]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define emul_to_vcpu(ctxt) \
94 ((struct kvm_vcpu *)(ctxt)->vcpu)
95
96 /* EFER defaults:
97 * - enable syscall per default because its emulated by KVM
98 * - enable LME and LMA per default on 64 bit KVM
99 */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121
122 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124
125 struct kvm_x86_ops kvm_x86_ops __read_mostly;
126 EXPORT_SYMBOL_GPL(kvm_x86_ops);
127
128 #define KVM_X86_OP(func) \
129 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
130 *(((struct kvm_x86_ops *)0)->func));
131 #define KVM_X86_OP_NULL KVM_X86_OP
132 #include <asm/kvm-x86-ops.h>
133 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
134 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
136
137 static bool __read_mostly ignore_msrs = 0;
138 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
139
140 bool __read_mostly report_ignored_msrs = true;
141 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(report_ignored_msrs);
143
144 unsigned int min_timer_period_us = 200;
145 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly kvmclock_periodic_sync = true;
148 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
149
150 bool __read_mostly kvm_has_tsc_control;
151 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
152 u32 __read_mostly kvm_max_guest_tsc_khz;
153 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
154 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
155 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
156 u64 __read_mostly kvm_max_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
158 u64 __read_mostly kvm_default_tsc_scaling_ratio;
159 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
160 bool __read_mostly kvm_has_bus_lock_exit;
161 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166
167 /*
168 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
169 * adaptive tuning starting from default advancement of 1000ns. '0' disables
170 * advancement entirely. Any other value is used as-is and disables adaptive
171 * tuning, i.e. allows privileged userspace to set an exact advancement time.
172 */
173 static int __read_mostly lapic_timer_advance_ns = -1;
174 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
175
176 static bool __read_mostly vector_hashing = true;
177 module_param(vector_hashing, bool, S_IRUGO);
178
179 bool __read_mostly enable_vmware_backdoor = false;
180 module_param(enable_vmware_backdoor, bool, S_IRUGO);
181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
182
183 static bool __read_mostly force_emulation_prefix = false;
184 module_param(force_emulation_prefix, bool, S_IRUGO);
185
186 int __read_mostly pi_inject_timer = -1;
187 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188
189 /*
190 * Restoring the host value for MSRs that are only consumed when running in
191 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
192 * returns to userspace, i.e. the kernel can run with the guest's value.
193 */
194 #define KVM_MAX_NR_USER_RETURN_MSRS 16
195
196 struct kvm_user_return_msrs {
197 struct user_return_notifier urn;
198 bool registered;
199 struct kvm_user_return_msr_values {
200 u64 host;
201 u64 curr;
202 } values[KVM_MAX_NR_USER_RETURN_MSRS];
203 };
204
205 u32 __read_mostly kvm_nr_uret_msrs;
206 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
207 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
208 static struct kvm_user_return_msrs __percpu *user_return_msrs;
209
210 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
211 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
212 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
213 | XFEATURE_MASK_PKRU)
214
215 u64 __read_mostly host_efer;
216 EXPORT_SYMBOL_GPL(host_efer);
217
218 bool __read_mostly allow_smaller_maxphyaddr = 0;
219 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
220
221 bool __read_mostly enable_apicv = true;
222 EXPORT_SYMBOL_GPL(enable_apicv);
223
224 u64 __read_mostly host_xss;
225 EXPORT_SYMBOL_GPL(host_xss);
226 u64 __read_mostly supported_xss;
227 EXPORT_SYMBOL_GPL(supported_xss);
228
229 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
230 KVM_GENERIC_VM_STATS(),
231 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
232 STATS_DESC_COUNTER(VM, mmu_pte_write),
233 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
234 STATS_DESC_COUNTER(VM, mmu_flooded),
235 STATS_DESC_COUNTER(VM, mmu_recycled),
236 STATS_DESC_COUNTER(VM, mmu_cache_miss),
237 STATS_DESC_ICOUNTER(VM, mmu_unsync),
238 STATS_DESC_ICOUNTER(VM, pages_4k),
239 STATS_DESC_ICOUNTER(VM, pages_2m),
240 STATS_DESC_ICOUNTER(VM, pages_1g),
241 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
242 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
243 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 };
245
246 const struct kvm_stats_header kvm_vm_stats_header = {
247 .name_size = KVM_STATS_NAME_SIZE,
248 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
249 .id_offset = sizeof(struct kvm_stats_header),
250 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
251 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
252 sizeof(kvm_vm_stats_desc),
253 };
254
255 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
256 KVM_GENERIC_VCPU_STATS(),
257 STATS_DESC_COUNTER(VCPU, pf_fixed),
258 STATS_DESC_COUNTER(VCPU, pf_guest),
259 STATS_DESC_COUNTER(VCPU, tlb_flush),
260 STATS_DESC_COUNTER(VCPU, invlpg),
261 STATS_DESC_COUNTER(VCPU, exits),
262 STATS_DESC_COUNTER(VCPU, io_exits),
263 STATS_DESC_COUNTER(VCPU, mmio_exits),
264 STATS_DESC_COUNTER(VCPU, signal_exits),
265 STATS_DESC_COUNTER(VCPU, irq_window_exits),
266 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
267 STATS_DESC_COUNTER(VCPU, l1d_flush),
268 STATS_DESC_COUNTER(VCPU, halt_exits),
269 STATS_DESC_COUNTER(VCPU, request_irq_exits),
270 STATS_DESC_COUNTER(VCPU, irq_exits),
271 STATS_DESC_COUNTER(VCPU, host_state_reload),
272 STATS_DESC_COUNTER(VCPU, fpu_reload),
273 STATS_DESC_COUNTER(VCPU, insn_emulation),
274 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
275 STATS_DESC_COUNTER(VCPU, hypercalls),
276 STATS_DESC_COUNTER(VCPU, irq_injections),
277 STATS_DESC_COUNTER(VCPU, nmi_injections),
278 STATS_DESC_COUNTER(VCPU, req_event),
279 STATS_DESC_COUNTER(VCPU, nested_run),
280 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
281 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
282 STATS_DESC_ICOUNTER(VCPU, guest_mode)
283 };
284
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286 .name_size = KVM_STATS_NAME_SIZE,
287 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288 .id_offset = sizeof(struct kvm_stats_header),
289 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291 sizeof(kvm_vcpu_stats_desc),
292 };
293
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
852 vcpu->arch.pdptrs_from_userspace = false;
853
854 out:
855
856 return ret;
857 }
858 EXPORT_SYMBOL_GPL(load_pdptrs);
859
860 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
861 {
862 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
863 kvm_clear_async_pf_completion_queue(vcpu);
864 kvm_async_pf_hash_reset(vcpu);
865 }
866
867 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
868 kvm_mmu_reset_context(vcpu);
869
870 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
871 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
872 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
873 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
874 }
875 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
876
877 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
878 {
879 unsigned long old_cr0 = kvm_read_cr0(vcpu);
880 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
881
882 cr0 |= X86_CR0_ET;
883
884 #ifdef CONFIG_X86_64
885 if (cr0 & 0xffffffff00000000UL)
886 return 1;
887 #endif
888
889 cr0 &= ~CR0_RESERVED_BITS;
890
891 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
892 return 1;
893
894 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
895 return 1;
896
897 #ifdef CONFIG_X86_64
898 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
899 (cr0 & X86_CR0_PG)) {
900 int cs_db, cs_l;
901
902 if (!is_pae(vcpu))
903 return 1;
904 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
905 if (cs_l)
906 return 1;
907 }
908 #endif
909 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
910 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
911 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
912 return 1;
913
914 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
915 return 1;
916
917 static_call(kvm_x86_set_cr0)(vcpu, cr0);
918
919 kvm_post_set_cr0(vcpu, old_cr0, cr0);
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_set_cr0);
924
925 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
926 {
927 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
928 }
929 EXPORT_SYMBOL_GPL(kvm_lmsw);
930
931 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
932 {
933 if (vcpu->arch.guest_state_protected)
934 return;
935
936 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
937
938 if (vcpu->arch.xcr0 != host_xcr0)
939 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
940
941 if (vcpu->arch.xsaves_enabled &&
942 vcpu->arch.ia32_xss != host_xss)
943 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
944 }
945
946 if (static_cpu_has(X86_FEATURE_PKU) &&
947 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
948 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
949 vcpu->arch.pkru != vcpu->arch.host_pkru)
950 write_pkru(vcpu->arch.pkru);
951 }
952 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
953
954 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
955 {
956 if (vcpu->arch.guest_state_protected)
957 return;
958
959 if (static_cpu_has(X86_FEATURE_PKU) &&
960 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
961 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
962 vcpu->arch.pkru = rdpkru();
963 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
964 write_pkru(vcpu->arch.host_pkru);
965 }
966
967 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
968
969 if (vcpu->arch.xcr0 != host_xcr0)
970 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
971
972 if (vcpu->arch.xsaves_enabled &&
973 vcpu->arch.ia32_xss != host_xss)
974 wrmsrl(MSR_IA32_XSS, host_xss);
975 }
976
977 }
978 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
979
980 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
981 {
982 u64 xcr0 = xcr;
983 u64 old_xcr0 = vcpu->arch.xcr0;
984 u64 valid_bits;
985
986 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
987 if (index != XCR_XFEATURE_ENABLED_MASK)
988 return 1;
989 if (!(xcr0 & XFEATURE_MASK_FP))
990 return 1;
991 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
992 return 1;
993
994 /*
995 * Do not allow the guest to set bits that we do not support
996 * saving. However, xcr0 bit 0 is always set, even if the
997 * emulated CPU does not support XSAVE (see fx_init).
998 */
999 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1000 if (xcr0 & ~valid_bits)
1001 return 1;
1002
1003 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1004 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1005 return 1;
1006
1007 if (xcr0 & XFEATURE_MASK_AVX512) {
1008 if (!(xcr0 & XFEATURE_MASK_YMM))
1009 return 1;
1010 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1011 return 1;
1012 }
1013 vcpu->arch.xcr0 = xcr0;
1014
1015 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1016 kvm_update_cpuid_runtime(vcpu);
1017 return 0;
1018 }
1019
1020 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1021 {
1022 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1023 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1024 kvm_inject_gp(vcpu, 0);
1025 return 1;
1026 }
1027
1028 return kvm_skip_emulated_instruction(vcpu);
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1031
1032 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1033 {
1034 if (cr4 & cr4_reserved_bits)
1035 return false;
1036
1037 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1038 return false;
1039
1040 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1043
1044 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1045 {
1046 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1047 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1048 kvm_mmu_reset_context(vcpu);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1051
1052 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1053 {
1054 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1055 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1056 X86_CR4_SMEP;
1057
1058 if (!kvm_is_valid_cr4(vcpu, cr4))
1059 return 1;
1060
1061 if (is_long_mode(vcpu)) {
1062 if (!(cr4 & X86_CR4_PAE))
1063 return 1;
1064 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1065 return 1;
1066 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1067 && ((cr4 ^ old_cr4) & pdptr_bits)
1068 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1069 kvm_read_cr3(vcpu)))
1070 return 1;
1071
1072 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1073 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1074 return 1;
1075
1076 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1077 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1078 return 1;
1079 }
1080
1081 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1082
1083 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1084
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1088
1089 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1090 {
1091 struct kvm_mmu *mmu = vcpu->arch.mmu;
1092 unsigned long roots_to_free = 0;
1093 int i;
1094
1095 /*
1096 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1097 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1098 * also via the emulator. KVM's TDP page tables are not in the scope of
1099 * the invalidation, but the guest's TLB entries need to be flushed as
1100 * the CPU may have cached entries in its TLB for the target PCID.
1101 */
1102 if (unlikely(tdp_enabled)) {
1103 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1104 return;
1105 }
1106
1107 /*
1108 * If neither the current CR3 nor any of the prev_roots use the given
1109 * PCID, then nothing needs to be done here because a resync will
1110 * happen anyway before switching to any other CR3.
1111 */
1112 if (kvm_get_active_pcid(vcpu) == pcid) {
1113 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1114 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1115 }
1116
1117 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1118 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1119 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1120
1121 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1122 }
1123
1124 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1125 {
1126 bool skip_tlb_flush = false;
1127 unsigned long pcid = 0;
1128 #ifdef CONFIG_X86_64
1129 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1130
1131 if (pcid_enabled) {
1132 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1133 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1134 pcid = cr3 & X86_CR3_PCID_MASK;
1135 }
1136 #endif
1137
1138 /* PDPTRs are always reloaded for PAE paging. */
1139 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1140 goto handle_tlb_flush;
1141
1142 /*
1143 * Do not condition the GPA check on long mode, this helper is used to
1144 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1145 * the current vCPU mode is accurate.
1146 */
1147 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1148 return 1;
1149
1150 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1151 return 1;
1152
1153 if (cr3 != kvm_read_cr3(vcpu))
1154 kvm_mmu_new_pgd(vcpu, cr3);
1155
1156 vcpu->arch.cr3 = cr3;
1157 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1158
1159 handle_tlb_flush:
1160 /*
1161 * A load of CR3 that flushes the TLB flushes only the current PCID,
1162 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1163 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1164 * and it's impossible to use a non-zero PCID when PCID is disabled,
1165 * i.e. only PCID=0 can be relevant.
1166 */
1167 if (!skip_tlb_flush)
1168 kvm_invalidate_pcid(vcpu, pcid);
1169
1170 return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1173
1174 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1175 {
1176 if (cr8 & CR8_RESERVED_BITS)
1177 return 1;
1178 if (lapic_in_kernel(vcpu))
1179 kvm_lapic_set_tpr(vcpu, cr8);
1180 else
1181 vcpu->arch.cr8 = cr8;
1182 return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1185
1186 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1187 {
1188 if (lapic_in_kernel(vcpu))
1189 return kvm_lapic_get_cr8(vcpu);
1190 else
1191 return vcpu->arch.cr8;
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1194
1195 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1196 {
1197 int i;
1198
1199 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1200 for (i = 0; i < KVM_NR_DB_REGS; i++)
1201 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1202 }
1203 }
1204
1205 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1206 {
1207 unsigned long dr7;
1208
1209 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1210 dr7 = vcpu->arch.guest_debug_dr7;
1211 else
1212 dr7 = vcpu->arch.dr7;
1213 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1214 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1215 if (dr7 & DR7_BP_EN_MASK)
1216 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1219
1220 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1221 {
1222 u64 fixed = DR6_FIXED_1;
1223
1224 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1225 fixed |= DR6_RTM;
1226
1227 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1228 fixed |= DR6_BUS_LOCK;
1229 return fixed;
1230 }
1231
1232 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1233 {
1234 size_t size = ARRAY_SIZE(vcpu->arch.db);
1235
1236 switch (dr) {
1237 case 0 ... 3:
1238 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1239 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1240 vcpu->arch.eff_db[dr] = val;
1241 break;
1242 case 4:
1243 case 6:
1244 if (!kvm_dr6_valid(val))
1245 return 1; /* #GP */
1246 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1247 break;
1248 case 5:
1249 default: /* 7 */
1250 if (!kvm_dr7_valid(val))
1251 return 1; /* #GP */
1252 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1253 kvm_update_dr7(vcpu);
1254 break;
1255 }
1256
1257 return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_dr);
1260
1261 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1262 {
1263 size_t size = ARRAY_SIZE(vcpu->arch.db);
1264
1265 switch (dr) {
1266 case 0 ... 3:
1267 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1268 break;
1269 case 4:
1270 case 6:
1271 *val = vcpu->arch.dr6;
1272 break;
1273 case 5:
1274 default: /* 7 */
1275 *val = vcpu->arch.dr7;
1276 break;
1277 }
1278 }
1279 EXPORT_SYMBOL_GPL(kvm_get_dr);
1280
1281 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1282 {
1283 u32 ecx = kvm_rcx_read(vcpu);
1284 u64 data;
1285
1286 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1287 kvm_inject_gp(vcpu, 0);
1288 return 1;
1289 }
1290
1291 kvm_rax_write(vcpu, (u32)data);
1292 kvm_rdx_write(vcpu, data >> 32);
1293 return kvm_skip_emulated_instruction(vcpu);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1296
1297 /*
1298 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1299 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1300 *
1301 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1302 * extract the supported MSRs from the related const lists.
1303 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1304 * capabilities of the host cpu. This capabilities test skips MSRs that are
1305 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1306 * may depend on host virtualization features rather than host cpu features.
1307 */
1308
1309 static const u32 msrs_to_save_all[] = {
1310 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1311 MSR_STAR,
1312 #ifdef CONFIG_X86_64
1313 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1314 #endif
1315 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1316 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1317 MSR_IA32_SPEC_CTRL,
1318 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1319 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1320 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1321 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1322 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1323 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1324 MSR_IA32_UMWAIT_CONTROL,
1325
1326 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1327 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1328 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1329 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1330 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1331 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1332 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1333 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1334 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1335 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1336 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1337 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1338 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1339 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1340 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1341 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1342 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1343 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1344 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1345 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1346 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1347 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1348
1349 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1350 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1351 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1352 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1353 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1354 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1355 };
1356
1357 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1358 static unsigned num_msrs_to_save;
1359
1360 static const u32 emulated_msrs_all[] = {
1361 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1362 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1363 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1364 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1365 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1366 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1367 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1368 HV_X64_MSR_RESET,
1369 HV_X64_MSR_VP_INDEX,
1370 HV_X64_MSR_VP_RUNTIME,
1371 HV_X64_MSR_SCONTROL,
1372 HV_X64_MSR_STIMER0_CONFIG,
1373 HV_X64_MSR_VP_ASSIST_PAGE,
1374 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1375 HV_X64_MSR_TSC_EMULATION_STATUS,
1376 HV_X64_MSR_SYNDBG_OPTIONS,
1377 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1378 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1379 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1380
1381 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1382 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1383
1384 MSR_IA32_TSC_ADJUST,
1385 MSR_IA32_TSC_DEADLINE,
1386 MSR_IA32_ARCH_CAPABILITIES,
1387 MSR_IA32_PERF_CAPABILITIES,
1388 MSR_IA32_MISC_ENABLE,
1389 MSR_IA32_MCG_STATUS,
1390 MSR_IA32_MCG_CTL,
1391 MSR_IA32_MCG_EXT_CTL,
1392 MSR_IA32_SMBASE,
1393 MSR_SMI_COUNT,
1394 MSR_PLATFORM_INFO,
1395 MSR_MISC_FEATURES_ENABLES,
1396 MSR_AMD64_VIRT_SPEC_CTRL,
1397 MSR_IA32_POWER_CTL,
1398 MSR_IA32_UCODE_REV,
1399
1400 /*
1401 * The following list leaves out MSRs whose values are determined
1402 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1403 * We always support the "true" VMX control MSRs, even if the host
1404 * processor does not, so I am putting these registers here rather
1405 * than in msrs_to_save_all.
1406 */
1407 MSR_IA32_VMX_BASIC,
1408 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1410 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1411 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1412 MSR_IA32_VMX_MISC,
1413 MSR_IA32_VMX_CR0_FIXED0,
1414 MSR_IA32_VMX_CR4_FIXED0,
1415 MSR_IA32_VMX_VMCS_ENUM,
1416 MSR_IA32_VMX_PROCBASED_CTLS2,
1417 MSR_IA32_VMX_EPT_VPID_CAP,
1418 MSR_IA32_VMX_VMFUNC,
1419
1420 MSR_K7_HWCR,
1421 MSR_KVM_POLL_CONTROL,
1422 };
1423
1424 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1425 static unsigned num_emulated_msrs;
1426
1427 /*
1428 * List of msr numbers which are used to expose MSR-based features that
1429 * can be used by a hypervisor to validate requested CPU features.
1430 */
1431 static const u32 msr_based_features_all[] = {
1432 MSR_IA32_VMX_BASIC,
1433 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1434 MSR_IA32_VMX_PINBASED_CTLS,
1435 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1436 MSR_IA32_VMX_PROCBASED_CTLS,
1437 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1438 MSR_IA32_VMX_EXIT_CTLS,
1439 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1440 MSR_IA32_VMX_ENTRY_CTLS,
1441 MSR_IA32_VMX_MISC,
1442 MSR_IA32_VMX_CR0_FIXED0,
1443 MSR_IA32_VMX_CR0_FIXED1,
1444 MSR_IA32_VMX_CR4_FIXED0,
1445 MSR_IA32_VMX_CR4_FIXED1,
1446 MSR_IA32_VMX_VMCS_ENUM,
1447 MSR_IA32_VMX_PROCBASED_CTLS2,
1448 MSR_IA32_VMX_EPT_VPID_CAP,
1449 MSR_IA32_VMX_VMFUNC,
1450
1451 MSR_F10H_DECFG,
1452 MSR_IA32_UCODE_REV,
1453 MSR_IA32_ARCH_CAPABILITIES,
1454 MSR_IA32_PERF_CAPABILITIES,
1455 };
1456
1457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1458 static unsigned int num_msr_based_features;
1459
1460 static u64 kvm_get_arch_capabilities(void)
1461 {
1462 u64 data = 0;
1463
1464 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1465 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1466
1467 /*
1468 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1469 * the nested hypervisor runs with NX huge pages. If it is not,
1470 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1471 * L1 guests, so it need not worry about its own (L2) guests.
1472 */
1473 data |= ARCH_CAP_PSCHANGE_MC_NO;
1474
1475 /*
1476 * If we're doing cache flushes (either "always" or "cond")
1477 * we will do one whenever the guest does a vmlaunch/vmresume.
1478 * If an outer hypervisor is doing the cache flush for us
1479 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1480 * capability to the guest too, and if EPT is disabled we're not
1481 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1482 * require a nested hypervisor to do a flush of its own.
1483 */
1484 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1485 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1486
1487 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1488 data |= ARCH_CAP_RDCL_NO;
1489 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1490 data |= ARCH_CAP_SSB_NO;
1491 if (!boot_cpu_has_bug(X86_BUG_MDS))
1492 data |= ARCH_CAP_MDS_NO;
1493
1494 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1495 /*
1496 * If RTM=0 because the kernel has disabled TSX, the host might
1497 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1498 * and therefore knows that there cannot be TAA) but keep
1499 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1500 * and we want to allow migrating those guests to tsx=off hosts.
1501 */
1502 data &= ~ARCH_CAP_TAA_NO;
1503 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1504 data |= ARCH_CAP_TAA_NO;
1505 } else {
1506 /*
1507 * Nothing to do here; we emulate TSX_CTRL if present on the
1508 * host so the guest can choose between disabling TSX or
1509 * using VERW to clear CPU buffers.
1510 */
1511 }
1512
1513 /* Guests don't need to know "Fill buffer clear control" exists */
1514 data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1515
1516 return data;
1517 }
1518
1519 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1520 {
1521 switch (msr->index) {
1522 case MSR_IA32_ARCH_CAPABILITIES:
1523 msr->data = kvm_get_arch_capabilities();
1524 break;
1525 case MSR_IA32_UCODE_REV:
1526 rdmsrl_safe(msr->index, &msr->data);
1527 break;
1528 default:
1529 return static_call(kvm_x86_get_msr_feature)(msr);
1530 }
1531 return 0;
1532 }
1533
1534 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1535 {
1536 struct kvm_msr_entry msr;
1537 int r;
1538
1539 msr.index = index;
1540 r = kvm_get_msr_feature(&msr);
1541
1542 if (r == KVM_MSR_RET_INVALID) {
1543 /* Unconditionally clear the output for simplicity */
1544 *data = 0;
1545 if (kvm_msr_ignored_check(index, 0, false))
1546 r = 0;
1547 }
1548
1549 if (r)
1550 return r;
1551
1552 *data = msr.data;
1553
1554 return 0;
1555 }
1556
1557 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1558 {
1559 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1560 return false;
1561
1562 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1563 return false;
1564
1565 if (efer & (EFER_LME | EFER_LMA) &&
1566 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1567 return false;
1568
1569 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1570 return false;
1571
1572 return true;
1573
1574 }
1575 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1576 {
1577 if (efer & efer_reserved_bits)
1578 return false;
1579
1580 return __kvm_valid_efer(vcpu, efer);
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1583
1584 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1585 {
1586 u64 old_efer = vcpu->arch.efer;
1587 u64 efer = msr_info->data;
1588 int r;
1589
1590 if (efer & efer_reserved_bits)
1591 return 1;
1592
1593 if (!msr_info->host_initiated) {
1594 if (!__kvm_valid_efer(vcpu, efer))
1595 return 1;
1596
1597 if (is_paging(vcpu) &&
1598 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1599 return 1;
1600 }
1601
1602 efer &= ~EFER_LMA;
1603 efer |= vcpu->arch.efer & EFER_LMA;
1604
1605 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1606 if (r) {
1607 WARN_ON(r > 0);
1608 return r;
1609 }
1610
1611 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1612 kvm_mmu_reset_context(vcpu);
1613
1614 return 0;
1615 }
1616
1617 void kvm_enable_efer_bits(u64 mask)
1618 {
1619 efer_reserved_bits &= ~mask;
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1622
1623 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1624 {
1625 struct kvm_x86_msr_filter *msr_filter;
1626 struct msr_bitmap_range *ranges;
1627 struct kvm *kvm = vcpu->kvm;
1628 bool allowed;
1629 int idx;
1630 u32 i;
1631
1632 /* x2APIC MSRs do not support filtering. */
1633 if (index >= 0x800 && index <= 0x8ff)
1634 return true;
1635
1636 idx = srcu_read_lock(&kvm->srcu);
1637
1638 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1639 if (!msr_filter) {
1640 allowed = true;
1641 goto out;
1642 }
1643
1644 allowed = msr_filter->default_allow;
1645 ranges = msr_filter->ranges;
1646
1647 for (i = 0; i < msr_filter->count; i++) {
1648 u32 start = ranges[i].base;
1649 u32 end = start + ranges[i].nmsrs;
1650 u32 flags = ranges[i].flags;
1651 unsigned long *bitmap = ranges[i].bitmap;
1652
1653 if ((index >= start) && (index < end) && (flags & type)) {
1654 allowed = !!test_bit(index - start, bitmap);
1655 break;
1656 }
1657 }
1658
1659 out:
1660 srcu_read_unlock(&kvm->srcu, idx);
1661
1662 return allowed;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1665
1666 /*
1667 * Write @data into the MSR specified by @index. Select MSR specific fault
1668 * checks are bypassed if @host_initiated is %true.
1669 * Returns 0 on success, non-0 otherwise.
1670 * Assumes vcpu_load() was already called.
1671 */
1672 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1673 bool host_initiated)
1674 {
1675 struct msr_data msr;
1676
1677 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1678 return KVM_MSR_RET_FILTERED;
1679
1680 switch (index) {
1681 case MSR_FS_BASE:
1682 case MSR_GS_BASE:
1683 case MSR_KERNEL_GS_BASE:
1684 case MSR_CSTAR:
1685 case MSR_LSTAR:
1686 if (is_noncanonical_address(data, vcpu))
1687 return 1;
1688 break;
1689 case MSR_IA32_SYSENTER_EIP:
1690 case MSR_IA32_SYSENTER_ESP:
1691 /*
1692 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1693 * non-canonical address is written on Intel but not on
1694 * AMD (which ignores the top 32-bits, because it does
1695 * not implement 64-bit SYSENTER).
1696 *
1697 * 64-bit code should hence be able to write a non-canonical
1698 * value on AMD. Making the address canonical ensures that
1699 * vmentry does not fail on Intel after writing a non-canonical
1700 * value, and that something deterministic happens if the guest
1701 * invokes 64-bit SYSENTER.
1702 */
1703 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1704 break;
1705 case MSR_TSC_AUX:
1706 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1707 return 1;
1708
1709 if (!host_initiated &&
1710 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1711 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1712 return 1;
1713
1714 /*
1715 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1716 * incomplete and conflicting architectural behavior. Current
1717 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1718 * reserved and always read as zeros. Enforce Intel's reserved
1719 * bits check if and only if the guest CPU is Intel, and clear
1720 * the bits in all other cases. This ensures cross-vendor
1721 * migration will provide consistent behavior for the guest.
1722 */
1723 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1724 return 1;
1725
1726 data = (u32)data;
1727 break;
1728 }
1729
1730 msr.data = data;
1731 msr.index = index;
1732 msr.host_initiated = host_initiated;
1733
1734 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1735 }
1736
1737 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1738 u32 index, u64 data, bool host_initiated)
1739 {
1740 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1741
1742 if (ret == KVM_MSR_RET_INVALID)
1743 if (kvm_msr_ignored_check(index, data, true))
1744 ret = 0;
1745
1746 return ret;
1747 }
1748
1749 /*
1750 * Read the MSR specified by @index into @data. Select MSR specific fault
1751 * checks are bypassed if @host_initiated is %true.
1752 * Returns 0 on success, non-0 otherwise.
1753 * Assumes vcpu_load() was already called.
1754 */
1755 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1756 bool host_initiated)
1757 {
1758 struct msr_data msr;
1759 int ret;
1760
1761 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1762 return KVM_MSR_RET_FILTERED;
1763
1764 switch (index) {
1765 case MSR_TSC_AUX:
1766 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1767 return 1;
1768
1769 if (!host_initiated &&
1770 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1771 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1772 return 1;
1773 break;
1774 }
1775
1776 msr.index = index;
1777 msr.host_initiated = host_initiated;
1778
1779 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1780 if (!ret)
1781 *data = msr.data;
1782 return ret;
1783 }
1784
1785 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1786 u32 index, u64 *data, bool host_initiated)
1787 {
1788 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1789
1790 if (ret == KVM_MSR_RET_INVALID) {
1791 /* Unconditionally clear *data for simplicity */
1792 *data = 0;
1793 if (kvm_msr_ignored_check(index, 0, false))
1794 ret = 0;
1795 }
1796
1797 return ret;
1798 }
1799
1800 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1801 {
1802 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_get_msr);
1805
1806 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1807 {
1808 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_set_msr);
1811
1812 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1813 {
1814 int err = vcpu->run->msr.error;
1815 if (!err) {
1816 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1817 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1818 }
1819
1820 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1821 }
1822
1823 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1824 {
1825 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1826 }
1827
1828 static u64 kvm_msr_reason(int r)
1829 {
1830 switch (r) {
1831 case KVM_MSR_RET_INVALID:
1832 return KVM_MSR_EXIT_REASON_UNKNOWN;
1833 case KVM_MSR_RET_FILTERED:
1834 return KVM_MSR_EXIT_REASON_FILTER;
1835 default:
1836 return KVM_MSR_EXIT_REASON_INVAL;
1837 }
1838 }
1839
1840 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1841 u32 exit_reason, u64 data,
1842 int (*completion)(struct kvm_vcpu *vcpu),
1843 int r)
1844 {
1845 u64 msr_reason = kvm_msr_reason(r);
1846
1847 /* Check if the user wanted to know about this MSR fault */
1848 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1849 return 0;
1850
1851 vcpu->run->exit_reason = exit_reason;
1852 vcpu->run->msr.error = 0;
1853 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1854 vcpu->run->msr.reason = msr_reason;
1855 vcpu->run->msr.index = index;
1856 vcpu->run->msr.data = data;
1857 vcpu->arch.complete_userspace_io = completion;
1858
1859 return 1;
1860 }
1861
1862 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1863 {
1864 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1865 complete_emulated_rdmsr, r);
1866 }
1867
1868 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1869 {
1870 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1871 complete_emulated_wrmsr, r);
1872 }
1873
1874 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1875 {
1876 u32 ecx = kvm_rcx_read(vcpu);
1877 u64 data;
1878 int r;
1879
1880 r = kvm_get_msr(vcpu, ecx, &data);
1881
1882 /* MSR read failed? See if we should ask user space */
1883 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1884 /* Bounce to user space */
1885 return 0;
1886 }
1887
1888 if (!r) {
1889 trace_kvm_msr_read(ecx, data);
1890
1891 kvm_rax_write(vcpu, data & -1u);
1892 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1893 } else {
1894 trace_kvm_msr_read_ex(ecx);
1895 }
1896
1897 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1900
1901 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1902 {
1903 u32 ecx = kvm_rcx_read(vcpu);
1904 u64 data = kvm_read_edx_eax(vcpu);
1905 int r;
1906
1907 r = kvm_set_msr(vcpu, ecx, data);
1908
1909 /* MSR write failed? See if we should ask user space */
1910 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1911 /* Bounce to user space */
1912 return 0;
1913
1914 /* Signal all other negative errors to userspace */
1915 if (r < 0)
1916 return r;
1917
1918 if (!r)
1919 trace_kvm_msr_write(ecx, data);
1920 else
1921 trace_kvm_msr_write_ex(ecx, data);
1922
1923 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1926
1927 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1928 {
1929 return kvm_skip_emulated_instruction(vcpu);
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1932
1933 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1934 {
1935 /* Treat an INVD instruction as a NOP and just skip it. */
1936 return kvm_emulate_as_nop(vcpu);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1939
1940 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1941 {
1942 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1943 return kvm_emulate_as_nop(vcpu);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1946
1947 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1948 {
1949 kvm_queue_exception(vcpu, UD_VECTOR);
1950 return 1;
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1953
1954 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1955 {
1956 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1957 return kvm_emulate_as_nop(vcpu);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1960
1961 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1962 {
1963 xfer_to_guest_mode_prepare();
1964 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1965 xfer_to_guest_mode_work_pending();
1966 }
1967
1968 /*
1969 * The fast path for frequent and performance sensitive wrmsr emulation,
1970 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1971 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1972 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1973 * other cases which must be called after interrupts are enabled on the host.
1974 */
1975 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1976 {
1977 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1978 return 1;
1979
1980 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1981 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1982 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1983 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1984
1985 data &= ~(1 << 12);
1986 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1987 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1988 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1989 trace_kvm_apic_write(APIC_ICR, (u32)data);
1990 return 0;
1991 }
1992
1993 return 1;
1994 }
1995
1996 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1997 {
1998 if (!kvm_can_use_hv_timer(vcpu))
1999 return 1;
2000
2001 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2002 return 0;
2003 }
2004
2005 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2006 {
2007 u32 msr = kvm_rcx_read(vcpu);
2008 u64 data;
2009 fastpath_t ret = EXIT_FASTPATH_NONE;
2010
2011 switch (msr) {
2012 case APIC_BASE_MSR + (APIC_ICR >> 4):
2013 data = kvm_read_edx_eax(vcpu);
2014 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2015 kvm_skip_emulated_instruction(vcpu);
2016 ret = EXIT_FASTPATH_EXIT_HANDLED;
2017 }
2018 break;
2019 case MSR_IA32_TSC_DEADLINE:
2020 data = kvm_read_edx_eax(vcpu);
2021 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2022 kvm_skip_emulated_instruction(vcpu);
2023 ret = EXIT_FASTPATH_REENTER_GUEST;
2024 }
2025 break;
2026 default:
2027 break;
2028 }
2029
2030 if (ret != EXIT_FASTPATH_NONE)
2031 trace_kvm_msr_write(msr, data);
2032
2033 return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2036
2037 /*
2038 * Adapt set_msr() to msr_io()'s calling convention
2039 */
2040 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2041 {
2042 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2043 }
2044
2045 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2046 {
2047 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2048 }
2049
2050 #ifdef CONFIG_X86_64
2051 struct pvclock_clock {
2052 int vclock_mode;
2053 u64 cycle_last;
2054 u64 mask;
2055 u32 mult;
2056 u32 shift;
2057 u64 base_cycles;
2058 u64 offset;
2059 };
2060
2061 struct pvclock_gtod_data {
2062 seqcount_t seq;
2063
2064 struct pvclock_clock clock; /* extract of a clocksource struct */
2065 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2066
2067 ktime_t offs_boot;
2068 u64 wall_time_sec;
2069 };
2070
2071 static struct pvclock_gtod_data pvclock_gtod_data;
2072
2073 static void update_pvclock_gtod(struct timekeeper *tk)
2074 {
2075 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2076
2077 write_seqcount_begin(&vdata->seq);
2078
2079 /* copy pvclock gtod data */
2080 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2081 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2082 vdata->clock.mask = tk->tkr_mono.mask;
2083 vdata->clock.mult = tk->tkr_mono.mult;
2084 vdata->clock.shift = tk->tkr_mono.shift;
2085 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2086 vdata->clock.offset = tk->tkr_mono.base;
2087
2088 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2089 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2090 vdata->raw_clock.mask = tk->tkr_raw.mask;
2091 vdata->raw_clock.mult = tk->tkr_raw.mult;
2092 vdata->raw_clock.shift = tk->tkr_raw.shift;
2093 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2094 vdata->raw_clock.offset = tk->tkr_raw.base;
2095
2096 vdata->wall_time_sec = tk->xtime_sec;
2097
2098 vdata->offs_boot = tk->offs_boot;
2099
2100 write_seqcount_end(&vdata->seq);
2101 }
2102
2103 static s64 get_kvmclock_base_ns(void)
2104 {
2105 /* Count up from boot time, but with the frequency of the raw clock. */
2106 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2107 }
2108 #else
2109 static s64 get_kvmclock_base_ns(void)
2110 {
2111 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2112 return ktime_get_boottime_ns();
2113 }
2114 #endif
2115
2116 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2117 {
2118 int version;
2119 int r;
2120 struct pvclock_wall_clock wc;
2121 u32 wc_sec_hi;
2122 u64 wall_nsec;
2123
2124 if (!wall_clock)
2125 return;
2126
2127 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2128 if (r)
2129 return;
2130
2131 if (version & 1)
2132 ++version; /* first time write, random junk */
2133
2134 ++version;
2135
2136 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2137 return;
2138
2139 /*
2140 * The guest calculates current wall clock time by adding
2141 * system time (updated by kvm_guest_time_update below) to the
2142 * wall clock specified here. We do the reverse here.
2143 */
2144 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2145
2146 wc.nsec = do_div(wall_nsec, 1000000000);
2147 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2148 wc.version = version;
2149
2150 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2151
2152 if (sec_hi_ofs) {
2153 wc_sec_hi = wall_nsec >> 32;
2154 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2155 &wc_sec_hi, sizeof(wc_sec_hi));
2156 }
2157
2158 version++;
2159 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2160 }
2161
2162 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2163 bool old_msr, bool host_initiated)
2164 {
2165 struct kvm_arch *ka = &vcpu->kvm->arch;
2166
2167 if (vcpu->vcpu_id == 0 && !host_initiated) {
2168 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2169 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2170
2171 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2172 }
2173
2174 vcpu->arch.time = system_time;
2175 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2176
2177 /* we verify if the enable bit is set... */
2178 vcpu->arch.pv_time_enabled = false;
2179 if (!(system_time & 1))
2180 return;
2181
2182 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2183 &vcpu->arch.pv_time, system_time & ~1ULL,
2184 sizeof(struct pvclock_vcpu_time_info)))
2185 vcpu->arch.pv_time_enabled = true;
2186
2187 return;
2188 }
2189
2190 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2191 {
2192 do_shl32_div32(dividend, divisor);
2193 return dividend;
2194 }
2195
2196 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2197 s8 *pshift, u32 *pmultiplier)
2198 {
2199 uint64_t scaled64;
2200 int32_t shift = 0;
2201 uint64_t tps64;
2202 uint32_t tps32;
2203
2204 tps64 = base_hz;
2205 scaled64 = scaled_hz;
2206 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2207 tps64 >>= 1;
2208 shift--;
2209 }
2210
2211 tps32 = (uint32_t)tps64;
2212 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2213 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2214 scaled64 >>= 1;
2215 else
2216 tps32 <<= 1;
2217 shift++;
2218 }
2219
2220 *pshift = shift;
2221 *pmultiplier = div_frac(scaled64, tps32);
2222 }
2223
2224 #ifdef CONFIG_X86_64
2225 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2226 #endif
2227
2228 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2229 static unsigned long max_tsc_khz;
2230
2231 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2232 {
2233 u64 v = (u64)khz * (1000000 + ppm);
2234 do_div(v, 1000000);
2235 return v;
2236 }
2237
2238 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2239
2240 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2241 {
2242 u64 ratio;
2243
2244 /* Guest TSC same frequency as host TSC? */
2245 if (!scale) {
2246 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2247 return 0;
2248 }
2249
2250 /* TSC scaling supported? */
2251 if (!kvm_has_tsc_control) {
2252 if (user_tsc_khz > tsc_khz) {
2253 vcpu->arch.tsc_catchup = 1;
2254 vcpu->arch.tsc_always_catchup = 1;
2255 return 0;
2256 } else {
2257 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2258 return -1;
2259 }
2260 }
2261
2262 /* TSC scaling required - calculate ratio */
2263 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2264 user_tsc_khz, tsc_khz);
2265
2266 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2267 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2268 user_tsc_khz);
2269 return -1;
2270 }
2271
2272 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2273 return 0;
2274 }
2275
2276 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2277 {
2278 u32 thresh_lo, thresh_hi;
2279 int use_scaling = 0;
2280
2281 /* tsc_khz can be zero if TSC calibration fails */
2282 if (user_tsc_khz == 0) {
2283 /* set tsc_scaling_ratio to a safe value */
2284 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2285 return -1;
2286 }
2287
2288 /* Compute a scale to convert nanoseconds in TSC cycles */
2289 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2290 &vcpu->arch.virtual_tsc_shift,
2291 &vcpu->arch.virtual_tsc_mult);
2292 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2293
2294 /*
2295 * Compute the variation in TSC rate which is acceptable
2296 * within the range of tolerance and decide if the
2297 * rate being applied is within that bounds of the hardware
2298 * rate. If so, no scaling or compensation need be done.
