]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: X86: Ensure that dirty PDPTRs are loaded
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
852 vcpu->arch.pdptrs_from_userspace = false;
853
854 out:
855
856 return ret;
857 }
858 EXPORT_SYMBOL_GPL(load_pdptrs);
859
860 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
861 {
862 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
863 kvm_clear_async_pf_completion_queue(vcpu);
864 kvm_async_pf_hash_reset(vcpu);
865 }
866
867 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
868 kvm_mmu_reset_context(vcpu);
869
870 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
871 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
872 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
873 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
874 }
875 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
876
877 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
878 {
879 unsigned long old_cr0 = kvm_read_cr0(vcpu);
880 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
881
882 cr0 |= X86_CR0_ET;
883
884 #ifdef CONFIG_X86_64
885 if (cr0 & 0xffffffff00000000UL)
886 return 1;
887 #endif
888
889 cr0 &= ~CR0_RESERVED_BITS;
890
891 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
892 return 1;
893
894 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
895 return 1;
896
897 #ifdef CONFIG_X86_64
898 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
899 (cr0 & X86_CR0_PG)) {
900 int cs_db, cs_l;
901
902 if (!is_pae(vcpu))
903 return 1;
904 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
905 if (cs_l)
906 return 1;
907 }
908 #endif
909 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
910 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
911 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
912 return 1;
913
914 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
915 return 1;
916
917 static_call(kvm_x86_set_cr0)(vcpu, cr0);
918
919 kvm_post_set_cr0(vcpu, old_cr0, cr0);
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_set_cr0);
924
925 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
926 {
927 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
928 }
929 EXPORT_SYMBOL_GPL(kvm_lmsw);
930
931 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
932 {
933 if (vcpu->arch.guest_state_protected)
934 return;
935
936 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
937
938 if (vcpu->arch.xcr0 != host_xcr0)
939 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
940
941 if (vcpu->arch.xsaves_enabled &&
942 vcpu->arch.ia32_xss != host_xss)
943 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
944 }
945
946 if (static_cpu_has(X86_FEATURE_PKU) &&
947 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
948 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
949 vcpu->arch.pkru != vcpu->arch.host_pkru)
950 write_pkru(vcpu->arch.pkru);
951 }
952 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
953
954 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
955 {
956 if (vcpu->arch.guest_state_protected)
957 return;
958
959 if (static_cpu_has(X86_FEATURE_PKU) &&
960 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
961 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
962 vcpu->arch.pkru = rdpkru();
963 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
964 write_pkru(vcpu->arch.host_pkru);
965 }
966
967 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
968
969 if (vcpu->arch.xcr0 != host_xcr0)
970 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
971
972 if (vcpu->arch.xsaves_enabled &&
973 vcpu->arch.ia32_xss != host_xss)
974 wrmsrl(MSR_IA32_XSS, host_xss);
975 }
976
977 }
978 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
979
980 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
981 {
982 u64 xcr0 = xcr;
983 u64 old_xcr0 = vcpu->arch.xcr0;
984 u64 valid_bits;
985
986 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
987 if (index != XCR_XFEATURE_ENABLED_MASK)
988 return 1;
989 if (!(xcr0 & XFEATURE_MASK_FP))
990 return 1;
991 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
992 return 1;
993
994 /*
995 * Do not allow the guest to set bits that we do not support
996 * saving. However, xcr0 bit 0 is always set, even if the
997 * emulated CPU does not support XSAVE (see fx_init).
998 */
999 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1000 if (xcr0 & ~valid_bits)
1001 return 1;
1002
1003 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1004 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1005 return 1;
1006
1007 if (xcr0 & XFEATURE_MASK_AVX512) {
1008 if (!(xcr0 & XFEATURE_MASK_YMM))
1009 return 1;
1010 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1011 return 1;
1012 }
1013 vcpu->arch.xcr0 = xcr0;
1014
1015 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1016 kvm_update_cpuid_runtime(vcpu);
1017 return 0;
1018 }
1019
1020 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1021 {
1022 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1023 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1024 kvm_inject_gp(vcpu, 0);
1025 return 1;
1026 }
1027
1028 return kvm_skip_emulated_instruction(vcpu);
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1031
1032 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1033 {
1034 if (cr4 & cr4_reserved_bits)
1035 return false;
1036
1037 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1038 return false;
1039
1040 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1043
1044 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1045 {
1046 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1047 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1048 kvm_mmu_reset_context(vcpu);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1051
1052 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1053 {
1054 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1055 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1056 X86_CR4_SMEP;
1057
1058 if (!kvm_is_valid_cr4(vcpu, cr4))
1059 return 1;
1060
1061 if (is_long_mode(vcpu)) {
1062 if (!(cr4 & X86_CR4_PAE))
1063 return 1;
1064 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1065 return 1;
1066 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1067 && ((cr4 ^ old_cr4) & pdptr_bits)
1068 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1069 kvm_read_cr3(vcpu)))
1070 return 1;
1071
1072 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1073 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1074 return 1;
1075
1076 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1077 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1078 return 1;
1079 }
1080
1081 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1082
1083 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1084
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1088
1089 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1090 {
1091 struct kvm_mmu *mmu = vcpu->arch.mmu;
1092 unsigned long roots_to_free = 0;
1093 int i;
1094
1095 /*
1096 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1097 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1098 * also via the emulator. KVM's TDP page tables are not in the scope of
1099 * the invalidation, but the guest's TLB entries need to be flushed as
1100 * the CPU may have cached entries in its TLB for the target PCID.
1101 */
1102 if (unlikely(tdp_enabled)) {
1103 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1104 return;
1105 }
1106
1107 /*
1108 * If neither the current CR3 nor any of the prev_roots use the given
1109 * PCID, then nothing needs to be done here because a resync will
1110 * happen anyway before switching to any other CR3.
1111 */
1112 if (kvm_get_active_pcid(vcpu) == pcid) {
1113 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1114 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1115 }
1116
1117 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1118 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1119 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1120
1121 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1122 }
1123
1124 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1125 {
1126 bool skip_tlb_flush = false;
1127 unsigned long pcid = 0;
1128 #ifdef CONFIG_X86_64
1129 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1130
1131 if (pcid_enabled) {
1132 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1133 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1134 pcid = cr3 & X86_CR3_PCID_MASK;
1135 }
1136 #endif
1137
1138 /* PDPTRs are always reloaded for PAE paging. */
1139 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1140 goto handle_tlb_flush;
1141
1142 /*
1143 * Do not condition the GPA check on long mode, this helper is used to
1144 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1145 * the current vCPU mode is accurate.
1146 */
1147 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1148 return 1;
1149
1150 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1151 return 1;
1152
1153 if (cr3 != kvm_read_cr3(vcpu))
1154 kvm_mmu_new_pgd(vcpu, cr3);
1155
1156 vcpu->arch.cr3 = cr3;
1157 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1158
1159 handle_tlb_flush:
1160 /*
1161 * A load of CR3 that flushes the TLB flushes only the current PCID,
1162 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1163 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1164 * and it's impossible to use a non-zero PCID when PCID is disabled,
1165 * i.e. only PCID=0 can be relevant.
1166 */
1167 if (!skip_tlb_flush)
1168 kvm_invalidate_pcid(vcpu, pcid);
1169
1170 return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1173
1174 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1175 {
1176 if (cr8 & CR8_RESERVED_BITS)
1177 return 1;
1178 if (lapic_in_kernel(vcpu))
1179 kvm_lapic_set_tpr(vcpu, cr8);
1180 else
1181 vcpu->arch.cr8 = cr8;
1182 return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1185
1186 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1187 {
1188 if (lapic_in_kernel(vcpu))
1189 return kvm_lapic_get_cr8(vcpu);
1190 else
1191 return vcpu->arch.cr8;
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1194
1195 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1196 {
1197 int i;
1198
1199 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1200 for (i = 0; i < KVM_NR_DB_REGS; i++)
1201 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1202 }
1203 }
1204
1205 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1206 {
1207 unsigned long dr7;
1208
1209 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1210 dr7 = vcpu->arch.guest_debug_dr7;
1211 else
1212 dr7 = vcpu->arch.dr7;
1213 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1214 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1215 if (dr7 & DR7_BP_EN_MASK)
1216 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1219
1220 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1221 {
1222 u64 fixed = DR6_FIXED_1;
1223
1224 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1225 fixed |= DR6_RTM;
1226
1227 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1228 fixed |= DR6_BUS_LOCK;
1229 return fixed;
1230 }
1231
1232 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1233 {
1234 size_t size = ARRAY_SIZE(vcpu->arch.db);
1235
1236 switch (dr) {
1237 case 0 ... 3:
1238 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1239 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1240 vcpu->arch.eff_db[dr] = val;
1241 break;
1242 case 4:
1243 case 6:
1244 if (!kvm_dr6_valid(val))
1245 return 1; /* #GP */
1246 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1247 break;
1248 case 5:
1249 default: /* 7 */
1250 if (!kvm_dr7_valid(val))
1251 return 1; /* #GP */
1252 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1253 kvm_update_dr7(vcpu);
1254 break;
1255 }
1256
1257 return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_dr);
1260
1261 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1262 {
1263 size_t size = ARRAY_SIZE(vcpu->arch.db);
1264
1265 switch (dr) {
1266 case 0 ... 3:
1267 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1268 break;
1269 case 4:
1270 case 6:
1271 *val = vcpu->arch.dr6;
1272 break;
1273 case 5:
1274 default: /* 7 */
1275 *val = vcpu->arch.dr7;
1276 break;
1277 }
1278 }
1279 EXPORT_SYMBOL_GPL(kvm_get_dr);
1280
1281 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1282 {
1283 u32 ecx = kvm_rcx_read(vcpu);
1284 u64 data;
1285
1286 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1287 kvm_inject_gp(vcpu, 0);
1288 return 1;
1289 }
1290
1291 kvm_rax_write(vcpu, (u32)data);
1292 kvm_rdx_write(vcpu, data >> 32);
1293 return kvm_skip_emulated_instruction(vcpu);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1296
1297 /*
1298 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1299 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1300 *
1301 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1302 * extract the supported MSRs from the related const lists.
1303 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1304 * capabilities of the host cpu. This capabilities test skips MSRs that are
1305 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1306 * may depend on host virtualization features rather than host cpu features.
1307 */
1308
1309 static const u32 msrs_to_save_all[] = {
1310 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1311 MSR_STAR,
1312 #ifdef CONFIG_X86_64
1313 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1314 #endif
1315 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1316 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1317 MSR_IA32_SPEC_CTRL,
1318 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1319 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1320 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1321 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1322 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1323 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1324 MSR_IA32_UMWAIT_CONTROL,
1325
1326 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1327 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1328 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1329 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1330 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1331 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1332 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1333 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1334 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1335 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1336 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1337 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1338 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1339 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1340 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1341 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1342 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1343 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1344 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1345 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1346 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1347 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1348
1349 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1350 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1351 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1352 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1353 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1354 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1355 };
1356
1357 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1358 static unsigned num_msrs_to_save;
1359
1360 static const u32 emulated_msrs_all[] = {
1361 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1362 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1363 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1364 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1365 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1366 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1367 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1368 HV_X64_MSR_RESET,
1369 HV_X64_MSR_VP_INDEX,
1370 HV_X64_MSR_VP_RUNTIME,
1371 HV_X64_MSR_SCONTROL,
1372 HV_X64_MSR_STIMER0_CONFIG,
1373 HV_X64_MSR_VP_ASSIST_PAGE,
1374 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1375 HV_X64_MSR_TSC_EMULATION_STATUS,
1376 HV_X64_MSR_SYNDBG_OPTIONS,
1377 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1378 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1379 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1380
1381 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1382 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1383
1384 MSR_IA32_TSC_ADJUST,
1385 MSR_IA32_TSC_DEADLINE,
1386 MSR_IA32_ARCH_CAPABILITIES,
1387 MSR_IA32_PERF_CAPABILITIES,
1388 MSR_IA32_MISC_ENABLE,
1389 MSR_IA32_MCG_STATUS,
1390 MSR_IA32_MCG_CTL,
1391 MSR_IA32_MCG_EXT_CTL,
1392 MSR_IA32_SMBASE,
1393 MSR_SMI_COUNT,
1394 MSR_PLATFORM_INFO,
1395 MSR_MISC_FEATURES_ENABLES,
1396 MSR_AMD64_VIRT_SPEC_CTRL,
1397 MSR_IA32_POWER_CTL,
1398 MSR_IA32_UCODE_REV,
1399
1400 /*
1401 * The following list leaves out MSRs whose values are determined
1402 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1403 * We always support the "true" VMX control MSRs, even if the host
1404 * processor does not, so I am putting these registers here rather
1405 * than in msrs_to_save_all.
1406 */
1407 MSR_IA32_VMX_BASIC,
1408 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1410 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1411 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1412 MSR_IA32_VMX_MISC,
1413 MSR_IA32_VMX_CR0_FIXED0,
1414 MSR_IA32_VMX_CR4_FIXED0,
1415 MSR_IA32_VMX_VMCS_ENUM,
1416 MSR_IA32_VMX_PROCBASED_CTLS2,
1417 MSR_IA32_VMX_EPT_VPID_CAP,
1418 MSR_IA32_VMX_VMFUNC,
1419
1420 MSR_K7_HWCR,
1421 MSR_KVM_POLL_CONTROL,
1422 };
1423
1424 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1425 static unsigned num_emulated_msrs;
1426
1427 /*
1428 * List of msr numbers which are used to expose MSR-based features that
1429 * can be used by a hypervisor to validate requested CPU features.
1430 */
1431 static const u32 msr_based_features_all[] = {
1432 MSR_IA32_VMX_BASIC,
1433 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1434 MSR_IA32_VMX_PINBASED_CTLS,
1435 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1436 MSR_IA32_VMX_PROCBASED_CTLS,
1437 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1438 MSR_IA32_VMX_EXIT_CTLS,
1439 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1440 MSR_IA32_VMX_ENTRY_CTLS,
1441 MSR_IA32_VMX_MISC,
1442 MSR_IA32_VMX_CR0_FIXED0,
1443 MSR_IA32_VMX_CR0_FIXED1,
1444 MSR_IA32_VMX_CR4_FIXED0,
1445 MSR_IA32_VMX_CR4_FIXED1,
1446 MSR_IA32_VMX_VMCS_ENUM,
1447 MSR_IA32_VMX_PROCBASED_CTLS2,
1448 MSR_IA32_VMX_EPT_VPID_CAP,
1449 MSR_IA32_VMX_VMFUNC,
1450
1451 MSR_F10H_DECFG,
1452 MSR_IA32_UCODE_REV,
1453 MSR_IA32_ARCH_CAPABILITIES,
1454 MSR_IA32_PERF_CAPABILITIES,
1455 };
1456
1457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1458 static unsigned int num_msr_based_features;
1459
1460 static u64 kvm_get_arch_capabilities(void)
1461 {
1462 u64 data = 0;
1463
1464 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1465 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1466
1467 /*
1468 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1469 * the nested hypervisor runs with NX huge pages. If it is not,
1470 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1471 * L1 guests, so it need not worry about its own (L2) guests.
1472 */
1473 data |= ARCH_CAP_PSCHANGE_MC_NO;
1474
1475 /*
1476 * If we're doing cache flushes (either "always" or "cond")
1477 * we will do one whenever the guest does a vmlaunch/vmresume.
1478 * If an outer hypervisor is doing the cache flush for us
1479 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1480 * capability to the guest too, and if EPT is disabled we're not
1481 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1482 * require a nested hypervisor to do a flush of its own.
1483 */
1484 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1485 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1486
1487 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1488 data |= ARCH_CAP_RDCL_NO;
1489 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1490 data |= ARCH_CAP_SSB_NO;
1491 if (!boot_cpu_has_bug(X86_BUG_MDS))
1492 data |= ARCH_CAP_MDS_NO;
1493
1494 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1495 /*
1496 * If RTM=0 because the kernel has disabled TSX, the host might
1497 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1498 * and therefore knows that there cannot be TAA) but keep
1499 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1500 * and we want to allow migrating those guests to tsx=off hosts.
1501 */
1502 data &= ~ARCH_CAP_TAA_NO;
1503 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1504 data |= ARCH_CAP_TAA_NO;
1505 } else {
1506 /*
1507 * Nothing to do here; we emulate TSX_CTRL if present on the
1508 * host so the guest can choose between disabling TSX or
1509 * using VERW to clear CPU buffers.
1510 */
1511 }
1512
1513 return data;
1514 }
1515
1516 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1517 {
1518 switch (msr->index) {
1519 case MSR_IA32_ARCH_CAPABILITIES:
1520 msr->data = kvm_get_arch_capabilities();
1521 break;
1522 case MSR_IA32_UCODE_REV:
1523 rdmsrl_safe(msr->index, &msr->data);
1524 break;
1525 default:
1526 return static_call(kvm_x86_get_msr_feature)(msr);
1527 }
1528 return 0;
1529 }
1530
1531 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1532 {
1533 struct kvm_msr_entry msr;
1534 int r;
1535
1536 msr.index = index;
1537 r = kvm_get_msr_feature(&msr);
1538
1539 if (r == KVM_MSR_RET_INVALID) {
1540 /* Unconditionally clear the output for simplicity */
1541 *data = 0;
1542 if (kvm_msr_ignored_check(index, 0, false))
1543 r = 0;
1544 }
1545
1546 if (r)
1547 return r;
1548
1549 *data = msr.data;
1550
1551 return 0;
1552 }
1553
1554 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1555 {
1556 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1557 return false;
1558
1559 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1560 return false;
1561
1562 if (efer & (EFER_LME | EFER_LMA) &&
1563 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1564 return false;
1565
1566 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1567 return false;
1568
1569 return true;
1570
1571 }
1572 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1573 {
1574 if (efer & efer_reserved_bits)
1575 return false;
1576
1577 return __kvm_valid_efer(vcpu, efer);
1578 }
1579 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1580
1581 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1582 {
1583 u64 old_efer = vcpu->arch.efer;
1584 u64 efer = msr_info->data;
1585 int r;
1586
1587 if (efer & efer_reserved_bits)
1588 return 1;
1589
1590 if (!msr_info->host_initiated) {
1591 if (!__kvm_valid_efer(vcpu, efer))
1592 return 1;
1593
1594 if (is_paging(vcpu) &&
1595 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1596 return 1;
1597 }
1598
1599 efer &= ~EFER_LMA;
1600 efer |= vcpu->arch.efer & EFER_LMA;
1601
1602 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1603 if (r) {
1604 WARN_ON(r > 0);
1605 return r;
1606 }
1607
1608 /* Update reserved bits */
1609 if ((efer ^ old_efer) & EFER_NX)
1610 kvm_mmu_reset_context(vcpu);
1611
1612 return 0;
1613 }
1614
1615 void kvm_enable_efer_bits(u64 mask)
1616 {
1617 efer_reserved_bits &= ~mask;
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1620
1621 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1622 {
1623 struct kvm_x86_msr_filter *msr_filter;
1624 struct msr_bitmap_range *ranges;
1625 struct kvm *kvm = vcpu->kvm;
1626 bool allowed;
1627 int idx;
1628 u32 i;
1629
1630 /* x2APIC MSRs do not support filtering. */
1631 if (index >= 0x800 && index <= 0x8ff)
1632 return true;
1633
1634 idx = srcu_read_lock(&kvm->srcu);
1635
1636 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1637 if (!msr_filter) {
1638 allowed = true;
1639 goto out;
1640 }
1641
1642 allowed = msr_filter->default_allow;
1643 ranges = msr_filter->ranges;
1644
1645 for (i = 0; i < msr_filter->count; i++) {
1646 u32 start = ranges[i].base;
1647 u32 end = start + ranges[i].nmsrs;
1648 u32 flags = ranges[i].flags;
1649 unsigned long *bitmap = ranges[i].bitmap;
1650
1651 if ((index >= start) && (index < end) && (flags & type)) {
1652 allowed = !!test_bit(index - start, bitmap);
1653 break;
1654 }
1655 }
1656
1657 out:
1658 srcu_read_unlock(&kvm->srcu, idx);
1659
1660 return allowed;
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1663
1664 /*
1665 * Write @data into the MSR specified by @index. Select MSR specific fault
1666 * checks are bypassed if @host_initiated is %true.
1667 * Returns 0 on success, non-0 otherwise.
1668 * Assumes vcpu_load() was already called.
1669 */
1670 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1671 bool host_initiated)
1672 {
1673 struct msr_data msr;
1674
1675 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1676 return KVM_MSR_RET_FILTERED;
1677
1678 switch (index) {
1679 case MSR_FS_BASE:
1680 case MSR_GS_BASE:
1681 case MSR_KERNEL_GS_BASE:
1682 case MSR_CSTAR:
1683 case MSR_LSTAR:
1684 if (is_noncanonical_address(data, vcpu))
1685 return 1;
1686 break;
1687 case MSR_IA32_SYSENTER_EIP:
1688 case MSR_IA32_SYSENTER_ESP:
1689 /*
1690 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1691 * non-canonical address is written on Intel but not on
1692 * AMD (which ignores the top 32-bits, because it does
1693 * not implement 64-bit SYSENTER).
1694 *
1695 * 64-bit code should hence be able to write a non-canonical
1696 * value on AMD. Making the address canonical ensures that
1697 * vmentry does not fail on Intel after writing a non-canonical
1698 * value, and that something deterministic happens if the guest
1699 * invokes 64-bit SYSENTER.
1700 */
1701 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1702 break;
1703 case MSR_TSC_AUX:
1704 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1705 return 1;
1706
1707 if (!host_initiated &&
1708 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1709 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1710 return 1;
1711
1712 /*
1713 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1714 * incomplete and conflicting architectural behavior. Current
1715 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1716 * reserved and always read as zeros. Enforce Intel's reserved
1717 * bits check if and only if the guest CPU is Intel, and clear
1718 * the bits in all other cases. This ensures cross-vendor
1719 * migration will provide consistent behavior for the guest.
1720 */
1721 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1722 return 1;
1723
1724 data = (u32)data;
1725 break;
1726 }
1727
1728 msr.data = data;
1729 msr.index = index;
1730 msr.host_initiated = host_initiated;
1731
1732 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1733 }
1734
1735 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1736 u32 index, u64 data, bool host_initiated)
1737 {
1738 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1739
1740 if (ret == KVM_MSR_RET_INVALID)
1741 if (kvm_msr_ignored_check(index, data, true))
1742 ret = 0;
1743
1744 return ret;
1745 }
1746
1747 /*
1748 * Read the MSR specified by @index into @data. Select MSR specific fault
1749 * checks are bypassed if @host_initiated is %true.
1750 * Returns 0 on success, non-0 otherwise.
1751 * Assumes vcpu_load() was already called.
1752 */
1753 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1754 bool host_initiated)
1755 {
1756 struct msr_data msr;
1757 int ret;
1758
1759 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1760 return KVM_MSR_RET_FILTERED;
1761
1762 switch (index) {
1763 case MSR_TSC_AUX:
1764 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1765 return 1;
1766
1767 if (!host_initiated &&
1768 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1769 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1770 return 1;
1771 break;
1772 }
1773
1774 msr.index = index;
1775 msr.host_initiated = host_initiated;
1776
1777 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1778 if (!ret)
1779 *data = msr.data;
1780 return ret;
1781 }
1782
1783 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1784 u32 index, u64 *data, bool host_initiated)
1785 {
1786 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1787
1788 if (ret == KVM_MSR_RET_INVALID) {
1789 /* Unconditionally clear *data for simplicity */
1790 *data = 0;
1791 if (kvm_msr_ignored_check(index, 0, false))
1792 ret = 0;
1793 }
1794
1795 return ret;
1796 }
1797
1798 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1799 {
1800 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_get_msr);
1803
1804 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1805 {
1806 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_set_msr);
1809
1810 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1811 {
1812 int err = vcpu->run->msr.error;
1813 if (!err) {
1814 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1815 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1816 }
1817
1818 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1819 }
1820
1821 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1822 {
1823 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1824 }
1825
1826 static u64 kvm_msr_reason(int r)
1827 {
1828 switch (r) {
1829 case KVM_MSR_RET_INVALID:
1830 return KVM_MSR_EXIT_REASON_UNKNOWN;
1831 case KVM_MSR_RET_FILTERED:
1832 return KVM_MSR_EXIT_REASON_FILTER;
1833 default:
1834 return KVM_MSR_EXIT_REASON_INVAL;
1835 }
1836 }
1837
1838 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1839 u32 exit_reason, u64 data,
1840 int (*completion)(struct kvm_vcpu *vcpu),
1841 int r)
1842 {
1843 u64 msr_reason = kvm_msr_reason(r);
1844
1845 /* Check if the user wanted to know about this MSR fault */
1846 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1847 return 0;
1848
1849 vcpu->run->exit_reason = exit_reason;
1850 vcpu->run->msr.error = 0;
1851 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1852 vcpu->run->msr.reason = msr_reason;
1853 vcpu->run->msr.index = index;
1854 vcpu->run->msr.data = data;
1855 vcpu->arch.complete_userspace_io = completion;
1856
1857 return 1;
1858 }
1859
1860 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1861 {
1862 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1863 complete_emulated_rdmsr, r);
1864 }
1865
1866 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1867 {
1868 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1869 complete_emulated_wrmsr, r);
1870 }
1871
1872 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1873 {
1874 u32 ecx = kvm_rcx_read(vcpu);
1875 u64 data;
1876 int r;
1877
1878 r = kvm_get_msr(vcpu, ecx, &data);
1879
1880 /* MSR read failed? See if we should ask user space */
1881 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1882 /* Bounce to user space */
1883 return 0;
1884 }
1885
1886 if (!r) {
1887 trace_kvm_msr_read(ecx, data);
1888
1889 kvm_rax_write(vcpu, data & -1u);
1890 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1891 } else {
1892 trace_kvm_msr_read_ex(ecx);
1893 }
1894
1895 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1898
1899 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1900 {
1901 u32 ecx = kvm_rcx_read(vcpu);
1902 u64 data = kvm_read_edx_eax(vcpu);
1903 int r;
1904
1905 r = kvm_set_msr(vcpu, ecx, data);
1906
1907 /* MSR write failed? See if we should ask user space */
1908 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1909 /* Bounce to user space */
1910 return 0;
1911
1912 /* Signal all other negative errors to userspace */
1913 if (r < 0)
1914 return r;
1915
1916 if (!r)
1917 trace_kvm_msr_write(ecx, data);
1918 else
1919 trace_kvm_msr_write_ex(ecx, data);
1920
1921 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1924
1925 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1926 {
1927 return kvm_skip_emulated_instruction(vcpu);
1928 }
1929 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1930
1931 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1932 {
1933 /* Treat an INVD instruction as a NOP and just skip it. */
1934 return kvm_emulate_as_nop(vcpu);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1937
1938 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1939 {
1940 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1941 return kvm_emulate_as_nop(vcpu);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1944
1945 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1946 {
1947 kvm_queue_exception(vcpu, UD_VECTOR);
1948 return 1;
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1951
1952 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1953 {
1954 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1955 return kvm_emulate_as_nop(vcpu);
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1958
1959 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1960 {
1961 xfer_to_guest_mode_prepare();
1962 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1963 xfer_to_guest_mode_work_pending();
1964 }
1965
1966 /*
1967 * The fast path for frequent and performance sensitive wrmsr emulation,
1968 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1969 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1970 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1971 * other cases which must be called after interrupts are enabled on the host.
