]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: MMU: Use gfn_to_rmap() instead of directly reading rmap array
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
75 */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107 int nr;
108 u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
113 bool registered;
114 struct kvm_shared_msr_values {
115 u64 host;
116 u64 curr;
117 } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
156 { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 int i;
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
168 }
169
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 unsigned slot;
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
176
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
182 }
183 }
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
186 }
187
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 struct kvm_shared_msrs *smsr;
191 u64 value;
192
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
198 return;
199 }
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
203 }
204
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
211 smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 unsigned i;
218
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 return;
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
235 }
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
245 }
246
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 if (irqchip_in_kernel(vcpu->kvm))
250 return vcpu->arch.apic_base;
251 else
252 return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258 /* TODO: reserve bits check */
259 if (irqchip_in_kernel(vcpu->kvm))
260 kvm_lapic_set_base(vcpu, data);
261 else
262 vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
268 #define EXCPT_PF 2
269
270 static int exception_class(int vector)
271 {
272 switch (vector) {
273 case PF_VECTOR:
274 return EXCPT_PF;
275 case DE_VECTOR:
276 case TS_VECTOR:
277 case NP_VECTOR:
278 case SS_VECTOR:
279 case GP_VECTOR:
280 return EXCPT_CONTRIBUTORY;
281 default:
282 break;
283 }
284 return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
289 bool reinject)
290 {
291 u32 prev_nr;
292 int class1, class2;
293
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296 if (!vcpu->arch.exception.pending) {
297 queue:
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
303 return;
304 }
305
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 return;
312 }
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
322 } else
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
325 exception */
326 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 if (err)
344 kvm_inject_gp(vcpu, 0);
345 else
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 else
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
388 */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 return true;
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
402 */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
405 u32 access)
406 {
407 gfn_t real_gfn;
408 gpa_t ngpa;
409
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
413 return -EFAULT;
414
415 real_gfn = gpa_to_gfn(real_gfn);
416
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
423 {
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
426 }
427
428 /*
429 * Load the pae pdptrs. Return true is they are all valid.
430 */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 int i;
436 int ret;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
442 if (ret < 0) {
443 ret = 0;
444 goto out;
445 }
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 ret = 0;
450 goto out;
451 }
452 }
453 ret = 1;
454
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462 return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 bool changed = true;
470 int offset;
471 gfn_t gfn;
472 int r;
473
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
475 return false;
476
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
479 return true;
480
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
485 if (r < 0)
486 goto out;
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490 return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
498
499 cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502 if (cr0 & 0xffffffff00000000UL)
503 return 1;
504 #endif
505
506 cr0 &= ~CR0_RESERVED_BITS;
507
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 return 1;
510
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 return 1;
513
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 if ((vcpu->arch.efer & EFER_LME)) {
517 int cs_db, cs_l;
518
519 if (!is_pae(vcpu))
520 return 1;
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 if (cs_l)
523 return 1;
524 } else
525 #endif
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 kvm_read_cr3(vcpu)))
528 return 1;
529 }
530
531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 return 1;
533
534 kvm_x86_ops->set_cr0(vcpu, cr0);
535
536 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 kvm_clear_async_pf_completion_queue(vcpu);
538 kvm_async_pf_hash_reset(vcpu);
539 }
540
541 if ((cr0 ^ old_cr0) & update_bits)
542 kvm_mmu_reset_context(vcpu);
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 u64 xcr0;
556
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index != XCR_XFEATURE_ENABLED_MASK)
559 return 1;
560 xcr0 = xcr;
561 if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 return 1;
563 if (!(xcr0 & XSTATE_FP))
564 return 1;
565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 return 1;
567 if (xcr0 & ~host_xcr0)
568 return 1;
569 vcpu->arch.xcr0 = xcr0;
570 vcpu->guest_xcr0_loaded = 0;
571 return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 if (__kvm_set_xcr(vcpu, index, xcr)) {
577 kvm_inject_gp(vcpu, 0);
578 return 1;
579 }
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 X86_CR4_PAE | X86_CR4_SMEP;
589 if (cr4 & CR4_RESERVED_BITS)
590 return 1;
591
592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 return 1;
594
595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 return 1;
597
598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 return 1;
600
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
609
610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 if (!guest_cpuid_has_pcid(vcpu))
612 return 1;
613
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 return 1;
617 }
618
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 return 1;
621
622 if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 kvm_mmu_reset_context(vcpu);
625
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 kvm_update_cpuid(vcpu);
628
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
638 return 0;
639 }
640
641 if (is_long_mode(vcpu)) {
642 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 return 1;
645 } else
646 if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 return 1;
648 } else {
649 if (is_pae(vcpu)) {
650 if (cr3 & CR3_PAE_RESERVED_BITS)
651 return 1;
652 if (is_paging(vcpu) &&
653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 return 1;
655 }
656 /*
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
659 */
660 }
661
662 /*
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
666 *
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
670 */
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 return 1;
673 vcpu->arch.cr3 = cr3;
674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 vcpu->arch.mmu.new_cr3(vcpu);
676 return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 if (cr8 & CR8_RESERVED_BITS)
683 return 1;
684 if (irqchip_in_kernel(vcpu->kvm))
685 kvm_lapic_set_tpr(vcpu, cr8);
686 else
687 vcpu->arch.cr8 = cr8;
688 return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 if (irqchip_in_kernel(vcpu->kvm))
695 return kvm_lapic_get_cr8(vcpu);
696 else
697 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703 switch (dr) {
704 case 0 ... 3:
705 vcpu->arch.db[dr] = val;
706 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707 vcpu->arch.eff_db[dr] = val;
708 break;
709 case 4:
710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 return 1; /* #UD */
712 /* fall through */
713 case 6:
714 if (val & 0xffffffff00000000ULL)
715 return -1; /* #GP */
716 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717 break;
718 case 5:
719 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720 return 1; /* #UD */
721 /* fall through */
722 default: /* 7 */
723 if (val & 0xffffffff00000000ULL)
724 return -1; /* #GP */
725 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729 }
730 break;
731 }
732
733 return 0;
734 }
735
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 int res;
739
740 res = __kvm_set_dr(vcpu, dr, val);
741 if (res > 0)
742 kvm_queue_exception(vcpu, UD_VECTOR);
743 else if (res < 0)
744 kvm_inject_gp(vcpu, 0);
745
746 return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752 switch (dr) {
753 case 0 ... 3:
754 *val = vcpu->arch.db[dr];
755 break;
756 case 4:
757 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758 return 1;
759 /* fall through */
760 case 6:
761 *val = vcpu->arch.dr6;
762 break;
763 case 5:
764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 return 1;
766 /* fall through */
767 default: /* 7 */
768 *val = vcpu->arch.dr7;
769 break;
770 }
771
772 return 0;
773 }
774
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777 if (_kvm_get_dr(vcpu, dr, val)) {
778 kvm_queue_exception(vcpu, UD_VECTOR);
779 return 1;
780 }
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788 u64 data;
789 int err;
790
791 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792 if (err)
793 return err;
794 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796 return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799
800 /*
801 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803 *
804 * This list is modified at module load time to reflect the
805 * capabilities of the host cpu. This capabilities test skips MSRs that are
806 * kvm-specific. Those are put in the beginning of the list.
807 */
808
809 #define KVM_SAVE_MSRS_BEGIN 10
810 static u32 msrs_to_save[] = {
811 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815 MSR_KVM_PV_EOI_EN,
816 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817 MSR_STAR,
818 #ifdef CONFIG_X86_64
819 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823
824 static unsigned num_msrs_to_save;
825
826 static u32 emulated_msrs[] = {
827 MSR_IA32_TSCDEADLINE,
828 MSR_IA32_MISC_ENABLE,
829 MSR_IA32_MCG_STATUS,
830 MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 u64 old_efer = vcpu->arch.efer;
836
837 if (efer & efer_reserved_bits)
838 return 1;
839
840 if (is_paging(vcpu)
841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 return 1;
843
844 if (efer & EFER_FFXSR) {
845 struct kvm_cpuid_entry2 *feat;
846
847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 return 1;
850 }
851
852 if (efer & EFER_SVME) {
853 struct kvm_cpuid_entry2 *feat;
854
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 return 1;
858 }
859
860 efer &= ~EFER_LMA;
861 efer |= vcpu->arch.efer & EFER_LMA;
862
863 kvm_x86_ops->set_efer(vcpu, efer);
864
865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867 /* Update reserved bits */
868 if ((efer ^ old_efer) & EFER_NX)
869 kvm_mmu_reset_context(vcpu);
870
871 return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876 efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
885 */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892 * Adapt set_msr() to msr_io()'s calling convention
893 */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 int version;
902 int r;
903 struct pvclock_wall_clock wc;
904 struct timespec boot;
905
906 if (!wall_clock)
907 return;
908
909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 if (r)
911 return;
912
913 if (version & 1)
914 ++version; /* first time write, random junk */
915
916 ++version;
917
918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920 /*
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
925 */
926 getboottime(&boot);
927
928 if (kvm->arch.kvmclock_offset) {
929 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
930 boot = timespec_sub(boot, ts);
931 }
932 wc.sec = boot.tv_sec;
933 wc.nsec = boot.tv_nsec;
934 wc.version = version;
935
936 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
937
938 version++;
939 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
940 }
941
942 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
943 {
944 uint32_t quotient, remainder;
945
946 /* Don't try to replace with do_div(), this one calculates
947 * "(dividend << 32) / divisor" */
948 __asm__ ( "divl %4"
949 : "=a" (quotient), "=d" (remainder)
950 : "0" (0), "1" (dividend), "r" (divisor) );
951 return quotient;
952 }
953
954 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
955 s8 *pshift, u32 *pmultiplier)
956 {
957 uint64_t scaled64;
958 int32_t shift = 0;
959 uint64_t tps64;
960 uint32_t tps32;
961
962 tps64 = base_khz * 1000LL;
963 scaled64 = scaled_khz * 1000LL;
964 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
965 tps64 >>= 1;
966 shift--;
967 }
968
969 tps32 = (uint32_t)tps64;
970 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
971 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
972 scaled64 >>= 1;
973 else
974 tps32 <<= 1;
975 shift++;
976 }
977
978 *pshift = shift;
979 *pmultiplier = div_frac(scaled64, tps32);
980
981 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
982 __func__, base_khz, scaled_khz, shift, *pmultiplier);
983 }
984
985 static inline u64 get_kernel_ns(void)
986 {
987 struct timespec ts;
988
989 WARN_ON(preemptible());
990 ktime_get_ts(&ts);
991 monotonic_to_bootbased(&ts);
992 return timespec_to_ns(&ts);
993 }
994
995 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
996 unsigned long max_tsc_khz;
997
998 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
999 {
1000 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1001 vcpu->arch.virtual_tsc_shift);
1002 }
1003
1004 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1005 {
1006 u64 v = (u64)khz * (1000000 + ppm);
1007 do_div(v, 1000000);
1008 return v;
1009 }
1010
1011 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1012 {
1013 u32 thresh_lo, thresh_hi;
1014 int use_scaling = 0;
1015
1016 /* Compute a scale to convert nanoseconds in TSC cycles */
1017 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1018 &vcpu->arch.virtual_tsc_shift,
1019 &vcpu->arch.virtual_tsc_mult);
1020 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1021
1022 /*
1023 * Compute the variation in TSC rate which is acceptable
1024 * within the range of tolerance and decide if the
1025 * rate being applied is within that bounds of the hardware
1026 * rate. If so, no scaling or compensation need be done.
1027 */
1028 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1029 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1030 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1031 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1032 use_scaling = 1;
1033 }
1034 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1035 }
1036
1037 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1038 {
1039 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1040 vcpu->arch.virtual_tsc_mult,
1041 vcpu->arch.virtual_tsc_shift);
1042 tsc += vcpu->arch.this_tsc_write;
1043 return tsc;
1044 }
1045
1046 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1047 {
1048 struct kvm *kvm = vcpu->kvm;
1049 u64 offset, ns, elapsed;
1050 unsigned long flags;
1051 s64 usdiff;
1052
1053 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1054 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1055 ns = get_kernel_ns();
1056 elapsed = ns - kvm->arch.last_tsc_nsec;
1057
1058 /* n.b - signed multiplication and division required */
1059 usdiff = data - kvm->arch.last_tsc_write;
1060 #ifdef CONFIG_X86_64
1061 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1062 #else
1063 /* do_div() only does unsigned */
1064 asm("idivl %2; xor %%edx, %%edx"
1065 : "=A"(usdiff)
1066 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1067 #endif
1068 do_div(elapsed, 1000);
1069 usdiff -= elapsed;
1070 if (usdiff < 0)
1071 usdiff = -usdiff;
1072
1073 /*
1074 * Special case: TSC write with a small delta (1 second) of virtual
1075 * cycle time against real time is interpreted as an attempt to
1076 * synchronize the CPU.
1077 *
1078 * For a reliable TSC, we can match TSC offsets, and for an unstable
1079 * TSC, we add elapsed time in this computation. We could let the
1080 * compensation code attempt to catch up if we fall behind, but
1081 * it's better to try to match offsets from the beginning.
1082 */
1083 if (usdiff < USEC_PER_SEC &&
1084 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1085 if (!check_tsc_unstable()) {
1086 offset = kvm->arch.cur_tsc_offset;
1087 pr_debug("kvm: matched tsc offset for %llu\n", data);
1088 } else {
1089 u64 delta = nsec_to_cycles(vcpu, elapsed);
1090 data += delta;
1091 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1092 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1093 }
1094 } else {
1095 /*
1096 * We split periods of matched TSC writes into generations.
1097 * For each generation, we track the original measured
1098 * nanosecond time, offset, and write, so if TSCs are in
1099 * sync, we can match exact offset, and if not, we can match
1100 * exact software computation in compute_guest_tsc()
1101 *
1102 * These values are tracked in kvm->arch.cur_xxx variables.
1103 */
1104 kvm->arch.cur_tsc_generation++;
1105 kvm->arch.cur_tsc_nsec = ns;
1106 kvm->arch.cur_tsc_write = data;
1107 kvm->arch.cur_tsc_offset = offset;
1108 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1109 kvm->arch.cur_tsc_generation, data);
1110 }
1111
1112 /*
1113 * We also track th most recent recorded KHZ, write and time to
1114 * allow the matching interval to be extended at each write.
1115 */
1116 kvm->arch.last_tsc_nsec = ns;
1117 kvm->arch.last_tsc_write = data;
1118 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1119
1120 /* Reset of TSC must disable overshoot protection below */
1121 vcpu->arch.hv_clock.tsc_timestamp = 0;
1122 vcpu->arch.last_guest_tsc = data;
1123
1124 /* Keep track of which generation this VCPU has synchronized to */
1125 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1126 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1127 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1128
1129 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1130 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1131 }
1132
1133 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1134
1135 static int kvm_guest_time_update(struct kvm_vcpu *v)
1136 {
1137 unsigned long flags;
1138 struct kvm_vcpu_arch *vcpu = &v->arch;
1139 void *shared_kaddr;
1140 unsigned long this_tsc_khz;
1141 s64 kernel_ns, max_kernel_ns;
1142 u64 tsc_timestamp;
1143
1144 /* Keep irq disabled to prevent changes to the clock */
1145 local_irq_save(flags);
1146 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1147 kernel_ns = get_kernel_ns();
1148 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1149 if (unlikely(this_tsc_khz == 0)) {
1150 local_irq_restore(flags);
1151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1152 return 1;
1153 }
1154
1155 /*
1156 * We may have to catch up the TSC to match elapsed wall clock
1157 * time for two reasons, even if kvmclock is used.
1158 * 1) CPU could have been running below the maximum TSC rate
1159 * 2) Broken TSC compensation resets the base at each VCPU
1160 * entry to avoid unknown leaps of TSC even when running
1161 * again on the same CPU. This may cause apparent elapsed
1162 * time to disappear, and the guest to stand still or run
1163 * very slowly.
1164 */
1165 if (vcpu->tsc_catchup) {
1166 u64 tsc = compute_guest_tsc(v, kernel_ns);
1167 if (tsc > tsc_timestamp) {
1168 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1169 tsc_timestamp = tsc;
1170 }
1171 }
1172
1173 local_irq_restore(flags);
1174
1175 if (!vcpu->time_page)
1176 return 0;
1177
1178 /*
1179 * Time as measured by the TSC may go backwards when resetting the base
1180 * tsc_timestamp. The reason for this is that the TSC resolution is
1181 * higher than the resolution of the other clock scales. Thus, many
1182 * possible measurments of the TSC correspond to one measurement of any
1183 * other clock, and so a spread of values is possible. This is not a
1184 * problem for the computation of the nanosecond clock; with TSC rates
1185 * around 1GHZ, there can only be a few cycles which correspond to one
1186 * nanosecond value, and any path through this code will inevitably
1187 * take longer than that. However, with the kernel_ns value itself,
1188 * the precision may be much lower, down to HZ granularity. If the
1189 * first sampling of TSC against kernel_ns ends in the low part of the
1190 * range, and the second in the high end of the range, we can get:
1191 *
1192 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1193 *
1194 * As the sampling errors potentially range in the thousands of cycles,
1195 * it is possible such a time value has already been observed by the
1196 * guest. To protect against this, we must compute the system time as
1197 * observed by the guest and ensure the new system time is greater.
1198 */
1199 max_kernel_ns = 0;
1200 if (vcpu->hv_clock.tsc_timestamp) {
1201 max_kernel_ns = vcpu->last_guest_tsc -
1202 vcpu->hv_clock.tsc_timestamp;
1203 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1204 vcpu->hv_clock.tsc_to_system_mul,
1205 vcpu->hv_clock.tsc_shift);
1206 max_kernel_ns += vcpu->last_kernel_ns;
1207 }
1208
1209 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1210 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1211 &vcpu->hv_clock.tsc_shift,
1212 &vcpu->hv_clock.tsc_to_system_mul);
1213 vcpu->hw_tsc_khz = this_tsc_khz;
1214 }
1215
1216 if (max_kernel_ns > kernel_ns)
1217 kernel_ns = max_kernel_ns;
1218
1219 /* With all the info we got, fill in the values */
1220 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1221 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1222 vcpu->last_kernel_ns = kernel_ns;
1223 vcpu->last_guest_tsc = tsc_timestamp;
1224 vcpu->hv_clock.flags = 0;
1225
1226 /*
1227 * The interface expects us to write an even number signaling that the
1228 * update is finished. Since the guest won't see the intermediate
1229 * state, we just increase by 2 at the end.