2299 */
2300 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2301 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2302 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2303 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2304 use_scaling = 1;
2305 }
2306 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2307 }
2308
2309 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2310 {
2311 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2312 vcpu->arch.virtual_tsc_mult,
2313 vcpu->arch.virtual_tsc_shift);
2314 tsc += vcpu->arch.this_tsc_write;
2315 return tsc;
2316 }
2317
2318 static inline int gtod_is_based_on_tsc(int mode)
2319 {
2320 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2321 }
2322
2323 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2324 {
2325 #ifdef CONFIG_X86_64
2326 bool vcpus_matched;
2327 struct kvm_arch *ka = &vcpu->kvm->arch;
2328 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2329
2330 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2331 atomic_read(&vcpu->kvm->online_vcpus));
2332
2333 /*
2334 * Once the masterclock is enabled, always perform request in
2335 * order to update it.
2336 *
2337 * In order to enable masterclock, the host clocksource must be TSC
2338 * and the vcpus need to have matched TSCs. When that happens,
2339 * perform request to enable masterclock.
2340 */
2341 if (ka->use_master_clock ||
2342 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2343 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2344
2345 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2346 atomic_read(&vcpu->kvm->online_vcpus),
2347 ka->use_master_clock, gtod->clock.vclock_mode);
2348 #endif
2349 }
2350
2351 /*
2352 * Multiply tsc by a fixed point number represented by ratio.
2353 *
2354 * The most significant 64-N bits (mult) of ratio represent the
2355 * integral part of the fixed point number; the remaining N bits
2356 * (frac) represent the fractional part, ie. ratio represents a fixed
2357 * point number (mult + frac * 2^(-N)).
2358 *
2359 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2360 */
2361 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2362 {
2363 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2364 }
2365
2366 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2367 {
2368 u64 _tsc = tsc;
2369
2370 if (ratio != kvm_default_tsc_scaling_ratio)
2371 _tsc = __scale_tsc(ratio, tsc);
2372
2373 return _tsc;
2374 }
2375 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2376
2377 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2378 {
2379 u64 tsc;
2380
2381 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2382
2383 return target_tsc - tsc;
2384 }
2385
2386 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2387 {
2388 return vcpu->arch.l1_tsc_offset +
2389 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2392
2393 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2394 {
2395 u64 nested_offset;
2396
2397 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2398 nested_offset = l1_offset;
2399 else
2400 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2401 kvm_tsc_scaling_ratio_frac_bits);
2402
2403 nested_offset += l2_offset;
2404 return nested_offset;
2405 }
2406 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2407
2408 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2409 {
2410 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2411 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2412 kvm_tsc_scaling_ratio_frac_bits);
2413
2414 return l1_multiplier;
2415 }
2416 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2417
2418 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2419 {
2420 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2421 vcpu->arch.l1_tsc_offset,
2422 l1_offset);
2423
2424 vcpu->arch.l1_tsc_offset = l1_offset;
2425
2426 /*
2427 * If we are here because L1 chose not to trap WRMSR to TSC then
2428 * according to the spec this should set L1's TSC (as opposed to
2429 * setting L1's offset for L2).
2430 */
2431 if (is_guest_mode(vcpu))
2432 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2433 l1_offset,
2434 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_offset = l1_offset;
2438
2439 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2440 }
2441
2442 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2443 {
2444 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2445
2446 /* Userspace is changing the multiplier while L2 is active */
2447 if (is_guest_mode(vcpu))
2448 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2449 l1_multiplier,
2450 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2451 else
2452 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2453
2454 if (kvm_has_tsc_control)
2455 static_call(kvm_x86_write_tsc_multiplier)(
2456 vcpu, vcpu->arch.tsc_scaling_ratio);
2457 }
2458
2459 static inline bool kvm_check_tsc_unstable(void)
2460 {
2461 #ifdef CONFIG_X86_64
2462 /*
2463 * TSC is marked unstable when we're running on Hyper-V,
2464 * 'TSC page' clocksource is good.
2465 */
2466 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2467 return false;
2468 #endif
2469 return check_tsc_unstable();
2470 }
2471
2472 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2473 {
2474 struct kvm *kvm = vcpu->kvm;
2475 u64 offset, ns, elapsed;
2476 unsigned long flags;
2477 bool matched;
2478 bool already_matched;
2479 bool synchronizing = false;
2480
2481 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2482 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2483 ns = get_kvmclock_base_ns();
2484 elapsed = ns - kvm->arch.last_tsc_nsec;
2485
2486 if (vcpu->arch.virtual_tsc_khz) {
2487 if (data == 0) {
2488 /*
2489 * detection of vcpu initialization -- need to sync
2490 * with other vCPUs. This particularly helps to keep
2491 * kvm_clock stable after CPU hotplug
2492 */
2493 synchronizing = true;
2494 } else {
2495 u64 tsc_exp = kvm->arch.last_tsc_write +
2496 nsec_to_cycles(vcpu, elapsed);
2497 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2498 /*
2499 * Special case: TSC write with a small delta (1 second)
2500 * of virtual cycle time against real time is
2501 * interpreted as an attempt to synchronize the CPU.
2502 */
2503 synchronizing = data < tsc_exp + tsc_hz &&
2504 data + tsc_hz > tsc_exp;
2505 }
2506 }
2507
2508 /*
2509 * For a reliable TSC, we can match TSC offsets, and for an unstable
2510 * TSC, we add elapsed time in this computation. We could let the
2511 * compensation code attempt to catch up if we fall behind, but
2512 * it's better to try to match offsets from the beginning.
2513 */
2514 if (synchronizing &&
2515 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2516 if (!kvm_check_tsc_unstable()) {
2517 offset = kvm->arch.cur_tsc_offset;
2518 } else {
2519 u64 delta = nsec_to_cycles(vcpu, elapsed);
2520 data += delta;
2521 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2522 }
2523 matched = true;
2524 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2525 } else {
2526 /*
2527 * We split periods of matched TSC writes into generations.
2528 * For each generation, we track the original measured
2529 * nanosecond time, offset, and write, so if TSCs are in
2530 * sync, we can match exact offset, and if not, we can match
2531 * exact software computation in compute_guest_tsc()
2532 *
2533 * These values are tracked in kvm->arch.cur_xxx variables.
2534 */
2535 kvm->arch.cur_tsc_generation++;
2536 kvm->arch.cur_tsc_nsec = ns;
2537 kvm->arch.cur_tsc_write = data;
2538 kvm->arch.cur_tsc_offset = offset;
2539 matched = false;
2540 }
2541
2542 /*
2543 * We also track th most recent recorded KHZ, write and time to
2544 * allow the matching interval to be extended at each write.
2545 */
2546 kvm->arch.last_tsc_nsec = ns;
2547 kvm->arch.last_tsc_write = data;
2548 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2549
2550 vcpu->arch.last_guest_tsc = data;
2551
2552 /* Keep track of which generation this VCPU has synchronized to */
2553 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2554 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2555 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2556
2557 kvm_vcpu_write_tsc_offset(vcpu, offset);
2558 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2559
2560 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2561 if (!matched) {
2562 kvm->arch.nr_vcpus_matched_tsc = 0;
2563 } else if (!already_matched) {
2564 kvm->arch.nr_vcpus_matched_tsc++;
2565 }
2566
2567 kvm_track_tsc_matching(vcpu);
2568 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2569 }
2570
2571 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2572 s64 adjustment)
2573 {
2574 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2575 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2576 }
2577
2578 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2579 {
2580 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2581 WARN_ON(adjustment < 0);
2582 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2583 vcpu->arch.l1_tsc_scaling_ratio);
2584 adjust_tsc_offset_guest(vcpu, adjustment);
2585 }
2586
2587 #ifdef CONFIG_X86_64
2588
2589 static u64 read_tsc(void)
2590 {
2591 u64 ret = (u64)rdtsc_ordered();
2592 u64 last = pvclock_gtod_data.clock.cycle_last;
2593
2594 if (likely(ret >= last))
2595 return ret;
2596
2597 /*
2598 * GCC likes to generate cmov here, but this branch is extremely
2599 * predictable (it's just a function of time and the likely is
2600 * very likely) and there's a data dependence, so force GCC
2601 * to generate a branch instead. I don't barrier() because
2602 * we don't actually need a barrier, and if this function
2603 * ever gets inlined it will generate worse code.
2604 */
2605 asm volatile ("");
2606 return last;
2607 }
2608
2609 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2610 int *mode)
2611 {
2612 long v;
2613 u64 tsc_pg_val;
2614
2615 switch (clock->vclock_mode) {
2616 case VDSO_CLOCKMODE_HVCLOCK:
2617 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2618 tsc_timestamp);
2619 if (tsc_pg_val != U64_MAX) {
2620 /* TSC page valid */
2621 *mode = VDSO_CLOCKMODE_HVCLOCK;
2622 v = (tsc_pg_val - clock->cycle_last) &
2623 clock->mask;
2624 } else {
2625 /* TSC page invalid */
2626 *mode = VDSO_CLOCKMODE_NONE;
2627 }
2628 break;
2629 case VDSO_CLOCKMODE_TSC:
2630 *mode = VDSO_CLOCKMODE_TSC;
2631 *tsc_timestamp = read_tsc();
2632 v = (*tsc_timestamp - clock->cycle_last) &
2633 clock->mask;
2634 break;
2635 default:
2636 *mode = VDSO_CLOCKMODE_NONE;
2637 }
2638
2639 if (*mode == VDSO_CLOCKMODE_NONE)
2640 *tsc_timestamp = v = 0;
2641
2642 return v * clock->mult;
2643 }
2644
2645 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2646 {
2647 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2648 unsigned long seq;
2649 int mode;
2650 u64 ns;
2651
2652 do {
2653 seq = read_seqcount_begin(&gtod->seq);
2654 ns = gtod->raw_clock.base_cycles;
2655 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2656 ns >>= gtod->raw_clock.shift;
2657 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2658 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2659 *t = ns;
2660
2661 return mode;
2662 }
2663
2664 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2665 {
2666 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2667 unsigned long seq;
2668 int mode;
2669 u64 ns;
2670
2671 do {
2672 seq = read_seqcount_begin(&gtod->seq);
2673 ts->tv_sec = gtod->wall_time_sec;
2674 ns = gtod->clock.base_cycles;
2675 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2676 ns >>= gtod->clock.shift;
2677 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2678
2679 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2680 ts->tv_nsec = ns;
2681
2682 return mode;
2683 }
2684
2685 /* returns true if host is using TSC based clocksource */
2686 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2687 {
2688 /* checked again under seqlock below */
2689 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2690 return false;
2691
2692 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2693 tsc_timestamp));
2694 }
2695
2696 /* returns true if host is using TSC based clocksource */
2697 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2698 u64 *tsc_timestamp)
2699 {
2700 /* checked again under seqlock below */
2701 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2702 return false;
2703
2704 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2705 }
2706 #endif
2707
2708 /*
2709 *
2710 * Assuming a stable TSC across physical CPUS, and a stable TSC
2711 * across virtual CPUs, the following condition is possible.
2712 * Each numbered line represents an event visible to both
2713 * CPUs at the next numbered event.
2714 *
2715 * "timespecX" represents host monotonic time. "tscX" represents
2716 * RDTSC value.
2717 *
2718 * VCPU0 on CPU0 | VCPU1 on CPU1
2719 *
2720 * 1. read timespec0,tsc0
2721 * 2. | timespec1 = timespec0 + N
2722 * | tsc1 = tsc0 + M
2723 * 3. transition to guest | transition to guest
2724 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2725 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2726 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2727 *
2728 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2729 *
2730 * - ret0 < ret1
2731 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2732 * ...
2733 * - 0 < N - M => M < N
2734 *
2735 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2736 * always the case (the difference between two distinct xtime instances
2737 * might be smaller then the difference between corresponding TSC reads,
2738 * when updating guest vcpus pvclock areas).
2739 *
2740 * To avoid that problem, do not allow visibility of distinct
2741 * system_timestamp/tsc_timestamp values simultaneously: use a master
2742 * copy of host monotonic time values. Update that master copy
2743 * in lockstep.
2744 *
2745 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2746 *
2747 */
2748
2749 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2750 {
2751 #ifdef CONFIG_X86_64
2752 struct kvm_arch *ka = &kvm->arch;
2753 int vclock_mode;
2754 bool host_tsc_clocksource, vcpus_matched;
2755
2756 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2757 atomic_read(&kvm->online_vcpus));
2758
2759 /*
2760 * If the host uses TSC clock, then passthrough TSC as stable
2761 * to the guest.
2762 */
2763 host_tsc_clocksource = kvm_get_time_and_clockread(
2764 &ka->master_kernel_ns,
2765 &ka->master_cycle_now);
2766
2767 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2768 && !ka->backwards_tsc_observed
2769 && !ka->boot_vcpu_runs_old_kvmclock;
2770
2771 if (ka->use_master_clock)
2772 atomic_set(&kvm_guest_has_master_clock, 1);
2773
2774 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2775 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2776 vcpus_matched);
2777 #endif
2778 }
2779
2780 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2781 {
2782 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2783 }
2784
2785 static void kvm_gen_update_masterclock(struct kvm *kvm)
2786 {
2787 #ifdef CONFIG_X86_64
2788 int i;
2789 struct kvm_vcpu *vcpu;
2790 struct kvm_arch *ka = &kvm->arch;
2791 unsigned long flags;
2792
2793 kvm_hv_invalidate_tsc_page(kvm);
2794
2795 kvm_make_mclock_inprogress_request(kvm);
2796
2797 /* no guest entries from this point */
2798 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2799 pvclock_update_vm_gtod_copy(kvm);
2800 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2801
2802 kvm_for_each_vcpu(i, vcpu, kvm)
2803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2804
2805 /* guest entries allowed */
2806 kvm_for_each_vcpu(i, vcpu, kvm)
2807 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2808 #endif
2809 }
2810
2811 u64 get_kvmclock_ns(struct kvm *kvm)
2812 {
2813 struct kvm_arch *ka = &kvm->arch;
2814 struct pvclock_vcpu_time_info hv_clock;
2815 unsigned long flags;
2816 u64 ret;
2817
2818 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2819 if (!ka->use_master_clock) {
2820 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2821 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2822 }
2823
2824 hv_clock.tsc_timestamp = ka->master_cycle_now;
2825 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2826 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2827
2828 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2829 get_cpu();
2830
2831 if (__this_cpu_read(cpu_tsc_khz)) {
2832 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2833 &hv_clock.tsc_shift,
2834 &hv_clock.tsc_to_system_mul);
2835 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2836 } else
2837 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2838
2839 put_cpu();
2840
2841 return ret;
2842 }
2843
2844 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2845 struct gfn_to_hva_cache *cache,
2846 unsigned int offset)
2847 {
2848 struct kvm_vcpu_arch *vcpu = &v->arch;
2849 struct pvclock_vcpu_time_info guest_hv_clock;
2850
2851 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2852 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2853 return;
2854
2855 /* This VCPU is paused, but it's legal for a guest to read another
2856 * VCPU's kvmclock, so we really have to follow the specification where
2857 * it says that version is odd if data is being modified, and even after
2858 * it is consistent.
2859 *
2860 * Version field updates must be kept separate. This is because
2861 * kvm_write_guest_cached might use a "rep movs" instruction, and
2862 * writes within a string instruction are weakly ordered. So there
2863 * are three writes overall.
2864 *
2865 * As a small optimization, only write the version field in the first
2866 * and third write. The vcpu->pv_time cache is still valid, because the
2867 * version field is the first in the struct.
2868 */
2869 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2870
2871 if (guest_hv_clock.version & 1)
2872 ++guest_hv_clock.version; /* first time write, random junk */
2873
2874 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2875 kvm_write_guest_offset_cached(v->kvm, cache,
2876 &vcpu->hv_clock, offset,
2877 sizeof(vcpu->hv_clock.version));
2878
2879 smp_wmb();
2880
2881 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2882 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2883
2884 if (vcpu->pvclock_set_guest_stopped_request) {
2885 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2886 vcpu->pvclock_set_guest_stopped_request = false;
2887 }
2888
2889 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2890
2891 kvm_write_guest_offset_cached(v->kvm, cache,
2892 &vcpu->hv_clock, offset,
2893 sizeof(vcpu->hv_clock));
2894
2895 smp_wmb();
2896
2897 vcpu->hv_clock.version++;
2898 kvm_write_guest_offset_cached(v->kvm, cache,
2899 &vcpu->hv_clock, offset,
2900 sizeof(vcpu->hv_clock.version));
2901 }
2902
2903 static int kvm_guest_time_update(struct kvm_vcpu *v)
2904 {
2905 unsigned long flags, tgt_tsc_khz;
2906 struct kvm_vcpu_arch *vcpu = &v->arch;
2907 struct kvm_arch *ka = &v->kvm->arch;
2908 s64 kernel_ns;
2909 u64 tsc_timestamp, host_tsc;
2910 u8 pvclock_flags;
2911 bool use_master_clock;
2912
2913 kernel_ns = 0;
2914 host_tsc = 0;
2915
2916 /*
2917 * If the host uses TSC clock, then passthrough TSC as stable
2918 * to the guest.
2919 */
2920 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2921 use_master_clock = ka->use_master_clock;
2922 if (use_master_clock) {
2923 host_tsc = ka->master_cycle_now;
2924 kernel_ns = ka->master_kernel_ns;
2925 }
2926 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2927
2928 /* Keep irq disabled to prevent changes to the clock */
2929 local_irq_save(flags);
2930 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2931 if (unlikely(tgt_tsc_khz == 0)) {
2932 local_irq_restore(flags);
2933 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2934 return 1;
2935 }
2936 if (!use_master_clock) {
2937 host_tsc = rdtsc();
2938 kernel_ns = get_kvmclock_base_ns();
2939 }
2940
2941 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2942
2943 /*
2944 * We may have to catch up the TSC to match elapsed wall clock
2945 * time for two reasons, even if kvmclock is used.
2946 * 1) CPU could have been running below the maximum TSC rate
2947 * 2) Broken TSC compensation resets the base at each VCPU
2948 * entry to avoid unknown leaps of TSC even when running
2949 * again on the same CPU. This may cause apparent elapsed
2950 * time to disappear, and the guest to stand still or run
2951 * very slowly.
2952 */
2953 if (vcpu->tsc_catchup) {
2954 u64 tsc = compute_guest_tsc(v, kernel_ns);
2955 if (tsc > tsc_timestamp) {
2956 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2957 tsc_timestamp = tsc;
2958 }
2959 }
2960
2961 local_irq_restore(flags);
2962
2963 /* With all the info we got, fill in the values */
2964
2965 if (kvm_has_tsc_control)
2966 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2967 v->arch.l1_tsc_scaling_ratio);
2968
2969 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2970 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2971 &vcpu->hv_clock.tsc_shift,
2972 &vcpu->hv_clock.tsc_to_system_mul);
2973 vcpu->hw_tsc_khz = tgt_tsc_khz;
2974 }
2975
2976 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2977 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2978 vcpu->last_guest_tsc = tsc_timestamp;
2979
2980 /* If the host uses TSC clocksource, then it is stable */
2981 pvclock_flags = 0;
2982 if (use_master_clock)
2983 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2984
2985 vcpu->hv_clock.flags = pvclock_flags;
2986
2987 if (vcpu->pv_time_enabled)
2988 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2989 if (vcpu->xen.vcpu_info_set)
2990 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2991 offsetof(struct compat_vcpu_info, time));
2992 if (vcpu->xen.vcpu_time_info_set)
2993 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2994 if (!v->vcpu_idx)
2995 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2996 return 0;
2997 }
2998
2999 /*
3000 * kvmclock updates which are isolated to a given vcpu, such as
3001 * vcpu->cpu migration, should not allow system_timestamp from
3002 * the rest of the vcpus to remain static. Otherwise ntp frequency
3003 * correction applies to one vcpu's system_timestamp but not
3004 * the others.
3005 *
3006 * So in those cases, request a kvmclock update for all vcpus.
3007 * We need to rate-limit these requests though, as they can
3008 * considerably slow guests that have a large number of vcpus.
3009 * The time for a remote vcpu to update its kvmclock is bound
3010 * by the delay we use to rate-limit the updates.
3011 */
3012
3013 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3014
3015 static void kvmclock_update_fn(struct work_struct *work)
3016 {
3017 int i;
3018 struct delayed_work *dwork = to_delayed_work(work);
3019 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3020 kvmclock_update_work);
3021 struct kvm *kvm = container_of(ka, struct kvm, arch);
3022 struct kvm_vcpu *vcpu;
3023
3024 kvm_for_each_vcpu(i, vcpu, kvm) {
3025 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3026 kvm_vcpu_kick(vcpu);
3027 }
3028 }
3029
3030 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3031 {
3032 struct kvm *kvm = v->kvm;
3033
3034 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3035 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3036 KVMCLOCK_UPDATE_DELAY);
3037 }
3038
3039 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3040
3041 static void kvmclock_sync_fn(struct work_struct *work)
3042 {
3043 struct delayed_work *dwork = to_delayed_work(work);
3044 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3045 kvmclock_sync_work);
3046 struct kvm *kvm = container_of(ka, struct kvm, arch);
3047
3048 if (!kvmclock_periodic_sync)
3049 return;
3050
3051 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3052 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3053 KVMCLOCK_SYNC_PERIOD);
3054 }
3055
3056 /*
3057 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3058 */
3059 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3060 {
3061 /* McStatusWrEn enabled? */
3062 if (guest_cpuid_is_amd_or_hygon(vcpu))
3063 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3064
3065 return false;
3066 }
3067
3068 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3069 {
3070 u64 mcg_cap = vcpu->arch.mcg_cap;
3071 unsigned bank_num = mcg_cap & 0xff;
3072 u32 msr = msr_info->index;
3073 u64 data = msr_info->data;
3074
3075 switch (msr) {
3076 case MSR_IA32_MCG_STATUS:
3077 vcpu->arch.mcg_status = data;
3078 break;
3079 case MSR_IA32_MCG_CTL:
3080 if (!(mcg_cap & MCG_CTL_P) &&
3081 (data || !msr_info->host_initiated))
3082 return 1;
3083 if (data != 0 && data != ~(u64)0)
3084 return 1;
3085 vcpu->arch.mcg_ctl = data;
3086 break;
3087 default:
3088 if (msr >= MSR_IA32_MC0_CTL &&
3089 msr < MSR_IA32_MCx_CTL(bank_num)) {
3090 u32 offset = array_index_nospec(
3091 msr - MSR_IA32_MC0_CTL,
3092 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3093
3094 /* only 0 or all 1s can be written to IA32_MCi_CTL
3095 * some Linux kernels though clear bit 10 in bank 4 to
3096 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3097 * this to avoid an uncatched #GP in the guest
3098 */
3099 if ((offset & 0x3) == 0 &&
3100 data != 0 && (data | (1 << 10)) != ~(u64)0)
3101 return -1;
3102
3103 /* MCi_STATUS */
3104 if (!msr_info->host_initiated &&
3105 (offset & 0x3) == 1 && data != 0) {
3106 if (!can_set_mci_status(vcpu))
3107 return -1;
3108 }
3109
3110 vcpu->arch.mce_banks[offset] = data;
3111 break;
3112 }
3113 return 1;
3114 }
3115 return 0;
3116 }
3117
3118 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3119 {
3120 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3121
3122 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3123 }
3124
3125 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3126 {
3127 gpa_t gpa = data & ~0x3f;
3128
3129 /* Bits 4:5 are reserved, Should be zero */
3130 if (data & 0x30)
3131 return 1;
3132
3133 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3134 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3135 return 1;
3136
3137 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3138 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3139 return 1;
3140
3141 if (!lapic_in_kernel(vcpu))
3142 return data ? 1 : 0;
3143
3144 vcpu->arch.apf.msr_en_val = data;
3145
3146 if (!kvm_pv_async_pf_enabled(vcpu)) {
3147 kvm_clear_async_pf_completion_queue(vcpu);
3148 kvm_async_pf_hash_reset(vcpu);
3149 return 0;
3150 }
3151
3152 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3153 sizeof(u64)))
3154 return 1;
3155
3156 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3157 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3158
3159 kvm_async_pf_wakeup_all(vcpu);
3160
3161 return 0;
3162 }
3163
3164 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3165 {
3166 /* Bits 8-63 are reserved */
3167 if (data >> 8)
3168 return 1;
3169
3170 if (!lapic_in_kernel(vcpu))
3171 return 1;
3172
3173 vcpu->arch.apf.msr_int_val = data;
3174
3175 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3176
3177 return 0;
3178 }
3179
3180 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3181 {
3182 vcpu->arch.pv_time_enabled = false;
3183 vcpu->arch.time = 0;
3184 }
3185
3186 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3187 {
3188 ++vcpu->stat.tlb_flush;
3189 static_call(kvm_x86_tlb_flush_all)(vcpu);
3190 }
3191
3192 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3193 {
3194 ++vcpu->stat.tlb_flush;
3195
3196 if (!tdp_enabled) {
3197 /*
3198 * A TLB flush on behalf of the guest is equivalent to
3199 * INVPCID(all), toggling CR4.PGE, etc., which requires
3200 * a forced sync of the shadow page tables. Unload the
3201 * entire MMU here and the subsequent load will sync the
3202 * shadow page tables, and also flush the TLB.
3203 */
3204 kvm_mmu_unload(vcpu);
3205 return;
3206 }
3207
3208 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3209 }
3210
3211
3212 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3213 {
3214 ++vcpu->stat.tlb_flush;
3215 static_call(kvm_x86_tlb_flush_current)(vcpu);
3216 }
3217
3218 /*
3219 * Service "local" TLB flush requests, which are specific to the current MMU
3220 * context. In addition to the generic event handling in vcpu_enter_guest(),
3221 * TLB flushes that are targeted at an MMU context also need to be serviced
3222 * prior before nested VM-Enter/VM-Exit.
3223 */
3224 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3225 {
3226 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3227 kvm_vcpu_flush_tlb_current(vcpu);
3228
3229 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3230 kvm_vcpu_flush_tlb_guest(vcpu);
3231 }
3232 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3233
3234 static void record_steal_time(struct kvm_vcpu *vcpu)
3235 {
3236 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3237 struct kvm_steal_time __user *st;
3238 struct kvm_memslots *slots;
3239 u64 steal;
3240 u32 version;
3241
3242 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3243 kvm_xen_runstate_set_running(vcpu);
3244 return;
3245 }
3246
3247 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3248 return;
3249
3250 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3251 return;
3252
3253 slots = kvm_memslots(vcpu->kvm);
3254
3255 if (unlikely(slots->generation != ghc->generation ||
3256 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3257 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3258
3259 /* We rely on the fact that it fits in a single page. */
3260 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3261
3262 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3263 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3264 return;
3265 }
3266
3267 st = (struct kvm_steal_time __user *)ghc->hva;
3268 /*
3269 * Doing a TLB flush here, on the guest's behalf, can avoid
3270 * expensive IPIs.
3271 */
3272 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3273 u8 st_preempted = 0;
3274 int err = -EFAULT;
3275
3276 if (!user_access_begin(st, sizeof(*st)))
3277 return;
3278
3279 asm volatile("1: xchgb %0, %2\n"
3280 "xor %1, %1\n"
3281 "2:\n"
3282 _ASM_EXTABLE_UA(1b, 2b)
3283 : "+q" (st_preempted),
3284 "+&r" (err),
3285 "+m" (st->preempted));
3286 if (err)
3287 goto out;
3288
3289 user_access_end();
3290
3291 vcpu->arch.st.preempted = 0;
3292
3293 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3294 st_preempted & KVM_VCPU_FLUSH_TLB);
3295 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3296 kvm_vcpu_flush_tlb_guest(vcpu);
3297
3298 if (!user_access_begin(st, sizeof(*st)))
3299 goto dirty;
3300 } else {
3301 if (!user_access_begin(st, sizeof(*st)))
3302 return;
3303
3304 unsafe_put_user(0, &st->preempted, out);
3305 vcpu->arch.st.preempted = 0;
3306 }
3307
3308 unsafe_get_user(version, &st->version, out);
3309 if (version & 1)
3310 version += 1; /* first time write, random junk */
3311
3312 version += 1;
3313 unsafe_put_user(version, &st->version, out);
3314
3315 smp_wmb();
3316
3317 unsafe_get_user(steal, &st->steal, out);
3318 steal += current->sched_info.run_delay -
3319 vcpu->arch.st.last_steal;
3320 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3321 unsafe_put_user(steal, &st->steal, out);
3322
3323 version += 1;
3324 unsafe_put_user(version, &st->version, out);
3325
3326 out:
3327 user_access_end();
3328 dirty:
3329 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3330 }
3331
3332 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3333 {
3334 bool pr = false;
3335 u32 msr = msr_info->index;
3336 u64 data = msr_info->data;
3337
3338 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3339 return kvm_xen_write_hypercall_page(vcpu, data);
3340
3341 switch (msr) {
3342 case MSR_AMD64_NB_CFG:
3343 case MSR_IA32_UCODE_WRITE:
3344 case MSR_VM_HSAVE_PA:
3345 case MSR_AMD64_PATCH_LOADER:
3346 case MSR_AMD64_BU_CFG2:
3347 case MSR_AMD64_DC_CFG:
3348 case MSR_F15H_EX_CFG:
3349 break;
3350
3351 case MSR_IA32_UCODE_REV:
3352 if (msr_info->host_initiated)
3353 vcpu->arch.microcode_version = data;
3354 break;
3355 case MSR_IA32_ARCH_CAPABILITIES:
3356 if (!msr_info->host_initiated)
3357 return 1;
3358 vcpu->arch.arch_capabilities = data;
3359 break;
3360 case MSR_IA32_PERF_CAPABILITIES: {
3361 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3362
3363 if (!msr_info->host_initiated)
3364 return 1;
3365 if (kvm_get_msr_feature(&msr_ent))
3366 return 1;
3367 if (data & ~msr_ent.data)
3368 return 1;
3369
3370 vcpu->arch.perf_capabilities = data;
3371
3372 return 0;
3373 }
3374 case MSR_EFER:
3375 return set_efer(vcpu, msr_info);
3376 case MSR_K7_HWCR:
3377 data &= ~(u64)0x40; /* ignore flush filter disable */
3378 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3379 data &= ~(u64)0x8; /* ignore TLB cache disable */
3380
3381 /* Handle McStatusWrEn */
3382 if (data == BIT_ULL(18)) {
3383 vcpu->arch.msr_hwcr = data;
3384 } else if (data != 0) {
3385 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3386 data);
3387 return 1;
3388 }
3389 break;
3390 case MSR_FAM10H_MMIO_CONF_BASE:
3391 if (data != 0) {
3392 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3393 "0x%llx\n", data);
3394 return 1;
3395 }
3396 break;
3397 case 0x200 ... 0x2ff:
3398 return kvm_mtrr_set_msr(vcpu, msr, data);
3399 case MSR_IA32_APICBASE:
3400 return kvm_set_apic_base(vcpu, msr_info);
3401 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3402 return kvm_x2apic_msr_write(vcpu, msr, data);
3403 case MSR_IA32_TSC_DEADLINE:
3404 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3405 break;
3406 case MSR_IA32_TSC_ADJUST:
3407 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3408 if (!msr_info->host_initiated) {
3409 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3410 adjust_tsc_offset_guest(vcpu, adj);
3411 /* Before back to guest, tsc_timestamp must be adjusted
3412 * as well, otherwise guest's percpu pvclock time could jump.
3413 */
3414 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3415 }
3416 vcpu->arch.ia32_tsc_adjust_msr = data;
3417 }
3418 break;
3419 case MSR_IA32_MISC_ENABLE:
3420 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3421 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3422 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3423 return 1;
3424 vcpu->arch.ia32_misc_enable_msr = data;
3425 kvm_update_cpuid_runtime(vcpu);
3426 } else {
3427 vcpu->arch.ia32_misc_enable_msr = data;
3428 }
3429 break;
3430 case MSR_IA32_SMBASE:
3431 if (!msr_info->host_initiated)
3432 return 1;
3433 vcpu->arch.smbase = data;
3434 break;
3435 case MSR_IA32_POWER_CTL:
3436 vcpu->arch.msr_ia32_power_ctl = data;
3437 break;
3438 case MSR_IA32_TSC:
3439 if (msr_info->host_initiated) {
3440 kvm_synchronize_tsc(vcpu, data);
3441 } else {
3442 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3443 adjust_tsc_offset_guest(vcpu, adj);
3444 vcpu->arch.ia32_tsc_adjust_msr += adj;
3445 }
3446 break;
3447 case MSR_IA32_XSS:
3448 if (!msr_info->host_initiated &&
3449 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3450 return 1;
3451 /*
3452 * KVM supports exposing PT to the guest, but does not support
3453 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3454 * XSAVES/XRSTORS to save/restore PT MSRs.
3455 */
3456 if (data & ~supported_xss)
3457 return 1;
3458 vcpu->arch.ia32_xss = data;
3459 kvm_update_cpuid_runtime(vcpu);
3460 break;
3461 case MSR_SMI_COUNT:
3462 if (!msr_info->host_initiated)
3463 return 1;
3464 vcpu->arch.smi_count = data;
3465 break;
3466 case MSR_KVM_WALL_CLOCK_NEW:
3467 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3468 return 1;
3469
3470 vcpu->kvm->arch.wall_clock = data;
3471 kvm_write_wall_clock(vcpu->kvm, data, 0);
3472 break;
3473 case MSR_KVM_WALL_CLOCK:
3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3475 return 1;
3476
3477 vcpu->kvm->arch.wall_clock = data;
3478 kvm_write_wall_clock(vcpu->kvm, data, 0);
3479 break;
3480 case MSR_KVM_SYSTEM_TIME_NEW:
3481 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3482 return 1;
3483
3484 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3485 break;
3486 case MSR_KVM_SYSTEM_TIME:
3487 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3488 return 1;
3489
3490 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3491 break;
3492 case MSR_KVM_ASYNC_PF_EN:
3493 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3494 return 1;
3495
3496 if (kvm_pv_enable_async_pf(vcpu, data))
3497 return 1;
3498 break;
3499 case MSR_KVM_ASYNC_PF_INT:
3500 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3501 return 1;
3502
3503 if (kvm_pv_enable_async_pf_int(vcpu, data))
3504 return 1;
3505 break;
3506 case MSR_KVM_ASYNC_PF_ACK:
3507 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3508 return 1;
3509 if (data & 0x1) {
3510 vcpu->arch.apf.pageready_pending = false;
3511 kvm_check_async_pf_completion(vcpu);
3512 }
3513 break;
3514 case MSR_KVM_STEAL_TIME:
3515 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3516 return 1;
3517
3518 if (unlikely(!sched_info_on()))
3519 return 1;
3520
3521 if (data & KVM_STEAL_RESERVED_MASK)
3522 return 1;
3523
3524 vcpu->arch.st.msr_val = data;
3525
3526 if (!(data & KVM_MSR_ENABLED))
3527 break;
3528
3529 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3530
3531 break;
3532 case MSR_KVM_PV_EOI_EN:
3533 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3534 return 1;
3535
3536 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3537 return 1;
3538 break;
3539
3540 case MSR_KVM_POLL_CONTROL:
3541 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3542 return 1;
3543
3544 /* only enable bit supported */
3545 if (data & (-1ULL << 1))
3546 return 1;
3547
3548 vcpu->arch.msr_kvm_poll_control = data;
3549 break;
3550
3551 case MSR_IA32_MCG_CTL:
3552 case MSR_IA32_MCG_STATUS:
3553 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3554 return set_msr_mce(vcpu, msr_info);
3555
3556 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3557 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3558 pr = true;
3559 fallthrough;
3560 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3561 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3562 if (kvm_pmu_is_valid_msr(vcpu, msr))
3563 return kvm_pmu_set_msr(vcpu, msr_info);
3564
3565 if (pr || data != 0)
3566 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3567 "0x%x data 0x%llx\n", msr, data);
3568 break;
3569 case MSR_K7_CLK_CTL:
3570 /*
3571 * Ignore all writes to this no longer documented MSR.
3572 * Writes are only relevant for old K7 processors,
3573 * all pre-dating SVM, but a recommended workaround from
3574 * AMD for these chips. It is possible to specify the
3575 * affected processor models on the command line, hence
3576 * the need to ignore the workaround.
3577 */
3578 break;
3579 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3580 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3581 case HV_X64_MSR_SYNDBG_OPTIONS:
3582 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3583 case HV_X64_MSR_CRASH_CTL:
3584 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3585 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3586 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3587 case HV_X64_MSR_TSC_EMULATION_STATUS:
3588 return kvm_hv_set_msr_common(vcpu, msr, data,
3589 msr_info->host_initiated);
3590 case MSR_IA32_BBL_CR_CTL3:
3591 /* Drop writes to this legacy MSR -- see rdmsr
3592 * counterpart for further detail.
