ecx, edx;
4776 u64 xfeature_mask = valid & -valid;
4777 int xfeature_nr = fls64(xfeature_mask) - 1;
4778 void *src;
4779
4780 cpuid_count(XSTATE_CPUID, xfeature_nr,
4781 &size, &offset, &ecx, &edx);
4782
4783 if (xfeature_nr == XFEATURE_PKRU) {
4784 memcpy(dest + offset, &vcpu->arch.pkru,
4785 sizeof(vcpu->arch.pkru));
4786 } else {
4787 src = get_xsave_addr(xsave, xfeature_nr);
4788 if (src)
4789 memcpy(dest + offset, src, size);
4790 }
4791
4792 valid -= xfeature_mask;
4793 }
4794 }
4795
4796 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4797 {
4798 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4799 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4800 u64 valid;
4801
4802 /*
4803 * Copy legacy XSAVE area, to avoid complications with CPUID
4804 * leaves 0 and 1 in the loop below.
4805 */
4806 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4807
4808 /* Set XSTATE_BV and possibly XCOMP_BV. */
4809 xsave->header.xfeatures = xstate_bv;
4810 if (boot_cpu_has(X86_FEATURE_XSAVES))
4811 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4812
4813 /*
4814 * Copy each region from the non-compacted offset to the
4815 * possibly compacted offset.
4816 */
4817 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4818 while (valid) {
4819 u32 size, offset, ecx, edx;
4820 u64 xfeature_mask = valid & -valid;
4821 int xfeature_nr = fls64(xfeature_mask) - 1;
4822
4823 cpuid_count(XSTATE_CPUID, xfeature_nr,
4824 &size, &offset, &ecx, &edx);
4825
4826 if (xfeature_nr == XFEATURE_PKRU) {
4827 memcpy(&vcpu->arch.pkru, src + offset,
4828 sizeof(vcpu->arch.pkru));
4829 } else {
4830 void *dest = get_xsave_addr(xsave, xfeature_nr);
4831
4832 if (dest)
4833 memcpy(dest, src + offset, size);
4834 }
4835
4836 valid -= xfeature_mask;
4837 }
4838 }
4839
4840 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4841 struct kvm_xsave *guest_xsave)
4842 {
4843 if (!vcpu->arch.guest_fpu)
4844 return;
4845
4846 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4847 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4848 fill_xsave((u8 *) guest_xsave->region, vcpu);
4849 } else {
4850 memcpy(guest_xsave->region,
4851 &vcpu->arch.guest_fpu->state.fxsave,
4852 sizeof(struct fxregs_state));
4853 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4854 XFEATURE_MASK_FPSSE;
4855 }
4856 }
4857
4858 #define XSAVE_MXCSR_OFFSET 24
4859
4860 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4861 struct kvm_xsave *guest_xsave)
4862 {
4863 u64 xstate_bv;
4864 u32 mxcsr;
4865
4866 if (!vcpu->arch.guest_fpu)
4867 return 0;
4868
4869 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4870 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4871
4872 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4873 /*
4874 * Here we allow setting states that are not present in
4875 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4876 * with old userspace.
4877 */
4878 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4879 return -EINVAL;
4880 load_xsave(vcpu, (u8 *)guest_xsave->region);
4881 } else {
4882 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4883 mxcsr & ~mxcsr_feature_mask)
4884 return -EINVAL;
4885 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4886 guest_xsave->region, sizeof(struct fxregs_state));
4887 }
4888 return 0;
4889 }
4890
4891 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4892 struct kvm_xcrs *guest_xcrs)
4893 {
4894 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4895 guest_xcrs->nr_xcrs = 0;
4896 return;
4897 }
4898
4899 guest_xcrs->nr_xcrs = 1;
4900 guest_xcrs->flags = 0;
4901 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4902 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4903 }
4904
4905 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4906 struct kvm_xcrs *guest_xcrs)
4907 {
4908 int i, r = 0;
4909
4910 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4911 return -EINVAL;
4912
4913 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4914 return -EINVAL;
4915
4916 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4917 /* Only support XCR0 currently */
4918 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4919 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4920 guest_xcrs->xcrs[i].value);
4921 break;
4922 }
4923 if (r)
4924 r = -EINVAL;
4925 return r;
4926 }
4927
4928 /*
4929 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4930 * stopped by the hypervisor. This function will be called from the host only.
4931 * EINVAL is returned when the host attempts to set the flag for a guest that
4932 * does not support pv clocks.
4933 */
4934 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4935 {
4936 if (!vcpu->arch.pv_time_enabled)
4937 return -EINVAL;
4938 vcpu->arch.pvclock_set_guest_stopped_request = true;
4939 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4940 return 0;
4941 }
4942
4943 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4944 struct kvm_enable_cap *cap)
4945 {
4946 int r;
4947 uint16_t vmcs_version;
4948 void __user *user_ptr;
4949
4950 if (cap->flags)
4951 return -EINVAL;
4952
4953 switch (cap->cap) {
4954 case KVM_CAP_HYPERV_SYNIC2:
4955 if (cap->args[0])
4956 return -EINVAL;
4957 fallthrough;
4958
4959 case KVM_CAP_HYPERV_SYNIC:
4960 if (!irqchip_in_kernel(vcpu->kvm))
4961 return -EINVAL;
4962 return kvm_hv_activate_synic(vcpu, cap->cap ==
4963 KVM_CAP_HYPERV_SYNIC2);
4964 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4965 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4966 return -ENOTTY;
4967 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4968 if (!r) {
4969 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4970 if (copy_to_user(user_ptr, &vmcs_version,
4971 sizeof(vmcs_version)))
4972 r = -EFAULT;
4973 }
4974 return r;
4975 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4976 if (!kvm_x86_ops.enable_direct_tlbflush)
4977 return -ENOTTY;
4978
4979 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4980
4981 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4982 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4983
4984 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4985 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4986 if (vcpu->arch.pv_cpuid.enforce)
4987 kvm_update_pv_runtime(vcpu);
4988
4989 return 0;
4990 default:
4991 return -EINVAL;
4992 }
4993 }
4994
4995 long kvm_arch_vcpu_ioctl(struct file *filp,
4996 unsigned int ioctl, unsigned long arg)
4997 {
4998 struct kvm_vcpu *vcpu = filp->private_data;
4999 void __user *argp = (void __user *)arg;
5000 int r;
5001 union {
5002 struct kvm_sregs2 *sregs2;
5003 struct kvm_lapic_state *lapic;
5004 struct kvm_xsave *xsave;
5005 struct kvm_xcrs *xcrs;
5006 void *buffer;
5007 } u;
5008
5009 vcpu_load(vcpu);
5010
5011 u.buffer = NULL;
5012 switch (ioctl) {
5013 case KVM_GET_LAPIC: {
5014 r = -EINVAL;
5015 if (!lapic_in_kernel(vcpu))
5016 goto out;
5017 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5018 GFP_KERNEL_ACCOUNT);
5019
5020 r = -ENOMEM;
5021 if (!u.lapic)
5022 goto out;
5023 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5024 if (r)
5025 goto out;
5026 r = -EFAULT;
5027 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5028 goto out;
5029 r = 0;
5030 break;
5031 }
5032 case KVM_SET_LAPIC: {
5033 r = -EINVAL;
5034 if (!lapic_in_kernel(vcpu))
5035 goto out;
5036 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5037 if (IS_ERR(u.lapic)) {
5038 r = PTR_ERR(u.lapic);
5039 goto out_nofree;
5040 }
5041
5042 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5043 break;
5044 }
5045 case KVM_INTERRUPT: {
5046 struct kvm_interrupt irq;
5047
5048 r = -EFAULT;
5049 if (copy_from_user(&irq, argp, sizeof(irq)))
5050 goto out;
5051 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5052 break;
5053 }
5054 case KVM_NMI: {
5055 r = kvm_vcpu_ioctl_nmi(vcpu);
5056 break;
5057 }
5058 case KVM_SMI: {
5059 r = kvm_vcpu_ioctl_smi(vcpu);
5060 break;
5061 }
5062 case KVM_SET_CPUID: {
5063 struct kvm_cpuid __user *cpuid_arg = argp;
5064 struct kvm_cpuid cpuid;
5065
5066 r = -EFAULT;
5067 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5068 goto out;
5069 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5070 break;
5071 }
5072 case KVM_SET_CPUID2: {
5073 struct kvm_cpuid2 __user *cpuid_arg = argp;
5074 struct kvm_cpuid2 cpuid;
5075
5076 r = -EFAULT;
5077 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5078 goto out;
5079 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5080 cpuid_arg->entries);
5081 break;
5082 }
5083 case KVM_GET_CPUID2: {
5084 struct kvm_cpuid2 __user *cpuid_arg = argp;
5085 struct kvm_cpuid2 cpuid;
5086
5087 r = -EFAULT;
5088 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5089 goto out;
5090 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5091 cpuid_arg->entries);
5092 if (r)
5093 goto out;
5094 r = -EFAULT;
5095 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5096 goto out;
5097 r = 0;
5098 break;
5099 }
5100 case KVM_GET_MSRS: {
5101 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5102 r = msr_io(vcpu, argp, do_get_msr, 1);
5103 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5104 break;
5105 }
5106 case KVM_SET_MSRS: {
5107 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5108 r = msr_io(vcpu, argp, do_set_msr, 0);
5109 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5110 break;
5111 }
5112 case KVM_TPR_ACCESS_REPORTING: {
5113 struct kvm_tpr_access_ctl tac;
5114
5115 r = -EFAULT;
5116 if (copy_from_user(&tac, argp, sizeof(tac)))
5117 goto out;
5118 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5119 if (r)
5120 goto out;
5121 r = -EFAULT;
5122 if (copy_to_user(argp, &tac, sizeof(tac)))
5123 goto out;
5124 r = 0;
5125 break;
5126 };
5127 case KVM_SET_VAPIC_ADDR: {
5128 struct kvm_vapic_addr va;
5129 int idx;
5130
5131 r = -EINVAL;
5132 if (!lapic_in_kernel(vcpu))
5133 goto out;
5134 r = -EFAULT;
5135 if (copy_from_user(&va, argp, sizeof(va)))
5136 goto out;
5137 idx = srcu_read_lock(&vcpu->kvm->srcu);
5138 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5139 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5140 break;
5141 }
5142 case KVM_X86_SETUP_MCE: {
5143 u64 mcg_cap;
5144
5145 r = -EFAULT;
5146 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5147 goto out;
5148 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5149 break;
5150 }
5151 case KVM_X86_SET_MCE: {
5152 struct kvm_x86_mce mce;
5153
5154 r = -EFAULT;
5155 if (copy_from_user(&mce, argp, sizeof(mce)))
5156 goto out;
5157 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5158 break;
5159 }
5160 case KVM_GET_VCPU_EVENTS: {
5161 struct kvm_vcpu_events events;
5162
5163 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5164
5165 r = -EFAULT;
5166 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5167 break;
5168 r = 0;
5169 break;
5170 }
5171 case KVM_SET_VCPU_EVENTS: {
5172 struct kvm_vcpu_events events;
5173
5174 r = -EFAULT;
5175 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5176 break;
5177
5178 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5179 break;
5180 }
5181 case KVM_GET_DEBUGREGS: {
5182 struct kvm_debugregs dbgregs;
5183
5184 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5185
5186 r = -EFAULT;
5187 if (copy_to_user(argp, &dbgregs,
5188 sizeof(struct kvm_debugregs)))
5189 break;
5190 r = 0;
5191 break;
5192 }
5193 case KVM_SET_DEBUGREGS: {
5194 struct kvm_debugregs dbgregs;
5195
5196 r = -EFAULT;
5197 if (copy_from_user(&dbgregs, argp,
5198 sizeof(struct kvm_debugregs)))
5199 break;
5200
5201 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5202 break;
5203 }
5204 case KVM_GET_XSAVE: {
5205 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5206 r = -ENOMEM;
5207 if (!u.xsave)
5208 break;
5209
5210 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5211
5212 r = -EFAULT;
5213 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5214 break;
5215 r = 0;
5216 break;
5217 }
5218 case KVM_SET_XSAVE: {
5219 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5220 if (IS_ERR(u.xsave)) {
5221 r = PTR_ERR(u.xsave);
5222 goto out_nofree;
5223 }
5224
5225 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5226 break;
5227 }
5228 case KVM_GET_XCRS: {
5229 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5230 r = -ENOMEM;
5231 if (!u.xcrs)
5232 break;
5233
5234 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5235
5236 r = -EFAULT;
5237 if (copy_to_user(argp, u.xcrs,
5238 sizeof(struct kvm_xcrs)))
5239 break;
5240 r = 0;
5241 break;
5242 }
5243 case KVM_SET_XCRS: {
5244 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5245 if (IS_ERR(u.xcrs)) {
5246 r = PTR_ERR(u.xcrs);
5247 goto out_nofree;
5248 }
5249
5250 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5251 break;
5252 }
5253 case KVM_SET_TSC_KHZ: {
5254 u32 user_tsc_khz;
5255
5256 r = -EINVAL;
5257 user_tsc_khz = (u32)arg;
5258
5259 if (kvm_has_tsc_control &&
5260 user_tsc_khz >= kvm_max_guest_tsc_khz)
5261 goto out;
5262
5263 if (user_tsc_khz == 0)
5264 user_tsc_khz = tsc_khz;
5265
5266 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5267 r = 0;
5268
5269 goto out;
5270 }
5271 case KVM_GET_TSC_KHZ: {
5272 r = vcpu->arch.virtual_tsc_khz;
5273 goto out;
5274 }
5275 case KVM_KVMCLOCK_CTRL: {
5276 r = kvm_set_guest_paused(vcpu);
5277 goto out;
5278 }
5279 case KVM_ENABLE_CAP: {
5280 struct kvm_enable_cap cap;
5281
5282 r = -EFAULT;
5283 if (copy_from_user(&cap, argp, sizeof(cap)))
5284 goto out;
5285 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5286 break;
5287 }
5288 case KVM_GET_NESTED_STATE: {
5289 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5290 u32 user_data_size;
5291
5292 r = -EINVAL;
5293 if (!kvm_x86_ops.nested_ops->get_state)
5294 break;
5295
5296 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5297 r = -EFAULT;
5298 if (get_user(user_data_size, &user_kvm_nested_state->size))
5299 break;
5300
5301 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5302 user_data_size);
5303 if (r < 0)
5304 break;
5305
5306 if (r > user_data_size) {
5307 if (put_user(r, &user_kvm_nested_state->size))
5308 r = -EFAULT;
5309 else
5310 r = -E2BIG;
5311 break;
5312 }
5313
5314 r = 0;
5315 break;
5316 }
5317 case KVM_SET_NESTED_STATE: {
5318 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5319 struct kvm_nested_state kvm_state;
5320 int idx;
5321
5322 r = -EINVAL;
5323 if (!kvm_x86_ops.nested_ops->set_state)
5324 break;
5325
5326 r = -EFAULT;
5327 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5328 break;
5329
5330 r = -EINVAL;
5331 if (kvm_state.size < sizeof(kvm_state))
5332 break;
5333
5334 if (kvm_state.flags &
5335 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5336 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5337 | KVM_STATE_NESTED_GIF_SET))
5338 break;
5339
5340 /* nested_run_pending implies guest_mode. */
5341 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5342 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5343 break;
5344
5345 idx = srcu_read_lock(&vcpu->kvm->srcu);
5346 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5347 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5348 break;
5349 }
5350 case KVM_GET_SUPPORTED_HV_CPUID:
5351 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5352 break;
5353 #ifdef CONFIG_KVM_XEN
5354 case KVM_XEN_VCPU_GET_ATTR: {
5355 struct kvm_xen_vcpu_attr xva;
5356
5357 r = -EFAULT;
5358 if (copy_from_user(&xva, argp, sizeof(xva)))
5359 goto out;
5360 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5361 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5362 r = -EFAULT;
5363 break;
5364 }
5365 case KVM_XEN_VCPU_SET_ATTR: {
5366 struct kvm_xen_vcpu_attr xva;
5367
5368 r = -EFAULT;
5369 if (copy_from_user(&xva, argp, sizeof(xva)))
5370 goto out;
5371 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5372 break;
5373 }
5374 #endif
5375 case KVM_GET_SREGS2: {
5376 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5377 r = -ENOMEM;
5378 if (!u.sregs2)
5379 goto out;
5380 __get_sregs2(vcpu, u.sregs2);
5381 r = -EFAULT;
5382 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5383 goto out;
5384 r = 0;
5385 break;
5386 }
5387 case KVM_SET_SREGS2: {
5388 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5389 if (IS_ERR(u.sregs2)) {
5390 r = PTR_ERR(u.sregs2);
5391 u.sregs2 = NULL;
5392 goto out;
5393 }
5394 r = __set_sregs2(vcpu, u.sregs2);
5395 break;
5396 }
5397 default:
5398 r = -EINVAL;
5399 }
5400 out:
5401 kfree(u.buffer);
5402 out_nofree:
5403 vcpu_put(vcpu);
5404 return r;
5405 }
5406
5407 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5408 {
5409 return VM_FAULT_SIGBUS;
5410 }
5411
5412 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5413 {
5414 int ret;
5415
5416 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5417 return -EINVAL;
5418 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5419 return ret;
5420 }
5421
5422 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5423 u64 ident_addr)
5424 {
5425 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5426 }
5427
5428 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5429 unsigned long kvm_nr_mmu_pages)
5430 {
5431 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5432 return -EINVAL;
5433
5434 mutex_lock(&kvm->slots_lock);
5435
5436 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5437 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5438
5439 mutex_unlock(&kvm->slots_lock);
5440 return 0;
5441 }
5442
5443 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5444 {
5445 return kvm->arch.n_max_mmu_pages;
5446 }
5447
5448 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5449 {
5450 struct kvm_pic *pic = kvm->arch.vpic;
5451 int r;
5452
5453 r = 0;
5454 switch (chip->chip_id) {
5455 case KVM_IRQCHIP_PIC_MASTER:
5456 memcpy(&chip->chip.pic, &pic->pics[0],
5457 sizeof(struct kvm_pic_state));
5458 break;
5459 case KVM_IRQCHIP_PIC_SLAVE:
5460 memcpy(&chip->chip.pic, &pic->pics[1],
5461 sizeof(struct kvm_pic_state));
5462 break;
5463 case KVM_IRQCHIP_IOAPIC:
5464 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5465 break;
5466 default:
5467 r = -EINVAL;
5468 break;
5469 }
5470 return r;
5471 }
5472
5473 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5474 {
5475 struct kvm_pic *pic = kvm->arch.vpic;
5476 int r;
5477
5478 r = 0;
5479 switch (chip->chip_id) {
5480 case KVM_IRQCHIP_PIC_MASTER:
5481 spin_lock(&pic->lock);
5482 memcpy(&pic->pics[0], &chip->chip.pic,
5483 sizeof(struct kvm_pic_state));
5484 spin_unlock(&pic->lock);
5485 break;
5486 case KVM_IRQCHIP_PIC_SLAVE:
5487 spin_lock(&pic->lock);
5488 memcpy(&pic->pics[1], &chip->chip.pic,
5489 sizeof(struct kvm_pic_state));
5490 spin_unlock(&pic->lock);
5491 break;
5492 case KVM_IRQCHIP_IOAPIC:
5493 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5494 break;
5495 default:
5496 r = -EINVAL;
5497 break;
5498 }
5499 kvm_pic_update_irq(pic);
5500 return r;
5501 }
5502
5503 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5504 {
5505 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5506
5507 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5508
5509 mutex_lock(&kps->lock);
5510 memcpy(ps, &kps->channels, sizeof(*ps));
5511 mutex_unlock(&kps->lock);
5512 return 0;
5513 }
5514
5515 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5516 {
5517 int i;
5518 struct kvm_pit *pit = kvm->arch.vpit;
5519
5520 mutex_lock(&pit->pit_state.lock);
5521 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5522 for (i = 0; i < 3; i++)
5523 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5524 mutex_unlock(&pit->pit_state.lock);
5525 return 0;
5526 }
5527
5528 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5529 {
5530 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5531 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5532 sizeof(ps->channels));
5533 ps->flags = kvm->arch.vpit->pit_state.flags;
5534 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5535 memset(&ps->reserved, 0, sizeof(ps->reserved));
5536 return 0;
5537 }
5538
5539 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5540 {
5541 int start = 0;
5542 int i;
5543 u32 prev_legacy, cur_legacy;
5544 struct kvm_pit *pit = kvm->arch.vpit;
5545
5546 mutex_lock(&pit->pit_state.lock);
5547 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5548 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5549 if (!prev_legacy && cur_legacy)
5550 start = 1;
5551 memcpy(&pit->pit_state.channels, &ps->channels,
5552 sizeof(pit->pit_state.channels));
5553 pit->pit_state.flags = ps->flags;
5554 for (i = 0; i < 3; i++)
5555 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5556 start && i == 0);
5557 mutex_unlock(&pit->pit_state.lock);
5558 return 0;
5559 }
5560
5561 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5562 struct kvm_reinject_control *control)
5563 {
5564 struct kvm_pit *pit = kvm->arch.vpit;
5565
5566 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5567 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5568 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5569 */
5570 mutex_lock(&pit->pit_state.lock);
5571 kvm_pit_set_reinject(pit, control->pit_reinject);
5572 mutex_unlock(&pit->pit_state.lock);
5573
5574 return 0;
5575 }
5576
5577 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5578 {
5579
5580 /*
5581 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5582 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5583 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5584 * VM-Exit.
5585 */
5586 struct kvm_vcpu *vcpu;
5587 int i;
5588
5589 kvm_for_each_vcpu(i, vcpu, kvm)
5590 kvm_vcpu_kick(vcpu);
5591 }
5592
5593 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5594 bool line_status)
5595 {
5596 if (!irqchip_in_kernel(kvm))
5597 return -ENXIO;
5598
5599 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5600 irq_event->irq, irq_event->level,
5601 line_status);
5602 return 0;
5603 }
5604
5605 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5606 struct kvm_enable_cap *cap)
5607 {
5608 int r;
5609
5610 if (cap->flags)
5611 return -EINVAL;
5612
5613 switch (cap->cap) {
5614 case KVM_CAP_DISABLE_QUIRKS:
5615 kvm->arch.disabled_quirks = cap->args[0];
5616 r = 0;
5617 break;
5618 case KVM_CAP_SPLIT_IRQCHIP: {
5619 mutex_lock(&kvm->lock);
5620 r = -EINVAL;
5621 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5622 goto split_irqchip_unlock;
5623 r = -EEXIST;
5624 if (irqchip_in_kernel(kvm))
5625 goto split_irqchip_unlock;
5626 if (kvm->created_vcpus)
5627 goto split_irqchip_unlock;
5628 r = kvm_setup_empty_irq_routing(kvm);
5629 if (r)
5630 goto split_irqchip_unlock;
5631 /* Pairs with irqchip_in_kernel. */
5632 smp_wmb();
5633 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5634 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5635 r = 0;
5636 split_irqchip_unlock:
5637 mutex_unlock(&kvm->lock);
5638 break;
5639 }
5640 case KVM_CAP_X2APIC_API:
5641 r = -EINVAL;
5642 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5643 break;
5644
5645 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5646 kvm->arch.x2apic_format = true;
5647 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5648 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5649
5650 r = 0;
5651 break;
5652 case KVM_CAP_X86_DISABLE_EXITS:
5653 r = -EINVAL;
5654 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5655 break;
5656
5657 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5658 kvm_can_mwait_in_guest())
5659 kvm->arch.mwait_in_guest = true;
5660 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5661 kvm->arch.hlt_in_guest = true;
5662 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5663 kvm->arch.pause_in_guest = true;
5664 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5665 kvm->arch.cstate_in_guest = true;
5666 r = 0;
5667 break;
5668 case KVM_CAP_MSR_PLATFORM_INFO:
5669 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5670 r = 0;
5671 break;
5672 case KVM_CAP_EXCEPTION_PAYLOAD:
5673 kvm->arch.exception_payload_enabled = cap->args[0];
5674 r = 0;
5675 break;
5676 case KVM_CAP_X86_USER_SPACE_MSR:
5677 kvm->arch.user_space_msr_mask = cap->args[0];
5678 r = 0;
5679 break;
5680 case KVM_CAP_X86_BUS_LOCK_EXIT:
5681 r = -EINVAL;
5682 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5683 break;
5684
5685 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5686 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5687 break;
5688
5689 if (kvm_has_bus_lock_exit &&
5690 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5691 kvm->arch.bus_lock_detection_enabled = true;
5692 r = 0;
5693 break;
5694 #ifdef CONFIG_X86_SGX_KVM
5695 case KVM_CAP_SGX_ATTRIBUTE: {
5696 unsigned long allowed_attributes = 0;
5697
5698 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5699 if (r)
5700 break;
5701
5702 /* KVM only supports the PROVISIONKEY privileged attribute. */
5703 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5704 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5705 kvm->arch.sgx_provisioning_allowed = true;
5706 else
5707 r = -EINVAL;
5708 break;
5709 }
5710 #endif
5711 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5712 r = -EINVAL;
5713 if (kvm_x86_ops.vm_copy_enc_context_from)
5714 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5715 return r;
5716 case KVM_CAP_EXIT_HYPERCALL:
5717 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5718 r = -EINVAL;
5719 break;
5720 }
5721 kvm->arch.hypercall_exit_enabled = cap->args[0];
5722 r = 0;
5723 break;
5724 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5725 r = -EINVAL;
5726 if (cap->args[0] & ~1)
5727 break;
5728 kvm->arch.exit_on_emulation_error = cap->args[0];
5729 r = 0;
5730 break;
5731 default:
5732 r = -EINVAL;
5733 break;
5734 }
5735 return r;
5736 }
5737
5738 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5739 {
5740 struct kvm_x86_msr_filter *msr_filter;
5741
5742 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5743 if (!msr_filter)
5744 return NULL;
5745
5746 msr_filter->default_allow = default_allow;
5747 return msr_filter;
5748 }
5749
5750 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5751 {
5752 u32 i;
5753
5754 if (!msr_filter)
5755 return;
5756
5757 for (i = 0; i < msr_filter->count; i++)
5758 kfree(msr_filter->ranges[i].bitmap);
5759
5760 kfree(msr_filter);
5761 }
5762
5763 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5764 struct kvm_msr_filter_range *user_range)
5765 {
5766 unsigned long *bitmap = NULL;
5767 size_t bitmap_size;
5768
5769 if (!user_range->nmsrs)
5770 return 0;
5771
5772 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5773 return -EINVAL;
5774
5775 if (!user_range->flags)
5776 return -EINVAL;
5777
5778 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5779 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5780 return -EINVAL;
5781
5782 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5783 if (IS_ERR(bitmap))
5784 return PTR_ERR(bitmap);
5785
5786 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5787 .flags = user_range->flags,
5788 .base = user_range->base,
5789 .nmsrs = user_range->nmsrs,
5790 .bitmap = bitmap,
5791 };
5792
5793 msr_filter->count++;
5794 return 0;
5795 }
5796
5797 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5798 {
5799 struct kvm_msr_filter __user *user_msr_filter = argp;
5800 struct kvm_x86_msr_filter *new_filter, *old_filter;
5801 struct kvm_msr_filter filter;
5802 bool default_allow;
5803 bool empty = true;
5804 int r = 0;
5805 u32 i;
5806
5807 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5808 return -EFAULT;
5809
5810 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5811 empty &= !filter.ranges[i].nmsrs;
5812
5813 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5814 if (empty && !default_allow)
5815 return -EINVAL;
5816
5817 new_filter = kvm_alloc_msr_filter(default_allow);
5818 if (!new_filter)
5819 return -ENOMEM;
5820
5821 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5822 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5823 if (r) {
5824 kvm_free_msr_filter(new_filter);
5825 return r;
5826 }
5827 }
5828
5829 mutex_lock(&kvm->lock);
5830
5831 /* The per-VM filter is protected by kvm->lock... */
5832 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5833
5834 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5835 synchronize_srcu(&kvm->srcu);
5836
5837 kvm_free_msr_filter(old_filter);
5838
5839 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5840 mutex_unlock(&kvm->lock);
5841
5842 return 0;
5843 }
5844
5845 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5846 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5847 {
5848 struct kvm_vcpu *vcpu;
5849 int i, ret = 0;
5850
5851 mutex_lock(&kvm->lock);
5852 kvm_for_each_vcpu(i, vcpu, kvm) {
5853 if (!vcpu->arch.pv_time_enabled)
5854 continue;
5855
5856 ret = kvm_set_guest_paused(vcpu);
5857 if (ret) {
5858 kvm_err("Failed to pause guest VCPU%d: %d\n",
5859 vcpu->vcpu_id, ret);
5860 break;
5861 }
5862 }
5863 mutex_unlock(&kvm->lock);
5864
5865 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5866 }
5867
5868 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5869 {
5870 switch (state) {
5871 case PM_HIBERNATION_PREPARE:
5872 case PM_SUSPEND_PREPARE:
5873 return kvm_arch_suspend_notifier(kvm);
5874 }
5875
5876 return NOTIFY_DONE;
5877 }
5878 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5879
5880 long kvm_arch_vm_ioctl(struct file *filp,
5881 unsigned int ioctl, unsigned long arg)
5882 {
5883 struct kvm *kvm = filp->private_data;
5884 void __user *argp = (void __user *)arg;
5885 int r = -ENOTTY;
5886 /*
5887 * This union makes it completely explicit to gcc-3.x
5888 * that these two variables' stack usage should be
5889 * combined, not added together.