1972 */
1973 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1974 {
1975 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1976 return 1;
1977
1978 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1979 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1980 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1981 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1982
1983 data &= ~(1 << 12);
1984 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1985 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1986 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1987 trace_kvm_apic_write(APIC_ICR, (u32)data);
1988 return 0;
1989 }
1990
1991 return 1;
1992 }
1993
1994 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1995 {
1996 if (!kvm_can_use_hv_timer(vcpu))
1997 return 1;
1998
1999 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2000 return 0;
2001 }
2002
2003 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2004 {
2005 u32 msr = kvm_rcx_read(vcpu);
2006 u64 data;
2007 fastpath_t ret = EXIT_FASTPATH_NONE;
2008
2009 switch (msr) {
2010 case APIC_BASE_MSR + (APIC_ICR >> 4):
2011 data = kvm_read_edx_eax(vcpu);
2012 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2013 kvm_skip_emulated_instruction(vcpu);
2014 ret = EXIT_FASTPATH_EXIT_HANDLED;
2015 }
2016 break;
2017 case MSR_IA32_TSC_DEADLINE:
2018 data = kvm_read_edx_eax(vcpu);
2019 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2020 kvm_skip_emulated_instruction(vcpu);
2021 ret = EXIT_FASTPATH_REENTER_GUEST;
2022 }
2023 break;
2024 default:
2025 break;
2026 }
2027
2028 if (ret != EXIT_FASTPATH_NONE)
2029 trace_kvm_msr_write(msr, data);
2030
2031 return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2034
2035 /*
2036 * Adapt set_msr() to msr_io()'s calling convention
2037 */
2038 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2039 {
2040 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2041 }
2042
2043 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2044 {
2045 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2046 }
2047
2048 #ifdef CONFIG_X86_64
2049 struct pvclock_clock {
2050 int vclock_mode;
2051 u64 cycle_last;
2052 u64 mask;
2053 u32 mult;
2054 u32 shift;
2055 u64 base_cycles;
2056 u64 offset;
2057 };
2058
2059 struct pvclock_gtod_data {
2060 seqcount_t seq;
2061
2062 struct pvclock_clock clock; /* extract of a clocksource struct */
2063 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2064
2065 ktime_t offs_boot;
2066 u64 wall_time_sec;
2067 };
2068
2069 static struct pvclock_gtod_data pvclock_gtod_data;
2070
2071 static void update_pvclock_gtod(struct timekeeper *tk)
2072 {
2073 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2074
2075 write_seqcount_begin(&vdata->seq);
2076
2077 /* copy pvclock gtod data */
2078 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2079 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2080 vdata->clock.mask = tk->tkr_mono.mask;
2081 vdata->clock.mult = tk->tkr_mono.mult;
2082 vdata->clock.shift = tk->tkr_mono.shift;
2083 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2084 vdata->clock.offset = tk->tkr_mono.base;
2085
2086 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2087 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2088 vdata->raw_clock.mask = tk->tkr_raw.mask;
2089 vdata->raw_clock.mult = tk->tkr_raw.mult;
2090 vdata->raw_clock.shift = tk->tkr_raw.shift;
2091 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2092 vdata->raw_clock.offset = tk->tkr_raw.base;
2093
2094 vdata->wall_time_sec = tk->xtime_sec;
2095
2096 vdata->offs_boot = tk->offs_boot;
2097
2098 write_seqcount_end(&vdata->seq);
2099 }
2100
2101 static s64 get_kvmclock_base_ns(void)
2102 {
2103 /* Count up from boot time, but with the frequency of the raw clock. */
2104 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2105 }
2106 #else
2107 static s64 get_kvmclock_base_ns(void)
2108 {
2109 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2110 return ktime_get_boottime_ns();
2111 }
2112 #endif
2113
2114 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2115 {
2116 int version;
2117 int r;
2118 struct pvclock_wall_clock wc;
2119 u32 wc_sec_hi;
2120 u64 wall_nsec;
2121
2122 if (!wall_clock)
2123 return;
2124
2125 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2126 if (r)
2127 return;
2128
2129 if (version & 1)
2130 ++version; /* first time write, random junk */
2131
2132 ++version;
2133
2134 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2135 return;
2136
2137 /*
2138 * The guest calculates current wall clock time by adding
2139 * system time (updated by kvm_guest_time_update below) to the
2140 * wall clock specified here. We do the reverse here.
2141 */
2142 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2143
2144 wc.nsec = do_div(wall_nsec, 1000000000);
2145 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2146 wc.version = version;
2147
2148 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2149
2150 if (sec_hi_ofs) {
2151 wc_sec_hi = wall_nsec >> 32;
2152 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2153 &wc_sec_hi, sizeof(wc_sec_hi));
2154 }
2155
2156 version++;
2157 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2158 }
2159
2160 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2161 bool old_msr, bool host_initiated)
2162 {
2163 struct kvm_arch *ka = &vcpu->kvm->arch;
2164
2165 if (vcpu->vcpu_id == 0 && !host_initiated) {
2166 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2167 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2168
2169 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2170 }
2171
2172 vcpu->arch.time = system_time;
2173 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2174
2175 /* we verify if the enable bit is set... */
2176 vcpu->arch.pv_time_enabled = false;
2177 if (!(system_time & 1))
2178 return;
2179
2180 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2181 &vcpu->arch.pv_time, system_time & ~1ULL,
2182 sizeof(struct pvclock_vcpu_time_info)))
2183 vcpu->arch.pv_time_enabled = true;
2184
2185 return;
2186 }
2187
2188 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2189 {
2190 do_shl32_div32(dividend, divisor);
2191 return dividend;
2192 }
2193
2194 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2195 s8 *pshift, u32 *pmultiplier)
2196 {
2197 uint64_t scaled64;
2198 int32_t shift = 0;
2199 uint64_t tps64;
2200 uint32_t tps32;
2201
2202 tps64 = base_hz;
2203 scaled64 = scaled_hz;
2204 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2205 tps64 >>= 1;
2206 shift--;
2207 }
2208
2209 tps32 = (uint32_t)tps64;
2210 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2211 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2212 scaled64 >>= 1;
2213 else
2214 tps32 <<= 1;
2215 shift++;
2216 }
2217
2218 *pshift = shift;
2219 *pmultiplier = div_frac(scaled64, tps32);
2220 }
2221
2222 #ifdef CONFIG_X86_64
2223 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2224 #endif
2225
2226 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2227 static unsigned long max_tsc_khz;
2228
2229 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2230 {
2231 u64 v = (u64)khz * (1000000 + ppm);
2232 do_div(v, 1000000);
2233 return v;
2234 }
2235
2236 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2237
2238 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2239 {
2240 u64 ratio;
2241
2242 /* Guest TSC same frequency as host TSC? */
2243 if (!scale) {
2244 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2245 return 0;
2246 }
2247
2248 /* TSC scaling supported? */
2249 if (!kvm_has_tsc_control) {
2250 if (user_tsc_khz > tsc_khz) {
2251 vcpu->arch.tsc_catchup = 1;
2252 vcpu->arch.tsc_always_catchup = 1;
2253 return 0;
2254 } else {
2255 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2256 return -1;
2257 }
2258 }
2259
2260 /* TSC scaling required - calculate ratio */
2261 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2262 user_tsc_khz, tsc_khz);
2263
2264 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2265 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2266 user_tsc_khz);
2267 return -1;
2268 }
2269
2270 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2271 return 0;
2272 }
2273
2274 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2275 {
2276 u32 thresh_lo, thresh_hi;
2277 int use_scaling = 0;
2278
2279 /* tsc_khz can be zero if TSC calibration fails */
2280 if (user_tsc_khz == 0) {
2281 /* set tsc_scaling_ratio to a safe value */
2282 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2283 return -1;
2284 }
2285
2286 /* Compute a scale to convert nanoseconds in TSC cycles */
2287 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2288 &vcpu->arch.virtual_tsc_shift,
2289 &vcpu->arch.virtual_tsc_mult);
2290 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2291
2292 /*
2293 * Compute the variation in TSC rate which is acceptable
2294 * within the range of tolerance and decide if the
2295 * rate being applied is within that bounds of the hardware
2296 * rate. If so, no scaling or compensation need be done.
2297 */
2298 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2299 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2300 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2301 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2302 use_scaling = 1;
2303 }
2304 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2305 }
2306
2307 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2308 {
2309 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2310 vcpu->arch.virtual_tsc_mult,
2311 vcpu->arch.virtual_tsc_shift);
2312 tsc += vcpu->arch.this_tsc_write;
2313 return tsc;
2314 }
2315
2316 static inline int gtod_is_based_on_tsc(int mode)
2317 {
2318 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2319 }
2320
2321 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2322 {
2323 #ifdef CONFIG_X86_64
2324 bool vcpus_matched;
2325 struct kvm_arch *ka = &vcpu->kvm->arch;
2326 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2327
2328 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2329 atomic_read(&vcpu->kvm->online_vcpus));
2330
2331 /*
2332 * Once the masterclock is enabled, always perform request in
2333 * order to update it.
2334 *
2335 * In order to enable masterclock, the host clocksource must be TSC
2336 * and the vcpus need to have matched TSCs. When that happens,
2337 * perform request to enable masterclock.
2338 */
2339 if (ka->use_master_clock ||
2340 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2341 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2342
2343 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2344 atomic_read(&vcpu->kvm->online_vcpus),
2345 ka->use_master_clock, gtod->clock.vclock_mode);
2346 #endif
2347 }
2348
2349 /*
2350 * Multiply tsc by a fixed point number represented by ratio.
2351 *
2352 * The most significant 64-N bits (mult) of ratio represent the
2353 * integral part of the fixed point number; the remaining N bits
2354 * (frac) represent the fractional part, ie. ratio represents a fixed
2355 * point number (mult + frac * 2^(-N)).
2356 *
2357 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2358 */
2359 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2360 {
2361 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2362 }
2363
2364 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2365 {
2366 u64 _tsc = tsc;
2367
2368 if (ratio != kvm_default_tsc_scaling_ratio)
2369 _tsc = __scale_tsc(ratio, tsc);
2370
2371 return _tsc;
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2374
2375 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2376 {
2377 u64 tsc;
2378
2379 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2380
2381 return target_tsc - tsc;
2382 }
2383
2384 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2385 {
2386 return vcpu->arch.l1_tsc_offset +
2387 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2390
2391 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2392 {
2393 u64 nested_offset;
2394
2395 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2396 nested_offset = l1_offset;
2397 else
2398 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2399 kvm_tsc_scaling_ratio_frac_bits);
2400
2401 nested_offset += l2_offset;
2402 return nested_offset;
2403 }
2404 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2405
2406 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2407 {
2408 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2409 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2410 kvm_tsc_scaling_ratio_frac_bits);
2411
2412 return l1_multiplier;
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2415
2416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2417 {
2418 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2419 vcpu->arch.l1_tsc_offset,
2420 l1_offset);
2421
2422 vcpu->arch.l1_tsc_offset = l1_offset;
2423
2424 /*
2425 * If we are here because L1 chose not to trap WRMSR to TSC then
2426 * according to the spec this should set L1's TSC (as opposed to
2427 * setting L1's offset for L2).
2428 */
2429 if (is_guest_mode(vcpu))
2430 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2431 l1_offset,
2432 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2433 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2434 else
2435 vcpu->arch.tsc_offset = l1_offset;
2436
2437 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2438 }
2439
2440 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2441 {
2442 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2443
2444 /* Userspace is changing the multiplier while L2 is active */
2445 if (is_guest_mode(vcpu))
2446 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2447 l1_multiplier,
2448 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2449 else
2450 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2451
2452 if (kvm_has_tsc_control)
2453 static_call(kvm_x86_write_tsc_multiplier)(
2454 vcpu, vcpu->arch.tsc_scaling_ratio);
2455 }
2456
2457 static inline bool kvm_check_tsc_unstable(void)
2458 {
2459 #ifdef CONFIG_X86_64
2460 /*
2461 * TSC is marked unstable when we're running on Hyper-V,
2462 * 'TSC page' clocksource is good.
2463 */
2464 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2465 return false;
2466 #endif
2467 return check_tsc_unstable();
2468 }
2469
2470 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2471 {
2472 struct kvm *kvm = vcpu->kvm;
2473 u64 offset, ns, elapsed;
2474 unsigned long flags;
2475 bool matched;
2476 bool already_matched;
2477 bool synchronizing = false;
2478
2479 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2480 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2481 ns = get_kvmclock_base_ns();
2482 elapsed = ns - kvm->arch.last_tsc_nsec;
2483
2484 if (vcpu->arch.virtual_tsc_khz) {
2485 if (data == 0) {
2486 /*
2487 * detection of vcpu initialization -- need to sync
2488 * with other vCPUs. This particularly helps to keep
2489 * kvm_clock stable after CPU hotplug
2490 */
2491 synchronizing = true;
2492 } else {
2493 u64 tsc_exp = kvm->arch.last_tsc_write +
2494 nsec_to_cycles(vcpu, elapsed);
2495 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2496 /*
2497 * Special case: TSC write with a small delta (1 second)
2498 * of virtual cycle time against real time is
2499 * interpreted as an attempt to synchronize the CPU.
2500 */
2501 synchronizing = data < tsc_exp + tsc_hz &&
2502 data + tsc_hz > tsc_exp;
2503 }
2504 }
2505
2506 /*
2507 * For a reliable TSC, we can match TSC offsets, and for an unstable
2508 * TSC, we add elapsed time in this computation. We could let the
2509 * compensation code attempt to catch up if we fall behind, but
2510 * it's better to try to match offsets from the beginning.
2511 */
2512 if (synchronizing &&
2513 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2514 if (!kvm_check_tsc_unstable()) {
2515 offset = kvm->arch.cur_tsc_offset;
2516 } else {
2517 u64 delta = nsec_to_cycles(vcpu, elapsed);
2518 data += delta;
2519 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2520 }
2521 matched = true;
2522 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2523 } else {
2524 /*
2525 * We split periods of matched TSC writes into generations.
2526 * For each generation, we track the original measured
2527 * nanosecond time, offset, and write, so if TSCs are in
2528 * sync, we can match exact offset, and if not, we can match
2529 * exact software computation in compute_guest_tsc()
2530 *
2531 * These values are tracked in kvm->arch.cur_xxx variables.
2532 */
2533 kvm->arch.cur_tsc_generation++;
2534 kvm->arch.cur_tsc_nsec = ns;
2535 kvm->arch.cur_tsc_write = data;
2536 kvm->arch.cur_tsc_offset = offset;
2537 matched = false;
2538 }
2539
2540 /*
2541 * We also track th most recent recorded KHZ, write and time to
2542 * allow the matching interval to be extended at each write.
2543 */
2544 kvm->arch.last_tsc_nsec = ns;
2545 kvm->arch.last_tsc_write = data;
2546 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2547
2548 vcpu->arch.last_guest_tsc = data;
2549
2550 /* Keep track of which generation this VCPU has synchronized to */
2551 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2552 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2553 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2554
2555 kvm_vcpu_write_tsc_offset(vcpu, offset);
2556 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2557
2558 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2559 if (!matched) {
2560 kvm->arch.nr_vcpus_matched_tsc = 0;
2561 } else if (!already_matched) {
2562 kvm->arch.nr_vcpus_matched_tsc++;
2563 }
2564
2565 kvm_track_tsc_matching(vcpu);
2566 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2567 }
2568
2569 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2570 s64 adjustment)
2571 {
2572 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2573 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2574 }
2575
2576 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2577 {
2578 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2579 WARN_ON(adjustment < 0);
2580 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2581 vcpu->arch.l1_tsc_scaling_ratio);
2582 adjust_tsc_offset_guest(vcpu, adjustment);
2583 }
2584
2585 #ifdef CONFIG_X86_64
2586
2587 static u64 read_tsc(void)
2588 {
2589 u64 ret = (u64)rdtsc_ordered();
2590 u64 last = pvclock_gtod_data.clock.cycle_last;
2591
2592 if (likely(ret >= last))
2593 return ret;
2594
2595 /*
2596 * GCC likes to generate cmov here, but this branch is extremely
2597 * predictable (it's just a function of time and the likely is
2598 * very likely) and there's a data dependence, so force GCC
2599 * to generate a branch instead. I don't barrier() because
2600 * we don't actually need a barrier, and if this function
2601 * ever gets inlined it will generate worse code.
2602 */
2603 asm volatile ("");
2604 return last;
2605 }
2606
2607 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2608 int *mode)
2609 {
2610 long v;
2611 u64 tsc_pg_val;
2612
2613 switch (clock->vclock_mode) {
2614 case VDSO_CLOCKMODE_HVCLOCK:
2615 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2616 tsc_timestamp);
2617 if (tsc_pg_val != U64_MAX) {
2618 /* TSC page valid */
2619 *mode = VDSO_CLOCKMODE_HVCLOCK;
2620 v = (tsc_pg_val - clock->cycle_last) &
2621 clock->mask;
2622 } else {
2623 /* TSC page invalid */
2624 *mode = VDSO_CLOCKMODE_NONE;
2625 }
2626 break;
2627 case VDSO_CLOCKMODE_TSC:
2628 *mode = VDSO_CLOCKMODE_TSC;
2629 *tsc_timestamp = read_tsc();
2630 v = (*tsc_timestamp - clock->cycle_last) &
2631 clock->mask;
2632 break;
2633 default:
2634 *mode = VDSO_CLOCKMODE_NONE;
2635 }
2636
2637 if (*mode == VDSO_CLOCKMODE_NONE)
2638 *tsc_timestamp = v = 0;
2639
2640 return v * clock->mult;
2641 }
2642
2643 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2644 {
2645 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2646 unsigned long seq;
2647 int mode;
2648 u64 ns;
2649
2650 do {
2651 seq = read_seqcount_begin(&gtod->seq);
2652 ns = gtod->raw_clock.base_cycles;
2653 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2654 ns >>= gtod->raw_clock.shift;
2655 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2656 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2657 *t = ns;
2658
2659 return mode;
2660 }
2661
2662 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2663 {
2664 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2665 unsigned long seq;
2666 int mode;
2667 u64 ns;
2668
2669 do {
2670 seq = read_seqcount_begin(&gtod->seq);
2671 ts->tv_sec = gtod->wall_time_sec;
2672 ns = gtod->clock.base_cycles;
2673 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2674 ns >>= gtod->clock.shift;
2675 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2676
2677 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2678 ts->tv_nsec = ns;
2679
2680 return mode;
2681 }
2682
2683 /* returns true if host is using TSC based clocksource */
2684 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2685 {
2686 /* checked again under seqlock below */
2687 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2688 return false;
2689
2690 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2691 tsc_timestamp));
2692 }
2693
2694 /* returns true if host is using TSC based clocksource */
2695 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2696 u64 *tsc_timestamp)
2697 {
2698 /* checked again under seqlock below */
2699 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2700 return false;
2701
2702 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2703 }
2704 #endif
2705
2706 /*
2707 *
2708 * Assuming a stable TSC across physical CPUS, and a stable TSC
2709 * across virtual CPUs, the following condition is possible.
2710 * Each numbered line represents an event visible to both
2711 * CPUs at the next numbered event.
2712 *
2713 * "timespecX" represents host monotonic time. "tscX" represents
2714 * RDTSC value.
2715 *
2716 * VCPU0 on CPU0 | VCPU1 on CPU1
2717 *
2718 * 1. read timespec0,tsc0
2719 * 2. | timespec1 = timespec0 + N
2720 * | tsc1 = tsc0 + M
2721 * 3. transition to guest | transition to guest
2722 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2723 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2724 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2725 *
2726 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2727 *
2728 * - ret0 < ret1
2729 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2730 * ...
2731 * - 0 < N - M => M < N
2732 *
2733 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2734 * always the case (the difference between two distinct xtime instances
2735 * might be smaller then the difference between corresponding TSC reads,
2736 * when updating guest vcpus pvclock areas).
2737 *
2738 * To avoid that problem, do not allow visibility of distinct
2739 * system_timestamp/tsc_timestamp values simultaneously: use a master
2740 * copy of host monotonic time values. Update that master copy
2741 * in lockstep.
2742 *
2743 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2744 *
2745 */
2746
2747 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2748 {
2749 #ifdef CONFIG_X86_64
2750 struct kvm_arch *ka = &kvm->arch;
2751 int vclock_mode;
2752 bool host_tsc_clocksource, vcpus_matched;
2753
2754 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2755 atomic_read(&kvm->online_vcpus));
2756
2757 /*
2758 * If the host uses TSC clock, then passthrough TSC as stable
2759 * to the guest.
2760 */
2761 host_tsc_clocksource = kvm_get_time_and_clockread(
2762 &ka->master_kernel_ns,
2763 &ka->master_cycle_now);
2764
2765 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2766 && !ka->backwards_tsc_observed
2767 && !ka->boot_vcpu_runs_old_kvmclock;
2768
2769 if (ka->use_master_clock)
2770 atomic_set(&kvm_guest_has_master_clock, 1);
2771
2772 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2773 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2774 vcpus_matched);
2775 #endif
2776 }
2777
2778 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2779 {
2780 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2781 }
2782
2783 static void kvm_gen_update_masterclock(struct kvm *kvm)
2784 {
2785 #ifdef CONFIG_X86_64
2786 int i;
2787 struct kvm_vcpu *vcpu;
2788 struct kvm_arch *ka = &kvm->arch;
2789 unsigned long flags;
2790
2791 kvm_hv_invalidate_tsc_page(kvm);
2792
2793 kvm_make_mclock_inprogress_request(kvm);
2794
2795 /* no guest entries from this point */
2796 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2797 pvclock_update_vm_gtod_copy(kvm);
2798 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2799
2800 kvm_for_each_vcpu(i, vcpu, kvm)
2801 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2802
2803 /* guest entries allowed */
2804 kvm_for_each_vcpu(i, vcpu, kvm)
2805 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2806 #endif
2807 }
2808
2809 u64 get_kvmclock_ns(struct kvm *kvm)
2810 {
2811 struct kvm_arch *ka = &kvm->arch;
2812 struct pvclock_vcpu_time_info hv_clock;
2813 unsigned long flags;
2814 u64 ret;
2815
2816 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2817 if (!ka->use_master_clock) {
2818 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2819 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2820 }
2821
2822 hv_clock.tsc_timestamp = ka->master_cycle_now;
2823 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2824 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2825
2826 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2827 get_cpu();
2828
2829 if (__this_cpu_read(cpu_tsc_khz)) {
2830 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2831 &hv_clock.tsc_shift,
2832 &hv_clock.tsc_to_system_mul);
2833 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2834 } else
2835 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2836
2837 put_cpu();
2838
2839 return ret;
2840 }
2841
2842 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2843 struct gfn_to_hva_cache *cache,
2844 unsigned int offset)
2845 {
2846 struct kvm_vcpu_arch *vcpu = &v->arch;
2847 struct pvclock_vcpu_time_info guest_hv_clock;
2848
2849 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2850 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2851 return;
2852
2853 /* This VCPU is paused, but it's legal for a guest to read another
2854 * VCPU's kvmclock, so we really have to follow the specification where
2855 * it says that version is odd if data is being modified, and even after
2856 * it is consistent.
2857 *
2858 * Version field updates must be kept separate. This is because
2859 * kvm_write_guest_cached might use a "rep movs" instruction, and
2860 * writes within a string instruction are weakly ordered. So there
2861 * are three writes overall.
2862 *
2863 * As a small optimization, only write the version field in the first
2864 * and third write. The vcpu->pv_time cache is still valid, because the
2865 * version field is the first in the struct.
2866 */
2867 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2868
2869 if (guest_hv_clock.version & 1)
2870 ++guest_hv_clock.version; /* first time write, random junk */
2871
2872 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2873 kvm_write_guest_offset_cached(v->kvm, cache,
2874 &vcpu->hv_clock, offset,
2875 sizeof(vcpu->hv_clock.version));
2876
2877 smp_wmb();
2878
2879 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2880 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2881
2882 if (vcpu->pvclock_set_guest_stopped_request) {
2883 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2884 vcpu->pvclock_set_guest_stopped_request = false;
2885 }
2886
2887 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2888
2889 kvm_write_guest_offset_cached(v->kvm, cache,
2890 &vcpu->hv_clock, offset,
2891 sizeof(vcpu->hv_clock));
2892
2893 smp_wmb();
2894
2895 vcpu->hv_clock.version++;
2896 kvm_write_guest_offset_cached(v->kvm, cache,
2897 &vcpu->hv_clock, offset,
2898 sizeof(vcpu->hv_clock.version));
2899 }
2900
2901 static int kvm_guest_time_update(struct kvm_vcpu *v)
2902 {
2903 unsigned long flags, tgt_tsc_khz;
2904 struct kvm_vcpu_arch *vcpu = &v->arch;
2905 struct kvm_arch *ka = &v->kvm->arch;
2906 s64 kernel_ns;
2907 u64 tsc_timestamp, host_tsc;
2908 u8 pvclock_flags;
2909 bool use_master_clock;
2910
2911 kernel_ns = 0;
2912 host_tsc = 0;
2913
2914 /*
2915 * If the host uses TSC clock, then passthrough TSC as stable
2916 * to the guest.
2917 */
2918 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2919 use_master_clock = ka->use_master_clock;
2920 if (use_master_clock) {
2921 host_tsc = ka->master_cycle_now;
2922 kernel_ns = ka->master_kernel_ns;
2923 }
2924 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2925
2926 /* Keep irq disabled to prevent changes to the clock */
2927 local_irq_save(flags);
2928 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2929 if (unlikely(tgt_tsc_khz == 0)) {
2930 local_irq_restore(flags);
2931 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2932 return 1;
2933 }
2934 if (!use_master_clock) {
2935 host_tsc = rdtsc();
2936 kernel_ns = get_kvmclock_base_ns();
2937 }
2938
2939 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2940
2941 /*
2942 * We may have to catch up the TSC to match elapsed wall clock
2943 * time for two reasons, even if kvmclock is used.
2944 * 1) CPU could have been running below the maximum TSC rate
2945 * 2) Broken TSC compensation resets the base at each VCPU
2946 * entry to avoid unknown leaps of TSC even when running
2947 * again on the same CPU. This may cause apparent elapsed
2948 * time to disappear, and the guest to stand still or run
2949 * very slowly.
2950 */
2951 if (vcpu->tsc_catchup) {
2952 u64 tsc = compute_guest_tsc(v, kernel_ns);
2953 if (tsc > tsc_timestamp) {
2954 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2955 tsc_timestamp = tsc;
2956 }
2957 }
2958
2959 local_irq_restore(flags);
2960
2961 /* With all the info we got, fill in the values */
2962
2963 if (kvm_has_tsc_control)
2964 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2965 v->arch.l1_tsc_scaling_ratio);
2966
2967 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2968 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2969 &vcpu->hv_clock.tsc_shift,
2970 &vcpu->hv_clock.tsc_to_system_mul);
2971 vcpu->hw_tsc_khz = tgt_tsc_khz;
2972 }
2973
2974 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2975 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2976 vcpu->last_guest_tsc = tsc_timestamp;
2977
2978 /* If the host uses TSC clocksource, then it is stable */
2979 pvclock_flags = 0;
2980 if (use_master_clock)
2981 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2982
2983 vcpu->hv_clock.flags = pvclock_flags;
2984
2985 if (vcpu->pv_time_enabled)
2986 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2987 if (vcpu->xen.vcpu_info_set)
2988 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2989 offsetof(struct compat_vcpu_info, time));
2990 if (vcpu->xen.vcpu_time_info_set)
2991 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2992 if (!v->vcpu_idx)
2993 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2994 return 0;
2995 }
2996
2997 /*
2998 * kvmclock updates which are isolated to a given vcpu, such as
2999 * vcpu->cpu migration, should not allow system_timestamp from
3000 * the rest of the vcpus to remain static. Otherwise ntp frequency
3001 * correction applies to one vcpu's system_timestamp but not
3002 * the others.
3003 *
3004 * So in those cases, request a kvmclock update for all vcpus.
3005 * We need to rate-limit these requests though, as they can
3006 * considerably slow guests that have a large number of vcpus.
3007 * The time for a remote vcpu to update its kvmclock is bound
3008 * by the delay we use to rate-limit the updates.