3593 */
3594 if (report_ignored_msrs)
3595 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3596 msr, data);
3597 break;
3598 case MSR_AMD64_OSVW_ID_LENGTH:
3599 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3600 return 1;
3601 vcpu->arch.osvw.length = data;
3602 break;
3603 case MSR_AMD64_OSVW_STATUS:
3604 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3605 return 1;
3606 vcpu->arch.osvw.status = data;
3607 break;
3608 case MSR_PLATFORM_INFO:
3609 if (!msr_info->host_initiated ||
3610 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3611 cpuid_fault_enabled(vcpu)))
3612 return 1;
3613 vcpu->arch.msr_platform_info = data;
3614 break;
3615 case MSR_MISC_FEATURES_ENABLES:
3616 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3617 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3618 !supports_cpuid_fault(vcpu)))
3619 return 1;
3620 vcpu->arch.msr_misc_features_enables = data;
3621 break;
3622 default:
3623 if (kvm_pmu_is_valid_msr(vcpu, msr))
3624 return kvm_pmu_set_msr(vcpu, msr_info);
3625 return KVM_MSR_RET_INVALID;
3626 }
3627 return 0;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3630
3631 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3632 {
3633 u64 data;
3634 u64 mcg_cap = vcpu->arch.mcg_cap;
3635 unsigned bank_num = mcg_cap & 0xff;
3636
3637 switch (msr) {
3638 case MSR_IA32_P5_MC_ADDR:
3639 case MSR_IA32_P5_MC_TYPE:
3640 data = 0;
3641 break;
3642 case MSR_IA32_MCG_CAP:
3643 data = vcpu->arch.mcg_cap;
3644 break;
3645 case MSR_IA32_MCG_CTL:
3646 if (!(mcg_cap & MCG_CTL_P) && !host)
3647 return 1;
3648 data = vcpu->arch.mcg_ctl;
3649 break;
3650 case MSR_IA32_MCG_STATUS:
3651 data = vcpu->arch.mcg_status;
3652 break;
3653 default:
3654 if (msr >= MSR_IA32_MC0_CTL &&
3655 msr < MSR_IA32_MCx_CTL(bank_num)) {
3656 u32 offset = array_index_nospec(
3657 msr - MSR_IA32_MC0_CTL,
3658 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3659
3660 data = vcpu->arch.mce_banks[offset];
3661 break;
3662 }
3663 return 1;
3664 }
3665 *pdata = data;
3666 return 0;
3667 }
3668
3669 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3670 {
3671 switch (msr_info->index) {
3672 case MSR_IA32_PLATFORM_ID:
3673 case MSR_IA32_EBL_CR_POWERON:
3674 case MSR_IA32_LASTBRANCHFROMIP:
3675 case MSR_IA32_LASTBRANCHTOIP:
3676 case MSR_IA32_LASTINTFROMIP:
3677 case MSR_IA32_LASTINTTOIP:
3678 case MSR_AMD64_SYSCFG:
3679 case MSR_K8_TSEG_ADDR:
3680 case MSR_K8_TSEG_MASK:
3681 case MSR_VM_HSAVE_PA:
3682 case MSR_K8_INT_PENDING_MSG:
3683 case MSR_AMD64_NB_CFG:
3684 case MSR_FAM10H_MMIO_CONF_BASE:
3685 case MSR_AMD64_BU_CFG2:
3686 case MSR_IA32_PERF_CTL:
3687 case MSR_AMD64_DC_CFG:
3688 case MSR_F15H_EX_CFG:
3689 /*
3690 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3691 * limit) MSRs. Just return 0, as we do not want to expose the host
3692 * data here. Do not conditionalize this on CPUID, as KVM does not do
3693 * so for existing CPU-specific MSRs.
3694 */
3695 case MSR_RAPL_POWER_UNIT:
3696 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3697 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3698 case MSR_PKG_ENERGY_STATUS: /* Total package */
3699 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3700 msr_info->data = 0;
3701 break;
3702 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3703 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3704 return kvm_pmu_get_msr(vcpu, msr_info);
3705 if (!msr_info->host_initiated)
3706 return 1;
3707 msr_info->data = 0;
3708 break;
3709 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3710 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3711 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3712 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3713 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3714 return kvm_pmu_get_msr(vcpu, msr_info);
3715 msr_info->data = 0;
3716 break;
3717 case MSR_IA32_UCODE_REV:
3718 msr_info->data = vcpu->arch.microcode_version;
3719 break;
3720 case MSR_IA32_ARCH_CAPABILITIES:
3721 if (!msr_info->host_initiated &&
3722 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3723 return 1;
3724 msr_info->data = vcpu->arch.arch_capabilities;
3725 break;
3726 case MSR_IA32_PERF_CAPABILITIES:
3727 if (!msr_info->host_initiated &&
3728 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3729 return 1;
3730 msr_info->data = vcpu->arch.perf_capabilities;
3731 break;
3732 case MSR_IA32_POWER_CTL:
3733 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3734 break;
3735 case MSR_IA32_TSC: {
3736 /*
3737 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3738 * even when not intercepted. AMD manual doesn't explicitly
3739 * state this but appears to behave the same.
3740 *
3741 * On userspace reads and writes, however, we unconditionally
3742 * return L1's TSC value to ensure backwards-compatible
3743 * behavior for migration.
3744 */
3745 u64 offset, ratio;
3746
3747 if (msr_info->host_initiated) {
3748 offset = vcpu->arch.l1_tsc_offset;
3749 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3750 } else {
3751 offset = vcpu->arch.tsc_offset;
3752 ratio = vcpu->arch.tsc_scaling_ratio;
3753 }
3754
3755 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3756 break;
3757 }
3758 case MSR_MTRRcap:
3759 case 0x200 ... 0x2ff:
3760 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3761 case 0xcd: /* fsb frequency */
3762 msr_info->data = 3;
3763 break;
3764 /*
3765 * MSR_EBC_FREQUENCY_ID
3766 * Conservative value valid for even the basic CPU models.
3767 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3768 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3769 * and 266MHz for model 3, or 4. Set Core Clock
3770 * Frequency to System Bus Frequency Ratio to 1 (bits
3771 * 31:24) even though these are only valid for CPU
3772 * models > 2, however guests may end up dividing or
3773 * multiplying by zero otherwise.
3774 */
3775 case MSR_EBC_FREQUENCY_ID:
3776 msr_info->data = 1 << 24;
3777 break;
3778 case MSR_IA32_APICBASE:
3779 msr_info->data = kvm_get_apic_base(vcpu);
3780 break;
3781 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3782 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3783 case MSR_IA32_TSC_DEADLINE:
3784 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3785 break;
3786 case MSR_IA32_TSC_ADJUST:
3787 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3788 break;
3789 case MSR_IA32_MISC_ENABLE:
3790 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3791 break;
3792 case MSR_IA32_SMBASE:
3793 if (!msr_info->host_initiated)
3794 return 1;
3795 msr_info->data = vcpu->arch.smbase;
3796 break;
3797 case MSR_SMI_COUNT:
3798 msr_info->data = vcpu->arch.smi_count;
3799 break;
3800 case MSR_IA32_PERF_STATUS:
3801 /* TSC increment by tick */
3802 msr_info->data = 1000ULL;
3803 /* CPU multiplier */
3804 msr_info->data |= (((uint64_t)4ULL) << 40);
3805 break;
3806 case MSR_EFER:
3807 msr_info->data = vcpu->arch.efer;
3808 break;
3809 case MSR_KVM_WALL_CLOCK:
3810 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3811 return 1;
3812
3813 msr_info->data = vcpu->kvm->arch.wall_clock;
3814 break;
3815 case MSR_KVM_WALL_CLOCK_NEW:
3816 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3817 return 1;
3818
3819 msr_info->data = vcpu->kvm->arch.wall_clock;
3820 break;
3821 case MSR_KVM_SYSTEM_TIME:
3822 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3823 return 1;
3824
3825 msr_info->data = vcpu->arch.time;
3826 break;
3827 case MSR_KVM_SYSTEM_TIME_NEW:
3828 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3829 return 1;
3830
3831 msr_info->data = vcpu->arch.time;
3832 break;
3833 case MSR_KVM_ASYNC_PF_EN:
3834 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3835 return 1;
3836
3837 msr_info->data = vcpu->arch.apf.msr_en_val;
3838 break;
3839 case MSR_KVM_ASYNC_PF_INT:
3840 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3841 return 1;
3842
3843 msr_info->data = vcpu->arch.apf.msr_int_val;
3844 break;
3845 case MSR_KVM_ASYNC_PF_ACK:
3846 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3847 return 1;
3848
3849 msr_info->data = 0;
3850 break;
3851 case MSR_KVM_STEAL_TIME:
3852 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3853 return 1;
3854
3855 msr_info->data = vcpu->arch.st.msr_val;
3856 break;
3857 case MSR_KVM_PV_EOI_EN:
3858 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3859 return 1;
3860
3861 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3862 break;
3863 case MSR_KVM_POLL_CONTROL:
3864 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3865 return 1;
3866
3867 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3868 break;
3869 case MSR_IA32_P5_MC_ADDR:
3870 case MSR_IA32_P5_MC_TYPE:
3871 case MSR_IA32_MCG_CAP:
3872 case MSR_IA32_MCG_CTL:
3873 case MSR_IA32_MCG_STATUS:
3874 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3875 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3876 msr_info->host_initiated);
3877 case MSR_IA32_XSS:
3878 if (!msr_info->host_initiated &&
3879 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3880 return 1;
3881 msr_info->data = vcpu->arch.ia32_xss;
3882 break;
3883 case MSR_K7_CLK_CTL:
3884 /*
3885 * Provide expected ramp-up count for K7. All other
3886 * are set to zero, indicating minimum divisors for
3887 * every field.
3888 *
3889 * This prevents guest kernels on AMD host with CPU
3890 * type 6, model 8 and higher from exploding due to
3891 * the rdmsr failing.
3892 */
3893 msr_info->data = 0x20000000;
3894 break;
3895 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3896 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3897 case HV_X64_MSR_SYNDBG_OPTIONS:
3898 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3899 case HV_X64_MSR_CRASH_CTL:
3900 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3901 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3902 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3903 case HV_X64_MSR_TSC_EMULATION_STATUS:
3904 return kvm_hv_get_msr_common(vcpu,
3905 msr_info->index, &msr_info->data,
3906 msr_info->host_initiated);
3907 case MSR_IA32_BBL_CR_CTL3:
3908 /* This legacy MSR exists but isn't fully documented in current
3909 * silicon. It is however accessed by winxp in very narrow
3910 * scenarios where it sets bit #19, itself documented as
3911 * a "reserved" bit. Best effort attempt to source coherent
3912 * read data here should the balance of the register be
3913 * interpreted by the guest:
3914 *
3915 * L2 cache control register 3: 64GB range, 256KB size,
3916 * enabled, latency 0x1, configured
3917 */
3918 msr_info->data = 0xbe702111;
3919 break;
3920 case MSR_AMD64_OSVW_ID_LENGTH:
3921 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3922 return 1;
3923 msr_info->data = vcpu->arch.osvw.length;
3924 break;
3925 case MSR_AMD64_OSVW_STATUS:
3926 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3927 return 1;
3928 msr_info->data = vcpu->arch.osvw.status;
3929 break;
3930 case MSR_PLATFORM_INFO:
3931 if (!msr_info->host_initiated &&
3932 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3933 return 1;
3934 msr_info->data = vcpu->arch.msr_platform_info;
3935 break;
3936 case MSR_MISC_FEATURES_ENABLES:
3937 msr_info->data = vcpu->arch.msr_misc_features_enables;
3938 break;
3939 case MSR_K7_HWCR:
3940 msr_info->data = vcpu->arch.msr_hwcr;
3941 break;
3942 default:
3943 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3944 return kvm_pmu_get_msr(vcpu, msr_info);
3945 return KVM_MSR_RET_INVALID;
3946 }
3947 return 0;
3948 }
3949 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3950
3951 /*
3952 * Read or write a bunch of msrs. All parameters are kernel addresses.
3953 *
3954 * @return number of msrs set successfully.
3955 */
3956 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3957 struct kvm_msr_entry *entries,
3958 int (*do_msr)(struct kvm_vcpu *vcpu,
3959 unsigned index, u64 *data))
3960 {
3961 int i;
3962
3963 for (i = 0; i < msrs->nmsrs; ++i)
3964 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3965 break;
3966
3967 return i;
3968 }
3969
3970 /*
3971 * Read or write a bunch of msrs. Parameters are user addresses.
3972 *
3973 * @return number of msrs set successfully.
3974 */
3975 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3976 int (*do_msr)(struct kvm_vcpu *vcpu,
3977 unsigned index, u64 *data),
3978 int writeback)
3979 {
3980 struct kvm_msrs msrs;
3981 struct kvm_msr_entry *entries;
3982 int r, n;
3983 unsigned size;
3984
3985 r = -EFAULT;
3986 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3987 goto out;
3988
3989 r = -E2BIG;
3990 if (msrs.nmsrs >= MAX_IO_MSRS)
3991 goto out;
3992
3993 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3994 entries = memdup_user(user_msrs->entries, size);
3995 if (IS_ERR(entries)) {
3996 r = PTR_ERR(entries);
3997 goto out;
3998 }
3999
4000 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4001 if (r < 0)
4002 goto out_free;
4003
4004 r = -EFAULT;
4005 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4006 goto out_free;
4007
4008 r = n;
4009
4010 out_free:
4011 kfree(entries);
4012 out:
4013 return r;
4014 }
4015
4016 static inline bool kvm_can_mwait_in_guest(void)
4017 {
4018 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4019 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4020 boot_cpu_has(X86_FEATURE_ARAT);
4021 }
4022
4023 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4024 struct kvm_cpuid2 __user *cpuid_arg)
4025 {
4026 struct kvm_cpuid2 cpuid;
4027 int r;
4028
4029 r = -EFAULT;
4030 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4031 return r;
4032
4033 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4034 if (r)
4035 return r;
4036
4037 r = -EFAULT;
4038 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4039 return r;
4040
4041 return 0;
4042 }
4043
4044 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4045 {
4046 int r = 0;
4047
4048 switch (ext) {
4049 case KVM_CAP_IRQCHIP:
4050 case KVM_CAP_HLT:
4051 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4052 case KVM_CAP_SET_TSS_ADDR:
4053 case KVM_CAP_EXT_CPUID:
4054 case KVM_CAP_EXT_EMUL_CPUID:
4055 case KVM_CAP_CLOCKSOURCE:
4056 case KVM_CAP_PIT:
4057 case KVM_CAP_NOP_IO_DELAY:
4058 case KVM_CAP_MP_STATE:
4059 case KVM_CAP_SYNC_MMU:
4060 case KVM_CAP_USER_NMI:
4061 case KVM_CAP_REINJECT_CONTROL:
4062 case KVM_CAP_IRQ_INJECT_STATUS:
4063 case KVM_CAP_IOEVENTFD:
4064 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4065 case KVM_CAP_PIT2:
4066 case KVM_CAP_PIT_STATE2:
4067 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4068 case KVM_CAP_VCPU_EVENTS:
4069 case KVM_CAP_HYPERV:
4070 case KVM_CAP_HYPERV_VAPIC:
4071 case KVM_CAP_HYPERV_SPIN:
4072 case KVM_CAP_HYPERV_SYNIC:
4073 case KVM_CAP_HYPERV_SYNIC2:
4074 case KVM_CAP_HYPERV_VP_INDEX:
4075 case KVM_CAP_HYPERV_EVENTFD:
4076 case KVM_CAP_HYPERV_TLBFLUSH:
4077 case KVM_CAP_HYPERV_SEND_IPI:
4078 case KVM_CAP_HYPERV_CPUID:
4079 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4080 case KVM_CAP_SYS_HYPERV_CPUID:
4081 case KVM_CAP_PCI_SEGMENT:
4082 case KVM_CAP_DEBUGREGS:
4083 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4084 case KVM_CAP_XSAVE:
4085 case KVM_CAP_ASYNC_PF:
4086 case KVM_CAP_ASYNC_PF_INT:
4087 case KVM_CAP_GET_TSC_KHZ:
4088 case KVM_CAP_KVMCLOCK_CTRL:
4089 case KVM_CAP_READONLY_MEM:
4090 case KVM_CAP_HYPERV_TIME:
4091 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4092 case KVM_CAP_TSC_DEADLINE_TIMER:
4093 case KVM_CAP_DISABLE_QUIRKS:
4094 case KVM_CAP_SET_BOOT_CPU_ID:
4095 case KVM_CAP_SPLIT_IRQCHIP:
4096 case KVM_CAP_IMMEDIATE_EXIT:
4097 case KVM_CAP_PMU_EVENT_FILTER:
4098 case KVM_CAP_GET_MSR_FEATURES:
4099 case KVM_CAP_MSR_PLATFORM_INFO:
4100 case KVM_CAP_EXCEPTION_PAYLOAD:
4101 case KVM_CAP_SET_GUEST_DEBUG:
4102 case KVM_CAP_LAST_CPU:
4103 case KVM_CAP_X86_USER_SPACE_MSR:
4104 case KVM_CAP_X86_MSR_FILTER:
4105 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4106 #ifdef CONFIG_X86_SGX_KVM
4107 case KVM_CAP_SGX_ATTRIBUTE:
4108 #endif
4109 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4110 case KVM_CAP_SREGS2:
4111 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4112 r = 1;
4113 break;
4114 case KVM_CAP_EXIT_HYPERCALL:
4115 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4116 break;
4117 case KVM_CAP_SET_GUEST_DEBUG2:
4118 return KVM_GUESTDBG_VALID_MASK;
4119 #ifdef CONFIG_KVM_XEN
4120 case KVM_CAP_XEN_HVM:
4121 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4122 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4123 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4124 if (sched_info_on())
4125 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4126 break;
4127 #endif
4128 case KVM_CAP_SYNC_REGS:
4129 r = KVM_SYNC_X86_VALID_FIELDS;
4130 break;
4131 case KVM_CAP_ADJUST_CLOCK:
4132 r = KVM_CLOCK_TSC_STABLE;
4133 break;
4134 case KVM_CAP_X86_DISABLE_EXITS:
4135 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4136 KVM_X86_DISABLE_EXITS_CSTATE;
4137 if(kvm_can_mwait_in_guest())
4138 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4139 break;
4140 case KVM_CAP_X86_SMM:
4141 /* SMBASE is usually relocated above 1M on modern chipsets,
4142 * and SMM handlers might indeed rely on 4G segment limits,
4143 * so do not report SMM to be available if real mode is
4144 * emulated via vm86 mode. Still, do not go to great lengths
4145 * to avoid userspace's usage of the feature, because it is a
4146 * fringe case that is not enabled except via specific settings
4147 * of the module parameters.
4148 */
4149 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4150 break;
4151 case KVM_CAP_VAPIC:
4152 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4153 break;
4154 case KVM_CAP_NR_VCPUS:
4155 r = KVM_SOFT_MAX_VCPUS;
4156 break;
4157 case KVM_CAP_MAX_VCPUS:
4158 r = KVM_MAX_VCPUS;
4159 break;
4160 case KVM_CAP_MAX_VCPU_ID:
4161 r = KVM_MAX_VCPU_ID;
4162 break;
4163 case KVM_CAP_PV_MMU: /* obsolete */
4164 r = 0;
4165 break;
4166 case KVM_CAP_MCE:
4167 r = KVM_MAX_MCE_BANKS;
4168 break;
4169 case KVM_CAP_XCRS:
4170 r = boot_cpu_has(X86_FEATURE_XSAVE);
4171 break;
4172 case KVM_CAP_TSC_CONTROL:
4173 r = kvm_has_tsc_control;
4174 break;
4175 case KVM_CAP_X2APIC_API:
4176 r = KVM_X2APIC_API_VALID_FLAGS;
4177 break;
4178 case KVM_CAP_NESTED_STATE:
4179 r = kvm_x86_ops.nested_ops->get_state ?
4180 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4181 break;
4182 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4183 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4184 break;
4185 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4186 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4187 break;
4188 case KVM_CAP_SMALLER_MAXPHYADDR:
4189 r = (int) allow_smaller_maxphyaddr;
4190 break;
4191 case KVM_CAP_STEAL_TIME:
4192 r = sched_info_on();
4193 break;
4194 case KVM_CAP_X86_BUS_LOCK_EXIT:
4195 if (kvm_has_bus_lock_exit)
4196 r = KVM_BUS_LOCK_DETECTION_OFF |
4197 KVM_BUS_LOCK_DETECTION_EXIT;
4198 else
4199 r = 0;
4200 break;
4201 default:
4202 break;
4203 }
4204 return r;
4205
4206 }
4207
4208 long kvm_arch_dev_ioctl(struct file *filp,
4209 unsigned int ioctl, unsigned long arg)
4210 {
4211 void __user *argp = (void __user *)arg;
4212 long r;
4213
4214 switch (ioctl) {
4215 case KVM_GET_MSR_INDEX_LIST: {
4216 struct kvm_msr_list __user *user_msr_list = argp;
4217 struct kvm_msr_list msr_list;
4218 unsigned n;
4219
4220 r = -EFAULT;
4221 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4222 goto out;
4223 n = msr_list.nmsrs;
4224 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4225 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4226 goto out;
4227 r = -E2BIG;
4228 if (n < msr_list.nmsrs)
4229 goto out;
4230 r = -EFAULT;
4231 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4232 num_msrs_to_save * sizeof(u32)))
4233 goto out;
4234 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4235 &emulated_msrs,
4236 num_emulated_msrs * sizeof(u32)))
4237 goto out;
4238 r = 0;
4239 break;
4240 }
4241 case KVM_GET_SUPPORTED_CPUID:
4242 case KVM_GET_EMULATED_CPUID: {
4243 struct kvm_cpuid2 __user *cpuid_arg = argp;
4244 struct kvm_cpuid2 cpuid;
4245
4246 r = -EFAULT;
4247 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4248 goto out;
4249
4250 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4251 ioctl);
4252 if (r)
4253 goto out;
4254
4255 r = -EFAULT;
4256 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4257 goto out;
4258 r = 0;
4259 break;
4260 }
4261 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4262 r = -EFAULT;
4263 if (copy_to_user(argp, &kvm_mce_cap_supported,
4264 sizeof(kvm_mce_cap_supported)))
4265 goto out;
4266 r = 0;
4267 break;
4268 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4269 struct kvm_msr_list __user *user_msr_list = argp;
4270 struct kvm_msr_list msr_list;
4271 unsigned int n;
4272
4273 r = -EFAULT;
4274 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4275 goto out;
4276 n = msr_list.nmsrs;
4277 msr_list.nmsrs = num_msr_based_features;
4278 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4279 goto out;
4280 r = -E2BIG;
4281 if (n < msr_list.nmsrs)
4282 goto out;
4283 r = -EFAULT;
4284 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4285 num_msr_based_features * sizeof(u32)))
4286 goto out;
4287 r = 0;
4288 break;
4289 }
4290 case KVM_GET_MSRS:
4291 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4292 break;
4293 case KVM_GET_SUPPORTED_HV_CPUID:
4294 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4295 break;
4296 default:
4297 r = -EINVAL;
4298 break;
4299 }
4300 out:
4301 return r;
4302 }
4303
4304 static void wbinvd_ipi(void *garbage)
4305 {
4306 wbinvd();
4307 }
4308
4309 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4310 {
4311 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4312 }
4313
4314 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4315 {
4316 /* Address WBINVD may be executed by guest */
4317 if (need_emulate_wbinvd(vcpu)) {
4318 if (static_call(kvm_x86_has_wbinvd_exit)())
4319 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4320 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4321 smp_call_function_single(vcpu->cpu,
4322 wbinvd_ipi, NULL, 1);
4323 }
4324
4325 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4326
4327 /* Save host pkru register if supported */
4328 vcpu->arch.host_pkru = read_pkru();
4329
4330 /* Apply any externally detected TSC adjustments (due to suspend) */
4331 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4332 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4333 vcpu->arch.tsc_offset_adjustment = 0;
4334 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4335 }
4336
4337 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4338 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4339 rdtsc() - vcpu->arch.last_host_tsc;
4340 if (tsc_delta < 0)
4341 mark_tsc_unstable("KVM discovered backwards TSC");
4342
4343 if (kvm_check_tsc_unstable()) {
4344 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4345 vcpu->arch.last_guest_tsc);
4346 kvm_vcpu_write_tsc_offset(vcpu, offset);
4347 vcpu->arch.tsc_catchup = 1;
4348 }
4349
4350 if (kvm_lapic_hv_timer_in_use(vcpu))
4351 kvm_lapic_restart_hv_timer(vcpu);
4352
4353 /*
4354 * On a host with synchronized TSC, there is no need to update
4355 * kvmclock on vcpu->cpu migration
4356 */
4357 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4358 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4359 if (vcpu->cpu != cpu)
4360 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4361 vcpu->cpu = cpu;
4362 }
4363
4364 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4365 }
4366
4367 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4368 {
4369 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4370 struct kvm_steal_time __user *st;
4371 struct kvm_memslots *slots;
4372 static const u8 preempted = KVM_VCPU_PREEMPTED;
4373
4374 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4375 return;
4376
4377 if (vcpu->arch.st.preempted)
4378 return;
4379
4380 /* This happens on process exit */
4381 if (unlikely(current->mm != vcpu->kvm->mm))
4382 return;
4383
4384 slots = kvm_memslots(vcpu->kvm);
4385
4386 if (unlikely(slots->generation != ghc->generation ||
4387 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4388 return;
4389
4390 st = (struct kvm_steal_time __user *)ghc->hva;
4391 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4392
4393 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4394 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4395
4396 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4397 }
4398
4399 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4400 {
4401 int idx;
4402
4403 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4404 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4405
4406 /*
4407 * Take the srcu lock as memslots will be accessed to check the gfn
4408 * cache generation against the memslots generation.
4409 */
4410 idx = srcu_read_lock(&vcpu->kvm->srcu);
4411 if (kvm_xen_msr_enabled(vcpu->kvm))
4412 kvm_xen_runstate_set_preempted(vcpu);
4413 else
4414 kvm_steal_time_set_preempted(vcpu);
4415 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4416
4417 static_call(kvm_x86_vcpu_put)(vcpu);
4418 vcpu->arch.last_host_tsc = rdtsc();
4419 }
4420
4421 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4422 struct kvm_lapic_state *s)
4423 {
4424 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4425
4426 return kvm_apic_get_state(vcpu, s);
4427 }
4428
4429 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4430 struct kvm_lapic_state *s)
4431 {
4432 int r;
4433
4434 r = kvm_apic_set_state(vcpu, s);
4435 if (r)
4436 return r;
4437 update_cr8_intercept(vcpu);
4438
4439 return 0;
4440 }
4441
4442 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4443 {
4444 /*
4445 * We can accept userspace's request for interrupt injection
4446 * as long as we have a place to store the interrupt number.
4447 * The actual injection will happen when the CPU is able to
4448 * deliver the interrupt.
4449 */
4450 if (kvm_cpu_has_extint(vcpu))
4451 return false;
4452
4453 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4454 return (!lapic_in_kernel(vcpu) ||
4455 kvm_apic_accept_pic_intr(vcpu));
4456 }
4457
4458 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4459 {
4460 /*
4461 * Do not cause an interrupt window exit if an exception
4462 * is pending or an event needs reinjection; userspace
4463 * might want to inject the interrupt manually using KVM_SET_REGS
4464 * or KVM_SET_SREGS. For that to work, we must be at an
4465 * instruction boundary and with no events half-injected.
4466 */
4467 return (kvm_arch_interrupt_allowed(vcpu) &&
4468 kvm_cpu_accept_dm_intr(vcpu) &&
4469 !kvm_event_needs_reinjection(vcpu) &&
4470 !vcpu->arch.exception.pending);
4471 }
4472
4473 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4474 struct kvm_interrupt *irq)
4475 {
4476 if (irq->irq >= KVM_NR_INTERRUPTS)
4477 return -EINVAL;
4478
4479 if (!irqchip_in_kernel(vcpu->kvm)) {
4480 kvm_queue_interrupt(vcpu, irq->irq, false);
4481 kvm_make_request(KVM_REQ_EVENT, vcpu);
4482 return 0;
4483 }
4484
4485 /*
4486 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4487 * fail for in-kernel 8259.
4488 */
4489 if (pic_in_kernel(vcpu->kvm))
4490 return -ENXIO;
4491
4492 if (vcpu->arch.pending_external_vector != -1)
4493 return -EEXIST;
4494
4495 vcpu->arch.pending_external_vector = irq->irq;
4496 kvm_make_request(KVM_REQ_EVENT, vcpu);
4497 return 0;
4498 }
4499
4500 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4501 {
4502 kvm_inject_nmi(vcpu);
4503
4504 return 0;
4505 }
4506
4507 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4508 {
4509 kvm_make_request(KVM_REQ_SMI, vcpu);
4510
4511 return 0;
4512 }
4513
4514 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4515 struct kvm_tpr_access_ctl *tac)
4516 {
4517 if (tac->flags)
4518 return -EINVAL;
4519 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4520 return 0;
4521 }
4522
4523 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4524 u64 mcg_cap)
4525 {
4526 int r;
4527 unsigned bank_num = mcg_cap & 0xff, bank;
4528
4529 r = -EINVAL;
4530 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4531 goto out;
4532 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4533 goto out;
4534 r = 0;
4535 vcpu->arch.mcg_cap = mcg_cap;
4536 /* Init IA32_MCG_CTL to all 1s */
4537 if (mcg_cap & MCG_CTL_P)
4538 vcpu->arch.mcg_ctl = ~(u64)0;
4539 /* Init IA32_MCi_CTL to all 1s */
4540 for (bank = 0; bank < bank_num; bank++)
4541 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4542
4543 static_call(kvm_x86_setup_mce)(vcpu);
4544 out:
4545 return r;
4546 }
4547
4548 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4549 struct kvm_x86_mce *mce)
4550 {
4551 u64 mcg_cap = vcpu->arch.mcg_cap;
4552 unsigned bank_num = mcg_cap & 0xff;
4553 u64 *banks = vcpu->arch.mce_banks;
4554
4555 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4556 return -EINVAL;
4557 /*
4558 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4559 * reporting is disabled
4560 */
4561 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4562 vcpu->arch.mcg_ctl != ~(u64)0)
4563 return 0;
4564 banks += 4 * mce->bank;
4565 /*
4566 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4567 * reporting is disabled for the bank
4568 */
4569 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4570 return 0;
4571 if (mce->status & MCI_STATUS_UC) {
4572 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4573 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4574 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4575 return 0;
4576 }
4577 if (banks[1] & MCI_STATUS_VAL)
4578 mce->status |= MCI_STATUS_OVER;
4579 banks[2] = mce->addr;
4580 banks[3] = mce->misc;
4581 vcpu->arch.mcg_status = mce->mcg_status;
4582 banks[1] = mce->status;
4583 kvm_queue_exception(vcpu, MC_VECTOR);
4584 } else if (!(banks[1] & MCI_STATUS_VAL)
4585 || !(banks[1] & MCI_STATUS_UC)) {
4586 if (banks[1] & MCI_STATUS_VAL)
4587 mce->status |= MCI_STATUS_OVER;
4588 banks[2] = mce->addr;
4589 banks[3] = mce->misc;
4590 banks[1] = mce->status;
4591 } else
4592 banks[1] |= MCI_STATUS_OVER;
4593 return 0;
4594 }
4595
4596 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4597 struct kvm_vcpu_events *events)
4598 {
4599 process_nmi(vcpu);
4600
4601 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4602 process_smi(vcpu);
4603
4604 /*
4605 * In guest mode, payload delivery should be deferred,
4606 * so that the L1 hypervisor can intercept #PF before
4607 * CR2 is modified (or intercept #DB before DR6 is
4608 * modified under nVMX). Unless the per-VM capability,
4609 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4610 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4611 * opportunistically defer the exception payload, deliver it if the
4612 * capability hasn't been requested before processing a
4613 * KVM_GET_VCPU_EVENTS.
4614 */
4615 if (!vcpu->kvm->arch.exception_payload_enabled &&
4616 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4617 kvm_deliver_exception_payload(vcpu);
4618
4619 /*
4620 * The API doesn't provide the instruction length for software
4621 * exceptions, so don't report them. As long as the guest RIP
4622 * isn't advanced, we should expect to encounter the exception
4623 * again.
4624 */
4625 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4626 events->exception.injected = 0;
4627 events->exception.pending = 0;
4628 } else {
4629 events->exception.injected = vcpu->arch.exception.injected;
4630 events->exception.pending = vcpu->arch.exception.pending;
4631 /*
4632 * For ABI compatibility, deliberately conflate
4633 * pending and injected exceptions when
4634 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4635 */
4636 if (!vcpu->kvm->arch.exception_payload_enabled)
4637 events->exception.injected |=
4638 vcpu->arch.exception.pending;
4639 }
4640 events->exception.nr = vcpu->arch.exception.nr;
4641 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4642 events->exception.error_code = vcpu->arch.exception.error_code;
4643 events->exception_has_payload = vcpu->arch.exception.has_payload;
4644 events->exception_payload = vcpu->arch.exception.payload;
4645
4646 events->interrupt.injected =
4647 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4648 events->interrupt.nr = vcpu->arch.interrupt.nr;
4649 events->interrupt.soft = 0;
4650 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4651
4652 events->nmi.injected = vcpu->arch.nmi_injected;
4653 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4654 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4655 events->nmi.pad = 0;
4656
4657 events->sipi_vector = 0; /* never valid when reporting to user space */
4658
4659 events->smi.smm = is_smm(vcpu);
4660 events->smi.pending = vcpu->arch.smi_pending;
4661 events->smi.smm_inside_nmi =
4662 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4663 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4664
4665 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4666 | KVM_VCPUEVENT_VALID_SHADOW
4667 | KVM_VCPUEVENT_VALID_SMM);
4668 if (vcpu->kvm->arch.exception_payload_enabled)
4669 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4670
4671 memset(&events->reserved, 0, sizeof(events->reserved));
4672 }
4673
4674 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4675
4676 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4677 struct kvm_vcpu_events *events)
4678 {
4679 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4680 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4681 | KVM_VCPUEVENT_VALID_SHADOW
4682 | KVM_VCPUEVENT_VALID_SMM
4683 | KVM_VCPUEVENT_VALID_PAYLOAD))
4684 return -EINVAL;
4685
4686 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4687 if (!vcpu->kvm->arch.exception_payload_enabled)
4688 return -EINVAL;
4689 if (events->exception.pending)
4690 events->exception.injected = 0;
4691 else
4692 events->exception_has_payload = 0;
4693 } else {
4694 events->exception.pending = 0;
4695 events->exception_has_payload = 0;
4696 }
4697
4698 if ((events->exception.injected || events->exception.pending) &&
4699 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4700 return -EINVAL;
4701
4702 /* INITs are latched while in SMM */
4703 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4704 (events->smi.smm || events->smi.pending) &&
4705 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4706 return -EINVAL;
4707
4708 process_nmi(vcpu);
4709 vcpu->arch.exception.injected = events->exception.injected;
4710 vcpu->arch.exception.pending = events->exception.pending;
4711 vcpu->arch.exception.nr = events->exception.nr;
4712 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4713 vcpu->arch.exception.error_code = events->exception.error_code;
4714 vcpu->arch.exception.has_payload = events->exception_has_payload;
4715 vcpu->arch.exception.payload = events->exception_payload;
4716
4717 vcpu->arch.interrupt.injected = events->interrupt.injected;
4718 vcpu->arch.interrupt.nr = events->interrupt.nr;
4719 vcpu->arch.interrupt.soft = events->interrupt.soft;
4720 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4721 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4722 events->interrupt.shadow);
4723
4724 vcpu->arch.nmi_injected = events->nmi.injected;
4725 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4726 vcpu->arch.nmi_pending = events->nmi.pending;
4727 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4728
4729 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4730 lapic_in_kernel(vcpu))
4731 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4732
4733 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4734 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4735 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4736 kvm_smm_changed(vcpu, events->smi.smm);
4737 }
4738
4739 vcpu->arch.smi_pending = events->smi.pending;
4740
4741 if (events->smi.smm) {
4742 if (events->smi.smm_inside_nmi)
4743 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4744 else
4745 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4746 }
4747
4748 if (lapic_in_kernel(vcpu)) {
4749 if (events->smi.latched_init)
4750 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4751 else
4752 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4753 }
4754 }
4755
4756 kvm_make_request(KVM_REQ_EVENT, vcpu);
4757
4758 return 0;
4759 }
4760
4761 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4762 struct kvm_debugregs *dbgregs)
4763 {
4764 unsigned long val;
4765
4766 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4767 kvm_get_dr(vcpu, 6, &val);
4768 dbgregs->dr6 = val;
4769 dbgregs->dr7 = vcpu->arch.dr7;
4770 dbgregs->flags = 0;
4771 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4772 }
4773
4774 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4775 struct kvm_debugregs *dbgregs)
4776 {
4777 if (dbgregs->flags)
4778 return -EINVAL;
4779
4780 if (!kvm_dr6_valid(dbgregs->dr6))
4781 return -EINVAL;
4782 if (!kvm_dr7_valid(dbgregs->dr7))
4783 return -EINVAL;
4784
4785 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4786 kvm_update_dr0123(vcpu);
4787 vcpu->arch.dr6 = dbgregs->dr6;
4788 vcpu->arch.dr7 = dbgregs->dr7;
4789 kvm_update_dr7(vcpu);
4790
4791 return 0;
4792 }
4793
4794 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4795 struct kvm_xsave *guest_xsave)
4796 {
4797 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4798 return;
4799
4800 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4801 guest_xsave->region,
4802 sizeof(guest_xsave->region),
4803 vcpu->arch.pkru);
4804 }
4805
4806 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4807 struct kvm_xsave *guest_xsave)
4808 {
4809 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4810 return 0;
4811
4812 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4813 guest_xsave->region,
4814 supported_xcr0, &vcpu->arch.pkru);
4815 }
4816
4817 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4818 struct kvm_xcrs *guest_xcrs)
4819 {
4820 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4821 guest_xcrs->nr_xcrs = 0;
4822 return;
4823 }
4824
4825 guest_xcrs->nr_xcrs = 1;
4826 guest_xcrs->flags = 0;
4827 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4828 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4829 }
4830
4831 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4832 struct kvm_xcrs *guest_xcrs)
4833 {
4834 int i, r = 0;
4835
4836 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4837 return -EINVAL;
4838
4839 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4840 return -EINVAL;
4841
4842 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4843 /* Only support XCR0 currently */
4844 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4845 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4846 guest_xcrs->xcrs[i].value);
4847 break;
4848 }
4849 if (r)
4850 r = -EINVAL;
4851 return r;
4852 }
4853
4854 /*
4855 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4856 * stopped by the hypervisor. This function will be called from the host only.
4857 * EINVAL is returned when the host attempts to set the flag for a guest that
4858 * does not support pv clocks.