5890 */
5891 union {
5892 struct kvm_pit_state ps;
5893 struct kvm_pit_state2 ps2;
5894 struct kvm_pit_config pit_config;
5895 } u;
5896
5897 switch (ioctl) {
5898 case KVM_SET_TSS_ADDR:
5899 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5900 break;
5901 case KVM_SET_IDENTITY_MAP_ADDR: {
5902 u64 ident_addr;
5903
5904 mutex_lock(&kvm->lock);
5905 r = -EINVAL;
5906 if (kvm->created_vcpus)
5907 goto set_identity_unlock;
5908 r = -EFAULT;
5909 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5910 goto set_identity_unlock;
5911 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5912 set_identity_unlock:
5913 mutex_unlock(&kvm->lock);
5914 break;
5915 }
5916 case KVM_SET_NR_MMU_PAGES:
5917 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5918 break;
5919 case KVM_GET_NR_MMU_PAGES:
5920 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5921 break;
5922 case KVM_CREATE_IRQCHIP: {
5923 mutex_lock(&kvm->lock);
5924
5925 r = -EEXIST;
5926 if (irqchip_in_kernel(kvm))
5927 goto create_irqchip_unlock;
5928
5929 r = -EINVAL;
5930 if (kvm->created_vcpus)
5931 goto create_irqchip_unlock;
5932
5933 r = kvm_pic_init(kvm);
5934 if (r)
5935 goto create_irqchip_unlock;
5936
5937 r = kvm_ioapic_init(kvm);
5938 if (r) {
5939 kvm_pic_destroy(kvm);
5940 goto create_irqchip_unlock;
5941 }
5942
5943 r = kvm_setup_default_irq_routing(kvm);
5944 if (r) {
5945 kvm_ioapic_destroy(kvm);
5946 kvm_pic_destroy(kvm);
5947 goto create_irqchip_unlock;
5948 }
5949 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5950 smp_wmb();
5951 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5952 create_irqchip_unlock:
5953 mutex_unlock(&kvm->lock);
5954 break;
5955 }
5956 case KVM_CREATE_PIT:
5957 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5958 goto create_pit;
5959 case KVM_CREATE_PIT2:
5960 r = -EFAULT;
5961 if (copy_from_user(&u.pit_config, argp,
5962 sizeof(struct kvm_pit_config)))
5963 goto out;
5964 create_pit:
5965 mutex_lock(&kvm->lock);
5966 r = -EEXIST;
5967 if (kvm->arch.vpit)
5968 goto create_pit_unlock;
5969 r = -ENOMEM;
5970 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5971 if (kvm->arch.vpit)
5972 r = 0;
5973 create_pit_unlock:
5974 mutex_unlock(&kvm->lock);
5975 break;
5976 case KVM_GET_IRQCHIP: {
5977 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5978 struct kvm_irqchip *chip;
5979
5980 chip = memdup_user(argp, sizeof(*chip));
5981 if (IS_ERR(chip)) {
5982 r = PTR_ERR(chip);
5983 goto out;
5984 }
5985
5986 r = -ENXIO;
5987 if (!irqchip_kernel(kvm))
5988 goto get_irqchip_out;
5989 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5990 if (r)
5991 goto get_irqchip_out;
5992 r = -EFAULT;
5993 if (copy_to_user(argp, chip, sizeof(*chip)))
5994 goto get_irqchip_out;
5995 r = 0;
5996 get_irqchip_out:
5997 kfree(chip);
5998 break;
5999 }
6000 case KVM_SET_IRQCHIP: {
6001 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6002 struct kvm_irqchip *chip;
6003
6004 chip = memdup_user(argp, sizeof(*chip));
6005 if (IS_ERR(chip)) {
6006 r = PTR_ERR(chip);
6007 goto out;
6008 }
6009
6010 r = -ENXIO;
6011 if (!irqchip_kernel(kvm))
6012 goto set_irqchip_out;
6013 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6014 set_irqchip_out:
6015 kfree(chip);
6016 break;
6017 }
6018 case KVM_GET_PIT: {
6019 r = -EFAULT;
6020 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6021 goto out;
6022 r = -ENXIO;
6023 if (!kvm->arch.vpit)
6024 goto out;
6025 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6026 if (r)
6027 goto out;
6028 r = -EFAULT;
6029 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6030 goto out;
6031 r = 0;
6032 break;
6033 }
6034 case KVM_SET_PIT: {
6035 r = -EFAULT;
6036 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6037 goto out;
6038 mutex_lock(&kvm->lock);
6039 r = -ENXIO;
6040 if (!kvm->arch.vpit)
6041 goto set_pit_out;
6042 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6043 set_pit_out:
6044 mutex_unlock(&kvm->lock);
6045 break;
6046 }
6047 case KVM_GET_PIT2: {
6048 r = -ENXIO;
6049 if (!kvm->arch.vpit)
6050 goto out;
6051 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6052 if (r)
6053 goto out;
6054 r = -EFAULT;
6055 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6056 goto out;
6057 r = 0;
6058 break;
6059 }
6060 case KVM_SET_PIT2: {
6061 r = -EFAULT;
6062 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6063 goto out;
6064 mutex_lock(&kvm->lock);
6065 r = -ENXIO;
6066 if (!kvm->arch.vpit)
6067 goto set_pit2_out;
6068 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6069 set_pit2_out:
6070 mutex_unlock(&kvm->lock);
6071 break;
6072 }
6073 case KVM_REINJECT_CONTROL: {
6074 struct kvm_reinject_control control;
6075 r = -EFAULT;
6076 if (copy_from_user(&control, argp, sizeof(control)))
6077 goto out;
6078 r = -ENXIO;
6079 if (!kvm->arch.vpit)
6080 goto out;
6081 r = kvm_vm_ioctl_reinject(kvm, &control);
6082 break;
6083 }
6084 case KVM_SET_BOOT_CPU_ID:
6085 r = 0;
6086 mutex_lock(&kvm->lock);
6087 if (kvm->created_vcpus)
6088 r = -EBUSY;
6089 else
6090 kvm->arch.bsp_vcpu_id = arg;
6091 mutex_unlock(&kvm->lock);
6092 break;
6093 #ifdef CONFIG_KVM_XEN
6094 case KVM_XEN_HVM_CONFIG: {
6095 struct kvm_xen_hvm_config xhc;
6096 r = -EFAULT;
6097 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6098 goto out;
6099 r = kvm_xen_hvm_config(kvm, &xhc);
6100 break;
6101 }
6102 case KVM_XEN_HVM_GET_ATTR: {
6103 struct kvm_xen_hvm_attr xha;
6104
6105 r = -EFAULT;
6106 if (copy_from_user(&xha, argp, sizeof(xha)))
6107 goto out;
6108 r = kvm_xen_hvm_get_attr(kvm, &xha);
6109 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6110 r = -EFAULT;
6111 break;
6112 }
6113 case KVM_XEN_HVM_SET_ATTR: {
6114 struct kvm_xen_hvm_attr xha;
6115
6116 r = -EFAULT;
6117 if (copy_from_user(&xha, argp, sizeof(xha)))
6118 goto out;
6119 r = kvm_xen_hvm_set_attr(kvm, &xha);
6120 break;
6121 }
6122 #endif
6123 case KVM_SET_CLOCK: {
6124 struct kvm_arch *ka = &kvm->arch;
6125 struct kvm_clock_data user_ns;
6126 u64 now_ns;
6127
6128 r = -EFAULT;
6129 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6130 goto out;
6131
6132 r = -EINVAL;
6133 if (user_ns.flags)
6134 goto out;
6135
6136 r = 0;
6137 /*
6138 * TODO: userspace has to take care of races with VCPU_RUN, so
6139 * kvm_gen_update_masterclock() can be cut down to locked
6140 * pvclock_update_vm_gtod_copy().
6141 */
6142 kvm_gen_update_masterclock(kvm);
6143
6144 /*
6145 * This pairs with kvm_guest_time_update(): when masterclock is
6146 * in use, we use master_kernel_ns + kvmclock_offset to set
6147 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6148 * is slightly ahead) here we risk going negative on unsigned
6149 * 'system_time' when 'user_ns.clock' is very small.
6150 */
6151 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6152 if (kvm->arch.use_master_clock)
6153 now_ns = ka->master_kernel_ns;
6154 else
6155 now_ns = get_kvmclock_base_ns();
6156 ka->kvmclock_offset = user_ns.clock - now_ns;
6157 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6158
6159 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6160 break;
6161 }
6162 case KVM_GET_CLOCK: {
6163 struct kvm_clock_data user_ns;
6164 u64 now_ns;
6165
6166 now_ns = get_kvmclock_ns(kvm);
6167 user_ns.clock = now_ns;
6168 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6169 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6170
6171 r = -EFAULT;
6172 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6173 goto out;
6174 r = 0;
6175 break;
6176 }
6177 case KVM_MEMORY_ENCRYPT_OP: {
6178 r = -ENOTTY;
6179 if (kvm_x86_ops.mem_enc_op)
6180 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6181 break;
6182 }
6183 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6184 struct kvm_enc_region region;
6185
6186 r = -EFAULT;
6187 if (copy_from_user(&region, argp, sizeof(region)))
6188 goto out;
6189
6190 r = -ENOTTY;
6191 if (kvm_x86_ops.mem_enc_reg_region)
6192 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6193 break;
6194 }
6195 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6196 struct kvm_enc_region region;
6197
6198 r = -EFAULT;
6199 if (copy_from_user(&region, argp, sizeof(region)))
6200 goto out;
6201
6202 r = -ENOTTY;
6203 if (kvm_x86_ops.mem_enc_unreg_region)
6204 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6205 break;
6206 }
6207 case KVM_HYPERV_EVENTFD: {
6208 struct kvm_hyperv_eventfd hvevfd;
6209
6210 r = -EFAULT;
6211 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6212 goto out;
6213 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6214 break;
6215 }
6216 case KVM_SET_PMU_EVENT_FILTER:
6217 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6218 break;
6219 case KVM_X86_SET_MSR_FILTER:
6220 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6221 break;
6222 default:
6223 r = -ENOTTY;
6224 }
6225 out:
6226 return r;
6227 }
6228
6229 static void kvm_init_msr_list(void)
6230 {
6231 struct x86_pmu_capability x86_pmu;
6232 u32 dummy[2];
6233 unsigned i;
6234
6235 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6236 "Please update the fixed PMCs in msrs_to_saved_all[]");
6237
6238 perf_get_x86_pmu_capability(&x86_pmu);
6239
6240 num_msrs_to_save = 0;
6241 num_emulated_msrs = 0;
6242 num_msr_based_features = 0;
6243
6244 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6245 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6246 continue;
6247
6248 /*
6249 * Even MSRs that are valid in the host may not be exposed
6250 * to the guests in some cases.
6251 */
6252 switch (msrs_to_save_all[i]) {
6253 case MSR_IA32_BNDCFGS:
6254 if (!kvm_mpx_supported())
6255 continue;
6256 break;
6257 case MSR_TSC_AUX:
6258 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6259 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6260 continue;
6261 break;
6262 case MSR_IA32_UMWAIT_CONTROL:
6263 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6264 continue;
6265 break;
6266 case MSR_IA32_RTIT_CTL:
6267 case MSR_IA32_RTIT_STATUS:
6268 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6269 continue;
6270 break;
6271 case MSR_IA32_RTIT_CR3_MATCH:
6272 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6273 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6274 continue;
6275 break;
6276 case MSR_IA32_RTIT_OUTPUT_BASE:
6277 case MSR_IA32_RTIT_OUTPUT_MASK:
6278 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6279 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6280 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6281 continue;
6282 break;
6283 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6284 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6285 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6286 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6287 continue;
6288 break;
6289 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6290 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6291 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6292 continue;
6293 break;
6294 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6295 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6296 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6297 continue;
6298 break;
6299 default:
6300 break;
6301 }
6302
6303 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6304 }
6305
6306 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6307 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6308 continue;
6309
6310 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6311 }
6312
6313 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6314 struct kvm_msr_entry msr;
6315
6316 msr.index = msr_based_features_all[i];
6317 if (kvm_get_msr_feature(&msr))
6318 continue;
6319
6320 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6321 }
6322 }
6323
6324 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6325 const void *v)
6326 {
6327 int handled = 0;
6328 int n;
6329
6330 do {
6331 n = min(len, 8);
6332 if (!(lapic_in_kernel(vcpu) &&
6333 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6334 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6335 break;
6336 handled += n;
6337 addr += n;
6338 len -= n;
6339 v += n;
6340 } while (len);
6341
6342 return handled;
6343 }
6344
6345 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6346 {
6347 int handled = 0;
6348 int n;
6349
6350 do {
6351 n = min(len, 8);
6352 if (!(lapic_in_kernel(vcpu) &&
6353 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6354 addr, n, v))
6355 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6356 break;
6357 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6358 handled += n;
6359 addr += n;
6360 len -= n;
6361 v += n;
6362 } while (len);
6363
6364 return handled;
6365 }
6366
6367 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6368 struct kvm_segment *var, int seg)
6369 {
6370 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6371 }
6372
6373 void kvm_get_segment(struct kvm_vcpu *vcpu,
6374 struct kvm_segment *var, int seg)
6375 {
6376 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6377 }
6378
6379 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6380 struct x86_exception *exception)
6381 {
6382 gpa_t t_gpa;
6383
6384 BUG_ON(!mmu_is_nested(vcpu));
6385
6386 /* NPT walks are always user-walks */
6387 access |= PFERR_USER_MASK;
6388 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6389
6390 return t_gpa;
6391 }
6392
6393 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6394 struct x86_exception *exception)
6395 {
6396 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6397 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6398 }
6399 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6400
6401 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6402 struct x86_exception *exception)
6403 {
6404 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6405 access |= PFERR_FETCH_MASK;
6406 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6407 }
6408
6409 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6410 struct x86_exception *exception)
6411 {
6412 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6413 access |= PFERR_WRITE_MASK;
6414 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6415 }
6416 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6417
6418 /* uses this to access any guest's mapped memory without checking CPL */
6419 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6420 struct x86_exception *exception)
6421 {
6422 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6423 }
6424
6425 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6426 struct kvm_vcpu *vcpu, u32 access,
6427 struct x86_exception *exception)
6428 {
6429 void *data = val;
6430 int r = X86EMUL_CONTINUE;
6431
6432 while (bytes) {
6433 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6434 exception);
6435 unsigned offset = addr & (PAGE_SIZE-1);
6436 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6437 int ret;
6438
6439 if (gpa == UNMAPPED_GVA)
6440 return X86EMUL_PROPAGATE_FAULT;
6441 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6442 offset, toread);
6443 if (ret < 0) {
6444 r = X86EMUL_IO_NEEDED;
6445 goto out;
6446 }
6447
6448 bytes -= toread;
6449 data += toread;
6450 addr += toread;
6451 }
6452 out:
6453 return r;
6454 }
6455
6456 /* used for instruction fetching */
6457 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6458 gva_t addr, void *val, unsigned int bytes,
6459 struct x86_exception *exception)
6460 {
6461 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6462 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6463 unsigned offset;
6464 int ret;
6465
6466 /* Inline kvm_read_guest_virt_helper for speed. */
6467 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6468 exception);
6469 if (unlikely(gpa == UNMAPPED_GVA))
6470 return X86EMUL_PROPAGATE_FAULT;
6471
6472 offset = addr & (PAGE_SIZE-1);
6473 if (WARN_ON(offset + bytes > PAGE_SIZE))
6474 bytes = (unsigned)PAGE_SIZE - offset;
6475 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6476 offset, bytes);
6477 if (unlikely(ret < 0))
6478 return X86EMUL_IO_NEEDED;
6479
6480 return X86EMUL_CONTINUE;
6481 }
6482
6483 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6484 gva_t addr, void *val, unsigned int bytes,
6485 struct x86_exception *exception)
6486 {
6487 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6488
6489 /*
6490 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6491 * is returned, but our callers are not ready for that and they blindly
6492 * call kvm_inject_page_fault. Ensure that they at least do not leak
6493 * uninitialized kernel stack memory into cr2 and error code.
6494 */
6495 memset(exception, 0, sizeof(*exception));
6496 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6497 exception);
6498 }
6499 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6500
6501 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6502 gva_t addr, void *val, unsigned int bytes,
6503 struct x86_exception *exception, bool system)
6504 {
6505 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6506 u32 access = 0;
6507
6508 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6509 access |= PFERR_USER_MASK;
6510
6511 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6512 }
6513
6514 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6515 unsigned long addr, void *val, unsigned int bytes)
6516 {
6517 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6518 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6519
6520 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6521 }
6522
6523 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6524 struct kvm_vcpu *vcpu, u32 access,
6525 struct x86_exception *exception)
6526 {
6527 void *data = val;
6528 int r = X86EMUL_CONTINUE;
6529
6530 while (bytes) {
6531 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6532 access,
6533 exception);
6534 unsigned offset = addr & (PAGE_SIZE-1);
6535 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6536 int ret;
6537
6538 if (gpa == UNMAPPED_GVA)
6539 return X86EMUL_PROPAGATE_FAULT;
6540 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6541 if (ret < 0) {
6542 r = X86EMUL_IO_NEEDED;
6543 goto out;
6544 }
6545
6546 bytes -= towrite;
6547 data += towrite;
6548 addr += towrite;
6549 }
6550 out:
6551 return r;
6552 }
6553
6554 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6555 unsigned int bytes, struct x86_exception *exception,
6556 bool system)
6557 {
6558 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6559 u32 access = PFERR_WRITE_MASK;
6560
6561 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6562 access |= PFERR_USER_MASK;
6563
6564 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6565 access, exception);
6566 }
6567
6568 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6569 unsigned int bytes, struct x86_exception *exception)
6570 {
6571 /* kvm_write_guest_virt_system can pull in tons of pages. */
6572 vcpu->arch.l1tf_flush_l1d = true;
6573
6574 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6575 PFERR_WRITE_MASK, exception);
6576 }
6577 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6578
6579 int handle_ud(struct kvm_vcpu *vcpu)
6580 {
6581 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6582 int emul_type = EMULTYPE_TRAP_UD;
6583 char sig[5]; /* ud2; .ascii "kvm" */
6584 struct x86_exception e;
6585
6586 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6587 return 1;
6588
6589 if (force_emulation_prefix &&
6590 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6591 sig, sizeof(sig), &e) == 0 &&
6592 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6593 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6594 emul_type = EMULTYPE_TRAP_UD_FORCED;
6595 }
6596
6597 return kvm_emulate_instruction(vcpu, emul_type);
6598 }
6599 EXPORT_SYMBOL_GPL(handle_ud);
6600
6601 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6602 gpa_t gpa, bool write)
6603 {
6604 /* For APIC access vmexit */
6605 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6606 return 1;
6607
6608 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6609 trace_vcpu_match_mmio(gva, gpa, write, true);
6610 return 1;
6611 }
6612
6613 return 0;
6614 }
6615
6616 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6617 gpa_t *gpa, struct x86_exception *exception,
6618 bool write)
6619 {
6620 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6621 | (write ? PFERR_WRITE_MASK : 0);
6622
6623 /*
6624 * currently PKRU is only applied to ept enabled guest so
6625 * there is no pkey in EPT page table for L1 guest or EPT
6626 * shadow page table for L2 guest.
6627 */
6628 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6629 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6630 vcpu->arch.mmio_access, 0, access))) {
6631 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6632 (gva & (PAGE_SIZE - 1));
6633 trace_vcpu_match_mmio(gva, *gpa, write, false);
6634 return 1;
6635 }
6636
6637 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6638
6639 if (*gpa == UNMAPPED_GVA)
6640 return -1;
6641
6642 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6643 }
6644
6645 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6646 const void *val, int bytes)
6647 {
6648 int ret;
6649
6650 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6651 if (ret < 0)
6652 return 0;
6653 kvm_page_track_write(vcpu, gpa, val, bytes);
6654 return 1;
6655 }
6656
6657 struct read_write_emulator_ops {
6658 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6659 int bytes);
6660 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6661 void *val, int bytes);
6662 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6663 int bytes, void *val);
6664 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6665 void *val, int bytes);
6666 bool write;
6667 };
6668
6669 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6670 {
6671 if (vcpu->mmio_read_completed) {
6672 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6673 vcpu->mmio_fragments[0].gpa, val);
6674 vcpu->mmio_read_completed = 0;
6675 return 1;
6676 }
6677
6678 return 0;
6679 }
6680
6681 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6682 void *val, int bytes)
6683 {
6684 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6685 }
6686
6687 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6688 void *val, int bytes)
6689 {
6690 return emulator_write_phys(vcpu, gpa, val, bytes);
6691 }
6692
6693 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6694 {
6695 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6696 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6697 }
6698
6699 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6700 void *val, int bytes)
6701 {
6702 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6703 return X86EMUL_IO_NEEDED;
6704 }
6705
6706 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6707 void *val, int bytes)
6708 {
6709 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6710
6711 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6712 return X86EMUL_CONTINUE;
6713 }
6714
6715 static const struct read_write_emulator_ops read_emultor = {
6716 .read_write_prepare = read_prepare,
6717 .read_write_emulate = read_emulate,
6718 .read_write_mmio = vcpu_mmio_read,
6719 .read_write_exit_mmio = read_exit_mmio,
6720 };
6721
6722 static const struct read_write_emulator_ops write_emultor = {
6723 .read_write_emulate = write_emulate,
6724 .read_write_mmio = write_mmio,
6725 .read_write_exit_mmio = write_exit_mmio,
6726 .write = true,
6727 };
6728
6729 static int emulator_read_write_onepage(unsigned long addr, void *val,
6730 unsigned int bytes,
6731 struct x86_exception *exception,
6732 struct kvm_vcpu *vcpu,
6733 const struct read_write_emulator_ops *ops)
6734 {
6735 gpa_t gpa;
6736 int handled, ret;
6737 bool write = ops->write;
6738 struct kvm_mmio_fragment *frag;
6739 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6740
6741 /*
6742 * If the exit was due to a NPF we may already have a GPA.
6743 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6744 * Note, this cannot be used on string operations since string
6745 * operation using rep will only have the initial GPA from the NPF
6746 * occurred.