1230 */
1231 vcpu->hv_clock.version += 2;
1232
1233 shared_kaddr = kmap_atomic(vcpu->time_page);
1234
1235 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1236 sizeof(vcpu->hv_clock));
1237
1238 kunmap_atomic(shared_kaddr);
1239
1240 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1241 return 0;
1242 }
1243
1244 static bool msr_mtrr_valid(unsigned msr)
1245 {
1246 switch (msr) {
1247 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1248 case MSR_MTRRfix64K_00000:
1249 case MSR_MTRRfix16K_80000:
1250 case MSR_MTRRfix16K_A0000:
1251 case MSR_MTRRfix4K_C0000:
1252 case MSR_MTRRfix4K_C8000:
1253 case MSR_MTRRfix4K_D0000:
1254 case MSR_MTRRfix4K_D8000:
1255 case MSR_MTRRfix4K_E0000:
1256 case MSR_MTRRfix4K_E8000:
1257 case MSR_MTRRfix4K_F0000:
1258 case MSR_MTRRfix4K_F8000:
1259 case MSR_MTRRdefType:
1260 case MSR_IA32_CR_PAT:
1261 return true;
1262 case 0x2f8:
1263 return true;
1264 }
1265 return false;
1266 }
1267
1268 static bool valid_pat_type(unsigned t)
1269 {
1270 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1271 }
1272
1273 static bool valid_mtrr_type(unsigned t)
1274 {
1275 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1276 }
1277
1278 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1279 {
1280 int i;
1281
1282 if (!msr_mtrr_valid(msr))
1283 return false;
1284
1285 if (msr == MSR_IA32_CR_PAT) {
1286 for (i = 0; i < 8; i++)
1287 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1288 return false;
1289 return true;
1290 } else if (msr == MSR_MTRRdefType) {
1291 if (data & ~0xcff)
1292 return false;
1293 return valid_mtrr_type(data & 0xff);
1294 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1295 for (i = 0; i < 8 ; i++)
1296 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1297 return false;
1298 return true;
1299 }
1300
1301 /* variable MTRRs */
1302 return valid_mtrr_type(data & 0xff);
1303 }
1304
1305 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1306 {
1307 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1308
1309 if (!mtrr_valid(vcpu, msr, data))
1310 return 1;
1311
1312 if (msr == MSR_MTRRdefType) {
1313 vcpu->arch.mtrr_state.def_type = data;
1314 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1315 } else if (msr == MSR_MTRRfix64K_00000)
1316 p[0] = data;
1317 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1318 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1319 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1320 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1321 else if (msr == MSR_IA32_CR_PAT)
1322 vcpu->arch.pat = data;
1323 else { /* Variable MTRRs */
1324 int idx, is_mtrr_mask;
1325 u64 *pt;
1326
1327 idx = (msr - 0x200) / 2;
1328 is_mtrr_mask = msr - 0x200 - 2 * idx;
1329 if (!is_mtrr_mask)
1330 pt =
1331 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1332 else
1333 pt =
1334 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1335 *pt = data;
1336 }
1337
1338 kvm_mmu_reset_context(vcpu);
1339 return 0;
1340 }
1341
1342 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1343 {
1344 u64 mcg_cap = vcpu->arch.mcg_cap;
1345 unsigned bank_num = mcg_cap & 0xff;
1346
1347 switch (msr) {
1348 case MSR_IA32_MCG_STATUS:
1349 vcpu->arch.mcg_status = data;
1350 break;
1351 case MSR_IA32_MCG_CTL:
1352 if (!(mcg_cap & MCG_CTL_P))
1353 return 1;
1354 if (data != 0 && data != ~(u64)0)
1355 return -1;
1356 vcpu->arch.mcg_ctl = data;
1357 break;
1358 default:
1359 if (msr >= MSR_IA32_MC0_CTL &&
1360 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1361 u32 offset = msr - MSR_IA32_MC0_CTL;
1362 /* only 0 or all 1s can be written to IA32_MCi_CTL
1363 * some Linux kernels though clear bit 10 in bank 4 to
1364 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1365 * this to avoid an uncatched #GP in the guest
1366 */
1367 if ((offset & 0x3) == 0 &&
1368 data != 0 && (data | (1 << 10)) != ~(u64)0)
1369 return -1;
1370 vcpu->arch.mce_banks[offset] = data;
1371 break;
1372 }
1373 return 1;
1374 }
1375 return 0;
1376 }
1377
1378 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1379 {
1380 struct kvm *kvm = vcpu->kvm;
1381 int lm = is_long_mode(vcpu);
1382 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1383 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1384 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1385 : kvm->arch.xen_hvm_config.blob_size_32;
1386 u32 page_num = data & ~PAGE_MASK;
1387 u64 page_addr = data & PAGE_MASK;
1388 u8 *page;
1389 int r;
1390
1391 r = -E2BIG;
1392 if (page_num >= blob_size)
1393 goto out;
1394 r = -ENOMEM;
1395 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1396 if (IS_ERR(page)) {
1397 r = PTR_ERR(page);
1398 goto out;
1399 }
1400 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1401 goto out_free;
1402 r = 0;
1403 out_free:
1404 kfree(page);
1405 out:
1406 return r;
1407 }
1408
1409 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1410 {
1411 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1412 }
1413
1414 static bool kvm_hv_msr_partition_wide(u32 msr)
1415 {
1416 bool r = false;
1417 switch (msr) {
1418 case HV_X64_MSR_GUEST_OS_ID:
1419 case HV_X64_MSR_HYPERCALL:
1420 r = true;
1421 break;
1422 }
1423
1424 return r;
1425 }
1426
1427 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1428 {
1429 struct kvm *kvm = vcpu->kvm;
1430
1431 switch (msr) {
1432 case HV_X64_MSR_GUEST_OS_ID:
1433 kvm->arch.hv_guest_os_id = data;
1434 /* setting guest os id to zero disables hypercall page */
1435 if (!kvm->arch.hv_guest_os_id)
1436 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1437 break;
1438 case HV_X64_MSR_HYPERCALL: {
1439 u64 gfn;
1440 unsigned long addr;
1441 u8 instructions[4];
1442
1443 /* if guest os id is not set hypercall should remain disabled */
1444 if (!kvm->arch.hv_guest_os_id)
1445 break;
1446 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1447 kvm->arch.hv_hypercall = data;
1448 break;
1449 }
1450 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1451 addr = gfn_to_hva(kvm, gfn);
1452 if (kvm_is_error_hva(addr))
1453 return 1;
1454 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1455 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1456 if (__copy_to_user((void __user *)addr, instructions, 4))
1457 return 1;
1458 kvm->arch.hv_hypercall = data;
1459 break;
1460 }
1461 default:
1462 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1463 "data 0x%llx\n", msr, data);
1464 return 1;
1465 }
1466 return 0;
1467 }
1468
1469 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1470 {
1471 switch (msr) {
1472 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1473 unsigned long addr;
1474
1475 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1476 vcpu->arch.hv_vapic = data;
1477 break;
1478 }
1479 addr = gfn_to_hva(vcpu->kvm, data >>
1480 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1481 if (kvm_is_error_hva(addr))
1482 return 1;
1483 if (__clear_user((void __user *)addr, PAGE_SIZE))
1484 return 1;
1485 vcpu->arch.hv_vapic = data;
1486 break;
1487 }
1488 case HV_X64_MSR_EOI:
1489 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1490 case HV_X64_MSR_ICR:
1491 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1492 case HV_X64_MSR_TPR:
1493 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1494 default:
1495 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1496 "data 0x%llx\n", msr, data);
1497 return 1;
1498 }
1499
1500 return 0;
1501 }
1502
1503 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1504 {
1505 gpa_t gpa = data & ~0x3f;
1506
1507 /* Bits 2:5 are reserved, Should be zero */
1508 if (data & 0x3c)
1509 return 1;
1510
1511 vcpu->arch.apf.msr_val = data;
1512
1513 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1514 kvm_clear_async_pf_completion_queue(vcpu);
1515 kvm_async_pf_hash_reset(vcpu);
1516 return 0;
1517 }
1518
1519 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1520 return 1;
1521
1522 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1523 kvm_async_pf_wakeup_all(vcpu);
1524 return 0;
1525 }
1526
1527 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1528 {
1529 if (vcpu->arch.time_page) {
1530 kvm_release_page_dirty(vcpu->arch.time_page);
1531 vcpu->arch.time_page = NULL;
1532 }
1533 }
1534
1535 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1536 {
1537 u64 delta;
1538
1539 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1540 return;
1541
1542 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1543 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1544 vcpu->arch.st.accum_steal = delta;
1545 }
1546
1547 static void record_steal_time(struct kvm_vcpu *vcpu)
1548 {
1549 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1550 return;
1551
1552 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1553 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1554 return;
1555
1556 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1557 vcpu->arch.st.steal.version += 2;
1558 vcpu->arch.st.accum_steal = 0;
1559
1560 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1561 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1562 }
1563
1564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1565 {
1566 bool pr = false;
1567
1568 switch (msr) {
1569 case MSR_EFER:
1570 return set_efer(vcpu, data);
1571 case MSR_K7_HWCR:
1572 data &= ~(u64)0x40; /* ignore flush filter disable */
1573 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1574 data &= ~(u64)0x8; /* ignore TLB cache disable */
1575 if (data != 0) {
1576 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1577 data);
1578 return 1;
1579 }
1580 break;
1581 case MSR_FAM10H_MMIO_CONF_BASE:
1582 if (data != 0) {
1583 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1584 "0x%llx\n", data);
1585 return 1;
1586 }
1587 break;
1588 case MSR_AMD64_NB_CFG:
1589 break;
1590 case MSR_IA32_DEBUGCTLMSR:
1591 if (!data) {
1592 /* We support the non-activated case already */
1593 break;
1594 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1595 /* Values other than LBR and BTF are vendor-specific,
1596 thus reserved and should throw a #GP */
1597 return 1;
1598 }
1599 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1600 __func__, data);
1601 break;
1602 case MSR_IA32_UCODE_REV:
1603 case MSR_IA32_UCODE_WRITE:
1604 case MSR_VM_HSAVE_PA:
1605 case MSR_AMD64_PATCH_LOADER:
1606 break;
1607 case 0x200 ... 0x2ff:
1608 return set_msr_mtrr(vcpu, msr, data);
1609 case MSR_IA32_APICBASE:
1610 kvm_set_apic_base(vcpu, data);
1611 break;
1612 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1613 return kvm_x2apic_msr_write(vcpu, msr, data);
1614 case MSR_IA32_TSCDEADLINE:
1615 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1616 break;
1617 case MSR_IA32_MISC_ENABLE:
1618 vcpu->arch.ia32_misc_enable_msr = data;
1619 break;
1620 case MSR_KVM_WALL_CLOCK_NEW:
1621 case MSR_KVM_WALL_CLOCK:
1622 vcpu->kvm->arch.wall_clock = data;
1623 kvm_write_wall_clock(vcpu->kvm, data);
1624 break;
1625 case MSR_KVM_SYSTEM_TIME_NEW:
1626 case MSR_KVM_SYSTEM_TIME: {
1627 kvmclock_reset(vcpu);
1628
1629 vcpu->arch.time = data;
1630 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1631
1632 /* we verify if the enable bit is set... */
1633 if (!(data & 1))
1634 break;
1635
1636 /* ...but clean it before doing the actual write */
1637 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1638
1639 vcpu->arch.time_page =
1640 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1641
1642 if (is_error_page(vcpu->arch.time_page)) {
1643 kvm_release_page_clean(vcpu->arch.time_page);
1644 vcpu->arch.time_page = NULL;
1645 }
1646 break;
1647 }
1648 case MSR_KVM_ASYNC_PF_EN:
1649 if (kvm_pv_enable_async_pf(vcpu, data))
1650 return 1;
1651 break;
1652 case MSR_KVM_STEAL_TIME:
1653
1654 if (unlikely(!sched_info_on()))
1655 return 1;
1656
1657 if (data & KVM_STEAL_RESERVED_MASK)
1658 return 1;
1659
1660 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1661 data & KVM_STEAL_VALID_BITS))
1662 return 1;
1663
1664 vcpu->arch.st.msr_val = data;
1665
1666 if (!(data & KVM_MSR_ENABLED))
1667 break;
1668
1669 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1670
1671 preempt_disable();
1672 accumulate_steal_time(vcpu);
1673 preempt_enable();
1674
1675 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1676
1677 break;
1678 case MSR_KVM_PV_EOI_EN:
1679 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1680 return 1;
1681 break;
1682
1683 case MSR_IA32_MCG_CTL:
1684 case MSR_IA32_MCG_STATUS:
1685 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1686 return set_msr_mce(vcpu, msr, data);
1687
1688 /* Performance counters are not protected by a CPUID bit,
1689 * so we should check all of them in the generic path for the sake of
1690 * cross vendor migration.
1691 * Writing a zero into the event select MSRs disables them,
1692 * which we perfectly emulate ;-). Any other value should be at least
1693 * reported, some guests depend on them.
1694 */
1695 case MSR_K7_EVNTSEL0:
1696 case MSR_K7_EVNTSEL1:
1697 case MSR_K7_EVNTSEL2:
1698 case MSR_K7_EVNTSEL3:
1699 if (data != 0)
1700 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1701 "0x%x data 0x%llx\n", msr, data);
1702 break;
1703 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1704 * so we ignore writes to make it happy.
1705 */
1706 case MSR_K7_PERFCTR0:
1707 case MSR_K7_PERFCTR1:
1708 case MSR_K7_PERFCTR2:
1709 case MSR_K7_PERFCTR3:
1710 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711 "0x%x data 0x%llx\n", msr, data);
1712 break;
1713 case MSR_P6_PERFCTR0:
1714 case MSR_P6_PERFCTR1:
1715 pr = true;
1716 case MSR_P6_EVNTSEL0:
1717 case MSR_P6_EVNTSEL1:
1718 if (kvm_pmu_msr(vcpu, msr))
1719 return kvm_pmu_set_msr(vcpu, msr, data);
1720
1721 if (pr || data != 0)
1722 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1723 "0x%x data 0x%llx\n", msr, data);
1724 break;
1725 case MSR_K7_CLK_CTL:
1726 /*
1727 * Ignore all writes to this no longer documented MSR.
1728 * Writes are only relevant for old K7 processors,
1729 * all pre-dating SVM, but a recommended workaround from
1730 * AMD for these chips. It is possible to specify the
1731 * affected processor models on the command line, hence
1732 * the need to ignore the workaround.
1733 */
1734 break;
1735 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1736 if (kvm_hv_msr_partition_wide(msr)) {
1737 int r;
1738 mutex_lock(&vcpu->kvm->lock);
1739 r = set_msr_hyperv_pw(vcpu, msr, data);
1740 mutex_unlock(&vcpu->kvm->lock);
1741 return r;
1742 } else
1743 return set_msr_hyperv(vcpu, msr, data);
1744 break;
1745 case MSR_IA32_BBL_CR_CTL3:
1746 /* Drop writes to this legacy MSR -- see rdmsr
1747 * counterpart for further detail.
1748 */
1749 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1750 break;
1751 case MSR_AMD64_OSVW_ID_LENGTH:
1752 if (!guest_cpuid_has_osvw(vcpu))
1753 return 1;
1754 vcpu->arch.osvw.length = data;
1755 break;
1756 case MSR_AMD64_OSVW_STATUS:
1757 if (!guest_cpuid_has_osvw(vcpu))
1758 return 1;
1759 vcpu->arch.osvw.status = data;
1760 break;
1761 default:
1762 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1763 return xen_hvm_config(vcpu, data);
1764 if (kvm_pmu_msr(vcpu, msr))
1765 return kvm_pmu_set_msr(vcpu, msr, data);
1766 if (!ignore_msrs) {
1767 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1768 msr, data);
1769 return 1;
1770 } else {
1771 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1772 msr, data);
1773 break;
1774 }
1775 }
1776 return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1779
1780
1781 /*
1782 * Reads an msr value (of 'msr_index') into 'pdata'.
1783 * Returns 0 on success, non-0 otherwise.
1784 * Assumes vcpu_load() was already called.
1785 */
1786 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1787 {
1788 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1789 }
1790
1791 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1792 {
1793 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1794
1795 if (!msr_mtrr_valid(msr))
1796 return 1;
1797
1798 if (msr == MSR_MTRRdefType)
1799 *pdata = vcpu->arch.mtrr_state.def_type +
1800 (vcpu->arch.mtrr_state.enabled << 10);
1801 else if (msr == MSR_MTRRfix64K_00000)
1802 *pdata = p[0];
1803 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1804 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1805 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1806 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1807 else if (msr == MSR_IA32_CR_PAT)
1808 *pdata = vcpu->arch.pat;
1809 else { /* Variable MTRRs */
1810 int idx, is_mtrr_mask;
1811 u64 *pt;
1812
1813 idx = (msr - 0x200) / 2;
1814 is_mtrr_mask = msr - 0x200 - 2 * idx;
1815 if (!is_mtrr_mask)
1816 pt =
1817 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1818 else
1819 pt =
1820 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1821 *pdata = *pt;
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829 u64 data;
1830 u64 mcg_cap = vcpu->arch.mcg_cap;
1831 unsigned bank_num = mcg_cap & 0xff;
1832
1833 switch (msr) {
1834 case MSR_IA32_P5_MC_ADDR:
1835 case MSR_IA32_P5_MC_TYPE:
1836 data = 0;
1837 break;
1838 case MSR_IA32_MCG_CAP:
1839 data = vcpu->arch.mcg_cap;
1840 break;
1841 case MSR_IA32_MCG_CTL:
1842 if (!(mcg_cap & MCG_CTL_P))
1843 return 1;
1844 data = vcpu->arch.mcg_ctl;
1845 break;
1846 case MSR_IA32_MCG_STATUS:
1847 data = vcpu->arch.mcg_status;
1848 break;
1849 default:
1850 if (msr >= MSR_IA32_MC0_CTL &&
1851 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1852 u32 offset = msr - MSR_IA32_MC0_CTL;
1853 data = vcpu->arch.mce_banks[offset];
1854 break;
1855 }
1856 return 1;
1857 }
1858 *pdata = data;
1859 return 0;
1860 }
1861
1862 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1863 {
1864 u64 data = 0;
1865 struct kvm *kvm = vcpu->kvm;
1866
1867 switch (msr) {
1868 case HV_X64_MSR_GUEST_OS_ID:
1869 data = kvm->arch.hv_guest_os_id;
1870 break;
1871 case HV_X64_MSR_HYPERCALL:
1872 data = kvm->arch.hv_hypercall;
1873 break;
1874 default:
1875 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1876 return 1;
1877 }
1878
1879 *pdata = data;
1880 return 0;
1881 }
1882
1883 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1884 {
1885 u64 data = 0;
1886
1887 switch (msr) {
1888 case HV_X64_MSR_VP_INDEX: {
1889 int r;
1890 struct kvm_vcpu *v;
1891 kvm_for_each_vcpu(r, v, vcpu->kvm)
1892 if (v == vcpu)
1893 data = r;
1894 break;
1895 }
1896 case HV_X64_MSR_EOI:
1897 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1898 case HV_X64_MSR_ICR:
1899 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1900 case HV_X64_MSR_TPR:
1901 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1902 case HV_X64_MSR_APIC_ASSIST_PAGE:
1903 data = vcpu->arch.hv_vapic;
1904 break;
1905 default:
1906 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1907 return 1;
1908 }
1909 *pdata = data;
1910 return 0;
1911 }
1912
1913 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1914 {
1915 u64 data;
1916
1917 switch (msr) {
1918 case MSR_IA32_PLATFORM_ID:
1919 case MSR_IA32_EBL_CR_POWERON:
1920 case MSR_IA32_DEBUGCTLMSR:
1921 case MSR_IA32_LASTBRANCHFROMIP:
1922 case MSR_IA32_LASTBRANCHTOIP:
1923 case MSR_IA32_LASTINTFROMIP:
1924 case MSR_IA32_LASTINTTOIP:
1925 case MSR_K8_SYSCFG:
1926 case MSR_K7_HWCR:
1927 case MSR_VM_HSAVE_PA:
1928 case MSR_K7_EVNTSEL0:
1929 case MSR_K7_PERFCTR0:
1930 case MSR_K8_INT_PENDING_MSG:
1931 case MSR_AMD64_NB_CFG:
1932 case MSR_FAM10H_MMIO_CONF_BASE:
1933 data = 0;
1934 break;
1935 case MSR_P6_PERFCTR0:
1936 case MSR_P6_PERFCTR1:
1937 case MSR_P6_EVNTSEL0:
1938 case MSR_P6_EVNTSEL1:
1939 if (kvm_pmu_msr(vcpu, msr))
1940 return kvm_pmu_get_msr(vcpu, msr, pdata);
1941 data = 0;
1942 break;
1943 case MSR_IA32_UCODE_REV:
1944 data = 0x100000000ULL;
1945 break;
1946 case MSR_MTRRcap:
1947 data = 0x500 | KVM_NR_VAR_MTRR;
1948 break;
1949 case 0x200 ... 0x2ff:
1950 return get_msr_mtrr(vcpu, msr, pdata);
1951 case 0xcd: /* fsb frequency */
1952 data = 3;
1953 break;
1954 /*
1955 * MSR_EBC_FREQUENCY_ID
1956 * Conservative value valid for even the basic CPU models.
1957 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1958 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1959 * and 266MHz for model 3, or 4. Set Core Clock
1960 * Frequency to System Bus Frequency Ratio to 1 (bits
1961 * 31:24) even though these are only valid for CPU
1962 * models > 2, however guests may end up dividing or
1963 * multiplying by zero otherwise.
1964 */
1965 case MSR_EBC_FREQUENCY_ID:
1966 data = 1 << 24;
1967 break;
1968 case MSR_IA32_APICBASE:
1969 data = kvm_get_apic_base(vcpu);
1970 break;
1971 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1972 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1973 break;
1974 case MSR_IA32_TSCDEADLINE:
1975 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1976 break;
1977 case MSR_IA32_MISC_ENABLE:
1978 data = vcpu->arch.ia32_misc_enable_msr;
1979 break;
1980 case MSR_IA32_PERF_STATUS:
1981 /* TSC increment by tick */
1982 data = 1000ULL;
1983 /* CPU multiplier */
1984 data |= (((uint64_t)4ULL) << 40);
1985 break;
1986 case MSR_EFER:
1987 data = vcpu->arch.efer;
1988 break;
1989 case MSR_KVM_WALL_CLOCK:
1990 case MSR_KVM_WALL_CLOCK_NEW:
1991 data = vcpu->kvm->arch.wall_clock;
1992 break;
1993 case MSR_KVM_SYSTEM_TIME:
1994 case MSR_KVM_SYSTEM_TIME_NEW:
1995 data = vcpu->arch.time;
1996 break;
1997 case MSR_KVM_ASYNC_PF_EN:
1998 data = vcpu->arch.apf.msr_val;
1999 break;
2000 case MSR_KVM_STEAL_TIME:
2001 data = vcpu->arch.st.msr_val;
2002 break;
2003 case MSR_IA32_P5_MC_ADDR:
2004 case MSR_IA32_P5_MC_TYPE:
2005 case MSR_IA32_MCG_CAP:
2006 case MSR_IA32_MCG_CTL:
2007 case MSR_IA32_MCG_STATUS:
2008 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009 return get_msr_mce(vcpu, msr, pdata);
2010 case MSR_K7_CLK_CTL:
2011 /*
2012 * Provide expected ramp-up count for K7. All other
2013 * are set to zero, indicating minimum divisors for
2014 * every field.
