]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 200;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "l1d_flush", VCPU_STAT(l1d_flush) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 /*
570 * Load the pae pdptrs. Return true is they are all valid.
571 */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
586 }
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
593 }
594 }
595 ret = 1;
596
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
615
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
618
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
622
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632 return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641 cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
647
648 cr0 &= ~CR0_RESERVED_BITS;
649
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
652
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
655
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
660
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
671 }
672
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
675
676 kvm_x86_ops->set_cr0(vcpu, cr0);
677
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
681 }
682
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
685
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
707 vcpu->guest_xcr0_loaded = 1;
708 }
709 }
710
711 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
712 {
713 if (vcpu->guest_xcr0_loaded) {
714 if (vcpu->arch.xcr0 != host_xcr0)
715 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
716 vcpu->guest_xcr0_loaded = 0;
717 }
718 }
719
720 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
721 {
722 u64 xcr0 = xcr;
723 u64 old_xcr0 = vcpu->arch.xcr0;
724 u64 valid_bits;
725
726 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
727 if (index != XCR_XFEATURE_ENABLED_MASK)
728 return 1;
729 if (!(xcr0 & XFEATURE_MASK_FP))
730 return 1;
731 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
732 return 1;
733
734 /*
735 * Do not allow the guest to set bits that we do not support
736 * saving. However, xcr0 bit 0 is always set, even if the
737 * emulated CPU does not support XSAVE (see fx_init).
738 */
739 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
740 if (xcr0 & ~valid_bits)
741 return 1;
742
743 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
744 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
745 return 1;
746
747 if (xcr0 & XFEATURE_MASK_AVX512) {
748 if (!(xcr0 & XFEATURE_MASK_YMM))
749 return 1;
750 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
751 return 1;
752 }
753 vcpu->arch.xcr0 = xcr0;
754
755 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
756 kvm_update_cpuid(vcpu);
757 return 0;
758 }
759
760 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
761 {
762 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
763 __kvm_set_xcr(vcpu, index, xcr)) {
764 kvm_inject_gp(vcpu, 0);
765 return 1;
766 }
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_xcr);
770
771 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
772 {
773 unsigned long old_cr4 = kvm_read_cr4(vcpu);
774 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
775 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
776
777 if (cr4 & CR4_RESERVED_BITS)
778 return 1;
779
780 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
781 return 1;
782
783 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
784 return 1;
785
786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
787 return 1;
788
789 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
790 return 1;
791
792 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
793 return 1;
794
795 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
796 return 1;
797
798 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
799 return 1;
800
801 if (is_long_mode(vcpu)) {
802 if (!(cr4 & X86_CR4_PAE))
803 return 1;
804 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
805 && ((cr4 ^ old_cr4) & pdptr_bits)
806 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
807 kvm_read_cr3(vcpu)))
808 return 1;
809
810 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
812 return 1;
813
814 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
815 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
816 return 1;
817 }
818
819 if (kvm_x86_ops->set_cr4(vcpu, cr4))
820 return 1;
821
822 if (((cr4 ^ old_cr4) & pdptr_bits) ||
823 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
824 kvm_mmu_reset_context(vcpu);
825
826 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
827 kvm_update_cpuid(vcpu);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_set_cr4);
832
833 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
834 {
835 #ifdef CONFIG_X86_64
836 cr3 &= ~CR3_PCID_INVD;
837 #endif
838
839 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
840 kvm_mmu_sync_roots(vcpu);
841 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
842 return 0;
843 }
844
845 if (is_long_mode(vcpu) &&
846 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
847 return 1;
848 else if (is_pae(vcpu) && is_paging(vcpu) &&
849 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
850 return 1;
851
852 vcpu->arch.cr3 = cr3;
853 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
854 kvm_mmu_new_cr3(vcpu);
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(kvm_set_cr3);
858
859 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
860 {
861 if (cr8 & CR8_RESERVED_BITS)
862 return 1;
863 if (lapic_in_kernel(vcpu))
864 kvm_lapic_set_tpr(vcpu, cr8);
865 else
866 vcpu->arch.cr8 = cr8;
867 return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_set_cr8);
870
871 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
872 {
873 if (lapic_in_kernel(vcpu))
874 return kvm_lapic_get_cr8(vcpu);
875 else
876 return vcpu->arch.cr8;
877 }
878 EXPORT_SYMBOL_GPL(kvm_get_cr8);
879
880 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
881 {
882 int i;
883
884 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
885 for (i = 0; i < KVM_NR_DB_REGS; i++)
886 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
887 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
888 }
889 }
890
891 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
892 {
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
895 }
896
897 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
898 {
899 unsigned long dr7;
900
901 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
902 dr7 = vcpu->arch.guest_debug_dr7;
903 else
904 dr7 = vcpu->arch.dr7;
905 kvm_x86_ops->set_dr7(vcpu, dr7);
906 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
907 if (dr7 & DR7_BP_EN_MASK)
908 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
909 }
910
911 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
912 {
913 u64 fixed = DR6_FIXED_1;
914
915 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
916 fixed |= DR6_RTM;
917 return fixed;
918 }
919
920 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 switch (dr) {
923 case 0 ... 3:
924 vcpu->arch.db[dr] = val;
925 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
926 vcpu->arch.eff_db[dr] = val;
927 break;
928 case 4:
929 /* fall through */
930 case 6:
931 if (val & 0xffffffff00000000ULL)
932 return -1; /* #GP */
933 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
934 kvm_update_dr6(vcpu);
935 break;
936 case 5:
937 /* fall through */
938 default: /* 7 */
939 if (val & 0xffffffff00000000ULL)
940 return -1; /* #GP */
941 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
942 kvm_update_dr7(vcpu);
943 break;
944 }
945
946 return 0;
947 }
948
949 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
950 {
951 if (__kvm_set_dr(vcpu, dr, val)) {
952 kvm_inject_gp(vcpu, 0);
953 return 1;
954 }
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_dr);
958
959 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
960 {
961 switch (dr) {
962 case 0 ... 3:
963 *val = vcpu->arch.db[dr];
964 break;
965 case 4:
966 /* fall through */
967 case 6:
968 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
969 *val = vcpu->arch.dr6;
970 else
971 *val = kvm_x86_ops->get_dr6(vcpu);
972 break;
973 case 5:
974 /* fall through */
975 default: /* 7 */
976 *val = vcpu->arch.dr7;
977 break;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_get_dr);
982
983 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
984 {
985 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
986 u64 data;
987 int err;
988
989 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
990 if (err)
991 return err;
992 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
993 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
994 return err;
995 }
996 EXPORT_SYMBOL_GPL(kvm_rdpmc);
997
998 /*
999 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1000 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1001 *
1002 * This list is modified at module load time to reflect the
1003 * capabilities of the host cpu. This capabilities test skips MSRs that are
1004 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1005 * may depend on host virtualization features rather than host cpu features.
1006 */
1007
1008 static u32 msrs_to_save[] = {
1009 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1010 MSR_STAR,
1011 #ifdef CONFIG_X86_64
1012 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1013 #endif
1014 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1015 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1016 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1017 };
1018
1019 static unsigned num_msrs_to_save;
1020
1021 static u32 emulated_msrs[] = {
1022 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1023 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1024 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1025 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1026 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1027 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1028 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1029 HV_X64_MSR_RESET,
1030 HV_X64_MSR_VP_INDEX,
1031 HV_X64_MSR_VP_RUNTIME,
1032 HV_X64_MSR_SCONTROL,
1033 HV_X64_MSR_STIMER0_CONFIG,
1034 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1035 MSR_KVM_PV_EOI_EN,
1036
1037 MSR_IA32_TSC_ADJUST,
1038 MSR_IA32_TSCDEADLINE,
1039 MSR_IA32_MISC_ENABLE,
1040 MSR_IA32_MCG_STATUS,
1041 MSR_IA32_MCG_CTL,
1042 MSR_IA32_MCG_EXT_CTL,
1043 MSR_IA32_SMBASE,
1044 MSR_PLATFORM_INFO,
1045 MSR_MISC_FEATURES_ENABLES,
1046 MSR_AMD64_VIRT_SPEC_CTRL,
1047 };
1048
1049 static unsigned num_emulated_msrs;
1050
1051 /*
1052 * List of msr numbers which are used to expose MSR-based features that
1053 * can be used by a hypervisor to validate requested CPU features.
1054 */
1055 static u32 msr_based_features[] = {
1056 MSR_F10H_DECFG,
1057 MSR_IA32_UCODE_REV,
1058 MSR_IA32_ARCH_CAPABILITIES,
1059 };
1060
1061 static unsigned int num_msr_based_features;
1062
1063 u64 kvm_get_arch_capabilities(void)
1064 {
1065 u64 data;
1066
1067 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1068
1069 /*
1070 * If we're doing cache flushes (either "always" or "cond")
1071 * we will do one whenever the guest does a vmlaunch/vmresume.
1072 * If an outer hypervisor is doing the cache flush for us
1073 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1074 * capability to the guest too, and if EPT is disabled we're not
1075 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1076 * require a nested hypervisor to do a flush of its own.
1077 */
1078 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1079 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1080
1081 return data;
1082 }
1083 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1084
1085 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1086 {
1087 switch (msr->index) {
1088 case MSR_IA32_ARCH_CAPABILITIES:
1089 msr->data = kvm_get_arch_capabilities();
1090 break;
1091 case MSR_IA32_UCODE_REV:
1092 rdmsrl_safe(msr->index, &msr->data);
1093 break;
1094 default:
1095 if (kvm_x86_ops->get_msr_feature(msr))
1096 return 1;
1097 }
1098 return 0;
1099 }
1100
1101 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1102 {
1103 struct kvm_msr_entry msr;
1104 int r;
1105
1106 msr.index = index;
1107 r = kvm_get_msr_feature(&msr);
1108 if (r)
1109 return r;
1110
1111 *data = msr.data;
1112
1113 return 0;
1114 }
1115
1116 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1117 {
1118 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1119 return false;
1120
1121 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1122 return false;
1123
1124 return true;
1125
1126 }
1127 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1128 {
1129 if (efer & efer_reserved_bits)
1130 return false;
1131
1132 return __kvm_valid_efer(vcpu, efer);
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1135
1136 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1137 {
1138 u64 old_efer = vcpu->arch.efer;
1139 u64 efer = msr_info->data;
1140
1141 if (efer & efer_reserved_bits)
1142 return false;
1143
1144 if (!msr_info->host_initiated) {
1145 if (!__kvm_valid_efer(vcpu, efer))
1146 return 1;
1147
1148 if (is_paging(vcpu) &&
1149 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1150 return 1;
1151 }
1152
1153 efer &= ~EFER_LMA;
1154 efer |= vcpu->arch.efer & EFER_LMA;
1155
1156 kvm_x86_ops->set_efer(vcpu, efer);
1157
1158 /* Update reserved bits */
1159 if ((efer ^ old_efer) & EFER_NX)
1160 kvm_mmu_reset_context(vcpu);
1161
1162 return 0;
1163 }
1164
1165 void kvm_enable_efer_bits(u64 mask)
1166 {
1167 efer_reserved_bits &= ~mask;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1170
1171 /*
1172 * Writes msr value into into the appropriate "register".
1173 * Returns 0 on success, non-0 otherwise.
1174 * Assumes vcpu_load() was already called.
1175 */
1176 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1177 {
1178 switch (msr->index) {
1179 case MSR_FS_BASE:
1180 case MSR_GS_BASE:
1181 case MSR_KERNEL_GS_BASE:
1182 case MSR_CSTAR:
1183 case MSR_LSTAR:
1184 if (is_noncanonical_address(msr->data, vcpu))
1185 return 1;
1186 break;
1187 case MSR_IA32_SYSENTER_EIP:
1188 case MSR_IA32_SYSENTER_ESP:
1189 /*
1190 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1191 * non-canonical address is written on Intel but not on
1192 * AMD (which ignores the top 32-bits, because it does
1193 * not implement 64-bit SYSENTER).
1194 *
1195 * 64-bit code should hence be able to write a non-canonical
1196 * value on AMD. Making the address canonical ensures that
1197 * vmentry does not fail on Intel after writing a non-canonical
1198 * value, and that something deterministic happens if the guest
1199 * invokes 64-bit SYSENTER.
1200 */
1201 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1202 }
1203 return kvm_x86_ops->set_msr(vcpu, msr);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_set_msr);
1206
1207 /*
1208 * Adapt set_msr() to msr_io()'s calling convention
1209 */
1210 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1211 {
1212 struct msr_data msr;
1213 int r;
1214
1215 msr.index = index;
1216 msr.host_initiated = true;
1217 r = kvm_get_msr(vcpu, &msr);
1218 if (r)
1219 return r;
1220
1221 *data = msr.data;
1222 return 0;
1223 }
1224
1225 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1226 {
1227 struct msr_data msr;
1228
1229 msr.data = *data;
1230 msr.index = index;
1231 msr.host_initiated = true;
1232 return kvm_set_msr(vcpu, &msr);
1233 }
1234
1235 #ifdef CONFIG_X86_64
1236 struct pvclock_gtod_data {
1237 seqcount_t seq;
1238
1239 struct { /* extract of a clocksource struct */
1240 int vclock_mode;
1241 u64 cycle_last;
1242 u64 mask;
1243 u32 mult;
1244 u32 shift;
1245 } clock;
1246
1247 u64 boot_ns;
1248 u64 nsec_base;
1249 u64 wall_time_sec;
1250 };
1251
1252 static struct pvclock_gtod_data pvclock_gtod_data;
1253
1254 static void update_pvclock_gtod(struct timekeeper *tk)
1255 {
1256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1257 u64 boot_ns;
1258
1259 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1260
1261 write_seqcount_begin(&vdata->seq);
1262
1263 /* copy pvclock gtod data */
1264 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1265 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1266 vdata->clock.mask = tk->tkr_mono.mask;
1267 vdata->clock.mult = tk->tkr_mono.mult;
1268 vdata->clock.shift = tk->tkr_mono.shift;
1269
1270 vdata->boot_ns = boot_ns;
1271 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1272
1273 vdata->wall_time_sec = tk->xtime_sec;
1274
1275 write_seqcount_end(&vdata->seq);
1276 }
1277 #endif
1278
1279 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1280 {
1281 /*
1282 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1283 * vcpu_enter_guest. This function is only called from
1284 * the physical CPU that is running vcpu.
1285 */
1286 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1287 }
1288
1289 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1290 {
1291 int version;
1292 int r;
1293 struct pvclock_wall_clock wc;
1294 struct timespec64 boot;
1295
1296 if (!wall_clock)
1297 return;
1298
1299 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1300 if (r)
1301 return;
1302
1303 if (version & 1)
1304 ++version; /* first time write, random junk */
1305
1306 ++version;
1307
1308 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1309 return;
1310
1311 /*
1312 * The guest calculates current wall clock time by adding
1313 * system time (updated by kvm_guest_time_update below) to the
1314 * wall clock specified here. guest system time equals host
1315 * system time for us, thus we must fill in host boot time here.
1316 */
1317 getboottime64(&boot);
1318
1319 if (kvm->arch.kvmclock_offset) {
1320 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1321 boot = timespec64_sub(boot, ts);
1322 }
1323 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1324 wc.nsec = boot.tv_nsec;
1325 wc.version = version;
1326
1327 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1328
1329 version++;
1330 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1331 }
1332
1333 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1334 {
1335 do_shl32_div32(dividend, divisor);
1336 return dividend;
1337 }
1338
1339 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1340 s8 *pshift, u32 *pmultiplier)
1341 {
1342 uint64_t scaled64;
1343 int32_t shift = 0;
1344 uint64_t tps64;
1345 uint32_t tps32;
1346
1347 tps64 = base_hz;
1348 scaled64 = scaled_hz;
1349 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1350 tps64 >>= 1;
1351 shift--;
1352 }
1353
1354 tps32 = (uint32_t)tps64;
1355 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1356 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1357 scaled64 >>= 1;
1358 else
1359 tps32 <<= 1;
1360 shift++;
1361 }
1362
1363 *pshift = shift;
1364 *pmultiplier = div_frac(scaled64, tps32);
1365
1366 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1367 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1368 }
1369
1370 #ifdef CONFIG_X86_64
1371 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1372 #endif
1373
1374 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1375 static unsigned long max_tsc_khz;
1376
1377 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1378 {
1379 u64 v = (u64)khz * (1000000 + ppm);
1380 do_div(v, 1000000);
1381 return v;
1382 }
1383
1384 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1385 {
1386 u64 ratio;
1387
1388 /* Guest TSC same frequency as host TSC? */
1389 if (!scale) {
1390 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1391 return 0;
1392 }
1393
1394 /* TSC scaling supported? */
1395 if (!kvm_has_tsc_control) {
1396 if (user_tsc_khz > tsc_khz) {
1397 vcpu->arch.tsc_catchup = 1;
1398 vcpu->arch.tsc_always_catchup = 1;
1399 return 0;
1400 } else {
1401 WARN(1, "user requested TSC rate below hardware speed\n");
1402 return -1;
1403 }
1404 }
1405
1406 /* TSC scaling required - calculate ratio */
1407 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1408 user_tsc_khz, tsc_khz);
1409
1410 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1411 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1412 user_tsc_khz);
1413 return -1;
1414 }
1415
1416 vcpu->arch.tsc_scaling_ratio = ratio;
1417 return 0;
1418 }
1419
1420 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1421 {
1422 u32 thresh_lo, thresh_hi;
1423 int use_scaling = 0;
1424
1425 /* tsc_khz can be zero if TSC calibration fails */
1426 if (user_tsc_khz == 0) {
1427 /* set tsc_scaling_ratio to a safe value */
1428 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429 return -1;
1430 }
1431
1432 /* Compute a scale to convert nanoseconds in TSC cycles */
1433 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1434 &vcpu->arch.virtual_tsc_shift,
1435 &vcpu->arch.virtual_tsc_mult);
1436 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1437
1438 /*
1439 * Compute the variation in TSC rate which is acceptable
1440 * within the range of tolerance and decide if the
1441 * rate being applied is within that bounds of the hardware
1442 * rate. If so, no scaling or compensation need be done.
1443 */
1444 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1445 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1446 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1447 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1448 use_scaling = 1;
1449 }
1450 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1451 }
1452
1453 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1454 {
1455 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1456 vcpu->arch.virtual_tsc_mult,
1457 vcpu->arch.virtual_tsc_shift);
1458 tsc += vcpu->arch.this_tsc_write;
1459 return tsc;
1460 }
1461
1462 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1463 {
1464 #ifdef CONFIG_X86_64
1465 bool vcpus_matched;
1466 struct kvm_arch *ka = &vcpu->kvm->arch;
1467 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1468
1469 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1470 atomic_read(&vcpu->kvm->online_vcpus));
1471
1472 /*
1473 * Once the masterclock is enabled, always perform request in
1474 * order to update it.
1475 *
1476 * In order to enable masterclock, the host clocksource must be TSC
1477 * and the vcpus need to have matched TSCs. When that happens,
1478 * perform request to enable masterclock.
1479 */
1480 if (ka->use_master_clock ||
1481 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1482 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1483
1484 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1485 atomic_read(&vcpu->kvm->online_vcpus),
1486 ka->use_master_clock, gtod->clock.vclock_mode);
1487 #endif
1488 }
1489
1490 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1491 {
1492 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1493 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1494 }
1495
1496 /*
1497 * Multiply tsc by a fixed point number represented by ratio.
1498 *
1499 * The most significant 64-N bits (mult) of ratio represent the
1500 * integral part of the fixed point number; the remaining N bits
1501 * (frac) represent the fractional part, ie. ratio represents a fixed
1502 * point number (mult + frac * 2^(-N)).
1503 *
1504 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1505 */
1506 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1507 {
1508 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1509 }
1510
1511 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1512 {
1513 u64 _tsc = tsc;
1514 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1515
1516 if (ratio != kvm_default_tsc_scaling_ratio)
1517 _tsc = __scale_tsc(ratio, tsc);
1518
1519 return _tsc;
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1522
1523 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1524 {
1525 u64 tsc;
1526
1527 tsc = kvm_scale_tsc(vcpu, rdtsc());
1528
1529 return target_tsc - tsc;
1530 }
1531
1532 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1533 {
1534 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1535
1536 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1539
1540 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1541 {
1542 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1543 }
1544
1545 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1546 {
1547 struct kvm *kvm = vcpu->kvm;
1548 u64 offset, ns, elapsed;
1549 unsigned long flags;
1550 bool matched;
1551 bool already_matched;
1552 u64 data = msr->data;
1553 bool synchronizing = false;
1554
1555 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1556 offset = kvm_compute_tsc_offset(vcpu, data);
1557 ns = ktime_get_boot_ns();
1558 elapsed = ns - kvm->arch.last_tsc_nsec;
1559
1560 if (vcpu->arch.virtual_tsc_khz) {
1561 if (data == 0 && msr->host_initiated) {
1562 /*
1563 * detection of vcpu initialization -- need to sync
1564 * with other vCPUs. This particularly helps to keep
1565 * kvm_clock stable after CPU hotplug
1566 */
1567 synchronizing = true;
1568 } else {
1569 u64 tsc_exp = kvm->arch.last_tsc_write +
1570 nsec_to_cycles(vcpu, elapsed);
1571 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1572 /*
1573 * Special case: TSC write with a small delta (1 second)
1574 * of virtual cycle time against real time is
1575 * interpreted as an attempt to synchronize the CPU.
1576 */
1577 synchronizing = data < tsc_exp + tsc_hz &&
1578 data + tsc_hz > tsc_exp;
1579 }
1580 }
1581
1582 /*
1583 * For a reliable TSC, we can match TSC offsets, and for an unstable
1584 * TSC, we add elapsed time in this computation. We could let the
1585 * compensation code attempt to catch up if we fall behind, but
1586 * it's better to try to match offsets from the beginning.
1587 */
1588 if (synchronizing &&
1589 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1590 if (!check_tsc_unstable()) {
1591 offset = kvm->arch.cur_tsc_offset;
1592 pr_debug("kvm: matched tsc offset for %llu\n", data);
1593 } else {
1594 u64 delta = nsec_to_cycles(vcpu, elapsed);
1595 data += delta;
1596 offset = kvm_compute_tsc_offset(vcpu, data);
1597 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1598 }
1599 matched = true;
1600 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1601 } else {
1602 /*
1603 * We split periods of matched TSC writes into generations.
1604 * For each generation, we track the original measured
1605 * nanosecond time, offset, and write, so if TSCs are in
1606 * sync, we can match exact offset, and if not, we can match
1607 * exact software computation in compute_guest_tsc()
1608 *
1609 * These values are tracked in kvm->arch.cur_xxx variables.
1610 */
1611 kvm->arch.cur_tsc_generation++;
1612 kvm->arch.cur_tsc_nsec = ns;
1613 kvm->arch.cur_tsc_write = data;
1614 kvm->arch.cur_tsc_offset = offset;
1615 matched = false;
1616 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1617 kvm->arch.cur_tsc_generation, data);
1618 }
1619
1620 /*
1621 * We also track th most recent recorded KHZ, write and time to
1622 * allow the matching interval to be extended at each write.
1623 */
1624 kvm->arch.last_tsc_nsec = ns;
1625 kvm->arch.last_tsc_write = data;
1626 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1627
1628 vcpu->arch.last_guest_tsc = data;
1629
1630 /* Keep track of which generation this VCPU has synchronized to */
1631 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1632 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1633 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1634
1635 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1636 update_ia32_tsc_adjust_msr(vcpu, offset);
1637
1638 kvm_vcpu_write_tsc_offset(vcpu, offset);
1639 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1640
1641 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1642 if (!matched) {
1643 kvm->arch.nr_vcpus_matched_tsc = 0;
1644 } else if (!already_matched) {
1645 kvm->arch.nr_vcpus_matched_tsc++;
1646 }
1647
1648 kvm_track_tsc_matching(vcpu);
1649 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1650 }
1651
1652 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1653
1654 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1655 s64 adjustment)
1656 {
1657 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1658 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1659 }
1660
1661 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1662 {
1663 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1664 WARN_ON(adjustment < 0);
1665 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1666 adjust_tsc_offset_guest(vcpu, adjustment);
1667 }
1668
1669 #ifdef CONFIG_X86_64
1670
1671 static u64 read_tsc(void)
1672 {
1673 u64 ret = (u64)rdtsc_ordered();
1674 u64 last = pvclock_gtod_data.clock.cycle_last;
1675
1676 if (likely(ret >= last))
1677 return ret;
1678
1679 /*
1680 * GCC likes to generate cmov here, but this branch is extremely
1681 * predictable (it's just a function of time and the likely is
1682 * very likely) and there's a data dependence, so force GCC
1683 * to generate a branch instead. I don't barrier() because
1684 * we don't actually need a barrier, and if this function
1685 * ever gets inlined it will generate worse code.
1686 */
1687 asm volatile ("");
1688 return last;
1689 }
1690
1691 static inline u64 vgettsc(u64 *cycle_now)
1692 {
1693 long v;
1694 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1695
1696 *cycle_now = read_tsc();
1697
1698 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1699 return v * gtod->clock.mult;
1700 }
1701
1702 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1703 {
1704 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1705 unsigned long seq;
1706 int mode;
1707 u64 ns;
1708
1709 do {
1710 seq = read_seqcount_begin(&gtod->seq);
1711 mode = gtod->clock.vclock_mode;
1712 ns = gtod->nsec_base;
1713 ns += vgettsc(cycle_now);
1714 ns >>= gtod->clock.shift;
1715 ns += gtod->boot_ns;
1716 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1717 *t = ns;
1718
1719 return mode;
1720 }
1721
1722 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1723 {
1724 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1725 unsigned long seq;
1726 int mode;
1727 u64 ns;
1728
1729 do {
1730 seq = read_seqcount_begin(&gtod->seq);
1731 mode = gtod->clock.vclock_mode;
1732 ts->tv_sec = gtod->wall_time_sec;
1733 ns = gtod->nsec_base;
1734 ns += vgettsc(cycle_now);
1735 ns >>= gtod->clock.shift;
1736 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1737
1738 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1739 ts->tv_nsec = ns;
1740
1741 return mode;
1742 }
1743
1744 /* returns true if host is using tsc clocksource */
1745 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1746 {
1747 /* checked again under seqlock below */
1748 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1749 return false;
1750
1751 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1752 }
1753
1754 /* returns true if host is using tsc clocksource */
1755 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1756 u64 *cycle_now)
1757 {
1758 /* checked again under seqlock below */
1759 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1760 return false;
1761
1762 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1763 }
1764 #endif
1765
1766 /*
1767 *
1768 * Assuming a stable TSC across physical CPUS, and a stable TSC
1769 * across virtual CPUs, the following condition is possible.
1770 * Each numbered line represents an event visible to both
1771 * CPUs at the next numbered event.
1772 *
1773 * "timespecX" represents host monotonic time. "tscX" represents
1774 * RDTSC value.
1775 *
1776 * VCPU0 on CPU0 | VCPU1 on CPU1
1777 *
1778 * 1. read timespec0,tsc0
1779 * 2. | timespec1 = timespec0 + N
1780 * | tsc1 = tsc0 + M
1781 * 3. transition to guest | transition to guest
1782 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1783 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1784 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1785 *
1786 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1787 *
1788 * - ret0 < ret1
1789 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1790 * ...
1791 * - 0 < N - M => M < N
1792 *
1793 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1794 * always the case (the difference between two distinct xtime instances
1795 * might be smaller then the difference between corresponding TSC reads,
1796 * when updating guest vcpus pvclock areas).
1797 *
1798 * To avoid that problem, do not allow visibility of distinct
1799 * system_timestamp/tsc_timestamp values simultaneously: use a master
1800 * copy of host monotonic time values. Update that master copy
1801 * in lockstep.
1802 *
1803 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1804 *
1805 */
1806
1807 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1808 {
1809 #ifdef CONFIG_X86_64
1810 struct kvm_arch *ka = &kvm->arch;
1811 int vclock_mode;
1812 bool host_tsc_clocksource, vcpus_matched;
1813
1814 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1815 atomic_read(&kvm->online_vcpus));
1816
1817 /*
1818 * If the host uses TSC clock, then passthrough TSC as stable
1819 * to the guest.