6747 */
6748 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6749 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6750 gpa = ctxt->gpa_val;
6751 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6752 } else {
6753 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6754 if (ret < 0)
6755 return X86EMUL_PROPAGATE_FAULT;
6756 }
6757
6758 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6759 return X86EMUL_CONTINUE;
6760
6761 /*
6762 * Is this MMIO handled locally?
6763 */
6764 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6765 if (handled == bytes)
6766 return X86EMUL_CONTINUE;
6767
6768 gpa += handled;
6769 bytes -= handled;
6770 val += handled;
6771
6772 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6773 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6774 frag->gpa = gpa;
6775 frag->data = val;
6776 frag->len = bytes;
6777 return X86EMUL_CONTINUE;
6778 }
6779
6780 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6781 unsigned long addr,
6782 void *val, unsigned int bytes,
6783 struct x86_exception *exception,
6784 const struct read_write_emulator_ops *ops)
6785 {
6786 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6787 gpa_t gpa;
6788 int rc;
6789
6790 if (ops->read_write_prepare &&
6791 ops->read_write_prepare(vcpu, val, bytes))
6792 return X86EMUL_CONTINUE;
6793
6794 vcpu->mmio_nr_fragments = 0;
6795
6796 /* Crossing a page boundary? */
6797 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6798 int now;
6799
6800 now = -addr & ~PAGE_MASK;
6801 rc = emulator_read_write_onepage(addr, val, now, exception,
6802 vcpu, ops);
6803
6804 if (rc != X86EMUL_CONTINUE)
6805 return rc;
6806 addr += now;
6807 if (ctxt->mode != X86EMUL_MODE_PROT64)
6808 addr = (u32)addr;
6809 val += now;
6810 bytes -= now;
6811 }
6812
6813 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6814 vcpu, ops);
6815 if (rc != X86EMUL_CONTINUE)
6816 return rc;
6817
6818 if (!vcpu->mmio_nr_fragments)
6819 return rc;
6820
6821 gpa = vcpu->mmio_fragments[0].gpa;
6822
6823 vcpu->mmio_needed = 1;
6824 vcpu->mmio_cur_fragment = 0;
6825
6826 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6827 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6828 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6829 vcpu->run->mmio.phys_addr = gpa;
6830
6831 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6832 }
6833
6834 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6835 unsigned long addr,
6836 void *val,
6837 unsigned int bytes,
6838 struct x86_exception *exception)
6839 {
6840 return emulator_read_write(ctxt, addr, val, bytes,
6841 exception, &read_emultor);
6842 }
6843
6844 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6845 unsigned long addr,
6846 const void *val,
6847 unsigned int bytes,
6848 struct x86_exception *exception)
6849 {
6850 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6851 exception, &write_emultor);
6852 }
6853
6854 #define CMPXCHG_TYPE(t, ptr, old, new) \
6855 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6856
6857 #ifdef CONFIG_X86_64
6858 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6859 #else
6860 # define CMPXCHG64(ptr, old, new) \
6861 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6862 #endif
6863
6864 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6865 unsigned long addr,
6866 const void *old,
6867 const void *new,
6868 unsigned int bytes,
6869 struct x86_exception *exception)
6870 {
6871 struct kvm_host_map map;
6872 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6873 u64 page_line_mask;
6874 gpa_t gpa;
6875 char *kaddr;
6876 bool exchanged;
6877
6878 /* guests cmpxchg8b have to be emulated atomically */
6879 if (bytes > 8 || (bytes & (bytes - 1)))
6880 goto emul_write;
6881
6882 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6883
6884 if (gpa == UNMAPPED_GVA ||
6885 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6886 goto emul_write;
6887
6888 /*
6889 * Emulate the atomic as a straight write to avoid #AC if SLD is
6890 * enabled in the host and the access splits a cache line.
6891 */
6892 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6893 page_line_mask = ~(cache_line_size() - 1);
6894 else
6895 page_line_mask = PAGE_MASK;
6896
6897 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6898 goto emul_write;
6899
6900 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6901 goto emul_write;
6902
6903 kaddr = map.hva + offset_in_page(gpa);
6904
6905 switch (bytes) {
6906 case 1:
6907 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6908 break;
6909 case 2:
6910 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6911 break;
6912 case 4:
6913 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6914 break;
6915 case 8:
6916 exchanged = CMPXCHG64(kaddr, old, new);
6917 break;
6918 default:
6919 BUG();
6920 }
6921
6922 kvm_vcpu_unmap(vcpu, &map, true);
6923
6924 if (!exchanged)
6925 return X86EMUL_CMPXCHG_FAILED;
6926
6927 kvm_page_track_write(vcpu, gpa, new, bytes);
6928
6929 return X86EMUL_CONTINUE;
6930
6931 emul_write:
6932 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6933
6934 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6935 }
6936
6937 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6938 {
6939 int r = 0, i;
6940
6941 for (i = 0; i < vcpu->arch.pio.count; i++) {
6942 if (vcpu->arch.pio.in)
6943 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6944 vcpu->arch.pio.size, pd);
6945 else
6946 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6947 vcpu->arch.pio.port, vcpu->arch.pio.size,
6948 pd);
6949 if (r)
6950 break;
6951 pd += vcpu->arch.pio.size;
6952 }
6953 return r;
6954 }
6955
6956 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6957 unsigned short port,
6958 unsigned int count, bool in)
6959 {
6960 vcpu->arch.pio.port = port;
6961 vcpu->arch.pio.in = in;
6962 vcpu->arch.pio.count = count;
6963 vcpu->arch.pio.size = size;
6964
6965 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6966 return 1;
6967
6968 vcpu->run->exit_reason = KVM_EXIT_IO;
6969 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6970 vcpu->run->io.size = size;
6971 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6972 vcpu->run->io.count = count;
6973 vcpu->run->io.port = port;
6974
6975 return 0;
6976 }
6977
6978 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6979 unsigned short port, unsigned int count)
6980 {
6981 WARN_ON(vcpu->arch.pio.count);
6982 memset(vcpu->arch.pio_data, 0, size * count);
6983 return emulator_pio_in_out(vcpu, size, port, count, true);
6984 }
6985
6986 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6987 {
6988 int size = vcpu->arch.pio.size;
6989 unsigned count = vcpu->arch.pio.count;
6990 memcpy(val, vcpu->arch.pio_data, size * count);
6991 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6992 vcpu->arch.pio.count = 0;
6993 }
6994
6995 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6996 unsigned short port, void *val, unsigned int count)
6997 {
6998 if (vcpu->arch.pio.count) {
6999 /* Complete previous iteration. */
7000 } else {
7001 int r = __emulator_pio_in(vcpu, size, port, count);
7002 if (!r)
7003 return r;
7004
7005 /* Results already available, fall through. */
7006 }
7007
7008 WARN_ON(count != vcpu->arch.pio.count);
7009 complete_emulator_pio_in(vcpu, val);
7010 return 1;
7011 }
7012
7013 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7014 int size, unsigned short port, void *val,
7015 unsigned int count)
7016 {
7017 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7018
7019 }
7020
7021 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7022 unsigned short port, const void *val,
7023 unsigned int count)
7024 {
7025 int ret;
7026
7027 memcpy(vcpu->arch.pio_data, val, size * count);
7028 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7029 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7030 if (ret)
7031 vcpu->arch.pio.count = 0;
7032
7033 return ret;
7034 }
7035
7036 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7037 int size, unsigned short port,
7038 const void *val, unsigned int count)
7039 {
7040 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7041 }
7042
7043 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7044 {
7045 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7046 }
7047
7048 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7049 {
7050 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7051 }
7052
7053 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7054 {
7055 if (!need_emulate_wbinvd(vcpu))
7056 return X86EMUL_CONTINUE;
7057
7058 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7059 int cpu = get_cpu();
7060
7061 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7062 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7063 wbinvd_ipi, NULL, 1);
7064 put_cpu();
7065 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7066 } else
7067 wbinvd();
7068 return X86EMUL_CONTINUE;
7069 }
7070
7071 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7072 {
7073 kvm_emulate_wbinvd_noskip(vcpu);
7074 return kvm_skip_emulated_instruction(vcpu);
7075 }
7076 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7077
7078
7079
7080 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7081 {
7082 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7083 }
7084
7085 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7086 unsigned long *dest)
7087 {
7088 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7089 }
7090
7091 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7092 unsigned long value)
7093 {
7094
7095 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7096 }
7097
7098 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7099 {
7100 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7101 }
7102
7103 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7104 {
7105 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7106 unsigned long value;
7107
7108 switch (cr) {
7109 case 0:
7110 value = kvm_read_cr0(vcpu);
7111 break;
7112 case 2:
7113 value = vcpu->arch.cr2;
7114 break;
7115 case 3:
7116 value = kvm_read_cr3(vcpu);
7117 break;
7118 case 4:
7119 value = kvm_read_cr4(vcpu);
7120 break;
7121 case 8:
7122 value = kvm_get_cr8(vcpu);
7123 break;
7124 default:
7125 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7126 return 0;
7127 }
7128
7129 return value;
7130 }
7131
7132 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7133 {
7134 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7135 int res = 0;
7136
7137 switch (cr) {
7138 case 0:
7139 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7140 break;
7141 case 2:
7142 vcpu->arch.cr2 = val;
7143 break;
7144 case 3:
7145 res = kvm_set_cr3(vcpu, val);
7146 break;
7147 case 4:
7148 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7149 break;
7150 case 8:
7151 res = kvm_set_cr8(vcpu, val);
7152 break;
7153 default:
7154 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7155 res = -1;
7156 }
7157
7158 return res;
7159 }
7160
7161 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7162 {
7163 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7164 }
7165
7166 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7167 {
7168 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7169 }
7170
7171 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7172 {
7173 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7174 }
7175
7176 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7177 {
7178 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7179 }
7180
7181 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7182 {
7183 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7184 }
7185
7186 static unsigned long emulator_get_cached_segment_base(
7187 struct x86_emulate_ctxt *ctxt, int seg)
7188 {
7189 return get_segment_base(emul_to_vcpu(ctxt), seg);
7190 }
7191
7192 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7193 struct desc_struct *desc, u32 *base3,
7194 int seg)
7195 {
7196 struct kvm_segment var;
7197
7198 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7199 *selector = var.selector;
7200
7201 if (var.unusable) {
7202 memset(desc, 0, sizeof(*desc));
7203 if (base3)
7204 *base3 = 0;
7205 return false;
7206 }
7207
7208 if (var.g)
7209 var.limit >>= 12;
7210 set_desc_limit(desc, var.limit);
7211 set_desc_base(desc, (unsigned long)var.base);
7212 #ifdef CONFIG_X86_64
7213 if (base3)
7214 *base3 = var.base >> 32;
7215 #endif
7216 desc->type = var.type;
7217 desc->s = var.s;
7218 desc->dpl = var.dpl;
7219 desc->p = var.present;
7220 desc->avl = var.avl;
7221 desc->l = var.l;
7222 desc->d = var.db;
7223 desc->g = var.g;
7224
7225 return true;
7226 }
7227
7228 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7229 struct desc_struct *desc, u32 base3,
7230 int seg)
7231 {
7232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7233 struct kvm_segment var;
7234
7235 var.selector = selector;
7236 var.base = get_desc_base(desc);
7237 #ifdef CONFIG_X86_64
7238 var.base |= ((u64)base3) << 32;
7239 #endif
7240 var.limit = get_desc_limit(desc);
7241 if (desc->g)
7242 var.limit = (var.limit << 12) | 0xfff;
7243 var.type = desc->type;
7244 var.dpl = desc->dpl;
7245 var.db = desc->d;
7246 var.s = desc->s;
7247 var.l = desc->l;
7248 var.g = desc->g;
7249 var.avl = desc->avl;
7250 var.present = desc->p;
7251 var.unusable = !var.present;
7252 var.padding = 0;
7253
7254 kvm_set_segment(vcpu, &var, seg);
7255 return;
7256 }
7257
7258 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7259 u32 msr_index, u64 *pdata)
7260 {
7261 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7262 int r;
7263
7264 r = kvm_get_msr(vcpu, msr_index, pdata);
7265
7266 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7267 /* Bounce to user space */
7268 return X86EMUL_IO_NEEDED;
7269 }
7270
7271 return r;
7272 }
7273
7274 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7275 u32 msr_index, u64 data)
7276 {
7277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7278 int r;
7279
7280 r = kvm_set_msr(vcpu, msr_index, data);
7281
7282 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7283 /* Bounce to user space */
7284 return X86EMUL_IO_NEEDED;
7285 }
7286
7287 return r;
7288 }
7289
7290 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7291 {
7292 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7293
7294 return vcpu->arch.smbase;
7295 }
7296
7297 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7298 {
7299 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7300
7301 vcpu->arch.smbase = smbase;
7302 }
7303
7304 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7305 u32 pmc)
7306 {
7307 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7308 }
7309
7310 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7311 u32 pmc, u64 *pdata)
7312 {
7313 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7314 }
7315
7316 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7317 {
7318 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7319 }
7320
7321 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7322 struct x86_instruction_info *info,
7323 enum x86_intercept_stage stage)
7324 {
7325 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7326 &ctxt->exception);
7327 }
7328
7329 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7330 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7331 bool exact_only)
7332 {
7333 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7334 }
7335
7336 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7337 {
7338 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7339 }
7340
7341 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7342 {
7343 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7344 }
7345
7346 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7347 {
7348 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7349 }
7350
7351 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7352 {
7353 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7354 }
7355
7356 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7357 {
7358 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7359 }
7360
7361 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7362 {
7363 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7364 }
7365
7366 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7367 {
7368 return emul_to_vcpu(ctxt)->arch.hflags;
7369 }
7370
7371 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7372 {
7373 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7374
7375 kvm_smm_changed(vcpu, false);
7376 }
7377
7378 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7379 const char *smstate)
7380 {
7381 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7382 }
7383
7384 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7385 {
7386 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7387 }
7388
7389 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7390 {
7391 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7392 }
7393
7394 static const struct x86_emulate_ops emulate_ops = {
7395 .read_gpr = emulator_read_gpr,
7396 .write_gpr = emulator_write_gpr,
7397 .read_std = emulator_read_std,
7398 .write_std = emulator_write_std,
7399 .read_phys = kvm_read_guest_phys_system,
7400 .fetch = kvm_fetch_guest_virt,
7401 .read_emulated = emulator_read_emulated,
7402 .write_emulated = emulator_write_emulated,
7403 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7404 .invlpg = emulator_invlpg,
7405 .pio_in_emulated = emulator_pio_in_emulated,
7406 .pio_out_emulated = emulator_pio_out_emulated,
7407 .get_segment = emulator_get_segment,
7408 .set_segment = emulator_set_segment,
7409 .get_cached_segment_base = emulator_get_cached_segment_base,
7410 .get_gdt = emulator_get_gdt,
7411 .get_idt = emulator_get_idt,
7412 .set_gdt = emulator_set_gdt,
7413 .set_idt = emulator_set_idt,
7414 .get_cr = emulator_get_cr,
7415 .set_cr = emulator_set_cr,
7416 .cpl = emulator_get_cpl,
7417 .get_dr = emulator_get_dr,
7418 .set_dr = emulator_set_dr,
7419 .get_smbase = emulator_get_smbase,
7420 .set_smbase = emulator_set_smbase,
7421 .set_msr = emulator_set_msr,
7422 .get_msr = emulator_get_msr,
7423 .check_pmc = emulator_check_pmc,
7424 .read_pmc = emulator_read_pmc,
7425 .halt = emulator_halt,
7426 .wbinvd = emulator_wbinvd,
7427 .fix_hypercall = emulator_fix_hypercall,
7428 .intercept = emulator_intercept,
7429 .get_cpuid = emulator_get_cpuid,
7430 .guest_has_long_mode = emulator_guest_has_long_mode,
7431 .guest_has_movbe = emulator_guest_has_movbe,
7432 .guest_has_fxsr = emulator_guest_has_fxsr,
7433 .set_nmi_mask = emulator_set_nmi_mask,
7434 .get_hflags = emulator_get_hflags,
7435 .exiting_smm = emulator_exiting_smm,
7436 .leave_smm = emulator_leave_smm,
7437 .triple_fault = emulator_triple_fault,
7438 .set_xcr = emulator_set_xcr,
7439 };
7440
7441 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7442 {
7443 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7444 /*
7445 * an sti; sti; sequence only disable interrupts for the first
7446 * instruction. So, if the last instruction, be it emulated or
7447 * not, left the system with the INT_STI flag enabled, it
7448 * means that the last instruction is an sti. We should not
7449 * leave the flag on in this case. The same goes for mov ss
7450 */
7451 if (int_shadow & mask)
7452 mask = 0;
7453 if (unlikely(int_shadow || mask)) {
7454 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7455 if (!mask)
7456 kvm_make_request(KVM_REQ_EVENT, vcpu);
7457 }
7458 }
7459
7460 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7461 {
7462 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7463 if (ctxt->exception.vector == PF_VECTOR)
7464 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7465
7466 if (ctxt->exception.error_code_valid)
7467 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7468 ctxt->exception.error_code);
7469 else
7470 kvm_queue_exception(vcpu, ctxt->exception.vector);
7471 return false;
7472 }
7473
7474 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7475 {
7476 struct x86_emulate_ctxt *ctxt;
7477
7478 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7479 if (!ctxt) {
7480 pr_err("kvm: failed to allocate vcpu's emulator\n");
7481 return NULL;
7482 }
7483
7484 ctxt->vcpu = vcpu;
7485 ctxt->ops = &emulate_ops;
7486 vcpu->arch.emulate_ctxt = ctxt;
7487
7488 return ctxt;
7489 }
7490
7491 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7492 {
7493 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7494 int cs_db, cs_l;
7495
7496 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7497
7498 ctxt->gpa_available = false;
7499 ctxt->eflags = kvm_get_rflags(vcpu);
7500 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7501
7502 ctxt->eip = kvm_rip_read(vcpu);
7503 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7504 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7505 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7506 cs_db ? X86EMUL_MODE_PROT32 :
7507 X86EMUL_MODE_PROT16;
7508 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7509 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7510 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7511
7512 ctxt->interruptibility = 0;
7513 ctxt->have_exception = false;
7514 ctxt->exception.vector = -1;
7515 ctxt->perm_ok = false;
7516
7517 init_decode_cache(ctxt);
7518 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7519 }
7520
7521 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7522 {
7523 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7524 int ret;
7525
7526 init_emulate_ctxt(vcpu);
7527
7528 ctxt->op_bytes = 2;
7529 ctxt->ad_bytes = 2;
7530 ctxt->_eip = ctxt->eip + inc_eip;
7531 ret = emulate_int_real(ctxt, irq);
7532
7533 if (ret != X86EMUL_CONTINUE) {
7534 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7535 } else {
7536 ctxt->eip = ctxt->_eip;
7537 kvm_rip_write(vcpu, ctxt->eip);
7538 kvm_set_rflags(vcpu, ctxt->eflags);
7539 }
7540 }
7541 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7542
7543 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7544 {
7545 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7546 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7547 struct kvm_run *run = vcpu->run;
7548
7549 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7550 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7551 run->emulation_failure.ndata = 0;
7552 run->emulation_failure.flags = 0;
7553
7554 if (insn_size) {
7555 run->emulation_failure.ndata = 3;
7556 run->emulation_failure.flags |=
7557 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7558 run->emulation_failure.insn_size = insn_size;
7559 memset(run->emulation_failure.insn_bytes, 0x90,
7560 sizeof(run->emulation_failure.insn_bytes));
7561 memcpy(run->emulation_failure.insn_bytes,
7562 ctxt->fetch.data, insn_size);
7563 }
7564 }
7565
7566 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7567 {
7568 struct kvm *kvm = vcpu->kvm;
7569
7570 ++vcpu->stat.insn_emulation_fail;
7571 trace_kvm_emulate_insn_failed(vcpu);
7572
7573 if (emulation_type & EMULTYPE_VMWARE_GP) {
7574 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7575 return 1;
7576 }
7577
7578 if (kvm->arch.exit_on_emulation_error ||
7579 (emulation_type & EMULTYPE_SKIP)) {
7580 prepare_emulation_failure_exit(vcpu);
7581 return 0;
7582 }
7583
7584 kvm_queue_exception(vcpu, UD_VECTOR);
7585
7586 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7587 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7588 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7589 vcpu->run->internal.ndata = 0;
7590 return 0;
7591 }
7592
7593 return 1;
7594 }
7595
7596 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7597 bool write_fault_to_shadow_pgtable,
7598 int emulation_type)
7599 {
7600 gpa_t gpa = cr2_or_gpa;
7601 kvm_pfn_t pfn;
7602
7603 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7604 return false;
7605
7606 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7607 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7608 return false;
7609
7610 if (!vcpu->arch.mmu->direct_map) {
7611 /*
7612 * Write permission should be allowed since only
7613 * write access need to be emulated.
7614 */
7615 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7616
7617 /*
7618 * If the mapping is invalid in guest, let cpu retry
7619 * it to generate fault.
7620 */
7621 if (gpa == UNMAPPED_GVA)
7622 return true;
7623 }
7624
7625 /*
7626 * Do not retry the unhandleable instruction if it faults on the
7627 * readonly host memory, otherwise it will goto a infinite loop:
7628 * retry instruction -> write #PF -> emulation fail -> retry
7629 * instruction -> ...
7630 */
7631 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7632
7633 /*
7634 * If the instruction failed on the error pfn, it can not be fixed,
7635 * report the error to userspace.
7636 */
7637 if (is_error_noslot_pfn(pfn))
7638 return false;
7639
7640 kvm_release_pfn_clean(pfn);
7641
7642 /* The instructions are well-emulated on direct mmu. */
7643 if (vcpu->arch.mmu->direct_map) {
7644 unsigned int indirect_shadow_pages;
7645
7646 write_lock(&vcpu->kvm->mmu_lock);
7647 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7648 write_unlock(&vcpu->kvm->mmu_lock);
7649
7650 if (indirect_shadow_pages)
7651 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7652
7653 return true;
7654 }
7655
7656 /*
7657 * if emulation was due to access to shadowed page table
7658 * and it failed try to unshadow page and re-enter the
7659 * guest to let CPU execute the instruction.
7660 */
7661 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7662
7663 /*
7664 * If the access faults on its page table, it can not
7665 * be fixed by unprotecting shadow page and it should
7666 * be reported to userspace.
7667 */
7668 return !write_fault_to_shadow_pgtable;
7669 }
7670
7671 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7672 gpa_t cr2_or_gpa, int emulation_type)
7673 {
7674 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7675 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7676
7677 last_retry_eip = vcpu->arch.last_retry_eip;
7678 last_retry_addr = vcpu->arch.last_retry_addr;
7679
7680 /*
7681 * If the emulation is caused by #PF and it is non-page_table
7682 * writing instruction, it means the VM-EXIT is caused by shadow
7683 * page protected, we can zap the shadow page and retry this
7684 * instruction directly.
7685 *
7686 * Note: if the guest uses a non-page-table modifying instruction
7687 * on the PDE that points to the instruction, then we will unmap
7688 * the instruction and go to an infinite loop. So, we cache the
7689 * last retried eip and the last fault address, if we meet the eip
7690 * and the address again, we can break out of the potential infinite
7691 * loop.
7692 */
7693 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7694
7695 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7696 return false;
7697
7698 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7699 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7700 return false;
7701
7702 if (x86_page_table_writing_insn(ctxt))
7703 return false;
7704
7705 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7706 return false;
7707
7708 vcpu->arch.last_retry_eip = ctxt->eip;
7709 vcpu->arch.last_retry_addr = cr2_or_gpa;
7710
7711 if (!vcpu->arch.mmu->direct_map)
7712 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7713
7714 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7715
7716 return true;
7717 }
7718
7719 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7720 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7721
7722 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7723 {
7724 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7725
7726 if (entering_smm) {
7727 vcpu->arch.hflags |= HF_SMM_MASK;
7728 } else {
7729 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7730
7731 /* Process a latched INIT or SMI, if any. */
7732 kvm_make_request(KVM_REQ_EVENT, vcpu);
7733
7734 /*
7735 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7736 * on SMM exit we still need to reload them from
7737 * guest memory
7738 */
7739 vcpu->arch.pdptrs_from_userspace = false;
7740 }
7741
7742 kvm_mmu_reset_context(vcpu);
7743 }
7744
7745 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7746 unsigned long *db)
7747 {
7748 u32 dr6 = 0;
7749 int i;
7750 u32 enable, rwlen;
7751
7752 enable = dr7;
7753 rwlen = dr7 >> 16;
7754 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7755 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7756 dr6 |= (1 << i);
7757 return dr6;
7758 }
7759
7760 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7761 {
7762 struct kvm_run *kvm_run = vcpu->run;
7763
7764 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7765 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7766 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7767 kvm_run->debug.arch.exception = DB_VECTOR;
7768 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7769 return 0;
7770 }
7771 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7772 return 1;
7773 }
7774
7775 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7776 {
7777 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7778 int r;
7779
7780 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7781 if (unlikely(!r))
7782 return 0;
7783
7784 /*
7785 * rflags is the old, "raw" value of the flags. The new value has
7786 * not been saved yet.
7787 *
7788 * This is correct even for TF set by the guest, because "the
7789 * processor will not generate this exception after the instruction
7790 * that sets the TF flag".