3009 */
3010
3011 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3012
3013 static void kvmclock_update_fn(struct work_struct *work)
3014 {
3015 int i;
3016 struct delayed_work *dwork = to_delayed_work(work);
3017 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3018 kvmclock_update_work);
3019 struct kvm *kvm = container_of(ka, struct kvm, arch);
3020 struct kvm_vcpu *vcpu;
3021
3022 kvm_for_each_vcpu(i, vcpu, kvm) {
3023 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3024 kvm_vcpu_kick(vcpu);
3025 }
3026 }
3027
3028 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3029 {
3030 struct kvm *kvm = v->kvm;
3031
3032 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3033 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3034 KVMCLOCK_UPDATE_DELAY);
3035 }
3036
3037 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3038
3039 static void kvmclock_sync_fn(struct work_struct *work)
3040 {
3041 struct delayed_work *dwork = to_delayed_work(work);
3042 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3043 kvmclock_sync_work);
3044 struct kvm *kvm = container_of(ka, struct kvm, arch);
3045
3046 if (!kvmclock_periodic_sync)
3047 return;
3048
3049 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3050 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3051 KVMCLOCK_SYNC_PERIOD);
3052 }
3053
3054 /*
3055 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3056 */
3057 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3058 {
3059 /* McStatusWrEn enabled? */
3060 if (guest_cpuid_is_amd_or_hygon(vcpu))
3061 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3062
3063 return false;
3064 }
3065
3066 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3067 {
3068 u64 mcg_cap = vcpu->arch.mcg_cap;
3069 unsigned bank_num = mcg_cap & 0xff;
3070 u32 msr = msr_info->index;
3071 u64 data = msr_info->data;
3072
3073 switch (msr) {
3074 case MSR_IA32_MCG_STATUS:
3075 vcpu->arch.mcg_status = data;
3076 break;
3077 case MSR_IA32_MCG_CTL:
3078 if (!(mcg_cap & MCG_CTL_P) &&
3079 (data || !msr_info->host_initiated))
3080 return 1;
3081 if (data != 0 && data != ~(u64)0)
3082 return 1;
3083 vcpu->arch.mcg_ctl = data;
3084 break;
3085 default:
3086 if (msr >= MSR_IA32_MC0_CTL &&
3087 msr < MSR_IA32_MCx_CTL(bank_num)) {
3088 u32 offset = array_index_nospec(
3089 msr - MSR_IA32_MC0_CTL,
3090 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3091
3092 /* only 0 or all 1s can be written to IA32_MCi_CTL
3093 * some Linux kernels though clear bit 10 in bank 4 to
3094 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3095 * this to avoid an uncatched #GP in the guest
3096 */
3097 if ((offset & 0x3) == 0 &&
3098 data != 0 && (data | (1 << 10)) != ~(u64)0)
3099 return -1;
3100
3101 /* MCi_STATUS */
3102 if (!msr_info->host_initiated &&
3103 (offset & 0x3) == 1 && data != 0) {
3104 if (!can_set_mci_status(vcpu))
3105 return -1;
3106 }
3107
3108 vcpu->arch.mce_banks[offset] = data;
3109 break;
3110 }
3111 return 1;
3112 }
3113 return 0;
3114 }
3115
3116 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3117 {
3118 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3119
3120 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3121 }
3122
3123 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3124 {
3125 gpa_t gpa = data & ~0x3f;
3126
3127 /* Bits 4:5 are reserved, Should be zero */
3128 if (data & 0x30)
3129 return 1;
3130
3131 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3132 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3133 return 1;
3134
3135 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3136 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3137 return 1;
3138
3139 if (!lapic_in_kernel(vcpu))
3140 return data ? 1 : 0;
3141
3142 vcpu->arch.apf.msr_en_val = data;
3143
3144 if (!kvm_pv_async_pf_enabled(vcpu)) {
3145 kvm_clear_async_pf_completion_queue(vcpu);
3146 kvm_async_pf_hash_reset(vcpu);
3147 return 0;
3148 }
3149
3150 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3151 sizeof(u64)))
3152 return 1;
3153
3154 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3155 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3156
3157 kvm_async_pf_wakeup_all(vcpu);
3158
3159 return 0;
3160 }
3161
3162 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3163 {
3164 /* Bits 8-63 are reserved */
3165 if (data >> 8)
3166 return 1;
3167
3168 if (!lapic_in_kernel(vcpu))
3169 return 1;
3170
3171 vcpu->arch.apf.msr_int_val = data;
3172
3173 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3174
3175 return 0;
3176 }
3177
3178 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3179 {
3180 vcpu->arch.pv_time_enabled = false;
3181 vcpu->arch.time = 0;
3182 }
3183
3184 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3185 {
3186 ++vcpu->stat.tlb_flush;
3187 static_call(kvm_x86_tlb_flush_all)(vcpu);
3188 }
3189
3190 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3191 {
3192 ++vcpu->stat.tlb_flush;
3193
3194 if (!tdp_enabled) {
3195 /*
3196 * A TLB flush on behalf of the guest is equivalent to
3197 * INVPCID(all), toggling CR4.PGE, etc., which requires
3198 * a forced sync of the shadow page tables. Unload the
3199 * entire MMU here and the subsequent load will sync the
3200 * shadow page tables, and also flush the TLB.
3201 */
3202 kvm_mmu_unload(vcpu);
3203 return;
3204 }
3205
3206 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3207 }
3208
3209
3210 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3211 {
3212 ++vcpu->stat.tlb_flush;
3213 static_call(kvm_x86_tlb_flush_current)(vcpu);
3214 }
3215
3216 /*
3217 * Service "local" TLB flush requests, which are specific to the current MMU
3218 * context. In addition to the generic event handling in vcpu_enter_guest(),
3219 * TLB flushes that are targeted at an MMU context also need to be serviced
3220 * prior before nested VM-Enter/VM-Exit.
3221 */
3222 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3223 {
3224 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3225 kvm_vcpu_flush_tlb_current(vcpu);
3226
3227 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3228 kvm_vcpu_flush_tlb_guest(vcpu);
3229 }
3230 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3231
3232 static void record_steal_time(struct kvm_vcpu *vcpu)
3233 {
3234 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3235 struct kvm_steal_time __user *st;
3236 struct kvm_memslots *slots;
3237 u64 steal;
3238 u32 version;
3239
3240 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3241 kvm_xen_runstate_set_running(vcpu);
3242 return;
3243 }
3244
3245 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3246 return;
3247
3248 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3249 return;
3250
3251 slots = kvm_memslots(vcpu->kvm);
3252
3253 if (unlikely(slots->generation != ghc->generation ||
3254 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3255 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3256
3257 /* We rely on the fact that it fits in a single page. */
3258 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3259
3260 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3261 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3262 return;
3263 }
3264
3265 st = (struct kvm_steal_time __user *)ghc->hva;
3266 /*
3267 * Doing a TLB flush here, on the guest's behalf, can avoid
3268 * expensive IPIs.
3269 */
3270 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3271 u8 st_preempted = 0;
3272 int err = -EFAULT;
3273
3274 if (!user_access_begin(st, sizeof(*st)))
3275 return;
3276
3277 asm volatile("1: xchgb %0, %2\n"
3278 "xor %1, %1\n"
3279 "2:\n"
3280 _ASM_EXTABLE_UA(1b, 2b)
3281 : "+q" (st_preempted),
3282 "+&r" (err),
3283 "+m" (st->preempted));
3284 if (err)
3285 goto out;
3286
3287 user_access_end();
3288
3289 vcpu->arch.st.preempted = 0;
3290
3291 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3292 st_preempted & KVM_VCPU_FLUSH_TLB);
3293 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3294 kvm_vcpu_flush_tlb_guest(vcpu);
3295
3296 if (!user_access_begin(st, sizeof(*st)))
3297 goto dirty;
3298 } else {
3299 if (!user_access_begin(st, sizeof(*st)))
3300 return;
3301
3302 unsafe_put_user(0, &st->preempted, out);
3303 vcpu->arch.st.preempted = 0;
3304 }
3305
3306 unsafe_get_user(version, &st->version, out);
3307 if (version & 1)
3308 version += 1; /* first time write, random junk */
3309
3310 version += 1;
3311 unsafe_put_user(version, &st->version, out);
3312
3313 smp_wmb();
3314
3315 unsafe_get_user(steal, &st->steal, out);
3316 steal += current->sched_info.run_delay -
3317 vcpu->arch.st.last_steal;
3318 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3319 unsafe_put_user(steal, &st->steal, out);
3320
3321 version += 1;
3322 unsafe_put_user(version, &st->version, out);
3323
3324 out:
3325 user_access_end();
3326 dirty:
3327 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3328 }
3329
3330 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3331 {
3332 bool pr = false;
3333 u32 msr = msr_info->index;
3334 u64 data = msr_info->data;
3335
3336 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3337 return kvm_xen_write_hypercall_page(vcpu, data);
3338
3339 switch (msr) {
3340 case MSR_AMD64_NB_CFG:
3341 case MSR_IA32_UCODE_WRITE:
3342 case MSR_VM_HSAVE_PA:
3343 case MSR_AMD64_PATCH_LOADER:
3344 case MSR_AMD64_BU_CFG2:
3345 case MSR_AMD64_DC_CFG:
3346 case MSR_F15H_EX_CFG:
3347 break;
3348
3349 case MSR_IA32_UCODE_REV:
3350 if (msr_info->host_initiated)
3351 vcpu->arch.microcode_version = data;
3352 break;
3353 case MSR_IA32_ARCH_CAPABILITIES:
3354 if (!msr_info->host_initiated)
3355 return 1;
3356 vcpu->arch.arch_capabilities = data;
3357 break;
3358 case MSR_IA32_PERF_CAPABILITIES: {
3359 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3360
3361 if (!msr_info->host_initiated)
3362 return 1;
3363 if (kvm_get_msr_feature(&msr_ent))
3364 return 1;
3365 if (data & ~msr_ent.data)
3366 return 1;
3367
3368 vcpu->arch.perf_capabilities = data;
3369
3370 return 0;
3371 }
3372 case MSR_EFER:
3373 return set_efer(vcpu, msr_info);
3374 case MSR_K7_HWCR:
3375 data &= ~(u64)0x40; /* ignore flush filter disable */
3376 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3377 data &= ~(u64)0x8; /* ignore TLB cache disable */
3378
3379 /* Handle McStatusWrEn */
3380 if (data == BIT_ULL(18)) {
3381 vcpu->arch.msr_hwcr = data;
3382 } else if (data != 0) {
3383 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3384 data);
3385 return 1;
3386 }
3387 break;
3388 case MSR_FAM10H_MMIO_CONF_BASE:
3389 if (data != 0) {
3390 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3391 "0x%llx\n", data);
3392 return 1;
3393 }
3394 break;
3395 case 0x200 ... 0x2ff:
3396 return kvm_mtrr_set_msr(vcpu, msr, data);
3397 case MSR_IA32_APICBASE:
3398 return kvm_set_apic_base(vcpu, msr_info);
3399 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3400 return kvm_x2apic_msr_write(vcpu, msr, data);
3401 case MSR_IA32_TSC_DEADLINE:
3402 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3403 break;
3404 case MSR_IA32_TSC_ADJUST:
3405 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3406 if (!msr_info->host_initiated) {
3407 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3408 adjust_tsc_offset_guest(vcpu, adj);
3409 /* Before back to guest, tsc_timestamp must be adjusted
3410 * as well, otherwise guest's percpu pvclock time could jump.
3411 */
3412 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3413 }
3414 vcpu->arch.ia32_tsc_adjust_msr = data;
3415 }
3416 break;
3417 case MSR_IA32_MISC_ENABLE:
3418 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3419 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3420 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3421 return 1;
3422 vcpu->arch.ia32_misc_enable_msr = data;
3423 kvm_update_cpuid_runtime(vcpu);
3424 } else {
3425 vcpu->arch.ia32_misc_enable_msr = data;
3426 }
3427 break;
3428 case MSR_IA32_SMBASE:
3429 if (!msr_info->host_initiated)
3430 return 1;
3431 vcpu->arch.smbase = data;
3432 break;
3433 case MSR_IA32_POWER_CTL:
3434 vcpu->arch.msr_ia32_power_ctl = data;
3435 break;
3436 case MSR_IA32_TSC:
3437 if (msr_info->host_initiated) {
3438 kvm_synchronize_tsc(vcpu, data);
3439 } else {
3440 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3441 adjust_tsc_offset_guest(vcpu, adj);
3442 vcpu->arch.ia32_tsc_adjust_msr += adj;
3443 }
3444 break;
3445 case MSR_IA32_XSS:
3446 if (!msr_info->host_initiated &&
3447 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3448 return 1;
3449 /*
3450 * KVM supports exposing PT to the guest, but does not support
3451 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3452 * XSAVES/XRSTORS to save/restore PT MSRs.
3453 */
3454 if (data & ~supported_xss)
3455 return 1;
3456 vcpu->arch.ia32_xss = data;
3457 kvm_update_cpuid_runtime(vcpu);
3458 break;
3459 case MSR_SMI_COUNT:
3460 if (!msr_info->host_initiated)
3461 return 1;
3462 vcpu->arch.smi_count = data;
3463 break;
3464 case MSR_KVM_WALL_CLOCK_NEW:
3465 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3466 return 1;
3467
3468 vcpu->kvm->arch.wall_clock = data;
3469 kvm_write_wall_clock(vcpu->kvm, data, 0);
3470 break;
3471 case MSR_KVM_WALL_CLOCK:
3472 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3473 return 1;
3474
3475 vcpu->kvm->arch.wall_clock = data;
3476 kvm_write_wall_clock(vcpu->kvm, data, 0);
3477 break;
3478 case MSR_KVM_SYSTEM_TIME_NEW:
3479 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3480 return 1;
3481
3482 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3483 break;
3484 case MSR_KVM_SYSTEM_TIME:
3485 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3486 return 1;
3487
3488 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3489 break;
3490 case MSR_KVM_ASYNC_PF_EN:
3491 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3492 return 1;
3493
3494 if (kvm_pv_enable_async_pf(vcpu, data))
3495 return 1;
3496 break;
3497 case MSR_KVM_ASYNC_PF_INT:
3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3499 return 1;
3500
3501 if (kvm_pv_enable_async_pf_int(vcpu, data))
3502 return 1;
3503 break;
3504 case MSR_KVM_ASYNC_PF_ACK:
3505 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3506 return 1;
3507 if (data & 0x1) {
3508 vcpu->arch.apf.pageready_pending = false;
3509 kvm_check_async_pf_completion(vcpu);
3510 }
3511 break;
3512 case MSR_KVM_STEAL_TIME:
3513 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3514 return 1;
3515
3516 if (unlikely(!sched_info_on()))
3517 return 1;
3518
3519 if (data & KVM_STEAL_RESERVED_MASK)
3520 return 1;
3521
3522 vcpu->arch.st.msr_val = data;
3523
3524 if (!(data & KVM_MSR_ENABLED))
3525 break;
3526
3527 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3528
3529 break;
3530 case MSR_KVM_PV_EOI_EN:
3531 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3532 return 1;
3533
3534 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3535 return 1;
3536 break;
3537
3538 case MSR_KVM_POLL_CONTROL:
3539 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3540 return 1;
3541
3542 /* only enable bit supported */
3543 if (data & (-1ULL << 1))
3544 return 1;
3545
3546 vcpu->arch.msr_kvm_poll_control = data;
3547 break;
3548
3549 case MSR_IA32_MCG_CTL:
3550 case MSR_IA32_MCG_STATUS:
3551 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3552 return set_msr_mce(vcpu, msr_info);
3553
3554 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3555 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3556 pr = true;
3557 fallthrough;
3558 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3559 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3560 if (kvm_pmu_is_valid_msr(vcpu, msr))
3561 return kvm_pmu_set_msr(vcpu, msr_info);
3562
3563 if (pr || data != 0)
3564 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3565 "0x%x data 0x%llx\n", msr, data);
3566 break;
3567 case MSR_K7_CLK_CTL:
3568 /*
3569 * Ignore all writes to this no longer documented MSR.
3570 * Writes are only relevant for old K7 processors,
3571 * all pre-dating SVM, but a recommended workaround from
3572 * AMD for these chips. It is possible to specify the
3573 * affected processor models on the command line, hence
3574 * the need to ignore the workaround.
3575 */
3576 break;
3577 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3578 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3579 case HV_X64_MSR_SYNDBG_OPTIONS:
3580 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3581 case HV_X64_MSR_CRASH_CTL:
3582 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3583 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3584 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3585 case HV_X64_MSR_TSC_EMULATION_STATUS:
3586 return kvm_hv_set_msr_common(vcpu, msr, data,
3587 msr_info->host_initiated);
3588 case MSR_IA32_BBL_CR_CTL3:
3589 /* Drop writes to this legacy MSR -- see rdmsr
3590 * counterpart for further detail.
3591 */
3592 if (report_ignored_msrs)
3593 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3594 msr, data);
3595 break;
3596 case MSR_AMD64_OSVW_ID_LENGTH:
3597 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3598 return 1;
3599 vcpu->arch.osvw.length = data;
3600 break;
3601 case MSR_AMD64_OSVW_STATUS:
3602 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3603 return 1;
3604 vcpu->arch.osvw.status = data;
3605 break;
3606 case MSR_PLATFORM_INFO:
3607 if (!msr_info->host_initiated ||
3608 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3609 cpuid_fault_enabled(vcpu)))
3610 return 1;
3611 vcpu->arch.msr_platform_info = data;
3612 break;
3613 case MSR_MISC_FEATURES_ENABLES:
3614 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3615 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3616 !supports_cpuid_fault(vcpu)))
3617 return 1;
3618 vcpu->arch.msr_misc_features_enables = data;
3619 break;
3620 default:
3621 if (kvm_pmu_is_valid_msr(vcpu, msr))
3622 return kvm_pmu_set_msr(vcpu, msr_info);
3623 return KVM_MSR_RET_INVALID;
3624 }
3625 return 0;
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3628
3629 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3630 {
3631 u64 data;
3632 u64 mcg_cap = vcpu->arch.mcg_cap;
3633 unsigned bank_num = mcg_cap & 0xff;
3634
3635 switch (msr) {
3636 case MSR_IA32_P5_MC_ADDR:
3637 case MSR_IA32_P5_MC_TYPE:
3638 data = 0;
3639 break;
3640 case MSR_IA32_MCG_CAP:
3641 data = vcpu->arch.mcg_cap;
3642 break;
3643 case MSR_IA32_MCG_CTL:
3644 if (!(mcg_cap & MCG_CTL_P) && !host)
3645 return 1;
3646 data = vcpu->arch.mcg_ctl;
3647 break;
3648 case MSR_IA32_MCG_STATUS:
3649 data = vcpu->arch.mcg_status;
3650 break;
3651 default:
3652 if (msr >= MSR_IA32_MC0_CTL &&
3653 msr < MSR_IA32_MCx_CTL(bank_num)) {
3654 u32 offset = array_index_nospec(
3655 msr - MSR_IA32_MC0_CTL,
3656 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3657
3658 data = vcpu->arch.mce_banks[offset];
3659 break;
3660 }
3661 return 1;
3662 }
3663 *pdata = data;
3664 return 0;
3665 }
3666
3667 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3668 {
3669 switch (msr_info->index) {
3670 case MSR_IA32_PLATFORM_ID:
3671 case MSR_IA32_EBL_CR_POWERON:
3672 case MSR_IA32_LASTBRANCHFROMIP:
3673 case MSR_IA32_LASTBRANCHTOIP:
3674 case MSR_IA32_LASTINTFROMIP:
3675 case MSR_IA32_LASTINTTOIP:
3676 case MSR_AMD64_SYSCFG:
3677 case MSR_K8_TSEG_ADDR:
3678 case MSR_K8_TSEG_MASK:
3679 case MSR_VM_HSAVE_PA:
3680 case MSR_K8_INT_PENDING_MSG:
3681 case MSR_AMD64_NB_CFG:
3682 case MSR_FAM10H_MMIO_CONF_BASE:
3683 case MSR_AMD64_BU_CFG2:
3684 case MSR_IA32_PERF_CTL:
3685 case MSR_AMD64_DC_CFG:
3686 case MSR_F15H_EX_CFG:
3687 /*
3688 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3689 * limit) MSRs. Just return 0, as we do not want to expose the host
3690 * data here. Do not conditionalize this on CPUID, as KVM does not do
3691 * so for existing CPU-specific MSRs.
3692 */
3693 case MSR_RAPL_POWER_UNIT:
3694 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3695 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3696 case MSR_PKG_ENERGY_STATUS: /* Total package */
3697 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3698 msr_info->data = 0;
3699 break;
3700 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3701 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3702 return kvm_pmu_get_msr(vcpu, msr_info);
3703 if (!msr_info->host_initiated)
3704 return 1;
3705 msr_info->data = 0;
3706 break;
3707 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3708 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3709 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3710 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3711 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3712 return kvm_pmu_get_msr(vcpu, msr_info);
3713 msr_info->data = 0;
3714 break;
3715 case MSR_IA32_UCODE_REV:
3716 msr_info->data = vcpu->arch.microcode_version;
3717 break;
3718 case MSR_IA32_ARCH_CAPABILITIES:
3719 if (!msr_info->host_initiated &&
3720 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3721 return 1;
3722 msr_info->data = vcpu->arch.arch_capabilities;
3723 break;
3724 case MSR_IA32_PERF_CAPABILITIES:
3725 if (!msr_info->host_initiated &&
3726 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3727 return 1;
3728 msr_info->data = vcpu->arch.perf_capabilities;
3729 break;
3730 case MSR_IA32_POWER_CTL:
3731 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3732 break;
3733 case MSR_IA32_TSC: {
3734 /*
3735 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3736 * even when not intercepted. AMD manual doesn't explicitly
3737 * state this but appears to behave the same.
3738 *
3739 * On userspace reads and writes, however, we unconditionally
3740 * return L1's TSC value to ensure backwards-compatible
3741 * behavior for migration.
3742 */
3743 u64 offset, ratio;
3744
3745 if (msr_info->host_initiated) {
3746 offset = vcpu->arch.l1_tsc_offset;
3747 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3748 } else {
3749 offset = vcpu->arch.tsc_offset;
3750 ratio = vcpu->arch.tsc_scaling_ratio;
3751 }
3752
3753 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3754 break;
3755 }
3756 case MSR_MTRRcap:
3757 case 0x200 ... 0x2ff:
3758 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3759 case 0xcd: /* fsb frequency */
3760 msr_info->data = 3;
3761 break;
3762 /*
3763 * MSR_EBC_FREQUENCY_ID
3764 * Conservative value valid for even the basic CPU models.
3765 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3766 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3767 * and 266MHz for model 3, or 4. Set Core Clock
3768 * Frequency to System Bus Frequency Ratio to 1 (bits
3769 * 31:24) even though these are only valid for CPU
3770 * models > 2, however guests may end up dividing or
3771 * multiplying by zero otherwise.
3772 */
3773 case MSR_EBC_FREQUENCY_ID:
3774 msr_info->data = 1 << 24;
3775 break;
3776 case MSR_IA32_APICBASE:
3777 msr_info->data = kvm_get_apic_base(vcpu);
3778 break;
3779 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3780 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3781 case MSR_IA32_TSC_DEADLINE:
3782 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3783 break;
3784 case MSR_IA32_TSC_ADJUST:
3785 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3786 break;
3787 case MSR_IA32_MISC_ENABLE:
3788 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3789 break;
3790 case MSR_IA32_SMBASE:
3791 if (!msr_info->host_initiated)
3792 return 1;
3793 msr_info->data = vcpu->arch.smbase;
3794 break;
3795 case MSR_SMI_COUNT:
3796 msr_info->data = vcpu->arch.smi_count;
3797 break;
3798 case MSR_IA32_PERF_STATUS:
3799 /* TSC increment by tick */
3800 msr_info->data = 1000ULL;
3801 /* CPU multiplier */
3802 msr_info->data |= (((uint64_t)4ULL) << 40);
3803 break;
3804 case MSR_EFER:
3805 msr_info->data = vcpu->arch.efer;
3806 break;
3807 case MSR_KVM_WALL_CLOCK:
3808 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3809 return 1;
3810
3811 msr_info->data = vcpu->kvm->arch.wall_clock;
3812 break;
3813 case MSR_KVM_WALL_CLOCK_NEW:
3814 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3815 return 1;
3816
3817 msr_info->data = vcpu->kvm->arch.wall_clock;
3818 break;
3819 case MSR_KVM_SYSTEM_TIME:
3820 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3821 return 1;
3822
3823 msr_info->data = vcpu->arch.time;
3824 break;
3825 case MSR_KVM_SYSTEM_TIME_NEW:
3826 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3827 return 1;
3828
3829 msr_info->data = vcpu->arch.time;
3830 break;
3831 case MSR_KVM_ASYNC_PF_EN:
3832 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3833 return 1;
3834
3835 msr_info->data = vcpu->arch.apf.msr_en_val;
3836 break;
3837 case MSR_KVM_ASYNC_PF_INT:
3838 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3839 return 1;
3840
3841 msr_info->data = vcpu->arch.apf.msr_int_val;
3842 break;
3843 case MSR_KVM_ASYNC_PF_ACK:
3844 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3845 return 1;
3846
3847 msr_info->data = 0;
3848 break;
3849 case MSR_KVM_STEAL_TIME:
3850 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3851 return 1;
3852
3853 msr_info->data = vcpu->arch.st.msr_val;
3854 break;
3855 case MSR_KVM_PV_EOI_EN:
3856 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3857 return 1;
3858
3859 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3860 break;
3861 case MSR_KVM_POLL_CONTROL:
3862 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3863 return 1;
3864
3865 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3866 break;
3867 case MSR_IA32_P5_MC_ADDR:
3868 case MSR_IA32_P5_MC_TYPE:
3869 case MSR_IA32_MCG_CAP:
3870 case MSR_IA32_MCG_CTL:
3871 case MSR_IA32_MCG_STATUS:
3872 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3873 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3874 msr_info->host_initiated);
3875 case MSR_IA32_XSS:
3876 if (!msr_info->host_initiated &&
3877 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3878 return 1;
3879 msr_info->data = vcpu->arch.ia32_xss;
3880 break;
3881 case MSR_K7_CLK_CTL:
3882 /*
3883 * Provide expected ramp-up count for K7. All other
3884 * are set to zero, indicating minimum divisors for
3885 * every field.
3886 *
3887 * This prevents guest kernels on AMD host with CPU
3888 * type 6, model 8 and higher from exploding due to
3889 * the rdmsr failing.
3890 */
3891 msr_info->data = 0x20000000;
3892 break;
3893 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3894 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3895 case HV_X64_MSR_SYNDBG_OPTIONS:
3896 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3897 case HV_X64_MSR_CRASH_CTL:
3898 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3899 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3900 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3901 case HV_X64_MSR_TSC_EMULATION_STATUS:
3902 return kvm_hv_get_msr_common(vcpu,
3903 msr_info->index, &msr_info->data,
3904 msr_info->host_initiated);
3905 case MSR_IA32_BBL_CR_CTL3:
3906 /* This legacy MSR exists but isn't fully documented in current
3907 * silicon. It is however accessed by winxp in very narrow
3908 * scenarios where it sets bit #19, itself documented as
3909 * a "reserved" bit. Best effort attempt to source coherent
3910 * read data here should the balance of the register be
3911 * interpreted by the guest:
3912 *
3913 * L2 cache control register 3: 64GB range, 256KB size,
3914 * enabled, latency 0x1, configured
3915 */
3916 msr_info->data = 0xbe702111;
3917 break;
3918 case MSR_AMD64_OSVW_ID_LENGTH:
3919 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3920 return 1;
3921 msr_info->data = vcpu->arch.osvw.length;
3922 break;
3923 case MSR_AMD64_OSVW_STATUS:
3924 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3925 return 1;
3926 msr_info->data = vcpu->arch.osvw.status;
3927 break;
3928 case MSR_PLATFORM_INFO:
3929 if (!msr_info->host_initiated &&
3930 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3931 return 1;
3932 msr_info->data = vcpu->arch.msr_platform_info;
3933 break;
3934 case MSR_MISC_FEATURES_ENABLES:
3935 msr_info->data = vcpu->arch.msr_misc_features_enables;
3936 break;
3937 case MSR_K7_HWCR:
3938 msr_info->data = vcpu->arch.msr_hwcr;
3939 break;
3940 default:
3941 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3942 return kvm_pmu_get_msr(vcpu, msr_info);
3943 return KVM_MSR_RET_INVALID;
3944 }
3945 return 0;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3948
3949 /*
3950 * Read or write a bunch of msrs. All parameters are kernel addresses.
3951 *
3952 * @return number of msrs set successfully.
3953 */
3954 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3955 struct kvm_msr_entry *entries,
3956 int (*do_msr)(struct kvm_vcpu *vcpu,
3957 unsigned index, u64 *data))
3958 {
3959 int i;
3960
3961 for (i = 0; i < msrs->nmsrs; ++i)
3962 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3963 break;
3964
3965 return i;
3966 }
3967
3968 /*
3969 * Read or write a bunch of msrs. Parameters are user addresses.
3970 *
3971 * @return number of msrs set successfully.