1820 */
1821 host_tsc_clocksource = kvm_get_time_and_clockread(
1822 &ka->master_kernel_ns,
1823 &ka->master_cycle_now);
1824
1825 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1826 && !ka->backwards_tsc_observed
1827 && !ka->boot_vcpu_runs_old_kvmclock;
1828
1829 if (ka->use_master_clock)
1830 atomic_set(&kvm_guest_has_master_clock, 1);
1831
1832 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1833 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1834 vcpus_matched);
1835 #endif
1836 }
1837
1838 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1839 {
1840 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1841 }
1842
1843 static void kvm_gen_update_masterclock(struct kvm *kvm)
1844 {
1845 #ifdef CONFIG_X86_64
1846 int i;
1847 struct kvm_vcpu *vcpu;
1848 struct kvm_arch *ka = &kvm->arch;
1849
1850 spin_lock(&ka->pvclock_gtod_sync_lock);
1851 kvm_make_mclock_inprogress_request(kvm);
1852 /* no guest entries from this point */
1853 pvclock_update_vm_gtod_copy(kvm);
1854
1855 kvm_for_each_vcpu(i, vcpu, kvm)
1856 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1857
1858 /* guest entries allowed */
1859 kvm_for_each_vcpu(i, vcpu, kvm)
1860 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1861
1862 spin_unlock(&ka->pvclock_gtod_sync_lock);
1863 #endif
1864 }
1865
1866 u64 get_kvmclock_ns(struct kvm *kvm)
1867 {
1868 struct kvm_arch *ka = &kvm->arch;
1869 struct pvclock_vcpu_time_info hv_clock;
1870 u64 ret;
1871
1872 spin_lock(&ka->pvclock_gtod_sync_lock);
1873 if (!ka->use_master_clock) {
1874 spin_unlock(&ka->pvclock_gtod_sync_lock);
1875 return ktime_get_boot_ns() + ka->kvmclock_offset;
1876 }
1877
1878 hv_clock.tsc_timestamp = ka->master_cycle_now;
1879 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1880 spin_unlock(&ka->pvclock_gtod_sync_lock);
1881
1882 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1883 get_cpu();
1884
1885 if (__this_cpu_read(cpu_tsc_khz)) {
1886 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1887 &hv_clock.tsc_shift,
1888 &hv_clock.tsc_to_system_mul);
1889 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1890 } else
1891 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1892
1893 put_cpu();
1894
1895 return ret;
1896 }
1897
1898 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1899 {
1900 struct kvm_vcpu_arch *vcpu = &v->arch;
1901 struct pvclock_vcpu_time_info guest_hv_clock;
1902
1903 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1904 &guest_hv_clock, sizeof(guest_hv_clock))))
1905 return;
1906
1907 /* This VCPU is paused, but it's legal for a guest to read another
1908 * VCPU's kvmclock, so we really have to follow the specification where
1909 * it says that version is odd if data is being modified, and even after
1910 * it is consistent.
1911 *
1912 * Version field updates must be kept separate. This is because
1913 * kvm_write_guest_cached might use a "rep movs" instruction, and
1914 * writes within a string instruction are weakly ordered. So there
1915 * are three writes overall.
1916 *
1917 * As a small optimization, only write the version field in the first
1918 * and third write. The vcpu->pv_time cache is still valid, because the
1919 * version field is the first in the struct.
1920 */
1921 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1922
1923 if (guest_hv_clock.version & 1)
1924 ++guest_hv_clock.version; /* first time write, random junk */
1925
1926 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1927 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1928 &vcpu->hv_clock,
1929 sizeof(vcpu->hv_clock.version));
1930
1931 smp_wmb();
1932
1933 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1934 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1935
1936 if (vcpu->pvclock_set_guest_stopped_request) {
1937 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1938 vcpu->pvclock_set_guest_stopped_request = false;
1939 }
1940
1941 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1942
1943 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1944 &vcpu->hv_clock,
1945 sizeof(vcpu->hv_clock));
1946
1947 smp_wmb();
1948
1949 vcpu->hv_clock.version++;
1950 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1951 &vcpu->hv_clock,
1952 sizeof(vcpu->hv_clock.version));
1953 }
1954
1955 static int kvm_guest_time_update(struct kvm_vcpu *v)
1956 {
1957 unsigned long flags, tgt_tsc_khz;
1958 struct kvm_vcpu_arch *vcpu = &v->arch;
1959 struct kvm_arch *ka = &v->kvm->arch;
1960 s64 kernel_ns;
1961 u64 tsc_timestamp, host_tsc;
1962 u8 pvclock_flags;
1963 bool use_master_clock;
1964
1965 kernel_ns = 0;
1966 host_tsc = 0;
1967
1968 /*
1969 * If the host uses TSC clock, then passthrough TSC as stable
1970 * to the guest.
1971 */
1972 spin_lock(&ka->pvclock_gtod_sync_lock);
1973 use_master_clock = ka->use_master_clock;
1974 if (use_master_clock) {
1975 host_tsc = ka->master_cycle_now;
1976 kernel_ns = ka->master_kernel_ns;
1977 }
1978 spin_unlock(&ka->pvclock_gtod_sync_lock);
1979
1980 /* Keep irq disabled to prevent changes to the clock */
1981 local_irq_save(flags);
1982 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1983 if (unlikely(tgt_tsc_khz == 0)) {
1984 local_irq_restore(flags);
1985 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1986 return 1;
1987 }
1988 if (!use_master_clock) {
1989 host_tsc = rdtsc();
1990 kernel_ns = ktime_get_boot_ns();
1991 }
1992
1993 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1994
1995 /*
1996 * We may have to catch up the TSC to match elapsed wall clock
1997 * time for two reasons, even if kvmclock is used.
1998 * 1) CPU could have been running below the maximum TSC rate
1999 * 2) Broken TSC compensation resets the base at each VCPU
2000 * entry to avoid unknown leaps of TSC even when running
2001 * again on the same CPU. This may cause apparent elapsed
2002 * time to disappear, and the guest to stand still or run
2003 * very slowly.
2004 */
2005 if (vcpu->tsc_catchup) {
2006 u64 tsc = compute_guest_tsc(v, kernel_ns);
2007 if (tsc > tsc_timestamp) {
2008 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2009 tsc_timestamp = tsc;
2010 }
2011 }
2012
2013 local_irq_restore(flags);
2014
2015 /* With all the info we got, fill in the values */
2016
2017 if (kvm_has_tsc_control)
2018 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2019
2020 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2021 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2022 &vcpu->hv_clock.tsc_shift,
2023 &vcpu->hv_clock.tsc_to_system_mul);
2024 vcpu->hw_tsc_khz = tgt_tsc_khz;
2025 }
2026
2027 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2028 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2029 vcpu->last_guest_tsc = tsc_timestamp;
2030
2031 /* If the host uses TSC clocksource, then it is stable */
2032 pvclock_flags = 0;
2033 if (use_master_clock)
2034 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2035
2036 vcpu->hv_clock.flags = pvclock_flags;
2037
2038 if (vcpu->pv_time_enabled)
2039 kvm_setup_pvclock_page(v);
2040 if (v == kvm_get_vcpu(v->kvm, 0))
2041 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2042 return 0;
2043 }
2044
2045 /*
2046 * kvmclock updates which are isolated to a given vcpu, such as
2047 * vcpu->cpu migration, should not allow system_timestamp from
2048 * the rest of the vcpus to remain static. Otherwise ntp frequency
2049 * correction applies to one vcpu's system_timestamp but not
2050 * the others.
2051 *
2052 * So in those cases, request a kvmclock update for all vcpus.
2053 * We need to rate-limit these requests though, as they can
2054 * considerably slow guests that have a large number of vcpus.
2055 * The time for a remote vcpu to update its kvmclock is bound
2056 * by the delay we use to rate-limit the updates.
2057 */
2058
2059 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2060
2061 static void kvmclock_update_fn(struct work_struct *work)
2062 {
2063 int i;
2064 struct delayed_work *dwork = to_delayed_work(work);
2065 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2066 kvmclock_update_work);
2067 struct kvm *kvm = container_of(ka, struct kvm, arch);
2068 struct kvm_vcpu *vcpu;
2069
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2072 kvm_vcpu_kick(vcpu);
2073 }
2074 }
2075
2076 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2077 {
2078 struct kvm *kvm = v->kvm;
2079
2080 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2081 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2082 KVMCLOCK_UPDATE_DELAY);
2083 }
2084
2085 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2086
2087 static void kvmclock_sync_fn(struct work_struct *work)
2088 {
2089 struct delayed_work *dwork = to_delayed_work(work);
2090 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2091 kvmclock_sync_work);
2092 struct kvm *kvm = container_of(ka, struct kvm, arch);
2093
2094 if (!kvmclock_periodic_sync)
2095 return;
2096
2097 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2098 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2099 KVMCLOCK_SYNC_PERIOD);
2100 }
2101
2102 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2103 {
2104 u64 mcg_cap = vcpu->arch.mcg_cap;
2105 unsigned bank_num = mcg_cap & 0xff;
2106 u32 msr = msr_info->index;
2107 u64 data = msr_info->data;
2108
2109 switch (msr) {
2110 case MSR_IA32_MCG_STATUS:
2111 vcpu->arch.mcg_status = data;
2112 break;
2113 case MSR_IA32_MCG_CTL:
2114 if (!(mcg_cap & MCG_CTL_P) &&
2115 (data || !msr_info->host_initiated))
2116 return 1;
2117 if (data != 0 && data != ~(u64)0)
2118 return 1;
2119 vcpu->arch.mcg_ctl = data;
2120 break;
2121 default:
2122 if (msr >= MSR_IA32_MC0_CTL &&
2123 msr < MSR_IA32_MCx_CTL(bank_num)) {
2124 u32 offset = msr - MSR_IA32_MC0_CTL;
2125 /* only 0 or all 1s can be written to IA32_MCi_CTL
2126 * some Linux kernels though clear bit 10 in bank 4 to
2127 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2128 * this to avoid an uncatched #GP in the guest
2129 */
2130 if ((offset & 0x3) == 0 &&
2131 data != 0 && (data | (1 << 10)) != ~(u64)0)
2132 return -1;
2133 if (!msr_info->host_initiated &&
2134 (offset & 0x3) == 1 && data != 0)
2135 return -1;
2136 vcpu->arch.mce_banks[offset] = data;
2137 break;
2138 }
2139 return 1;
2140 }
2141 return 0;
2142 }
2143
2144 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2145 {
2146 struct kvm *kvm = vcpu->kvm;
2147 int lm = is_long_mode(vcpu);
2148 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2149 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2150 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2151 : kvm->arch.xen_hvm_config.blob_size_32;
2152 u32 page_num = data & ~PAGE_MASK;
2153 u64 page_addr = data & PAGE_MASK;
2154 u8 *page;
2155 int r;
2156
2157 r = -E2BIG;
2158 if (page_num >= blob_size)
2159 goto out;
2160 r = -ENOMEM;
2161 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2162 if (IS_ERR(page)) {
2163 r = PTR_ERR(page);
2164 goto out;
2165 }
2166 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2167 goto out_free;
2168 r = 0;
2169 out_free:
2170 kfree(page);
2171 out:
2172 return r;
2173 }
2174
2175 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2176 {
2177 gpa_t gpa = data & ~0x3f;
2178
2179 /* Bits 3:5 are reserved, Should be zero */
2180 if (data & 0x38)
2181 return 1;
2182
2183 vcpu->arch.apf.msr_val = data;
2184
2185 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2186 kvm_clear_async_pf_completion_queue(vcpu);
2187 kvm_async_pf_hash_reset(vcpu);
2188 return 0;
2189 }
2190
2191 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2192 sizeof(u32)))
2193 return 1;
2194
2195 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2196 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2197 kvm_async_pf_wakeup_all(vcpu);
2198 return 0;
2199 }
2200
2201 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2202 {
2203 vcpu->arch.pv_time_enabled = false;
2204 }
2205
2206 static void record_steal_time(struct kvm_vcpu *vcpu)
2207 {
2208 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2209 return;
2210
2211 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2212 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2213 return;
2214
2215 vcpu->arch.st.steal.preempted = 0;
2216
2217 if (vcpu->arch.st.steal.version & 1)
2218 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2219
2220 vcpu->arch.st.steal.version += 1;
2221
2222 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2223 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2224
2225 smp_wmb();
2226
2227 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2228 vcpu->arch.st.last_steal;
2229 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2230
2231 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2232 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2233
2234 smp_wmb();
2235
2236 vcpu->arch.st.steal.version += 1;
2237
2238 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2239 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2240 }
2241
2242 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2243 {
2244 bool pr = false;
2245 u32 msr = msr_info->index;
2246 u64 data = msr_info->data;
2247
2248 switch (msr) {
2249 case MSR_AMD64_NB_CFG:
2250 case MSR_IA32_UCODE_WRITE:
2251 case MSR_VM_HSAVE_PA:
2252 case MSR_AMD64_PATCH_LOADER:
2253 case MSR_AMD64_BU_CFG2:
2254 case MSR_AMD64_DC_CFG:
2255 case MSR_F15H_EX_CFG:
2256 break;
2257
2258 case MSR_IA32_UCODE_REV:
2259 if (msr_info->host_initiated)
2260 vcpu->arch.microcode_version = data;
2261 break;
2262 case MSR_IA32_ARCH_CAPABILITIES:
2263 if (!msr_info->host_initiated)
2264 return 1;
2265 vcpu->arch.arch_capabilities = data;
2266 break;
2267 case MSR_EFER:
2268 return set_efer(vcpu, msr_info);
2269 case MSR_K7_HWCR:
2270 data &= ~(u64)0x40; /* ignore flush filter disable */
2271 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2272 data &= ~(u64)0x8; /* ignore TLB cache disable */
2273 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2274 if (data != 0) {
2275 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2276 data);
2277 return 1;
2278 }
2279 break;
2280 case MSR_FAM10H_MMIO_CONF_BASE:
2281 if (data != 0) {
2282 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2283 "0x%llx\n", data);
2284 return 1;
2285 }
2286 break;
2287 case MSR_IA32_DEBUGCTLMSR:
2288 if (!data) {
2289 /* We support the non-activated case already */
2290 break;
2291 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2292 /* Values other than LBR and BTF are vendor-specific,
2293 thus reserved and should throw a #GP */
2294 return 1;
2295 }
2296 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2297 __func__, data);
2298 break;
2299 case 0x200 ... 0x2ff:
2300 return kvm_mtrr_set_msr(vcpu, msr, data);
2301 case MSR_IA32_APICBASE:
2302 return kvm_set_apic_base(vcpu, msr_info);
2303 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2304 return kvm_x2apic_msr_write(vcpu, msr, data);
2305 case MSR_IA32_TSCDEADLINE:
2306 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2307 break;
2308 case MSR_IA32_TSC_ADJUST:
2309 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2310 if (!msr_info->host_initiated) {
2311 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2312 adjust_tsc_offset_guest(vcpu, adj);
2313 }
2314 vcpu->arch.ia32_tsc_adjust_msr = data;
2315 }
2316 break;
2317 case MSR_IA32_MISC_ENABLE:
2318 vcpu->arch.ia32_misc_enable_msr = data;
2319 break;
2320 case MSR_IA32_SMBASE:
2321 if (!msr_info->host_initiated)
2322 return 1;
2323 vcpu->arch.smbase = data;
2324 break;
2325 case MSR_IA32_TSC:
2326 kvm_write_tsc(vcpu, msr_info);
2327 break;
2328 case MSR_KVM_WALL_CLOCK_NEW:
2329 case MSR_KVM_WALL_CLOCK:
2330 vcpu->kvm->arch.wall_clock = data;
2331 kvm_write_wall_clock(vcpu->kvm, data);
2332 break;
2333 case MSR_KVM_SYSTEM_TIME_NEW:
2334 case MSR_KVM_SYSTEM_TIME: {
2335 struct kvm_arch *ka = &vcpu->kvm->arch;
2336
2337 kvmclock_reset(vcpu);
2338
2339 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2340 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2341
2342 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2343 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2344
2345 ka->boot_vcpu_runs_old_kvmclock = tmp;
2346 }
2347
2348 vcpu->arch.time = data;
2349 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2350
2351 /* we verify if the enable bit is set... */
2352 if (!(data & 1))
2353 break;
2354
2355 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2356 &vcpu->arch.pv_time, data & ~1ULL,
2357 sizeof(struct pvclock_vcpu_time_info)))
2358 vcpu->arch.pv_time_enabled = false;
2359 else
2360 vcpu->arch.pv_time_enabled = true;
2361
2362 break;
2363 }
2364 case MSR_KVM_ASYNC_PF_EN:
2365 if (kvm_pv_enable_async_pf(vcpu, data))
2366 return 1;
2367 break;
2368 case MSR_KVM_STEAL_TIME:
2369
2370 if (unlikely(!sched_info_on()))
2371 return 1;
2372
2373 if (data & KVM_STEAL_RESERVED_MASK)
2374 return 1;
2375
2376 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2377 data & KVM_STEAL_VALID_BITS,
2378 sizeof(struct kvm_steal_time)))
2379 return 1;
2380
2381 vcpu->arch.st.msr_val = data;
2382
2383 if (!(data & KVM_MSR_ENABLED))
2384 break;
2385
2386 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2387
2388 break;
2389 case MSR_KVM_PV_EOI_EN:
2390 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2391 return 1;
2392 break;
2393
2394 case MSR_IA32_MCG_CTL:
2395 case MSR_IA32_MCG_STATUS:
2396 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2397 return set_msr_mce(vcpu, msr_info);
2398
2399 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2400 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2401 pr = true; /* fall through */
2402 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2403 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2404 if (kvm_pmu_is_valid_msr(vcpu, msr))
2405 return kvm_pmu_set_msr(vcpu, msr_info);
2406
2407 if (pr || data != 0)
2408 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2409 "0x%x data 0x%llx\n", msr, data);
2410 break;
2411 case MSR_K7_CLK_CTL:
2412 /*
2413 * Ignore all writes to this no longer documented MSR.
2414 * Writes are only relevant for old K7 processors,
2415 * all pre-dating SVM, but a recommended workaround from
2416 * AMD for these chips. It is possible to specify the
2417 * affected processor models on the command line, hence
2418 * the need to ignore the workaround.
2419 */
2420 break;
2421 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2422 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2423 case HV_X64_MSR_CRASH_CTL:
2424 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2425 return kvm_hv_set_msr_common(vcpu, msr, data,
2426 msr_info->host_initiated);
2427 case MSR_IA32_BBL_CR_CTL3:
2428 /* Drop writes to this legacy MSR -- see rdmsr
2429 * counterpart for further detail.
2430 */
2431 if (report_ignored_msrs)
2432 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2433 msr, data);
2434 break;
2435 case MSR_AMD64_OSVW_ID_LENGTH:
2436 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2437 return 1;
2438 vcpu->arch.osvw.length = data;
2439 break;
2440 case MSR_AMD64_OSVW_STATUS:
2441 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2442 return 1;
2443 vcpu->arch.osvw.status = data;
2444 break;
2445 case MSR_PLATFORM_INFO:
2446 if (!msr_info->host_initiated ||
2447 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2448 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2449 cpuid_fault_enabled(vcpu)))
2450 return 1;
2451 vcpu->arch.msr_platform_info = data;
2452 break;
2453 case MSR_MISC_FEATURES_ENABLES:
2454 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2455 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2456 !supports_cpuid_fault(vcpu)))
2457 return 1;
2458 vcpu->arch.msr_misc_features_enables = data;
2459 break;
2460 default:
2461 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2462 return xen_hvm_config(vcpu, data);
2463 if (kvm_pmu_is_valid_msr(vcpu, msr))
2464 return kvm_pmu_set_msr(vcpu, msr_info);
2465 if (!ignore_msrs) {
2466 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2467 msr, data);
2468 return 1;
2469 } else {
2470 if (report_ignored_msrs)
2471 vcpu_unimpl(vcpu,
2472 "ignored wrmsr: 0x%x data 0x%llx\n",
2473 msr, data);
2474 break;
2475 }
2476 }
2477 return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2480
2481
2482 /*
2483 * Reads an msr value (of 'msr_index') into 'pdata'.
2484 * Returns 0 on success, non-0 otherwise.
2485 * Assumes vcpu_load() was already called.
2486 */
2487 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2488 {
2489 return kvm_x86_ops->get_msr(vcpu, msr);
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_get_msr);
2492
2493 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2494 {
2495 u64 data;
2496 u64 mcg_cap = vcpu->arch.mcg_cap;
2497 unsigned bank_num = mcg_cap & 0xff;
2498
2499 switch (msr) {
2500 case MSR_IA32_P5_MC_ADDR:
2501 case MSR_IA32_P5_MC_TYPE:
2502 data = 0;
2503 break;
2504 case MSR_IA32_MCG_CAP:
2505 data = vcpu->arch.mcg_cap;
2506 break;
2507 case MSR_IA32_MCG_CTL:
2508 if (!(mcg_cap & MCG_CTL_P) && !host)
2509 return 1;
2510 data = vcpu->arch.mcg_ctl;
2511 break;
2512 case MSR_IA32_MCG_STATUS:
2513 data = vcpu->arch.mcg_status;
2514 break;
2515 default:
2516 if (msr >= MSR_IA32_MC0_CTL &&
2517 msr < MSR_IA32_MCx_CTL(bank_num)) {
2518 u32 offset = msr - MSR_IA32_MC0_CTL;
2519 data = vcpu->arch.mce_banks[offset];
2520 break;
2521 }
2522 return 1;
2523 }
2524 *pdata = data;
2525 return 0;
2526 }
2527
2528 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2529 {
2530 switch (msr_info->index) {
2531 case MSR_IA32_PLATFORM_ID:
2532 case MSR_IA32_EBL_CR_POWERON:
2533 case MSR_IA32_DEBUGCTLMSR:
2534 case MSR_IA32_LASTBRANCHFROMIP:
2535 case MSR_IA32_LASTBRANCHTOIP:
2536 case MSR_IA32_LASTINTFROMIP:
2537 case MSR_IA32_LASTINTTOIP:
2538 case MSR_K8_SYSCFG:
2539 case MSR_K8_TSEG_ADDR:
2540 case MSR_K8_TSEG_MASK:
2541 case MSR_K7_HWCR:
2542 case MSR_VM_HSAVE_PA:
2543 case MSR_K8_INT_PENDING_MSG:
2544 case MSR_AMD64_NB_CFG:
2545 case MSR_FAM10H_MMIO_CONF_BASE:
2546 case MSR_AMD64_BU_CFG2:
2547 case MSR_IA32_PERF_CTL:
2548 case MSR_AMD64_DC_CFG:
2549 case MSR_F15H_EX_CFG:
2550 msr_info->data = 0;
2551 break;
2552 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2553 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2554 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2555 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2556 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2557 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2558 msr_info->data = 0;
2559 break;
2560 case MSR_IA32_UCODE_REV:
2561 msr_info->data = vcpu->arch.microcode_version;
2562 break;
2563 case MSR_IA32_TSC:
2564 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2565 break;
2566 case MSR_IA32_ARCH_CAPABILITIES:
2567 if (!msr_info->host_initiated &&
2568 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2569 return 1;
2570 msr_info->data = vcpu->arch.arch_capabilities;
2571 break;
2572 case MSR_MTRRcap:
2573 case 0x200 ... 0x2ff:
2574 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2575 case 0xcd: /* fsb frequency */
2576 msr_info->data = 3;
2577 break;
2578 /*
2579 * MSR_EBC_FREQUENCY_ID
2580 * Conservative value valid for even the basic CPU models.
2581 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2582 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2583 * and 266MHz for model 3, or 4. Set Core Clock
2584 * Frequency to System Bus Frequency Ratio to 1 (bits
2585 * 31:24) even though these are only valid for CPU
2586 * models > 2, however guests may end up dividing or
2587 * multiplying by zero otherwise.
2588 */
2589 case MSR_EBC_FREQUENCY_ID:
2590 msr_info->data = 1 << 24;
2591 break;
2592 case MSR_IA32_APICBASE:
2593 msr_info->data = kvm_get_apic_base(vcpu);
2594 break;
2595 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2596 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2597 break;
2598 case MSR_IA32_TSCDEADLINE:
2599 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2600 break;
2601 case MSR_IA32_TSC_ADJUST:
2602 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2603 break;
2604 case MSR_IA32_MISC_ENABLE:
2605 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2606 break;
2607 case MSR_IA32_SMBASE:
2608 if (!msr_info->host_initiated)
2609 return 1;
2610 msr_info->data = vcpu->arch.smbase;
2611 break;
2612 case MSR_IA32_PERF_STATUS:
2613 /* TSC increment by tick */
2614 msr_info->data = 1000ULL;
2615 /* CPU multiplier */
2616 msr_info->data |= (((uint64_t)4ULL) << 40);
2617 break;
2618 case MSR_EFER:
2619 msr_info->data = vcpu->arch.efer;
2620 break;
2621 case MSR_KVM_WALL_CLOCK:
2622 case MSR_KVM_WALL_CLOCK_NEW:
2623 msr_info->data = vcpu->kvm->arch.wall_clock;
2624 break;
2625 case MSR_KVM_SYSTEM_TIME:
2626 case MSR_KVM_SYSTEM_TIME_NEW:
2627 msr_info->data = vcpu->arch.time;
2628 break;
2629 case MSR_KVM_ASYNC_PF_EN:
2630 msr_info->data = vcpu->arch.apf.msr_val;
2631 break;
2632 case MSR_KVM_STEAL_TIME:
2633 msr_info->data = vcpu->arch.st.msr_val;
2634 break;
2635 case MSR_KVM_PV_EOI_EN:
2636 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2637 break;
2638 case MSR_IA32_P5_MC_ADDR:
2639 case MSR_IA32_P5_MC_TYPE:
2640 case MSR_IA32_MCG_CAP:
2641 case MSR_IA32_MCG_CTL:
2642 case MSR_IA32_MCG_STATUS:
2643 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2644 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2645 msr_info->host_initiated);
2646 case MSR_K7_CLK_CTL:
2647 /*
2648 * Provide expected ramp-up count for K7. All other
2649 * are set to zero, indicating minimum divisors for
2650 * every field.
2651 *
2652 * This prevents guest kernels on AMD host with CPU
2653 * type 6, model 8 and higher from exploding due to
2654 * the rdmsr failing.
2655 */
2656 msr_info->data = 0x20000000;
2657 break;
2658 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660 case HV_X64_MSR_CRASH_CTL:
2661 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662 return kvm_hv_get_msr_common(vcpu,
2663 msr_info->index, &msr_info->data,
2664 msr_info->host_initiated);
2665 break;
2666 case MSR_IA32_BBL_CR_CTL3:
2667 /* This legacy MSR exists but isn't fully documented in current
2668 * silicon. It is however accessed by winxp in very narrow
2669 * scenarios where it sets bit #19, itself documented as
2670 * a "reserved" bit. Best effort attempt to source coherent
2671 * read data here should the balance of the register be
2672 * interpreted by the guest:
2673 *
2674 * L2 cache control register 3: 64GB range, 256KB size,
2675 * enabled, latency 0x1, configured
2676 */
2677 msr_info->data = 0xbe702111;
2678 break;
2679 case MSR_AMD64_OSVW_ID_LENGTH:
2680 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2681 return 1;
2682 msr_info->data = vcpu->arch.osvw.length;
2683 break;
2684 case MSR_AMD64_OSVW_STATUS:
2685 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2686 return 1;
2687 msr_info->data = vcpu->arch.osvw.status;
2688 break;
2689 case MSR_PLATFORM_INFO:
2690 msr_info->data = vcpu->arch.msr_platform_info;
2691 break;
2692 case MSR_MISC_FEATURES_ENABLES:
2693 msr_info->data = vcpu->arch.msr_misc_features_enables;
2694 break;
2695 default:
2696 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2697 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2698 if (!ignore_msrs) {
2699 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2700 msr_info->index);
2701 return 1;
2702 } else {
2703 if (report_ignored_msrs)
2704 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2705 msr_info->index);
2706 msr_info->data = 0;
2707 }
2708 break;
2709 }
2710 return 0;
2711 }
2712 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2713
2714 /*
2715 * Read or write a bunch of msrs. All parameters are kernel addresses.
2716 *
2717 * @return number of msrs set successfully.
2718 */
2719 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2720 struct kvm_msr_entry *entries,
2721 int (*do_msr)(struct kvm_vcpu *vcpu,
2722 unsigned index, u64 *data))
2723 {
2724 int i;
2725
2726 for (i = 0; i < msrs->nmsrs; ++i)
2727 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2728 break;
2729
2730 return i;
2731 }
2732
2733 /*
2734 * Read or write a bunch of msrs. Parameters are user addresses.
2735 *
2736 * @return number of msrs set successfully.