2015 *
2016 * This prevents guest kernels on AMD host with CPU
2017 * type 6, model 8 and higher from exploding due to
2018 * the rdmsr failing.
2019 */
2020 data = 0x20000000;
2021 break;
2022 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2023 if (kvm_hv_msr_partition_wide(msr)) {
2024 int r;
2025 mutex_lock(&vcpu->kvm->lock);
2026 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2027 mutex_unlock(&vcpu->kvm->lock);
2028 return r;
2029 } else
2030 return get_msr_hyperv(vcpu, msr, pdata);
2031 break;
2032 case MSR_IA32_BBL_CR_CTL3:
2033 /* This legacy MSR exists but isn't fully documented in current
2034 * silicon. It is however accessed by winxp in very narrow
2035 * scenarios where it sets bit #19, itself documented as
2036 * a "reserved" bit. Best effort attempt to source coherent
2037 * read data here should the balance of the register be
2038 * interpreted by the guest:
2039 *
2040 * L2 cache control register 3: 64GB range, 256KB size,
2041 * enabled, latency 0x1, configured
2042 */
2043 data = 0xbe702111;
2044 break;
2045 case MSR_AMD64_OSVW_ID_LENGTH:
2046 if (!guest_cpuid_has_osvw(vcpu))
2047 return 1;
2048 data = vcpu->arch.osvw.length;
2049 break;
2050 case MSR_AMD64_OSVW_STATUS:
2051 if (!guest_cpuid_has_osvw(vcpu))
2052 return 1;
2053 data = vcpu->arch.osvw.status;
2054 break;
2055 default:
2056 if (kvm_pmu_msr(vcpu, msr))
2057 return kvm_pmu_get_msr(vcpu, msr, pdata);
2058 if (!ignore_msrs) {
2059 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2060 return 1;
2061 } else {
2062 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2063 data = 0;
2064 }
2065 break;
2066 }
2067 *pdata = data;
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2071
2072 /*
2073 * Read or write a bunch of msrs. All parameters are kernel addresses.
2074 *
2075 * @return number of msrs set successfully.
2076 */
2077 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2078 struct kvm_msr_entry *entries,
2079 int (*do_msr)(struct kvm_vcpu *vcpu,
2080 unsigned index, u64 *data))
2081 {
2082 int i, idx;
2083
2084 idx = srcu_read_lock(&vcpu->kvm->srcu);
2085 for (i = 0; i < msrs->nmsrs; ++i)
2086 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2087 break;
2088 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2089
2090 return i;
2091 }
2092
2093 /*
2094 * Read or write a bunch of msrs. Parameters are user addresses.
2095 *
2096 * @return number of msrs set successfully.
2097 */
2098 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2099 int (*do_msr)(struct kvm_vcpu *vcpu,
2100 unsigned index, u64 *data),
2101 int writeback)
2102 {
2103 struct kvm_msrs msrs;
2104 struct kvm_msr_entry *entries;
2105 int r, n;
2106 unsigned size;
2107
2108 r = -EFAULT;
2109 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2110 goto out;
2111
2112 r = -E2BIG;
2113 if (msrs.nmsrs >= MAX_IO_MSRS)
2114 goto out;
2115
2116 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2117 entries = memdup_user(user_msrs->entries, size);
2118 if (IS_ERR(entries)) {
2119 r = PTR_ERR(entries);
2120 goto out;
2121 }
2122
2123 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2124 if (r < 0)
2125 goto out_free;
2126
2127 r = -EFAULT;
2128 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2129 goto out_free;
2130
2131 r = n;
2132
2133 out_free:
2134 kfree(entries);
2135 out:
2136 return r;
2137 }
2138
2139 int kvm_dev_ioctl_check_extension(long ext)
2140 {
2141 int r;
2142
2143 switch (ext) {
2144 case KVM_CAP_IRQCHIP:
2145 case KVM_CAP_HLT:
2146 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2147 case KVM_CAP_SET_TSS_ADDR:
2148 case KVM_CAP_EXT_CPUID:
2149 case KVM_CAP_CLOCKSOURCE:
2150 case KVM_CAP_PIT:
2151 case KVM_CAP_NOP_IO_DELAY:
2152 case KVM_CAP_MP_STATE:
2153 case KVM_CAP_SYNC_MMU:
2154 case KVM_CAP_USER_NMI:
2155 case KVM_CAP_REINJECT_CONTROL:
2156 case KVM_CAP_IRQ_INJECT_STATUS:
2157 case KVM_CAP_ASSIGN_DEV_IRQ:
2158 case KVM_CAP_IRQFD:
2159 case KVM_CAP_IOEVENTFD:
2160 case KVM_CAP_PIT2:
2161 case KVM_CAP_PIT_STATE2:
2162 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2163 case KVM_CAP_XEN_HVM:
2164 case KVM_CAP_ADJUST_CLOCK:
2165 case KVM_CAP_VCPU_EVENTS:
2166 case KVM_CAP_HYPERV:
2167 case KVM_CAP_HYPERV_VAPIC:
2168 case KVM_CAP_HYPERV_SPIN:
2169 case KVM_CAP_PCI_SEGMENT:
2170 case KVM_CAP_DEBUGREGS:
2171 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2172 case KVM_CAP_XSAVE:
2173 case KVM_CAP_ASYNC_PF:
2174 case KVM_CAP_GET_TSC_KHZ:
2175 case KVM_CAP_PCI_2_3:
2176 case KVM_CAP_KVMCLOCK_CTRL:
2177 r = 1;
2178 break;
2179 case KVM_CAP_COALESCED_MMIO:
2180 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2181 break;
2182 case KVM_CAP_VAPIC:
2183 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2184 break;
2185 case KVM_CAP_NR_VCPUS:
2186 r = KVM_SOFT_MAX_VCPUS;
2187 break;
2188 case KVM_CAP_MAX_VCPUS:
2189 r = KVM_MAX_VCPUS;
2190 break;
2191 case KVM_CAP_NR_MEMSLOTS:
2192 r = KVM_MEMORY_SLOTS;
2193 break;
2194 case KVM_CAP_PV_MMU: /* obsolete */
2195 r = 0;
2196 break;
2197 case KVM_CAP_IOMMU:
2198 r = iommu_present(&pci_bus_type);
2199 break;
2200 case KVM_CAP_MCE:
2201 r = KVM_MAX_MCE_BANKS;
2202 break;
2203 case KVM_CAP_XCRS:
2204 r = cpu_has_xsave;
2205 break;
2206 case KVM_CAP_TSC_CONTROL:
2207 r = kvm_has_tsc_control;
2208 break;
2209 case KVM_CAP_TSC_DEADLINE_TIMER:
2210 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2211 break;
2212 default:
2213 r = 0;
2214 break;
2215 }
2216 return r;
2217
2218 }
2219
2220 long kvm_arch_dev_ioctl(struct file *filp,
2221 unsigned int ioctl, unsigned long arg)
2222 {
2223 void __user *argp = (void __user *)arg;
2224 long r;
2225
2226 switch (ioctl) {
2227 case KVM_GET_MSR_INDEX_LIST: {
2228 struct kvm_msr_list __user *user_msr_list = argp;
2229 struct kvm_msr_list msr_list;
2230 unsigned n;
2231
2232 r = -EFAULT;
2233 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2234 goto out;
2235 n = msr_list.nmsrs;
2236 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2237 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2238 goto out;
2239 r = -E2BIG;
2240 if (n < msr_list.nmsrs)
2241 goto out;
2242 r = -EFAULT;
2243 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2244 num_msrs_to_save * sizeof(u32)))
2245 goto out;
2246 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2247 &emulated_msrs,
2248 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2249 goto out;
2250 r = 0;
2251 break;
2252 }
2253 case KVM_GET_SUPPORTED_CPUID: {
2254 struct kvm_cpuid2 __user *cpuid_arg = argp;
2255 struct kvm_cpuid2 cpuid;
2256
2257 r = -EFAULT;
2258 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2259 goto out;
2260 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2261 cpuid_arg->entries);
2262 if (r)
2263 goto out;
2264
2265 r = -EFAULT;
2266 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2267 goto out;
2268 r = 0;
2269 break;
2270 }
2271 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2272 u64 mce_cap;
2273
2274 mce_cap = KVM_MCE_CAP_SUPPORTED;
2275 r = -EFAULT;
2276 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2277 goto out;
2278 r = 0;
2279 break;
2280 }
2281 default:
2282 r = -EINVAL;
2283 }
2284 out:
2285 return r;
2286 }
2287
2288 static void wbinvd_ipi(void *garbage)
2289 {
2290 wbinvd();
2291 }
2292
2293 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2294 {
2295 return vcpu->kvm->arch.iommu_domain &&
2296 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2297 }
2298
2299 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2300 {
2301 /* Address WBINVD may be executed by guest */
2302 if (need_emulate_wbinvd(vcpu)) {
2303 if (kvm_x86_ops->has_wbinvd_exit())
2304 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2305 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2306 smp_call_function_single(vcpu->cpu,
2307 wbinvd_ipi, NULL, 1);
2308 }
2309
2310 kvm_x86_ops->vcpu_load(vcpu, cpu);
2311
2312 /* Apply any externally detected TSC adjustments (due to suspend) */
2313 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2314 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2315 vcpu->arch.tsc_offset_adjustment = 0;
2316 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2317 }
2318
2319 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2320 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2321 native_read_tsc() - vcpu->arch.last_host_tsc;
2322 if (tsc_delta < 0)
2323 mark_tsc_unstable("KVM discovered backwards TSC");
2324 if (check_tsc_unstable()) {
2325 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2326 vcpu->arch.last_guest_tsc);
2327 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2328 vcpu->arch.tsc_catchup = 1;
2329 }
2330 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2331 if (vcpu->cpu != cpu)
2332 kvm_migrate_timers(vcpu);
2333 vcpu->cpu = cpu;
2334 }
2335
2336 accumulate_steal_time(vcpu);
2337 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2338 }
2339
2340 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2341 {
2342 kvm_x86_ops->vcpu_put(vcpu);
2343 kvm_put_guest_fpu(vcpu);
2344 vcpu->arch.last_host_tsc = native_read_tsc();
2345 }
2346
2347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2348 struct kvm_lapic_state *s)
2349 {
2350 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2351
2352 return 0;
2353 }
2354
2355 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2356 struct kvm_lapic_state *s)
2357 {
2358 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2359 kvm_apic_post_state_restore(vcpu);
2360 update_cr8_intercept(vcpu);
2361
2362 return 0;
2363 }
2364
2365 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2366 struct kvm_interrupt *irq)
2367 {
2368 if (irq->irq < 0 || irq->irq >= 256)
2369 return -EINVAL;
2370 if (irqchip_in_kernel(vcpu->kvm))
2371 return -ENXIO;
2372
2373 kvm_queue_interrupt(vcpu, irq->irq, false);
2374 kvm_make_request(KVM_REQ_EVENT, vcpu);
2375
2376 return 0;
2377 }
2378
2379 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2380 {
2381 kvm_inject_nmi(vcpu);
2382
2383 return 0;
2384 }
2385
2386 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2387 struct kvm_tpr_access_ctl *tac)
2388 {
2389 if (tac->flags)
2390 return -EINVAL;
2391 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2392 return 0;
2393 }
2394
2395 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2396 u64 mcg_cap)
2397 {
2398 int r;
2399 unsigned bank_num = mcg_cap & 0xff, bank;
2400
2401 r = -EINVAL;
2402 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2403 goto out;
2404 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2405 goto out;
2406 r = 0;
2407 vcpu->arch.mcg_cap = mcg_cap;
2408 /* Init IA32_MCG_CTL to all 1s */
2409 if (mcg_cap & MCG_CTL_P)
2410 vcpu->arch.mcg_ctl = ~(u64)0;
2411 /* Init IA32_MCi_CTL to all 1s */
2412 for (bank = 0; bank < bank_num; bank++)
2413 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2414 out:
2415 return r;
2416 }
2417
2418 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2419 struct kvm_x86_mce *mce)
2420 {
2421 u64 mcg_cap = vcpu->arch.mcg_cap;
2422 unsigned bank_num = mcg_cap & 0xff;
2423 u64 *banks = vcpu->arch.mce_banks;
2424
2425 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2426 return -EINVAL;
2427 /*
2428 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2429 * reporting is disabled
2430 */
2431 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2432 vcpu->arch.mcg_ctl != ~(u64)0)
2433 return 0;
2434 banks += 4 * mce->bank;
2435 /*
2436 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2437 * reporting is disabled for the bank
2438 */
2439 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2440 return 0;
2441 if (mce->status & MCI_STATUS_UC) {
2442 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2443 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2444 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2445 return 0;
2446 }
2447 if (banks[1] & MCI_STATUS_VAL)
2448 mce->status |= MCI_STATUS_OVER;
2449 banks[2] = mce->addr;
2450 banks[3] = mce->misc;
2451 vcpu->arch.mcg_status = mce->mcg_status;
2452 banks[1] = mce->status;
2453 kvm_queue_exception(vcpu, MC_VECTOR);
2454 } else if (!(banks[1] & MCI_STATUS_VAL)
2455 || !(banks[1] & MCI_STATUS_UC)) {
2456 if (banks[1] & MCI_STATUS_VAL)
2457 mce->status |= MCI_STATUS_OVER;
2458 banks[2] = mce->addr;
2459 banks[3] = mce->misc;
2460 banks[1] = mce->status;
2461 } else
2462 banks[1] |= MCI_STATUS_OVER;
2463 return 0;
2464 }
2465
2466 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2467 struct kvm_vcpu_events *events)
2468 {
2469 process_nmi(vcpu);
2470 events->exception.injected =
2471 vcpu->arch.exception.pending &&
2472 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2473 events->exception.nr = vcpu->arch.exception.nr;
2474 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2475 events->exception.pad = 0;
2476 events->exception.error_code = vcpu->arch.exception.error_code;
2477
2478 events->interrupt.injected =
2479 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2480 events->interrupt.nr = vcpu->arch.interrupt.nr;
2481 events->interrupt.soft = 0;
2482 events->interrupt.shadow =
2483 kvm_x86_ops->get_interrupt_shadow(vcpu,
2484 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2485
2486 events->nmi.injected = vcpu->arch.nmi_injected;
2487 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2488 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2489 events->nmi.pad = 0;
2490
2491 events->sipi_vector = vcpu->arch.sipi_vector;
2492
2493 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2494 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2495 | KVM_VCPUEVENT_VALID_SHADOW);
2496 memset(&events->reserved, 0, sizeof(events->reserved));
2497 }
2498
2499 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2500 struct kvm_vcpu_events *events)
2501 {
2502 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2503 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2504 | KVM_VCPUEVENT_VALID_SHADOW))
2505 return -EINVAL;
2506
2507 process_nmi(vcpu);
2508 vcpu->arch.exception.pending = events->exception.injected;
2509 vcpu->arch.exception.nr = events->exception.nr;
2510 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2511 vcpu->arch.exception.error_code = events->exception.error_code;
2512
2513 vcpu->arch.interrupt.pending = events->interrupt.injected;
2514 vcpu->arch.interrupt.nr = events->interrupt.nr;
2515 vcpu->arch.interrupt.soft = events->interrupt.soft;
2516 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2517 kvm_x86_ops->set_interrupt_shadow(vcpu,
2518 events->interrupt.shadow);
2519
2520 vcpu->arch.nmi_injected = events->nmi.injected;
2521 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2522 vcpu->arch.nmi_pending = events->nmi.pending;
2523 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2524
2525 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2526 vcpu->arch.sipi_vector = events->sipi_vector;
2527
2528 kvm_make_request(KVM_REQ_EVENT, vcpu);
2529
2530 return 0;
2531 }
2532
2533 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2534 struct kvm_debugregs *dbgregs)
2535 {
2536 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2537 dbgregs->dr6 = vcpu->arch.dr6;
2538 dbgregs->dr7 = vcpu->arch.dr7;
2539 dbgregs->flags = 0;
2540 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2541 }
2542
2543 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2544 struct kvm_debugregs *dbgregs)
2545 {
2546 if (dbgregs->flags)
2547 return -EINVAL;
2548
2549 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2550 vcpu->arch.dr6 = dbgregs->dr6;
2551 vcpu->arch.dr7 = dbgregs->dr7;
2552
2553 return 0;
2554 }
2555
2556 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2557 struct kvm_xsave *guest_xsave)
2558 {
2559 if (cpu_has_xsave)
2560 memcpy(guest_xsave->region,
2561 &vcpu->arch.guest_fpu.state->xsave,
2562 xstate_size);
2563 else {
2564 memcpy(guest_xsave->region,
2565 &vcpu->arch.guest_fpu.state->fxsave,
2566 sizeof(struct i387_fxsave_struct));
2567 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2568 XSTATE_FPSSE;
2569 }
2570 }
2571
2572 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2573 struct kvm_xsave *guest_xsave)
2574 {
2575 u64 xstate_bv =
2576 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2577
2578 if (cpu_has_xsave)
2579 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2580 guest_xsave->region, xstate_size);
2581 else {
2582 if (xstate_bv & ~XSTATE_FPSSE)
2583 return -EINVAL;
2584 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2585 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2586 }
2587 return 0;
2588 }
2589
2590 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2591 struct kvm_xcrs *guest_xcrs)
2592 {
2593 if (!cpu_has_xsave) {
2594 guest_xcrs->nr_xcrs = 0;
2595 return;
2596 }
2597
2598 guest_xcrs->nr_xcrs = 1;
2599 guest_xcrs->flags = 0;
2600 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2601 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2602 }
2603
2604 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2605 struct kvm_xcrs *guest_xcrs)
2606 {
2607 int i, r = 0;
2608
2609 if (!cpu_has_xsave)
2610 return -EINVAL;
2611
2612 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2613 return -EINVAL;
2614
2615 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2616 /* Only support XCR0 currently */
2617 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2618 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2619 guest_xcrs->xcrs[0].value);
2620 break;
2621 }
2622 if (r)
2623 r = -EINVAL;
2624 return r;
2625 }
2626
2627 /*
2628 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2629 * stopped by the hypervisor. This function will be called from the host only.
2630 * EINVAL is returned when the host attempts to set the flag for a guest that
2631 * does not support pv clocks.