3972 */
3973 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3974 int (*do_msr)(struct kvm_vcpu *vcpu,
3975 unsigned index, u64 *data),
3976 int writeback)
3977 {
3978 struct kvm_msrs msrs;
3979 struct kvm_msr_entry *entries;
3980 int r, n;
3981 unsigned size;
3982
3983 r = -EFAULT;
3984 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3985 goto out;
3986
3987 r = -E2BIG;
3988 if (msrs.nmsrs >= MAX_IO_MSRS)
3989 goto out;
3990
3991 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3992 entries = memdup_user(user_msrs->entries, size);
3993 if (IS_ERR(entries)) {
3994 r = PTR_ERR(entries);
3995 goto out;
3996 }
3997
3998 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3999 if (r < 0)
4000 goto out_free;
4001
4002 r = -EFAULT;
4003 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4004 goto out_free;
4005
4006 r = n;
4007
4008 out_free:
4009 kfree(entries);
4010 out:
4011 return r;
4012 }
4013
4014 static inline bool kvm_can_mwait_in_guest(void)
4015 {
4016 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4017 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4018 boot_cpu_has(X86_FEATURE_ARAT);
4019 }
4020
4021 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4022 struct kvm_cpuid2 __user *cpuid_arg)
4023 {
4024 struct kvm_cpuid2 cpuid;
4025 int r;
4026
4027 r = -EFAULT;
4028 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4029 return r;
4030
4031 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4032 if (r)
4033 return r;
4034
4035 r = -EFAULT;
4036 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4037 return r;
4038
4039 return 0;
4040 }
4041
4042 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4043 {
4044 int r = 0;
4045
4046 switch (ext) {
4047 case KVM_CAP_IRQCHIP:
4048 case KVM_CAP_HLT:
4049 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4050 case KVM_CAP_SET_TSS_ADDR:
4051 case KVM_CAP_EXT_CPUID:
4052 case KVM_CAP_EXT_EMUL_CPUID:
4053 case KVM_CAP_CLOCKSOURCE:
4054 case KVM_CAP_PIT:
4055 case KVM_CAP_NOP_IO_DELAY:
4056 case KVM_CAP_MP_STATE:
4057 case KVM_CAP_SYNC_MMU:
4058 case KVM_CAP_USER_NMI:
4059 case KVM_CAP_REINJECT_CONTROL:
4060 case KVM_CAP_IRQ_INJECT_STATUS:
4061 case KVM_CAP_IOEVENTFD:
4062 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4063 case KVM_CAP_PIT2:
4064 case KVM_CAP_PIT_STATE2:
4065 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4066 case KVM_CAP_VCPU_EVENTS:
4067 case KVM_CAP_HYPERV:
4068 case KVM_CAP_HYPERV_VAPIC:
4069 case KVM_CAP_HYPERV_SPIN:
4070 case KVM_CAP_HYPERV_SYNIC:
4071 case KVM_CAP_HYPERV_SYNIC2:
4072 case KVM_CAP_HYPERV_VP_INDEX:
4073 case KVM_CAP_HYPERV_EVENTFD:
4074 case KVM_CAP_HYPERV_TLBFLUSH:
4075 case KVM_CAP_HYPERV_SEND_IPI:
4076 case KVM_CAP_HYPERV_CPUID:
4077 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4078 case KVM_CAP_SYS_HYPERV_CPUID:
4079 case KVM_CAP_PCI_SEGMENT:
4080 case KVM_CAP_DEBUGREGS:
4081 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4082 case KVM_CAP_XSAVE:
4083 case KVM_CAP_ASYNC_PF:
4084 case KVM_CAP_ASYNC_PF_INT:
4085 case KVM_CAP_GET_TSC_KHZ:
4086 case KVM_CAP_KVMCLOCK_CTRL:
4087 case KVM_CAP_READONLY_MEM:
4088 case KVM_CAP_HYPERV_TIME:
4089 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4090 case KVM_CAP_TSC_DEADLINE_TIMER:
4091 case KVM_CAP_DISABLE_QUIRKS:
4092 case KVM_CAP_SET_BOOT_CPU_ID:
4093 case KVM_CAP_SPLIT_IRQCHIP:
4094 case KVM_CAP_IMMEDIATE_EXIT:
4095 case KVM_CAP_PMU_EVENT_FILTER:
4096 case KVM_CAP_GET_MSR_FEATURES:
4097 case KVM_CAP_MSR_PLATFORM_INFO:
4098 case KVM_CAP_EXCEPTION_PAYLOAD:
4099 case KVM_CAP_SET_GUEST_DEBUG:
4100 case KVM_CAP_LAST_CPU:
4101 case KVM_CAP_X86_USER_SPACE_MSR:
4102 case KVM_CAP_X86_MSR_FILTER:
4103 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4104 #ifdef CONFIG_X86_SGX_KVM
4105 case KVM_CAP_SGX_ATTRIBUTE:
4106 #endif
4107 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4108 case KVM_CAP_SREGS2:
4109 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4110 r = 1;
4111 break;
4112 case KVM_CAP_EXIT_HYPERCALL:
4113 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4114 break;
4115 case KVM_CAP_SET_GUEST_DEBUG2:
4116 return KVM_GUESTDBG_VALID_MASK;
4117 #ifdef CONFIG_KVM_XEN
4118 case KVM_CAP_XEN_HVM:
4119 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4120 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4121 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4122 if (sched_info_on())
4123 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4124 break;
4125 #endif
4126 case KVM_CAP_SYNC_REGS:
4127 r = KVM_SYNC_X86_VALID_FIELDS;
4128 break;
4129 case KVM_CAP_ADJUST_CLOCK:
4130 r = KVM_CLOCK_TSC_STABLE;
4131 break;
4132 case KVM_CAP_X86_DISABLE_EXITS:
4133 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4134 KVM_X86_DISABLE_EXITS_CSTATE;
4135 if(kvm_can_mwait_in_guest())
4136 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4137 break;
4138 case KVM_CAP_X86_SMM:
4139 /* SMBASE is usually relocated above 1M on modern chipsets,
4140 * and SMM handlers might indeed rely on 4G segment limits,
4141 * so do not report SMM to be available if real mode is
4142 * emulated via vm86 mode. Still, do not go to great lengths
4143 * to avoid userspace's usage of the feature, because it is a
4144 * fringe case that is not enabled except via specific settings
4145 * of the module parameters.
4146 */
4147 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4148 break;
4149 case KVM_CAP_VAPIC:
4150 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4151 break;
4152 case KVM_CAP_NR_VCPUS:
4153 r = KVM_SOFT_MAX_VCPUS;
4154 break;
4155 case KVM_CAP_MAX_VCPUS:
4156 r = KVM_MAX_VCPUS;
4157 break;
4158 case KVM_CAP_MAX_VCPU_ID:
4159 r = KVM_MAX_VCPU_ID;
4160 break;
4161 case KVM_CAP_PV_MMU: /* obsolete */
4162 r = 0;
4163 break;
4164 case KVM_CAP_MCE:
4165 r = KVM_MAX_MCE_BANKS;
4166 break;
4167 case KVM_CAP_XCRS:
4168 r = boot_cpu_has(X86_FEATURE_XSAVE);
4169 break;
4170 case KVM_CAP_TSC_CONTROL:
4171 r = kvm_has_tsc_control;
4172 break;
4173 case KVM_CAP_X2APIC_API:
4174 r = KVM_X2APIC_API_VALID_FLAGS;
4175 break;
4176 case KVM_CAP_NESTED_STATE:
4177 r = kvm_x86_ops.nested_ops->get_state ?
4178 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4179 break;
4180 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4181 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4182 break;
4183 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4184 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4185 break;
4186 case KVM_CAP_SMALLER_MAXPHYADDR:
4187 r = (int) allow_smaller_maxphyaddr;
4188 break;
4189 case KVM_CAP_STEAL_TIME:
4190 r = sched_info_on();
4191 break;
4192 case KVM_CAP_X86_BUS_LOCK_EXIT:
4193 if (kvm_has_bus_lock_exit)
4194 r = KVM_BUS_LOCK_DETECTION_OFF |
4195 KVM_BUS_LOCK_DETECTION_EXIT;
4196 else
4197 r = 0;
4198 break;
4199 default:
4200 break;
4201 }
4202 return r;
4203
4204 }
4205
4206 long kvm_arch_dev_ioctl(struct file *filp,
4207 unsigned int ioctl, unsigned long arg)
4208 {
4209 void __user *argp = (void __user *)arg;
4210 long r;
4211
4212 switch (ioctl) {
4213 case KVM_GET_MSR_INDEX_LIST: {
4214 struct kvm_msr_list __user *user_msr_list = argp;
4215 struct kvm_msr_list msr_list;
4216 unsigned n;
4217
4218 r = -EFAULT;
4219 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4220 goto out;
4221 n = msr_list.nmsrs;
4222 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4223 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4224 goto out;
4225 r = -E2BIG;
4226 if (n < msr_list.nmsrs)
4227 goto out;
4228 r = -EFAULT;
4229 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4230 num_msrs_to_save * sizeof(u32)))
4231 goto out;
4232 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4233 &emulated_msrs,
4234 num_emulated_msrs * sizeof(u32)))
4235 goto out;
4236 r = 0;
4237 break;
4238 }
4239 case KVM_GET_SUPPORTED_CPUID:
4240 case KVM_GET_EMULATED_CPUID: {
4241 struct kvm_cpuid2 __user *cpuid_arg = argp;
4242 struct kvm_cpuid2 cpuid;
4243
4244 r = -EFAULT;
4245 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4246 goto out;
4247
4248 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4249 ioctl);
4250 if (r)
4251 goto out;
4252
4253 r = -EFAULT;
4254 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4255 goto out;
4256 r = 0;
4257 break;
4258 }
4259 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4260 r = -EFAULT;
4261 if (copy_to_user(argp, &kvm_mce_cap_supported,
4262 sizeof(kvm_mce_cap_supported)))
4263 goto out;
4264 r = 0;
4265 break;
4266 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4267 struct kvm_msr_list __user *user_msr_list = argp;
4268 struct kvm_msr_list msr_list;
4269 unsigned int n;
4270
4271 r = -EFAULT;
4272 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4273 goto out;
4274 n = msr_list.nmsrs;
4275 msr_list.nmsrs = num_msr_based_features;
4276 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4277 goto out;
4278 r = -E2BIG;
4279 if (n < msr_list.nmsrs)
4280 goto out;
4281 r = -EFAULT;
4282 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4283 num_msr_based_features * sizeof(u32)))
4284 goto out;
4285 r = 0;
4286 break;
4287 }
4288 case KVM_GET_MSRS:
4289 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4290 break;
4291 case KVM_GET_SUPPORTED_HV_CPUID:
4292 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4293 break;
4294 default:
4295 r = -EINVAL;
4296 break;
4297 }
4298 out:
4299 return r;
4300 }
4301
4302 static void wbinvd_ipi(void *garbage)
4303 {
4304 wbinvd();
4305 }
4306
4307 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4308 {
4309 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4310 }
4311
4312 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4313 {
4314 /* Address WBINVD may be executed by guest */
4315 if (need_emulate_wbinvd(vcpu)) {
4316 if (static_call(kvm_x86_has_wbinvd_exit)())
4317 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4318 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4319 smp_call_function_single(vcpu->cpu,
4320 wbinvd_ipi, NULL, 1);
4321 }
4322
4323 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4324
4325 /* Save host pkru register if supported */
4326 vcpu->arch.host_pkru = read_pkru();
4327
4328 /* Apply any externally detected TSC adjustments (due to suspend) */
4329 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4330 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4331 vcpu->arch.tsc_offset_adjustment = 0;
4332 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4333 }
4334
4335 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4336 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4337 rdtsc() - vcpu->arch.last_host_tsc;
4338 if (tsc_delta < 0)
4339 mark_tsc_unstable("KVM discovered backwards TSC");
4340
4341 if (kvm_check_tsc_unstable()) {
4342 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4343 vcpu->arch.last_guest_tsc);
4344 kvm_vcpu_write_tsc_offset(vcpu, offset);
4345 vcpu->arch.tsc_catchup = 1;
4346 }
4347
4348 if (kvm_lapic_hv_timer_in_use(vcpu))
4349 kvm_lapic_restart_hv_timer(vcpu);
4350
4351 /*
4352 * On a host with synchronized TSC, there is no need to update
4353 * kvmclock on vcpu->cpu migration
4354 */
4355 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4356 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4357 if (vcpu->cpu != cpu)
4358 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4359 vcpu->cpu = cpu;
4360 }
4361
4362 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4363 }
4364
4365 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4366 {
4367 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4368 struct kvm_steal_time __user *st;
4369 struct kvm_memslots *slots;
4370 static const u8 preempted = KVM_VCPU_PREEMPTED;
4371
4372 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4373 return;
4374
4375 if (vcpu->arch.st.preempted)
4376 return;
4377
4378 /* This happens on process exit */
4379 if (unlikely(current->mm != vcpu->kvm->mm))
4380 return;
4381
4382 slots = kvm_memslots(vcpu->kvm);
4383
4384 if (unlikely(slots->generation != ghc->generation ||
4385 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4386 return;
4387
4388 st = (struct kvm_steal_time __user *)ghc->hva;
4389 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4390
4391 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4392 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4393
4394 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4395 }
4396
4397 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4398 {
4399 int idx;
4400
4401 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4402 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4403
4404 /*
4405 * Take the srcu lock as memslots will be accessed to check the gfn
4406 * cache generation against the memslots generation.
4407 */
4408 idx = srcu_read_lock(&vcpu->kvm->srcu);
4409 if (kvm_xen_msr_enabled(vcpu->kvm))
4410 kvm_xen_runstate_set_preempted(vcpu);
4411 else
4412 kvm_steal_time_set_preempted(vcpu);
4413 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4414
4415 static_call(kvm_x86_vcpu_put)(vcpu);
4416 vcpu->arch.last_host_tsc = rdtsc();
4417 }
4418
4419 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4420 struct kvm_lapic_state *s)
4421 {
4422 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4423
4424 return kvm_apic_get_state(vcpu, s);
4425 }
4426
4427 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4428 struct kvm_lapic_state *s)
4429 {
4430 int r;
4431
4432 r = kvm_apic_set_state(vcpu, s);
4433 if (r)
4434 return r;
4435 update_cr8_intercept(vcpu);
4436
4437 return 0;
4438 }
4439
4440 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4441 {
4442 /*
4443 * We can accept userspace's request for interrupt injection
4444 * as long as we have a place to store the interrupt number.
4445 * The actual injection will happen when the CPU is able to
4446 * deliver the interrupt.
4447 */
4448 if (kvm_cpu_has_extint(vcpu))
4449 return false;
4450
4451 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4452 return (!lapic_in_kernel(vcpu) ||
4453 kvm_apic_accept_pic_intr(vcpu));
4454 }
4455
4456 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4457 {
4458 /*
4459 * Do not cause an interrupt window exit if an exception
4460 * is pending or an event needs reinjection; userspace
4461 * might want to inject the interrupt manually using KVM_SET_REGS
4462 * or KVM_SET_SREGS. For that to work, we must be at an
4463 * instruction boundary and with no events half-injected.
4464 */
4465 return (kvm_arch_interrupt_allowed(vcpu) &&
4466 kvm_cpu_accept_dm_intr(vcpu) &&
4467 !kvm_event_needs_reinjection(vcpu) &&
4468 !vcpu->arch.exception.pending);
4469 }
4470
4471 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4472 struct kvm_interrupt *irq)
4473 {
4474 if (irq->irq >= KVM_NR_INTERRUPTS)
4475 return -EINVAL;
4476
4477 if (!irqchip_in_kernel(vcpu->kvm)) {
4478 kvm_queue_interrupt(vcpu, irq->irq, false);
4479 kvm_make_request(KVM_REQ_EVENT, vcpu);
4480 return 0;
4481 }
4482
4483 /*
4484 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4485 * fail for in-kernel 8259.
4486 */
4487 if (pic_in_kernel(vcpu->kvm))
4488 return -ENXIO;
4489
4490 if (vcpu->arch.pending_external_vector != -1)
4491 return -EEXIST;
4492
4493 vcpu->arch.pending_external_vector = irq->irq;
4494 kvm_make_request(KVM_REQ_EVENT, vcpu);
4495 return 0;
4496 }
4497
4498 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4499 {
4500 kvm_inject_nmi(vcpu);
4501
4502 return 0;
4503 }
4504
4505 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4506 {
4507 kvm_make_request(KVM_REQ_SMI, vcpu);
4508
4509 return 0;
4510 }
4511
4512 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4513 struct kvm_tpr_access_ctl *tac)
4514 {
4515 if (tac->flags)
4516 return -EINVAL;
4517 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4518 return 0;
4519 }
4520
4521 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4522 u64 mcg_cap)
4523 {
4524 int r;
4525 unsigned bank_num = mcg_cap & 0xff, bank;
4526
4527 r = -EINVAL;
4528 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4529 goto out;
4530 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4531 goto out;
4532 r = 0;
4533 vcpu->arch.mcg_cap = mcg_cap;
4534 /* Init IA32_MCG_CTL to all 1s */
4535 if (mcg_cap & MCG_CTL_P)
4536 vcpu->arch.mcg_ctl = ~(u64)0;
4537 /* Init IA32_MCi_CTL to all 1s */
4538 for (bank = 0; bank < bank_num; bank++)
4539 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4540
4541 static_call(kvm_x86_setup_mce)(vcpu);
4542 out:
4543 return r;
4544 }
4545
4546 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4547 struct kvm_x86_mce *mce)
4548 {
4549 u64 mcg_cap = vcpu->arch.mcg_cap;
4550 unsigned bank_num = mcg_cap & 0xff;
4551 u64 *banks = vcpu->arch.mce_banks;
4552
4553 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4554 return -EINVAL;
4555 /*
4556 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4557 * reporting is disabled
4558 */
4559 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4560 vcpu->arch.mcg_ctl != ~(u64)0)
4561 return 0;
4562 banks += 4 * mce->bank;
4563 /*
4564 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4565 * reporting is disabled for the bank
4566 */
4567 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4568 return 0;
4569 if (mce->status & MCI_STATUS_UC) {
4570 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4571 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4572 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4573 return 0;
4574 }
4575 if (banks[1] & MCI_STATUS_VAL)
4576 mce->status |= MCI_STATUS_OVER;
4577 banks[2] = mce->addr;
4578 banks[3] = mce->misc;
4579 vcpu->arch.mcg_status = mce->mcg_status;
4580 banks[1] = mce->status;
4581 kvm_queue_exception(vcpu, MC_VECTOR);
4582 } else if (!(banks[1] & MCI_STATUS_VAL)
4583 || !(banks[1] & MCI_STATUS_UC)) {
4584 if (banks[1] & MCI_STATUS_VAL)
4585 mce->status |= MCI_STATUS_OVER;
4586 banks[2] = mce->addr;
4587 banks[3] = mce->misc;
4588 banks[1] = mce->status;
4589 } else
4590 banks[1] |= MCI_STATUS_OVER;
4591 return 0;
4592 }
4593
4594 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4595 struct kvm_vcpu_events *events)
4596 {
4597 process_nmi(vcpu);
4598
4599 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4600 process_smi(vcpu);
4601
4602 /*
4603 * In guest mode, payload delivery should be deferred,
4604 * so that the L1 hypervisor can intercept #PF before
4605 * CR2 is modified (or intercept #DB before DR6 is
4606 * modified under nVMX). Unless the per-VM capability,
4607 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4608 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4609 * opportunistically defer the exception payload, deliver it if the
4610 * capability hasn't been requested before processing a
4611 * KVM_GET_VCPU_EVENTS.
4612 */
4613 if (!vcpu->kvm->arch.exception_payload_enabled &&
4614 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4615 kvm_deliver_exception_payload(vcpu);
4616
4617 /*
4618 * The API doesn't provide the instruction length for software
4619 * exceptions, so don't report them. As long as the guest RIP
4620 * isn't advanced, we should expect to encounter the exception
4621 * again.
4622 */
4623 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4624 events->exception.injected = 0;
4625 events->exception.pending = 0;
4626 } else {
4627 events->exception.injected = vcpu->arch.exception.injected;
4628 events->exception.pending = vcpu->arch.exception.pending;
4629 /*
4630 * For ABI compatibility, deliberately conflate
4631 * pending and injected exceptions when
4632 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4633 */
4634 if (!vcpu->kvm->arch.exception_payload_enabled)
4635 events->exception.injected |=
4636 vcpu->arch.exception.pending;
4637 }
4638 events->exception.nr = vcpu->arch.exception.nr;
4639 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4640 events->exception.error_code = vcpu->arch.exception.error_code;
4641 events->exception_has_payload = vcpu->arch.exception.has_payload;
4642 events->exception_payload = vcpu->arch.exception.payload;
4643
4644 events->interrupt.injected =
4645 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4646 events->interrupt.nr = vcpu->arch.interrupt.nr;
4647 events->interrupt.soft = 0;
4648 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4649
4650 events->nmi.injected = vcpu->arch.nmi_injected;
4651 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4652 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4653 events->nmi.pad = 0;
4654
4655 events->sipi_vector = 0; /* never valid when reporting to user space */
4656
4657 events->smi.smm = is_smm(vcpu);
4658 events->smi.pending = vcpu->arch.smi_pending;
4659 events->smi.smm_inside_nmi =
4660 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4661 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4662
4663 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4664 | KVM_VCPUEVENT_VALID_SHADOW
4665 | KVM_VCPUEVENT_VALID_SMM);
4666 if (vcpu->kvm->arch.exception_payload_enabled)
4667 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4668
4669 memset(&events->reserved, 0, sizeof(events->reserved));
4670 }
4671
4672 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4673
4674 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4675 struct kvm_vcpu_events *events)
4676 {
4677 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4678 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4679 | KVM_VCPUEVENT_VALID_SHADOW
4680 | KVM_VCPUEVENT_VALID_SMM
4681 | KVM_VCPUEVENT_VALID_PAYLOAD))
4682 return -EINVAL;
4683
4684 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4685 if (!vcpu->kvm->arch.exception_payload_enabled)
4686 return -EINVAL;
4687 if (events->exception.pending)
4688 events->exception.injected = 0;
4689 else
4690 events->exception_has_payload = 0;
4691 } else {
4692 events->exception.pending = 0;
4693 events->exception_has_payload = 0;
4694 }
4695
4696 if ((events->exception.injected || events->exception.pending) &&
4697 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4698 return -EINVAL;
4699
4700 /* INITs are latched while in SMM */
4701 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4702 (events->smi.smm || events->smi.pending) &&
4703 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4704 return -EINVAL;
4705
4706 process_nmi(vcpu);
4707 vcpu->arch.exception.injected = events->exception.injected;
4708 vcpu->arch.exception.pending = events->exception.pending;
4709 vcpu->arch.exception.nr = events->exception.nr;
4710 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4711 vcpu->arch.exception.error_code = events->exception.error_code;
4712 vcpu->arch.exception.has_payload = events->exception_has_payload;
4713 vcpu->arch.exception.payload = events->exception_payload;
4714
4715 vcpu->arch.interrupt.injected = events->interrupt.injected;
4716 vcpu->arch.interrupt.nr = events->interrupt.nr;
4717 vcpu->arch.interrupt.soft = events->interrupt.soft;
4718 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4719 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4720 events->interrupt.shadow);
4721
4722 vcpu->arch.nmi_injected = events->nmi.injected;
4723 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4724 vcpu->arch.nmi_pending = events->nmi.pending;
4725 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4726
4727 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4728 lapic_in_kernel(vcpu))
4729 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4730
4731 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4732 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4733 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4734 kvm_smm_changed(vcpu, events->smi.smm);
4735 }
4736
4737 vcpu->arch.smi_pending = events->smi.pending;
4738
4739 if (events->smi.smm) {
4740 if (events->smi.smm_inside_nmi)
4741 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4742 else
4743 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4744 }
4745
4746 if (lapic_in_kernel(vcpu)) {
4747 if (events->smi.latched_init)
4748 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4749 else
4750 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4751 }
4752 }
4753
4754 kvm_make_request(KVM_REQ_EVENT, vcpu);
4755
4756 return 0;
4757 }
4758
4759 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4760 struct kvm_debugregs *dbgregs)
4761 {
4762 unsigned long val;
4763
4764 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4765 kvm_get_dr(vcpu, 6, &val);
4766 dbgregs->dr6 = val;
4767 dbgregs->dr7 = vcpu->arch.dr7;
4768 dbgregs->flags = 0;
4769 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4770 }
4771
4772 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4773 struct kvm_debugregs *dbgregs)
4774 {
4775 if (dbgregs->flags)
4776 return -EINVAL;
4777
4778 if (!kvm_dr6_valid(dbgregs->dr6))
4779 return -EINVAL;
4780 if (!kvm_dr7_valid(dbgregs->dr7))
4781 return -EINVAL;
4782
4783 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4784 kvm_update_dr0123(vcpu);
4785 vcpu->arch.dr6 = dbgregs->dr6;
4786 vcpu->arch.dr7 = dbgregs->dr7;
4787 kvm_update_dr7(vcpu);
4788
4789 return 0;
4790 }
4791
4792 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4793
4794 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4795 {
4796 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4797 u64 xstate_bv = xsave->header.xfeatures;
4798 u64 valid;
4799
4800 /*
4801 * Copy legacy XSAVE area, to avoid complications with CPUID
4802 * leaves 0 and 1 in the loop below.
4803 */
4804 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4805
4806 /* Set XSTATE_BV */
4807 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4808 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4809
4810 /*
4811 * Copy each region from the possibly compacted offset to the
4812 * non-compacted offset.
4813 */
4814 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4815 while (valid) {
4816 u32 size, offset, ecx, edx;
4817 u64 xfeature_mask = valid & -valid;
4818 int xfeature_nr = fls64(xfeature_mask) - 1;
4819 void *src;
4820
4821 cpuid_count(XSTATE_CPUID, xfeature_nr,
4822 &size, &offset, &ecx, &edx);
4823
4824 if (xfeature_nr == XFEATURE_PKRU) {
4825 memcpy(dest + offset, &vcpu->arch.pkru,
4826 sizeof(vcpu->arch.pkru));
4827 } else {
4828 src = get_xsave_addr(xsave, xfeature_nr);
4829 if (src)
4830 memcpy(dest + offset, src, size);
4831 }
4832
4833 valid -= xfeature_mask;
4834 }
4835 }
4836
4837 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4838 {
4839 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4840 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4841 u64 valid;
4842
4843 /*
4844 * Copy legacy XSAVE area, to avoid complications with CPUID
4845 * leaves 0 and 1 in the loop below.
4846 */
4847 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4848
4849 /* Set XSTATE_BV and possibly XCOMP_BV. */
4850 xsave->header.xfeatures = xstate_bv;
4851 if (boot_cpu_has(X86_FEATURE_XSAVES))
4852 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4853
4854 /*
4855 * Copy each region from the non-compacted offset to the
4856 * possibly compacted offset.
4857 */
4858 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4859 while (valid) {
4860 u32 size, offset, ecx, edx;
4861 u64 xfeature_mask = valid & -valid;
4862 int xfeature_nr = fls64(xfeature_mask) - 1;
4863
4864 cpuid_count(XSTATE_CPUID, xfeature_nr,
4865 &size, &offset, &ecx, &edx);
4866
4867 if (xfeature_nr == XFEATURE_PKRU) {
4868 memcpy(&vcpu->arch.pkru, src + offset,
4869 sizeof(vcpu->arch.pkru));
4870 } else {
4871 void *dest = get_xsave_addr(xsave, xfeature_nr);
4872
4873 if (dest)
4874 memcpy(dest, src + offset, size);
4875 }
4876
4877 valid -= xfeature_mask;
4878 }
4879 }
4880
4881 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4882 struct kvm_xsave *guest_xsave)
4883 {
4884 if (!vcpu->arch.guest_fpu)
4885 return;
4886
4887 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4888 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4889 fill_xsave((u8 *) guest_xsave->region, vcpu);
4890 } else {
4891 memcpy(guest_xsave->region,
4892 &vcpu->arch.guest_fpu->state.fxsave,
4893 sizeof(struct fxregs_state));
4894 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4895 XFEATURE_MASK_FPSSE;
4896 }
4897 }
4898
4899 #define XSAVE_MXCSR_OFFSET 24
4900
4901 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4902 struct kvm_xsave *guest_xsave)
4903 {
4904 u64 xstate_bv;
4905 u32 mxcsr;
4906
4907 if (!vcpu->arch.guest_fpu)
4908 return 0;
4909
4910 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4911 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4912
4913 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4914 /*
4915 * Here we allow setting states that are not present in
4916 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4917 * with old userspace.
4918 */
4919 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4920 return -EINVAL;
4921 load_xsave(vcpu, (u8 *)guest_xsave->region);
4922 } else {
4923 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4924 mxcsr & ~mxcsr_feature_mask)
4925 return -EINVAL;
4926 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4927 guest_xsave->region, sizeof(struct fxregs_state));
4928 }
4929 return 0;
4930 }
4931
4932 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4933 struct kvm_xcrs *guest_xcrs)
4934 {
4935 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4936 guest_xcrs->nr_xcrs = 0;
4937 return;
4938 }
4939
4940 guest_xcrs->nr_xcrs = 1;
4941 guest_xcrs->flags = 0;
4942 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4943 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4944 }
4945
4946 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4947 struct kvm_xcrs *guest_xcrs)
4948 {
4949 int i, r = 0;
4950
4951 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4952 return -EINVAL;
4953
4954 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4955 return -EINVAL;
4956
4957 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4958 /* Only support XCR0 currently */
4959 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4960 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4961 guest_xcrs->xcrs[i].value);
4962 break;
4963 }
4964 if (r)
4965 r = -EINVAL;
4966 return r;
4967 }
4968
4969 /*
4970 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4971 * stopped by the hypervisor. This function will be called from the host only.
4972 * EINVAL is returned when the host attempts to set the flag for a guest that
4973 * does not support pv clocks.