2737 */
2738 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2739 int (*do_msr)(struct kvm_vcpu *vcpu,
2740 unsigned index, u64 *data),
2741 int writeback)
2742 {
2743 struct kvm_msrs msrs;
2744 struct kvm_msr_entry *entries;
2745 int r, n;
2746 unsigned size;
2747
2748 r = -EFAULT;
2749 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2750 goto out;
2751
2752 r = -E2BIG;
2753 if (msrs.nmsrs >= MAX_IO_MSRS)
2754 goto out;
2755
2756 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2757 entries = memdup_user(user_msrs->entries, size);
2758 if (IS_ERR(entries)) {
2759 r = PTR_ERR(entries);
2760 goto out;
2761 }
2762
2763 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2764 if (r < 0)
2765 goto out_free;
2766
2767 r = -EFAULT;
2768 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2769 goto out_free;
2770
2771 r = n;
2772
2773 out_free:
2774 kfree(entries);
2775 out:
2776 return r;
2777 }
2778
2779 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2780 {
2781 int r;
2782
2783 switch (ext) {
2784 case KVM_CAP_IRQCHIP:
2785 case KVM_CAP_HLT:
2786 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2787 case KVM_CAP_SET_TSS_ADDR:
2788 case KVM_CAP_EXT_CPUID:
2789 case KVM_CAP_EXT_EMUL_CPUID:
2790 case KVM_CAP_CLOCKSOURCE:
2791 case KVM_CAP_PIT:
2792 case KVM_CAP_NOP_IO_DELAY:
2793 case KVM_CAP_MP_STATE:
2794 case KVM_CAP_SYNC_MMU:
2795 case KVM_CAP_USER_NMI:
2796 case KVM_CAP_REINJECT_CONTROL:
2797 case KVM_CAP_IRQ_INJECT_STATUS:
2798 case KVM_CAP_IOEVENTFD:
2799 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2800 case KVM_CAP_PIT2:
2801 case KVM_CAP_PIT_STATE2:
2802 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2803 case KVM_CAP_XEN_HVM:
2804 case KVM_CAP_VCPU_EVENTS:
2805 case KVM_CAP_HYPERV:
2806 case KVM_CAP_HYPERV_VAPIC:
2807 case KVM_CAP_HYPERV_SPIN:
2808 case KVM_CAP_HYPERV_SYNIC:
2809 case KVM_CAP_HYPERV_SYNIC2:
2810 case KVM_CAP_HYPERV_VP_INDEX:
2811 case KVM_CAP_PCI_SEGMENT:
2812 case KVM_CAP_DEBUGREGS:
2813 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2814 case KVM_CAP_XSAVE:
2815 case KVM_CAP_ASYNC_PF:
2816 case KVM_CAP_GET_TSC_KHZ:
2817 case KVM_CAP_KVMCLOCK_CTRL:
2818 case KVM_CAP_READONLY_MEM:
2819 case KVM_CAP_HYPERV_TIME:
2820 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2821 case KVM_CAP_TSC_DEADLINE_TIMER:
2822 case KVM_CAP_ENABLE_CAP_VM:
2823 case KVM_CAP_DISABLE_QUIRKS:
2824 case KVM_CAP_SET_BOOT_CPU_ID:
2825 case KVM_CAP_SPLIT_IRQCHIP:
2826 case KVM_CAP_IMMEDIATE_EXIT:
2827 case KVM_CAP_GET_MSR_FEATURES:
2828 r = 1;
2829 break;
2830 case KVM_CAP_ADJUST_CLOCK:
2831 r = KVM_CLOCK_TSC_STABLE;
2832 break;
2833 case KVM_CAP_X86_GUEST_MWAIT:
2834 r = kvm_mwait_in_guest();
2835 break;
2836 case KVM_CAP_X86_SMM:
2837 /* SMBASE is usually relocated above 1M on modern chipsets,
2838 * and SMM handlers might indeed rely on 4G segment limits,
2839 * so do not report SMM to be available if real mode is
2840 * emulated via vm86 mode. Still, do not go to great lengths
2841 * to avoid userspace's usage of the feature, because it is a
2842 * fringe case that is not enabled except via specific settings
2843 * of the module parameters.
2844 */
2845 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2846 break;
2847 case KVM_CAP_VAPIC:
2848 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2849 break;
2850 case KVM_CAP_NR_VCPUS:
2851 r = KVM_SOFT_MAX_VCPUS;
2852 break;
2853 case KVM_CAP_MAX_VCPUS:
2854 r = KVM_MAX_VCPUS;
2855 break;
2856 case KVM_CAP_NR_MEMSLOTS:
2857 r = KVM_USER_MEM_SLOTS;
2858 break;
2859 case KVM_CAP_PV_MMU: /* obsolete */
2860 r = 0;
2861 break;
2862 case KVM_CAP_MCE:
2863 r = KVM_MAX_MCE_BANKS;
2864 break;
2865 case KVM_CAP_XCRS:
2866 r = boot_cpu_has(X86_FEATURE_XSAVE);
2867 break;
2868 case KVM_CAP_TSC_CONTROL:
2869 r = kvm_has_tsc_control;
2870 break;
2871 case KVM_CAP_X2APIC_API:
2872 r = KVM_X2APIC_API_VALID_FLAGS;
2873 break;
2874 default:
2875 r = 0;
2876 break;
2877 }
2878 return r;
2879
2880 }
2881
2882 long kvm_arch_dev_ioctl(struct file *filp,
2883 unsigned int ioctl, unsigned long arg)
2884 {
2885 void __user *argp = (void __user *)arg;
2886 long r;
2887
2888 switch (ioctl) {
2889 case KVM_GET_MSR_INDEX_LIST: {
2890 struct kvm_msr_list __user *user_msr_list = argp;
2891 struct kvm_msr_list msr_list;
2892 unsigned n;
2893
2894 r = -EFAULT;
2895 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2896 goto out;
2897 n = msr_list.nmsrs;
2898 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2899 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2900 goto out;
2901 r = -E2BIG;
2902 if (n < msr_list.nmsrs)
2903 goto out;
2904 r = -EFAULT;
2905 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2906 num_msrs_to_save * sizeof(u32)))
2907 goto out;
2908 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2909 &emulated_msrs,
2910 num_emulated_msrs * sizeof(u32)))
2911 goto out;
2912 r = 0;
2913 break;
2914 }
2915 case KVM_GET_SUPPORTED_CPUID:
2916 case KVM_GET_EMULATED_CPUID: {
2917 struct kvm_cpuid2 __user *cpuid_arg = argp;
2918 struct kvm_cpuid2 cpuid;
2919
2920 r = -EFAULT;
2921 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2922 goto out;
2923
2924 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2925 ioctl);
2926 if (r)
2927 goto out;
2928
2929 r = -EFAULT;
2930 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2931 goto out;
2932 r = 0;
2933 break;
2934 }
2935 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2936 r = -EFAULT;
2937 if (copy_to_user(argp, &kvm_mce_cap_supported,
2938 sizeof(kvm_mce_cap_supported)))
2939 goto out;
2940 r = 0;
2941 break;
2942 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2943 struct kvm_msr_list __user *user_msr_list = argp;
2944 struct kvm_msr_list msr_list;
2945 unsigned int n;
2946
2947 r = -EFAULT;
2948 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2949 goto out;
2950 n = msr_list.nmsrs;
2951 msr_list.nmsrs = num_msr_based_features;
2952 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2953 goto out;
2954 r = -E2BIG;
2955 if (n < msr_list.nmsrs)
2956 goto out;
2957 r = -EFAULT;
2958 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2959 num_msr_based_features * sizeof(u32)))
2960 goto out;
2961 r = 0;
2962 break;
2963 }
2964 case KVM_GET_MSRS:
2965 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2966 break;
2967 }
2968 default:
2969 r = -EINVAL;
2970 }
2971 out:
2972 return r;
2973 }
2974
2975 static void wbinvd_ipi(void *garbage)
2976 {
2977 wbinvd();
2978 }
2979
2980 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2981 {
2982 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2983 }
2984
2985 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2986 {
2987 /* Address WBINVD may be executed by guest */
2988 if (need_emulate_wbinvd(vcpu)) {
2989 if (kvm_x86_ops->has_wbinvd_exit())
2990 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2991 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2992 smp_call_function_single(vcpu->cpu,
2993 wbinvd_ipi, NULL, 1);
2994 }
2995
2996 kvm_x86_ops->vcpu_load(vcpu, cpu);
2997
2998 /* Apply any externally detected TSC adjustments (due to suspend) */
2999 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3000 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3001 vcpu->arch.tsc_offset_adjustment = 0;
3002 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3003 }
3004
3005 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3006 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3007 rdtsc() - vcpu->arch.last_host_tsc;
3008 if (tsc_delta < 0)
3009 mark_tsc_unstable("KVM discovered backwards TSC");
3010
3011 if (check_tsc_unstable()) {
3012 u64 offset = kvm_compute_tsc_offset(vcpu,
3013 vcpu->arch.last_guest_tsc);
3014 kvm_vcpu_write_tsc_offset(vcpu, offset);
3015 vcpu->arch.tsc_catchup = 1;
3016 }
3017
3018 if (kvm_lapic_hv_timer_in_use(vcpu))
3019 kvm_lapic_restart_hv_timer(vcpu);
3020
3021 /*
3022 * On a host with synchronized TSC, there is no need to update
3023 * kvmclock on vcpu->cpu migration
3024 */
3025 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3026 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3027 if (vcpu->cpu != cpu)
3028 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3029 vcpu->cpu = cpu;
3030 }
3031
3032 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3033 }
3034
3035 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3036 {
3037 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3038 return;
3039
3040 vcpu->arch.st.steal.preempted = 1;
3041
3042 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3043 &vcpu->arch.st.steal.preempted,
3044 offsetof(struct kvm_steal_time, preempted),
3045 sizeof(vcpu->arch.st.steal.preempted));
3046 }
3047
3048 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3049 {
3050 int idx;
3051
3052 if (vcpu->preempted)
3053 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3054
3055 /*
3056 * Disable page faults because we're in atomic context here.
3057 * kvm_write_guest_offset_cached() would call might_fault()
3058 * that relies on pagefault_disable() to tell if there's a
3059 * bug. NOTE: the write to guest memory may not go through if
3060 * during postcopy live migration or if there's heavy guest
3061 * paging.
3062 */
3063 pagefault_disable();
3064 /*
3065 * kvm_memslots() will be called by
3066 * kvm_write_guest_offset_cached() so take the srcu lock.
3067 */
3068 idx = srcu_read_lock(&vcpu->kvm->srcu);
3069 kvm_steal_time_set_preempted(vcpu);
3070 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3071 pagefault_enable();
3072 kvm_x86_ops->vcpu_put(vcpu);
3073 vcpu->arch.last_host_tsc = rdtsc();
3074 /*
3075 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3076 * on every vmexit, but if not, we might have a stale dr6 from the
3077 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3078 */
3079 set_debugreg(0, 6);
3080 }
3081
3082 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3083 struct kvm_lapic_state *s)
3084 {
3085 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3086 kvm_x86_ops->sync_pir_to_irr(vcpu);
3087
3088 return kvm_apic_get_state(vcpu, s);
3089 }
3090
3091 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3092 struct kvm_lapic_state *s)
3093 {
3094 int r;
3095
3096 r = kvm_apic_set_state(vcpu, s);
3097 if (r)
3098 return r;
3099 update_cr8_intercept(vcpu);
3100
3101 return 0;
3102 }
3103
3104 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3105 {
3106 return (!lapic_in_kernel(vcpu) ||
3107 kvm_apic_accept_pic_intr(vcpu));
3108 }
3109
3110 /*
3111 * if userspace requested an interrupt window, check that the
3112 * interrupt window is open.
3113 *
3114 * No need to exit to userspace if we already have an interrupt queued.
3115 */
3116 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3117 {
3118 return kvm_arch_interrupt_allowed(vcpu) &&
3119 !kvm_cpu_has_interrupt(vcpu) &&
3120 !kvm_event_needs_reinjection(vcpu) &&
3121 kvm_cpu_accept_dm_intr(vcpu);
3122 }
3123
3124 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3125 struct kvm_interrupt *irq)
3126 {
3127 if (irq->irq >= KVM_NR_INTERRUPTS)
3128 return -EINVAL;
3129
3130 if (!irqchip_in_kernel(vcpu->kvm)) {
3131 kvm_queue_interrupt(vcpu, irq->irq, false);
3132 kvm_make_request(KVM_REQ_EVENT, vcpu);
3133 return 0;
3134 }
3135
3136 /*
3137 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3138 * fail for in-kernel 8259.
3139 */
3140 if (pic_in_kernel(vcpu->kvm))
3141 return -ENXIO;
3142
3143 if (vcpu->arch.pending_external_vector != -1)
3144 return -EEXIST;
3145
3146 vcpu->arch.pending_external_vector = irq->irq;
3147 kvm_make_request(KVM_REQ_EVENT, vcpu);
3148 return 0;
3149 }
3150
3151 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3152 {
3153 kvm_inject_nmi(vcpu);
3154
3155 return 0;
3156 }
3157
3158 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3159 {
3160 kvm_make_request(KVM_REQ_SMI, vcpu);
3161
3162 return 0;
3163 }
3164
3165 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3166 struct kvm_tpr_access_ctl *tac)
3167 {
3168 if (tac->flags)
3169 return -EINVAL;
3170 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3171 return 0;
3172 }
3173
3174 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3175 u64 mcg_cap)
3176 {
3177 int r;
3178 unsigned bank_num = mcg_cap & 0xff, bank;
3179
3180 r = -EINVAL;
3181 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3182 goto out;
3183 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3184 goto out;
3185 r = 0;
3186 vcpu->arch.mcg_cap = mcg_cap;
3187 /* Init IA32_MCG_CTL to all 1s */
3188 if (mcg_cap & MCG_CTL_P)
3189 vcpu->arch.mcg_ctl = ~(u64)0;
3190 /* Init IA32_MCi_CTL to all 1s */
3191 for (bank = 0; bank < bank_num; bank++)
3192 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3193
3194 if (kvm_x86_ops->setup_mce)
3195 kvm_x86_ops->setup_mce(vcpu);
3196 out:
3197 return r;
3198 }
3199
3200 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3201 struct kvm_x86_mce *mce)
3202 {
3203 u64 mcg_cap = vcpu->arch.mcg_cap;
3204 unsigned bank_num = mcg_cap & 0xff;
3205 u64 *banks = vcpu->arch.mce_banks;
3206
3207 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3208 return -EINVAL;
3209 /*
3210 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3211 * reporting is disabled
3212 */
3213 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3214 vcpu->arch.mcg_ctl != ~(u64)0)
3215 return 0;
3216 banks += 4 * mce->bank;
3217 /*
3218 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3219 * reporting is disabled for the bank
3220 */
3221 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3222 return 0;
3223 if (mce->status & MCI_STATUS_UC) {
3224 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3225 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3226 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3227 return 0;
3228 }
3229 if (banks[1] & MCI_STATUS_VAL)
3230 mce->status |= MCI_STATUS_OVER;
3231 banks[2] = mce->addr;
3232 banks[3] = mce->misc;
3233 vcpu->arch.mcg_status = mce->mcg_status;
3234 banks[1] = mce->status;
3235 kvm_queue_exception(vcpu, MC_VECTOR);
3236 } else if (!(banks[1] & MCI_STATUS_VAL)
3237 || !(banks[1] & MCI_STATUS_UC)) {
3238 if (banks[1] & MCI_STATUS_VAL)
3239 mce->status |= MCI_STATUS_OVER;
3240 banks[2] = mce->addr;
3241 banks[3] = mce->misc;
3242 banks[1] = mce->status;
3243 } else
3244 banks[1] |= MCI_STATUS_OVER;
3245 return 0;
3246 }
3247
3248 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3249 struct kvm_vcpu_events *events)
3250 {
3251 process_nmi(vcpu);
3252 /*
3253 * FIXME: pass injected and pending separately. This is only
3254 * needed for nested virtualization, whose state cannot be
3255 * migrated yet. For now we can combine them.
3256 */
3257 events->exception.injected =
3258 (vcpu->arch.exception.pending ||
3259 vcpu->arch.exception.injected) &&
3260 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3261 events->exception.nr = vcpu->arch.exception.nr;
3262 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3263 events->exception.pad = 0;
3264 events->exception.error_code = vcpu->arch.exception.error_code;
3265
3266 events->interrupt.injected =
3267 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3268 events->interrupt.nr = vcpu->arch.interrupt.nr;
3269 events->interrupt.soft = 0;
3270 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3271
3272 events->nmi.injected = vcpu->arch.nmi_injected;
3273 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3274 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3275 events->nmi.pad = 0;
3276
3277 events->sipi_vector = 0; /* never valid when reporting to user space */
3278
3279 events->smi.smm = is_smm(vcpu);
3280 events->smi.pending = vcpu->arch.smi_pending;
3281 events->smi.smm_inside_nmi =
3282 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3283 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3284
3285 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3286 | KVM_VCPUEVENT_VALID_SHADOW
3287 | KVM_VCPUEVENT_VALID_SMM);
3288 memset(&events->reserved, 0, sizeof(events->reserved));
3289 }
3290
3291 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3292
3293 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3294 struct kvm_vcpu_events *events)
3295 {
3296 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3297 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3298 | KVM_VCPUEVENT_VALID_SHADOW
3299 | KVM_VCPUEVENT_VALID_SMM))
3300 return -EINVAL;
3301
3302 if (events->exception.injected &&
3303 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3304 is_guest_mode(vcpu)))
3305 return -EINVAL;
3306
3307 /* INITs are latched while in SMM */
3308 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3309 (events->smi.smm || events->smi.pending) &&
3310 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3311 return -EINVAL;
3312
3313 process_nmi(vcpu);
3314 vcpu->arch.exception.injected = false;
3315 vcpu->arch.exception.pending = events->exception.injected;
3316 vcpu->arch.exception.nr = events->exception.nr;
3317 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3318 vcpu->arch.exception.error_code = events->exception.error_code;
3319
3320 vcpu->arch.interrupt.pending = events->interrupt.injected;
3321 vcpu->arch.interrupt.nr = events->interrupt.nr;
3322 vcpu->arch.interrupt.soft = events->interrupt.soft;
3323 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3324 kvm_x86_ops->set_interrupt_shadow(vcpu,
3325 events->interrupt.shadow);
3326
3327 vcpu->arch.nmi_injected = events->nmi.injected;
3328 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3329 vcpu->arch.nmi_pending = events->nmi.pending;
3330 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3331
3332 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3333 lapic_in_kernel(vcpu))
3334 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3335
3336 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3337 u32 hflags = vcpu->arch.hflags;
3338 if (events->smi.smm)
3339 hflags |= HF_SMM_MASK;
3340 else
3341 hflags &= ~HF_SMM_MASK;
3342 kvm_set_hflags(vcpu, hflags);
3343
3344 vcpu->arch.smi_pending = events->smi.pending;
3345
3346 if (events->smi.smm) {
3347 if (events->smi.smm_inside_nmi)
3348 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3349 else
3350 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3351 if (lapic_in_kernel(vcpu)) {
3352 if (events->smi.latched_init)
3353 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3354 else
3355 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3356 }
3357 }
3358 }
3359
3360 kvm_make_request(KVM_REQ_EVENT, vcpu);
3361
3362 return 0;
3363 }
3364
3365 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3366 struct kvm_debugregs *dbgregs)
3367 {
3368 unsigned long val;
3369
3370 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3371 kvm_get_dr(vcpu, 6, &val);
3372 dbgregs->dr6 = val;
3373 dbgregs->dr7 = vcpu->arch.dr7;
3374 dbgregs->flags = 0;
3375 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3376 }
3377
3378 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3379 struct kvm_debugregs *dbgregs)
3380 {
3381 if (dbgregs->flags)
3382 return -EINVAL;
3383
3384 if (dbgregs->dr6 & ~0xffffffffull)
3385 return -EINVAL;
3386 if (dbgregs->dr7 & ~0xffffffffull)
3387 return -EINVAL;
3388
3389 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3390 kvm_update_dr0123(vcpu);
3391 vcpu->arch.dr6 = dbgregs->dr6;
3392 kvm_update_dr6(vcpu);
3393 vcpu->arch.dr7 = dbgregs->dr7;
3394 kvm_update_dr7(vcpu);
3395
3396 return 0;
3397 }
3398
3399 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3400
3401 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3402 {
3403 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3404 u64 xstate_bv = xsave->header.xfeatures;
3405 u64 valid;
3406
3407 /*
3408 * Copy legacy XSAVE area, to avoid complications with CPUID
3409 * leaves 0 and 1 in the loop below.
3410 */
3411 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3412
3413 /* Set XSTATE_BV */
3414 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3415 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3416
3417 /*
3418 * Copy each region from the possibly compacted offset to the
3419 * non-compacted offset.
3420 */
3421 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3422 while (valid) {
3423 u64 feature = valid & -valid;
3424 int index = fls64(feature) - 1;
3425 void *src = get_xsave_addr(xsave, feature);
3426
3427 if (src) {
3428 u32 size, offset, ecx, edx;
3429 cpuid_count(XSTATE_CPUID, index,
3430 &size, &offset, &ecx, &edx);
3431 if (feature == XFEATURE_MASK_PKRU)
3432 memcpy(dest + offset, &vcpu->arch.pkru,
3433 sizeof(vcpu->arch.pkru));
3434 else
3435 memcpy(dest + offset, src, size);
3436
3437 }
3438
3439 valid -= feature;
3440 }
3441 }
3442
3443 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3444 {
3445 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3446 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3447 u64 valid;
3448
3449 /*
3450 * Copy legacy XSAVE area, to avoid complications with CPUID
3451 * leaves 0 and 1 in the loop below.
3452 */
3453 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3454
3455 /* Set XSTATE_BV and possibly XCOMP_BV. */
3456 xsave->header.xfeatures = xstate_bv;
3457 if (boot_cpu_has(X86_FEATURE_XSAVES))
3458 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3459
3460 /*
3461 * Copy each region from the non-compacted offset to the
3462 * possibly compacted offset.
3463 */
3464 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3465 while (valid) {
3466 u64 feature = valid & -valid;
3467 int index = fls64(feature) - 1;
3468 void *dest = get_xsave_addr(xsave, feature);
3469
3470 if (dest) {
3471 u32 size, offset, ecx, edx;
3472 cpuid_count(XSTATE_CPUID, index,
3473 &size, &offset, &ecx, &edx);
3474 if (feature == XFEATURE_MASK_PKRU)
3475 memcpy(&vcpu->arch.pkru, src + offset,
3476 sizeof(vcpu->arch.pkru));
3477 else
3478 memcpy(dest, src + offset, size);
3479 }
3480
3481 valid -= feature;
3482 }
3483 }
3484
3485 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3486 struct kvm_xsave *guest_xsave)
3487 {
3488 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3489 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3490 fill_xsave((u8 *) guest_xsave->region, vcpu);
3491 } else {
3492 memcpy(guest_xsave->region,
3493 &vcpu->arch.guest_fpu.state.fxsave,
3494 sizeof(struct fxregs_state));
3495 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3496 XFEATURE_MASK_FPSSE;
3497 }
3498 }
3499
3500 #define XSAVE_MXCSR_OFFSET 24
3501
3502 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3503 struct kvm_xsave *guest_xsave)
3504 {
3505 u64 xstate_bv =
3506 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3507 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3508
3509 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3510 /*
3511 * Here we allow setting states that are not present in
3512 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3513 * with old userspace.
3514 */
3515 if (xstate_bv & ~kvm_supported_xcr0() ||
3516 mxcsr & ~mxcsr_feature_mask)
3517 return -EINVAL;
3518 load_xsave(vcpu, (u8 *)guest_xsave->region);
3519 } else {
3520 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3521 mxcsr & ~mxcsr_feature_mask)
3522 return -EINVAL;
3523 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3524 guest_xsave->region, sizeof(struct fxregs_state));
3525 }
3526 return 0;
3527 }
3528
3529 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3530 struct kvm_xcrs *guest_xcrs)
3531 {
3532 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3533 guest_xcrs->nr_xcrs = 0;
3534 return;
3535 }
3536
3537 guest_xcrs->nr_xcrs = 1;
3538 guest_xcrs->flags = 0;
3539 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3540 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3541 }
3542
3543 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3544 struct kvm_xcrs *guest_xcrs)
3545 {
3546 int i, r = 0;
3547
3548 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3549 return -EINVAL;
3550
3551 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3552 return -EINVAL;
3553
3554 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3555 /* Only support XCR0 currently */
3556 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3557 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3558 guest_xcrs->xcrs[i].value);
3559 break;
3560 }
3561 if (r)
3562 r = -EINVAL;
3563 return r;
3564 }
3565
3566 /*
3567 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3568 * stopped by the hypervisor. This function will be called from the host only.
3569 * EINVAL is returned when the host attempts to set the flag for a guest that
3570 * does not support pv clocks.