4859 */
4860 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4861 {
4862 if (!vcpu->arch.pv_time_enabled)
4863 return -EINVAL;
4864 vcpu->arch.pvclock_set_guest_stopped_request = true;
4865 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4866 return 0;
4867 }
4868
4869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4870 struct kvm_enable_cap *cap)
4871 {
4872 int r;
4873 uint16_t vmcs_version;
4874 void __user *user_ptr;
4875
4876 if (cap->flags)
4877 return -EINVAL;
4878
4879 switch (cap->cap) {
4880 case KVM_CAP_HYPERV_SYNIC2:
4881 if (cap->args[0])
4882 return -EINVAL;
4883 fallthrough;
4884
4885 case KVM_CAP_HYPERV_SYNIC:
4886 if (!irqchip_in_kernel(vcpu->kvm))
4887 return -EINVAL;
4888 return kvm_hv_activate_synic(vcpu, cap->cap ==
4889 KVM_CAP_HYPERV_SYNIC2);
4890 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4891 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4892 return -ENOTTY;
4893 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4894 if (!r) {
4895 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4896 if (copy_to_user(user_ptr, &vmcs_version,
4897 sizeof(vmcs_version)))
4898 r = -EFAULT;
4899 }
4900 return r;
4901 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4902 if (!kvm_x86_ops.enable_direct_tlbflush)
4903 return -ENOTTY;
4904
4905 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4906
4907 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4908 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4909
4910 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4911 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4912 if (vcpu->arch.pv_cpuid.enforce)
4913 kvm_update_pv_runtime(vcpu);
4914
4915 return 0;
4916 default:
4917 return -EINVAL;
4918 }
4919 }
4920
4921 long kvm_arch_vcpu_ioctl(struct file *filp,
4922 unsigned int ioctl, unsigned long arg)
4923 {
4924 struct kvm_vcpu *vcpu = filp->private_data;
4925 void __user *argp = (void __user *)arg;
4926 int r;
4927 union {
4928 struct kvm_sregs2 *sregs2;
4929 struct kvm_lapic_state *lapic;
4930 struct kvm_xsave *xsave;
4931 struct kvm_xcrs *xcrs;
4932 void *buffer;
4933 } u;
4934
4935 vcpu_load(vcpu);
4936
4937 u.buffer = NULL;
4938 switch (ioctl) {
4939 case KVM_GET_LAPIC: {
4940 r = -EINVAL;
4941 if (!lapic_in_kernel(vcpu))
4942 goto out;
4943 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4944 GFP_KERNEL_ACCOUNT);
4945
4946 r = -ENOMEM;
4947 if (!u.lapic)
4948 goto out;
4949 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4950 if (r)
4951 goto out;
4952 r = -EFAULT;
4953 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4954 goto out;
4955 r = 0;
4956 break;
4957 }
4958 case KVM_SET_LAPIC: {
4959 r = -EINVAL;
4960 if (!lapic_in_kernel(vcpu))
4961 goto out;
4962 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4963 if (IS_ERR(u.lapic)) {
4964 r = PTR_ERR(u.lapic);
4965 goto out_nofree;
4966 }
4967
4968 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4969 break;
4970 }
4971 case KVM_INTERRUPT: {
4972 struct kvm_interrupt irq;
4973
4974 r = -EFAULT;
4975 if (copy_from_user(&irq, argp, sizeof(irq)))
4976 goto out;
4977 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4978 break;
4979 }
4980 case KVM_NMI: {
4981 r = kvm_vcpu_ioctl_nmi(vcpu);
4982 break;
4983 }
4984 case KVM_SMI: {
4985 r = kvm_vcpu_ioctl_smi(vcpu);
4986 break;
4987 }
4988 case KVM_SET_CPUID: {
4989 struct kvm_cpuid __user *cpuid_arg = argp;
4990 struct kvm_cpuid cpuid;
4991
4992 r = -EFAULT;
4993 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4994 goto out;
4995 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4996 break;
4997 }
4998 case KVM_SET_CPUID2: {
4999 struct kvm_cpuid2 __user *cpuid_arg = argp;
5000 struct kvm_cpuid2 cpuid;
5001
5002 r = -EFAULT;
5003 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5004 goto out;
5005 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5006 cpuid_arg->entries);
5007 break;
5008 }
5009 case KVM_GET_CPUID2: {
5010 struct kvm_cpuid2 __user *cpuid_arg = argp;
5011 struct kvm_cpuid2 cpuid;
5012
5013 r = -EFAULT;
5014 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5015 goto out;
5016 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5017 cpuid_arg->entries);
5018 if (r)
5019 goto out;
5020 r = -EFAULT;
5021 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5022 goto out;
5023 r = 0;
5024 break;
5025 }
5026 case KVM_GET_MSRS: {
5027 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5028 r = msr_io(vcpu, argp, do_get_msr, 1);
5029 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5030 break;
5031 }
5032 case KVM_SET_MSRS: {
5033 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5034 r = msr_io(vcpu, argp, do_set_msr, 0);
5035 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5036 break;
5037 }
5038 case KVM_TPR_ACCESS_REPORTING: {
5039 struct kvm_tpr_access_ctl tac;
5040
5041 r = -EFAULT;
5042 if (copy_from_user(&tac, argp, sizeof(tac)))
5043 goto out;
5044 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5045 if (r)
5046 goto out;
5047 r = -EFAULT;
5048 if (copy_to_user(argp, &tac, sizeof(tac)))
5049 goto out;
5050 r = 0;
5051 break;
5052 };
5053 case KVM_SET_VAPIC_ADDR: {
5054 struct kvm_vapic_addr va;
5055 int idx;
5056
5057 r = -EINVAL;
5058 if (!lapic_in_kernel(vcpu))
5059 goto out;
5060 r = -EFAULT;
5061 if (copy_from_user(&va, argp, sizeof(va)))
5062 goto out;
5063 idx = srcu_read_lock(&vcpu->kvm->srcu);
5064 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5065 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5066 break;
5067 }
5068 case KVM_X86_SETUP_MCE: {
5069 u64 mcg_cap;
5070
5071 r = -EFAULT;
5072 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5073 goto out;
5074 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5075 break;
5076 }
5077 case KVM_X86_SET_MCE: {
5078 struct kvm_x86_mce mce;
5079
5080 r = -EFAULT;
5081 if (copy_from_user(&mce, argp, sizeof(mce)))
5082 goto out;
5083 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5084 break;
5085 }
5086 case KVM_GET_VCPU_EVENTS: {
5087 struct kvm_vcpu_events events;
5088
5089 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5090
5091 r = -EFAULT;
5092 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5093 break;
5094 r = 0;
5095 break;
5096 }
5097 case KVM_SET_VCPU_EVENTS: {
5098 struct kvm_vcpu_events events;
5099
5100 r = -EFAULT;
5101 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5102 break;
5103
5104 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5105 break;
5106 }
5107 case KVM_GET_DEBUGREGS: {
5108 struct kvm_debugregs dbgregs;
5109
5110 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5111
5112 r = -EFAULT;
5113 if (copy_to_user(argp, &dbgregs,
5114 sizeof(struct kvm_debugregs)))
5115 break;
5116 r = 0;
5117 break;
5118 }
5119 case KVM_SET_DEBUGREGS: {
5120 struct kvm_debugregs dbgregs;
5121
5122 r = -EFAULT;
5123 if (copy_from_user(&dbgregs, argp,
5124 sizeof(struct kvm_debugregs)))
5125 break;
5126
5127 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5128 break;
5129 }
5130 case KVM_GET_XSAVE: {
5131 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5132 r = -ENOMEM;
5133 if (!u.xsave)
5134 break;
5135
5136 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5137
5138 r = -EFAULT;
5139 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5140 break;
5141 r = 0;
5142 break;
5143 }
5144 case KVM_SET_XSAVE: {
5145 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5146 if (IS_ERR(u.xsave)) {
5147 r = PTR_ERR(u.xsave);
5148 goto out_nofree;
5149 }
5150
5151 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5152 break;
5153 }
5154 case KVM_GET_XCRS: {
5155 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5156 r = -ENOMEM;
5157 if (!u.xcrs)
5158 break;
5159
5160 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5161
5162 r = -EFAULT;
5163 if (copy_to_user(argp, u.xcrs,
5164 sizeof(struct kvm_xcrs)))
5165 break;
5166 r = 0;
5167 break;
5168 }
5169 case KVM_SET_XCRS: {
5170 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5171 if (IS_ERR(u.xcrs)) {
5172 r = PTR_ERR(u.xcrs);
5173 goto out_nofree;
5174 }
5175
5176 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5177 break;
5178 }
5179 case KVM_SET_TSC_KHZ: {
5180 u32 user_tsc_khz;
5181
5182 r = -EINVAL;
5183 user_tsc_khz = (u32)arg;
5184
5185 if (kvm_has_tsc_control &&
5186 user_tsc_khz >= kvm_max_guest_tsc_khz)
5187 goto out;
5188
5189 if (user_tsc_khz == 0)
5190 user_tsc_khz = tsc_khz;
5191
5192 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5193 r = 0;
5194
5195 goto out;
5196 }
5197 case KVM_GET_TSC_KHZ: {
5198 r = vcpu->arch.virtual_tsc_khz;
5199 goto out;
5200 }
5201 case KVM_KVMCLOCK_CTRL: {
5202 r = kvm_set_guest_paused(vcpu);
5203 goto out;
5204 }
5205 case KVM_ENABLE_CAP: {
5206 struct kvm_enable_cap cap;
5207
5208 r = -EFAULT;
5209 if (copy_from_user(&cap, argp, sizeof(cap)))
5210 goto out;
5211 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5212 break;
5213 }
5214 case KVM_GET_NESTED_STATE: {
5215 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5216 u32 user_data_size;
5217
5218 r = -EINVAL;
5219 if (!kvm_x86_ops.nested_ops->get_state)
5220 break;
5221
5222 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5223 r = -EFAULT;
5224 if (get_user(user_data_size, &user_kvm_nested_state->size))
5225 break;
5226
5227 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5228 user_data_size);
5229 if (r < 0)
5230 break;
5231
5232 if (r > user_data_size) {
5233 if (put_user(r, &user_kvm_nested_state->size))
5234 r = -EFAULT;
5235 else
5236 r = -E2BIG;
5237 break;
5238 }
5239
5240 r = 0;
5241 break;
5242 }
5243 case KVM_SET_NESTED_STATE: {
5244 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5245 struct kvm_nested_state kvm_state;
5246 int idx;
5247
5248 r = -EINVAL;
5249 if (!kvm_x86_ops.nested_ops->set_state)
5250 break;
5251
5252 r = -EFAULT;
5253 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5254 break;
5255
5256 r = -EINVAL;
5257 if (kvm_state.size < sizeof(kvm_state))
5258 break;
5259
5260 if (kvm_state.flags &
5261 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5262 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5263 | KVM_STATE_NESTED_GIF_SET))
5264 break;
5265
5266 /* nested_run_pending implies guest_mode. */
5267 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5268 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5269 break;
5270
5271 idx = srcu_read_lock(&vcpu->kvm->srcu);
5272 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5273 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5274 break;
5275 }
5276 case KVM_GET_SUPPORTED_HV_CPUID:
5277 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5278 break;
5279 #ifdef CONFIG_KVM_XEN
5280 case KVM_XEN_VCPU_GET_ATTR: {
5281 struct kvm_xen_vcpu_attr xva;
5282
5283 r = -EFAULT;
5284 if (copy_from_user(&xva, argp, sizeof(xva)))
5285 goto out;
5286 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5287 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5288 r = -EFAULT;
5289 break;
5290 }
5291 case KVM_XEN_VCPU_SET_ATTR: {
5292 struct kvm_xen_vcpu_attr xva;
5293
5294 r = -EFAULT;
5295 if (copy_from_user(&xva, argp, sizeof(xva)))
5296 goto out;
5297 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5298 break;
5299 }
5300 #endif
5301 case KVM_GET_SREGS2: {
5302 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5303 r = -ENOMEM;
5304 if (!u.sregs2)
5305 goto out;
5306 __get_sregs2(vcpu, u.sregs2);
5307 r = -EFAULT;
5308 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5309 goto out;
5310 r = 0;
5311 break;
5312 }
5313 case KVM_SET_SREGS2: {
5314 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5315 if (IS_ERR(u.sregs2)) {
5316 r = PTR_ERR(u.sregs2);
5317 u.sregs2 = NULL;
5318 goto out;
5319 }
5320 r = __set_sregs2(vcpu, u.sregs2);
5321 break;
5322 }
5323 default:
5324 r = -EINVAL;
5325 }
5326 out:
5327 kfree(u.buffer);
5328 out_nofree:
5329 vcpu_put(vcpu);
5330 return r;
5331 }
5332
5333 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5334 {
5335 return VM_FAULT_SIGBUS;
5336 }
5337
5338 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5339 {
5340 int ret;
5341
5342 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5343 return -EINVAL;
5344 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5345 return ret;
5346 }
5347
5348 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5349 u64 ident_addr)
5350 {
5351 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5352 }
5353
5354 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5355 unsigned long kvm_nr_mmu_pages)
5356 {
5357 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5358 return -EINVAL;
5359
5360 mutex_lock(&kvm->slots_lock);
5361
5362 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5363 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5364
5365 mutex_unlock(&kvm->slots_lock);
5366 return 0;
5367 }
5368
5369 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5370 {
5371 return kvm->arch.n_max_mmu_pages;
5372 }
5373
5374 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5375 {
5376 struct kvm_pic *pic = kvm->arch.vpic;
5377 int r;
5378
5379 r = 0;
5380 switch (chip->chip_id) {
5381 case KVM_IRQCHIP_PIC_MASTER:
5382 memcpy(&chip->chip.pic, &pic->pics[0],
5383 sizeof(struct kvm_pic_state));
5384 break;
5385 case KVM_IRQCHIP_PIC_SLAVE:
5386 memcpy(&chip->chip.pic, &pic->pics[1],
5387 sizeof(struct kvm_pic_state));
5388 break;
5389 case KVM_IRQCHIP_IOAPIC:
5390 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5391 break;
5392 default:
5393 r = -EINVAL;
5394 break;
5395 }
5396 return r;
5397 }
5398
5399 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5400 {
5401 struct kvm_pic *pic = kvm->arch.vpic;
5402 int r;
5403
5404 r = 0;
5405 switch (chip->chip_id) {
5406 case KVM_IRQCHIP_PIC_MASTER:
5407 spin_lock(&pic->lock);
5408 memcpy(&pic->pics[0], &chip->chip.pic,
5409 sizeof(struct kvm_pic_state));
5410 spin_unlock(&pic->lock);
5411 break;
5412 case KVM_IRQCHIP_PIC_SLAVE:
5413 spin_lock(&pic->lock);
5414 memcpy(&pic->pics[1], &chip->chip.pic,
5415 sizeof(struct kvm_pic_state));
5416 spin_unlock(&pic->lock);
5417 break;
5418 case KVM_IRQCHIP_IOAPIC:
5419 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5420 break;
5421 default:
5422 r = -EINVAL;
5423 break;
5424 }
5425 kvm_pic_update_irq(pic);
5426 return r;
5427 }
5428
5429 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5430 {
5431 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5432
5433 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5434
5435 mutex_lock(&kps->lock);
5436 memcpy(ps, &kps->channels, sizeof(*ps));
5437 mutex_unlock(&kps->lock);
5438 return 0;
5439 }
5440
5441 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5442 {
5443 int i;
5444 struct kvm_pit *pit = kvm->arch.vpit;
5445
5446 mutex_lock(&pit->pit_state.lock);
5447 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5448 for (i = 0; i < 3; i++)
5449 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5450 mutex_unlock(&pit->pit_state.lock);
5451 return 0;
5452 }
5453
5454 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5455 {
5456 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5457 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5458 sizeof(ps->channels));
5459 ps->flags = kvm->arch.vpit->pit_state.flags;
5460 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5461 memset(&ps->reserved, 0, sizeof(ps->reserved));
5462 return 0;
5463 }
5464
5465 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5466 {
5467 int start = 0;
5468 int i;
5469 u32 prev_legacy, cur_legacy;
5470 struct kvm_pit *pit = kvm->arch.vpit;
5471
5472 mutex_lock(&pit->pit_state.lock);
5473 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5474 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5475 if (!prev_legacy && cur_legacy)
5476 start = 1;
5477 memcpy(&pit->pit_state.channels, &ps->channels,
5478 sizeof(pit->pit_state.channels));
5479 pit->pit_state.flags = ps->flags;
5480 for (i = 0; i < 3; i++)
5481 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5482 start && i == 0);
5483 mutex_unlock(&pit->pit_state.lock);
5484 return 0;
5485 }
5486
5487 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5488 struct kvm_reinject_control *control)
5489 {
5490 struct kvm_pit *pit = kvm->arch.vpit;
5491
5492 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5493 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5494 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5495 */
5496 mutex_lock(&pit->pit_state.lock);
5497 kvm_pit_set_reinject(pit, control->pit_reinject);
5498 mutex_unlock(&pit->pit_state.lock);
5499
5500 return 0;
5501 }
5502
5503 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5504 {
5505
5506 /*
5507 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5508 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5509 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5510 * VM-Exit.
5511 */
5512 struct kvm_vcpu *vcpu;
5513 int i;
5514
5515 kvm_for_each_vcpu(i, vcpu, kvm)
5516 kvm_vcpu_kick(vcpu);
5517 }
5518
5519 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5520 bool line_status)
5521 {
5522 if (!irqchip_in_kernel(kvm))
5523 return -ENXIO;
5524
5525 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5526 irq_event->irq, irq_event->level,
5527 line_status);
5528 return 0;
5529 }
5530
5531 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5532 struct kvm_enable_cap *cap)
5533 {
5534 int r;
5535
5536 if (cap->flags)
5537 return -EINVAL;
5538
5539 switch (cap->cap) {
5540 case KVM_CAP_DISABLE_QUIRKS:
5541 kvm->arch.disabled_quirks = cap->args[0];
5542 r = 0;
5543 break;
5544 case KVM_CAP_SPLIT_IRQCHIP: {
5545 mutex_lock(&kvm->lock);
5546 r = -EINVAL;
5547 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5548 goto split_irqchip_unlock;
5549 r = -EEXIST;
5550 if (irqchip_in_kernel(kvm))
5551 goto split_irqchip_unlock;
5552 if (kvm->created_vcpus)
5553 goto split_irqchip_unlock;
5554 r = kvm_setup_empty_irq_routing(kvm);
5555 if (r)
5556 goto split_irqchip_unlock;
5557 /* Pairs with irqchip_in_kernel. */
5558 smp_wmb();
5559 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5560 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5561 r = 0;
5562 split_irqchip_unlock:
5563 mutex_unlock(&kvm->lock);
5564 break;
5565 }
5566 case KVM_CAP_X2APIC_API:
5567 r = -EINVAL;
5568 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5569 break;
5570
5571 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5572 kvm->arch.x2apic_format = true;
5573 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5574 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5575
5576 r = 0;
5577 break;
5578 case KVM_CAP_X86_DISABLE_EXITS:
5579 r = -EINVAL;
5580 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5581 break;
5582
5583 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5584 kvm_can_mwait_in_guest())
5585 kvm->arch.mwait_in_guest = true;
5586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5587 kvm->arch.hlt_in_guest = true;
5588 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5589 kvm->arch.pause_in_guest = true;
5590 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5591 kvm->arch.cstate_in_guest = true;
5592 r = 0;
5593 break;
5594 case KVM_CAP_MSR_PLATFORM_INFO:
5595 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5596 r = 0;
5597 break;
5598 case KVM_CAP_EXCEPTION_PAYLOAD:
5599 kvm->arch.exception_payload_enabled = cap->args[0];
5600 r = 0;
5601 break;
5602 case KVM_CAP_X86_USER_SPACE_MSR:
5603 kvm->arch.user_space_msr_mask = cap->args[0];
5604 r = 0;
5605 break;
5606 case KVM_CAP_X86_BUS_LOCK_EXIT:
5607 r = -EINVAL;
5608 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5609 break;
5610
5611 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5612 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5613 break;
5614
5615 if (kvm_has_bus_lock_exit &&
5616 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5617 kvm->arch.bus_lock_detection_enabled = true;
5618 r = 0;
5619 break;
5620 #ifdef CONFIG_X86_SGX_KVM
5621 case KVM_CAP_SGX_ATTRIBUTE: {
5622 unsigned long allowed_attributes = 0;
5623
5624 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5625 if (r)
5626 break;
5627
5628 /* KVM only supports the PROVISIONKEY privileged attribute. */
5629 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5630 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5631 kvm->arch.sgx_provisioning_allowed = true;
5632 else
5633 r = -EINVAL;
5634 break;
5635 }
5636 #endif
5637 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5638 r = -EINVAL;
5639 if (kvm_x86_ops.vm_copy_enc_context_from)
5640 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5641 return r;
5642 case KVM_CAP_EXIT_HYPERCALL:
5643 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5644 r = -EINVAL;
5645 break;
5646 }
5647 kvm->arch.hypercall_exit_enabled = cap->args[0];
5648 r = 0;
5649 break;
5650 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5651 r = -EINVAL;
5652 if (cap->args[0] & ~1)
5653 break;
5654 kvm->arch.exit_on_emulation_error = cap->args[0];
5655 r = 0;
5656 break;
5657 default:
5658 r = -EINVAL;
5659 break;
5660 }
5661 return r;
5662 }
5663
5664 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5665 {
5666 struct kvm_x86_msr_filter *msr_filter;
5667
5668 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5669 if (!msr_filter)
5670 return NULL;
5671
5672 msr_filter->default_allow = default_allow;
5673 return msr_filter;
5674 }
5675
5676 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5677 {
5678 u32 i;
5679
5680 if (!msr_filter)
5681 return;
5682
5683 for (i = 0; i < msr_filter->count; i++)
5684 kfree(msr_filter->ranges[i].bitmap);
5685
5686 kfree(msr_filter);
5687 }
5688
5689 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5690 struct kvm_msr_filter_range *user_range)
5691 {
5692 unsigned long *bitmap = NULL;
5693 size_t bitmap_size;
5694
5695 if (!user_range->nmsrs)
5696 return 0;
5697
5698 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5699 return -EINVAL;
5700
5701 if (!user_range->flags)
5702 return -EINVAL;
5703
5704 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5705 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5706 return -EINVAL;
5707
5708 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5709 if (IS_ERR(bitmap))
5710 return PTR_ERR(bitmap);
5711
5712 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5713 .flags = user_range->flags,
5714 .base = user_range->base,
5715 .nmsrs = user_range->nmsrs,
5716 .bitmap = bitmap,
5717 };
5718
5719 msr_filter->count++;
5720 return 0;
5721 }
5722
5723 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5724 {
5725 struct kvm_msr_filter __user *user_msr_filter = argp;
5726 struct kvm_x86_msr_filter *new_filter, *old_filter;
5727 struct kvm_msr_filter filter;
5728 bool default_allow;
5729 bool empty = true;
5730 int r = 0;
5731 u32 i;
5732
5733 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5734 return -EFAULT;
5735
5736 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5737 empty &= !filter.ranges[i].nmsrs;
5738
5739 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5740 if (empty && !default_allow)
5741 return -EINVAL;
5742
5743 new_filter = kvm_alloc_msr_filter(default_allow);
5744 if (!new_filter)
5745 return -ENOMEM;
5746
5747 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5748 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5749 if (r) {
5750 kvm_free_msr_filter(new_filter);
5751 return r;
5752 }
5753 }
5754
5755 mutex_lock(&kvm->lock);
5756
5757 /* The per-VM filter is protected by kvm->lock... */
5758 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5759
5760 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5761 synchronize_srcu(&kvm->srcu);
5762
5763 kvm_free_msr_filter(old_filter);
5764
5765 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5766 mutex_unlock(&kvm->lock);
5767
5768 return 0;
5769 }
5770
5771 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5772 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5773 {
5774 struct kvm_vcpu *vcpu;
5775 int i, ret = 0;
5776
5777 mutex_lock(&kvm->lock);
5778 kvm_for_each_vcpu(i, vcpu, kvm) {
5779 if (!vcpu->arch.pv_time_enabled)
5780 continue;
5781
5782 ret = kvm_set_guest_paused(vcpu);
5783 if (ret) {
5784 kvm_err("Failed to pause guest VCPU%d: %d\n",
5785 vcpu->vcpu_id, ret);
5786 break;
5787 }
5788 }
5789 mutex_unlock(&kvm->lock);
5790
5791 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5792 }
5793
5794 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5795 {
5796 switch (state) {
5797 case PM_HIBERNATION_PREPARE:
5798 case PM_SUSPEND_PREPARE:
5799 return kvm_arch_suspend_notifier(kvm);
5800 }
5801
5802 return NOTIFY_DONE;
5803 }
5804 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5805
5806 long kvm_arch_vm_ioctl(struct file *filp,
5807 unsigned int ioctl, unsigned long arg)
5808 {
5809 struct kvm *kvm = filp->private_data;
5810 void __user *argp = (void __user *)arg;
5811 int r = -ENOTTY;
5812 /*
5813 * This union makes it completely explicit to gcc-3.x
5814 * that these two variables' stack usage should be
5815 * combined, not added together.
5816 */
5817 union {
5818 struct kvm_pit_state ps;
5819 struct kvm_pit_state2 ps2;
5820 struct kvm_pit_config pit_config;
5821 } u;
5822
5823 switch (ioctl) {
5824 case KVM_SET_TSS_ADDR:
5825 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5826 break;
5827 case KVM_SET_IDENTITY_MAP_ADDR: {
5828 u64 ident_addr;
5829
5830 mutex_lock(&kvm->lock);
5831 r = -EINVAL;
5832 if (kvm->created_vcpus)
5833 goto set_identity_unlock;
5834 r = -EFAULT;
5835 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5836 goto set_identity_unlock;
5837 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5838 set_identity_unlock:
5839 mutex_unlock(&kvm->lock);
5840 break;
5841 }
5842 case KVM_SET_NR_MMU_PAGES:
5843 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5844 break;
5845 case KVM_GET_NR_MMU_PAGES:
5846 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5847 break;
5848 case KVM_CREATE_IRQCHIP: {
5849 mutex_lock(&kvm->lock);
5850
5851 r = -EEXIST;
5852 if (irqchip_in_kernel(kvm))
5853 goto create_irqchip_unlock;
5854
5855 r = -EINVAL;
5856 if (kvm->created_vcpus)
5857 goto create_irqchip_unlock;
5858
5859 r = kvm_pic_init(kvm);
5860 if (r)
5861 goto create_irqchip_unlock;
5862
5863 r = kvm_ioapic_init(kvm);
5864 if (r) {
5865 kvm_pic_destroy(kvm);
5866 goto create_irqchip_unlock;
5867 }
5868
5869 r = kvm_setup_default_irq_routing(kvm);
5870 if (r) {
5871 kvm_ioapic_destroy(kvm);
5872 kvm_pic_destroy(kvm);
5873 goto create_irqchip_unlock;
5874 }
5875 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5876 smp_wmb();
5877 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5878 create_irqchip_unlock:
5879 mutex_unlock(&kvm->lock);
5880 break;
5881 }
5882 case KVM_CREATE_PIT:
5883 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5884 goto create_pit;
5885 case KVM_CREATE_PIT2:
5886 r = -EFAULT;
5887 if (copy_from_user(&u.pit_config, argp,
5888 sizeof(struct kvm_pit_config)))
5889 goto out;
5890 create_pit:
5891 mutex_lock(&kvm->lock);
5892 r = -EEXIST;
5893 if (kvm->arch.vpit)
5894 goto create_pit_unlock;
5895 r = -ENOMEM;
5896 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5897 if (kvm->arch.vpit)
5898 r = 0;
5899 create_pit_unlock:
5900 mutex_unlock(&kvm->lock);
5901 break;
5902 case KVM_GET_IRQCHIP: {
5903 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5904 struct kvm_irqchip *chip;
5905
5906 chip = memdup_user(argp, sizeof(*chip));
5907 if (IS_ERR(chip)) {
5908 r = PTR_ERR(chip);
5909 goto out;
5910 }
5911
5912 r = -ENXIO;
5913 if (!irqchip_kernel(kvm))
5914 goto get_irqchip_out;
5915 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5916 if (r)
5917 goto get_irqchip_out;
5918 r = -EFAULT;
5919 if (copy_to_user(argp, chip, sizeof(*chip)))
5920 goto get_irqchip_out;
5921 r = 0;
5922 get_irqchip_out:
5923 kfree(chip);
5924 break;
5925 }
5926 case KVM_SET_IRQCHIP: {
5927 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5928 struct kvm_irqchip *chip;
5929
5930 chip = memdup_user(argp, sizeof(*chip));
5931 if (IS_ERR(chip)) {
5932 r = PTR_ERR(chip);
5933 goto out;
5934 }
5935
5936 r = -ENXIO;
5937 if (!irqchip_kernel(kvm))
5938 goto set_irqchip_out;
5939 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5940 set_irqchip_out:
5941 kfree(chip);
5942 break;
5943 }
5944 case KVM_GET_PIT: {
5945 r = -EFAULT;
5946 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5947 goto out;
5948 r = -ENXIO;
5949 if (!kvm->arch.vpit)
5950 goto out;
5951 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5952 if (r)
5953 goto out;
5954 r = -EFAULT;
5955 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5956 goto out;
5957 r = 0;
5958 break;
5959 }
5960 case KVM_SET_PIT: {
5961 r = -EFAULT;
5962 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5963 goto out;
5964 mutex_lock(&kvm->lock);
5965 r = -ENXIO;
5966 if (!kvm->arch.vpit)
5967 goto set_pit_out;
5968 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5969 set_pit_out:
5970 mutex_unlock(&kvm->lock);
5971 break;
5972 }
5973 case KVM_GET_PIT2: {
5974 r = -ENXIO;
5975 if (!kvm->arch.vpit)
5976 goto out;
5977 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5978 if (r)
5979 goto out;
5980 r = -EFAULT;
5981 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5982 goto out;
5983 r = 0;
5984 break;
5985 }
5986 case KVM_SET_PIT2: {
5987 r = -EFAULT;
5988 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5989 goto out;
5990 mutex_lock(&kvm->lock);
5991 r = -ENXIO;
5992 if (!kvm->arch.vpit)
5993 goto set_pit2_out;
5994 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5995 set_pit2_out:
5996 mutex_unlock(&kvm->lock);
5997 break;
5998 }
5999 case KVM_REINJECT_CONTROL: {
6000 struct kvm_reinject_control control;
6001 r = -EFAULT;
6002 if (copy_from_user(&control, argp, sizeof(control)))
6003 goto out;
6004 r = -ENXIO;
6005 if (!kvm->arch.vpit)
6006 goto out;
6007 r = kvm_vm_ioctl_reinject(kvm, &control);
6008 break;
6009 }
6010 case KVM_SET_BOOT_CPU_ID:
6011 r = 0;
6012 mutex_lock(&kvm->lock);
6013 if (kvm->created_vcpus)
6014 r = -EBUSY;
6015 else
6016 kvm->arch.bsp_vcpu_id = arg;
6017 mutex_unlock(&kvm->lock);
6018 break;
6019 #ifdef CONFIG_KVM_XEN
6020 case KVM_XEN_HVM_CONFIG: {
6021 struct kvm_xen_hvm_config xhc;
6022 r = -EFAULT;
6023 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6024 goto out;
6025 r = kvm_xen_hvm_config(kvm, &xhc);
6026 break;
6027 }
6028 case KVM_XEN_HVM_GET_ATTR: {
6029 struct kvm_xen_hvm_attr xha;
6030
6031 r = -EFAULT;
6032 if (copy_from_user(&xha, argp, sizeof(xha)))
6033 goto out;
6034 r = kvm_xen_hvm_get_attr(kvm, &xha);
6035 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6036 r = -EFAULT;
6037 break;
6038 }
6039 case KVM_XEN_HVM_SET_ATTR: {
6040 struct kvm_xen_hvm_attr xha;
6041
6042 r = -EFAULT;
6043 if (copy_from_user(&xha, argp, sizeof(xha)))
6044 goto out;
6045 r = kvm_xen_hvm_set_attr(kvm, &xha);
6046 break;
6047 }
6048 #endif
6049 case KVM_SET_CLOCK: {
6050 struct kvm_arch *ka = &kvm->arch;
6051 struct kvm_clock_data user_ns;
6052 u64 now_ns;
6053
6054 r = -EFAULT;
6055 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6056 goto out;
6057
6058 r = -EINVAL;
6059 if (user_ns.flags)
6060 goto out;
6061
6062 r = 0;
6063 /*
6064 * TODO: userspace has to take care of races with VCPU_RUN, so
6065 * kvm_gen_update_masterclock() can be cut down to locked
6066 * pvclock_update_vm_gtod_copy().
6067 */
6068 kvm_gen_update_masterclock(kvm);
6069
6070 /*
6071 * This pairs with kvm_guest_time_update(): when masterclock is
6072 * in use, we use master_kernel_ns + kvmclock_offset to set
6073 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6074 * is slightly ahead) here we risk going negative on unsigned
6075 * 'system_time' when 'user_ns.clock' is very small.
6076 */
6077 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6078 if (kvm->arch.use_master_clock)
6079 now_ns = ka->master_kernel_ns;
6080 else
6081 now_ns = get_kvmclock_base_ns();
6082 ka->kvmclock_offset = user_ns.clock - now_ns;
6083 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6084
6085 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6086 break;
6087 }
6088 case KVM_GET_CLOCK: {
6089 struct kvm_clock_data user_ns;
6090 u64 now_ns;
6091
6092 now_ns = get_kvmclock_ns(kvm);
6093 user_ns.clock = now_ns;
6094 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6095 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6096
6097 r = -EFAULT;
6098 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6099 goto out;
6100 r = 0;
6101 break;
6102 }
6103 case KVM_MEMORY_ENCRYPT_OP: {
6104 r = -ENOTTY;
6105 if (kvm_x86_ops.mem_enc_op)
6106 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6107 break;
6108 }
6109 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6110 struct kvm_enc_region region;
6111
6112 r = -EFAULT;
6113 if (copy_from_user(&region, argp, sizeof(region)))
6114 goto out;
6115
6116 r = -ENOTTY;
6117 if (kvm_x86_ops.mem_enc_reg_region)
6118 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6119 break;
6120 }
6121 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6122 struct kvm_enc_region region;
6123
6124 r = -EFAULT;
6125 if (copy_from_user(&region, argp, sizeof(region)))
6126 goto out;
6127
6128 r = -ENOTTY;
6129 if (kvm_x86_ops.mem_enc_unreg_region)
6130 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6131 break;
6132 }
6133 case KVM_HYPERV_EVENTFD: {
6134 struct kvm_hyperv_eventfd hvevfd;
6135
6136 r = -EFAULT;
6137 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6138 goto out;
6139 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6140 break;
6141 }
6142 case KVM_SET_PMU_EVENT_FILTER:
6143 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6144 break;
6145 case KVM_X86_SET_MSR_FILTER:
6146 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6147 break;
6148 default:
6149 r = -ENOTTY;
6150 }
6151 out:
6152 return r;
6153 }
6154
6155 static void kvm_init_msr_list(void)
6156 {
6157 struct x86_pmu_capability x86_pmu;
6158 u32 dummy[2];
6159 unsigned i;
6160
6161 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6162 "Please update the fixed PMCs in msrs_to_saved_all[]");
6163
6164 perf_get_x86_pmu_capability(&x86_pmu);
6165
6166 num_msrs_to_save = 0;
6167 num_emulated_msrs = 0;
6168 num_msr_based_features = 0;
6169
6170 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6171 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6172 continue;
6173
6174 /*
6175 * Even MSRs that are valid in the host may not be exposed
6176 * to the guests in some cases.
6177 */
6178 switch (msrs_to_save_all[i]) {
6179 case MSR_IA32_BNDCFGS:
6180 if (!kvm_mpx_supported())
6181 continue;
6182 break;
6183 case MSR_TSC_AUX:
6184 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6185 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6186 continue;
6187 break;
6188 case MSR_IA32_UMWAIT_CONTROL:
6189 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6190 continue;
6191 break;
6192 case MSR_IA32_RTIT_CTL:
6193 case MSR_IA32_RTIT_STATUS:
6194 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6195 continue;
6196 break;
6197 case MSR_IA32_RTIT_CR3_MATCH:
6198 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6199 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6200 continue;
6201 break;
6202 case MSR_IA32_RTIT_OUTPUT_BASE:
6203 case MSR_IA32_RTIT_OUTPUT_MASK:
6204 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6205 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6206 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6207 continue;
6208 break;
6209 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6210 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6211 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6212 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6213 continue;
6214 break;
6215 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6216 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6217 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6218 continue;
6219 break;
6220 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6221 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6222 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6223 continue;
6224 break;
6225 default:
6226 break;
6227 }
6228
6229 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6230 }
6231
6232 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6233 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6234 continue;
6235
6236 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6237 }
6238
6239 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6240 struct kvm_msr_entry msr;
6241
6242 msr.index = msr_based_features_all[i];
6243 if (kvm_get_msr_feature(&msr))
6244 continue;
6245
6246 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6247 }
6248 }
6249
6250 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6251 const void *v)
6252 {
6253 int handled = 0;
6254 int n;
6255
6256 do {
6257 n = min(len, 8);
6258 if (!(lapic_in_kernel(vcpu) &&
6259 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6260 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6261 break;
6262 handled += n;
6263 addr += n;
6264 len -= n;
6265 v += n;
6266 } while (len);
6267
6268 return handled;
6269 }
6270
6271 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6272 {
6273 int handled = 0;
6274 int n;
6275
6276 do {
6277 n = min(len, 8);
6278 if (!(lapic_in_kernel(vcpu) &&
6279 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6280 addr, n, v))
6281 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6282 break;
6283 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6284 handled += n;
6285 addr += n;
6286 len -= n;
6287 v += n;
6288 } while (len);
6289
6290 return handled;
6291 }
6292
6293 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6294 struct kvm_segment *var, int seg)
6295 {
6296 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6297 }
6298
6299 void kvm_get_segment(struct kvm_vcpu *vcpu,
6300 struct kvm_segment *var, int seg)
6301 {
6302 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6303 }
6304
6305 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6306 struct x86_exception *exception)
6307 {
6308 gpa_t t_gpa;
6309
6310 BUG_ON(!mmu_is_nested(vcpu));
6311
6312 /* NPT walks are always user-walks */
6313 access |= PFERR_USER_MASK;
6314 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6315
6316 return t_gpa;
6317 }
6318
6319 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6320 struct x86_exception *exception)
6321 {
6322 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6323 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6324 }
6325 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6326
6327 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6328 struct x86_exception *exception)
6329 {
6330 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6331 access |= PFERR_FETCH_MASK;
6332 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6333 }
6334
6335 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6336 struct x86_exception *exception)
6337 {
6338 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6339 access |= PFERR_WRITE_MASK;
6340 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6341 }
6342 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6343
6344 /* uses this to access any guest's mapped memory without checking CPL */
6345 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6346 struct x86_exception *exception)
6347 {
6348 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6349 }
6350
6351 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6352 struct kvm_vcpu *vcpu, u32 access,
6353 struct x86_exception *exception)
6354 {
6355 void *data = val;
6356 int r = X86EMUL_CONTINUE;
6357
6358 while (bytes) {
6359 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6360 exception);
6361 unsigned offset = addr & (PAGE_SIZE-1);
6362 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6363 int ret;
6364
6365 if (gpa == UNMAPPED_GVA)
6366 return X86EMUL_PROPAGATE_FAULT;
6367 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6368 offset, toread);
6369 if (ret < 0) {
6370 r = X86EMUL_IO_NEEDED;
6371 goto out;
6372 }
6373
6374 bytes -= toread;
6375 data += toread;
6376 addr += toread;
6377 }
6378 out:
6379 return r;
6380 }
6381
6382 /* used for instruction fetching */
6383 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6384 gva_t addr, void *val, unsigned int bytes,
6385 struct x86_exception *exception)
6386 {
6387 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6388 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6389 unsigned offset;
6390 int ret;
6391
6392 /* Inline kvm_read_guest_virt_helper for speed. */
6393 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6394 exception);
6395 if (unlikely(gpa == UNMAPPED_GVA))
6396 return X86EMUL_PROPAGATE_FAULT;
6397
6398 offset = addr & (PAGE_SIZE-1);
6399 if (WARN_ON(offset + bytes > PAGE_SIZE))
6400 bytes = (unsigned)PAGE_SIZE - offset;
6401 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6402 offset, bytes);
6403 if (unlikely(ret < 0))
6404 return X86EMUL_IO_NEEDED;
6405
6406 return X86EMUL_CONTINUE;
6407 }
6408
6409 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6410 gva_t addr, void *val, unsigned int bytes,
6411 struct x86_exception *exception)
6412 {
6413 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6414
6415 /*
6416 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6417 * is returned, but our callers are not ready for that and they blindly
6418 * call kvm_inject_page_fault. Ensure that they at least do not leak
6419 * uninitialized kernel stack memory into cr2 and error code.