7791 */
7792 if (unlikely(rflags & X86_EFLAGS_TF))
7793 r = kvm_vcpu_do_singlestep(vcpu);
7794 return r;
7795 }
7796 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7797
7798 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7799 {
7800 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7801 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7802 struct kvm_run *kvm_run = vcpu->run;
7803 unsigned long eip = kvm_get_linear_rip(vcpu);
7804 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7805 vcpu->arch.guest_debug_dr7,
7806 vcpu->arch.eff_db);
7807
7808 if (dr6 != 0) {
7809 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7810 kvm_run->debug.arch.pc = eip;
7811 kvm_run->debug.arch.exception = DB_VECTOR;
7812 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7813 *r = 0;
7814 return true;
7815 }
7816 }
7817
7818 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7819 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7820 unsigned long eip = kvm_get_linear_rip(vcpu);
7821 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7822 vcpu->arch.dr7,
7823 vcpu->arch.db);
7824
7825 if (dr6 != 0) {
7826 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7827 *r = 1;
7828 return true;
7829 }
7830 }
7831
7832 return false;
7833 }
7834
7835 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7836 {
7837 switch (ctxt->opcode_len) {
7838 case 1:
7839 switch (ctxt->b) {
7840 case 0xe4: /* IN */
7841 case 0xe5:
7842 case 0xec:
7843 case 0xed:
7844 case 0xe6: /* OUT */
7845 case 0xe7:
7846 case 0xee:
7847 case 0xef:
7848 case 0x6c: /* INS */
7849 case 0x6d:
7850 case 0x6e: /* OUTS */
7851 case 0x6f:
7852 return true;
7853 }
7854 break;
7855 case 2:
7856 switch (ctxt->b) {
7857 case 0x33: /* RDPMC */
7858 return true;
7859 }
7860 break;
7861 }
7862
7863 return false;
7864 }
7865
7866 /*
7867 * Decode to be emulated instruction. Return EMULATION_OK if success.
7868 */
7869 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7870 void *insn, int insn_len)
7871 {
7872 int r = EMULATION_OK;
7873 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7874
7875 init_emulate_ctxt(vcpu);
7876
7877 /*
7878 * We will reenter on the same instruction since we do not set
7879 * complete_userspace_io. This does not handle watchpoints yet,
7880 * those would be handled in the emulate_ops.
7881 */
7882 if (!(emulation_type & EMULTYPE_SKIP) &&
7883 kvm_vcpu_check_breakpoint(vcpu, &r))
7884 return r;
7885
7886 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7887
7888 trace_kvm_emulate_insn_start(vcpu);
7889 ++vcpu->stat.insn_emulation;
7890
7891 return r;
7892 }
7893 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7894
7895 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7896 int emulation_type, void *insn, int insn_len)
7897 {
7898 int r;
7899 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7900 bool writeback = true;
7901 bool write_fault_to_spt;
7902
7903 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7904 return 1;
7905
7906 vcpu->arch.l1tf_flush_l1d = true;
7907
7908 /*
7909 * Clear write_fault_to_shadow_pgtable here to ensure it is
7910 * never reused.
7911 */
7912 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7913 vcpu->arch.write_fault_to_shadow_pgtable = false;
7914
7915 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7916 kvm_clear_exception_queue(vcpu);
7917
7918 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7919 insn, insn_len);
7920 if (r != EMULATION_OK) {
7921 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7922 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7923 kvm_queue_exception(vcpu, UD_VECTOR);
7924 return 1;
7925 }
7926 if (reexecute_instruction(vcpu, cr2_or_gpa,
7927 write_fault_to_spt,
7928 emulation_type))
7929 return 1;
7930 if (ctxt->have_exception) {
7931 /*
7932 * #UD should result in just EMULATION_FAILED, and trap-like
7933 * exception should not be encountered during decode.
7934 */
7935 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7936 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7937 inject_emulated_exception(vcpu);
7938 return 1;
7939 }
7940 return handle_emulation_failure(vcpu, emulation_type);
7941 }
7942 }
7943
7944 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7945 !is_vmware_backdoor_opcode(ctxt)) {
7946 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7947 return 1;
7948 }
7949
7950 /*
7951 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7952 * for kvm_skip_emulated_instruction(). The caller is responsible for
7953 * updating interruptibility state and injecting single-step #DBs.
7954 */
7955 if (emulation_type & EMULTYPE_SKIP) {
7956 kvm_rip_write(vcpu, ctxt->_eip);
7957 if (ctxt->eflags & X86_EFLAGS_RF)
7958 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7959 return 1;
7960 }
7961
7962 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7963 return 1;
7964
7965 /* this is needed for vmware backdoor interface to work since it
7966 changes registers values during IO operation */
7967 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7968 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7969 emulator_invalidate_register_cache(ctxt);
7970 }
7971
7972 restart:
7973 if (emulation_type & EMULTYPE_PF) {
7974 /* Save the faulting GPA (cr2) in the address field */
7975 ctxt->exception.address = cr2_or_gpa;
7976
7977 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7978 if (vcpu->arch.mmu->direct_map) {
7979 ctxt->gpa_available = true;
7980 ctxt->gpa_val = cr2_or_gpa;
7981 }
7982 } else {
7983 /* Sanitize the address out of an abundance of paranoia. */
7984 ctxt->exception.address = 0;
7985 }
7986
7987 r = x86_emulate_insn(ctxt);
7988
7989 if (r == EMULATION_INTERCEPTED)
7990 return 1;
7991
7992 if (r == EMULATION_FAILED) {
7993 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7994 emulation_type))
7995 return 1;
7996
7997 return handle_emulation_failure(vcpu, emulation_type);
7998 }
7999
8000 if (ctxt->have_exception) {
8001 r = 1;
8002 if (inject_emulated_exception(vcpu))
8003 return r;
8004 } else if (vcpu->arch.pio.count) {
8005 if (!vcpu->arch.pio.in) {
8006 /* FIXME: return into emulator if single-stepping. */
8007 vcpu->arch.pio.count = 0;
8008 } else {
8009 writeback = false;
8010 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8011 }
8012 r = 0;
8013 } else if (vcpu->mmio_needed) {
8014 ++vcpu->stat.mmio_exits;
8015
8016 if (!vcpu->mmio_is_write)
8017 writeback = false;
8018 r = 0;
8019 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8020 } else if (r == EMULATION_RESTART)
8021 goto restart;
8022 else
8023 r = 1;
8024
8025 if (writeback) {
8026 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8027 toggle_interruptibility(vcpu, ctxt->interruptibility);
8028 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8029 if (!ctxt->have_exception ||
8030 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8031 kvm_rip_write(vcpu, ctxt->eip);
8032 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8033 r = kvm_vcpu_do_singlestep(vcpu);
8034 if (kvm_x86_ops.update_emulated_instruction)
8035 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8036 __kvm_set_rflags(vcpu, ctxt->eflags);
8037 }
8038
8039 /*
8040 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8041 * do nothing, and it will be requested again as soon as
8042 * the shadow expires. But we still need to check here,
8043 * because POPF has no interrupt shadow.
8044 */
8045 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8046 kvm_make_request(KVM_REQ_EVENT, vcpu);
8047 } else
8048 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8049
8050 return r;
8051 }
8052
8053 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8054 {
8055 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8056 }
8057 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8058
8059 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8060 void *insn, int insn_len)
8061 {
8062 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8065
8066 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8067 {
8068 vcpu->arch.pio.count = 0;
8069 return 1;
8070 }
8071
8072 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8073 {
8074 vcpu->arch.pio.count = 0;
8075
8076 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8077 return 1;
8078
8079 return kvm_skip_emulated_instruction(vcpu);
8080 }
8081
8082 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8083 unsigned short port)
8084 {
8085 unsigned long val = kvm_rax_read(vcpu);
8086 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8087
8088 if (ret)
8089 return ret;
8090
8091 /*
8092 * Workaround userspace that relies on old KVM behavior of %rip being
8093 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8094 */
8095 if (port == 0x7e &&
8096 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8097 vcpu->arch.complete_userspace_io =
8098 complete_fast_pio_out_port_0x7e;
8099 kvm_skip_emulated_instruction(vcpu);
8100 } else {
8101 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8102 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8103 }
8104 return 0;
8105 }
8106
8107 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8108 {
8109 unsigned long val;
8110
8111 /* We should only ever be called with arch.pio.count equal to 1 */
8112 BUG_ON(vcpu->arch.pio.count != 1);
8113
8114 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8115 vcpu->arch.pio.count = 0;
8116 return 1;
8117 }
8118
8119 /* For size less than 4 we merge, else we zero extend */
8120 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8121
8122 /*
8123 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8124 * the copy and tracing
8125 */
8126 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8127 kvm_rax_write(vcpu, val);
8128
8129 return kvm_skip_emulated_instruction(vcpu);
8130 }
8131
8132 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8133 unsigned short port)
8134 {
8135 unsigned long val;
8136 int ret;
8137
8138 /* For size less than 4 we merge, else we zero extend */
8139 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8140
8141 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8142 if (ret) {
8143 kvm_rax_write(vcpu, val);
8144 return ret;
8145 }
8146
8147 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8148 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8149
8150 return 0;
8151 }
8152
8153 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8154 {
8155 int ret;
8156
8157 if (in)
8158 ret = kvm_fast_pio_in(vcpu, size, port);
8159 else
8160 ret = kvm_fast_pio_out(vcpu, size, port);
8161 return ret && kvm_skip_emulated_instruction(vcpu);
8162 }
8163 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8164
8165 static int kvmclock_cpu_down_prep(unsigned int cpu)
8166 {
8167 __this_cpu_write(cpu_tsc_khz, 0);
8168 return 0;
8169 }
8170
8171 static void tsc_khz_changed(void *data)
8172 {
8173 struct cpufreq_freqs *freq = data;
8174 unsigned long khz = 0;
8175
8176 if (data)
8177 khz = freq->new;
8178 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8179 khz = cpufreq_quick_get(raw_smp_processor_id());
8180 if (!khz)
8181 khz = tsc_khz;
8182 __this_cpu_write(cpu_tsc_khz, khz);
8183 }
8184
8185 #ifdef CONFIG_X86_64
8186 static void kvm_hyperv_tsc_notifier(void)
8187 {
8188 struct kvm *kvm;
8189 struct kvm_vcpu *vcpu;
8190 int cpu;
8191 unsigned long flags;
8192
8193 mutex_lock(&kvm_lock);
8194 list_for_each_entry(kvm, &vm_list, vm_list)
8195 kvm_make_mclock_inprogress_request(kvm);
8196
8197 hyperv_stop_tsc_emulation();
8198
8199 /* TSC frequency always matches when on Hyper-V */
8200 for_each_present_cpu(cpu)
8201 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8202 kvm_max_guest_tsc_khz = tsc_khz;
8203
8204 list_for_each_entry(kvm, &vm_list, vm_list) {
8205 struct kvm_arch *ka = &kvm->arch;
8206
8207 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8208 pvclock_update_vm_gtod_copy(kvm);
8209 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8210
8211 kvm_for_each_vcpu(cpu, vcpu, kvm)
8212 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8213
8214 kvm_for_each_vcpu(cpu, vcpu, kvm)
8215 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8216 }
8217 mutex_unlock(&kvm_lock);
8218 }
8219 #endif
8220
8221 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8222 {
8223 struct kvm *kvm;
8224 struct kvm_vcpu *vcpu;
8225 int i, send_ipi = 0;
8226
8227 /*
8228 * We allow guests to temporarily run on slowing clocks,
8229 * provided we notify them after, or to run on accelerating
8230 * clocks, provided we notify them before. Thus time never
8231 * goes backwards.
8232 *
8233 * However, we have a problem. We can't atomically update
8234 * the frequency of a given CPU from this function; it is
8235 * merely a notifier, which can be called from any CPU.
8236 * Changing the TSC frequency at arbitrary points in time
8237 * requires a recomputation of local variables related to
8238 * the TSC for each VCPU. We must flag these local variables
8239 * to be updated and be sure the update takes place with the
8240 * new frequency before any guests proceed.
8241 *
8242 * Unfortunately, the combination of hotplug CPU and frequency
8243 * change creates an intractable locking scenario; the order
8244 * of when these callouts happen is undefined with respect to
8245 * CPU hotplug, and they can race with each other. As such,
8246 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8247 * undefined; you can actually have a CPU frequency change take
8248 * place in between the computation of X and the setting of the
8249 * variable. To protect against this problem, all updates of
8250 * the per_cpu tsc_khz variable are done in an interrupt
8251 * protected IPI, and all callers wishing to update the value
8252 * must wait for a synchronous IPI to complete (which is trivial
8253 * if the caller is on the CPU already). This establishes the
8254 * necessary total order on variable updates.
8255 *
8256 * Note that because a guest time update may take place
8257 * anytime after the setting of the VCPU's request bit, the
8258 * correct TSC value must be set before the request. However,
8259 * to ensure the update actually makes it to any guest which
8260 * starts running in hardware virtualization between the set
8261 * and the acquisition of the spinlock, we must also ping the
8262 * CPU after setting the request bit.
8263 *
8264 */
8265
8266 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8267
8268 mutex_lock(&kvm_lock);
8269 list_for_each_entry(kvm, &vm_list, vm_list) {
8270 kvm_for_each_vcpu(i, vcpu, kvm) {
8271 if (vcpu->cpu != cpu)
8272 continue;
8273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8274 if (vcpu->cpu != raw_smp_processor_id())
8275 send_ipi = 1;
8276 }
8277 }
8278 mutex_unlock(&kvm_lock);
8279
8280 if (freq->old < freq->new && send_ipi) {
8281 /*
8282 * We upscale the frequency. Must make the guest
8283 * doesn't see old kvmclock values while running with
8284 * the new frequency, otherwise we risk the guest sees
8285 * time go backwards.
8286 *
8287 * In case we update the frequency for another cpu
8288 * (which might be in guest context) send an interrupt
8289 * to kick the cpu out of guest context. Next time
8290 * guest context is entered kvmclock will be updated,
8291 * so the guest will not see stale values.
8292 */
8293 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8294 }
8295 }
8296
8297 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8298 void *data)
8299 {
8300 struct cpufreq_freqs *freq = data;
8301 int cpu;
8302
8303 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8304 return 0;
8305 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8306 return 0;
8307
8308 for_each_cpu(cpu, freq->policy->cpus)
8309 __kvmclock_cpufreq_notifier(freq, cpu);
8310
8311 return 0;
8312 }
8313
8314 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8315 .notifier_call = kvmclock_cpufreq_notifier
8316 };
8317
8318 static int kvmclock_cpu_online(unsigned int cpu)
8319 {
8320 tsc_khz_changed(NULL);
8321 return 0;
8322 }
8323
8324 static void kvm_timer_init(void)
8325 {
8326 max_tsc_khz = tsc_khz;
8327
8328 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8329 #ifdef CONFIG_CPU_FREQ
8330 struct cpufreq_policy *policy;
8331 int cpu;
8332
8333 cpu = get_cpu();
8334 policy = cpufreq_cpu_get(cpu);
8335 if (policy) {
8336 if (policy->cpuinfo.max_freq)
8337 max_tsc_khz = policy->cpuinfo.max_freq;
8338 cpufreq_cpu_put(policy);
8339 }
8340 put_cpu();
8341 #endif
8342 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8343 CPUFREQ_TRANSITION_NOTIFIER);
8344 }
8345
8346 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8347 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8348 }
8349
8350 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8351 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8352
8353 int kvm_is_in_guest(void)
8354 {
8355 return __this_cpu_read(current_vcpu) != NULL;
8356 }
8357
8358 static int kvm_is_user_mode(void)
8359 {
8360 int user_mode = 3;
8361
8362 if (__this_cpu_read(current_vcpu))
8363 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8364
8365 return user_mode != 0;
8366 }
8367
8368 static unsigned long kvm_get_guest_ip(void)
8369 {
8370 unsigned long ip = 0;
8371
8372 if (__this_cpu_read(current_vcpu))
8373 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8374
8375 return ip;
8376 }
8377
8378 static void kvm_handle_intel_pt_intr(void)
8379 {
8380 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8381
8382 kvm_make_request(KVM_REQ_PMI, vcpu);
8383 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8384 (unsigned long *)&vcpu->arch.pmu.global_status);
8385 }
8386
8387 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8388 .is_in_guest = kvm_is_in_guest,
8389 .is_user_mode = kvm_is_user_mode,
8390 .get_guest_ip = kvm_get_guest_ip,
8391 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8392 };
8393
8394 #ifdef CONFIG_X86_64
8395 static void pvclock_gtod_update_fn(struct work_struct *work)
8396 {
8397 struct kvm *kvm;
8398
8399 struct kvm_vcpu *vcpu;
8400 int i;
8401
8402 mutex_lock(&kvm_lock);
8403 list_for_each_entry(kvm, &vm_list, vm_list)
8404 kvm_for_each_vcpu(i, vcpu, kvm)
8405 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8406 atomic_set(&kvm_guest_has_master_clock, 0);
8407 mutex_unlock(&kvm_lock);
8408 }
8409
8410 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8411
8412 /*
8413 * Indirection to move queue_work() out of the tk_core.seq write held
8414 * region to prevent possible deadlocks against time accessors which
8415 * are invoked with work related locks held.
8416 */
8417 static void pvclock_irq_work_fn(struct irq_work *w)
8418 {
8419 queue_work(system_long_wq, &pvclock_gtod_work);
8420 }
8421
8422 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8423
8424 /*
8425 * Notification about pvclock gtod data update.
8426 */
8427 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8428 void *priv)
8429 {
8430 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8431 struct timekeeper *tk = priv;
8432
8433 update_pvclock_gtod(tk);
8434
8435 /*
8436 * Disable master clock if host does not trust, or does not use,
8437 * TSC based clocksource. Delegate queue_work() to irq_work as
8438 * this is invoked with tk_core.seq write held.
8439 */
8440 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8441 atomic_read(&kvm_guest_has_master_clock) != 0)
8442 irq_work_queue(&pvclock_irq_work);
8443 return 0;
8444 }
8445
8446 static struct notifier_block pvclock_gtod_notifier = {
8447 .notifier_call = pvclock_gtod_notify,
8448 };
8449 #endif
8450
8451 int kvm_arch_init(void *opaque)
8452 {
8453 struct kvm_x86_init_ops *ops = opaque;
8454 int r;
8455
8456 if (kvm_x86_ops.hardware_enable) {
8457 printk(KERN_ERR "kvm: already loaded the other module\n");
8458 r = -EEXIST;
8459 goto out;
8460 }
8461
8462 if (!ops->cpu_has_kvm_support()) {
8463 pr_err_ratelimited("kvm: no hardware support\n");
8464 r = -EOPNOTSUPP;
8465 goto out;
8466 }
8467 if (ops->disabled_by_bios()) {
8468 pr_warn_ratelimited("kvm: disabled by bios\n");
8469 r = -EOPNOTSUPP;
8470 goto out;
8471 }
8472
8473 /*
8474 * KVM explicitly assumes that the guest has an FPU and
8475 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8476 * vCPU's FPU state as a fxregs_state struct.
8477 */
8478 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8479 printk(KERN_ERR "kvm: inadequate fpu\n");
8480 r = -EOPNOTSUPP;
8481 goto out;
8482 }
8483
8484 r = -ENOMEM;
8485 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8486 __alignof__(struct fpu), SLAB_ACCOUNT,
8487 NULL);
8488 if (!x86_fpu_cache) {
8489 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8490 goto out;
8491 }
8492
8493 x86_emulator_cache = kvm_alloc_emulator_cache();
8494 if (!x86_emulator_cache) {
8495 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8496 goto out_free_x86_fpu_cache;
8497 }
8498
8499 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8500 if (!user_return_msrs) {
8501 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8502 goto out_free_x86_emulator_cache;
8503 }
8504 kvm_nr_uret_msrs = 0;
8505
8506 r = kvm_mmu_module_init();
8507 if (r)
8508 goto out_free_percpu;
8509
8510 kvm_timer_init();
8511
8512 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8513
8514 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8515 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8516 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8517 }
8518
8519 if (pi_inject_timer == -1)
8520 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8521 #ifdef CONFIG_X86_64
8522 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8523
8524 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8525 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8526 #endif
8527
8528 return 0;
8529
8530 out_free_percpu:
8531 free_percpu(user_return_msrs);
8532 out_free_x86_emulator_cache:
8533 kmem_cache_destroy(x86_emulator_cache);
8534 out_free_x86_fpu_cache:
8535 kmem_cache_destroy(x86_fpu_cache);
8536 out:
8537 return r;
8538 }
8539
8540 void kvm_arch_exit(void)
8541 {
8542 #ifdef CONFIG_X86_64
8543 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8544 clear_hv_tscchange_cb();
8545 #endif
8546 kvm_lapic_exit();
8547 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8548
8549 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8550 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8551 CPUFREQ_TRANSITION_NOTIFIER);
8552 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8553 #ifdef CONFIG_X86_64
8554 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8555 irq_work_sync(&pvclock_irq_work);
8556 cancel_work_sync(&pvclock_gtod_work);
8557 #endif
8558 kvm_x86_ops.hardware_enable = NULL;
8559 kvm_mmu_module_exit();
8560 free_percpu(user_return_msrs);
8561 kmem_cache_destroy(x86_emulator_cache);
8562 kmem_cache_destroy(x86_fpu_cache);
8563 #ifdef CONFIG_KVM_XEN
8564 static_key_deferred_flush(&kvm_xen_enabled);
8565 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8566 #endif
8567 }
8568
8569 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8570 {
8571 ++vcpu->stat.halt_exits;
8572 if (lapic_in_kernel(vcpu)) {
8573 vcpu->arch.mp_state = state;
8574 return 1;
8575 } else {
8576 vcpu->run->exit_reason = reason;
8577 return 0;
8578 }
8579 }
8580
8581 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8582 {
8583 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8584 }
8585 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8586
8587 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8588 {
8589 int ret = kvm_skip_emulated_instruction(vcpu);
8590 /*
8591 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8592 * KVM_EXIT_DEBUG here.
8593 */
8594 return kvm_vcpu_halt(vcpu) && ret;
8595 }
8596 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8597
8598 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8599 {
8600 int ret = kvm_skip_emulated_instruction(vcpu);
8601
8602 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8603 }
8604 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8605
8606 #ifdef CONFIG_X86_64
8607 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8608 unsigned long clock_type)
8609 {
8610 struct kvm_clock_pairing clock_pairing;
8611 struct timespec64 ts;
8612 u64 cycle;
8613 int ret;
8614
8615 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8616 return -KVM_EOPNOTSUPP;
8617
8618 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8619 return -KVM_EOPNOTSUPP;
8620
8621 clock_pairing.sec = ts.tv_sec;
8622 clock_pairing.nsec = ts.tv_nsec;
8623 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8624 clock_pairing.flags = 0;
8625 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8626
8627 ret = 0;
8628 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8629 sizeof(struct kvm_clock_pairing)))
8630 ret = -KVM_EFAULT;
8631
8632 return ret;
8633 }
8634 #endif
8635
8636 /*
8637 * kvm_pv_kick_cpu_op: Kick a vcpu.
8638 *
8639 * @apicid - apicid of vcpu to be kicked.
8640 */
8641 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8642 {
8643 struct kvm_lapic_irq lapic_irq;
8644
8645 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8646 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8647 lapic_irq.level = 0;
8648 lapic_irq.dest_id = apicid;
8649 lapic_irq.msi_redir_hint = false;
8650
8651 lapic_irq.delivery_mode = APIC_DM_REMRD;
8652 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8653 }
8654
8655 bool kvm_apicv_activated(struct kvm *kvm)
8656 {
8657 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8658 }
8659 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8660
8661 static void kvm_apicv_init(struct kvm *kvm)
8662 {
8663 mutex_init(&kvm->arch.apicv_update_lock);
8664
8665 if (enable_apicv)
8666 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8667 &kvm->arch.apicv_inhibit_reasons);
8668 else
8669 set_bit(APICV_INHIBIT_REASON_DISABLE,
8670 &kvm->arch.apicv_inhibit_reasons);
8671 }
8672
8673 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8674 {
8675 struct kvm_vcpu *target = NULL;
8676 struct kvm_apic_map *map;
8677
8678 vcpu->stat.directed_yield_attempted++;
8679
8680 if (single_task_running())
8681 goto no_yield;
8682
8683 rcu_read_lock();
8684 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8685
8686 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8687 target = map->phys_map[dest_id]->vcpu;
8688
8689 rcu_read_unlock();
8690
8691 if (!target || !READ_ONCE(target->ready))
8692 goto no_yield;
8693
8694 /* Ignore requests to yield to self */
8695 if (vcpu == target)
8696 goto no_yield;
8697
8698 if (kvm_vcpu_yield_to(target) <= 0)
8699 goto no_yield;
8700
8701 vcpu->stat.directed_yield_successful++;
8702
8703 no_yield:
8704 return;
8705 }
8706
8707 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8708 {
8709 u64 ret = vcpu->run->hypercall.ret;
8710
8711 if (!is_64_bit_mode(vcpu))
8712 ret = (u32)ret;
8713 kvm_rax_write(vcpu, ret);
8714 ++vcpu->stat.hypercalls;
8715 return kvm_skip_emulated_instruction(vcpu);
8716 }
8717
8718 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8719 {
8720 unsigned long nr, a0, a1, a2, a3, ret;
8721 int op_64_bit;
8722
8723 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8724 return kvm_xen_hypercall(vcpu);
8725
8726 if (kvm_hv_hypercall_enabled(vcpu))
8727 return kvm_hv_hypercall(vcpu);
8728
8729 nr = kvm_rax_read(vcpu);
8730 a0 = kvm_rbx_read(vcpu);
8731 a1 = kvm_rcx_read(vcpu);
8732 a2 = kvm_rdx_read(vcpu);
8733 a3 = kvm_rsi_read(vcpu);
8734
8735 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8736
8737 op_64_bit = is_64_bit_mode(vcpu);
8738 if (!op_64_bit) {
8739 nr &= 0xFFFFFFFF;
8740 a0 &= 0xFFFFFFFF;
8741 a1 &= 0xFFFFFFFF;
8742 a2 &= 0xFFFFFFFF;
8743 a3 &= 0xFFFFFFFF;
8744 }
8745
8746 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8747 ret = -KVM_EPERM;
8748 goto out;
8749 }
8750
8751 ret = -KVM_ENOSYS;
8752
8753 switch (nr) {
8754 case KVM_HC_VAPIC_POLL_IRQ:
8755 ret = 0;
8756 break;
8757 case KVM_HC_KICK_CPU:
8758 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8759 break;
8760
8761 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8762 kvm_sched_yield(vcpu, a1);
8763 ret = 0;
8764 break;
8765 #ifdef CONFIG_X86_64
8766 case KVM_HC_CLOCK_PAIRING:
8767 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8768 break;
8769 #endif
8770 case KVM_HC_SEND_IPI:
8771 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8772 break;
8773
8774 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8775 break;
8776 case KVM_HC_SCHED_YIELD:
8777 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8778 break;
8779
8780 kvm_sched_yield(vcpu, a0);
8781 ret = 0;
8782 break;
8783 case KVM_HC_MAP_GPA_RANGE: {
8784 u64 gpa = a0, npages = a1, attrs = a2;
8785
8786 ret = -KVM_ENOSYS;
8787 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8788 break;
8789
8790 if (!PAGE_ALIGNED(gpa) || !npages ||
8791 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8792 ret = -KVM_EINVAL;
8793 break;
8794 }
8795
8796 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8797 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8798 vcpu->run->hypercall.args[0] = gpa;
8799 vcpu->run->hypercall.args[1] = npages;
8800 vcpu->run->hypercall.args[2] = attrs;
8801 vcpu->run->hypercall.longmode = op_64_bit;
8802 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8803 return 0;
8804 }
8805 default:
8806 ret = -KVM_ENOSYS;
8807 break;
8808 }
8809 out:
8810 if (!op_64_bit)
8811 ret = (u32)ret;
8812 kvm_rax_write(vcpu, ret);
8813
8814 ++vcpu->stat.hypercalls;
8815 return kvm_skip_emulated_instruction(vcpu);
8816 }
8817 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8818
8819 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8820 {
8821 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8822 char instruction[3];
8823 unsigned long rip = kvm_rip_read(vcpu);
8824
8825 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8826
8827 return emulator_write_emulated(ctxt, rip, instruction, 3,
8828 &ctxt->exception);
8829 }
8830
8831 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8832 {
8833 return vcpu->run->request_interrupt_window &&
8834 likely(!pic_in_kernel(vcpu->kvm));
8835 }
8836
8837 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8838 {
8839 struct kvm_run *kvm_run = vcpu->run;
8840
8841 /*
8842 * if_flag is obsolete and useless, so do not bother
8843 * setting it for SEV-ES guests. Userspace can just
8844 * use kvm_run->ready_for_interrupt_injection.