3571 */
3572 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3573 {
3574 if (!vcpu->arch.pv_time_enabled)
3575 return -EINVAL;
3576 vcpu->arch.pvclock_set_guest_stopped_request = true;
3577 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3578 return 0;
3579 }
3580
3581 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3582 struct kvm_enable_cap *cap)
3583 {
3584 if (cap->flags)
3585 return -EINVAL;
3586
3587 switch (cap->cap) {
3588 case KVM_CAP_HYPERV_SYNIC2:
3589 if (cap->args[0])
3590 return -EINVAL;
3591 case KVM_CAP_HYPERV_SYNIC:
3592 if (!irqchip_in_kernel(vcpu->kvm))
3593 return -EINVAL;
3594 return kvm_hv_activate_synic(vcpu, cap->cap ==
3595 KVM_CAP_HYPERV_SYNIC2);
3596 default:
3597 return -EINVAL;
3598 }
3599 }
3600
3601 long kvm_arch_vcpu_ioctl(struct file *filp,
3602 unsigned int ioctl, unsigned long arg)
3603 {
3604 struct kvm_vcpu *vcpu = filp->private_data;
3605 void __user *argp = (void __user *)arg;
3606 int r;
3607 union {
3608 struct kvm_lapic_state *lapic;
3609 struct kvm_xsave *xsave;
3610 struct kvm_xcrs *xcrs;
3611 void *buffer;
3612 } u;
3613
3614 u.buffer = NULL;
3615 switch (ioctl) {
3616 case KVM_GET_LAPIC: {
3617 r = -EINVAL;
3618 if (!lapic_in_kernel(vcpu))
3619 goto out;
3620 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3621
3622 r = -ENOMEM;
3623 if (!u.lapic)
3624 goto out;
3625 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3626 if (r)
3627 goto out;
3628 r = -EFAULT;
3629 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3630 goto out;
3631 r = 0;
3632 break;
3633 }
3634 case KVM_SET_LAPIC: {
3635 r = -EINVAL;
3636 if (!lapic_in_kernel(vcpu))
3637 goto out;
3638 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3639 if (IS_ERR(u.lapic))
3640 return PTR_ERR(u.lapic);
3641
3642 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3643 break;
3644 }
3645 case KVM_INTERRUPT: {
3646 struct kvm_interrupt irq;
3647
3648 r = -EFAULT;
3649 if (copy_from_user(&irq, argp, sizeof irq))
3650 goto out;
3651 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3652 break;
3653 }
3654 case KVM_NMI: {
3655 r = kvm_vcpu_ioctl_nmi(vcpu);
3656 break;
3657 }
3658 case KVM_SMI: {
3659 r = kvm_vcpu_ioctl_smi(vcpu);
3660 break;
3661 }
3662 case KVM_SET_CPUID: {
3663 struct kvm_cpuid __user *cpuid_arg = argp;
3664 struct kvm_cpuid cpuid;
3665
3666 r = -EFAULT;
3667 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3668 goto out;
3669 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3670 break;
3671 }
3672 case KVM_SET_CPUID2: {
3673 struct kvm_cpuid2 __user *cpuid_arg = argp;
3674 struct kvm_cpuid2 cpuid;
3675
3676 r = -EFAULT;
3677 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3678 goto out;
3679 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3680 cpuid_arg->entries);
3681 break;
3682 }
3683 case KVM_GET_CPUID2: {
3684 struct kvm_cpuid2 __user *cpuid_arg = argp;
3685 struct kvm_cpuid2 cpuid;
3686
3687 r = -EFAULT;
3688 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3689 goto out;
3690 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3691 cpuid_arg->entries);
3692 if (r)
3693 goto out;
3694 r = -EFAULT;
3695 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3696 goto out;
3697 r = 0;
3698 break;
3699 }
3700 case KVM_GET_MSRS: {
3701 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3702 r = msr_io(vcpu, argp, do_get_msr, 1);
3703 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3704 break;
3705 }
3706 case KVM_SET_MSRS: {
3707 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3708 r = msr_io(vcpu, argp, do_set_msr, 0);
3709 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3710 break;
3711 }
3712 case KVM_TPR_ACCESS_REPORTING: {
3713 struct kvm_tpr_access_ctl tac;
3714
3715 r = -EFAULT;
3716 if (copy_from_user(&tac, argp, sizeof tac))
3717 goto out;
3718 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3719 if (r)
3720 goto out;
3721 r = -EFAULT;
3722 if (copy_to_user(argp, &tac, sizeof tac))
3723 goto out;
3724 r = 0;
3725 break;
3726 };
3727 case KVM_SET_VAPIC_ADDR: {
3728 struct kvm_vapic_addr va;
3729 int idx;
3730
3731 r = -EINVAL;
3732 if (!lapic_in_kernel(vcpu))
3733 goto out;
3734 r = -EFAULT;
3735 if (copy_from_user(&va, argp, sizeof va))
3736 goto out;
3737 idx = srcu_read_lock(&vcpu->kvm->srcu);
3738 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3739 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3740 break;
3741 }
3742 case KVM_X86_SETUP_MCE: {
3743 u64 mcg_cap;
3744
3745 r = -EFAULT;
3746 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3747 goto out;
3748 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3749 break;
3750 }
3751 case KVM_X86_SET_MCE: {
3752 struct kvm_x86_mce mce;
3753
3754 r = -EFAULT;
3755 if (copy_from_user(&mce, argp, sizeof mce))
3756 goto out;
3757 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3758 break;
3759 }
3760 case KVM_GET_VCPU_EVENTS: {
3761 struct kvm_vcpu_events events;
3762
3763 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3764
3765 r = -EFAULT;
3766 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3767 break;
3768 r = 0;
3769 break;
3770 }
3771 case KVM_SET_VCPU_EVENTS: {
3772 struct kvm_vcpu_events events;
3773
3774 r = -EFAULT;
3775 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3776 break;
3777
3778 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3779 break;
3780 }
3781 case KVM_GET_DEBUGREGS: {
3782 struct kvm_debugregs dbgregs;
3783
3784 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3785
3786 r = -EFAULT;
3787 if (copy_to_user(argp, &dbgregs,
3788 sizeof(struct kvm_debugregs)))
3789 break;
3790 r = 0;
3791 break;
3792 }
3793 case KVM_SET_DEBUGREGS: {
3794 struct kvm_debugregs dbgregs;
3795
3796 r = -EFAULT;
3797 if (copy_from_user(&dbgregs, argp,
3798 sizeof(struct kvm_debugregs)))
3799 break;
3800
3801 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3802 break;
3803 }
3804 case KVM_GET_XSAVE: {
3805 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3806 r = -ENOMEM;
3807 if (!u.xsave)
3808 break;
3809
3810 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3811
3812 r = -EFAULT;
3813 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3814 break;
3815 r = 0;
3816 break;
3817 }
3818 case KVM_SET_XSAVE: {
3819 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3820 if (IS_ERR(u.xsave))
3821 return PTR_ERR(u.xsave);
3822
3823 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3824 break;
3825 }
3826 case KVM_GET_XCRS: {
3827 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3828 r = -ENOMEM;
3829 if (!u.xcrs)
3830 break;
3831
3832 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3833
3834 r = -EFAULT;
3835 if (copy_to_user(argp, u.xcrs,
3836 sizeof(struct kvm_xcrs)))
3837 break;
3838 r = 0;
3839 break;
3840 }
3841 case KVM_SET_XCRS: {
3842 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3843 if (IS_ERR(u.xcrs))
3844 return PTR_ERR(u.xcrs);
3845
3846 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3847 break;
3848 }
3849 case KVM_SET_TSC_KHZ: {
3850 u32 user_tsc_khz;
3851
3852 r = -EINVAL;
3853 user_tsc_khz = (u32)arg;
3854
3855 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3856 goto out;
3857
3858 if (user_tsc_khz == 0)
3859 user_tsc_khz = tsc_khz;
3860
3861 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3862 r = 0;
3863
3864 goto out;
3865 }
3866 case KVM_GET_TSC_KHZ: {
3867 r = vcpu->arch.virtual_tsc_khz;
3868 goto out;
3869 }
3870 case KVM_KVMCLOCK_CTRL: {
3871 r = kvm_set_guest_paused(vcpu);
3872 goto out;
3873 }
3874 case KVM_ENABLE_CAP: {
3875 struct kvm_enable_cap cap;
3876
3877 r = -EFAULT;
3878 if (copy_from_user(&cap, argp, sizeof(cap)))
3879 goto out;
3880 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3881 break;
3882 }
3883 default:
3884 r = -EINVAL;
3885 }
3886 out:
3887 kfree(u.buffer);
3888 return r;
3889 }
3890
3891 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3892 {
3893 return VM_FAULT_SIGBUS;
3894 }
3895
3896 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3897 {
3898 int ret;
3899
3900 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3901 return -EINVAL;
3902 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3903 return ret;
3904 }
3905
3906 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3907 u64 ident_addr)
3908 {
3909 kvm->arch.ept_identity_map_addr = ident_addr;
3910 return 0;
3911 }
3912
3913 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3914 u32 kvm_nr_mmu_pages)
3915 {
3916 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3917 return -EINVAL;
3918
3919 mutex_lock(&kvm->slots_lock);
3920
3921 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3922 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3923
3924 mutex_unlock(&kvm->slots_lock);
3925 return 0;
3926 }
3927
3928 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3929 {
3930 return kvm->arch.n_max_mmu_pages;
3931 }
3932
3933 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3934 {
3935 struct kvm_pic *pic = kvm->arch.vpic;
3936 int r;
3937
3938 r = 0;
3939 switch (chip->chip_id) {
3940 case KVM_IRQCHIP_PIC_MASTER:
3941 memcpy(&chip->chip.pic, &pic->pics[0],
3942 sizeof(struct kvm_pic_state));
3943 break;
3944 case KVM_IRQCHIP_PIC_SLAVE:
3945 memcpy(&chip->chip.pic, &pic->pics[1],
3946 sizeof(struct kvm_pic_state));
3947 break;
3948 case KVM_IRQCHIP_IOAPIC:
3949 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3950 break;
3951 default:
3952 r = -EINVAL;
3953 break;
3954 }
3955 return r;
3956 }
3957
3958 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3959 {
3960 struct kvm_pic *pic = kvm->arch.vpic;
3961 int r;
3962
3963 r = 0;
3964 switch (chip->chip_id) {
3965 case KVM_IRQCHIP_PIC_MASTER:
3966 spin_lock(&pic->lock);
3967 memcpy(&pic->pics[0], &chip->chip.pic,
3968 sizeof(struct kvm_pic_state));
3969 spin_unlock(&pic->lock);
3970 break;
3971 case KVM_IRQCHIP_PIC_SLAVE:
3972 spin_lock(&pic->lock);
3973 memcpy(&pic->pics[1], &chip->chip.pic,
3974 sizeof(struct kvm_pic_state));
3975 spin_unlock(&pic->lock);
3976 break;
3977 case KVM_IRQCHIP_IOAPIC:
3978 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3979 break;
3980 default:
3981 r = -EINVAL;
3982 break;
3983 }
3984 kvm_pic_update_irq(pic);
3985 return r;
3986 }
3987
3988 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3989 {
3990 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3991
3992 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3993
3994 mutex_lock(&kps->lock);
3995 memcpy(ps, &kps->channels, sizeof(*ps));
3996 mutex_unlock(&kps->lock);
3997 return 0;
3998 }
3999
4000 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4001 {
4002 int i;
4003 struct kvm_pit *pit = kvm->arch.vpit;
4004
4005 mutex_lock(&pit->pit_state.lock);
4006 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4007 for (i = 0; i < 3; i++)
4008 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4009 mutex_unlock(&pit->pit_state.lock);
4010 return 0;
4011 }
4012
4013 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4014 {
4015 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4016 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4017 sizeof(ps->channels));
4018 ps->flags = kvm->arch.vpit->pit_state.flags;
4019 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4020 memset(&ps->reserved, 0, sizeof(ps->reserved));
4021 return 0;
4022 }
4023
4024 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4025 {
4026 int start = 0;
4027 int i;
4028 u32 prev_legacy, cur_legacy;
4029 struct kvm_pit *pit = kvm->arch.vpit;
4030
4031 mutex_lock(&pit->pit_state.lock);
4032 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4033 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4034 if (!prev_legacy && cur_legacy)
4035 start = 1;
4036 memcpy(&pit->pit_state.channels, &ps->channels,
4037 sizeof(pit->pit_state.channels));
4038 pit->pit_state.flags = ps->flags;
4039 for (i = 0; i < 3; i++)
4040 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4041 start && i == 0);
4042 mutex_unlock(&pit->pit_state.lock);
4043 return 0;
4044 }
4045
4046 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4047 struct kvm_reinject_control *control)
4048 {
4049 struct kvm_pit *pit = kvm->arch.vpit;
4050
4051 if (!pit)
4052 return -ENXIO;
4053
4054 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4055 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4056 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4057 */
4058 mutex_lock(&pit->pit_state.lock);
4059 kvm_pit_set_reinject(pit, control->pit_reinject);
4060 mutex_unlock(&pit->pit_state.lock);
4061
4062 return 0;
4063 }
4064
4065 /**
4066 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4067 * @kvm: kvm instance
4068 * @log: slot id and address to which we copy the log
4069 *
4070 * Steps 1-4 below provide general overview of dirty page logging. See
4071 * kvm_get_dirty_log_protect() function description for additional details.
4072 *
4073 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4074 * always flush the TLB (step 4) even if previous step failed and the dirty
4075 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4076 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4077 * writes will be marked dirty for next log read.
4078 *
4079 * 1. Take a snapshot of the bit and clear it if needed.
4080 * 2. Write protect the corresponding page.
4081 * 3. Copy the snapshot to the userspace.
4082 * 4. Flush TLB's if needed.
4083 */
4084 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4085 {
4086 bool is_dirty = false;
4087 int r;
4088
4089 mutex_lock(&kvm->slots_lock);
4090
4091 /*
4092 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4093 */
4094 if (kvm_x86_ops->flush_log_dirty)
4095 kvm_x86_ops->flush_log_dirty(kvm);
4096
4097 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4098
4099 /*
4100 * All the TLBs can be flushed out of mmu lock, see the comments in
4101 * kvm_mmu_slot_remove_write_access().
4102 */
4103 lockdep_assert_held(&kvm->slots_lock);
4104 if (is_dirty)
4105 kvm_flush_remote_tlbs(kvm);
4106
4107 mutex_unlock(&kvm->slots_lock);
4108 return r;
4109 }
4110
4111 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4112 bool line_status)
4113 {
4114 if (!irqchip_in_kernel(kvm))
4115 return -ENXIO;
4116
4117 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4118 irq_event->irq, irq_event->level,
4119 line_status);
4120 return 0;
4121 }
4122
4123 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4124 struct kvm_enable_cap *cap)
4125 {
4126 int r;
4127
4128 if (cap->flags)
4129 return -EINVAL;
4130
4131 switch (cap->cap) {
4132 case KVM_CAP_DISABLE_QUIRKS:
4133 kvm->arch.disabled_quirks = cap->args[0];
4134 r = 0;
4135 break;
4136 case KVM_CAP_SPLIT_IRQCHIP: {
4137 mutex_lock(&kvm->lock);
4138 r = -EINVAL;
4139 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4140 goto split_irqchip_unlock;
4141 r = -EEXIST;
4142 if (irqchip_in_kernel(kvm))
4143 goto split_irqchip_unlock;
4144 if (kvm->created_vcpus)
4145 goto split_irqchip_unlock;
4146 r = kvm_setup_empty_irq_routing(kvm);
4147 if (r)
4148 goto split_irqchip_unlock;
4149 /* Pairs with irqchip_in_kernel. */
4150 smp_wmb();
4151 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4152 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4153 r = 0;
4154 split_irqchip_unlock:
4155 mutex_unlock(&kvm->lock);
4156 break;
4157 }
4158 case KVM_CAP_X2APIC_API:
4159 r = -EINVAL;
4160 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4161 break;
4162
4163 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4164 kvm->arch.x2apic_format = true;
4165 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4166 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4167
4168 r = 0;
4169 break;
4170 default:
4171 r = -EINVAL;
4172 break;
4173 }
4174 return r;
4175 }
4176
4177 long kvm_arch_vm_ioctl(struct file *filp,
4178 unsigned int ioctl, unsigned long arg)
4179 {
4180 struct kvm *kvm = filp->private_data;
4181 void __user *argp = (void __user *)arg;
4182 int r = -ENOTTY;
4183 /*
4184 * This union makes it completely explicit to gcc-3.x
4185 * that these two variables' stack usage should be
4186 * combined, not added together.
4187 */
4188 union {
4189 struct kvm_pit_state ps;
4190 struct kvm_pit_state2 ps2;
4191 struct kvm_pit_config pit_config;
4192 } u;
4193
4194 switch (ioctl) {
4195 case KVM_SET_TSS_ADDR:
4196 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4197 break;
4198 case KVM_SET_IDENTITY_MAP_ADDR: {
4199 u64 ident_addr;
4200
4201 mutex_lock(&kvm->lock);
4202 r = -EINVAL;
4203 if (kvm->created_vcpus)
4204 goto set_identity_unlock;
4205 r = -EFAULT;
4206 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4207 goto set_identity_unlock;
4208 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4209 set_identity_unlock:
4210 mutex_unlock(&kvm->lock);
4211 break;
4212 }
4213 case KVM_SET_NR_MMU_PAGES:
4214 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4215 break;
4216 case KVM_GET_NR_MMU_PAGES:
4217 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4218 break;
4219 case KVM_CREATE_IRQCHIP: {
4220 mutex_lock(&kvm->lock);
4221
4222 r = -EEXIST;
4223 if (irqchip_in_kernel(kvm))
4224 goto create_irqchip_unlock;
4225
4226 r = -EINVAL;
4227 if (kvm->created_vcpus)
4228 goto create_irqchip_unlock;
4229
4230 r = kvm_pic_init(kvm);
4231 if (r)
4232 goto create_irqchip_unlock;
4233
4234 r = kvm_ioapic_init(kvm);
4235 if (r) {
4236 kvm_pic_destroy(kvm);
4237 goto create_irqchip_unlock;
4238 }
4239
4240 r = kvm_setup_default_irq_routing(kvm);
4241 if (r) {
4242 kvm_ioapic_destroy(kvm);
4243 kvm_pic_destroy(kvm);
4244 goto create_irqchip_unlock;
4245 }
4246 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4247 smp_wmb();
4248 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4249 create_irqchip_unlock:
4250 mutex_unlock(&kvm->lock);
4251 break;
4252 }
4253 case KVM_CREATE_PIT:
4254 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4255 goto create_pit;
4256 case KVM_CREATE_PIT2:
4257 r = -EFAULT;
4258 if (copy_from_user(&u.pit_config, argp,
4259 sizeof(struct kvm_pit_config)))
4260 goto out;
4261 create_pit:
4262 mutex_lock(&kvm->lock);
4263 r = -EEXIST;
4264 if (kvm->arch.vpit)
4265 goto create_pit_unlock;
4266 r = -ENOMEM;
4267 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4268 if (kvm->arch.vpit)
4269 r = 0;
4270 create_pit_unlock:
4271 mutex_unlock(&kvm->lock);
4272 break;
4273 case KVM_GET_IRQCHIP: {
4274 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4275 struct kvm_irqchip *chip;
4276
4277 chip = memdup_user(argp, sizeof(*chip));
4278 if (IS_ERR(chip)) {
4279 r = PTR_ERR(chip);
4280 goto out;
4281 }
4282
4283 r = -ENXIO;
4284 if (!irqchip_kernel(kvm))
4285 goto get_irqchip_out;
4286 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4287 if (r)
4288 goto get_irqchip_out;
4289 r = -EFAULT;
4290 if (copy_to_user(argp, chip, sizeof *chip))
4291 goto get_irqchip_out;
4292 r = 0;
4293 get_irqchip_out:
4294 kfree(chip);
4295 break;
4296 }
4297 case KVM_SET_IRQCHIP: {
4298 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4299 struct kvm_irqchip *chip;
4300
4301 chip = memdup_user(argp, sizeof(*chip));
4302 if (IS_ERR(chip)) {
4303 r = PTR_ERR(chip);
4304 goto out;
4305 }
4306
4307 r = -ENXIO;
4308 if (!irqchip_kernel(kvm))
4309 goto set_irqchip_out;
4310 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4311 if (r)
4312 goto set_irqchip_out;
4313 r = 0;
4314 set_irqchip_out:
4315 kfree(chip);
4316 break;
4317 }
4318 case KVM_GET_PIT: {
4319 r = -EFAULT;
4320 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4321 goto out;
4322 r = -ENXIO;
4323 if (!kvm->arch.vpit)
4324 goto out;
4325 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4326 if (r)
4327 goto out;
4328 r = -EFAULT;
4329 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4330 goto out;
4331 r = 0;
4332 break;
4333 }
4334 case KVM_SET_PIT: {
4335 r = -EFAULT;
4336 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4337 goto out;
4338 r = -ENXIO;
4339 if (!kvm->arch.vpit)
4340 goto out;
4341 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4342 break;
4343 }
4344 case KVM_GET_PIT2: {
4345 r = -ENXIO;
4346 if (!kvm->arch.vpit)
4347 goto out;
4348 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4349 if (r)
4350 goto out;
4351 r = -EFAULT;
4352 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4353 goto out;
4354 r = 0;
4355 break;
4356 }
4357 case KVM_SET_PIT2: {
4358 r = -EFAULT;
4359 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4360 goto out;
4361 r = -ENXIO;
4362 if (!kvm->arch.vpit)
4363 goto out;
4364 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4365 break;
4366 }
4367 case KVM_REINJECT_CONTROL: {
4368 struct kvm_reinject_control control;
4369 r = -EFAULT;
4370 if (copy_from_user(&control, argp, sizeof(control)))
4371 goto out;
4372 r = kvm_vm_ioctl_reinject(kvm, &control);
4373 break;
4374 }
4375 case KVM_SET_BOOT_CPU_ID:
4376 r = 0;
4377 mutex_lock(&kvm->lock);
4378 if (kvm->created_vcpus)
4379 r = -EBUSY;
4380 else
4381 kvm->arch.bsp_vcpu_id = arg;
4382 mutex_unlock(&kvm->lock);
4383 break;
4384 case KVM_XEN_HVM_CONFIG: {
4385 struct kvm_xen_hvm_config xhc;
4386 r = -EFAULT;
4387 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4388 goto out;
4389 r = -EINVAL;
4390 if (xhc.flags)
4391 goto out;
4392 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4393 r = 0;
4394 break;
4395 }
4396 case KVM_SET_CLOCK: {
4397 struct kvm_clock_data user_ns;
4398 u64 now_ns;
4399
4400 r = -EFAULT;
4401 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4402 goto out;
4403
4404 r = -EINVAL;
4405 if (user_ns.flags)
4406 goto out;
4407
4408 r = 0;
4409 /*
4410 * TODO: userspace has to take care of races with VCPU_RUN, so
4411 * kvm_gen_update_masterclock() can be cut down to locked
4412 * pvclock_update_vm_gtod_copy().
4413 */
4414 kvm_gen_update_masterclock(kvm);
4415 now_ns = get_kvmclock_ns(kvm);
4416 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4417 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4418 break;
4419 }
4420 case KVM_GET_CLOCK: {
4421 struct kvm_clock_data user_ns;
4422 u64 now_ns;
4423
4424 now_ns = get_kvmclock_ns(kvm);
4425 user_ns.clock = now_ns;
4426 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4427 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4428
4429 r = -EFAULT;
4430 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4431 goto out;
4432 r = 0;
4433 break;
4434 }
4435 case KVM_ENABLE_CAP: {
4436 struct kvm_enable_cap cap;
4437
4438 r = -EFAULT;
4439 if (copy_from_user(&cap, argp, sizeof(cap)))
4440 goto out;
4441 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4442 break;
4443 }
4444 default:
4445 r = -ENOTTY;
4446 }
4447 out:
4448 return r;
4449 }
4450
4451 static void kvm_init_msr_list(void)
4452 {
4453 u32 dummy[2];
4454 unsigned i, j;
4455
4456 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4457 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4458 continue;
4459
4460 /*
4461 * Even MSRs that are valid in the host may not be exposed
4462 * to the guests in some cases.
4463 */
4464 switch (msrs_to_save[i]) {
4465 case MSR_IA32_BNDCFGS:
4466 if (!kvm_x86_ops->mpx_supported())
4467 continue;
4468 break;
4469 case MSR_TSC_AUX:
4470 if (!kvm_x86_ops->rdtscp_supported())
4471 continue;
4472 break;
4473 default:
4474 break;
4475 }
4476
4477 if (j < i)
4478 msrs_to_save[j] = msrs_to_save[i];
4479 j++;
4480 }
4481 num_msrs_to_save = j;
4482
4483 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4484 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4485 continue;
4486
4487 if (j < i)
4488 emulated_msrs[j] = emulated_msrs[i];
4489 j++;
4490 }
4491 num_emulated_msrs = j;
4492
4493 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4494 struct kvm_msr_entry msr;
4495
4496 msr.index = msr_based_features[i];
4497 if (kvm_get_msr_feature(&msr))
4498 continue;
4499
4500 if (j < i)
4501 msr_based_features[j] = msr_based_features[i];
4502 j++;
4503 }
4504 num_msr_based_features = j;
4505 }
4506
4507 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4508 const void *v)
4509 {
4510 int handled = 0;
4511 int n;
4512
4513 do {
4514 n = min(len, 8);
4515 if (!(lapic_in_kernel(vcpu) &&
4516 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4517 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4518 break;
4519 handled += n;
4520 addr += n;
4521 len -= n;
4522 v += n;
4523 } while (len);
4524
4525 return handled;
4526 }
4527
4528 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4529 {
4530 int handled = 0;
4531 int n;
4532
4533 do {
4534 n = min(len, 8);
4535 if (!(lapic_in_kernel(vcpu) &&
4536 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4537 addr, n, v))
4538 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4539 break;
4540 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4541 handled += n;
4542 addr += n;
4543 len -= n;
4544 v += n;
4545 } while (len);
4546
4547 return handled;
4548 }
4549
4550 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4551 struct kvm_segment *var, int seg)
4552 {
4553 kvm_x86_ops->set_segment(vcpu, var, seg);
4554 }
4555
4556 void kvm_get_segment(struct kvm_vcpu *vcpu,
4557 struct kvm_segment *var, int seg)
4558 {
4559 kvm_x86_ops->get_segment(vcpu, var, seg);
4560 }
4561
4562 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4563 struct x86_exception *exception)
4564 {
4565 gpa_t t_gpa;
4566
4567 BUG_ON(!mmu_is_nested(vcpu));
4568
4569 /* NPT walks are always user-walks */
4570 access |= PFERR_USER_MASK;
4571 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4572
4573 return t_gpa;
4574 }
4575
4576 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4577 struct x86_exception *exception)
4578 {
4579 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4580 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4581 }
4582
4583 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4584 struct x86_exception *exception)
4585 {
4586 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4587 access |= PFERR_FETCH_MASK;
4588 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4589 }
4590
4591 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4592 struct x86_exception *exception)
4593 {
4594 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4595 access |= PFERR_WRITE_MASK;
4596 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4597 }
4598
4599 /* uses this to access any guest's mapped memory without checking CPL */
4600 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4601 struct x86_exception *exception)
4602 {
4603 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4604 }
4605
4606 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4607 struct kvm_vcpu *vcpu, u32 access,
4608 struct x86_exception *exception)
4609 {
4610 void *data = val;
4611 int r = X86EMUL_CONTINUE;
4612
4613 while (bytes) {
4614 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4615 exception);
4616 unsigned offset = addr & (PAGE_SIZE-1);
4617 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4618 int ret;
4619
4620 if (gpa == UNMAPPED_GVA)
4621 return X86EMUL_PROPAGATE_FAULT;
4622 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4623 offset, toread);
4624 if (ret < 0) {
4625 r = X86EMUL_IO_NEEDED;
4626 goto out;
4627 }
4628
4629 bytes -= toread;
4630 data += toread;
4631 addr += toread;
4632 }
4633 out:
4634 return r;
4635 }
4636
4637 /* used for instruction fetching */
4638 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4639 gva_t addr, void *val, unsigned int bytes,
4640 struct x86_exception *exception)
4641 {
4642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4643 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4644 unsigned offset;
4645 int ret;
4646
4647 /* Inline kvm_read_guest_virt_helper for speed. */
4648 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4649 exception);
4650 if (unlikely(gpa == UNMAPPED_GVA))
4651 return X86EMUL_PROPAGATE_FAULT;
4652
4653 offset = addr & (PAGE_SIZE-1);
4654 if (WARN_ON(offset + bytes > PAGE_SIZE))
4655 bytes = (unsigned)PAGE_SIZE - offset;
4656 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4657 offset, bytes);
4658 if (unlikely(ret < 0))
4659 return X86EMUL_IO_NEEDED;
4660
4661 return X86EMUL_CONTINUE;
4662 }
4663
4664 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4665 gva_t addr, void *val, unsigned int bytes,
4666 struct x86_exception *exception)
4667 {
4668 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4669
4670 /*
4671 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4672 * is returned, but our callers are not ready for that and they blindly
4673 * call kvm_inject_page_fault. Ensure that they at least do not leak
4674 * uninitialized kernel stack memory into cr2 and error code.
4675 */
4676 memset(exception, 0, sizeof(*exception));
4677 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4678 exception);
4679 }
4680 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4681
4682 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4683 gva_t addr, void *val, unsigned int bytes,
4684 struct x86_exception *exception, bool system)
4685 {
4686 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4687 u32 access = 0;
4688
4689 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4690 access |= PFERR_USER_MASK;
4691
4692 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4693 }
4694
4695 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4696 unsigned long addr, void *val, unsigned int bytes)
4697 {
4698 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4699 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4700
4701 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4702 }
4703
4704 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4705 struct kvm_vcpu *vcpu, u32 access,
4706 struct x86_exception *exception)
4707 {
4708 void *data = val;
4709 int r = X86EMUL_CONTINUE;
4710
4711 while (bytes) {
4712 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4713 access,
4714 exception);
4715 unsigned offset = addr & (PAGE_SIZE-1);
4716 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4717 int ret;
4718
4719 if (gpa == UNMAPPED_GVA)
4720 return X86EMUL_PROPAGATE_FAULT;
4721 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4722 if (ret < 0) {
4723 r = X86EMUL_IO_NEEDED;
4724 goto out;
4725 }
4726
4727 bytes -= towrite;
4728 data += towrite;
4729 addr += towrite;
4730 }
4731 out:
4732 return r;
4733 }
4734
4735 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4736 unsigned int bytes, struct x86_exception *exception,
4737 bool system)
4738 {
4739 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740 u32 access = PFERR_WRITE_MASK;
4741
4742 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4743 access |= PFERR_USER_MASK;
4744
4745 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4746 access, exception);
4747 }
4748
4749 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4750 unsigned int bytes, struct x86_exception *exception)
4751 {
4752 /* kvm_write_guest_virt_system can pull in tons of pages. */
4753 vcpu->arch.l1tf_flush_l1d = true;
4754
4755 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4756 PFERR_WRITE_MASK, exception);
4757 }
4758 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4759
4760 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4761 gpa_t gpa, bool write)
4762 {
4763 /* For APIC access vmexit */
4764 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4765 return 1;
4766
4767 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4768 trace_vcpu_match_mmio(gva, gpa, write, true);
4769 return 1;
4770 }
4771
4772 return 0;
4773 }
4774
4775 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4776 gpa_t *gpa, struct x86_exception *exception,
4777 bool write)
4778 {
4779 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4780 | (write ? PFERR_WRITE_MASK : 0);
4781
4782 /*
4783 * currently PKRU is only applied to ept enabled guest so
4784 * there is no pkey in EPT page table for L1 guest or EPT
4785 * shadow page table for L2 guest.