6420 */
6421 memset(exception, 0, sizeof(*exception));
6422 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6423 exception);
6424 }
6425 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6426
6427 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6428 gva_t addr, void *val, unsigned int bytes,
6429 struct x86_exception *exception, bool system)
6430 {
6431 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6432 u32 access = 0;
6433
6434 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6435 access |= PFERR_USER_MASK;
6436
6437 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6438 }
6439
6440 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6441 unsigned long addr, void *val, unsigned int bytes)
6442 {
6443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6444 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6445
6446 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6447 }
6448
6449 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6450 struct kvm_vcpu *vcpu, u32 access,
6451 struct x86_exception *exception)
6452 {
6453 void *data = val;
6454 int r = X86EMUL_CONTINUE;
6455
6456 while (bytes) {
6457 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6458 access,
6459 exception);
6460 unsigned offset = addr & (PAGE_SIZE-1);
6461 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6462 int ret;
6463
6464 if (gpa == UNMAPPED_GVA)
6465 return X86EMUL_PROPAGATE_FAULT;
6466 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6467 if (ret < 0) {
6468 r = X86EMUL_IO_NEEDED;
6469 goto out;
6470 }
6471
6472 bytes -= towrite;
6473 data += towrite;
6474 addr += towrite;
6475 }
6476 out:
6477 return r;
6478 }
6479
6480 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6481 unsigned int bytes, struct x86_exception *exception,
6482 bool system)
6483 {
6484 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6485 u32 access = PFERR_WRITE_MASK;
6486
6487 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6488 access |= PFERR_USER_MASK;
6489
6490 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6491 access, exception);
6492 }
6493
6494 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6495 unsigned int bytes, struct x86_exception *exception)
6496 {
6497 /* kvm_write_guest_virt_system can pull in tons of pages. */
6498 vcpu->arch.l1tf_flush_l1d = true;
6499
6500 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6501 PFERR_WRITE_MASK, exception);
6502 }
6503 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6504
6505 int handle_ud(struct kvm_vcpu *vcpu)
6506 {
6507 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6508 int emul_type = EMULTYPE_TRAP_UD;
6509 char sig[5]; /* ud2; .ascii "kvm" */
6510 struct x86_exception e;
6511
6512 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6513 return 1;
6514
6515 if (force_emulation_prefix &&
6516 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6517 sig, sizeof(sig), &e) == 0 &&
6518 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6519 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6520 emul_type = EMULTYPE_TRAP_UD_FORCED;
6521 }
6522
6523 return kvm_emulate_instruction(vcpu, emul_type);
6524 }
6525 EXPORT_SYMBOL_GPL(handle_ud);
6526
6527 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6528 gpa_t gpa, bool write)
6529 {
6530 /* For APIC access vmexit */
6531 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6532 return 1;
6533
6534 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6535 trace_vcpu_match_mmio(gva, gpa, write, true);
6536 return 1;
6537 }
6538
6539 return 0;
6540 }
6541
6542 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6543 gpa_t *gpa, struct x86_exception *exception,
6544 bool write)
6545 {
6546 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6547 | (write ? PFERR_WRITE_MASK : 0);
6548
6549 /*
6550 * currently PKRU is only applied to ept enabled guest so
6551 * there is no pkey in EPT page table for L1 guest or EPT
6552 * shadow page table for L2 guest.
6553 */
6554 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6555 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6556 vcpu->arch.mmio_access, 0, access))) {
6557 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6558 (gva & (PAGE_SIZE - 1));
6559 trace_vcpu_match_mmio(gva, *gpa, write, false);
6560 return 1;
6561 }
6562
6563 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6564
6565 if (*gpa == UNMAPPED_GVA)
6566 return -1;
6567
6568 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6569 }
6570
6571 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6572 const void *val, int bytes)
6573 {
6574 int ret;
6575
6576 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6577 if (ret < 0)
6578 return 0;
6579 kvm_page_track_write(vcpu, gpa, val, bytes);
6580 return 1;
6581 }
6582
6583 struct read_write_emulator_ops {
6584 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6585 int bytes);
6586 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6587 void *val, int bytes);
6588 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6589 int bytes, void *val);
6590 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6591 void *val, int bytes);
6592 bool write;
6593 };
6594
6595 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6596 {
6597 if (vcpu->mmio_read_completed) {
6598 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6599 vcpu->mmio_fragments[0].gpa, val);
6600 vcpu->mmio_read_completed = 0;
6601 return 1;
6602 }
6603
6604 return 0;
6605 }
6606
6607 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6608 void *val, int bytes)
6609 {
6610 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6611 }
6612
6613 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6614 void *val, int bytes)
6615 {
6616 return emulator_write_phys(vcpu, gpa, val, bytes);
6617 }
6618
6619 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6620 {
6621 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6622 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6623 }
6624
6625 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6626 void *val, int bytes)
6627 {
6628 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6629 return X86EMUL_IO_NEEDED;
6630 }
6631
6632 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6633 void *val, int bytes)
6634 {
6635 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6636
6637 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6638 return X86EMUL_CONTINUE;
6639 }
6640
6641 static const struct read_write_emulator_ops read_emultor = {
6642 .read_write_prepare = read_prepare,
6643 .read_write_emulate = read_emulate,
6644 .read_write_mmio = vcpu_mmio_read,
6645 .read_write_exit_mmio = read_exit_mmio,
6646 };
6647
6648 static const struct read_write_emulator_ops write_emultor = {
6649 .read_write_emulate = write_emulate,
6650 .read_write_mmio = write_mmio,
6651 .read_write_exit_mmio = write_exit_mmio,
6652 .write = true,
6653 };
6654
6655 static int emulator_read_write_onepage(unsigned long addr, void *val,
6656 unsigned int bytes,
6657 struct x86_exception *exception,
6658 struct kvm_vcpu *vcpu,
6659 const struct read_write_emulator_ops *ops)
6660 {
6661 gpa_t gpa;
6662 int handled, ret;
6663 bool write = ops->write;
6664 struct kvm_mmio_fragment *frag;
6665 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6666
6667 /*
6668 * If the exit was due to a NPF we may already have a GPA.
6669 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6670 * Note, this cannot be used on string operations since string
6671 * operation using rep will only have the initial GPA from the NPF
6672 * occurred.
6673 */
6674 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6675 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6676 gpa = ctxt->gpa_val;
6677 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6678 } else {
6679 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6680 if (ret < 0)
6681 return X86EMUL_PROPAGATE_FAULT;
6682 }
6683
6684 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6685 return X86EMUL_CONTINUE;
6686
6687 /*
6688 * Is this MMIO handled locally?
6689 */
6690 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6691 if (handled == bytes)
6692 return X86EMUL_CONTINUE;
6693
6694 gpa += handled;
6695 bytes -= handled;
6696 val += handled;
6697
6698 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6699 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6700 frag->gpa = gpa;
6701 frag->data = val;
6702 frag->len = bytes;
6703 return X86EMUL_CONTINUE;
6704 }
6705
6706 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6707 unsigned long addr,
6708 void *val, unsigned int bytes,
6709 struct x86_exception *exception,
6710 const struct read_write_emulator_ops *ops)
6711 {
6712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713 gpa_t gpa;
6714 int rc;
6715
6716 if (ops->read_write_prepare &&
6717 ops->read_write_prepare(vcpu, val, bytes))
6718 return X86EMUL_CONTINUE;
6719
6720 vcpu->mmio_nr_fragments = 0;
6721
6722 /* Crossing a page boundary? */
6723 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6724 int now;
6725
6726 now = -addr & ~PAGE_MASK;
6727 rc = emulator_read_write_onepage(addr, val, now, exception,
6728 vcpu, ops);
6729
6730 if (rc != X86EMUL_CONTINUE)
6731 return rc;
6732 addr += now;
6733 if (ctxt->mode != X86EMUL_MODE_PROT64)
6734 addr = (u32)addr;
6735 val += now;
6736 bytes -= now;
6737 }
6738
6739 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6740 vcpu, ops);
6741 if (rc != X86EMUL_CONTINUE)
6742 return rc;
6743
6744 if (!vcpu->mmio_nr_fragments)
6745 return rc;
6746
6747 gpa = vcpu->mmio_fragments[0].gpa;
6748
6749 vcpu->mmio_needed = 1;
6750 vcpu->mmio_cur_fragment = 0;
6751
6752 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6753 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6754 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6755 vcpu->run->mmio.phys_addr = gpa;
6756
6757 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6758 }
6759
6760 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6761 unsigned long addr,
6762 void *val,
6763 unsigned int bytes,
6764 struct x86_exception *exception)
6765 {
6766 return emulator_read_write(ctxt, addr, val, bytes,
6767 exception, &read_emultor);
6768 }
6769
6770 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6771 unsigned long addr,
6772 const void *val,
6773 unsigned int bytes,
6774 struct x86_exception *exception)
6775 {
6776 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6777 exception, &write_emultor);
6778 }
6779
6780 #define CMPXCHG_TYPE(t, ptr, old, new) \
6781 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6782
6783 #ifdef CONFIG_X86_64
6784 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6785 #else
6786 # define CMPXCHG64(ptr, old, new) \
6787 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6788 #endif
6789
6790 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6791 unsigned long addr,
6792 const void *old,
6793 const void *new,
6794 unsigned int bytes,
6795 struct x86_exception *exception)
6796 {
6797 struct kvm_host_map map;
6798 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6799 u64 page_line_mask;
6800 gpa_t gpa;
6801 char *kaddr;
6802 bool exchanged;
6803
6804 /* guests cmpxchg8b have to be emulated atomically */
6805 if (bytes > 8 || (bytes & (bytes - 1)))
6806 goto emul_write;
6807
6808 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6809
6810 if (gpa == UNMAPPED_GVA ||
6811 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6812 goto emul_write;
6813
6814 /*
6815 * Emulate the atomic as a straight write to avoid #AC if SLD is
6816 * enabled in the host and the access splits a cache line.
6817 */
6818 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6819 page_line_mask = ~(cache_line_size() - 1);
6820 else
6821 page_line_mask = PAGE_MASK;
6822
6823 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6824 goto emul_write;
6825
6826 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6827 goto emul_write;
6828
6829 kaddr = map.hva + offset_in_page(gpa);
6830
6831 switch (bytes) {
6832 case 1:
6833 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6834 break;
6835 case 2:
6836 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6837 break;
6838 case 4:
6839 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6840 break;
6841 case 8:
6842 exchanged = CMPXCHG64(kaddr, old, new);
6843 break;
6844 default:
6845 BUG();
6846 }
6847
6848 kvm_vcpu_unmap(vcpu, &map, true);
6849
6850 if (!exchanged)
6851 return X86EMUL_CMPXCHG_FAILED;
6852
6853 kvm_page_track_write(vcpu, gpa, new, bytes);
6854
6855 return X86EMUL_CONTINUE;
6856
6857 emul_write:
6858 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6859
6860 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6861 }
6862
6863 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6864 {
6865 int r = 0, i;
6866
6867 for (i = 0; i < vcpu->arch.pio.count; i++) {
6868 if (vcpu->arch.pio.in)
6869 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6870 vcpu->arch.pio.size, pd);
6871 else
6872 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6873 vcpu->arch.pio.port, vcpu->arch.pio.size,
6874 pd);
6875 if (r)
6876 break;
6877 pd += vcpu->arch.pio.size;
6878 }
6879 return r;
6880 }
6881
6882 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6883 unsigned short port,
6884 unsigned int count, bool in)
6885 {
6886 vcpu->arch.pio.port = port;
6887 vcpu->arch.pio.in = in;
6888 vcpu->arch.pio.count = count;
6889 vcpu->arch.pio.size = size;
6890
6891 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6892 return 1;
6893
6894 vcpu->run->exit_reason = KVM_EXIT_IO;
6895 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6896 vcpu->run->io.size = size;
6897 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6898 vcpu->run->io.count = count;
6899 vcpu->run->io.port = port;
6900
6901 return 0;
6902 }
6903
6904 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6905 unsigned short port, unsigned int count)
6906 {
6907 WARN_ON(vcpu->arch.pio.count);
6908 memset(vcpu->arch.pio_data, 0, size * count);
6909 return emulator_pio_in_out(vcpu, size, port, count, true);
6910 }
6911
6912 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6913 {
6914 int size = vcpu->arch.pio.size;
6915 unsigned count = vcpu->arch.pio.count;
6916 memcpy(val, vcpu->arch.pio_data, size * count);
6917 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6918 vcpu->arch.pio.count = 0;
6919 }
6920
6921 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6922 unsigned short port, void *val, unsigned int count)
6923 {
6924 if (vcpu->arch.pio.count) {
6925 /*
6926 * Complete a previous iteration that required userspace I/O.
6927 * Note, @count isn't guaranteed to match pio.count as userspace
6928 * can modify ECX before rerunning the vCPU. Ignore any such
6929 * shenanigans as KVM doesn't support modifying the rep count,
6930 * and the emulator ensures @count doesn't overflow the buffer.
6931 */
6932 } else {
6933 int r = __emulator_pio_in(vcpu, size, port, count);
6934 if (!r)
6935 return r;
6936
6937 /* Results already available, fall through. */
6938 }
6939
6940 complete_emulator_pio_in(vcpu, val);
6941 return 1;
6942 }
6943
6944 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6945 int size, unsigned short port, void *val,
6946 unsigned int count)
6947 {
6948 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6949
6950 }
6951
6952 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6953 unsigned short port, const void *val,
6954 unsigned int count)
6955 {
6956 int ret;
6957
6958 memcpy(vcpu->arch.pio_data, val, size * count);
6959 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6960 ret = emulator_pio_in_out(vcpu, size, port, count, false);
6961 if (ret)
6962 vcpu->arch.pio.count = 0;
6963
6964 return ret;
6965 }
6966
6967 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6968 int size, unsigned short port,
6969 const void *val, unsigned int count)
6970 {
6971 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6972 }
6973
6974 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6975 {
6976 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6977 }
6978
6979 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6980 {
6981 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6982 }
6983
6984 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6985 {
6986 if (!need_emulate_wbinvd(vcpu))
6987 return X86EMUL_CONTINUE;
6988
6989 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6990 int cpu = get_cpu();
6991
6992 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6993 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6994 wbinvd_ipi, NULL, 1);
6995 put_cpu();
6996 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6997 } else
6998 wbinvd();
6999 return X86EMUL_CONTINUE;
7000 }
7001
7002 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7003 {
7004 kvm_emulate_wbinvd_noskip(vcpu);
7005 return kvm_skip_emulated_instruction(vcpu);
7006 }
7007 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7008
7009
7010
7011 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7012 {
7013 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7014 }
7015
7016 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7017 unsigned long *dest)
7018 {
7019 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7020 }
7021
7022 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7023 unsigned long value)
7024 {
7025
7026 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7027 }
7028
7029 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7030 {
7031 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7032 }
7033
7034 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7035 {
7036 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7037 unsigned long value;
7038
7039 switch (cr) {
7040 case 0:
7041 value = kvm_read_cr0(vcpu);
7042 break;
7043 case 2:
7044 value = vcpu->arch.cr2;
7045 break;
7046 case 3:
7047 value = kvm_read_cr3(vcpu);
7048 break;
7049 case 4:
7050 value = kvm_read_cr4(vcpu);
7051 break;
7052 case 8:
7053 value = kvm_get_cr8(vcpu);
7054 break;
7055 default:
7056 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7057 return 0;
7058 }
7059
7060 return value;
7061 }
7062
7063 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7064 {
7065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7066 int res = 0;
7067
7068 switch (cr) {
7069 case 0:
7070 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7071 break;
7072 case 2:
7073 vcpu->arch.cr2 = val;
7074 break;
7075 case 3:
7076 res = kvm_set_cr3(vcpu, val);
7077 break;
7078 case 4:
7079 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7080 break;
7081 case 8:
7082 res = kvm_set_cr8(vcpu, val);
7083 break;
7084 default:
7085 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7086 res = -1;
7087 }
7088
7089 return res;
7090 }
7091
7092 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7093 {
7094 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7095 }
7096
7097 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7098 {
7099 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7100 }
7101
7102 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7103 {
7104 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7105 }
7106
7107 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7108 {
7109 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7110 }
7111
7112 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7113 {
7114 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7115 }
7116
7117 static unsigned long emulator_get_cached_segment_base(
7118 struct x86_emulate_ctxt *ctxt, int seg)
7119 {
7120 return get_segment_base(emul_to_vcpu(ctxt), seg);
7121 }
7122
7123 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7124 struct desc_struct *desc, u32 *base3,
7125 int seg)
7126 {
7127 struct kvm_segment var;
7128
7129 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7130 *selector = var.selector;
7131
7132 if (var.unusable) {
7133 memset(desc, 0, sizeof(*desc));
7134 if (base3)
7135 *base3 = 0;
7136 return false;
7137 }
7138
7139 if (var.g)
7140 var.limit >>= 12;
7141 set_desc_limit(desc, var.limit);
7142 set_desc_base(desc, (unsigned long)var.base);
7143 #ifdef CONFIG_X86_64
7144 if (base3)
7145 *base3 = var.base >> 32;
7146 #endif
7147 desc->type = var.type;
7148 desc->s = var.s;
7149 desc->dpl = var.dpl;
7150 desc->p = var.present;
7151 desc->avl = var.avl;
7152 desc->l = var.l;
7153 desc->d = var.db;
7154 desc->g = var.g;
7155
7156 return true;
7157 }
7158
7159 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7160 struct desc_struct *desc, u32 base3,
7161 int seg)
7162 {
7163 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7164 struct kvm_segment var;
7165
7166 var.selector = selector;
7167 var.base = get_desc_base(desc);
7168 #ifdef CONFIG_X86_64
7169 var.base |= ((u64)base3) << 32;
7170 #endif
7171 var.limit = get_desc_limit(desc);
7172 if (desc->g)
7173 var.limit = (var.limit << 12) | 0xfff;
7174 var.type = desc->type;
7175 var.dpl = desc->dpl;
7176 var.db = desc->d;
7177 var.s = desc->s;
7178 var.l = desc->l;
7179 var.g = desc->g;
7180 var.avl = desc->avl;
7181 var.present = desc->p;
7182 var.unusable = !var.present;
7183 var.padding = 0;
7184
7185 kvm_set_segment(vcpu, &var, seg);
7186 return;
7187 }
7188
7189 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7190 u32 msr_index, u64 *pdata)
7191 {
7192 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7193 int r;
7194
7195 r = kvm_get_msr(vcpu, msr_index, pdata);
7196
7197 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7198 /* Bounce to user space */
7199 return X86EMUL_IO_NEEDED;
7200 }
7201
7202 return r;
7203 }
7204
7205 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7206 u32 msr_index, u64 data)
7207 {
7208 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7209 int r;
7210
7211 r = kvm_set_msr(vcpu, msr_index, data);
7212
7213 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7214 /* Bounce to user space */
7215 return X86EMUL_IO_NEEDED;
7216 }
7217
7218 return r;
7219 }
7220
7221 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7222 {
7223 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7224
7225 return vcpu->arch.smbase;
7226 }
7227
7228 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7229 {
7230 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7231
7232 vcpu->arch.smbase = smbase;
7233 }
7234
7235 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7236 u32 pmc)
7237 {
7238 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7239 }
7240
7241 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7242 u32 pmc, u64 *pdata)
7243 {
7244 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7245 }
7246
7247 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7248 {
7249 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7250 }
7251
7252 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7253 struct x86_instruction_info *info,
7254 enum x86_intercept_stage stage)
7255 {
7256 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7257 &ctxt->exception);
7258 }
7259
7260 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7261 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7262 bool exact_only)
7263 {
7264 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7265 }
7266
7267 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7268 {
7269 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7270 }
7271
7272 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7273 {
7274 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7275 }
7276
7277 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7278 {
7279 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7280 }
7281
7282 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7283 {
7284 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7285 }
7286
7287 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7288 {
7289 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7290 }
7291
7292 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7293 {
7294 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7295 }
7296
7297 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7298 {
7299 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7300 }
7301
7302 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7303 {
7304 return emul_to_vcpu(ctxt)->arch.hflags;
7305 }
7306
7307 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7308 {
7309 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7310
7311 kvm_smm_changed(vcpu, false);
7312 }
7313
7314 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7315 const char *smstate)
7316 {
7317 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7318 }
7319
7320 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7321 {
7322 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7323 }
7324
7325 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7326 {
7327 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7328 }
7329
7330 static const struct x86_emulate_ops emulate_ops = {
7331 .read_gpr = emulator_read_gpr,
7332 .write_gpr = emulator_write_gpr,
7333 .read_std = emulator_read_std,
7334 .write_std = emulator_write_std,
7335 .read_phys = kvm_read_guest_phys_system,
7336 .fetch = kvm_fetch_guest_virt,
7337 .read_emulated = emulator_read_emulated,
7338 .write_emulated = emulator_write_emulated,
7339 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7340 .invlpg = emulator_invlpg,
7341 .pio_in_emulated = emulator_pio_in_emulated,
7342 .pio_out_emulated = emulator_pio_out_emulated,
7343 .get_segment = emulator_get_segment,
7344 .set_segment = emulator_set_segment,
7345 .get_cached_segment_base = emulator_get_cached_segment_base,
7346 .get_gdt = emulator_get_gdt,
7347 .get_idt = emulator_get_idt,
7348 .set_gdt = emulator_set_gdt,
7349 .set_idt = emulator_set_idt,
7350 .get_cr = emulator_get_cr,
7351 .set_cr = emulator_set_cr,
7352 .cpl = emulator_get_cpl,
7353 .get_dr = emulator_get_dr,
7354 .set_dr = emulator_set_dr,
7355 .get_smbase = emulator_get_smbase,
7356 .set_smbase = emulator_set_smbase,
7357 .set_msr = emulator_set_msr,
7358 .get_msr = emulator_get_msr,
7359 .check_pmc = emulator_check_pmc,
7360 .read_pmc = emulator_read_pmc,
7361 .halt = emulator_halt,
7362 .wbinvd = emulator_wbinvd,
7363 .fix_hypercall = emulator_fix_hypercall,
7364 .intercept = emulator_intercept,
7365 .get_cpuid = emulator_get_cpuid,
7366 .guest_has_long_mode = emulator_guest_has_long_mode,
7367 .guest_has_movbe = emulator_guest_has_movbe,
7368 .guest_has_fxsr = emulator_guest_has_fxsr,
7369 .guest_has_rdpid = emulator_guest_has_rdpid,
7370 .set_nmi_mask = emulator_set_nmi_mask,
7371 .get_hflags = emulator_get_hflags,
7372 .exiting_smm = emulator_exiting_smm,
7373 .leave_smm = emulator_leave_smm,
7374 .triple_fault = emulator_triple_fault,
7375 .set_xcr = emulator_set_xcr,
7376 };
7377
7378 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7379 {
7380 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7381 /*
7382 * an sti; sti; sequence only disable interrupts for the first
7383 * instruction. So, if the last instruction, be it emulated or
7384 * not, left the system with the INT_STI flag enabled, it
7385 * means that the last instruction is an sti. We should not
7386 * leave the flag on in this case. The same goes for mov ss
7387 */
7388 if (int_shadow & mask)
7389 mask = 0;
7390 if (unlikely(int_shadow || mask)) {
7391 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7392 if (!mask)
7393 kvm_make_request(KVM_REQ_EVENT, vcpu);
7394 }
7395 }
7396
7397 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7398 {
7399 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7400 if (ctxt->exception.vector == PF_VECTOR)
7401 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7402
7403 if (ctxt->exception.error_code_valid)
7404 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7405 ctxt->exception.error_code);
7406 else
7407 kvm_queue_exception(vcpu, ctxt->exception.vector);
7408 return false;
7409 }
7410
7411 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7412 {
7413 struct x86_emulate_ctxt *ctxt;
7414
7415 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7416 if (!ctxt) {
7417 pr_err("kvm: failed to allocate vcpu's emulator\n");
7418 return NULL;
7419 }
7420
7421 ctxt->vcpu = vcpu;
7422 ctxt->ops = &emulate_ops;
7423 vcpu->arch.emulate_ctxt = ctxt;
7424
7425 return ctxt;
7426 }
7427
7428 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7429 {
7430 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7431 int cs_db, cs_l;
7432
7433 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7434
7435 ctxt->gpa_available = false;
7436 ctxt->eflags = kvm_get_rflags(vcpu);
7437 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7438
7439 ctxt->eip = kvm_rip_read(vcpu);
7440 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7441 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7442 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7443 cs_db ? X86EMUL_MODE_PROT32 :
7444 X86EMUL_MODE_PROT16;
7445 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7446 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7447 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7448
7449 ctxt->interruptibility = 0;
7450 ctxt->have_exception = false;
7451 ctxt->exception.vector = -1;
7452 ctxt->perm_ok = false;
7453
7454 init_decode_cache(ctxt);
7455 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7456 }
7457
7458 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7459 {
7460 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7461 int ret;
7462
7463 init_emulate_ctxt(vcpu);
7464
7465 ctxt->op_bytes = 2;
7466 ctxt->ad_bytes = 2;
7467 ctxt->_eip = ctxt->eip + inc_eip;
7468 ret = emulate_int_real(ctxt, irq);
7469
7470 if (ret != X86EMUL_CONTINUE) {
7471 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7472 } else {
7473 ctxt->eip = ctxt->_eip;
7474 kvm_rip_write(vcpu, ctxt->eip);
7475 kvm_set_rflags(vcpu, ctxt->eflags);
7476 }
7477 }
7478 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7479
7480 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7481 {
7482 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7483 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7484 struct kvm_run *run = vcpu->run;
7485
7486 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7487 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7488 run->emulation_failure.ndata = 0;
7489 run->emulation_failure.flags = 0;
7490
7491 if (insn_size) {
7492 run->emulation_failure.ndata = 3;
7493 run->emulation_failure.flags |=
7494 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7495 run->emulation_failure.insn_size = insn_size;
7496 memset(run->emulation_failure.insn_bytes, 0x90,
7497 sizeof(run->emulation_failure.insn_bytes));
7498 memcpy(run->emulation_failure.insn_bytes,
7499 ctxt->fetch.data, insn_size);
7500 }
7501 }
7502
7503 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7504 {
7505 struct kvm *kvm = vcpu->kvm;
7506
7507 ++vcpu->stat.insn_emulation_fail;
7508 trace_kvm_emulate_insn_failed(vcpu);
7509
7510 if (emulation_type & EMULTYPE_VMWARE_GP) {
7511 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7512 return 1;
7513 }
7514
7515 if (kvm->arch.exit_on_emulation_error ||
7516 (emulation_type & EMULTYPE_SKIP)) {
7517 prepare_emulation_failure_exit(vcpu);
7518 return 0;
7519 }
7520
7521 kvm_queue_exception(vcpu, UD_VECTOR);
7522
7523 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7524 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7525 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7526 vcpu->run->internal.ndata = 0;
7527 return 0;
7528 }
7529
7530 return 1;
7531 }
7532
7533 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7534 bool write_fault_to_shadow_pgtable,
7535 int emulation_type)
7536 {
7537 gpa_t gpa = cr2_or_gpa;
7538 kvm_pfn_t pfn;
7539
7540 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7541 return false;
7542
7543 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7544 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7545 return false;
7546
7547 if (!vcpu->arch.mmu->direct_map) {
7548 /*
7549 * Write permission should be allowed since only
7550 * write access need to be emulated.
7551 */
7552 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7553
7554 /*
7555 * If the mapping is invalid in guest, let cpu retry
7556 * it to generate fault.
7557 */
7558 if (gpa == UNMAPPED_GVA)
7559 return true;
7560 }
7561
7562 /*
7563 * Do not retry the unhandleable instruction if it faults on the
7564 * readonly host memory, otherwise it will goto a infinite loop:
7565 * retry instruction -> write #PF -> emulation fail -> retry
7566 * instruction -> ...
7567 */
7568 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7569
7570 /*
7571 * If the instruction failed on the error pfn, it can not be fixed,
7572 * report the error to userspace.
7573 */
7574 if (is_error_noslot_pfn(pfn))
7575 return false;
7576
7577 kvm_release_pfn_clean(pfn);
7578
7579 /* The instructions are well-emulated on direct mmu. */
7580 if (vcpu->arch.mmu->direct_map) {
7581 unsigned int indirect_shadow_pages;
7582
7583 write_lock(&vcpu->kvm->mmu_lock);
7584 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7585 write_unlock(&vcpu->kvm->mmu_lock);
7586
7587 if (indirect_shadow_pages)
7588 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7589
7590 return true;
7591 }
7592
7593 /*
7594 * if emulation was due to access to shadowed page table
7595 * and it failed try to unshadow page and re-enter the
7596 * guest to let CPU execute the instruction.
7597 */
7598 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7599
7600 /*
7601 * If the access faults on its page table, it can not
7602 * be fixed by unprotecting shadow page and it should
7603 * be reported to userspace.
7604 */
7605 return !write_fault_to_shadow_pgtable;
7606 }
7607
7608 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7609 gpa_t cr2_or_gpa, int emulation_type)
7610 {
7611 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7612 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7613
7614 last_retry_eip = vcpu->arch.last_retry_eip;
7615 last_retry_addr = vcpu->arch.last_retry_addr;
7616
7617 /*
7618 * If the emulation is caused by #PF and it is non-page_table
7619 * writing instruction, it means the VM-EXIT is caused by shadow
7620 * page protected, we can zap the shadow page and retry this
7621 * instruction directly.
7622 *
7623 * Note: if the guest uses a non-page-table modifying instruction
7624 * on the PDE that points to the instruction, then we will unmap
7625 * the instruction and go to an infinite loop. So, we cache the
7626 * last retried eip and the last fault address, if we meet the eip
7627 * and the address again, we can break out of the potential infinite
7628 * loop.
7629 */
7630 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7631
7632 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7633 return false;
7634
7635 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7636 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7637 return false;
7638
7639 if (x86_page_table_writing_insn(ctxt))
7640 return false;
7641
7642 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7643 return false;
7644
7645 vcpu->arch.last_retry_eip = ctxt->eip;
7646 vcpu->arch.last_retry_addr = cr2_or_gpa;
7647
7648 if (!vcpu->arch.mmu->direct_map)
7649 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7650
7651 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7652
7653 return true;
7654 }
7655
7656 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7657 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7658
7659 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7660 {
7661 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7662
7663 if (entering_smm) {
7664 vcpu->arch.hflags |= HF_SMM_MASK;
7665 } else {
7666 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7667
7668 /* Process a latched INIT or SMI, if any. */
7669 kvm_make_request(KVM_REQ_EVENT, vcpu);
7670
7671 /*
7672 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7673 * on SMM exit we still need to reload them from
7674 * guest memory
7675 */
7676 vcpu->arch.pdptrs_from_userspace = false;
7677 }
7678
7679 kvm_mmu_reset_context(vcpu);
7680 }
7681
7682 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7683 unsigned long *db)
7684 {
7685 u32 dr6 = 0;
7686 int i;
7687 u32 enable, rwlen;
7688
7689 enable = dr7;
7690 rwlen = dr7 >> 16;
7691 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7692 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7693 dr6 |= (1 << i);
7694 return dr6;
7695 }
7696
7697 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7698 {
7699 struct kvm_run *kvm_run = vcpu->run;
7700
7701 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7702 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7703 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7704 kvm_run->debug.arch.exception = DB_VECTOR;
7705 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7706 return 0;
7707 }
7708 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7709 return 1;
7710 }
7711
7712 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7713 {
7714 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7715 int r;
7716
7717 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7718 if (unlikely(!r))
7719 return 0;
7720
7721 /*
7722 * rflags is the old, "raw" value of the flags. The new value has
7723 * not been saved yet.
7724 *
7725 * This is correct even for TF set by the guest, because "the
7726 * processor will not generate this exception after the instruction
7727 * that sets the TF flag".
7728 */
7729 if (unlikely(rflags & X86_EFLAGS_TF))
7730 r = kvm_vcpu_do_singlestep(vcpu);
7731 return r;
7732 }
7733 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7734
7735 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7736 {
7737 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7738 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7739 struct kvm_run *kvm_run = vcpu->run;
7740 unsigned long eip = kvm_get_linear_rip(vcpu);
7741 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7742 vcpu->arch.guest_debug_dr7,
7743 vcpu->arch.eff_db);
7744
7745 if (dr6 != 0) {
7746 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7747 kvm_run->debug.arch.pc = eip;
7748 kvm_run->debug.arch.exception = DB_VECTOR;
7749 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7750 *r = 0;
7751 return true;
7752 }
7753 }
7754
7755 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7756 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7757 unsigned long eip = kvm_get_linear_rip(vcpu);
7758 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7759 vcpu->arch.dr7,
7760 vcpu->arch.db);
7761
7762 if (dr6 != 0) {
7763 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7764 *r = 1;
7765 return true;
7766 }
7767 }
7768
7769 return false;
7770 }
7771
7772 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7773 {
7774 switch (ctxt->opcode_len) {
7775 case 1:
7776 switch (ctxt->b) {
7777 case 0xe4: /* IN */
7778 case 0xe5:
7779 case 0xec:
7780 case 0xed:
7781 case 0xe6: /* OUT */
7782 case 0xe7:
7783 case 0xee:
7784 case 0xef:
7785 case 0x6c: /* INS */
7786 case 0x6d:
7787 case 0x6e: /* OUTS */
7788 case 0x6f:
7789 return true;
7790 }
7791 break;
7792 case 2:
7793 switch (ctxt->b) {
7794 case 0x33: /* RDPMC */
7795 return true;
7796 }
7797 break;
7798 }
7799
7800 return false;
7801 }
7802
7803 /*
7804 * Decode to be emulated instruction. Return EMULATION_OK if success.
7805 */
7806 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7807 void *insn, int insn_len)
7808 {
7809 int r = EMULATION_OK;
7810 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7811
7812 init_emulate_ctxt(vcpu);
7813
7814 /*
7815 * We will reenter on the same instruction since we do not set
7816 * complete_userspace_io. This does not handle watchpoints yet,
7817 * those would be handled in the emulate_ops.
7818 */
7819 if (!(emulation_type & EMULTYPE_SKIP) &&
7820 kvm_vcpu_check_breakpoint(vcpu, &r))
7821 return r;
7822
7823 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7824
7825 trace_kvm_emulate_insn_start(vcpu);
7826 ++vcpu->stat.insn_emulation;
7827
7828 return r;
7829 }
7830 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7831
7832 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7833 int emulation_type, void *insn, int insn_len)
7834 {
7835 int r;
7836 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7837 bool writeback = true;
7838 bool write_fault_to_spt;
7839
7840 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7841 return 1;
7842
7843 vcpu->arch.l1tf_flush_l1d = true;
7844
7845 /*
7846 * Clear write_fault_to_shadow_pgtable here to ensure it is
7847 * never reused.
7848 */
7849 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7850 vcpu->arch.write_fault_to_shadow_pgtable = false;
7851
7852 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7853 kvm_clear_exception_queue(vcpu);
7854
7855 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7856 insn, insn_len);
7857 if (r != EMULATION_OK) {
7858 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7859 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7860 kvm_queue_exception(vcpu, UD_VECTOR);
7861 return 1;
7862 }
7863 if (reexecute_instruction(vcpu, cr2_or_gpa,
7864 write_fault_to_spt,
7865 emulation_type))
7866 return 1;
7867 if (ctxt->have_exception) {
7868 /*
7869 * #UD should result in just EMULATION_FAILED, and trap-like
7870 * exception should not be encountered during decode.
7871 */
7872 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7873 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7874 inject_emulated_exception(vcpu);
7875 return 1;
7876 }
7877 return handle_emulation_failure(vcpu, emulation_type);
7878 }
7879 }
7880
7881 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7882 !is_vmware_backdoor_opcode(ctxt)) {
7883 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7884 return 1;
7885 }
7886
7887 /*
7888 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7889 * for kvm_skip_emulated_instruction(). The caller is responsible for
7890 * updating interruptibility state and injecting single-step #DBs.
7891 */
7892 if (emulation_type & EMULTYPE_SKIP) {
7893 if (ctxt->mode != X86EMUL_MODE_PROT64)
7894 ctxt->eip = (u32)ctxt->_eip;
7895 else
7896 ctxt->eip = ctxt->_eip;
7897
7898 kvm_rip_write(vcpu, ctxt->eip);
7899 if (ctxt->eflags & X86_EFLAGS_RF)
7900 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7901 return 1;
7902 }
7903
7904 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7905 return 1;
7906
7907 /* this is needed for vmware backdoor interface to work since it
7908 changes registers values during IO operation */
7909 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7910 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7911 emulator_invalidate_register_cache(ctxt);
7912 }
7913
7914 restart:
7915 if (emulation_type & EMULTYPE_PF) {
7916 /* Save the faulting GPA (cr2) in the address field */
7917 ctxt->exception.address = cr2_or_gpa;
7918
7919 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7920 if (vcpu->arch.mmu->direct_map) {
7921 ctxt->gpa_available = true;
7922 ctxt->gpa_val = cr2_or_gpa;
7923 }
7924 } else {
7925 /* Sanitize the address out of an abundance of paranoia. */
7926 ctxt->exception.address = 0;
7927 }
7928
7929 r = x86_emulate_insn(ctxt);
7930
7931 if (r == EMULATION_INTERCEPTED)
7932 return 1;
7933
7934 if (r == EMULATION_FAILED) {
7935 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7936 emulation_type))
7937 return 1;
7938
7939 return handle_emulation_failure(vcpu, emulation_type);
7940 }
7941
7942 if (ctxt->have_exception) {
7943 r = 1;
7944 if (inject_emulated_exception(vcpu))
7945 return r;
7946 } else if (vcpu->arch.pio.count) {
7947 if (!vcpu->arch.pio.in) {
7948 /* FIXME: return into emulator if single-stepping. */
7949 vcpu->arch.pio.count = 0;
7950 } else {
7951 writeback = false;
7952 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7953 }
7954 r = 0;
7955 } else if (vcpu->mmio_needed) {
7956 ++vcpu->stat.mmio_exits;
7957
7958 if (!vcpu->mmio_is_write)
7959 writeback = false;
7960 r = 0;
7961 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7962 } else if (vcpu->arch.complete_userspace_io) {
7963 writeback = false;
7964 r = 0;
7965 } else if (r == EMULATION_RESTART)
7966 goto restart;
7967 else
7968 r = 1;
7969
7970 if (writeback) {
7971 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7972 toggle_interruptibility(vcpu, ctxt->interruptibility);
7973 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7974 if (!ctxt->have_exception ||
7975 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7976 kvm_rip_write(vcpu, ctxt->eip);
7977 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7978 r = kvm_vcpu_do_singlestep(vcpu);
7979 if (kvm_x86_ops.update_emulated_instruction)
7980 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7981 __kvm_set_rflags(vcpu, ctxt->eflags);
7982 }
7983
7984 /*
7985 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7986 * do nothing, and it will be requested again as soon as
7987 * the shadow expires. But we still need to check here,
7988 * because POPF has no interrupt shadow.