8845 */
8846 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8847 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8848
8849 kvm_run->cr8 = kvm_get_cr8(vcpu);
8850 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8851
8852 /*
8853 * The call to kvm_ready_for_interrupt_injection() may end up in
8854 * kvm_xen_has_interrupt() which may require the srcu lock to be
8855 * held, to protect against changes in the vcpu_info address.
8856 */
8857 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8858 kvm_run->ready_for_interrupt_injection =
8859 pic_in_kernel(vcpu->kvm) ||
8860 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8861 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8862
8863 if (is_smm(vcpu))
8864 kvm_run->flags |= KVM_RUN_X86_SMM;
8865 }
8866
8867 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8868 {
8869 int max_irr, tpr;
8870
8871 if (!kvm_x86_ops.update_cr8_intercept)
8872 return;
8873
8874 if (!lapic_in_kernel(vcpu))
8875 return;
8876
8877 if (vcpu->arch.apicv_active)
8878 return;
8879
8880 if (!vcpu->arch.apic->vapic_addr)
8881 max_irr = kvm_lapic_find_highest_irr(vcpu);
8882 else
8883 max_irr = -1;
8884
8885 if (max_irr != -1)
8886 max_irr >>= 4;
8887
8888 tpr = kvm_lapic_get_cr8(vcpu);
8889
8890 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8891 }
8892
8893
8894 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8895 {
8896 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8897 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8898 return 1;
8899 }
8900
8901 return kvm_x86_ops.nested_ops->check_events(vcpu);
8902 }
8903
8904 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8905 {
8906 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8907 vcpu->arch.exception.error_code = false;
8908 static_call(kvm_x86_queue_exception)(vcpu);
8909 }
8910
8911 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8912 {
8913 int r;
8914 bool can_inject = true;
8915
8916 /* try to reinject previous events if any */
8917
8918 if (vcpu->arch.exception.injected) {
8919 kvm_inject_exception(vcpu);
8920 can_inject = false;
8921 }
8922 /*
8923 * Do not inject an NMI or interrupt if there is a pending
8924 * exception. Exceptions and interrupts are recognized at
8925 * instruction boundaries, i.e. the start of an instruction.
8926 * Trap-like exceptions, e.g. #DB, have higher priority than
8927 * NMIs and interrupts, i.e. traps are recognized before an
8928 * NMI/interrupt that's pending on the same instruction.
8929 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8930 * priority, but are only generated (pended) during instruction
8931 * execution, i.e. a pending fault-like exception means the
8932 * fault occurred on the *previous* instruction and must be
8933 * serviced prior to recognizing any new events in order to
8934 * fully complete the previous instruction.
8935 */
8936 else if (!vcpu->arch.exception.pending) {
8937 if (vcpu->arch.nmi_injected) {
8938 static_call(kvm_x86_set_nmi)(vcpu);
8939 can_inject = false;
8940 } else if (vcpu->arch.interrupt.injected) {
8941 static_call(kvm_x86_set_irq)(vcpu);
8942 can_inject = false;
8943 }
8944 }
8945
8946 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8947 vcpu->arch.exception.pending);
8948
8949 /*
8950 * Call check_nested_events() even if we reinjected a previous event
8951 * in order for caller to determine if it should require immediate-exit
8952 * from L2 to L1 due to pending L1 events which require exit
8953 * from L2 to L1.
8954 */
8955 if (is_guest_mode(vcpu)) {
8956 r = kvm_check_nested_events(vcpu);
8957 if (r < 0)
8958 goto out;
8959 }
8960
8961 /* try to inject new event if pending */
8962 if (vcpu->arch.exception.pending) {
8963 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8964 vcpu->arch.exception.has_error_code,
8965 vcpu->arch.exception.error_code);
8966
8967 vcpu->arch.exception.pending = false;
8968 vcpu->arch.exception.injected = true;
8969
8970 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8971 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8972 X86_EFLAGS_RF);
8973
8974 if (vcpu->arch.exception.nr == DB_VECTOR) {
8975 kvm_deliver_exception_payload(vcpu);
8976 if (vcpu->arch.dr7 & DR7_GD) {
8977 vcpu->arch.dr7 &= ~DR7_GD;
8978 kvm_update_dr7(vcpu);
8979 }
8980 }
8981
8982 kvm_inject_exception(vcpu);
8983 can_inject = false;
8984 }
8985
8986 /* Don't inject interrupts if the user asked to avoid doing so */
8987 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8988 return 0;
8989
8990 /*
8991 * Finally, inject interrupt events. If an event cannot be injected
8992 * due to architectural conditions (e.g. IF=0) a window-open exit
8993 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8994 * and can architecturally be injected, but we cannot do it right now:
8995 * an interrupt could have arrived just now and we have to inject it
8996 * as a vmexit, or there could already an event in the queue, which is
8997 * indicated by can_inject. In that case we request an immediate exit
8998 * in order to make progress and get back here for another iteration.
8999 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9000 */
9001 if (vcpu->arch.smi_pending) {
9002 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9003 if (r < 0)
9004 goto out;
9005 if (r) {
9006 vcpu->arch.smi_pending = false;
9007 ++vcpu->arch.smi_count;
9008 enter_smm(vcpu);
9009 can_inject = false;
9010 } else
9011 static_call(kvm_x86_enable_smi_window)(vcpu);
9012 }
9013
9014 if (vcpu->arch.nmi_pending) {
9015 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9016 if (r < 0)
9017 goto out;
9018 if (r) {
9019 --vcpu->arch.nmi_pending;
9020 vcpu->arch.nmi_injected = true;
9021 static_call(kvm_x86_set_nmi)(vcpu);
9022 can_inject = false;
9023 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9024 }
9025 if (vcpu->arch.nmi_pending)
9026 static_call(kvm_x86_enable_nmi_window)(vcpu);
9027 }
9028
9029 if (kvm_cpu_has_injectable_intr(vcpu)) {
9030 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9031 if (r < 0)
9032 goto out;
9033 if (r) {
9034 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9035 static_call(kvm_x86_set_irq)(vcpu);
9036 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9037 }
9038 if (kvm_cpu_has_injectable_intr(vcpu))
9039 static_call(kvm_x86_enable_irq_window)(vcpu);
9040 }
9041
9042 if (is_guest_mode(vcpu) &&
9043 kvm_x86_ops.nested_ops->hv_timer_pending &&
9044 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9045 *req_immediate_exit = true;
9046
9047 WARN_ON(vcpu->arch.exception.pending);
9048 return 0;
9049
9050 out:
9051 if (r == -EBUSY) {
9052 *req_immediate_exit = true;
9053 r = 0;
9054 }
9055 return r;
9056 }
9057
9058 static void process_nmi(struct kvm_vcpu *vcpu)
9059 {
9060 unsigned limit = 2;
9061
9062 /*
9063 * x86 is limited to one NMI running, and one NMI pending after it.
9064 * If an NMI is already in progress, limit further NMIs to just one.
9065 * Otherwise, allow two (and we'll inject the first one immediately).
9066 */
9067 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9068 limit = 1;
9069
9070 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9071 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9072 kvm_make_request(KVM_REQ_EVENT, vcpu);
9073 }
9074
9075 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9076 {
9077 u32 flags = 0;
9078 flags |= seg->g << 23;
9079 flags |= seg->db << 22;
9080 flags |= seg->l << 21;
9081 flags |= seg->avl << 20;
9082 flags |= seg->present << 15;
9083 flags |= seg->dpl << 13;
9084 flags |= seg->s << 12;
9085 flags |= seg->type << 8;
9086 return flags;
9087 }
9088
9089 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9090 {
9091 struct kvm_segment seg;
9092 int offset;
9093
9094 kvm_get_segment(vcpu, &seg, n);
9095 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9096
9097 if (n < 3)
9098 offset = 0x7f84 + n * 12;
9099 else
9100 offset = 0x7f2c + (n - 3) * 12;
9101
9102 put_smstate(u32, buf, offset + 8, seg.base);
9103 put_smstate(u32, buf, offset + 4, seg.limit);
9104 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9105 }
9106
9107 #ifdef CONFIG_X86_64
9108 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9109 {
9110 struct kvm_segment seg;
9111 int offset;
9112 u16 flags;
9113
9114 kvm_get_segment(vcpu, &seg, n);
9115 offset = 0x7e00 + n * 16;
9116
9117 flags = enter_smm_get_segment_flags(&seg) >> 8;
9118 put_smstate(u16, buf, offset, seg.selector);
9119 put_smstate(u16, buf, offset + 2, flags);
9120 put_smstate(u32, buf, offset + 4, seg.limit);
9121 put_smstate(u64, buf, offset + 8, seg.base);
9122 }
9123 #endif
9124
9125 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9126 {
9127 struct desc_ptr dt;
9128 struct kvm_segment seg;
9129 unsigned long val;
9130 int i;
9131
9132 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9133 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9134 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9135 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9136
9137 for (i = 0; i < 8; i++)
9138 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9139
9140 kvm_get_dr(vcpu, 6, &val);
9141 put_smstate(u32, buf, 0x7fcc, (u32)val);
9142 kvm_get_dr(vcpu, 7, &val);
9143 put_smstate(u32, buf, 0x7fc8, (u32)val);
9144
9145 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9146 put_smstate(u32, buf, 0x7fc4, seg.selector);
9147 put_smstate(u32, buf, 0x7f64, seg.base);
9148 put_smstate(u32, buf, 0x7f60, seg.limit);
9149 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9150
9151 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9152 put_smstate(u32, buf, 0x7fc0, seg.selector);
9153 put_smstate(u32, buf, 0x7f80, seg.base);
9154 put_smstate(u32, buf, 0x7f7c, seg.limit);
9155 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9156
9157 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9158 put_smstate(u32, buf, 0x7f74, dt.address);
9159 put_smstate(u32, buf, 0x7f70, dt.size);
9160
9161 static_call(kvm_x86_get_idt)(vcpu, &dt);
9162 put_smstate(u32, buf, 0x7f58, dt.address);
9163 put_smstate(u32, buf, 0x7f54, dt.size);
9164
9165 for (i = 0; i < 6; i++)
9166 enter_smm_save_seg_32(vcpu, buf, i);
9167
9168 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9169
9170 /* revision id */
9171 put_smstate(u32, buf, 0x7efc, 0x00020000);
9172 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9173 }
9174
9175 #ifdef CONFIG_X86_64
9176 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9177 {
9178 struct desc_ptr dt;
9179 struct kvm_segment seg;
9180 unsigned long val;
9181 int i;
9182
9183 for (i = 0; i < 16; i++)
9184 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9185
9186 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9187 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9188
9189 kvm_get_dr(vcpu, 6, &val);
9190 put_smstate(u64, buf, 0x7f68, val);
9191 kvm_get_dr(vcpu, 7, &val);
9192 put_smstate(u64, buf, 0x7f60, val);
9193
9194 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9195 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9196 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9197
9198 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9199
9200 /* revision id */
9201 put_smstate(u32, buf, 0x7efc, 0x00020064);
9202
9203 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9204
9205 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9206 put_smstate(u16, buf, 0x7e90, seg.selector);
9207 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9208 put_smstate(u32, buf, 0x7e94, seg.limit);
9209 put_smstate(u64, buf, 0x7e98, seg.base);
9210
9211 static_call(kvm_x86_get_idt)(vcpu, &dt);
9212 put_smstate(u32, buf, 0x7e84, dt.size);
9213 put_smstate(u64, buf, 0x7e88, dt.address);
9214
9215 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9216 put_smstate(u16, buf, 0x7e70, seg.selector);
9217 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9218 put_smstate(u32, buf, 0x7e74, seg.limit);
9219 put_smstate(u64, buf, 0x7e78, seg.base);
9220
9221 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9222 put_smstate(u32, buf, 0x7e64, dt.size);
9223 put_smstate(u64, buf, 0x7e68, dt.address);
9224
9225 for (i = 0; i < 6; i++)
9226 enter_smm_save_seg_64(vcpu, buf, i);
9227 }
9228 #endif
9229
9230 static void enter_smm(struct kvm_vcpu *vcpu)
9231 {
9232 struct kvm_segment cs, ds;
9233 struct desc_ptr dt;
9234 unsigned long cr0;
9235 char buf[512];
9236
9237 memset(buf, 0, 512);
9238 #ifdef CONFIG_X86_64
9239 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9240 enter_smm_save_state_64(vcpu, buf);
9241 else
9242 #endif
9243 enter_smm_save_state_32(vcpu, buf);
9244
9245 /*
9246 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9247 * state (e.g. leave guest mode) after we've saved the state into the
9248 * SMM state-save area.
9249 */
9250 static_call(kvm_x86_enter_smm)(vcpu, buf);
9251
9252 kvm_smm_changed(vcpu, true);
9253 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9254
9255 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9256 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9257 else
9258 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9259
9260 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9261 kvm_rip_write(vcpu, 0x8000);
9262
9263 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9264 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9265 vcpu->arch.cr0 = cr0;
9266
9267 static_call(kvm_x86_set_cr4)(vcpu, 0);
9268
9269 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9270 dt.address = dt.size = 0;
9271 static_call(kvm_x86_set_idt)(vcpu, &dt);
9272
9273 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9274
9275 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9276 cs.base = vcpu->arch.smbase;
9277
9278 ds.selector = 0;
9279 ds.base = 0;
9280
9281 cs.limit = ds.limit = 0xffffffff;
9282 cs.type = ds.type = 0x3;
9283 cs.dpl = ds.dpl = 0;
9284 cs.db = ds.db = 0;
9285 cs.s = ds.s = 1;
9286 cs.l = ds.l = 0;
9287 cs.g = ds.g = 1;
9288 cs.avl = ds.avl = 0;
9289 cs.present = ds.present = 1;
9290 cs.unusable = ds.unusable = 0;
9291 cs.padding = ds.padding = 0;
9292
9293 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9294 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9295 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9296 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9297 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9298 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9299
9300 #ifdef CONFIG_X86_64
9301 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9302 static_call(kvm_x86_set_efer)(vcpu, 0);
9303 #endif
9304
9305 kvm_update_cpuid_runtime(vcpu);
9306 kvm_mmu_reset_context(vcpu);
9307 }
9308
9309 static void process_smi(struct kvm_vcpu *vcpu)
9310 {
9311 vcpu->arch.smi_pending = true;
9312 kvm_make_request(KVM_REQ_EVENT, vcpu);
9313 }
9314
9315 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9316 unsigned long *vcpu_bitmap)
9317 {
9318 cpumask_var_t cpus;
9319
9320 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9321
9322 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9323 NULL, vcpu_bitmap, cpus);
9324
9325 free_cpumask_var(cpus);
9326 }
9327
9328 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9329 {
9330 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9331 }
9332
9333 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9334 {
9335 bool activate;
9336
9337 if (!lapic_in_kernel(vcpu))
9338 return;
9339
9340 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9341
9342 activate = kvm_apicv_activated(vcpu->kvm);
9343 if (vcpu->arch.apicv_active == activate)
9344 goto out;
9345
9346 vcpu->arch.apicv_active = activate;
9347 kvm_apic_update_apicv(vcpu);
9348 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9349
9350 /*
9351 * When APICv gets disabled, we may still have injected interrupts
9352 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9353 * still active when the interrupt got accepted. Make sure
9354 * inject_pending_event() is called to check for that.
9355 */
9356 if (!vcpu->arch.apicv_active)
9357 kvm_make_request(KVM_REQ_EVENT, vcpu);
9358
9359 out:
9360 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9361 }
9362 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9363
9364 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9365 {
9366 unsigned long old, new;
9367
9368 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9369 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9370 return;
9371
9372 old = new = kvm->arch.apicv_inhibit_reasons;
9373
9374 if (activate)
9375 __clear_bit(bit, &new);
9376 else
9377 __set_bit(bit, &new);
9378
9379 if (!!old != !!new) {
9380 trace_kvm_apicv_update_request(activate, bit);
9381 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9382 kvm->arch.apicv_inhibit_reasons = new;
9383 if (new) {
9384 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9385 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9386 }
9387 } else
9388 kvm->arch.apicv_inhibit_reasons = new;
9389 }
9390 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9391
9392 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9393 {
9394 mutex_lock(&kvm->arch.apicv_update_lock);
9395 __kvm_request_apicv_update(kvm, activate, bit);
9396 mutex_unlock(&kvm->arch.apicv_update_lock);
9397 }
9398 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9399
9400 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9401 {
9402 if (!kvm_apic_present(vcpu))
9403 return;
9404
9405 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9406
9407 if (irqchip_split(vcpu->kvm))
9408 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9409 else {
9410 if (vcpu->arch.apicv_active)
9411 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9412 if (ioapic_in_kernel(vcpu->kvm))
9413 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9414 }
9415
9416 if (is_guest_mode(vcpu))
9417 vcpu->arch.load_eoi_exitmap_pending = true;
9418 else
9419 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9420 }
9421
9422 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9423 {
9424 u64 eoi_exit_bitmap[4];
9425
9426 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9427 return;
9428
9429 if (to_hv_vcpu(vcpu))
9430 bitmap_or((ulong *)eoi_exit_bitmap,
9431 vcpu->arch.ioapic_handled_vectors,
9432 to_hv_synic(vcpu)->vec_bitmap, 256);
9433
9434 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9435 }
9436
9437 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9438 unsigned long start, unsigned long end)
9439 {
9440 unsigned long apic_address;
9441
9442 /*
9443 * The physical address of apic access page is stored in the VMCS.
9444 * Update it when it becomes invalid.
9445 */
9446 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9447 if (start <= apic_address && apic_address < end)
9448 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9449 }
9450
9451 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9452 {
9453 if (!lapic_in_kernel(vcpu))
9454 return;
9455
9456 if (!kvm_x86_ops.set_apic_access_page_addr)
9457 return;
9458
9459 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9460 }
9461
9462 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9463 {
9464 smp_send_reschedule(vcpu->cpu);
9465 }
9466 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9467
9468 /*
9469 * Returns 1 to let vcpu_run() continue the guest execution loop without
9470 * exiting to the userspace. Otherwise, the value will be returned to the
9471 * userspace.
9472 */
9473 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9474 {
9475 int r;
9476 bool req_int_win =
9477 dm_request_for_irq_injection(vcpu) &&
9478 kvm_cpu_accept_dm_intr(vcpu);
9479 fastpath_t exit_fastpath;
9480
9481 bool req_immediate_exit = false;
9482
9483 /* Forbid vmenter if vcpu dirty ring is soft-full */
9484 if (unlikely(vcpu->kvm->dirty_ring_size &&
9485 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9486 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9487 trace_kvm_dirty_ring_exit(vcpu);
9488 r = 0;
9489 goto out;
9490 }
9491
9492 if (kvm_request_pending(vcpu)) {
9493 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9494 r = -EIO;
9495 goto out;
9496 }
9497 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9498 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9499 r = 0;
9500 goto out;
9501 }
9502 }
9503 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9504 kvm_mmu_unload(vcpu);
9505 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9506 __kvm_migrate_timers(vcpu);
9507 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9508 kvm_gen_update_masterclock(vcpu->kvm);
9509 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9510 kvm_gen_kvmclock_update(vcpu);
9511 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9512 r = kvm_guest_time_update(vcpu);
9513 if (unlikely(r))
9514 goto out;
9515 }
9516 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9517 kvm_mmu_sync_roots(vcpu);
9518 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9519 kvm_mmu_load_pgd(vcpu);
9520 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9521 kvm_vcpu_flush_tlb_all(vcpu);
9522
9523 /* Flushing all ASIDs flushes the current ASID... */
9524 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9525 }
9526 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9527 kvm_vcpu_flush_tlb_current(vcpu);
9528 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9529 kvm_vcpu_flush_tlb_guest(vcpu);
9530
9531 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9532 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9533 r = 0;
9534 goto out;
9535 }
9536 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9537 if (is_guest_mode(vcpu)) {
9538 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9539 } else {
9540 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9541 vcpu->mmio_needed = 0;
9542 r = 0;
9543 goto out;
9544 }
9545 }
9546 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9547 /* Page is swapped out. Do synthetic halt */
9548 vcpu->arch.apf.halted = true;
9549 r = 1;
9550 goto out;
9551 }
9552 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9553 record_steal_time(vcpu);
9554 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9555 process_smi(vcpu);
9556 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9557 process_nmi(vcpu);
9558 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9559 kvm_pmu_handle_event(vcpu);
9560 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9561 kvm_pmu_deliver_pmi(vcpu);
9562 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9563 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9564 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9565 vcpu->arch.ioapic_handled_vectors)) {
9566 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9567 vcpu->run->eoi.vector =
9568 vcpu->arch.pending_ioapic_eoi;
9569 r = 0;
9570 goto out;
9571 }
9572 }
9573 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9574 vcpu_scan_ioapic(vcpu);
9575 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9576 vcpu_load_eoi_exitmap(vcpu);
9577 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9578 kvm_vcpu_reload_apic_access_page(vcpu);
9579 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9580 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9581 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9582 r = 0;
9583 goto out;
9584 }
9585 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9586 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9587 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9588 r = 0;
9589 goto out;
9590 }
9591 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9592 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9593
9594 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9595 vcpu->run->hyperv = hv_vcpu->exit;
9596 r = 0;
9597 goto out;
9598 }
9599
9600 /*
9601 * KVM_REQ_HV_STIMER has to be processed after
9602 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9603 * depend on the guest clock being up-to-date
9604 */
9605 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9606 kvm_hv_process_stimers(vcpu);
9607 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9608 kvm_vcpu_update_apicv(vcpu);
9609 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9610 kvm_check_async_pf_completion(vcpu);
9611 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9612 static_call(kvm_x86_msr_filter_changed)(vcpu);
9613
9614 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9615 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9616 }
9617
9618 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9619 kvm_xen_has_interrupt(vcpu)) {
9620 ++vcpu->stat.req_event;
9621 r = kvm_apic_accept_events(vcpu);
9622 if (r < 0) {
9623 r = 0;
9624 goto out;
9625 }
9626 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9627 r = 1;
9628 goto out;
9629 }
9630
9631 r = inject_pending_event(vcpu, &req_immediate_exit);
9632 if (r < 0) {
9633 r = 0;
9634 goto out;
9635 }
9636 if (req_int_win)
9637 static_call(kvm_x86_enable_irq_window)(vcpu);
9638
9639 if (kvm_lapic_enabled(vcpu)) {
9640 update_cr8_intercept(vcpu);
9641 kvm_lapic_sync_to_vapic(vcpu);
9642 }
9643 }
9644
9645 r = kvm_mmu_reload(vcpu);
9646 if (unlikely(r)) {
9647 goto cancel_injection;
9648 }
9649
9650 preempt_disable();
9651
9652 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9653
9654 /*
9655 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9656 * IPI are then delayed after guest entry, which ensures that they
9657 * result in virtual interrupt delivery.
9658 */
9659 local_irq_disable();
9660 vcpu->mode = IN_GUEST_MODE;
9661
9662 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9663
9664 /*
9665 * 1) We should set ->mode before checking ->requests. Please see
9666 * the comment in kvm_vcpu_exiting_guest_mode().
9667 *
9668 * 2) For APICv, we should set ->mode before checking PID.ON. This
9669 * pairs with the memory barrier implicit in pi_test_and_set_on
9670 * (see vmx_deliver_posted_interrupt).
9671 *
9672 * 3) This also orders the write to mode from any reads to the page
9673 * tables done while the VCPU is running. Please see the comment
9674 * in kvm_flush_remote_tlbs.
9675 */
9676 smp_mb__after_srcu_read_unlock();
9677
9678 /*
9679 * This handles the case where a posted interrupt was
9680 * notified with kvm_vcpu_kick.