4786 */
4787 if (vcpu_match_mmio_gva(vcpu, gva)
4788 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4789 vcpu->arch.access, 0, access)) {
4790 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4791 (gva & (PAGE_SIZE - 1));
4792 trace_vcpu_match_mmio(gva, *gpa, write, false);
4793 return 1;
4794 }
4795
4796 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4797
4798 if (*gpa == UNMAPPED_GVA)
4799 return -1;
4800
4801 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4802 }
4803
4804 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4805 const void *val, int bytes)
4806 {
4807 int ret;
4808
4809 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4810 if (ret < 0)
4811 return 0;
4812 kvm_page_track_write(vcpu, gpa, val, bytes);
4813 return 1;
4814 }
4815
4816 struct read_write_emulator_ops {
4817 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4818 int bytes);
4819 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4820 void *val, int bytes);
4821 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4822 int bytes, void *val);
4823 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4824 void *val, int bytes);
4825 bool write;
4826 };
4827
4828 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4829 {
4830 if (vcpu->mmio_read_completed) {
4831 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4832 vcpu->mmio_fragments[0].gpa, val);
4833 vcpu->mmio_read_completed = 0;
4834 return 1;
4835 }
4836
4837 return 0;
4838 }
4839
4840 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4841 void *val, int bytes)
4842 {
4843 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4844 }
4845
4846 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4847 void *val, int bytes)
4848 {
4849 return emulator_write_phys(vcpu, gpa, val, bytes);
4850 }
4851
4852 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4853 {
4854 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4855 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4856 }
4857
4858 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4859 void *val, int bytes)
4860 {
4861 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4862 return X86EMUL_IO_NEEDED;
4863 }
4864
4865 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4866 void *val, int bytes)
4867 {
4868 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4869
4870 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4871 return X86EMUL_CONTINUE;
4872 }
4873
4874 static const struct read_write_emulator_ops read_emultor = {
4875 .read_write_prepare = read_prepare,
4876 .read_write_emulate = read_emulate,
4877 .read_write_mmio = vcpu_mmio_read,
4878 .read_write_exit_mmio = read_exit_mmio,
4879 };
4880
4881 static const struct read_write_emulator_ops write_emultor = {
4882 .read_write_emulate = write_emulate,
4883 .read_write_mmio = write_mmio,
4884 .read_write_exit_mmio = write_exit_mmio,
4885 .write = true,
4886 };
4887
4888 static int emulator_read_write_onepage(unsigned long addr, void *val,
4889 unsigned int bytes,
4890 struct x86_exception *exception,
4891 struct kvm_vcpu *vcpu,
4892 const struct read_write_emulator_ops *ops)
4893 {
4894 gpa_t gpa;
4895 int handled, ret;
4896 bool write = ops->write;
4897 struct kvm_mmio_fragment *frag;
4898 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4899
4900 /*
4901 * If the exit was due to a NPF we may already have a GPA.
4902 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4903 * Note, this cannot be used on string operations since string
4904 * operation using rep will only have the initial GPA from the NPF
4905 * occurred.
4906 */
4907 if (vcpu->arch.gpa_available &&
4908 emulator_can_use_gpa(ctxt) &&
4909 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4910 gpa = vcpu->arch.gpa_val;
4911 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4912 } else {
4913 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4914 if (ret < 0)
4915 return X86EMUL_PROPAGATE_FAULT;
4916 }
4917
4918 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4919 return X86EMUL_CONTINUE;
4920
4921 /*
4922 * Is this MMIO handled locally?
4923 */
4924 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4925 if (handled == bytes)
4926 return X86EMUL_CONTINUE;
4927
4928 gpa += handled;
4929 bytes -= handled;
4930 val += handled;
4931
4932 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4933 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4934 frag->gpa = gpa;
4935 frag->data = val;
4936 frag->len = bytes;
4937 return X86EMUL_CONTINUE;
4938 }
4939
4940 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4941 unsigned long addr,
4942 void *val, unsigned int bytes,
4943 struct x86_exception *exception,
4944 const struct read_write_emulator_ops *ops)
4945 {
4946 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4947 gpa_t gpa;
4948 int rc;
4949
4950 if (ops->read_write_prepare &&
4951 ops->read_write_prepare(vcpu, val, bytes))
4952 return X86EMUL_CONTINUE;
4953
4954 vcpu->mmio_nr_fragments = 0;
4955
4956 /* Crossing a page boundary? */
4957 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4958 int now;
4959
4960 now = -addr & ~PAGE_MASK;
4961 rc = emulator_read_write_onepage(addr, val, now, exception,
4962 vcpu, ops);
4963
4964 if (rc != X86EMUL_CONTINUE)
4965 return rc;
4966 addr += now;
4967 if (ctxt->mode != X86EMUL_MODE_PROT64)
4968 addr = (u32)addr;
4969 val += now;
4970 bytes -= now;
4971 }
4972
4973 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4974 vcpu, ops);
4975 if (rc != X86EMUL_CONTINUE)
4976 return rc;
4977
4978 if (!vcpu->mmio_nr_fragments)
4979 return rc;
4980
4981 gpa = vcpu->mmio_fragments[0].gpa;
4982
4983 vcpu->mmio_needed = 1;
4984 vcpu->mmio_cur_fragment = 0;
4985
4986 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4987 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4988 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4989 vcpu->run->mmio.phys_addr = gpa;
4990
4991 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4992 }
4993
4994 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4995 unsigned long addr,
4996 void *val,
4997 unsigned int bytes,
4998 struct x86_exception *exception)
4999 {
5000 return emulator_read_write(ctxt, addr, val, bytes,
5001 exception, &read_emultor);
5002 }
5003
5004 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5005 unsigned long addr,
5006 const void *val,
5007 unsigned int bytes,
5008 struct x86_exception *exception)
5009 {
5010 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5011 exception, &write_emultor);
5012 }
5013
5014 #define CMPXCHG_TYPE(t, ptr, old, new) \
5015 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5016
5017 #ifdef CONFIG_X86_64
5018 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5019 #else
5020 # define CMPXCHG64(ptr, old, new) \
5021 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5022 #endif
5023
5024 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5025 unsigned long addr,
5026 const void *old,
5027 const void *new,
5028 unsigned int bytes,
5029 struct x86_exception *exception)
5030 {
5031 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5032 gpa_t gpa;
5033 struct page *page;
5034 char *kaddr;
5035 bool exchanged;
5036
5037 /* guests cmpxchg8b have to be emulated atomically */
5038 if (bytes > 8 || (bytes & (bytes - 1)))
5039 goto emul_write;
5040
5041 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5042
5043 if (gpa == UNMAPPED_GVA ||
5044 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5045 goto emul_write;
5046
5047 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5048 goto emul_write;
5049
5050 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5051 if (is_error_page(page))
5052 goto emul_write;
5053
5054 kaddr = kmap_atomic(page);
5055 kaddr += offset_in_page(gpa);
5056 switch (bytes) {
5057 case 1:
5058 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5059 break;
5060 case 2:
5061 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5062 break;
5063 case 4:
5064 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5065 break;
5066 case 8:
5067 exchanged = CMPXCHG64(kaddr, old, new);
5068 break;
5069 default:
5070 BUG();
5071 }
5072 kunmap_atomic(kaddr);
5073 kvm_release_page_dirty(page);
5074
5075 if (!exchanged)
5076 return X86EMUL_CMPXCHG_FAILED;
5077
5078 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5079 kvm_page_track_write(vcpu, gpa, new, bytes);
5080
5081 return X86EMUL_CONTINUE;
5082
5083 emul_write:
5084 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5085
5086 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5087 }
5088
5089 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5090 {
5091 int r = 0, i;
5092
5093 for (i = 0; i < vcpu->arch.pio.count; i++) {
5094 if (vcpu->arch.pio.in)
5095 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5096 vcpu->arch.pio.size, pd);
5097 else
5098 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5099 vcpu->arch.pio.port, vcpu->arch.pio.size,
5100 pd);
5101 if (r)
5102 break;
5103 pd += vcpu->arch.pio.size;
5104 }
5105 return r;
5106 }
5107
5108 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5109 unsigned short port, void *val,
5110 unsigned int count, bool in)
5111 {
5112 vcpu->arch.pio.port = port;
5113 vcpu->arch.pio.in = in;
5114 vcpu->arch.pio.count = count;
5115 vcpu->arch.pio.size = size;
5116
5117 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5118 vcpu->arch.pio.count = 0;
5119 return 1;
5120 }
5121
5122 vcpu->run->exit_reason = KVM_EXIT_IO;
5123 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5124 vcpu->run->io.size = size;
5125 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5126 vcpu->run->io.count = count;
5127 vcpu->run->io.port = port;
5128
5129 return 0;
5130 }
5131
5132 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5133 int size, unsigned short port, void *val,
5134 unsigned int count)
5135 {
5136 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5137 int ret;
5138
5139 if (vcpu->arch.pio.count)
5140 goto data_avail;
5141
5142 memset(vcpu->arch.pio_data, 0, size * count);
5143
5144 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5145 if (ret) {
5146 data_avail:
5147 memcpy(val, vcpu->arch.pio_data, size * count);
5148 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5149 vcpu->arch.pio.count = 0;
5150 return 1;
5151 }
5152
5153 return 0;
5154 }
5155
5156 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5157 int size, unsigned short port,
5158 const void *val, unsigned int count)
5159 {
5160 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5161
5162 memcpy(vcpu->arch.pio_data, val, size * count);
5163 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5164 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5165 }
5166
5167 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5168 {
5169 return kvm_x86_ops->get_segment_base(vcpu, seg);
5170 }
5171
5172 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5173 {
5174 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5175 }
5176
5177 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5178 {
5179 if (!need_emulate_wbinvd(vcpu))
5180 return X86EMUL_CONTINUE;
5181
5182 if (kvm_x86_ops->has_wbinvd_exit()) {
5183 int cpu = get_cpu();
5184
5185 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5186 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5187 wbinvd_ipi, NULL, 1);
5188 put_cpu();
5189 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5190 } else
5191 wbinvd();
5192 return X86EMUL_CONTINUE;
5193 }
5194
5195 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5196 {
5197 kvm_emulate_wbinvd_noskip(vcpu);
5198 return kvm_skip_emulated_instruction(vcpu);
5199 }
5200 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5201
5202
5203
5204 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5205 {
5206 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5207 }
5208
5209 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5210 unsigned long *dest)
5211 {
5212 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5213 }
5214
5215 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5216 unsigned long value)
5217 {
5218
5219 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5220 }
5221
5222 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5223 {
5224 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5225 }
5226
5227 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5228 {
5229 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5230 unsigned long value;
5231
5232 switch (cr) {
5233 case 0:
5234 value = kvm_read_cr0(vcpu);
5235 break;
5236 case 2:
5237 value = vcpu->arch.cr2;
5238 break;
5239 case 3:
5240 value = kvm_read_cr3(vcpu);
5241 break;
5242 case 4:
5243 value = kvm_read_cr4(vcpu);
5244 break;
5245 case 8:
5246 value = kvm_get_cr8(vcpu);
5247 break;
5248 default:
5249 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5250 return 0;
5251 }
5252
5253 return value;
5254 }
5255
5256 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5257 {
5258 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259 int res = 0;
5260
5261 switch (cr) {
5262 case 0:
5263 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5264 break;
5265 case 2:
5266 vcpu->arch.cr2 = val;
5267 break;
5268 case 3:
5269 res = kvm_set_cr3(vcpu, val);
5270 break;
5271 case 4:
5272 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5273 break;
5274 case 8:
5275 res = kvm_set_cr8(vcpu, val);
5276 break;
5277 default:
5278 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5279 res = -1;
5280 }
5281
5282 return res;
5283 }
5284
5285 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5286 {
5287 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5288 }
5289
5290 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5291 {
5292 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5293 }
5294
5295 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5296 {
5297 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5298 }
5299
5300 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5301 {
5302 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5303 }
5304
5305 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5306 {
5307 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5308 }
5309
5310 static unsigned long emulator_get_cached_segment_base(
5311 struct x86_emulate_ctxt *ctxt, int seg)
5312 {
5313 return get_segment_base(emul_to_vcpu(ctxt), seg);
5314 }
5315
5316 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5317 struct desc_struct *desc, u32 *base3,
5318 int seg)
5319 {
5320 struct kvm_segment var;
5321
5322 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5323 *selector = var.selector;
5324
5325 if (var.unusable) {
5326 memset(desc, 0, sizeof(*desc));
5327 if (base3)
5328 *base3 = 0;
5329 return false;
5330 }
5331
5332 if (var.g)
5333 var.limit >>= 12;
5334 set_desc_limit(desc, var.limit);
5335 set_desc_base(desc, (unsigned long)var.base);
5336 #ifdef CONFIG_X86_64
5337 if (base3)
5338 *base3 = var.base >> 32;
5339 #endif
5340 desc->type = var.type;
5341 desc->s = var.s;
5342 desc->dpl = var.dpl;
5343 desc->p = var.present;
5344 desc->avl = var.avl;
5345 desc->l = var.l;
5346 desc->d = var.db;
5347 desc->g = var.g;
5348
5349 return true;
5350 }
5351
5352 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5353 struct desc_struct *desc, u32 base3,
5354 int seg)
5355 {
5356 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5357 struct kvm_segment var;
5358
5359 var.selector = selector;
5360 var.base = get_desc_base(desc);
5361 #ifdef CONFIG_X86_64
5362 var.base |= ((u64)base3) << 32;
5363 #endif
5364 var.limit = get_desc_limit(desc);
5365 if (desc->g)
5366 var.limit = (var.limit << 12) | 0xfff;
5367 var.type = desc->type;
5368 var.dpl = desc->dpl;
5369 var.db = desc->d;
5370 var.s = desc->s;
5371 var.l = desc->l;
5372 var.g = desc->g;
5373 var.avl = desc->avl;
5374 var.present = desc->p;
5375 var.unusable = !var.present;
5376 var.padding = 0;
5377
5378 kvm_set_segment(vcpu, &var, seg);
5379 return;
5380 }
5381
5382 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5383 u32 msr_index, u64 *pdata)
5384 {
5385 struct msr_data msr;
5386 int r;
5387
5388 msr.index = msr_index;
5389 msr.host_initiated = false;
5390 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5391 if (r)
5392 return r;
5393
5394 *pdata = msr.data;
5395 return 0;
5396 }
5397
5398 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5399 u32 msr_index, u64 data)
5400 {
5401 struct msr_data msr;
5402
5403 msr.data = data;
5404 msr.index = msr_index;
5405 msr.host_initiated = false;
5406 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5407 }
5408
5409 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5410 {
5411 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5412
5413 return vcpu->arch.smbase;
5414 }
5415
5416 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5417 {
5418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5419
5420 vcpu->arch.smbase = smbase;
5421 }
5422
5423 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5424 u32 pmc)
5425 {
5426 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5427 }
5428
5429 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5430 u32 pmc, u64 *pdata)
5431 {
5432 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5433 }
5434
5435 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5436 {
5437 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5438 }
5439
5440 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5441 struct x86_instruction_info *info,
5442 enum x86_intercept_stage stage)
5443 {
5444 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5445 }
5446
5447 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5448 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5449 {
5450 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5451 }
5452
5453 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5454 {
5455 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5456 }
5457
5458 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5459 {
5460 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5461 }
5462
5463 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5464 {
5465 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5466 }
5467
5468 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5469 {
5470 return emul_to_vcpu(ctxt)->arch.hflags;
5471 }
5472
5473 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5474 {
5475 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5476 }
5477
5478 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5479 {
5480 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5481 }
5482
5483 static const struct x86_emulate_ops emulate_ops = {
5484 .read_gpr = emulator_read_gpr,
5485 .write_gpr = emulator_write_gpr,
5486 .read_std = emulator_read_std,
5487 .write_std = emulator_write_std,
5488 .read_phys = kvm_read_guest_phys_system,
5489 .fetch = kvm_fetch_guest_virt,
5490 .read_emulated = emulator_read_emulated,
5491 .write_emulated = emulator_write_emulated,
5492 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5493 .invlpg = emulator_invlpg,
5494 .pio_in_emulated = emulator_pio_in_emulated,
5495 .pio_out_emulated = emulator_pio_out_emulated,
5496 .get_segment = emulator_get_segment,
5497 .set_segment = emulator_set_segment,
5498 .get_cached_segment_base = emulator_get_cached_segment_base,
5499 .get_gdt = emulator_get_gdt,
5500 .get_idt = emulator_get_idt,
5501 .set_gdt = emulator_set_gdt,
5502 .set_idt = emulator_set_idt,
5503 .get_cr = emulator_get_cr,
5504 .set_cr = emulator_set_cr,
5505 .cpl = emulator_get_cpl,
5506 .get_dr = emulator_get_dr,
5507 .set_dr = emulator_set_dr,
5508 .get_smbase = emulator_get_smbase,
5509 .set_smbase = emulator_set_smbase,
5510 .set_msr = emulator_set_msr,
5511 .get_msr = emulator_get_msr,
5512 .check_pmc = emulator_check_pmc,
5513 .read_pmc = emulator_read_pmc,
5514 .halt = emulator_halt,
5515 .wbinvd = emulator_wbinvd,
5516 .fix_hypercall = emulator_fix_hypercall,
5517 .intercept = emulator_intercept,
5518 .get_cpuid = emulator_get_cpuid,
5519 .set_nmi_mask = emulator_set_nmi_mask,
5520 .get_hflags = emulator_get_hflags,
5521 .set_hflags = emulator_set_hflags,
5522 .pre_leave_smm = emulator_pre_leave_smm,
5523 };
5524
5525 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5526 {
5527 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5528 /*
5529 * an sti; sti; sequence only disable interrupts for the first
5530 * instruction. So, if the last instruction, be it emulated or
5531 * not, left the system with the INT_STI flag enabled, it
5532 * means that the last instruction is an sti. We should not
5533 * leave the flag on in this case. The same goes for mov ss
5534 */
5535 if (int_shadow & mask)
5536 mask = 0;
5537 if (unlikely(int_shadow || mask)) {
5538 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5539 if (!mask)
5540 kvm_make_request(KVM_REQ_EVENT, vcpu);
5541 }
5542 }
5543
5544 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5545 {
5546 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5547 if (ctxt->exception.vector == PF_VECTOR)
5548 return kvm_propagate_fault(vcpu, &ctxt->exception);
5549
5550 if (ctxt->exception.error_code_valid)
5551 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5552 ctxt->exception.error_code);
5553 else
5554 kvm_queue_exception(vcpu, ctxt->exception.vector);
5555 return false;
5556 }
5557
5558 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5559 {
5560 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5561 int cs_db, cs_l;
5562
5563 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5564
5565 ctxt->eflags = kvm_get_rflags(vcpu);
5566 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5567
5568 ctxt->eip = kvm_rip_read(vcpu);
5569 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5570 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5571 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5572 cs_db ? X86EMUL_MODE_PROT32 :
5573 X86EMUL_MODE_PROT16;
5574 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5575 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5576 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5577
5578 init_decode_cache(ctxt);
5579 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5580 }
5581
5582 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5583 {
5584 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5585 int ret;
5586
5587 init_emulate_ctxt(vcpu);
5588
5589 ctxt->op_bytes = 2;
5590 ctxt->ad_bytes = 2;
5591 ctxt->_eip = ctxt->eip + inc_eip;
5592 ret = emulate_int_real(ctxt, irq);
5593
5594 if (ret != X86EMUL_CONTINUE)
5595 return EMULATE_FAIL;
5596
5597 ctxt->eip = ctxt->_eip;
5598 kvm_rip_write(vcpu, ctxt->eip);
5599 kvm_set_rflags(vcpu, ctxt->eflags);
5600
5601 if (irq == NMI_VECTOR)
5602 vcpu->arch.nmi_pending = 0;
5603 else
5604 vcpu->arch.interrupt.pending = false;
5605
5606 return EMULATE_DONE;
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5609
5610 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5611 {
5612 int r = EMULATE_DONE;
5613
5614 ++vcpu->stat.insn_emulation_fail;
5615 trace_kvm_emulate_insn_failed(vcpu);
5616 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5617 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5618 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5619 vcpu->run->internal.ndata = 0;
5620 r = EMULATE_USER_EXIT;
5621 }
5622 kvm_queue_exception(vcpu, UD_VECTOR);
5623
5624 return r;
5625 }
5626
5627 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5628 bool write_fault_to_shadow_pgtable,
5629 int emulation_type)
5630 {
5631 gpa_t gpa = cr2;
5632 kvm_pfn_t pfn;
5633
5634 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5635 return false;
5636
5637 if (!vcpu->arch.mmu.direct_map) {
5638 /*
5639 * Write permission should be allowed since only
5640 * write access need to be emulated.
5641 */
5642 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5643
5644 /*
5645 * If the mapping is invalid in guest, let cpu retry
5646 * it to generate fault.
5647 */
5648 if (gpa == UNMAPPED_GVA)
5649 return true;
5650 }
5651
5652 /*
5653 * Do not retry the unhandleable instruction if it faults on the
5654 * readonly host memory, otherwise it will goto a infinite loop:
5655 * retry instruction -> write #PF -> emulation fail -> retry
5656 * instruction -> ...
5657 */
5658 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5659
5660 /*
5661 * If the instruction failed on the error pfn, it can not be fixed,
5662 * report the error to userspace.
5663 */
5664 if (is_error_noslot_pfn(pfn))
5665 return false;
5666
5667 kvm_release_pfn_clean(pfn);
5668
5669 /* The instructions are well-emulated on direct mmu. */
5670 if (vcpu->arch.mmu.direct_map) {
5671 unsigned int indirect_shadow_pages;
5672
5673 spin_lock(&vcpu->kvm->mmu_lock);
5674 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5675 spin_unlock(&vcpu->kvm->mmu_lock);
5676
5677 if (indirect_shadow_pages)
5678 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5679
5680 return true;
5681 }
5682
5683 /*
5684 * if emulation was due to access to shadowed page table
5685 * and it failed try to unshadow page and re-enter the
5686 * guest to let CPU execute the instruction.
5687 */
5688 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5689
5690 /*
5691 * If the access faults on its page table, it can not
5692 * be fixed by unprotecting shadow page and it should
5693 * be reported to userspace.
5694 */
5695 return !write_fault_to_shadow_pgtable;
5696 }
5697
5698 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5699 unsigned long cr2, int emulation_type)
5700 {
5701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5702 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5703
5704 last_retry_eip = vcpu->arch.last_retry_eip;
5705 last_retry_addr = vcpu->arch.last_retry_addr;
5706
5707 /*
5708 * If the emulation is caused by #PF and it is non-page_table
5709 * writing instruction, it means the VM-EXIT is caused by shadow
5710 * page protected, we can zap the shadow page and retry this
5711 * instruction directly.
5712 *
5713 * Note: if the guest uses a non-page-table modifying instruction
5714 * on the PDE that points to the instruction, then we will unmap
5715 * the instruction and go to an infinite loop. So, we cache the
5716 * last retried eip and the last fault address, if we meet the eip
5717 * and the address again, we can break out of the potential infinite
5718 * loop.
5719 */
5720 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5721
5722 if (!(emulation_type & EMULTYPE_RETRY))
5723 return false;
5724
5725 if (x86_page_table_writing_insn(ctxt))
5726 return false;
5727
5728 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5729 return false;
5730
5731 vcpu->arch.last_retry_eip = ctxt->eip;
5732 vcpu->arch.last_retry_addr = cr2;
5733
5734 if (!vcpu->arch.mmu.direct_map)
5735 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5736
5737 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5738
5739 return true;
5740 }
5741
5742 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5743 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5744
5745 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5746 {
5747 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5748 /* This is a good place to trace that we are exiting SMM. */
5749 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5750
5751 /* Process a latched INIT or SMI, if any. */
5752 kvm_make_request(KVM_REQ_EVENT, vcpu);
5753 }
5754
5755 kvm_mmu_reset_context(vcpu);
5756 }
5757
5758 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5759 {
5760 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5761
5762 vcpu->arch.hflags = emul_flags;
5763
5764 if (changed & HF_SMM_MASK)
5765 kvm_smm_changed(vcpu);
5766 }
5767
5768 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5769 unsigned long *db)
5770 {
5771 u32 dr6 = 0;
5772 int i;
5773 u32 enable, rwlen;
5774
5775 enable = dr7;
5776 rwlen = dr7 >> 16;
5777 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5778 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5779 dr6 |= (1 << i);
5780 return dr6;
5781 }
5782
5783 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5784 {
5785 struct kvm_run *kvm_run = vcpu->run;
5786
5787 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5788 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5789 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5790 kvm_run->debug.arch.exception = DB_VECTOR;
5791 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5792 *r = EMULATE_USER_EXIT;
5793 } else {
5794 /*
5795 * "Certain debug exceptions may clear bit 0-3. The
5796 * remaining contents of the DR6 register are never
5797 * cleared by the processor".
5798 */
5799 vcpu->arch.dr6 &= ~15;
5800 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5801 kvm_queue_exception(vcpu, DB_VECTOR);
5802 }
5803 }
5804
5805 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5806 {
5807 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5808 int r = EMULATE_DONE;
5809
5810 kvm_x86_ops->skip_emulated_instruction(vcpu);
5811
5812 /*
5813 * rflags is the old, "raw" value of the flags. The new value has
5814 * not been saved yet.
5815 *
5816 * This is correct even for TF set by the guest, because "the
5817 * processor will not generate this exception after the instruction
5818 * that sets the TF flag".
5819 */
5820 if (unlikely(rflags & X86_EFLAGS_TF))
5821 kvm_vcpu_do_singlestep(vcpu, &r);
5822 return r == EMULATE_DONE;
5823 }
5824 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5825
5826 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5827 {
5828 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5829 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5830 struct kvm_run *kvm_run = vcpu->run;
5831 unsigned long eip = kvm_get_linear_rip(vcpu);
5832 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5833 vcpu->arch.guest_debug_dr7,
5834 vcpu->arch.eff_db);
5835
5836 if (dr6 != 0) {
5837 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5838 kvm_run->debug.arch.pc = eip;
5839 kvm_run->debug.arch.exception = DB_VECTOR;
5840 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5841 *r = EMULATE_USER_EXIT;
5842 return true;
5843 }
5844 }
5845
5846 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5847 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5848 unsigned long eip = kvm_get_linear_rip(vcpu);
5849 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5850 vcpu->arch.dr7,
5851 vcpu->arch.db);
5852
5853 if (dr6 != 0) {
5854 vcpu->arch.dr6 &= ~15;
5855 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5856 kvm_queue_exception(vcpu, DB_VECTOR);
5857 *r = EMULATE_DONE;
5858 return true;
5859 }
5860 }
5861
5862 return false;
5863 }
5864
5865 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5866 unsigned long cr2,
5867 int emulation_type,
5868 void *insn,
5869 int insn_len)
5870 {
5871 int r;
5872 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5873 bool writeback = true;
5874 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5875
5876 vcpu->arch.l1tf_flush_l1d = true;
5877
5878 /*
5879 * Clear write_fault_to_shadow_pgtable here to ensure it is
5880 * never reused.
5881 */
5882 vcpu->arch.write_fault_to_shadow_pgtable = false;
5883 kvm_clear_exception_queue(vcpu);
5884
5885 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5886 init_emulate_ctxt(vcpu);
5887
5888 /*
5889 * We will reenter on the same instruction since
5890 * we do not set complete_userspace_io. This does not
5891 * handle watchpoints yet, those would be handled in
5892 * the emulate_ops.
5893 */
5894 if (!(emulation_type & EMULTYPE_SKIP) &&
5895 kvm_vcpu_check_breakpoint(vcpu, &r))
5896 return r;
5897
5898 ctxt->interruptibility = 0;
5899 ctxt->have_exception = false;
5900 ctxt->exception.vector = -1;
5901 ctxt->perm_ok = false;
5902
5903 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5904
5905 r = x86_decode_insn(ctxt, insn, insn_len);
5906
5907 trace_kvm_emulate_insn_start(vcpu);
5908 ++vcpu->stat.insn_emulation;
5909 if (r != EMULATION_OK) {
5910 if (emulation_type & EMULTYPE_TRAP_UD)
5911 return EMULATE_FAIL;
5912 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5913 emulation_type))
5914 return EMULATE_DONE;
5915 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5916 return EMULATE_DONE;
5917 if (emulation_type & EMULTYPE_SKIP)
5918 return EMULATE_FAIL;
5919 return handle_emulation_failure(vcpu);
5920 }
5921 }
5922
5923 if (emulation_type & EMULTYPE_SKIP) {
5924 kvm_rip_write(vcpu, ctxt->_eip);
5925 if (ctxt->eflags & X86_EFLAGS_RF)
5926 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5927 return EMULATE_DONE;
5928 }
5929
5930 if (retry_instruction(ctxt, cr2, emulation_type))
5931 return EMULATE_DONE;
5932
5933 /* this is needed for vmware backdoor interface to work since it
5934 changes registers values during IO operation */
5935 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5936 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5937 emulator_invalidate_register_cache(ctxt);
5938 }
5939
5940 restart:
5941 /* Save the faulting GPA (cr2) in the address field */
5942 ctxt->exception.address = cr2;
5943
5944 r = x86_emulate_insn(ctxt);
5945
5946 if (r == EMULATION_INTERCEPTED)
5947 return EMULATE_DONE;
5948
5949 if (r == EMULATION_FAILED) {
5950 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5951 emulation_type))
5952 return EMULATE_DONE;
5953
5954 return handle_emulation_failure(vcpu);
5955 }
5956
5957 if (ctxt->have_exception) {
5958 r = EMULATE_DONE;
5959 if (inject_emulated_exception(vcpu))
5960 return r;
5961 } else if (vcpu->arch.pio.count) {
5962 if (!vcpu->arch.pio.in) {
5963 /* FIXME: return into emulator if single-stepping. */
5964 vcpu->arch.pio.count = 0;
5965 } else {
5966 writeback = false;
5967 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5968 }
5969 r = EMULATE_USER_EXIT;
5970 } else if (vcpu->mmio_needed) {
5971 if (!vcpu->mmio_is_write)
5972 writeback = false;
5973 r = EMULATE_USER_EXIT;
5974 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5975 } else if (r == EMULATION_RESTART)
5976 goto restart;
5977 else
5978 r = EMULATE_DONE;
5979
5980 if (writeback) {
5981 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5982 toggle_interruptibility(vcpu, ctxt->interruptibility);
5983 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5984 kvm_rip_write(vcpu, ctxt->eip);
5985 if (r == EMULATE_DONE && ctxt->tf)
5986 kvm_vcpu_do_singlestep(vcpu, &r);
5987 if (!ctxt->have_exception ||
5988 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5989 __kvm_set_rflags(vcpu, ctxt->eflags);
5990
5991 /*
5992 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5993 * do nothing, and it will be requested again as soon as
5994 * the shadow expires. But we still need to check here,
5995 * because POPF has no interrupt shadow.