4974 */
4975 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4976 {
4977 if (!vcpu->arch.pv_time_enabled)
4978 return -EINVAL;
4979 vcpu->arch.pvclock_set_guest_stopped_request = true;
4980 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4981 return 0;
4982 }
4983
4984 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4985 struct kvm_enable_cap *cap)
4986 {
4987 int r;
4988 uint16_t vmcs_version;
4989 void __user *user_ptr;
4990
4991 if (cap->flags)
4992 return -EINVAL;
4993
4994 switch (cap->cap) {
4995 case KVM_CAP_HYPERV_SYNIC2:
4996 if (cap->args[0])
4997 return -EINVAL;
4998 fallthrough;
4999
5000 case KVM_CAP_HYPERV_SYNIC:
5001 if (!irqchip_in_kernel(vcpu->kvm))
5002 return -EINVAL;
5003 return kvm_hv_activate_synic(vcpu, cap->cap ==
5004 KVM_CAP_HYPERV_SYNIC2);
5005 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5006 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5007 return -ENOTTY;
5008 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5009 if (!r) {
5010 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5011 if (copy_to_user(user_ptr, &vmcs_version,
5012 sizeof(vmcs_version)))
5013 r = -EFAULT;
5014 }
5015 return r;
5016 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5017 if (!kvm_x86_ops.enable_direct_tlbflush)
5018 return -ENOTTY;
5019
5020 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5021
5022 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5023 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5024
5025 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5026 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5027 if (vcpu->arch.pv_cpuid.enforce)
5028 kvm_update_pv_runtime(vcpu);
5029
5030 return 0;
5031 default:
5032 return -EINVAL;
5033 }
5034 }
5035
5036 long kvm_arch_vcpu_ioctl(struct file *filp,
5037 unsigned int ioctl, unsigned long arg)
5038 {
5039 struct kvm_vcpu *vcpu = filp->private_data;
5040 void __user *argp = (void __user *)arg;
5041 int r;
5042 union {
5043 struct kvm_sregs2 *sregs2;
5044 struct kvm_lapic_state *lapic;
5045 struct kvm_xsave *xsave;
5046 struct kvm_xcrs *xcrs;
5047 void *buffer;
5048 } u;
5049
5050 vcpu_load(vcpu);
5051
5052 u.buffer = NULL;
5053 switch (ioctl) {
5054 case KVM_GET_LAPIC: {
5055 r = -EINVAL;
5056 if (!lapic_in_kernel(vcpu))
5057 goto out;
5058 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5059 GFP_KERNEL_ACCOUNT);
5060
5061 r = -ENOMEM;
5062 if (!u.lapic)
5063 goto out;
5064 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5065 if (r)
5066 goto out;
5067 r = -EFAULT;
5068 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5069 goto out;
5070 r = 0;
5071 break;
5072 }
5073 case KVM_SET_LAPIC: {
5074 r = -EINVAL;
5075 if (!lapic_in_kernel(vcpu))
5076 goto out;
5077 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5078 if (IS_ERR(u.lapic)) {
5079 r = PTR_ERR(u.lapic);
5080 goto out_nofree;
5081 }
5082
5083 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5084 break;
5085 }
5086 case KVM_INTERRUPT: {
5087 struct kvm_interrupt irq;
5088
5089 r = -EFAULT;
5090 if (copy_from_user(&irq, argp, sizeof(irq)))
5091 goto out;
5092 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5093 break;
5094 }
5095 case KVM_NMI: {
5096 r = kvm_vcpu_ioctl_nmi(vcpu);
5097 break;
5098 }
5099 case KVM_SMI: {
5100 r = kvm_vcpu_ioctl_smi(vcpu);
5101 break;
5102 }
5103 case KVM_SET_CPUID: {
5104 struct kvm_cpuid __user *cpuid_arg = argp;
5105 struct kvm_cpuid cpuid;
5106
5107 r = -EFAULT;
5108 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5109 goto out;
5110 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5111 break;
5112 }
5113 case KVM_SET_CPUID2: {
5114 struct kvm_cpuid2 __user *cpuid_arg = argp;
5115 struct kvm_cpuid2 cpuid;
5116
5117 r = -EFAULT;
5118 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5119 goto out;
5120 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5121 cpuid_arg->entries);
5122 break;
5123 }
5124 case KVM_GET_CPUID2: {
5125 struct kvm_cpuid2 __user *cpuid_arg = argp;
5126 struct kvm_cpuid2 cpuid;
5127
5128 r = -EFAULT;
5129 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5130 goto out;
5131 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5132 cpuid_arg->entries);
5133 if (r)
5134 goto out;
5135 r = -EFAULT;
5136 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5137 goto out;
5138 r = 0;
5139 break;
5140 }
5141 case KVM_GET_MSRS: {
5142 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5143 r = msr_io(vcpu, argp, do_get_msr, 1);
5144 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5145 break;
5146 }
5147 case KVM_SET_MSRS: {
5148 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5149 r = msr_io(vcpu, argp, do_set_msr, 0);
5150 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5151 break;
5152 }
5153 case KVM_TPR_ACCESS_REPORTING: {
5154 struct kvm_tpr_access_ctl tac;
5155
5156 r = -EFAULT;
5157 if (copy_from_user(&tac, argp, sizeof(tac)))
5158 goto out;
5159 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5160 if (r)
5161 goto out;
5162 r = -EFAULT;
5163 if (copy_to_user(argp, &tac, sizeof(tac)))
5164 goto out;
5165 r = 0;
5166 break;
5167 };
5168 case KVM_SET_VAPIC_ADDR: {
5169 struct kvm_vapic_addr va;
5170 int idx;
5171
5172 r = -EINVAL;
5173 if (!lapic_in_kernel(vcpu))
5174 goto out;
5175 r = -EFAULT;
5176 if (copy_from_user(&va, argp, sizeof(va)))
5177 goto out;
5178 idx = srcu_read_lock(&vcpu->kvm->srcu);
5179 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5180 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5181 break;
5182 }
5183 case KVM_X86_SETUP_MCE: {
5184 u64 mcg_cap;
5185
5186 r = -EFAULT;
5187 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5188 goto out;
5189 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5190 break;
5191 }
5192 case KVM_X86_SET_MCE: {
5193 struct kvm_x86_mce mce;
5194
5195 r = -EFAULT;
5196 if (copy_from_user(&mce, argp, sizeof(mce)))
5197 goto out;
5198 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5199 break;
5200 }
5201 case KVM_GET_VCPU_EVENTS: {
5202 struct kvm_vcpu_events events;
5203
5204 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5205
5206 r = -EFAULT;
5207 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5208 break;
5209 r = 0;
5210 break;
5211 }
5212 case KVM_SET_VCPU_EVENTS: {
5213 struct kvm_vcpu_events events;
5214
5215 r = -EFAULT;
5216 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5217 break;
5218
5219 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5220 break;
5221 }
5222 case KVM_GET_DEBUGREGS: {
5223 struct kvm_debugregs dbgregs;
5224
5225 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5226
5227 r = -EFAULT;
5228 if (copy_to_user(argp, &dbgregs,
5229 sizeof(struct kvm_debugregs)))
5230 break;
5231 r = 0;
5232 break;
5233 }
5234 case KVM_SET_DEBUGREGS: {
5235 struct kvm_debugregs dbgregs;
5236
5237 r = -EFAULT;
5238 if (copy_from_user(&dbgregs, argp,
5239 sizeof(struct kvm_debugregs)))
5240 break;
5241
5242 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5243 break;
5244 }
5245 case KVM_GET_XSAVE: {
5246 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5247 r = -ENOMEM;
5248 if (!u.xsave)
5249 break;
5250
5251 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5252
5253 r = -EFAULT;
5254 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5255 break;
5256 r = 0;
5257 break;
5258 }
5259 case KVM_SET_XSAVE: {
5260 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5261 if (IS_ERR(u.xsave)) {
5262 r = PTR_ERR(u.xsave);
5263 goto out_nofree;
5264 }
5265
5266 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5267 break;
5268 }
5269 case KVM_GET_XCRS: {
5270 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5271 r = -ENOMEM;
5272 if (!u.xcrs)
5273 break;
5274
5275 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5276
5277 r = -EFAULT;
5278 if (copy_to_user(argp, u.xcrs,
5279 sizeof(struct kvm_xcrs)))
5280 break;
5281 r = 0;
5282 break;
5283 }
5284 case KVM_SET_XCRS: {
5285 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5286 if (IS_ERR(u.xcrs)) {
5287 r = PTR_ERR(u.xcrs);
5288 goto out_nofree;
5289 }
5290
5291 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5292 break;
5293 }
5294 case KVM_SET_TSC_KHZ: {
5295 u32 user_tsc_khz;
5296
5297 r = -EINVAL;
5298 user_tsc_khz = (u32)arg;
5299
5300 if (kvm_has_tsc_control &&
5301 user_tsc_khz >= kvm_max_guest_tsc_khz)
5302 goto out;
5303
5304 if (user_tsc_khz == 0)
5305 user_tsc_khz = tsc_khz;
5306
5307 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5308 r = 0;
5309
5310 goto out;
5311 }
5312 case KVM_GET_TSC_KHZ: {
5313 r = vcpu->arch.virtual_tsc_khz;
5314 goto out;
5315 }
5316 case KVM_KVMCLOCK_CTRL: {
5317 r = kvm_set_guest_paused(vcpu);
5318 goto out;
5319 }
5320 case KVM_ENABLE_CAP: {
5321 struct kvm_enable_cap cap;
5322
5323 r = -EFAULT;
5324 if (copy_from_user(&cap, argp, sizeof(cap)))
5325 goto out;
5326 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5327 break;
5328 }
5329 case KVM_GET_NESTED_STATE: {
5330 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5331 u32 user_data_size;
5332
5333 r = -EINVAL;
5334 if (!kvm_x86_ops.nested_ops->get_state)
5335 break;
5336
5337 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5338 r = -EFAULT;
5339 if (get_user(user_data_size, &user_kvm_nested_state->size))
5340 break;
5341
5342 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5343 user_data_size);
5344 if (r < 0)
5345 break;
5346
5347 if (r > user_data_size) {
5348 if (put_user(r, &user_kvm_nested_state->size))
5349 r = -EFAULT;
5350 else
5351 r = -E2BIG;
5352 break;
5353 }
5354
5355 r = 0;
5356 break;
5357 }
5358 case KVM_SET_NESTED_STATE: {
5359 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5360 struct kvm_nested_state kvm_state;
5361 int idx;
5362
5363 r = -EINVAL;
5364 if (!kvm_x86_ops.nested_ops->set_state)
5365 break;
5366
5367 r = -EFAULT;
5368 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5369 break;
5370
5371 r = -EINVAL;
5372 if (kvm_state.size < sizeof(kvm_state))
5373 break;
5374
5375 if (kvm_state.flags &
5376 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5377 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5378 | KVM_STATE_NESTED_GIF_SET))
5379 break;
5380
5381 /* nested_run_pending implies guest_mode. */
5382 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5383 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5384 break;
5385
5386 idx = srcu_read_lock(&vcpu->kvm->srcu);
5387 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5388 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5389 break;
5390 }
5391 case KVM_GET_SUPPORTED_HV_CPUID:
5392 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5393 break;
5394 #ifdef CONFIG_KVM_XEN
5395 case KVM_XEN_VCPU_GET_ATTR: {
5396 struct kvm_xen_vcpu_attr xva;
5397
5398 r = -EFAULT;
5399 if (copy_from_user(&xva, argp, sizeof(xva)))
5400 goto out;
5401 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5402 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5403 r = -EFAULT;
5404 break;
5405 }
5406 case KVM_XEN_VCPU_SET_ATTR: {
5407 struct kvm_xen_vcpu_attr xva;
5408
5409 r = -EFAULT;
5410 if (copy_from_user(&xva, argp, sizeof(xva)))
5411 goto out;
5412 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5413 break;
5414 }
5415 #endif
5416 case KVM_GET_SREGS2: {
5417 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5418 r = -ENOMEM;
5419 if (!u.sregs2)
5420 goto out;
5421 __get_sregs2(vcpu, u.sregs2);
5422 r = -EFAULT;
5423 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5424 goto out;
5425 r = 0;
5426 break;
5427 }
5428 case KVM_SET_SREGS2: {
5429 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5430 if (IS_ERR(u.sregs2)) {
5431 r = PTR_ERR(u.sregs2);
5432 u.sregs2 = NULL;
5433 goto out;
5434 }
5435 r = __set_sregs2(vcpu, u.sregs2);
5436 break;
5437 }
5438 default:
5439 r = -EINVAL;
5440 }
5441 out:
5442 kfree(u.buffer);
5443 out_nofree:
5444 vcpu_put(vcpu);
5445 return r;
5446 }
5447
5448 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5449 {
5450 return VM_FAULT_SIGBUS;
5451 }
5452
5453 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5454 {
5455 int ret;
5456
5457 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5458 return -EINVAL;
5459 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5460 return ret;
5461 }
5462
5463 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5464 u64 ident_addr)
5465 {
5466 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5467 }
5468
5469 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5470 unsigned long kvm_nr_mmu_pages)
5471 {
5472 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5473 return -EINVAL;
5474
5475 mutex_lock(&kvm->slots_lock);
5476
5477 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5478 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5479
5480 mutex_unlock(&kvm->slots_lock);
5481 return 0;
5482 }
5483
5484 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5485 {
5486 return kvm->arch.n_max_mmu_pages;
5487 }
5488
5489 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5490 {
5491 struct kvm_pic *pic = kvm->arch.vpic;
5492 int r;
5493
5494 r = 0;
5495 switch (chip->chip_id) {
5496 case KVM_IRQCHIP_PIC_MASTER:
5497 memcpy(&chip->chip.pic, &pic->pics[0],
5498 sizeof(struct kvm_pic_state));
5499 break;
5500 case KVM_IRQCHIP_PIC_SLAVE:
5501 memcpy(&chip->chip.pic, &pic->pics[1],
5502 sizeof(struct kvm_pic_state));
5503 break;
5504 case KVM_IRQCHIP_IOAPIC:
5505 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5506 break;
5507 default:
5508 r = -EINVAL;
5509 break;
5510 }
5511 return r;
5512 }
5513
5514 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5515 {
5516 struct kvm_pic *pic = kvm->arch.vpic;
5517 int r;
5518
5519 r = 0;
5520 switch (chip->chip_id) {
5521 case KVM_IRQCHIP_PIC_MASTER:
5522 spin_lock(&pic->lock);
5523 memcpy(&pic->pics[0], &chip->chip.pic,
5524 sizeof(struct kvm_pic_state));
5525 spin_unlock(&pic->lock);
5526 break;
5527 case KVM_IRQCHIP_PIC_SLAVE:
5528 spin_lock(&pic->lock);
5529 memcpy(&pic->pics[1], &chip->chip.pic,
5530 sizeof(struct kvm_pic_state));
5531 spin_unlock(&pic->lock);
5532 break;
5533 case KVM_IRQCHIP_IOAPIC:
5534 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5535 break;
5536 default:
5537 r = -EINVAL;
5538 break;
5539 }
5540 kvm_pic_update_irq(pic);
5541 return r;
5542 }
5543
5544 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5545 {
5546 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5547
5548 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5549
5550 mutex_lock(&kps->lock);
5551 memcpy(ps, &kps->channels, sizeof(*ps));
5552 mutex_unlock(&kps->lock);
5553 return 0;
5554 }
5555
5556 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5557 {
5558 int i;
5559 struct kvm_pit *pit = kvm->arch.vpit;
5560
5561 mutex_lock(&pit->pit_state.lock);
5562 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5563 for (i = 0; i < 3; i++)
5564 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5565 mutex_unlock(&pit->pit_state.lock);
5566 return 0;
5567 }
5568
5569 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5570 {
5571 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5572 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5573 sizeof(ps->channels));
5574 ps->flags = kvm->arch.vpit->pit_state.flags;
5575 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5576 memset(&ps->reserved, 0, sizeof(ps->reserved));
5577 return 0;
5578 }
5579
5580 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5581 {
5582 int start = 0;
5583 int i;
5584 u32 prev_legacy, cur_legacy;
5585 struct kvm_pit *pit = kvm->arch.vpit;
5586
5587 mutex_lock(&pit->pit_state.lock);
5588 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5589 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5590 if (!prev_legacy && cur_legacy)
5591 start = 1;
5592 memcpy(&pit->pit_state.channels, &ps->channels,
5593 sizeof(pit->pit_state.channels));
5594 pit->pit_state.flags = ps->flags;
5595 for (i = 0; i < 3; i++)
5596 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5597 start && i == 0);
5598 mutex_unlock(&pit->pit_state.lock);
5599 return 0;
5600 }
5601
5602 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5603 struct kvm_reinject_control *control)
5604 {
5605 struct kvm_pit *pit = kvm->arch.vpit;
5606
5607 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5608 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5609 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5610 */
5611 mutex_lock(&pit->pit_state.lock);
5612 kvm_pit_set_reinject(pit, control->pit_reinject);
5613 mutex_unlock(&pit->pit_state.lock);
5614
5615 return 0;
5616 }
5617
5618 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5619 {
5620
5621 /*
5622 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5623 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5624 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5625 * VM-Exit.
5626 */
5627 struct kvm_vcpu *vcpu;
5628 int i;
5629
5630 kvm_for_each_vcpu(i, vcpu, kvm)
5631 kvm_vcpu_kick(vcpu);
5632 }
5633
5634 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5635 bool line_status)
5636 {
5637 if (!irqchip_in_kernel(kvm))
5638 return -ENXIO;
5639
5640 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5641 irq_event->irq, irq_event->level,
5642 line_status);
5643 return 0;
5644 }
5645
5646 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5647 struct kvm_enable_cap *cap)
5648 {
5649 int r;
5650
5651 if (cap->flags)
5652 return -EINVAL;
5653
5654 switch (cap->cap) {
5655 case KVM_CAP_DISABLE_QUIRKS:
5656 kvm->arch.disabled_quirks = cap->args[0];
5657 r = 0;
5658 break;
5659 case KVM_CAP_SPLIT_IRQCHIP: {
5660 mutex_lock(&kvm->lock);
5661 r = -EINVAL;
5662 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5663 goto split_irqchip_unlock;
5664 r = -EEXIST;
5665 if (irqchip_in_kernel(kvm))
5666 goto split_irqchip_unlock;
5667 if (kvm->created_vcpus)
5668 goto split_irqchip_unlock;
5669 r = kvm_setup_empty_irq_routing(kvm);
5670 if (r)
5671 goto split_irqchip_unlock;
5672 /* Pairs with irqchip_in_kernel. */
5673 smp_wmb();
5674 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5675 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5676 r = 0;
5677 split_irqchip_unlock:
5678 mutex_unlock(&kvm->lock);
5679 break;
5680 }
5681 case KVM_CAP_X2APIC_API:
5682 r = -EINVAL;
5683 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5684 break;
5685
5686 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5687 kvm->arch.x2apic_format = true;
5688 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5689 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5690
5691 r = 0;
5692 break;
5693 case KVM_CAP_X86_DISABLE_EXITS:
5694 r = -EINVAL;
5695 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5696 break;
5697
5698 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5699 kvm_can_mwait_in_guest())
5700 kvm->arch.mwait_in_guest = true;
5701 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5702 kvm->arch.hlt_in_guest = true;
5703 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5704 kvm->arch.pause_in_guest = true;
5705 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5706 kvm->arch.cstate_in_guest = true;
5707 r = 0;
5708 break;
5709 case KVM_CAP_MSR_PLATFORM_INFO:
5710 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5711 r = 0;
5712 break;
5713 case KVM_CAP_EXCEPTION_PAYLOAD:
5714 kvm->arch.exception_payload_enabled = cap->args[0];
5715 r = 0;
5716 break;
5717 case KVM_CAP_X86_USER_SPACE_MSR:
5718 kvm->arch.user_space_msr_mask = cap->args[0];
5719 r = 0;
5720 break;
5721 case KVM_CAP_X86_BUS_LOCK_EXIT:
5722 r = -EINVAL;
5723 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5724 break;
5725
5726 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5727 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5728 break;
5729
5730 if (kvm_has_bus_lock_exit &&
5731 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5732 kvm->arch.bus_lock_detection_enabled = true;
5733 r = 0;
5734 break;
5735 #ifdef CONFIG_X86_SGX_KVM
5736 case KVM_CAP_SGX_ATTRIBUTE: {
5737 unsigned long allowed_attributes = 0;
5738
5739 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5740 if (r)
5741 break;
5742
5743 /* KVM only supports the PROVISIONKEY privileged attribute. */
5744 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5745 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5746 kvm->arch.sgx_provisioning_allowed = true;
5747 else
5748 r = -EINVAL;
5749 break;
5750 }
5751 #endif
5752 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5753 r = -EINVAL;
5754 if (kvm_x86_ops.vm_copy_enc_context_from)
5755 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5756 return r;
5757 case KVM_CAP_EXIT_HYPERCALL:
5758 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5759 r = -EINVAL;
5760 break;
5761 }
5762 kvm->arch.hypercall_exit_enabled = cap->args[0];
5763 r = 0;
5764 break;
5765 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5766 r = -EINVAL;
5767 if (cap->args[0] & ~1)
5768 break;
5769 kvm->arch.exit_on_emulation_error = cap->args[0];
5770 r = 0;
5771 break;
5772 default:
5773 r = -EINVAL;
5774 break;
5775 }
5776 return r;
5777 }
5778
5779 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5780 {
5781 struct kvm_x86_msr_filter *msr_filter;
5782
5783 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5784 if (!msr_filter)
5785 return NULL;
5786
5787 msr_filter->default_allow = default_allow;
5788 return msr_filter;
5789 }
5790
5791 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5792 {
5793 u32 i;
5794
5795 if (!msr_filter)
5796 return;
5797
5798 for (i = 0; i < msr_filter->count; i++)
5799 kfree(msr_filter->ranges[i].bitmap);
5800
5801 kfree(msr_filter);
5802 }
5803
5804 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5805 struct kvm_msr_filter_range *user_range)
5806 {
5807 unsigned long *bitmap = NULL;
5808 size_t bitmap_size;
5809
5810 if (!user_range->nmsrs)
5811 return 0;
5812
5813 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5814 return -EINVAL;
5815
5816 if (!user_range->flags)
5817 return -EINVAL;
5818
5819 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5820 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5821 return -EINVAL;
5822
5823 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5824 if (IS_ERR(bitmap))
5825 return PTR_ERR(bitmap);
5826
5827 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5828 .flags = user_range->flags,
5829 .base = user_range->base,
5830 .nmsrs = user_range->nmsrs,
5831 .bitmap = bitmap,
5832 };
5833
5834 msr_filter->count++;
5835 return 0;
5836 }
5837
5838 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5839 {
5840 struct kvm_msr_filter __user *user_msr_filter = argp;
5841 struct kvm_x86_msr_filter *new_filter, *old_filter;
5842 struct kvm_msr_filter filter;
5843 bool default_allow;
5844 bool empty = true;
5845 int r = 0;
5846 u32 i;
5847
5848 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5849 return -EFAULT;
5850
5851 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5852 empty &= !filter.ranges[i].nmsrs;
5853
5854 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5855 if (empty && !default_allow)
5856 return -EINVAL;
5857
5858 new_filter = kvm_alloc_msr_filter(default_allow);
5859 if (!new_filter)
5860 return -ENOMEM;
5861
5862 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5863 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5864 if (r) {
5865 kvm_free_msr_filter(new_filter);
5866 return r;
5867 }
5868 }
5869
5870 mutex_lock(&kvm->lock);
5871
5872 /* The per-VM filter is protected by kvm->lock... */
5873 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5874
5875 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5876 synchronize_srcu(&kvm->srcu);
5877
5878 kvm_free_msr_filter(old_filter);
5879
5880 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5881 mutex_unlock(&kvm->lock);
5882
5883 return 0;
5884 }
5885
5886 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5887 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5888 {
5889 struct kvm_vcpu *vcpu;
5890 int i, ret = 0;
5891
5892 mutex_lock(&kvm->lock);
5893 kvm_for_each_vcpu(i, vcpu, kvm) {
5894 if (!vcpu->arch.pv_time_enabled)
5895 continue;
5896
5897 ret = kvm_set_guest_paused(vcpu);
5898 if (ret) {
5899 kvm_err("Failed to pause guest VCPU%d: %d\n",
5900 vcpu->vcpu_id, ret);
5901 break;
5902 }
5903 }
5904 mutex_unlock(&kvm->lock);
5905
5906 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5907 }
5908
5909 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5910 {
5911 switch (state) {
5912 case PM_HIBERNATION_PREPARE:
5913 case PM_SUSPEND_PREPARE:
5914 return kvm_arch_suspend_notifier(kvm);
5915 }
5916
5917 return NOTIFY_DONE;
5918 }
5919 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5920
5921 long kvm_arch_vm_ioctl(struct file *filp,
5922 unsigned int ioctl, unsigned long arg)
5923 {
5924 struct kvm *kvm = filp->private_data;
5925 void __user *argp = (void __user *)arg;
5926 int r = -ENOTTY;
5927 /*
5928 * This union makes it completely explicit to gcc-3.x
5929 * that these two variables' stack usage should be
5930 * combined, not added together.