9681 */
9682 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9683 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9684
9685 if (kvm_vcpu_exit_request(vcpu)) {
9686 vcpu->mode = OUTSIDE_GUEST_MODE;
9687 smp_wmb();
9688 local_irq_enable();
9689 preempt_enable();
9690 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9691 r = 1;
9692 goto cancel_injection;
9693 }
9694
9695 if (req_immediate_exit) {
9696 kvm_make_request(KVM_REQ_EVENT, vcpu);
9697 static_call(kvm_x86_request_immediate_exit)(vcpu);
9698 }
9699
9700 fpregs_assert_state_consistent();
9701 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9702 switch_fpu_return();
9703
9704 if (unlikely(vcpu->arch.switch_db_regs)) {
9705 set_debugreg(0, 7);
9706 set_debugreg(vcpu->arch.eff_db[0], 0);
9707 set_debugreg(vcpu->arch.eff_db[1], 1);
9708 set_debugreg(vcpu->arch.eff_db[2], 2);
9709 set_debugreg(vcpu->arch.eff_db[3], 3);
9710 } else if (unlikely(hw_breakpoint_active())) {
9711 set_debugreg(0, 7);
9712 }
9713
9714 for (;;) {
9715 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9716 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9717 break;
9718
9719 if (vcpu->arch.apicv_active)
9720 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9721
9722 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9723 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9724 break;
9725 }
9726 }
9727
9728 /*
9729 * Do this here before restoring debug registers on the host. And
9730 * since we do this before handling the vmexit, a DR access vmexit
9731 * can (a) read the correct value of the debug registers, (b) set
9732 * KVM_DEBUGREG_WONT_EXIT again.
9733 */
9734 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9735 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9736 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9737 kvm_update_dr0123(vcpu);
9738 kvm_update_dr7(vcpu);
9739 }
9740
9741 /*
9742 * If the guest has used debug registers, at least dr7
9743 * will be disabled while returning to the host.
9744 * If we don't have active breakpoints in the host, we don't
9745 * care about the messed up debug address registers. But if
9746 * we have some of them active, restore the old state.
9747 */
9748 if (hw_breakpoint_active())
9749 hw_breakpoint_restore();
9750
9751 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9752 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9753
9754 vcpu->mode = OUTSIDE_GUEST_MODE;
9755 smp_wmb();
9756
9757 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9758
9759 /*
9760 * Consume any pending interrupts, including the possible source of
9761 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9762 * An instruction is required after local_irq_enable() to fully unblock
9763 * interrupts on processors that implement an interrupt shadow, the
9764 * stat.exits increment will do nicely.
9765 */
9766 kvm_before_interrupt(vcpu);
9767 local_irq_enable();
9768 ++vcpu->stat.exits;
9769 local_irq_disable();
9770 kvm_after_interrupt(vcpu);
9771
9772 /*
9773 * Wait until after servicing IRQs to account guest time so that any
9774 * ticks that occurred while running the guest are properly accounted
9775 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9776 * of accounting via context tracking, but the loss of accuracy is
9777 * acceptable for all known use cases.
9778 */
9779 vtime_account_guest_exit();
9780
9781 if (lapic_in_kernel(vcpu)) {
9782 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9783 if (delta != S64_MIN) {
9784 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9785 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9786 }
9787 }
9788
9789 local_irq_enable();
9790 preempt_enable();
9791
9792 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9793
9794 /*
9795 * Profile KVM exit RIPs:
9796 */
9797 if (unlikely(prof_on == KVM_PROFILING)) {
9798 unsigned long rip = kvm_rip_read(vcpu);
9799 profile_hit(KVM_PROFILING, (void *)rip);
9800 }
9801
9802 if (unlikely(vcpu->arch.tsc_always_catchup))
9803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9804
9805 if (vcpu->arch.apic_attention)
9806 kvm_lapic_sync_from_vapic(vcpu);
9807
9808 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9809 return r;
9810
9811 cancel_injection:
9812 if (req_immediate_exit)
9813 kvm_make_request(KVM_REQ_EVENT, vcpu);
9814 static_call(kvm_x86_cancel_injection)(vcpu);
9815 if (unlikely(vcpu->arch.apic_attention))
9816 kvm_lapic_sync_from_vapic(vcpu);
9817 out:
9818 return r;
9819 }
9820
9821 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9822 {
9823 if (!kvm_arch_vcpu_runnable(vcpu) &&
9824 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9825 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9826 kvm_vcpu_block(vcpu);
9827 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9828
9829 if (kvm_x86_ops.post_block)
9830 static_call(kvm_x86_post_block)(vcpu);
9831
9832 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9833 return 1;
9834 }
9835
9836 if (kvm_apic_accept_events(vcpu) < 0)
9837 return 0;
9838 switch(vcpu->arch.mp_state) {
9839 case KVM_MP_STATE_HALTED:
9840 case KVM_MP_STATE_AP_RESET_HOLD:
9841 vcpu->arch.pv.pv_unhalted = false;
9842 vcpu->arch.mp_state =
9843 KVM_MP_STATE_RUNNABLE;
9844 fallthrough;
9845 case KVM_MP_STATE_RUNNABLE:
9846 vcpu->arch.apf.halted = false;
9847 break;
9848 case KVM_MP_STATE_INIT_RECEIVED:
9849 break;
9850 default:
9851 return -EINTR;
9852 }
9853 return 1;
9854 }
9855
9856 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9857 {
9858 if (is_guest_mode(vcpu))
9859 kvm_check_nested_events(vcpu);
9860
9861 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9862 !vcpu->arch.apf.halted);
9863 }
9864
9865 static int vcpu_run(struct kvm_vcpu *vcpu)
9866 {
9867 int r;
9868 struct kvm *kvm = vcpu->kvm;
9869
9870 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9871 vcpu->arch.l1tf_flush_l1d = true;
9872
9873 for (;;) {
9874 if (kvm_vcpu_running(vcpu)) {
9875 r = vcpu_enter_guest(vcpu);
9876 } else {
9877 r = vcpu_block(kvm, vcpu);
9878 }
9879
9880 if (r <= 0)
9881 break;
9882
9883 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9884 if (kvm_cpu_has_pending_timer(vcpu))
9885 kvm_inject_pending_timer_irqs(vcpu);
9886
9887 if (dm_request_for_irq_injection(vcpu) &&
9888 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9889 r = 0;
9890 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9891 ++vcpu->stat.request_irq_exits;
9892 break;
9893 }
9894
9895 if (__xfer_to_guest_mode_work_pending()) {
9896 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9897 r = xfer_to_guest_mode_handle_work(vcpu);
9898 if (r)
9899 return r;
9900 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9901 }
9902 }
9903
9904 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9905
9906 return r;
9907 }
9908
9909 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9910 {
9911 int r;
9912
9913 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9914 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9915 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9916 return r;
9917 }
9918
9919 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9920 {
9921 BUG_ON(!vcpu->arch.pio.count);
9922
9923 return complete_emulated_io(vcpu);
9924 }
9925
9926 /*
9927 * Implements the following, as a state machine:
9928 *
9929 * read:
9930 * for each fragment
9931 * for each mmio piece in the fragment
9932 * write gpa, len
9933 * exit
9934 * copy data
9935 * execute insn
9936 *
9937 * write:
9938 * for each fragment
9939 * for each mmio piece in the fragment
9940 * write gpa, len
9941 * copy data
9942 * exit
9943 */
9944 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9945 {
9946 struct kvm_run *run = vcpu->run;
9947 struct kvm_mmio_fragment *frag;
9948 unsigned len;
9949
9950 BUG_ON(!vcpu->mmio_needed);
9951
9952 /* Complete previous fragment */
9953 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9954 len = min(8u, frag->len);
9955 if (!vcpu->mmio_is_write)
9956 memcpy(frag->data, run->mmio.data, len);
9957
9958 if (frag->len <= 8) {
9959 /* Switch to the next fragment. */
9960 frag++;
9961 vcpu->mmio_cur_fragment++;
9962 } else {
9963 /* Go forward to the next mmio piece. */
9964 frag->data += len;
9965 frag->gpa += len;
9966 frag->len -= len;
9967 }
9968
9969 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9970 vcpu->mmio_needed = 0;
9971
9972 /* FIXME: return into emulator if single-stepping. */
9973 if (vcpu->mmio_is_write)
9974 return 1;
9975 vcpu->mmio_read_completed = 1;
9976 return complete_emulated_io(vcpu);
9977 }
9978
9979 run->exit_reason = KVM_EXIT_MMIO;
9980 run->mmio.phys_addr = frag->gpa;
9981 if (vcpu->mmio_is_write)
9982 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9983 run->mmio.len = min(8u, frag->len);
9984 run->mmio.is_write = vcpu->mmio_is_write;
9985 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9986 return 0;
9987 }
9988
9989 static void kvm_save_current_fpu(struct fpu *fpu)
9990 {
9991 /*
9992 * If the target FPU state is not resident in the CPU registers, just
9993 * memcpy() from current, else save CPU state directly to the target.
9994 */
9995 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9996 memcpy(&fpu->state, &current->thread.fpu.state,
9997 fpu_kernel_xstate_size);
9998 else
9999 save_fpregs_to_fpstate(fpu);
10000 }
10001
10002 /* Swap (qemu) user FPU context for the guest FPU context. */
10003 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10004 {
10005 fpregs_lock();
10006
10007 kvm_save_current_fpu(vcpu->arch.user_fpu);
10008
10009 /*
10010 * Guests with protected state can't have it set by the hypervisor,
10011 * so skip trying to set it.
10012 */
10013 if (vcpu->arch.guest_fpu)
10014 /* PKRU is separately restored in kvm_x86_ops.run. */
10015 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10016 ~XFEATURE_MASK_PKRU);
10017
10018 fpregs_mark_activate();
10019 fpregs_unlock();
10020
10021 trace_kvm_fpu(1);
10022 }
10023
10024 /* When vcpu_run ends, restore user space FPU context. */
10025 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10026 {
10027 fpregs_lock();
10028
10029 /*
10030 * Guests with protected state can't have it read by the hypervisor,
10031 * so skip trying to save it.
10032 */
10033 if (vcpu->arch.guest_fpu)
10034 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10035
10036 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10037
10038 fpregs_mark_activate();
10039 fpregs_unlock();
10040
10041 ++vcpu->stat.fpu_reload;
10042 trace_kvm_fpu(0);
10043 }
10044
10045 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10046 {
10047 struct kvm_run *kvm_run = vcpu->run;
10048 int r;
10049
10050 vcpu_load(vcpu);
10051 kvm_sigset_activate(vcpu);
10052 kvm_run->flags = 0;
10053 kvm_load_guest_fpu(vcpu);
10054
10055 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10056 if (kvm_run->immediate_exit) {
10057 r = -EINTR;
10058 goto out;
10059 }
10060 kvm_vcpu_block(vcpu);
10061 if (kvm_apic_accept_events(vcpu) < 0) {
10062 r = 0;
10063 goto out;
10064 }
10065 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10066 r = -EAGAIN;
10067 if (signal_pending(current)) {
10068 r = -EINTR;
10069 kvm_run->exit_reason = KVM_EXIT_INTR;
10070 ++vcpu->stat.signal_exits;
10071 }
10072 goto out;
10073 }
10074
10075 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10076 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10077 r = -EINVAL;
10078 goto out;
10079 }
10080
10081 if (kvm_run->kvm_dirty_regs) {
10082 r = sync_regs(vcpu);
10083 if (r != 0)
10084 goto out;
10085 }
10086
10087 /* re-sync apic's tpr */
10088 if (!lapic_in_kernel(vcpu)) {
10089 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10090 r = -EINVAL;
10091 goto out;
10092 }
10093 }
10094
10095 if (unlikely(vcpu->arch.complete_userspace_io)) {
10096 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10097 vcpu->arch.complete_userspace_io = NULL;
10098 r = cui(vcpu);
10099 if (r <= 0)
10100 goto out;
10101 } else
10102 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10103
10104 if (kvm_run->immediate_exit)
10105 r = -EINTR;
10106 else
10107 r = vcpu_run(vcpu);
10108
10109 out:
10110 kvm_put_guest_fpu(vcpu);
10111 if (kvm_run->kvm_valid_regs)
10112 store_regs(vcpu);
10113 post_kvm_run_save(vcpu);
10114 kvm_sigset_deactivate(vcpu);
10115
10116 vcpu_put(vcpu);
10117 return r;
10118 }
10119
10120 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10121 {
10122 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10123 /*
10124 * We are here if userspace calls get_regs() in the middle of
10125 * instruction emulation. Registers state needs to be copied
10126 * back from emulation context to vcpu. Userspace shouldn't do
10127 * that usually, but some bad designed PV devices (vmware
10128 * backdoor interface) need this to work
10129 */
10130 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10131 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10132 }
10133 regs->rax = kvm_rax_read(vcpu);
10134 regs->rbx = kvm_rbx_read(vcpu);
10135 regs->rcx = kvm_rcx_read(vcpu);
10136 regs->rdx = kvm_rdx_read(vcpu);
10137 regs->rsi = kvm_rsi_read(vcpu);
10138 regs->rdi = kvm_rdi_read(vcpu);
10139 regs->rsp = kvm_rsp_read(vcpu);
10140 regs->rbp = kvm_rbp_read(vcpu);
10141 #ifdef CONFIG_X86_64
10142 regs->r8 = kvm_r8_read(vcpu);
10143 regs->r9 = kvm_r9_read(vcpu);
10144 regs->r10 = kvm_r10_read(vcpu);
10145 regs->r11 = kvm_r11_read(vcpu);
10146 regs->r12 = kvm_r12_read(vcpu);
10147 regs->r13 = kvm_r13_read(vcpu);
10148 regs->r14 = kvm_r14_read(vcpu);
10149 regs->r15 = kvm_r15_read(vcpu);
10150 #endif
10151
10152 regs->rip = kvm_rip_read(vcpu);
10153 regs->rflags = kvm_get_rflags(vcpu);
10154 }
10155
10156 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10157 {
10158 vcpu_load(vcpu);
10159 __get_regs(vcpu, regs);
10160 vcpu_put(vcpu);
10161 return 0;
10162 }
10163
10164 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10165 {
10166 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10167 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10168
10169 kvm_rax_write(vcpu, regs->rax);
10170 kvm_rbx_write(vcpu, regs->rbx);
10171 kvm_rcx_write(vcpu, regs->rcx);
10172 kvm_rdx_write(vcpu, regs->rdx);
10173 kvm_rsi_write(vcpu, regs->rsi);
10174 kvm_rdi_write(vcpu, regs->rdi);
10175 kvm_rsp_write(vcpu, regs->rsp);
10176 kvm_rbp_write(vcpu, regs->rbp);
10177 #ifdef CONFIG_X86_64
10178 kvm_r8_write(vcpu, regs->r8);
10179 kvm_r9_write(vcpu, regs->r9);
10180 kvm_r10_write(vcpu, regs->r10);
10181 kvm_r11_write(vcpu, regs->r11);
10182 kvm_r12_write(vcpu, regs->r12);
10183 kvm_r13_write(vcpu, regs->r13);
10184 kvm_r14_write(vcpu, regs->r14);
10185 kvm_r15_write(vcpu, regs->r15);
10186 #endif
10187
10188 kvm_rip_write(vcpu, regs->rip);
10189 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10190
10191 vcpu->arch.exception.pending = false;
10192
10193 kvm_make_request(KVM_REQ_EVENT, vcpu);
10194 }
10195
10196 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10197 {
10198 vcpu_load(vcpu);
10199 __set_regs(vcpu, regs);
10200 vcpu_put(vcpu);
10201 return 0;
10202 }
10203
10204 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10205 {
10206 struct kvm_segment cs;
10207
10208 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10209 *db = cs.db;
10210 *l = cs.l;
10211 }
10212 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10213
10214 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10215 {
10216 struct desc_ptr dt;
10217
10218 if (vcpu->arch.guest_state_protected)
10219 goto skip_protected_regs;
10220
10221 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10222 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10223 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10224 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10225 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10226 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10227
10228 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10229 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10230
10231 static_call(kvm_x86_get_idt)(vcpu, &dt);
10232 sregs->idt.limit = dt.size;
10233 sregs->idt.base = dt.address;
10234 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10235 sregs->gdt.limit = dt.size;
10236 sregs->gdt.base = dt.address;
10237
10238 sregs->cr2 = vcpu->arch.cr2;
10239 sregs->cr3 = kvm_read_cr3(vcpu);
10240
10241 skip_protected_regs:
10242 sregs->cr0 = kvm_read_cr0(vcpu);
10243 sregs->cr4 = kvm_read_cr4(vcpu);
10244 sregs->cr8 = kvm_get_cr8(vcpu);
10245 sregs->efer = vcpu->arch.efer;
10246 sregs->apic_base = kvm_get_apic_base(vcpu);
10247 }
10248
10249 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10250 {
10251 __get_sregs_common(vcpu, sregs);
10252
10253 if (vcpu->arch.guest_state_protected)
10254 return;
10255
10256 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10257 set_bit(vcpu->arch.interrupt.nr,
10258 (unsigned long *)sregs->interrupt_bitmap);
10259 }
10260
10261 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10262 {
10263 int i;
10264
10265 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10266
10267 if (vcpu->arch.guest_state_protected)
10268 return;
10269
10270 if (is_pae_paging(vcpu)) {
10271 for (i = 0 ; i < 4 ; i++)
10272 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10273 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10274 }
10275 }
10276
10277 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10278 struct kvm_sregs *sregs)
10279 {
10280 vcpu_load(vcpu);
10281 __get_sregs(vcpu, sregs);
10282 vcpu_put(vcpu);
10283 return 0;
10284 }
10285
10286 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10287 struct kvm_mp_state *mp_state)
10288 {
10289 int r;
10290
10291 vcpu_load(vcpu);
10292 if (kvm_mpx_supported())
10293 kvm_load_guest_fpu(vcpu);
10294
10295 r = kvm_apic_accept_events(vcpu);
10296 if (r < 0)
10297 goto out;
10298 r = 0;
10299
10300 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10301 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10302 vcpu->arch.pv.pv_unhalted)
10303 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10304 else
10305 mp_state->mp_state = vcpu->arch.mp_state;
10306
10307 out:
10308 if (kvm_mpx_supported())
10309 kvm_put_guest_fpu(vcpu);
10310 vcpu_put(vcpu);
10311 return r;
10312 }
10313
10314 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10315 struct kvm_mp_state *mp_state)
10316 {
10317 int ret = -EINVAL;
10318
10319 vcpu_load(vcpu);
10320
10321 if (!lapic_in_kernel(vcpu) &&
10322 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10323 goto out;
10324
10325 /*
10326 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10327 * INIT state; latched init should be reported using
10328 * KVM_SET_VCPU_EVENTS, so reject it here.
10329 */
10330 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10331 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10332 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10333 goto out;
10334
10335 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10336 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10337 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10338 } else
10339 vcpu->arch.mp_state = mp_state->mp_state;
10340 kvm_make_request(KVM_REQ_EVENT, vcpu);
10341
10342 ret = 0;
10343 out:
10344 vcpu_put(vcpu);
10345 return ret;
10346 }
10347
10348 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10349 int reason, bool has_error_code, u32 error_code)
10350 {
10351 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10352 int ret;
10353
10354 init_emulate_ctxt(vcpu);
10355
10356 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10357 has_error_code, error_code);
10358 if (ret) {
10359 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10360 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10361 vcpu->run->internal.ndata = 0;
10362 return 0;
10363 }
10364
10365 kvm_rip_write(vcpu, ctxt->eip);
10366 kvm_set_rflags(vcpu, ctxt->eflags);
10367 return 1;
10368 }
10369 EXPORT_SYMBOL_GPL(kvm_task_switch);
10370
10371 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10372 {
10373 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10374 /*
10375 * When EFER.LME and CR0.PG are set, the processor is in
10376 * 64-bit mode (though maybe in a 32-bit code segment).
10377 * CR4.PAE and EFER.LMA must be set.
10378 */
10379 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10380 return false;
10381 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10382 return false;
10383 } else {
10384 /*
10385 * Not in 64-bit mode: EFER.LMA is clear and the code
10386 * segment cannot be 64-bit.
10387 */
10388 if (sregs->efer & EFER_LMA || sregs->cs.l)
10389 return false;
10390 }
10391
10392 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10393 }
10394
10395 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10396 int *mmu_reset_needed, bool update_pdptrs)
10397 {
10398 struct msr_data apic_base_msr;
10399 int idx;
10400 struct desc_ptr dt;
10401
10402 if (!kvm_is_valid_sregs(vcpu, sregs))
10403 return -EINVAL;
10404
10405 apic_base_msr.data = sregs->apic_base;
10406 apic_base_msr.host_initiated = true;
10407 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10408 return -EINVAL;
10409
10410 if (vcpu->arch.guest_state_protected)
10411 return 0;
10412
10413 dt.size = sregs->idt.limit;
10414 dt.address = sregs->idt.base;
10415 static_call(kvm_x86_set_idt)(vcpu, &dt);
10416 dt.size = sregs->gdt.limit;
10417 dt.address = sregs->gdt.base;
10418 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10419
10420 vcpu->arch.cr2 = sregs->cr2;
10421 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10422 vcpu->arch.cr3 = sregs->cr3;
10423 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10424
10425 kvm_set_cr8(vcpu, sregs->cr8);
10426
10427 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10428 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10429
10430 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10431 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10432 vcpu->arch.cr0 = sregs->cr0;
10433
10434 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10435 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10436
10437 if (update_pdptrs) {
10438 idx = srcu_read_lock(&vcpu->kvm->srcu);
10439 if (is_pae_paging(vcpu)) {
10440 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10441 *mmu_reset_needed = 1;
10442 }
10443 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10444 }
10445
10446 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10447 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10448 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10449 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10450 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10451 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10452
10453 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10454 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10455
10456 update_cr8_intercept(vcpu);
10457
10458 /* Older userspace won't unhalt the vcpu on reset. */
10459 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10460 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10461 !is_protmode(vcpu))
10462 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10463
10464 return 0;
10465 }
10466
10467 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10468 {
10469 int pending_vec, max_bits;
10470 int mmu_reset_needed = 0;
10471 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10472
10473 if (ret)
10474 return ret;
10475
10476 if (mmu_reset_needed)
10477 kvm_mmu_reset_context(vcpu);
10478
10479 max_bits = KVM_NR_INTERRUPTS;
10480 pending_vec = find_first_bit(
10481 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10482
10483 if (pending_vec < max_bits) {
10484 kvm_queue_interrupt(vcpu, pending_vec, false);
10485 pr_debug("Set back pending irq %d\n", pending_vec);
10486 kvm_make_request(KVM_REQ_EVENT, vcpu);
10487 }
10488 return 0;
10489 }
10490
10491 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10492 {
10493 int mmu_reset_needed = 0;
10494 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10495 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10496 !(sregs2->efer & EFER_LMA);
10497 int i, ret;
10498
10499 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10500 return -EINVAL;
10501
10502 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10503 return -EINVAL;
10504
10505 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10506 &mmu_reset_needed, !valid_pdptrs);
10507 if (ret)
10508 return ret;
10509
10510 if (valid_pdptrs) {
10511 for (i = 0; i < 4 ; i++)
10512 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10513
10514 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10515 mmu_reset_needed = 1;
10516 vcpu->arch.pdptrs_from_userspace = true;
10517 }
10518 if (mmu_reset_needed)
10519 kvm_mmu_reset_context(vcpu);
10520 return 0;
10521 }
10522
10523 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10524 struct kvm_sregs *sregs)
10525 {
10526 int ret;
10527
10528 vcpu_load(vcpu);
10529 ret = __set_sregs(vcpu, sregs);
10530 vcpu_put(vcpu);
10531 return ret;
10532 }
10533
10534 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10535 struct kvm_guest_debug *dbg)
10536 {
10537 unsigned long rflags;
10538 int i, r;
10539
10540 if (vcpu->arch.guest_state_protected)
10541 return -EINVAL;
10542
10543 vcpu_load(vcpu);
10544
10545 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10546 r = -EBUSY;
10547 if (vcpu->arch.exception.pending)
10548 goto out;
10549 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10550 kvm_queue_exception(vcpu, DB_VECTOR);
10551 else
10552 kvm_queue_exception(vcpu, BP_VECTOR);
10553 }
10554
10555 /*
10556 * Read rflags as long as potentially injected trace flags are still
10557 * filtered out.
10558 */
10559 rflags = kvm_get_rflags(vcpu);
10560
10561 vcpu->guest_debug = dbg->control;
10562 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10563 vcpu->guest_debug = 0;
10564
10565 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10566 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10567 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10568 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10569 } else {
10570 for (i = 0; i < KVM_NR_DB_REGS; i++)
10571 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10572 }
10573 kvm_update_dr7(vcpu);
10574
10575 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10576 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10577
10578 /*
10579 * Trigger an rflags update that will inject or remove the trace
10580 * flags.
10581 */
10582 kvm_set_rflags(vcpu, rflags);
10583
10584 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10585
10586 r = 0;
10587
10588 out:
10589 vcpu_put(vcpu);
10590 return r;
10591 }
10592
10593 /*
10594 * Translate a guest virtual address to a guest physical address.