5996 */
5997 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5998 kvm_make_request(KVM_REQ_EVENT, vcpu);
5999 } else
6000 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6001
6002 return r;
6003 }
6004 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6005
6006 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6007 {
6008 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6010 size, port, &val, 1);
6011 /* do not return to emulator after return from userspace */
6012 vcpu->arch.pio.count = 0;
6013 return ret;
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6016
6017 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6018 {
6019 unsigned long val;
6020
6021 /* We should only ever be called with arch.pio.count equal to 1 */
6022 BUG_ON(vcpu->arch.pio.count != 1);
6023
6024 /* For size less than 4 we merge, else we zero extend */
6025 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6026 : 0;
6027
6028 /*
6029 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6030 * the copy and tracing
6031 */
6032 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6033 vcpu->arch.pio.port, &val, 1);
6034 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6035
6036 return 1;
6037 }
6038
6039 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6040 {
6041 unsigned long val;
6042 int ret;
6043
6044 /* For size less than 4 we merge, else we zero extend */
6045 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6046
6047 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6048 &val, 1);
6049 if (ret) {
6050 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6051 return ret;
6052 }
6053
6054 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6055
6056 return 0;
6057 }
6058 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6059
6060 static int kvmclock_cpu_down_prep(unsigned int cpu)
6061 {
6062 __this_cpu_write(cpu_tsc_khz, 0);
6063 return 0;
6064 }
6065
6066 static void tsc_khz_changed(void *data)
6067 {
6068 struct cpufreq_freqs *freq = data;
6069 unsigned long khz = 0;
6070
6071 if (data)
6072 khz = freq->new;
6073 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6074 khz = cpufreq_quick_get(raw_smp_processor_id());
6075 if (!khz)
6076 khz = tsc_khz;
6077 __this_cpu_write(cpu_tsc_khz, khz);
6078 }
6079
6080 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6081 void *data)
6082 {
6083 struct cpufreq_freqs *freq = data;
6084 struct kvm *kvm;
6085 struct kvm_vcpu *vcpu;
6086 int i, send_ipi = 0;
6087
6088 /*
6089 * We allow guests to temporarily run on slowing clocks,
6090 * provided we notify them after, or to run on accelerating
6091 * clocks, provided we notify them before. Thus time never
6092 * goes backwards.
6093 *
6094 * However, we have a problem. We can't atomically update
6095 * the frequency of a given CPU from this function; it is
6096 * merely a notifier, which can be called from any CPU.
6097 * Changing the TSC frequency at arbitrary points in time
6098 * requires a recomputation of local variables related to
6099 * the TSC for each VCPU. We must flag these local variables
6100 * to be updated and be sure the update takes place with the
6101 * new frequency before any guests proceed.
6102 *
6103 * Unfortunately, the combination of hotplug CPU and frequency
6104 * change creates an intractable locking scenario; the order
6105 * of when these callouts happen is undefined with respect to
6106 * CPU hotplug, and they can race with each other. As such,
6107 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6108 * undefined; you can actually have a CPU frequency change take
6109 * place in between the computation of X and the setting of the
6110 * variable. To protect against this problem, all updates of
6111 * the per_cpu tsc_khz variable are done in an interrupt
6112 * protected IPI, and all callers wishing to update the value
6113 * must wait for a synchronous IPI to complete (which is trivial
6114 * if the caller is on the CPU already). This establishes the
6115 * necessary total order on variable updates.
6116 *
6117 * Note that because a guest time update may take place
6118 * anytime after the setting of the VCPU's request bit, the
6119 * correct TSC value must be set before the request. However,
6120 * to ensure the update actually makes it to any guest which
6121 * starts running in hardware virtualization between the set
6122 * and the acquisition of the spinlock, we must also ping the
6123 * CPU after setting the request bit.
6124 *
6125 */
6126
6127 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6128 return 0;
6129 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6130 return 0;
6131
6132 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6133
6134 spin_lock(&kvm_lock);
6135 list_for_each_entry(kvm, &vm_list, vm_list) {
6136 kvm_for_each_vcpu(i, vcpu, kvm) {
6137 if (vcpu->cpu != freq->cpu)
6138 continue;
6139 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6140 if (vcpu->cpu != smp_processor_id())
6141 send_ipi = 1;
6142 }
6143 }
6144 spin_unlock(&kvm_lock);
6145
6146 if (freq->old < freq->new && send_ipi) {
6147 /*
6148 * We upscale the frequency. Must make the guest
6149 * doesn't see old kvmclock values while running with
6150 * the new frequency, otherwise we risk the guest sees
6151 * time go backwards.
6152 *
6153 * In case we update the frequency for another cpu
6154 * (which might be in guest context) send an interrupt
6155 * to kick the cpu out of guest context. Next time
6156 * guest context is entered kvmclock will be updated,
6157 * so the guest will not see stale values.
6158 */
6159 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6160 }
6161 return 0;
6162 }
6163
6164 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6165 .notifier_call = kvmclock_cpufreq_notifier
6166 };
6167
6168 static int kvmclock_cpu_online(unsigned int cpu)
6169 {
6170 tsc_khz_changed(NULL);
6171 return 0;
6172 }
6173
6174 static void kvm_timer_init(void)
6175 {
6176 max_tsc_khz = tsc_khz;
6177
6178 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6179 #ifdef CONFIG_CPU_FREQ
6180 struct cpufreq_policy policy;
6181 int cpu;
6182
6183 memset(&policy, 0, sizeof(policy));
6184 cpu = get_cpu();
6185 cpufreq_get_policy(&policy, cpu);
6186 if (policy.cpuinfo.max_freq)
6187 max_tsc_khz = policy.cpuinfo.max_freq;
6188 put_cpu();
6189 #endif
6190 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6191 CPUFREQ_TRANSITION_NOTIFIER);
6192 }
6193 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6194
6195 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6196 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6197 }
6198
6199 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6200
6201 int kvm_is_in_guest(void)
6202 {
6203 return __this_cpu_read(current_vcpu) != NULL;
6204 }
6205
6206 static int kvm_is_user_mode(void)
6207 {
6208 int user_mode = 3;
6209
6210 if (__this_cpu_read(current_vcpu))
6211 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6212
6213 return user_mode != 0;
6214 }
6215
6216 static unsigned long kvm_get_guest_ip(void)
6217 {
6218 unsigned long ip = 0;
6219
6220 if (__this_cpu_read(current_vcpu))
6221 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6222
6223 return ip;
6224 }
6225
6226 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6227 .is_in_guest = kvm_is_in_guest,
6228 .is_user_mode = kvm_is_user_mode,
6229 .get_guest_ip = kvm_get_guest_ip,
6230 };
6231
6232 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6233 {
6234 __this_cpu_write(current_vcpu, vcpu);
6235 }
6236 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6237
6238 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6239 {
6240 __this_cpu_write(current_vcpu, NULL);
6241 }
6242 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6243
6244 static void kvm_set_mmio_spte_mask(void)
6245 {
6246 u64 mask;
6247 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6248
6249 /*
6250 * Set the reserved bits and the present bit of an paging-structure
6251 * entry to generate page fault with PFER.RSV = 1.
6252 */
6253
6254 /*
6255 * Mask the uppermost physical address bit, which would be reserved as
6256 * long as the supported physical address width is less than 52.
6257 */
6258 mask = 1ull << 51;
6259
6260 /* Set the present bit. */
6261 mask |= 1ull;
6262
6263 /*
6264 * If reserved bit is not supported, clear the present bit to disable
6265 * mmio page fault.
6266 */
6267 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6268 mask &= ~1ull;
6269
6270 kvm_mmu_set_mmio_spte_mask(mask, mask);
6271 }
6272
6273 #ifdef CONFIG_X86_64
6274 static void pvclock_gtod_update_fn(struct work_struct *work)
6275 {
6276 struct kvm *kvm;
6277
6278 struct kvm_vcpu *vcpu;
6279 int i;
6280
6281 spin_lock(&kvm_lock);
6282 list_for_each_entry(kvm, &vm_list, vm_list)
6283 kvm_for_each_vcpu(i, vcpu, kvm)
6284 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6285 atomic_set(&kvm_guest_has_master_clock, 0);
6286 spin_unlock(&kvm_lock);
6287 }
6288
6289 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6290
6291 /*
6292 * Notification about pvclock gtod data update.
6293 */
6294 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6295 void *priv)
6296 {
6297 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6298 struct timekeeper *tk = priv;
6299
6300 update_pvclock_gtod(tk);
6301
6302 /* disable master clock if host does not trust, or does not
6303 * use, TSC clocksource
6304 */
6305 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6306 atomic_read(&kvm_guest_has_master_clock) != 0)
6307 queue_work(system_long_wq, &pvclock_gtod_work);
6308
6309 return 0;
6310 }
6311
6312 static struct notifier_block pvclock_gtod_notifier = {
6313 .notifier_call = pvclock_gtod_notify,
6314 };
6315 #endif
6316
6317 int kvm_arch_init(void *opaque)
6318 {
6319 int r;
6320 struct kvm_x86_ops *ops = opaque;
6321
6322 if (kvm_x86_ops) {
6323 printk(KERN_ERR "kvm: already loaded the other module\n");
6324 r = -EEXIST;
6325 goto out;
6326 }
6327
6328 if (!ops->cpu_has_kvm_support()) {
6329 printk(KERN_ERR "kvm: no hardware support\n");
6330 r = -EOPNOTSUPP;
6331 goto out;
6332 }
6333 if (ops->disabled_by_bios()) {
6334 printk(KERN_WARNING "kvm: disabled by bios\n");
6335 r = -EOPNOTSUPP;
6336 goto out;
6337 }
6338
6339 r = -ENOMEM;
6340 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6341 if (!shared_msrs) {
6342 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6343 goto out;
6344 }
6345
6346 r = kvm_mmu_module_init();
6347 if (r)
6348 goto out_free_percpu;
6349
6350 kvm_set_mmio_spte_mask();
6351
6352 kvm_x86_ops = ops;
6353
6354 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6355 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6356 PT_PRESENT_MASK, 0, sme_me_mask);
6357 kvm_timer_init();
6358
6359 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6360
6361 if (boot_cpu_has(X86_FEATURE_XSAVE))
6362 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6363
6364 kvm_lapic_init();
6365 #ifdef CONFIG_X86_64
6366 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6367 #endif
6368
6369 return 0;
6370
6371 out_free_percpu:
6372 free_percpu(shared_msrs);
6373 out:
6374 return r;
6375 }
6376
6377 void kvm_arch_exit(void)
6378 {
6379 kvm_lapic_exit();
6380 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6381
6382 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6383 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6384 CPUFREQ_TRANSITION_NOTIFIER);
6385 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6386 #ifdef CONFIG_X86_64
6387 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6388 #endif
6389 kvm_x86_ops = NULL;
6390 kvm_mmu_module_exit();
6391 free_percpu(shared_msrs);
6392 }
6393
6394 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6395 {
6396 ++vcpu->stat.halt_exits;
6397 if (lapic_in_kernel(vcpu)) {
6398 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6399 return 1;
6400 } else {
6401 vcpu->run->exit_reason = KVM_EXIT_HLT;
6402 return 0;
6403 }
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6406
6407 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6408 {
6409 int ret = kvm_skip_emulated_instruction(vcpu);
6410 /*
6411 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6412 * KVM_EXIT_DEBUG here.
6413 */
6414 return kvm_vcpu_halt(vcpu) && ret;
6415 }
6416 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6417
6418 #ifdef CONFIG_X86_64
6419 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6420 unsigned long clock_type)
6421 {
6422 struct kvm_clock_pairing clock_pairing;
6423 struct timespec ts;
6424 u64 cycle;
6425 int ret;
6426
6427 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6428 return -KVM_EOPNOTSUPP;
6429
6430 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6431 return -KVM_EOPNOTSUPP;
6432
6433 clock_pairing.sec = ts.tv_sec;
6434 clock_pairing.nsec = ts.tv_nsec;
6435 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6436 clock_pairing.flags = 0;
6437 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6438
6439 ret = 0;
6440 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6441 sizeof(struct kvm_clock_pairing)))
6442 ret = -KVM_EFAULT;
6443
6444 return ret;
6445 }
6446 #endif
6447
6448 /*
6449 * kvm_pv_kick_cpu_op: Kick a vcpu.
6450 *
6451 * @apicid - apicid of vcpu to be kicked.
6452 */
6453 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6454 {
6455 struct kvm_lapic_irq lapic_irq;
6456
6457 lapic_irq.shorthand = 0;
6458 lapic_irq.dest_mode = 0;
6459 lapic_irq.level = 0;
6460 lapic_irq.dest_id = apicid;
6461 lapic_irq.msi_redir_hint = false;
6462
6463 lapic_irq.delivery_mode = APIC_DM_REMRD;
6464 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6465 }
6466
6467 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6468 {
6469 vcpu->arch.apicv_active = false;
6470 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6471 }
6472
6473 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6474 {
6475 unsigned long nr, a0, a1, a2, a3, ret;
6476 int op_64_bit;
6477
6478 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6479 if (!kvm_hv_hypercall(vcpu))
6480 return 0;
6481 goto out;
6482 }
6483
6484 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6485 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6486 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6487 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6488 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6489
6490 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6491
6492 op_64_bit = is_64_bit_mode(vcpu);
6493 if (!op_64_bit) {
6494 nr &= 0xFFFFFFFF;
6495 a0 &= 0xFFFFFFFF;
6496 a1 &= 0xFFFFFFFF;
6497 a2 &= 0xFFFFFFFF;
6498 a3 &= 0xFFFFFFFF;
6499 }
6500
6501 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6502 ret = -KVM_EPERM;
6503 goto out_error;
6504 }
6505
6506 switch (nr) {
6507 case KVM_HC_VAPIC_POLL_IRQ:
6508 ret = 0;
6509 break;
6510 case KVM_HC_KICK_CPU:
6511 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6512 ret = 0;
6513 break;
6514 #ifdef CONFIG_X86_64
6515 case KVM_HC_CLOCK_PAIRING:
6516 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6517 break;
6518 #endif
6519 default:
6520 ret = -KVM_ENOSYS;
6521 break;
6522 }
6523 out_error:
6524 if (!op_64_bit)
6525 ret = (u32)ret;
6526 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6527
6528 out:
6529 ++vcpu->stat.hypercalls;
6530 return kvm_skip_emulated_instruction(vcpu);
6531 }
6532 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6533
6534 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6535 {
6536 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6537 char instruction[3];
6538 unsigned long rip = kvm_rip_read(vcpu);
6539
6540 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6541
6542 return emulator_write_emulated(ctxt, rip, instruction, 3,
6543 &ctxt->exception);
6544 }
6545
6546 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6547 {
6548 return vcpu->run->request_interrupt_window &&
6549 likely(!pic_in_kernel(vcpu->kvm));
6550 }
6551
6552 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6553 {
6554 struct kvm_run *kvm_run = vcpu->run;
6555
6556 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6557 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6558 kvm_run->cr8 = kvm_get_cr8(vcpu);
6559 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6560 kvm_run->ready_for_interrupt_injection =
6561 pic_in_kernel(vcpu->kvm) ||
6562 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6563 }
6564
6565 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6566 {
6567 int max_irr, tpr;
6568
6569 if (!kvm_x86_ops->update_cr8_intercept)
6570 return;
6571
6572 if (!lapic_in_kernel(vcpu))
6573 return;
6574
6575 if (vcpu->arch.apicv_active)
6576 return;
6577
6578 if (!vcpu->arch.apic->vapic_addr)
6579 max_irr = kvm_lapic_find_highest_irr(vcpu);
6580 else
6581 max_irr = -1;
6582
6583 if (max_irr != -1)
6584 max_irr >>= 4;
6585
6586 tpr = kvm_lapic_get_cr8(vcpu);
6587
6588 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6589 }
6590
6591 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6592 {
6593 int r;
6594
6595 /* try to reinject previous events if any */
6596 if (vcpu->arch.exception.injected) {
6597 kvm_x86_ops->queue_exception(vcpu);
6598 return 0;
6599 }
6600
6601 /*
6602 * Exceptions must be injected immediately, or the exception
6603 * frame will have the address of the NMI or interrupt handler.
6604 */
6605 if (!vcpu->arch.exception.pending) {
6606 if (vcpu->arch.nmi_injected) {
6607 kvm_x86_ops->set_nmi(vcpu);
6608 return 0;
6609 }
6610
6611 if (vcpu->arch.interrupt.pending) {
6612 kvm_x86_ops->set_irq(vcpu);
6613 return 0;
6614 }
6615 }
6616
6617 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6618 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6619 if (r != 0)
6620 return r;
6621 }
6622
6623 /* try to inject new event if pending */
6624 if (vcpu->arch.exception.pending) {
6625 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6626 vcpu->arch.exception.has_error_code,
6627 vcpu->arch.exception.error_code);
6628
6629 vcpu->arch.exception.pending = false;
6630 vcpu->arch.exception.injected = true;
6631
6632 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6633 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6634 X86_EFLAGS_RF);
6635
6636 if (vcpu->arch.exception.nr == DB_VECTOR &&
6637 (vcpu->arch.dr7 & DR7_GD)) {
6638 vcpu->arch.dr7 &= ~DR7_GD;
6639 kvm_update_dr7(vcpu);
6640 }
6641
6642 kvm_x86_ops->queue_exception(vcpu);
6643 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6644 vcpu->arch.smi_pending = false;
6645 enter_smm(vcpu);
6646 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6647 --vcpu->arch.nmi_pending;
6648 vcpu->arch.nmi_injected = true;
6649 kvm_x86_ops->set_nmi(vcpu);
6650 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6651 /*
6652 * Because interrupts can be injected asynchronously, we are
6653 * calling check_nested_events again here to avoid a race condition.
6654 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6655 * proposal and current concerns. Perhaps we should be setting
6656 * KVM_REQ_EVENT only on certain events and not unconditionally?
6657 */
6658 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6659 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6660 if (r != 0)
6661 return r;
6662 }
6663 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6664 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6665 false);
6666 kvm_x86_ops->set_irq(vcpu);
6667 }
6668 }
6669
6670 return 0;
6671 }
6672
6673 static void process_nmi(struct kvm_vcpu *vcpu)
6674 {
6675 unsigned limit = 2;
6676
6677 /*
6678 * x86 is limited to one NMI running, and one NMI pending after it.
6679 * If an NMI is already in progress, limit further NMIs to just one.
6680 * Otherwise, allow two (and we'll inject the first one immediately).
6681 */
6682 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6683 limit = 1;
6684
6685 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6686 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6687 kvm_make_request(KVM_REQ_EVENT, vcpu);
6688 }
6689
6690 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6691 {
6692 u32 flags = 0;
6693 flags |= seg->g << 23;
6694 flags |= seg->db << 22;
6695 flags |= seg->l << 21;
6696 flags |= seg->avl << 20;
6697 flags |= seg->present << 15;
6698 flags |= seg->dpl << 13;
6699 flags |= seg->s << 12;
6700 flags |= seg->type << 8;
6701 return flags;
6702 }
6703
6704 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6705 {
6706 struct kvm_segment seg;
6707 int offset;
6708
6709 kvm_get_segment(vcpu, &seg, n);
6710 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6711
6712 if (n < 3)
6713 offset = 0x7f84 + n * 12;
6714 else
6715 offset = 0x7f2c + (n - 3) * 12;
6716
6717 put_smstate(u32, buf, offset + 8, seg.base);
6718 put_smstate(u32, buf, offset + 4, seg.limit);
6719 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6720 }
6721
6722 #ifdef CONFIG_X86_64
6723 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6724 {
6725 struct kvm_segment seg;
6726 int offset;
6727 u16 flags;
6728
6729 kvm_get_segment(vcpu, &seg, n);
6730 offset = 0x7e00 + n * 16;
6731
6732 flags = enter_smm_get_segment_flags(&seg) >> 8;
6733 put_smstate(u16, buf, offset, seg.selector);
6734 put_smstate(u16, buf, offset + 2, flags);
6735 put_smstate(u32, buf, offset + 4, seg.limit);
6736 put_smstate(u64, buf, offset + 8, seg.base);
6737 }
6738 #endif
6739
6740 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6741 {
6742 struct desc_ptr dt;
6743 struct kvm_segment seg;
6744 unsigned long val;
6745 int i;
6746
6747 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6748 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6749 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6750 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6751
6752 for (i = 0; i < 8; i++)
6753 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6754
6755 kvm_get_dr(vcpu, 6, &val);
6756 put_smstate(u32, buf, 0x7fcc, (u32)val);
6757 kvm_get_dr(vcpu, 7, &val);
6758 put_smstate(u32, buf, 0x7fc8, (u32)val);
6759
6760 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6761 put_smstate(u32, buf, 0x7fc4, seg.selector);
6762 put_smstate(u32, buf, 0x7f64, seg.base);
6763 put_smstate(u32, buf, 0x7f60, seg.limit);
6764 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6765
6766 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6767 put_smstate(u32, buf, 0x7fc0, seg.selector);
6768 put_smstate(u32, buf, 0x7f80, seg.base);
6769 put_smstate(u32, buf, 0x7f7c, seg.limit);
6770 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6771
6772 kvm_x86_ops->get_gdt(vcpu, &dt);
6773 put_smstate(u32, buf, 0x7f74, dt.address);
6774 put_smstate(u32, buf, 0x7f70, dt.size);
6775
6776 kvm_x86_ops->get_idt(vcpu, &dt);
6777 put_smstate(u32, buf, 0x7f58, dt.address);
6778 put_smstate(u32, buf, 0x7f54, dt.size);
6779
6780 for (i = 0; i < 6; i++)
6781 enter_smm_save_seg_32(vcpu, buf, i);
6782
6783 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6784
6785 /* revision id */
6786 put_smstate(u32, buf, 0x7efc, 0x00020000);
6787 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6788 }
6789
6790 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6791 {
6792 #ifdef CONFIG_X86_64
6793 struct desc_ptr dt;
6794 struct kvm_segment seg;
6795 unsigned long val;
6796 int i;
6797
6798 for (i = 0; i < 16; i++)
6799 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6800
6801 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6802 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6803
6804 kvm_get_dr(vcpu, 6, &val);
6805 put_smstate(u64, buf, 0x7f68, val);
6806 kvm_get_dr(vcpu, 7, &val);
6807 put_smstate(u64, buf, 0x7f60, val);
6808
6809 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6810 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6811 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6812
6813 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6814
6815 /* revision id */
6816 put_smstate(u32, buf, 0x7efc, 0x00020064);
6817
6818 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6819
6820 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6821 put_smstate(u16, buf, 0x7e90, seg.selector);
6822 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6823 put_smstate(u32, buf, 0x7e94, seg.limit);
6824 put_smstate(u64, buf, 0x7e98, seg.base);
6825
6826 kvm_x86_ops->get_idt(vcpu, &dt);
6827 put_smstate(u32, buf, 0x7e84, dt.size);
6828 put_smstate(u64, buf, 0x7e88, dt.address);
6829
6830 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6831 put_smstate(u16, buf, 0x7e70, seg.selector);
6832 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6833 put_smstate(u32, buf, 0x7e74, seg.limit);
6834 put_smstate(u64, buf, 0x7e78, seg.base);
6835
6836 kvm_x86_ops->get_gdt(vcpu, &dt);
6837 put_smstate(u32, buf, 0x7e64, dt.size);
6838 put_smstate(u64, buf, 0x7e68, dt.address);
6839
6840 for (i = 0; i < 6; i++)
6841 enter_smm_save_seg_64(vcpu, buf, i);
6842 #else
6843 WARN_ON_ONCE(1);
6844 #endif
6845 }
6846
6847 static void enter_smm(struct kvm_vcpu *vcpu)
6848 {
6849 struct kvm_segment cs, ds;
6850 struct desc_ptr dt;
6851 char buf[512];
6852 u32 cr0;
6853
6854 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6855 memset(buf, 0, 512);
6856 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6857 enter_smm_save_state_64(vcpu, buf);
6858 else
6859 enter_smm_save_state_32(vcpu, buf);
6860
6861 /*
6862 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6863 * vCPU state (e.g. leave guest mode) after we've saved the state into
6864 * the SMM state-save area.
6865 */
6866 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6867
6868 vcpu->arch.hflags |= HF_SMM_MASK;
6869 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6870
6871 if (kvm_x86_ops->get_nmi_mask(vcpu))
6872 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6873 else
6874 kvm_x86_ops->set_nmi_mask(vcpu, true);
6875
6876 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6877 kvm_rip_write(vcpu, 0x8000);
6878
6879 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6880 kvm_x86_ops->set_cr0(vcpu, cr0);
6881 vcpu->arch.cr0 = cr0;
6882
6883 kvm_x86_ops->set_cr4(vcpu, 0);
6884
6885 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6886 dt.address = dt.size = 0;
6887 kvm_x86_ops->set_idt(vcpu, &dt);
6888
6889 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6890
6891 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6892 cs.base = vcpu->arch.smbase;
6893
6894 ds.selector = 0;
6895 ds.base = 0;
6896
6897 cs.limit = ds.limit = 0xffffffff;
6898 cs.type = ds.type = 0x3;
6899 cs.dpl = ds.dpl = 0;
6900 cs.db = ds.db = 0;
6901 cs.s = ds.s = 1;
6902 cs.l = ds.l = 0;
6903 cs.g = ds.g = 1;
6904 cs.avl = ds.avl = 0;
6905 cs.present = ds.present = 1;
6906 cs.unusable = ds.unusable = 0;
6907 cs.padding = ds.padding = 0;
6908
6909 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6910 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6911 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6912 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6913 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6914 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6915
6916 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6917 kvm_x86_ops->set_efer(vcpu, 0);
6918
6919 kvm_update_cpuid(vcpu);
6920 kvm_mmu_reset_context(vcpu);
6921 }
6922
6923 static void process_smi(struct kvm_vcpu *vcpu)
6924 {
6925 vcpu->arch.smi_pending = true;
6926 kvm_make_request(KVM_REQ_EVENT, vcpu);
6927 }
6928
6929 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6930 {
6931 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6932 }
6933
6934 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6935 {
6936 u64 eoi_exit_bitmap[4];
6937
6938 if (!kvm_apic_present(vcpu))
6939 return;
6940
6941 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6942
6943 if (irqchip_split(vcpu->kvm))
6944 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6945 else {
6946 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6947 kvm_x86_ops->sync_pir_to_irr(vcpu);
6948 if (ioapic_in_kernel(vcpu->kvm))
6949 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6950 }
6951 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6952 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6953 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6954 }
6955
6956 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6957 {
6958 ++vcpu->stat.tlb_flush;
6959 kvm_x86_ops->tlb_flush(vcpu);
6960 }
6961
6962 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6963 unsigned long start, unsigned long end)
6964 {
6965 unsigned long apic_address;
6966
6967 /*
6968 * The physical address of apic access page is stored in the VMCS.
6969 * Update it when it becomes invalid.
6970 */
6971 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6972 if (start <= apic_address && apic_address < end)
6973 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6974 }
6975
6976 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6977 {
6978 struct page *page = NULL;
6979
6980 if (!lapic_in_kernel(vcpu))
6981 return;
6982
6983 if (!kvm_x86_ops->set_apic_access_page_addr)
6984 return;
6985
6986 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6987 if (is_error_page(page))
6988 return;
6989 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6990
6991 /*
6992 * Do not pin apic access page in memory, the MMU notifier
6993 * will call us again if it is migrated or swapped out.