2632 */
2633 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2634 {
2635 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2636 if (!vcpu->arch.time_page)
2637 return -EINVAL;
2638 src->flags |= PVCLOCK_GUEST_STOPPED;
2639 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2640 return 0;
2641 }
2642
2643 long kvm_arch_vcpu_ioctl(struct file *filp,
2644 unsigned int ioctl, unsigned long arg)
2645 {
2646 struct kvm_vcpu *vcpu = filp->private_data;
2647 void __user *argp = (void __user *)arg;
2648 int r;
2649 union {
2650 struct kvm_lapic_state *lapic;
2651 struct kvm_xsave *xsave;
2652 struct kvm_xcrs *xcrs;
2653 void *buffer;
2654 } u;
2655
2656 u.buffer = NULL;
2657 switch (ioctl) {
2658 case KVM_GET_LAPIC: {
2659 r = -EINVAL;
2660 if (!vcpu->arch.apic)
2661 goto out;
2662 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2663
2664 r = -ENOMEM;
2665 if (!u.lapic)
2666 goto out;
2667 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2668 if (r)
2669 goto out;
2670 r = -EFAULT;
2671 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2672 goto out;
2673 r = 0;
2674 break;
2675 }
2676 case KVM_SET_LAPIC: {
2677 r = -EINVAL;
2678 if (!vcpu->arch.apic)
2679 goto out;
2680 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2681 if (IS_ERR(u.lapic)) {
2682 r = PTR_ERR(u.lapic);
2683 goto out;
2684 }
2685
2686 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2687 if (r)
2688 goto out;
2689 r = 0;
2690 break;
2691 }
2692 case KVM_INTERRUPT: {
2693 struct kvm_interrupt irq;
2694
2695 r = -EFAULT;
2696 if (copy_from_user(&irq, argp, sizeof irq))
2697 goto out;
2698 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2699 if (r)
2700 goto out;
2701 r = 0;
2702 break;
2703 }
2704 case KVM_NMI: {
2705 r = kvm_vcpu_ioctl_nmi(vcpu);
2706 if (r)
2707 goto out;
2708 r = 0;
2709 break;
2710 }
2711 case KVM_SET_CPUID: {
2712 struct kvm_cpuid __user *cpuid_arg = argp;
2713 struct kvm_cpuid cpuid;
2714
2715 r = -EFAULT;
2716 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2717 goto out;
2718 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2719 if (r)
2720 goto out;
2721 break;
2722 }
2723 case KVM_SET_CPUID2: {
2724 struct kvm_cpuid2 __user *cpuid_arg = argp;
2725 struct kvm_cpuid2 cpuid;
2726
2727 r = -EFAULT;
2728 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2729 goto out;
2730 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2731 cpuid_arg->entries);
2732 if (r)
2733 goto out;
2734 break;
2735 }
2736 case KVM_GET_CPUID2: {
2737 struct kvm_cpuid2 __user *cpuid_arg = argp;
2738 struct kvm_cpuid2 cpuid;
2739
2740 r = -EFAULT;
2741 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2742 goto out;
2743 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2744 cpuid_arg->entries);
2745 if (r)
2746 goto out;
2747 r = -EFAULT;
2748 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2749 goto out;
2750 r = 0;
2751 break;
2752 }
2753 case KVM_GET_MSRS:
2754 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2755 break;
2756 case KVM_SET_MSRS:
2757 r = msr_io(vcpu, argp, do_set_msr, 0);
2758 break;
2759 case KVM_TPR_ACCESS_REPORTING: {
2760 struct kvm_tpr_access_ctl tac;
2761
2762 r = -EFAULT;
2763 if (copy_from_user(&tac, argp, sizeof tac))
2764 goto out;
2765 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2766 if (r)
2767 goto out;
2768 r = -EFAULT;
2769 if (copy_to_user(argp, &tac, sizeof tac))
2770 goto out;
2771 r = 0;
2772 break;
2773 };
2774 case KVM_SET_VAPIC_ADDR: {
2775 struct kvm_vapic_addr va;
2776
2777 r = -EINVAL;
2778 if (!irqchip_in_kernel(vcpu->kvm))
2779 goto out;
2780 r = -EFAULT;
2781 if (copy_from_user(&va, argp, sizeof va))
2782 goto out;
2783 r = 0;
2784 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2785 break;
2786 }
2787 case KVM_X86_SETUP_MCE: {
2788 u64 mcg_cap;
2789
2790 r = -EFAULT;
2791 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2792 goto out;
2793 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2794 break;
2795 }
2796 case KVM_X86_SET_MCE: {
2797 struct kvm_x86_mce mce;
2798
2799 r = -EFAULT;
2800 if (copy_from_user(&mce, argp, sizeof mce))
2801 goto out;
2802 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2803 break;
2804 }
2805 case KVM_GET_VCPU_EVENTS: {
2806 struct kvm_vcpu_events events;
2807
2808 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2809
2810 r = -EFAULT;
2811 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2812 break;
2813 r = 0;
2814 break;
2815 }
2816 case KVM_SET_VCPU_EVENTS: {
2817 struct kvm_vcpu_events events;
2818
2819 r = -EFAULT;
2820 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2821 break;
2822
2823 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2824 break;
2825 }
2826 case KVM_GET_DEBUGREGS: {
2827 struct kvm_debugregs dbgregs;
2828
2829 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2830
2831 r = -EFAULT;
2832 if (copy_to_user(argp, &dbgregs,
2833 sizeof(struct kvm_debugregs)))
2834 break;
2835 r = 0;
2836 break;
2837 }
2838 case KVM_SET_DEBUGREGS: {
2839 struct kvm_debugregs dbgregs;
2840
2841 r = -EFAULT;
2842 if (copy_from_user(&dbgregs, argp,
2843 sizeof(struct kvm_debugregs)))
2844 break;
2845
2846 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2847 break;
2848 }
2849 case KVM_GET_XSAVE: {
2850 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2851 r = -ENOMEM;
2852 if (!u.xsave)
2853 break;
2854
2855 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2856
2857 r = -EFAULT;
2858 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2859 break;
2860 r = 0;
2861 break;
2862 }
2863 case KVM_SET_XSAVE: {
2864 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2865 if (IS_ERR(u.xsave)) {
2866 r = PTR_ERR(u.xsave);
2867 goto out;
2868 }
2869
2870 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2871 break;
2872 }
2873 case KVM_GET_XCRS: {
2874 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2875 r = -ENOMEM;
2876 if (!u.xcrs)
2877 break;
2878
2879 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2880
2881 r = -EFAULT;
2882 if (copy_to_user(argp, u.xcrs,
2883 sizeof(struct kvm_xcrs)))
2884 break;
2885 r = 0;
2886 break;
2887 }
2888 case KVM_SET_XCRS: {
2889 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2890 if (IS_ERR(u.xcrs)) {
2891 r = PTR_ERR(u.xcrs);
2892 goto out;
2893 }
2894
2895 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2896 break;
2897 }
2898 case KVM_SET_TSC_KHZ: {
2899 u32 user_tsc_khz;
2900
2901 r = -EINVAL;
2902 user_tsc_khz = (u32)arg;
2903
2904 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2905 goto out;
2906
2907 if (user_tsc_khz == 0)
2908 user_tsc_khz = tsc_khz;
2909
2910 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2911
2912 r = 0;
2913 goto out;
2914 }
2915 case KVM_GET_TSC_KHZ: {
2916 r = vcpu->arch.virtual_tsc_khz;
2917 goto out;
2918 }
2919 case KVM_KVMCLOCK_CTRL: {
2920 r = kvm_set_guest_paused(vcpu);
2921 goto out;
2922 }
2923 default:
2924 r = -EINVAL;
2925 }
2926 out:
2927 kfree(u.buffer);
2928 return r;
2929 }
2930
2931 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2932 {
2933 return VM_FAULT_SIGBUS;
2934 }
2935
2936 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2937 {
2938 int ret;
2939
2940 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2941 return -1;
2942 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2943 return ret;
2944 }
2945
2946 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2947 u64 ident_addr)
2948 {
2949 kvm->arch.ept_identity_map_addr = ident_addr;
2950 return 0;
2951 }
2952
2953 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2954 u32 kvm_nr_mmu_pages)
2955 {
2956 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2957 return -EINVAL;
2958
2959 mutex_lock(&kvm->slots_lock);
2960 spin_lock(&kvm->mmu_lock);
2961
2962 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2963 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2964
2965 spin_unlock(&kvm->mmu_lock);
2966 mutex_unlock(&kvm->slots_lock);
2967 return 0;
2968 }
2969
2970 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2971 {
2972 return kvm->arch.n_max_mmu_pages;
2973 }
2974
2975 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2976 {
2977 int r;
2978
2979 r = 0;
2980 switch (chip->chip_id) {
2981 case KVM_IRQCHIP_PIC_MASTER:
2982 memcpy(&chip->chip.pic,
2983 &pic_irqchip(kvm)->pics[0],
2984 sizeof(struct kvm_pic_state));
2985 break;
2986 case KVM_IRQCHIP_PIC_SLAVE:
2987 memcpy(&chip->chip.pic,
2988 &pic_irqchip(kvm)->pics[1],
2989 sizeof(struct kvm_pic_state));
2990 break;
2991 case KVM_IRQCHIP_IOAPIC:
2992 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2993 break;
2994 default:
2995 r = -EINVAL;
2996 break;
2997 }
2998 return r;
2999 }
3000
3001 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3002 {
3003 int r;
3004
3005 r = 0;
3006 switch (chip->chip_id) {
3007 case KVM_IRQCHIP_PIC_MASTER:
3008 spin_lock(&pic_irqchip(kvm)->lock);
3009 memcpy(&pic_irqchip(kvm)->pics[0],
3010 &chip->chip.pic,
3011 sizeof(struct kvm_pic_state));
3012 spin_unlock(&pic_irqchip(kvm)->lock);
3013 break;
3014 case KVM_IRQCHIP_PIC_SLAVE:
3015 spin_lock(&pic_irqchip(kvm)->lock);
3016 memcpy(&pic_irqchip(kvm)->pics[1],
3017 &chip->chip.pic,
3018 sizeof(struct kvm_pic_state));
3019 spin_unlock(&pic_irqchip(kvm)->lock);
3020 break;
3021 case KVM_IRQCHIP_IOAPIC:
3022 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3023 break;
3024 default:
3025 r = -EINVAL;
3026 break;
3027 }
3028 kvm_pic_update_irq(pic_irqchip(kvm));
3029 return r;
3030 }
3031
3032 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3033 {
3034 int r = 0;
3035
3036 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3037 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3038 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3039 return r;
3040 }
3041
3042 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3043 {
3044 int r = 0;
3045
3046 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3047 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3048 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3049 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3050 return r;
3051 }
3052
3053 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3054 {
3055 int r = 0;
3056
3057 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3058 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3059 sizeof(ps->channels));
3060 ps->flags = kvm->arch.vpit->pit_state.flags;
3061 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3062 memset(&ps->reserved, 0, sizeof(ps->reserved));
3063 return r;
3064 }
3065
3066 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3067 {
3068 int r = 0, start = 0;
3069 u32 prev_legacy, cur_legacy;
3070 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3071 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3072 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3073 if (!prev_legacy && cur_legacy)
3074 start = 1;
3075 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3076 sizeof(kvm->arch.vpit->pit_state.channels));
3077 kvm->arch.vpit->pit_state.flags = ps->flags;
3078 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3079 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3080 return r;
3081 }
3082
3083 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3084 struct kvm_reinject_control *control)
3085 {
3086 if (!kvm->arch.vpit)
3087 return -ENXIO;
3088 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3089 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3090 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3091 return 0;
3092 }
3093
3094 /**
3095 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3096 * @kvm: kvm instance
3097 * @log: slot id and address to which we copy the log
3098 *
3099 * We need to keep it in mind that VCPU threads can write to the bitmap
3100 * concurrently. So, to avoid losing data, we keep the following order for
3101 * each bit:
3102 *
3103 * 1. Take a snapshot of the bit and clear it if needed.
3104 * 2. Write protect the corresponding page.
3105 * 3. Flush TLB's if needed.
3106 * 4. Copy the snapshot to the userspace.
3107 *
3108 * Between 2 and 3, the guest may write to the page using the remaining TLB
3109 * entry. This is not a problem because the page will be reported dirty at
3110 * step 4 using the snapshot taken before and step 3 ensures that successive
3111 * writes will be logged for the next call.
3112 */
3113 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3114 {
3115 int r;
3116 struct kvm_memory_slot *memslot;
3117 unsigned long n, i;
3118 unsigned long *dirty_bitmap;
3119 unsigned long *dirty_bitmap_buffer;
3120 bool is_dirty = false;
3121
3122 mutex_lock(&kvm->slots_lock);
3123
3124 r = -EINVAL;
3125 if (log->slot >= KVM_MEMORY_SLOTS)
3126 goto out;
3127
3128 memslot = id_to_memslot(kvm->memslots, log->slot);
3129
3130 dirty_bitmap = memslot->dirty_bitmap;
3131 r = -ENOENT;
3132 if (!dirty_bitmap)
3133 goto out;
3134
3135 n = kvm_dirty_bitmap_bytes(memslot);
3136
3137 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3138 memset(dirty_bitmap_buffer, 0, n);
3139
3140 spin_lock(&kvm->mmu_lock);
3141
3142 for (i = 0; i < n / sizeof(long); i++) {
3143 unsigned long mask;
3144 gfn_t offset;
3145
3146 if (!dirty_bitmap[i])
3147 continue;
3148
3149 is_dirty = true;
3150
3151 mask = xchg(&dirty_bitmap[i], 0);
3152 dirty_bitmap_buffer[i] = mask;
3153
3154 offset = i * BITS_PER_LONG;
3155 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3156 }
3157 if (is_dirty)
3158 kvm_flush_remote_tlbs(kvm);
3159
3160 spin_unlock(&kvm->mmu_lock);
3161
3162 r = -EFAULT;
3163 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3164 goto out;
3165
3166 r = 0;
3167 out:
3168 mutex_unlock(&kvm->slots_lock);
3169 return r;
3170 }
3171
3172 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3173 {
3174 if (!irqchip_in_kernel(kvm))
3175 return -ENXIO;
3176
3177 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3178 irq_event->irq, irq_event->level);
3179 return 0;
3180 }
3181
3182 long kvm_arch_vm_ioctl(struct file *filp,
3183 unsigned int ioctl, unsigned long arg)
3184 {
3185 struct kvm *kvm = filp->private_data;
3186 void __user *argp = (void __user *)arg;
3187 int r = -ENOTTY;
3188 /*
3189 * This union makes it completely explicit to gcc-3.x
3190 * that these two variables' stack usage should be
3191 * combined, not added together.
3192 */
3193 union {
3194 struct kvm_pit_state ps;
3195 struct kvm_pit_state2 ps2;
3196 struct kvm_pit_config pit_config;
3197 } u;
3198
3199 switch (ioctl) {
3200 case KVM_SET_TSS_ADDR:
3201 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3202 if (r < 0)
3203 goto out;
3204 break;
3205 case KVM_SET_IDENTITY_MAP_ADDR: {
3206 u64 ident_addr;
3207
3208 r = -EFAULT;
3209 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3210 goto out;
3211 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3212 if (r < 0)
3213 goto out;
3214 break;
3215 }
3216 case KVM_SET_NR_MMU_PAGES:
3217 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3218 if (r)
3219 goto out;
3220 break;
3221 case KVM_GET_NR_MMU_PAGES:
3222 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3223 break;
3224 case KVM_CREATE_IRQCHIP: {
3225 struct kvm_pic *vpic;
3226
3227 mutex_lock(&kvm->lock);
3228 r = -EEXIST;
3229 if (kvm->arch.vpic)
3230 goto create_irqchip_unlock;
3231 r = -EINVAL;
3232 if (atomic_read(&kvm->online_vcpus))
3233 goto create_irqchip_unlock;
3234 r = -ENOMEM;
3235 vpic = kvm_create_pic(kvm);
3236 if (vpic) {
3237 r = kvm_ioapic_init(kvm);
3238 if (r) {
3239 mutex_lock(&kvm->slots_lock);
3240 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3241 &vpic->dev_master);
3242 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3243 &vpic->dev_slave);
3244 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3245 &vpic->dev_eclr);
3246 mutex_unlock(&kvm->slots_lock);
3247 kfree(vpic);
3248 goto create_irqchip_unlock;
3249 }
3250 } else
3251 goto create_irqchip_unlock;
3252 smp_wmb();
3253 kvm->arch.vpic = vpic;
3254 smp_wmb();
3255 r = kvm_setup_default_irq_routing(kvm);
3256 if (r) {
3257 mutex_lock(&kvm->slots_lock);
3258 mutex_lock(&kvm->irq_lock);
3259 kvm_ioapic_destroy(kvm);
3260 kvm_destroy_pic(kvm);
3261 mutex_unlock(&kvm->irq_lock);
3262 mutex_unlock(&kvm->slots_lock);
3263 }
3264 create_irqchip_unlock:
3265 mutex_unlock(&kvm->lock);
3266 break;
3267 }
3268 case KVM_CREATE_PIT:
3269 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3270 goto create_pit;
3271 case KVM_CREATE_PIT2:
3272 r = -EFAULT;
3273 if (copy_from_user(&u.pit_config, argp,
3274 sizeof(struct kvm_pit_config)))
3275 goto out;
3276 create_pit:
3277 mutex_lock(&kvm->slots_lock);
3278 r = -EEXIST;
3279 if (kvm->arch.vpit)
3280 goto create_pit_unlock;
3281 r = -ENOMEM;
3282 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3283 if (kvm->arch.vpit)
3284 r = 0;
3285 create_pit_unlock:
3286 mutex_unlock(&kvm->slots_lock);
3287 break;
3288 case KVM_GET_IRQCHIP: {
3289 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3290 struct kvm_irqchip *chip;
3291
3292 chip = memdup_user(argp, sizeof(*chip));
3293 if (IS_ERR(chip)) {
3294 r = PTR_ERR(chip);
3295 goto out;
3296 }
3297
3298 r = -ENXIO;
3299 if (!irqchip_in_kernel(kvm))
3300 goto get_irqchip_out;
3301 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3302 if (r)
3303 goto get_irqchip_out;
3304 r = -EFAULT;
3305 if (copy_to_user(argp, chip, sizeof *chip))
3306 goto get_irqchip_out;
3307 r = 0;
3308 get_irqchip_out:
3309 kfree(chip);
3310 if (r)
3311 goto out;
3312 break;
3313 }
3314 case KVM_SET_IRQCHIP: {
3315 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3316 struct kvm_irqchip *chip;
3317
3318 chip = memdup_user(argp, sizeof(*chip));
3319 if (IS_ERR(chip)) {
3320 r = PTR_ERR(chip);
3321 goto out;
3322 }
3323
3324 r = -ENXIO;
3325 if (!irqchip_in_kernel(kvm))
3326 goto set_irqchip_out;
3327 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3328 if (r)
3329 goto set_irqchip_out;
3330 r = 0;
3331 set_irqchip_out:
3332 kfree(chip);
3333 if (r)
3334 goto out;
3335 break;
3336 }
3337 case KVM_GET_PIT: {
3338 r = -EFAULT;
3339 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3340 goto out;
3341 r = -ENXIO;
3342 if (!kvm->arch.vpit)
3343 goto out;
3344 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3345 if (r)
3346 goto out;
3347 r = -EFAULT;
3348 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3349 goto out;
3350 r = 0;
3351 break;
3352 }
3353 case KVM_SET_PIT: {
3354 r = -EFAULT;
3355 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3356 goto out;
3357 r = -ENXIO;
3358 if (!kvm->arch.vpit)
3359 goto out;
3360 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3361 if (r)
3362 goto out;
3363 r = 0;
3364 break;
3365 }
3366 case KVM_GET_PIT2: {
3367 r = -ENXIO;
3368 if (!kvm->arch.vpit)
3369 goto out;
3370 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3371 if (r)
3372 goto out;
3373 r = -EFAULT;
3374 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3375 goto out;
3376 r = 0;
3377 break;
3378 }
3379 case KVM_SET_PIT2: {
3380 r = -EFAULT;
3381 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3382 goto out;
3383 r = -ENXIO;
3384 if (!kvm->arch.vpit)
3385 goto out;
3386 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3387 if (r)
3388 goto out;
3389 r = 0;
3390 break;
3391 }
3392 case KVM_REINJECT_CONTROL: {
3393 struct kvm_reinject_control control;
3394 r = -EFAULT;
3395 if (copy_from_user(&control, argp, sizeof(control)))
3396 goto out;
3397 r = kvm_vm_ioctl_reinject(kvm, &control);
3398 if (r)
3399 goto out;
3400 r = 0;
3401 break;
3402 }
3403 case KVM_XEN_HVM_CONFIG: {
3404 r = -EFAULT;
3405 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3406 sizeof(struct kvm_xen_hvm_config)))
3407 goto out;
3408 r = -EINVAL;
3409 if (kvm->arch.xen_hvm_config.flags)
3410 goto out;
3411 r = 0;
3412 break;
3413 }
3414 case KVM_SET_CLOCK: {
3415 struct kvm_clock_data user_ns;
3416 u64 now_ns;
3417 s64 delta;
3418
3419 r = -EFAULT;
3420 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3421 goto out;
3422
3423 r = -EINVAL;
3424 if (user_ns.flags)
3425 goto out;
3426
3427 r = 0;
3428 local_irq_disable();
3429 now_ns = get_kernel_ns();
3430 delta = user_ns.clock - now_ns;
3431 local_irq_enable();
3432 kvm->arch.kvmclock_offset = delta;
3433 break;
3434 }
3435 case KVM_GET_CLOCK: {
3436 struct kvm_clock_data user_ns;
3437 u64 now_ns;
3438
3439 local_irq_disable();
3440 now_ns = get_kernel_ns();
3441 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3442 local_irq_enable();
3443 user_ns.flags = 0;
3444 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3445
3446 r = -EFAULT;
3447 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3448 goto out;
3449 r = 0;
3450 break;
3451 }
3452
3453 default:
3454 ;
3455 }
3456 out:
3457 return r;
3458 }
3459
3460 static void kvm_init_msr_list(void)
3461 {
3462 u32 dummy[2];
3463 unsigned i, j;
3464
3465 /* skip the first msrs in the list. KVM-specific */
3466 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3467 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3468 continue;
3469 if (j < i)
3470 msrs_to_save[j] = msrs_to_save[i];
3471 j++;
3472 }
3473 num_msrs_to_save = j;
3474 }
3475
3476 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3477 const void *v)
3478 {
3479 int handled = 0;
3480 int n;
3481
3482 do {
3483 n = min(len, 8);
3484 if (!(vcpu->arch.apic &&
3485 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3486 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3487 break;
3488 handled += n;
3489 addr += n;
3490 len -= n;
3491 v += n;
3492 } while (len);
3493
3494 return handled;
3495 }
3496
3497 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3498 {
3499 int handled = 0;
3500 int n;
3501
3502 do {
3503 n = min(len, 8);
3504 if (!(vcpu->arch.apic &&
3505 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3506 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3507 break;
3508 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3509 handled += n;
3510 addr += n;
3511 len -= n;
3512 v += n;
3513 } while (len);
3514
3515 return handled;
3516 }
3517
3518 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3519 struct kvm_segment *var, int seg)
3520 {
3521 kvm_x86_ops->set_segment(vcpu, var, seg);
3522 }
3523
3524 void kvm_get_segment(struct kvm_vcpu *vcpu,
3525 struct kvm_segment *var, int seg)
3526 {
3527 kvm_x86_ops->get_segment(vcpu, var, seg);
3528 }
3529
3530 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3531 {
3532 gpa_t t_gpa;
3533 struct x86_exception exception;
3534
3535 BUG_ON(!mmu_is_nested(vcpu));
3536
3537 /* NPT walks are always user-walks */
3538 access |= PFERR_USER_MASK;
3539 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3540
3541 return t_gpa;
3542 }
3543
3544 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3545 struct x86_exception *exception)
3546 {
3547 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3548 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3549 }
3550
3551 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3552 struct x86_exception *exception)
3553 {
3554 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3555 access |= PFERR_FETCH_MASK;
3556 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3557 }
3558
3559 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3560 struct x86_exception *exception)
3561 {
3562 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3563 access |= PFERR_WRITE_MASK;