7989 */
7990 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7991 kvm_make_request(KVM_REQ_EVENT, vcpu);
7992 } else
7993 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7994
7995 return r;
7996 }
7997
7998 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7999 {
8000 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8001 }
8002 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8003
8004 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8005 void *insn, int insn_len)
8006 {
8007 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8008 }
8009 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8010
8011 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8012 {
8013 vcpu->arch.pio.count = 0;
8014 return 1;
8015 }
8016
8017 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8018 {
8019 vcpu->arch.pio.count = 0;
8020
8021 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8022 return 1;
8023
8024 return kvm_skip_emulated_instruction(vcpu);
8025 }
8026
8027 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8028 unsigned short port)
8029 {
8030 unsigned long val = kvm_rax_read(vcpu);
8031 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8032
8033 if (ret)
8034 return ret;
8035
8036 /*
8037 * Workaround userspace that relies on old KVM behavior of %rip being
8038 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8039 */
8040 if (port == 0x7e &&
8041 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8042 vcpu->arch.complete_userspace_io =
8043 complete_fast_pio_out_port_0x7e;
8044 kvm_skip_emulated_instruction(vcpu);
8045 } else {
8046 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8047 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8048 }
8049 return 0;
8050 }
8051
8052 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8053 {
8054 unsigned long val;
8055
8056 /* We should only ever be called with arch.pio.count equal to 1 */
8057 BUG_ON(vcpu->arch.pio.count != 1);
8058
8059 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8060 vcpu->arch.pio.count = 0;
8061 return 1;
8062 }
8063
8064 /* For size less than 4 we merge, else we zero extend */
8065 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8066
8067 /*
8068 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8069 * the copy and tracing
8070 */
8071 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8072 kvm_rax_write(vcpu, val);
8073
8074 return kvm_skip_emulated_instruction(vcpu);
8075 }
8076
8077 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8078 unsigned short port)
8079 {
8080 unsigned long val;
8081 int ret;
8082
8083 /* For size less than 4 we merge, else we zero extend */
8084 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8085
8086 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8087 if (ret) {
8088 kvm_rax_write(vcpu, val);
8089 return ret;
8090 }
8091
8092 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8093 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8094
8095 return 0;
8096 }
8097
8098 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8099 {
8100 int ret;
8101
8102 if (in)
8103 ret = kvm_fast_pio_in(vcpu, size, port);
8104 else
8105 ret = kvm_fast_pio_out(vcpu, size, port);
8106 return ret && kvm_skip_emulated_instruction(vcpu);
8107 }
8108 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8109
8110 static int kvmclock_cpu_down_prep(unsigned int cpu)
8111 {
8112 __this_cpu_write(cpu_tsc_khz, 0);
8113 return 0;
8114 }
8115
8116 static void tsc_khz_changed(void *data)
8117 {
8118 struct cpufreq_freqs *freq = data;
8119 unsigned long khz = 0;
8120
8121 if (data)
8122 khz = freq->new;
8123 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8124 khz = cpufreq_quick_get(raw_smp_processor_id());
8125 if (!khz)
8126 khz = tsc_khz;
8127 __this_cpu_write(cpu_tsc_khz, khz);
8128 }
8129
8130 #ifdef CONFIG_X86_64
8131 static void kvm_hyperv_tsc_notifier(void)
8132 {
8133 struct kvm *kvm;
8134 struct kvm_vcpu *vcpu;
8135 int cpu;
8136 unsigned long flags;
8137
8138 mutex_lock(&kvm_lock);
8139 list_for_each_entry(kvm, &vm_list, vm_list)
8140 kvm_make_mclock_inprogress_request(kvm);
8141
8142 hyperv_stop_tsc_emulation();
8143
8144 /* TSC frequency always matches when on Hyper-V */
8145 for_each_present_cpu(cpu)
8146 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8147 kvm_max_guest_tsc_khz = tsc_khz;
8148
8149 list_for_each_entry(kvm, &vm_list, vm_list) {
8150 struct kvm_arch *ka = &kvm->arch;
8151
8152 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8153 pvclock_update_vm_gtod_copy(kvm);
8154 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8155
8156 kvm_for_each_vcpu(cpu, vcpu, kvm)
8157 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8158
8159 kvm_for_each_vcpu(cpu, vcpu, kvm)
8160 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8161 }
8162 mutex_unlock(&kvm_lock);
8163 }
8164 #endif
8165
8166 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8167 {
8168 struct kvm *kvm;
8169 struct kvm_vcpu *vcpu;
8170 int i, send_ipi = 0;
8171
8172 /*
8173 * We allow guests to temporarily run on slowing clocks,
8174 * provided we notify them after, or to run on accelerating
8175 * clocks, provided we notify them before. Thus time never
8176 * goes backwards.
8177 *
8178 * However, we have a problem. We can't atomically update
8179 * the frequency of a given CPU from this function; it is
8180 * merely a notifier, which can be called from any CPU.
8181 * Changing the TSC frequency at arbitrary points in time
8182 * requires a recomputation of local variables related to
8183 * the TSC for each VCPU. We must flag these local variables
8184 * to be updated and be sure the update takes place with the
8185 * new frequency before any guests proceed.
8186 *
8187 * Unfortunately, the combination of hotplug CPU and frequency
8188 * change creates an intractable locking scenario; the order
8189 * of when these callouts happen is undefined with respect to
8190 * CPU hotplug, and they can race with each other. As such,
8191 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8192 * undefined; you can actually have a CPU frequency change take
8193 * place in between the computation of X and the setting of the
8194 * variable. To protect against this problem, all updates of
8195 * the per_cpu tsc_khz variable are done in an interrupt
8196 * protected IPI, and all callers wishing to update the value
8197 * must wait for a synchronous IPI to complete (which is trivial
8198 * if the caller is on the CPU already). This establishes the
8199 * necessary total order on variable updates.
8200 *
8201 * Note that because a guest time update may take place
8202 * anytime after the setting of the VCPU's request bit, the
8203 * correct TSC value must be set before the request. However,
8204 * to ensure the update actually makes it to any guest which
8205 * starts running in hardware virtualization between the set
8206 * and the acquisition of the spinlock, we must also ping the
8207 * CPU after setting the request bit.
8208 *
8209 */
8210
8211 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8212
8213 mutex_lock(&kvm_lock);
8214 list_for_each_entry(kvm, &vm_list, vm_list) {
8215 kvm_for_each_vcpu(i, vcpu, kvm) {
8216 if (vcpu->cpu != cpu)
8217 continue;
8218 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8219 if (vcpu->cpu != raw_smp_processor_id())
8220 send_ipi = 1;
8221 }
8222 }
8223 mutex_unlock(&kvm_lock);
8224
8225 if (freq->old < freq->new && send_ipi) {
8226 /*
8227 * We upscale the frequency. Must make the guest
8228 * doesn't see old kvmclock values while running with
8229 * the new frequency, otherwise we risk the guest sees
8230 * time go backwards.
8231 *
8232 * In case we update the frequency for another cpu
8233 * (which might be in guest context) send an interrupt
8234 * to kick the cpu out of guest context. Next time
8235 * guest context is entered kvmclock will be updated,
8236 * so the guest will not see stale values.
8237 */
8238 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8239 }
8240 }
8241
8242 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8243 void *data)
8244 {
8245 struct cpufreq_freqs *freq = data;
8246 int cpu;
8247
8248 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8249 return 0;
8250 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8251 return 0;
8252
8253 for_each_cpu(cpu, freq->policy->cpus)
8254 __kvmclock_cpufreq_notifier(freq, cpu);
8255
8256 return 0;
8257 }
8258
8259 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8260 .notifier_call = kvmclock_cpufreq_notifier
8261 };
8262
8263 static int kvmclock_cpu_online(unsigned int cpu)
8264 {
8265 tsc_khz_changed(NULL);
8266 return 0;
8267 }
8268
8269 static void kvm_timer_init(void)
8270 {
8271 max_tsc_khz = tsc_khz;
8272
8273 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8274 #ifdef CONFIG_CPU_FREQ
8275 struct cpufreq_policy *policy;
8276 int cpu;
8277
8278 cpu = get_cpu();
8279 policy = cpufreq_cpu_get(cpu);
8280 if (policy) {
8281 if (policy->cpuinfo.max_freq)
8282 max_tsc_khz = policy->cpuinfo.max_freq;
8283 cpufreq_cpu_put(policy);
8284 }
8285 put_cpu();
8286 #endif
8287 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8288 CPUFREQ_TRANSITION_NOTIFIER);
8289 }
8290
8291 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8292 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8293 }
8294
8295 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8296 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8297
8298 int kvm_is_in_guest(void)
8299 {
8300 return __this_cpu_read(current_vcpu) != NULL;
8301 }
8302
8303 static int kvm_is_user_mode(void)
8304 {
8305 int user_mode = 3;
8306
8307 if (__this_cpu_read(current_vcpu))
8308 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8309
8310 return user_mode != 0;
8311 }
8312
8313 static unsigned long kvm_get_guest_ip(void)
8314 {
8315 unsigned long ip = 0;
8316
8317 if (__this_cpu_read(current_vcpu))
8318 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8319
8320 return ip;
8321 }
8322
8323 static void kvm_handle_intel_pt_intr(void)
8324 {
8325 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8326
8327 kvm_make_request(KVM_REQ_PMI, vcpu);
8328 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8329 (unsigned long *)&vcpu->arch.pmu.global_status);
8330 }
8331
8332 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8333 .is_in_guest = kvm_is_in_guest,
8334 .is_user_mode = kvm_is_user_mode,
8335 .get_guest_ip = kvm_get_guest_ip,
8336 .handle_intel_pt_intr = NULL,
8337 };
8338
8339 #ifdef CONFIG_X86_64
8340 static void pvclock_gtod_update_fn(struct work_struct *work)
8341 {
8342 struct kvm *kvm;
8343
8344 struct kvm_vcpu *vcpu;
8345 int i;
8346
8347 mutex_lock(&kvm_lock);
8348 list_for_each_entry(kvm, &vm_list, vm_list)
8349 kvm_for_each_vcpu(i, vcpu, kvm)
8350 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8351 atomic_set(&kvm_guest_has_master_clock, 0);
8352 mutex_unlock(&kvm_lock);
8353 }
8354
8355 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8356
8357 /*
8358 * Indirection to move queue_work() out of the tk_core.seq write held
8359 * region to prevent possible deadlocks against time accessors which
8360 * are invoked with work related locks held.
8361 */
8362 static void pvclock_irq_work_fn(struct irq_work *w)
8363 {
8364 queue_work(system_long_wq, &pvclock_gtod_work);
8365 }
8366
8367 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8368
8369 /*
8370 * Notification about pvclock gtod data update.
8371 */
8372 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8373 void *priv)
8374 {
8375 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8376 struct timekeeper *tk = priv;
8377
8378 update_pvclock_gtod(tk);
8379
8380 /*
8381 * Disable master clock if host does not trust, or does not use,
8382 * TSC based clocksource. Delegate queue_work() to irq_work as
8383 * this is invoked with tk_core.seq write held.
8384 */
8385 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8386 atomic_read(&kvm_guest_has_master_clock) != 0)
8387 irq_work_queue(&pvclock_irq_work);
8388 return 0;
8389 }
8390
8391 static struct notifier_block pvclock_gtod_notifier = {
8392 .notifier_call = pvclock_gtod_notify,
8393 };
8394 #endif
8395
8396 int kvm_arch_init(void *opaque)
8397 {
8398 struct kvm_x86_init_ops *ops = opaque;
8399 int r;
8400
8401 if (kvm_x86_ops.hardware_enable) {
8402 printk(KERN_ERR "kvm: already loaded the other module\n");
8403 r = -EEXIST;
8404 goto out;
8405 }
8406
8407 if (!ops->cpu_has_kvm_support()) {
8408 pr_err_ratelimited("kvm: no hardware support\n");
8409 r = -EOPNOTSUPP;
8410 goto out;
8411 }
8412 if (ops->disabled_by_bios()) {
8413 pr_warn_ratelimited("kvm: disabled by bios\n");
8414 r = -EOPNOTSUPP;
8415 goto out;
8416 }
8417
8418 /*
8419 * KVM explicitly assumes that the guest has an FPU and
8420 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8421 * vCPU's FPU state as a fxregs_state struct.
8422 */
8423 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8424 printk(KERN_ERR "kvm: inadequate fpu\n");
8425 r = -EOPNOTSUPP;
8426 goto out;
8427 }
8428
8429 r = -ENOMEM;
8430
8431 x86_emulator_cache = kvm_alloc_emulator_cache();
8432 if (!x86_emulator_cache) {
8433 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8434 goto out;
8435 }
8436
8437 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8438 if (!user_return_msrs) {
8439 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8440 goto out_free_x86_emulator_cache;
8441 }
8442 kvm_nr_uret_msrs = 0;
8443
8444 r = kvm_mmu_vendor_module_init();
8445 if (r)
8446 goto out_free_percpu;
8447
8448 kvm_timer_init();
8449
8450 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8451 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8452 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8453 }
8454
8455 if (pi_inject_timer == -1)
8456 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8457 #ifdef CONFIG_X86_64
8458 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8459
8460 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8461 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8462 #endif
8463
8464 return 0;
8465
8466 out_free_percpu:
8467 free_percpu(user_return_msrs);
8468 out_free_x86_emulator_cache:
8469 kmem_cache_destroy(x86_emulator_cache);
8470 out:
8471 return r;
8472 }
8473
8474 void kvm_arch_exit(void)
8475 {
8476 #ifdef CONFIG_X86_64
8477 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8478 clear_hv_tscchange_cb();
8479 #endif
8480 kvm_lapic_exit();
8481
8482 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8483 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8484 CPUFREQ_TRANSITION_NOTIFIER);
8485 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8486 #ifdef CONFIG_X86_64
8487 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8488 irq_work_sync(&pvclock_irq_work);
8489 cancel_work_sync(&pvclock_gtod_work);
8490 #endif
8491 kvm_x86_ops.hardware_enable = NULL;
8492 kvm_mmu_vendor_module_exit();
8493 free_percpu(user_return_msrs);
8494 kmem_cache_destroy(x86_emulator_cache);
8495 #ifdef CONFIG_KVM_XEN
8496 static_key_deferred_flush(&kvm_xen_enabled);
8497 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8498 #endif
8499 }
8500
8501 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8502 {
8503 ++vcpu->stat.halt_exits;
8504 if (lapic_in_kernel(vcpu)) {
8505 vcpu->arch.mp_state = state;
8506 return 1;
8507 } else {
8508 vcpu->run->exit_reason = reason;
8509 return 0;
8510 }
8511 }
8512
8513 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8514 {
8515 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8516 }
8517 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8518
8519 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8520 {
8521 int ret = kvm_skip_emulated_instruction(vcpu);
8522 /*
8523 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8524 * KVM_EXIT_DEBUG here.
8525 */
8526 return kvm_vcpu_halt(vcpu) && ret;
8527 }
8528 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8529
8530 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8531 {
8532 int ret = kvm_skip_emulated_instruction(vcpu);
8533
8534 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8535 }
8536 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8537
8538 #ifdef CONFIG_X86_64
8539 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8540 unsigned long clock_type)
8541 {
8542 struct kvm_clock_pairing clock_pairing;
8543 struct timespec64 ts;
8544 u64 cycle;
8545 int ret;
8546
8547 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8548 return -KVM_EOPNOTSUPP;
8549
8550 /*
8551 * When tsc is in permanent catchup mode guests won't be able to use
8552 * pvclock_read_retry loop to get consistent view of pvclock
8553 */
8554 if (vcpu->arch.tsc_always_catchup)
8555 return -KVM_EOPNOTSUPP;
8556
8557 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8558 return -KVM_EOPNOTSUPP;
8559
8560 clock_pairing.sec = ts.tv_sec;
8561 clock_pairing.nsec = ts.tv_nsec;
8562 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8563 clock_pairing.flags = 0;
8564 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8565
8566 ret = 0;
8567 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8568 sizeof(struct kvm_clock_pairing)))
8569 ret = -KVM_EFAULT;
8570
8571 return ret;
8572 }
8573 #endif
8574
8575 /*
8576 * kvm_pv_kick_cpu_op: Kick a vcpu.
8577 *
8578 * @apicid - apicid of vcpu to be kicked.
8579 */
8580 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8581 {
8582 struct kvm_lapic_irq lapic_irq;
8583
8584 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8585 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8586 lapic_irq.level = 0;
8587 lapic_irq.dest_id = apicid;
8588 lapic_irq.msi_redir_hint = false;
8589
8590 lapic_irq.delivery_mode = APIC_DM_REMRD;
8591 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8592 }
8593
8594 bool kvm_apicv_activated(struct kvm *kvm)
8595 {
8596 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8597 }
8598 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8599
8600 static void kvm_apicv_init(struct kvm *kvm)
8601 {
8602 mutex_init(&kvm->arch.apicv_update_lock);
8603
8604 if (enable_apicv)
8605 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8606 &kvm->arch.apicv_inhibit_reasons);
8607 else
8608 set_bit(APICV_INHIBIT_REASON_DISABLE,
8609 &kvm->arch.apicv_inhibit_reasons);
8610 }
8611
8612 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8613 {
8614 struct kvm_vcpu *target = NULL;
8615 struct kvm_apic_map *map;
8616
8617 vcpu->stat.directed_yield_attempted++;
8618
8619 if (single_task_running())
8620 goto no_yield;
8621
8622 rcu_read_lock();
8623 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8624
8625 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8626 target = map->phys_map[dest_id]->vcpu;
8627
8628 rcu_read_unlock();
8629
8630 if (!target || !READ_ONCE(target->ready))
8631 goto no_yield;
8632
8633 /* Ignore requests to yield to self */
8634 if (vcpu == target)
8635 goto no_yield;
8636
8637 if (kvm_vcpu_yield_to(target) <= 0)
8638 goto no_yield;
8639
8640 vcpu->stat.directed_yield_successful++;
8641
8642 no_yield:
8643 return;
8644 }
8645
8646 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8647 {
8648 u64 ret = vcpu->run->hypercall.ret;
8649
8650 if (!is_64_bit_mode(vcpu))
8651 ret = (u32)ret;
8652 kvm_rax_write(vcpu, ret);
8653 ++vcpu->stat.hypercalls;
8654 return kvm_skip_emulated_instruction(vcpu);
8655 }
8656
8657 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8658 {
8659 unsigned long nr, a0, a1, a2, a3, ret;
8660 int op_64_bit;
8661
8662 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8663 return kvm_xen_hypercall(vcpu);
8664
8665 if (kvm_hv_hypercall_enabled(vcpu))
8666 return kvm_hv_hypercall(vcpu);
8667
8668 nr = kvm_rax_read(vcpu);
8669 a0 = kvm_rbx_read(vcpu);
8670 a1 = kvm_rcx_read(vcpu);
8671 a2 = kvm_rdx_read(vcpu);
8672 a3 = kvm_rsi_read(vcpu);
8673
8674 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8675
8676 op_64_bit = is_64_bit_hypercall(vcpu);
8677 if (!op_64_bit) {
8678 nr &= 0xFFFFFFFF;
8679 a0 &= 0xFFFFFFFF;
8680 a1 &= 0xFFFFFFFF;
8681 a2 &= 0xFFFFFFFF;
8682 a3 &= 0xFFFFFFFF;
8683 }
8684
8685 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8686 ret = -KVM_EPERM;
8687 goto out;
8688 }
8689
8690 ret = -KVM_ENOSYS;
8691
8692 switch (nr) {
8693 case KVM_HC_VAPIC_POLL_IRQ:
8694 ret = 0;
8695 break;
8696 case KVM_HC_KICK_CPU:
8697 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8698 break;
8699
8700 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8701 kvm_sched_yield(vcpu, a1);
8702 ret = 0;
8703 break;
8704 #ifdef CONFIG_X86_64
8705 case KVM_HC_CLOCK_PAIRING:
8706 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8707 break;
8708 #endif
8709 case KVM_HC_SEND_IPI:
8710 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8711 break;
8712
8713 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8714 break;
8715 case KVM_HC_SCHED_YIELD:
8716 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8717 break;
8718
8719 kvm_sched_yield(vcpu, a0);
8720 ret = 0;
8721 break;
8722 case KVM_HC_MAP_GPA_RANGE: {
8723 u64 gpa = a0, npages = a1, attrs = a2;
8724
8725 ret = -KVM_ENOSYS;
8726 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8727 break;
8728
8729 if (!PAGE_ALIGNED(gpa) || !npages ||
8730 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8731 ret = -KVM_EINVAL;
8732 break;
8733 }
8734
8735 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8736 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8737 vcpu->run->hypercall.args[0] = gpa;
8738 vcpu->run->hypercall.args[1] = npages;
8739 vcpu->run->hypercall.args[2] = attrs;
8740 vcpu->run->hypercall.longmode = op_64_bit;
8741 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8742 return 0;
8743 }
8744 default:
8745 ret = -KVM_ENOSYS;
8746 break;
8747 }
8748 out:
8749 if (!op_64_bit)
8750 ret = (u32)ret;
8751 kvm_rax_write(vcpu, ret);
8752
8753 ++vcpu->stat.hypercalls;
8754 return kvm_skip_emulated_instruction(vcpu);
8755 }
8756 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8757
8758 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8759 {
8760 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8761 char instruction[3];
8762 unsigned long rip = kvm_rip_read(vcpu);
8763
8764 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8765
8766 return emulator_write_emulated(ctxt, rip, instruction, 3,
8767 &ctxt->exception);
8768 }
8769
8770 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8771 {
8772 return vcpu->run->request_interrupt_window &&
8773 likely(!pic_in_kernel(vcpu->kvm));
8774 }
8775
8776 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8777 {
8778 struct kvm_run *kvm_run = vcpu->run;
8779
8780 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
8781 kvm_run->cr8 = kvm_get_cr8(vcpu);
8782 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8783
8784 /*
8785 * The call to kvm_ready_for_interrupt_injection() may end up in
8786 * kvm_xen_has_interrupt() which may require the srcu lock to be
8787 * held, to protect against changes in the vcpu_info address.
8788 */
8789 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8790 kvm_run->ready_for_interrupt_injection =
8791 pic_in_kernel(vcpu->kvm) ||
8792 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8793 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8794
8795 if (is_smm(vcpu))
8796 kvm_run->flags |= KVM_RUN_X86_SMM;
8797 }
8798
8799 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8800 {
8801 int max_irr, tpr;
8802
8803 if (!kvm_x86_ops.update_cr8_intercept)
8804 return;
8805
8806 if (!lapic_in_kernel(vcpu))
8807 return;
8808
8809 if (vcpu->arch.apicv_active)
8810 return;
8811
8812 if (!vcpu->arch.apic->vapic_addr)
8813 max_irr = kvm_lapic_find_highest_irr(vcpu);
8814 else
8815 max_irr = -1;
8816
8817 if (max_irr != -1)
8818 max_irr >>= 4;
8819
8820 tpr = kvm_lapic_get_cr8(vcpu);
8821
8822 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8823 }
8824
8825
8826 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8827 {
8828 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8829 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8830 return 1;
8831 }
8832
8833 return kvm_x86_ops.nested_ops->check_events(vcpu);
8834 }
8835
8836 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8837 {
8838 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8839 vcpu->arch.exception.error_code = false;
8840 static_call(kvm_x86_queue_exception)(vcpu);
8841 }
8842
8843 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8844 {
8845 int r;
8846 bool can_inject = true;
8847
8848 /* try to reinject previous events if any */
8849
8850 if (vcpu->arch.exception.injected) {
8851 kvm_inject_exception(vcpu);
8852 can_inject = false;
8853 }
8854 /*
8855 * Do not inject an NMI or interrupt if there is a pending
8856 * exception. Exceptions and interrupts are recognized at
8857 * instruction boundaries, i.e. the start of an instruction.
8858 * Trap-like exceptions, e.g. #DB, have higher priority than
8859 * NMIs and interrupts, i.e. traps are recognized before an
8860 * NMI/interrupt that's pending on the same instruction.
8861 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8862 * priority, but are only generated (pended) during instruction
8863 * execution, i.e. a pending fault-like exception means the
8864 * fault occurred on the *previous* instruction and must be
8865 * serviced prior to recognizing any new events in order to
8866 * fully complete the previous instruction.
8867 */
8868 else if (!vcpu->arch.exception.pending) {
8869 if (vcpu->arch.nmi_injected) {
8870 static_call(kvm_x86_set_nmi)(vcpu);
8871 can_inject = false;
8872 } else if (vcpu->arch.interrupt.injected) {
8873 static_call(kvm_x86_set_irq)(vcpu);
8874 can_inject = false;
8875 }
8876 }
8877
8878 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8879 vcpu->arch.exception.pending);
8880
8881 /*
8882 * Call check_nested_events() even if we reinjected a previous event
8883 * in order for caller to determine if it should require immediate-exit
8884 * from L2 to L1 due to pending L1 events which require exit
8885 * from L2 to L1.
8886 */
8887 if (is_guest_mode(vcpu)) {
8888 r = kvm_check_nested_events(vcpu);
8889 if (r < 0)
8890 goto out;
8891 }
8892
8893 /* try to inject new event if pending */
8894 if (vcpu->arch.exception.pending) {
8895 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8896 vcpu->arch.exception.has_error_code,
8897 vcpu->arch.exception.error_code);
8898
8899 vcpu->arch.exception.pending = false;
8900 vcpu->arch.exception.injected = true;
8901
8902 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8903 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8904 X86_EFLAGS_RF);
8905
8906 if (vcpu->arch.exception.nr == DB_VECTOR) {
8907 kvm_deliver_exception_payload(vcpu);
8908 if (vcpu->arch.dr7 & DR7_GD) {
8909 vcpu->arch.dr7 &= ~DR7_GD;
8910 kvm_update_dr7(vcpu);
8911 }
8912 }
8913
8914 kvm_inject_exception(vcpu);
8915 can_inject = false;
8916 }
8917
8918 /* Don't inject interrupts if the user asked to avoid doing so */
8919 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8920 return 0;
8921
8922 /*
8923 * Finally, inject interrupt events. If an event cannot be injected
8924 * due to architectural conditions (e.g. IF=0) a window-open exit
8925 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8926 * and can architecturally be injected, but we cannot do it right now:
8927 * an interrupt could have arrived just now and we have to inject it
8928 * as a vmexit, or there could already an event in the queue, which is
8929 * indicated by can_inject. In that case we request an immediate exit
8930 * in order to make progress and get back here for another iteration.
8931 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8932 */
8933 if (vcpu->arch.smi_pending) {
8934 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8935 if (r < 0)
8936 goto out;
8937 if (r) {
8938 vcpu->arch.smi_pending = false;
8939 ++vcpu->arch.smi_count;
8940 enter_smm(vcpu);
8941 can_inject = false;
8942 } else
8943 static_call(kvm_x86_enable_smi_window)(vcpu);
8944 }
8945
8946 if (vcpu->arch.nmi_pending) {
8947 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8948 if (r < 0)
8949 goto out;
8950 if (r) {
8951 --vcpu->arch.nmi_pending;
8952 vcpu->arch.nmi_injected = true;
8953 static_call(kvm_x86_set_nmi)(vcpu);
8954 can_inject = false;
8955 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8956 }
8957 if (vcpu->arch.nmi_pending)
8958 static_call(kvm_x86_enable_nmi_window)(vcpu);
8959 }
8960
8961 if (kvm_cpu_has_injectable_intr(vcpu)) {
8962 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8963 if (r < 0)
8964 goto out;
8965 if (r) {
8966 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8967 static_call(kvm_x86_set_irq)(vcpu);
8968 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8969 }
8970 if (kvm_cpu_has_injectable_intr(vcpu))
8971 static_call(kvm_x86_enable_irq_window)(vcpu);
8972 }
8973
8974 if (is_guest_mode(vcpu) &&
8975 kvm_x86_ops.nested_ops->hv_timer_pending &&
8976 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8977 *req_immediate_exit = true;
8978
8979 WARN_ON(vcpu->arch.exception.pending);
8980 return 0;
8981
8982 out:
8983 if (r == -EBUSY) {
8984 *req_immediate_exit = true;
8985 r = 0;
8986 }
8987 return r;
8988 }
8989
8990 static void process_nmi(struct kvm_vcpu *vcpu)
8991 {
8992 unsigned limit = 2;
8993
8994 /*
8995 * x86 is limited to one NMI running, and one NMI pending after it.
8996 * If an NMI is already in progress, limit further NMIs to just one.
8997 * Otherwise, allow two (and we'll inject the first one immediately).
8998 */
8999 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9000 limit = 1;
9001
9002 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9003 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9004 kvm_make_request(KVM_REQ_EVENT, vcpu);
9005 }
9006
9007 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9008 {
9009 u32 flags = 0;
9010 flags |= seg->g << 23;
9011 flags |= seg->db << 22;
9012 flags |= seg->l << 21;
9013 flags |= seg->avl << 20;
9014 flags |= seg->present << 15;
9015 flags |= seg->dpl << 13;
9016 flags |= seg->s << 12;
9017 flags |= seg->type << 8;
9018 return flags;
9019 }
9020
9021 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9022 {
9023 struct kvm_segment seg;
9024 int offset;
9025
9026 kvm_get_segment(vcpu, &seg, n);
9027 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9028
9029 if (n < 3)
9030 offset = 0x7f84 + n * 12;
9031 else
9032 offset = 0x7f2c + (n - 3) * 12;
9033
9034 put_smstate(u32, buf, offset + 8, seg.base);
9035 put_smstate(u32, buf, offset + 4, seg.limit);
9036 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9037 }
9038
9039 #ifdef CONFIG_X86_64
9040 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9041 {
9042 struct kvm_segment seg;
9043 int offset;
9044 u16 flags;
9045
9046 kvm_get_segment(vcpu, &seg, n);
9047 offset = 0x7e00 + n * 16;
9048
9049 flags = enter_smm_get_segment_flags(&seg) >> 8;
9050 put_smstate(u16, buf, offset, seg.selector);
9051 put_smstate(u16, buf, offset + 2, flags);
9052 put_smstate(u32, buf, offset + 4, seg.limit);
9053 put_smstate(u64, buf, offset + 8, seg.base);
9054 }
9055 #endif
9056
9057 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9058 {
9059 struct desc_ptr dt;
9060 struct kvm_segment seg;
9061 unsigned long val;
9062 int i;
9063
9064 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9065 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9066 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9067 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9068
9069 for (i = 0; i < 8; i++)
9070 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9071
9072 kvm_get_dr(vcpu, 6, &val);
9073 put_smstate(u32, buf, 0x7fcc, (u32)val);
9074 kvm_get_dr(vcpu, 7, &val);
9075 put_smstate(u32, buf, 0x7fc8, (u32)val);
9076
9077 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9078 put_smstate(u32, buf, 0x7fc4, seg.selector);
9079 put_smstate(u32, buf, 0x7f64, seg.base);
9080 put_smstate(u32, buf, 0x7f60, seg.limit);
9081 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9082
9083 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9084 put_smstate(u32, buf, 0x7fc0, seg.selector);
9085 put_smstate(u32, buf, 0x7f80, seg.base);
9086 put_smstate(u32, buf, 0x7f7c, seg.limit);
9087 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9088
9089 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9090 put_smstate(u32, buf, 0x7f74, dt.address);
9091 put_smstate(u32, buf, 0x7f70, dt.size);
9092
9093 static_call(kvm_x86_get_idt)(vcpu, &dt);
9094 put_smstate(u32, buf, 0x7f58, dt.address);
9095 put_smstate(u32, buf, 0x7f54, dt.size);
9096
9097 for (i = 0; i < 6; i++)
9098 enter_smm_save_seg_32(vcpu, buf, i);
9099
9100 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9101
9102 /* revision id */
9103 put_smstate(u32, buf, 0x7efc, 0x00020000);
9104 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9105 }
9106
9107 #ifdef CONFIG_X86_64
9108 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9109 {
9110 struct desc_ptr dt;
9111 struct kvm_segment seg;
9112 unsigned long val;
9113 int i;
9114
9115 for (i = 0; i < 16; i++)
9116 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9117
9118 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9119 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9120
9121 kvm_get_dr(vcpu, 6, &val);
9122 put_smstate(u64, buf, 0x7f68, val);
9123 kvm_get_dr(vcpu, 7, &val);
9124 put_smstate(u64, buf, 0x7f60, val);
9125
9126 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9127 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9128 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9129
9130 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9131
9132 /* revision id */
9133 put_smstate(u32, buf, 0x7efc, 0x00020064);
9134
9135 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9136
9137 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9138 put_smstate(u16, buf, 0x7e90, seg.selector);
9139 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9140 put_smstate(u32, buf, 0x7e94, seg.limit);
9141 put_smstate(u64, buf, 0x7e98, seg.base);
9142
9143 static_call(kvm_x86_get_idt)(vcpu, &dt);
9144 put_smstate(u32, buf, 0x7e84, dt.size);
9145 put_smstate(u64, buf, 0x7e88, dt.address);
9146
9147 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9148 put_smstate(u16, buf, 0x7e70, seg.selector);
9149 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9150 put_smstate(u32, buf, 0x7e74, seg.limit);
9151 put_smstate(u64, buf, 0x7e78, seg.base);
9152
9153 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9154 put_smstate(u32, buf, 0x7e64, dt.size);
9155 put_smstate(u64, buf, 0x7e68, dt.address);
9156
9157 for (i = 0; i < 6; i++)
9158 enter_smm_save_seg_64(vcpu, buf, i);
9159 }
9160 #endif
9161
9162 static void enter_smm(struct kvm_vcpu *vcpu)
9163 {
9164 struct kvm_segment cs, ds;
9165 struct desc_ptr dt;
9166 unsigned long cr0;
9167 char buf[512];
9168
9169 memset(buf, 0, 512);
9170 #ifdef CONFIG_X86_64
9171 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9172 enter_smm_save_state_64(vcpu, buf);
9173 else
9174 #endif
9175 enter_smm_save_state_32(vcpu, buf);
9176
9177 /*
9178 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9179 * state (e.g. leave guest mode) after we've saved the state into the
9180 * SMM state-save area.
9181 */
9182 static_call(kvm_x86_enter_smm)(vcpu, buf);
9183
9184 kvm_smm_changed(vcpu, true);
9185 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9186
9187 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9188 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9189 else
9190 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9191
9192 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9193 kvm_rip_write(vcpu, 0x8000);
9194
9195 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9196 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9197 vcpu->arch.cr0 = cr0;
9198
9199 static_call(kvm_x86_set_cr4)(vcpu, 0);
9200
9201 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9202 dt.address = dt.size = 0;
9203 static_call(kvm_x86_set_idt)(vcpu, &dt);
9204
9205 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9206
9207 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9208 cs.base = vcpu->arch.smbase;
9209
9210 ds.selector = 0;
9211 ds.base = 0;
9212
9213 cs.limit = ds.limit = 0xffffffff;
9214 cs.type = ds.type = 0x3;
9215 cs.dpl = ds.dpl = 0;
9216 cs.db = ds.db = 0;
9217 cs.s = ds.s = 1;
9218 cs.l = ds.l = 0;
9219 cs.g = ds.g = 1;
9220 cs.avl = ds.avl = 0;
9221 cs.present = ds.present = 1;
9222 cs.unusable = ds.unusable = 0;
9223 cs.padding = ds.padding = 0;
9224
9225 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9226 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9227 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9228 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9229 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9230 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9231
9232 #ifdef CONFIG_X86_64
9233 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9234 static_call(kvm_x86_set_efer)(vcpu, 0);
9235 #endif
9236
9237 kvm_update_cpuid_runtime(vcpu);
9238 kvm_mmu_reset_context(vcpu);
9239 }
9240
9241 static void process_smi(struct kvm_vcpu *vcpu)
9242 {
9243 vcpu->arch.smi_pending = true;
9244 kvm_make_request(KVM_REQ_EVENT, vcpu);
9245 }
9246
9247 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9248 unsigned long *vcpu_bitmap)
9249 {
9250 cpumask_var_t cpus;
9251
9252 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9253
9254 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9255 NULL, vcpu_bitmap, cpus);
9256
9257 free_cpumask_var(cpus);
9258 }
9259
9260 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9261 {
9262 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9263 }
9264
9265 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9266 {
9267 bool activate;
9268
9269 if (!lapic_in_kernel(vcpu))
9270 return;
9271
9272 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9273
9274 activate = kvm_apicv_activated(vcpu->kvm);
9275 if (vcpu->arch.apicv_active == activate)
9276 goto out;
9277
9278 vcpu->arch.apicv_active = activate;
9279 kvm_apic_update_apicv(vcpu);
9280 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9281
9282 /*
9283 * When APICv gets disabled, we may still have injected interrupts
9284 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9285 * still active when the interrupt got accepted. Make sure
9286 * inject_pending_event() is called to check for that.
9287 */
9288 if (!vcpu->arch.apicv_active)
9289 kvm_make_request(KVM_REQ_EVENT, vcpu);
9290
9291 out:
9292 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9293 }
9294 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9295
9296 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9297 {
9298 unsigned long old, new;
9299
9300 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9301 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9302 return;
9303
9304 old = new = kvm->arch.apicv_inhibit_reasons;
9305
9306 if (activate)
9307 __clear_bit(bit, &new);
9308 else
9309 __set_bit(bit, &new);
9310
9311 if (!!old != !!new) {
9312 trace_kvm_apicv_update_request(activate, bit);
9313 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9314 kvm->arch.apicv_inhibit_reasons = new;
9315 if (new) {
9316 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9317 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9318 }
9319 } else
9320 kvm->arch.apicv_inhibit_reasons = new;
9321 }
9322 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9323
9324 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9325 {
9326 mutex_lock(&kvm->arch.apicv_update_lock);
9327 __kvm_request_apicv_update(kvm, activate, bit);
9328 mutex_unlock(&kvm->arch.apicv_update_lock);
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9331
9332 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9333 {
9334 if (!kvm_apic_present(vcpu))
9335 return;
9336
9337 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9338
9339 if (irqchip_split(vcpu->kvm))
9340 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9341 else {
9342 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9343 if (ioapic_in_kernel(vcpu->kvm))
9344 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9345 }
9346
9347 if (is_guest_mode(vcpu))
9348 vcpu->arch.load_eoi_exitmap_pending = true;
9349 else
9350 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9351 }
9352
9353 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9354 {
9355 u64 eoi_exit_bitmap[4];
9356
9357 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9358 return;
9359
9360 if (to_hv_vcpu(vcpu)) {
9361 bitmap_or((ulong *)eoi_exit_bitmap,
9362 vcpu->arch.ioapic_handled_vectors,
9363 to_hv_synic(vcpu)->vec_bitmap, 256);
9364 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9365 return;
9366 }
9367
9368 static_call(kvm_x86_load_eoi_exitmap)(
9369 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9370 }
9371
9372 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9373 unsigned long start, unsigned long end)
9374 {
9375 unsigned long apic_address;
9376
9377 /*
9378 * The physical address of apic access page is stored in the VMCS.
9379 * Update it when it becomes invalid.
9380 */
9381 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9382 if (start <= apic_address && apic_address < end)
9383 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9384 }
9385
9386 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9387 {
9388 if (!lapic_in_kernel(vcpu))
9389 return;
9390
9391 if (!kvm_x86_ops.set_apic_access_page_addr)
9392 return;
9393
9394 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9395 }
9396
9397 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9398 {
9399 smp_send_reschedule(vcpu->cpu);
9400 }
9401 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9402
9403 /*
9404 * Returns 1 to let vcpu_run() continue the guest execution loop without
9405 * exiting to the userspace. Otherwise, the value will be returned to the
9406 * userspace.