6994 */
6995 put_page(page);
6996 }
6997 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6998
6999 /*
7000 * Returns 1 to let vcpu_run() continue the guest execution loop without
7001 * exiting to the userspace. Otherwise, the value will be returned to the
7002 * userspace.
7003 */
7004 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7005 {
7006 int r;
7007 bool req_int_win =
7008 dm_request_for_irq_injection(vcpu) &&
7009 kvm_cpu_accept_dm_intr(vcpu);
7010
7011 bool req_immediate_exit = false;
7012
7013 if (kvm_request_pending(vcpu)) {
7014 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7015 kvm_mmu_unload(vcpu);
7016 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7017 __kvm_migrate_timers(vcpu);
7018 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7019 kvm_gen_update_masterclock(vcpu->kvm);
7020 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7021 kvm_gen_kvmclock_update(vcpu);
7022 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7023 r = kvm_guest_time_update(vcpu);
7024 if (unlikely(r))
7025 goto out;
7026 }
7027 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7028 kvm_mmu_sync_roots(vcpu);
7029 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7030 kvm_vcpu_flush_tlb(vcpu);
7031 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7032 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7033 r = 0;
7034 goto out;
7035 }
7036 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7037 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7038 vcpu->mmio_needed = 0;
7039 r = 0;
7040 goto out;
7041 }
7042 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7043 /* Page is swapped out. Do synthetic halt */
7044 vcpu->arch.apf.halted = true;
7045 r = 1;
7046 goto out;
7047 }
7048 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7049 record_steal_time(vcpu);
7050 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7051 process_smi(vcpu);
7052 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7053 process_nmi(vcpu);
7054 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7055 kvm_pmu_handle_event(vcpu);
7056 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7057 kvm_pmu_deliver_pmi(vcpu);
7058 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7059 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7060 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7061 vcpu->arch.ioapic_handled_vectors)) {
7062 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7063 vcpu->run->eoi.vector =
7064 vcpu->arch.pending_ioapic_eoi;
7065 r = 0;
7066 goto out;
7067 }
7068 }
7069 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7070 vcpu_scan_ioapic(vcpu);
7071 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7072 kvm_vcpu_reload_apic_access_page(vcpu);
7073 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7074 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7075 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7076 r = 0;
7077 goto out;
7078 }
7079 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7080 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7081 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7082 r = 0;
7083 goto out;
7084 }
7085 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7086 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7087 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7088 r = 0;
7089 goto out;
7090 }
7091
7092 /*
7093 * KVM_REQ_HV_STIMER has to be processed after
7094 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7095 * depend on the guest clock being up-to-date
7096 */
7097 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7098 kvm_hv_process_stimers(vcpu);
7099 }
7100
7101 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7102 ++vcpu->stat.req_event;
7103 kvm_apic_accept_events(vcpu);
7104 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7105 r = 1;
7106 goto out;
7107 }
7108
7109 if (inject_pending_event(vcpu, req_int_win) != 0)
7110 req_immediate_exit = true;
7111 else {
7112 /* Enable SMI/NMI/IRQ window open exits if needed.
7113 *
7114 * SMIs have three cases:
7115 * 1) They can be nested, and then there is nothing to
7116 * do here because RSM will cause a vmexit anyway.
7117 * 2) There is an ISA-specific reason why SMI cannot be
7118 * injected, and the moment when this changes can be
7119 * intercepted.
7120 * 3) Or the SMI can be pending because
7121 * inject_pending_event has completed the injection
7122 * of an IRQ or NMI from the previous vmexit, and
7123 * then we request an immediate exit to inject the
7124 * SMI.
7125 */
7126 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7127 if (!kvm_x86_ops->enable_smi_window(vcpu))
7128 req_immediate_exit = true;
7129 if (vcpu->arch.nmi_pending)
7130 kvm_x86_ops->enable_nmi_window(vcpu);
7131 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7132 kvm_x86_ops->enable_irq_window(vcpu);
7133 WARN_ON(vcpu->arch.exception.pending);
7134 }
7135
7136 if (kvm_lapic_enabled(vcpu)) {
7137 update_cr8_intercept(vcpu);
7138 kvm_lapic_sync_to_vapic(vcpu);
7139 }
7140 }
7141
7142 r = kvm_mmu_reload(vcpu);
7143 if (unlikely(r)) {
7144 goto cancel_injection;
7145 }
7146
7147 preempt_disable();
7148
7149 kvm_x86_ops->prepare_guest_switch(vcpu);
7150
7151 /*
7152 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7153 * IPI are then delayed after guest entry, which ensures that they
7154 * result in virtual interrupt delivery.
7155 */
7156 local_irq_disable();
7157 vcpu->mode = IN_GUEST_MODE;
7158
7159 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7160
7161 /*
7162 * 1) We should set ->mode before checking ->requests. Please see
7163 * the comment in kvm_vcpu_exiting_guest_mode().
7164 *
7165 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7166 * pairs with the memory barrier implicit in pi_test_and_set_on
7167 * (see vmx_deliver_posted_interrupt).
7168 *
7169 * 3) This also orders the write to mode from any reads to the page
7170 * tables done while the VCPU is running. Please see the comment
7171 * in kvm_flush_remote_tlbs.
7172 */
7173 smp_mb__after_srcu_read_unlock();
7174
7175 /*
7176 * This handles the case where a posted interrupt was
7177 * notified with kvm_vcpu_kick.
7178 */
7179 if (kvm_lapic_enabled(vcpu)) {
7180 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7181 kvm_x86_ops->sync_pir_to_irr(vcpu);
7182 }
7183
7184 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7185 || need_resched() || signal_pending(current)) {
7186 vcpu->mode = OUTSIDE_GUEST_MODE;
7187 smp_wmb();
7188 local_irq_enable();
7189 preempt_enable();
7190 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7191 r = 1;
7192 goto cancel_injection;
7193 }
7194
7195 kvm_load_guest_xcr0(vcpu);
7196
7197 if (req_immediate_exit) {
7198 kvm_make_request(KVM_REQ_EVENT, vcpu);
7199 smp_send_reschedule(vcpu->cpu);
7200 }
7201
7202 trace_kvm_entry(vcpu->vcpu_id);
7203 wait_lapic_expire(vcpu);
7204 guest_enter_irqoff();
7205
7206 if (unlikely(vcpu->arch.switch_db_regs)) {
7207 set_debugreg(0, 7);
7208 set_debugreg(vcpu->arch.eff_db[0], 0);
7209 set_debugreg(vcpu->arch.eff_db[1], 1);
7210 set_debugreg(vcpu->arch.eff_db[2], 2);
7211 set_debugreg(vcpu->arch.eff_db[3], 3);
7212 set_debugreg(vcpu->arch.dr6, 6);
7213 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7214 }
7215
7216 kvm_x86_ops->run(vcpu);
7217
7218 /*
7219 * Do this here before restoring debug registers on the host. And
7220 * since we do this before handling the vmexit, a DR access vmexit
7221 * can (a) read the correct value of the debug registers, (b) set
7222 * KVM_DEBUGREG_WONT_EXIT again.
7223 */
7224 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7225 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7226 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7227 kvm_update_dr0123(vcpu);
7228 kvm_update_dr6(vcpu);
7229 kvm_update_dr7(vcpu);
7230 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7231 }
7232
7233 /*
7234 * If the guest has used debug registers, at least dr7
7235 * will be disabled while returning to the host.
7236 * If we don't have active breakpoints in the host, we don't
7237 * care about the messed up debug address registers. But if
7238 * we have some of them active, restore the old state.
7239 */
7240 if (hw_breakpoint_active())
7241 hw_breakpoint_restore();
7242
7243 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7244
7245 vcpu->mode = OUTSIDE_GUEST_MODE;
7246 smp_wmb();
7247
7248 kvm_put_guest_xcr0(vcpu);
7249
7250 kvm_x86_ops->handle_external_intr(vcpu);
7251
7252 ++vcpu->stat.exits;
7253
7254 guest_exit_irqoff();
7255
7256 local_irq_enable();
7257 preempt_enable();
7258
7259 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7260
7261 /*
7262 * Profile KVM exit RIPs:
7263 */
7264 if (unlikely(prof_on == KVM_PROFILING)) {
7265 unsigned long rip = kvm_rip_read(vcpu);
7266 profile_hit(KVM_PROFILING, (void *)rip);
7267 }
7268
7269 if (unlikely(vcpu->arch.tsc_always_catchup))
7270 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7271
7272 if (vcpu->arch.apic_attention)
7273 kvm_lapic_sync_from_vapic(vcpu);
7274
7275 vcpu->arch.gpa_available = false;
7276 r = kvm_x86_ops->handle_exit(vcpu);
7277 return r;
7278
7279 cancel_injection:
7280 kvm_x86_ops->cancel_injection(vcpu);
7281 if (unlikely(vcpu->arch.apic_attention))
7282 kvm_lapic_sync_from_vapic(vcpu);
7283 out:
7284 return r;
7285 }
7286
7287 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7288 {
7289 if (!kvm_arch_vcpu_runnable(vcpu) &&
7290 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7291 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7292 kvm_vcpu_block(vcpu);
7293 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7294
7295 if (kvm_x86_ops->post_block)
7296 kvm_x86_ops->post_block(vcpu);
7297
7298 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7299 return 1;
7300 }
7301
7302 kvm_apic_accept_events(vcpu);
7303 switch(vcpu->arch.mp_state) {
7304 case KVM_MP_STATE_HALTED:
7305 vcpu->arch.pv.pv_unhalted = false;
7306 vcpu->arch.mp_state =
7307 KVM_MP_STATE_RUNNABLE;
7308 case KVM_MP_STATE_RUNNABLE:
7309 vcpu->arch.apf.halted = false;
7310 break;
7311 case KVM_MP_STATE_INIT_RECEIVED:
7312 break;
7313 default:
7314 return -EINTR;
7315 break;
7316 }
7317 return 1;
7318 }
7319
7320 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7321 {
7322 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7323 kvm_x86_ops->check_nested_events(vcpu, false);
7324
7325 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7326 !vcpu->arch.apf.halted);
7327 }
7328
7329 static int vcpu_run(struct kvm_vcpu *vcpu)
7330 {
7331 int r;
7332 struct kvm *kvm = vcpu->kvm;
7333
7334 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7335 vcpu->arch.l1tf_flush_l1d = true;
7336
7337 for (;;) {
7338 if (kvm_vcpu_running(vcpu)) {
7339 r = vcpu_enter_guest(vcpu);
7340 } else {
7341 r = vcpu_block(kvm, vcpu);
7342 }
7343
7344 if (r <= 0)
7345 break;
7346
7347 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7348 if (kvm_cpu_has_pending_timer(vcpu))
7349 kvm_inject_pending_timer_irqs(vcpu);
7350
7351 if (dm_request_for_irq_injection(vcpu) &&
7352 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7353 r = 0;
7354 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7355 ++vcpu->stat.request_irq_exits;
7356 break;
7357 }
7358
7359 kvm_check_async_pf_completion(vcpu);
7360
7361 if (signal_pending(current)) {
7362 r = -EINTR;
7363 vcpu->run->exit_reason = KVM_EXIT_INTR;
7364 ++vcpu->stat.signal_exits;
7365 break;
7366 }
7367 if (need_resched()) {
7368 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7369 cond_resched();
7370 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7371 }
7372 }
7373
7374 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7375
7376 return r;
7377 }
7378
7379 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7380 {
7381 int r;
7382 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7383 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7384 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7385 if (r != EMULATE_DONE)
7386 return 0;
7387 return 1;
7388 }
7389
7390 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7391 {
7392 BUG_ON(!vcpu->arch.pio.count);
7393
7394 return complete_emulated_io(vcpu);
7395 }
7396
7397 /*
7398 * Implements the following, as a state machine:
7399 *
7400 * read:
7401 * for each fragment
7402 * for each mmio piece in the fragment
7403 * write gpa, len
7404 * exit
7405 * copy data
7406 * execute insn
7407 *
7408 * write:
7409 * for each fragment
7410 * for each mmio piece in the fragment
7411 * write gpa, len
7412 * copy data
7413 * exit
7414 */
7415 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7416 {
7417 struct kvm_run *run = vcpu->run;
7418 struct kvm_mmio_fragment *frag;
7419 unsigned len;
7420
7421 BUG_ON(!vcpu->mmio_needed);
7422
7423 /* Complete previous fragment */
7424 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7425 len = min(8u, frag->len);
7426 if (!vcpu->mmio_is_write)
7427 memcpy(frag->data, run->mmio.data, len);
7428
7429 if (frag->len <= 8) {
7430 /* Switch to the next fragment. */
7431 frag++;
7432 vcpu->mmio_cur_fragment++;
7433 } else {
7434 /* Go forward to the next mmio piece. */
7435 frag->data += len;
7436 frag->gpa += len;
7437 frag->len -= len;
7438 }
7439
7440 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7441 vcpu->mmio_needed = 0;
7442
7443 /* FIXME: return into emulator if single-stepping. */
7444 if (vcpu->mmio_is_write)
7445 return 1;
7446 vcpu->mmio_read_completed = 1;
7447 return complete_emulated_io(vcpu);
7448 }
7449
7450 run->exit_reason = KVM_EXIT_MMIO;
7451 run->mmio.phys_addr = frag->gpa;
7452 if (vcpu->mmio_is_write)
7453 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7454 run->mmio.len = min(8u, frag->len);
7455 run->mmio.is_write = vcpu->mmio_is_write;
7456 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7457 return 0;
7458 }
7459
7460
7461 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7462 {
7463 int r;
7464
7465 kvm_sigset_activate(vcpu);
7466
7467 kvm_load_guest_fpu(vcpu);
7468
7469 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7470 if (kvm_run->immediate_exit) {
7471 r = -EINTR;
7472 goto out;
7473 }
7474 kvm_vcpu_block(vcpu);
7475 kvm_apic_accept_events(vcpu);
7476 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7477 r = -EAGAIN;
7478 if (signal_pending(current)) {
7479 r = -EINTR;
7480 vcpu->run->exit_reason = KVM_EXIT_INTR;
7481 ++vcpu->stat.signal_exits;
7482 }
7483 goto out;
7484 }
7485
7486 /* re-sync apic's tpr */
7487 if (!lapic_in_kernel(vcpu)) {
7488 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7489 r = -EINVAL;
7490 goto out;
7491 }
7492 }
7493
7494 if (unlikely(vcpu->arch.complete_userspace_io)) {
7495 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7496 vcpu->arch.complete_userspace_io = NULL;
7497 r = cui(vcpu);
7498 if (r <= 0)
7499 goto out;
7500 } else
7501 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7502
7503 if (kvm_run->immediate_exit)
7504 r = -EINTR;
7505 else
7506 r = vcpu_run(vcpu);
7507
7508 out:
7509 kvm_put_guest_fpu(vcpu);
7510 post_kvm_run_save(vcpu);
7511 kvm_sigset_deactivate(vcpu);
7512
7513 return r;
7514 }
7515
7516 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7517 {
7518 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7519 /*
7520 * We are here if userspace calls get_regs() in the middle of
7521 * instruction emulation. Registers state needs to be copied
7522 * back from emulation context to vcpu. Userspace shouldn't do
7523 * that usually, but some bad designed PV devices (vmware
7524 * backdoor interface) need this to work
7525 */
7526 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7527 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7528 }
7529 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7530 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7531 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7532 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7533 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7534 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7535 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7536 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7537 #ifdef CONFIG_X86_64
7538 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7539 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7540 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7541 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7542 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7543 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7544 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7545 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7546 #endif
7547
7548 regs->rip = kvm_rip_read(vcpu);
7549 regs->rflags = kvm_get_rflags(vcpu);
7550
7551 return 0;
7552 }
7553
7554 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7555 {
7556 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7557 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7558
7559 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7560 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7561 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7562 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7563 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7564 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7565 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7566 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7567 #ifdef CONFIG_X86_64
7568 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7569 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7570 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7571 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7572 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7573 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7574 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7575 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7576 #endif
7577
7578 kvm_rip_write(vcpu, regs->rip);
7579 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7580
7581 vcpu->arch.exception.pending = false;
7582
7583 kvm_make_request(KVM_REQ_EVENT, vcpu);
7584
7585 return 0;
7586 }
7587
7588 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7589 {
7590 struct kvm_segment cs;
7591
7592 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7593 *db = cs.db;
7594 *l = cs.l;
7595 }
7596 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7597
7598 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7599 struct kvm_sregs *sregs)
7600 {
7601 struct desc_ptr dt;
7602
7603 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7604 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7605 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7606 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7607 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7608 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7609
7610 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7611 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7612
7613 kvm_x86_ops->get_idt(vcpu, &dt);
7614 sregs->idt.limit = dt.size;
7615 sregs->idt.base = dt.address;
7616 kvm_x86_ops->get_gdt(vcpu, &dt);
7617 sregs->gdt.limit = dt.size;
7618 sregs->gdt.base = dt.address;
7619
7620 sregs->cr0 = kvm_read_cr0(vcpu);
7621 sregs->cr2 = vcpu->arch.cr2;
7622 sregs->cr3 = kvm_read_cr3(vcpu);
7623 sregs->cr4 = kvm_read_cr4(vcpu);
7624 sregs->cr8 = kvm_get_cr8(vcpu);
7625 sregs->efer = vcpu->arch.efer;
7626 sregs->apic_base = kvm_get_apic_base(vcpu);
7627
7628 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7629
7630 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7631 set_bit(vcpu->arch.interrupt.nr,
7632 (unsigned long *)sregs->interrupt_bitmap);
7633
7634 return 0;
7635 }
7636
7637 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7638 struct kvm_mp_state *mp_state)
7639 {
7640 kvm_apic_accept_events(vcpu);
7641 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7642 vcpu->arch.pv.pv_unhalted)
7643 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7644 else
7645 mp_state->mp_state = vcpu->arch.mp_state;
7646
7647 return 0;
7648 }
7649
7650 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7651 struct kvm_mp_state *mp_state)
7652 {
7653 if (!lapic_in_kernel(vcpu) &&
7654 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7655 return -EINVAL;
7656
7657 /* INITs are latched while in SMM */
7658 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7659 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7660 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7661 return -EINVAL;
7662
7663 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7664 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7665 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7666 } else
7667 vcpu->arch.mp_state = mp_state->mp_state;
7668 kvm_make_request(KVM_REQ_EVENT, vcpu);
7669 return 0;
7670 }
7671
7672 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7673 int reason, bool has_error_code, u32 error_code)
7674 {
7675 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7676 int ret;
7677
7678 init_emulate_ctxt(vcpu);
7679
7680 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7681 has_error_code, error_code);
7682
7683 if (ret)
7684 return EMULATE_FAIL;
7685
7686 kvm_rip_write(vcpu, ctxt->eip);
7687 kvm_set_rflags(vcpu, ctxt->eflags);
7688 kvm_make_request(KVM_REQ_EVENT, vcpu);
7689 return EMULATE_DONE;
7690 }
7691 EXPORT_SYMBOL_GPL(kvm_task_switch);
7692
7693 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7694 {
7695 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7696 /*
7697 * When EFER.LME and CR0.PG are set, the processor is in
7698 * 64-bit mode (though maybe in a 32-bit code segment).
7699 * CR4.PAE and EFER.LMA must be set.
7700 */
7701 if (!(sregs->cr4 & X86_CR4_PAE)
7702 || !(sregs->efer & EFER_LMA))
7703 return -EINVAL;
7704 } else {
7705 /*
7706 * Not in 64-bit mode: EFER.LMA is clear and the code
7707 * segment cannot be 64-bit.
7708 */
7709 if (sregs->efer & EFER_LMA || sregs->cs.l)
7710 return -EINVAL;
7711 }
7712
7713 return 0;
7714 }
7715
7716 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7717 struct kvm_sregs *sregs)
7718 {
7719 struct msr_data apic_base_msr;
7720 int mmu_reset_needed = 0;
7721 int cpuid_update_needed = 0;
7722 int pending_vec, max_bits, idx;
7723 struct desc_ptr dt;
7724
7725 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7726 (sregs->cr4 & X86_CR4_OSXSAVE))
7727 return -EINVAL;
7728
7729 if (kvm_valid_sregs(vcpu, sregs))
7730 return -EINVAL;
7731
7732 apic_base_msr.data = sregs->apic_base;
7733 apic_base_msr.host_initiated = true;
7734 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7735 return -EINVAL;
7736
7737 dt.size = sregs->idt.limit;
7738 dt.address = sregs->idt.base;
7739 kvm_x86_ops->set_idt(vcpu, &dt);
7740 dt.size = sregs->gdt.limit;
7741 dt.address = sregs->gdt.base;
7742 kvm_x86_ops->set_gdt(vcpu, &dt);
7743
7744 vcpu->arch.cr2 = sregs->cr2;
7745 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7746 vcpu->arch.cr3 = sregs->cr3;
7747 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7748
7749 kvm_set_cr8(vcpu, sregs->cr8);
7750
7751 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7752 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7753
7754 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7755 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7756 vcpu->arch.cr0 = sregs->cr0;
7757
7758 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7759 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7760 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7761 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7762 if (cpuid_update_needed)
7763 kvm_update_cpuid(vcpu);
7764
7765 idx = srcu_read_lock(&vcpu->kvm->srcu);
7766 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7767 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7768 mmu_reset_needed = 1;
7769 }
7770 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7771
7772 if (mmu_reset_needed)
7773 kvm_mmu_reset_context(vcpu);
7774
7775 max_bits = KVM_NR_INTERRUPTS;
7776 pending_vec = find_first_bit(
7777 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7778 if (pending_vec < max_bits) {
7779 kvm_queue_interrupt(vcpu, pending_vec, false);
7780 pr_debug("Set back pending irq %d\n", pending_vec);
7781 }
7782
7783 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7784 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7785 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7786 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7787 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7788 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7789
7790 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7791 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7792
7793 update_cr8_intercept(vcpu);
7794
7795 /* Older userspace won't unhalt the vcpu on reset. */
7796 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7797 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7798 !is_protmode(vcpu))
7799 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7800
7801 kvm_make_request(KVM_REQ_EVENT, vcpu);
7802
7803 return 0;
7804 }
7805
7806 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7807 struct kvm_guest_debug *dbg)
7808 {
7809 unsigned long rflags;
7810 int i, r;
7811
7812 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7813 r = -EBUSY;
7814 if (vcpu->arch.exception.pending)
7815 goto out;
7816 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7817 kvm_queue_exception(vcpu, DB_VECTOR);
7818 else
7819 kvm_queue_exception(vcpu, BP_VECTOR);
7820 }
7821
7822 /*
7823 * Read rflags as long as potentially injected trace flags are still
7824 * filtered out.
7825 */
7826 rflags = kvm_get_rflags(vcpu);
7827
7828 vcpu->guest_debug = dbg->control;
7829 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7830 vcpu->guest_debug = 0;
7831
7832 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7833 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7834 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7835 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7836 } else {
7837 for (i = 0; i < KVM_NR_DB_REGS; i++)
7838 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7839 }
7840 kvm_update_dr7(vcpu);
7841
7842 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7843 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7844 get_segment_base(vcpu, VCPU_SREG_CS);
7845
7846 /*
7847 * Trigger an rflags update that will inject or remove the trace
7848 * flags.
7849 */
7850 kvm_set_rflags(vcpu, rflags);
7851
7852 kvm_x86_ops->update_bp_intercept(vcpu);
7853
7854 r = 0;
7855
7856 out:
7857
7858 return r;
7859 }
7860
7861 /*
7862 * Translate a guest virtual address to a guest physical address.
7863 */
7864 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7865 struct kvm_translation *tr)
7866 {
7867 unsigned long vaddr = tr->linear_address;
7868 gpa_t gpa;
7869 int idx;
7870
7871 idx = srcu_read_lock(&vcpu->kvm->srcu);
7872 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7873 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7874 tr->physical_address = gpa;
7875 tr->valid = gpa != UNMAPPED_GVA;
7876 tr->writeable = 1;
7877 tr->usermode = 0;
7878
7879 return 0;
7880 }
7881
7882 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7883 {
7884 struct fxregs_state *fxsave =
7885 &vcpu->arch.guest_fpu.state.fxsave;
7886
7887 memcpy(fpu->fpr, fxsave->st_space, 128);
7888 fpu->fcw = fxsave->cwd;
7889 fpu->fsw = fxsave->swd;
7890 fpu->ftwx = fxsave->twd;
7891 fpu->last_opcode = fxsave->fop;
7892 fpu->last_ip = fxsave->rip;
7893 fpu->last_dp = fxsave->rdp;
7894 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7895
7896 return 0;
7897 }
7898
7899 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7900 {
7901 struct fxregs_state *fxsave =
7902 &vcpu->arch.guest_fpu.state.fxsave;
7903
7904 memcpy(fxsave->st_space, fpu->fpr, 128);
7905 fxsave->cwd = fpu->fcw;
7906 fxsave->swd = fpu->fsw;
7907 fxsave->twd = fpu->ftwx;
7908 fxsave->fop = fpu->last_opcode;
7909 fxsave->rip = fpu->last_ip;
7910 fxsave->rdp = fpu->last_dp;
7911 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7912
7913 return 0;
7914 }
7915
7916 static void fx_init(struct kvm_vcpu *vcpu)
7917 {
7918 fpstate_init(&vcpu->arch.guest_fpu.state);
7919 if (boot_cpu_has(X86_FEATURE_XSAVES))
7920 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7921 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7922
7923 /*
7924 * Ensure guest xcr0 is valid for loading
7925 */
7926 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7927
7928 vcpu->arch.cr0 |= X86_CR0_ET;
7929 }
7930
7931 /* Swap (qemu) user FPU context for the guest FPU context. */
7932 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7933 {
7934 preempt_disable();
7935 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7936 /* PKRU is separately restored in kvm_x86_ops->run. */
7937 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7938 ~XFEATURE_MASK_PKRU);
7939 preempt_enable();
7940 trace_kvm_fpu(1);
7941 }
7942
7943 /* When vcpu_run ends, restore user space FPU context. */
7944 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7945 {
7946 preempt_disable();
7947 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7948 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7949 preempt_enable();
7950 ++vcpu->stat.fpu_reload;
7951 trace_kvm_fpu(0);
7952 }
7953
7954 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7955 {
7956 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7957
7958 kvmclock_reset(vcpu);
7959
7960 kvm_x86_ops->vcpu_free(vcpu);
7961 free_cpumask_var(wbinvd_dirty_mask);
7962 }
7963
7964 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7965 unsigned int id)
7966 {
7967 struct kvm_vcpu *vcpu;
7968
7969 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7970 printk_once(KERN_WARNING
7971 "kvm: SMP vm created on host with unstable TSC; "
7972 "guest TSC will not be reliable\n");
7973
7974 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7975
7976 return vcpu;
7977 }
7978
7979 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7980 {
7981 int r;
7982
7983 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
7984 kvm_vcpu_mtrr_init(vcpu);
7985 r = vcpu_load(vcpu);
7986 if (r)
7987 return r;
7988 kvm_vcpu_reset(vcpu, false);
7989 kvm_mmu_setup(vcpu);
7990 vcpu_put(vcpu);
7991 return r;
7992 }
7993
7994 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7995 {
7996 struct msr_data msr;
7997 struct kvm *kvm = vcpu->kvm;
7998
7999 kvm_hv_vcpu_postcreate(vcpu);
8000
8001 if (vcpu_load(vcpu))
8002 return;
8003 msr.data = 0x0;
8004 msr.index = MSR_IA32_TSC;
8005 msr.host_initiated = true;
8006 kvm_write_tsc(vcpu, &msr);
8007 vcpu_put(vcpu);
8008
8009 if (!kvmclock_periodic_sync)
8010 return;
8011
8012 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8013 KVMCLOCK_SYNC_PERIOD);
8014 }
8015
8016 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8017 {
8018 int r;
8019 vcpu->arch.apf.msr_val = 0;
8020
8021 r = vcpu_load(vcpu);
8022 BUG_ON(r);
8023 kvm_mmu_unload(vcpu);
8024 vcpu_put(vcpu);
8025
8026 kvm_x86_ops->vcpu_free(vcpu);
8027 }
8028
8029 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8030 {
8031 kvm_lapic_reset(vcpu, init_event);
8032
8033 vcpu->arch.hflags = 0;
8034
8035 vcpu->arch.smi_pending = 0;
8036 atomic_set(&vcpu->arch.nmi_queued, 0);
8037 vcpu->arch.nmi_pending = 0;
8038 vcpu->arch.nmi_injected = false;
8039 kvm_clear_interrupt_queue(vcpu);
8040 kvm_clear_exception_queue(vcpu);
8041 vcpu->arch.exception.pending = false;
8042
8043 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8044 kvm_update_dr0123(vcpu);
8045 vcpu->arch.dr6 = DR6_INIT;
8046 kvm_update_dr6(vcpu);
8047 vcpu->arch.dr7 = DR7_FIXED_1;
8048 kvm_update_dr7(vcpu);
8049
8050 vcpu->arch.cr2 = 0;
8051
8052 kvm_make_request(KVM_REQ_EVENT, vcpu);
8053 vcpu->arch.apf.msr_val = 0;
8054 vcpu->arch.st.msr_val = 0;
8055
8056 kvmclock_reset(vcpu);
8057
8058 kvm_clear_async_pf_completion_queue(vcpu);
8059 kvm_async_pf_hash_reset(vcpu);
8060 vcpu->arch.apf.halted = false;
8061
8062 if (kvm_mpx_supported()) {
8063 void *mpx_state_buffer;
8064
8065 /*
8066 * To avoid have the INIT path from kvm_apic_has_events() that be
8067 * called with loaded FPU and does not let userspace fix the state.
