]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: check PIR even for vCPUs with disabled APICv
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * If neither the current CR3 nor any of the prev_roots use the given
1096 * PCID, then nothing needs to be done here because a resync will
1097 * happen anyway before switching to any other CR3.
1098 */
1099 if (kvm_get_active_pcid(vcpu) == pcid) {
1100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 }
1103
1104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 bool skip_tlb_flush = false;
1114 unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118 if (pcid_enabled) {
1119 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 pcid = cr3 & X86_CR3_PCID_MASK;
1122 }
1123 #endif
1124
1125 /* PDPTRs are always reloaded for PAE paging. */
1126 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 goto handle_tlb_flush;
1128
1129 /*
1130 * Do not condition the GPA check on long mode, this helper is used to
1131 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 * the current vCPU mode is accurate.
1133 */
1134 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 return 1;
1136
1137 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 return 1;
1139
1140 if (cr3 != kvm_read_cr3(vcpu))
1141 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143 vcpu->arch.cr3 = cr3;
1144 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147 /*
1148 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1150 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 * i.e. only PCID=0 can be relevant.
1153 */
1154 if (!skip_tlb_flush)
1155 kvm_invalidate_pcid(vcpu, pcid);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 if (cr8 & CR8_RESERVED_BITS)
1164 return 1;
1165 if (lapic_in_kernel(vcpu))
1166 kvm_lapic_set_tpr(vcpu, cr8);
1167 else
1168 vcpu->arch.cr8 = cr8;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 if (lapic_in_kernel(vcpu))
1176 return kvm_lapic_get_cr8(vcpu);
1177 else
1178 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 int i;
1185
1186 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 unsigned long dr7;
1195
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 dr7 = vcpu->arch.guest_debug_dr7;
1198 else
1199 dr7 = vcpu->arch.dr7;
1200 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 if (dr7 & DR7_BP_EN_MASK)
1203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 u64 fixed = DR6_FIXED_1;
1210
1211 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 fixed |= DR6_RTM;
1213
1214 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 fixed |= DR6_BUS_LOCK;
1216 return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223 switch (dr) {
1224 case 0 ... 3:
1225 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 vcpu->arch.eff_db[dr] = val;
1228 break;
1229 case 4:
1230 case 6:
1231 if (!kvm_dr6_valid(val))
1232 return 1; /* #GP */
1233 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 break;
1235 case 5:
1236 default: /* 7 */
1237 if (!kvm_dr7_valid(val))
1238 return 1; /* #GP */
1239 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 kvm_update_dr7(vcpu);
1241 break;
1242 }
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 break;
1256 case 4:
1257 case 6:
1258 *val = vcpu->arch.dr6;
1259 break;
1260 case 5:
1261 default: /* 7 */
1262 *val = vcpu->arch.dr7;
1263 break;
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 u32 ecx = kvm_rcx_read(vcpu);
1271 u64 data;
1272
1273 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 kvm_inject_gp(vcpu, 0);
1275 return 1;
1276 }
1277
1278 kvm_rax_write(vcpu, (u32)data);
1279 kvm_rdx_write(vcpu, data >> 32);
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296 static const u32 msrs_to_save_all[] = {
1297 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 MSR_IA32_SPEC_CTRL,
1305 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 MSR_IA32_UMWAIT_CONTROL,
1312
1313 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342 };
1343
1344 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345 static unsigned num_msrs_to_save;
1346
1347 static const u32 emulated_msrs_all[] = {
1348 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355 HV_X64_MSR_RESET,
1356 HV_X64_MSR_VP_INDEX,
1357 HV_X64_MSR_VP_RUNTIME,
1358 HV_X64_MSR_SCONTROL,
1359 HV_X64_MSR_STIMER0_CONFIG,
1360 HV_X64_MSR_VP_ASSIST_PAGE,
1361 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362 HV_X64_MSR_TSC_EMULATION_STATUS,
1363 HV_X64_MSR_SYNDBG_OPTIONS,
1364 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371 MSR_IA32_TSC_ADJUST,
1372 MSR_IA32_TSC_DEADLINE,
1373 MSR_IA32_ARCH_CAPABILITIES,
1374 MSR_IA32_PERF_CAPABILITIES,
1375 MSR_IA32_MISC_ENABLE,
1376 MSR_IA32_MCG_STATUS,
1377 MSR_IA32_MCG_CTL,
1378 MSR_IA32_MCG_EXT_CTL,
1379 MSR_IA32_SMBASE,
1380 MSR_SMI_COUNT,
1381 MSR_PLATFORM_INFO,
1382 MSR_MISC_FEATURES_ENABLES,
1383 MSR_AMD64_VIRT_SPEC_CTRL,
1384 MSR_IA32_POWER_CTL,
1385 MSR_IA32_UCODE_REV,
1386
1387 /*
1388 * The following list leaves out MSRs whose values are determined
1389 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390 * We always support the "true" VMX control MSRs, even if the host
1391 * processor does not, so I am putting these registers here rather
1392 * than in msrs_to_save_all.
1393 */
1394 MSR_IA32_VMX_BASIC,
1395 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399 MSR_IA32_VMX_MISC,
1400 MSR_IA32_VMX_CR0_FIXED0,
1401 MSR_IA32_VMX_CR4_FIXED0,
1402 MSR_IA32_VMX_VMCS_ENUM,
1403 MSR_IA32_VMX_PROCBASED_CTLS2,
1404 MSR_IA32_VMX_EPT_VPID_CAP,
1405 MSR_IA32_VMX_VMFUNC,
1406
1407 MSR_K7_HWCR,
1408 MSR_KVM_POLL_CONTROL,
1409 };
1410
1411 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412 static unsigned num_emulated_msrs;
1413
1414 /*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418 static const u32 msr_based_features_all[] = {
1419 MSR_IA32_VMX_BASIC,
1420 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421 MSR_IA32_VMX_PINBASED_CTLS,
1422 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423 MSR_IA32_VMX_PROCBASED_CTLS,
1424 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425 MSR_IA32_VMX_EXIT_CTLS,
1426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427 MSR_IA32_VMX_ENTRY_CTLS,
1428 MSR_IA32_VMX_MISC,
1429 MSR_IA32_VMX_CR0_FIXED0,
1430 MSR_IA32_VMX_CR0_FIXED1,
1431 MSR_IA32_VMX_CR4_FIXED0,
1432 MSR_IA32_VMX_CR4_FIXED1,
1433 MSR_IA32_VMX_VMCS_ENUM,
1434 MSR_IA32_VMX_PROCBASED_CTLS2,
1435 MSR_IA32_VMX_EPT_VPID_CAP,
1436 MSR_IA32_VMX_VMFUNC,
1437
1438 MSR_F10H_DECFG,
1439 MSR_IA32_UCODE_REV,
1440 MSR_IA32_ARCH_CAPABILITIES,
1441 MSR_IA32_PERF_CAPABILITIES,
1442 };
1443
1444 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445 static unsigned int num_msr_based_features;
1446
1447 static u64 kvm_get_arch_capabilities(void)
1448 {
1449 u64 data = 0;
1450
1451 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454 /*
1455 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456 * the nested hypervisor runs with NX huge pages. If it is not,
1457 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458 * L1 guests, so it need not worry about its own (L2) guests.
1459 */
1460 data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462 /*
1463 * If we're doing cache flushes (either "always" or "cond")
1464 * we will do one whenever the guest does a vmlaunch/vmresume.
1465 * If an outer hypervisor is doing the cache flush for us
1466 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467 * capability to the guest too, and if EPT is disabled we're not
1468 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1469 * require a nested hypervisor to do a flush of its own.
1470 */
1471 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475 data |= ARCH_CAP_RDCL_NO;
1476 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477 data |= ARCH_CAP_SSB_NO;
1478 if (!boot_cpu_has_bug(X86_BUG_MDS))
1479 data |= ARCH_CAP_MDS_NO;
1480
1481 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482 /*
1483 * If RTM=0 because the kernel has disabled TSX, the host might
1484 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1485 * and therefore knows that there cannot be TAA) but keep
1486 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487 * and we want to allow migrating those guests to tsx=off hosts.
1488 */
1489 data &= ~ARCH_CAP_TAA_NO;
1490 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491 data |= ARCH_CAP_TAA_NO;
1492 } else {
1493 /*
1494 * Nothing to do here; we emulate TSX_CTRL if present on the
1495 * host so the guest can choose between disabling TSX or
1496 * using VERW to clear CPU buffers.
1497 */
1498 }
1499
1500 return data;
1501 }
1502
1503 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504 {
1505 switch (msr->index) {
1506 case MSR_IA32_ARCH_CAPABILITIES:
1507 msr->data = kvm_get_arch_capabilities();
1508 break;
1509 case MSR_IA32_UCODE_REV:
1510 rdmsrl_safe(msr->index, &msr->data);
1511 break;
1512 default:
1513 return static_call(kvm_x86_get_msr_feature)(msr);
1514 }
1515 return 0;
1516 }
1517
1518 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520 struct kvm_msr_entry msr;
1521 int r;
1522
1523 msr.index = index;
1524 r = kvm_get_msr_feature(&msr);
1525
1526 if (r == KVM_MSR_RET_INVALID) {
1527 /* Unconditionally clear the output for simplicity */
1528 *data = 0;
1529 if (kvm_msr_ignored_check(index, 0, false))
1530 r = 0;
1531 }
1532
1533 if (r)
1534 return r;
1535
1536 *data = msr.data;
1537
1538 return 0;
1539 }
1540
1541 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542 {
1543 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544 return false;
1545
1546 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547 return false;
1548
1549 if (efer & (EFER_LME | EFER_LMA) &&
1550 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551 return false;
1552
1553 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554 return false;
1555
1556 return true;
1557
1558 }
1559 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560 {
1561 if (efer & efer_reserved_bits)
1562 return false;
1563
1564 return __kvm_valid_efer(vcpu, efer);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569 {
1570 u64 old_efer = vcpu->arch.efer;
1571 u64 efer = msr_info->data;
1572 int r;
1573
1574 if (efer & efer_reserved_bits)
1575 return 1;
1576
1577 if (!msr_info->host_initiated) {
1578 if (!__kvm_valid_efer(vcpu, efer))
1579 return 1;
1580
1581 if (is_paging(vcpu) &&
1582 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583 return 1;
1584 }
1585
1586 efer &= ~EFER_LMA;
1587 efer |= vcpu->arch.efer & EFER_LMA;
1588
1589 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590 if (r) {
1591 WARN_ON(r > 0);
1592 return r;
1593 }
1594
1595 /* Update reserved bits */
1596 if ((efer ^ old_efer) & EFER_NX)
1597 kvm_mmu_reset_context(vcpu);
1598
1599 return 0;
1600 }
1601
1602 void kvm_enable_efer_bits(u64 mask)
1603 {
1604 efer_reserved_bits &= ~mask;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609 {
1610 struct kvm_x86_msr_filter *msr_filter;
1611 struct msr_bitmap_range *ranges;
1612 struct kvm *kvm = vcpu->kvm;
1613 bool allowed;
1614 int idx;
1615 u32 i;
1616
1617 /* x2APIC MSRs do not support filtering. */
1618 if (index >= 0x800 && index <= 0x8ff)
1619 return true;
1620
1621 idx = srcu_read_lock(&kvm->srcu);
1622
1623 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624 if (!msr_filter) {
1625 allowed = true;
1626 goto out;
1627 }
1628
1629 allowed = msr_filter->default_allow;
1630 ranges = msr_filter->ranges;
1631
1632 for (i = 0; i < msr_filter->count; i++) {
1633 u32 start = ranges[i].base;
1634 u32 end = start + ranges[i].nmsrs;
1635 u32 flags = ranges[i].flags;
1636 unsigned long *bitmap = ranges[i].bitmap;
1637
1638 if ((index >= start) && (index < end) && (flags & type)) {
1639 allowed = !!test_bit(index - start, bitmap);
1640 break;
1641 }
1642 }
1643
1644 out:
1645 srcu_read_unlock(&kvm->srcu, idx);
1646
1647 return allowed;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651 /*
1652 * Write @data into the MSR specified by @index. Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658 bool host_initiated)
1659 {
1660 struct msr_data msr;
1661
1662 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663 return KVM_MSR_RET_FILTERED;
1664
1665 switch (index) {
1666 case MSR_FS_BASE:
1667 case MSR_GS_BASE:
1668 case MSR_KERNEL_GS_BASE:
1669 case MSR_CSTAR:
1670 case MSR_LSTAR:
1671 if (is_noncanonical_address(data, vcpu))
1672 return 1;
1673 break;
1674 case MSR_IA32_SYSENTER_EIP:
1675 case MSR_IA32_SYSENTER_ESP:
1676 /*
1677 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678 * non-canonical address is written on Intel but not on
1679 * AMD (which ignores the top 32-bits, because it does
1680 * not implement 64-bit SYSENTER).
1681 *
1682 * 64-bit code should hence be able to write a non-canonical
1683 * value on AMD. Making the address canonical ensures that
1684 * vmentry does not fail on Intel after writing a non-canonical
1685 * value, and that something deterministic happens if the guest
1686 * invokes 64-bit SYSENTER.
1687 */
1688 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689 break;
1690 case MSR_TSC_AUX:
1691 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692 return 1;
1693
1694 if (!host_initiated &&
1695 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697 return 1;
1698
1699 /*
1700 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701 * incomplete and conflicting architectural behavior. Current
1702 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703 * reserved and always read as zeros. Enforce Intel's reserved
1704 * bits check if and only if the guest CPU is Intel, and clear
1705 * the bits in all other cases. This ensures cross-vendor
1706 * migration will provide consistent behavior for the guest.
1707 */
1708 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709 return 1;
1710
1711 data = (u32)data;
1712 break;
1713 }
1714
1715 msr.data = data;
1716 msr.index = index;
1717 msr.host_initiated = host_initiated;
1718
1719 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720 }
1721
1722 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723 u32 index, u64 data, bool host_initiated)
1724 {
1725 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727 if (ret == KVM_MSR_RET_INVALID)
1728 if (kvm_msr_ignored_check(index, data, true))
1729 ret = 0;
1730
1731 return ret;
1732 }
1733
1734 /*
1735 * Read the MSR specified by @index into @data. Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741 bool host_initiated)
1742 {
1743 struct msr_data msr;
1744 int ret;
1745
1746 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747 return KVM_MSR_RET_FILTERED;
1748
1749 switch (index) {
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758 break;
1759 }
1760
1761 msr.index = index;
1762 msr.host_initiated = host_initiated;
1763
1764 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765 if (!ret)
1766 *data = msr.data;
1767 return ret;
1768 }
1769
1770 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771 u32 index, u64 *data, bool host_initiated)
1772 {
1773 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775 if (ret == KVM_MSR_RET_INVALID) {
1776 /* Unconditionally clear *data for simplicity */
1777 *data = 0;
1778 if (kvm_msr_ignored_check(index, 0, false))
1779 ret = 0;
1780 }
1781
1782 return ret;
1783 }
1784
1785 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786 {
1787 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792 {
1793 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798 {
1799 int err = vcpu->run->msr.error;
1800 if (!err) {
1801 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803 }
1804
1805 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806 }
1807
1808 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811 }
1812
1813 static u64 kvm_msr_reason(int r)
1814 {
1815 switch (r) {
1816 case KVM_MSR_RET_INVALID:
1817 return KVM_MSR_EXIT_REASON_UNKNOWN;
1818 case KVM_MSR_RET_FILTERED:
1819 return KVM_MSR_EXIT_REASON_FILTER;
1820 default:
1821 return KVM_MSR_EXIT_REASON_INVAL;
1822 }
1823 }
1824
1825 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826 u32 exit_reason, u64 data,
1827 int (*completion)(struct kvm_vcpu *vcpu),
1828 int r)
1829 {
1830 u64 msr_reason = kvm_msr_reason(r);
1831
1832 /* Check if the user wanted to know about this MSR fault */
1833 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834 return 0;
1835
1836 vcpu->run->exit_reason = exit_reason;
1837 vcpu->run->msr.error = 0;
1838 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839 vcpu->run->msr.reason = msr_reason;
1840 vcpu->run->msr.index = index;
1841 vcpu->run->msr.data = data;
1842 vcpu->arch.complete_userspace_io = completion;
1843
1844 return 1;
1845 }
1846
1847 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848 {
1849 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850 complete_emulated_rdmsr, r);
1851 }
1852
1853 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854 {
1855 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856 complete_emulated_wrmsr, r);
1857 }
1858
1859 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860 {
1861 u32 ecx = kvm_rcx_read(vcpu);
1862 u64 data;
1863 int r;
1864
1865 r = kvm_get_msr(vcpu, ecx, &data);
1866
1867 /* MSR read failed? See if we should ask user space */
1868 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869 /* Bounce to user space */
1870 return 0;
1871 }
1872
1873 if (!r) {
1874 trace_kvm_msr_read(ecx, data);
1875
1876 kvm_rax_write(vcpu, data & -1u);
1877 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878 } else {
1879 trace_kvm_msr_read_ex(ecx);
1880 }
1881
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887 {
1888 u32 ecx = kvm_rcx_read(vcpu);
1889 u64 data = kvm_read_edx_eax(vcpu);
1890 int r;
1891
1892 r = kvm_set_msr(vcpu, ecx, data);
1893
1894 /* MSR write failed? See if we should ask user space */
1895 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896 /* Bounce to user space */
1897 return 0;
1898
1899 /* Signal all other negative errors to userspace */
1900 if (r < 0)
1901 return r;
1902
1903 if (!r)
1904 trace_kvm_msr_write(ecx, data);
1905 else
1906 trace_kvm_msr_write_ex(ecx, data);
1907
1908 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913 {
1914 return kvm_skip_emulated_instruction(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919 {
1920 /* Treat an INVD instruction as a NOP and just skip it. */
1921 return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926 {
1927 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928 return kvm_emulate_as_nop(vcpu);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933 {
1934 kvm_queue_exception(vcpu, UD_VECTOR);
1935 return 1;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940 {
1941 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942 return kvm_emulate_as_nop(vcpu);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947 {
1948 xfer_to_guest_mode_prepare();
1949 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950 xfer_to_guest_mode_work_pending();
1951 }
1952
1953 /*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961 {
1962 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963 return 1;
1964
1965 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970 data &= ~(1 << 12);
1971 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974 trace_kvm_apic_write(APIC_ICR, (u32)data);
1975 return 0;
1976 }
1977
1978 return 1;
1979 }
1980
1981 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982 {
1983 if (!kvm_can_use_hv_timer(vcpu))
1984 return 1;
1985
1986 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987 return 0;
1988 }
1989
1990 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991 {
1992 u32 msr = kvm_rcx_read(vcpu);
1993 u64 data;
1994 fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996 switch (msr) {
1997 case APIC_BASE_MSR + (APIC_ICR >> 4):
1998 data = kvm_read_edx_eax(vcpu);
1999 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000 kvm_skip_emulated_instruction(vcpu);
2001 ret = EXIT_FASTPATH_EXIT_HANDLED;
2002 }
2003 break;
2004 case MSR_IA32_TSC_DEADLINE:
2005 data = kvm_read_edx_eax(vcpu);
2006 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007 kvm_skip_emulated_instruction(vcpu);
2008 ret = EXIT_FASTPATH_REENTER_GUEST;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (ret != EXIT_FASTPATH_NONE)
2016 trace_kvm_msr_write(msr, data);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022 /*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026 {
2027 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028 }
2029
2030 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031 {
2032 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033 }
2034
2035 #ifdef CONFIG_X86_64
2036 struct pvclock_clock {
2037 int vclock_mode;
2038 u64 cycle_last;
2039 u64 mask;
2040 u32 mult;
2041 u32 shift;
2042 u64 base_cycles;
2043 u64 offset;
2044 };
2045
2046 struct pvclock_gtod_data {
2047 seqcount_t seq;
2048
2049 struct pvclock_clock clock; /* extract of a clocksource struct */
2050 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052 ktime_t offs_boot;
2053 u64 wall_time_sec;
2054 };
2055
2056 static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058 static void update_pvclock_gtod(struct timekeeper *tk)
2059 {
2060 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062 write_seqcount_begin(&vdata->seq);
2063
2064 /* copy pvclock gtod data */
2065 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2066 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2067 vdata->clock.mask = tk->tkr_mono.mask;
2068 vdata->clock.mult = tk->tkr_mono.mult;
2069 vdata->clock.shift = tk->tkr_mono.shift;
2070 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2071 vdata->clock.offset = tk->tkr_mono.base;
2072
2073 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2074 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2075 vdata->raw_clock.mask = tk->tkr_raw.mask;
2076 vdata->raw_clock.mult = tk->tkr_raw.mult;
2077 vdata->raw_clock.shift = tk->tkr_raw.shift;
2078 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2079 vdata->raw_clock.offset = tk->tkr_raw.base;
2080
2081 vdata->wall_time_sec = tk->xtime_sec;
2082
2083 vdata->offs_boot = tk->offs_boot;
2084
2085 write_seqcount_end(&vdata->seq);
2086 }
2087
2088 static s64 get_kvmclock_base_ns(void)
2089 {
2090 /* Count up from boot time, but with the frequency of the raw clock. */
2091 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092 }
2093 #else
2094 static s64 get_kvmclock_base_ns(void)
2095 {
2096 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2097 return ktime_get_boottime_ns();
2098 }
2099 #endif
2100
2101 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102 {
2103 int version;
2104 int r;
2105 struct pvclock_wall_clock wc;
2106 u32 wc_sec_hi;
2107 u64 wall_nsec;
2108
2109 if (!wall_clock)
2110 return;
2111
2112 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113 if (r)
2114 return;
2115
2116 if (version & 1)
2117 ++version; /* first time write, random junk */
2118
2119 ++version;
2120
2121 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122 return;
2123
2124 /*
2125 * The guest calculates current wall clock time by adding
2126 * system time (updated by kvm_guest_time_update below) to the
2127 * wall clock specified here. We do the reverse here.
2128 */
2129 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131 wc.nsec = do_div(wall_nsec, 1000000000);
2132 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133 wc.version = version;
2134
2135 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137 if (sec_hi_ofs) {
2138 wc_sec_hi = wall_nsec >> 32;
2139 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140 &wc_sec_hi, sizeof(wc_sec_hi));
2141 }
2142
2143 version++;
2144 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145 }
2146
2147 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148 bool old_msr, bool host_initiated)
2149 {
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152 if (vcpu->vcpu_id == 0 && !host_initiated) {
2153 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157 }
2158
2159 vcpu->arch.time = system_time;
2160 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162 /* we verify if the enable bit is set... */
2163 vcpu->arch.pv_time_enabled = false;
2164 if (!(system_time & 1))
2165 return;
2166
2167 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168 &vcpu->arch.pv_time, system_time & ~1ULL,
2169 sizeof(struct pvclock_vcpu_time_info)))
2170 vcpu->arch.pv_time_enabled = true;
2171
2172 return;
2173 }
2174
2175 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176 {
2177 do_shl32_div32(dividend, divisor);
2178 return dividend;
2179 }
2180
2181 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182 s8 *pshift, u32 *pmultiplier)
2183 {
2184 uint64_t scaled64;
2185 int32_t shift = 0;
2186 uint64_t tps64;
2187 uint32_t tps32;
2188
2189 tps64 = base_hz;
2190 scaled64 = scaled_hz;
2191 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192 tps64 >>= 1;
2193 shift--;
2194 }
2195
2196 tps32 = (uint32_t)tps64;
2197 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199 scaled64 >>= 1;
2200 else
2201 tps32 <<= 1;
2202 shift++;
2203 }
2204
2205 *pshift = shift;
2206 *pmultiplier = div_frac(scaled64, tps32);
2207 }
2208
2209 #ifdef CONFIG_X86_64
2210 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211 #endif
2212
2213 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214 static unsigned long max_tsc_khz;
2215
2216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217 {
2218 u64 v = (u64)khz * (1000000 + ppm);
2219 do_div(v, 1000000);
2220 return v;
2221 }
2222
2223 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226 {
2227 u64 ratio;
2228
2229 /* Guest TSC same frequency as host TSC? */
2230 if (!scale) {
2231 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232 return 0;
2233 }
2234
2235 /* TSC scaling supported? */
2236 if (!kvm_has_tsc_control) {
2237 if (user_tsc_khz > tsc_khz) {
2238 vcpu->arch.tsc_catchup = 1;
2239 vcpu->arch.tsc_always_catchup = 1;
2240 return 0;
2241 } else {
2242 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243 return -1;
2244 }
2245 }
2246
2247 /* TSC scaling required - calculate ratio */
2248 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249 user_tsc_khz, tsc_khz);
2250
2251 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253 user_tsc_khz);
2254 return -1;
2255 }
2256
2257 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258 return 0;
2259 }
2260
2261 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262 {
2263 u32 thresh_lo, thresh_hi;
2264 int use_scaling = 0;
2265
2266 /* tsc_khz can be zero if TSC calibration fails */
2267 if (user_tsc_khz == 0) {
2268 /* set tsc_scaling_ratio to a safe value */
2269 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270 return -1;
2271 }
2272
2273 /* Compute a scale to convert nanoseconds in TSC cycles */
2274 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275 &vcpu->arch.virtual_tsc_shift,
2276 &vcpu->arch.virtual_tsc_mult);
2277 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279 /*
2280 * Compute the variation in TSC rate which is acceptable
2281 * within the range of tolerance and decide if the
2282 * rate being applied is within that bounds of the hardware
2283 * rate. If so, no scaling or compensation need be done.
2284 */
2285 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289 use_scaling = 1;
2290 }
2291 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292 }
2293
2294 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295 {
2296 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297 vcpu->arch.virtual_tsc_mult,
2298 vcpu->arch.virtual_tsc_shift);
2299 tsc += vcpu->arch.this_tsc_write;
2300 return tsc;
2301 }
2302
2303 static inline int gtod_is_based_on_tsc(int mode)
2304 {
2305 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306 }
2307
2308 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309 {
2310 #ifdef CONFIG_X86_64
2311 bool vcpus_matched;
2312 struct kvm_arch *ka = &vcpu->kvm->arch;
2313 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316 atomic_read(&vcpu->kvm->online_vcpus));
2317
2318 /*
2319 * Once the masterclock is enabled, always perform request in
2320 * order to update it.
2321 *
2322 * In order to enable masterclock, the host clocksource must be TSC
2323 * and the vcpus need to have matched TSCs. When that happens,
2324 * perform request to enable masterclock.
2325 */
2326 if (ka->use_master_clock ||
2327 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331 atomic_read(&vcpu->kvm->online_vcpus),
2332 ka->use_master_clock, gtod->clock.vclock_mode);
2333 #endif
2334 }
2335
2336 /*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347 {
2348 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349 }
2350
2351 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352 {
2353 u64 _tsc = tsc;
2354
2355 if (ratio != kvm_default_tsc_scaling_ratio)
2356 _tsc = __scale_tsc(ratio, tsc);
2357
2358 return _tsc;
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363 {
2364 u64 tsc;
2365
2366 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368 return target_tsc - tsc;
2369 }
2370
2371 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372 {
2373 return vcpu->arch.l1_tsc_offset +
2374 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379 {
2380 u64 nested_offset;
2381
2382 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383 nested_offset = l1_offset;
2384 else
2385 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 nested_offset += l2_offset;
2389 return nested_offset;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394 {
2395 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397 kvm_tsc_scaling_ratio_frac_bits);
2398
2399 return l1_multiplier;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404 {
2405 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406 vcpu->arch.l1_tsc_offset,
2407 l1_offset);
2408
2409 vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411 /*
2412 * If we are here because L1 chose not to trap WRMSR to TSC then
2413 * according to the spec this should set L1's TSC (as opposed to
2414 * setting L1's offset for L2).
2415 */
2416 if (is_guest_mode(vcpu))
2417 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418 l1_offset,
2419 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421 else
2422 vcpu->arch.tsc_offset = l1_offset;
2423
2424 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425 }
2426
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428 {
2429 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431 /* Userspace is changing the multiplier while L2 is active */
2432 if (is_guest_mode(vcpu))
2433 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434 l1_multiplier,
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439 if (kvm_has_tsc_control)
2440 static_call(kvm_x86_write_tsc_multiplier)(
2441 vcpu, vcpu->arch.tsc_scaling_ratio);
2442 }
2443
2444 static inline bool kvm_check_tsc_unstable(void)
2445 {
2446 #ifdef CONFIG_X86_64
2447 /*
2448 * TSC is marked unstable when we're running on Hyper-V,
2449 * 'TSC page' clocksource is good.
2450 */
2451 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452 return false;
2453 #endif
2454 return check_tsc_unstable();
2455 }
2456
2457 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458 {
2459 struct kvm *kvm = vcpu->kvm;
2460 u64 offset, ns, elapsed;
2461 unsigned long flags;
2462 bool matched;
2463 bool already_matched;
2464 bool synchronizing = false;
2465
2466 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468 ns = get_kvmclock_base_ns();
2469 elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471 if (vcpu->arch.virtual_tsc_khz) {
2472 if (data == 0) {
2473 /*
2474 * detection of vcpu initialization -- need to sync
2475 * with other vCPUs. This particularly helps to keep
2476 * kvm_clock stable after CPU hotplug
2477 */
2478 synchronizing = true;
2479 } else {
2480 u64 tsc_exp = kvm->arch.last_tsc_write +
2481 nsec_to_cycles(vcpu, elapsed);
2482 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483 /*
2484 * Special case: TSC write with a small delta (1 second)
2485 * of virtual cycle time against real time is
2486 * interpreted as an attempt to synchronize the CPU.
2487 */
2488 synchronizing = data < tsc_exp + tsc_hz &&
2489 data + tsc_hz > tsc_exp;
2490 }
2491 }
2492
2493 /*
2494 * For a reliable TSC, we can match TSC offsets, and for an unstable
2495 * TSC, we add elapsed time in this computation. We could let the
2496 * compensation code attempt to catch up if we fall behind, but
2497 * it's better to try to match offsets from the beginning.
2498 */
2499 if (synchronizing &&
2500 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501 if (!kvm_check_tsc_unstable()) {
2502 offset = kvm->arch.cur_tsc_offset;
2503 } else {
2504 u64 delta = nsec_to_cycles(vcpu, elapsed);
2505 data += delta;
2506 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507 }
2508 matched = true;
2509 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510 } else {
2511 /*
2512 * We split periods of matched TSC writes into generations.
2513 * For each generation, we track the original measured
2514 * nanosecond time, offset, and write, so if TSCs are in
2515 * sync, we can match exact offset, and if not, we can match
2516 * exact software computation in compute_guest_tsc()
2517 *
2518 * These values are tracked in kvm->arch.cur_xxx variables.
2519 */
2520 kvm->arch.cur_tsc_generation++;
2521 kvm->arch.cur_tsc_nsec = ns;
2522 kvm->arch.cur_tsc_write = data;
2523 kvm->arch.cur_tsc_offset = offset;
2524 matched = false;
2525 }
2526
2527 /*
2528 * We also track th most recent recorded KHZ, write and time to
2529 * allow the matching interval to be extended at each write.
2530 */
2531 kvm->arch.last_tsc_nsec = ns;
2532 kvm->arch.last_tsc_write = data;
2533 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535 vcpu->arch.last_guest_tsc = data;
2536
2537 /* Keep track of which generation this VCPU has synchronized to */
2538 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542 kvm_vcpu_write_tsc_offset(vcpu, offset);
2543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546 if (!matched) {
2547 kvm->arch.nr_vcpus_matched_tsc = 0;
2548 } else if (!already_matched) {
2549 kvm->arch.nr_vcpus_matched_tsc++;
2550 }
2551
2552 kvm_track_tsc_matching(vcpu);
2553 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554 }
2555
2556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557 s64 adjustment)
2558 {
2559 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561 }
2562
2563 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564 {
2565 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566 WARN_ON(adjustment < 0);
2567 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568 vcpu->arch.l1_tsc_scaling_ratio);
2569 adjust_tsc_offset_guest(vcpu, adjustment);
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573
2574 static u64 read_tsc(void)
2575 {
2576 u64 ret = (u64)rdtsc_ordered();
2577 u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579 if (likely(ret >= last))
2580 return ret;
2581
2582 /*
2583 * GCC likes to generate cmov here, but this branch is extremely
2584 * predictable (it's just a function of time and the likely is
2585 * very likely) and there's a data dependence, so force GCC
2586 * to generate a branch instead. I don't barrier() because
2587 * we don't actually need a barrier, and if this function
2588 * ever gets inlined it will generate worse code.
2589 */
2590 asm volatile ("");
2591 return last;
2592 }
2593
2594 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595 int *mode)
2596 {
2597 long v;
2598 u64 tsc_pg_val;
2599
2600 switch (clock->vclock_mode) {
2601 case VDSO_CLOCKMODE_HVCLOCK:
2602 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603 tsc_timestamp);
2604 if (tsc_pg_val != U64_MAX) {
2605 /* TSC page valid */
2606 *mode = VDSO_CLOCKMODE_HVCLOCK;
2607 v = (tsc_pg_val - clock->cycle_last) &
2608 clock->mask;
2609 } else {
2610 /* TSC page invalid */
2611 *mode = VDSO_CLOCKMODE_NONE;
2612 }
2613 break;
2614 case VDSO_CLOCKMODE_TSC:
2615 *mode = VDSO_CLOCKMODE_TSC;
2616 *tsc_timestamp = read_tsc();
2617 v = (*tsc_timestamp - clock->cycle_last) &
2618 clock->mask;
2619 break;
2620 default:
2621 *mode = VDSO_CLOCKMODE_NONE;
2622 }
2623
2624 if (*mode == VDSO_CLOCKMODE_NONE)
2625 *tsc_timestamp = v = 0;
2626
2627 return v * clock->mult;
2628 }
2629
2630 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631 {
2632 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633 unsigned long seq;
2634 int mode;
2635 u64 ns;
2636
2637 do {
2638 seq = read_seqcount_begin(&gtod->seq);
2639 ns = gtod->raw_clock.base_cycles;
2640 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641 ns >>= gtod->raw_clock.shift;
2642 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644 *t = ns;
2645
2646 return mode;
2647 }
2648
2649 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650 {
2651 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652 unsigned long seq;
2653 int mode;
2654 u64 ns;
2655
2656 do {
2657 seq = read_seqcount_begin(&gtod->seq);
2658 ts->tv_sec = gtod->wall_time_sec;
2659 ns = gtod->clock.base_cycles;
2660 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661 ns >>= gtod->clock.shift;
2662 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665 ts->tv_nsec = ns;
2666
2667 return mode;
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672 {
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 return false;
2676
2677 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678 tsc_timestamp));
2679 }
2680
2681 /* returns true if host is using TSC based clocksource */
2682 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683 u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690 }
2691 #endif
2692
2693 /*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 * VCPU0 on CPU0 | VCPU1 on CPU1
2704 *
2705 * 1. read timespec0,tsc0
2706 * 2. | timespec1 = timespec0 + N
2707 * | tsc1 = tsc0 + M
2708 * 3. transition to guest | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2711 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 * - ret0 < ret1
2716 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 * ...
2718 * - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735 {
2736 #ifdef CONFIG_X86_64
2737 struct kvm_arch *ka = &kvm->arch;
2738 int vclock_mode;
2739 bool host_tsc_clocksource, vcpus_matched;
2740
2741 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742 atomic_read(&kvm->online_vcpus));
2743
2744 /*
2745 * If the host uses TSC clock, then passthrough TSC as stable
2746 * to the guest.
2747 */
2748 host_tsc_clocksource = kvm_get_time_and_clockread(
2749 &ka->master_kernel_ns,
2750 &ka->master_cycle_now);
2751
2752 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753 && !ka->backwards_tsc_observed
2754 && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756 if (ka->use_master_clock)
2757 atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761 vcpus_matched);
2762 #endif
2763 }
2764
2765 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766 {
2767 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768 }
2769
2770 static void kvm_gen_update_masterclock(struct kvm *kvm)
2771 {
2772 #ifdef CONFIG_X86_64
2773 int i;
2774 struct kvm_vcpu *vcpu;
2775 struct kvm_arch *ka = &kvm->arch;
2776 unsigned long flags;
2777
2778 kvm_hv_invalidate_tsc_page(kvm);
2779
2780 kvm_make_mclock_inprogress_request(kvm);
2781
2782 /* no guest entries from this point */
2783 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784 pvclock_update_vm_gtod_copy(kvm);
2785 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787 kvm_for_each_vcpu(i, vcpu, kvm)
2788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790 /* guest entries allowed */
2791 kvm_for_each_vcpu(i, vcpu, kvm)
2792 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793 #endif
2794 }
2795
2796 u64 get_kvmclock_ns(struct kvm *kvm)
2797 {
2798 struct kvm_arch *ka = &kvm->arch;
2799 struct pvclock_vcpu_time_info hv_clock;
2800 unsigned long flags;
2801 u64 ret;
2802
2803 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804 if (!ka->use_master_clock) {
2805 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807 }
2808
2809 hv_clock.tsc_timestamp = ka->master_cycle_now;
2810 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814 get_cpu();
2815
2816 if (__this_cpu_read(cpu_tsc_khz)) {
2817 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818 &hv_clock.tsc_shift,
2819 &hv_clock.tsc_to_system_mul);
2820 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821 } else
2822 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824 put_cpu();
2825
2826 return ret;
2827 }
2828
2829 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830 struct gfn_to_hva_cache *cache,
2831 unsigned int offset)
2832 {
2833 struct kvm_vcpu_arch *vcpu = &v->arch;
2834 struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838 return;
2839
2840 /* This VCPU is paused, but it's legal for a guest to read another
2841 * VCPU's kvmclock, so we really have to follow the specification where
2842 * it says that version is odd if data is being modified, and even after
2843 * it is consistent.
2844 *
2845 * Version field updates must be kept separate. This is because
2846 * kvm_write_guest_cached might use a "rep movs" instruction, and
2847 * writes within a string instruction are weakly ordered. So there
2848 * are three writes overall.