5931 */
5932 union {
5933 struct kvm_pit_state ps;
5934 struct kvm_pit_state2 ps2;
5935 struct kvm_pit_config pit_config;
5936 } u;
5937
5938 switch (ioctl) {
5939 case KVM_SET_TSS_ADDR:
5940 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5941 break;
5942 case KVM_SET_IDENTITY_MAP_ADDR: {
5943 u64 ident_addr;
5944
5945 mutex_lock(&kvm->lock);
5946 r = -EINVAL;
5947 if (kvm->created_vcpus)
5948 goto set_identity_unlock;
5949 r = -EFAULT;
5950 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5951 goto set_identity_unlock;
5952 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5953 set_identity_unlock:
5954 mutex_unlock(&kvm->lock);
5955 break;
5956 }
5957 case KVM_SET_NR_MMU_PAGES:
5958 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5959 break;
5960 case KVM_GET_NR_MMU_PAGES:
5961 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5962 break;
5963 case KVM_CREATE_IRQCHIP: {
5964 mutex_lock(&kvm->lock);
5965
5966 r = -EEXIST;
5967 if (irqchip_in_kernel(kvm))
5968 goto create_irqchip_unlock;
5969
5970 r = -EINVAL;
5971 if (kvm->created_vcpus)
5972 goto create_irqchip_unlock;
5973
5974 r = kvm_pic_init(kvm);
5975 if (r)
5976 goto create_irqchip_unlock;
5977
5978 r = kvm_ioapic_init(kvm);
5979 if (r) {
5980 kvm_pic_destroy(kvm);
5981 goto create_irqchip_unlock;
5982 }
5983
5984 r = kvm_setup_default_irq_routing(kvm);
5985 if (r) {
5986 kvm_ioapic_destroy(kvm);
5987 kvm_pic_destroy(kvm);
5988 goto create_irqchip_unlock;
5989 }
5990 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5991 smp_wmb();
5992 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5993 create_irqchip_unlock:
5994 mutex_unlock(&kvm->lock);
5995 break;
5996 }
5997 case KVM_CREATE_PIT:
5998 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5999 goto create_pit;
6000 case KVM_CREATE_PIT2:
6001 r = -EFAULT;
6002 if (copy_from_user(&u.pit_config, argp,
6003 sizeof(struct kvm_pit_config)))
6004 goto out;
6005 create_pit:
6006 mutex_lock(&kvm->lock);
6007 r = -EEXIST;
6008 if (kvm->arch.vpit)
6009 goto create_pit_unlock;
6010 r = -ENOMEM;
6011 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6012 if (kvm->arch.vpit)
6013 r = 0;
6014 create_pit_unlock:
6015 mutex_unlock(&kvm->lock);
6016 break;
6017 case KVM_GET_IRQCHIP: {
6018 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6019 struct kvm_irqchip *chip;
6020
6021 chip = memdup_user(argp, sizeof(*chip));
6022 if (IS_ERR(chip)) {
6023 r = PTR_ERR(chip);
6024 goto out;
6025 }
6026
6027 r = -ENXIO;
6028 if (!irqchip_kernel(kvm))
6029 goto get_irqchip_out;
6030 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6031 if (r)
6032 goto get_irqchip_out;
6033 r = -EFAULT;
6034 if (copy_to_user(argp, chip, sizeof(*chip)))
6035 goto get_irqchip_out;
6036 r = 0;
6037 get_irqchip_out:
6038 kfree(chip);
6039 break;
6040 }
6041 case KVM_SET_IRQCHIP: {
6042 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6043 struct kvm_irqchip *chip;
6044
6045 chip = memdup_user(argp, sizeof(*chip));
6046 if (IS_ERR(chip)) {
6047 r = PTR_ERR(chip);
6048 goto out;
6049 }
6050
6051 r = -ENXIO;
6052 if (!irqchip_kernel(kvm))
6053 goto set_irqchip_out;
6054 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6055 set_irqchip_out:
6056 kfree(chip);
6057 break;
6058 }
6059 case KVM_GET_PIT: {
6060 r = -EFAULT;
6061 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6062 goto out;
6063 r = -ENXIO;
6064 if (!kvm->arch.vpit)
6065 goto out;
6066 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6067 if (r)
6068 goto out;
6069 r = -EFAULT;
6070 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6071 goto out;
6072 r = 0;
6073 break;
6074 }
6075 case KVM_SET_PIT: {
6076 r = -EFAULT;
6077 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6078 goto out;
6079 mutex_lock(&kvm->lock);
6080 r = -ENXIO;
6081 if (!kvm->arch.vpit)
6082 goto set_pit_out;
6083 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6084 set_pit_out:
6085 mutex_unlock(&kvm->lock);
6086 break;
6087 }
6088 case KVM_GET_PIT2: {
6089 r = -ENXIO;
6090 if (!kvm->arch.vpit)
6091 goto out;
6092 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6093 if (r)
6094 goto out;
6095 r = -EFAULT;
6096 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6097 goto out;
6098 r = 0;
6099 break;
6100 }
6101 case KVM_SET_PIT2: {
6102 r = -EFAULT;
6103 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6104 goto out;
6105 mutex_lock(&kvm->lock);
6106 r = -ENXIO;
6107 if (!kvm->arch.vpit)
6108 goto set_pit2_out;
6109 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6110 set_pit2_out:
6111 mutex_unlock(&kvm->lock);
6112 break;
6113 }
6114 case KVM_REINJECT_CONTROL: {
6115 struct kvm_reinject_control control;
6116 r = -EFAULT;
6117 if (copy_from_user(&control, argp, sizeof(control)))
6118 goto out;
6119 r = -ENXIO;
6120 if (!kvm->arch.vpit)
6121 goto out;
6122 r = kvm_vm_ioctl_reinject(kvm, &control);
6123 break;
6124 }
6125 case KVM_SET_BOOT_CPU_ID:
6126 r = 0;
6127 mutex_lock(&kvm->lock);
6128 if (kvm->created_vcpus)
6129 r = -EBUSY;
6130 else
6131 kvm->arch.bsp_vcpu_id = arg;
6132 mutex_unlock(&kvm->lock);
6133 break;
6134 #ifdef CONFIG_KVM_XEN
6135 case KVM_XEN_HVM_CONFIG: {
6136 struct kvm_xen_hvm_config xhc;
6137 r = -EFAULT;
6138 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6139 goto out;
6140 r = kvm_xen_hvm_config(kvm, &xhc);
6141 break;
6142 }
6143 case KVM_XEN_HVM_GET_ATTR: {
6144 struct kvm_xen_hvm_attr xha;
6145
6146 r = -EFAULT;
6147 if (copy_from_user(&xha, argp, sizeof(xha)))
6148 goto out;
6149 r = kvm_xen_hvm_get_attr(kvm, &xha);
6150 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6151 r = -EFAULT;
6152 break;
6153 }
6154 case KVM_XEN_HVM_SET_ATTR: {
6155 struct kvm_xen_hvm_attr xha;
6156
6157 r = -EFAULT;
6158 if (copy_from_user(&xha, argp, sizeof(xha)))
6159 goto out;
6160 r = kvm_xen_hvm_set_attr(kvm, &xha);
6161 break;
6162 }
6163 #endif
6164 case KVM_SET_CLOCK: {
6165 struct kvm_arch *ka = &kvm->arch;
6166 struct kvm_clock_data user_ns;
6167 u64 now_ns;
6168
6169 r = -EFAULT;
6170 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6171 goto out;
6172
6173 r = -EINVAL;
6174 if (user_ns.flags)
6175 goto out;
6176
6177 r = 0;
6178 /*
6179 * TODO: userspace has to take care of races with VCPU_RUN, so
6180 * kvm_gen_update_masterclock() can be cut down to locked
6181 * pvclock_update_vm_gtod_copy().
6182 */
6183 kvm_gen_update_masterclock(kvm);
6184
6185 /*
6186 * This pairs with kvm_guest_time_update(): when masterclock is
6187 * in use, we use master_kernel_ns + kvmclock_offset to set
6188 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6189 * is slightly ahead) here we risk going negative on unsigned
6190 * 'system_time' when 'user_ns.clock' is very small.
6191 */
6192 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6193 if (kvm->arch.use_master_clock)
6194 now_ns = ka->master_kernel_ns;
6195 else
6196 now_ns = get_kvmclock_base_ns();
6197 ka->kvmclock_offset = user_ns.clock - now_ns;
6198 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6199
6200 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6201 break;
6202 }
6203 case KVM_GET_CLOCK: {
6204 struct kvm_clock_data user_ns;
6205 u64 now_ns;
6206
6207 now_ns = get_kvmclock_ns(kvm);
6208 user_ns.clock = now_ns;
6209 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6210 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6211
6212 r = -EFAULT;
6213 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6214 goto out;
6215 r = 0;
6216 break;
6217 }
6218 case KVM_MEMORY_ENCRYPT_OP: {
6219 r = -ENOTTY;
6220 if (kvm_x86_ops.mem_enc_op)
6221 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6222 break;
6223 }
6224 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6225 struct kvm_enc_region region;
6226
6227 r = -EFAULT;
6228 if (copy_from_user(&region, argp, sizeof(region)))
6229 goto out;
6230
6231 r = -ENOTTY;
6232 if (kvm_x86_ops.mem_enc_reg_region)
6233 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6234 break;
6235 }
6236 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6237 struct kvm_enc_region region;
6238
6239 r = -EFAULT;
6240 if (copy_from_user(&region, argp, sizeof(region)))
6241 goto out;
6242
6243 r = -ENOTTY;
6244 if (kvm_x86_ops.mem_enc_unreg_region)
6245 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6246 break;
6247 }
6248 case KVM_HYPERV_EVENTFD: {
6249 struct kvm_hyperv_eventfd hvevfd;
6250
6251 r = -EFAULT;
6252 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6253 goto out;
6254 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6255 break;
6256 }
6257 case KVM_SET_PMU_EVENT_FILTER:
6258 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6259 break;
6260 case KVM_X86_SET_MSR_FILTER:
6261 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6262 break;
6263 default:
6264 r = -ENOTTY;
6265 }
6266 out:
6267 return r;
6268 }
6269
6270 static void kvm_init_msr_list(void)
6271 {
6272 struct x86_pmu_capability x86_pmu;
6273 u32 dummy[2];
6274 unsigned i;
6275
6276 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6277 "Please update the fixed PMCs in msrs_to_saved_all[]");
6278
6279 perf_get_x86_pmu_capability(&x86_pmu);
6280
6281 num_msrs_to_save = 0;
6282 num_emulated_msrs = 0;
6283 num_msr_based_features = 0;
6284
6285 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6286 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6287 continue;
6288
6289 /*
6290 * Even MSRs that are valid in the host may not be exposed
6291 * to the guests in some cases.
6292 */
6293 switch (msrs_to_save_all[i]) {
6294 case MSR_IA32_BNDCFGS:
6295 if (!kvm_mpx_supported())
6296 continue;
6297 break;
6298 case MSR_TSC_AUX:
6299 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6300 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6301 continue;
6302 break;
6303 case MSR_IA32_UMWAIT_CONTROL:
6304 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6305 continue;
6306 break;
6307 case MSR_IA32_RTIT_CTL:
6308 case MSR_IA32_RTIT_STATUS:
6309 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6310 continue;
6311 break;
6312 case MSR_IA32_RTIT_CR3_MATCH:
6313 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6314 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6315 continue;
6316 break;
6317 case MSR_IA32_RTIT_OUTPUT_BASE:
6318 case MSR_IA32_RTIT_OUTPUT_MASK:
6319 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6320 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6321 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6322 continue;
6323 break;
6324 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6325 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6326 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6327 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6328 continue;
6329 break;
6330 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6331 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6332 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6333 continue;
6334 break;
6335 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6336 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6337 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6338 continue;
6339 break;
6340 default:
6341 break;
6342 }
6343
6344 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6345 }
6346
6347 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6348 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6349 continue;
6350
6351 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6352 }
6353
6354 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6355 struct kvm_msr_entry msr;
6356
6357 msr.index = msr_based_features_all[i];
6358 if (kvm_get_msr_feature(&msr))
6359 continue;
6360
6361 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6362 }
6363 }
6364
6365 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6366 const void *v)
6367 {
6368 int handled = 0;
6369 int n;
6370
6371 do {
6372 n = min(len, 8);
6373 if (!(lapic_in_kernel(vcpu) &&
6374 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6375 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6376 break;
6377 handled += n;
6378 addr += n;
6379 len -= n;
6380 v += n;
6381 } while (len);
6382
6383 return handled;
6384 }
6385
6386 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6387 {
6388 int handled = 0;
6389 int n;
6390
6391 do {
6392 n = min(len, 8);
6393 if (!(lapic_in_kernel(vcpu) &&
6394 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6395 addr, n, v))
6396 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6397 break;
6398 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6399 handled += n;
6400 addr += n;
6401 len -= n;
6402 v += n;
6403 } while (len);
6404
6405 return handled;
6406 }
6407
6408 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6409 struct kvm_segment *var, int seg)
6410 {
6411 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6412 }
6413
6414 void kvm_get_segment(struct kvm_vcpu *vcpu,
6415 struct kvm_segment *var, int seg)
6416 {
6417 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6418 }
6419
6420 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6421 struct x86_exception *exception)
6422 {
6423 gpa_t t_gpa;
6424
6425 BUG_ON(!mmu_is_nested(vcpu));
6426
6427 /* NPT walks are always user-walks */
6428 access |= PFERR_USER_MASK;
6429 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6430
6431 return t_gpa;
6432 }
6433
6434 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6435 struct x86_exception *exception)
6436 {
6437 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6438 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6441
6442 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6443 struct x86_exception *exception)
6444 {
6445 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6446 access |= PFERR_FETCH_MASK;
6447 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6448 }
6449
6450 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6451 struct x86_exception *exception)
6452 {
6453 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6454 access |= PFERR_WRITE_MASK;
6455 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6456 }
6457 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6458
6459 /* uses this to access any guest's mapped memory without checking CPL */
6460 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6461 struct x86_exception *exception)
6462 {
6463 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6464 }
6465
6466 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6467 struct kvm_vcpu *vcpu, u32 access,
6468 struct x86_exception *exception)
6469 {
6470 void *data = val;
6471 int r = X86EMUL_CONTINUE;
6472
6473 while (bytes) {
6474 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6475 exception);
6476 unsigned offset = addr & (PAGE_SIZE-1);
6477 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6478 int ret;
6479
6480 if (gpa == UNMAPPED_GVA)
6481 return X86EMUL_PROPAGATE_FAULT;
6482 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6483 offset, toread);
6484 if (ret < 0) {
6485 r = X86EMUL_IO_NEEDED;
6486 goto out;
6487 }
6488
6489 bytes -= toread;
6490 data += toread;
6491 addr += toread;
6492 }
6493 out:
6494 return r;
6495 }
6496
6497 /* used for instruction fetching */
6498 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6499 gva_t addr, void *val, unsigned int bytes,
6500 struct x86_exception *exception)
6501 {
6502 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6503 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6504 unsigned offset;
6505 int ret;
6506
6507 /* Inline kvm_read_guest_virt_helper for speed. */
6508 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6509 exception);
6510 if (unlikely(gpa == UNMAPPED_GVA))
6511 return X86EMUL_PROPAGATE_FAULT;
6512
6513 offset = addr & (PAGE_SIZE-1);
6514 if (WARN_ON(offset + bytes > PAGE_SIZE))
6515 bytes = (unsigned)PAGE_SIZE - offset;
6516 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6517 offset, bytes);
6518 if (unlikely(ret < 0))
6519 return X86EMUL_IO_NEEDED;
6520
6521 return X86EMUL_CONTINUE;
6522 }
6523
6524 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6525 gva_t addr, void *val, unsigned int bytes,
6526 struct x86_exception *exception)
6527 {
6528 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6529
6530 /*
6531 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6532 * is returned, but our callers are not ready for that and they blindly
6533 * call kvm_inject_page_fault. Ensure that they at least do not leak
6534 * uninitialized kernel stack memory into cr2 and error code.
6535 */
6536 memset(exception, 0, sizeof(*exception));
6537 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6538 exception);
6539 }
6540 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6541
6542 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6543 gva_t addr, void *val, unsigned int bytes,
6544 struct x86_exception *exception, bool system)
6545 {
6546 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6547 u32 access = 0;
6548
6549 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6550 access |= PFERR_USER_MASK;
6551
6552 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6553 }
6554
6555 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6556 unsigned long addr, void *val, unsigned int bytes)
6557 {
6558 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6559 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6560
6561 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6562 }
6563
6564 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6565 struct kvm_vcpu *vcpu, u32 access,
6566 struct x86_exception *exception)
6567 {
6568 void *data = val;
6569 int r = X86EMUL_CONTINUE;
6570
6571 while (bytes) {
6572 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6573 access,
6574 exception);
6575 unsigned offset = addr & (PAGE_SIZE-1);
6576 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6577 int ret;
6578
6579 if (gpa == UNMAPPED_GVA)
6580 return X86EMUL_PROPAGATE_FAULT;
6581 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6582 if (ret < 0) {
6583 r = X86EMUL_IO_NEEDED;
6584 goto out;
6585 }
6586
6587 bytes -= towrite;
6588 data += towrite;
6589 addr += towrite;
6590 }
6591 out:
6592 return r;
6593 }
6594
6595 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6596 unsigned int bytes, struct x86_exception *exception,
6597 bool system)
6598 {
6599 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6600 u32 access = PFERR_WRITE_MASK;
6601
6602 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6603 access |= PFERR_USER_MASK;
6604
6605 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6606 access, exception);
6607 }
6608
6609 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6610 unsigned int bytes, struct x86_exception *exception)
6611 {
6612 /* kvm_write_guest_virt_system can pull in tons of pages. */
6613 vcpu->arch.l1tf_flush_l1d = true;
6614
6615 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6616 PFERR_WRITE_MASK, exception);
6617 }
6618 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6619
6620 int handle_ud(struct kvm_vcpu *vcpu)
6621 {
6622 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6623 int emul_type = EMULTYPE_TRAP_UD;
6624 char sig[5]; /* ud2; .ascii "kvm" */
6625 struct x86_exception e;
6626
6627 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6628 return 1;
6629
6630 if (force_emulation_prefix &&
6631 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6632 sig, sizeof(sig), &e) == 0 &&
6633 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6634 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6635 emul_type = EMULTYPE_TRAP_UD_FORCED;
6636 }
6637
6638 return kvm_emulate_instruction(vcpu, emul_type);
6639 }
6640 EXPORT_SYMBOL_GPL(handle_ud);
6641
6642 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6643 gpa_t gpa, bool write)
6644 {
6645 /* For APIC access vmexit */
6646 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6647 return 1;
6648
6649 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6650 trace_vcpu_match_mmio(gva, gpa, write, true);
6651 return 1;
6652 }
6653
6654 return 0;
6655 }
6656
6657 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6658 gpa_t *gpa, struct x86_exception *exception,
6659 bool write)
6660 {
6661 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6662 | (write ? PFERR_WRITE_MASK : 0);
6663
6664 /*
6665 * currently PKRU is only applied to ept enabled guest so
6666 * there is no pkey in EPT page table for L1 guest or EPT
6667 * shadow page table for L2 guest.
6668 */
6669 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6670 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6671 vcpu->arch.mmio_access, 0, access))) {
6672 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6673 (gva & (PAGE_SIZE - 1));
6674 trace_vcpu_match_mmio(gva, *gpa, write, false);
6675 return 1;
6676 }
6677
6678 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6679
6680 if (*gpa == UNMAPPED_GVA)
6681 return -1;
6682
6683 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6684 }
6685
6686 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6687 const void *val, int bytes)
6688 {
6689 int ret;
6690
6691 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6692 if (ret < 0)
6693 return 0;
6694 kvm_page_track_write(vcpu, gpa, val, bytes);
6695 return 1;
6696 }
6697
6698 struct read_write_emulator_ops {
6699 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6700 int bytes);
6701 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6702 void *val, int bytes);
6703 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6704 int bytes, void *val);
6705 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6706 void *val, int bytes);
6707 bool write;
6708 };
6709
6710 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6711 {
6712 if (vcpu->mmio_read_completed) {
6713 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6714 vcpu->mmio_fragments[0].gpa, val);
6715 vcpu->mmio_read_completed = 0;
6716 return 1;
6717 }
6718
6719 return 0;
6720 }
6721
6722 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6723 void *val, int bytes)
6724 {
6725 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6726 }
6727
6728 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6729 void *val, int bytes)
6730 {
6731 return emulator_write_phys(vcpu, gpa, val, bytes);
6732 }
6733
6734 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6735 {
6736 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6737 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6738 }
6739
6740 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6741 void *val, int bytes)
6742 {
6743 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6744 return X86EMUL_IO_NEEDED;
6745 }
6746
6747 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6748 void *val, int bytes)
6749 {
6750 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6751
6752 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6753 return X86EMUL_CONTINUE;
6754 }
6755
6756 static const struct read_write_emulator_ops read_emultor = {
6757 .read_write_prepare = read_prepare,
6758 .read_write_emulate = read_emulate,
6759 .read_write_mmio = vcpu_mmio_read,
6760 .read_write_exit_mmio = read_exit_mmio,
6761 };
6762
6763 static const struct read_write_emulator_ops write_emultor = {
6764 .read_write_emulate = write_emulate,
6765 .read_write_mmio = write_mmio,
6766 .read_write_exit_mmio = write_exit_mmio,
6767 .write = true,
6768 };
6769
6770 static int emulator_read_write_onepage(unsigned long addr, void *val,
6771 unsigned int bytes,
6772 struct x86_exception *exception,
6773 struct kvm_vcpu *vcpu,
6774 const struct read_write_emulator_ops *ops)
6775 {
6776 gpa_t gpa;
6777 int handled, ret;
6778 bool write = ops->write;
6779 struct kvm_mmio_fragment *frag;
6780 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6781
6782 /*
6783 * If the exit was due to a NPF we may already have a GPA.
6784 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6785 * Note, this cannot be used on string operations since string
6786 * operation using rep will only have the initial GPA from the NPF
6787 * occurred.
6788 */
6789 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6790 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6791 gpa = ctxt->gpa_val;
6792 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6793 } else {
6794 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6795 if (ret < 0)
6796 return X86EMUL_PROPAGATE_FAULT;
6797 }
6798
6799 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6800 return X86EMUL_CONTINUE;
6801
6802 /*
6803 * Is this MMIO handled locally?
6804 */
6805 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6806 if (handled == bytes)
6807 return X86EMUL_CONTINUE;
6808
6809 gpa += handled;
6810 bytes -= handled;
6811 val += handled;
6812
6813 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6814 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6815 frag->gpa = gpa;
6816 frag->data = val;
6817 frag->len = bytes;
6818 return X86EMUL_CONTINUE;
6819 }
6820
6821 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6822 unsigned long addr,
6823 void *val, unsigned int bytes,
6824 struct x86_exception *exception,
6825 const struct read_write_emulator_ops *ops)
6826 {
6827 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6828 gpa_t gpa;
6829 int rc;
6830
6831 if (ops->read_write_prepare &&
6832 ops->read_write_prepare(vcpu, val, bytes))
6833 return X86EMUL_CONTINUE;
6834
6835 vcpu->mmio_nr_fragments = 0;
6836
6837 /* Crossing a page boundary? */
6838 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6839 int now;
6840
6841 now = -addr & ~PAGE_MASK;
6842 rc = emulator_read_write_onepage(addr, val, now, exception,
6843 vcpu, ops);
6844
6845 if (rc != X86EMUL_CONTINUE)
6846 return rc;
6847 addr += now;
6848 if (ctxt->mode != X86EMUL_MODE_PROT64)
6849 addr = (u32)addr;
6850 val += now;
6851 bytes -= now;
6852 }
6853
6854 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6855 vcpu, ops);
6856 if (rc != X86EMUL_CONTINUE)
6857 return rc;
6858
6859 if (!vcpu->mmio_nr_fragments)
6860 return rc;
6861
6862 gpa = vcpu->mmio_fragments[0].gpa;
6863
6864 vcpu->mmio_needed = 1;
6865 vcpu->mmio_cur_fragment = 0;
6866
6867 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6868 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6869 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6870 vcpu->run->mmio.phys_addr = gpa;
6871
6872 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6873 }
6874
6875 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6876 unsigned long addr,
6877 void *val,
6878 unsigned int bytes,
6879 struct x86_exception *exception)
6880 {
6881 return emulator_read_write(ctxt, addr, val, bytes,
6882 exception, &read_emultor);
6883 }
6884
6885 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6886 unsigned long addr,
6887 const void *val,
6888 unsigned int bytes,
6889 struct x86_exception *exception)
6890 {
6891 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6892 exception, &write_emultor);
6893 }
6894
6895 #define CMPXCHG_TYPE(t, ptr, old, new) \
6896 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6897
6898 #ifdef CONFIG_X86_64
6899 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6900 #else
6901 # define CMPXCHG64(ptr, old, new) \
6902 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6903 #endif
6904
6905 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6906 unsigned long addr,
6907 const void *old,
6908 const void *new,
6909 unsigned int bytes,
6910 struct x86_exception *exception)
6911 {
6912 struct kvm_host_map map;
6913 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6914 u64 page_line_mask;
6915 gpa_t gpa;
6916 char *kaddr;
6917 bool exchanged;
6918
6919 /* guests cmpxchg8b have to be emulated atomically */
6920 if (bytes > 8 || (bytes & (bytes - 1)))
6921 goto emul_write;
6922
6923 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6924
6925 if (gpa == UNMAPPED_GVA ||
6926 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6927 goto emul_write;
6928
6929 /*
6930 * Emulate the atomic as a straight write to avoid #AC if SLD is
6931 * enabled in the host and the access splits a cache line.
6932 */
6933 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6934 page_line_mask = ~(cache_line_size() - 1);
6935 else
6936 page_line_mask = PAGE_MASK;
6937
6938 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6939 goto emul_write;
6940
6941 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6942 goto emul_write;
6943
6944 kaddr = map.hva + offset_in_page(gpa);
6945
6946 switch (bytes) {
6947 case 1:
6948 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6949 break;
6950 case 2:
6951 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6952 break;
6953 case 4:
6954 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6955 break;
6956 case 8:
6957 exchanged = CMPXCHG64(kaddr, old, new);
6958 break;
6959 default:
6960 BUG();
6961 }
6962
6963 kvm_vcpu_unmap(vcpu, &map, true);
6964
6965 if (!exchanged)
6966 return X86EMUL_CMPXCHG_FAILED;
6967
6968 kvm_page_track_write(vcpu, gpa, new, bytes);
6969
6970 return X86EMUL_CONTINUE;
6971
6972 emul_write:
6973 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6974
6975 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6976 }
6977
6978 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6979 {
6980 int r = 0, i;
6981
6982 for (i = 0; i < vcpu->arch.pio.count; i++) {
6983 if (vcpu->arch.pio.in)
6984 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6985 vcpu->arch.pio.size, pd);
6986 else
6987 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6988 vcpu->arch.pio.port, vcpu->arch.pio.size,
6989 pd);
6990 if (r)
6991 break;
6992 pd += vcpu->arch.pio.size;
6993 }
6994 return r;
6995 }
6996
6997 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6998 unsigned short port,
6999 unsigned int count, bool in)
7000 {
7001 vcpu->arch.pio.port = port;
7002 vcpu->arch.pio.in = in;
7003 vcpu->arch.pio.count = count;
7004 vcpu->arch.pio.size = size;
7005
7006 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7007 return 1;
7008
7009 vcpu->run->exit_reason = KVM_EXIT_IO;
7010 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7011 vcpu->run->io.size = size;
7012 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7013 vcpu->run->io.count = count;
7014 vcpu->run->io.port = port;
7015
7016 return 0;
7017 }
7018
7019 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7020 unsigned short port, unsigned int count)
7021 {
7022 WARN_ON(vcpu->arch.pio.count);
7023 memset(vcpu->arch.pio_data, 0, size * count);
7024 return emulator_pio_in_out(vcpu, size, port, count, true);
7025 }
7026
7027 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7028 {
7029 int size = vcpu->arch.pio.size;
7030 unsigned count = vcpu->arch.pio.count;
7031 memcpy(val, vcpu->arch.pio_data, size * count);
7032 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7033 vcpu->arch.pio.count = 0;
7034 }
7035
7036 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7037 unsigned short port, void *val, unsigned int count)
7038 {
7039 if (vcpu->arch.pio.count) {
7040 /*
7041 * Complete a previous iteration that required userspace I/O.
7042 * Note, @count isn't guaranteed to match pio.count as userspace
7043 * can modify ECX before rerunning the vCPU. Ignore any such
7044 * shenanigans as KVM doesn't support modifying the rep count,
7045 * and the emulator ensures @count doesn't overflow the buffer.