9407 */
9408 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9409 {
9410 int r;
9411 bool req_int_win =
9412 dm_request_for_irq_injection(vcpu) &&
9413 kvm_cpu_accept_dm_intr(vcpu);
9414 fastpath_t exit_fastpath;
9415
9416 bool req_immediate_exit = false;
9417
9418 /* Forbid vmenter if vcpu dirty ring is soft-full */
9419 if (unlikely(vcpu->kvm->dirty_ring_size &&
9420 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9421 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9422 trace_kvm_dirty_ring_exit(vcpu);
9423 r = 0;
9424 goto out;
9425 }
9426
9427 if (kvm_request_pending(vcpu)) {
9428 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9429 r = -EIO;
9430 goto out;
9431 }
9432 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9433 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9434 r = 0;
9435 goto out;
9436 }
9437 }
9438 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9439 kvm_mmu_unload(vcpu);
9440 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9441 __kvm_migrate_timers(vcpu);
9442 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9443 kvm_gen_update_masterclock(vcpu->kvm);
9444 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9445 kvm_gen_kvmclock_update(vcpu);
9446 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9447 r = kvm_guest_time_update(vcpu);
9448 if (unlikely(r))
9449 goto out;
9450 }
9451 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9452 kvm_mmu_sync_roots(vcpu);
9453 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9454 kvm_mmu_load_pgd(vcpu);
9455 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9456 kvm_vcpu_flush_tlb_all(vcpu);
9457
9458 /* Flushing all ASIDs flushes the current ASID... */
9459 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9460 }
9461 kvm_service_local_tlb_flush_requests(vcpu);
9462
9463 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9464 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9465 r = 0;
9466 goto out;
9467 }
9468 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9469 if (is_guest_mode(vcpu)) {
9470 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9471 } else {
9472 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9473 vcpu->mmio_needed = 0;
9474 r = 0;
9475 goto out;
9476 }
9477 }
9478 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9479 /* Page is swapped out. Do synthetic halt */
9480 vcpu->arch.apf.halted = true;
9481 r = 1;
9482 goto out;
9483 }
9484 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9485 record_steal_time(vcpu);
9486 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9487 process_smi(vcpu);
9488 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9489 process_nmi(vcpu);
9490 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9491 kvm_pmu_handle_event(vcpu);
9492 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9493 kvm_pmu_deliver_pmi(vcpu);
9494 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9495 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9496 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9497 vcpu->arch.ioapic_handled_vectors)) {
9498 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9499 vcpu->run->eoi.vector =
9500 vcpu->arch.pending_ioapic_eoi;
9501 r = 0;
9502 goto out;
9503 }
9504 }
9505 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9506 vcpu_scan_ioapic(vcpu);
9507 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9508 vcpu_load_eoi_exitmap(vcpu);
9509 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9510 kvm_vcpu_reload_apic_access_page(vcpu);
9511 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9512 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9513 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9514 r = 0;
9515 goto out;
9516 }
9517 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9518 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9519 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9520 r = 0;
9521 goto out;
9522 }
9523 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9524 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9525
9526 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9527 vcpu->run->hyperv = hv_vcpu->exit;
9528 r = 0;
9529 goto out;
9530 }
9531
9532 /*
9533 * KVM_REQ_HV_STIMER has to be processed after
9534 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9535 * depend on the guest clock being up-to-date
9536 */
9537 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9538 kvm_hv_process_stimers(vcpu);
9539 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9540 kvm_vcpu_update_apicv(vcpu);
9541 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9542 kvm_check_async_pf_completion(vcpu);
9543 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9544 static_call(kvm_x86_msr_filter_changed)(vcpu);
9545
9546 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9547 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9548 }
9549
9550 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9551 kvm_xen_has_interrupt(vcpu)) {
9552 ++vcpu->stat.req_event;
9553 r = kvm_apic_accept_events(vcpu);
9554 if (r < 0) {
9555 r = 0;
9556 goto out;
9557 }
9558 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9559 r = 1;
9560 goto out;
9561 }
9562
9563 r = inject_pending_event(vcpu, &req_immediate_exit);
9564 if (r < 0) {
9565 r = 0;
9566 goto out;
9567 }
9568 if (req_int_win)
9569 static_call(kvm_x86_enable_irq_window)(vcpu);
9570
9571 if (kvm_lapic_enabled(vcpu)) {
9572 update_cr8_intercept(vcpu);
9573 kvm_lapic_sync_to_vapic(vcpu);
9574 }
9575 }
9576
9577 r = kvm_mmu_reload(vcpu);
9578 if (unlikely(r)) {
9579 goto cancel_injection;
9580 }
9581
9582 preempt_disable();
9583
9584 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9585
9586 /*
9587 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9588 * IPI are then delayed after guest entry, which ensures that they
9589 * result in virtual interrupt delivery.
9590 */
9591 local_irq_disable();
9592 vcpu->mode = IN_GUEST_MODE;
9593
9594 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9595
9596 /*
9597 * 1) We should set ->mode before checking ->requests. Please see
9598 * the comment in kvm_vcpu_exiting_guest_mode().
9599 *
9600 * 2) For APICv, we should set ->mode before checking PID.ON. This
9601 * pairs with the memory barrier implicit in pi_test_and_set_on
9602 * (see vmx_deliver_posted_interrupt).
9603 *
9604 * 3) This also orders the write to mode from any reads to the page
9605 * tables done while the VCPU is running. Please see the comment
9606 * in kvm_flush_remote_tlbs.
9607 */
9608 smp_mb__after_srcu_read_unlock();
9609
9610 /*
9611 * This handles the case where a posted interrupt was
9612 * notified with kvm_vcpu_kick. Assigned devices can
9613 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9614 * so do it even if APICv is disabled on this vCPU.
9615 */
9616 if (kvm_lapic_enabled(vcpu))
9617 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9618
9619 if (kvm_vcpu_exit_request(vcpu)) {
9620 vcpu->mode = OUTSIDE_GUEST_MODE;
9621 smp_wmb();
9622 local_irq_enable();
9623 preempt_enable();
9624 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9625 r = 1;
9626 goto cancel_injection;
9627 }
9628
9629 if (req_immediate_exit) {
9630 kvm_make_request(KVM_REQ_EVENT, vcpu);
9631 static_call(kvm_x86_request_immediate_exit)(vcpu);
9632 }
9633
9634 fpregs_assert_state_consistent();
9635 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9636 switch_fpu_return();
9637
9638 if (unlikely(vcpu->arch.switch_db_regs)) {
9639 set_debugreg(0, 7);
9640 set_debugreg(vcpu->arch.eff_db[0], 0);
9641 set_debugreg(vcpu->arch.eff_db[1], 1);
9642 set_debugreg(vcpu->arch.eff_db[2], 2);
9643 set_debugreg(vcpu->arch.eff_db[3], 3);
9644 } else if (unlikely(hw_breakpoint_active())) {
9645 set_debugreg(0, 7);
9646 }
9647
9648 for (;;) {
9649 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9650 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9651 break;
9652
9653 if (kvm_lapic_enabled(vcpu))
9654 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9655
9656 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9657 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9658 break;
9659 }
9660 }
9661
9662 /*
9663 * Do this here before restoring debug registers on the host. And
9664 * since we do this before handling the vmexit, a DR access vmexit
9665 * can (a) read the correct value of the debug registers, (b) set
9666 * KVM_DEBUGREG_WONT_EXIT again.
9667 */
9668 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9669 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9670 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9671 kvm_update_dr0123(vcpu);
9672 kvm_update_dr7(vcpu);
9673 }
9674
9675 /*
9676 * If the guest has used debug registers, at least dr7
9677 * will be disabled while returning to the host.
9678 * If we don't have active breakpoints in the host, we don't
9679 * care about the messed up debug address registers. But if
9680 * we have some of them active, restore the old state.
9681 */
9682 if (hw_breakpoint_active())
9683 hw_breakpoint_restore();
9684
9685 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9686 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9687
9688 vcpu->mode = OUTSIDE_GUEST_MODE;
9689 smp_wmb();
9690
9691 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9692
9693 /*
9694 * Consume any pending interrupts, including the possible source of
9695 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9696 * An instruction is required after local_irq_enable() to fully unblock
9697 * interrupts on processors that implement an interrupt shadow, the
9698 * stat.exits increment will do nicely.
9699 */
9700 kvm_before_interrupt(vcpu);
9701 local_irq_enable();
9702 ++vcpu->stat.exits;
9703 local_irq_disable();
9704 kvm_after_interrupt(vcpu);
9705
9706 /*
9707 * Wait until after servicing IRQs to account guest time so that any
9708 * ticks that occurred while running the guest are properly accounted
9709 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9710 * of accounting via context tracking, but the loss of accuracy is
9711 * acceptable for all known use cases.
9712 */
9713 vtime_account_guest_exit();
9714
9715 if (lapic_in_kernel(vcpu)) {
9716 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9717 if (delta != S64_MIN) {
9718 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9719 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9720 }
9721 }
9722
9723 local_irq_enable();
9724 preempt_enable();
9725
9726 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9727
9728 /*
9729 * Profile KVM exit RIPs:
9730 */
9731 if (unlikely(prof_on == KVM_PROFILING)) {
9732 unsigned long rip = kvm_rip_read(vcpu);
9733 profile_hit(KVM_PROFILING, (void *)rip);
9734 }
9735
9736 if (unlikely(vcpu->arch.tsc_always_catchup))
9737 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9738
9739 if (vcpu->arch.apic_attention)
9740 kvm_lapic_sync_from_vapic(vcpu);
9741
9742 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9743 return r;
9744
9745 cancel_injection:
9746 if (req_immediate_exit)
9747 kvm_make_request(KVM_REQ_EVENT, vcpu);
9748 static_call(kvm_x86_cancel_injection)(vcpu);
9749 if (unlikely(vcpu->arch.apic_attention))
9750 kvm_lapic_sync_from_vapic(vcpu);
9751 out:
9752 return r;
9753 }
9754
9755 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9756 {
9757 if (!kvm_arch_vcpu_runnable(vcpu) &&
9758 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9759 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9760 kvm_vcpu_block(vcpu);
9761 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9762
9763 if (kvm_x86_ops.post_block)
9764 static_call(kvm_x86_post_block)(vcpu);
9765
9766 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9767 return 1;
9768 }
9769
9770 if (kvm_apic_accept_events(vcpu) < 0)
9771 return 0;
9772 switch(vcpu->arch.mp_state) {
9773 case KVM_MP_STATE_HALTED:
9774 case KVM_MP_STATE_AP_RESET_HOLD:
9775 vcpu->arch.pv.pv_unhalted = false;
9776 vcpu->arch.mp_state =
9777 KVM_MP_STATE_RUNNABLE;
9778 fallthrough;
9779 case KVM_MP_STATE_RUNNABLE:
9780 vcpu->arch.apf.halted = false;
9781 break;
9782 case KVM_MP_STATE_INIT_RECEIVED:
9783 break;
9784 default:
9785 return -EINTR;
9786 }
9787 return 1;
9788 }
9789
9790 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9791 {
9792 if (is_guest_mode(vcpu))
9793 kvm_check_nested_events(vcpu);
9794
9795 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9796 !vcpu->arch.apf.halted);
9797 }
9798
9799 static int vcpu_run(struct kvm_vcpu *vcpu)
9800 {
9801 int r;
9802 struct kvm *kvm = vcpu->kvm;
9803
9804 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9805 vcpu->arch.l1tf_flush_l1d = true;
9806
9807 for (;;) {
9808 if (kvm_vcpu_running(vcpu)) {
9809 r = vcpu_enter_guest(vcpu);
9810 } else {
9811 r = vcpu_block(kvm, vcpu);
9812 }
9813
9814 if (r <= 0)
9815 break;
9816
9817 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9818 if (kvm_cpu_has_pending_timer(vcpu))
9819 kvm_inject_pending_timer_irqs(vcpu);
9820
9821 if (dm_request_for_irq_injection(vcpu) &&
9822 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9823 r = 0;
9824 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9825 ++vcpu->stat.request_irq_exits;
9826 break;
9827 }
9828
9829 if (__xfer_to_guest_mode_work_pending()) {
9830 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9831 r = xfer_to_guest_mode_handle_work(vcpu);
9832 if (r)
9833 return r;
9834 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9835 }
9836 }
9837
9838 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9839
9840 return r;
9841 }
9842
9843 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9844 {
9845 int r;
9846
9847 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9848 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9849 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9850 return r;
9851 }
9852
9853 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9854 {
9855 BUG_ON(!vcpu->arch.pio.count);
9856
9857 return complete_emulated_io(vcpu);
9858 }
9859
9860 /*
9861 * Implements the following, as a state machine:
9862 *
9863 * read:
9864 * for each fragment
9865 * for each mmio piece in the fragment
9866 * write gpa, len
9867 * exit
9868 * copy data
9869 * execute insn
9870 *
9871 * write:
9872 * for each fragment
9873 * for each mmio piece in the fragment
9874 * write gpa, len
9875 * copy data
9876 * exit
9877 */
9878 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9879 {
9880 struct kvm_run *run = vcpu->run;
9881 struct kvm_mmio_fragment *frag;
9882 unsigned len;
9883
9884 BUG_ON(!vcpu->mmio_needed);
9885
9886 /* Complete previous fragment */
9887 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9888 len = min(8u, frag->len);
9889 if (!vcpu->mmio_is_write)
9890 memcpy(frag->data, run->mmio.data, len);
9891
9892 if (frag->len <= 8) {
9893 /* Switch to the next fragment. */
9894 frag++;
9895 vcpu->mmio_cur_fragment++;
9896 } else {
9897 /* Go forward to the next mmio piece. */
9898 frag->data += len;
9899 frag->gpa += len;
9900 frag->len -= len;
9901 }
9902
9903 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9904 vcpu->mmio_needed = 0;
9905
9906 /* FIXME: return into emulator if single-stepping. */
9907 if (vcpu->mmio_is_write)
9908 return 1;
9909 vcpu->mmio_read_completed = 1;
9910 return complete_emulated_io(vcpu);
9911 }
9912
9913 run->exit_reason = KVM_EXIT_MMIO;
9914 run->mmio.phys_addr = frag->gpa;
9915 if (vcpu->mmio_is_write)
9916 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9917 run->mmio.len = min(8u, frag->len);
9918 run->mmio.is_write = vcpu->mmio_is_write;
9919 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9920 return 0;
9921 }
9922
9923 /* Swap (qemu) user FPU context for the guest FPU context. */
9924 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9925 {
9926 /*
9927 * Exclude PKRU from restore as restored separately in
9928 * kvm_x86_ops.run().
9929 */
9930 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
9931 trace_kvm_fpu(1);
9932 }
9933
9934 /* When vcpu_run ends, restore user space FPU context. */
9935 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9936 {
9937 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
9938 ++vcpu->stat.fpu_reload;
9939 trace_kvm_fpu(0);
9940 }
9941
9942 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9943 {
9944 struct kvm_run *kvm_run = vcpu->run;
9945 int r;
9946
9947 vcpu_load(vcpu);
9948 kvm_sigset_activate(vcpu);
9949 kvm_run->flags = 0;
9950 kvm_load_guest_fpu(vcpu);
9951
9952 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9953 if (kvm_run->immediate_exit) {
9954 r = -EINTR;
9955 goto out;
9956 }
9957 kvm_vcpu_block(vcpu);
9958 if (kvm_apic_accept_events(vcpu) < 0) {
9959 r = 0;
9960 goto out;
9961 }
9962 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9963 r = -EAGAIN;
9964 if (signal_pending(current)) {
9965 r = -EINTR;
9966 kvm_run->exit_reason = KVM_EXIT_INTR;
9967 ++vcpu->stat.signal_exits;
9968 }
9969 goto out;
9970 }
9971
9972 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9973 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9974 r = -EINVAL;
9975 goto out;
9976 }
9977
9978 if (kvm_run->kvm_dirty_regs) {
9979 r = sync_regs(vcpu);
9980 if (r != 0)
9981 goto out;
9982 }
9983
9984 /* re-sync apic's tpr */
9985 if (!lapic_in_kernel(vcpu)) {
9986 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9987 r = -EINVAL;
9988 goto out;
9989 }
9990 }
9991
9992 if (unlikely(vcpu->arch.complete_userspace_io)) {
9993 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9994 vcpu->arch.complete_userspace_io = NULL;
9995 r = cui(vcpu);
9996 if (r <= 0)
9997 goto out;
9998 } else
9999 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10000
10001 if (kvm_run->immediate_exit)
10002 r = -EINTR;
10003 else
10004 r = vcpu_run(vcpu);
10005
10006 out:
10007 kvm_put_guest_fpu(vcpu);
10008 if (kvm_run->kvm_valid_regs)
10009 store_regs(vcpu);
10010 post_kvm_run_save(vcpu);
10011 kvm_sigset_deactivate(vcpu);
10012
10013 vcpu_put(vcpu);
10014 return r;
10015 }
10016
10017 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10018 {
10019 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10020 /*
10021 * We are here if userspace calls get_regs() in the middle of
10022 * instruction emulation. Registers state needs to be copied
10023 * back from emulation context to vcpu. Userspace shouldn't do
10024 * that usually, but some bad designed PV devices (vmware
10025 * backdoor interface) need this to work
10026 */
10027 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10028 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10029 }
10030 regs->rax = kvm_rax_read(vcpu);
10031 regs->rbx = kvm_rbx_read(vcpu);
10032 regs->rcx = kvm_rcx_read(vcpu);
10033 regs->rdx = kvm_rdx_read(vcpu);
10034 regs->rsi = kvm_rsi_read(vcpu);
10035 regs->rdi = kvm_rdi_read(vcpu);
10036 regs->rsp = kvm_rsp_read(vcpu);
10037 regs->rbp = kvm_rbp_read(vcpu);
10038 #ifdef CONFIG_X86_64
10039 regs->r8 = kvm_r8_read(vcpu);
10040 regs->r9 = kvm_r9_read(vcpu);
10041 regs->r10 = kvm_r10_read(vcpu);
10042 regs->r11 = kvm_r11_read(vcpu);
10043 regs->r12 = kvm_r12_read(vcpu);
10044 regs->r13 = kvm_r13_read(vcpu);
10045 regs->r14 = kvm_r14_read(vcpu);
10046 regs->r15 = kvm_r15_read(vcpu);
10047 #endif
10048
10049 regs->rip = kvm_rip_read(vcpu);
10050 regs->rflags = kvm_get_rflags(vcpu);
10051 }
10052
10053 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10054 {
10055 vcpu_load(vcpu);
10056 __get_regs(vcpu, regs);
10057 vcpu_put(vcpu);
10058 return 0;
10059 }
10060
10061 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10062 {
10063 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10064 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10065
10066 kvm_rax_write(vcpu, regs->rax);
10067 kvm_rbx_write(vcpu, regs->rbx);
10068 kvm_rcx_write(vcpu, regs->rcx);
10069 kvm_rdx_write(vcpu, regs->rdx);
10070 kvm_rsi_write(vcpu, regs->rsi);
10071 kvm_rdi_write(vcpu, regs->rdi);
10072 kvm_rsp_write(vcpu, regs->rsp);
10073 kvm_rbp_write(vcpu, regs->rbp);
10074 #ifdef CONFIG_X86_64
10075 kvm_r8_write(vcpu, regs->r8);
10076 kvm_r9_write(vcpu, regs->r9);
10077 kvm_r10_write(vcpu, regs->r10);
10078 kvm_r11_write(vcpu, regs->r11);
10079 kvm_r12_write(vcpu, regs->r12);
10080 kvm_r13_write(vcpu, regs->r13);
10081 kvm_r14_write(vcpu, regs->r14);
10082 kvm_r15_write(vcpu, regs->r15);
10083 #endif
10084
10085 kvm_rip_write(vcpu, regs->rip);
10086 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10087
10088 vcpu->arch.exception.pending = false;
10089
10090 kvm_make_request(KVM_REQ_EVENT, vcpu);
10091 }
10092
10093 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10094 {
10095 vcpu_load(vcpu);
10096 __set_regs(vcpu, regs);
10097 vcpu_put(vcpu);
10098 return 0;
10099 }
10100
10101 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10102 {
10103 struct kvm_segment cs;
10104
10105 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10106 *db = cs.db;
10107 *l = cs.l;
10108 }
10109 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10110
10111 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10112 {
10113 struct desc_ptr dt;
10114
10115 if (vcpu->arch.guest_state_protected)
10116 goto skip_protected_regs;
10117
10118 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10119 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10120 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10121 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10122 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10123 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10124
10125 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10126 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10127
10128 static_call(kvm_x86_get_idt)(vcpu, &dt);
10129 sregs->idt.limit = dt.size;
10130 sregs->idt.base = dt.address;
10131 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10132 sregs->gdt.limit = dt.size;
10133 sregs->gdt.base = dt.address;
10134
10135 sregs->cr2 = vcpu->arch.cr2;
10136 sregs->cr3 = kvm_read_cr3(vcpu);
10137
10138 skip_protected_regs:
10139 sregs->cr0 = kvm_read_cr0(vcpu);
10140 sregs->cr4 = kvm_read_cr4(vcpu);
10141 sregs->cr8 = kvm_get_cr8(vcpu);
10142 sregs->efer = vcpu->arch.efer;
10143 sregs->apic_base = kvm_get_apic_base(vcpu);
10144 }
10145
10146 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10147 {
10148 __get_sregs_common(vcpu, sregs);
10149
10150 if (vcpu->arch.guest_state_protected)
10151 return;
10152
10153 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10154 set_bit(vcpu->arch.interrupt.nr,
10155 (unsigned long *)sregs->interrupt_bitmap);
10156 }
10157
10158 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10159 {
10160 int i;
10161
10162 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10163
10164 if (vcpu->arch.guest_state_protected)
10165 return;
10166
10167 if (is_pae_paging(vcpu)) {
10168 for (i = 0 ; i < 4 ; i++)
10169 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10170 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10171 }
10172 }
10173
10174 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10175 struct kvm_sregs *sregs)
10176 {
10177 vcpu_load(vcpu);
10178 __get_sregs(vcpu, sregs);
10179 vcpu_put(vcpu);
10180 return 0;
10181 }
10182
10183 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10184 struct kvm_mp_state *mp_state)
10185 {
10186 int r;
10187
10188 vcpu_load(vcpu);
10189 if (kvm_mpx_supported())
10190 kvm_load_guest_fpu(vcpu);
10191
10192 r = kvm_apic_accept_events(vcpu);
10193 if (r < 0)
10194 goto out;
10195 r = 0;
10196
10197 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10198 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10199 vcpu->arch.pv.pv_unhalted)
10200 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10201 else
10202 mp_state->mp_state = vcpu->arch.mp_state;
10203
10204 out:
10205 if (kvm_mpx_supported())
10206 kvm_put_guest_fpu(vcpu);
10207 vcpu_put(vcpu);
10208 return r;
10209 }
10210
10211 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10212 struct kvm_mp_state *mp_state)
10213 {
10214 int ret = -EINVAL;
10215
10216 vcpu_load(vcpu);
10217
10218 if (!lapic_in_kernel(vcpu) &&
10219 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10220 goto out;
10221
10222 /*
10223 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10224 * INIT state; latched init should be reported using
10225 * KVM_SET_VCPU_EVENTS, so reject it here.
10226 */
10227 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10228 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10229 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10230 goto out;
10231
10232 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10233 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10234 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10235 } else
10236 vcpu->arch.mp_state = mp_state->mp_state;
10237 kvm_make_request(KVM_REQ_EVENT, vcpu);
10238
10239 ret = 0;
10240 out:
10241 vcpu_put(vcpu);
10242 return ret;
10243 }
10244
10245 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10246 int reason, bool has_error_code, u32 error_code)
10247 {
10248 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10249 int ret;
10250
10251 init_emulate_ctxt(vcpu);
10252
10253 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10254 has_error_code, error_code);
10255 if (ret) {
10256 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10257 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10258 vcpu->run->internal.ndata = 0;
10259 return 0;
10260 }
10261
10262 kvm_rip_write(vcpu, ctxt->eip);
10263 kvm_set_rflags(vcpu, ctxt->eflags);
10264 return 1;
10265 }
10266 EXPORT_SYMBOL_GPL(kvm_task_switch);
10267
10268 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10269 {
10270 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10271 /*
10272 * When EFER.LME and CR0.PG are set, the processor is in
10273 * 64-bit mode (though maybe in a 32-bit code segment).
10274 * CR4.PAE and EFER.LMA must be set.
10275 */
10276 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10277 return false;
10278 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10279 return false;
10280 } else {
10281 /*
10282 * Not in 64-bit mode: EFER.LMA is clear and the code
10283 * segment cannot be 64-bit.
10284 */
10285 if (sregs->efer & EFER_LMA || sregs->cs.l)
10286 return false;
10287 }
10288
10289 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10290 }
10291
10292 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10293 int *mmu_reset_needed, bool update_pdptrs)
10294 {
10295 struct msr_data apic_base_msr;
10296 int idx;
10297 struct desc_ptr dt;
10298
10299 if (!kvm_is_valid_sregs(vcpu, sregs))
10300 return -EINVAL;
10301
10302 apic_base_msr.data = sregs->apic_base;
10303 apic_base_msr.host_initiated = true;
10304 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10305 return -EINVAL;
10306
10307 if (vcpu->arch.guest_state_protected)
10308 return 0;
10309
10310 dt.size = sregs->idt.limit;
10311 dt.address = sregs->idt.base;
10312 static_call(kvm_x86_set_idt)(vcpu, &dt);
10313 dt.size = sregs->gdt.limit;
10314 dt.address = sregs->gdt.base;
10315 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10316
10317 vcpu->arch.cr2 = sregs->cr2;
10318 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10319 vcpu->arch.cr3 = sregs->cr3;
10320 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10321
10322 kvm_set_cr8(vcpu, sregs->cr8);
10323
10324 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10325 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10326
10327 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10328 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10329 vcpu->arch.cr0 = sregs->cr0;
10330
10331 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10332 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10333
10334 if (update_pdptrs) {
10335 idx = srcu_read_lock(&vcpu->kvm->srcu);
10336 if (is_pae_paging(vcpu)) {
10337 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10338 *mmu_reset_needed = 1;
10339 }
10340 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10341 }
10342
10343 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10344 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10345 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10346 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10347 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10348 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10349
10350 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10351 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10352
10353 update_cr8_intercept(vcpu);
10354
10355 /* Older userspace won't unhalt the vcpu on reset. */
10356 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10357 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10358 !is_protmode(vcpu))
10359 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10360
10361 return 0;
10362 }
10363
10364 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10365 {
10366 int pending_vec, max_bits;
10367 int mmu_reset_needed = 0;
10368 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10369
10370 if (ret)
10371 return ret;
10372
10373 if (mmu_reset_needed)
10374 kvm_mmu_reset_context(vcpu);
10375
10376 max_bits = KVM_NR_INTERRUPTS;
10377 pending_vec = find_first_bit(
10378 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10379
10380 if (pending_vec < max_bits) {
10381 kvm_queue_interrupt(vcpu, pending_vec, false);
10382 pr_debug("Set back pending irq %d\n", pending_vec);
10383 kvm_make_request(KVM_REQ_EVENT, vcpu);
10384 }
10385 return 0;
10386 }
10387
10388 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10389 {
10390 int mmu_reset_needed = 0;
10391 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10392 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10393 !(sregs2->efer & EFER_LMA);
10394 int i, ret;
10395
10396 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10397 return -EINVAL;
10398
10399 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10400 return -EINVAL;
10401
10402 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10403 &mmu_reset_needed, !valid_pdptrs);
10404 if (ret)
10405 return ret;
10406
10407 if (valid_pdptrs) {
10408 for (i = 0; i < 4 ; i++)
10409 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10410
10411 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10412 mmu_reset_needed = 1;
10413 vcpu->arch.pdptrs_from_userspace = true;
10414 }
10415 if (mmu_reset_needed)
10416 kvm_mmu_reset_context(vcpu);
10417 return 0;
10418 }
10419
10420 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10421 struct kvm_sregs *sregs)
10422 {
10423 int ret;
10424
10425 vcpu_load(vcpu);
10426 ret = __set_sregs(vcpu, sregs);
10427 vcpu_put(vcpu);
10428 return ret;
10429 }
10430
10431 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10432 struct kvm_guest_debug *dbg)
10433 {
10434 unsigned long rflags;
10435 int i, r;
10436
10437 if (vcpu->arch.guest_state_protected)
10438 return -EINVAL;
10439
10440 vcpu_load(vcpu);
10441
10442 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10443 r = -EBUSY;
10444 if (vcpu->arch.exception.pending)
10445 goto out;
10446 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10447 kvm_queue_exception(vcpu, DB_VECTOR);
10448 else
10449 kvm_queue_exception(vcpu, BP_VECTOR);
10450 }
10451
10452 /*
10453 * Read rflags as long as potentially injected trace flags are still
10454 * filtered out.
10455 */
10456 rflags = kvm_get_rflags(vcpu);
10457
10458 vcpu->guest_debug = dbg->control;
10459 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10460 vcpu->guest_debug = 0;
10461
10462 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10463 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10464 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10465 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10466 } else {
10467 for (i = 0; i < KVM_NR_DB_REGS; i++)
10468 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10469 }
10470 kvm_update_dr7(vcpu);
10471
10472 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10473 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10474
10475 /*
10476 * Trigger an rflags update that will inject or remove the trace
10477 * flags.
10478 */
10479 kvm_set_rflags(vcpu, rflags);
10480
10481 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10482
10483 r = 0;
10484
10485 out:
10486 vcpu_put(vcpu);
10487 return r;
10488 }
10489
10490 /*
10491 * Translate a guest virtual address to a guest physical address.
10492 */
10493 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10494 struct kvm_translation *tr)
10495 {
10496 unsigned long vaddr = tr->linear_address;
10497 gpa_t gpa;
10498 int idx;
10499
10500 vcpu_load(vcpu);
10501
10502 idx = srcu_read_lock(&vcpu->kvm->srcu);
10503 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10504 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10505 tr->physical_address = gpa;
10506 tr->valid = gpa != UNMAPPED_GVA;
10507 tr->writeable = 1;
10508 tr->usermode = 0;
10509
10510 vcpu_put(vcpu);
10511 return 0;
10512 }
10513
10514 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10515 {
10516 struct fxregs_state *fxsave;
10517
10518 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10519 return 0;
10520
10521 vcpu_load(vcpu);
10522
10523 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10524 memcpy(fpu->fpr, fxsave->st_space, 128);
10525 fpu->fcw = fxsave->cwd;
10526 fpu->fsw = fxsave->swd;
10527 fpu->ftwx = fxsave->twd;
10528 fpu->last_opcode = fxsave->fop;
10529 fpu->last_ip = fxsave->rip;
10530 fpu->last_dp = fxsave->rdp;
10531 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10532
10533 vcpu_put(vcpu);
10534 return 0;
10535 }
10536
10537 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10538 {
10539 struct fxregs_state *fxsave;
10540
10541 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10542 return 0;
10543
10544 vcpu_load(vcpu);
10545
10546 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10547
10548 memcpy(fxsave->st_space, fpu->fpr, 128);
10549 fxsave->cwd = fpu->fcw;
10550 fxsave->swd = fpu->fsw;
10551 fxsave->twd = fpu->ftwx;
10552 fxsave->fop = fpu->last_opcode;
10553 fxsave->rip = fpu->last_ip;
10554 fxsave->rdp = fpu->last_dp;
10555 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10556
10557 vcpu_put(vcpu);
10558 return 0;
10559 }
10560
10561 static void store_regs(struct kvm_vcpu *vcpu)
10562 {
10563 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10564
10565 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10566 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10567
10568 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10569 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10570
10571 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10572 kvm_vcpu_ioctl_x86_get_vcpu_events(
10573 vcpu, &vcpu->run->s.regs.events);
10574 }
10575
10576 static int sync_regs(struct kvm_vcpu *vcpu)
10577 {
10578 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10579 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10580 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10581 }
10582 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10583 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10584 return -EINVAL;
10585 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10586 }
10587 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10588 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10589 vcpu, &vcpu->run->s.regs.events))
10590 return -EINVAL;
10591 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10592 }
10593
10594 return 0;
10595 }
10596
10597 static void fx_init(struct kvm_vcpu *vcpu)
10598 {
10599 /*
10600 * Ensure guest xcr0 is valid for loading
10601 */
10602 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10603
10604 vcpu->arch.cr0 |= X86_CR0_ET;
10605 }
10606
10607 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10608 {
10609 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10610 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10611 "guest TSC will not be reliable\n");
10612
10613 return 0;
10614 }
10615
10616 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10617 {
10618 struct page *page;
10619 int r;
10620
10621 vcpu->arch.last_vmentry_cpu = -1;
10622 vcpu->arch.regs_avail = ~0;
10623 vcpu->arch.regs_dirty = ~0;
10624
10625 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10626 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10627 else
10628 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10629
10630 r = kvm_mmu_create(vcpu);
10631 if (r < 0)
10632 return r;
10633
10634 if (irqchip_in_kernel(vcpu->kvm)) {
10635 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10636 if (r < 0)
10637 goto fail_mmu_destroy;
10638 if (kvm_apicv_activated(vcpu->kvm))
10639 vcpu->arch.apicv_active = true;
10640 } else
10641 static_branch_inc(&kvm_has_noapic_vcpu);
10642
10643 r = -ENOMEM;
10644
10645 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10646 if (!page)
10647 goto fail_free_lapic;
10648 vcpu->arch.pio_data = page_address(page);
10649
10650 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10651 GFP_KERNEL_ACCOUNT);
10652 if (!vcpu->arch.mce_banks)
10653 goto fail_free_pio_data;
10654 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10655
10656 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10657 GFP_KERNEL_ACCOUNT))
10658 goto fail_free_mce_banks;
10659
10660 if (!alloc_emulate_ctxt(vcpu))
10661 goto free_wbinvd_dirty_mask;
10662
10663 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
10664 pr_err("kvm: failed to allocate vcpu's fpu\n");
10665 goto free_emulate_ctxt;
10666 }
10667
10668 fx_init(vcpu);
10669
10670 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10671 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10672
10673 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10674
10675 kvm_async_pf_hash_reset(vcpu);
10676 kvm_pmu_init(vcpu);
10677
10678 vcpu->arch.pending_external_vector = -1;
10679 vcpu->arch.preempted_in_kernel = false;
10680
10681 #if IS_ENABLED(CONFIG_HYPERV)
10682 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10683 #endif
10684
10685 r = static_call(kvm_x86_vcpu_create)(vcpu);
10686 if (r)
10687 goto free_guest_fpu;
10688
10689 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10690 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10691 kvm_vcpu_mtrr_init(vcpu);
10692 vcpu_load(vcpu);
10693 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10694 kvm_vcpu_reset(vcpu, false);
10695 kvm_init_mmu(vcpu);
10696 vcpu_put(vcpu);
10697 return 0;
10698
10699 free_guest_fpu:
10700 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10701 free_emulate_ctxt:
10702 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10703 free_wbinvd_dirty_mask:
10704 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10705 fail_free_mce_banks:
10706 kfree(vcpu->arch.mce_banks);
10707 fail_free_pio_data:
10708 free_page((unsigned long)vcpu->arch.pio_data);
10709 fail_free_lapic:
10710 kvm_free_lapic(vcpu);
10711 fail_mmu_destroy:
10712 kvm_mmu_destroy(vcpu);
10713 return r;
10714 }
10715
10716 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10717 {
10718 struct kvm *kvm = vcpu->kvm;
10719
10720 if (mutex_lock_killable(&vcpu->mutex))
10721 return;
10722 vcpu_load(vcpu);
10723 kvm_synchronize_tsc(vcpu, 0);
10724 vcpu_put(vcpu);
10725
10726 /* poll control enabled by default */
10727 vcpu->arch.msr_kvm_poll_control = 1;
10728
10729 mutex_unlock(&vcpu->mutex);
10730
10731 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10732 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10733 KVMCLOCK_SYNC_PERIOD);
10734 }
10735
10736 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10737 {
10738 int idx;
10739
10740 kvmclock_reset(vcpu);
10741
10742 static_call(kvm_x86_vcpu_free)(vcpu);
10743
10744 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10745 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10746 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10747
10748 kvm_hv_vcpu_uninit(vcpu);
10749 kvm_pmu_destroy(vcpu);
10750 kfree(vcpu->arch.mce_banks);
10751 kvm_free_lapic(vcpu);
10752 idx = srcu_read_lock(&vcpu->kvm->srcu);
10753 kvm_mmu_destroy(vcpu);
10754 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10755 free_page((unsigned long)vcpu->arch.pio_data);
10756 kvfree(vcpu->arch.cpuid_entries);
10757 if (!lapic_in_kernel(vcpu))
10758 static_branch_dec(&kvm_has_noapic_vcpu);
10759 }
10760
10761 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10762 {
10763 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10764 unsigned long new_cr0;
10765 u32 eax, dummy;
10766
10767 kvm_lapic_reset(vcpu, init_event);
10768
10769 vcpu->arch.hflags = 0;
10770
10771 vcpu->arch.smi_pending = 0;
10772 vcpu->arch.smi_count = 0;
10773 atomic_set(&vcpu->arch.nmi_queued, 0);
10774 vcpu->arch.nmi_pending = 0;
10775 vcpu->arch.nmi_injected = false;
10776 kvm_clear_interrupt_queue(vcpu);
10777 kvm_clear_exception_queue(vcpu);
10778
10779 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10780 kvm_update_dr0123(vcpu);
10781 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10782 vcpu->arch.dr7 = DR7_FIXED_1;
10783 kvm_update_dr7(vcpu);
10784
10785 vcpu->arch.cr2 = 0;
10786
10787 kvm_make_request(KVM_REQ_EVENT, vcpu);
10788 vcpu->arch.apf.msr_en_val = 0;
10789 vcpu->arch.apf.msr_int_val = 0;
10790 vcpu->arch.st.msr_val = 0;
10791
10792 kvmclock_reset(vcpu);
10793
10794 kvm_clear_async_pf_completion_queue(vcpu);
10795 kvm_async_pf_hash_reset(vcpu);
10796 vcpu->arch.apf.halted = false;
10797
10798 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
10799 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
10800
10801 /*
10802 * To avoid have the INIT path from kvm_apic_has_events() that be
10803 * called with loaded FPU and does not let userspace fix the state.
10804 */
10805 if (init_event)
10806 kvm_put_guest_fpu(vcpu);
10807
10808 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
10809 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
10810
10811 if (init_event)
10812 kvm_load_guest_fpu(vcpu);
10813 }
10814
10815 if (!init_event) {
10816 kvm_pmu_reset(vcpu);
10817 vcpu->arch.smbase = 0x30000;
10818
10819 vcpu->arch.msr_misc_features_enables = 0;
10820
10821 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
10822 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
10823 }
10824
10825 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10826 vcpu->arch.regs_avail = ~0;
10827 vcpu->arch.regs_dirty = ~0;
10828
10829 /*
10830 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10831 * if no CPUID match is found. Note, it's impossible to get a match at
10832 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10833 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10834 * But, go through the motions in case that's ever remedied.
10835 */
10836 eax = 1;
10837 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10838 eax = 0x600;
10839 kvm_rdx_write(vcpu, eax);
10840
10841 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10842
10843 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10844 kvm_rip_write(vcpu, 0xfff0);
10845
10846 vcpu->arch.cr3 = 0;
10847 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10848
10849 /*
10850 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10851 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10852 * (or qualify) that with a footnote stating that CD/NW are preserved.
10853 */
10854 new_cr0 = X86_CR0_ET;
10855 if (init_event)
10856 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10857 else
10858 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10859
10860 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10861 static_call(kvm_x86_set_cr4)(vcpu, 0);
10862 static_call(kvm_x86_set_efer)(vcpu, 0);
10863 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10864
10865 /*
10866 * Reset the MMU context if paging was enabled prior to INIT (which is
10867 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10868 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10869 * checked because it is unconditionally cleared on INIT and all other
10870 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10871 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10872 */
10873 if (old_cr0 & X86_CR0_PG)
10874 kvm_mmu_reset_context(vcpu);
10875
10876 /*
10877 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
10878 * APM states the TLBs are untouched by INIT, but it also states that
10879 * the TLBs are flushed on "External initialization of the processor."
10880 * Flush the guest TLB regardless of vendor, there is no meaningful
10881 * benefit in relying on the guest to flush the TLB immediately after
10882 * INIT. A spurious TLB flush is benign and likely negligible from a
10883 * performance perspective.
10884 */
10885 if (init_event)
10886 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10887 }
10888 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10889
10890 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10891 {
10892 struct kvm_segment cs;
10893
10894 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10895 cs.selector = vector << 8;
10896 cs.base = vector << 12;
10897 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10898 kvm_rip_write(vcpu, 0);
10899 }
10900 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10901
10902 int kvm_arch_hardware_enable(void)
10903 {
10904 struct kvm *kvm;
10905 struct kvm_vcpu *vcpu;
10906 int i;
10907 int ret;
10908 u64 local_tsc;
10909 u64 max_tsc = 0;
10910 bool stable, backwards_tsc = false;
10911
10912 kvm_user_return_msr_cpu_online();
10913 ret = static_call(kvm_x86_hardware_enable)();
10914 if (ret != 0)
10915 return ret;
10916
10917 local_tsc = rdtsc();
10918 stable = !kvm_check_tsc_unstable();
10919 list_for_each_entry(kvm, &vm_list, vm_list) {
10920 kvm_for_each_vcpu(i, vcpu, kvm) {
10921 if (!stable && vcpu->cpu == smp_processor_id())
10922 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10923 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10924 backwards_tsc = true;
10925 if (vcpu->arch.last_host_tsc > max_tsc)
10926 max_tsc = vcpu->arch.last_host_tsc;
10927 }
10928 }
10929 }
10930
10931 /*
10932 * Sometimes, even reliable TSCs go backwards. This happens on
10933 * platforms that reset TSC during suspend or hibernate actions, but
10934 * maintain synchronization. We must compensate. Fortunately, we can
10935 * detect that condition here, which happens early in CPU bringup,
10936 * before any KVM threads can be running. Unfortunately, we can't
10937 * bring the TSCs fully up to date with real time, as we aren't yet far
10938 * enough into CPU bringup that we know how much real time has actually
10939 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10940 * variables that haven't been updated yet.