2849 *
2850 * As a small optimization, only write the version field in the first
2851 * and third write. The vcpu->pv_time cache is still valid, because the
2852 * version field is the first in the struct.
2853 */
2854 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856 if (guest_hv_clock.version & 1)
2857 ++guest_hv_clock.version; /* first time write, random junk */
2858
2859 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860 kvm_write_guest_offset_cached(v->kvm, cache,
2861 &vcpu->hv_clock, offset,
2862 sizeof(vcpu->hv_clock.version));
2863
2864 smp_wmb();
2865
2866 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869 if (vcpu->pvclock_set_guest_stopped_request) {
2870 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871 vcpu->pvclock_set_guest_stopped_request = false;
2872 }
2873
2874 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876 kvm_write_guest_offset_cached(v->kvm, cache,
2877 &vcpu->hv_clock, offset,
2878 sizeof(vcpu->hv_clock));
2879
2880 smp_wmb();
2881
2882 vcpu->hv_clock.version++;
2883 kvm_write_guest_offset_cached(v->kvm, cache,
2884 &vcpu->hv_clock, offset,
2885 sizeof(vcpu->hv_clock.version));
2886 }
2887
2888 static int kvm_guest_time_update(struct kvm_vcpu *v)
2889 {
2890 unsigned long flags, tgt_tsc_khz;
2891 struct kvm_vcpu_arch *vcpu = &v->arch;
2892 struct kvm_arch *ka = &v->kvm->arch;
2893 s64 kernel_ns;
2894 u64 tsc_timestamp, host_tsc;
2895 u8 pvclock_flags;
2896 bool use_master_clock;
2897
2898 kernel_ns = 0;
2899 host_tsc = 0;
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906 use_master_clock = ka->use_master_clock;
2907 if (use_master_clock) {
2908 host_tsc = ka->master_cycle_now;
2909 kernel_ns = ka->master_kernel_ns;
2910 }
2911 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913 /* Keep irq disabled to prevent changes to the clock */
2914 local_irq_save(flags);
2915 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916 if (unlikely(tgt_tsc_khz == 0)) {
2917 local_irq_restore(flags);
2918 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919 return 1;
2920 }
2921 if (!use_master_clock) {
2922 host_tsc = rdtsc();
2923 kernel_ns = get_kvmclock_base_ns();
2924 }
2925
2926 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928 /*
2929 * We may have to catch up the TSC to match elapsed wall clock
2930 * time for two reasons, even if kvmclock is used.
2931 * 1) CPU could have been running below the maximum TSC rate
2932 * 2) Broken TSC compensation resets the base at each VCPU
2933 * entry to avoid unknown leaps of TSC even when running
2934 * again on the same CPU. This may cause apparent elapsed
2935 * time to disappear, and the guest to stand still or run
2936 * very slowly.
2937 */
2938 if (vcpu->tsc_catchup) {
2939 u64 tsc = compute_guest_tsc(v, kernel_ns);
2940 if (tsc > tsc_timestamp) {
2941 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942 tsc_timestamp = tsc;
2943 }
2944 }
2945
2946 local_irq_restore(flags);
2947
2948 /* With all the info we got, fill in the values */
2949
2950 if (kvm_has_tsc_control)
2951 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952 v->arch.l1_tsc_scaling_ratio);
2953
2954 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956 &vcpu->hv_clock.tsc_shift,
2957 &vcpu->hv_clock.tsc_to_system_mul);
2958 vcpu->hw_tsc_khz = tgt_tsc_khz;
2959 }
2960
2961 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963 vcpu->last_guest_tsc = tsc_timestamp;
2964
2965 /* If the host uses TSC clocksource, then it is stable */
2966 pvclock_flags = 0;
2967 if (use_master_clock)
2968 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970 vcpu->hv_clock.flags = pvclock_flags;
2971
2972 if (vcpu->pv_time_enabled)
2973 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974 if (vcpu->xen.vcpu_info_set)
2975 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976 offsetof(struct compat_vcpu_info, time));
2977 if (vcpu->xen.vcpu_time_info_set)
2978 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979 if (!v->vcpu_idx)
2980 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981 return 0;
2982 }
2983
2984 /*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000 static void kvmclock_update_fn(struct work_struct *work)
3001 {
3002 int i;
3003 struct delayed_work *dwork = to_delayed_work(work);
3004 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005 kvmclock_update_work);
3006 struct kvm *kvm = container_of(ka, struct kvm, arch);
3007 struct kvm_vcpu *vcpu;
3008
3009 kvm_for_each_vcpu(i, vcpu, kvm) {
3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011 kvm_vcpu_kick(vcpu);
3012 }
3013 }
3014
3015 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016 {
3017 struct kvm *kvm = v->kvm;
3018
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021 KVMCLOCK_UPDATE_DELAY);
3022 }
3023
3024 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026 static void kvmclock_sync_fn(struct work_struct *work)
3027 {
3028 struct delayed_work *dwork = to_delayed_work(work);
3029 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030 kvmclock_sync_work);
3031 struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033 if (!kvmclock_periodic_sync)
3034 return;
3035
3036 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038 KVMCLOCK_SYNC_PERIOD);
3039 }
3040
3041 /*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045 {
3046 /* McStatusWrEn enabled? */
3047 if (guest_cpuid_is_amd_or_hygon(vcpu))
3048 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050 return false;
3051 }
3052
3053 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054 {
3055 u64 mcg_cap = vcpu->arch.mcg_cap;
3056 unsigned bank_num = mcg_cap & 0xff;
3057 u32 msr = msr_info->index;
3058 u64 data = msr_info->data;
3059
3060 switch (msr) {
3061 case MSR_IA32_MCG_STATUS:
3062 vcpu->arch.mcg_status = data;
3063 break;
3064 case MSR_IA32_MCG_CTL:
3065 if (!(mcg_cap & MCG_CTL_P) &&
3066 (data || !msr_info->host_initiated))
3067 return 1;
3068 if (data != 0 && data != ~(u64)0)
3069 return 1;
3070 vcpu->arch.mcg_ctl = data;
3071 break;
3072 default:
3073 if (msr >= MSR_IA32_MC0_CTL &&
3074 msr < MSR_IA32_MCx_CTL(bank_num)) {
3075 u32 offset = array_index_nospec(
3076 msr - MSR_IA32_MC0_CTL,
3077 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079 /* only 0 or all 1s can be written to IA32_MCi_CTL
3080 * some Linux kernels though clear bit 10 in bank 4 to
3081 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082 * this to avoid an uncatched #GP in the guest
3083 */
3084 if ((offset & 0x3) == 0 &&
3085 data != 0 && (data | (1 << 10)) != ~(u64)0)
3086 return -1;
3087
3088 /* MCi_STATUS */
3089 if (!msr_info->host_initiated &&
3090 (offset & 0x3) == 1 && data != 0) {
3091 if (!can_set_mci_status(vcpu))
3092 return -1;
3093 }
3094
3095 vcpu->arch.mce_banks[offset] = data;
3096 break;
3097 }
3098 return 1;
3099 }
3100 return 0;
3101 }
3102
3103 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104 {
3105 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108 }
3109
3110 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111 {
3112 gpa_t gpa = data & ~0x3f;
3113
3114 /* Bits 4:5 are reserved, Should be zero */
3115 if (data & 0x30)
3116 return 1;
3117
3118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120 return 1;
3121
3122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124 return 1;
3125
3126 if (!lapic_in_kernel(vcpu))
3127 return data ? 1 : 0;
3128
3129 vcpu->arch.apf.msr_en_val = data;
3130
3131 if (!kvm_pv_async_pf_enabled(vcpu)) {
3132 kvm_clear_async_pf_completion_queue(vcpu);
3133 kvm_async_pf_hash_reset(vcpu);
3134 return 0;
3135 }
3136
3137 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138 sizeof(u64)))
3139 return 1;
3140
3141 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144 kvm_async_pf_wakeup_all(vcpu);
3145
3146 return 0;
3147 }
3148
3149 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 /* Bits 8-63 are reserved */
3152 if (data >> 8)
3153 return 1;
3154
3155 if (!lapic_in_kernel(vcpu))
3156 return 1;
3157
3158 vcpu->arch.apf.msr_int_val = data;
3159
3160 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162 return 0;
3163 }
3164
3165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166 {
3167 vcpu->arch.pv_time_enabled = false;
3168 vcpu->arch.time = 0;
3169 }
3170
3171 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 ++vcpu->stat.tlb_flush;
3174 static_call(kvm_x86_tlb_flush_all)(vcpu);
3175 }
3176
3177 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178 {
3179 ++vcpu->stat.tlb_flush;
3180
3181 if (!tdp_enabled) {
3182 /*
3183 * A TLB flush on behalf of the guest is equivalent to
3184 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185 * a forced sync of the shadow page tables. Unload the
3186 * entire MMU here and the subsequent load will sync the
3187 * shadow page tables, and also flush the TLB.
3188 */
3189 kvm_mmu_unload(vcpu);
3190 return;
3191 }
3192
3193 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194 }
3195
3196
3197 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3198 {
3199 ++vcpu->stat.tlb_flush;
3200 static_call(kvm_x86_tlb_flush_current)(vcpu);
3201 }
3202
3203 /*
3204 * Service "local" TLB flush requests, which are specific to the current MMU
3205 * context. In addition to the generic event handling in vcpu_enter_guest(),
3206 * TLB flushes that are targeted at an MMU context also need to be serviced
3207 * prior before nested VM-Enter/VM-Exit.
3208 */
3209 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3210 {
3211 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3212 kvm_vcpu_flush_tlb_current(vcpu);
3213
3214 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3215 kvm_vcpu_flush_tlb_guest(vcpu);
3216 }
3217 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3218
3219 static void record_steal_time(struct kvm_vcpu *vcpu)
3220 {
3221 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3222 struct kvm_steal_time __user *st;
3223 struct kvm_memslots *slots;
3224 u64 steal;
3225 u32 version;
3226
3227 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3228 kvm_xen_runstate_set_running(vcpu);
3229 return;
3230 }
3231
3232 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3233 return;
3234
3235 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3236 return;
3237
3238 slots = kvm_memslots(vcpu->kvm);
3239
3240 if (unlikely(slots->generation != ghc->generation ||
3241 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3242 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3243
3244 /* We rely on the fact that it fits in a single page. */
3245 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3246
3247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3248 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3249 return;
3250 }
3251
3252 st = (struct kvm_steal_time __user *)ghc->hva;
3253 /*
3254 * Doing a TLB flush here, on the guest's behalf, can avoid
3255 * expensive IPIs.
3256 */
3257 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3258 u8 st_preempted = 0;
3259 int err = -EFAULT;
3260
3261 if (!user_access_begin(st, sizeof(*st)))
3262 return;
3263
3264 asm volatile("1: xchgb %0, %2\n"
3265 "xor %1, %1\n"
3266 "2:\n"
3267 _ASM_EXTABLE_UA(1b, 2b)
3268 : "+q" (st_preempted),
3269 "+&r" (err),
3270 "+m" (st->preempted));
3271 if (err)
3272 goto out;
3273
3274 user_access_end();
3275
3276 vcpu->arch.st.preempted = 0;
3277
3278 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3279 st_preempted & KVM_VCPU_FLUSH_TLB);
3280 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3281 kvm_vcpu_flush_tlb_guest(vcpu);
3282
3283 if (!user_access_begin(st, sizeof(*st)))
3284 goto dirty;
3285 } else {
3286 if (!user_access_begin(st, sizeof(*st)))
3287 return;
3288
3289 unsafe_put_user(0, &st->preempted, out);
3290 vcpu->arch.st.preempted = 0;
3291 }
3292
3293 unsafe_get_user(version, &st->version, out);
3294 if (version & 1)
3295 version += 1; /* first time write, random junk */
3296
3297 version += 1;
3298 unsafe_put_user(version, &st->version, out);
3299
3300 smp_wmb();
3301
3302 unsafe_get_user(steal, &st->steal, out);
3303 steal += current->sched_info.run_delay -
3304 vcpu->arch.st.last_steal;
3305 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3306 unsafe_put_user(steal, &st->steal, out);
3307
3308 version += 1;
3309 unsafe_put_user(version, &st->version, out);
3310
3311 out:
3312 user_access_end();
3313 dirty:
3314 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3315 }
3316
3317 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3318 {
3319 bool pr = false;
3320 u32 msr = msr_info->index;
3321 u64 data = msr_info->data;
3322
3323 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3324 return kvm_xen_write_hypercall_page(vcpu, data);
3325
3326 switch (msr) {
3327 case MSR_AMD64_NB_CFG:
3328 case MSR_IA32_UCODE_WRITE:
3329 case MSR_VM_HSAVE_PA:
3330 case MSR_AMD64_PATCH_LOADER:
3331 case MSR_AMD64_BU_CFG2:
3332 case MSR_AMD64_DC_CFG:
3333 case MSR_F15H_EX_CFG:
3334 break;
3335
3336 case MSR_IA32_UCODE_REV:
3337 if (msr_info->host_initiated)
3338 vcpu->arch.microcode_version = data;
3339 break;
3340 case MSR_IA32_ARCH_CAPABILITIES:
3341 if (!msr_info->host_initiated)
3342 return 1;
3343 vcpu->arch.arch_capabilities = data;
3344 break;
3345 case MSR_IA32_PERF_CAPABILITIES: {
3346 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3347
3348 if (!msr_info->host_initiated)
3349 return 1;
3350 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3351 return 1;
3352 if (data & ~msr_ent.data)
3353 return 1;
3354
3355 vcpu->arch.perf_capabilities = data;
3356
3357 return 0;
3358 }
3359 case MSR_EFER:
3360 return set_efer(vcpu, msr_info);
3361 case MSR_K7_HWCR:
3362 data &= ~(u64)0x40; /* ignore flush filter disable */
3363 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3364 data &= ~(u64)0x8; /* ignore TLB cache disable */
3365
3366 /* Handle McStatusWrEn */
3367 if (data == BIT_ULL(18)) {
3368 vcpu->arch.msr_hwcr = data;
3369 } else if (data != 0) {
3370 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3371 data);
3372 return 1;
3373 }
3374 break;
3375 case MSR_FAM10H_MMIO_CONF_BASE:
3376 if (data != 0) {
3377 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3378 "0x%llx\n", data);
3379 return 1;
3380 }
3381 break;
3382 case 0x200 ... 0x2ff:
3383 return kvm_mtrr_set_msr(vcpu, msr, data);
3384 case MSR_IA32_APICBASE:
3385 return kvm_set_apic_base(vcpu, msr_info);
3386 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3387 return kvm_x2apic_msr_write(vcpu, msr, data);
3388 case MSR_IA32_TSC_DEADLINE:
3389 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3390 break;
3391 case MSR_IA32_TSC_ADJUST:
3392 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3393 if (!msr_info->host_initiated) {
3394 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3395 adjust_tsc_offset_guest(vcpu, adj);
3396 /* Before back to guest, tsc_timestamp must be adjusted
3397 * as well, otherwise guest's percpu pvclock time could jump.
3398 */
3399 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3400 }
3401 vcpu->arch.ia32_tsc_adjust_msr = data;
3402 }
3403 break;
3404 case MSR_IA32_MISC_ENABLE:
3405 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3406 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3407 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3408 return 1;
3409 vcpu->arch.ia32_misc_enable_msr = data;
3410 kvm_update_cpuid_runtime(vcpu);
3411 } else {
3412 vcpu->arch.ia32_misc_enable_msr = data;
3413 }
3414 break;
3415 case MSR_IA32_SMBASE:
3416 if (!msr_info->host_initiated)
3417 return 1;
3418 vcpu->arch.smbase = data;
3419 break;
3420 case MSR_IA32_POWER_CTL:
3421 vcpu->arch.msr_ia32_power_ctl = data;
3422 break;
3423 case MSR_IA32_TSC:
3424 if (msr_info->host_initiated) {
3425 kvm_synchronize_tsc(vcpu, data);
3426 } else {
3427 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3428 adjust_tsc_offset_guest(vcpu, adj);
3429 vcpu->arch.ia32_tsc_adjust_msr += adj;
3430 }
3431 break;
3432 case MSR_IA32_XSS:
3433 if (!msr_info->host_initiated &&
3434 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3435 return 1;
3436 /*
3437 * KVM supports exposing PT to the guest, but does not support
3438 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3439 * XSAVES/XRSTORS to save/restore PT MSRs.
3440 */
3441 if (data & ~supported_xss)
3442 return 1;
3443 vcpu->arch.ia32_xss = data;
3444 break;
3445 case MSR_SMI_COUNT:
3446 if (!msr_info->host_initiated)
3447 return 1;
3448 vcpu->arch.smi_count = data;
3449 break;
3450 case MSR_KVM_WALL_CLOCK_NEW:
3451 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3452 return 1;
3453
3454 vcpu->kvm->arch.wall_clock = data;
3455 kvm_write_wall_clock(vcpu->kvm, data, 0);
3456 break;
3457 case MSR_KVM_WALL_CLOCK:
3458 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3459 return 1;
3460
3461 vcpu->kvm->arch.wall_clock = data;
3462 kvm_write_wall_clock(vcpu->kvm, data, 0);
3463 break;
3464 case MSR_KVM_SYSTEM_TIME_NEW:
3465 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3466 return 1;
3467
3468 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3469 break;
3470 case MSR_KVM_SYSTEM_TIME:
3471 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3472 return 1;
3473
3474 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3475 break;
3476 case MSR_KVM_ASYNC_PF_EN:
3477 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3478 return 1;
3479
3480 if (kvm_pv_enable_async_pf(vcpu, data))
3481 return 1;
3482 break;
3483 case MSR_KVM_ASYNC_PF_INT:
3484 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3485 return 1;
3486
3487 if (kvm_pv_enable_async_pf_int(vcpu, data))
3488 return 1;
3489 break;
3490 case MSR_KVM_ASYNC_PF_ACK:
3491 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3492 return 1;
3493 if (data & 0x1) {
3494 vcpu->arch.apf.pageready_pending = false;
3495 kvm_check_async_pf_completion(vcpu);
3496 }
3497 break;
3498 case MSR_KVM_STEAL_TIME:
3499 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3500 return 1;
3501
3502 if (unlikely(!sched_info_on()))
3503 return 1;
3504
3505 if (data & KVM_STEAL_RESERVED_MASK)
3506 return 1;
3507
3508 vcpu->arch.st.msr_val = data;
3509
3510 if (!(data & KVM_MSR_ENABLED))
3511 break;
3512
3513 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3514
3515 break;
3516 case MSR_KVM_PV_EOI_EN:
3517 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3518 return 1;
3519
3520 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3521 return 1;
3522 break;
3523
3524 case MSR_KVM_POLL_CONTROL:
3525 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3526 return 1;
3527
3528 /* only enable bit supported */
3529 if (data & (-1ULL << 1))
3530 return 1;
3531
3532 vcpu->arch.msr_kvm_poll_control = data;
3533 break;
3534
3535 case MSR_IA32_MCG_CTL:
3536 case MSR_IA32_MCG_STATUS:
3537 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3538 return set_msr_mce(vcpu, msr_info);
3539
3540 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3541 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3542 pr = true;
3543 fallthrough;
3544 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3545 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3546 if (kvm_pmu_is_valid_msr(vcpu, msr))
3547 return kvm_pmu_set_msr(vcpu, msr_info);
3548
3549 if (pr || data != 0)
3550 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3551 "0x%x data 0x%llx\n", msr, data);
3552 break;
3553 case MSR_K7_CLK_CTL:
3554 /*
3555 * Ignore all writes to this no longer documented MSR.
3556 * Writes are only relevant for old K7 processors,
3557 * all pre-dating SVM, but a recommended workaround from
3558 * AMD for these chips. It is possible to specify the
3559 * affected processor models on the command line, hence
3560 * the need to ignore the workaround.
3561 */
3562 break;
3563 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3564 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3565 case HV_X64_MSR_SYNDBG_OPTIONS:
3566 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3567 case HV_X64_MSR_CRASH_CTL:
3568 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3569 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3570 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3571 case HV_X64_MSR_TSC_EMULATION_STATUS:
3572 return kvm_hv_set_msr_common(vcpu, msr, data,
3573 msr_info->host_initiated);
3574 case MSR_IA32_BBL_CR_CTL3:
3575 /* Drop writes to this legacy MSR -- see rdmsr
3576 * counterpart for further detail.
3577 */
3578 if (report_ignored_msrs)
3579 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3580 msr, data);
3581 break;
3582 case MSR_AMD64_OSVW_ID_LENGTH:
3583 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3584 return 1;
3585 vcpu->arch.osvw.length = data;
3586 break;
3587 case MSR_AMD64_OSVW_STATUS:
3588 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3589 return 1;
3590 vcpu->arch.osvw.status = data;
3591 break;
3592 case MSR_PLATFORM_INFO:
3593 if (!msr_info->host_initiated ||
3594 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3595 cpuid_fault_enabled(vcpu)))
3596 return 1;
3597 vcpu->arch.msr_platform_info = data;
3598 break;
3599 case MSR_MISC_FEATURES_ENABLES:
3600 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3601 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3602 !supports_cpuid_fault(vcpu)))
3603 return 1;
3604 vcpu->arch.msr_misc_features_enables = data;
3605 break;
3606 default:
3607 if (kvm_pmu_is_valid_msr(vcpu, msr))
3608 return kvm_pmu_set_msr(vcpu, msr_info);
3609 return KVM_MSR_RET_INVALID;
3610 }
3611 return 0;
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3614
3615 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3616 {
3617 u64 data;
3618 u64 mcg_cap = vcpu->arch.mcg_cap;
3619 unsigned bank_num = mcg_cap & 0xff;
3620
3621 switch (msr) {
3622 case MSR_IA32_P5_MC_ADDR:
3623 case MSR_IA32_P5_MC_TYPE:
3624 data = 0;
3625 break;
3626 case MSR_IA32_MCG_CAP:
3627 data = vcpu->arch.mcg_cap;
3628 break;
3629 case MSR_IA32_MCG_CTL:
3630 if (!(mcg_cap & MCG_CTL_P) && !host)
3631 return 1;
3632 data = vcpu->arch.mcg_ctl;
3633 break;
3634 case MSR_IA32_MCG_STATUS:
3635 data = vcpu->arch.mcg_status;
3636 break;
3637 default:
3638 if (msr >= MSR_IA32_MC0_CTL &&
3639 msr < MSR_IA32_MCx_CTL(bank_num)) {
3640 u32 offset = array_index_nospec(
3641 msr - MSR_IA32_MC0_CTL,
3642 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3643
3644 data = vcpu->arch.mce_banks[offset];
3645 break;
3646 }
3647 return 1;
3648 }
3649 *pdata = data;
3650 return 0;
3651 }
3652
3653 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3654 {
3655 switch (msr_info->index) {
3656 case MSR_IA32_PLATFORM_ID:
3657 case MSR_IA32_EBL_CR_POWERON:
3658 case MSR_IA32_LASTBRANCHFROMIP:
3659 case MSR_IA32_LASTBRANCHTOIP:
3660 case MSR_IA32_LASTINTFROMIP:
3661 case MSR_IA32_LASTINTTOIP:
3662 case MSR_AMD64_SYSCFG:
3663 case MSR_K8_TSEG_ADDR:
3664 case MSR_K8_TSEG_MASK:
3665 case MSR_VM_HSAVE_PA:
3666 case MSR_K8_INT_PENDING_MSG:
3667 case MSR_AMD64_NB_CFG:
3668 case MSR_FAM10H_MMIO_CONF_BASE:
3669 case MSR_AMD64_BU_CFG2:
3670 case MSR_IA32_PERF_CTL:
3671 case MSR_AMD64_DC_CFG:
3672 case MSR_F15H_EX_CFG:
3673 /*
3674 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3675 * limit) MSRs. Just return 0, as we do not want to expose the host
3676 * data here. Do not conditionalize this on CPUID, as KVM does not do
3677 * so for existing CPU-specific MSRs.
3678 */
3679 case MSR_RAPL_POWER_UNIT:
3680 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3681 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3682 case MSR_PKG_ENERGY_STATUS: /* Total package */
3683 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3684 msr_info->data = 0;
3685 break;
3686 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3687 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3688 return kvm_pmu_get_msr(vcpu, msr_info);
3689 if (!msr_info->host_initiated)
3690 return 1;
3691 msr_info->data = 0;
3692 break;
3693 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3694 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3695 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3696 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3697 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3698 return kvm_pmu_get_msr(vcpu, msr_info);
3699 msr_info->data = 0;
3700 break;
3701 case MSR_IA32_UCODE_REV:
3702 msr_info->data = vcpu->arch.microcode_version;
3703 break;
3704 case MSR_IA32_ARCH_CAPABILITIES:
3705 if (!msr_info->host_initiated &&
3706 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3707 return 1;
3708 msr_info->data = vcpu->arch.arch_capabilities;
3709 break;
3710 case MSR_IA32_PERF_CAPABILITIES:
3711 if (!msr_info->host_initiated &&
3712 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3713 return 1;
3714 msr_info->data = vcpu->arch.perf_capabilities;
3715 break;
3716 case MSR_IA32_POWER_CTL:
3717 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3718 break;
3719 case MSR_IA32_TSC: {
3720 /*
3721 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3722 * even when not intercepted. AMD manual doesn't explicitly
3723 * state this but appears to behave the same.
3724 *
3725 * On userspace reads and writes, however, we unconditionally
3726 * return L1's TSC value to ensure backwards-compatible
3727 * behavior for migration.
3728 */
3729 u64 offset, ratio;
3730
3731 if (msr_info->host_initiated) {
3732 offset = vcpu->arch.l1_tsc_offset;
3733 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3734 } else {
3735 offset = vcpu->arch.tsc_offset;
3736 ratio = vcpu->arch.tsc_scaling_ratio;
3737 }
3738
3739 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3740 break;
3741 }
3742 case MSR_MTRRcap:
3743 case 0x200 ... 0x2ff:
3744 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3745 case 0xcd: /* fsb frequency */
3746 msr_info->data = 3;
3747 break;
3748 /*
3749 * MSR_EBC_FREQUENCY_ID
3750 * Conservative value valid for even the basic CPU models.
3751 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3752 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3753 * and 266MHz for model 3, or 4. Set Core Clock
3754 * Frequency to System Bus Frequency Ratio to 1 (bits
3755 * 31:24) even though these are only valid for CPU
3756 * models > 2, however guests may end up dividing or
3757 * multiplying by zero otherwise.
3758 */
3759 case MSR_EBC_FREQUENCY_ID:
3760 msr_info->data = 1 << 24;
3761 break;
3762 case MSR_IA32_APICBASE:
3763 msr_info->data = kvm_get_apic_base(vcpu);
3764 break;
3765 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3766 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3767 case MSR_IA32_TSC_DEADLINE:
3768 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3769 break;
3770 case MSR_IA32_TSC_ADJUST:
3771 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3772 break;
3773 case MSR_IA32_MISC_ENABLE:
3774 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3775 break;
3776 case MSR_IA32_SMBASE:
3777 if (!msr_info->host_initiated)
3778 return 1;
3779 msr_info->data = vcpu->arch.smbase;
3780 break;
3781 case MSR_SMI_COUNT:
3782 msr_info->data = vcpu->arch.smi_count;
3783 break;
3784 case MSR_IA32_PERF_STATUS:
3785 /* TSC increment by tick */
3786 msr_info->data = 1000ULL;
3787 /* CPU multiplier */
3788 msr_info->data |= (((uint64_t)4ULL) << 40);
3789 break;
3790 case MSR_EFER:
3791 msr_info->data = vcpu->arch.efer;
3792 break;
3793 case MSR_KVM_WALL_CLOCK:
3794 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3795 return 1;
3796
3797 msr_info->data = vcpu->kvm->arch.wall_clock;
3798 break;
3799 case MSR_KVM_WALL_CLOCK_NEW:
3800 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3801 return 1;
3802
3803 msr_info->data = vcpu->kvm->arch.wall_clock;
3804 break;
3805 case MSR_KVM_SYSTEM_TIME:
3806 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3807 return 1;
3808
3809 msr_info->data = vcpu->arch.time;
3810 break;
3811 case MSR_KVM_SYSTEM_TIME_NEW:
3812 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3813 return 1;
3814
3815 msr_info->data = vcpu->arch.time;
3816 break;
3817 case MSR_KVM_ASYNC_PF_EN:
3818 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3819 return 1;
3820
3821 msr_info->data = vcpu->arch.apf.msr_en_val;
3822 break;
3823 case MSR_KVM_ASYNC_PF_INT:
3824 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3825 return 1;
3826
3827 msr_info->data = vcpu->arch.apf.msr_int_val;
3828 break;
3829 case MSR_KVM_ASYNC_PF_ACK:
3830 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3831 return 1;
3832
3833 msr_info->data = 0;
3834 break;
3835 case MSR_KVM_STEAL_TIME:
3836 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3837 return 1;
3838
3839 msr_info->data = vcpu->arch.st.msr_val;
3840 break;
3841 case MSR_KVM_PV_EOI_EN:
3842 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3843 return 1;
3844
3845 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3846 break;
3847 case MSR_KVM_POLL_CONTROL:
3848 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3849 return 1;
3850
3851 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3852 break;
3853 case MSR_IA32_P5_MC_ADDR:
3854 case MSR_IA32_P5_MC_TYPE:
3855 case MSR_IA32_MCG_CAP:
3856 case MSR_IA32_MCG_CTL:
3857 case MSR_IA32_MCG_STATUS:
3858 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3859 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3860 msr_info->host_initiated);
3861 case MSR_IA32_XSS:
3862 if (!msr_info->host_initiated &&
3863 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3864 return 1;
3865 msr_info->data = vcpu->arch.ia32_xss;
3866 break;
3867 case MSR_K7_CLK_CTL:
3868 /*
3869 * Provide expected ramp-up count for K7. All other
3870 * are set to zero, indicating minimum divisors for
3871 * every field.
3872 *
3873 * This prevents guest kernels on AMD host with CPU
3874 * type 6, model 8 and higher from exploding due to
3875 * the rdmsr failing.
3876 */
3877 msr_info->data = 0x20000000;
3878 break;
3879 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3880 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3881 case HV_X64_MSR_SYNDBG_OPTIONS:
3882 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3883 case HV_X64_MSR_CRASH_CTL:
3884 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3885 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3886 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3887 case HV_X64_MSR_TSC_EMULATION_STATUS:
3888 return kvm_hv_get_msr_common(vcpu,
3889 msr_info->index, &msr_info->data,
3890 msr_info->host_initiated);
3891 case MSR_IA32_BBL_CR_CTL3:
3892 /* This legacy MSR exists but isn't fully documented in current
3893 * silicon. It is however accessed by winxp in very narrow
3894 * scenarios where it sets bit #19, itself documented as
3895 * a "reserved" bit. Best effort attempt to source coherent
3896 * read data here should the balance of the register be
3897 * interpreted by the guest:
3898 *
3899 * L2 cache control register 3: 64GB range, 256KB size,
3900 * enabled, latency 0x1, configured
3901 */
3902 msr_info->data = 0xbe702111;
3903 break;
3904 case MSR_AMD64_OSVW_ID_LENGTH:
3905 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3906 return 1;
3907 msr_info->data = vcpu->arch.osvw.length;
3908 break;
3909 case MSR_AMD64_OSVW_STATUS:
3910 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3911 return 1;
3912 msr_info->data = vcpu->arch.osvw.status;
3913 break;
3914 case MSR_PLATFORM_INFO:
3915 if (!msr_info->host_initiated &&
3916 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3917 return 1;
3918 msr_info->data = vcpu->arch.msr_platform_info;
3919 break;
3920 case MSR_MISC_FEATURES_ENABLES:
3921 msr_info->data = vcpu->arch.msr_misc_features_enables;
3922 break;
3923 case MSR_K7_HWCR:
3924 msr_info->data = vcpu->arch.msr_hwcr;
3925 break;
3926 default:
3927 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3928 return kvm_pmu_get_msr(vcpu, msr_info);
3929 return KVM_MSR_RET_INVALID;
3930 }
3931 return 0;
3932 }
3933 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3934
3935 /*
3936 * Read or write a bunch of msrs. All parameters are kernel addresses.
3937 *
3938 * @return number of msrs set successfully.
3939 */
3940 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3941 struct kvm_msr_entry *entries,
3942 int (*do_msr)(struct kvm_vcpu *vcpu,
3943 unsigned index, u64 *data))
3944 {
3945 int i;
3946
3947 for (i = 0; i < msrs->nmsrs; ++i)
3948 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3949 break;
3950
3951 return i;
3952 }
3953
3954 /*
3955 * Read or write a bunch of msrs. Parameters are user addresses.
3956 *
3957 * @return number of msrs set successfully.
3958 */
3959 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3960 int (*do_msr)(struct kvm_vcpu *vcpu,
3961 unsigned index, u64 *data),
3962 int writeback)
3963 {
3964 struct kvm_msrs msrs;
3965 struct kvm_msr_entry *entries;
3966 int r, n;
3967 unsigned size;
3968
3969 r = -EFAULT;
3970 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3971 goto out;
3972
3973 r = -E2BIG;
3974 if (msrs.nmsrs >= MAX_IO_MSRS)
3975 goto out;
3976
3977 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3978 entries = memdup_user(user_msrs->entries, size);
3979 if (IS_ERR(entries)) {
3980 r = PTR_ERR(entries);
3981 goto out;
3982 }
3983
3984 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3985 if (r < 0)
3986 goto out_free;
3987
3988 r = -EFAULT;
3989 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3990 goto out_free;
3991
3992 r = n;
3993
3994 out_free:
3995 kfree(entries);
3996 out:
3997 return r;
3998 }
3999
4000 static inline bool kvm_can_mwait_in_guest(void)
4001 {
4002 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4003 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4004 boot_cpu_has(X86_FEATURE_ARAT);
4005 }
4006
4007 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4008 struct kvm_cpuid2 __user *cpuid_arg)
4009 {
4010 struct kvm_cpuid2 cpuid;
4011 int r;
4012
4013 r = -EFAULT;
4014 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4015 return r;
4016
4017 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4018 if (r)
4019 return r;
4020
4021 r = -EFAULT;
4022 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4023 return r;
4024
4025 return 0;
4026 }
4027
4028 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4029 {
4030 int r = 0;
4031
4032 switch (ext) {
4033 case KVM_CAP_IRQCHIP:
4034 case KVM_CAP_HLT:
4035 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4036 case KVM_CAP_SET_TSS_ADDR:
4037 case KVM_CAP_EXT_CPUID:
4038 case KVM_CAP_EXT_EMUL_CPUID:
4039 case KVM_CAP_CLOCKSOURCE:
4040 case KVM_CAP_PIT:
4041 case KVM_CAP_NOP_IO_DELAY:
4042 case KVM_CAP_MP_STATE:
4043 case KVM_CAP_SYNC_MMU:
4044 case KVM_CAP_USER_NMI:
4045 case KVM_CAP_REINJECT_CONTROL:
4046 case KVM_CAP_IRQ_INJECT_STATUS:
4047 case KVM_CAP_IOEVENTFD:
4048 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4049 case KVM_CAP_PIT2:
4050 case KVM_CAP_PIT_STATE2:
4051 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4052 case KVM_CAP_VCPU_EVENTS:
4053 case KVM_CAP_HYPERV:
4054 case KVM_CAP_HYPERV_VAPIC:
4055 case KVM_CAP_HYPERV_SPIN:
4056 case KVM_CAP_HYPERV_SYNIC:
4057 case KVM_CAP_HYPERV_SYNIC2:
4058 case KVM_CAP_HYPERV_VP_INDEX:
4059 case KVM_CAP_HYPERV_EVENTFD:
4060 case KVM_CAP_HYPERV_TLBFLUSH:
4061 case KVM_CAP_HYPERV_SEND_IPI:
4062 case KVM_CAP_HYPERV_CPUID:
4063 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4064 case KVM_CAP_SYS_HYPERV_CPUID:
4065 case KVM_CAP_PCI_SEGMENT:
4066 case KVM_CAP_DEBUGREGS:
4067 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4068 case KVM_CAP_XSAVE:
4069 case KVM_CAP_ASYNC_PF:
4070 case KVM_CAP_ASYNC_PF_INT:
4071 case KVM_CAP_GET_TSC_KHZ:
4072 case KVM_CAP_KVMCLOCK_CTRL:
4073 case KVM_CAP_READONLY_MEM:
4074 case KVM_CAP_HYPERV_TIME:
4075 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4076 case KVM_CAP_TSC_DEADLINE_TIMER:
4077 case KVM_CAP_DISABLE_QUIRKS:
4078 case KVM_CAP_SET_BOOT_CPU_ID:
4079 case KVM_CAP_SPLIT_IRQCHIP:
4080 case KVM_CAP_IMMEDIATE_EXIT:
4081 case KVM_CAP_PMU_EVENT_FILTER:
4082 case KVM_CAP_GET_MSR_FEATURES:
4083 case KVM_CAP_MSR_PLATFORM_INFO:
4084 case KVM_CAP_EXCEPTION_PAYLOAD:
4085 case KVM_CAP_SET_GUEST_DEBUG:
4086 case KVM_CAP_LAST_CPU:
4087 case KVM_CAP_X86_USER_SPACE_MSR:
4088 case KVM_CAP_X86_MSR_FILTER:
4089 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4090 #ifdef CONFIG_X86_SGX_KVM
4091 case KVM_CAP_SGX_ATTRIBUTE:
4092 #endif
4093 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4094 case KVM_CAP_SREGS2:
4095 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4096 r = 1;
4097 break;
4098 case KVM_CAP_EXIT_HYPERCALL:
4099 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4100 break;
4101 case KVM_CAP_SET_GUEST_DEBUG2:
4102 return KVM_GUESTDBG_VALID_MASK;
4103 #ifdef CONFIG_KVM_XEN
4104 case KVM_CAP_XEN_HVM:
4105 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4106 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4107 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4108 if (sched_info_on())
4109 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4110 break;
4111 #endif
4112 case KVM_CAP_SYNC_REGS:
4113 r = KVM_SYNC_X86_VALID_FIELDS;
4114 break;
4115 case KVM_CAP_ADJUST_CLOCK:
4116 r = KVM_CLOCK_TSC_STABLE;
4117 break;
4118 case KVM_CAP_X86_DISABLE_EXITS:
4119 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4120 KVM_X86_DISABLE_EXITS_CSTATE;
4121 if(kvm_can_mwait_in_guest())
4122 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4123 break;
4124 case KVM_CAP_X86_SMM:
4125 /* SMBASE is usually relocated above 1M on modern chipsets,
4126 * and SMM handlers might indeed rely on 4G segment limits,
4127 * so do not report SMM to be available if real mode is
4128 * emulated via vm86 mode. Still, do not go to great lengths
4129 * to avoid userspace's usage of the feature, because it is a
4130 * fringe case that is not enabled except via specific settings
4131 * of the module parameters.