8068 */
8069 if (init_event)
8070 kvm_put_guest_fpu(vcpu);
8071 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8072 XFEATURE_MASK_BNDREGS);
8073 if (mpx_state_buffer)
8074 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8075 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8076 XFEATURE_MASK_BNDCSR);
8077 if (mpx_state_buffer)
8078 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8079 if (init_event)
8080 kvm_load_guest_fpu(vcpu);
8081 }
8082
8083 if (!init_event) {
8084 kvm_pmu_reset(vcpu);
8085 vcpu->arch.smbase = 0x30000;
8086
8087 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8088 vcpu->arch.msr_misc_features_enables = 0;
8089
8090 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8091 }
8092
8093 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8094 vcpu->arch.regs_avail = ~0;
8095 vcpu->arch.regs_dirty = ~0;
8096
8097 vcpu->arch.ia32_xss = 0;
8098
8099 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8100 }
8101
8102 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8103 {
8104 struct kvm_segment cs;
8105
8106 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8107 cs.selector = vector << 8;
8108 cs.base = vector << 12;
8109 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8110 kvm_rip_write(vcpu, 0);
8111 }
8112
8113 int kvm_arch_hardware_enable(void)
8114 {
8115 struct kvm *kvm;
8116 struct kvm_vcpu *vcpu;
8117 int i;
8118 int ret;
8119 u64 local_tsc;
8120 u64 max_tsc = 0;
8121 bool stable, backwards_tsc = false;
8122
8123 kvm_shared_msr_cpu_online();
8124 ret = kvm_x86_ops->hardware_enable();
8125 if (ret != 0)
8126 return ret;
8127
8128 local_tsc = rdtsc();
8129 stable = !check_tsc_unstable();
8130 list_for_each_entry(kvm, &vm_list, vm_list) {
8131 kvm_for_each_vcpu(i, vcpu, kvm) {
8132 if (!stable && vcpu->cpu == smp_processor_id())
8133 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8134 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8135 backwards_tsc = true;
8136 if (vcpu->arch.last_host_tsc > max_tsc)
8137 max_tsc = vcpu->arch.last_host_tsc;
8138 }
8139 }
8140 }
8141
8142 /*
8143 * Sometimes, even reliable TSCs go backwards. This happens on
8144 * platforms that reset TSC during suspend or hibernate actions, but
8145 * maintain synchronization. We must compensate. Fortunately, we can
8146 * detect that condition here, which happens early in CPU bringup,
8147 * before any KVM threads can be running. Unfortunately, we can't
8148 * bring the TSCs fully up to date with real time, as we aren't yet far
8149 * enough into CPU bringup that we know how much real time has actually
8150 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8151 * variables that haven't been updated yet.
8152 *
8153 * So we simply find the maximum observed TSC above, then record the
8154 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8155 * the adjustment will be applied. Note that we accumulate
8156 * adjustments, in case multiple suspend cycles happen before some VCPU
8157 * gets a chance to run again. In the event that no KVM threads get a
8158 * chance to run, we will miss the entire elapsed period, as we'll have
8159 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8160 * loose cycle time. This isn't too big a deal, since the loss will be
8161 * uniform across all VCPUs (not to mention the scenario is extremely
8162 * unlikely). It is possible that a second hibernate recovery happens
8163 * much faster than a first, causing the observed TSC here to be
8164 * smaller; this would require additional padding adjustment, which is
8165 * why we set last_host_tsc to the local tsc observed here.
8166 *
8167 * N.B. - this code below runs only on platforms with reliable TSC,
8168 * as that is the only way backwards_tsc is set above. Also note
8169 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8170 * have the same delta_cyc adjustment applied if backwards_tsc
8171 * is detected. Note further, this adjustment is only done once,
8172 * as we reset last_host_tsc on all VCPUs to stop this from being
8173 * called multiple times (one for each physical CPU bringup).
8174 *
8175 * Platforms with unreliable TSCs don't have to deal with this, they
8176 * will be compensated by the logic in vcpu_load, which sets the TSC to
8177 * catchup mode. This will catchup all VCPUs to real time, but cannot
8178 * guarantee that they stay in perfect synchronization.
8179 */
8180 if (backwards_tsc) {
8181 u64 delta_cyc = max_tsc - local_tsc;
8182 list_for_each_entry(kvm, &vm_list, vm_list) {
8183 kvm->arch.backwards_tsc_observed = true;
8184 kvm_for_each_vcpu(i, vcpu, kvm) {
8185 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8186 vcpu->arch.last_host_tsc = local_tsc;
8187 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8188 }
8189
8190 /*
8191 * We have to disable TSC offset matching.. if you were
8192 * booting a VM while issuing an S4 host suspend....
8193 * you may have some problem. Solving this issue is
8194 * left as an exercise to the reader.
8195 */
8196 kvm->arch.last_tsc_nsec = 0;
8197 kvm->arch.last_tsc_write = 0;
8198 }
8199
8200 }
8201 return 0;
8202 }
8203
8204 void kvm_arch_hardware_disable(void)
8205 {
8206 kvm_x86_ops->hardware_disable();
8207 drop_user_return_notifiers();
8208 }
8209
8210 int kvm_arch_hardware_setup(void)
8211 {
8212 int r;
8213
8214 r = kvm_x86_ops->hardware_setup();
8215 if (r != 0)
8216 return r;
8217
8218 if (kvm_has_tsc_control) {
8219 /*
8220 * Make sure the user can only configure tsc_khz values that
8221 * fit into a signed integer.
8222 * A min value is not calculated needed because it will always
8223 * be 1 on all machines.
8224 */
8225 u64 max = min(0x7fffffffULL,
8226 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8227 kvm_max_guest_tsc_khz = max;
8228
8229 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8230 }
8231
8232 kvm_init_msr_list();
8233 return 0;
8234 }
8235
8236 void kvm_arch_hardware_unsetup(void)
8237 {
8238 kvm_x86_ops->hardware_unsetup();
8239 }
8240
8241 void kvm_arch_check_processor_compat(void *rtn)
8242 {
8243 kvm_x86_ops->check_processor_compatibility(rtn);
8244 }
8245
8246 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8247 {
8248 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8249 }
8250 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8251
8252 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8253 {
8254 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8255 }
8256
8257 struct static_key kvm_no_apic_vcpu __read_mostly;
8258 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8259
8260 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8261 {
8262 struct page *page;
8263 int r;
8264
8265 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8266 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8267 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8268 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8269 else
8270 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8271
8272 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8273 if (!page) {
8274 r = -ENOMEM;
8275 goto fail;
8276 }
8277 vcpu->arch.pio_data = page_address(page);
8278
8279 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8280
8281 r = kvm_mmu_create(vcpu);
8282 if (r < 0)
8283 goto fail_free_pio_data;
8284
8285 if (irqchip_in_kernel(vcpu->kvm)) {
8286 r = kvm_create_lapic(vcpu);
8287 if (r < 0)
8288 goto fail_mmu_destroy;
8289 } else
8290 static_key_slow_inc(&kvm_no_apic_vcpu);
8291
8292 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8293 GFP_KERNEL);
8294 if (!vcpu->arch.mce_banks) {
8295 r = -ENOMEM;
8296 goto fail_free_lapic;
8297 }
8298 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8299
8300 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8301 r = -ENOMEM;
8302 goto fail_free_mce_banks;
8303 }
8304
8305 fx_init(vcpu);
8306
8307 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8308
8309 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8310
8311 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8312
8313 kvm_async_pf_hash_reset(vcpu);
8314 kvm_pmu_init(vcpu);
8315
8316 vcpu->arch.pending_external_vector = -1;
8317 vcpu->arch.preempted_in_kernel = false;
8318
8319 kvm_hv_vcpu_init(vcpu);
8320
8321 return 0;
8322
8323 fail_free_mce_banks:
8324 kfree(vcpu->arch.mce_banks);
8325 fail_free_lapic:
8326 kvm_free_lapic(vcpu);
8327 fail_mmu_destroy:
8328 kvm_mmu_destroy(vcpu);
8329 fail_free_pio_data:
8330 free_page((unsigned long)vcpu->arch.pio_data);
8331 fail:
8332 return r;
8333 }
8334
8335 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8336 {
8337 int idx;
8338
8339 kvm_hv_vcpu_uninit(vcpu);
8340 kvm_pmu_destroy(vcpu);
8341 kfree(vcpu->arch.mce_banks);
8342 kvm_free_lapic(vcpu);
8343 idx = srcu_read_lock(&vcpu->kvm->srcu);
8344 kvm_mmu_destroy(vcpu);
8345 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8346 free_page((unsigned long)vcpu->arch.pio_data);
8347 if (!lapic_in_kernel(vcpu))
8348 static_key_slow_dec(&kvm_no_apic_vcpu);
8349 }
8350
8351 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8352 {
8353 vcpu->arch.l1tf_flush_l1d = true;
8354 kvm_x86_ops->sched_in(vcpu, cpu);
8355 }
8356
8357 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8358 {
8359 if (type)
8360 return -EINVAL;
8361
8362 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8363 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8364 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8365 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8366 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8367
8368 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8369 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8370 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8371 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8372 &kvm->arch.irq_sources_bitmap);
8373
8374 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8375 mutex_init(&kvm->arch.apic_map_lock);
8376 mutex_init(&kvm->arch.hyperv.hv_lock);
8377 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8378
8379 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8380 pvclock_update_vm_gtod_copy(kvm);
8381
8382 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8383 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8384
8385 kvm_page_track_init(kvm);
8386 kvm_mmu_init_vm(kvm);
8387
8388 if (kvm_x86_ops->vm_init)
8389 return kvm_x86_ops->vm_init(kvm);
8390
8391 return 0;
8392 }
8393
8394 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8395 {
8396 int r;
8397 r = vcpu_load(vcpu);
8398 BUG_ON(r);
8399 kvm_mmu_unload(vcpu);
8400 vcpu_put(vcpu);
8401 }
8402
8403 static void kvm_free_vcpus(struct kvm *kvm)
8404 {
8405 unsigned int i;
8406 struct kvm_vcpu *vcpu;
8407
8408 /*
8409 * Unpin any mmu pages first.
8410 */
8411 kvm_for_each_vcpu(i, vcpu, kvm) {
8412 kvm_clear_async_pf_completion_queue(vcpu);
8413 kvm_unload_vcpu_mmu(vcpu);
8414 }
8415 kvm_for_each_vcpu(i, vcpu, kvm)
8416 kvm_arch_vcpu_free(vcpu);
8417
8418 mutex_lock(&kvm->lock);
8419 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8420 kvm->vcpus[i] = NULL;
8421
8422 atomic_set(&kvm->online_vcpus, 0);
8423 mutex_unlock(&kvm->lock);
8424 }
8425
8426 void kvm_arch_sync_events(struct kvm *kvm)
8427 {
8428 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8429 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8430 kvm_free_pit(kvm);
8431 }
8432
8433 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8434 {
8435 int i, r;
8436 unsigned long hva;
8437 struct kvm_memslots *slots = kvm_memslots(kvm);
8438 struct kvm_memory_slot *slot, old;
8439
8440 /* Called with kvm->slots_lock held. */
8441 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8442 return -EINVAL;
8443
8444 slot = id_to_memslot(slots, id);
8445 if (size) {
8446 if (slot->npages)
8447 return -EEXIST;
8448
8449 /*
8450 * MAP_SHARED to prevent internal slot pages from being moved
8451 * by fork()/COW.
8452 */
8453 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8454 MAP_SHARED | MAP_ANONYMOUS, 0);
8455 if (IS_ERR((void *)hva))
8456 return PTR_ERR((void *)hva);
8457 } else {
8458 if (!slot->npages)
8459 return 0;
8460
8461 hva = 0;
8462 }
8463
8464 old = *slot;
8465 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8466 struct kvm_userspace_memory_region m;
8467
8468 m.slot = id | (i << 16);
8469 m.flags = 0;
8470 m.guest_phys_addr = gpa;
8471 m.userspace_addr = hva;
8472 m.memory_size = size;
8473 r = __kvm_set_memory_region(kvm, &m);
8474 if (r < 0)
8475 return r;
8476 }
8477
8478 if (!size)
8479 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8480
8481 return 0;
8482 }
8483 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8484
8485 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8486 {
8487 int r;
8488
8489 mutex_lock(&kvm->slots_lock);
8490 r = __x86_set_memory_region(kvm, id, gpa, size);
8491 mutex_unlock(&kvm->slots_lock);
8492
8493 return r;
8494 }
8495 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8496
8497 void kvm_arch_destroy_vm(struct kvm *kvm)
8498 {
8499 if (current->mm == kvm->mm) {
8500 /*
8501 * Free memory regions allocated on behalf of userspace,
8502 * unless the the memory map has changed due to process exit
8503 * or fd copying.
8504 */
8505 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8506 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8507 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8508 }
8509 if (kvm_x86_ops->vm_destroy)
8510 kvm_x86_ops->vm_destroy(kvm);
8511 kvm_pic_destroy(kvm);
8512 kvm_ioapic_destroy(kvm);
8513 kvm_free_vcpus(kvm);
8514 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8515 kvm_mmu_uninit_vm(kvm);
8516 kvm_page_track_cleanup(kvm);
8517 }
8518
8519 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8520 struct kvm_memory_slot *dont)
8521 {
8522 int i;
8523
8524 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8525 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8526 kvfree(free->arch.rmap[i]);
8527 free->arch.rmap[i] = NULL;
8528 }
8529 if (i == 0)
8530 continue;
8531
8532 if (!dont || free->arch.lpage_info[i - 1] !=
8533 dont->arch.lpage_info[i - 1]) {
8534 kvfree(free->arch.lpage_info[i - 1]);
8535 free->arch.lpage_info[i - 1] = NULL;
8536 }
8537 }
8538
8539 kvm_page_track_free_memslot(free, dont);
8540 }
8541
8542 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8543 unsigned long npages)
8544 {
8545 int i;
8546
8547 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8548 struct kvm_lpage_info *linfo;
8549 unsigned long ugfn;
8550 int lpages;
8551 int level = i + 1;
8552
8553 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8554 slot->base_gfn, level) + 1;
8555
8556 slot->arch.rmap[i] =
8557 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8558 if (!slot->arch.rmap[i])
8559 goto out_free;
8560 if (i == 0)
8561 continue;
8562
8563 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8564 if (!linfo)
8565 goto out_free;
8566
8567 slot->arch.lpage_info[i - 1] = linfo;
8568
8569 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8570 linfo[0].disallow_lpage = 1;
8571 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8572 linfo[lpages - 1].disallow_lpage = 1;
8573 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8574 /*
8575 * If the gfn and userspace address are not aligned wrt each
8576 * other, or if explicitly asked to, disable large page
8577 * support for this slot
8578 */
8579 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8580 !kvm_largepages_enabled()) {
8581 unsigned long j;
8582
8583 for (j = 0; j < lpages; ++j)
8584 linfo[j].disallow_lpage = 1;
8585 }
8586 }
8587
8588 if (kvm_page_track_create_memslot(slot, npages))
8589 goto out_free;
8590
8591 return 0;
8592
8593 out_free:
8594 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8595 kvfree(slot->arch.rmap[i]);
8596 slot->arch.rmap[i] = NULL;
8597 if (i == 0)
8598 continue;
8599
8600 kvfree(slot->arch.lpage_info[i - 1]);
8601 slot->arch.lpage_info[i - 1] = NULL;
8602 }
8603 return -ENOMEM;
8604 }
8605
8606 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
8607 {
8608 /*
8609 * memslots->generation has been incremented.
8610 * mmio generation may have reached its maximum value.
8611 */
8612 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
8613 }
8614
8615 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8616 struct kvm_memory_slot *memslot,
8617 const struct kvm_userspace_memory_region *mem,
8618 enum kvm_mr_change change)
8619 {
8620 return 0;
8621 }
8622
8623 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8624 struct kvm_memory_slot *new)
8625 {
8626 /* Still write protect RO slot */
8627 if (new->flags & KVM_MEM_READONLY) {
8628 kvm_mmu_slot_remove_write_access(kvm, new);
8629 return;
8630 }
8631
8632 /*
8633 * Call kvm_x86_ops dirty logging hooks when they are valid.
8634 *
8635 * kvm_x86_ops->slot_disable_log_dirty is called when:
8636 *
8637 * - KVM_MR_CREATE with dirty logging is disabled
8638 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8639 *
8640 * The reason is, in case of PML, we need to set D-bit for any slots
8641 * with dirty logging disabled in order to eliminate unnecessary GPA
8642 * logging in PML buffer (and potential PML buffer full VMEXT). This
8643 * guarantees leaving PML enabled during guest's lifetime won't have
8644 * any additonal overhead from PML when guest is running with dirty
8645 * logging disabled for memory slots.
8646 *
8647 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8648 * to dirty logging mode.
8649 *
8650 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8651 *
8652 * In case of write protect:
8653 *
8654 * Write protect all pages for dirty logging.
8655 *
8656 * All the sptes including the large sptes which point to this
8657 * slot are set to readonly. We can not create any new large
8658 * spte on this slot until the end of the logging.
8659 *
8660 * See the comments in fast_page_fault().
8661 */
8662 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8663 if (kvm_x86_ops->slot_enable_log_dirty)
8664 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8665 else
8666 kvm_mmu_slot_remove_write_access(kvm, new);
8667 } else {
8668 if (kvm_x86_ops->slot_disable_log_dirty)
8669 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8670 }
8671 }
8672
8673 void kvm_arch_commit_memory_region(struct kvm *kvm,
8674 const struct kvm_userspace_memory_region *mem,
8675 const struct kvm_memory_slot *old,
8676 const struct kvm_memory_slot *new,
8677 enum kvm_mr_change change)
8678 {
8679 int nr_mmu_pages = 0;
8680
8681 if (!kvm->arch.n_requested_mmu_pages)
8682 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8683
8684 if (nr_mmu_pages)
8685 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8686
8687 /*
8688 * Dirty logging tracks sptes in 4k granularity, meaning that large
8689 * sptes have to be split. If live migration is successful, the guest
8690 * in the source machine will be destroyed and large sptes will be
8691 * created in the destination. However, if the guest continues to run
8692 * in the source machine (for example if live migration fails), small
8693 * sptes will remain around and cause bad performance.
8694 *
8695 * Scan sptes if dirty logging has been stopped, dropping those
8696 * which can be collapsed into a single large-page spte. Later
8697 * page faults will create the large-page sptes.
8698 */
8699 if ((change != KVM_MR_DELETE) &&
8700 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8701 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8702 kvm_mmu_zap_collapsible_sptes(kvm, new);
8703
8704 /*
8705 * Set up write protection and/or dirty logging for the new slot.
8706 *
8707 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8708 * been zapped so no dirty logging staff is needed for old slot. For
8709 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8710 * new and it's also covered when dealing with the new slot.
8711 *
8712 * FIXME: const-ify all uses of struct kvm_memory_slot.
8713 */
8714 if (change != KVM_MR_DELETE)
8715 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8716 }
8717
8718 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8719 {
8720 kvm_mmu_invalidate_zap_all_pages(kvm);
8721 }
8722
8723 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8724 struct kvm_memory_slot *slot)
8725 {
8726 kvm_page_track_flush_slot(kvm, slot);
8727 }
8728
8729 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8730 {
8731 if (!list_empty_careful(&vcpu->async_pf.done))
8732 return true;
8733
8734 if (kvm_apic_has_events(vcpu))
8735 return true;
8736
8737 if (vcpu->arch.pv.pv_unhalted)
8738 return true;
8739
8740 if (vcpu->arch.exception.pending)
8741 return true;
8742
8743 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8744 (vcpu->arch.nmi_pending &&
8745 kvm_x86_ops->nmi_allowed(vcpu)))
8746 return true;
8747
8748 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8749 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8750 return true;
8751
8752 if (kvm_arch_interrupt_allowed(vcpu) &&
8753 kvm_cpu_has_interrupt(vcpu))
8754 return true;
8755
8756 if (kvm_hv_has_stimer_pending(vcpu))
8757 return true;
8758
8759 return false;
8760 }
8761
8762 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8763 {
8764 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8765 }
8766
8767 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8768 {
8769 return vcpu->arch.preempted_in_kernel;
8770 }
8771
8772 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8773 {
8774 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8775 }
8776
8777 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8778 {
8779 return kvm_x86_ops->interrupt_allowed(vcpu);
8780 }
8781
8782 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8783 {
8784 if (is_64_bit_mode(vcpu))
8785 return kvm_rip_read(vcpu);
8786 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8787 kvm_rip_read(vcpu));
8788 }
8789 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8790
8791 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8792 {
8793 return kvm_get_linear_rip(vcpu) == linear_rip;
8794 }
8795 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8796
8797 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8798 {
8799 unsigned long rflags;
8800
8801 rflags = kvm_x86_ops->get_rflags(vcpu);
8802 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8803 rflags &= ~X86_EFLAGS_TF;
8804 return rflags;
8805 }
8806 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8807
8808 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8809 {
8810 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8811 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8812 rflags |= X86_EFLAGS_TF;
8813 kvm_x86_ops->set_rflags(vcpu, rflags);
8814 }
8815
8816 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8817 {
8818 __kvm_set_rflags(vcpu, rflags);
8819 kvm_make_request(KVM_REQ_EVENT, vcpu);
8820 }
8821 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8822
8823 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8824 {
8825 int r;
8826
8827 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8828 work->wakeup_all)
8829 return;
8830
8831 r = kvm_mmu_reload(vcpu);
8832 if (unlikely(r))
8833 return;
8834
8835 if (!vcpu->arch.mmu.direct_map &&
8836 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8837 return;
8838
8839 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8840 }
8841
8842 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8843 {
8844 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8845 }
8846
8847 static inline u32 kvm_async_pf_next_probe(u32 key)
8848 {
8849 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8850 }
8851
8852 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8853 {
8854 u32 key = kvm_async_pf_hash_fn(gfn);
8855
8856 while (vcpu->arch.apf.gfns[key] != ~0)
8857 key = kvm_async_pf_next_probe(key);
8858
8859 vcpu->arch.apf.gfns[key] = gfn;
8860 }
8861
8862 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8863 {
8864 int i;
8865 u32 key = kvm_async_pf_hash_fn(gfn);
8866
8867 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8868 (vcpu->arch.apf.gfns[key] != gfn &&
8869 vcpu->arch.apf.gfns[key] != ~0); i++)
8870 key = kvm_async_pf_next_probe(key);
8871
8872 return key;
8873 }
8874
8875 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8876 {
8877 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8878 }
8879
8880 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8881 {
8882 u32 i, j, k;
8883
8884 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8885 while (true) {
8886 vcpu->arch.apf.gfns[i] = ~0;
8887 do {
8888 j = kvm_async_pf_next_probe(j);
8889 if (vcpu->arch.apf.gfns[j] == ~0)
8890 return;
8891 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8892 /*
8893 * k lies cyclically in ]i,j]
8894 * | i.k.j |
8895 * |....j i.k.| or |.k..j i...|
8896 */
8897 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8898 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8899 i = j;
8900 }
8901 }
8902
8903 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8904 {
8905
8906 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8907 sizeof(val));
8908 }
8909
8910 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8911 {
8912
8913 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8914 sizeof(u32));
8915 }
8916
8917 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8918 struct kvm_async_pf *work)
8919 {
8920 struct x86_exception fault;
8921
8922 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8923 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8924
8925 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8926 (vcpu->arch.apf.send_user_only &&
8927 kvm_x86_ops->get_cpl(vcpu) == 0))
8928 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8929 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8930 fault.vector = PF_VECTOR;
8931 fault.error_code_valid = true;
8932 fault.error_code = 0;
8933 fault.nested_page_fault = false;
8934 fault.address = work->arch.token;
8935 fault.async_page_fault = true;
8936 kvm_inject_page_fault(vcpu, &fault);
8937 }
8938 }
8939
8940 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8941 struct kvm_async_pf *work)
8942 {
8943 struct x86_exception fault;
8944 u32 val;
8945
8946 if (work->wakeup_all)
8947 work->arch.token = ~0; /* broadcast wakeup */
8948 else
8949 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8950 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8951
8952 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8953 !apf_get_user(vcpu, &val)) {
8954 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8955 vcpu->arch.exception.pending &&
8956 vcpu->arch.exception.nr == PF_VECTOR &&
8957 !apf_put_user(vcpu, 0)) {
8958 vcpu->arch.exception.injected = false;
8959 vcpu->arch.exception.pending = false;
8960 vcpu->arch.exception.nr = 0;
8961 vcpu->arch.exception.has_error_code = false;
8962 vcpu->arch.exception.error_code = 0;
8963 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8964 fault.vector = PF_VECTOR;
8965 fault.error_code_valid = true;
8966 fault.error_code = 0;
8967 fault.nested_page_fault = false;
8968 fault.address = work->arch.token;
8969 fault.async_page_fault = true;
8970 kvm_inject_page_fault(vcpu, &fault);
8971 }
8972 }
8973 vcpu->arch.apf.halted = false;
8974 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8975 }
8976
8977 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8978 {
8979 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8980 return true;
8981 else
8982 return kvm_can_do_async_pf(vcpu);
8983 }
8984
8985 void kvm_arch_start_assignment(struct kvm *kvm)
8986 {
8987 atomic_inc(&kvm->arch.assigned_device_count);
8988 }
8989 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8990
8991 void kvm_arch_end_assignment(struct kvm *kvm)
8992 {
8993 atomic_dec(&kvm->arch.assigned_device_count);
8994 }
8995 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8996
8997 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8998 {
8999 return atomic_read(&kvm->arch.assigned_device_count);
9000 }
9001 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9002
9003 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9004 {
9005 atomic_inc(&kvm->arch.noncoherent_dma_count);
9006 }
9007 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9008
9009 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9010 {
9011 atomic_dec(&kvm->arch.noncoherent_dma_count);
9012 }
9013 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9014
9015 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9016 {
9017 return atomic_read(&kvm->arch.noncoherent_dma_count);
9018 }
9019 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9020
9021 bool kvm_arch_has_irq_bypass(void)
9022 {
9023 return kvm_x86_ops->update_pi_irte != NULL;
9024 }
9025
9026 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9027 struct irq_bypass_producer *prod)
9028 {
9029 struct kvm_kernel_irqfd *irqfd =
9030 container_of(cons, struct kvm_kernel_irqfd, consumer);
9031
9032 irqfd->producer = prod;
9033
9034 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9035 prod->irq, irqfd->gsi, 1);
9036 }
9037
9038 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9039 struct irq_bypass_producer *prod)
9040 {
9041 int ret;
9042 struct kvm_kernel_irqfd *irqfd =
9043 container_of(cons, struct kvm_kernel_irqfd, consumer);
9044
9045 WARN_ON(irqfd->producer != prod);
9046 irqfd->producer = NULL;
9047
9048 /*
9049 * When producer of consumer is unregistered, we change back to
9050 * remapped mode, so we can re-use the current implementation
9051 * when the irq is masked/disabled or the consumer side (KVM
9052 * int this case doesn't want to receive the interrupts.
9053 */
9054 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9055 if (ret)
9056 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9057 " fails: %d\n", irqfd->consumer.token, ret);
9058 }
9059
9060 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9061 uint32_t guest_irq, bool set)
9062 {
9063 if (!kvm_x86_ops->update_pi_irte)
9064 return -EINVAL;
9065
9066 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9067 }
9068
9069 bool kvm_vector_hashing_enabled(void)
9070 {
9071 return vector_hashing;
9072 }
9073 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9074
9075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);