3564 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3565 }
3566
3567 /* uses this to access any guest's mapped memory without checking CPL */
3568 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3569 struct x86_exception *exception)
3570 {
3571 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3572 }
3573
3574 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3575 struct kvm_vcpu *vcpu, u32 access,
3576 struct x86_exception *exception)
3577 {
3578 void *data = val;
3579 int r = X86EMUL_CONTINUE;
3580
3581 while (bytes) {
3582 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3583 exception);
3584 unsigned offset = addr & (PAGE_SIZE-1);
3585 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3586 int ret;
3587
3588 if (gpa == UNMAPPED_GVA)
3589 return X86EMUL_PROPAGATE_FAULT;
3590 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3591 if (ret < 0) {
3592 r = X86EMUL_IO_NEEDED;
3593 goto out;
3594 }
3595
3596 bytes -= toread;
3597 data += toread;
3598 addr += toread;
3599 }
3600 out:
3601 return r;
3602 }
3603
3604 /* used for instruction fetching */
3605 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3606 gva_t addr, void *val, unsigned int bytes,
3607 struct x86_exception *exception)
3608 {
3609 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3610 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3611
3612 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3613 access | PFERR_FETCH_MASK,
3614 exception);
3615 }
3616
3617 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3618 gva_t addr, void *val, unsigned int bytes,
3619 struct x86_exception *exception)
3620 {
3621 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3622 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3623
3624 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3625 exception);
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3628
3629 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3630 gva_t addr, void *val, unsigned int bytes,
3631 struct x86_exception *exception)
3632 {
3633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3634 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3635 }
3636
3637 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3638 gva_t addr, void *val,
3639 unsigned int bytes,
3640 struct x86_exception *exception)
3641 {
3642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3643 void *data = val;
3644 int r = X86EMUL_CONTINUE;
3645
3646 while (bytes) {
3647 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3648 PFERR_WRITE_MASK,
3649 exception);
3650 unsigned offset = addr & (PAGE_SIZE-1);
3651 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3652 int ret;
3653
3654 if (gpa == UNMAPPED_GVA)
3655 return X86EMUL_PROPAGATE_FAULT;
3656 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3657 if (ret < 0) {
3658 r = X86EMUL_IO_NEEDED;
3659 goto out;
3660 }
3661
3662 bytes -= towrite;
3663 data += towrite;
3664 addr += towrite;
3665 }
3666 out:
3667 return r;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3670
3671 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3672 gpa_t *gpa, struct x86_exception *exception,
3673 bool write)
3674 {
3675 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3676
3677 if (vcpu_match_mmio_gva(vcpu, gva) &&
3678 check_write_user_access(vcpu, write, access,
3679 vcpu->arch.access)) {
3680 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3681 (gva & (PAGE_SIZE - 1));
3682 trace_vcpu_match_mmio(gva, *gpa, write, false);
3683 return 1;
3684 }
3685
3686 if (write)
3687 access |= PFERR_WRITE_MASK;
3688
3689 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3690
3691 if (*gpa == UNMAPPED_GVA)
3692 return -1;
3693
3694 /* For APIC access vmexit */
3695 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3696 return 1;
3697
3698 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3699 trace_vcpu_match_mmio(gva, *gpa, write, true);
3700 return 1;
3701 }
3702
3703 return 0;
3704 }
3705
3706 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3707 const void *val, int bytes)
3708 {
3709 int ret;
3710
3711 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3712 if (ret < 0)
3713 return 0;
3714 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3715 return 1;
3716 }
3717
3718 struct read_write_emulator_ops {
3719 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3720 int bytes);
3721 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3722 void *val, int bytes);
3723 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 int bytes, void *val);
3725 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3726 void *val, int bytes);
3727 bool write;
3728 };
3729
3730 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3731 {
3732 if (vcpu->mmio_read_completed) {
3733 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3734 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3735 vcpu->mmio_read_completed = 0;
3736 return 1;
3737 }
3738
3739 return 0;
3740 }
3741
3742 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3743 void *val, int bytes)
3744 {
3745 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3746 }
3747
3748 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3749 void *val, int bytes)
3750 {
3751 return emulator_write_phys(vcpu, gpa, val, bytes);
3752 }
3753
3754 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3755 {
3756 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3757 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3758 }
3759
3760 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3761 void *val, int bytes)
3762 {
3763 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3764 return X86EMUL_IO_NEEDED;
3765 }
3766
3767 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3768 void *val, int bytes)
3769 {
3770 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3771
3772 memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3773 return X86EMUL_CONTINUE;
3774 }
3775
3776 static struct read_write_emulator_ops read_emultor = {
3777 .read_write_prepare = read_prepare,
3778 .read_write_emulate = read_emulate,
3779 .read_write_mmio = vcpu_mmio_read,
3780 .read_write_exit_mmio = read_exit_mmio,
3781 };
3782
3783 static struct read_write_emulator_ops write_emultor = {
3784 .read_write_emulate = write_emulate,
3785 .read_write_mmio = write_mmio,
3786 .read_write_exit_mmio = write_exit_mmio,
3787 .write = true,
3788 };
3789
3790 static int emulator_read_write_onepage(unsigned long addr, void *val,
3791 unsigned int bytes,
3792 struct x86_exception *exception,
3793 struct kvm_vcpu *vcpu,
3794 struct read_write_emulator_ops *ops)
3795 {
3796 gpa_t gpa;
3797 int handled, ret;
3798 bool write = ops->write;
3799 struct kvm_mmio_fragment *frag;
3800
3801 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3802
3803 if (ret < 0)
3804 return X86EMUL_PROPAGATE_FAULT;
3805
3806 /* For APIC access vmexit */
3807 if (ret)
3808 goto mmio;
3809
3810 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3811 return X86EMUL_CONTINUE;
3812
3813 mmio:
3814 /*
3815 * Is this MMIO handled locally?
3816 */
3817 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3818 if (handled == bytes)
3819 return X86EMUL_CONTINUE;
3820
3821 gpa += handled;
3822 bytes -= handled;
3823 val += handled;
3824
3825 while (bytes) {
3826 unsigned now = min(bytes, 8U);
3827
3828 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3829 frag->gpa = gpa;
3830 frag->data = val;
3831 frag->len = now;
3832
3833 gpa += now;
3834 val += now;
3835 bytes -= now;
3836 }
3837 return X86EMUL_CONTINUE;
3838 }
3839
3840 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3841 void *val, unsigned int bytes,
3842 struct x86_exception *exception,
3843 struct read_write_emulator_ops *ops)
3844 {
3845 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3846 gpa_t gpa;
3847 int rc;
3848
3849 if (ops->read_write_prepare &&
3850 ops->read_write_prepare(vcpu, val, bytes))
3851 return X86EMUL_CONTINUE;
3852
3853 vcpu->mmio_nr_fragments = 0;
3854
3855 /* Crossing a page boundary? */
3856 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3857 int now;
3858
3859 now = -addr & ~PAGE_MASK;
3860 rc = emulator_read_write_onepage(addr, val, now, exception,
3861 vcpu, ops);
3862
3863 if (rc != X86EMUL_CONTINUE)
3864 return rc;
3865 addr += now;
3866 val += now;
3867 bytes -= now;
3868 }
3869
3870 rc = emulator_read_write_onepage(addr, val, bytes, exception,
3871 vcpu, ops);
3872 if (rc != X86EMUL_CONTINUE)
3873 return rc;
3874
3875 if (!vcpu->mmio_nr_fragments)
3876 return rc;
3877
3878 gpa = vcpu->mmio_fragments[0].gpa;
3879
3880 vcpu->mmio_needed = 1;
3881 vcpu->mmio_cur_fragment = 0;
3882
3883 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3884 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3885 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3886 vcpu->run->mmio.phys_addr = gpa;
3887
3888 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3889 }
3890
3891 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3892 unsigned long addr,
3893 void *val,
3894 unsigned int bytes,
3895 struct x86_exception *exception)
3896 {
3897 return emulator_read_write(ctxt, addr, val, bytes,
3898 exception, &read_emultor);
3899 }
3900
3901 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3902 unsigned long addr,
3903 const void *val,
3904 unsigned int bytes,
3905 struct x86_exception *exception)
3906 {
3907 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3908 exception, &write_emultor);
3909 }
3910
3911 #define CMPXCHG_TYPE(t, ptr, old, new) \
3912 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3913
3914 #ifdef CONFIG_X86_64
3915 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3916 #else
3917 # define CMPXCHG64(ptr, old, new) \
3918 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3919 #endif
3920
3921 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3922 unsigned long addr,
3923 const void *old,
3924 const void *new,
3925 unsigned int bytes,
3926 struct x86_exception *exception)
3927 {
3928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3929 gpa_t gpa;
3930 struct page *page;
3931 char *kaddr;
3932 bool exchanged;
3933
3934 /* guests cmpxchg8b have to be emulated atomically */
3935 if (bytes > 8 || (bytes & (bytes - 1)))
3936 goto emul_write;
3937
3938 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3939
3940 if (gpa == UNMAPPED_GVA ||
3941 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3942 goto emul_write;
3943
3944 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3945 goto emul_write;
3946
3947 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3948 if (is_error_page(page)) {
3949 kvm_release_page_clean(page);
3950 goto emul_write;
3951 }
3952
3953 kaddr = kmap_atomic(page);
3954 kaddr += offset_in_page(gpa);
3955 switch (bytes) {
3956 case 1:
3957 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3958 break;
3959 case 2:
3960 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3961 break;
3962 case 4:
3963 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3964 break;
3965 case 8:
3966 exchanged = CMPXCHG64(kaddr, old, new);
3967 break;
3968 default:
3969 BUG();
3970 }
3971 kunmap_atomic(kaddr);
3972 kvm_release_page_dirty(page);
3973
3974 if (!exchanged)
3975 return X86EMUL_CMPXCHG_FAILED;
3976
3977 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3978
3979 return X86EMUL_CONTINUE;
3980
3981 emul_write:
3982 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3983
3984 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3985 }
3986
3987 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3988 {
3989 /* TODO: String I/O for in kernel device */
3990 int r;
3991
3992 if (vcpu->arch.pio.in)
3993 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3994 vcpu->arch.pio.size, pd);
3995 else
3996 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3997 vcpu->arch.pio.port, vcpu->arch.pio.size,
3998 pd);
3999 return r;
4000 }
4001
4002 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4003 unsigned short port, void *val,
4004 unsigned int count, bool in)
4005 {
4006 trace_kvm_pio(!in, port, size, count);
4007
4008 vcpu->arch.pio.port = port;
4009 vcpu->arch.pio.in = in;
4010 vcpu->arch.pio.count = count;
4011 vcpu->arch.pio.size = size;
4012
4013 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4014 vcpu->arch.pio.count = 0;
4015 return 1;
4016 }
4017
4018 vcpu->run->exit_reason = KVM_EXIT_IO;
4019 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4020 vcpu->run->io.size = size;
4021 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4022 vcpu->run->io.count = count;
4023 vcpu->run->io.port = port;
4024
4025 return 0;
4026 }
4027
4028 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4029 int size, unsigned short port, void *val,
4030 unsigned int count)
4031 {
4032 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033 int ret;
4034
4035 if (vcpu->arch.pio.count)
4036 goto data_avail;
4037
4038 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4039 if (ret) {
4040 data_avail:
4041 memcpy(val, vcpu->arch.pio_data, size * count);
4042 vcpu->arch.pio.count = 0;
4043 return 1;
4044 }
4045
4046 return 0;
4047 }
4048
4049 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4050 int size, unsigned short port,
4051 const void *val, unsigned int count)
4052 {
4053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4054
4055 memcpy(vcpu->arch.pio_data, val, size * count);
4056 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4057 }
4058
4059 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4060 {
4061 return kvm_x86_ops->get_segment_base(vcpu, seg);
4062 }
4063
4064 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4065 {
4066 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4067 }
4068
4069 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4070 {
4071 if (!need_emulate_wbinvd(vcpu))
4072 return X86EMUL_CONTINUE;
4073
4074 if (kvm_x86_ops->has_wbinvd_exit()) {
4075 int cpu = get_cpu();
4076
4077 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4078 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4079 wbinvd_ipi, NULL, 1);
4080 put_cpu();
4081 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4082 } else
4083 wbinvd();
4084 return X86EMUL_CONTINUE;
4085 }
4086 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4087
4088 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4089 {
4090 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4091 }
4092
4093 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4094 {
4095 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4096 }
4097
4098 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4099 {
4100
4101 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4102 }
4103
4104 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4105 {
4106 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4107 }
4108
4109 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4110 {
4111 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4112 unsigned long value;
4113
4114 switch (cr) {
4115 case 0:
4116 value = kvm_read_cr0(vcpu);
4117 break;
4118 case 2:
4119 value = vcpu->arch.cr2;
4120 break;
4121 case 3:
4122 value = kvm_read_cr3(vcpu);
4123 break;
4124 case 4:
4125 value = kvm_read_cr4(vcpu);
4126 break;
4127 case 8:
4128 value = kvm_get_cr8(vcpu);
4129 break;
4130 default:
4131 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4132 return 0;
4133 }
4134
4135 return value;
4136 }
4137
4138 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4139 {
4140 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4141 int res = 0;
4142
4143 switch (cr) {
4144 case 0:
4145 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4146 break;
4147 case 2:
4148 vcpu->arch.cr2 = val;
4149 break;
4150 case 3:
4151 res = kvm_set_cr3(vcpu, val);
4152 break;
4153 case 4:
4154 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4155 break;
4156 case 8:
4157 res = kvm_set_cr8(vcpu, val);
4158 break;
4159 default:
4160 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4161 res = -1;
4162 }
4163
4164 return res;
4165 }
4166
4167 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4168 {
4169 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4170 }
4171
4172 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4173 {
4174 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4175 }
4176
4177 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4178 {
4179 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4180 }
4181
4182 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4183 {
4184 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4185 }
4186
4187 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4188 {
4189 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4190 }
4191
4192 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4193 {
4194 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4195 }
4196
4197 static unsigned long emulator_get_cached_segment_base(
4198 struct x86_emulate_ctxt *ctxt, int seg)
4199 {
4200 return get_segment_base(emul_to_vcpu(ctxt), seg);
4201 }
4202
4203 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4204 struct desc_struct *desc, u32 *base3,
4205 int seg)
4206 {
4207 struct kvm_segment var;
4208
4209 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4210 *selector = var.selector;
4211
4212 if (var.unusable)
4213 return false;
4214
4215 if (var.g)
4216 var.limit >>= 12;
4217 set_desc_limit(desc, var.limit);
4218 set_desc_base(desc, (unsigned long)var.base);
4219 #ifdef CONFIG_X86_64
4220 if (base3)
4221 *base3 = var.base >> 32;
4222 #endif
4223 desc->type = var.type;
4224 desc->s = var.s;
4225 desc->dpl = var.dpl;
4226 desc->p = var.present;
4227 desc->avl = var.avl;
4228 desc->l = var.l;
4229 desc->d = var.db;
4230 desc->g = var.g;
4231
4232 return true;
4233 }
4234
4235 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4236 struct desc_struct *desc, u32 base3,
4237 int seg)
4238 {
4239 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4240 struct kvm_segment var;
4241
4242 var.selector = selector;
4243 var.base = get_desc_base(desc);
4244 #ifdef CONFIG_X86_64
4245 var.base |= ((u64)base3) << 32;
4246 #endif
4247 var.limit = get_desc_limit(desc);
4248 if (desc->g)
4249 var.limit = (var.limit << 12) | 0xfff;
4250 var.type = desc->type;
4251 var.present = desc->p;
4252 var.dpl = desc->dpl;
4253 var.db = desc->d;
4254 var.s = desc->s;
4255 var.l = desc->l;
4256 var.g = desc->g;
4257 var.avl = desc->avl;
4258 var.present = desc->p;
4259 var.unusable = !var.present;
4260 var.padding = 0;
4261
4262 kvm_set_segment(vcpu, &var, seg);
4263 return;
4264 }
4265
4266 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4267 u32 msr_index, u64 *pdata)
4268 {
4269 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4270 }
4271
4272 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4273 u32 msr_index, u64 data)
4274 {
4275 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4276 }
4277
4278 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4279 u32 pmc, u64 *pdata)
4280 {
4281 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4282 }
4283
4284 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4285 {
4286 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4287 }
4288
4289 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4290 {
4291 preempt_disable();
4292 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4293 /*
4294 * CR0.TS may reference the host fpu state, not the guest fpu state,
4295 * so it may be clear at this point.
4296 */
4297 clts();
4298 }
4299
4300 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4301 {
4302 preempt_enable();
4303 }
4304
4305 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4306 struct x86_instruction_info *info,
4307 enum x86_intercept_stage stage)
4308 {
4309 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4310 }
4311
4312 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4313 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4314 {
4315 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4316 }
4317
4318 static struct x86_emulate_ops emulate_ops = {
4319 .read_std = kvm_read_guest_virt_system,
4320 .write_std = kvm_write_guest_virt_system,
4321 .fetch = kvm_fetch_guest_virt,
4322 .read_emulated = emulator_read_emulated,
4323 .write_emulated = emulator_write_emulated,
4324 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4325 .invlpg = emulator_invlpg,
4326 .pio_in_emulated = emulator_pio_in_emulated,
4327 .pio_out_emulated = emulator_pio_out_emulated,
4328 .get_segment = emulator_get_segment,
4329 .set_segment = emulator_set_segment,
4330 .get_cached_segment_base = emulator_get_cached_segment_base,
4331 .get_gdt = emulator_get_gdt,
4332 .get_idt = emulator_get_idt,
4333 .set_gdt = emulator_set_gdt,
4334 .set_idt = emulator_set_idt,
4335 .get_cr = emulator_get_cr,
4336 .set_cr = emulator_set_cr,
4337 .set_rflags = emulator_set_rflags,
4338 .cpl = emulator_get_cpl,
4339 .get_dr = emulator_get_dr,
4340 .set_dr = emulator_set_dr,
4341 .set_msr = emulator_set_msr,
4342 .get_msr = emulator_get_msr,
4343 .read_pmc = emulator_read_pmc,
4344 .halt = emulator_halt,
4345 .wbinvd = emulator_wbinvd,
4346 .fix_hypercall = emulator_fix_hypercall,
4347 .get_fpu = emulator_get_fpu,
4348 .put_fpu = emulator_put_fpu,
4349 .intercept = emulator_intercept,
4350 .get_cpuid = emulator_get_cpuid,
4351 };
4352
4353 static void cache_all_regs(struct kvm_vcpu *vcpu)
4354 {
4355 kvm_register_read(vcpu, VCPU_REGS_RAX);
4356 kvm_register_read(vcpu, VCPU_REGS_RSP);
4357 kvm_register_read(vcpu, VCPU_REGS_RIP);
4358 vcpu->arch.regs_dirty = ~0;
4359 }
4360
4361 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4362 {
4363 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4364 /*
4365 * an sti; sti; sequence only disable interrupts for the first
4366 * instruction. So, if the last instruction, be it emulated or
4367 * not, left the system with the INT_STI flag enabled, it
4368 * means that the last instruction is an sti. We should not
4369 * leave the flag on in this case. The same goes for mov ss
4370 */
4371 if (!(int_shadow & mask))
4372 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4373 }
4374
4375 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4376 {
4377 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4378 if (ctxt->exception.vector == PF_VECTOR)
4379 kvm_propagate_fault(vcpu, &ctxt->exception);
4380 else if (ctxt->exception.error_code_valid)
4381 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4382 ctxt->exception.error_code);
4383 else
4384 kvm_queue_exception(vcpu, ctxt->exception.vector);
4385 }
4386
4387 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4388 const unsigned long *regs)
4389 {
4390 memset(&ctxt->twobyte, 0,
4391 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4392 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4393
4394 ctxt->fetch.start = 0;
4395 ctxt->fetch.end = 0;
4396 ctxt->io_read.pos = 0;
4397 ctxt->io_read.end = 0;
4398 ctxt->mem_read.pos = 0;
4399 ctxt->mem_read.end = 0;
4400 }
4401
4402 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4403 {
4404 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4405 int cs_db, cs_l;
4406
4407 /*
4408 * TODO: fix emulate.c to use guest_read/write_register
4409 * instead of direct ->regs accesses, can save hundred cycles
4410 * on Intel for instructions that don't read/change RSP, for
4411 * for example.