10595 */
10596 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10597 struct kvm_translation *tr)
10598 {
10599 unsigned long vaddr = tr->linear_address;
10600 gpa_t gpa;
10601 int idx;
10602
10603 vcpu_load(vcpu);
10604
10605 idx = srcu_read_lock(&vcpu->kvm->srcu);
10606 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10607 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10608 tr->physical_address = gpa;
10609 tr->valid = gpa != UNMAPPED_GVA;
10610 tr->writeable = 1;
10611 tr->usermode = 0;
10612
10613 vcpu_put(vcpu);
10614 return 0;
10615 }
10616
10617 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10618 {
10619 struct fxregs_state *fxsave;
10620
10621 if (!vcpu->arch.guest_fpu)
10622 return 0;
10623
10624 vcpu_load(vcpu);
10625
10626 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10627 memcpy(fpu->fpr, fxsave->st_space, 128);
10628 fpu->fcw = fxsave->cwd;
10629 fpu->fsw = fxsave->swd;
10630 fpu->ftwx = fxsave->twd;
10631 fpu->last_opcode = fxsave->fop;
10632 fpu->last_ip = fxsave->rip;
10633 fpu->last_dp = fxsave->rdp;
10634 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10635
10636 vcpu_put(vcpu);
10637 return 0;
10638 }
10639
10640 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10641 {
10642 struct fxregs_state *fxsave;
10643
10644 if (!vcpu->arch.guest_fpu)
10645 return 0;
10646
10647 vcpu_load(vcpu);
10648
10649 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10650
10651 memcpy(fxsave->st_space, fpu->fpr, 128);
10652 fxsave->cwd = fpu->fcw;
10653 fxsave->swd = fpu->fsw;
10654 fxsave->twd = fpu->ftwx;
10655 fxsave->fop = fpu->last_opcode;
10656 fxsave->rip = fpu->last_ip;
10657 fxsave->rdp = fpu->last_dp;
10658 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10659
10660 vcpu_put(vcpu);
10661 return 0;
10662 }
10663
10664 static void store_regs(struct kvm_vcpu *vcpu)
10665 {
10666 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10667
10668 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10669 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10670
10671 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10672 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10673
10674 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10675 kvm_vcpu_ioctl_x86_get_vcpu_events(
10676 vcpu, &vcpu->run->s.regs.events);
10677 }
10678
10679 static int sync_regs(struct kvm_vcpu *vcpu)
10680 {
10681 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10682 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10683 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10684 }
10685 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10686 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10687 return -EINVAL;
10688 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10689 }
10690 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10691 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10692 vcpu, &vcpu->run->s.regs.events))
10693 return -EINVAL;
10694 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10695 }
10696
10697 return 0;
10698 }
10699
10700 static void fx_init(struct kvm_vcpu *vcpu)
10701 {
10702 if (!vcpu->arch.guest_fpu)
10703 return;
10704
10705 fpstate_init(&vcpu->arch.guest_fpu->state);
10706 if (boot_cpu_has(X86_FEATURE_XSAVES))
10707 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10708 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10709
10710 /*
10711 * Ensure guest xcr0 is valid for loading
10712 */
10713 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10714
10715 vcpu->arch.cr0 |= X86_CR0_ET;
10716 }
10717
10718 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10719 {
10720 if (vcpu->arch.guest_fpu) {
10721 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10722 vcpu->arch.guest_fpu = NULL;
10723 }
10724 }
10725 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10726
10727 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10728 {
10729 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10730 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10731 "guest TSC will not be reliable\n");
10732
10733 return 0;
10734 }
10735
10736 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10737 {
10738 struct page *page;
10739 int r;
10740
10741 vcpu->arch.last_vmentry_cpu = -1;
10742 vcpu->arch.regs_avail = ~0;
10743 vcpu->arch.regs_dirty = ~0;
10744
10745 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10746 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10747 else
10748 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10749
10750 r = kvm_mmu_create(vcpu);
10751 if (r < 0)
10752 return r;
10753
10754 if (irqchip_in_kernel(vcpu->kvm)) {
10755 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10756 if (r < 0)
10757 goto fail_mmu_destroy;
10758 if (kvm_apicv_activated(vcpu->kvm))
10759 vcpu->arch.apicv_active = true;
10760 } else
10761 static_branch_inc(&kvm_has_noapic_vcpu);
10762
10763 r = -ENOMEM;
10764
10765 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10766 if (!page)
10767 goto fail_free_lapic;
10768 vcpu->arch.pio_data = page_address(page);
10769
10770 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10771 GFP_KERNEL_ACCOUNT);
10772 if (!vcpu->arch.mce_banks)
10773 goto fail_free_pio_data;
10774 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10775
10776 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10777 GFP_KERNEL_ACCOUNT))
10778 goto fail_free_mce_banks;
10779
10780 if (!alloc_emulate_ctxt(vcpu))
10781 goto free_wbinvd_dirty_mask;
10782
10783 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10784 GFP_KERNEL_ACCOUNT);
10785 if (!vcpu->arch.user_fpu) {
10786 pr_err("kvm: failed to allocate userspace's fpu\n");
10787 goto free_emulate_ctxt;
10788 }
10789
10790 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10791 GFP_KERNEL_ACCOUNT);
10792 if (!vcpu->arch.guest_fpu) {
10793 pr_err("kvm: failed to allocate vcpu's fpu\n");
10794 goto free_user_fpu;
10795 }
10796 fx_init(vcpu);
10797
10798 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10799 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10800
10801 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10802
10803 kvm_async_pf_hash_reset(vcpu);
10804 kvm_pmu_init(vcpu);
10805
10806 vcpu->arch.pending_external_vector = -1;
10807 vcpu->arch.preempted_in_kernel = false;
10808
10809 #if IS_ENABLED(CONFIG_HYPERV)
10810 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10811 #endif
10812
10813 r = static_call(kvm_x86_vcpu_create)(vcpu);
10814 if (r)
10815 goto free_guest_fpu;
10816
10817 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10818 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10819 kvm_vcpu_mtrr_init(vcpu);
10820 vcpu_load(vcpu);
10821 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10822 kvm_vcpu_reset(vcpu, false);
10823 kvm_init_mmu(vcpu);
10824 vcpu_put(vcpu);
10825 return 0;
10826
10827 free_guest_fpu:
10828 kvm_free_guest_fpu(vcpu);
10829 free_user_fpu:
10830 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10831 free_emulate_ctxt:
10832 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10833 free_wbinvd_dirty_mask:
10834 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10835 fail_free_mce_banks:
10836 kfree(vcpu->arch.mce_banks);
10837 fail_free_pio_data:
10838 free_page((unsigned long)vcpu->arch.pio_data);
10839 fail_free_lapic:
10840 kvm_free_lapic(vcpu);
10841 fail_mmu_destroy:
10842 kvm_mmu_destroy(vcpu);
10843 return r;
10844 }
10845
10846 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10847 {
10848 struct kvm *kvm = vcpu->kvm;
10849
10850 if (mutex_lock_killable(&vcpu->mutex))
10851 return;
10852 vcpu_load(vcpu);
10853 kvm_synchronize_tsc(vcpu, 0);
10854 vcpu_put(vcpu);
10855
10856 /* poll control enabled by default */
10857 vcpu->arch.msr_kvm_poll_control = 1;
10858
10859 mutex_unlock(&vcpu->mutex);
10860
10861 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10862 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10863 KVMCLOCK_SYNC_PERIOD);
10864 }
10865
10866 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10867 {
10868 int idx;
10869
10870 kvmclock_reset(vcpu);
10871
10872 static_call(kvm_x86_vcpu_free)(vcpu);
10873
10874 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10875 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10876 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10877 kvm_free_guest_fpu(vcpu);
10878
10879 kvm_hv_vcpu_uninit(vcpu);
10880 kvm_pmu_destroy(vcpu);
10881 kfree(vcpu->arch.mce_banks);
10882 kvm_free_lapic(vcpu);
10883 idx = srcu_read_lock(&vcpu->kvm->srcu);
10884 kvm_mmu_destroy(vcpu);
10885 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10886 free_page((unsigned long)vcpu->arch.pio_data);
10887 kvfree(vcpu->arch.cpuid_entries);
10888 if (!lapic_in_kernel(vcpu))
10889 static_branch_dec(&kvm_has_noapic_vcpu);
10890 }
10891
10892 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10893 {
10894 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10895 unsigned long new_cr0;
10896 u32 eax, dummy;
10897
10898 kvm_lapic_reset(vcpu, init_event);
10899
10900 vcpu->arch.hflags = 0;
10901
10902 vcpu->arch.smi_pending = 0;
10903 vcpu->arch.smi_count = 0;
10904 atomic_set(&vcpu->arch.nmi_queued, 0);
10905 vcpu->arch.nmi_pending = 0;
10906 vcpu->arch.nmi_injected = false;
10907 kvm_clear_interrupt_queue(vcpu);
10908 kvm_clear_exception_queue(vcpu);
10909
10910 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10911 kvm_update_dr0123(vcpu);
10912 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10913 vcpu->arch.dr7 = DR7_FIXED_1;
10914 kvm_update_dr7(vcpu);
10915
10916 vcpu->arch.cr2 = 0;
10917
10918 kvm_make_request(KVM_REQ_EVENT, vcpu);
10919 vcpu->arch.apf.msr_en_val = 0;
10920 vcpu->arch.apf.msr_int_val = 0;
10921 vcpu->arch.st.msr_val = 0;
10922
10923 kvmclock_reset(vcpu);
10924
10925 kvm_clear_async_pf_completion_queue(vcpu);
10926 kvm_async_pf_hash_reset(vcpu);
10927 vcpu->arch.apf.halted = false;
10928
10929 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10930 void *mpx_state_buffer;
10931
10932 /*
10933 * To avoid have the INIT path from kvm_apic_has_events() that be
10934 * called with loaded FPU and does not let userspace fix the state.
10935 */
10936 if (init_event)
10937 kvm_put_guest_fpu(vcpu);
10938 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10939 XFEATURE_BNDREGS);
10940 if (mpx_state_buffer)
10941 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10942 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10943 XFEATURE_BNDCSR);
10944 if (mpx_state_buffer)
10945 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10946 if (init_event)
10947 kvm_load_guest_fpu(vcpu);
10948 }
10949
10950 if (!init_event) {
10951 kvm_pmu_reset(vcpu);
10952 vcpu->arch.smbase = 0x30000;
10953
10954 vcpu->arch.msr_misc_features_enables = 0;
10955
10956 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10957 }
10958
10959 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10960 vcpu->arch.regs_avail = ~0;
10961 vcpu->arch.regs_dirty = ~0;
10962
10963 /*
10964 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10965 * if no CPUID match is found. Note, it's impossible to get a match at
10966 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10967 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10968 * But, go through the motions in case that's ever remedied.
10969 */
10970 eax = 1;
10971 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10972 eax = 0x600;
10973 kvm_rdx_write(vcpu, eax);
10974
10975 vcpu->arch.ia32_xss = 0;
10976
10977 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10978
10979 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10980 kvm_rip_write(vcpu, 0xfff0);
10981
10982 vcpu->arch.cr3 = 0;
10983 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10984
10985 /*
10986 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10987 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10988 * (or qualify) that with a footnote stating that CD/NW are preserved.
10989 */
10990 new_cr0 = X86_CR0_ET;
10991 if (init_event)
10992 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10993 else
10994 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10995
10996 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10997 static_call(kvm_x86_set_cr4)(vcpu, 0);
10998 static_call(kvm_x86_set_efer)(vcpu, 0);
10999 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11000
11001 /*
11002 * Reset the MMU context if paging was enabled prior to INIT (which is
11003 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11004 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11005 * checked because it is unconditionally cleared on INIT and all other
11006 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11007 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11008 */
11009 if (old_cr0 & X86_CR0_PG)
11010 kvm_mmu_reset_context(vcpu);
11011
11012 /*
11013 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11014 * APM states the TLBs are untouched by INIT, but it also states that
11015 * the TLBs are flushed on "External initialization of the processor."
11016 * Flush the guest TLB regardless of vendor, there is no meaningful
11017 * benefit in relying on the guest to flush the TLB immediately after
11018 * INIT. A spurious TLB flush is benign and likely negligible from a
11019 * performance perspective.
11020 */
11021 if (init_event)
11022 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11023 }
11024 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11025
11026 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11027 {
11028 struct kvm_segment cs;
11029
11030 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11031 cs.selector = vector << 8;
11032 cs.base = vector << 12;
11033 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11034 kvm_rip_write(vcpu, 0);
11035 }
11036 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11037
11038 int kvm_arch_hardware_enable(void)
11039 {
11040 struct kvm *kvm;
11041 struct kvm_vcpu *vcpu;
11042 int i;
11043 int ret;
11044 u64 local_tsc;
11045 u64 max_tsc = 0;
11046 bool stable, backwards_tsc = false;
11047
11048 kvm_user_return_msr_cpu_online();
11049 ret = static_call(kvm_x86_hardware_enable)();
11050 if (ret != 0)
11051 return ret;
11052
11053 local_tsc = rdtsc();
11054 stable = !kvm_check_tsc_unstable();
11055 list_for_each_entry(kvm, &vm_list, vm_list) {
11056 kvm_for_each_vcpu(i, vcpu, kvm) {
11057 if (!stable && vcpu->cpu == smp_processor_id())
11058 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11059 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11060 backwards_tsc = true;
11061 if (vcpu->arch.last_host_tsc > max_tsc)
11062 max_tsc = vcpu->arch.last_host_tsc;
11063 }
11064 }
11065 }
11066
11067 /*
11068 * Sometimes, even reliable TSCs go backwards. This happens on
11069 * platforms that reset TSC during suspend or hibernate actions, but
11070 * maintain synchronization. We must compensate. Fortunately, we can
11071 * detect that condition here, which happens early in CPU bringup,
11072 * before any KVM threads can be running. Unfortunately, we can't
11073 * bring the TSCs fully up to date with real time, as we aren't yet far
11074 * enough into CPU bringup that we know how much real time has actually
11075 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11076 * variables that haven't been updated yet.
11077 *
11078 * So we simply find the maximum observed TSC above, then record the
11079 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11080 * the adjustment will be applied. Note that we accumulate
11081 * adjustments, in case multiple suspend cycles happen before some VCPU
11082 * gets a chance to run again. In the event that no KVM threads get a
11083 * chance to run, we will miss the entire elapsed period, as we'll have
11084 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11085 * loose cycle time. This isn't too big a deal, since the loss will be
11086 * uniform across all VCPUs (not to mention the scenario is extremely
11087 * unlikely). It is possible that a second hibernate recovery happens
11088 * much faster than a first, causing the observed TSC here to be
11089 * smaller; this would require additional padding adjustment, which is
11090 * why we set last_host_tsc to the local tsc observed here.
11091 *
11092 * N.B. - this code below runs only on platforms with reliable TSC,
11093 * as that is the only way backwards_tsc is set above. Also note
11094 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11095 * have the same delta_cyc adjustment applied if backwards_tsc
11096 * is detected. Note further, this adjustment is only done once,
11097 * as we reset last_host_tsc on all VCPUs to stop this from being
11098 * called multiple times (one for each physical CPU bringup).
11099 *
11100 * Platforms with unreliable TSCs don't have to deal with this, they
11101 * will be compensated by the logic in vcpu_load, which sets the TSC to
11102 * catchup mode. This will catchup all VCPUs to real time, but cannot
11103 * guarantee that they stay in perfect synchronization.
11104 */
11105 if (backwards_tsc) {
11106 u64 delta_cyc = max_tsc - local_tsc;
11107 list_for_each_entry(kvm, &vm_list, vm_list) {
11108 kvm->arch.backwards_tsc_observed = true;
11109 kvm_for_each_vcpu(i, vcpu, kvm) {
11110 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11111 vcpu->arch.last_host_tsc = local_tsc;
11112 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11113 }
11114
11115 /*
11116 * We have to disable TSC offset matching.. if you were
11117 * booting a VM while issuing an S4 host suspend....
11118 * you may have some problem. Solving this issue is
11119 * left as an exercise to the reader.
11120 */
11121 kvm->arch.last_tsc_nsec = 0;
11122 kvm->arch.last_tsc_write = 0;
11123 }
11124
11125 }
11126 return 0;
11127 }
11128
11129 void kvm_arch_hardware_disable(void)
11130 {
11131 static_call(kvm_x86_hardware_disable)();
11132 drop_user_return_notifiers();
11133 }
11134
11135 int kvm_arch_hardware_setup(void *opaque)
11136 {
11137 struct kvm_x86_init_ops *ops = opaque;
11138 int r;
11139
11140 rdmsrl_safe(MSR_EFER, &host_efer);
11141
11142 if (boot_cpu_has(X86_FEATURE_XSAVES))
11143 rdmsrl(MSR_IA32_XSS, host_xss);
11144
11145 r = ops->hardware_setup();
11146 if (r != 0)
11147 return r;
11148
11149 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11150 kvm_ops_static_call_update();
11151
11152 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11153 supported_xss = 0;
11154
11155 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11156 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11157 #undef __kvm_cpu_cap_has
11158
11159 if (kvm_has_tsc_control) {
11160 /*
11161 * Make sure the user can only configure tsc_khz values that
11162 * fit into a signed integer.
11163 * A min value is not calculated because it will always
11164 * be 1 on all machines.
11165 */
11166 u64 max = min(0x7fffffffULL,
11167 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11168 kvm_max_guest_tsc_khz = max;
11169
11170 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11171 }
11172
11173 kvm_init_msr_list();
11174 return 0;
11175 }
11176
11177 void kvm_arch_hardware_unsetup(void)
11178 {
11179 static_call(kvm_x86_hardware_unsetup)();
11180 }
11181
11182 int kvm_arch_check_processor_compat(void *opaque)
11183 {
11184 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11185 struct kvm_x86_init_ops *ops = opaque;
11186
11187 WARN_ON(!irqs_disabled());
11188
11189 if (__cr4_reserved_bits(cpu_has, c) !=
11190 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11191 return -EIO;
11192
11193 return ops->check_processor_compatibility();
11194 }
11195
11196 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11197 {
11198 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11199 }
11200 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11201
11202 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11203 {
11204 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11205 }
11206
11207 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11208 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11209
11210 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11211 {
11212 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11213
11214 vcpu->arch.l1tf_flush_l1d = true;
11215 if (pmu->version && unlikely(pmu->event_count)) {
11216 pmu->need_cleanup = true;
11217 kvm_make_request(KVM_REQ_PMU, vcpu);
11218 }
11219 static_call(kvm_x86_sched_in)(vcpu, cpu);
11220 }
11221
11222 void kvm_arch_free_vm(struct kvm *kvm)
11223 {
11224 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11225 vfree(kvm);
11226 }
11227
11228
11229 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11230 {
11231 int ret;
11232
11233 if (type)
11234 return -EINVAL;
11235
11236 ret = kvm_page_track_init(kvm);
11237 if (ret)
11238 return ret;
11239
11240 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11241 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11242 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11243 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11244 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11245 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11246
11247 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11248 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11249 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11250 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11251 &kvm->arch.irq_sources_bitmap);
11252
11253 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11254 mutex_init(&kvm->arch.apic_map_lock);
11255 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11256
11257 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11258 pvclock_update_vm_gtod_copy(kvm);
11259
11260 kvm->arch.guest_can_read_msr_platform_info = true;
11261
11262 #if IS_ENABLED(CONFIG_HYPERV)
11263 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11264 kvm->arch.hv_root_tdp = INVALID_PAGE;
11265 #endif
11266
11267 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11268 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11269
11270 kvm_apicv_init(kvm);
11271 kvm_hv_init_vm(kvm);
11272 kvm_mmu_init_vm(kvm);
11273 kvm_xen_init_vm(kvm);
11274
11275 return static_call(kvm_x86_vm_init)(kvm);
11276 }
11277
11278 int kvm_arch_post_init_vm(struct kvm *kvm)
11279 {
11280 return kvm_mmu_post_init_vm(kvm);
11281 }
11282
11283 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11284 {
11285 vcpu_load(vcpu);
11286 kvm_mmu_unload(vcpu);
11287 vcpu_put(vcpu);
11288 }
11289
11290 static void kvm_free_vcpus(struct kvm *kvm)
11291 {
11292 unsigned int i;
11293 struct kvm_vcpu *vcpu;
11294
11295 /*
11296 * Unpin any mmu pages first.
11297 */
11298 kvm_for_each_vcpu(i, vcpu, kvm) {
11299 kvm_clear_async_pf_completion_queue(vcpu);
11300 kvm_unload_vcpu_mmu(vcpu);
11301 }
11302 kvm_for_each_vcpu(i, vcpu, kvm)
11303 kvm_vcpu_destroy(vcpu);
11304
11305 mutex_lock(&kvm->lock);
11306 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11307 kvm->vcpus[i] = NULL;
11308
11309 atomic_set(&kvm->online_vcpus, 0);
11310 mutex_unlock(&kvm->lock);
11311 }
11312
11313 void kvm_arch_sync_events(struct kvm *kvm)
11314 {
11315 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11316 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11317 kvm_free_pit(kvm);
11318 }
11319
11320 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11321
11322 /**
11323 * __x86_set_memory_region: Setup KVM internal memory slot
11324 *
11325 * @kvm: the kvm pointer to the VM.
11326 * @id: the slot ID to setup.
11327 * @gpa: the GPA to install the slot (unused when @size == 0).
11328 * @size: the size of the slot. Set to zero to uninstall a slot.
11329 *
11330 * This function helps to setup a KVM internal memory slot. Specify
11331 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11332 * slot. The return code can be one of the following:
11333 *
11334 * HVA: on success (uninstall will return a bogus HVA)
11335 * -errno: on error
11336 *
11337 * The caller should always use IS_ERR() to check the return value
11338 * before use. Note, the KVM internal memory slots are guaranteed to
11339 * remain valid and unchanged until the VM is destroyed, i.e., the
11340 * GPA->HVA translation will not change. However, the HVA is a user
11341 * address, i.e. its accessibility is not guaranteed, and must be
11342 * accessed via __copy_{to,from}_user().
11343 */
11344 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11345 u32 size)
11346 {
11347 int i, r;
11348 unsigned long hva, old_npages;
11349 struct kvm_memslots *slots = kvm_memslots(kvm);
11350 struct kvm_memory_slot *slot;
11351
11352 /* Called with kvm->slots_lock held. */
11353 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11354 return ERR_PTR_USR(-EINVAL);
11355
11356 slot = id_to_memslot(slots, id);
11357 if (size) {
11358 if (slot && slot->npages)
11359 return ERR_PTR_USR(-EEXIST);
11360
11361 /*
11362 * MAP_SHARED to prevent internal slot pages from being moved
11363 * by fork()/COW.
11364 */
11365 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11366 MAP_SHARED | MAP_ANONYMOUS, 0);
11367 if (IS_ERR((void *)hva))
11368 return (void __user *)hva;
11369 } else {
11370 if (!slot || !slot->npages)
11371 return NULL;
11372
11373 old_npages = slot->npages;
11374 hva = slot->userspace_addr;
11375 }
11376
11377 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11378 struct kvm_userspace_memory_region m;
11379
11380 m.slot = id | (i << 16);
11381 m.flags = 0;
11382 m.guest_phys_addr = gpa;
11383 m.userspace_addr = hva;
11384 m.memory_size = size;
11385 r = __kvm_set_memory_region(kvm, &m);
11386 if (r < 0)
11387 return ERR_PTR_USR(r);
11388 }
11389
11390 if (!size)
11391 vm_munmap(hva, old_npages * PAGE_SIZE);
11392
11393 return (void __user *)hva;
11394 }
11395 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11396
11397 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11398 {
11399 kvm_mmu_pre_destroy_vm(kvm);
11400 }
11401
11402 void kvm_arch_destroy_vm(struct kvm *kvm)
11403 {
11404 if (current->mm == kvm->mm) {
11405 /*
11406 * Free memory regions allocated on behalf of userspace,
11407 * unless the the memory map has changed due to process exit
11408 * or fd copying.
11409 */
11410 mutex_lock(&kvm->slots_lock);
11411 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11412 0, 0);
11413 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11414 0, 0);
11415 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11416 mutex_unlock(&kvm->slots_lock);
11417 }
11418 static_call_cond(kvm_x86_vm_destroy)(kvm);
11419 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11420 kvm_pic_destroy(kvm);
11421 kvm_ioapic_destroy(kvm);
11422 kvm_free_vcpus(kvm);
11423 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11424 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11425 kvm_mmu_uninit_vm(kvm);
11426 kvm_page_track_cleanup(kvm);
11427 kvm_xen_destroy_vm(kvm);
11428 kvm_hv_destroy_vm(kvm);
11429 }
11430
11431 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11432 {
11433 int i;
11434
11435 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11436 kvfree(slot->arch.rmap[i]);
11437 slot->arch.rmap[i] = NULL;
11438 }
11439 }
11440
11441 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11442 {
11443 int i;
11444
11445 memslot_rmap_free(slot);
11446
11447 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11448 kvfree(slot->arch.lpage_info[i - 1]);
11449 slot->arch.lpage_info[i - 1] = NULL;
11450 }
11451
11452 kvm_page_track_free_memslot(slot);
11453 }
11454
11455 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11456 unsigned long npages)
11457 {
11458 const int sz = sizeof(*slot->arch.rmap[0]);
11459 int i;
11460
11461 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11462 int level = i + 1;
11463 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11464
11465 if (slot->arch.rmap[i])
11466 continue;
11467
11468 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11469 if (!slot->arch.rmap[i]) {
11470 memslot_rmap_free(slot);
11471 return -ENOMEM;
11472 }
11473 }
11474
11475 return 0;
11476 }
11477
11478 int alloc_all_memslots_rmaps(struct kvm *kvm)
11479 {
11480 struct kvm_memslots *slots;
11481 struct kvm_memory_slot *slot;
11482 int r, i;
11483
11484 /*
11485 * Check if memslots alreday have rmaps early before acquiring
11486 * the slots_arch_lock below.
11487 */
11488 if (kvm_memslots_have_rmaps(kvm))
11489 return 0;
11490
11491 mutex_lock(&kvm->slots_arch_lock);
11492
11493 /*
11494 * Read memslots_have_rmaps again, under the slots arch lock,
11495 * before allocating the rmaps
11496 */
11497 if (kvm_memslots_have_rmaps(kvm)) {
11498 mutex_unlock(&kvm->slots_arch_lock);
11499 return 0;
11500 }
11501
11502 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11503 slots = __kvm_memslots(kvm, i);
11504 kvm_for_each_memslot(slot, slots) {
11505 r = memslot_rmap_alloc(slot, slot->npages);
11506 if (r) {
11507 mutex_unlock(&kvm->slots_arch_lock);
11508 return r;
11509 }
11510 }
11511 }
11512
11513 /*
11514 * Ensure that memslots_have_rmaps becomes true strictly after
11515 * all the rmap pointers are set.