7046 */
7047 } else {
7048 int r = __emulator_pio_in(vcpu, size, port, count);
7049 if (!r)
7050 return r;
7051
7052 /* Results already available, fall through. */
7053 }
7054
7055 complete_emulator_pio_in(vcpu, val);
7056 return 1;
7057 }
7058
7059 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7060 int size, unsigned short port, void *val,
7061 unsigned int count)
7062 {
7063 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7064
7065 }
7066
7067 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7068 unsigned short port, const void *val,
7069 unsigned int count)
7070 {
7071 int ret;
7072
7073 memcpy(vcpu->arch.pio_data, val, size * count);
7074 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7075 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7076 if (ret)
7077 vcpu->arch.pio.count = 0;
7078
7079 return ret;
7080 }
7081
7082 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7083 int size, unsigned short port,
7084 const void *val, unsigned int count)
7085 {
7086 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7087 }
7088
7089 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7090 {
7091 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7092 }
7093
7094 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7095 {
7096 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7097 }
7098
7099 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7100 {
7101 if (!need_emulate_wbinvd(vcpu))
7102 return X86EMUL_CONTINUE;
7103
7104 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7105 int cpu = get_cpu();
7106
7107 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7108 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7109 wbinvd_ipi, NULL, 1);
7110 put_cpu();
7111 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7112 } else
7113 wbinvd();
7114 return X86EMUL_CONTINUE;
7115 }
7116
7117 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7118 {
7119 kvm_emulate_wbinvd_noskip(vcpu);
7120 return kvm_skip_emulated_instruction(vcpu);
7121 }
7122 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7123
7124
7125
7126 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7127 {
7128 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7129 }
7130
7131 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7132 unsigned long *dest)
7133 {
7134 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7135 }
7136
7137 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7138 unsigned long value)
7139 {
7140
7141 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7142 }
7143
7144 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7145 {
7146 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7147 }
7148
7149 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7150 {
7151 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7152 unsigned long value;
7153
7154 switch (cr) {
7155 case 0:
7156 value = kvm_read_cr0(vcpu);
7157 break;
7158 case 2:
7159 value = vcpu->arch.cr2;
7160 break;
7161 case 3:
7162 value = kvm_read_cr3(vcpu);
7163 break;
7164 case 4:
7165 value = kvm_read_cr4(vcpu);
7166 break;
7167 case 8:
7168 value = kvm_get_cr8(vcpu);
7169 break;
7170 default:
7171 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7172 return 0;
7173 }
7174
7175 return value;
7176 }
7177
7178 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7179 {
7180 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7181 int res = 0;
7182
7183 switch (cr) {
7184 case 0:
7185 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7186 break;
7187 case 2:
7188 vcpu->arch.cr2 = val;
7189 break;
7190 case 3:
7191 res = kvm_set_cr3(vcpu, val);
7192 break;
7193 case 4:
7194 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7195 break;
7196 case 8:
7197 res = kvm_set_cr8(vcpu, val);
7198 break;
7199 default:
7200 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7201 res = -1;
7202 }
7203
7204 return res;
7205 }
7206
7207 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7208 {
7209 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7210 }
7211
7212 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7213 {
7214 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7215 }
7216
7217 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7218 {
7219 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7220 }
7221
7222 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7223 {
7224 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7225 }
7226
7227 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7228 {
7229 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7230 }
7231
7232 static unsigned long emulator_get_cached_segment_base(
7233 struct x86_emulate_ctxt *ctxt, int seg)
7234 {
7235 return get_segment_base(emul_to_vcpu(ctxt), seg);
7236 }
7237
7238 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7239 struct desc_struct *desc, u32 *base3,
7240 int seg)
7241 {
7242 struct kvm_segment var;
7243
7244 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7245 *selector = var.selector;
7246
7247 if (var.unusable) {
7248 memset(desc, 0, sizeof(*desc));
7249 if (base3)
7250 *base3 = 0;
7251 return false;
7252 }
7253
7254 if (var.g)
7255 var.limit >>= 12;
7256 set_desc_limit(desc, var.limit);
7257 set_desc_base(desc, (unsigned long)var.base);
7258 #ifdef CONFIG_X86_64
7259 if (base3)
7260 *base3 = var.base >> 32;
7261 #endif
7262 desc->type = var.type;
7263 desc->s = var.s;
7264 desc->dpl = var.dpl;
7265 desc->p = var.present;
7266 desc->avl = var.avl;
7267 desc->l = var.l;
7268 desc->d = var.db;
7269 desc->g = var.g;
7270
7271 return true;
7272 }
7273
7274 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7275 struct desc_struct *desc, u32 base3,
7276 int seg)
7277 {
7278 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7279 struct kvm_segment var;
7280
7281 var.selector = selector;
7282 var.base = get_desc_base(desc);
7283 #ifdef CONFIG_X86_64
7284 var.base |= ((u64)base3) << 32;
7285 #endif
7286 var.limit = get_desc_limit(desc);
7287 if (desc->g)
7288 var.limit = (var.limit << 12) | 0xfff;
7289 var.type = desc->type;
7290 var.dpl = desc->dpl;
7291 var.db = desc->d;
7292 var.s = desc->s;
7293 var.l = desc->l;
7294 var.g = desc->g;
7295 var.avl = desc->avl;
7296 var.present = desc->p;
7297 var.unusable = !var.present;
7298 var.padding = 0;
7299
7300 kvm_set_segment(vcpu, &var, seg);
7301 return;
7302 }
7303
7304 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7305 u32 msr_index, u64 *pdata)
7306 {
7307 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7308 int r;
7309
7310 r = kvm_get_msr(vcpu, msr_index, pdata);
7311
7312 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7313 /* Bounce to user space */
7314 return X86EMUL_IO_NEEDED;
7315 }
7316
7317 return r;
7318 }
7319
7320 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7321 u32 msr_index, u64 data)
7322 {
7323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7324 int r;
7325
7326 r = kvm_set_msr(vcpu, msr_index, data);
7327
7328 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7329 /* Bounce to user space */
7330 return X86EMUL_IO_NEEDED;
7331 }
7332
7333 return r;
7334 }
7335
7336 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7337 {
7338 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7339
7340 return vcpu->arch.smbase;
7341 }
7342
7343 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7344 {
7345 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7346
7347 vcpu->arch.smbase = smbase;
7348 }
7349
7350 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7351 u32 pmc)
7352 {
7353 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7354 }
7355
7356 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7357 u32 pmc, u64 *pdata)
7358 {
7359 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7360 }
7361
7362 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7363 {
7364 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7365 }
7366
7367 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7368 struct x86_instruction_info *info,
7369 enum x86_intercept_stage stage)
7370 {
7371 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7372 &ctxt->exception);
7373 }
7374
7375 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7376 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7377 bool exact_only)
7378 {
7379 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7380 }
7381
7382 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7383 {
7384 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7385 }
7386
7387 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7388 {
7389 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7390 }
7391
7392 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7393 {
7394 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7395 }
7396
7397 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7398 {
7399 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7400 }
7401
7402 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7403 {
7404 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7405 }
7406
7407 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7408 {
7409 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7410 }
7411
7412 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7413 {
7414 return emul_to_vcpu(ctxt)->arch.hflags;
7415 }
7416
7417 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7418 {
7419 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7420
7421 kvm_smm_changed(vcpu, false);
7422 }
7423
7424 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7425 const char *smstate)
7426 {
7427 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7428 }
7429
7430 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7431 {
7432 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7433 }
7434
7435 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7436 {
7437 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7438 }
7439
7440 static const struct x86_emulate_ops emulate_ops = {
7441 .read_gpr = emulator_read_gpr,
7442 .write_gpr = emulator_write_gpr,
7443 .read_std = emulator_read_std,
7444 .write_std = emulator_write_std,
7445 .read_phys = kvm_read_guest_phys_system,
7446 .fetch = kvm_fetch_guest_virt,
7447 .read_emulated = emulator_read_emulated,
7448 .write_emulated = emulator_write_emulated,
7449 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7450 .invlpg = emulator_invlpg,
7451 .pio_in_emulated = emulator_pio_in_emulated,
7452 .pio_out_emulated = emulator_pio_out_emulated,
7453 .get_segment = emulator_get_segment,
7454 .set_segment = emulator_set_segment,
7455 .get_cached_segment_base = emulator_get_cached_segment_base,
7456 .get_gdt = emulator_get_gdt,
7457 .get_idt = emulator_get_idt,
7458 .set_gdt = emulator_set_gdt,
7459 .set_idt = emulator_set_idt,
7460 .get_cr = emulator_get_cr,
7461 .set_cr = emulator_set_cr,
7462 .cpl = emulator_get_cpl,
7463 .get_dr = emulator_get_dr,
7464 .set_dr = emulator_set_dr,
7465 .get_smbase = emulator_get_smbase,
7466 .set_smbase = emulator_set_smbase,
7467 .set_msr = emulator_set_msr,
7468 .get_msr = emulator_get_msr,
7469 .check_pmc = emulator_check_pmc,
7470 .read_pmc = emulator_read_pmc,
7471 .halt = emulator_halt,
7472 .wbinvd = emulator_wbinvd,
7473 .fix_hypercall = emulator_fix_hypercall,
7474 .intercept = emulator_intercept,
7475 .get_cpuid = emulator_get_cpuid,
7476 .guest_has_long_mode = emulator_guest_has_long_mode,
7477 .guest_has_movbe = emulator_guest_has_movbe,
7478 .guest_has_fxsr = emulator_guest_has_fxsr,
7479 .set_nmi_mask = emulator_set_nmi_mask,
7480 .get_hflags = emulator_get_hflags,
7481 .exiting_smm = emulator_exiting_smm,
7482 .leave_smm = emulator_leave_smm,
7483 .triple_fault = emulator_triple_fault,
7484 .set_xcr = emulator_set_xcr,
7485 };
7486
7487 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7488 {
7489 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7490 /*
7491 * an sti; sti; sequence only disable interrupts for the first
7492 * instruction. So, if the last instruction, be it emulated or
7493 * not, left the system with the INT_STI flag enabled, it
7494 * means that the last instruction is an sti. We should not
7495 * leave the flag on in this case. The same goes for mov ss
7496 */
7497 if (int_shadow & mask)
7498 mask = 0;
7499 if (unlikely(int_shadow || mask)) {
7500 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7501 if (!mask)
7502 kvm_make_request(KVM_REQ_EVENT, vcpu);
7503 }
7504 }
7505
7506 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7507 {
7508 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7509 if (ctxt->exception.vector == PF_VECTOR)
7510 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7511
7512 if (ctxt->exception.error_code_valid)
7513 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7514 ctxt->exception.error_code);
7515 else
7516 kvm_queue_exception(vcpu, ctxt->exception.vector);
7517 return false;
7518 }
7519
7520 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7521 {
7522 struct x86_emulate_ctxt *ctxt;
7523
7524 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7525 if (!ctxt) {
7526 pr_err("kvm: failed to allocate vcpu's emulator\n");
7527 return NULL;
7528 }
7529
7530 ctxt->vcpu = vcpu;
7531 ctxt->ops = &emulate_ops;
7532 vcpu->arch.emulate_ctxt = ctxt;
7533
7534 return ctxt;
7535 }
7536
7537 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7538 {
7539 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7540 int cs_db, cs_l;
7541
7542 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7543
7544 ctxt->gpa_available = false;
7545 ctxt->eflags = kvm_get_rflags(vcpu);
7546 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7547
7548 ctxt->eip = kvm_rip_read(vcpu);
7549 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7550 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7551 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7552 cs_db ? X86EMUL_MODE_PROT32 :
7553 X86EMUL_MODE_PROT16;
7554 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7555 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7556 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7557
7558 ctxt->interruptibility = 0;
7559 ctxt->have_exception = false;
7560 ctxt->exception.vector = -1;
7561 ctxt->perm_ok = false;
7562
7563 init_decode_cache(ctxt);
7564 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7565 }
7566
7567 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7568 {
7569 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7570 int ret;
7571
7572 init_emulate_ctxt(vcpu);
7573
7574 ctxt->op_bytes = 2;
7575 ctxt->ad_bytes = 2;
7576 ctxt->_eip = ctxt->eip + inc_eip;
7577 ret = emulate_int_real(ctxt, irq);
7578
7579 if (ret != X86EMUL_CONTINUE) {
7580 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7581 } else {
7582 ctxt->eip = ctxt->_eip;
7583 kvm_rip_write(vcpu, ctxt->eip);
7584 kvm_set_rflags(vcpu, ctxt->eflags);
7585 }
7586 }
7587 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7588
7589 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7590 {
7591 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7592 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7593 struct kvm_run *run = vcpu->run;
7594
7595 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7596 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7597 run->emulation_failure.ndata = 0;
7598 run->emulation_failure.flags = 0;
7599
7600 if (insn_size) {
7601 run->emulation_failure.ndata = 3;
7602 run->emulation_failure.flags |=
7603 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7604 run->emulation_failure.insn_size = insn_size;
7605 memset(run->emulation_failure.insn_bytes, 0x90,
7606 sizeof(run->emulation_failure.insn_bytes));
7607 memcpy(run->emulation_failure.insn_bytes,
7608 ctxt->fetch.data, insn_size);
7609 }
7610 }
7611
7612 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7613 {
7614 struct kvm *kvm = vcpu->kvm;
7615
7616 ++vcpu->stat.insn_emulation_fail;
7617 trace_kvm_emulate_insn_failed(vcpu);
7618
7619 if (emulation_type & EMULTYPE_VMWARE_GP) {
7620 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7621 return 1;
7622 }
7623
7624 if (kvm->arch.exit_on_emulation_error ||
7625 (emulation_type & EMULTYPE_SKIP)) {
7626 prepare_emulation_failure_exit(vcpu);
7627 return 0;
7628 }
7629
7630 kvm_queue_exception(vcpu, UD_VECTOR);
7631
7632 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7633 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7634 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7635 vcpu->run->internal.ndata = 0;
7636 return 0;
7637 }
7638
7639 return 1;
7640 }
7641
7642 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7643 bool write_fault_to_shadow_pgtable,
7644 int emulation_type)
7645 {
7646 gpa_t gpa = cr2_or_gpa;
7647 kvm_pfn_t pfn;
7648
7649 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7650 return false;
7651
7652 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7653 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7654 return false;
7655
7656 if (!vcpu->arch.mmu->direct_map) {
7657 /*
7658 * Write permission should be allowed since only
7659 * write access need to be emulated.
7660 */
7661 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7662
7663 /*
7664 * If the mapping is invalid in guest, let cpu retry
7665 * it to generate fault.
7666 */
7667 if (gpa == UNMAPPED_GVA)
7668 return true;
7669 }
7670
7671 /*
7672 * Do not retry the unhandleable instruction if it faults on the
7673 * readonly host memory, otherwise it will goto a infinite loop:
7674 * retry instruction -> write #PF -> emulation fail -> retry
7675 * instruction -> ...
7676 */
7677 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7678
7679 /*
7680 * If the instruction failed on the error pfn, it can not be fixed,
7681 * report the error to userspace.
7682 */
7683 if (is_error_noslot_pfn(pfn))
7684 return false;
7685
7686 kvm_release_pfn_clean(pfn);
7687
7688 /* The instructions are well-emulated on direct mmu. */
7689 if (vcpu->arch.mmu->direct_map) {
7690 unsigned int indirect_shadow_pages;
7691
7692 write_lock(&vcpu->kvm->mmu_lock);
7693 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7694 write_unlock(&vcpu->kvm->mmu_lock);
7695
7696 if (indirect_shadow_pages)
7697 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7698
7699 return true;
7700 }
7701
7702 /*
7703 * if emulation was due to access to shadowed page table
7704 * and it failed try to unshadow page and re-enter the
7705 * guest to let CPU execute the instruction.
7706 */
7707 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7708
7709 /*
7710 * If the access faults on its page table, it can not
7711 * be fixed by unprotecting shadow page and it should
7712 * be reported to userspace.
7713 */
7714 return !write_fault_to_shadow_pgtable;
7715 }
7716
7717 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7718 gpa_t cr2_or_gpa, int emulation_type)
7719 {
7720 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7721 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7722
7723 last_retry_eip = vcpu->arch.last_retry_eip;
7724 last_retry_addr = vcpu->arch.last_retry_addr;
7725
7726 /*
7727 * If the emulation is caused by #PF and it is non-page_table
7728 * writing instruction, it means the VM-EXIT is caused by shadow
7729 * page protected, we can zap the shadow page and retry this
7730 * instruction directly.
7731 *
7732 * Note: if the guest uses a non-page-table modifying instruction
7733 * on the PDE that points to the instruction, then we will unmap
7734 * the instruction and go to an infinite loop. So, we cache the
7735 * last retried eip and the last fault address, if we meet the eip
7736 * and the address again, we can break out of the potential infinite
7737 * loop.
7738 */
7739 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7740
7741 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7742 return false;
7743
7744 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7745 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7746 return false;
7747
7748 if (x86_page_table_writing_insn(ctxt))
7749 return false;
7750
7751 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7752 return false;
7753
7754 vcpu->arch.last_retry_eip = ctxt->eip;
7755 vcpu->arch.last_retry_addr = cr2_or_gpa;
7756
7757 if (!vcpu->arch.mmu->direct_map)
7758 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7759
7760 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7761
7762 return true;
7763 }
7764
7765 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7766 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7767
7768 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7769 {
7770 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7771
7772 if (entering_smm) {
7773 vcpu->arch.hflags |= HF_SMM_MASK;
7774 } else {
7775 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7776
7777 /* Process a latched INIT or SMI, if any. */
7778 kvm_make_request(KVM_REQ_EVENT, vcpu);
7779
7780 /*
7781 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7782 * on SMM exit we still need to reload them from
7783 * guest memory
7784 */
7785 vcpu->arch.pdptrs_from_userspace = false;
7786 }
7787
7788 kvm_mmu_reset_context(vcpu);
7789 }
7790
7791 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7792 unsigned long *db)
7793 {
7794 u32 dr6 = 0;
7795 int i;
7796 u32 enable, rwlen;
7797
7798 enable = dr7;
7799 rwlen = dr7 >> 16;
7800 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7801 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7802 dr6 |= (1 << i);
7803 return dr6;
7804 }
7805
7806 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7807 {
7808 struct kvm_run *kvm_run = vcpu->run;
7809
7810 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7811 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7812 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7813 kvm_run->debug.arch.exception = DB_VECTOR;
7814 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7815 return 0;
7816 }
7817 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7818 return 1;
7819 }
7820
7821 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7822 {
7823 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7824 int r;
7825
7826 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7827 if (unlikely(!r))
7828 return 0;
7829
7830 /*
7831 * rflags is the old, "raw" value of the flags. The new value has
7832 * not been saved yet.
7833 *
7834 * This is correct even for TF set by the guest, because "the
7835 * processor will not generate this exception after the instruction
7836 * that sets the TF flag".
7837 */
7838 if (unlikely(rflags & X86_EFLAGS_TF))
7839 r = kvm_vcpu_do_singlestep(vcpu);
7840 return r;
7841 }
7842 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7843
7844 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7845 {
7846 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7847 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7848 struct kvm_run *kvm_run = vcpu->run;
7849 unsigned long eip = kvm_get_linear_rip(vcpu);
7850 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7851 vcpu->arch.guest_debug_dr7,
7852 vcpu->arch.eff_db);
7853
7854 if (dr6 != 0) {
7855 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7856 kvm_run->debug.arch.pc = eip;
7857 kvm_run->debug.arch.exception = DB_VECTOR;
7858 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7859 *r = 0;
7860 return true;
7861 }
7862 }
7863
7864 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7865 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7866 unsigned long eip = kvm_get_linear_rip(vcpu);
7867 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7868 vcpu->arch.dr7,
7869 vcpu->arch.db);
7870
7871 if (dr6 != 0) {
7872 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7873 *r = 1;
7874 return true;
7875 }
7876 }
7877
7878 return false;
7879 }
7880
7881 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7882 {
7883 switch (ctxt->opcode_len) {
7884 case 1:
7885 switch (ctxt->b) {
7886 case 0xe4: /* IN */
7887 case 0xe5:
7888 case 0xec:
7889 case 0xed:
7890 case 0xe6: /* OUT */
7891 case 0xe7:
7892 case 0xee:
7893 case 0xef:
7894 case 0x6c: /* INS */
7895 case 0x6d:
7896 case 0x6e: /* OUTS */
7897 case 0x6f:
7898 return true;
7899 }
7900 break;
7901 case 2:
7902 switch (ctxt->b) {
7903 case 0x33: /* RDPMC */
7904 return true;
7905 }
7906 break;
7907 }
7908
7909 return false;
7910 }
7911
7912 /*
7913 * Decode to be emulated instruction. Return EMULATION_OK if success.
7914 */
7915 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7916 void *insn, int insn_len)
7917 {
7918 int r = EMULATION_OK;
7919 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7920
7921 init_emulate_ctxt(vcpu);
7922
7923 /*
7924 * We will reenter on the same instruction since we do not set
7925 * complete_userspace_io. This does not handle watchpoints yet,
7926 * those would be handled in the emulate_ops.
7927 */
7928 if (!(emulation_type & EMULTYPE_SKIP) &&
7929 kvm_vcpu_check_breakpoint(vcpu, &r))
7930 return r;
7931
7932 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7933
7934 trace_kvm_emulate_insn_start(vcpu);
7935 ++vcpu->stat.insn_emulation;
7936
7937 return r;
7938 }
7939 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7940
7941 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7942 int emulation_type, void *insn, int insn_len)
7943 {
7944 int r;
7945 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7946 bool writeback = true;
7947 bool write_fault_to_spt;
7948
7949 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7950 return 1;
7951
7952 vcpu->arch.l1tf_flush_l1d = true;
7953
7954 /*
7955 * Clear write_fault_to_shadow_pgtable here to ensure it is
7956 * never reused.
7957 */
7958 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7959 vcpu->arch.write_fault_to_shadow_pgtable = false;
7960
7961 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7962 kvm_clear_exception_queue(vcpu);
7963
7964 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7965 insn, insn_len);
7966 if (r != EMULATION_OK) {
7967 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7968 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7969 kvm_queue_exception(vcpu, UD_VECTOR);
7970 return 1;
7971 }
7972 if (reexecute_instruction(vcpu, cr2_or_gpa,
7973 write_fault_to_spt,
7974 emulation_type))
7975 return 1;
7976 if (ctxt->have_exception) {
7977 /*
7978 * #UD should result in just EMULATION_FAILED, and trap-like
7979 * exception should not be encountered during decode.
7980 */
7981 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7982 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7983 inject_emulated_exception(vcpu);
7984 return 1;
7985 }
7986 return handle_emulation_failure(vcpu, emulation_type);
7987 }
7988 }
7989
7990 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7991 !is_vmware_backdoor_opcode(ctxt)) {
7992 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7993 return 1;
7994 }
7995
7996 /*
7997 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7998 * for kvm_skip_emulated_instruction(). The caller is responsible for
7999 * updating interruptibility state and injecting single-step #DBs.
8000 */
8001 if (emulation_type & EMULTYPE_SKIP) {
8002 kvm_rip_write(vcpu, ctxt->_eip);
8003 if (ctxt->eflags & X86_EFLAGS_RF)
8004 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8005 return 1;
8006 }
8007
8008 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8009 return 1;
8010
8011 /* this is needed for vmware backdoor interface to work since it
8012 changes registers values during IO operation */
8013 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8014 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8015 emulator_invalidate_register_cache(ctxt);
8016 }
8017
8018 restart:
8019 if (emulation_type & EMULTYPE_PF) {
8020 /* Save the faulting GPA (cr2) in the address field */
8021 ctxt->exception.address = cr2_or_gpa;
8022
8023 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8024 if (vcpu->arch.mmu->direct_map) {
8025 ctxt->gpa_available = true;
8026 ctxt->gpa_val = cr2_or_gpa;
8027 }
8028 } else {
8029 /* Sanitize the address out of an abundance of paranoia. */
8030 ctxt->exception.address = 0;
8031 }
8032
8033 r = x86_emulate_insn(ctxt);
8034
8035 if (r == EMULATION_INTERCEPTED)
8036 return 1;
8037
8038 if (r == EMULATION_FAILED) {
8039 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8040 emulation_type))
8041 return 1;
8042
8043 return handle_emulation_failure(vcpu, emulation_type);
8044 }
8045
8046 if (ctxt->have_exception) {
8047 r = 1;
8048 if (inject_emulated_exception(vcpu))
8049 return r;
8050 } else if (vcpu->arch.pio.count) {
8051 if (!vcpu->arch.pio.in) {
8052 /* FIXME: return into emulator if single-stepping. */
8053 vcpu->arch.pio.count = 0;
8054 } else {
8055 writeback = false;
8056 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8057 }
8058 r = 0;
8059 } else if (vcpu->mmio_needed) {
8060 ++vcpu->stat.mmio_exits;
8061
8062 if (!vcpu->mmio_is_write)
8063 writeback = false;
8064 r = 0;
8065 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8066 } else if (r == EMULATION_RESTART)
8067 goto restart;
8068 else
8069 r = 1;
8070
8071 if (writeback) {
8072 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8073 toggle_interruptibility(vcpu, ctxt->interruptibility);
8074 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8075 if (!ctxt->have_exception ||
8076 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8077 kvm_rip_write(vcpu, ctxt->eip);
8078 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8079 r = kvm_vcpu_do_singlestep(vcpu);
8080 if (kvm_x86_ops.update_emulated_instruction)
8081 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8082 __kvm_set_rflags(vcpu, ctxt->eflags);
8083 }
8084
8085 /*
8086 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8087 * do nothing, and it will be requested again as soon as
8088 * the shadow expires. But we still need to check here,
8089 * because POPF has no interrupt shadow.
8090 */
8091 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8092 kvm_make_request(KVM_REQ_EVENT, vcpu);
8093 } else
8094 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8095
8096 return r;
8097 }
8098
8099 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8100 {
8101 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8102 }
8103 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8104
8105 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8106 void *insn, int insn_len)
8107 {
8108 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8109 }
8110 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8111
8112 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8113 {
8114 vcpu->arch.pio.count = 0;
8115 return 1;
8116 }
8117
8118 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8119 {
8120 vcpu->arch.pio.count = 0;
8121
8122 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8123 return 1;
8124
8125 return kvm_skip_emulated_instruction(vcpu);
8126 }
8127
8128 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8129 unsigned short port)
8130 {
8131 unsigned long val = kvm_rax_read(vcpu);
8132 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8133
8134 if (ret)
8135 return ret;
8136
8137 /*
8138 * Workaround userspace that relies on old KVM behavior of %rip being
8139 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8140 */
8141 if (port == 0x7e &&
8142 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8143 vcpu->arch.complete_userspace_io =
8144 complete_fast_pio_out_port_0x7e;
8145 kvm_skip_emulated_instruction(vcpu);
8146 } else {
8147 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8148 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8149 }
8150 return 0;
8151 }
8152
8153 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8154 {
8155 unsigned long val;
8156
8157 /* We should only ever be called with arch.pio.count equal to 1 */
8158 BUG_ON(vcpu->arch.pio.count != 1);
8159
8160 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8161 vcpu->arch.pio.count = 0;
8162 return 1;
8163 }
8164
8165 /* For size less than 4 we merge, else we zero extend */
8166 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8167
8168 /*
8169 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8170 * the copy and tracing
8171 */
8172 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8173 kvm_rax_write(vcpu, val);
8174
8175 return kvm_skip_emulated_instruction(vcpu);
8176 }
8177
8178 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8179 unsigned short port)
8180 {
8181 unsigned long val;
8182 int ret;
8183
8184 /* For size less than 4 we merge, else we zero extend */
8185 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8186
8187 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8188 if (ret) {
8189 kvm_rax_write(vcpu, val);
8190 return ret;
8191 }
8192
8193 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8194 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8195
8196 return 0;
8197 }
8198
8199 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8200 {
8201 int ret;
8202
8203 if (in)
8204 ret = kvm_fast_pio_in(vcpu, size, port);
8205 else
8206 ret = kvm_fast_pio_out(vcpu, size, port);
8207 return ret && kvm_skip_emulated_instruction(vcpu);
8208 }
8209 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8210
8211 static int kvmclock_cpu_down_prep(unsigned int cpu)
8212 {
8213 __this_cpu_write(cpu_tsc_khz, 0);
8214 return 0;
8215 }
8216
8217 static void tsc_khz_changed(void *data)
8218 {
8219 struct cpufreq_freqs *freq = data;
8220 unsigned long khz = 0;
8221
8222 if (data)
8223 khz = freq->new;
8224 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8225 khz = cpufreq_quick_get(raw_smp_processor_id());
8226 if (!khz)
8227 khz = tsc_khz;
8228 __this_cpu_write(cpu_tsc_khz, khz);
8229 }
8230
8231 #ifdef CONFIG_X86_64
8232 static void kvm_hyperv_tsc_notifier(void)
8233 {
8234 struct kvm *kvm;
8235 struct kvm_vcpu *vcpu;
8236 int cpu;
8237 unsigned long flags;
8238
8239 mutex_lock(&kvm_lock);
8240 list_for_each_entry(kvm, &vm_list, vm_list)
8241 kvm_make_mclock_inprogress_request(kvm);
8242
8243 hyperv_stop_tsc_emulation();
8244
8245 /* TSC frequency always matches when on Hyper-V */
8246 for_each_present_cpu(cpu)
8247 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8248 kvm_max_guest_tsc_khz = tsc_khz;
8249
8250 list_for_each_entry(kvm, &vm_list, vm_list) {
8251 struct kvm_arch *ka = &kvm->arch;
8252
8253 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8254 pvclock_update_vm_gtod_copy(kvm);
8255 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8256
8257 kvm_for_each_vcpu(cpu, vcpu, kvm)
8258 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8259
8260 kvm_for_each_vcpu(cpu, vcpu, kvm)
8261 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8262 }
8263 mutex_unlock(&kvm_lock);
8264 }
8265 #endif
8266
8267 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8268 {
8269 struct kvm *kvm;
8270 struct kvm_vcpu *vcpu;
8271 int i, send_ipi = 0;
8272
8273 /*
8274 * We allow guests to temporarily run on slowing clocks,
8275 * provided we notify them after, or to run on accelerating
8276 * clocks, provided we notify them before. Thus time never
8277 * goes backwards.
8278 *
8279 * However, we have a problem. We can't atomically update
8280 * the frequency of a given CPU from this function; it is
8281 * merely a notifier, which can be called from any CPU.
8282 * Changing the TSC frequency at arbitrary points in time
8283 * requires a recomputation of local variables related to
8284 * the TSC for each VCPU. We must flag these local variables
8285 * to be updated and be sure the update takes place with the
8286 * new frequency before any guests proceed.
8287 *
8288 * Unfortunately, the combination of hotplug CPU and frequency
8289 * change creates an intractable locking scenario; the order
8290 * of when these callouts happen is undefined with respect to
8291 * CPU hotplug, and they can race with each other. As such,
8292 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8293 * undefined; you can actually have a CPU frequency change take
8294 * place in between the computation of X and the setting of the
8295 * variable. To protect against this problem, all updates of
8296 * the per_cpu tsc_khz variable are done in an interrupt
8297 * protected IPI, and all callers wishing to update the value
8298 * must wait for a synchronous IPI to complete (which is trivial
8299 * if the caller is on the CPU already). This establishes the
8300 * necessary total order on variable updates.
8301 *
8302 * Note that because a guest time update may take place
8303 * anytime after the setting of the VCPU's request bit, the
8304 * correct TSC value must be set before the request. However,
8305 * to ensure the update actually makes it to any guest which
8306 * starts running in hardware virtualization between the set
8307 * and the acquisition of the spinlock, we must also ping the
8308 * CPU after setting the request bit.
8309 *
8310 */
8311
8312 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8313
8314 mutex_lock(&kvm_lock);
8315 list_for_each_entry(kvm, &vm_list, vm_list) {
8316 kvm_for_each_vcpu(i, vcpu, kvm) {
8317 if (vcpu->cpu != cpu)
8318 continue;
8319 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8320 if (vcpu->cpu != raw_smp_processor_id())
8321 send_ipi = 1;
8322 }
8323 }
8324 mutex_unlock(&kvm_lock);
8325
8326 if (freq->old < freq->new && send_ipi) {
8327 /*
8328 * We upscale the frequency. Must make the guest
8329 * doesn't see old kvmclock values while running with
8330 * the new frequency, otherwise we risk the guest sees
8331 * time go backwards.