4412 */
4413 cache_all_regs(vcpu);
4414
4415 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4416
4417 ctxt->eflags = kvm_get_rflags(vcpu);
4418 ctxt->eip = kvm_rip_read(vcpu);
4419 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4420 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4421 cs_l ? X86EMUL_MODE_PROT64 :
4422 cs_db ? X86EMUL_MODE_PROT32 :
4423 X86EMUL_MODE_PROT16;
4424 ctxt->guest_mode = is_guest_mode(vcpu);
4425
4426 init_decode_cache(ctxt, vcpu->arch.regs);
4427 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4428 }
4429
4430 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4431 {
4432 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4433 int ret;
4434
4435 init_emulate_ctxt(vcpu);
4436
4437 ctxt->op_bytes = 2;
4438 ctxt->ad_bytes = 2;
4439 ctxt->_eip = ctxt->eip + inc_eip;
4440 ret = emulate_int_real(ctxt, irq);
4441
4442 if (ret != X86EMUL_CONTINUE)
4443 return EMULATE_FAIL;
4444
4445 ctxt->eip = ctxt->_eip;
4446 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4447 kvm_rip_write(vcpu, ctxt->eip);
4448 kvm_set_rflags(vcpu, ctxt->eflags);
4449
4450 if (irq == NMI_VECTOR)
4451 vcpu->arch.nmi_pending = 0;
4452 else
4453 vcpu->arch.interrupt.pending = false;
4454
4455 return EMULATE_DONE;
4456 }
4457 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4458
4459 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4460 {
4461 int r = EMULATE_DONE;
4462
4463 ++vcpu->stat.insn_emulation_fail;
4464 trace_kvm_emulate_insn_failed(vcpu);
4465 if (!is_guest_mode(vcpu)) {
4466 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4467 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4468 vcpu->run->internal.ndata = 0;
4469 r = EMULATE_FAIL;
4470 }
4471 kvm_queue_exception(vcpu, UD_VECTOR);
4472
4473 return r;
4474 }
4475
4476 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4477 {
4478 gpa_t gpa;
4479
4480 if (tdp_enabled)
4481 return false;
4482
4483 /*
4484 * if emulation was due to access to shadowed page table
4485 * and it failed try to unshadow page and re-enter the
4486 * guest to let CPU execute the instruction.
4487 */
4488 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4489 return true;
4490
4491 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4492
4493 if (gpa == UNMAPPED_GVA)
4494 return true; /* let cpu generate fault */
4495
4496 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4497 return true;
4498
4499 return false;
4500 }
4501
4502 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4503 unsigned long cr2, int emulation_type)
4504 {
4505 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4506 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4507
4508 last_retry_eip = vcpu->arch.last_retry_eip;
4509 last_retry_addr = vcpu->arch.last_retry_addr;
4510
4511 /*
4512 * If the emulation is caused by #PF and it is non-page_table
4513 * writing instruction, it means the VM-EXIT is caused by shadow
4514 * page protected, we can zap the shadow page and retry this
4515 * instruction directly.
4516 *
4517 * Note: if the guest uses a non-page-table modifying instruction
4518 * on the PDE that points to the instruction, then we will unmap
4519 * the instruction and go to an infinite loop. So, we cache the
4520 * last retried eip and the last fault address, if we meet the eip
4521 * and the address again, we can break out of the potential infinite
4522 * loop.
4523 */
4524 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4525
4526 if (!(emulation_type & EMULTYPE_RETRY))
4527 return false;
4528
4529 if (x86_page_table_writing_insn(ctxt))
4530 return false;
4531
4532 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4533 return false;
4534
4535 vcpu->arch.last_retry_eip = ctxt->eip;
4536 vcpu->arch.last_retry_addr = cr2;
4537
4538 if (!vcpu->arch.mmu.direct_map)
4539 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4540
4541 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4542
4543 return true;
4544 }
4545
4546 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4547 unsigned long cr2,
4548 int emulation_type,
4549 void *insn,
4550 int insn_len)
4551 {
4552 int r;
4553 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4554 bool writeback = true;
4555
4556 kvm_clear_exception_queue(vcpu);
4557
4558 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4559 init_emulate_ctxt(vcpu);
4560 ctxt->interruptibility = 0;
4561 ctxt->have_exception = false;
4562 ctxt->perm_ok = false;
4563
4564 ctxt->only_vendor_specific_insn
4565 = emulation_type & EMULTYPE_TRAP_UD;
4566
4567 r = x86_decode_insn(ctxt, insn, insn_len);
4568
4569 trace_kvm_emulate_insn_start(vcpu);
4570 ++vcpu->stat.insn_emulation;
4571 if (r != EMULATION_OK) {
4572 if (emulation_type & EMULTYPE_TRAP_UD)
4573 return EMULATE_FAIL;
4574 if (reexecute_instruction(vcpu, cr2))
4575 return EMULATE_DONE;
4576 if (emulation_type & EMULTYPE_SKIP)
4577 return EMULATE_FAIL;
4578 return handle_emulation_failure(vcpu);
4579 }
4580 }
4581
4582 if (emulation_type & EMULTYPE_SKIP) {
4583 kvm_rip_write(vcpu, ctxt->_eip);
4584 return EMULATE_DONE;
4585 }
4586
4587 if (retry_instruction(ctxt, cr2, emulation_type))
4588 return EMULATE_DONE;
4589
4590 /* this is needed for vmware backdoor interface to work since it
4591 changes registers values during IO operation */
4592 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4593 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4594 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4595 }
4596
4597 restart:
4598 r = x86_emulate_insn(ctxt);
4599
4600 if (r == EMULATION_INTERCEPTED)
4601 return EMULATE_DONE;
4602
4603 if (r == EMULATION_FAILED) {
4604 if (reexecute_instruction(vcpu, cr2))
4605 return EMULATE_DONE;
4606
4607 return handle_emulation_failure(vcpu);
4608 }
4609
4610 if (ctxt->have_exception) {
4611 inject_emulated_exception(vcpu);
4612 r = EMULATE_DONE;
4613 } else if (vcpu->arch.pio.count) {
4614 if (!vcpu->arch.pio.in)
4615 vcpu->arch.pio.count = 0;
4616 else
4617 writeback = false;
4618 r = EMULATE_DO_MMIO;
4619 } else if (vcpu->mmio_needed) {
4620 if (!vcpu->mmio_is_write)
4621 writeback = false;
4622 r = EMULATE_DO_MMIO;
4623 } else if (r == EMULATION_RESTART)
4624 goto restart;
4625 else
4626 r = EMULATE_DONE;
4627
4628 if (writeback) {
4629 toggle_interruptibility(vcpu, ctxt->interruptibility);
4630 kvm_set_rflags(vcpu, ctxt->eflags);
4631 kvm_make_request(KVM_REQ_EVENT, vcpu);
4632 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4633 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4634 kvm_rip_write(vcpu, ctxt->eip);
4635 } else
4636 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4637
4638 return r;
4639 }
4640 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4641
4642 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4643 {
4644 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4645 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4646 size, port, &val, 1);
4647 /* do not return to emulator after return from userspace */
4648 vcpu->arch.pio.count = 0;
4649 return ret;
4650 }
4651 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4652
4653 static void tsc_bad(void *info)
4654 {
4655 __this_cpu_write(cpu_tsc_khz, 0);
4656 }
4657
4658 static void tsc_khz_changed(void *data)
4659 {
4660 struct cpufreq_freqs *freq = data;
4661 unsigned long khz = 0;
4662
4663 if (data)
4664 khz = freq->new;
4665 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4666 khz = cpufreq_quick_get(raw_smp_processor_id());
4667 if (!khz)
4668 khz = tsc_khz;
4669 __this_cpu_write(cpu_tsc_khz, khz);
4670 }
4671
4672 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4673 void *data)
4674 {
4675 struct cpufreq_freqs *freq = data;
4676 struct kvm *kvm;
4677 struct kvm_vcpu *vcpu;
4678 int i, send_ipi = 0;
4679
4680 /*
4681 * We allow guests to temporarily run on slowing clocks,
4682 * provided we notify them after, or to run on accelerating
4683 * clocks, provided we notify them before. Thus time never
4684 * goes backwards.
4685 *
4686 * However, we have a problem. We can't atomically update
4687 * the frequency of a given CPU from this function; it is
4688 * merely a notifier, which can be called from any CPU.
4689 * Changing the TSC frequency at arbitrary points in time
4690 * requires a recomputation of local variables related to
4691 * the TSC for each VCPU. We must flag these local variables
4692 * to be updated and be sure the update takes place with the
4693 * new frequency before any guests proceed.
4694 *
4695 * Unfortunately, the combination of hotplug CPU and frequency
4696 * change creates an intractable locking scenario; the order
4697 * of when these callouts happen is undefined with respect to
4698 * CPU hotplug, and they can race with each other. As such,
4699 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4700 * undefined; you can actually have a CPU frequency change take
4701 * place in between the computation of X and the setting of the
4702 * variable. To protect against this problem, all updates of
4703 * the per_cpu tsc_khz variable are done in an interrupt
4704 * protected IPI, and all callers wishing to update the value
4705 * must wait for a synchronous IPI to complete (which is trivial
4706 * if the caller is on the CPU already). This establishes the
4707 * necessary total order on variable updates.
4708 *
4709 * Note that because a guest time update may take place
4710 * anytime after the setting of the VCPU's request bit, the
4711 * correct TSC value must be set before the request. However,
4712 * to ensure the update actually makes it to any guest which
4713 * starts running in hardware virtualization between the set
4714 * and the acquisition of the spinlock, we must also ping the
4715 * CPU after setting the request bit.
4716 *
4717 */
4718
4719 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4720 return 0;
4721 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4722 return 0;
4723
4724 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4725
4726 raw_spin_lock(&kvm_lock);
4727 list_for_each_entry(kvm, &vm_list, vm_list) {
4728 kvm_for_each_vcpu(i, vcpu, kvm) {
4729 if (vcpu->cpu != freq->cpu)
4730 continue;
4731 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4732 if (vcpu->cpu != smp_processor_id())
4733 send_ipi = 1;
4734 }
4735 }
4736 raw_spin_unlock(&kvm_lock);
4737
4738 if (freq->old < freq->new && send_ipi) {
4739 /*
4740 * We upscale the frequency. Must make the guest
4741 * doesn't see old kvmclock values while running with
4742 * the new frequency, otherwise we risk the guest sees
4743 * time go backwards.
4744 *
4745 * In case we update the frequency for another cpu
4746 * (which might be in guest context) send an interrupt
4747 * to kick the cpu out of guest context. Next time
4748 * guest context is entered kvmclock will be updated,
4749 * so the guest will not see stale values.
4750 */
4751 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4752 }
4753 return 0;
4754 }
4755
4756 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4757 .notifier_call = kvmclock_cpufreq_notifier
4758 };
4759
4760 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4761 unsigned long action, void *hcpu)
4762 {
4763 unsigned int cpu = (unsigned long)hcpu;
4764
4765 switch (action) {
4766 case CPU_ONLINE:
4767 case CPU_DOWN_FAILED:
4768 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4769 break;
4770 case CPU_DOWN_PREPARE:
4771 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4772 break;
4773 }
4774 return NOTIFY_OK;
4775 }
4776
4777 static struct notifier_block kvmclock_cpu_notifier_block = {
4778 .notifier_call = kvmclock_cpu_notifier,
4779 .priority = -INT_MAX
4780 };
4781
4782 static void kvm_timer_init(void)
4783 {
4784 int cpu;
4785
4786 max_tsc_khz = tsc_khz;
4787 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4788 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4789 #ifdef CONFIG_CPU_FREQ
4790 struct cpufreq_policy policy;
4791 memset(&policy, 0, sizeof(policy));
4792 cpu = get_cpu();
4793 cpufreq_get_policy(&policy, cpu);
4794 if (policy.cpuinfo.max_freq)
4795 max_tsc_khz = policy.cpuinfo.max_freq;
4796 put_cpu();
4797 #endif
4798 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4799 CPUFREQ_TRANSITION_NOTIFIER);
4800 }
4801 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4802 for_each_online_cpu(cpu)
4803 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4804 }
4805
4806 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4807
4808 int kvm_is_in_guest(void)
4809 {
4810 return __this_cpu_read(current_vcpu) != NULL;
4811 }
4812
4813 static int kvm_is_user_mode(void)
4814 {
4815 int user_mode = 3;
4816
4817 if (__this_cpu_read(current_vcpu))
4818 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4819
4820 return user_mode != 0;
4821 }
4822
4823 static unsigned long kvm_get_guest_ip(void)
4824 {
4825 unsigned long ip = 0;
4826
4827 if (__this_cpu_read(current_vcpu))
4828 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4829
4830 return ip;
4831 }
4832
4833 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4834 .is_in_guest = kvm_is_in_guest,
4835 .is_user_mode = kvm_is_user_mode,
4836 .get_guest_ip = kvm_get_guest_ip,
4837 };
4838
4839 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4840 {
4841 __this_cpu_write(current_vcpu, vcpu);
4842 }
4843 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4844
4845 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4846 {
4847 __this_cpu_write(current_vcpu, NULL);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4850
4851 static void kvm_set_mmio_spte_mask(void)
4852 {
4853 u64 mask;
4854 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4855
4856 /*
4857 * Set the reserved bits and the present bit of an paging-structure
4858 * entry to generate page fault with PFER.RSV = 1.
4859 */
4860 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4861 mask |= 1ull;
4862
4863 #ifdef CONFIG_X86_64
4864 /*
4865 * If reserved bit is not supported, clear the present bit to disable
4866 * mmio page fault.
4867 */
4868 if (maxphyaddr == 52)
4869 mask &= ~1ull;
4870 #endif
4871
4872 kvm_mmu_set_mmio_spte_mask(mask);
4873 }
4874
4875 int kvm_arch_init(void *opaque)
4876 {
4877 int r;
4878 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4879
4880 if (kvm_x86_ops) {
4881 printk(KERN_ERR "kvm: already loaded the other module\n");
4882 r = -EEXIST;
4883 goto out;
4884 }
4885
4886 if (!ops->cpu_has_kvm_support()) {
4887 printk(KERN_ERR "kvm: no hardware support\n");
4888 r = -EOPNOTSUPP;
4889 goto out;
4890 }
4891 if (ops->disabled_by_bios()) {
4892 printk(KERN_ERR "kvm: disabled by bios\n");
4893 r = -EOPNOTSUPP;
4894 goto out;
4895 }
4896
4897 r = kvm_mmu_module_init();
4898 if (r)
4899 goto out;
4900
4901 kvm_set_mmio_spte_mask();
4902 kvm_init_msr_list();
4903
4904 kvm_x86_ops = ops;
4905 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4906 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4907
4908 kvm_timer_init();
4909
4910 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4911
4912 if (cpu_has_xsave)
4913 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4914
4915 return 0;
4916
4917 out:
4918 return r;
4919 }
4920
4921 void kvm_arch_exit(void)
4922 {
4923 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4924
4925 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4926 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4927 CPUFREQ_TRANSITION_NOTIFIER);
4928 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4929 kvm_x86_ops = NULL;
4930 kvm_mmu_module_exit();
4931 }
4932
4933 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4934 {
4935 ++vcpu->stat.halt_exits;
4936 if (irqchip_in_kernel(vcpu->kvm)) {
4937 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4938 return 1;
4939 } else {
4940 vcpu->run->exit_reason = KVM_EXIT_HLT;
4941 return 0;
4942 }
4943 }
4944 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4945
4946 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4947 {
4948 u64 param, ingpa, outgpa, ret;
4949 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4950 bool fast, longmode;
4951 int cs_db, cs_l;
4952
4953 /*
4954 * hypercall generates UD from non zero cpl and real mode
4955 * per HYPER-V spec
4956 */
4957 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4958 kvm_queue_exception(vcpu, UD_VECTOR);
4959 return 0;
4960 }
4961
4962 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4963 longmode = is_long_mode(vcpu) && cs_l == 1;
4964
4965 if (!longmode) {
4966 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4967 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4968 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4969 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4970 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4971 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4972 }
4973 #ifdef CONFIG_X86_64
4974 else {
4975 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4976 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4977 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4978 }
4979 #endif
4980
4981 code = param & 0xffff;
4982 fast = (param >> 16) & 0x1;
4983 rep_cnt = (param >> 32) & 0xfff;
4984 rep_idx = (param >> 48) & 0xfff;
4985
4986 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4987
4988 switch (code) {
4989 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4990 kvm_vcpu_on_spin(vcpu);
4991 break;
4992 default:
4993 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4994 break;
4995 }
4996
4997 ret = res | (((u64)rep_done & 0xfff) << 32);
4998 if (longmode) {
4999 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5000 } else {
5001 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5002 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5003 }
5004
5005 return 1;
5006 }
5007
5008 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5009 {
5010 unsigned long nr, a0, a1, a2, a3, ret;
5011 int r = 1;
5012
5013 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5014 return kvm_hv_hypercall(vcpu);
5015
5016 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5017 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5018 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5019 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5020 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5021
5022 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5023
5024 if (!is_long_mode(vcpu)) {
5025 nr &= 0xFFFFFFFF;
5026 a0 &= 0xFFFFFFFF;
5027 a1 &= 0xFFFFFFFF;
5028 a2 &= 0xFFFFFFFF;
5029 a3 &= 0xFFFFFFFF;
5030 }
5031
5032 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5033 ret = -KVM_EPERM;
5034 goto out;
5035 }
5036
5037 switch (nr) {
5038 case KVM_HC_VAPIC_POLL_IRQ:
5039 ret = 0;
5040 break;
5041 default:
5042 ret = -KVM_ENOSYS;
5043 break;
5044 }
5045 out:
5046 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5047 ++vcpu->stat.hypercalls;
5048 return r;
5049 }
5050 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5051
5052 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5053 {
5054 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5055 char instruction[3];
5056 unsigned long rip = kvm_rip_read(vcpu);
5057
5058 /*
5059 * Blow out the MMU to ensure that no other VCPU has an active mapping
5060 * to ensure that the updated hypercall appears atomically across all
5061 * VCPUs.
5062 */
5063 kvm_mmu_zap_all(vcpu->kvm);
5064
5065 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5066
5067 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5068 }
5069
5070 /*
5071 * Check if userspace requested an interrupt window, and that the
5072 * interrupt window is open.
5073 *
5074 * No need to exit to userspace if we already have an interrupt queued.
5075 */
5076 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5077 {
5078 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5079 vcpu->run->request_interrupt_window &&
5080 kvm_arch_interrupt_allowed(vcpu));
5081 }
5082
5083 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5084 {
5085 struct kvm_run *kvm_run = vcpu->run;
5086
5087 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5088 kvm_run->cr8 = kvm_get_cr8(vcpu);
5089 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5090 if (irqchip_in_kernel(vcpu->kvm))
5091 kvm_run->ready_for_interrupt_injection = 1;
5092 else
5093 kvm_run->ready_for_interrupt_injection =
5094 kvm_arch_interrupt_allowed(vcpu) &&
5095 !kvm_cpu_has_interrupt(vcpu) &&
5096 !kvm_event_needs_reinjection(vcpu);
5097 }
5098
5099 static void vapic_enter(struct kvm_vcpu *vcpu)
5100 {
5101 struct kvm_lapic *apic = vcpu->arch.apic;
5102 struct page *page;
5103
5104 if (!apic || !apic->vapic_addr)
5105 return;
5106
5107 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5108
5109 vcpu->arch.apic->vapic_page = page;
5110 }
5111
5112 static void vapic_exit(struct kvm_vcpu *vcpu)
5113 {
5114 struct kvm_lapic *apic = vcpu->arch.apic;
5115 int idx;
5116
5117 if (!apic || !apic->vapic_addr)
5118 return;
5119
5120 idx = srcu_read_lock(&vcpu->kvm->srcu);
5121 kvm_release_page_dirty(apic->vapic_page);
5122 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5123 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5124 }
5125
5126 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5127 {
5128 int max_irr, tpr;
5129
5130 if (!kvm_x86_ops->update_cr8_intercept)
5131 return;
5132
5133 if (!vcpu->arch.apic)
5134 return;
5135
5136 if (!vcpu->arch.apic->vapic_addr)
5137 max_irr = kvm_lapic_find_highest_irr(vcpu);
5138 else
5139 max_irr = -1;
5140
5141 if (max_irr != -1)
5142 max_irr >>= 4;
5143
5144 tpr = kvm_lapic_get_cr8(vcpu);
5145
5146 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5147 }
5148
5149 static void inject_pending_event(struct kvm_vcpu *vcpu)
5150 {
5151 /* try to reinject previous events if any */
5152 if (vcpu->arch.exception.pending) {
5153 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5154 vcpu->arch.exception.has_error_code,
5155 vcpu->arch.exception.error_code);
5156 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5157 vcpu->arch.exception.has_error_code,
5158 vcpu->arch.exception.error_code,
5159 vcpu->arch.exception.reinject);
5160 return;
5161 }
5162
5163 if (vcpu->arch.nmi_injected) {
5164 kvm_x86_ops->set_nmi(vcpu);
5165 return;
5166 }
5167
5168 if (vcpu->arch.interrupt.pending) {
5169 kvm_x86_ops->set_irq(vcpu);
5170 return;
5171 }
5172
5173 /* try to inject new event if pending */
5174 if (vcpu->arch.nmi_pending) {
5175 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5176 --vcpu->arch.nmi_pending;
5177 vcpu->arch.nmi_injected = true;
5178 kvm_x86_ops->set_nmi(vcpu);
5179 }
5180 } else if (kvm_cpu_has_interrupt(vcpu)) {
5181 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5182 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5183 false);
5184 kvm_x86_ops->set_irq(vcpu);
5185 }
5186 }
5187 }
5188
5189 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5190 {
5191 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5192 !vcpu->guest_xcr0_loaded) {
5193 /* kvm_set_xcr() also depends on this */
5194 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5195 vcpu->guest_xcr0_loaded = 1;
5196 }
5197 }
5198
5199 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5200 {
5201 if (vcpu->guest_xcr0_loaded) {
5202 if (vcpu->arch.xcr0 != host_xcr0)
5203 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5204 vcpu->guest_xcr0_loaded = 0;
5205 }
5206 }
5207
5208 static void process_nmi(struct kvm_vcpu *vcpu)
5209 {
5210 unsigned limit = 2;
5211
5212 /*
5213 * x86 is limited to one NMI running, and one NMI pending after it.