4132 */
4133 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4134 break;
4135 case KVM_CAP_VAPIC:
4136 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4137 break;
4138 case KVM_CAP_NR_VCPUS:
4139 r = KVM_SOFT_MAX_VCPUS;
4140 break;
4141 case KVM_CAP_MAX_VCPUS:
4142 r = KVM_MAX_VCPUS;
4143 break;
4144 case KVM_CAP_MAX_VCPU_ID:
4145 r = KVM_MAX_VCPU_ID;
4146 break;
4147 case KVM_CAP_PV_MMU: /* obsolete */
4148 r = 0;
4149 break;
4150 case KVM_CAP_MCE:
4151 r = KVM_MAX_MCE_BANKS;
4152 break;
4153 case KVM_CAP_XCRS:
4154 r = boot_cpu_has(X86_FEATURE_XSAVE);
4155 break;
4156 case KVM_CAP_TSC_CONTROL:
4157 r = kvm_has_tsc_control;
4158 break;
4159 case KVM_CAP_X2APIC_API:
4160 r = KVM_X2APIC_API_VALID_FLAGS;
4161 break;
4162 case KVM_CAP_NESTED_STATE:
4163 r = kvm_x86_ops.nested_ops->get_state ?
4164 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4165 break;
4166 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4167 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4168 break;
4169 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4170 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4171 break;
4172 case KVM_CAP_SMALLER_MAXPHYADDR:
4173 r = (int) allow_smaller_maxphyaddr;
4174 break;
4175 case KVM_CAP_STEAL_TIME:
4176 r = sched_info_on();
4177 break;
4178 case KVM_CAP_X86_BUS_LOCK_EXIT:
4179 if (kvm_has_bus_lock_exit)
4180 r = KVM_BUS_LOCK_DETECTION_OFF |
4181 KVM_BUS_LOCK_DETECTION_EXIT;
4182 else
4183 r = 0;
4184 break;
4185 default:
4186 break;
4187 }
4188 return r;
4189
4190 }
4191
4192 long kvm_arch_dev_ioctl(struct file *filp,
4193 unsigned int ioctl, unsigned long arg)
4194 {
4195 void __user *argp = (void __user *)arg;
4196 long r;
4197
4198 switch (ioctl) {
4199 case KVM_GET_MSR_INDEX_LIST: {
4200 struct kvm_msr_list __user *user_msr_list = argp;
4201 struct kvm_msr_list msr_list;
4202 unsigned n;
4203
4204 r = -EFAULT;
4205 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4206 goto out;
4207 n = msr_list.nmsrs;
4208 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4209 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4210 goto out;
4211 r = -E2BIG;
4212 if (n < msr_list.nmsrs)
4213 goto out;
4214 r = -EFAULT;
4215 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4216 num_msrs_to_save * sizeof(u32)))
4217 goto out;
4218 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4219 &emulated_msrs,
4220 num_emulated_msrs * sizeof(u32)))
4221 goto out;
4222 r = 0;
4223 break;
4224 }
4225 case KVM_GET_SUPPORTED_CPUID:
4226 case KVM_GET_EMULATED_CPUID: {
4227 struct kvm_cpuid2 __user *cpuid_arg = argp;
4228 struct kvm_cpuid2 cpuid;
4229
4230 r = -EFAULT;
4231 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4232 goto out;
4233
4234 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4235 ioctl);
4236 if (r)
4237 goto out;
4238
4239 r = -EFAULT;
4240 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4241 goto out;
4242 r = 0;
4243 break;
4244 }
4245 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4246 r = -EFAULT;
4247 if (copy_to_user(argp, &kvm_mce_cap_supported,
4248 sizeof(kvm_mce_cap_supported)))
4249 goto out;
4250 r = 0;
4251 break;
4252 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4253 struct kvm_msr_list __user *user_msr_list = argp;
4254 struct kvm_msr_list msr_list;
4255 unsigned int n;
4256
4257 r = -EFAULT;
4258 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4259 goto out;
4260 n = msr_list.nmsrs;
4261 msr_list.nmsrs = num_msr_based_features;
4262 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4263 goto out;
4264 r = -E2BIG;
4265 if (n < msr_list.nmsrs)
4266 goto out;
4267 r = -EFAULT;
4268 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4269 num_msr_based_features * sizeof(u32)))
4270 goto out;
4271 r = 0;
4272 break;
4273 }
4274 case KVM_GET_MSRS:
4275 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4276 break;
4277 case KVM_GET_SUPPORTED_HV_CPUID:
4278 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4279 break;
4280 default:
4281 r = -EINVAL;
4282 break;
4283 }
4284 out:
4285 return r;
4286 }
4287
4288 static void wbinvd_ipi(void *garbage)
4289 {
4290 wbinvd();
4291 }
4292
4293 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4294 {
4295 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4296 }
4297
4298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4299 {
4300 /* Address WBINVD may be executed by guest */
4301 if (need_emulate_wbinvd(vcpu)) {
4302 if (static_call(kvm_x86_has_wbinvd_exit)())
4303 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4304 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4305 smp_call_function_single(vcpu->cpu,
4306 wbinvd_ipi, NULL, 1);
4307 }
4308
4309 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4310
4311 /* Save host pkru register if supported */
4312 vcpu->arch.host_pkru = read_pkru();
4313
4314 /* Apply any externally detected TSC adjustments (due to suspend) */
4315 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4316 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4317 vcpu->arch.tsc_offset_adjustment = 0;
4318 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4319 }
4320
4321 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4322 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4323 rdtsc() - vcpu->arch.last_host_tsc;
4324 if (tsc_delta < 0)
4325 mark_tsc_unstable("KVM discovered backwards TSC");
4326
4327 if (kvm_check_tsc_unstable()) {
4328 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4329 vcpu->arch.last_guest_tsc);
4330 kvm_vcpu_write_tsc_offset(vcpu, offset);
4331 vcpu->arch.tsc_catchup = 1;
4332 }
4333
4334 if (kvm_lapic_hv_timer_in_use(vcpu))
4335 kvm_lapic_restart_hv_timer(vcpu);
4336
4337 /*
4338 * On a host with synchronized TSC, there is no need to update
4339 * kvmclock on vcpu->cpu migration
4340 */
4341 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4342 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4343 if (vcpu->cpu != cpu)
4344 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4345 vcpu->cpu = cpu;
4346 }
4347
4348 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4349 }
4350
4351 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4352 {
4353 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4354 struct kvm_steal_time __user *st;
4355 struct kvm_memslots *slots;
4356 static const u8 preempted = KVM_VCPU_PREEMPTED;
4357
4358 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4359 return;
4360
4361 if (vcpu->arch.st.preempted)
4362 return;
4363
4364 /* This happens on process exit */
4365 if (unlikely(current->mm != vcpu->kvm->mm))
4366 return;
4367
4368 slots = kvm_memslots(vcpu->kvm);
4369
4370 if (unlikely(slots->generation != ghc->generation ||
4371 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4372 return;
4373
4374 st = (struct kvm_steal_time __user *)ghc->hva;
4375 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4376
4377 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4378 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4379
4380 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4381 }
4382
4383 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4384 {
4385 int idx;
4386
4387 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4388 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4389
4390 /*
4391 * Take the srcu lock as memslots will be accessed to check the gfn
4392 * cache generation against the memslots generation.
4393 */
4394 idx = srcu_read_lock(&vcpu->kvm->srcu);
4395 if (kvm_xen_msr_enabled(vcpu->kvm))
4396 kvm_xen_runstate_set_preempted(vcpu);
4397 else
4398 kvm_steal_time_set_preempted(vcpu);
4399 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4400
4401 static_call(kvm_x86_vcpu_put)(vcpu);
4402 vcpu->arch.last_host_tsc = rdtsc();
4403 }
4404
4405 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4406 struct kvm_lapic_state *s)
4407 {
4408 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4409
4410 return kvm_apic_get_state(vcpu, s);
4411 }
4412
4413 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4414 struct kvm_lapic_state *s)
4415 {
4416 int r;
4417
4418 r = kvm_apic_set_state(vcpu, s);
4419 if (r)
4420 return r;
4421 update_cr8_intercept(vcpu);
4422
4423 return 0;
4424 }
4425
4426 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4427 {
4428 /*
4429 * We can accept userspace's request for interrupt injection
4430 * as long as we have a place to store the interrupt number.
4431 * The actual injection will happen when the CPU is able to
4432 * deliver the interrupt.
4433 */
4434 if (kvm_cpu_has_extint(vcpu))
4435 return false;
4436
4437 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4438 return (!lapic_in_kernel(vcpu) ||
4439 kvm_apic_accept_pic_intr(vcpu));
4440 }
4441
4442 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4443 {
4444 /*
4445 * Do not cause an interrupt window exit if an exception
4446 * is pending or an event needs reinjection; userspace
4447 * might want to inject the interrupt manually using KVM_SET_REGS
4448 * or KVM_SET_SREGS. For that to work, we must be at an
4449 * instruction boundary and with no events half-injected.
4450 */
4451 return (kvm_arch_interrupt_allowed(vcpu) &&
4452 kvm_cpu_accept_dm_intr(vcpu) &&
4453 !kvm_event_needs_reinjection(vcpu) &&
4454 !vcpu->arch.exception.pending);
4455 }
4456
4457 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4458 struct kvm_interrupt *irq)
4459 {
4460 if (irq->irq >= KVM_NR_INTERRUPTS)
4461 return -EINVAL;
4462
4463 if (!irqchip_in_kernel(vcpu->kvm)) {
4464 kvm_queue_interrupt(vcpu, irq->irq, false);
4465 kvm_make_request(KVM_REQ_EVENT, vcpu);
4466 return 0;
4467 }
4468
4469 /*
4470 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4471 * fail for in-kernel 8259.
4472 */
4473 if (pic_in_kernel(vcpu->kvm))
4474 return -ENXIO;
4475
4476 if (vcpu->arch.pending_external_vector != -1)
4477 return -EEXIST;
4478
4479 vcpu->arch.pending_external_vector = irq->irq;
4480 kvm_make_request(KVM_REQ_EVENT, vcpu);
4481 return 0;
4482 }
4483
4484 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4485 {
4486 kvm_inject_nmi(vcpu);
4487
4488 return 0;
4489 }
4490
4491 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4492 {
4493 kvm_make_request(KVM_REQ_SMI, vcpu);
4494
4495 return 0;
4496 }
4497
4498 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4499 struct kvm_tpr_access_ctl *tac)
4500 {
4501 if (tac->flags)
4502 return -EINVAL;
4503 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4504 return 0;
4505 }
4506
4507 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4508 u64 mcg_cap)
4509 {
4510 int r;
4511 unsigned bank_num = mcg_cap & 0xff, bank;
4512
4513 r = -EINVAL;
4514 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4515 goto out;
4516 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4517 goto out;
4518 r = 0;
4519 vcpu->arch.mcg_cap = mcg_cap;
4520 /* Init IA32_MCG_CTL to all 1s */
4521 if (mcg_cap & MCG_CTL_P)
4522 vcpu->arch.mcg_ctl = ~(u64)0;
4523 /* Init IA32_MCi_CTL to all 1s */
4524 for (bank = 0; bank < bank_num; bank++)
4525 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4526
4527 static_call(kvm_x86_setup_mce)(vcpu);
4528 out:
4529 return r;
4530 }
4531
4532 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4533 struct kvm_x86_mce *mce)
4534 {
4535 u64 mcg_cap = vcpu->arch.mcg_cap;
4536 unsigned bank_num = mcg_cap & 0xff;
4537 u64 *banks = vcpu->arch.mce_banks;
4538
4539 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4540 return -EINVAL;
4541 /*
4542 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4543 * reporting is disabled
4544 */
4545 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4546 vcpu->arch.mcg_ctl != ~(u64)0)
4547 return 0;
4548 banks += 4 * mce->bank;
4549 /*
4550 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4551 * reporting is disabled for the bank
4552 */
4553 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4554 return 0;
4555 if (mce->status & MCI_STATUS_UC) {
4556 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4557 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4558 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4559 return 0;
4560 }
4561 if (banks[1] & MCI_STATUS_VAL)
4562 mce->status |= MCI_STATUS_OVER;
4563 banks[2] = mce->addr;
4564 banks[3] = mce->misc;
4565 vcpu->arch.mcg_status = mce->mcg_status;
4566 banks[1] = mce->status;
4567 kvm_queue_exception(vcpu, MC_VECTOR);
4568 } else if (!(banks[1] & MCI_STATUS_VAL)
4569 || !(banks[1] & MCI_STATUS_UC)) {
4570 if (banks[1] & MCI_STATUS_VAL)
4571 mce->status |= MCI_STATUS_OVER;
4572 banks[2] = mce->addr;
4573 banks[3] = mce->misc;
4574 banks[1] = mce->status;
4575 } else
4576 banks[1] |= MCI_STATUS_OVER;
4577 return 0;
4578 }
4579
4580 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4581 struct kvm_vcpu_events *events)
4582 {
4583 process_nmi(vcpu);
4584
4585 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4586 process_smi(vcpu);
4587
4588 /*
4589 * In guest mode, payload delivery should be deferred,
4590 * so that the L1 hypervisor can intercept #PF before
4591 * CR2 is modified (or intercept #DB before DR6 is
4592 * modified under nVMX). Unless the per-VM capability,
4593 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4594 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4595 * opportunistically defer the exception payload, deliver it if the
4596 * capability hasn't been requested before processing a
4597 * KVM_GET_VCPU_EVENTS.
4598 */
4599 if (!vcpu->kvm->arch.exception_payload_enabled &&
4600 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4601 kvm_deliver_exception_payload(vcpu);
4602
4603 /*
4604 * The API doesn't provide the instruction length for software
4605 * exceptions, so don't report them. As long as the guest RIP
4606 * isn't advanced, we should expect to encounter the exception
4607 * again.
4608 */
4609 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4610 events->exception.injected = 0;
4611 events->exception.pending = 0;
4612 } else {
4613 events->exception.injected = vcpu->arch.exception.injected;
4614 events->exception.pending = vcpu->arch.exception.pending;
4615 /*
4616 * For ABI compatibility, deliberately conflate
4617 * pending and injected exceptions when
4618 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4619 */
4620 if (!vcpu->kvm->arch.exception_payload_enabled)
4621 events->exception.injected |=
4622 vcpu->arch.exception.pending;
4623 }
4624 events->exception.nr = vcpu->arch.exception.nr;
4625 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4626 events->exception.error_code = vcpu->arch.exception.error_code;
4627 events->exception_has_payload = vcpu->arch.exception.has_payload;
4628 events->exception_payload = vcpu->arch.exception.payload;
4629
4630 events->interrupt.injected =
4631 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4632 events->interrupt.nr = vcpu->arch.interrupt.nr;
4633 events->interrupt.soft = 0;
4634 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4635
4636 events->nmi.injected = vcpu->arch.nmi_injected;
4637 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4638 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4639 events->nmi.pad = 0;
4640
4641 events->sipi_vector = 0; /* never valid when reporting to user space */
4642
4643 events->smi.smm = is_smm(vcpu);
4644 events->smi.pending = vcpu->arch.smi_pending;
4645 events->smi.smm_inside_nmi =
4646 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4647 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4648
4649 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4650 | KVM_VCPUEVENT_VALID_SHADOW
4651 | KVM_VCPUEVENT_VALID_SMM);
4652 if (vcpu->kvm->arch.exception_payload_enabled)
4653 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4654
4655 memset(&events->reserved, 0, sizeof(events->reserved));
4656 }
4657
4658 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4659
4660 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4661 struct kvm_vcpu_events *events)
4662 {
4663 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4664 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4665 | KVM_VCPUEVENT_VALID_SHADOW
4666 | KVM_VCPUEVENT_VALID_SMM
4667 | KVM_VCPUEVENT_VALID_PAYLOAD))
4668 return -EINVAL;
4669
4670 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4671 if (!vcpu->kvm->arch.exception_payload_enabled)
4672 return -EINVAL;
4673 if (events->exception.pending)
4674 events->exception.injected = 0;
4675 else
4676 events->exception_has_payload = 0;
4677 } else {
4678 events->exception.pending = 0;
4679 events->exception_has_payload = 0;
4680 }
4681
4682 if ((events->exception.injected || events->exception.pending) &&
4683 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4684 return -EINVAL;
4685
4686 /* INITs are latched while in SMM */
4687 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4688 (events->smi.smm || events->smi.pending) &&
4689 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4690 return -EINVAL;
4691
4692 process_nmi(vcpu);
4693 vcpu->arch.exception.injected = events->exception.injected;
4694 vcpu->arch.exception.pending = events->exception.pending;
4695 vcpu->arch.exception.nr = events->exception.nr;
4696 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4697 vcpu->arch.exception.error_code = events->exception.error_code;
4698 vcpu->arch.exception.has_payload = events->exception_has_payload;
4699 vcpu->arch.exception.payload = events->exception_payload;
4700
4701 vcpu->arch.interrupt.injected = events->interrupt.injected;
4702 vcpu->arch.interrupt.nr = events->interrupt.nr;
4703 vcpu->arch.interrupt.soft = events->interrupt.soft;
4704 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4705 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4706 events->interrupt.shadow);
4707
4708 vcpu->arch.nmi_injected = events->nmi.injected;
4709 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4710 vcpu->arch.nmi_pending = events->nmi.pending;
4711 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4712
4713 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4714 lapic_in_kernel(vcpu))
4715 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4716
4717 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4718 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4719 kvm_smm_changed(vcpu, events->smi.smm);
4720
4721 vcpu->arch.smi_pending = events->smi.pending;
4722
4723 if (events->smi.smm) {
4724 if (events->smi.smm_inside_nmi)
4725 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4726 else
4727 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4728 }
4729
4730 if (lapic_in_kernel(vcpu)) {
4731 if (events->smi.latched_init)
4732 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4733 else
4734 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4735 }
4736 }
4737
4738 kvm_make_request(KVM_REQ_EVENT, vcpu);
4739
4740 return 0;
4741 }
4742
4743 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4744 struct kvm_debugregs *dbgregs)
4745 {
4746 unsigned long val;
4747
4748 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4749 kvm_get_dr(vcpu, 6, &val);
4750 dbgregs->dr6 = val;
4751 dbgregs->dr7 = vcpu->arch.dr7;
4752 dbgregs->flags = 0;
4753 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4754 }
4755
4756 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4757 struct kvm_debugregs *dbgregs)
4758 {
4759 if (dbgregs->flags)
4760 return -EINVAL;
4761
4762 if (!kvm_dr6_valid(dbgregs->dr6))
4763 return -EINVAL;
4764 if (!kvm_dr7_valid(dbgregs->dr7))
4765 return -EINVAL;
4766
4767 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4768 kvm_update_dr0123(vcpu);
4769 vcpu->arch.dr6 = dbgregs->dr6;
4770 vcpu->arch.dr7 = dbgregs->dr7;
4771 kvm_update_dr7(vcpu);
4772
4773 return 0;
4774 }
4775
4776 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4777
4778 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4779 {
4780 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4781 u64 xstate_bv = xsave->header.xfeatures;
4782 u64 valid;
4783
4784 /*
4785 * Copy legacy XSAVE area, to avoid complications with CPUID
4786 * leaves 0 and 1 in the loop below.
4787 */
4788 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4789
4790 /* Set XSTATE_BV */
4791 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4792 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4793
4794 /*
4795 * Copy each region from the possibly compacted offset to the
4796 * non-compacted offset.
4797 */
4798 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4799 while (valid) {
4800 u32 size, offset, ecx, edx;
4801 u64 xfeature_mask = valid & -valid;
4802 int xfeature_nr = fls64(xfeature_mask) - 1;
4803 void *src;
4804
4805 cpuid_count(XSTATE_CPUID, xfeature_nr,
4806 &size, &offset, &ecx, &edx);
4807
4808 if (xfeature_nr == XFEATURE_PKRU) {
4809 memcpy(dest + offset, &vcpu->arch.pkru,
4810 sizeof(vcpu->arch.pkru));
4811 } else {
4812 src = get_xsave_addr(xsave, xfeature_nr);
4813 if (src)
4814 memcpy(dest + offset, src, size);
4815 }
4816
4817 valid -= xfeature_mask;
4818 }
4819 }
4820
4821 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4822 {
4823 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4824 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4825 u64 valid;
4826
4827 /*
4828 * Copy legacy XSAVE area, to avoid complications with CPUID
4829 * leaves 0 and 1 in the loop below.
4830 */
4831 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4832
4833 /* Set XSTATE_BV and possibly XCOMP_BV. */
4834 xsave->header.xfeatures = xstate_bv;
4835 if (boot_cpu_has(X86_FEATURE_XSAVES))
4836 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4837
4838 /*
4839 * Copy each region from the non-compacted offset to the
4840 * possibly compacted offset.
4841 */
4842 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4843 while (valid) {
4844 u32 size, offset, ecx, edx;
4845 u64 xfeature_mask = valid & -valid;
4846 int xfeature_nr = fls64(xfeature_mask) - 1;
4847
4848 cpuid_count(XSTATE_CPUID, xfeature_nr,
4849 &size, &offset, &ecx, &edx);
4850
4851 if (xfeature_nr == XFEATURE_PKRU) {
4852 memcpy(&vcpu->arch.pkru, src + offset,
4853 sizeof(vcpu->arch.pkru));
4854 } else {
4855 void *dest = get_xsave_addr(xsave, xfeature_nr);
4856
4857 if (dest)
4858 memcpy(dest, src + offset, size);
4859 }
4860
4861 valid -= xfeature_mask;
4862 }
4863 }
4864
4865 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4866 struct kvm_xsave *guest_xsave)
4867 {
4868 if (!vcpu->arch.guest_fpu)
4869 return;
4870
4871 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4872 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4873 fill_xsave((u8 *) guest_xsave->region, vcpu);
4874 } else {
4875 memcpy(guest_xsave->region,
4876 &vcpu->arch.guest_fpu->state.fxsave,
4877 sizeof(struct fxregs_state));
4878 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4879 XFEATURE_MASK_FPSSE;
4880 }
4881 }
4882
4883 #define XSAVE_MXCSR_OFFSET 24
4884
4885 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4886 struct kvm_xsave *guest_xsave)
4887 {
4888 u64 xstate_bv;
4889 u32 mxcsr;
4890
4891 if (!vcpu->arch.guest_fpu)
4892 return 0;
4893
4894 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4895 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4896
4897 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4898 /*
4899 * Here we allow setting states that are not present in
4900 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4901 * with old userspace.
4902 */
4903 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4904 return -EINVAL;
4905 load_xsave(vcpu, (u8 *)guest_xsave->region);
4906 } else {
4907 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4908 mxcsr & ~mxcsr_feature_mask)
4909 return -EINVAL;
4910 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4911 guest_xsave->region, sizeof(struct fxregs_state));
4912 }
4913 return 0;
4914 }
4915
4916 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4917 struct kvm_xcrs *guest_xcrs)
4918 {
4919 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4920 guest_xcrs->nr_xcrs = 0;
4921 return;
4922 }
4923
4924 guest_xcrs->nr_xcrs = 1;
4925 guest_xcrs->flags = 0;
4926 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4927 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4928 }
4929
4930 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4931 struct kvm_xcrs *guest_xcrs)
4932 {
4933 int i, r = 0;
4934
4935 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4936 return -EINVAL;
4937
4938 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4939 return -EINVAL;
4940
4941 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4942 /* Only support XCR0 currently */
4943 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4944 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4945 guest_xcrs->xcrs[i].value);
4946 break;
4947 }
4948 if (r)
4949 r = -EINVAL;
4950 return r;
4951 }
4952
4953 /*
4954 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4955 * stopped by the hypervisor. This function will be called from the host only.
4956 * EINVAL is returned when the host attempts to set the flag for a guest that
4957 * does not support pv clocks.
4958 */
4959 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4960 {
4961 if (!vcpu->arch.pv_time_enabled)
4962 return -EINVAL;
4963 vcpu->arch.pvclock_set_guest_stopped_request = true;
4964 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4965 return 0;
4966 }
4967
4968 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4969 struct kvm_enable_cap *cap)
4970 {
4971 int r;
4972 uint16_t vmcs_version;
4973 void __user *user_ptr;
4974
4975 if (cap->flags)
4976 return -EINVAL;
4977
4978 switch (cap->cap) {
4979 case KVM_CAP_HYPERV_SYNIC2:
4980 if (cap->args[0])
4981 return -EINVAL;
4982 fallthrough;
4983
4984 case KVM_CAP_HYPERV_SYNIC:
4985 if (!irqchip_in_kernel(vcpu->kvm))
4986 return -EINVAL;
4987 return kvm_hv_activate_synic(vcpu, cap->cap ==
4988 KVM_CAP_HYPERV_SYNIC2);
4989 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4990 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4991 return -ENOTTY;
4992 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4993 if (!r) {
4994 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4995 if (copy_to_user(user_ptr, &vmcs_version,
4996 sizeof(vmcs_version)))
4997 r = -EFAULT;
4998 }
4999 return r;
5000 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5001 if (!kvm_x86_ops.enable_direct_tlbflush)
5002 return -ENOTTY;
5003
5004 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5005
5006 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5007 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5008
5009 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5010 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5011 if (vcpu->arch.pv_cpuid.enforce)
5012 kvm_update_pv_runtime(vcpu);
5013
5014 return 0;
5015 default:
5016 return -EINVAL;
5017 }
5018 }
5019
5020 long kvm_arch_vcpu_ioctl(struct file *filp,
5021 unsigned int ioctl, unsigned long arg)
5022 {
5023 struct kvm_vcpu *vcpu = filp->private_data;
5024 void __user *argp = (void __user *)arg;
5025 int r;
5026 union {
5027 struct kvm_sregs2 *sregs2;
5028 struct kvm_lapic_state *lapic;
5029 struct kvm_xsave *xsave;
5030 struct kvm_xcrs *xcrs;
5031 void *buffer;
5032 } u;
5033
5034 vcpu_load(vcpu);
5035
5036 u.buffer = NULL;
5037 switch (ioctl) {
5038 case KVM_GET_LAPIC: {
5039 r = -EINVAL;
5040 if (!lapic_in_kernel(vcpu))
5041 goto out;
5042 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5043 GFP_KERNEL_ACCOUNT);
5044
5045 r = -ENOMEM;
5046 if (!u.lapic)
5047 goto out;
5048 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5049 if (r)
5050 goto out;
5051 r = -EFAULT;
5052 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5053 goto out;
5054 r = 0;
5055 break;
5056 }
5057 case KVM_SET_LAPIC: {
5058 r = -EINVAL;
5059 if (!lapic_in_kernel(vcpu))
5060 goto out;
5061 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5062 if (IS_ERR(u.lapic)) {
5063 r = PTR_ERR(u.lapic);
5064 goto out_nofree;
5065 }
5066
5067 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5068 break;
5069 }
5070 case KVM_INTERRUPT: {
5071 struct kvm_interrupt irq;
5072
5073 r = -EFAULT;
5074 if (copy_from_user(&irq, argp, sizeof(irq)))
5075 goto out;
5076 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5077 break;
5078 }
5079 case KVM_NMI: {
5080 r = kvm_vcpu_ioctl_nmi(vcpu);
5081 break;
5082 }
5083 case KVM_SMI: {
5084 r = kvm_vcpu_ioctl_smi(vcpu);
5085 break;
5086 }
5087 case KVM_SET_CPUID: {
5088 struct kvm_cpuid __user *cpuid_arg = argp;
5089 struct kvm_cpuid cpuid;
5090
5091 r = -EFAULT;
5092 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5093 goto out;
5094 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5095 break;
5096 }
5097 case KVM_SET_CPUID2: {
5098 struct kvm_cpuid2 __user *cpuid_arg = argp;
5099 struct kvm_cpuid2 cpuid;
5100
5101 r = -EFAULT;
5102 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5103 goto out;
5104 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5105 cpuid_arg->entries);
5106 break;
5107 }
5108 case KVM_GET_CPUID2: {
5109 struct kvm_cpuid2 __user *cpuid_arg = argp;
5110 struct kvm_cpuid2 cpuid;
5111
5112 r = -EFAULT;
5113 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5114 goto out;
5115 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5116 cpuid_arg->entries);
5117 if (r)
5118 goto out;
5119 r = -EFAULT;
5120 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5121 goto out;
5122 r = 0;
5123 break;
5124 }
5125 case KVM_GET_MSRS: {
5126 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5127 r = msr_io(vcpu, argp, do_get_msr, 1);
5128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5129 break;
5130 }
5131 case KVM_SET_MSRS: {
5132 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5133 r = msr_io(vcpu, argp, do_set_msr, 0);
5134 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5135 break;
5136 }
5137 case KVM_TPR_ACCESS_REPORTING: {
5138 struct kvm_tpr_access_ctl tac;
5139
5140 r = -EFAULT;
5141 if (copy_from_user(&tac, argp, sizeof(tac)))
5142 goto out;
5143 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5144 if (r)
5145 goto out;
5146 r = -EFAULT;
5147 if (copy_to_user(argp, &tac, sizeof(tac)))
5148 goto out;
5149 r = 0;
5150 break;
5151 };
5152 case KVM_SET_VAPIC_ADDR: {
5153 struct kvm_vapic_addr va;
5154 int idx;
5155
5156 r = -EINVAL;
5157 if (!lapic_in_kernel(vcpu))
5158 goto out;
5159 r = -EFAULT;
5160 if (copy_from_user(&va, argp, sizeof(va)))
5161 goto out;
5162 idx = srcu_read_lock(&vcpu->kvm->srcu);
5163 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5164 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5165 break;
5166 }
5167 case KVM_X86_SETUP_MCE: {
5168 u64 mcg_cap;
5169
5170 r = -EFAULT;
5171 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5172 goto out;
5173 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5174 break;
5175 }
5176 case KVM_X86_SET_MCE: {
5177 struct kvm_x86_mce mce;
5178
5179 r = -EFAULT;
5180 if (copy_from_user(&mce, argp, sizeof(mce)))
5181 goto out;
5182 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5183 break;
5184 }
5185 case KVM_GET_VCPU_EVENTS: {
5186 struct kvm_vcpu_events events;
5187
5188 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5189
5190 r = -EFAULT;
5191 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5192 break;
5193 r = 0;
5194 break;
5195 }
5196 case KVM_SET_VCPU_EVENTS: {
5197 struct kvm_vcpu_events events;
5198
5199 r = -EFAULT;
5200 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5201 break;
5202
5203 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5204 break;
5205 }
5206 case KVM_GET_DEBUGREGS: {
5207 struct kvm_debugregs dbgregs;
5208
5209 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5210
5211 r = -EFAULT;
5212 if (copy_to_user(argp, &dbgregs,
5213 sizeof(struct kvm_debugregs)))
5214 break;
5215 r = 0;
5216 break;
5217 }
5218 case KVM_SET_DEBUGREGS: {
5219 struct kvm_debugregs dbgregs;
5220
5221 r = -EFAULT;
5222 if (copy_from_user(&dbgregs, argp,
5223 sizeof(struct kvm_debugregs)))
5224 break;
5225
5226 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5227 break;
5228 }
5229 case KVM_GET_XSAVE: {
5230 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5231 r = -ENOMEM;
5232 if (!u.xsave)
5233 break;
5234
5235 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5236
5237 r = -EFAULT;
5238 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5239 break;
5240 r = 0;
5241 break;
5242 }
5243 case KVM_SET_XSAVE: {
5244 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5245 if (IS_ERR(u.xsave)) {
5246 r = PTR_ERR(u.xsave);
5247 goto out_nofree;
5248 }
5249
5250 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5251 break;
5252 }
5253 case KVM_GET_XCRS: {
5254 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5255 r = -ENOMEM;
5256 if (!u.xcrs)
5257 break;
5258
5259 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5260
5261 r = -EFAULT;
5262 if (copy_to_user(argp, u.xcrs,
5263 sizeof(struct kvm_xcrs)))
5264 break;
5265 r = 0;
5266 break;
5267 }
5268 case KVM_SET_XCRS: {
5269 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5270 if (IS_ERR(u.xcrs)) {
5271 r = PTR_ERR(u.xcrs);
5272 goto out_nofree;
5273 }
5274
5275 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5276 break;
5277 }
5278 case KVM_SET_TSC_KHZ: {
5279 u32 user_tsc_khz;
5280
5281 r = -EINVAL;
5282 user_tsc_khz = (u32)arg;
5283
5284 if (kvm_has_tsc_control &&
5285 user_tsc_khz >= kvm_max_guest_tsc_khz)
5286 goto out;
5287
5288 if (user_tsc_khz == 0)
5289 user_tsc_khz = tsc_khz;
5290
5291 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5292 r = 0;
5293
5294 goto out;
5295 }
5296 case KVM_GET_TSC_KHZ: {
5297 r = vcpu->arch.virtual_tsc_khz;
5298 goto out;
5299 }
5300 case KVM_KVMCLOCK_CTRL: {
5301 r = kvm_set_guest_paused(vcpu);
5302 goto out;
5303 }
5304 case KVM_ENABLE_CAP: {
5305 struct kvm_enable_cap cap;
5306
5307 r = -EFAULT;
5308 if (copy_from_user(&cap, argp, sizeof(cap)))
5309 goto out;
5310 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5311 break;
5312 }
5313 case KVM_GET_NESTED_STATE: {
5314 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5315 u32 user_data_size;
5316
5317 r = -EINVAL;
5318 if (!kvm_x86_ops.nested_ops->get_state)
5319 break;
5320
5321 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5322 r = -EFAULT;
5323 if (get_user(user_data_size, &user_kvm_nested_state->size))
5324 break;
5325
5326 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5327 user_data_size);
5328 if (r < 0)
5329 break;
5330
5331 if (r > user_data_size) {
5332 if (put_user(r, &user_kvm_nested_state->size))
5333 r = -EFAULT;
5334 else
5335 r = -E2BIG;
5336 break;
5337 }
5338
5339 r = 0;
5340 break;
5341 }
5342 case KVM_SET_NESTED_STATE: {
5343 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5344 struct kvm_nested_state kvm_state;
5345 int idx;
5346
5347 r = -EINVAL;
5348 if (!kvm_x86_ops.nested_ops->set_state)
5349 break;
5350
5351 r = -EFAULT;
5352 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5353 break;
5354
5355 r = -EINVAL;
5356 if (kvm_state.size < sizeof(kvm_state))
5357 break;
5358
5359 if (kvm_state.flags &
5360 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5361 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5362 | KVM_STATE_NESTED_GIF_SET))
5363 break;
5364
5365 /* nested_run_pending implies guest_mode. */
5366 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5367 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5368 break;
5369
5370 idx = srcu_read_lock(&vcpu->kvm->srcu);
5371 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5372 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5373 break;
5374 }
5375 case KVM_GET_SUPPORTED_HV_CPUID:
5376 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5377 break;
5378 #ifdef CONFIG_KVM_XEN
5379 case KVM_XEN_VCPU_GET_ATTR: {
5380 struct kvm_xen_vcpu_attr xva;
5381
5382 r = -EFAULT;
5383 if (copy_from_user(&xva, argp, sizeof(xva)))
5384 goto out;
5385 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5386 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5387 r = -EFAULT;
5388 break;
5389 }
5390 case KVM_XEN_VCPU_SET_ATTR: {
5391 struct kvm_xen_vcpu_attr xva;
5392
5393 r = -EFAULT;
5394 if (copy_from_user(&xva, argp, sizeof(xva)))
5395 goto out;
5396 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5397 break;
5398 }
5399 #endif
5400 case KVM_GET_SREGS2: {
5401 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5402 r = -ENOMEM;
5403 if (!u.sregs2)
5404 goto out;
5405 __get_sregs2(vcpu, u.sregs2);
5406 r = -EFAULT;
5407 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5408 goto out;
5409 r = 0;
5410 break;
5411 }
5412 case KVM_SET_SREGS2: {
5413 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5414 if (IS_ERR(u.sregs2)) {
5415 r = PTR_ERR(u.sregs2);
5416 u.sregs2 = NULL;
5417 goto out;
5418 }
5419 r = __set_sregs2(vcpu, u.sregs2);
5420 break;
5421 }
5422 default:
5423 r = -EINVAL;
5424 }
5425 out:
5426 kfree(u.buffer);
5427 out_nofree:
5428 vcpu_put(vcpu);
5429 return r;
5430 }
5431
5432 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5433 {
5434 return VM_FAULT_SIGBUS;
5435 }
5436
5437 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5438 {
5439 int ret;
5440
5441 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5442 return -EINVAL;
5443 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5444 return ret;
5445 }
5446
5447 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5448 u64 ident_addr)
5449 {
5450 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5451 }
5452
5453 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5454 unsigned long kvm_nr_mmu_pages)
5455 {
5456 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5457 return -EINVAL;
5458
5459 mutex_lock(&kvm->slots_lock);
5460
5461 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5462 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5463
5464 mutex_unlock(&kvm->slots_lock);
5465 return 0;
5466 }
5467
5468 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5469 {
5470 return kvm->arch.n_max_mmu_pages;
5471 }
5472
5473 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5474 {
5475 struct kvm_pic *pic = kvm->arch.vpic;
5476 int r;
5477
5478 r = 0;
5479 switch (chip->chip_id) {
5480 case KVM_IRQCHIP_PIC_MASTER:
5481 memcpy(&chip->chip.pic, &pic->pics[0],
5482 sizeof(struct kvm_pic_state));
5483 break;
5484 case KVM_IRQCHIP_PIC_SLAVE:
5485 memcpy(&chip->chip.pic, &pic->pics[1],
5486 sizeof(struct kvm_pic_state));
5487 break;
5488 case KVM_IRQCHIP_IOAPIC:
5489 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5490 break;
5491 default:
5492 r = -EINVAL;
5493 break;
5494 }
5495 return r;
5496 }
5497
5498 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5499 {
5500 struct kvm_pic *pic = kvm->arch.vpic;
5501 int r;
5502
5503 r = 0;
5504 switch (chip->chip_id) {
5505 case KVM_IRQCHIP_PIC_MASTER:
5506 spin_lock(&pic->lock);
5507 memcpy(&pic->pics[0], &chip->chip.pic,
5508 sizeof(struct kvm_pic_state));
5509 spin_unlock(&pic->lock);
5510 break;
5511 case KVM_IRQCHIP_PIC_SLAVE:
5512 spin_lock(&pic->lock);
5513 memcpy(&pic->pics[1], &chip->chip.pic,
5514 sizeof(struct kvm_pic_state));
5515 spin_unlock(&pic->lock);
5516 break;
5517 case KVM_IRQCHIP_IOAPIC:
5518 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5519 break;
5520 default:
5521 r = -EINVAL;
5522 break;
5523 }
5524 kvm_pic_update_irq(pic);
5525 return r;
5526 }
5527
5528 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5529 {
5530 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5531
5532 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5533
5534 mutex_lock(&kps->lock);
5535 memcpy(ps, &kps->channels, sizeof(*ps));
5536 mutex_unlock(&kps->lock);
5537 return 0;
5538 }
5539
5540 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5541 {
5542 int i;
5543 struct kvm_pit *pit = kvm->arch.vpit;
5544
5545 mutex_lock(&pit->pit_state.lock);
5546 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5547 for (i = 0; i < 3; i++)
5548 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5549 mutex_unlock(&pit->pit_state.lock);
5550 return 0;
5551 }
5552
5553 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5554 {
5555 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5556 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5557 sizeof(ps->channels));
5558 ps->flags = kvm->arch.vpit->pit_state.flags;
5559 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5560 memset(&ps->reserved, 0, sizeof(ps->reserved));
5561 return 0;
5562 }
5563
5564 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5565 {
5566 int start = 0;
5567 int i;
5568 u32 prev_legacy, cur_legacy;
5569 struct kvm_pit *pit = kvm->arch.vpit;
5570
5571 mutex_lock(&pit->pit_state.lock);
5572 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5573 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5574 if (!prev_legacy && cur_legacy)
5575 start = 1;
5576 memcpy(&pit->pit_state.channels, &ps->channels,
5577 sizeof(pit->pit_state.channels));
5578 pit->pit_state.flags = ps->flags;
5579 for (i = 0; i < 3; i++)
5580 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5581 start && i == 0);
5582 mutex_unlock(&pit->pit_state.lock);
5583 return 0;
5584 }
5585
5586 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5587 struct kvm_reinject_control *control)
5588 {
5589 struct kvm_pit *pit = kvm->arch.vpit;
5590
5591 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5592 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5593 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5594 */
5595 mutex_lock(&pit->pit_state.lock);
5596 kvm_pit_set_reinject(pit, control->pit_reinject);
5597 mutex_unlock(&pit->pit_state.lock);
5598
5599 return 0;
5600 }
5601
5602 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5603 {
5604
5605 /*
5606 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5607 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5608 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5609 * VM-Exit.