10941 *
10942 * So we simply find the maximum observed TSC above, then record the
10943 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10944 * the adjustment will be applied. Note that we accumulate
10945 * adjustments, in case multiple suspend cycles happen before some VCPU
10946 * gets a chance to run again. In the event that no KVM threads get a
10947 * chance to run, we will miss the entire elapsed period, as we'll have
10948 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10949 * loose cycle time. This isn't too big a deal, since the loss will be
10950 * uniform across all VCPUs (not to mention the scenario is extremely
10951 * unlikely). It is possible that a second hibernate recovery happens
10952 * much faster than a first, causing the observed TSC here to be
10953 * smaller; this would require additional padding adjustment, which is
10954 * why we set last_host_tsc to the local tsc observed here.
10955 *
10956 * N.B. - this code below runs only on platforms with reliable TSC,
10957 * as that is the only way backwards_tsc is set above. Also note
10958 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10959 * have the same delta_cyc adjustment applied if backwards_tsc
10960 * is detected. Note further, this adjustment is only done once,
10961 * as we reset last_host_tsc on all VCPUs to stop this from being
10962 * called multiple times (one for each physical CPU bringup).
10963 *
10964 * Platforms with unreliable TSCs don't have to deal with this, they
10965 * will be compensated by the logic in vcpu_load, which sets the TSC to
10966 * catchup mode. This will catchup all VCPUs to real time, but cannot
10967 * guarantee that they stay in perfect synchronization.
10968 */
10969 if (backwards_tsc) {
10970 u64 delta_cyc = max_tsc - local_tsc;
10971 list_for_each_entry(kvm, &vm_list, vm_list) {
10972 kvm->arch.backwards_tsc_observed = true;
10973 kvm_for_each_vcpu(i, vcpu, kvm) {
10974 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10975 vcpu->arch.last_host_tsc = local_tsc;
10976 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10977 }
10978
10979 /*
10980 * We have to disable TSC offset matching.. if you were
10981 * booting a VM while issuing an S4 host suspend....
10982 * you may have some problem. Solving this issue is
10983 * left as an exercise to the reader.
10984 */
10985 kvm->arch.last_tsc_nsec = 0;
10986 kvm->arch.last_tsc_write = 0;
10987 }
10988
10989 }
10990 return 0;
10991 }
10992
10993 void kvm_arch_hardware_disable(void)
10994 {
10995 static_call(kvm_x86_hardware_disable)();
10996 drop_user_return_notifiers();
10997 }
10998
10999 int kvm_arch_hardware_setup(void *opaque)
11000 {
11001 struct kvm_x86_init_ops *ops = opaque;
11002 int r;
11003
11004 rdmsrl_safe(MSR_EFER, &host_efer);
11005
11006 if (boot_cpu_has(X86_FEATURE_XSAVES))
11007 rdmsrl(MSR_IA32_XSS, host_xss);
11008
11009 r = ops->hardware_setup();
11010 if (r != 0)
11011 return r;
11012
11013 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11014 kvm_ops_static_call_update();
11015
11016 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11017 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11018 perf_register_guest_info_callbacks(&kvm_guest_cbs);
11019
11020 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11021 supported_xss = 0;
11022
11023 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11024 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11025 #undef __kvm_cpu_cap_has
11026
11027 if (kvm_has_tsc_control) {
11028 /*
11029 * Make sure the user can only configure tsc_khz values that
11030 * fit into a signed integer.
11031 * A min value is not calculated because it will always
11032 * be 1 on all machines.
11033 */
11034 u64 max = min(0x7fffffffULL,
11035 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11036 kvm_max_guest_tsc_khz = max;
11037
11038 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11039 }
11040
11041 kvm_init_msr_list();
11042 return 0;
11043 }
11044
11045 void kvm_arch_hardware_unsetup(void)
11046 {
11047 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11048 kvm_guest_cbs.handle_intel_pt_intr = NULL;
11049
11050 static_call(kvm_x86_hardware_unsetup)();
11051 }
11052
11053 int kvm_arch_check_processor_compat(void *opaque)
11054 {
11055 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11056 struct kvm_x86_init_ops *ops = opaque;
11057
11058 WARN_ON(!irqs_disabled());
11059
11060 if (__cr4_reserved_bits(cpu_has, c) !=
11061 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11062 return -EIO;
11063
11064 return ops->check_processor_compatibility();
11065 }
11066
11067 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11068 {
11069 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11070 }
11071 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11072
11073 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11074 {
11075 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11076 }
11077
11078 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11079 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11080
11081 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11082 {
11083 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11084
11085 vcpu->arch.l1tf_flush_l1d = true;
11086 if (pmu->version && unlikely(pmu->event_count)) {
11087 pmu->need_cleanup = true;
11088 kvm_make_request(KVM_REQ_PMU, vcpu);
11089 }
11090 static_call(kvm_x86_sched_in)(vcpu, cpu);
11091 }
11092
11093 void kvm_arch_free_vm(struct kvm *kvm)
11094 {
11095 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11096 vfree(kvm);
11097 }
11098
11099
11100 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11101 {
11102 int ret;
11103
11104 if (type)
11105 return -EINVAL;
11106
11107 ret = kvm_page_track_init(kvm);
11108 if (ret)
11109 return ret;
11110
11111 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11112 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11113 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11114 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11115 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11116 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11117
11118 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11119 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11120 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11121 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11122 &kvm->arch.irq_sources_bitmap);
11123
11124 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11125 mutex_init(&kvm->arch.apic_map_lock);
11126 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11127
11128 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11129 pvclock_update_vm_gtod_copy(kvm);
11130
11131 kvm->arch.guest_can_read_msr_platform_info = true;
11132
11133 #if IS_ENABLED(CONFIG_HYPERV)
11134 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11135 kvm->arch.hv_root_tdp = INVALID_PAGE;
11136 #endif
11137
11138 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11139 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11140
11141 kvm_apicv_init(kvm);
11142 kvm_hv_init_vm(kvm);
11143 kvm_mmu_init_vm(kvm);
11144 kvm_xen_init_vm(kvm);
11145
11146 return static_call(kvm_x86_vm_init)(kvm);
11147 }
11148
11149 int kvm_arch_post_init_vm(struct kvm *kvm)
11150 {
11151 return kvm_mmu_post_init_vm(kvm);
11152 }
11153
11154 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11155 {
11156 vcpu_load(vcpu);
11157 kvm_mmu_unload(vcpu);
11158 vcpu_put(vcpu);
11159 }
11160
11161 static void kvm_free_vcpus(struct kvm *kvm)
11162 {
11163 unsigned int i;
11164 struct kvm_vcpu *vcpu;
11165
11166 /*
11167 * Unpin any mmu pages first.
11168 */
11169 kvm_for_each_vcpu(i, vcpu, kvm) {
11170 kvm_clear_async_pf_completion_queue(vcpu);
11171 kvm_unload_vcpu_mmu(vcpu);
11172 }
11173 kvm_for_each_vcpu(i, vcpu, kvm)
11174 kvm_vcpu_destroy(vcpu);
11175
11176 mutex_lock(&kvm->lock);
11177 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11178 kvm->vcpus[i] = NULL;
11179
11180 atomic_set(&kvm->online_vcpus, 0);
11181 mutex_unlock(&kvm->lock);
11182 }
11183
11184 void kvm_arch_sync_events(struct kvm *kvm)
11185 {
11186 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11187 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11188 kvm_free_pit(kvm);
11189 }
11190
11191 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11192
11193 /**
11194 * __x86_set_memory_region: Setup KVM internal memory slot
11195 *
11196 * @kvm: the kvm pointer to the VM.
11197 * @id: the slot ID to setup.
11198 * @gpa: the GPA to install the slot (unused when @size == 0).
11199 * @size: the size of the slot. Set to zero to uninstall a slot.
11200 *
11201 * This function helps to setup a KVM internal memory slot. Specify
11202 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11203 * slot. The return code can be one of the following:
11204 *
11205 * HVA: on success (uninstall will return a bogus HVA)
11206 * -errno: on error
11207 *
11208 * The caller should always use IS_ERR() to check the return value
11209 * before use. Note, the KVM internal memory slots are guaranteed to
11210 * remain valid and unchanged until the VM is destroyed, i.e., the
11211 * GPA->HVA translation will not change. However, the HVA is a user
11212 * address, i.e. its accessibility is not guaranteed, and must be
11213 * accessed via __copy_{to,from}_user().
11214 */
11215 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11216 u32 size)
11217 {
11218 int i, r;
11219 unsigned long hva, old_npages;
11220 struct kvm_memslots *slots = kvm_memslots(kvm);
11221 struct kvm_memory_slot *slot;
11222
11223 /* Called with kvm->slots_lock held. */
11224 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11225 return ERR_PTR_USR(-EINVAL);
11226
11227 slot = id_to_memslot(slots, id);
11228 if (size) {
11229 if (slot && slot->npages)
11230 return ERR_PTR_USR(-EEXIST);
11231
11232 /*
11233 * MAP_SHARED to prevent internal slot pages from being moved
11234 * by fork()/COW.
11235 */
11236 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11237 MAP_SHARED | MAP_ANONYMOUS, 0);
11238 if (IS_ERR((void *)hva))
11239 return (void __user *)hva;
11240 } else {
11241 if (!slot || !slot->npages)
11242 return NULL;
11243
11244 old_npages = slot->npages;
11245 hva = slot->userspace_addr;
11246 }
11247
11248 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11249 struct kvm_userspace_memory_region m;
11250
11251 m.slot = id | (i << 16);
11252 m.flags = 0;
11253 m.guest_phys_addr = gpa;
11254 m.userspace_addr = hva;
11255 m.memory_size = size;
11256 r = __kvm_set_memory_region(kvm, &m);
11257 if (r < 0)
11258 return ERR_PTR_USR(r);
11259 }
11260
11261 if (!size)
11262 vm_munmap(hva, old_npages * PAGE_SIZE);
11263
11264 return (void __user *)hva;
11265 }
11266 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11267
11268 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11269 {
11270 kvm_mmu_pre_destroy_vm(kvm);
11271 }
11272
11273 void kvm_arch_destroy_vm(struct kvm *kvm)
11274 {
11275 if (current->mm == kvm->mm) {
11276 /*
11277 * Free memory regions allocated on behalf of userspace,
11278 * unless the the memory map has changed due to process exit
11279 * or fd copying.
11280 */
11281 mutex_lock(&kvm->slots_lock);
11282 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11283 0, 0);
11284 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11285 0, 0);
11286 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11287 mutex_unlock(&kvm->slots_lock);
11288 }
11289 static_call_cond(kvm_x86_vm_destroy)(kvm);
11290 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11291 kvm_pic_destroy(kvm);
11292 kvm_ioapic_destroy(kvm);
11293 kvm_free_vcpus(kvm);
11294 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11295 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11296 kvm_mmu_uninit_vm(kvm);
11297 kvm_page_track_cleanup(kvm);
11298 kvm_xen_destroy_vm(kvm);
11299 kvm_hv_destroy_vm(kvm);
11300 }
11301
11302 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11303 {
11304 int i;
11305
11306 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11307 kvfree(slot->arch.rmap[i]);
11308 slot->arch.rmap[i] = NULL;
11309 }
11310 }
11311
11312 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11313 {
11314 int i;
11315
11316 memslot_rmap_free(slot);
11317
11318 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11319 kvfree(slot->arch.lpage_info[i - 1]);
11320 slot->arch.lpage_info[i - 1] = NULL;
11321 }
11322
11323 kvm_page_track_free_memslot(slot);
11324 }
11325
11326 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11327 unsigned long npages)
11328 {
11329 const int sz = sizeof(*slot->arch.rmap[0]);
11330 int i;
11331
11332 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11333 int level = i + 1;
11334 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11335
11336 if (slot->arch.rmap[i])
11337 continue;
11338
11339 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11340 if (!slot->arch.rmap[i]) {
11341 memslot_rmap_free(slot);
11342 return -ENOMEM;
11343 }
11344 }
11345
11346 return 0;
11347 }
11348
11349 int alloc_all_memslots_rmaps(struct kvm *kvm)
11350 {
11351 struct kvm_memslots *slots;
11352 struct kvm_memory_slot *slot;
11353 int r, i;
11354
11355 /*
11356 * Check if memslots alreday have rmaps early before acquiring
11357 * the slots_arch_lock below.
11358 */
11359 if (kvm_memslots_have_rmaps(kvm))
11360 return 0;
11361
11362 mutex_lock(&kvm->slots_arch_lock);
11363
11364 /*
11365 * Read memslots_have_rmaps again, under the slots arch lock,
11366 * before allocating the rmaps
11367 */
11368 if (kvm_memslots_have_rmaps(kvm)) {
11369 mutex_unlock(&kvm->slots_arch_lock);
11370 return 0;
11371 }
11372
11373 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11374 slots = __kvm_memslots(kvm, i);
11375 kvm_for_each_memslot(slot, slots) {
11376 r = memslot_rmap_alloc(slot, slot->npages);
11377 if (r) {
11378 mutex_unlock(&kvm->slots_arch_lock);
11379 return r;
11380 }
11381 }
11382 }
11383
11384 /*
11385 * Ensure that memslots_have_rmaps becomes true strictly after
11386 * all the rmap pointers are set.
11387 */
11388 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11389 mutex_unlock(&kvm->slots_arch_lock);
11390 return 0;
11391 }
11392
11393 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11394 struct kvm_memory_slot *slot,
11395 unsigned long npages)
11396 {
11397 int i, r;
11398
11399 /*
11400 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11401 * old arrays will be freed by __kvm_set_memory_region() if installing
11402 * the new memslot is successful.
11403 */
11404 memset(&slot->arch, 0, sizeof(slot->arch));
11405
11406 if (kvm_memslots_have_rmaps(kvm)) {
11407 r = memslot_rmap_alloc(slot, npages);
11408 if (r)
11409 return r;
11410 }
11411
11412 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11413 struct kvm_lpage_info *linfo;
11414 unsigned long ugfn;
11415 int lpages;
11416 int level = i + 1;
11417
11418 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11419
11420 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11421 if (!linfo)
11422 goto out_free;
11423
11424 slot->arch.lpage_info[i - 1] = linfo;
11425
11426 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11427 linfo[0].disallow_lpage = 1;
11428 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11429 linfo[lpages - 1].disallow_lpage = 1;
11430 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11431 /*
11432 * If the gfn and userspace address are not aligned wrt each
11433 * other, disable large page support for this slot.
11434 */
11435 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11436 unsigned long j;
11437
11438 for (j = 0; j < lpages; ++j)
11439 linfo[j].disallow_lpage = 1;
11440 }
11441 }
11442
11443 if (kvm_page_track_create_memslot(slot, npages))
11444 goto out_free;
11445
11446 return 0;
11447
11448 out_free:
11449 memslot_rmap_free(slot);
11450
11451 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11452 kvfree(slot->arch.lpage_info[i - 1]);
11453 slot->arch.lpage_info[i - 1] = NULL;
11454 }
11455 return -ENOMEM;
11456 }
11457
11458 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11459 {
11460 struct kvm_vcpu *vcpu;
11461 int i;
11462
11463 /*
11464 * memslots->generation has been incremented.
11465 * mmio generation may have reached its maximum value.
11466 */
11467 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11468
11469 /* Force re-initialization of steal_time cache */
11470 kvm_for_each_vcpu(i, vcpu, kvm)
11471 kvm_vcpu_kick(vcpu);
11472 }
11473
11474 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11475 struct kvm_memory_slot *memslot,
11476 const struct kvm_userspace_memory_region *mem,
11477 enum kvm_mr_change change)
11478 {
11479 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11480 return kvm_alloc_memslot_metadata(kvm, memslot,
11481 mem->memory_size >> PAGE_SHIFT);
11482 return 0;
11483 }
11484
11485
11486 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11487 {
11488 struct kvm_arch *ka = &kvm->arch;
11489
11490 if (!kvm_x86_ops.cpu_dirty_log_size)
11491 return;
11492
11493 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11494 (!enable && --ka->cpu_dirty_logging_count == 0))
11495 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11496
11497 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11498 }
11499
11500 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11501 struct kvm_memory_slot *old,
11502 const struct kvm_memory_slot *new,
11503 enum kvm_mr_change change)
11504 {
11505 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11506
11507 /*
11508 * Update CPU dirty logging if dirty logging is being toggled. This
11509 * applies to all operations.
11510 */
11511 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11512 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11513
11514 /*
11515 * Nothing more to do for RO slots (which can't be dirtied and can't be
11516 * made writable) or CREATE/MOVE/DELETE of a slot.
11517 *
11518 * For a memslot with dirty logging disabled:
11519 * CREATE: No dirty mappings will already exist.
11520 * MOVE/DELETE: The old mappings will already have been cleaned up by
11521 * kvm_arch_flush_shadow_memslot()
11522 *
11523 * For a memslot with dirty logging enabled:
11524 * CREATE: No shadow pages exist, thus nothing to write-protect
11525 * and no dirty bits to clear.
11526 * MOVE/DELETE: The old mappings will already have been cleaned up by
11527 * kvm_arch_flush_shadow_memslot().
11528 */
11529 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11530 return;
11531
11532 /*
11533 * READONLY and non-flags changes were filtered out above, and the only
11534 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11535 * logging isn't being toggled on or off.
11536 */
11537 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11538 return;
11539
11540 if (!log_dirty_pages) {
11541 /*
11542 * Dirty logging tracks sptes in 4k granularity, meaning that
11543 * large sptes have to be split. If live migration succeeds,
11544 * the guest in the source machine will be destroyed and large
11545 * sptes will be created in the destination. However, if the
11546 * guest continues to run in the source machine (for example if
11547 * live migration fails), small sptes will remain around and
11548 * cause bad performance.
11549 *
11550 * Scan sptes if dirty logging has been stopped, dropping those
11551 * which can be collapsed into a single large-page spte. Later
11552 * page faults will create the large-page sptes.
11553 */
11554 kvm_mmu_zap_collapsible_sptes(kvm, new);
11555 } else {
11556 /*
11557 * Initially-all-set does not require write protecting any page,
11558 * because they're all assumed to be dirty.
11559 */
11560 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11561 return;
11562
11563 if (kvm_x86_ops.cpu_dirty_log_size) {
11564 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11565 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11566 } else {
11567 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11568 }
11569 }
11570 }
11571
11572 void kvm_arch_commit_memory_region(struct kvm *kvm,
11573 const struct kvm_userspace_memory_region *mem,
11574 struct kvm_memory_slot *old,
11575 const struct kvm_memory_slot *new,
11576 enum kvm_mr_change change)
11577 {
11578 if (!kvm->arch.n_requested_mmu_pages)
11579 kvm_mmu_change_mmu_pages(kvm,
11580 kvm_mmu_calculate_default_mmu_pages(kvm));
11581
11582 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11583
11584 /* Free the arrays associated with the old memslot. */
11585 if (change == KVM_MR_MOVE)
11586 kvm_arch_free_memslot(kvm, old);
11587 }
11588
11589 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11590 {
11591 kvm_mmu_zap_all(kvm);
11592 }
11593
11594 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11595 struct kvm_memory_slot *slot)
11596 {
11597 kvm_page_track_flush_slot(kvm, slot);
11598 }
11599
11600 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11601 {
11602 return (is_guest_mode(vcpu) &&
11603 kvm_x86_ops.guest_apic_has_interrupt &&
11604 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11605 }
11606
11607 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11608 {
11609 if (!list_empty_careful(&vcpu->async_pf.done))
11610 return true;
11611
11612 if (kvm_apic_has_events(vcpu))
11613 return true;
11614
11615 if (vcpu->arch.pv.pv_unhalted)
11616 return true;
11617
11618 if (vcpu->arch.exception.pending)
11619 return true;
11620
11621 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11622 (vcpu->arch.nmi_pending &&
11623 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11624 return true;
11625
11626 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11627 (vcpu->arch.smi_pending &&
11628 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11629 return true;
11630
11631 if (kvm_arch_interrupt_allowed(vcpu) &&
11632 (kvm_cpu_has_interrupt(vcpu) ||
11633 kvm_guest_apic_has_interrupt(vcpu)))
11634 return true;
11635
11636 if (kvm_hv_has_stimer_pending(vcpu))
11637 return true;
11638
11639 if (is_guest_mode(vcpu) &&
11640 kvm_x86_ops.nested_ops->hv_timer_pending &&
11641 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11642 return true;
11643
11644 return false;
11645 }
11646
11647 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11648 {
11649 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11650 }
11651
11652 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11653 {
11654 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11655 return true;
11656
11657 return false;
11658 }
11659
11660 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11661 {
11662 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11663 return true;
11664
11665 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11666 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11667 kvm_test_request(KVM_REQ_EVENT, vcpu))
11668 return true;
11669
11670 return kvm_arch_dy_has_pending_interrupt(vcpu);
11671 }
11672
11673 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11674 {
11675 if (vcpu->arch.guest_state_protected)
11676 return true;
11677
11678 return vcpu->arch.preempted_in_kernel;
11679 }
11680
11681 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11682 {
11683 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11684 }
11685
11686 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11687 {
11688 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11689 }
11690
11691 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11692 {
11693 /* Can't read the RIP when guest state is protected, just return 0 */
11694 if (vcpu->arch.guest_state_protected)
11695 return 0;
11696
11697 if (is_64_bit_mode(vcpu))
11698 return kvm_rip_read(vcpu);
11699 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11700 kvm_rip_read(vcpu));
11701 }
11702 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11703
11704 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11705 {
11706 return kvm_get_linear_rip(vcpu) == linear_rip;
11707 }
11708 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11709
11710 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11711 {
11712 unsigned long rflags;
11713
11714 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11715 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11716 rflags &= ~X86_EFLAGS_TF;
11717 return rflags;
11718 }
11719 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11720
11721 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11722 {
11723 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11724 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11725 rflags |= X86_EFLAGS_TF;
11726 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11727 }
11728
11729 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11730 {
11731 __kvm_set_rflags(vcpu, rflags);
11732 kvm_make_request(KVM_REQ_EVENT, vcpu);
11733 }
11734 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11735
11736 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11737 {
11738 int r;
11739
11740 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11741 work->wakeup_all)
11742 return;
11743
11744 r = kvm_mmu_reload(vcpu);
11745 if (unlikely(r))
11746 return;
11747
11748 if (!vcpu->arch.mmu->direct_map &&
11749 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11750 return;
11751
11752 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11753 }
11754
11755 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11756 {
11757 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11758
11759 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11760 }
11761
11762 static inline u32 kvm_async_pf_next_probe(u32 key)
11763 {
11764 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11765 }
11766
11767 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11768 {
11769 u32 key = kvm_async_pf_hash_fn(gfn);
11770
11771 while (vcpu->arch.apf.gfns[key] != ~0)
11772 key = kvm_async_pf_next_probe(key);
11773
11774 vcpu->arch.apf.gfns[key] = gfn;
11775 }
11776
11777 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11778 {
11779 int i;
11780 u32 key = kvm_async_pf_hash_fn(gfn);
11781
11782 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11783 (vcpu->arch.apf.gfns[key] != gfn &&
11784 vcpu->arch.apf.gfns[key] != ~0); i++)
11785 key = kvm_async_pf_next_probe(key);
11786
11787 return key;
11788 }
11789
11790 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11791 {
11792 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11793 }
11794
11795 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11796 {
11797 u32 i, j, k;
11798
11799 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11800
11801 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11802 return;
11803
11804 while (true) {
11805 vcpu->arch.apf.gfns[i] = ~0;
11806 do {
11807 j = kvm_async_pf_next_probe(j);
11808 if (vcpu->arch.apf.gfns[j] == ~0)
11809 return;
11810 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11811 /*
11812 * k lies cyclically in ]i,j]
11813 * | i.k.j |
11814 * |....j i.k.| or |.k..j i...|
11815 */
11816 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11817 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11818 i = j;
11819 }
11820 }
11821
11822 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11823 {
11824 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11825
11826 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11827 sizeof(reason));
11828 }
11829
11830 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11831 {
11832 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11833
11834 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11835 &token, offset, sizeof(token));
11836 }
11837
11838 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11839 {
11840 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11841 u32 val;
11842
11843 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11844 &val, offset, sizeof(val)))
11845 return false;
11846
11847 return !val;
11848 }
11849
11850 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11851 {
11852 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11853 return false;
11854
11855 if (!kvm_pv_async_pf_enabled(vcpu) ||
11856 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11857 return false;
11858
11859 return true;
11860 }
11861
11862 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11863 {
11864 if (unlikely(!lapic_in_kernel(vcpu) ||
11865 kvm_event_needs_reinjection(vcpu) ||
11866 vcpu->arch.exception.pending))
11867 return false;
11868
11869 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11870 return false;
11871
11872 /*
11873 * If interrupts are off we cannot even use an artificial
11874 * halt state.
11875 */
11876 return kvm_arch_interrupt_allowed(vcpu);
11877 }
11878
11879 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11880 struct kvm_async_pf *work)
11881 {
11882 struct x86_exception fault;
11883
11884 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11885 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11886
11887 if (kvm_can_deliver_async_pf(vcpu) &&
11888 !apf_put_user_notpresent(vcpu)) {
11889 fault.vector = PF_VECTOR;
11890 fault.error_code_valid = true;
11891 fault.error_code = 0;
11892 fault.nested_page_fault = false;
11893 fault.address = work->arch.token;
11894 fault.async_page_fault = true;
11895 kvm_inject_page_fault(vcpu, &fault);
11896 return true;
11897 } else {
11898 /*
11899 * It is not possible to deliver a paravirtualized asynchronous
11900 * page fault, but putting the guest in an artificial halt state
11901 * can be beneficial nevertheless: if an interrupt arrives, we
11902 * can deliver it timely and perhaps the guest will schedule
11903 * another process. When the instruction that triggered a page
11904 * fault is retried, hopefully the page will be ready in the host.
11905 */
11906 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11907 return false;
11908 }
11909 }
11910
11911 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11912 struct kvm_async_pf *work)
11913 {
11914 struct kvm_lapic_irq irq = {
11915 .delivery_mode = APIC_DM_FIXED,
11916 .vector = vcpu->arch.apf.vec
11917 };
11918
11919 if (work->wakeup_all)
11920 work->arch.token = ~0; /* broadcast wakeup */
11921 else
11922 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11923 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11924
11925 if ((work->wakeup_all || work->notpresent_injected) &&
11926 kvm_pv_async_pf_enabled(vcpu) &&
11927 !apf_put_user_ready(vcpu, work->arch.token)) {
11928 vcpu->arch.apf.pageready_pending = true;
11929 kvm_apic_set_irq(vcpu, &irq, NULL);
11930 }
11931
11932 vcpu->arch.apf.halted = false;
11933 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11934 }
11935
11936 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11937 {
11938 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11939 if (!vcpu->arch.apf.pageready_pending)
11940 kvm_vcpu_kick(vcpu);
11941 }
11942
11943 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11944 {
11945 if (!kvm_pv_async_pf_enabled(vcpu))
11946 return true;
11947 else
11948 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11949 }
11950
11951 void kvm_arch_start_assignment(struct kvm *kvm)
11952 {
11953 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11954 static_call_cond(kvm_x86_start_assignment)(kvm);
11955 }
11956 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11957
11958 void kvm_arch_end_assignment(struct kvm *kvm)
11959 {
11960 atomic_dec(&kvm->arch.assigned_device_count);
11961 }
11962 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11963
11964 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11965 {
11966 return atomic_read(&kvm->arch.assigned_device_count);
11967 }
11968 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11969
11970 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11971 {
11972 atomic_inc(&kvm->arch.noncoherent_dma_count);
11973 }
11974 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11975
11976 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11977 {
11978 atomic_dec(&kvm->arch.noncoherent_dma_count);
11979 }
11980 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11981
11982 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11983 {
11984 return atomic_read(&kvm->arch.noncoherent_dma_count);
11985 }
11986 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11987
11988 bool kvm_arch_has_irq_bypass(void)
11989 {
11990 return true;
11991 }
11992
11993 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11994 struct irq_bypass_producer *prod)
11995 {
11996 struct kvm_kernel_irqfd *irqfd =
11997 container_of(cons, struct kvm_kernel_irqfd, consumer);
11998 int ret;
11999
12000 irqfd->producer = prod;
12001 kvm_arch_start_assignment(irqfd->kvm);
12002 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12003 prod->irq, irqfd->gsi, 1);
12004
12005 if (ret)
12006 kvm_arch_end_assignment(irqfd->kvm);
12007
12008 return ret;
12009 }
12010
12011 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12012 struct irq_bypass_producer *prod)
12013 {
12014 int ret;
12015 struct kvm_kernel_irqfd *irqfd =
12016 container_of(cons, struct kvm_kernel_irqfd, consumer);
12017
12018 WARN_ON(irqfd->producer != prod);
12019 irqfd->producer = NULL;
12020
12021 /*
12022 * When producer of consumer is unregistered, we change back to
12023 * remapped mode, so we can re-use the current implementation
12024 * when the irq is masked/disabled or the consumer side (KVM
12025 * int this case doesn't want to receive the interrupts.
12026 */
12027 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12028 if (ret)
12029 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12030 " fails: %d\n", irqfd->consumer.token, ret);
12031
12032 kvm_arch_end_assignment(irqfd->kvm);
12033 }
12034
12035 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12036 uint32_t guest_irq, bool set)
12037 {
12038 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12039 }
12040
12041 bool kvm_vector_hashing_enabled(void)
12042 {
12043 return vector_hashing;
12044 }
12045
12046 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12047 {
12048 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12049 }
12050 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12051
12052
12053 int kvm_spec_ctrl_test_value(u64 value)
12054 {
12055 /*
12056 * test that setting IA32_SPEC_CTRL to given value
12057 * is allowed by the host processor
12058 */
12059
12060 u64 saved_value;
12061 unsigned long flags;
12062 int ret = 0;
12063
12064 local_irq_save(flags);
12065
12066 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12067 ret = 1;
12068 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12069 ret = 1;
12070 else
12071 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12072
12073 local_irq_restore(flags);
12074
12075 return ret;
12076 }
12077 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12078
12079 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12080 {
12081 struct x86_exception fault;
12082 u32 access = error_code &
12083 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12084
12085 if (!(error_code & PFERR_PRESENT_MASK) ||
12086 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12087 /*
12088 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12089 * tables probably do not match the TLB. Just proceed
12090 * with the error code that the processor gave.
12091 */
12092 fault.vector = PF_VECTOR;
12093 fault.error_code_valid = true;
12094 fault.error_code = error_code;
12095 fault.nested_page_fault = false;
12096 fault.address = gva;
12097 }
12098 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12099 }
12100 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12101
12102 /*
12103 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12104 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12105 * indicates whether exit to userspace is needed.
12106 */
12107 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12108 struct x86_exception *e)
12109 {
12110 if (r == X86EMUL_PROPAGATE_FAULT) {
12111 kvm_inject_emulated_page_fault(vcpu, e);
12112 return 1;
12113 }
12114
12115 /*
12116 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12117 * while handling a VMX instruction KVM could've handled the request
12118 * correctly by exiting to userspace and performing I/O but there
12119 * doesn't seem to be a real use-case behind such requests, just return
12120 * KVM_EXIT_INTERNAL_ERROR for now.
12121 */
12122 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12123 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12124 vcpu->run->internal.ndata = 0;
12125
12126 return 0;
12127 }
12128 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12129
12130 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12131 {
12132 bool pcid_enabled;
12133 struct x86_exception e;
12134 struct {
12135 u64 pcid;
12136 u64 gla;
12137 } operand;
12138 int r;
12139
12140 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12141 if (r != X86EMUL_CONTINUE)
12142 return kvm_handle_memory_failure(vcpu, r, &e);
12143
12144 if (operand.pcid >> 12 != 0) {
12145 kvm_inject_gp(vcpu, 0);
12146 return 1;
12147 }
12148
12149 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12150
12151 switch (type) {
12152 case INVPCID_TYPE_INDIV_ADDR:
12153 if ((!pcid_enabled && (operand.pcid != 0)) ||
12154 is_noncanonical_address(operand.gla, vcpu)) {
12155 kvm_inject_gp(vcpu, 0);
12156 return 1;
12157 }
12158 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12159 return kvm_skip_emulated_instruction(vcpu);
12160
12161 case INVPCID_TYPE_SINGLE_CTXT:
12162 if (!pcid_enabled && (operand.pcid != 0)) {
12163 kvm_inject_gp(vcpu, 0);
12164 return 1;
12165 }
12166
12167 kvm_invalidate_pcid(vcpu, operand.pcid);
12168 return kvm_skip_emulated_instruction(vcpu);
12169
12170 case INVPCID_TYPE_ALL_NON_GLOBAL:
12171 /*
12172 * Currently, KVM doesn't mark global entries in the shadow
12173 * page tables, so a non-global flush just degenerates to a
12174 * global flush. If needed, we could optimize this later by
12175 * keeping track of global entries in shadow page tables.
12176 */
12177
12178 fallthrough;
12179 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12180 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12181 return kvm_skip_emulated_instruction(vcpu);
12182
12183 default:
12184 BUG(); /* We have already checked above that type <= 3 */
12185 }
12186 }
12187 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12188
12189 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12190 {
12191 struct kvm_run *run = vcpu->run;
12192 struct kvm_mmio_fragment *frag;
12193 unsigned int len;
12194
12195 BUG_ON(!vcpu->mmio_needed);
12196
12197 /* Complete previous fragment */
12198 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12199 len = min(8u, frag->len);
12200 if (!vcpu->mmio_is_write)
12201 memcpy(frag->data, run->mmio.data, len);
12202
12203 if (frag->len <= 8) {
12204 /* Switch to the next fragment. */
12205 frag++;
12206 vcpu->mmio_cur_fragment++;
12207 } else {
12208 /* Go forward to the next mmio piece. */
12209 frag->data += len;
12210 frag->gpa += len;
12211 frag->len -= len;
12212 }
12213
12214 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12215 vcpu->mmio_needed = 0;
12216
12217 // VMG change, at this point, we're always done
12218 // RIP has already been advanced
12219 return 1;
12220 }
12221
12222 // More MMIO is needed
12223 run->mmio.phys_addr = frag->gpa;
12224 run->mmio.len = min(8u, frag->len);
12225 run->mmio.is_write = vcpu->mmio_is_write;
12226 if (run->mmio.is_write)
12227 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12228 run->exit_reason = KVM_EXIT_MMIO;
12229
12230 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12231
12232 return 0;
12233 }
12234
12235 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12236 void *data)
12237 {
12238 int handled;
12239 struct kvm_mmio_fragment *frag;
12240
12241 if (!data)
12242 return -EINVAL;
12243
12244 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12245 if (handled == bytes)
12246 return 1;
12247
12248 bytes -= handled;
12249 gpa += handled;
12250 data += handled;
12251
12252 /*TODO: Check if need to increment number of frags */
12253 frag = vcpu->mmio_fragments;
12254 vcpu->mmio_nr_fragments = 1;
12255 frag->len = bytes;
12256 frag->gpa = gpa;
12257 frag->data = data;
12258
12259 vcpu->mmio_needed = 1;
12260 vcpu->mmio_cur_fragment = 0;
12261
12262 vcpu->run->mmio.phys_addr = gpa;
12263 vcpu->run->mmio.len = min(8u, frag->len);
12264 vcpu->run->mmio.is_write = 1;
12265 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12266 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12267
12268 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12269
12270 return 0;
12271 }
12272 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12273
12274 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12275 void *data)
12276 {
12277 int handled;
12278 struct kvm_mmio_fragment *frag;
12279
12280 if (!data)
12281 return -EINVAL;
12282
12283 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12284 if (handled == bytes)
12285 return 1;
12286
12287 bytes -= handled;
12288 gpa += handled;
12289 data += handled;
12290
12291 /*TODO: Check if need to increment number of frags */
12292 frag = vcpu->mmio_fragments;
12293 vcpu->mmio_nr_fragments = 1;
12294 frag->len = bytes;
12295 frag->gpa = gpa;
12296 frag->data = data;
12297
12298 vcpu->mmio_needed = 1;
12299 vcpu->mmio_cur_fragment = 0;
12300
12301 vcpu->run->mmio.phys_addr = gpa;
12302 vcpu->run->mmio.len = min(8u, frag->len);
12303 vcpu->run->mmio.is_write = 0;
12304 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12305
12306 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12307
12308 return 0;
12309 }
12310 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12311
12312 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12313 unsigned int port);
12314
12315 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12316 {
12317 int size = vcpu->arch.pio.size;
12318 int port = vcpu->arch.pio.port;
12319
12320 vcpu->arch.pio.count = 0;
12321 if (vcpu->arch.sev_pio_count)
12322 return kvm_sev_es_outs(vcpu, size, port);
12323 return 1;
12324 }
12325
12326 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12327 unsigned int port)
12328 {
12329 for (;;) {
12330 unsigned int count =
12331 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12332 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12333
12334 /* memcpy done already by emulator_pio_out. */
12335 vcpu->arch.sev_pio_count -= count;
12336 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12337 if (!ret)
12338 break;
12339
12340 /* Emulation done by the kernel. */
12341 if (!vcpu->arch.sev_pio_count)
12342 return 1;
12343 }
12344
12345 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12346 return 0;
12347 }
12348
12349 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12350 unsigned int port);
12351
12352 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12353 {
12354 unsigned count = vcpu->arch.pio.count;
12355 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12356 vcpu->arch.sev_pio_count -= count;
12357 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12358 }
12359
12360 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12361 {
12362 int size = vcpu->arch.pio.size;
12363 int port = vcpu->arch.pio.port;
12364
12365 advance_sev_es_emulated_ins(vcpu);
12366 if (vcpu->arch.sev_pio_count)
12367 return kvm_sev_es_ins(vcpu, size, port);
12368 return 1;
12369 }
12370
12371 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12372 unsigned int port)
12373 {
12374 for (;;) {
12375 unsigned int count =
12376 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12377 if (!__emulator_pio_in(vcpu, size, port, count))
12378 break;
12379
12380 /* Emulation done by the kernel. */
12381 advance_sev_es_emulated_ins(vcpu);
12382 if (!vcpu->arch.sev_pio_count)
12383 return 1;
12384 }
12385
12386 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12387 return 0;
12388 }
12389
12390 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12391 unsigned int port, void *data, unsigned int count,
12392 int in)
12393 {
12394 vcpu->arch.sev_pio_data = data;
12395 vcpu->arch.sev_pio_count = count;
12396 return in ? kvm_sev_es_ins(vcpu, size, port)
12397 : kvm_sev_es_outs(vcpu, size, port);
12398 }
12399 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12400
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12428
12429 static int __init kvm_x86_init(void)
12430 {
12431 kvm_mmu_x86_module_init();
12432 return 0;
12433 }
12434 module_init(kvm_x86_init);
12435
12436 static void __exit kvm_x86_exit(void)
12437 {
12438 /*
12439 * If module_init() is implemented, module_exit() must also be
12440 * implemented to allow module unload.
12441 */
12442 }
12443 module_exit(kvm_x86_exit);