11516 */
11517 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11518 mutex_unlock(&kvm->slots_arch_lock);
11519 return 0;
11520 }
11521
11522 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11523 struct kvm_memory_slot *slot,
11524 unsigned long npages)
11525 {
11526 int i, r;
11527
11528 /*
11529 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11530 * old arrays will be freed by __kvm_set_memory_region() if installing
11531 * the new memslot is successful.
11532 */
11533 memset(&slot->arch, 0, sizeof(slot->arch));
11534
11535 if (kvm_memslots_have_rmaps(kvm)) {
11536 r = memslot_rmap_alloc(slot, npages);
11537 if (r)
11538 return r;
11539 }
11540
11541 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11542 struct kvm_lpage_info *linfo;
11543 unsigned long ugfn;
11544 int lpages;
11545 int level = i + 1;
11546
11547 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11548
11549 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11550 if (!linfo)
11551 goto out_free;
11552
11553 slot->arch.lpage_info[i - 1] = linfo;
11554
11555 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11556 linfo[0].disallow_lpage = 1;
11557 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11558 linfo[lpages - 1].disallow_lpage = 1;
11559 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11560 /*
11561 * If the gfn and userspace address are not aligned wrt each
11562 * other, disable large page support for this slot.
11563 */
11564 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11565 unsigned long j;
11566
11567 for (j = 0; j < lpages; ++j)
11568 linfo[j].disallow_lpage = 1;
11569 }
11570 }
11571
11572 if (kvm_page_track_create_memslot(slot, npages))
11573 goto out_free;
11574
11575 return 0;
11576
11577 out_free:
11578 memslot_rmap_free(slot);
11579
11580 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11581 kvfree(slot->arch.lpage_info[i - 1]);
11582 slot->arch.lpage_info[i - 1] = NULL;
11583 }
11584 return -ENOMEM;
11585 }
11586
11587 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11588 {
11589 struct kvm_vcpu *vcpu;
11590 int i;
11591
11592 /*
11593 * memslots->generation has been incremented.
11594 * mmio generation may have reached its maximum value.
11595 */
11596 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11597
11598 /* Force re-initialization of steal_time cache */
11599 kvm_for_each_vcpu(i, vcpu, kvm)
11600 kvm_vcpu_kick(vcpu);
11601 }
11602
11603 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11604 struct kvm_memory_slot *memslot,
11605 const struct kvm_userspace_memory_region *mem,
11606 enum kvm_mr_change change)
11607 {
11608 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11609 return kvm_alloc_memslot_metadata(kvm, memslot,
11610 mem->memory_size >> PAGE_SHIFT);
11611 return 0;
11612 }
11613
11614
11615 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11616 {
11617 struct kvm_arch *ka = &kvm->arch;
11618
11619 if (!kvm_x86_ops.cpu_dirty_log_size)
11620 return;
11621
11622 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11623 (!enable && --ka->cpu_dirty_logging_count == 0))
11624 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11625
11626 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11627 }
11628
11629 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11630 struct kvm_memory_slot *old,
11631 const struct kvm_memory_slot *new,
11632 enum kvm_mr_change change)
11633 {
11634 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11635
11636 /*
11637 * Update CPU dirty logging if dirty logging is being toggled. This
11638 * applies to all operations.
11639 */
11640 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11641 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11642
11643 /*
11644 * Nothing more to do for RO slots (which can't be dirtied and can't be
11645 * made writable) or CREATE/MOVE/DELETE of a slot.
11646 *
11647 * For a memslot with dirty logging disabled:
11648 * CREATE: No dirty mappings will already exist.
11649 * MOVE/DELETE: The old mappings will already have been cleaned up by
11650 * kvm_arch_flush_shadow_memslot()
11651 *
11652 * For a memslot with dirty logging enabled:
11653 * CREATE: No shadow pages exist, thus nothing to write-protect
11654 * and no dirty bits to clear.
11655 * MOVE/DELETE: The old mappings will already have been cleaned up by
11656 * kvm_arch_flush_shadow_memslot().
11657 */
11658 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11659 return;
11660
11661 /*
11662 * READONLY and non-flags changes were filtered out above, and the only
11663 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11664 * logging isn't being toggled on or off.
11665 */
11666 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11667 return;
11668
11669 if (!log_dirty_pages) {
11670 /*
11671 * Dirty logging tracks sptes in 4k granularity, meaning that
11672 * large sptes have to be split. If live migration succeeds,
11673 * the guest in the source machine will be destroyed and large
11674 * sptes will be created in the destination. However, if the
11675 * guest continues to run in the source machine (for example if
11676 * live migration fails), small sptes will remain around and
11677 * cause bad performance.
11678 *
11679 * Scan sptes if dirty logging has been stopped, dropping those
11680 * which can be collapsed into a single large-page spte. Later
11681 * page faults will create the large-page sptes.
11682 */
11683 kvm_mmu_zap_collapsible_sptes(kvm, new);
11684 } else {
11685 /*
11686 * Initially-all-set does not require write protecting any page,
11687 * because they're all assumed to be dirty.
11688 */
11689 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11690 return;
11691
11692 if (kvm_x86_ops.cpu_dirty_log_size) {
11693 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11694 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11695 } else {
11696 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11697 }
11698 }
11699 }
11700
11701 void kvm_arch_commit_memory_region(struct kvm *kvm,
11702 const struct kvm_userspace_memory_region *mem,
11703 struct kvm_memory_slot *old,
11704 const struct kvm_memory_slot *new,
11705 enum kvm_mr_change change)
11706 {
11707 if (!kvm->arch.n_requested_mmu_pages)
11708 kvm_mmu_change_mmu_pages(kvm,
11709 kvm_mmu_calculate_default_mmu_pages(kvm));
11710
11711 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11712
11713 /* Free the arrays associated with the old memslot. */
11714 if (change == KVM_MR_MOVE)
11715 kvm_arch_free_memslot(kvm, old);
11716 }
11717
11718 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11719 {
11720 kvm_mmu_zap_all(kvm);
11721 }
11722
11723 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11724 struct kvm_memory_slot *slot)
11725 {
11726 kvm_page_track_flush_slot(kvm, slot);
11727 }
11728
11729 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11730 {
11731 return (is_guest_mode(vcpu) &&
11732 kvm_x86_ops.guest_apic_has_interrupt &&
11733 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11734 }
11735
11736 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11737 {
11738 if (!list_empty_careful(&vcpu->async_pf.done))
11739 return true;
11740
11741 if (kvm_apic_has_events(vcpu))
11742 return true;
11743
11744 if (vcpu->arch.pv.pv_unhalted)
11745 return true;
11746
11747 if (vcpu->arch.exception.pending)
11748 return true;
11749
11750 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11751 (vcpu->arch.nmi_pending &&
11752 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11753 return true;
11754
11755 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11756 (vcpu->arch.smi_pending &&
11757 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11758 return true;
11759
11760 if (kvm_arch_interrupt_allowed(vcpu) &&
11761 (kvm_cpu_has_interrupt(vcpu) ||
11762 kvm_guest_apic_has_interrupt(vcpu)))
11763 return true;
11764
11765 if (kvm_hv_has_stimer_pending(vcpu))
11766 return true;
11767
11768 if (is_guest_mode(vcpu) &&
11769 kvm_x86_ops.nested_ops->hv_timer_pending &&
11770 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11771 return true;
11772
11773 return false;
11774 }
11775
11776 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11777 {
11778 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11779 }
11780
11781 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11782 {
11783 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11784 return true;
11785
11786 return false;
11787 }
11788
11789 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11790 {
11791 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11792 return true;
11793
11794 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11795 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11796 kvm_test_request(KVM_REQ_EVENT, vcpu))
11797 return true;
11798
11799 return kvm_arch_dy_has_pending_interrupt(vcpu);
11800 }
11801
11802 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11803 {
11804 if (vcpu->arch.guest_state_protected)
11805 return true;
11806
11807 return vcpu->arch.preempted_in_kernel;
11808 }
11809
11810 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11811 {
11812 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11813 }
11814
11815 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11816 {
11817 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11818 }
11819
11820 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11821 {
11822 /* Can't read the RIP when guest state is protected, just return 0 */
11823 if (vcpu->arch.guest_state_protected)
11824 return 0;
11825
11826 if (is_64_bit_mode(vcpu))
11827 return kvm_rip_read(vcpu);
11828 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11829 kvm_rip_read(vcpu));
11830 }
11831 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11832
11833 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11834 {
11835 return kvm_get_linear_rip(vcpu) == linear_rip;
11836 }
11837 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11838
11839 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11840 {
11841 unsigned long rflags;
11842
11843 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11844 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11845 rflags &= ~X86_EFLAGS_TF;
11846 return rflags;
11847 }
11848 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11849
11850 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11851 {
11852 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11853 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11854 rflags |= X86_EFLAGS_TF;
11855 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11856 }
11857
11858 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11859 {
11860 __kvm_set_rflags(vcpu, rflags);
11861 kvm_make_request(KVM_REQ_EVENT, vcpu);
11862 }
11863 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11864
11865 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11866 {
11867 int r;
11868
11869 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11870 work->wakeup_all)
11871 return;
11872
11873 r = kvm_mmu_reload(vcpu);
11874 if (unlikely(r))
11875 return;
11876
11877 if (!vcpu->arch.mmu->direct_map &&
11878 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11879 return;
11880
11881 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11882 }
11883
11884 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11885 {
11886 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11887
11888 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11889 }
11890
11891 static inline u32 kvm_async_pf_next_probe(u32 key)
11892 {
11893 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11894 }
11895
11896 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11897 {
11898 u32 key = kvm_async_pf_hash_fn(gfn);
11899
11900 while (vcpu->arch.apf.gfns[key] != ~0)
11901 key = kvm_async_pf_next_probe(key);
11902
11903 vcpu->arch.apf.gfns[key] = gfn;
11904 }
11905
11906 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11907 {
11908 int i;
11909 u32 key = kvm_async_pf_hash_fn(gfn);
11910
11911 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11912 (vcpu->arch.apf.gfns[key] != gfn &&
11913 vcpu->arch.apf.gfns[key] != ~0); i++)
11914 key = kvm_async_pf_next_probe(key);
11915
11916 return key;
11917 }
11918
11919 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11920 {
11921 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11922 }
11923
11924 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11925 {
11926 u32 i, j, k;
11927
11928 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11929
11930 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11931 return;
11932
11933 while (true) {
11934 vcpu->arch.apf.gfns[i] = ~0;
11935 do {
11936 j = kvm_async_pf_next_probe(j);
11937 if (vcpu->arch.apf.gfns[j] == ~0)
11938 return;
11939 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11940 /*
11941 * k lies cyclically in ]i,j]
11942 * | i.k.j |
11943 * |....j i.k.| or |.k..j i...|
11944 */
11945 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11946 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11947 i = j;
11948 }
11949 }
11950
11951 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11952 {
11953 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11954
11955 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11956 sizeof(reason));
11957 }
11958
11959 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11960 {
11961 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11962
11963 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11964 &token, offset, sizeof(token));
11965 }
11966
11967 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11968 {
11969 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11970 u32 val;
11971
11972 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11973 &val, offset, sizeof(val)))
11974 return false;
11975
11976 return !val;
11977 }
11978
11979 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11980 {
11981 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11982 return false;
11983
11984 if (!kvm_pv_async_pf_enabled(vcpu) ||
11985 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11986 return false;
11987
11988 return true;
11989 }
11990
11991 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11992 {
11993 if (unlikely(!lapic_in_kernel(vcpu) ||
11994 kvm_event_needs_reinjection(vcpu) ||
11995 vcpu->arch.exception.pending))
11996 return false;
11997
11998 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11999 return false;
12000
12001 /*
12002 * If interrupts are off we cannot even use an artificial
12003 * halt state.
12004 */
12005 return kvm_arch_interrupt_allowed(vcpu);
12006 }
12007
12008 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12009 struct kvm_async_pf *work)
12010 {
12011 struct x86_exception fault;
12012
12013 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12014 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12015
12016 if (kvm_can_deliver_async_pf(vcpu) &&
12017 !apf_put_user_notpresent(vcpu)) {
12018 fault.vector = PF_VECTOR;
12019 fault.error_code_valid = true;
12020 fault.error_code = 0;
12021 fault.nested_page_fault = false;
12022 fault.address = work->arch.token;
12023 fault.async_page_fault = true;
12024 kvm_inject_page_fault(vcpu, &fault);
12025 return true;
12026 } else {
12027 /*
12028 * It is not possible to deliver a paravirtualized asynchronous
12029 * page fault, but putting the guest in an artificial halt state
12030 * can be beneficial nevertheless: if an interrupt arrives, we
12031 * can deliver it timely and perhaps the guest will schedule
12032 * another process. When the instruction that triggered a page
12033 * fault is retried, hopefully the page will be ready in the host.
12034 */
12035 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12036 return false;
12037 }
12038 }
12039
12040 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12041 struct kvm_async_pf *work)
12042 {
12043 struct kvm_lapic_irq irq = {
12044 .delivery_mode = APIC_DM_FIXED,
12045 .vector = vcpu->arch.apf.vec
12046 };
12047
12048 if (work->wakeup_all)
12049 work->arch.token = ~0; /* broadcast wakeup */
12050 else
12051 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12052 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12053
12054 if ((work->wakeup_all || work->notpresent_injected) &&
12055 kvm_pv_async_pf_enabled(vcpu) &&
12056 !apf_put_user_ready(vcpu, work->arch.token)) {
12057 vcpu->arch.apf.pageready_pending = true;
12058 kvm_apic_set_irq(vcpu, &irq, NULL);
12059 }
12060
12061 vcpu->arch.apf.halted = false;
12062 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12063 }
12064
12065 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12066 {
12067 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12068 if (!vcpu->arch.apf.pageready_pending)
12069 kvm_vcpu_kick(vcpu);
12070 }
12071
12072 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12073 {
12074 if (!kvm_pv_async_pf_enabled(vcpu))
12075 return true;
12076 else
12077 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12078 }
12079
12080 void kvm_arch_start_assignment(struct kvm *kvm)
12081 {
12082 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12083 static_call_cond(kvm_x86_start_assignment)(kvm);
12084 }
12085 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12086
12087 void kvm_arch_end_assignment(struct kvm *kvm)
12088 {
12089 atomic_dec(&kvm->arch.assigned_device_count);
12090 }
12091 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12092
12093 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12094 {
12095 return atomic_read(&kvm->arch.assigned_device_count);
12096 }
12097 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12098
12099 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12100 {
12101 atomic_inc(&kvm->arch.noncoherent_dma_count);
12102 }
12103 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12104
12105 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12106 {
12107 atomic_dec(&kvm->arch.noncoherent_dma_count);
12108 }
12109 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12110
12111 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12112 {
12113 return atomic_read(&kvm->arch.noncoherent_dma_count);
12114 }
12115 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12116
12117 bool kvm_arch_has_irq_bypass(void)
12118 {
12119 return true;
12120 }
12121
12122 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12123 struct irq_bypass_producer *prod)
12124 {
12125 struct kvm_kernel_irqfd *irqfd =
12126 container_of(cons, struct kvm_kernel_irqfd, consumer);
12127 int ret;
12128
12129 irqfd->producer = prod;
12130 kvm_arch_start_assignment(irqfd->kvm);
12131 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12132 prod->irq, irqfd->gsi, 1);
12133
12134 if (ret)
12135 kvm_arch_end_assignment(irqfd->kvm);
12136
12137 return ret;
12138 }
12139
12140 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12141 struct irq_bypass_producer *prod)
12142 {
12143 int ret;
12144 struct kvm_kernel_irqfd *irqfd =
12145 container_of(cons, struct kvm_kernel_irqfd, consumer);
12146
12147 WARN_ON(irqfd->producer != prod);
12148 irqfd->producer = NULL;
12149
12150 /*
12151 * When producer of consumer is unregistered, we change back to
12152 * remapped mode, so we can re-use the current implementation
12153 * when the irq is masked/disabled or the consumer side (KVM
12154 * int this case doesn't want to receive the interrupts.
12155 */
12156 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12157 if (ret)
12158 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12159 " fails: %d\n", irqfd->consumer.token, ret);
12160
12161 kvm_arch_end_assignment(irqfd->kvm);
12162 }
12163
12164 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12165 uint32_t guest_irq, bool set)
12166 {
12167 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12168 }
12169
12170 bool kvm_vector_hashing_enabled(void)
12171 {
12172 return vector_hashing;
12173 }
12174
12175 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12176 {
12177 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12178 }
12179 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12180
12181
12182 int kvm_spec_ctrl_test_value(u64 value)
12183 {
12184 /*
12185 * test that setting IA32_SPEC_CTRL to given value
12186 * is allowed by the host processor
12187 */
12188
12189 u64 saved_value;
12190 unsigned long flags;
12191 int ret = 0;
12192
12193 local_irq_save(flags);
12194
12195 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12196 ret = 1;
12197 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12198 ret = 1;
12199 else
12200 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12201
12202 local_irq_restore(flags);
12203
12204 return ret;
12205 }
12206 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12207
12208 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12209 {
12210 struct x86_exception fault;
12211 u32 access = error_code &
12212 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12213
12214 if (!(error_code & PFERR_PRESENT_MASK) ||
12215 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12216 /*
12217 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12218 * tables probably do not match the TLB. Just proceed
12219 * with the error code that the processor gave.
12220 */
12221 fault.vector = PF_VECTOR;
12222 fault.error_code_valid = true;
12223 fault.error_code = error_code;
12224 fault.nested_page_fault = false;
12225 fault.address = gva;
12226 }
12227 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12228 }
12229 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12230
12231 /*
12232 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12233 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12234 * indicates whether exit to userspace is needed.
12235 */
12236 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12237 struct x86_exception *e)
12238 {
12239 if (r == X86EMUL_PROPAGATE_FAULT) {
12240 kvm_inject_emulated_page_fault(vcpu, e);
12241 return 1;
12242 }
12243
12244 /*
12245 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12246 * while handling a VMX instruction KVM could've handled the request
12247 * correctly by exiting to userspace and performing I/O but there
12248 * doesn't seem to be a real use-case behind such requests, just return
12249 * KVM_EXIT_INTERNAL_ERROR for now.
12250 */
12251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12252 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12253 vcpu->run->internal.ndata = 0;
12254
12255 return 0;
12256 }
12257 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12258
12259 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12260 {
12261 bool pcid_enabled;
12262 struct x86_exception e;
12263 struct {
12264 u64 pcid;
12265 u64 gla;
12266 } operand;
12267 int r;
12268
12269 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12270 if (r != X86EMUL_CONTINUE)
12271 return kvm_handle_memory_failure(vcpu, r, &e);
12272
12273 if (operand.pcid >> 12 != 0) {
12274 kvm_inject_gp(vcpu, 0);
12275 return 1;
12276 }
12277
12278 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12279
12280 switch (type) {
12281 case INVPCID_TYPE_INDIV_ADDR:
12282 if ((!pcid_enabled && (operand.pcid != 0)) ||
12283 is_noncanonical_address(operand.gla, vcpu)) {
12284 kvm_inject_gp(vcpu, 0);
12285 return 1;
12286 }
12287 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12288 return kvm_skip_emulated_instruction(vcpu);
12289
12290 case INVPCID_TYPE_SINGLE_CTXT:
12291 if (!pcid_enabled && (operand.pcid != 0)) {
12292 kvm_inject_gp(vcpu, 0);
12293 return 1;
12294 }
12295
12296 kvm_invalidate_pcid(vcpu, operand.pcid);
12297 return kvm_skip_emulated_instruction(vcpu);
12298
12299 case INVPCID_TYPE_ALL_NON_GLOBAL:
12300 /*
12301 * Currently, KVM doesn't mark global entries in the shadow
12302 * page tables, so a non-global flush just degenerates to a
12303 * global flush. If needed, we could optimize this later by
12304 * keeping track of global entries in shadow page tables.
12305 */
12306
12307 fallthrough;
12308 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12309 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12310 return kvm_skip_emulated_instruction(vcpu);
12311
12312 default:
12313 BUG(); /* We have already checked above that type <= 3 */
12314 }
12315 }
12316 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12317
12318 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12319 {
12320 struct kvm_run *run = vcpu->run;
12321 struct kvm_mmio_fragment *frag;
12322 unsigned int len;
12323
12324 BUG_ON(!vcpu->mmio_needed);
12325
12326 /* Complete previous fragment */
12327 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12328 len = min(8u, frag->len);
12329 if (!vcpu->mmio_is_write)
12330 memcpy(frag->data, run->mmio.data, len);
12331
12332 if (frag->len <= 8) {
12333 /* Switch to the next fragment. */
12334 frag++;
12335 vcpu->mmio_cur_fragment++;
12336 } else {
12337 /* Go forward to the next mmio piece. */
12338 frag->data += len;
12339 frag->gpa += len;
12340 frag->len -= len;
12341 }
12342
12343 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12344 vcpu->mmio_needed = 0;
12345
12346 // VMG change, at this point, we're always done
12347 // RIP has already been advanced
12348 return 1;
12349 }
12350
12351 // More MMIO is needed
12352 run->mmio.phys_addr = frag->gpa;
12353 run->mmio.len = min(8u, frag->len);
12354 run->mmio.is_write = vcpu->mmio_is_write;
12355 if (run->mmio.is_write)
12356 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12357 run->exit_reason = KVM_EXIT_MMIO;
12358
12359 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12360
12361 return 0;
12362 }
12363
12364 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12365 void *data)
12366 {
12367 int handled;
12368 struct kvm_mmio_fragment *frag;
12369
12370 if (!data)
12371 return -EINVAL;
12372
12373 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12374 if (handled == bytes)
12375 return 1;
12376
12377 bytes -= handled;
12378 gpa += handled;
12379 data += handled;
12380
12381 /*TODO: Check if need to increment number of frags */
12382 frag = vcpu->mmio_fragments;
12383 vcpu->mmio_nr_fragments = 1;
12384 frag->len = bytes;
12385 frag->gpa = gpa;
12386 frag->data = data;
12387
12388 vcpu->mmio_needed = 1;
12389 vcpu->mmio_cur_fragment = 0;
12390
12391 vcpu->run->mmio.phys_addr = gpa;
12392 vcpu->run->mmio.len = min(8u, frag->len);
12393 vcpu->run->mmio.is_write = 1;
12394 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12395 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12396
12397 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12398
12399 return 0;
12400 }
12401 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12402
12403 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12404 void *data)
12405 {
12406 int handled;
12407 struct kvm_mmio_fragment *frag;
12408
12409 if (!data)
12410 return -EINVAL;
12411
12412 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12413 if (handled == bytes)
12414 return 1;
12415
12416 bytes -= handled;
12417 gpa += handled;
12418 data += handled;
12419
12420 /*TODO: Check if need to increment number of frags */
12421 frag = vcpu->mmio_fragments;
12422 vcpu->mmio_nr_fragments = 1;
12423 frag->len = bytes;
12424 frag->gpa = gpa;
12425 frag->data = data;
12426
12427 vcpu->mmio_needed = 1;
12428 vcpu->mmio_cur_fragment = 0;
12429
12430 vcpu->run->mmio.phys_addr = gpa;
12431 vcpu->run->mmio.len = min(8u, frag->len);
12432 vcpu->run->mmio.is_write = 0;
12433 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12434
12435 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12436
12437 return 0;
12438 }
12439 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12440
12441 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12442 unsigned int port);
12443
12444 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12445 {
12446 int size = vcpu->arch.pio.size;
12447 int port = vcpu->arch.pio.port;
12448
12449 vcpu->arch.pio.count = 0;
12450 if (vcpu->arch.sev_pio_count)
12451 return kvm_sev_es_outs(vcpu, size, port);
12452 return 1;
12453 }
12454
12455 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12456 unsigned int port)
12457 {
12458 for (;;) {
12459 unsigned int count =
12460 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12461 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12462
12463 /* memcpy done already by emulator_pio_out. */
12464 vcpu->arch.sev_pio_count -= count;
12465 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12466 if (!ret)
12467 break;
12468
12469 /* Emulation done by the kernel. */
12470 if (!vcpu->arch.sev_pio_count)
12471 return 1;
12472 }
12473
12474 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12475 return 0;
12476 }
12477
12478 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12479 unsigned int port);
12480
12481 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12482 {
12483 unsigned count = vcpu->arch.pio.count;
12484 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12485 vcpu->arch.sev_pio_count -= count;
12486 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12487 }
12488
12489 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12490 {
12491 int size = vcpu->arch.pio.size;
12492 int port = vcpu->arch.pio.port;
12493
12494 advance_sev_es_emulated_ins(vcpu);
12495 if (vcpu->arch.sev_pio_count)
12496 return kvm_sev_es_ins(vcpu, size, port);
12497 return 1;
12498 }
12499
12500 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12501 unsigned int port)
12502 {
12503 for (;;) {
12504 unsigned int count =
12505 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12506 if (!__emulator_pio_in(vcpu, size, port, count))
12507 break;
12508
12509 /* Emulation done by the kernel. */
12510 advance_sev_es_emulated_ins(vcpu);
12511 if (!vcpu->arch.sev_pio_count)
12512 return 1;
12513 }
12514
12515 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12516 return 0;
12517 }
12518
12519 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12520 unsigned int port, void *data, unsigned int count,
12521 int in)
12522 {
12523 vcpu->arch.sev_pio_data = data;
12524 vcpu->arch.sev_pio_count = count;
12525 return in ? kvm_sev_es_ins(vcpu, size, port)
12526 : kvm_sev_es_outs(vcpu, size, port);
12527 }
12528 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12529
12530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);