5610 */
5611 struct kvm_vcpu *vcpu;
5612 int i;
5613
5614 kvm_for_each_vcpu(i, vcpu, kvm)
5615 kvm_vcpu_kick(vcpu);
5616 }
5617
5618 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5619 bool line_status)
5620 {
5621 if (!irqchip_in_kernel(kvm))
5622 return -ENXIO;
5623
5624 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5625 irq_event->irq, irq_event->level,
5626 line_status);
5627 return 0;
5628 }
5629
5630 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5631 struct kvm_enable_cap *cap)
5632 {
5633 int r;
5634
5635 if (cap->flags)
5636 return -EINVAL;
5637
5638 switch (cap->cap) {
5639 case KVM_CAP_DISABLE_QUIRKS:
5640 kvm->arch.disabled_quirks = cap->args[0];
5641 r = 0;
5642 break;
5643 case KVM_CAP_SPLIT_IRQCHIP: {
5644 mutex_lock(&kvm->lock);
5645 r = -EINVAL;
5646 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5647 goto split_irqchip_unlock;
5648 r = -EEXIST;
5649 if (irqchip_in_kernel(kvm))
5650 goto split_irqchip_unlock;
5651 if (kvm->created_vcpus)
5652 goto split_irqchip_unlock;
5653 r = kvm_setup_empty_irq_routing(kvm);
5654 if (r)
5655 goto split_irqchip_unlock;
5656 /* Pairs with irqchip_in_kernel. */
5657 smp_wmb();
5658 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5659 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5660 r = 0;
5661 split_irqchip_unlock:
5662 mutex_unlock(&kvm->lock);
5663 break;
5664 }
5665 case KVM_CAP_X2APIC_API:
5666 r = -EINVAL;
5667 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5668 break;
5669
5670 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5671 kvm->arch.x2apic_format = true;
5672 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5673 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5674
5675 r = 0;
5676 break;
5677 case KVM_CAP_X86_DISABLE_EXITS:
5678 r = -EINVAL;
5679 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5680 break;
5681
5682 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5683 kvm_can_mwait_in_guest())
5684 kvm->arch.mwait_in_guest = true;
5685 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5686 kvm->arch.hlt_in_guest = true;
5687 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5688 kvm->arch.pause_in_guest = true;
5689 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5690 kvm->arch.cstate_in_guest = true;
5691 r = 0;
5692 break;
5693 case KVM_CAP_MSR_PLATFORM_INFO:
5694 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5695 r = 0;
5696 break;
5697 case KVM_CAP_EXCEPTION_PAYLOAD:
5698 kvm->arch.exception_payload_enabled = cap->args[0];
5699 r = 0;
5700 break;
5701 case KVM_CAP_X86_USER_SPACE_MSR:
5702 kvm->arch.user_space_msr_mask = cap->args[0];
5703 r = 0;
5704 break;
5705 case KVM_CAP_X86_BUS_LOCK_EXIT:
5706 r = -EINVAL;
5707 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5708 break;
5709
5710 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5711 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5712 break;
5713
5714 if (kvm_has_bus_lock_exit &&
5715 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5716 kvm->arch.bus_lock_detection_enabled = true;
5717 r = 0;
5718 break;
5719 #ifdef CONFIG_X86_SGX_KVM
5720 case KVM_CAP_SGX_ATTRIBUTE: {
5721 unsigned long allowed_attributes = 0;
5722
5723 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5724 if (r)
5725 break;
5726
5727 /* KVM only supports the PROVISIONKEY privileged attribute. */
5728 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5729 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5730 kvm->arch.sgx_provisioning_allowed = true;
5731 else
5732 r = -EINVAL;
5733 break;
5734 }
5735 #endif
5736 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5737 r = -EINVAL;
5738 if (kvm_x86_ops.vm_copy_enc_context_from)
5739 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5740 return r;
5741 case KVM_CAP_EXIT_HYPERCALL:
5742 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5743 r = -EINVAL;
5744 break;
5745 }
5746 kvm->arch.hypercall_exit_enabled = cap->args[0];
5747 r = 0;
5748 break;
5749 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5750 r = -EINVAL;
5751 if (cap->args[0] & ~1)
5752 break;
5753 kvm->arch.exit_on_emulation_error = cap->args[0];
5754 r = 0;
5755 break;
5756 default:
5757 r = -EINVAL;
5758 break;
5759 }
5760 return r;
5761 }
5762
5763 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5764 {
5765 struct kvm_x86_msr_filter *msr_filter;
5766
5767 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5768 if (!msr_filter)
5769 return NULL;
5770
5771 msr_filter->default_allow = default_allow;
5772 return msr_filter;
5773 }
5774
5775 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5776 {
5777 u32 i;
5778
5779 if (!msr_filter)
5780 return;
5781
5782 for (i = 0; i < msr_filter->count; i++)
5783 kfree(msr_filter->ranges[i].bitmap);
5784
5785 kfree(msr_filter);
5786 }
5787
5788 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5789 struct kvm_msr_filter_range *user_range)
5790 {
5791 unsigned long *bitmap = NULL;
5792 size_t bitmap_size;
5793
5794 if (!user_range->nmsrs)
5795 return 0;
5796
5797 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5798 return -EINVAL;
5799
5800 if (!user_range->flags)
5801 return -EINVAL;
5802
5803 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5804 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5805 return -EINVAL;
5806
5807 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5808 if (IS_ERR(bitmap))
5809 return PTR_ERR(bitmap);
5810
5811 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5812 .flags = user_range->flags,
5813 .base = user_range->base,
5814 .nmsrs = user_range->nmsrs,
5815 .bitmap = bitmap,
5816 };
5817
5818 msr_filter->count++;
5819 return 0;
5820 }
5821
5822 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5823 {
5824 struct kvm_msr_filter __user *user_msr_filter = argp;
5825 struct kvm_x86_msr_filter *new_filter, *old_filter;
5826 struct kvm_msr_filter filter;
5827 bool default_allow;
5828 bool empty = true;
5829 int r = 0;
5830 u32 i;
5831
5832 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5833 return -EFAULT;
5834
5835 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5836 empty &= !filter.ranges[i].nmsrs;
5837
5838 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5839 if (empty && !default_allow)
5840 return -EINVAL;
5841
5842 new_filter = kvm_alloc_msr_filter(default_allow);
5843 if (!new_filter)
5844 return -ENOMEM;
5845
5846 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5847 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5848 if (r) {
5849 kvm_free_msr_filter(new_filter);
5850 return r;
5851 }
5852 }
5853
5854 mutex_lock(&kvm->lock);
5855
5856 /* The per-VM filter is protected by kvm->lock... */
5857 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5858
5859 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5860 synchronize_srcu(&kvm->srcu);
5861
5862 kvm_free_msr_filter(old_filter);
5863
5864 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5865 mutex_unlock(&kvm->lock);
5866
5867 return 0;
5868 }
5869
5870 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5871 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5872 {
5873 struct kvm_vcpu *vcpu;
5874 int i, ret = 0;
5875
5876 mutex_lock(&kvm->lock);
5877 kvm_for_each_vcpu(i, vcpu, kvm) {
5878 if (!vcpu->arch.pv_time_enabled)
5879 continue;
5880
5881 ret = kvm_set_guest_paused(vcpu);
5882 if (ret) {
5883 kvm_err("Failed to pause guest VCPU%d: %d\n",
5884 vcpu->vcpu_id, ret);
5885 break;
5886 }
5887 }
5888 mutex_unlock(&kvm->lock);
5889
5890 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5891 }
5892
5893 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5894 {
5895 switch (state) {
5896 case PM_HIBERNATION_PREPARE:
5897 case PM_SUSPEND_PREPARE:
5898 return kvm_arch_suspend_notifier(kvm);
5899 }
5900
5901 return NOTIFY_DONE;
5902 }
5903 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5904
5905 long kvm_arch_vm_ioctl(struct file *filp,
5906 unsigned int ioctl, unsigned long arg)
5907 {
5908 struct kvm *kvm = filp->private_data;
5909 void __user *argp = (void __user *)arg;
5910 int r = -ENOTTY;
5911 /*
5912 * This union makes it completely explicit to gcc-3.x
5913 * that these two variables' stack usage should be
5914 * combined, not added together.
5915 */
5916 union {
5917 struct kvm_pit_state ps;
5918 struct kvm_pit_state2 ps2;
5919 struct kvm_pit_config pit_config;
5920 } u;
5921
5922 switch (ioctl) {
5923 case KVM_SET_TSS_ADDR:
5924 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5925 break;
5926 case KVM_SET_IDENTITY_MAP_ADDR: {
5927 u64 ident_addr;
5928
5929 mutex_lock(&kvm->lock);
5930 r = -EINVAL;
5931 if (kvm->created_vcpus)
5932 goto set_identity_unlock;
5933 r = -EFAULT;
5934 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5935 goto set_identity_unlock;
5936 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5937 set_identity_unlock:
5938 mutex_unlock(&kvm->lock);
5939 break;
5940 }
5941 case KVM_SET_NR_MMU_PAGES:
5942 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5943 break;
5944 case KVM_GET_NR_MMU_PAGES:
5945 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5946 break;
5947 case KVM_CREATE_IRQCHIP: {
5948 mutex_lock(&kvm->lock);
5949
5950 r = -EEXIST;
5951 if (irqchip_in_kernel(kvm))
5952 goto create_irqchip_unlock;
5953
5954 r = -EINVAL;
5955 if (kvm->created_vcpus)
5956 goto create_irqchip_unlock;
5957
5958 r = kvm_pic_init(kvm);
5959 if (r)
5960 goto create_irqchip_unlock;
5961
5962 r = kvm_ioapic_init(kvm);
5963 if (r) {
5964 kvm_pic_destroy(kvm);
5965 goto create_irqchip_unlock;
5966 }
5967
5968 r = kvm_setup_default_irq_routing(kvm);
5969 if (r) {
5970 kvm_ioapic_destroy(kvm);
5971 kvm_pic_destroy(kvm);
5972 goto create_irqchip_unlock;
5973 }
5974 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5975 smp_wmb();
5976 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5977 create_irqchip_unlock:
5978 mutex_unlock(&kvm->lock);
5979 break;
5980 }
5981 case KVM_CREATE_PIT:
5982 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5983 goto create_pit;
5984 case KVM_CREATE_PIT2:
5985 r = -EFAULT;
5986 if (copy_from_user(&u.pit_config, argp,
5987 sizeof(struct kvm_pit_config)))
5988 goto out;
5989 create_pit:
5990 mutex_lock(&kvm->lock);
5991 r = -EEXIST;
5992 if (kvm->arch.vpit)
5993 goto create_pit_unlock;
5994 r = -ENOMEM;
5995 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5996 if (kvm->arch.vpit)
5997 r = 0;
5998 create_pit_unlock:
5999 mutex_unlock(&kvm->lock);
6000 break;
6001 case KVM_GET_IRQCHIP: {
6002 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6003 struct kvm_irqchip *chip;
6004
6005 chip = memdup_user(argp, sizeof(*chip));
6006 if (IS_ERR(chip)) {
6007 r = PTR_ERR(chip);
6008 goto out;
6009 }
6010
6011 r = -ENXIO;
6012 if (!irqchip_kernel(kvm))
6013 goto get_irqchip_out;
6014 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6015 if (r)
6016 goto get_irqchip_out;
6017 r = -EFAULT;
6018 if (copy_to_user(argp, chip, sizeof(*chip)))
6019 goto get_irqchip_out;
6020 r = 0;
6021 get_irqchip_out:
6022 kfree(chip);
6023 break;
6024 }
6025 case KVM_SET_IRQCHIP: {
6026 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6027 struct kvm_irqchip *chip;
6028
6029 chip = memdup_user(argp, sizeof(*chip));
6030 if (IS_ERR(chip)) {
6031 r = PTR_ERR(chip);
6032 goto out;
6033 }
6034
6035 r = -ENXIO;
6036 if (!irqchip_kernel(kvm))
6037 goto set_irqchip_out;
6038 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6039 set_irqchip_out:
6040 kfree(chip);
6041 break;
6042 }
6043 case KVM_GET_PIT: {
6044 r = -EFAULT;
6045 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6046 goto out;
6047 r = -ENXIO;
6048 if (!kvm->arch.vpit)
6049 goto out;
6050 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6051 if (r)
6052 goto out;
6053 r = -EFAULT;
6054 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6055 goto out;
6056 r = 0;
6057 break;
6058 }
6059 case KVM_SET_PIT: {
6060 r = -EFAULT;
6061 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6062 goto out;
6063 mutex_lock(&kvm->lock);
6064 r = -ENXIO;
6065 if (!kvm->arch.vpit)
6066 goto set_pit_out;
6067 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6068 set_pit_out:
6069 mutex_unlock(&kvm->lock);
6070 break;
6071 }
6072 case KVM_GET_PIT2: {
6073 r = -ENXIO;
6074 if (!kvm->arch.vpit)
6075 goto out;
6076 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6077 if (r)
6078 goto out;
6079 r = -EFAULT;
6080 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6081 goto out;
6082 r = 0;
6083 break;
6084 }
6085 case KVM_SET_PIT2: {
6086 r = -EFAULT;
6087 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6088 goto out;
6089 mutex_lock(&kvm->lock);
6090 r = -ENXIO;
6091 if (!kvm->arch.vpit)
6092 goto set_pit2_out;
6093 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6094 set_pit2_out:
6095 mutex_unlock(&kvm->lock);
6096 break;
6097 }
6098 case KVM_REINJECT_CONTROL: {
6099 struct kvm_reinject_control control;
6100 r = -EFAULT;
6101 if (copy_from_user(&control, argp, sizeof(control)))
6102 goto out;
6103 r = -ENXIO;
6104 if (!kvm->arch.vpit)
6105 goto out;
6106 r = kvm_vm_ioctl_reinject(kvm, &control);
6107 break;
6108 }
6109 case KVM_SET_BOOT_CPU_ID:
6110 r = 0;
6111 mutex_lock(&kvm->lock);
6112 if (kvm->created_vcpus)
6113 r = -EBUSY;
6114 else
6115 kvm->arch.bsp_vcpu_id = arg;
6116 mutex_unlock(&kvm->lock);
6117 break;
6118 #ifdef CONFIG_KVM_XEN
6119 case KVM_XEN_HVM_CONFIG: {
6120 struct kvm_xen_hvm_config xhc;
6121 r = -EFAULT;
6122 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6123 goto out;
6124 r = kvm_xen_hvm_config(kvm, &xhc);
6125 break;
6126 }
6127 case KVM_XEN_HVM_GET_ATTR: {
6128 struct kvm_xen_hvm_attr xha;
6129
6130 r = -EFAULT;
6131 if (copy_from_user(&xha, argp, sizeof(xha)))
6132 goto out;
6133 r = kvm_xen_hvm_get_attr(kvm, &xha);
6134 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6135 r = -EFAULT;
6136 break;
6137 }
6138 case KVM_XEN_HVM_SET_ATTR: {
6139 struct kvm_xen_hvm_attr xha;
6140
6141 r = -EFAULT;
6142 if (copy_from_user(&xha, argp, sizeof(xha)))
6143 goto out;
6144 r = kvm_xen_hvm_set_attr(kvm, &xha);
6145 break;
6146 }
6147 #endif
6148 case KVM_SET_CLOCK: {
6149 struct kvm_arch *ka = &kvm->arch;
6150 struct kvm_clock_data user_ns;
6151 u64 now_ns;
6152
6153 r = -EFAULT;
6154 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6155 goto out;
6156
6157 r = -EINVAL;
6158 if (user_ns.flags)
6159 goto out;
6160
6161 r = 0;
6162 /*
6163 * TODO: userspace has to take care of races with VCPU_RUN, so
6164 * kvm_gen_update_masterclock() can be cut down to locked
6165 * pvclock_update_vm_gtod_copy().
6166 */
6167 kvm_gen_update_masterclock(kvm);
6168
6169 /*
6170 * This pairs with kvm_guest_time_update(): when masterclock is
6171 * in use, we use master_kernel_ns + kvmclock_offset to set
6172 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6173 * is slightly ahead) here we risk going negative on unsigned
6174 * 'system_time' when 'user_ns.clock' is very small.
6175 */
6176 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6177 if (kvm->arch.use_master_clock)
6178 now_ns = ka->master_kernel_ns;
6179 else
6180 now_ns = get_kvmclock_base_ns();
6181 ka->kvmclock_offset = user_ns.clock - now_ns;
6182 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6183
6184 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6185 break;
6186 }
6187 case KVM_GET_CLOCK: {
6188 struct kvm_clock_data user_ns;
6189 u64 now_ns;
6190
6191 now_ns = get_kvmclock_ns(kvm);
6192 user_ns.clock = now_ns;
6193 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6194 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6195
6196 r = -EFAULT;
6197 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6198 goto out;
6199 r = 0;
6200 break;
6201 }
6202 case KVM_MEMORY_ENCRYPT_OP: {
6203 r = -ENOTTY;
6204 if (kvm_x86_ops.mem_enc_op)
6205 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6206 break;
6207 }
6208 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6209 struct kvm_enc_region region;
6210
6211 r = -EFAULT;
6212 if (copy_from_user(&region, argp, sizeof(region)))
6213 goto out;
6214
6215 r = -ENOTTY;
6216 if (kvm_x86_ops.mem_enc_reg_region)
6217 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6218 break;
6219 }
6220 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6221 struct kvm_enc_region region;
6222
6223 r = -EFAULT;
6224 if (copy_from_user(&region, argp, sizeof(region)))
6225 goto out;
6226
6227 r = -ENOTTY;
6228 if (kvm_x86_ops.mem_enc_unreg_region)
6229 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6230 break;
6231 }
6232 case KVM_HYPERV_EVENTFD: {
6233 struct kvm_hyperv_eventfd hvevfd;
6234
6235 r = -EFAULT;
6236 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6237 goto out;
6238 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6239 break;
6240 }
6241 case KVM_SET_PMU_EVENT_FILTER:
6242 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6243 break;
6244 case KVM_X86_SET_MSR_FILTER:
6245 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6246 break;
6247 default:
6248 r = -ENOTTY;
6249 }
6250 out:
6251 return r;
6252 }
6253
6254 static void kvm_init_msr_list(void)
6255 {
6256 struct x86_pmu_capability x86_pmu;
6257 u32 dummy[2];
6258 unsigned i;
6259
6260 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6261 "Please update the fixed PMCs in msrs_to_saved_all[]");
6262
6263 perf_get_x86_pmu_capability(&x86_pmu);
6264
6265 num_msrs_to_save = 0;
6266 num_emulated_msrs = 0;
6267 num_msr_based_features = 0;
6268
6269 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6270 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6271 continue;
6272
6273 /*
6274 * Even MSRs that are valid in the host may not be exposed
6275 * to the guests in some cases.
6276 */
6277 switch (msrs_to_save_all[i]) {
6278 case MSR_IA32_BNDCFGS:
6279 if (!kvm_mpx_supported())
6280 continue;
6281 break;
6282 case MSR_TSC_AUX:
6283 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6284 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6285 continue;
6286 break;
6287 case MSR_IA32_UMWAIT_CONTROL:
6288 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6289 continue;
6290 break;
6291 case MSR_IA32_RTIT_CTL:
6292 case MSR_IA32_RTIT_STATUS:
6293 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6294 continue;
6295 break;
6296 case MSR_IA32_RTIT_CR3_MATCH:
6297 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6298 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6299 continue;
6300 break;
6301 case MSR_IA32_RTIT_OUTPUT_BASE:
6302 case MSR_IA32_RTIT_OUTPUT_MASK:
6303 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6304 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6305 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6306 continue;
6307 break;
6308 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6309 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6310 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6311 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6312 continue;
6313 break;
6314 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6315 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6316 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6317 continue;
6318 break;
6319 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6320 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6321 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6322 continue;
6323 break;
6324 default:
6325 break;
6326 }
6327
6328 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6329 }
6330
6331 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6332 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6333 continue;
6334
6335 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6336 }
6337
6338 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6339 struct kvm_msr_entry msr;
6340
6341 msr.index = msr_based_features_all[i];
6342 if (kvm_get_msr_feature(&msr))
6343 continue;
6344
6345 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6346 }
6347 }
6348
6349 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6350 const void *v)
6351 {
6352 int handled = 0;
6353 int n;
6354
6355 do {
6356 n = min(len, 8);
6357 if (!(lapic_in_kernel(vcpu) &&
6358 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6359 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6360 break;
6361 handled += n;
6362 addr += n;
6363 len -= n;
6364 v += n;
6365 } while (len);
6366
6367 return handled;
6368 }
6369
6370 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6371 {
6372 int handled = 0;
6373 int n;
6374
6375 do {
6376 n = min(len, 8);
6377 if (!(lapic_in_kernel(vcpu) &&
6378 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6379 addr, n, v))
6380 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6381 break;
6382 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6383 handled += n;
6384 addr += n;
6385 len -= n;
6386 v += n;
6387 } while (len);
6388
6389 return handled;
6390 }
6391
6392 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6393 struct kvm_segment *var, int seg)
6394 {
6395 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6396 }
6397
6398 void kvm_get_segment(struct kvm_vcpu *vcpu,
6399 struct kvm_segment *var, int seg)
6400 {
6401 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6402 }
6403
6404 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6405 struct x86_exception *exception)
6406 {
6407 gpa_t t_gpa;
6408
6409 BUG_ON(!mmu_is_nested(vcpu));
6410
6411 /* NPT walks are always user-walks */
6412 access |= PFERR_USER_MASK;
6413 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6414
6415 return t_gpa;
6416 }
6417
6418 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6419 struct x86_exception *exception)
6420 {
6421 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6422 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6423 }
6424 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6425
6426 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6427 struct x86_exception *exception)
6428 {
6429 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6430 access |= PFERR_FETCH_MASK;
6431 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6432 }
6433
6434 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6435 struct x86_exception *exception)
6436 {
6437 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6438 access |= PFERR_WRITE_MASK;
6439 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6440 }
6441 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6442
6443 /* uses this to access any guest's mapped memory without checking CPL */
6444 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6445 struct x86_exception *exception)
6446 {
6447 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6448 }
6449
6450 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6451 struct kvm_vcpu *vcpu, u32 access,
6452 struct x86_exception *exception)
6453 {
6454 void *data = val;
6455 int r = X86EMUL_CONTINUE;
6456
6457 while (bytes) {
6458 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6459 exception);
6460 unsigned offset = addr & (PAGE_SIZE-1);
6461 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6462 int ret;
6463
6464 if (gpa == UNMAPPED_GVA)
6465 return X86EMUL_PROPAGATE_FAULT;
6466 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6467 offset, toread);
6468 if (ret < 0) {
6469 r = X86EMUL_IO_NEEDED;
6470 goto out;
6471 }
6472
6473 bytes -= toread;
6474 data += toread;
6475 addr += toread;
6476 }
6477 out:
6478 return r;
6479 }
6480
6481 /* used for instruction fetching */
6482 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6483 gva_t addr, void *val, unsigned int bytes,
6484 struct x86_exception *exception)
6485 {
6486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6487 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6488 unsigned offset;
6489 int ret;
6490
6491 /* Inline kvm_read_guest_virt_helper for speed. */
6492 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6493 exception);
6494 if (unlikely(gpa == UNMAPPED_GVA))
6495 return X86EMUL_PROPAGATE_FAULT;
6496
6497 offset = addr & (PAGE_SIZE-1);
6498 if (WARN_ON(offset + bytes > PAGE_SIZE))
6499 bytes = (unsigned)PAGE_SIZE - offset;
6500 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6501 offset, bytes);
6502 if (unlikely(ret < 0))
6503 return X86EMUL_IO_NEEDED;
6504
6505 return X86EMUL_CONTINUE;
6506 }
6507
6508 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6509 gva_t addr, void *val, unsigned int bytes,
6510 struct x86_exception *exception)
6511 {
6512 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6513
6514 /*
6515 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6516 * is returned, but our callers are not ready for that and they blindly
6517 * call kvm_inject_page_fault. Ensure that they at least do not leak
6518 * uninitialized kernel stack memory into cr2 and error code.
6519 */
6520 memset(exception, 0, sizeof(*exception));
6521 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6522 exception);
6523 }
6524 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6525
6526 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6527 gva_t addr, void *val, unsigned int bytes,
6528 struct x86_exception *exception, bool system)
6529 {
6530 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6531 u32 access = 0;
6532
6533 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6534 access |= PFERR_USER_MASK;
6535
6536 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6537 }
6538
6539 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6540 unsigned long addr, void *val, unsigned int bytes)
6541 {
6542 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6543 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6544
6545 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6546 }
6547
6548 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6549 struct kvm_vcpu *vcpu, u32 access,
6550 struct x86_exception *exception)
6551 {
6552 void *data = val;
6553 int r = X86EMUL_CONTINUE;
6554
6555 while (bytes) {
6556 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6557 access,
6558 exception);
6559 unsigned offset = addr & (PAGE_SIZE-1);
6560 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6561 int ret;
6562
6563 if (gpa == UNMAPPED_GVA)
6564 return X86EMUL_PROPAGATE_FAULT;
6565 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6566 if (ret < 0) {
6567 r = X86EMUL_IO_NEEDED;
6568 goto out;
6569 }
6570
6571 bytes -= towrite;
6572 data += towrite;
6573 addr += towrite;
6574 }
6575 out:
6576 return r;
6577 }
6578
6579 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6580 unsigned int bytes, struct x86_exception *exception,
6581 bool system)
6582 {
6583 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6584 u32 access = PFERR_WRITE_MASK;
6585
6586 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6587 access |= PFERR_USER_MASK;
6588
6589 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6590 access, exception);
6591 }
6592
6593 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6594 unsigned int bytes, struct x86_exception *exception)
6595 {
6596 /* kvm_write_guest_virt_system can pull in tons of pages. */
6597 vcpu->arch.l1tf_flush_l1d = true;
6598
6599 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6600 PFERR_WRITE_MASK, exception);
6601 }
6602 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6603
6604 int handle_ud(struct kvm_vcpu *vcpu)
6605 {
6606 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6607 int emul_type = EMULTYPE_TRAP_UD;
6608 char sig[5]; /* ud2; .ascii "kvm" */
6609 struct x86_exception e;
6610
6611 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6612 return 1;
6613
6614 if (force_emulation_prefix &&
6615 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6616 sig, sizeof(sig), &e) == 0 &&
6617 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6618 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6619 emul_type = EMULTYPE_TRAP_UD_FORCED;
6620 }
6621
6622 return kvm_emulate_instruction(vcpu, emul_type);
6623 }
6624 EXPORT_SYMBOL_GPL(handle_ud);
6625
6626 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6627 gpa_t gpa, bool write)
6628 {
6629 /* For APIC access vmexit */
6630 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6631 return 1;
6632
6633 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6634 trace_vcpu_match_mmio(gva, gpa, write, true);
6635 return 1;
6636 }
6637
6638 return 0;
6639 }
6640
6641 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6642 gpa_t *gpa, struct x86_exception *exception,
6643 bool write)
6644 {
6645 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6646 | (write ? PFERR_WRITE_MASK : 0);
6647
6648 /*
6649 * currently PKRU is only applied to ept enabled guest so
6650 * there is no pkey in EPT page table for L1 guest or EPT
6651 * shadow page table for L2 guest.
6652 */
6653 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6654 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6655 vcpu->arch.mmio_access, 0, access))) {
6656 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6657 (gva & (PAGE_SIZE - 1));
6658 trace_vcpu_match_mmio(gva, *gpa, write, false);
6659 return 1;
6660 }
6661
6662 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6663
6664 if (*gpa == UNMAPPED_GVA)
6665 return -1;
6666
6667 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6668 }
6669
6670 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6671 const void *val, int bytes)
6672 {
6673 int ret;
6674
6675 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6676 if (ret < 0)
6677 return 0;
6678 kvm_page_track_write(vcpu, gpa, val, bytes);
6679 return 1;
6680 }
6681
6682 struct read_write_emulator_ops {
6683 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6684 int bytes);
6685 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6686 void *val, int bytes);
6687 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6688 int bytes, void *val);
6689 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6690 void *val, int bytes);
6691 bool write;
6692 };
6693
6694 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6695 {
6696 if (vcpu->mmio_read_completed) {
6697 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6698 vcpu->mmio_fragments[0].gpa, val);
6699 vcpu->mmio_read_completed = 0;
6700 return 1;
6701 }
6702
6703 return 0;
6704 }
6705
6706 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6707 void *val, int bytes)
6708 {
6709 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6710 }
6711
6712 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6713 void *val, int bytes)
6714 {
6715 return emulator_write_phys(vcpu, gpa, val, bytes);
6716 }
6717
6718 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6719 {
6720 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6721 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6722 }
6723
6724 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6725 void *val, int bytes)
6726 {
6727 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6728 return X86EMUL_IO_NEEDED;
6729 }
6730
6731 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6732 void *val, int bytes)
6733 {
6734 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6735
6736 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6737 return X86EMUL_CONTINUE;
6738 }
6739
6740 static const struct read_write_emulator_ops read_emultor = {
6741 .read_write_prepare = read_prepare,
6742 .read_write_emulate = read_emulate,
6743 .read_write_mmio = vcpu_mmio_read,
6744 .read_write_exit_mmio = read_exit_mmio,
6745 };
6746
6747 static const struct read_write_emulator_ops write_emultor = {
6748 .read_write_emulate = write_emulate,
6749 .read_write_mmio = write_mmio,
6750 .read_write_exit_mmio = write_exit_mmio,
6751 .write = true,
6752 };
6753
6754 static int emulator_read_write_onepage(unsigned long addr, void *val,
6755 unsigned int bytes,
6756 struct x86_exception *exception,
6757 struct kvm_vcpu *vcpu,
6758 const struct read_write_emulator_ops *ops)
6759 {
6760 gpa_t gpa;
6761 int handled, ret;
6762 bool write = ops->write;
6763 struct kvm_mmio_fragment *frag;
6764 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6765
6766 /*
6767 * If the exit was due to a NPF we may already have a GPA.
6768 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6769 * Note, this cannot be used on string operations since string
6770 * operation using rep will only have the initial GPA from the NPF
6771 * occurred.
6772 */
6773 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6774 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6775 gpa = ctxt->gpa_val;
6776 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6777 } else {
6778 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6779 if (ret < 0)
6780 return X86EMUL_PROPAGATE_FAULT;
6781 }
6782
6783 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6784 return X86EMUL_CONTINUE;
6785
6786 /*
6787 * Is this MMIO handled locally?
6788 */
6789 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6790 if (handled == bytes)
6791 return X86EMUL_CONTINUE;
6792
6793 gpa += handled;
6794 bytes -= handled;
6795 val += handled;
6796
6797 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6798 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6799 frag->gpa = gpa;
6800 frag->data = val;
6801 frag->len = bytes;
6802 return X86EMUL_CONTINUE;
6803 }
6804
6805 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6806 unsigned long addr,
6807 void *val, unsigned int bytes,
6808 struct x86_exception *exception,
6809 const struct read_write_emulator_ops *ops)
6810 {
6811 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6812 gpa_t gpa;
6813 int rc;
6814
6815 if (ops->read_write_prepare &&
6816 ops->read_write_prepare(vcpu, val, bytes))
6817 return X86EMUL_CONTINUE;
6818
6819 vcpu->mmio_nr_fragments = 0;
6820
6821 /* Crossing a page boundary? */
6822 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6823 int now;
6824
6825 now = -addr & ~PAGE_MASK;
6826 rc = emulator_read_write_onepage(addr, val, now, exception,
6827 vcpu, ops);
6828
6829 if (rc != X86EMUL_CONTINUE)
6830 return rc;
6831 addr += now;
6832 if (ctxt->mode != X86EMUL_MODE_PROT64)
6833 addr = (u32)addr;
6834 val += now;
6835 bytes -= now;
6836 }
6837
6838 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6839 vcpu, ops);
6840 if (rc != X86EMUL_CONTINUE)
6841 return rc;
6842
6843 if (!vcpu->mmio_nr_fragments)
6844 return rc;
6845
6846 gpa = vcpu->mmio_fragments[0].gpa;
6847
6848 vcpu->mmio_needed = 1;
6849 vcpu->mmio_cur_fragment = 0;
6850
6851 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6852 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6853 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6854 vcpu->run->mmio.phys_addr = gpa;
6855
6856 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6857 }
6858
6859 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6860 unsigned long addr,
6861 void *val,
6862 unsigned int bytes,
6863 struct x86_exception *exception)
6864 {
6865 return emulator_read_write(ctxt, addr, val, bytes,
6866 exception, &read_emultor);
6867 }
6868
6869 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6870 unsigned long addr,
6871 const void *val,
6872 unsigned int bytes,
6873 struct x86_exception *exception)
6874 {
6875 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6876 exception, &write_emultor);
6877 }
6878
6879 #define CMPXCHG_TYPE(t, ptr, old, new) \
6880 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6881
6882 #ifdef CONFIG_X86_64
6883 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6884 #else
6885 # define CMPXCHG64(ptr, old, new) \
6886 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6887 #endif
6888
6889 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6890 unsigned long addr,
6891 const void *old,
6892 const void *new,
6893 unsigned int bytes,
6894 struct x86_exception *exception)
6895 {
6896 struct kvm_host_map map;
6897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6898 u64 page_line_mask;
6899 gpa_t gpa;
6900 char *kaddr;
6901 bool exchanged;
6902
6903 /* guests cmpxchg8b have to be emulated atomically */
6904 if (bytes > 8 || (bytes & (bytes - 1)))
6905 goto emul_write;
6906
6907 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6908
6909 if (gpa == UNMAPPED_GVA ||
6910 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6911 goto emul_write;
6912
6913 /*
6914 * Emulate the atomic as a straight write to avoid #AC if SLD is
6915 * enabled in the host and the access splits a cache line.