5214 * If an NMI is already in progress, limit further NMIs to just one.
5215 * Otherwise, allow two (and we'll inject the first one immediately).
5216 */
5217 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5218 limit = 1;
5219
5220 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5221 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5222 kvm_make_request(KVM_REQ_EVENT, vcpu);
5223 }
5224
5225 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5226 {
5227 int r;
5228 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5229 vcpu->run->request_interrupt_window;
5230 bool req_immediate_exit = 0;
5231
5232 if (vcpu->requests) {
5233 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5234 kvm_mmu_unload(vcpu);
5235 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5236 __kvm_migrate_timers(vcpu);
5237 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5238 r = kvm_guest_time_update(vcpu);
5239 if (unlikely(r))
5240 goto out;
5241 }
5242 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5243 kvm_mmu_sync_roots(vcpu);
5244 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5245 kvm_x86_ops->tlb_flush(vcpu);
5246 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5247 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5248 r = 0;
5249 goto out;
5250 }
5251 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5252 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5253 r = 0;
5254 goto out;
5255 }
5256 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5257 vcpu->fpu_active = 0;
5258 kvm_x86_ops->fpu_deactivate(vcpu);
5259 }
5260 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5261 /* Page is swapped out. Do synthetic halt */
5262 vcpu->arch.apf.halted = true;
5263 r = 1;
5264 goto out;
5265 }
5266 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5267 record_steal_time(vcpu);
5268 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5269 process_nmi(vcpu);
5270 req_immediate_exit =
5271 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5272 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5273 kvm_handle_pmu_event(vcpu);
5274 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5275 kvm_deliver_pmi(vcpu);
5276 }
5277
5278 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5279 inject_pending_event(vcpu);
5280
5281 /* enable NMI/IRQ window open exits if needed */
5282 if (vcpu->arch.nmi_pending)
5283 kvm_x86_ops->enable_nmi_window(vcpu);
5284 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5285 kvm_x86_ops->enable_irq_window(vcpu);
5286
5287 if (kvm_lapic_enabled(vcpu)) {
5288 update_cr8_intercept(vcpu);
5289 kvm_lapic_sync_to_vapic(vcpu);
5290 }
5291 }
5292
5293 r = kvm_mmu_reload(vcpu);
5294 if (unlikely(r)) {
5295 goto cancel_injection;
5296 }
5297
5298 preempt_disable();
5299
5300 kvm_x86_ops->prepare_guest_switch(vcpu);
5301 if (vcpu->fpu_active)
5302 kvm_load_guest_fpu(vcpu);
5303 kvm_load_guest_xcr0(vcpu);
5304
5305 vcpu->mode = IN_GUEST_MODE;
5306
5307 /* We should set ->mode before check ->requests,
5308 * see the comment in make_all_cpus_request.
5309 */
5310 smp_mb();
5311
5312 local_irq_disable();
5313
5314 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5315 || need_resched() || signal_pending(current)) {
5316 vcpu->mode = OUTSIDE_GUEST_MODE;
5317 smp_wmb();
5318 local_irq_enable();
5319 preempt_enable();
5320 r = 1;
5321 goto cancel_injection;
5322 }
5323
5324 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5325
5326 if (req_immediate_exit)
5327 smp_send_reschedule(vcpu->cpu);
5328
5329 kvm_guest_enter();
5330
5331 if (unlikely(vcpu->arch.switch_db_regs)) {
5332 set_debugreg(0, 7);
5333 set_debugreg(vcpu->arch.eff_db[0], 0);
5334 set_debugreg(vcpu->arch.eff_db[1], 1);
5335 set_debugreg(vcpu->arch.eff_db[2], 2);
5336 set_debugreg(vcpu->arch.eff_db[3], 3);
5337 }
5338
5339 trace_kvm_entry(vcpu->vcpu_id);
5340 kvm_x86_ops->run(vcpu);
5341
5342 /*
5343 * If the guest has used debug registers, at least dr7
5344 * will be disabled while returning to the host.
5345 * If we don't have active breakpoints in the host, we don't
5346 * care about the messed up debug address registers. But if
5347 * we have some of them active, restore the old state.
5348 */
5349 if (hw_breakpoint_active())
5350 hw_breakpoint_restore();
5351
5352 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5353
5354 vcpu->mode = OUTSIDE_GUEST_MODE;
5355 smp_wmb();
5356 local_irq_enable();
5357
5358 ++vcpu->stat.exits;
5359
5360 /*
5361 * We must have an instruction between local_irq_enable() and
5362 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5363 * the interrupt shadow. The stat.exits increment will do nicely.
5364 * But we need to prevent reordering, hence this barrier():
5365 */
5366 barrier();
5367
5368 kvm_guest_exit();
5369
5370 preempt_enable();
5371
5372 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5373
5374 /*
5375 * Profile KVM exit RIPs:
5376 */
5377 if (unlikely(prof_on == KVM_PROFILING)) {
5378 unsigned long rip = kvm_rip_read(vcpu);
5379 profile_hit(KVM_PROFILING, (void *)rip);
5380 }
5381
5382 if (unlikely(vcpu->arch.tsc_always_catchup))
5383 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5384
5385 if (vcpu->arch.apic_attention)
5386 kvm_lapic_sync_from_vapic(vcpu);
5387
5388 r = kvm_x86_ops->handle_exit(vcpu);
5389 return r;
5390
5391 cancel_injection:
5392 kvm_x86_ops->cancel_injection(vcpu);
5393 if (unlikely(vcpu->arch.apic_attention))
5394 kvm_lapic_sync_from_vapic(vcpu);
5395 out:
5396 return r;
5397 }
5398
5399
5400 static int __vcpu_run(struct kvm_vcpu *vcpu)
5401 {
5402 int r;
5403 struct kvm *kvm = vcpu->kvm;
5404
5405 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5406 pr_debug("vcpu %d received sipi with vector # %x\n",
5407 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5408 kvm_lapic_reset(vcpu);
5409 r = kvm_arch_vcpu_reset(vcpu);
5410 if (r)
5411 return r;
5412 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5413 }
5414
5415 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5416 vapic_enter(vcpu);
5417
5418 r = 1;
5419 while (r > 0) {
5420 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5421 !vcpu->arch.apf.halted)
5422 r = vcpu_enter_guest(vcpu);
5423 else {
5424 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5425 kvm_vcpu_block(vcpu);
5426 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5427 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5428 {
5429 switch(vcpu->arch.mp_state) {
5430 case KVM_MP_STATE_HALTED:
5431 vcpu->arch.mp_state =
5432 KVM_MP_STATE_RUNNABLE;
5433 case KVM_MP_STATE_RUNNABLE:
5434 vcpu->arch.apf.halted = false;
5435 break;
5436 case KVM_MP_STATE_SIPI_RECEIVED:
5437 default:
5438 r = -EINTR;
5439 break;
5440 }
5441 }
5442 }
5443
5444 if (r <= 0)
5445 break;
5446
5447 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5448 if (kvm_cpu_has_pending_timer(vcpu))
5449 kvm_inject_pending_timer_irqs(vcpu);
5450
5451 if (dm_request_for_irq_injection(vcpu)) {
5452 r = -EINTR;
5453 vcpu->run->exit_reason = KVM_EXIT_INTR;
5454 ++vcpu->stat.request_irq_exits;
5455 }
5456
5457 kvm_check_async_pf_completion(vcpu);
5458
5459 if (signal_pending(current)) {
5460 r = -EINTR;
5461 vcpu->run->exit_reason = KVM_EXIT_INTR;
5462 ++vcpu->stat.signal_exits;
5463 }
5464 if (need_resched()) {
5465 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5466 kvm_resched(vcpu);
5467 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5468 }
5469 }
5470
5471 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5472
5473 vapic_exit(vcpu);
5474
5475 return r;
5476 }
5477
5478 /*
5479 * Implements the following, as a state machine:
5480 *
5481 * read:
5482 * for each fragment
5483 * write gpa, len
5484 * exit
5485 * copy data
5486 * execute insn
5487 *
5488 * write:
5489 * for each fragment
5490 * write gpa, len
5491 * copy data
5492 * exit
5493 */
5494 static int complete_mmio(struct kvm_vcpu *vcpu)
5495 {
5496 struct kvm_run *run = vcpu->run;
5497 struct kvm_mmio_fragment *frag;
5498 int r;
5499
5500 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5501 return 1;
5502
5503 if (vcpu->mmio_needed) {
5504 /* Complete previous fragment */
5505 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5506 if (!vcpu->mmio_is_write)
5507 memcpy(frag->data, run->mmio.data, frag->len);
5508 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5509 vcpu->mmio_needed = 0;
5510 if (vcpu->mmio_is_write)
5511 return 1;
5512 vcpu->mmio_read_completed = 1;
5513 goto done;
5514 }
5515 /* Initiate next fragment */
5516 ++frag;
5517 run->exit_reason = KVM_EXIT_MMIO;
5518 run->mmio.phys_addr = frag->gpa;
5519 if (vcpu->mmio_is_write)
5520 memcpy(run->mmio.data, frag->data, frag->len);
5521 run->mmio.len = frag->len;
5522 run->mmio.is_write = vcpu->mmio_is_write;
5523 return 0;
5524
5525 }
5526 done:
5527 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5528 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5529 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5530 if (r != EMULATE_DONE)
5531 return 0;
5532 return 1;
5533 }
5534
5535 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5536 {
5537 int r;
5538 sigset_t sigsaved;
5539
5540 if (!tsk_used_math(current) && init_fpu(current))
5541 return -ENOMEM;
5542
5543 if (vcpu->sigset_active)
5544 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5545
5546 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5547 kvm_vcpu_block(vcpu);
5548 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5549 r = -EAGAIN;
5550 goto out;
5551 }
5552
5553 /* re-sync apic's tpr */
5554 if (!irqchip_in_kernel(vcpu->kvm)) {
5555 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5556 r = -EINVAL;
5557 goto out;
5558 }
5559 }
5560
5561 r = complete_mmio(vcpu);
5562 if (r <= 0)
5563 goto out;
5564
5565 r = __vcpu_run(vcpu);
5566
5567 out:
5568 post_kvm_run_save(vcpu);
5569 if (vcpu->sigset_active)
5570 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5571
5572 return r;
5573 }
5574
5575 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5576 {
5577 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5578 /*
5579 * We are here if userspace calls get_regs() in the middle of
5580 * instruction emulation. Registers state needs to be copied
5581 * back from emulation context to vcpu. Userspace shouldn't do
5582 * that usually, but some bad designed PV devices (vmware
5583 * backdoor interface) need this to work
5584 */
5585 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5586 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5587 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5588 }
5589 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5590 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5591 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5592 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5593 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5594 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5595 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5596 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5597 #ifdef CONFIG_X86_64
5598 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5599 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5600 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5601 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5602 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5603 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5604 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5605 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5606 #endif
5607
5608 regs->rip = kvm_rip_read(vcpu);
5609 regs->rflags = kvm_get_rflags(vcpu);
5610
5611 return 0;
5612 }
5613
5614 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5615 {
5616 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5617 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5618
5619 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5620 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5621 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5622 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5623 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5624 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5625 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5626 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5627 #ifdef CONFIG_X86_64
5628 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5629 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5630 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5631 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5632 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5633 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5634 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5635 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5636 #endif
5637
5638 kvm_rip_write(vcpu, regs->rip);
5639 kvm_set_rflags(vcpu, regs->rflags);
5640
5641 vcpu->arch.exception.pending = false;
5642
5643 kvm_make_request(KVM_REQ_EVENT, vcpu);
5644
5645 return 0;
5646 }
5647
5648 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5649 {
5650 struct kvm_segment cs;
5651
5652 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5653 *db = cs.db;
5654 *l = cs.l;
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5657
5658 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5659 struct kvm_sregs *sregs)
5660 {
5661 struct desc_ptr dt;
5662
5663 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5664 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5665 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5666 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5667 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5668 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5669
5670 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5671 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5672
5673 kvm_x86_ops->get_idt(vcpu, &dt);
5674 sregs->idt.limit = dt.size;
5675 sregs->idt.base = dt.address;
5676 kvm_x86_ops->get_gdt(vcpu, &dt);
5677 sregs->gdt.limit = dt.size;
5678 sregs->gdt.base = dt.address;
5679
5680 sregs->cr0 = kvm_read_cr0(vcpu);
5681 sregs->cr2 = vcpu->arch.cr2;
5682 sregs->cr3 = kvm_read_cr3(vcpu);
5683 sregs->cr4 = kvm_read_cr4(vcpu);
5684 sregs->cr8 = kvm_get_cr8(vcpu);
5685 sregs->efer = vcpu->arch.efer;
5686 sregs->apic_base = kvm_get_apic_base(vcpu);
5687
5688 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5689
5690 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5691 set_bit(vcpu->arch.interrupt.nr,
5692 (unsigned long *)sregs->interrupt_bitmap);
5693
5694 return 0;
5695 }
5696
5697 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5698 struct kvm_mp_state *mp_state)
5699 {
5700 mp_state->mp_state = vcpu->arch.mp_state;
5701 return 0;
5702 }
5703
5704 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5705 struct kvm_mp_state *mp_state)
5706 {
5707 vcpu->arch.mp_state = mp_state->mp_state;
5708 kvm_make_request(KVM_REQ_EVENT, vcpu);
5709 return 0;
5710 }
5711
5712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5713 int reason, bool has_error_code, u32 error_code)
5714 {
5715 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5716 int ret;
5717
5718 init_emulate_ctxt(vcpu);
5719
5720 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5721 has_error_code, error_code);
5722
5723 if (ret)
5724 return EMULATE_FAIL;
5725
5726 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5727 kvm_rip_write(vcpu, ctxt->eip);
5728 kvm_set_rflags(vcpu, ctxt->eflags);
5729 kvm_make_request(KVM_REQ_EVENT, vcpu);
5730 return EMULATE_DONE;
5731 }
5732 EXPORT_SYMBOL_GPL(kvm_task_switch);
5733
5734 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5735 struct kvm_sregs *sregs)
5736 {
5737 int mmu_reset_needed = 0;
5738 int pending_vec, max_bits, idx;
5739 struct desc_ptr dt;
5740
5741 dt.size = sregs->idt.limit;
5742 dt.address = sregs->idt.base;
5743 kvm_x86_ops->set_idt(vcpu, &dt);
5744 dt.size = sregs->gdt.limit;
5745 dt.address = sregs->gdt.base;
5746 kvm_x86_ops->set_gdt(vcpu, &dt);
5747
5748 vcpu->arch.cr2 = sregs->cr2;
5749 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5750 vcpu->arch.cr3 = sregs->cr3;
5751 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5752
5753 kvm_set_cr8(vcpu, sregs->cr8);
5754
5755 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5756 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5757 kvm_set_apic_base(vcpu, sregs->apic_base);
5758
5759 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5760 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5761 vcpu->arch.cr0 = sregs->cr0;
5762
5763 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5764 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5765 if (sregs->cr4 & X86_CR4_OSXSAVE)
5766 kvm_update_cpuid(vcpu);
5767
5768 idx = srcu_read_lock(&vcpu->kvm->srcu);
5769 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5770 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5771 mmu_reset_needed = 1;
5772 }
5773 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5774
5775 if (mmu_reset_needed)
5776 kvm_mmu_reset_context(vcpu);
5777
5778 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5779 pending_vec = find_first_bit(
5780 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5781 if (pending_vec < max_bits) {
5782 kvm_queue_interrupt(vcpu, pending_vec, false);
5783 pr_debug("Set back pending irq %d\n", pending_vec);
5784 }
5785
5786 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5787 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5788 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5789 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5790 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5791 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5792
5793 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5794 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5795
5796 update_cr8_intercept(vcpu);
5797
5798 /* Older userspace won't unhalt the vcpu on reset. */
5799 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5800 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5801 !is_protmode(vcpu))
5802 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5803
5804 kvm_make_request(KVM_REQ_EVENT, vcpu);
5805
5806 return 0;
5807 }
5808
5809 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5810 struct kvm_guest_debug *dbg)
5811 {
5812 unsigned long rflags;
5813 int i, r;
5814
5815 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5816 r = -EBUSY;
5817 if (vcpu->arch.exception.pending)
5818 goto out;
5819 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5820 kvm_queue_exception(vcpu, DB_VECTOR);
5821 else
5822 kvm_queue_exception(vcpu, BP_VECTOR);
5823 }
5824
5825 /*
5826 * Read rflags as long as potentially injected trace flags are still
5827 * filtered out.
5828 */
5829 rflags = kvm_get_rflags(vcpu);
5830
5831 vcpu->guest_debug = dbg->control;
5832 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5833 vcpu->guest_debug = 0;
5834
5835 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5836 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5837 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5838 vcpu->arch.switch_db_regs =
5839 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5840 } else {
5841 for (i = 0; i < KVM_NR_DB_REGS; i++)
5842 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5843 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5844 }
5845
5846 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5847 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5848 get_segment_base(vcpu, VCPU_SREG_CS);
5849
5850 /*
5851 * Trigger an rflags update that will inject or remove the trace
5852 * flags.
5853 */
5854 kvm_set_rflags(vcpu, rflags);
5855
5856 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5857
5858 r = 0;
5859
5860 out:
5861
5862 return r;
5863 }
5864
5865 /*
5866 * Translate a guest virtual address to a guest physical address.
5867 */
5868 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5869 struct kvm_translation *tr)
5870 {
5871 unsigned long vaddr = tr->linear_address;
5872 gpa_t gpa;
5873 int idx;
5874
5875 idx = srcu_read_lock(&vcpu->kvm->srcu);
5876 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5877 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5878 tr->physical_address = gpa;
5879 tr->valid = gpa != UNMAPPED_GVA;
5880 tr->writeable = 1;
5881 tr->usermode = 0;
5882
5883 return 0;
5884 }
5885
5886 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5887 {
5888 struct i387_fxsave_struct *fxsave =
5889 &vcpu->arch.guest_fpu.state->fxsave;
5890
5891 memcpy(fpu->fpr, fxsave->st_space, 128);
5892 fpu->fcw = fxsave->cwd;
5893 fpu->fsw = fxsave->swd;
5894 fpu->ftwx = fxsave->twd;
5895 fpu->last_opcode = fxsave->fop;
5896 fpu->last_ip = fxsave->rip;
5897 fpu->last_dp = fxsave->rdp;
5898 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5899
5900 return 0;
5901 }
5902
5903 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5904 {
5905 struct i387_fxsave_struct *fxsave =
5906 &vcpu->arch.guest_fpu.state->fxsave;
5907
5908 memcpy(fxsave->st_space, fpu->fpr, 128);
5909 fxsave->cwd = fpu->fcw;
5910 fxsave->swd = fpu->fsw;
5911 fxsave->twd = fpu->ftwx;
5912 fxsave->fop = fpu->last_opcode;
5913 fxsave->rip = fpu->last_ip;
5914 fxsave->rdp = fpu->last_dp;
5915 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5916
5917 return 0;
5918 }
5919
5920 int fx_init(struct kvm_vcpu *vcpu)
5921 {
5922 int err;
5923
5924 err = fpu_alloc(&vcpu->arch.guest_fpu);
5925 if (err)
5926 return err;
5927
5928 fpu_finit(&vcpu->arch.guest_fpu);
5929
5930 /*
5931 * Ensure guest xcr0 is valid for loading
5932 */
5933 vcpu->arch.xcr0 = XSTATE_FP;
5934
5935 vcpu->arch.cr0 |= X86_CR0_ET;
5936
5937 return 0;
5938 }
5939 EXPORT_SYMBOL_GPL(fx_init);
5940
5941 static void fx_free(struct kvm_vcpu *vcpu)
5942 {
5943 fpu_free(&vcpu->arch.guest_fpu);
5944 }
5945
5946 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5947 {
5948 if (vcpu->guest_fpu_loaded)
5949 return;
5950
5951 /*
5952 * Restore all possible states in the guest,
5953 * and assume host would use all available bits.