6916 */
6917 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6918 page_line_mask = ~(cache_line_size() - 1);
6919 else
6920 page_line_mask = PAGE_MASK;
6921
6922 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6923 goto emul_write;
6924
6925 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6926 goto emul_write;
6927
6928 kaddr = map.hva + offset_in_page(gpa);
6929
6930 switch (bytes) {
6931 case 1:
6932 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6933 break;
6934 case 2:
6935 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6936 break;
6937 case 4:
6938 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6939 break;
6940 case 8:
6941 exchanged = CMPXCHG64(kaddr, old, new);
6942 break;
6943 default:
6944 BUG();
6945 }
6946
6947 kvm_vcpu_unmap(vcpu, &map, true);
6948
6949 if (!exchanged)
6950 return X86EMUL_CMPXCHG_FAILED;
6951
6952 kvm_page_track_write(vcpu, gpa, new, bytes);
6953
6954 return X86EMUL_CONTINUE;
6955
6956 emul_write:
6957 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6958
6959 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6960 }
6961
6962 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6963 {
6964 int r = 0, i;
6965
6966 for (i = 0; i < vcpu->arch.pio.count; i++) {
6967 if (vcpu->arch.pio.in)
6968 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6969 vcpu->arch.pio.size, pd);
6970 else
6971 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6972 vcpu->arch.pio.port, vcpu->arch.pio.size,
6973 pd);
6974 if (r)
6975 break;
6976 pd += vcpu->arch.pio.size;
6977 }
6978 return r;
6979 }
6980
6981 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6982 unsigned short port,
6983 unsigned int count, bool in)
6984 {
6985 vcpu->arch.pio.port = port;
6986 vcpu->arch.pio.in = in;
6987 vcpu->arch.pio.count = count;
6988 vcpu->arch.pio.size = size;
6989
6990 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6991 return 1;
6992
6993 vcpu->run->exit_reason = KVM_EXIT_IO;
6994 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6995 vcpu->run->io.size = size;
6996 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6997 vcpu->run->io.count = count;
6998 vcpu->run->io.port = port;
6999
7000 return 0;
7001 }
7002
7003 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7004 unsigned short port, unsigned int count)
7005 {
7006 WARN_ON(vcpu->arch.pio.count);
7007 memset(vcpu->arch.pio_data, 0, size * count);
7008 return emulator_pio_in_out(vcpu, size, port, count, true);
7009 }
7010
7011 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7012 {
7013 int size = vcpu->arch.pio.size;
7014 unsigned count = vcpu->arch.pio.count;
7015 memcpy(val, vcpu->arch.pio_data, size * count);
7016 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7017 vcpu->arch.pio.count = 0;
7018 }
7019
7020 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7021 unsigned short port, void *val, unsigned int count)
7022 {
7023 if (vcpu->arch.pio.count) {
7024 /* Complete previous iteration. */
7025 } else {
7026 int r = __emulator_pio_in(vcpu, size, port, count);
7027 if (!r)
7028 return r;
7029
7030 /* Results already available, fall through. */
7031 }
7032
7033 WARN_ON(count != vcpu->arch.pio.count);
7034 complete_emulator_pio_in(vcpu, val);
7035 return 1;
7036 }
7037
7038 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7039 int size, unsigned short port, void *val,
7040 unsigned int count)
7041 {
7042 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7043
7044 }
7045
7046 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7047 unsigned short port, const void *val,
7048 unsigned int count)
7049 {
7050 int ret;
7051
7052 memcpy(vcpu->arch.pio_data, val, size * count);
7053 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7054 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7055 if (ret)
7056 vcpu->arch.pio.count = 0;
7057
7058 return ret;
7059 }
7060
7061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7062 int size, unsigned short port,
7063 const void *val, unsigned int count)
7064 {
7065 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7066 }
7067
7068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7069 {
7070 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7071 }
7072
7073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7074 {
7075 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7076 }
7077
7078 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7079 {
7080 if (!need_emulate_wbinvd(vcpu))
7081 return X86EMUL_CONTINUE;
7082
7083 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7084 int cpu = get_cpu();
7085
7086 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7087 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7088 wbinvd_ipi, NULL, 1);
7089 put_cpu();
7090 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7091 } else
7092 wbinvd();
7093 return X86EMUL_CONTINUE;
7094 }
7095
7096 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7097 {
7098 kvm_emulate_wbinvd_noskip(vcpu);
7099 return kvm_skip_emulated_instruction(vcpu);
7100 }
7101 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7102
7103
7104
7105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7106 {
7107 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7108 }
7109
7110 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7111 unsigned long *dest)
7112 {
7113 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7114 }
7115
7116 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7117 unsigned long value)
7118 {
7119
7120 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7121 }
7122
7123 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7124 {
7125 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7126 }
7127
7128 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7129 {
7130 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7131 unsigned long value;
7132
7133 switch (cr) {
7134 case 0:
7135 value = kvm_read_cr0(vcpu);
7136 break;
7137 case 2:
7138 value = vcpu->arch.cr2;
7139 break;
7140 case 3:
7141 value = kvm_read_cr3(vcpu);
7142 break;
7143 case 4:
7144 value = kvm_read_cr4(vcpu);
7145 break;
7146 case 8:
7147 value = kvm_get_cr8(vcpu);
7148 break;
7149 default:
7150 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7151 return 0;
7152 }
7153
7154 return value;
7155 }
7156
7157 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7158 {
7159 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7160 int res = 0;
7161
7162 switch (cr) {
7163 case 0:
7164 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7165 break;
7166 case 2:
7167 vcpu->arch.cr2 = val;
7168 break;
7169 case 3:
7170 res = kvm_set_cr3(vcpu, val);
7171 break;
7172 case 4:
7173 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7174 break;
7175 case 8:
7176 res = kvm_set_cr8(vcpu, val);
7177 break;
7178 default:
7179 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7180 res = -1;
7181 }
7182
7183 return res;
7184 }
7185
7186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7187 {
7188 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7189 }
7190
7191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7192 {
7193 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7194 }
7195
7196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7197 {
7198 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7199 }
7200
7201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7202 {
7203 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7204 }
7205
7206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7207 {
7208 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7209 }
7210
7211 static unsigned long emulator_get_cached_segment_base(
7212 struct x86_emulate_ctxt *ctxt, int seg)
7213 {
7214 return get_segment_base(emul_to_vcpu(ctxt), seg);
7215 }
7216
7217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7218 struct desc_struct *desc, u32 *base3,
7219 int seg)
7220 {
7221 struct kvm_segment var;
7222
7223 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7224 *selector = var.selector;
7225
7226 if (var.unusable) {
7227 memset(desc, 0, sizeof(*desc));
7228 if (base3)
7229 *base3 = 0;
7230 return false;
7231 }
7232
7233 if (var.g)
7234 var.limit >>= 12;
7235 set_desc_limit(desc, var.limit);
7236 set_desc_base(desc, (unsigned long)var.base);
7237 #ifdef CONFIG_X86_64
7238 if (base3)
7239 *base3 = var.base >> 32;
7240 #endif
7241 desc->type = var.type;
7242 desc->s = var.s;
7243 desc->dpl = var.dpl;
7244 desc->p = var.present;
7245 desc->avl = var.avl;
7246 desc->l = var.l;
7247 desc->d = var.db;
7248 desc->g = var.g;
7249
7250 return true;
7251 }
7252
7253 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7254 struct desc_struct *desc, u32 base3,
7255 int seg)
7256 {
7257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7258 struct kvm_segment var;
7259
7260 var.selector = selector;
7261 var.base = get_desc_base(desc);
7262 #ifdef CONFIG_X86_64
7263 var.base |= ((u64)base3) << 32;
7264 #endif
7265 var.limit = get_desc_limit(desc);
7266 if (desc->g)
7267 var.limit = (var.limit << 12) | 0xfff;
7268 var.type = desc->type;
7269 var.dpl = desc->dpl;
7270 var.db = desc->d;
7271 var.s = desc->s;
7272 var.l = desc->l;
7273 var.g = desc->g;
7274 var.avl = desc->avl;
7275 var.present = desc->p;
7276 var.unusable = !var.present;
7277 var.padding = 0;
7278
7279 kvm_set_segment(vcpu, &var, seg);
7280 return;
7281 }
7282
7283 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7284 u32 msr_index, u64 *pdata)
7285 {
7286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7287 int r;
7288
7289 r = kvm_get_msr(vcpu, msr_index, pdata);
7290
7291 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7292 /* Bounce to user space */
7293 return X86EMUL_IO_NEEDED;
7294 }
7295
7296 return r;
7297 }
7298
7299 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7300 u32 msr_index, u64 data)
7301 {
7302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7303 int r;
7304
7305 r = kvm_set_msr(vcpu, msr_index, data);
7306
7307 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7308 /* Bounce to user space */
7309 return X86EMUL_IO_NEEDED;
7310 }
7311
7312 return r;
7313 }
7314
7315 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7316 {
7317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7318
7319 return vcpu->arch.smbase;
7320 }
7321
7322 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7323 {
7324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7325
7326 vcpu->arch.smbase = smbase;
7327 }
7328
7329 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7330 u32 pmc)
7331 {
7332 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7333 }
7334
7335 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7336 u32 pmc, u64 *pdata)
7337 {
7338 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7339 }
7340
7341 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7342 {
7343 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7344 }
7345
7346 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7347 struct x86_instruction_info *info,
7348 enum x86_intercept_stage stage)
7349 {
7350 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7351 &ctxt->exception);
7352 }
7353
7354 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7355 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7356 bool exact_only)
7357 {
7358 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7359 }
7360
7361 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7362 {
7363 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7364 }
7365
7366 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7367 {
7368 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7369 }
7370
7371 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7372 {
7373 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7374 }
7375
7376 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7377 {
7378 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7379 }
7380
7381 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7382 {
7383 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7384 }
7385
7386 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7387 {
7388 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7389 }
7390
7391 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7392 {
7393 return emul_to_vcpu(ctxt)->arch.hflags;
7394 }
7395
7396 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7397 {
7398 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7399
7400 kvm_smm_changed(vcpu, false);
7401 }
7402
7403 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7404 const char *smstate)
7405 {
7406 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7407 }
7408
7409 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7410 {
7411 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7412 }
7413
7414 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7415 {
7416 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7417 }
7418
7419 static const struct x86_emulate_ops emulate_ops = {
7420 .read_gpr = emulator_read_gpr,
7421 .write_gpr = emulator_write_gpr,
7422 .read_std = emulator_read_std,
7423 .write_std = emulator_write_std,
7424 .read_phys = kvm_read_guest_phys_system,
7425 .fetch = kvm_fetch_guest_virt,
7426 .read_emulated = emulator_read_emulated,
7427 .write_emulated = emulator_write_emulated,
7428 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7429 .invlpg = emulator_invlpg,
7430 .pio_in_emulated = emulator_pio_in_emulated,
7431 .pio_out_emulated = emulator_pio_out_emulated,
7432 .get_segment = emulator_get_segment,
7433 .set_segment = emulator_set_segment,
7434 .get_cached_segment_base = emulator_get_cached_segment_base,
7435 .get_gdt = emulator_get_gdt,
7436 .get_idt = emulator_get_idt,
7437 .set_gdt = emulator_set_gdt,
7438 .set_idt = emulator_set_idt,
7439 .get_cr = emulator_get_cr,
7440 .set_cr = emulator_set_cr,
7441 .cpl = emulator_get_cpl,
7442 .get_dr = emulator_get_dr,
7443 .set_dr = emulator_set_dr,
7444 .get_smbase = emulator_get_smbase,
7445 .set_smbase = emulator_set_smbase,
7446 .set_msr = emulator_set_msr,
7447 .get_msr = emulator_get_msr,
7448 .check_pmc = emulator_check_pmc,
7449 .read_pmc = emulator_read_pmc,
7450 .halt = emulator_halt,
7451 .wbinvd = emulator_wbinvd,
7452 .fix_hypercall = emulator_fix_hypercall,
7453 .intercept = emulator_intercept,
7454 .get_cpuid = emulator_get_cpuid,
7455 .guest_has_long_mode = emulator_guest_has_long_mode,
7456 .guest_has_movbe = emulator_guest_has_movbe,
7457 .guest_has_fxsr = emulator_guest_has_fxsr,
7458 .set_nmi_mask = emulator_set_nmi_mask,
7459 .get_hflags = emulator_get_hflags,
7460 .exiting_smm = emulator_exiting_smm,
7461 .leave_smm = emulator_leave_smm,
7462 .triple_fault = emulator_triple_fault,
7463 .set_xcr = emulator_set_xcr,
7464 };
7465
7466 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7467 {
7468 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7469 /*
7470 * an sti; sti; sequence only disable interrupts for the first
7471 * instruction. So, if the last instruction, be it emulated or
7472 * not, left the system with the INT_STI flag enabled, it
7473 * means that the last instruction is an sti. We should not
7474 * leave the flag on in this case. The same goes for mov ss
7475 */
7476 if (int_shadow & mask)
7477 mask = 0;
7478 if (unlikely(int_shadow || mask)) {
7479 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7480 if (!mask)
7481 kvm_make_request(KVM_REQ_EVENT, vcpu);
7482 }
7483 }
7484
7485 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7486 {
7487 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7488 if (ctxt->exception.vector == PF_VECTOR)
7489 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7490
7491 if (ctxt->exception.error_code_valid)
7492 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7493 ctxt->exception.error_code);
7494 else
7495 kvm_queue_exception(vcpu, ctxt->exception.vector);
7496 return false;
7497 }
7498
7499 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7500 {
7501 struct x86_emulate_ctxt *ctxt;
7502
7503 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7504 if (!ctxt) {
7505 pr_err("kvm: failed to allocate vcpu's emulator\n");
7506 return NULL;
7507 }
7508
7509 ctxt->vcpu = vcpu;
7510 ctxt->ops = &emulate_ops;
7511 vcpu->arch.emulate_ctxt = ctxt;
7512
7513 return ctxt;
7514 }
7515
7516 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7517 {
7518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7519 int cs_db, cs_l;
7520
7521 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7522
7523 ctxt->gpa_available = false;
7524 ctxt->eflags = kvm_get_rflags(vcpu);
7525 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7526
7527 ctxt->eip = kvm_rip_read(vcpu);
7528 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7529 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7530 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7531 cs_db ? X86EMUL_MODE_PROT32 :
7532 X86EMUL_MODE_PROT16;
7533 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7534 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7535 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7536
7537 ctxt->interruptibility = 0;
7538 ctxt->have_exception = false;
7539 ctxt->exception.vector = -1;
7540 ctxt->perm_ok = false;
7541
7542 init_decode_cache(ctxt);
7543 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7544 }
7545
7546 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7547 {
7548 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7549 int ret;
7550
7551 init_emulate_ctxt(vcpu);
7552
7553 ctxt->op_bytes = 2;
7554 ctxt->ad_bytes = 2;
7555 ctxt->_eip = ctxt->eip + inc_eip;
7556 ret = emulate_int_real(ctxt, irq);
7557
7558 if (ret != X86EMUL_CONTINUE) {
7559 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7560 } else {
7561 ctxt->eip = ctxt->_eip;
7562 kvm_rip_write(vcpu, ctxt->eip);
7563 kvm_set_rflags(vcpu, ctxt->eflags);
7564 }
7565 }
7566 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7567
7568 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7569 {
7570 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7571 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7572 struct kvm_run *run = vcpu->run;
7573
7574 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7575 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7576 run->emulation_failure.ndata = 0;
7577 run->emulation_failure.flags = 0;
7578
7579 if (insn_size) {
7580 run->emulation_failure.ndata = 3;
7581 run->emulation_failure.flags |=
7582 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7583 run->emulation_failure.insn_size = insn_size;
7584 memset(run->emulation_failure.insn_bytes, 0x90,
7585 sizeof(run->emulation_failure.insn_bytes));
7586 memcpy(run->emulation_failure.insn_bytes,
7587 ctxt->fetch.data, insn_size);
7588 }
7589 }
7590
7591 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7592 {
7593 struct kvm *kvm = vcpu->kvm;
7594
7595 ++vcpu->stat.insn_emulation_fail;
7596 trace_kvm_emulate_insn_failed(vcpu);
7597
7598 if (emulation_type & EMULTYPE_VMWARE_GP) {
7599 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7600 return 1;
7601 }
7602
7603 if (kvm->arch.exit_on_emulation_error ||
7604 (emulation_type & EMULTYPE_SKIP)) {
7605 prepare_emulation_failure_exit(vcpu);
7606 return 0;
7607 }
7608
7609 kvm_queue_exception(vcpu, UD_VECTOR);
7610
7611 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7612 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7613 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7614 vcpu->run->internal.ndata = 0;
7615 return 0;
7616 }
7617
7618 return 1;
7619 }
7620
7621 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7622 bool write_fault_to_shadow_pgtable,
7623 int emulation_type)
7624 {
7625 gpa_t gpa = cr2_or_gpa;
7626 kvm_pfn_t pfn;
7627
7628 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7629 return false;
7630
7631 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7632 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7633 return false;
7634
7635 if (!vcpu->arch.mmu->direct_map) {
7636 /*
7637 * Write permission should be allowed since only
7638 * write access need to be emulated.
7639 */
7640 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7641
7642 /*
7643 * If the mapping is invalid in guest, let cpu retry
7644 * it to generate fault.
7645 */
7646 if (gpa == UNMAPPED_GVA)
7647 return true;
7648 }
7649
7650 /*
7651 * Do not retry the unhandleable instruction if it faults on the
7652 * readonly host memory, otherwise it will goto a infinite loop:
7653 * retry instruction -> write #PF -> emulation fail -> retry
7654 * instruction -> ...
7655 */
7656 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7657
7658 /*
7659 * If the instruction failed on the error pfn, it can not be fixed,
7660 * report the error to userspace.
7661 */
7662 if (is_error_noslot_pfn(pfn))
7663 return false;
7664
7665 kvm_release_pfn_clean(pfn);
7666
7667 /* The instructions are well-emulated on direct mmu. */
7668 if (vcpu->arch.mmu->direct_map) {
7669 unsigned int indirect_shadow_pages;
7670
7671 write_lock(&vcpu->kvm->mmu_lock);
7672 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7673 write_unlock(&vcpu->kvm->mmu_lock);
7674
7675 if (indirect_shadow_pages)
7676 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7677
7678 return true;
7679 }
7680
7681 /*
7682 * if emulation was due to access to shadowed page table
7683 * and it failed try to unshadow page and re-enter the
7684 * guest to let CPU execute the instruction.
7685 */
7686 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7687
7688 /*
7689 * If the access faults on its page table, it can not
7690 * be fixed by unprotecting shadow page and it should
7691 * be reported to userspace.
7692 */
7693 return !write_fault_to_shadow_pgtable;
7694 }
7695
7696 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7697 gpa_t cr2_or_gpa, int emulation_type)
7698 {
7699 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7700 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7701
7702 last_retry_eip = vcpu->arch.last_retry_eip;
7703 last_retry_addr = vcpu->arch.last_retry_addr;
7704
7705 /*
7706 * If the emulation is caused by #PF and it is non-page_table
7707 * writing instruction, it means the VM-EXIT is caused by shadow
7708 * page protected, we can zap the shadow page and retry this
7709 * instruction directly.
7710 *
7711 * Note: if the guest uses a non-page-table modifying instruction
7712 * on the PDE that points to the instruction, then we will unmap
7713 * the instruction and go to an infinite loop. So, we cache the
7714 * last retried eip and the last fault address, if we meet the eip
7715 * and the address again, we can break out of the potential infinite
7716 * loop.
7717 */
7718 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7719
7720 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7721 return false;
7722
7723 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7724 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7725 return false;
7726
7727 if (x86_page_table_writing_insn(ctxt))
7728 return false;
7729
7730 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7731 return false;
7732
7733 vcpu->arch.last_retry_eip = ctxt->eip;
7734 vcpu->arch.last_retry_addr = cr2_or_gpa;
7735
7736 if (!vcpu->arch.mmu->direct_map)
7737 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7738
7739 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7740
7741 return true;
7742 }
7743
7744 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7745 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7746
7747 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7748 {
7749 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7750
7751 if (entering_smm) {
7752 vcpu->arch.hflags |= HF_SMM_MASK;
7753 } else {
7754 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7755
7756 /* Process a latched INIT or SMI, if any. */
7757 kvm_make_request(KVM_REQ_EVENT, vcpu);
7758
7759 /*
7760 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7761 * on SMM exit we still need to reload them from
7762 * guest memory
7763 */
7764 vcpu->arch.pdptrs_from_userspace = false;
7765 }
7766
7767 kvm_mmu_reset_context(vcpu);
7768 }
7769
7770 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7771 unsigned long *db)
7772 {
7773 u32 dr6 = 0;
7774 int i;
7775 u32 enable, rwlen;
7776
7777 enable = dr7;
7778 rwlen = dr7 >> 16;
7779 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7780 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7781 dr6 |= (1 << i);
7782 return dr6;
7783 }
7784
7785 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7786 {
7787 struct kvm_run *kvm_run = vcpu->run;
7788
7789 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7790 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7791 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7792 kvm_run->debug.arch.exception = DB_VECTOR;
7793 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7794 return 0;
7795 }
7796 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7797 return 1;
7798 }
7799
7800 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7801 {
7802 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7803 int r;
7804
7805 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7806 if (unlikely(!r))
7807 return 0;
7808
7809 /*
7810 * rflags is the old, "raw" value of the flags. The new value has
7811 * not been saved yet.
7812 *
7813 * This is correct even for TF set by the guest, because "the
7814 * processor will not generate this exception after the instruction
7815 * that sets the TF flag".
7816 */
7817 if (unlikely(rflags & X86_EFLAGS_TF))
7818 r = kvm_vcpu_do_singlestep(vcpu);
7819 return r;
7820 }
7821 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7822
7823 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7824 {
7825 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7826 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7827 struct kvm_run *kvm_run = vcpu->run;
7828 unsigned long eip = kvm_get_linear_rip(vcpu);
7829 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7830 vcpu->arch.guest_debug_dr7,
7831 vcpu->arch.eff_db);
7832
7833 if (dr6 != 0) {
7834 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7835 kvm_run->debug.arch.pc = eip;
7836 kvm_run->debug.arch.exception = DB_VECTOR;
7837 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7838 *r = 0;
7839 return true;
7840 }
7841 }
7842
7843 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7844 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7845 unsigned long eip = kvm_get_linear_rip(vcpu);
7846 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7847 vcpu->arch.dr7,
7848 vcpu->arch.db);
7849
7850 if (dr6 != 0) {
7851 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7852 *r = 1;
7853 return true;
7854 }
7855 }
7856
7857 return false;
7858 }
7859
7860 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7861 {
7862 switch (ctxt->opcode_len) {
7863 case 1:
7864 switch (ctxt->b) {
7865 case 0xe4: /* IN */
7866 case 0xe5:
7867 case 0xec:
7868 case 0xed:
7869 case 0xe6: /* OUT */
7870 case 0xe7:
7871 case 0xee:
7872 case 0xef:
7873 case 0x6c: /* INS */
7874 case 0x6d:
7875 case 0x6e: /* OUTS */
7876 case 0x6f:
7877 return true;
7878 }
7879 break;
7880 case 2:
7881 switch (ctxt->b) {
7882 case 0x33: /* RDPMC */
7883 return true;
7884 }
7885 break;
7886 }
7887
7888 return false;
7889 }
7890
7891 /*
7892 * Decode to be emulated instruction. Return EMULATION_OK if success.
7893 */
7894 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7895 void *insn, int insn_len)
7896 {
7897 int r = EMULATION_OK;
7898 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7899
7900 init_emulate_ctxt(vcpu);
7901
7902 /*
7903 * We will reenter on the same instruction since we do not set
7904 * complete_userspace_io. This does not handle watchpoints yet,
7905 * those would be handled in the emulate_ops.
7906 */
7907 if (!(emulation_type & EMULTYPE_SKIP) &&
7908 kvm_vcpu_check_breakpoint(vcpu, &r))
7909 return r;
7910
7911 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7912
7913 trace_kvm_emulate_insn_start(vcpu);
7914 ++vcpu->stat.insn_emulation;
7915
7916 return r;
7917 }
7918 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7919
7920 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7921 int emulation_type, void *insn, int insn_len)
7922 {
7923 int r;
7924 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7925 bool writeback = true;
7926 bool write_fault_to_spt;
7927
7928 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7929 return 1;
7930
7931 vcpu->arch.l1tf_flush_l1d = true;
7932
7933 /*
7934 * Clear write_fault_to_shadow_pgtable here to ensure it is
7935 * never reused.
7936 */
7937 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7938 vcpu->arch.write_fault_to_shadow_pgtable = false;
7939
7940 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7941 kvm_clear_exception_queue(vcpu);
7942
7943 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7944 insn, insn_len);
7945 if (r != EMULATION_OK) {
7946 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7947 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7948 kvm_queue_exception(vcpu, UD_VECTOR);
7949 return 1;
7950 }
7951 if (reexecute_instruction(vcpu, cr2_or_gpa,
7952 write_fault_to_spt,
7953 emulation_type))
7954 return 1;
7955 if (ctxt->have_exception) {
7956 /*
7957 * #UD should result in just EMULATION_FAILED, and trap-like
7958 * exception should not be encountered during decode.
7959 */
7960 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7961 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7962 inject_emulated_exception(vcpu);
7963 return 1;
7964 }
7965 return handle_emulation_failure(vcpu, emulation_type);
7966 }
7967 }
7968
7969 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7970 !is_vmware_backdoor_opcode(ctxt)) {
7971 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7972 return 1;
7973 }
7974
7975 /*
7976 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7977 * for kvm_skip_emulated_instruction(). The caller is responsible for
7978 * updating interruptibility state and injecting single-step #DBs.
7979 */
7980 if (emulation_type & EMULTYPE_SKIP) {
7981 kvm_rip_write(vcpu, ctxt->_eip);
7982 if (ctxt->eflags & X86_EFLAGS_RF)
7983 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7984 return 1;
7985 }
7986
7987 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7988 return 1;
7989
7990 /* this is needed for vmware backdoor interface to work since it
7991 changes registers values during IO operation */
7992 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7993 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7994 emulator_invalidate_register_cache(ctxt);
7995 }
7996
7997 restart:
7998 if (emulation_type & EMULTYPE_PF) {
7999 /* Save the faulting GPA (cr2) in the address field */
8000 ctxt->exception.address = cr2_or_gpa;
8001
8002 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8003 if (vcpu->arch.mmu->direct_map) {
8004 ctxt->gpa_available = true;
8005 ctxt->gpa_val = cr2_or_gpa;
8006 }
8007 } else {
8008 /* Sanitize the address out of an abundance of paranoia. */
8009 ctxt->exception.address = 0;
8010 }
8011
8012 r = x86_emulate_insn(ctxt);
8013
8014 if (r == EMULATION_INTERCEPTED)
8015 return 1;
8016
8017 if (r == EMULATION_FAILED) {
8018 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8019 emulation_type))
8020 return 1;
8021
8022 return handle_emulation_failure(vcpu, emulation_type);
8023 }
8024
8025 if (ctxt->have_exception) {
8026 r = 1;
8027 if (inject_emulated_exception(vcpu))
8028 return r;
8029 } else if (vcpu->arch.pio.count) {
8030 if (!vcpu->arch.pio.in) {
8031 /* FIXME: return into emulator if single-stepping. */
8032 vcpu->arch.pio.count = 0;
8033 } else {
8034 writeback = false;
8035 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8036 }
8037 r = 0;
8038 } else if (vcpu->mmio_needed) {
8039 ++vcpu->stat.mmio_exits;
8040
8041 if (!vcpu->mmio_is_write)
8042 writeback = false;
8043 r = 0;
8044 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8045 } else if (r == EMULATION_RESTART)
8046 goto restart;
8047 else
8048 r = 1;
8049
8050 if (writeback) {
8051 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8052 toggle_interruptibility(vcpu, ctxt->interruptibility);
8053 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8054 if (!ctxt->have_exception ||
8055 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8056 kvm_rip_write(vcpu, ctxt->eip);
8057 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8058 r = kvm_vcpu_do_singlestep(vcpu);
8059 if (kvm_x86_ops.update_emulated_instruction)
8060 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8061 __kvm_set_rflags(vcpu, ctxt->eflags);
8062 }
8063
8064 /*
8065 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8066 * do nothing, and it will be requested again as soon as
8067 * the shadow expires. But we still need to check here,
8068 * because POPF has no interrupt shadow.
8069 */
8070 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8071 kvm_make_request(KVM_REQ_EVENT, vcpu);
8072 } else
8073 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8074
8075 return r;
8076 }
8077
8078 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8079 {
8080 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8083
8084 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8085 void *insn, int insn_len)
8086 {
8087 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8088 }
8089 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8090
8091 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8092 {
8093 vcpu->arch.pio.count = 0;
8094 return 1;
8095 }
8096
8097 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8098 {
8099 vcpu->arch.pio.count = 0;
8100
8101 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8102 return 1;
8103
8104 return kvm_skip_emulated_instruction(vcpu);
8105 }
8106
8107 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8108 unsigned short port)
8109 {
8110 unsigned long val = kvm_rax_read(vcpu);
8111 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8112
8113 if (ret)
8114 return ret;
8115
8116 /*
8117 * Workaround userspace that relies on old KVM behavior of %rip being
8118 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8119 */
8120 if (port == 0x7e &&
8121 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8122 vcpu->arch.complete_userspace_io =
8123 complete_fast_pio_out_port_0x7e;
8124 kvm_skip_emulated_instruction(vcpu);
8125 } else {
8126 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8127 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8128 }
8129 return 0;
8130 }
8131
8132 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8133 {
8134 unsigned long val;
8135
8136 /* We should only ever be called with arch.pio.count equal to 1 */
8137 BUG_ON(vcpu->arch.pio.count != 1);
8138
8139 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8140 vcpu->arch.pio.count = 0;
8141 return 1;
8142 }
8143
8144 /* For size less than 4 we merge, else we zero extend */
8145 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8146
8147 /*
8148 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8149 * the copy and tracing
8150 */
8151 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8152 kvm_rax_write(vcpu, val);
8153
8154 return kvm_skip_emulated_instruction(vcpu);
8155 }
8156
8157 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8158 unsigned short port)
8159 {
8160 unsigned long val;
8161 int ret;
8162
8163 /* For size less than 4 we merge, else we zero extend */
8164 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8165
8166 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8167 if (ret) {
8168 kvm_rax_write(vcpu, val);
8169 return ret;
8170 }
8171
8172 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8173 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8174
8175 return 0;
8176 }
8177
8178 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8179 {
8180 int ret;
8181
8182 if (in)
8183 ret = kvm_fast_pio_in(vcpu, size, port);
8184 else
8185 ret = kvm_fast_pio_out(vcpu, size, port);
8186 return ret && kvm_skip_emulated_instruction(vcpu);
8187 }
8188 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8189
8190 static int kvmclock_cpu_down_prep(unsigned int cpu)
8191 {
8192 __this_cpu_write(cpu_tsc_khz, 0);
8193 return 0;
8194 }
8195
8196 static void tsc_khz_changed(void *data)
8197 {
8198 struct cpufreq_freqs *freq = data;
8199 unsigned long khz = 0;
8200
8201 if (data)
8202 khz = freq->new;
8203 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8204 khz = cpufreq_quick_get(raw_smp_processor_id());
8205 if (!khz)
8206 khz = tsc_khz;
8207 __this_cpu_write(cpu_tsc_khz, khz);
8208 }
8209
8210 #ifdef CONFIG_X86_64
8211 static void kvm_hyperv_tsc_notifier(void)
8212 {
8213 struct kvm *kvm;
8214 struct kvm_vcpu *vcpu;
8215 int cpu;
8216 unsigned long flags;
8217
8218 mutex_lock(&kvm_lock);
8219 list_for_each_entry(kvm, &vm_list, vm_list)
8220 kvm_make_mclock_inprogress_request(kvm);
8221
8222 hyperv_stop_tsc_emulation();
8223
8224 /* TSC frequency always matches when on Hyper-V */
8225 for_each_present_cpu(cpu)
8226 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8227 kvm_max_guest_tsc_khz = tsc_khz;
8228
8229 list_for_each_entry(kvm, &vm_list, vm_list) {
8230 struct kvm_arch *ka = &kvm->arch;
8231
8232 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8233 pvclock_update_vm_gtod_copy(kvm);
8234 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8235
8236 kvm_for_each_vcpu(cpu, vcpu, kvm)
8237 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8238
8239 kvm_for_each_vcpu(cpu, vcpu, kvm)
8240 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8241 }
8242 mutex_unlock(&kvm_lock);
8243 }
8244 #endif
8245
8246 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8247 {
8248 struct kvm *kvm;
8249 struct kvm_vcpu *vcpu;
8250 int i, send_ipi = 0;
8251
8252 /*
8253 * We allow guests to temporarily run on slowing clocks,
8254 * provided we notify them after, or to run on accelerating
8255 * clocks, provided we notify them before. Thus time never
8256 * goes backwards.
8257 *
8258 * However, we have a problem. We can't atomically update
8259 * the frequency of a given CPU from this function; it is
8260 * merely a notifier, which can be called from any CPU.
8261 * Changing the TSC frequency at arbitrary points in time
8262 * requires a recomputation of local variables related to
8263 * the TSC for each VCPU. We must flag these local variables
8264 * to be updated and be sure the update takes place with the
8265 * new frequency before any guests proceed.
8266 *
8267 * Unfortunately, the combination of hotplug CPU and frequency
8268 * change creates an intractable locking scenario; the order
8269 * of when these callouts happen is undefined with respect to
8270 * CPU hotplug, and they can race with each other. As such,
8271 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8272 * undefined; you can actually have a CPU frequency change take
8273 * place in between the computation of X and the setting of the
8274 * variable. To protect against this problem, all updates of
8275 * the per_cpu tsc_khz variable are done in an interrupt
8276 * protected IPI, and all callers wishing to update the value
8277 * must wait for a synchronous IPI to complete (which is trivial
8278 * if the caller is on the CPU already). This establishes the
8279 * necessary total order on variable updates.
8280 *
8281 * Note that because a guest time update may take place
8282 * anytime after the setting of the VCPU's request bit, the
8283 * correct TSC value must be set before the request. However,
8284 * to ensure the update actually makes it to any guest which
8285 * starts running in hardware virtualization between the set
8286 * and the acquisition of the spinlock, we must also ping the
8287 * CPU after setting the request bit.
8288 *
8289 */
8290
8291 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8292
8293 mutex_lock(&kvm_lock);
8294 list_for_each_entry(kvm, &vm_list, vm_list) {
8295 kvm_for_each_vcpu(i, vcpu, kvm) {
8296 if (vcpu->cpu != cpu)
8297 continue;
8298 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8299 if (vcpu->cpu != raw_smp_processor_id())
8300 send_ipi = 1;
8301 }
8302 }
8303 mutex_unlock(&kvm_lock);
8304
8305 if (freq->old < freq->new && send_ipi) {
8306 /*
8307 * We upscale the frequency. Must make the guest
8308 * doesn't see old kvmclock values while running with
8309 * the new frequency, otherwise we risk the guest sees
8310 * time go backwards.
8311 *
8312 * In case we update the frequency for another cpu
8313 * (which might be in guest context) send an interrupt
8314 * to kick the cpu out of guest context. Next time
8315 * guest context is entered kvmclock will be updated,
8316 * so the guest will not see stale values.
8317 */
8318 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8319 }
8320 }
8321
8322 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8323 void *data)
8324 {
8325 struct cpufreq_freqs *freq = data;
8326 int cpu;
8327
8328 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8329 return 0;
8330 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8331 return 0;
8332
8333 for_each_cpu(cpu, freq->policy->cpus)
8334 __kvmclock_cpufreq_notifier(freq, cpu);
8335
8336 return 0;
8337 }
8338
8339 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8340 .notifier_call = kvmclock_cpufreq_notifier
8341 };
8342
8343 static int kvmclock_cpu_online(unsigned int cpu)
8344 {
8345 tsc_khz_changed(NULL);
8346 return 0;
8347 }
8348
8349 static void kvm_timer_init(void)
8350 {
8351 max_tsc_khz = tsc_khz;
8352
8353 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8354 #ifdef CONFIG_CPU_FREQ
8355 struct cpufreq_policy *policy;
8356 int cpu;
8357
8358 cpu = get_cpu();
8359 policy = cpufreq_cpu_get(cpu);
8360 if (policy) {
8361 if (policy->cpuinfo.max_freq)
8362 max_tsc_khz = policy->cpuinfo.max_freq;
8363 cpufreq_cpu_put(policy);
8364 }
8365 put_cpu();
8366 #endif
8367 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8368 CPUFREQ_TRANSITION_NOTIFIER);
8369 }
8370
8371 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8372 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8373 }
8374
8375 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8376 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8377
8378 int kvm_is_in_guest(void)
8379 {
8380 return __this_cpu_read(current_vcpu) != NULL;
8381 }
8382
8383 static int kvm_is_user_mode(void)
8384 {
8385 int user_mode = 3;
8386
8387 if (__this_cpu_read(current_vcpu))
8388 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8389
8390 return user_mode != 0;
8391 }
8392
8393 static unsigned long kvm_get_guest_ip(void)
8394 {
8395 unsigned long ip = 0;
8396
8397 if (__this_cpu_read(current_vcpu))
8398 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8399
8400 return ip;
8401 }
8402
8403 static void kvm_handle_intel_pt_intr(void)
8404 {
8405 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8406
8407 kvm_make_request(KVM_REQ_PMI, vcpu);
8408 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8409 (unsigned long *)&vcpu->arch.pmu.global_status);
8410 }
8411
8412 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8413 .is_in_guest = kvm_is_in_guest,
8414 .is_user_mode = kvm_is_user_mode,
8415 .get_guest_ip = kvm_get_guest_ip,
8416 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8417 };
8418
8419 #ifdef CONFIG_X86_64
8420 static void pvclock_gtod_update_fn(struct work_struct *work)
8421 {
8422 struct kvm *kvm;
8423
8424 struct kvm_vcpu *vcpu;
8425 int i;
8426
8427 mutex_lock(&kvm_lock);
8428 list_for_each_entry(kvm, &vm_list, vm_list)
8429 kvm_for_each_vcpu(i, vcpu, kvm)
8430 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8431 atomic_set(&kvm_guest_has_master_clock, 0);
8432 mutex_unlock(&kvm_lock);
8433 }
8434
8435 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8436
8437 /*
8438 * Indirection to move queue_work() out of the tk_core.seq write held
8439 * region to prevent possible deadlocks against time accessors which
8440 * are invoked with work related locks held.
8441 */
8442 static void pvclock_irq_work_fn(struct irq_work *w)
8443 {
8444 queue_work(system_long_wq, &pvclock_gtod_work);
8445 }
8446
8447 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8448
8449 /*
8450 * Notification about pvclock gtod data update.
8451 */
8452 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8453 void *priv)
8454 {
8455 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8456 struct timekeeper *tk = priv;
8457
8458 update_pvclock_gtod(tk);
8459
8460 /*
8461 * Disable master clock if host does not trust, or does not use,
8462 * TSC based clocksource. Delegate queue_work() to irq_work as
8463 * this is invoked with tk_core.seq write held.
8464 */
8465 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8466 atomic_read(&kvm_guest_has_master_clock) != 0)
8467 irq_work_queue(&pvclock_irq_work);
8468 return 0;
8469 }
8470
8471 static struct notifier_block pvclock_gtod_notifier = {
8472 .notifier_call = pvclock_gtod_notify,
8473 };
8474 #endif
8475
8476 int kvm_arch_init(void *opaque)
8477 {
8478 struct kvm_x86_init_ops *ops = opaque;
8479 int r;
8480
8481 if (kvm_x86_ops.hardware_enable) {
8482 printk(KERN_ERR "kvm: already loaded the other module\n");
8483 r = -EEXIST;
8484 goto out;
8485 }
8486
8487 if (!ops->cpu_has_kvm_support()) {
8488 pr_err_ratelimited("kvm: no hardware support\n");
8489 r = -EOPNOTSUPP;
8490 goto out;
8491 }
8492 if (ops->disabled_by_bios()) {
8493 pr_warn_ratelimited("kvm: disabled by bios\n");
8494 r = -EOPNOTSUPP;
8495 goto out;
8496 }
8497
8498 /*
8499 * KVM explicitly assumes that the guest has an FPU and
8500 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8501 * vCPU's FPU state as a fxregs_state struct.
8502 */
8503 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8504 printk(KERN_ERR "kvm: inadequate fpu\n");
8505 r = -EOPNOTSUPP;
8506 goto out;
8507 }
8508
8509 r = -ENOMEM;
8510 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8511 __alignof__(struct fpu), SLAB_ACCOUNT,
8512 NULL);
8513 if (!x86_fpu_cache) {
8514 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8515 goto out;
8516 }
8517
8518 x86_emulator_cache = kvm_alloc_emulator_cache();
8519 if (!x86_emulator_cache) {
8520 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8521 goto out_free_x86_fpu_cache;
8522 }
8523
8524 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8525 if (!user_return_msrs) {
8526 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8527 goto out_free_x86_emulator_cache;
8528 }
8529 kvm_nr_uret_msrs = 0;
8530
8531 r = kvm_mmu_module_init();
8532 if (r)
8533 goto out_free_percpu;
8534
8535 kvm_timer_init();
8536
8537 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8538
8539 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8540 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8541 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8542 }
8543
8544 if (pi_inject_timer == -1)
8545 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8546 #ifdef CONFIG_X86_64
8547 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8548
8549 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8550 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8551 #endif
8552
8553 return 0;
8554
8555 out_free_percpu:
8556 free_percpu(user_return_msrs);
8557 out_free_x86_emulator_cache:
8558 kmem_cache_destroy(x86_emulator_cache);
8559 out_free_x86_fpu_cache:
8560 kmem_cache_destroy(x86_fpu_cache);
8561 out:
8562 return r;
8563 }
8564
8565 void kvm_arch_exit(void)
8566 {
8567 #ifdef CONFIG_X86_64
8568 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8569 clear_hv_tscchange_cb();
8570 #endif
8571 kvm_lapic_exit();
8572 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8573
8574 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8575 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8576 CPUFREQ_TRANSITION_NOTIFIER);
8577 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8578 #ifdef CONFIG_X86_64
8579 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8580 irq_work_sync(&pvclock_irq_work);
8581 cancel_work_sync(&pvclock_gtod_work);
8582 #endif
8583 kvm_x86_ops.hardware_enable = NULL;
8584 kvm_mmu_module_exit();
8585 free_percpu(user_return_msrs);
8586 kmem_cache_destroy(x86_emulator_cache);
8587 kmem_cache_destroy(x86_fpu_cache);
8588 #ifdef CONFIG_KVM_XEN
8589 static_key_deferred_flush(&kvm_xen_enabled);
8590 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8591 #endif
8592 }
8593
8594 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8595 {
8596 ++vcpu->stat.halt_exits;
8597 if (lapic_in_kernel(vcpu)) {
8598 vcpu->arch.mp_state = state;
8599 return 1;
8600 } else {
8601 vcpu->run->exit_reason = reason;
8602 return 0;
8603 }
8604 }
8605
8606 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8607 {
8608 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8609 }
8610 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8611
8612 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8613 {
8614 int ret = kvm_skip_emulated_instruction(vcpu);
8615 /*
8616 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8617 * KVM_EXIT_DEBUG here.
8618 */
8619 return kvm_vcpu_halt(vcpu) && ret;
8620 }
8621 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8622
8623 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8624 {
8625 int ret = kvm_skip_emulated_instruction(vcpu);
8626
8627 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8628 }
8629 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8630
8631 #ifdef CONFIG_X86_64
8632 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8633 unsigned long clock_type)
8634 {
8635 struct kvm_clock_pairing clock_pairing;
8636 struct timespec64 ts;
8637 u64 cycle;
8638 int ret;
8639
8640 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8641 return -KVM_EOPNOTSUPP;
8642
8643 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8644 return -KVM_EOPNOTSUPP;
8645
8646 clock_pairing.sec = ts.tv_sec;
8647 clock_pairing.nsec = ts.tv_nsec;
8648 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8649 clock_pairing.flags = 0;
8650 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8651
8652 ret = 0;
8653 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8654 sizeof(struct kvm_clock_pairing)))
8655 ret = -KVM_EFAULT;
8656
8657 return ret;
8658 }
8659 #endif
8660
8661 /*
8662 * kvm_pv_kick_cpu_op: Kick a vcpu.
8663 *
8664 * @apicid - apicid of vcpu to be kicked.
8665 */
8666 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8667 {
8668 struct kvm_lapic_irq lapic_irq;
8669
8670 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8671 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8672 lapic_irq.level = 0;
8673 lapic_irq.dest_id = apicid;
8674 lapic_irq.msi_redir_hint = false;
8675
8676 lapic_irq.delivery_mode = APIC_DM_REMRD;
8677 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8678 }
8679
8680 bool kvm_apicv_activated(struct kvm *kvm)
8681 {
8682 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8683 }
8684 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8685
8686 static void kvm_apicv_init(struct kvm *kvm)
8687 {
8688 mutex_init(&kvm->arch.apicv_update_lock);
8689
8690 if (enable_apicv)
8691 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8692 &kvm->arch.apicv_inhibit_reasons);
8693 else
8694 set_bit(APICV_INHIBIT_REASON_DISABLE,
8695 &kvm->arch.apicv_inhibit_reasons);
8696 }
8697
8698 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8699 {
8700 struct kvm_vcpu *target = NULL;
8701 struct kvm_apic_map *map;
8702
8703 vcpu->stat.directed_yield_attempted++;
8704
8705 if (single_task_running())
8706 goto no_yield;
8707
8708 rcu_read_lock();
8709 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8710
8711 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8712 target = map->phys_map[dest_id]->vcpu;
8713
8714 rcu_read_unlock();
8715
8716 if (!target || !READ_ONCE(target->ready))
8717 goto no_yield;
8718
8719 /* Ignore requests to yield to self */
8720 if (vcpu == target)
8721 goto no_yield;
8722
8723 if (kvm_vcpu_yield_to(target) <= 0)
8724 goto no_yield;
8725
8726 vcpu->stat.directed_yield_successful++;
8727
8728 no_yield:
8729 return;
8730 }
8731
8732 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8733 {
8734 u64 ret = vcpu->run->hypercall.ret;
8735
8736 if (!is_64_bit_mode(vcpu))
8737 ret = (u32)ret;
8738 kvm_rax_write(vcpu, ret);
8739 ++vcpu->stat.hypercalls;
8740 return kvm_skip_emulated_instruction(vcpu);
8741 }
8742
8743 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8744 {
8745 unsigned long nr, a0, a1, a2, a3, ret;
8746 int op_64_bit;
8747
8748 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8749 return kvm_xen_hypercall(vcpu);
8750
8751 if (kvm_hv_hypercall_enabled(vcpu))
8752 return kvm_hv_hypercall(vcpu);
8753
8754 nr = kvm_rax_read(vcpu);
8755 a0 = kvm_rbx_read(vcpu);
8756 a1 = kvm_rcx_read(vcpu);
8757 a2 = kvm_rdx_read(vcpu);
8758 a3 = kvm_rsi_read(vcpu);
8759
8760 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8761
8762 op_64_bit = is_64_bit_hypercall(vcpu);
8763 if (!op_64_bit) {
8764 nr &= 0xFFFFFFFF;
8765 a0 &= 0xFFFFFFFF;
8766 a1 &= 0xFFFFFFFF;
8767 a2 &= 0xFFFFFFFF;
8768 a3 &= 0xFFFFFFFF;
8769 }
8770
8771 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8772 ret = -KVM_EPERM;
8773 goto out;
8774 }
8775
8776 ret = -KVM_ENOSYS;
8777
8778 switch (nr) {
8779 case KVM_HC_VAPIC_POLL_IRQ:
8780 ret = 0;
8781 break;
8782 case KVM_HC_KICK_CPU:
8783 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8784 break;
8785
8786 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8787 kvm_sched_yield(vcpu, a1);
8788 ret = 0;
8789 break;
8790 #ifdef CONFIG_X86_64
8791 case KVM_HC_CLOCK_PAIRING:
8792 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8793 break;
8794 #endif
8795 case KVM_HC_SEND_IPI:
8796 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8797 break;
8798
8799 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8800 break;
8801 case KVM_HC_SCHED_YIELD:
8802 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8803 break;
8804
8805 kvm_sched_yield(vcpu, a0);
8806 ret = 0;
8807 break;
8808 case KVM_HC_MAP_GPA_RANGE: {
8809 u64 gpa = a0, npages = a1, attrs = a2;
8810
8811 ret = -KVM_ENOSYS;
8812 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8813 break;
8814
8815 if (!PAGE_ALIGNED(gpa) || !npages ||
8816 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8817 ret = -KVM_EINVAL;
8818 break;
8819 }
8820
8821 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8822 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8823 vcpu->run->hypercall.args[0] = gpa;
8824 vcpu->run->hypercall.args[1] = npages;
8825 vcpu->run->hypercall.args[2] = attrs;
8826 vcpu->run->hypercall.longmode = op_64_bit;
8827 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8828 return 0;
8829 }
8830 default:
8831 ret = -KVM_ENOSYS;
8832 break;
8833 }
8834 out:
8835 if (!op_64_bit)
8836 ret = (u32)ret;
8837 kvm_rax_write(vcpu, ret);
8838
8839 ++vcpu->stat.hypercalls;
8840 return kvm_skip_emulated_instruction(vcpu);
8841 }
8842 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8843
8844 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8845 {
8846 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8847 char instruction[3];
8848 unsigned long rip = kvm_rip_read(vcpu);
8849
8850 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8851
8852 return emulator_write_emulated(ctxt, rip, instruction, 3,
8853 &ctxt->exception);
8854 }
8855
8856 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8857 {
8858 return vcpu->run->request_interrupt_window &&
8859 likely(!pic_in_kernel(vcpu->kvm));
8860 }
8861
8862 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8863 {
8864 struct kvm_run *kvm_run = vcpu->run;
8865
8866 /*
8867 * if_flag is obsolete and useless, so do not bother
8868 * setting it for SEV-ES guests. Userspace can just
8869 * use kvm_run->ready_for_interrupt_injection.
8870 */
8871 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8872 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8873
8874 kvm_run->cr8 = kvm_get_cr8(vcpu);
8875 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8876
8877 /*
8878 * The call to kvm_ready_for_interrupt_injection() may end up in
8879 * kvm_xen_has_interrupt() which may require the srcu lock to be
8880 * held, to protect against changes in the vcpu_info address.
8881 */
8882 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8883 kvm_run->ready_for_interrupt_injection =
8884 pic_in_kernel(vcpu->kvm) ||
8885 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8886 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8887
8888 if (is_smm(vcpu))
8889 kvm_run->flags |= KVM_RUN_X86_SMM;
8890 }
8891
8892 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8893 {
8894 int max_irr, tpr;
8895
8896 if (!kvm_x86_ops.update_cr8_intercept)
8897 return;
8898
8899 if (!lapic_in_kernel(vcpu))
8900 return;
8901
8902 if (vcpu->arch.apicv_active)
8903 return;
8904
8905 if (!vcpu->arch.apic->vapic_addr)
8906 max_irr = kvm_lapic_find_highest_irr(vcpu);
8907 else
8908 max_irr = -1;
8909
8910 if (max_irr != -1)
8911 max_irr >>= 4;
8912
8913 tpr = kvm_lapic_get_cr8(vcpu);
8914
8915 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8916 }
8917
8918
8919 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8920 {
8921 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8922 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8923 return 1;
8924 }
8925
8926 return kvm_x86_ops.nested_ops->check_events(vcpu);
8927 }
8928
8929 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8930 {
8931 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8932 vcpu->arch.exception.error_code = false;
8933 static_call(kvm_x86_queue_exception)(vcpu);
8934 }
8935
8936 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8937 {
8938 int r;
8939 bool can_inject = true;
8940
8941 /* try to reinject previous events if any */
8942
8943 if (vcpu->arch.exception.injected) {
8944 kvm_inject_exception(vcpu);
8945 can_inject = false;
8946 }
8947 /*
8948 * Do not inject an NMI or interrupt if there is a pending
8949 * exception. Exceptions and interrupts are recognized at
8950 * instruction boundaries, i.e. the start of an instruction.
8951 * Trap-like exceptions, e.g. #DB, have higher priority than
8952 * NMIs and interrupts, i.e. traps are recognized before an
8953 * NMI/interrupt that's pending on the same instruction.
8954 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8955 * priority, but are only generated (pended) during instruction
8956 * execution, i.e. a pending fault-like exception means the
8957 * fault occurred on the *previous* instruction and must be
8958 * serviced prior to recognizing any new events in order to
8959 * fully complete the previous instruction.
8960 */
8961 else if (!vcpu->arch.exception.pending) {
8962 if (vcpu->arch.nmi_injected) {
8963 static_call(kvm_x86_set_nmi)(vcpu);
8964 can_inject = false;
8965 } else if (vcpu->arch.interrupt.injected) {
8966 static_call(kvm_x86_set_irq)(vcpu);
8967 can_inject = false;
8968 }
8969 }
8970
8971 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8972 vcpu->arch.exception.pending);
8973
8974 /*
8975 * Call check_nested_events() even if we reinjected a previous event
8976 * in order for caller to determine if it should require immediate-exit
8977 * from L2 to L1 due to pending L1 events which require exit
8978 * from L2 to L1.
8979 */
8980 if (is_guest_mode(vcpu)) {
8981 r = kvm_check_nested_events(vcpu);
8982 if (r < 0)
8983 goto out;
8984 }
8985
8986 /* try to inject new event if pending */
8987 if (vcpu->arch.exception.pending) {
8988 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8989 vcpu->arch.exception.has_error_code,
8990 vcpu->arch.exception.error_code);
8991
8992 vcpu->arch.exception.pending = false;
8993 vcpu->arch.exception.injected = true;
8994
8995 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8996 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8997 X86_EFLAGS_RF);
8998
8999 if (vcpu->arch.exception.nr == DB_VECTOR) {
9000 kvm_deliver_exception_payload(vcpu);
9001 if (vcpu->arch.dr7 & DR7_GD) {
9002 vcpu->arch.dr7 &= ~DR7_GD;
9003 kvm_update_dr7(vcpu);
9004 }
9005 }
9006
9007 kvm_inject_exception(vcpu);
9008 can_inject = false;
9009 }
9010
9011 /* Don't inject interrupts if the user asked to avoid doing so */
9012 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9013 return 0;
9014
9015 /*
9016 * Finally, inject interrupt events. If an event cannot be injected
9017 * due to architectural conditions (e.g. IF=0) a window-open exit
9018 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9019 * and can architecturally be injected, but we cannot do it right now:
9020 * an interrupt could have arrived just now and we have to inject it
9021 * as a vmexit, or there could already an event in the queue, which is
9022 * indicated by can_inject. In that case we request an immediate exit
9023 * in order to make progress and get back here for another iteration.
9024 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9025 */
9026 if (vcpu->arch.smi_pending) {
9027 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9028 if (r < 0)
9029 goto out;
9030 if (r) {
9031 vcpu->arch.smi_pending = false;
9032 ++vcpu->arch.smi_count;
9033 enter_smm(vcpu);
9034 can_inject = false;
9035 } else
9036 static_call(kvm_x86_enable_smi_window)(vcpu);
9037 }
9038
9039 if (vcpu->arch.nmi_pending) {
9040 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9041 if (r < 0)
9042 goto out;
9043 if (r) {
9044 --vcpu->arch.nmi_pending;
9045 vcpu->arch.nmi_injected = true;
9046 static_call(kvm_x86_set_nmi)(vcpu);
9047 can_inject = false;
9048 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9049 }
9050 if (vcpu->arch.nmi_pending)
9051 static_call(kvm_x86_enable_nmi_window)(vcpu);
9052 }
9053
9054 if (kvm_cpu_has_injectable_intr(vcpu)) {
9055 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9056 if (r < 0)
9057 goto out;
9058 if (r) {
9059 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9060 static_call(kvm_x86_set_irq)(vcpu);
9061 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9062 }
9063 if (kvm_cpu_has_injectable_intr(vcpu))
9064 static_call(kvm_x86_enable_irq_window)(vcpu);
9065 }
9066
9067 if (is_guest_mode(vcpu) &&
9068 kvm_x86_ops.nested_ops->hv_timer_pending &&
9069 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9070 *req_immediate_exit = true;
9071
9072 WARN_ON(vcpu->arch.exception.pending);
9073 return 0;
9074
9075 out:
9076 if (r == -EBUSY) {
9077 *req_immediate_exit = true;
9078 r = 0;
9079 }
9080 return r;
9081 }
9082
9083 static void process_nmi(struct kvm_vcpu *vcpu)
9084 {
9085 unsigned limit = 2;
9086
9087 /*
9088 * x86 is limited to one NMI running, and one NMI pending after it.
9089 * If an NMI is already in progress, limit further NMIs to just one.
9090 * Otherwise, allow two (and we'll inject the first one immediately).
9091 */
9092 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9093 limit = 1;
9094
9095 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9096 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9097 kvm_make_request(KVM_REQ_EVENT, vcpu);
9098 }
9099
9100 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9101 {
9102 u32 flags = 0;
9103 flags |= seg->g << 23;
9104 flags |= seg->db << 22;
9105 flags |= seg->l << 21;
9106 flags |= seg->avl << 20;
9107 flags |= seg->present << 15;
9108 flags |= seg->dpl << 13;
9109 flags |= seg->s << 12;
9110 flags |= seg->type << 8;
9111 return flags;
9112 }
9113
9114 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9115 {
9116 struct kvm_segment seg;
9117 int offset;
9118
9119 kvm_get_segment(vcpu, &seg, n);
9120 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9121
9122 if (n < 3)
9123 offset = 0x7f84 + n * 12;
9124 else
9125 offset = 0x7f2c + (n - 3) * 12;
9126
9127 put_smstate(u32, buf, offset + 8, seg.base);
9128 put_smstate(u32, buf, offset + 4, seg.limit);
9129 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9130 }
9131
9132 #ifdef CONFIG_X86_64
9133 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9134 {
9135 struct kvm_segment seg;
9136 int offset;
9137 u16 flags;
9138
9139 kvm_get_segment(vcpu, &seg, n);
9140 offset = 0x7e00 + n * 16;
9141
9142 flags = enter_smm_get_segment_flags(&seg) >> 8;
9143 put_smstate(u16, buf, offset, seg.selector);
9144 put_smstate(u16, buf, offset + 2, flags);
9145 put_smstate(u32, buf, offset + 4, seg.limit);
9146 put_smstate(u64, buf, offset + 8, seg.base);
9147 }
9148 #endif
9149
9150 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9151 {
9152 struct desc_ptr dt;
9153 struct kvm_segment seg;
9154 unsigned long val;
9155 int i;
9156
9157 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9158 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9159 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9160 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9161
9162 for (i = 0; i < 8; i++)
9163 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9164
9165 kvm_get_dr(vcpu, 6, &val);
9166 put_smstate(u32, buf, 0x7fcc, (u32)val);
9167 kvm_get_dr(vcpu, 7, &val);
9168 put_smstate(u32, buf, 0x7fc8, (u32)val);
9169
9170 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9171 put_smstate(u32, buf, 0x7fc4, seg.selector);
9172 put_smstate(u32, buf, 0x7f64, seg.base);
9173 put_smstate(u32, buf, 0x7f60, seg.limit);
9174 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9175
9176 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9177 put_smstate(u32, buf, 0x7fc0, seg.selector);
9178 put_smstate(u32, buf, 0x7f80, seg.base);
9179 put_smstate(u32, buf, 0x7f7c, seg.limit);
9180 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9181
9182 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9183 put_smstate(u32, buf, 0x7f74, dt.address);
9184 put_smstate(u32, buf, 0x7f70, dt.size);
9185
9186 static_call(kvm_x86_get_idt)(vcpu, &dt);
9187 put_smstate(u32, buf, 0x7f58, dt.address);
9188 put_smstate(u32, buf, 0x7f54, dt.size);
9189
9190 for (i = 0; i < 6; i++)
9191 enter_smm_save_seg_32(vcpu, buf, i);
9192
9193 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9194
9195 /* revision id */
9196 put_smstate(u32, buf, 0x7efc, 0x00020000);
9197 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9198 }
9199
9200 #ifdef CONFIG_X86_64
9201 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9202 {
9203 struct desc_ptr dt;
9204 struct kvm_segment seg;
9205 unsigned long val;
9206 int i;
9207
9208 for (i = 0; i < 16; i++)
9209 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9210
9211 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9212 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9213
9214 kvm_get_dr(vcpu, 6, &val);
9215 put_smstate(u64, buf, 0x7f68, val);
9216 kvm_get_dr(vcpu, 7, &val);
9217 put_smstate(u64, buf, 0x7f60, val);
9218
9219 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9220 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9221 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9222
9223 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9224
9225 /* revision id */
9226 put_smstate(u32, buf, 0x7efc, 0x00020064);
9227
9228 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9229
9230 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9231 put_smstate(u16, buf, 0x7e90, seg.selector);
9232 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9233 put_smstate(u32, buf, 0x7e94, seg.limit);
9234 put_smstate(u64, buf, 0x7e98, seg.base);
9235
9236 static_call(kvm_x86_get_idt)(vcpu, &dt);
9237 put_smstate(u32, buf, 0x7e84, dt.size);
9238 put_smstate(u64, buf, 0x7e88, dt.address);
9239
9240 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9241 put_smstate(u16, buf, 0x7e70, seg.selector);
9242 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9243 put_smstate(u32, buf, 0x7e74, seg.limit);
9244 put_smstate(u64, buf, 0x7e78, seg.base);
9245
9246 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9247 put_smstate(u32, buf, 0x7e64, dt.size);
9248 put_smstate(u64, buf, 0x7e68, dt.address);
9249
9250 for (i = 0; i < 6; i++)
9251 enter_smm_save_seg_64(vcpu, buf, i);
9252 }
9253 #endif
9254
9255 static void enter_smm(struct kvm_vcpu *vcpu)
9256 {
9257 struct kvm_segment cs, ds;
9258 struct desc_ptr dt;
9259 unsigned long cr0;
9260 char buf[512];
9261
9262 memset(buf, 0, 512);
9263 #ifdef CONFIG_X86_64
9264 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9265 enter_smm_save_state_64(vcpu, buf);
9266 else
9267 #endif
9268 enter_smm_save_state_32(vcpu, buf);
9269
9270 /*
9271 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9272 * state (e.g. leave guest mode) after we've saved the state into the
9273 * SMM state-save area.
9274 */
9275 static_call(kvm_x86_enter_smm)(vcpu, buf);
9276
9277 kvm_smm_changed(vcpu, true);
9278 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9279
9280 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9281 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9282 else
9283 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9284
9285 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9286 kvm_rip_write(vcpu, 0x8000);
9287
9288 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9289 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9290 vcpu->arch.cr0 = cr0;
9291
9292 static_call(kvm_x86_set_cr4)(vcpu, 0);
9293
9294 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9295 dt.address = dt.size = 0;
9296 static_call(kvm_x86_set_idt)(vcpu, &dt);
9297
9298 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9299
9300 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9301 cs.base = vcpu->arch.smbase;
9302
9303 ds.selector = 0;
9304 ds.base = 0;
9305
9306 cs.limit = ds.limit = 0xffffffff;
9307 cs.type = ds.type = 0x3;
9308 cs.dpl = ds.dpl = 0;
9309 cs.db = ds.db = 0;
9310 cs.s = ds.s = 1;
9311 cs.l = ds.l = 0;
9312 cs.g = ds.g = 1;
9313 cs.avl = ds.avl = 0;
9314 cs.present = ds.present = 1;
9315 cs.unusable = ds.unusable = 0;
9316 cs.padding = ds.padding = 0;
9317
9318 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9319 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9320 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9321 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9322 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9323 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9324
9325 #ifdef CONFIG_X86_64
9326 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9327 static_call(kvm_x86_set_efer)(vcpu, 0);
9328 #endif
9329
9330 kvm_update_cpuid_runtime(vcpu);
9331 kvm_mmu_reset_context(vcpu);
9332 }
9333
9334 static void process_smi(struct kvm_vcpu *vcpu)
9335 {
9336 vcpu->arch.smi_pending = true;
9337 kvm_make_request(KVM_REQ_EVENT, vcpu);
9338 }
9339
9340 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9341 unsigned long *vcpu_bitmap)
9342 {
9343 cpumask_var_t cpus;
9344
9345 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9346
9347 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9348 NULL, vcpu_bitmap, cpus);
9349
9350 free_cpumask_var(cpus);
9351 }
9352
9353 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9354 {
9355 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9356 }
9357
9358 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9359 {
9360 bool activate;
9361
9362 if (!lapic_in_kernel(vcpu))
9363 return;
9364
9365 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9366
9367 activate = kvm_apicv_activated(vcpu->kvm);
9368 if (vcpu->arch.apicv_active == activate)
9369 goto out;
9370
9371 vcpu->arch.apicv_active = activate;
9372 kvm_apic_update_apicv(vcpu);
9373 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9374
9375 /*
9376 * When APICv gets disabled, we may still have injected interrupts
9377 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9378 * still active when the interrupt got accepted. Make sure
9379 * inject_pending_event() is called to check for that.
9380 */
9381 if (!vcpu->arch.apicv_active)
9382 kvm_make_request(KVM_REQ_EVENT, vcpu);
9383
9384 out:
9385 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9386 }
9387 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9388
9389 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9390 {
9391 unsigned long old, new;
9392
9393 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9394 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9395 return;
9396
9397 old = new = kvm->arch.apicv_inhibit_reasons;
9398
9399 if (activate)
9400 __clear_bit(bit, &new);
9401 else
9402 __set_bit(bit, &new);
9403
9404 if (!!old != !!new) {
9405 trace_kvm_apicv_update_request(activate, bit);
9406 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9407 kvm->arch.apicv_inhibit_reasons = new;
9408 if (new) {
9409 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9410 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9411 }
9412 } else
9413 kvm->arch.apicv_inhibit_reasons = new;
9414 }
9415 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9416
9417 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9418 {
9419 mutex_lock(&kvm->arch.apicv_update_lock);
9420 __kvm_request_apicv_update(kvm, activate, bit);
9421 mutex_unlock(&kvm->arch.apicv_update_lock);
9422 }
9423 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9424
9425 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9426 {
9427 if (!kvm_apic_present(vcpu))
9428 return;
9429
9430 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9431
9432 if (irqchip_split(vcpu->kvm))
9433 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9434 else {
9435 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9436 if (ioapic_in_kernel(vcpu->kvm))
9437 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9438 }
9439
9440 if (is_guest_mode(vcpu))
9441 vcpu->arch.load_eoi_exitmap_pending = true;
9442 else
9443 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9444 }
9445
9446 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9447 {
9448 u64 eoi_exit_bitmap[4];
9449
9450 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9451 return;
9452
9453 if (to_hv_vcpu(vcpu)) {
9454 bitmap_or((ulong *)eoi_exit_bitmap,
9455 vcpu->arch.ioapic_handled_vectors,
9456 to_hv_synic(vcpu)->vec_bitmap, 256);
9457 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9458 return;
9459 }
9460
9461 static_call(kvm_x86_load_eoi_exitmap)(
9462 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9463 }
9464
9465 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9466 unsigned long start, unsigned long end)
9467 {
9468 unsigned long apic_address;
9469
9470 /*
9471 * The physical address of apic access page is stored in the VMCS.
9472 * Update it when it becomes invalid.
9473 */
9474 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9475 if (start <= apic_address && apic_address < end)
9476 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9477 }
9478
9479 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9480 {
9481 if (!lapic_in_kernel(vcpu))
9482 return;
9483
9484 if (!kvm_x86_ops.set_apic_access_page_addr)
9485 return;
9486
9487 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9488 }
9489
9490 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9491 {
9492 smp_send_reschedule(vcpu->cpu);
9493 }
9494 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9495
9496 /*
9497 * Returns 1 to let vcpu_run() continue the guest execution loop without
9498 * exiting to the userspace. Otherwise, the value will be returned to the
9499 * userspace.
9500 */
9501 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9502 {
9503 int r;
9504 bool req_int_win =
9505 dm_request_for_irq_injection(vcpu) &&
9506 kvm_cpu_accept_dm_intr(vcpu);
9507 fastpath_t exit_fastpath;
9508
9509 bool req_immediate_exit = false;
9510
9511 /* Forbid vmenter if vcpu dirty ring is soft-full */
9512 if (unlikely(vcpu->kvm->dirty_ring_size &&
9513 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9514 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9515 trace_kvm_dirty_ring_exit(vcpu);
9516 r = 0;
9517 goto out;
9518 }
9519
9520 if (kvm_request_pending(vcpu)) {
9521 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9522 r = -EIO;
9523 goto out;
9524 }
9525 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9526 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9527 r = 0;
9528 goto out;
9529 }
9530 }
9531 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9532 kvm_mmu_unload(vcpu);
9533 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9534 __kvm_migrate_timers(vcpu);
9535 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9536 kvm_gen_update_masterclock(vcpu->kvm);
9537 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9538 kvm_gen_kvmclock_update(vcpu);
9539 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9540 r = kvm_guest_time_update(vcpu);
9541 if (unlikely(r))
9542 goto out;
9543 }
9544 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9545 kvm_mmu_sync_roots(vcpu);
9546 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9547 kvm_mmu_load_pgd(vcpu);
9548 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9549 kvm_vcpu_flush_tlb_all(vcpu);
9550
9551 /* Flushing all ASIDs flushes the current ASID... */
9552 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9553 }
9554 kvm_service_local_tlb_flush_requests(vcpu);
9555
9556 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9557 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9558 r = 0;
9559 goto out;
9560 }
9561 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9562 if (is_guest_mode(vcpu)) {
9563 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9564 } else {
9565 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9566 vcpu->mmio_needed = 0;
9567 r = 0;
9568 goto out;
9569 }
9570 }
9571 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9572 /* Page is swapped out. Do synthetic halt */
9573 vcpu->arch.apf.halted = true;
9574 r = 1;
9575 goto out;
9576 }
9577 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9578 record_steal_time(vcpu);
9579 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9580 process_smi(vcpu);
9581 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9582 process_nmi(vcpu);
9583 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9584 kvm_pmu_handle_event(vcpu);
9585 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9586 kvm_pmu_deliver_pmi(vcpu);
9587 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9588 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9589 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9590 vcpu->arch.ioapic_handled_vectors)) {
9591 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9592 vcpu->run->eoi.vector =
9593 vcpu->arch.pending_ioapic_eoi;
9594 r = 0;
9595 goto out;
9596 }
9597 }
9598 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9599 vcpu_scan_ioapic(vcpu);
9600 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9601 vcpu_load_eoi_exitmap(vcpu);
9602 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9603 kvm_vcpu_reload_apic_access_page(vcpu);
9604 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9605 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9606 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9607 r = 0;
9608 goto out;
9609 }
9610 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9611 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9612 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9613 r = 0;
9614 goto out;
9615 }
9616 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9617 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9618
9619 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9620 vcpu->run->hyperv = hv_vcpu->exit;
9621 r = 0;
9622 goto out;
9623 }
9624
9625 /*
9626 * KVM_REQ_HV_STIMER has to be processed after
9627 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9628 * depend on the guest clock being up-to-date
9629 */
9630 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9631 kvm_hv_process_stimers(vcpu);
9632 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9633 kvm_vcpu_update_apicv(vcpu);
9634 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9635 kvm_check_async_pf_completion(vcpu);
9636 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9637 static_call(kvm_x86_msr_filter_changed)(vcpu);
9638
9639 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9640 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9641 }
9642
9643 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9644 kvm_xen_has_interrupt(vcpu)) {
9645 ++vcpu->stat.req_event;
9646 r = kvm_apic_accept_events(vcpu);
9647 if (r < 0) {
9648 r = 0;
9649 goto out;
9650 }
9651 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9652 r = 1;
9653 goto out;
9654 }
9655
9656 r = inject_pending_event(vcpu, &req_immediate_exit);
9657 if (r < 0) {
9658 r = 0;
9659 goto out;
9660 }
9661 if (req_int_win)
9662 static_call(kvm_x86_enable_irq_window)(vcpu);
9663
9664 if (kvm_lapic_enabled(vcpu)) {
9665 update_cr8_intercept(vcpu);
9666 kvm_lapic_sync_to_vapic(vcpu);
9667 }
9668 }
9669
9670 r = kvm_mmu_reload(vcpu);
9671 if (unlikely(r)) {
9672 goto cancel_injection;
9673 }
9674
9675 preempt_disable();
9676
9677 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9678
9679 /*
9680 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9681 * IPI are then delayed after guest entry, which ensures that they
9682 * result in virtual interrupt delivery.
9683 */
9684 local_irq_disable();
9685 vcpu->mode = IN_GUEST_MODE;
9686
9687 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9688
9689 /*
9690 * 1) We should set ->mode before checking ->requests. Please see
9691 * the comment in kvm_vcpu_exiting_guest_mode().
9692 *
9693 * 2) For APICv, we should set ->mode before checking PID.ON. This
9694 * pairs with the memory barrier implicit in pi_test_and_set_on
9695 * (see vmx_deliver_posted_interrupt).
9696 *
9697 * 3) This also orders the write to mode from any reads to the page
9698 * tables done while the VCPU is running. Please see the comment
9699 * in kvm_flush_remote_tlbs.
9700 */
9701 smp_mb__after_srcu_read_unlock();
9702
9703 /*
9704 * This handles the case where a posted interrupt was
9705 * notified with kvm_vcpu_kick. Assigned devices can
9706 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9707 * so do it even if APICv is disabled on this vCPU.
9708 */
9709 if (kvm_lapic_enabled(vcpu))
9710 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9711
9712 if (kvm_vcpu_exit_request(vcpu)) {
9713 vcpu->mode = OUTSIDE_GUEST_MODE;
9714 smp_wmb();
9715 local_irq_enable();
9716 preempt_enable();
9717 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9718 r = 1;
9719 goto cancel_injection;
9720 }
9721
9722 if (req_immediate_exit) {
9723 kvm_make_request(KVM_REQ_EVENT, vcpu);
9724 static_call(kvm_x86_request_immediate_exit)(vcpu);
9725 }
9726
9727 fpregs_assert_state_consistent();
9728 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9729 switch_fpu_return();
9730
9731 if (unlikely(vcpu->arch.switch_db_regs)) {
9732 set_debugreg(0, 7);
9733 set_debugreg(vcpu->arch.eff_db[0], 0);
9734 set_debugreg(vcpu->arch.eff_db[1], 1);
9735 set_debugreg(vcpu->arch.eff_db[2], 2);
9736 set_debugreg(vcpu->arch.eff_db[3], 3);
9737 } else if (unlikely(hw_breakpoint_active())) {
9738 set_debugreg(0, 7);
9739 }
9740
9741 for (;;) {
9742 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9743 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9744 break;
9745
9746 if (kvm_lapic_enabled(vcpu))
9747 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9748
9749 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9750 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9751 break;
9752 }
9753 }
9754
9755 /*
9756 * Do this here before restoring debug registers on the host. And
9757 * since we do this before handling the vmexit, a DR access vmexit
9758 * can (a) read the correct value of the debug registers, (b) set
9759 * KVM_DEBUGREG_WONT_EXIT again.