5954 * Guest xcr0 would be loaded later.
5955 */
5956 kvm_put_guest_xcr0(vcpu);
5957 vcpu->guest_fpu_loaded = 1;
5958 unlazy_fpu(current);
5959 fpu_restore_checking(&vcpu->arch.guest_fpu);
5960 trace_kvm_fpu(1);
5961 }
5962
5963 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5964 {
5965 kvm_put_guest_xcr0(vcpu);
5966
5967 if (!vcpu->guest_fpu_loaded)
5968 return;
5969
5970 vcpu->guest_fpu_loaded = 0;
5971 fpu_save_init(&vcpu->arch.guest_fpu);
5972 ++vcpu->stat.fpu_reload;
5973 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5974 trace_kvm_fpu(0);
5975 }
5976
5977 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5978 {
5979 kvmclock_reset(vcpu);
5980
5981 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5982 fx_free(vcpu);
5983 kvm_x86_ops->vcpu_free(vcpu);
5984 }
5985
5986 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5987 unsigned int id)
5988 {
5989 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5990 printk_once(KERN_WARNING
5991 "kvm: SMP vm created on host with unstable TSC; "
5992 "guest TSC will not be reliable\n");
5993 return kvm_x86_ops->vcpu_create(kvm, id);
5994 }
5995
5996 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5997 {
5998 int r;
5999
6000 vcpu->arch.mtrr_state.have_fixed = 1;
6001 vcpu_load(vcpu);
6002 r = kvm_arch_vcpu_reset(vcpu);
6003 if (r == 0)
6004 r = kvm_mmu_setup(vcpu);
6005 vcpu_put(vcpu);
6006
6007 return r;
6008 }
6009
6010 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6011 {
6012 vcpu->arch.apf.msr_val = 0;
6013
6014 vcpu_load(vcpu);
6015 kvm_mmu_unload(vcpu);
6016 vcpu_put(vcpu);
6017
6018 fx_free(vcpu);
6019 kvm_x86_ops->vcpu_free(vcpu);
6020 }
6021
6022 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6023 {
6024 atomic_set(&vcpu->arch.nmi_queued, 0);
6025 vcpu->arch.nmi_pending = 0;
6026 vcpu->arch.nmi_injected = false;
6027
6028 vcpu->arch.switch_db_regs = 0;
6029 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6030 vcpu->arch.dr6 = DR6_FIXED_1;
6031 vcpu->arch.dr7 = DR7_FIXED_1;
6032
6033 kvm_make_request(KVM_REQ_EVENT, vcpu);
6034 vcpu->arch.apf.msr_val = 0;
6035 vcpu->arch.st.msr_val = 0;
6036
6037 kvmclock_reset(vcpu);
6038
6039 kvm_clear_async_pf_completion_queue(vcpu);
6040 kvm_async_pf_hash_reset(vcpu);
6041 vcpu->arch.apf.halted = false;
6042
6043 kvm_pmu_reset(vcpu);
6044
6045 return kvm_x86_ops->vcpu_reset(vcpu);
6046 }
6047
6048 int kvm_arch_hardware_enable(void *garbage)
6049 {
6050 struct kvm *kvm;
6051 struct kvm_vcpu *vcpu;
6052 int i;
6053 int ret;
6054 u64 local_tsc;
6055 u64 max_tsc = 0;
6056 bool stable, backwards_tsc = false;
6057
6058 kvm_shared_msr_cpu_online();
6059 ret = kvm_x86_ops->hardware_enable(garbage);
6060 if (ret != 0)
6061 return ret;
6062
6063 local_tsc = native_read_tsc();
6064 stable = !check_tsc_unstable();
6065 list_for_each_entry(kvm, &vm_list, vm_list) {
6066 kvm_for_each_vcpu(i, vcpu, kvm) {
6067 if (!stable && vcpu->cpu == smp_processor_id())
6068 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6069 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6070 backwards_tsc = true;
6071 if (vcpu->arch.last_host_tsc > max_tsc)
6072 max_tsc = vcpu->arch.last_host_tsc;
6073 }
6074 }
6075 }
6076
6077 /*
6078 * Sometimes, even reliable TSCs go backwards. This happens on
6079 * platforms that reset TSC during suspend or hibernate actions, but
6080 * maintain synchronization. We must compensate. Fortunately, we can
6081 * detect that condition here, which happens early in CPU bringup,
6082 * before any KVM threads can be running. Unfortunately, we can't
6083 * bring the TSCs fully up to date with real time, as we aren't yet far
6084 * enough into CPU bringup that we know how much real time has actually
6085 * elapsed; our helper function, get_kernel_ns() will be using boot
6086 * variables that haven't been updated yet.
6087 *
6088 * So we simply find the maximum observed TSC above, then record the
6089 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6090 * the adjustment will be applied. Note that we accumulate
6091 * adjustments, in case multiple suspend cycles happen before some VCPU
6092 * gets a chance to run again. In the event that no KVM threads get a
6093 * chance to run, we will miss the entire elapsed period, as we'll have
6094 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6095 * loose cycle time. This isn't too big a deal, since the loss will be
6096 * uniform across all VCPUs (not to mention the scenario is extremely
6097 * unlikely). It is possible that a second hibernate recovery happens
6098 * much faster than a first, causing the observed TSC here to be
6099 * smaller; this would require additional padding adjustment, which is
6100 * why we set last_host_tsc to the local tsc observed here.
6101 *
6102 * N.B. - this code below runs only on platforms with reliable TSC,
6103 * as that is the only way backwards_tsc is set above. Also note
6104 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6105 * have the same delta_cyc adjustment applied if backwards_tsc
6106 * is detected. Note further, this adjustment is only done once,
6107 * as we reset last_host_tsc on all VCPUs to stop this from being
6108 * called multiple times (one for each physical CPU bringup).
6109 *
6110 * Platforms with unreliable TSCs don't have to deal with this, they
6111 * will be compensated by the logic in vcpu_load, which sets the TSC to
6112 * catchup mode. This will catchup all VCPUs to real time, but cannot
6113 * guarantee that they stay in perfect synchronization.
6114 */
6115 if (backwards_tsc) {
6116 u64 delta_cyc = max_tsc - local_tsc;
6117 list_for_each_entry(kvm, &vm_list, vm_list) {
6118 kvm_for_each_vcpu(i, vcpu, kvm) {
6119 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6120 vcpu->arch.last_host_tsc = local_tsc;
6121 }
6122
6123 /*
6124 * We have to disable TSC offset matching.. if you were
6125 * booting a VM while issuing an S4 host suspend....
6126 * you may have some problem. Solving this issue is
6127 * left as an exercise to the reader.
6128 */
6129 kvm->arch.last_tsc_nsec = 0;
6130 kvm->arch.last_tsc_write = 0;
6131 }
6132
6133 }
6134 return 0;
6135 }
6136
6137 void kvm_arch_hardware_disable(void *garbage)
6138 {
6139 kvm_x86_ops->hardware_disable(garbage);
6140 drop_user_return_notifiers(garbage);
6141 }
6142
6143 int kvm_arch_hardware_setup(void)
6144 {
6145 return kvm_x86_ops->hardware_setup();
6146 }
6147
6148 void kvm_arch_hardware_unsetup(void)
6149 {
6150 kvm_x86_ops->hardware_unsetup();
6151 }
6152
6153 void kvm_arch_check_processor_compat(void *rtn)
6154 {
6155 kvm_x86_ops->check_processor_compatibility(rtn);
6156 }
6157
6158 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6159 {
6160 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6161 }
6162
6163 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6164 {
6165 struct page *page;
6166 struct kvm *kvm;
6167 int r;
6168
6169 BUG_ON(vcpu->kvm == NULL);
6170 kvm = vcpu->kvm;
6171
6172 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6173 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6174 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6175 else
6176 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6177
6178 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6179 if (!page) {
6180 r = -ENOMEM;
6181 goto fail;
6182 }
6183 vcpu->arch.pio_data = page_address(page);
6184
6185 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6186
6187 r = kvm_mmu_create(vcpu);
6188 if (r < 0)
6189 goto fail_free_pio_data;
6190
6191 if (irqchip_in_kernel(kvm)) {
6192 r = kvm_create_lapic(vcpu);
6193 if (r < 0)
6194 goto fail_mmu_destroy;
6195 }
6196
6197 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6198 GFP_KERNEL);
6199 if (!vcpu->arch.mce_banks) {
6200 r = -ENOMEM;
6201 goto fail_free_lapic;
6202 }
6203 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6204
6205 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6206 goto fail_free_mce_banks;
6207
6208 kvm_async_pf_hash_reset(vcpu);
6209 kvm_pmu_init(vcpu);
6210
6211 return 0;
6212 fail_free_mce_banks:
6213 kfree(vcpu->arch.mce_banks);
6214 fail_free_lapic:
6215 kvm_free_lapic(vcpu);
6216 fail_mmu_destroy:
6217 kvm_mmu_destroy(vcpu);
6218 fail_free_pio_data:
6219 free_page((unsigned long)vcpu->arch.pio_data);
6220 fail:
6221 return r;
6222 }
6223
6224 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6225 {
6226 int idx;
6227
6228 kvm_pmu_destroy(vcpu);
6229 kfree(vcpu->arch.mce_banks);
6230 kvm_free_lapic(vcpu);
6231 idx = srcu_read_lock(&vcpu->kvm->srcu);
6232 kvm_mmu_destroy(vcpu);
6233 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6234 free_page((unsigned long)vcpu->arch.pio_data);
6235 }
6236
6237 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6238 {
6239 if (type)
6240 return -EINVAL;
6241
6242 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6243 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6244
6245 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6246 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6247
6248 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6249
6250 return 0;
6251 }
6252
6253 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6254 {
6255 vcpu_load(vcpu);
6256 kvm_mmu_unload(vcpu);
6257 vcpu_put(vcpu);
6258 }
6259
6260 static void kvm_free_vcpus(struct kvm *kvm)
6261 {
6262 unsigned int i;
6263 struct kvm_vcpu *vcpu;
6264
6265 /*
6266 * Unpin any mmu pages first.
6267 */
6268 kvm_for_each_vcpu(i, vcpu, kvm) {
6269 kvm_clear_async_pf_completion_queue(vcpu);
6270 kvm_unload_vcpu_mmu(vcpu);
6271 }
6272 kvm_for_each_vcpu(i, vcpu, kvm)
6273 kvm_arch_vcpu_free(vcpu);
6274
6275 mutex_lock(&kvm->lock);
6276 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6277 kvm->vcpus[i] = NULL;
6278
6279 atomic_set(&kvm->online_vcpus, 0);
6280 mutex_unlock(&kvm->lock);
6281 }
6282
6283 void kvm_arch_sync_events(struct kvm *kvm)
6284 {
6285 kvm_free_all_assigned_devices(kvm);
6286 kvm_free_pit(kvm);
6287 }
6288
6289 void kvm_arch_destroy_vm(struct kvm *kvm)
6290 {
6291 kvm_iommu_unmap_guest(kvm);
6292 kfree(kvm->arch.vpic);
6293 kfree(kvm->arch.vioapic);
6294 kvm_free_vcpus(kvm);
6295 if (kvm->arch.apic_access_page)
6296 put_page(kvm->arch.apic_access_page);
6297 if (kvm->arch.ept_identity_pagetable)
6298 put_page(kvm->arch.ept_identity_pagetable);
6299 }
6300
6301 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6302 struct kvm_memory_slot *dont)
6303 {
6304 int i;
6305
6306 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6307 if (!dont || free->arch.rmap_pde[i] != dont->arch.rmap_pde[i]) {
6308 kvm_kvfree(free->arch.rmap_pde[i]);
6309 free->arch.rmap_pde[i] = NULL;
6310 }
6311 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6312 kvm_kvfree(free->arch.lpage_info[i]);
6313 free->arch.lpage_info[i] = NULL;
6314 }
6315 }
6316 }
6317
6318 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6319 {
6320 int i;
6321
6322 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6323 unsigned long ugfn;
6324 int lpages;
6325 int level = i + 2;
6326
6327 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6328 slot->base_gfn, level) + 1;
6329
6330 slot->arch.rmap_pde[i] =
6331 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap_pde[i]));
6332 if (!slot->arch.rmap_pde[i])
6333 goto out_free;
6334
6335 slot->arch.lpage_info[i] =
6336 kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6337 if (!slot->arch.lpage_info[i])
6338 goto out_free;
6339
6340 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6341 slot->arch.lpage_info[i][0].write_count = 1;
6342 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6343 slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6344 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6345 /*
6346 * If the gfn and userspace address are not aligned wrt each
6347 * other, or if explicitly asked to, disable large page
6348 * support for this slot
6349 */
6350 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6351 !kvm_largepages_enabled()) {
6352 unsigned long j;
6353
6354 for (j = 0; j < lpages; ++j)
6355 slot->arch.lpage_info[i][j].write_count = 1;
6356 }
6357 }
6358
6359 return 0;
6360
6361 out_free:
6362 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6363 kvm_kvfree(slot->arch.rmap_pde[i]);
6364 kvm_kvfree(slot->arch.lpage_info[i]);
6365 slot->arch.rmap_pde[i] = NULL;
6366 slot->arch.lpage_info[i] = NULL;
6367 }
6368 return -ENOMEM;
6369 }
6370
6371 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6372 struct kvm_memory_slot *memslot,
6373 struct kvm_memory_slot old,
6374 struct kvm_userspace_memory_region *mem,
6375 int user_alloc)
6376 {
6377 int npages = memslot->npages;
6378 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6379
6380 /* Prevent internal slot pages from being moved by fork()/COW. */
6381 if (memslot->id >= KVM_MEMORY_SLOTS)
6382 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6383
6384 /*To keep backward compatibility with older userspace,
6385 *x86 needs to handle !user_alloc case.
6386 */
6387 if (!user_alloc) {
6388 if (npages && !old.npages) {
6389 unsigned long userspace_addr;
6390
6391 userspace_addr = vm_mmap(NULL, 0,
6392 npages * PAGE_SIZE,
6393 PROT_READ | PROT_WRITE,
6394 map_flags,
6395 0);
6396
6397 if (IS_ERR((void *)userspace_addr))
6398 return PTR_ERR((void *)userspace_addr);
6399
6400 memslot->userspace_addr = userspace_addr;
6401 }
6402 }
6403
6404
6405 return 0;
6406 }
6407
6408 void kvm_arch_commit_memory_region(struct kvm *kvm,
6409 struct kvm_userspace_memory_region *mem,
6410 struct kvm_memory_slot old,
6411 int user_alloc)
6412 {
6413
6414 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6415
6416 if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6417 int ret;
6418
6419 ret = vm_munmap(old.userspace_addr,
6420 old.npages * PAGE_SIZE);
6421 if (ret < 0)
6422 printk(KERN_WARNING
6423 "kvm_vm_ioctl_set_memory_region: "
6424 "failed to munmap memory\n");
6425 }
6426
6427 if (!kvm->arch.n_requested_mmu_pages)
6428 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6429
6430 spin_lock(&kvm->mmu_lock);
6431 if (nr_mmu_pages)
6432 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6433 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6434 spin_unlock(&kvm->mmu_lock);
6435 }
6436
6437 void kvm_arch_flush_shadow(struct kvm *kvm)
6438 {
6439 kvm_mmu_zap_all(kvm);
6440 kvm_reload_remote_mmus(kvm);
6441 }
6442
6443 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6444 {
6445 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6446 !vcpu->arch.apf.halted)
6447 || !list_empty_careful(&vcpu->async_pf.done)
6448 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6449 || atomic_read(&vcpu->arch.nmi_queued) ||
6450 (kvm_arch_interrupt_allowed(vcpu) &&
6451 kvm_cpu_has_interrupt(vcpu));
6452 }
6453
6454 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6455 {
6456 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6457 }
6458
6459 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6460 {
6461 return kvm_x86_ops->interrupt_allowed(vcpu);
6462 }
6463
6464 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6465 {
6466 unsigned long current_rip = kvm_rip_read(vcpu) +
6467 get_segment_base(vcpu, VCPU_SREG_CS);
6468
6469 return current_rip == linear_rip;
6470 }
6471 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6472
6473 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6474 {
6475 unsigned long rflags;
6476
6477 rflags = kvm_x86_ops->get_rflags(vcpu);
6478 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6479 rflags &= ~X86_EFLAGS_TF;
6480 return rflags;
6481 }
6482 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6483
6484 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6485 {
6486 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6487 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6488 rflags |= X86_EFLAGS_TF;
6489 kvm_x86_ops->set_rflags(vcpu, rflags);
6490 kvm_make_request(KVM_REQ_EVENT, vcpu);
6491 }
6492 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6493
6494 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6495 {
6496 int r;
6497
6498 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6499 is_error_page(work->page))
6500 return;
6501
6502 r = kvm_mmu_reload(vcpu);
6503 if (unlikely(r))
6504 return;
6505
6506 if (!vcpu->arch.mmu.direct_map &&
6507 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6508 return;
6509
6510 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6511 }
6512
6513 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6514 {
6515 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6516 }
6517
6518 static inline u32 kvm_async_pf_next_probe(u32 key)
6519 {
6520 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6521 }
6522
6523 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6524 {
6525 u32 key = kvm_async_pf_hash_fn(gfn);
6526
6527 while (vcpu->arch.apf.gfns[key] != ~0)
6528 key = kvm_async_pf_next_probe(key);
6529
6530 vcpu->arch.apf.gfns[key] = gfn;
6531 }
6532
6533 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6534 {
6535 int i;
6536 u32 key = kvm_async_pf_hash_fn(gfn);
6537
6538 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6539 (vcpu->arch.apf.gfns[key] != gfn &&
6540 vcpu->arch.apf.gfns[key] != ~0); i++)
6541 key = kvm_async_pf_next_probe(key);
6542
6543 return key;
6544 }
6545
6546 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6547 {
6548 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6549 }
6550
6551 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6552 {
6553 u32 i, j, k;
6554
6555 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6556 while (true) {
6557 vcpu->arch.apf.gfns[i] = ~0;
6558 do {
6559 j = kvm_async_pf_next_probe(j);
6560 if (vcpu->arch.apf.gfns[j] == ~0)
6561 return;
6562 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6563 /*
6564 * k lies cyclically in ]i,j]
6565 * | i.k.j |
6566 * |....j i.k.| or |.k..j i...|
6567 */
6568 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6569 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6570 i = j;
6571 }
6572 }
6573
6574 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6575 {
6576
6577 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6578 sizeof(val));
6579 }
6580
6581 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6582 struct kvm_async_pf *work)
6583 {
6584 struct x86_exception fault;
6585
6586 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6587 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6588
6589 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6590 (vcpu->arch.apf.send_user_only &&
6591 kvm_x86_ops->get_cpl(vcpu) == 0))
6592 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6593 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6594 fault.vector = PF_VECTOR;
6595 fault.error_code_valid = true;
6596 fault.error_code = 0;
6597 fault.nested_page_fault = false;
6598 fault.address = work->arch.token;
6599 kvm_inject_page_fault(vcpu, &fault);
6600 }
6601 }
6602
6603 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6604 struct kvm_async_pf *work)
6605 {
6606 struct x86_exception fault;
6607
6608 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6609 if (is_error_page(work->page))
6610 work->arch.token = ~0; /* broadcast wakeup */
6611 else
6612 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6613
6614 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6615 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6616 fault.vector = PF_VECTOR;
6617 fault.error_code_valid = true;
6618 fault.error_code = 0;
6619 fault.nested_page_fault = false;
6620 fault.address = work->arch.token;
6621 kvm_inject_page_fault(vcpu, &fault);
6622 }
6623 vcpu->arch.apf.halted = false;
6624 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6625 }
6626
6627 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6628 {
6629 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6630 return true;
6631 else
6632 return !kvm_event_needs_reinjection(vcpu) &&
6633 kvm_x86_ops->interrupt_allowed(vcpu);
6634 }
6635
6636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);