9760 */
9761 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9762 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9763 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9764 kvm_update_dr0123(vcpu);
9765 kvm_update_dr7(vcpu);
9766 }
9767
9768 /*
9769 * If the guest has used debug registers, at least dr7
9770 * will be disabled while returning to the host.
9771 * If we don't have active breakpoints in the host, we don't
9772 * care about the messed up debug address registers. But if
9773 * we have some of them active, restore the old state.
9774 */
9775 if (hw_breakpoint_active())
9776 hw_breakpoint_restore();
9777
9778 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9779 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9780
9781 vcpu->mode = OUTSIDE_GUEST_MODE;
9782 smp_wmb();
9783
9784 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9785
9786 /*
9787 * Consume any pending interrupts, including the possible source of
9788 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9789 * An instruction is required after local_irq_enable() to fully unblock
9790 * interrupts on processors that implement an interrupt shadow, the
9791 * stat.exits increment will do nicely.
9792 */
9793 kvm_before_interrupt(vcpu);
9794 local_irq_enable();
9795 ++vcpu->stat.exits;
9796 local_irq_disable();
9797 kvm_after_interrupt(vcpu);
9798
9799 /*
9800 * Wait until after servicing IRQs to account guest time so that any
9801 * ticks that occurred while running the guest are properly accounted
9802 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9803 * of accounting via context tracking, but the loss of accuracy is
9804 * acceptable for all known use cases.
9805 */
9806 vtime_account_guest_exit();
9807
9808 if (lapic_in_kernel(vcpu)) {
9809 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9810 if (delta != S64_MIN) {
9811 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9812 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9813 }
9814 }
9815
9816 local_irq_enable();
9817 preempt_enable();
9818
9819 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9820
9821 /*
9822 * Profile KVM exit RIPs:
9823 */
9824 if (unlikely(prof_on == KVM_PROFILING)) {
9825 unsigned long rip = kvm_rip_read(vcpu);
9826 profile_hit(KVM_PROFILING, (void *)rip);
9827 }
9828
9829 if (unlikely(vcpu->arch.tsc_always_catchup))
9830 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9831
9832 if (vcpu->arch.apic_attention)
9833 kvm_lapic_sync_from_vapic(vcpu);
9834
9835 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9836 return r;
9837
9838 cancel_injection:
9839 if (req_immediate_exit)
9840 kvm_make_request(KVM_REQ_EVENT, vcpu);
9841 static_call(kvm_x86_cancel_injection)(vcpu);
9842 if (unlikely(vcpu->arch.apic_attention))
9843 kvm_lapic_sync_from_vapic(vcpu);
9844 out:
9845 return r;
9846 }
9847
9848 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9849 {
9850 if (!kvm_arch_vcpu_runnable(vcpu) &&
9851 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9852 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9853 kvm_vcpu_block(vcpu);
9854 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9855
9856 if (kvm_x86_ops.post_block)
9857 static_call(kvm_x86_post_block)(vcpu);
9858
9859 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9860 return 1;
9861 }
9862
9863 if (kvm_apic_accept_events(vcpu) < 0)
9864 return 0;
9865 switch(vcpu->arch.mp_state) {
9866 case KVM_MP_STATE_HALTED:
9867 case KVM_MP_STATE_AP_RESET_HOLD:
9868 vcpu->arch.pv.pv_unhalted = false;
9869 vcpu->arch.mp_state =
9870 KVM_MP_STATE_RUNNABLE;
9871 fallthrough;
9872 case KVM_MP_STATE_RUNNABLE:
9873 vcpu->arch.apf.halted = false;
9874 break;
9875 case KVM_MP_STATE_INIT_RECEIVED:
9876 break;
9877 default:
9878 return -EINTR;
9879 }
9880 return 1;
9881 }
9882
9883 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9884 {
9885 if (is_guest_mode(vcpu))
9886 kvm_check_nested_events(vcpu);
9887
9888 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9889 !vcpu->arch.apf.halted);
9890 }
9891
9892 static int vcpu_run(struct kvm_vcpu *vcpu)
9893 {
9894 int r;
9895 struct kvm *kvm = vcpu->kvm;
9896
9897 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9898 vcpu->arch.l1tf_flush_l1d = true;
9899
9900 for (;;) {
9901 if (kvm_vcpu_running(vcpu)) {
9902 r = vcpu_enter_guest(vcpu);
9903 } else {
9904 r = vcpu_block(kvm, vcpu);
9905 }
9906
9907 if (r <= 0)
9908 break;
9909
9910 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9911 if (kvm_cpu_has_pending_timer(vcpu))
9912 kvm_inject_pending_timer_irqs(vcpu);
9913
9914 if (dm_request_for_irq_injection(vcpu) &&
9915 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9916 r = 0;
9917 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9918 ++vcpu->stat.request_irq_exits;
9919 break;
9920 }
9921
9922 if (__xfer_to_guest_mode_work_pending()) {
9923 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9924 r = xfer_to_guest_mode_handle_work(vcpu);
9925 if (r)
9926 return r;
9927 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9928 }
9929 }
9930
9931 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9932
9933 return r;
9934 }
9935
9936 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9937 {
9938 int r;
9939
9940 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9941 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9942 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9943 return r;
9944 }
9945
9946 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9947 {
9948 BUG_ON(!vcpu->arch.pio.count);
9949
9950 return complete_emulated_io(vcpu);
9951 }
9952
9953 /*
9954 * Implements the following, as a state machine:
9955 *
9956 * read:
9957 * for each fragment
9958 * for each mmio piece in the fragment
9959 * write gpa, len
9960 * exit
9961 * copy data
9962 * execute insn
9963 *
9964 * write:
9965 * for each fragment
9966 * for each mmio piece in the fragment
9967 * write gpa, len
9968 * copy data
9969 * exit
9970 */
9971 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9972 {
9973 struct kvm_run *run = vcpu->run;
9974 struct kvm_mmio_fragment *frag;
9975 unsigned len;
9976
9977 BUG_ON(!vcpu->mmio_needed);
9978
9979 /* Complete previous fragment */
9980 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9981 len = min(8u, frag->len);
9982 if (!vcpu->mmio_is_write)
9983 memcpy(frag->data, run->mmio.data, len);
9984
9985 if (frag->len <= 8) {
9986 /* Switch to the next fragment. */
9987 frag++;
9988 vcpu->mmio_cur_fragment++;
9989 } else {
9990 /* Go forward to the next mmio piece. */
9991 frag->data += len;
9992 frag->gpa += len;
9993 frag->len -= len;
9994 }
9995
9996 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9997 vcpu->mmio_needed = 0;
9998
9999 /* FIXME: return into emulator if single-stepping. */
10000 if (vcpu->mmio_is_write)
10001 return 1;
10002 vcpu->mmio_read_completed = 1;
10003 return complete_emulated_io(vcpu);
10004 }
10005
10006 run->exit_reason = KVM_EXIT_MMIO;
10007 run->mmio.phys_addr = frag->gpa;
10008 if (vcpu->mmio_is_write)
10009 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10010 run->mmio.len = min(8u, frag->len);
10011 run->mmio.is_write = vcpu->mmio_is_write;
10012 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10013 return 0;
10014 }
10015
10016 static void kvm_save_current_fpu(struct fpu *fpu)
10017 {
10018 /*
10019 * If the target FPU state is not resident in the CPU registers, just
10020 * memcpy() from current, else save CPU state directly to the target.
10021 */
10022 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10023 memcpy(&fpu->state, &current->thread.fpu.state,
10024 fpu_kernel_xstate_size);
10025 else
10026 save_fpregs_to_fpstate(fpu);
10027 }
10028
10029 /* Swap (qemu) user FPU context for the guest FPU context. */
10030 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10031 {
10032 fpregs_lock();
10033
10034 kvm_save_current_fpu(vcpu->arch.user_fpu);
10035
10036 /*
10037 * Guests with protected state can't have it set by the hypervisor,
10038 * so skip trying to set it.
10039 */
10040 if (vcpu->arch.guest_fpu)
10041 /* PKRU is separately restored in kvm_x86_ops.run. */
10042 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10043 ~XFEATURE_MASK_PKRU);
10044
10045 fpregs_mark_activate();
10046 fpregs_unlock();
10047
10048 trace_kvm_fpu(1);
10049 }
10050
10051 /* When vcpu_run ends, restore user space FPU context. */
10052 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10053 {
10054 fpregs_lock();
10055
10056 /*
10057 * Guests with protected state can't have it read by the hypervisor,
10058 * so skip trying to save it.
10059 */
10060 if (vcpu->arch.guest_fpu)
10061 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10062
10063 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10064
10065 fpregs_mark_activate();
10066 fpregs_unlock();
10067
10068 ++vcpu->stat.fpu_reload;
10069 trace_kvm_fpu(0);
10070 }
10071
10072 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10073 {
10074 struct kvm_run *kvm_run = vcpu->run;
10075 int r;
10076
10077 vcpu_load(vcpu);
10078 kvm_sigset_activate(vcpu);
10079 kvm_run->flags = 0;
10080 kvm_load_guest_fpu(vcpu);
10081
10082 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10083 if (kvm_run->immediate_exit) {
10084 r = -EINTR;
10085 goto out;
10086 }
10087 kvm_vcpu_block(vcpu);
10088 if (kvm_apic_accept_events(vcpu) < 0) {
10089 r = 0;
10090 goto out;
10091 }
10092 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10093 r = -EAGAIN;
10094 if (signal_pending(current)) {
10095 r = -EINTR;
10096 kvm_run->exit_reason = KVM_EXIT_INTR;
10097 ++vcpu->stat.signal_exits;
10098 }
10099 goto out;
10100 }
10101
10102 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10103 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10104 r = -EINVAL;
10105 goto out;
10106 }
10107
10108 if (kvm_run->kvm_dirty_regs) {
10109 r = sync_regs(vcpu);
10110 if (r != 0)
10111 goto out;
10112 }
10113
10114 /* re-sync apic's tpr */
10115 if (!lapic_in_kernel(vcpu)) {
10116 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10117 r = -EINVAL;
10118 goto out;
10119 }
10120 }
10121
10122 if (unlikely(vcpu->arch.complete_userspace_io)) {
10123 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10124 vcpu->arch.complete_userspace_io = NULL;
10125 r = cui(vcpu);
10126 if (r <= 0)
10127 goto out;
10128 } else
10129 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10130
10131 if (kvm_run->immediate_exit)
10132 r = -EINTR;
10133 else
10134 r = vcpu_run(vcpu);
10135
10136 out:
10137 kvm_put_guest_fpu(vcpu);
10138 if (kvm_run->kvm_valid_regs)
10139 store_regs(vcpu);
10140 post_kvm_run_save(vcpu);
10141 kvm_sigset_deactivate(vcpu);
10142
10143 vcpu_put(vcpu);
10144 return r;
10145 }
10146
10147 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10148 {
10149 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10150 /*
10151 * We are here if userspace calls get_regs() in the middle of
10152 * instruction emulation. Registers state needs to be copied
10153 * back from emulation context to vcpu. Userspace shouldn't do
10154 * that usually, but some bad designed PV devices (vmware
10155 * backdoor interface) need this to work
10156 */
10157 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10158 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10159 }
10160 regs->rax = kvm_rax_read(vcpu);
10161 regs->rbx = kvm_rbx_read(vcpu);
10162 regs->rcx = kvm_rcx_read(vcpu);
10163 regs->rdx = kvm_rdx_read(vcpu);
10164 regs->rsi = kvm_rsi_read(vcpu);
10165 regs->rdi = kvm_rdi_read(vcpu);
10166 regs->rsp = kvm_rsp_read(vcpu);
10167 regs->rbp = kvm_rbp_read(vcpu);
10168 #ifdef CONFIG_X86_64
10169 regs->r8 = kvm_r8_read(vcpu);
10170 regs->r9 = kvm_r9_read(vcpu);
10171 regs->r10 = kvm_r10_read(vcpu);
10172 regs->r11 = kvm_r11_read(vcpu);
10173 regs->r12 = kvm_r12_read(vcpu);
10174 regs->r13 = kvm_r13_read(vcpu);
10175 regs->r14 = kvm_r14_read(vcpu);
10176 regs->r15 = kvm_r15_read(vcpu);
10177 #endif
10178
10179 regs->rip = kvm_rip_read(vcpu);
10180 regs->rflags = kvm_get_rflags(vcpu);
10181 }
10182
10183 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10184 {
10185 vcpu_load(vcpu);
10186 __get_regs(vcpu, regs);
10187 vcpu_put(vcpu);
10188 return 0;
10189 }
10190
10191 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10192 {
10193 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10194 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10195
10196 kvm_rax_write(vcpu, regs->rax);
10197 kvm_rbx_write(vcpu, regs->rbx);
10198 kvm_rcx_write(vcpu, regs->rcx);
10199 kvm_rdx_write(vcpu, regs->rdx);
10200 kvm_rsi_write(vcpu, regs->rsi);
10201 kvm_rdi_write(vcpu, regs->rdi);
10202 kvm_rsp_write(vcpu, regs->rsp);
10203 kvm_rbp_write(vcpu, regs->rbp);
10204 #ifdef CONFIG_X86_64
10205 kvm_r8_write(vcpu, regs->r8);
10206 kvm_r9_write(vcpu, regs->r9);
10207 kvm_r10_write(vcpu, regs->r10);
10208 kvm_r11_write(vcpu, regs->r11);
10209 kvm_r12_write(vcpu, regs->r12);
10210 kvm_r13_write(vcpu, regs->r13);
10211 kvm_r14_write(vcpu, regs->r14);
10212 kvm_r15_write(vcpu, regs->r15);
10213 #endif
10214
10215 kvm_rip_write(vcpu, regs->rip);
10216 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10217
10218 vcpu->arch.exception.pending = false;
10219
10220 kvm_make_request(KVM_REQ_EVENT, vcpu);
10221 }
10222
10223 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10224 {
10225 vcpu_load(vcpu);
10226 __set_regs(vcpu, regs);
10227 vcpu_put(vcpu);
10228 return 0;
10229 }
10230
10231 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10232 {
10233 struct kvm_segment cs;
10234
10235 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10236 *db = cs.db;
10237 *l = cs.l;
10238 }
10239 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10240
10241 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10242 {
10243 struct desc_ptr dt;
10244
10245 if (vcpu->arch.guest_state_protected)
10246 goto skip_protected_regs;
10247
10248 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10249 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10250 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10251 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10252 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10253 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10254
10255 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10256 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10257
10258 static_call(kvm_x86_get_idt)(vcpu, &dt);
10259 sregs->idt.limit = dt.size;
10260 sregs->idt.base = dt.address;
10261 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10262 sregs->gdt.limit = dt.size;
10263 sregs->gdt.base = dt.address;
10264
10265 sregs->cr2 = vcpu->arch.cr2;
10266 sregs->cr3 = kvm_read_cr3(vcpu);
10267
10268 skip_protected_regs:
10269 sregs->cr0 = kvm_read_cr0(vcpu);
10270 sregs->cr4 = kvm_read_cr4(vcpu);
10271 sregs->cr8 = kvm_get_cr8(vcpu);
10272 sregs->efer = vcpu->arch.efer;
10273 sregs->apic_base = kvm_get_apic_base(vcpu);
10274 }
10275
10276 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10277 {
10278 __get_sregs_common(vcpu, sregs);
10279
10280 if (vcpu->arch.guest_state_protected)
10281 return;
10282
10283 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10284 set_bit(vcpu->arch.interrupt.nr,
10285 (unsigned long *)sregs->interrupt_bitmap);
10286 }
10287
10288 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10289 {
10290 int i;
10291
10292 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10293
10294 if (vcpu->arch.guest_state_protected)
10295 return;
10296
10297 if (is_pae_paging(vcpu)) {
10298 for (i = 0 ; i < 4 ; i++)
10299 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10300 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10301 }
10302 }
10303
10304 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10305 struct kvm_sregs *sregs)
10306 {
10307 vcpu_load(vcpu);
10308 __get_sregs(vcpu, sregs);
10309 vcpu_put(vcpu);
10310 return 0;
10311 }
10312
10313 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10314 struct kvm_mp_state *mp_state)
10315 {
10316 int r;
10317
10318 vcpu_load(vcpu);
10319 if (kvm_mpx_supported())
10320 kvm_load_guest_fpu(vcpu);
10321
10322 r = kvm_apic_accept_events(vcpu);
10323 if (r < 0)
10324 goto out;
10325 r = 0;
10326
10327 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10328 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10329 vcpu->arch.pv.pv_unhalted)
10330 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10331 else
10332 mp_state->mp_state = vcpu->arch.mp_state;
10333
10334 out:
10335 if (kvm_mpx_supported())
10336 kvm_put_guest_fpu(vcpu);
10337 vcpu_put(vcpu);
10338 return r;
10339 }
10340
10341 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10342 struct kvm_mp_state *mp_state)
10343 {
10344 int ret = -EINVAL;
10345
10346 vcpu_load(vcpu);
10347
10348 if (!lapic_in_kernel(vcpu) &&
10349 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10350 goto out;
10351
10352 /*
10353 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10354 * INIT state; latched init should be reported using
10355 * KVM_SET_VCPU_EVENTS, so reject it here.
10356 */
10357 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10358 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10359 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10360 goto out;
10361
10362 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10363 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10364 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10365 } else
10366 vcpu->arch.mp_state = mp_state->mp_state;
10367 kvm_make_request(KVM_REQ_EVENT, vcpu);
10368
10369 ret = 0;
10370 out:
10371 vcpu_put(vcpu);
10372 return ret;
10373 }
10374
10375 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10376 int reason, bool has_error_code, u32 error_code)
10377 {
10378 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10379 int ret;
10380
10381 init_emulate_ctxt(vcpu);
10382
10383 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10384 has_error_code, error_code);
10385 if (ret) {
10386 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10387 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10388 vcpu->run->internal.ndata = 0;
10389 return 0;
10390 }
10391
10392 kvm_rip_write(vcpu, ctxt->eip);
10393 kvm_set_rflags(vcpu, ctxt->eflags);
10394 return 1;
10395 }
10396 EXPORT_SYMBOL_GPL(kvm_task_switch);
10397
10398 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10399 {
10400 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10401 /*
10402 * When EFER.LME and CR0.PG are set, the processor is in
10403 * 64-bit mode (though maybe in a 32-bit code segment).
10404 * CR4.PAE and EFER.LMA must be set.
10405 */
10406 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10407 return false;
10408 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10409 return false;
10410 } else {
10411 /*
10412 * Not in 64-bit mode: EFER.LMA is clear and the code
10413 * segment cannot be 64-bit.
10414 */
10415 if (sregs->efer & EFER_LMA || sregs->cs.l)
10416 return false;
10417 }
10418
10419 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10420 }
10421
10422 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10423 int *mmu_reset_needed, bool update_pdptrs)
10424 {
10425 struct msr_data apic_base_msr;
10426 int idx;
10427 struct desc_ptr dt;
10428
10429 if (!kvm_is_valid_sregs(vcpu, sregs))
10430 return -EINVAL;
10431
10432 apic_base_msr.data = sregs->apic_base;
10433 apic_base_msr.host_initiated = true;
10434 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10435 return -EINVAL;
10436
10437 if (vcpu->arch.guest_state_protected)
10438 return 0;
10439
10440 dt.size = sregs->idt.limit;
10441 dt.address = sregs->idt.base;
10442 static_call(kvm_x86_set_idt)(vcpu, &dt);
10443 dt.size = sregs->gdt.limit;
10444 dt.address = sregs->gdt.base;
10445 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10446
10447 vcpu->arch.cr2 = sregs->cr2;
10448 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10449 vcpu->arch.cr3 = sregs->cr3;
10450 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10451
10452 kvm_set_cr8(vcpu, sregs->cr8);
10453
10454 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10455 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10456
10457 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10458 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10459 vcpu->arch.cr0 = sregs->cr0;
10460
10461 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10462 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10463
10464 if (update_pdptrs) {
10465 idx = srcu_read_lock(&vcpu->kvm->srcu);
10466 if (is_pae_paging(vcpu)) {
10467 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10468 *mmu_reset_needed = 1;
10469 }
10470 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10471 }
10472
10473 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10474 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10475 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10476 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10477 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10478 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10479
10480 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10481 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10482
10483 update_cr8_intercept(vcpu);
10484
10485 /* Older userspace won't unhalt the vcpu on reset. */
10486 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10487 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10488 !is_protmode(vcpu))
10489 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10490
10491 return 0;
10492 }
10493
10494 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10495 {
10496 int pending_vec, max_bits;
10497 int mmu_reset_needed = 0;
10498 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10499
10500 if (ret)
10501 return ret;
10502
10503 if (mmu_reset_needed)
10504 kvm_mmu_reset_context(vcpu);
10505
10506 max_bits = KVM_NR_INTERRUPTS;
10507 pending_vec = find_first_bit(
10508 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10509
10510 if (pending_vec < max_bits) {
10511 kvm_queue_interrupt(vcpu, pending_vec, false);
10512 pr_debug("Set back pending irq %d\n", pending_vec);
10513 kvm_make_request(KVM_REQ_EVENT, vcpu);
10514 }
10515 return 0;
10516 }
10517
10518 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10519 {
10520 int mmu_reset_needed = 0;
10521 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10522 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10523 !(sregs2->efer & EFER_LMA);
10524 int i, ret;
10525
10526 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10527 return -EINVAL;
10528
10529 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10530 return -EINVAL;
10531
10532 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10533 &mmu_reset_needed, !valid_pdptrs);
10534 if (ret)
10535 return ret;
10536
10537 if (valid_pdptrs) {
10538 for (i = 0; i < 4 ; i++)
10539 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10540
10541 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10542 mmu_reset_needed = 1;
10543 vcpu->arch.pdptrs_from_userspace = true;
10544 }
10545 if (mmu_reset_needed)
10546 kvm_mmu_reset_context(vcpu);
10547 return 0;
10548 }
10549
10550 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10551 struct kvm_sregs *sregs)
10552 {
10553 int ret;
10554
10555 vcpu_load(vcpu);
10556 ret = __set_sregs(vcpu, sregs);
10557 vcpu_put(vcpu);
10558 return ret;
10559 }
10560
10561 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10562 struct kvm_guest_debug *dbg)
10563 {
10564 unsigned long rflags;
10565 int i, r;
10566
10567 if (vcpu->arch.guest_state_protected)
10568 return -EINVAL;
10569
10570 vcpu_load(vcpu);
10571
10572 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10573 r = -EBUSY;
10574 if (vcpu->arch.exception.pending)
10575 goto out;
10576 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10577 kvm_queue_exception(vcpu, DB_VECTOR);
10578 else
10579 kvm_queue_exception(vcpu, BP_VECTOR);
10580 }
10581
10582 /*
10583 * Read rflags as long as potentially injected trace flags are still
10584 * filtered out.
10585 */
10586 rflags = kvm_get_rflags(vcpu);
10587
10588 vcpu->guest_debug = dbg->control;
10589 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10590 vcpu->guest_debug = 0;
10591
10592 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10593 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10594 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10595 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10596 } else {
10597 for (i = 0; i < KVM_NR_DB_REGS; i++)
10598 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10599 }
10600 kvm_update_dr7(vcpu);
10601
10602 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10603 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10604
10605 /*
10606 * Trigger an rflags update that will inject or remove the trace
10607 * flags.
10608 */
10609 kvm_set_rflags(vcpu, rflags);
10610
10611 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10612
10613 r = 0;
10614
10615 out:
10616 vcpu_put(vcpu);
10617 return r;
10618 }
10619
10620 /*
10621 * Translate a guest virtual address to a guest physical address.
10622 */
10623 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10624 struct kvm_translation *tr)
10625 {
10626 unsigned long vaddr = tr->linear_address;
10627 gpa_t gpa;
10628 int idx;
10629
10630 vcpu_load(vcpu);
10631
10632 idx = srcu_read_lock(&vcpu->kvm->srcu);
10633 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10634 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10635 tr->physical_address = gpa;
10636 tr->valid = gpa != UNMAPPED_GVA;
10637 tr->writeable = 1;
10638 tr->usermode = 0;
10639
10640 vcpu_put(vcpu);
10641 return 0;
10642 }
10643
10644 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10645 {
10646 struct fxregs_state *fxsave;
10647
10648 if (!vcpu->arch.guest_fpu)
10649 return 0;
10650
10651 vcpu_load(vcpu);
10652
10653 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10654 memcpy(fpu->fpr, fxsave->st_space, 128);
10655 fpu->fcw = fxsave->cwd;
10656 fpu->fsw = fxsave->swd;
10657 fpu->ftwx = fxsave->twd;
10658 fpu->last_opcode = fxsave->fop;
10659 fpu->last_ip = fxsave->rip;
10660 fpu->last_dp = fxsave->rdp;
10661 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10662
10663 vcpu_put(vcpu);
10664 return 0;
10665 }
10666
10667 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10668 {
10669 struct fxregs_state *fxsave;
10670
10671 if (!vcpu->arch.guest_fpu)
10672 return 0;
10673
10674 vcpu_load(vcpu);
10675
10676 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10677
10678 memcpy(fxsave->st_space, fpu->fpr, 128);
10679 fxsave->cwd = fpu->fcw;
10680 fxsave->swd = fpu->fsw;
10681 fxsave->twd = fpu->ftwx;
10682 fxsave->fop = fpu->last_opcode;
10683 fxsave->rip = fpu->last_ip;
10684 fxsave->rdp = fpu->last_dp;
10685 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10686
10687 vcpu_put(vcpu);
10688 return 0;
10689 }
10690
10691 static void store_regs(struct kvm_vcpu *vcpu)
10692 {
10693 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10694
10695 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10696 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10697
10698 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10699 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10700
10701 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10702 kvm_vcpu_ioctl_x86_get_vcpu_events(
10703 vcpu, &vcpu->run->s.regs.events);
10704 }
10705
10706 static int sync_regs(struct kvm_vcpu *vcpu)
10707 {
10708 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10709 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10710 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10711 }
10712 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10713 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10714 return -EINVAL;
10715 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10716 }
10717 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10718 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10719 vcpu, &vcpu->run->s.regs.events))
10720 return -EINVAL;
10721 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10722 }
10723
10724 return 0;
10725 }
10726
10727 static void fx_init(struct kvm_vcpu *vcpu)
10728 {
10729 if (!vcpu->arch.guest_fpu)
10730 return;
10731
10732 fpstate_init(&vcpu->arch.guest_fpu->state);
10733 if (boot_cpu_has(X86_FEATURE_XSAVES))
10734 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10735 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10736
10737 /*
10738 * Ensure guest xcr0 is valid for loading
10739 */
10740 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10741
10742 vcpu->arch.cr0 |= X86_CR0_ET;
10743 }
10744
10745 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10746 {
10747 if (vcpu->arch.guest_fpu) {
10748 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10749 vcpu->arch.guest_fpu = NULL;
10750 }
10751 }
10752 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10753
10754 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10755 {
10756 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10757 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10758 "guest TSC will not be reliable\n");
10759
10760 return 0;
10761 }
10762
10763 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10764 {
10765 struct page *page;
10766 int r;
10767
10768 vcpu->arch.last_vmentry_cpu = -1;
10769 vcpu->arch.regs_avail = ~0;
10770 vcpu->arch.regs_dirty = ~0;
10771
10772 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10773 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10774 else
10775 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10776
10777 r = kvm_mmu_create(vcpu);
10778 if (r < 0)
10779 return r;
10780
10781 if (irqchip_in_kernel(vcpu->kvm)) {
10782 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10783 if (r < 0)
10784 goto fail_mmu_destroy;
10785 if (kvm_apicv_activated(vcpu->kvm))
10786 vcpu->arch.apicv_active = true;
10787 } else
10788 static_branch_inc(&kvm_has_noapic_vcpu);
10789
10790 r = -ENOMEM;
10791
10792 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10793 if (!page)
10794 goto fail_free_lapic;
10795 vcpu->arch.pio_data = page_address(page);
10796
10797 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10798 GFP_KERNEL_ACCOUNT);
10799 if (!vcpu->arch.mce_banks)
10800 goto fail_free_pio_data;
10801 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10802
10803 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10804 GFP_KERNEL_ACCOUNT))
10805 goto fail_free_mce_banks;
10806
10807 if (!alloc_emulate_ctxt(vcpu))
10808 goto free_wbinvd_dirty_mask;
10809
10810 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10811 GFP_KERNEL_ACCOUNT);
10812 if (!vcpu->arch.user_fpu) {
10813 pr_err("kvm: failed to allocate userspace's fpu\n");
10814 goto free_emulate_ctxt;
10815 }
10816
10817 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10818 GFP_KERNEL_ACCOUNT);
10819 if (!vcpu->arch.guest_fpu) {
10820 pr_err("kvm: failed to allocate vcpu's fpu\n");
10821 goto free_user_fpu;
10822 }
10823 fx_init(vcpu);
10824
10825 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10826 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10827
10828 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10829
10830 kvm_async_pf_hash_reset(vcpu);
10831 kvm_pmu_init(vcpu);
10832
10833 vcpu->arch.pending_external_vector = -1;
10834 vcpu->arch.preempted_in_kernel = false;
10835
10836 #if IS_ENABLED(CONFIG_HYPERV)
10837 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10838 #endif
10839
10840 r = static_call(kvm_x86_vcpu_create)(vcpu);
10841 if (r)
10842 goto free_guest_fpu;
10843
10844 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10845 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10846 kvm_vcpu_mtrr_init(vcpu);
10847 vcpu_load(vcpu);
10848 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10849 kvm_vcpu_reset(vcpu, false);
10850 kvm_init_mmu(vcpu);
10851 vcpu_put(vcpu);
10852 return 0;
10853
10854 free_guest_fpu:
10855 kvm_free_guest_fpu(vcpu);
10856 free_user_fpu:
10857 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10858 free_emulate_ctxt:
10859 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10860 free_wbinvd_dirty_mask:
10861 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10862 fail_free_mce_banks:
10863 kfree(vcpu->arch.mce_banks);
10864 fail_free_pio_data:
10865 free_page((unsigned long)vcpu->arch.pio_data);
10866 fail_free_lapic:
10867 kvm_free_lapic(vcpu);
10868 fail_mmu_destroy:
10869 kvm_mmu_destroy(vcpu);
10870 return r;
10871 }
10872
10873 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10874 {
10875 struct kvm *kvm = vcpu->kvm;
10876
10877 if (mutex_lock_killable(&vcpu->mutex))
10878 return;
10879 vcpu_load(vcpu);
10880 kvm_synchronize_tsc(vcpu, 0);
10881 vcpu_put(vcpu);
10882
10883 /* poll control enabled by default */
10884 vcpu->arch.msr_kvm_poll_control = 1;
10885
10886 mutex_unlock(&vcpu->mutex);
10887
10888 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10889 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10890 KVMCLOCK_SYNC_PERIOD);
10891 }
10892
10893 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10894 {
10895 int idx;
10896
10897 kvmclock_reset(vcpu);
10898
10899 static_call(kvm_x86_vcpu_free)(vcpu);
10900
10901 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10902 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10903 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10904 kvm_free_guest_fpu(vcpu);
10905
10906 kvm_hv_vcpu_uninit(vcpu);
10907 kvm_pmu_destroy(vcpu);
10908 kfree(vcpu->arch.mce_banks);
10909 kvm_free_lapic(vcpu);
10910 idx = srcu_read_lock(&vcpu->kvm->srcu);
10911 kvm_mmu_destroy(vcpu);
10912 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10913 free_page((unsigned long)vcpu->arch.pio_data);
10914 kvfree(vcpu->arch.cpuid_entries);
10915 if (!lapic_in_kernel(vcpu))
10916 static_branch_dec(&kvm_has_noapic_vcpu);
10917 }
10918
10919 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10920 {
10921 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10922 unsigned long new_cr0;
10923 u32 eax, dummy;
10924
10925 kvm_lapic_reset(vcpu, init_event);
10926
10927 vcpu->arch.hflags = 0;
10928
10929 vcpu->arch.smi_pending = 0;
10930 vcpu->arch.smi_count = 0;
10931 atomic_set(&vcpu->arch.nmi_queued, 0);
10932 vcpu->arch.nmi_pending = 0;
10933 vcpu->arch.nmi_injected = false;
10934 kvm_clear_interrupt_queue(vcpu);
10935 kvm_clear_exception_queue(vcpu);
10936
10937 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10938 kvm_update_dr0123(vcpu);
10939 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10940 vcpu->arch.dr7 = DR7_FIXED_1;
10941 kvm_update_dr7(vcpu);
10942
10943 vcpu->arch.cr2 = 0;
10944
10945 kvm_make_request(KVM_REQ_EVENT, vcpu);
10946 vcpu->arch.apf.msr_en_val = 0;
10947 vcpu->arch.apf.msr_int_val = 0;
10948 vcpu->arch.st.msr_val = 0;
10949
10950 kvmclock_reset(vcpu);
10951
10952 kvm_clear_async_pf_completion_queue(vcpu);
10953 kvm_async_pf_hash_reset(vcpu);
10954 vcpu->arch.apf.halted = false;
10955
10956 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10957 void *mpx_state_buffer;
10958
10959 /*
10960 * To avoid have the INIT path from kvm_apic_has_events() that be
10961 * called with loaded FPU and does not let userspace fix the state.
10962 */
10963 if (init_event)
10964 kvm_put_guest_fpu(vcpu);
10965 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10966 XFEATURE_BNDREGS);
10967 if (mpx_state_buffer)
10968 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10969 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10970 XFEATURE_BNDCSR);
10971 if (mpx_state_buffer)
10972 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10973 if (init_event)
10974 kvm_load_guest_fpu(vcpu);
10975 }
10976
10977 if (!init_event) {
10978 kvm_pmu_reset(vcpu);
10979 vcpu->arch.smbase = 0x30000;
10980
10981 vcpu->arch.msr_misc_features_enables = 0;
10982
10983 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10984 }
10985
10986 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10987 vcpu->arch.regs_avail = ~0;
10988 vcpu->arch.regs_dirty = ~0;
10989
10990 /*
10991 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10992 * if no CPUID match is found. Note, it's impossible to get a match at
10993 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10994 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10995 * But, go through the motions in case that's ever remedied.
10996 */
10997 eax = 1;
10998 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10999 eax = 0x600;
11000 kvm_rdx_write(vcpu, eax);
11001
11002 vcpu->arch.ia32_xss = 0;
11003
11004 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11005
11006 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11007 kvm_rip_write(vcpu, 0xfff0);
11008
11009 vcpu->arch.cr3 = 0;
11010 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11011
11012 /*
11013 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11014 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11015 * (or qualify) that with a footnote stating that CD/NW are preserved.
11016 */
11017 new_cr0 = X86_CR0_ET;
11018 if (init_event)
11019 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11020 else
11021 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11022
11023 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11024 static_call(kvm_x86_set_cr4)(vcpu, 0);
11025 static_call(kvm_x86_set_efer)(vcpu, 0);
11026 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11027
11028 /*
11029 * Reset the MMU context if paging was enabled prior to INIT (which is
11030 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11031 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11032 * checked because it is unconditionally cleared on INIT and all other
11033 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11034 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11035 */
11036 if (old_cr0 & X86_CR0_PG)
11037 kvm_mmu_reset_context(vcpu);
11038
11039 /*
11040 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11041 * APM states the TLBs are untouched by INIT, but it also states that
11042 * the TLBs are flushed on "External initialization of the processor."
11043 * Flush the guest TLB regardless of vendor, there is no meaningful
11044 * benefit in relying on the guest to flush the TLB immediately after
11045 * INIT. A spurious TLB flush is benign and likely negligible from a
11046 * performance perspective.
11047 */
11048 if (init_event)
11049 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11050 }
11051 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11052
11053 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11054 {
11055 struct kvm_segment cs;
11056
11057 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11058 cs.selector = vector << 8;
11059 cs.base = vector << 12;
11060 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11061 kvm_rip_write(vcpu, 0);
11062 }
11063 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11064
11065 int kvm_arch_hardware_enable(void)
11066 {
11067 struct kvm *kvm;
11068 struct kvm_vcpu *vcpu;
11069 int i;
11070 int ret;
11071 u64 local_tsc;
11072 u64 max_tsc = 0;
11073 bool stable, backwards_tsc = false;
11074
11075 kvm_user_return_msr_cpu_online();
11076 ret = static_call(kvm_x86_hardware_enable)();
11077 if (ret != 0)
11078 return ret;
11079
11080 local_tsc = rdtsc();
11081 stable = !kvm_check_tsc_unstable();
11082 list_for_each_entry(kvm, &vm_list, vm_list) {
11083 kvm_for_each_vcpu(i, vcpu, kvm) {
11084 if (!stable && vcpu->cpu == smp_processor_id())
11085 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11086 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11087 backwards_tsc = true;
11088 if (vcpu->arch.last_host_tsc > max_tsc)
11089 max_tsc = vcpu->arch.last_host_tsc;
11090 }
11091 }
11092 }
11093
11094 /*
11095 * Sometimes, even reliable TSCs go backwards. This happens on
11096 * platforms that reset TSC during suspend or hibernate actions, but
11097 * maintain synchronization. We must compensate. Fortunately, we can
11098 * detect that condition here, which happens early in CPU bringup,
11099 * before any KVM threads can be running. Unfortunately, we can't
11100 * bring the TSCs fully up to date with real time, as we aren't yet far
11101 * enough into CPU bringup that we know how much real time has actually
11102 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11103 * variables that haven't been updated yet.
11104 *
11105 * So we simply find the maximum observed TSC above, then record the
11106 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11107 * the adjustment will be applied. Note that we accumulate
11108 * adjustments, in case multiple suspend cycles happen before some VCPU
11109 * gets a chance to run again. In the event that no KVM threads get a
11110 * chance to run, we will miss the entire elapsed period, as we'll have
11111 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11112 * loose cycle time. This isn't too big a deal, since the loss will be
11113 * uniform across all VCPUs (not to mention the scenario is extremely
11114 * unlikely). It is possible that a second hibernate recovery happens
11115 * much faster than a first, causing the observed TSC here to be
11116 * smaller; this would require additional padding adjustment, which is
11117 * why we set last_host_tsc to the local tsc observed here.
11118 *
11119 * N.B. - this code below runs only on platforms with reliable TSC,
11120 * as that is the only way backwards_tsc is set above. Also note
11121 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11122 * have the same delta_cyc adjustment applied if backwards_tsc
11123 * is detected. Note further, this adjustment is only done once,
11124 * as we reset last_host_tsc on all VCPUs to stop this from being
11125 * called multiple times (one for each physical CPU bringup).
11126 *
11127 * Platforms with unreliable TSCs don't have to deal with this, they
11128 * will be compensated by the logic in vcpu_load, which sets the TSC to
11129 * catchup mode. This will catchup all VCPUs to real time, but cannot
11130 * guarantee that they stay in perfect synchronization.
11131 */
11132 if (backwards_tsc) {
11133 u64 delta_cyc = max_tsc - local_tsc;
11134 list_for_each_entry(kvm, &vm_list, vm_list) {
11135 kvm->arch.backwards_tsc_observed = true;
11136 kvm_for_each_vcpu(i, vcpu, kvm) {
11137 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11138 vcpu->arch.last_host_tsc = local_tsc;
11139 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11140 }
11141
11142 /*
11143 * We have to disable TSC offset matching.. if you were
11144 * booting a VM while issuing an S4 host suspend....
11145 * you may have some problem. Solving this issue is
11146 * left as an exercise to the reader.
11147 */
11148 kvm->arch.last_tsc_nsec = 0;
11149 kvm->arch.last_tsc_write = 0;
11150 }
11151
11152 }
11153 return 0;
11154 }
11155
11156 void kvm_arch_hardware_disable(void)
11157 {
11158 static_call(kvm_x86_hardware_disable)();
11159 drop_user_return_notifiers();
11160 }
11161
11162 int kvm_arch_hardware_setup(void *opaque)
11163 {
11164 struct kvm_x86_init_ops *ops = opaque;
11165 int r;
11166
11167 rdmsrl_safe(MSR_EFER, &host_efer);
11168
11169 if (boot_cpu_has(X86_FEATURE_XSAVES))
11170 rdmsrl(MSR_IA32_XSS, host_xss);
11171
11172 r = ops->hardware_setup();
11173 if (r != 0)
11174 return r;
11175
11176 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11177 kvm_ops_static_call_update();
11178
11179 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11180 supported_xss = 0;
11181
11182 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11183 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11184 #undef __kvm_cpu_cap_has
11185
11186 if (kvm_has_tsc_control) {
11187 /*
11188 * Make sure the user can only configure tsc_khz values that
11189 * fit into a signed integer.
11190 * A min value is not calculated because it will always
11191 * be 1 on all machines.
11192 */
11193 u64 max = min(0x7fffffffULL,
11194 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11195 kvm_max_guest_tsc_khz = max;
11196
11197 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11198 }
11199
11200 kvm_init_msr_list();
11201 return 0;
11202 }
11203
11204 void kvm_arch_hardware_unsetup(void)
11205 {
11206 static_call(kvm_x86_hardware_unsetup)();
11207 }
11208
11209 int kvm_arch_check_processor_compat(void *opaque)
11210 {
11211 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11212 struct kvm_x86_init_ops *ops = opaque;
11213
11214 WARN_ON(!irqs_disabled());
11215
11216 if (__cr4_reserved_bits(cpu_has, c) !=
11217 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11218 return -EIO;
11219
11220 return ops->check_processor_compatibility();
11221 }
11222
11223 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11224 {
11225 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11226 }
11227 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11228
11229 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11230 {
11231 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11232 }
11233
11234 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11235 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11236
11237 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11238 {
11239 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11240
11241 vcpu->arch.l1tf_flush_l1d = true;
11242 if (pmu->version && unlikely(pmu->event_count)) {
11243 pmu->need_cleanup = true;
11244 kvm_make_request(KVM_REQ_PMU, vcpu);
11245 }
11246 static_call(kvm_x86_sched_in)(vcpu, cpu);
11247 }
11248
11249 void kvm_arch_free_vm(struct kvm *kvm)
11250 {
11251 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11252 vfree(kvm);
11253 }
11254
11255
11256 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11257 {
11258 int ret;
11259
11260 if (type)
11261 return -EINVAL;
11262
11263 ret = kvm_page_track_init(kvm);
11264 if (ret)
11265 return ret;
11266
11267 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11268 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11269 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11270 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11271 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11272 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11273
11274 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11275 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11276 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11277 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11278 &kvm->arch.irq_sources_bitmap);
11279
11280 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11281 mutex_init(&kvm->arch.apic_map_lock);
11282 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11283
11284 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11285 pvclock_update_vm_gtod_copy(kvm);
11286
11287 kvm->arch.guest_can_read_msr_platform_info = true;
11288
11289 #if IS_ENABLED(CONFIG_HYPERV)
11290 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11291 kvm->arch.hv_root_tdp = INVALID_PAGE;
11292 #endif
11293
11294 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11295 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11296
11297 kvm_apicv_init(kvm);
11298 kvm_hv_init_vm(kvm);
11299 kvm_mmu_init_vm(kvm);
11300 kvm_xen_init_vm(kvm);
11301
11302 return static_call(kvm_x86_vm_init)(kvm);
11303 }
11304
11305 int kvm_arch_post_init_vm(struct kvm *kvm)
11306 {
11307 return kvm_mmu_post_init_vm(kvm);
11308 }
11309
11310 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11311 {
11312 vcpu_load(vcpu);
11313 kvm_mmu_unload(vcpu);
11314 vcpu_put(vcpu);
11315 }
11316
11317 static void kvm_free_vcpus(struct kvm *kvm)
11318 {
11319 unsigned int i;
11320 struct kvm_vcpu *vcpu;
11321
11322 /*
11323 * Unpin any mmu pages first.
11324 */
11325 kvm_for_each_vcpu(i, vcpu, kvm) {
11326 kvm_clear_async_pf_completion_queue(vcpu);
11327 kvm_unload_vcpu_mmu(vcpu);
11328 }
11329 kvm_for_each_vcpu(i, vcpu, kvm)
11330 kvm_vcpu_destroy(vcpu);
11331
11332 mutex_lock(&kvm->lock);
11333 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11334 kvm->vcpus[i] = NULL;
11335
11336 atomic_set(&kvm->online_vcpus, 0);
11337 mutex_unlock(&kvm->lock);
11338 }
11339
11340 void kvm_arch_sync_events(struct kvm *kvm)
11341 {
11342 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11343 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11344 kvm_free_pit(kvm);
11345 }
11346
11347 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11348
11349 /**
11350 * __x86_set_memory_region: Setup KVM internal memory slot
11351 *
11352 * @kvm: the kvm pointer to the VM.
11353 * @id: the slot ID to setup.
11354 * @gpa: the GPA to install the slot (unused when @size == 0).
11355 * @size: the size of the slot. Set to zero to uninstall a slot.
11356 *
11357 * This function helps to setup a KVM internal memory slot. Specify
11358 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11359 * slot. The return code can be one of the following:
11360 *
11361 * HVA: on success (uninstall will return a bogus HVA)
11362 * -errno: on error
11363 *
11364 * The caller should always use IS_ERR() to check the return value
11365 * before use. Note, the KVM internal memory slots are guaranteed to
11366 * remain valid and unchanged until the VM is destroyed, i.e., the
11367 * GPA->HVA translation will not change. However, the HVA is a user
11368 * address, i.e. its accessibility is not guaranteed, and must be
11369 * accessed via __copy_{to,from}_user().
11370 */
11371 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11372 u32 size)
11373 {
11374 int i, r;
11375 unsigned long hva, old_npages;
11376 struct kvm_memslots *slots = kvm_memslots(kvm);
11377 struct kvm_memory_slot *slot;
11378
11379 /* Called with kvm->slots_lock held. */
11380 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11381 return ERR_PTR_USR(-EINVAL);
11382
11383 slot = id_to_memslot(slots, id);
11384 if (size) {
11385 if (slot && slot->npages)
11386 return ERR_PTR_USR(-EEXIST);
11387
11388 /*
11389 * MAP_SHARED to prevent internal slot pages from being moved
11390 * by fork()/COW.
11391 */
11392 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11393 MAP_SHARED | MAP_ANONYMOUS, 0);
11394 if (IS_ERR((void *)hva))
11395 return (void __user *)hva;
11396 } else {
11397 if (!slot || !slot->npages)
11398 return NULL;
11399
11400 old_npages = slot->npages;
11401 hva = slot->userspace_addr;
11402 }
11403
11404 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11405 struct kvm_userspace_memory_region m;
11406
11407 m.slot = id | (i << 16);
11408 m.flags = 0;
11409 m.guest_phys_addr = gpa;
11410 m.userspace_addr = hva;
11411 m.memory_size = size;
11412 r = __kvm_set_memory_region(kvm, &m);
11413 if (r < 0)
11414 return ERR_PTR_USR(r);
11415 }
11416
11417 if (!size)
11418 vm_munmap(hva, old_npages * PAGE_SIZE);
11419
11420 return (void __user *)hva;
11421 }
11422 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11423
11424 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11425 {
11426 kvm_mmu_pre_destroy_vm(kvm);
11427 }
11428
11429 void kvm_arch_destroy_vm(struct kvm *kvm)
11430 {
11431 if (current->mm == kvm->mm) {
11432 /*
11433 * Free memory regions allocated on behalf of userspace,
11434 * unless the the memory map has changed due to process exit
11435 * or fd copying.
11436 */
11437 mutex_lock(&kvm->slots_lock);
11438 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11439 0, 0);
11440 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11441 0, 0);
11442 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11443 mutex_unlock(&kvm->slots_lock);
11444 }
11445 static_call_cond(kvm_x86_vm_destroy)(kvm);
11446 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11447 kvm_pic_destroy(kvm);
11448 kvm_ioapic_destroy(kvm);
11449 kvm_free_vcpus(kvm);
11450 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11451 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11452 kvm_mmu_uninit_vm(kvm);
11453 kvm_page_track_cleanup(kvm);
11454 kvm_xen_destroy_vm(kvm);
11455 kvm_hv_destroy_vm(kvm);
11456 }
11457
11458 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11459 {
11460 int i;
11461
11462 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11463 kvfree(slot->arch.rmap[i]);
11464 slot->arch.rmap[i] = NULL;
11465 }
11466 }
11467
11468 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11469 {
11470 int i;
11471
11472 memslot_rmap_free(slot);
11473
11474 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11475 kvfree(slot->arch.lpage_info[i - 1]);
11476 slot->arch.lpage_info[i - 1] = NULL;
11477 }
11478
11479 kvm_page_track_free_memslot(slot);
11480 }
11481
11482 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11483 unsigned long npages)
11484 {
11485 const int sz = sizeof(*slot->arch.rmap[0]);
11486 int i;
11487
11488 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11489 int level = i + 1;
11490 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11491
11492 if (slot->arch.rmap[i])
11493 continue;
11494
11495 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11496 if (!slot->arch.rmap[i]) {
11497 memslot_rmap_free(slot);
11498 return -ENOMEM;
11499 }
11500 }
11501
11502 return 0;
11503 }
11504
11505 int alloc_all_memslots_rmaps(struct kvm *kvm)
11506 {
11507 struct kvm_memslots *slots;
11508 struct kvm_memory_slot *slot;
11509 int r, i;
11510
11511 /*
11512 * Check if memslots alreday have rmaps early before acquiring
11513 * the slots_arch_lock below.
11514 */
11515 if (kvm_memslots_have_rmaps(kvm))
11516 return 0;
11517
11518 mutex_lock(&kvm->slots_arch_lock);
11519
11520 /*
11521 * Read memslots_have_rmaps again, under the slots arch lock,
11522 * before allocating the rmaps
11523 */
11524 if (kvm_memslots_have_rmaps(kvm)) {
11525 mutex_unlock(&kvm->slots_arch_lock);
11526 return 0;
11527 }
11528
11529 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11530 slots = __kvm_memslots(kvm, i);
11531 kvm_for_each_memslot(slot, slots) {
11532 r = memslot_rmap_alloc(slot, slot->npages);
11533 if (r) {
11534 mutex_unlock(&kvm->slots_arch_lock);
11535 return r;
11536 }
11537 }
11538 }
11539
11540 /*
11541 * Ensure that memslots_have_rmaps becomes true strictly after
11542 * all the rmap pointers are set.
11543 */
11544 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11545 mutex_unlock(&kvm->slots_arch_lock);
11546 return 0;
11547 }
11548
11549 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11550 struct kvm_memory_slot *slot,
11551 unsigned long npages)
11552 {
11553 int i, r;
11554
11555 /*
11556 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11557 * old arrays will be freed by __kvm_set_memory_region() if installing
11558 * the new memslot is successful.
11559 */
11560 memset(&slot->arch, 0, sizeof(slot->arch));
11561
11562 if (kvm_memslots_have_rmaps(kvm)) {
11563 r = memslot_rmap_alloc(slot, npages);
11564 if (r)
11565 return r;
11566 }
11567
11568 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11569 struct kvm_lpage_info *linfo;
11570 unsigned long ugfn;
11571 int lpages;
11572 int level = i + 1;
11573
11574 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11575
11576 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11577 if (!linfo)
11578 goto out_free;
11579
11580 slot->arch.lpage_info[i - 1] = linfo;
11581
11582 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11583 linfo[0].disallow_lpage = 1;
11584 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11585 linfo[lpages - 1].disallow_lpage = 1;
11586 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11587 /*
11588 * If the gfn and userspace address are not aligned wrt each
11589 * other, disable large page support for this slot.
11590 */
11591 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11592 unsigned long j;
11593
11594 for (j = 0; j < lpages; ++j)
11595 linfo[j].disallow_lpage = 1;
11596 }
11597 }
11598
11599 if (kvm_page_track_create_memslot(slot, npages))
11600 goto out_free;
11601
11602 return 0;
11603
11604 out_free:
11605 memslot_rmap_free(slot);
11606
11607 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11608 kvfree(slot->arch.lpage_info[i - 1]);
11609 slot->arch.lpage_info[i - 1] = NULL;
11610 }
11611 return -ENOMEM;
11612 }
11613
11614 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11615 {
11616 struct kvm_vcpu *vcpu;
11617 int i;
11618
11619 /*
11620 * memslots->generation has been incremented.
11621 * mmio generation may have reached its maximum value.
11622 */
11623 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11624
11625 /* Force re-initialization of steal_time cache */
11626 kvm_for_each_vcpu(i, vcpu, kvm)
11627 kvm_vcpu_kick(vcpu);
11628 }
11629
11630 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11631 struct kvm_memory_slot *memslot,
11632 const struct kvm_userspace_memory_region *mem,
11633 enum kvm_mr_change change)
11634 {
11635 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11636 return kvm_alloc_memslot_metadata(kvm, memslot,
11637 mem->memory_size >> PAGE_SHIFT);
11638 return 0;
11639 }
11640
11641
11642 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11643 {
11644 struct kvm_arch *ka = &kvm->arch;
11645
11646 if (!kvm_x86_ops.cpu_dirty_log_size)
11647 return;
11648
11649 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11650 (!enable && --ka->cpu_dirty_logging_count == 0))
11651 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11652
11653 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11654 }
11655
11656 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11657 struct kvm_memory_slot *old,
11658 const struct kvm_memory_slot *new,
11659 enum kvm_mr_change change)
11660 {
11661 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11662
11663 /*
11664 * Update CPU dirty logging if dirty logging is being toggled. This
11665 * applies to all operations.
11666 */
11667 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11668 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11669
11670 /*
11671 * Nothing more to do for RO slots (which can't be dirtied and can't be
11672 * made writable) or CREATE/MOVE/DELETE of a slot.
11673 *
11674 * For a memslot with dirty logging disabled:
11675 * CREATE: No dirty mappings will already exist.
11676 * MOVE/DELETE: The old mappings will already have been cleaned up by
11677 * kvm_arch_flush_shadow_memslot()
11678 *
11679 * For a memslot with dirty logging enabled:
11680 * CREATE: No shadow pages exist, thus nothing to write-protect
11681 * and no dirty bits to clear.
11682 * MOVE/DELETE: The old mappings will already have been cleaned up by
11683 * kvm_arch_flush_shadow_memslot().
11684 */
11685 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11686 return;
11687
11688 /*
11689 * READONLY and non-flags changes were filtered out above, and the only
11690 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11691 * logging isn't being toggled on or off.
11692 */
11693 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11694 return;
11695
11696 if (!log_dirty_pages) {
11697 /*
11698 * Dirty logging tracks sptes in 4k granularity, meaning that
11699 * large sptes have to be split. If live migration succeeds,
11700 * the guest in the source machine will be destroyed and large
11701 * sptes will be created in the destination. However, if the
11702 * guest continues to run in the source machine (for example if
11703 * live migration fails), small sptes will remain around and
11704 * cause bad performance.
11705 *
11706 * Scan sptes if dirty logging has been stopped, dropping those
11707 * which can be collapsed into a single large-page spte. Later
11708 * page faults will create the large-page sptes.
11709 */
11710 kvm_mmu_zap_collapsible_sptes(kvm, new);
11711 } else {
11712 /*
11713 * Initially-all-set does not require write protecting any page,
11714 * because they're all assumed to be dirty.
11715 */
11716 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11717 return;
11718
11719 if (kvm_x86_ops.cpu_dirty_log_size) {
11720 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11721 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11722 } else {
11723 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11724 }
11725 }
11726 }
11727
11728 void kvm_arch_commit_memory_region(struct kvm *kvm,
11729 const struct kvm_userspace_memory_region *mem,
11730 struct kvm_memory_slot *old,
11731 const struct kvm_memory_slot *new,
11732 enum kvm_mr_change change)
11733 {
11734 if (!kvm->arch.n_requested_mmu_pages)
11735 kvm_mmu_change_mmu_pages(kvm,
11736 kvm_mmu_calculate_default_mmu_pages(kvm));
11737
11738 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11739
11740 /* Free the arrays associated with the old memslot. */
11741 if (change == KVM_MR_MOVE)
11742 kvm_arch_free_memslot(kvm, old);
11743 }
11744
11745 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11746 {
11747 kvm_mmu_zap_all(kvm);
11748 }
11749
11750 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11751 struct kvm_memory_slot *slot)
11752 {
11753 kvm_page_track_flush_slot(kvm, slot);
11754 }
11755
11756 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11757 {
11758 return (is_guest_mode(vcpu) &&
11759 kvm_x86_ops.guest_apic_has_interrupt &&
11760 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11761 }
11762
11763 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11764 {
11765 if (!list_empty_careful(&vcpu->async_pf.done))
11766 return true;
11767
11768 if (kvm_apic_has_events(vcpu))
11769 return true;
11770
11771 if (vcpu->arch.pv.pv_unhalted)
11772 return true;
11773
11774 if (vcpu->arch.exception.pending)
11775 return true;
11776
11777 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11778 (vcpu->arch.nmi_pending &&
11779 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11780 return true;
11781
11782 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11783 (vcpu->arch.smi_pending &&
11784 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11785 return true;
11786
11787 if (kvm_arch_interrupt_allowed(vcpu) &&
11788 (kvm_cpu_has_interrupt(vcpu) ||
11789 kvm_guest_apic_has_interrupt(vcpu)))
11790 return true;
11791
11792 if (kvm_hv_has_stimer_pending(vcpu))
11793 return true;
11794
11795 if (is_guest_mode(vcpu) &&
11796 kvm_x86_ops.nested_ops->hv_timer_pending &&
11797 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11798 return true;
11799
11800 return false;
11801 }
11802
11803 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11804 {
11805 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11806 }
11807
11808 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11809 {
11810 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11811 return true;
11812
11813 return false;
11814 }
11815
11816 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11817 {
11818 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11819 return true;
11820
11821 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11822 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11823 kvm_test_request(KVM_REQ_EVENT, vcpu))
11824 return true;
11825
11826 return kvm_arch_dy_has_pending_interrupt(vcpu);
11827 }
11828
11829 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11830 {
11831 if (vcpu->arch.guest_state_protected)
11832 return true;
11833
11834 return vcpu->arch.preempted_in_kernel;
11835 }
11836
11837 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11838 {
11839 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11840 }
11841
11842 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11843 {
11844 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11845 }
11846
11847 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11848 {
11849 /* Can't read the RIP when guest state is protected, just return 0 */
11850 if (vcpu->arch.guest_state_protected)
11851 return 0;
11852
11853 if (is_64_bit_mode(vcpu))
11854 return kvm_rip_read(vcpu);
11855 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11856 kvm_rip_read(vcpu));
11857 }
11858 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11859
11860 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11861 {
11862 return kvm_get_linear_rip(vcpu) == linear_rip;
11863 }
11864 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11865
11866 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11867 {
11868 unsigned long rflags;
11869
11870 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11871 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11872 rflags &= ~X86_EFLAGS_TF;
11873 return rflags;
11874 }
11875 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11876
11877 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11878 {
11879 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11880 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11881 rflags |= X86_EFLAGS_TF;
11882 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11883 }
11884
11885 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11886 {
11887 __kvm_set_rflags(vcpu, rflags);
11888 kvm_make_request(KVM_REQ_EVENT, vcpu);
11889 }
11890 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11891
11892 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11893 {
11894 int r;
11895
11896 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11897 work->wakeup_all)
11898 return;
11899
11900 r = kvm_mmu_reload(vcpu);
11901 if (unlikely(r))
11902 return;
11903
11904 if (!vcpu->arch.mmu->direct_map &&
11905 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11906 return;
11907
11908 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11909 }
11910
11911 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11912 {
11913 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11914
11915 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11916 }
11917
11918 static inline u32 kvm_async_pf_next_probe(u32 key)
11919 {
11920 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11921 }
11922
11923 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11924 {
11925 u32 key = kvm_async_pf_hash_fn(gfn);
11926
11927 while (vcpu->arch.apf.gfns[key] != ~0)
11928 key = kvm_async_pf_next_probe(key);
11929
11930 vcpu->arch.apf.gfns[key] = gfn;
11931 }
11932
11933 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11934 {
11935 int i;
11936 u32 key = kvm_async_pf_hash_fn(gfn);
11937
11938 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11939 (vcpu->arch.apf.gfns[key] != gfn &&
11940 vcpu->arch.apf.gfns[key] != ~0); i++)
11941 key = kvm_async_pf_next_probe(key);
11942
11943 return key;
11944 }
11945
11946 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11947 {
11948 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11949 }
11950
11951 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11952 {
11953 u32 i, j, k;
11954
11955 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11956
11957 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11958 return;
11959
11960 while (true) {
11961 vcpu->arch.apf.gfns[i] = ~0;
11962 do {
11963 j = kvm_async_pf_next_probe(j);
11964 if (vcpu->arch.apf.gfns[j] == ~0)
11965 return;
11966 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11967 /*
11968 * k lies cyclically in ]i,j]
11969 * | i.k.j |
11970 * |....j i.k.| or |.k..j i...|
11971 */
11972 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11973 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11974 i = j;
11975 }
11976 }
11977
11978 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11979 {
11980 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11981
11982 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11983 sizeof(reason));
11984 }
11985
11986 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11987 {
11988 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11989
11990 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11991 &token, offset, sizeof(token));
11992 }
11993
11994 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11995 {
11996 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11997 u32 val;
11998
11999 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12000 &val, offset, sizeof(val)))
12001 return false;
12002
12003 return !val;
12004 }
12005
12006 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12007 {
12008 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12009 return false;
12010
12011 if (!kvm_pv_async_pf_enabled(vcpu) ||
12012 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12013 return false;
12014
12015 return true;
12016 }
12017
12018 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12019 {
12020 if (unlikely(!lapic_in_kernel(vcpu) ||
12021 kvm_event_needs_reinjection(vcpu) ||
12022 vcpu->arch.exception.pending))
12023 return false;
12024
12025 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12026 return false;
12027
12028 /*
12029 * If interrupts are off we cannot even use an artificial
12030 * halt state.
12031 */
12032 return kvm_arch_interrupt_allowed(vcpu);
12033 }
12034
12035 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12036 struct kvm_async_pf *work)
12037 {
12038 struct x86_exception fault;
12039
12040 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12041 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12042
12043 if (kvm_can_deliver_async_pf(vcpu) &&
12044 !apf_put_user_notpresent(vcpu)) {
12045 fault.vector = PF_VECTOR;
12046 fault.error_code_valid = true;
12047 fault.error_code = 0;
12048 fault.nested_page_fault = false;
12049 fault.address = work->arch.token;
12050 fault.async_page_fault = true;
12051 kvm_inject_page_fault(vcpu, &fault);
12052 return true;
12053 } else {
12054 /*
12055 * It is not possible to deliver a paravirtualized asynchronous
12056 * page fault, but putting the guest in an artificial halt state
12057 * can be beneficial nevertheless: if an interrupt arrives, we
12058 * can deliver it timely and perhaps the guest will schedule
12059 * another process. When the instruction that triggered a page
12060 * fault is retried, hopefully the page will be ready in the host.
12061 */
12062 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12063 return false;
12064 }
12065 }
12066
12067 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12068 struct kvm_async_pf *work)
12069 {
12070 struct kvm_lapic_irq irq = {
12071 .delivery_mode = APIC_DM_FIXED,
12072 .vector = vcpu->arch.apf.vec
12073 };
12074
12075 if (work->wakeup_all)
12076 work->arch.token = ~0; /* broadcast wakeup */
12077 else
12078 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12079 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12080
12081 if ((work->wakeup_all || work->notpresent_injected) &&
12082 kvm_pv_async_pf_enabled(vcpu) &&
12083 !apf_put_user_ready(vcpu, work->arch.token)) {
12084 vcpu->arch.apf.pageready_pending = true;
12085 kvm_apic_set_irq(vcpu, &irq, NULL);
12086 }
12087
12088 vcpu->arch.apf.halted = false;
12089 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12090 }
12091
12092 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12093 {
12094 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12095 if (!vcpu->arch.apf.pageready_pending)
12096 kvm_vcpu_kick(vcpu);
12097 }
12098
12099 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12100 {
12101 if (!kvm_pv_async_pf_enabled(vcpu))
12102 return true;
12103 else
12104 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12105 }
12106
12107 void kvm_arch_start_assignment(struct kvm *kvm)
12108 {
12109 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12110 static_call_cond(kvm_x86_start_assignment)(kvm);
12111 }
12112 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12113
12114 void kvm_arch_end_assignment(struct kvm *kvm)
12115 {
12116 atomic_dec(&kvm->arch.assigned_device_count);
12117 }
12118 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12119
12120 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12121 {
12122 return atomic_read(&kvm->arch.assigned_device_count);
12123 }
12124 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12125
12126 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12127 {
12128 atomic_inc(&kvm->arch.noncoherent_dma_count);
12129 }
12130 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12131
12132 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12133 {
12134 atomic_dec(&kvm->arch.noncoherent_dma_count);
12135 }
12136 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12137
12138 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12139 {
12140 return atomic_read(&kvm->arch.noncoherent_dma_count);
12141 }
12142 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12143
12144 bool kvm_arch_has_irq_bypass(void)
12145 {
12146 return true;
12147 }
12148
12149 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12150 struct irq_bypass_producer *prod)
12151 {
12152 struct kvm_kernel_irqfd *irqfd =
12153 container_of(cons, struct kvm_kernel_irqfd, consumer);
12154 int ret;
12155
12156 irqfd->producer = prod;
12157 kvm_arch_start_assignment(irqfd->kvm);
12158 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12159 prod->irq, irqfd->gsi, 1);
12160
12161 if (ret)
12162 kvm_arch_end_assignment(irqfd->kvm);
12163
12164 return ret;
12165 }
12166
12167 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12168 struct irq_bypass_producer *prod)
12169 {
12170 int ret;
12171 struct kvm_kernel_irqfd *irqfd =
12172 container_of(cons, struct kvm_kernel_irqfd, consumer);
12173
12174 WARN_ON(irqfd->producer != prod);
12175 irqfd->producer = NULL;
12176
12177 /*
12178 * When producer of consumer is unregistered, we change back to
12179 * remapped mode, so we can re-use the current implementation
12180 * when the irq is masked/disabled or the consumer side (KVM
12181 * int this case doesn't want to receive the interrupts.
12182 */
12183 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12184 if (ret)
12185 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12186 " fails: %d\n", irqfd->consumer.token, ret);
12187
12188 kvm_arch_end_assignment(irqfd->kvm);
12189 }
12190
12191 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12192 uint32_t guest_irq, bool set)
12193 {
12194 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12195 }
12196
12197 bool kvm_vector_hashing_enabled(void)
12198 {
12199 return vector_hashing;
12200 }
12201
12202 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12203 {
12204 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12205 }
12206 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12207
12208
12209 int kvm_spec_ctrl_test_value(u64 value)
12210 {
12211 /*
12212 * test that setting IA32_SPEC_CTRL to given value
12213 * is allowed by the host processor
12214 */
12215
12216 u64 saved_value;
12217 unsigned long flags;
12218 int ret = 0;
12219
12220 local_irq_save(flags);
12221
12222 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12223 ret = 1;
12224 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12225 ret = 1;
12226 else
12227 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12228
12229 local_irq_restore(flags);
12230
12231 return ret;
12232 }
12233 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12234
12235 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12236 {
12237 struct x86_exception fault;
12238 u32 access = error_code &
12239 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12240
12241 if (!(error_code & PFERR_PRESENT_MASK) ||
12242 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12243 /*
12244 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12245 * tables probably do not match the TLB. Just proceed
12246 * with the error code that the processor gave.
12247 */
12248 fault.vector = PF_VECTOR;
12249 fault.error_code_valid = true;
12250 fault.error_code = error_code;
12251 fault.nested_page_fault = false;
12252 fault.address = gva;
12253 }
12254 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12255 }
12256 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12257
12258 /*
12259 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12260 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12261 * indicates whether exit to userspace is needed.
12262 */
12263 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12264 struct x86_exception *e)
12265 {
12266 if (r == X86EMUL_PROPAGATE_FAULT) {
12267 kvm_inject_emulated_page_fault(vcpu, e);
12268 return 1;
12269 }
12270
12271 /*
12272 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12273 * while handling a VMX instruction KVM could've handled the request
12274 * correctly by exiting to userspace and performing I/O but there
12275 * doesn't seem to be a real use-case behind such requests, just return
12276 * KVM_EXIT_INTERNAL_ERROR for now.
12277 */
12278 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12279 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12280 vcpu->run->internal.ndata = 0;
12281
12282 return 0;
12283 }
12284 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12285
12286 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12287 {
12288 bool pcid_enabled;
12289 struct x86_exception e;
12290 struct {
12291 u64 pcid;
12292 u64 gla;
12293 } operand;
12294 int r;
12295
12296 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12297 if (r != X86EMUL_CONTINUE)
12298 return kvm_handle_memory_failure(vcpu, r, &e);
12299
12300 if (operand.pcid >> 12 != 0) {
12301 kvm_inject_gp(vcpu, 0);
12302 return 1;
12303 }
12304
12305 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12306
12307 switch (type) {
12308 case INVPCID_TYPE_INDIV_ADDR:
12309 if ((!pcid_enabled && (operand.pcid != 0)) ||
12310 is_noncanonical_address(operand.gla, vcpu)) {
12311 kvm_inject_gp(vcpu, 0);
12312 return 1;
12313 }
12314 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12315 return kvm_skip_emulated_instruction(vcpu);
12316
12317 case INVPCID_TYPE_SINGLE_CTXT:
12318 if (!pcid_enabled && (operand.pcid != 0)) {
12319 kvm_inject_gp(vcpu, 0);
12320 return 1;
12321 }
12322
12323 kvm_invalidate_pcid(vcpu, operand.pcid);
12324 return kvm_skip_emulated_instruction(vcpu);
12325
12326 case INVPCID_TYPE_ALL_NON_GLOBAL:
12327 /*
12328 * Currently, KVM doesn't mark global entries in the shadow
12329 * page tables, so a non-global flush just degenerates to a
12330 * global flush. If needed, we could optimize this later by
12331 * keeping track of global entries in shadow page tables.
12332 */
12333
12334 fallthrough;
12335 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12336 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12337 return kvm_skip_emulated_instruction(vcpu);
12338
12339 default:
12340 BUG(); /* We have already checked above that type <= 3 */
12341 }
12342 }
12343 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12344
12345 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12346 {
12347 struct kvm_run *run = vcpu->run;
12348 struct kvm_mmio_fragment *frag;
12349 unsigned int len;
12350
12351 BUG_ON(!vcpu->mmio_needed);
12352
12353 /* Complete previous fragment */
12354 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12355 len = min(8u, frag->len);
12356 if (!vcpu->mmio_is_write)
12357 memcpy(frag->data, run->mmio.data, len);
12358
12359 if (frag->len <= 8) {
12360 /* Switch to the next fragment. */
12361 frag++;
12362 vcpu->mmio_cur_fragment++;
12363 } else {
12364 /* Go forward to the next mmio piece. */
12365 frag->data += len;
12366 frag->gpa += len;
12367 frag->len -= len;
12368 }
12369
12370 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12371 vcpu->mmio_needed = 0;
12372
12373 // VMG change, at this point, we're always done
12374 // RIP has already been advanced
12375 return 1;
12376 }
12377
12378 // More MMIO is needed
12379 run->mmio.phys_addr = frag->gpa;
12380 run->mmio.len = min(8u, frag->len);
12381 run->mmio.is_write = vcpu->mmio_is_write;
12382 if (run->mmio.is_write)
12383 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12384 run->exit_reason = KVM_EXIT_MMIO;
12385
12386 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12387
12388 return 0;
12389 }
12390
12391 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12392 void *data)
12393 {
12394 int handled;
12395 struct kvm_mmio_fragment *frag;
12396
12397 if (!data)
12398 return -EINVAL;
12399
12400 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12401 if (handled == bytes)
12402 return 1;
12403
12404 bytes -= handled;
12405 gpa += handled;
12406 data += handled;
12407
12408 /*TODO: Check if need to increment number of frags */
12409 frag = vcpu->mmio_fragments;
12410 vcpu->mmio_nr_fragments = 1;
12411 frag->len = bytes;
12412 frag->gpa = gpa;
12413 frag->data = data;
12414
12415 vcpu->mmio_needed = 1;
12416 vcpu->mmio_cur_fragment = 0;
12417
12418 vcpu->run->mmio.phys_addr = gpa;
12419 vcpu->run->mmio.len = min(8u, frag->len);
12420 vcpu->run->mmio.is_write = 1;
12421 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12422 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12423
12424 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12425
12426 return 0;
12427 }
12428 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12429
12430 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12431 void *data)
12432 {
12433 int handled;
12434 struct kvm_mmio_fragment *frag;
12435
12436 if (!data)
12437 return -EINVAL;
12438
12439 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12440 if (handled == bytes)
12441 return 1;
12442
12443 bytes -= handled;
12444 gpa += handled;
12445 data += handled;
12446
12447 /*TODO: Check if need to increment number of frags */
12448 frag = vcpu->mmio_fragments;
12449 vcpu->mmio_nr_fragments = 1;
12450 frag->len = bytes;
12451 frag->gpa = gpa;
12452 frag->data = data;
12453
12454 vcpu->mmio_needed = 1;
12455 vcpu->mmio_cur_fragment = 0;
12456
12457 vcpu->run->mmio.phys_addr = gpa;
12458 vcpu->run->mmio.len = min(8u, frag->len);
12459 vcpu->run->mmio.is_write = 0;
12460 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12461
12462 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12463
12464 return 0;
12465 }
12466 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12467
12468 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12469 unsigned int port);
12470
12471 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12472 {
12473 int size = vcpu->arch.pio.size;
12474 int port = vcpu->arch.pio.port;
12475
12476 vcpu->arch.pio.count = 0;
12477 if (vcpu->arch.sev_pio_count)
12478 return kvm_sev_es_outs(vcpu, size, port);
12479 return 1;
12480 }
12481
12482 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12483 unsigned int port)
12484 {
12485 for (;;) {
12486 unsigned int count =
12487 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12488 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12489
12490 /* memcpy done already by emulator_pio_out. */
12491 vcpu->arch.sev_pio_count -= count;
12492 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12493 if (!ret)
12494 break;
12495
12496 /* Emulation done by the kernel. */
12497 if (!vcpu->arch.sev_pio_count)
12498 return 1;
12499 }
12500
12501 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12502 return 0;
12503 }
12504
12505 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12506 unsigned int port);
12507
12508 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12509 {
12510 unsigned count = vcpu->arch.pio.count;
12511 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12512 vcpu->arch.sev_pio_count -= count;
12513 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12514 }
12515
12516 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12517 {
12518 int size = vcpu->arch.pio.size;
12519 int port = vcpu->arch.pio.port;
12520
12521 advance_sev_es_emulated_ins(vcpu);
12522 if (vcpu->arch.sev_pio_count)
12523 return kvm_sev_es_ins(vcpu, size, port);
12524 return 1;
12525 }
12526
12527 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12528 unsigned int port)
12529 {
12530 for (;;) {
12531 unsigned int count =
12532 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12533 if (!__emulator_pio_in(vcpu, size, port, count))
12534 break;
12535
12536 /* Emulation done by the kernel. */
12537 advance_sev_es_emulated_ins(vcpu);
12538 if (!vcpu->arch.sev_pio_count)
12539 return 1;
12540 }
12541
12542 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12543 return 0;
12544 }
12545
12546 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12547 unsigned int port, void *data, unsigned int count,
12548 int in)
12549 {
12550 vcpu->arch.sev_pio_data = data;
12551 vcpu->arch.sev_pio_count = count;
12552 return in ? kvm_sev_es_ins(vcpu, size, port)
12553 : kvm_sev_es_outs(vcpu, size, port);
12554 }
12555 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12556
12557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);