8332 *
8333 * In case we update the frequency for another cpu
8334 * (which might be in guest context) send an interrupt
8335 * to kick the cpu out of guest context. Next time
8336 * guest context is entered kvmclock will be updated,
8337 * so the guest will not see stale values.
8338 */
8339 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8340 }
8341 }
8342
8343 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8344 void *data)
8345 {
8346 struct cpufreq_freqs *freq = data;
8347 int cpu;
8348
8349 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8350 return 0;
8351 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8352 return 0;
8353
8354 for_each_cpu(cpu, freq->policy->cpus)
8355 __kvmclock_cpufreq_notifier(freq, cpu);
8356
8357 return 0;
8358 }
8359
8360 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8361 .notifier_call = kvmclock_cpufreq_notifier
8362 };
8363
8364 static int kvmclock_cpu_online(unsigned int cpu)
8365 {
8366 tsc_khz_changed(NULL);
8367 return 0;
8368 }
8369
8370 static void kvm_timer_init(void)
8371 {
8372 max_tsc_khz = tsc_khz;
8373
8374 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8375 #ifdef CONFIG_CPU_FREQ
8376 struct cpufreq_policy *policy;
8377 int cpu;
8378
8379 cpu = get_cpu();
8380 policy = cpufreq_cpu_get(cpu);
8381 if (policy) {
8382 if (policy->cpuinfo.max_freq)
8383 max_tsc_khz = policy->cpuinfo.max_freq;
8384 cpufreq_cpu_put(policy);
8385 }
8386 put_cpu();
8387 #endif
8388 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8389 CPUFREQ_TRANSITION_NOTIFIER);
8390 }
8391
8392 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8393 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8394 }
8395
8396 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8397 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8398
8399 int kvm_is_in_guest(void)
8400 {
8401 return __this_cpu_read(current_vcpu) != NULL;
8402 }
8403
8404 static int kvm_is_user_mode(void)
8405 {
8406 int user_mode = 3;
8407
8408 if (__this_cpu_read(current_vcpu))
8409 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8410
8411 return user_mode != 0;
8412 }
8413
8414 static unsigned long kvm_get_guest_ip(void)
8415 {
8416 unsigned long ip = 0;
8417
8418 if (__this_cpu_read(current_vcpu))
8419 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8420
8421 return ip;
8422 }
8423
8424 static void kvm_handle_intel_pt_intr(void)
8425 {
8426 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8427
8428 kvm_make_request(KVM_REQ_PMI, vcpu);
8429 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8430 (unsigned long *)&vcpu->arch.pmu.global_status);
8431 }
8432
8433 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8434 .is_in_guest = kvm_is_in_guest,
8435 .is_user_mode = kvm_is_user_mode,
8436 .get_guest_ip = kvm_get_guest_ip,
8437 .handle_intel_pt_intr = NULL,
8438 };
8439
8440 #ifdef CONFIG_X86_64
8441 static void pvclock_gtod_update_fn(struct work_struct *work)
8442 {
8443 struct kvm *kvm;
8444
8445 struct kvm_vcpu *vcpu;
8446 int i;
8447
8448 mutex_lock(&kvm_lock);
8449 list_for_each_entry(kvm, &vm_list, vm_list)
8450 kvm_for_each_vcpu(i, vcpu, kvm)
8451 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8452 atomic_set(&kvm_guest_has_master_clock, 0);
8453 mutex_unlock(&kvm_lock);
8454 }
8455
8456 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8457
8458 /*
8459 * Indirection to move queue_work() out of the tk_core.seq write held
8460 * region to prevent possible deadlocks against time accessors which
8461 * are invoked with work related locks held.
8462 */
8463 static void pvclock_irq_work_fn(struct irq_work *w)
8464 {
8465 queue_work(system_long_wq, &pvclock_gtod_work);
8466 }
8467
8468 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8469
8470 /*
8471 * Notification about pvclock gtod data update.
8472 */
8473 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8474 void *priv)
8475 {
8476 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8477 struct timekeeper *tk = priv;
8478
8479 update_pvclock_gtod(tk);
8480
8481 /*
8482 * Disable master clock if host does not trust, or does not use,
8483 * TSC based clocksource. Delegate queue_work() to irq_work as
8484 * this is invoked with tk_core.seq write held.
8485 */
8486 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8487 atomic_read(&kvm_guest_has_master_clock) != 0)
8488 irq_work_queue(&pvclock_irq_work);
8489 return 0;
8490 }
8491
8492 static struct notifier_block pvclock_gtod_notifier = {
8493 .notifier_call = pvclock_gtod_notify,
8494 };
8495 #endif
8496
8497 int kvm_arch_init(void *opaque)
8498 {
8499 struct kvm_x86_init_ops *ops = opaque;
8500 int r;
8501
8502 if (kvm_x86_ops.hardware_enable) {
8503 printk(KERN_ERR "kvm: already loaded the other module\n");
8504 r = -EEXIST;
8505 goto out;
8506 }
8507
8508 if (!ops->cpu_has_kvm_support()) {
8509 pr_err_ratelimited("kvm: no hardware support\n");
8510 r = -EOPNOTSUPP;
8511 goto out;
8512 }
8513 if (ops->disabled_by_bios()) {
8514 pr_warn_ratelimited("kvm: disabled by bios\n");
8515 r = -EOPNOTSUPP;
8516 goto out;
8517 }
8518
8519 /*
8520 * KVM explicitly assumes that the guest has an FPU and
8521 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8522 * vCPU's FPU state as a fxregs_state struct.
8523 */
8524 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8525 printk(KERN_ERR "kvm: inadequate fpu\n");
8526 r = -EOPNOTSUPP;
8527 goto out;
8528 }
8529
8530 r = -ENOMEM;
8531 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8532 __alignof__(struct fpu), SLAB_ACCOUNT,
8533 NULL);
8534 if (!x86_fpu_cache) {
8535 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8536 goto out;
8537 }
8538
8539 x86_emulator_cache = kvm_alloc_emulator_cache();
8540 if (!x86_emulator_cache) {
8541 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8542 goto out_free_x86_fpu_cache;
8543 }
8544
8545 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8546 if (!user_return_msrs) {
8547 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8548 goto out_free_x86_emulator_cache;
8549 }
8550 kvm_nr_uret_msrs = 0;
8551
8552 r = kvm_mmu_module_init();
8553 if (r)
8554 goto out_free_percpu;
8555
8556 kvm_timer_init();
8557
8558 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8559 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8560 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8561 }
8562
8563 if (pi_inject_timer == -1)
8564 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8565 #ifdef CONFIG_X86_64
8566 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8567
8568 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8569 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8570 #endif
8571
8572 return 0;
8573
8574 out_free_percpu:
8575 free_percpu(user_return_msrs);
8576 out_free_x86_emulator_cache:
8577 kmem_cache_destroy(x86_emulator_cache);
8578 out_free_x86_fpu_cache:
8579 kmem_cache_destroy(x86_fpu_cache);
8580 out:
8581 return r;
8582 }
8583
8584 void kvm_arch_exit(void)
8585 {
8586 #ifdef CONFIG_X86_64
8587 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8588 clear_hv_tscchange_cb();
8589 #endif
8590 kvm_lapic_exit();
8591
8592 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8593 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8594 CPUFREQ_TRANSITION_NOTIFIER);
8595 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8596 #ifdef CONFIG_X86_64
8597 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8598 irq_work_sync(&pvclock_irq_work);
8599 cancel_work_sync(&pvclock_gtod_work);
8600 #endif
8601 kvm_x86_ops.hardware_enable = NULL;
8602 kvm_mmu_module_exit();
8603 free_percpu(user_return_msrs);
8604 kmem_cache_destroy(x86_emulator_cache);
8605 kmem_cache_destroy(x86_fpu_cache);
8606 #ifdef CONFIG_KVM_XEN
8607 static_key_deferred_flush(&kvm_xen_enabled);
8608 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8609 #endif
8610 }
8611
8612 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8613 {
8614 ++vcpu->stat.halt_exits;
8615 if (lapic_in_kernel(vcpu)) {
8616 vcpu->arch.mp_state = state;
8617 return 1;
8618 } else {
8619 vcpu->run->exit_reason = reason;
8620 return 0;
8621 }
8622 }
8623
8624 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8625 {
8626 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8627 }
8628 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8629
8630 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8631 {
8632 int ret = kvm_skip_emulated_instruction(vcpu);
8633 /*
8634 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8635 * KVM_EXIT_DEBUG here.
8636 */
8637 return kvm_vcpu_halt(vcpu) && ret;
8638 }
8639 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8640
8641 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8642 {
8643 int ret = kvm_skip_emulated_instruction(vcpu);
8644
8645 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8646 }
8647 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8648
8649 #ifdef CONFIG_X86_64
8650 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8651 unsigned long clock_type)
8652 {
8653 struct kvm_clock_pairing clock_pairing;
8654 struct timespec64 ts;
8655 u64 cycle;
8656 int ret;
8657
8658 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8659 return -KVM_EOPNOTSUPP;
8660
8661 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8662 return -KVM_EOPNOTSUPP;
8663
8664 clock_pairing.sec = ts.tv_sec;
8665 clock_pairing.nsec = ts.tv_nsec;
8666 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8667 clock_pairing.flags = 0;
8668 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8669
8670 ret = 0;
8671 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8672 sizeof(struct kvm_clock_pairing)))
8673 ret = -KVM_EFAULT;
8674
8675 return ret;
8676 }
8677 #endif
8678
8679 /*
8680 * kvm_pv_kick_cpu_op: Kick a vcpu.
8681 *
8682 * @apicid - apicid of vcpu to be kicked.
8683 */
8684 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8685 {
8686 struct kvm_lapic_irq lapic_irq;
8687
8688 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8689 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8690 lapic_irq.level = 0;
8691 lapic_irq.dest_id = apicid;
8692 lapic_irq.msi_redir_hint = false;
8693
8694 lapic_irq.delivery_mode = APIC_DM_REMRD;
8695 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8696 }
8697
8698 bool kvm_apicv_activated(struct kvm *kvm)
8699 {
8700 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8701 }
8702 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8703
8704 static void kvm_apicv_init(struct kvm *kvm)
8705 {
8706 mutex_init(&kvm->arch.apicv_update_lock);
8707
8708 if (enable_apicv)
8709 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8710 &kvm->arch.apicv_inhibit_reasons);
8711 else
8712 set_bit(APICV_INHIBIT_REASON_DISABLE,
8713 &kvm->arch.apicv_inhibit_reasons);
8714 }
8715
8716 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8717 {
8718 struct kvm_vcpu *target = NULL;
8719 struct kvm_apic_map *map;
8720
8721 vcpu->stat.directed_yield_attempted++;
8722
8723 if (single_task_running())
8724 goto no_yield;
8725
8726 rcu_read_lock();
8727 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8728
8729 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8730 target = map->phys_map[dest_id]->vcpu;
8731
8732 rcu_read_unlock();
8733
8734 if (!target || !READ_ONCE(target->ready))
8735 goto no_yield;
8736
8737 /* Ignore requests to yield to self */
8738 if (vcpu == target)
8739 goto no_yield;
8740
8741 if (kvm_vcpu_yield_to(target) <= 0)
8742 goto no_yield;
8743
8744 vcpu->stat.directed_yield_successful++;
8745
8746 no_yield:
8747 return;
8748 }
8749
8750 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8751 {
8752 u64 ret = vcpu->run->hypercall.ret;
8753
8754 if (!is_64_bit_mode(vcpu))
8755 ret = (u32)ret;
8756 kvm_rax_write(vcpu, ret);
8757 ++vcpu->stat.hypercalls;
8758 return kvm_skip_emulated_instruction(vcpu);
8759 }
8760
8761 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8762 {
8763 unsigned long nr, a0, a1, a2, a3, ret;
8764 int op_64_bit;
8765
8766 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8767 return kvm_xen_hypercall(vcpu);
8768
8769 if (kvm_hv_hypercall_enabled(vcpu))
8770 return kvm_hv_hypercall(vcpu);
8771
8772 nr = kvm_rax_read(vcpu);
8773 a0 = kvm_rbx_read(vcpu);
8774 a1 = kvm_rcx_read(vcpu);
8775 a2 = kvm_rdx_read(vcpu);
8776 a3 = kvm_rsi_read(vcpu);
8777
8778 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8779
8780 op_64_bit = is_64_bit_hypercall(vcpu);
8781 if (!op_64_bit) {
8782 nr &= 0xFFFFFFFF;
8783 a0 &= 0xFFFFFFFF;
8784 a1 &= 0xFFFFFFFF;
8785 a2 &= 0xFFFFFFFF;
8786 a3 &= 0xFFFFFFFF;
8787 }
8788
8789 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8790 ret = -KVM_EPERM;
8791 goto out;
8792 }
8793
8794 ret = -KVM_ENOSYS;
8795
8796 switch (nr) {
8797 case KVM_HC_VAPIC_POLL_IRQ:
8798 ret = 0;
8799 break;
8800 case KVM_HC_KICK_CPU:
8801 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8802 break;
8803
8804 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8805 kvm_sched_yield(vcpu, a1);
8806 ret = 0;
8807 break;
8808 #ifdef CONFIG_X86_64
8809 case KVM_HC_CLOCK_PAIRING:
8810 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8811 break;
8812 #endif
8813 case KVM_HC_SEND_IPI:
8814 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8815 break;
8816
8817 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8818 break;
8819 case KVM_HC_SCHED_YIELD:
8820 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8821 break;
8822
8823 kvm_sched_yield(vcpu, a0);
8824 ret = 0;
8825 break;
8826 case KVM_HC_MAP_GPA_RANGE: {
8827 u64 gpa = a0, npages = a1, attrs = a2;
8828
8829 ret = -KVM_ENOSYS;
8830 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8831 break;
8832
8833 if (!PAGE_ALIGNED(gpa) || !npages ||
8834 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8835 ret = -KVM_EINVAL;
8836 break;
8837 }
8838
8839 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8840 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8841 vcpu->run->hypercall.args[0] = gpa;
8842 vcpu->run->hypercall.args[1] = npages;
8843 vcpu->run->hypercall.args[2] = attrs;
8844 vcpu->run->hypercall.longmode = op_64_bit;
8845 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8846 return 0;
8847 }
8848 default:
8849 ret = -KVM_ENOSYS;
8850 break;
8851 }
8852 out:
8853 if (!op_64_bit)
8854 ret = (u32)ret;
8855 kvm_rax_write(vcpu, ret);
8856
8857 ++vcpu->stat.hypercalls;
8858 return kvm_skip_emulated_instruction(vcpu);
8859 }
8860 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8861
8862 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8863 {
8864 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8865 char instruction[3];
8866 unsigned long rip = kvm_rip_read(vcpu);
8867
8868 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8869
8870 return emulator_write_emulated(ctxt, rip, instruction, 3,
8871 &ctxt->exception);
8872 }
8873
8874 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8875 {
8876 return vcpu->run->request_interrupt_window &&
8877 likely(!pic_in_kernel(vcpu->kvm));
8878 }
8879
8880 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8881 {
8882 struct kvm_run *kvm_run = vcpu->run;
8883
8884 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
8885 kvm_run->cr8 = kvm_get_cr8(vcpu);
8886 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8887
8888 /*
8889 * The call to kvm_ready_for_interrupt_injection() may end up in
8890 * kvm_xen_has_interrupt() which may require the srcu lock to be
8891 * held, to protect against changes in the vcpu_info address.
8892 */
8893 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8894 kvm_run->ready_for_interrupt_injection =
8895 pic_in_kernel(vcpu->kvm) ||
8896 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8897 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8898
8899 if (is_smm(vcpu))
8900 kvm_run->flags |= KVM_RUN_X86_SMM;
8901 }
8902
8903 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8904 {
8905 int max_irr, tpr;
8906
8907 if (!kvm_x86_ops.update_cr8_intercept)
8908 return;
8909
8910 if (!lapic_in_kernel(vcpu))
8911 return;
8912
8913 if (vcpu->arch.apicv_active)
8914 return;
8915
8916 if (!vcpu->arch.apic->vapic_addr)
8917 max_irr = kvm_lapic_find_highest_irr(vcpu);
8918 else
8919 max_irr = -1;
8920
8921 if (max_irr != -1)
8922 max_irr >>= 4;
8923
8924 tpr = kvm_lapic_get_cr8(vcpu);
8925
8926 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8927 }
8928
8929
8930 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8931 {
8932 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8933 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8934 return 1;
8935 }
8936
8937 return kvm_x86_ops.nested_ops->check_events(vcpu);
8938 }
8939
8940 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8941 {
8942 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8943 vcpu->arch.exception.error_code = false;
8944 static_call(kvm_x86_queue_exception)(vcpu);
8945 }
8946
8947 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8948 {
8949 int r;
8950 bool can_inject = true;
8951
8952 /* try to reinject previous events if any */
8953
8954 if (vcpu->arch.exception.injected) {
8955 kvm_inject_exception(vcpu);
8956 can_inject = false;
8957 }
8958 /*
8959 * Do not inject an NMI or interrupt if there is a pending
8960 * exception. Exceptions and interrupts are recognized at
8961 * instruction boundaries, i.e. the start of an instruction.
8962 * Trap-like exceptions, e.g. #DB, have higher priority than
8963 * NMIs and interrupts, i.e. traps are recognized before an
8964 * NMI/interrupt that's pending on the same instruction.
8965 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8966 * priority, but are only generated (pended) during instruction
8967 * execution, i.e. a pending fault-like exception means the
8968 * fault occurred on the *previous* instruction and must be
8969 * serviced prior to recognizing any new events in order to
8970 * fully complete the previous instruction.
8971 */
8972 else if (!vcpu->arch.exception.pending) {
8973 if (vcpu->arch.nmi_injected) {
8974 static_call(kvm_x86_set_nmi)(vcpu);
8975 can_inject = false;
8976 } else if (vcpu->arch.interrupt.injected) {
8977 static_call(kvm_x86_set_irq)(vcpu);
8978 can_inject = false;
8979 }
8980 }
8981
8982 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8983 vcpu->arch.exception.pending);
8984
8985 /*
8986 * Call check_nested_events() even if we reinjected a previous event
8987 * in order for caller to determine if it should require immediate-exit
8988 * from L2 to L1 due to pending L1 events which require exit
8989 * from L2 to L1.
8990 */
8991 if (is_guest_mode(vcpu)) {
8992 r = kvm_check_nested_events(vcpu);
8993 if (r < 0)
8994 goto out;
8995 }
8996
8997 /* try to inject new event if pending */
8998 if (vcpu->arch.exception.pending) {
8999 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9000 vcpu->arch.exception.has_error_code,
9001 vcpu->arch.exception.error_code);
9002
9003 vcpu->arch.exception.pending = false;
9004 vcpu->arch.exception.injected = true;
9005
9006 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9007 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9008 X86_EFLAGS_RF);
9009
9010 if (vcpu->arch.exception.nr == DB_VECTOR) {
9011 kvm_deliver_exception_payload(vcpu);
9012 if (vcpu->arch.dr7 & DR7_GD) {
9013 vcpu->arch.dr7 &= ~DR7_GD;
9014 kvm_update_dr7(vcpu);
9015 }
9016 }
9017
9018 kvm_inject_exception(vcpu);
9019 can_inject = false;
9020 }
9021
9022 /* Don't inject interrupts if the user asked to avoid doing so */
9023 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9024 return 0;
9025
9026 /*
9027 * Finally, inject interrupt events. If an event cannot be injected
9028 * due to architectural conditions (e.g. IF=0) a window-open exit
9029 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9030 * and can architecturally be injected, but we cannot do it right now:
9031 * an interrupt could have arrived just now and we have to inject it
9032 * as a vmexit, or there could already an event in the queue, which is
9033 * indicated by can_inject. In that case we request an immediate exit
9034 * in order to make progress and get back here for another iteration.
9035 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9036 */
9037 if (vcpu->arch.smi_pending) {
9038 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9039 if (r < 0)
9040 goto out;
9041 if (r) {
9042 vcpu->arch.smi_pending = false;
9043 ++vcpu->arch.smi_count;
9044 enter_smm(vcpu);
9045 can_inject = false;
9046 } else
9047 static_call(kvm_x86_enable_smi_window)(vcpu);
9048 }
9049
9050 if (vcpu->arch.nmi_pending) {
9051 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9052 if (r < 0)
9053 goto out;
9054 if (r) {
9055 --vcpu->arch.nmi_pending;
9056 vcpu->arch.nmi_injected = true;
9057 static_call(kvm_x86_set_nmi)(vcpu);
9058 can_inject = false;
9059 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9060 }
9061 if (vcpu->arch.nmi_pending)
9062 static_call(kvm_x86_enable_nmi_window)(vcpu);
9063 }
9064
9065 if (kvm_cpu_has_injectable_intr(vcpu)) {
9066 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9067 if (r < 0)
9068 goto out;
9069 if (r) {
9070 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9071 static_call(kvm_x86_set_irq)(vcpu);
9072 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9073 }
9074 if (kvm_cpu_has_injectable_intr(vcpu))
9075 static_call(kvm_x86_enable_irq_window)(vcpu);
9076 }
9077
9078 if (is_guest_mode(vcpu) &&
9079 kvm_x86_ops.nested_ops->hv_timer_pending &&
9080 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9081 *req_immediate_exit = true;
9082
9083 WARN_ON(vcpu->arch.exception.pending);
9084 return 0;
9085
9086 out:
9087 if (r == -EBUSY) {
9088 *req_immediate_exit = true;
9089 r = 0;
9090 }
9091 return r;
9092 }
9093
9094 static void process_nmi(struct kvm_vcpu *vcpu)
9095 {
9096 unsigned limit = 2;
9097
9098 /*
9099 * x86 is limited to one NMI running, and one NMI pending after it.
9100 * If an NMI is already in progress, limit further NMIs to just one.
9101 * Otherwise, allow two (and we'll inject the first one immediately).
9102 */
9103 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9104 limit = 1;
9105
9106 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9107 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9108 kvm_make_request(KVM_REQ_EVENT, vcpu);
9109 }
9110
9111 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9112 {
9113 u32 flags = 0;
9114 flags |= seg->g << 23;
9115 flags |= seg->db << 22;
9116 flags |= seg->l << 21;
9117 flags |= seg->avl << 20;
9118 flags |= seg->present << 15;
9119 flags |= seg->dpl << 13;
9120 flags |= seg->s << 12;
9121 flags |= seg->type << 8;
9122 return flags;
9123 }
9124
9125 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9126 {
9127 struct kvm_segment seg;
9128 int offset;
9129
9130 kvm_get_segment(vcpu, &seg, n);
9131 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9132
9133 if (n < 3)
9134 offset = 0x7f84 + n * 12;
9135 else
9136 offset = 0x7f2c + (n - 3) * 12;
9137
9138 put_smstate(u32, buf, offset + 8, seg.base);
9139 put_smstate(u32, buf, offset + 4, seg.limit);
9140 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9141 }
9142
9143 #ifdef CONFIG_X86_64
9144 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9145 {
9146 struct kvm_segment seg;
9147 int offset;
9148 u16 flags;
9149
9150 kvm_get_segment(vcpu, &seg, n);
9151 offset = 0x7e00 + n * 16;
9152
9153 flags = enter_smm_get_segment_flags(&seg) >> 8;
9154 put_smstate(u16, buf, offset, seg.selector);
9155 put_smstate(u16, buf, offset + 2, flags);
9156 put_smstate(u32, buf, offset + 4, seg.limit);
9157 put_smstate(u64, buf, offset + 8, seg.base);
9158 }
9159 #endif
9160
9161 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9162 {
9163 struct desc_ptr dt;
9164 struct kvm_segment seg;
9165 unsigned long val;
9166 int i;
9167
9168 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9169 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9170 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9171 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9172
9173 for (i = 0; i < 8; i++)
9174 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9175
9176 kvm_get_dr(vcpu, 6, &val);
9177 put_smstate(u32, buf, 0x7fcc, (u32)val);
9178 kvm_get_dr(vcpu, 7, &val);
9179 put_smstate(u32, buf, 0x7fc8, (u32)val);
9180
9181 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9182 put_smstate(u32, buf, 0x7fc4, seg.selector);
9183 put_smstate(u32, buf, 0x7f64, seg.base);
9184 put_smstate(u32, buf, 0x7f60, seg.limit);
9185 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9186
9187 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9188 put_smstate(u32, buf, 0x7fc0, seg.selector);
9189 put_smstate(u32, buf, 0x7f80, seg.base);
9190 put_smstate(u32, buf, 0x7f7c, seg.limit);
9191 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9192
9193 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9194 put_smstate(u32, buf, 0x7f74, dt.address);
9195 put_smstate(u32, buf, 0x7f70, dt.size);
9196
9197 static_call(kvm_x86_get_idt)(vcpu, &dt);
9198 put_smstate(u32, buf, 0x7f58, dt.address);
9199 put_smstate(u32, buf, 0x7f54, dt.size);
9200
9201 for (i = 0; i < 6; i++)
9202 enter_smm_save_seg_32(vcpu, buf, i);
9203
9204 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9205
9206 /* revision id */
9207 put_smstate(u32, buf, 0x7efc, 0x00020000);
9208 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9209 }
9210
9211 #ifdef CONFIG_X86_64
9212 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9213 {
9214 struct desc_ptr dt;
9215 struct kvm_segment seg;
9216 unsigned long val;
9217 int i;
9218
9219 for (i = 0; i < 16; i++)
9220 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9221
9222 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9223 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9224
9225 kvm_get_dr(vcpu, 6, &val);
9226 put_smstate(u64, buf, 0x7f68, val);
9227 kvm_get_dr(vcpu, 7, &val);
9228 put_smstate(u64, buf, 0x7f60, val);
9229
9230 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9231 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9232 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9233
9234 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9235
9236 /* revision id */
9237 put_smstate(u32, buf, 0x7efc, 0x00020064);
9238
9239 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9240
9241 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9242 put_smstate(u16, buf, 0x7e90, seg.selector);
9243 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9244 put_smstate(u32, buf, 0x7e94, seg.limit);
9245 put_smstate(u64, buf, 0x7e98, seg.base);
9246
9247 static_call(kvm_x86_get_idt)(vcpu, &dt);
9248 put_smstate(u32, buf, 0x7e84, dt.size);
9249 put_smstate(u64, buf, 0x7e88, dt.address);
9250
9251 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9252 put_smstate(u16, buf, 0x7e70, seg.selector);
9253 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9254 put_smstate(u32, buf, 0x7e74, seg.limit);
9255 put_smstate(u64, buf, 0x7e78, seg.base);
9256
9257 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9258 put_smstate(u32, buf, 0x7e64, dt.size);
9259 put_smstate(u64, buf, 0x7e68, dt.address);
9260
9261 for (i = 0; i < 6; i++)
9262 enter_smm_save_seg_64(vcpu, buf, i);
9263 }
9264 #endif
9265
9266 static void enter_smm(struct kvm_vcpu *vcpu)
9267 {
9268 struct kvm_segment cs, ds;
9269 struct desc_ptr dt;
9270 unsigned long cr0;
9271 char buf[512];
9272
9273 memset(buf, 0, 512);
9274 #ifdef CONFIG_X86_64
9275 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9276 enter_smm_save_state_64(vcpu, buf);
9277 else
9278 #endif
9279 enter_smm_save_state_32(vcpu, buf);
9280
9281 /*
9282 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9283 * state (e.g. leave guest mode) after we've saved the state into the
9284 * SMM state-save area.
9285 */
9286 static_call(kvm_x86_enter_smm)(vcpu, buf);
9287
9288 kvm_smm_changed(vcpu, true);
9289 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9290
9291 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9292 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9293 else
9294 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9295
9296 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9297 kvm_rip_write(vcpu, 0x8000);
9298
9299 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9300 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9301 vcpu->arch.cr0 = cr0;
9302
9303 static_call(kvm_x86_set_cr4)(vcpu, 0);
9304
9305 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9306 dt.address = dt.size = 0;
9307 static_call(kvm_x86_set_idt)(vcpu, &dt);
9308
9309 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9310
9311 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9312 cs.base = vcpu->arch.smbase;
9313
9314 ds.selector = 0;
9315 ds.base = 0;
9316
9317 cs.limit = ds.limit = 0xffffffff;
9318 cs.type = ds.type = 0x3;
9319 cs.dpl = ds.dpl = 0;
9320 cs.db = ds.db = 0;
9321 cs.s = ds.s = 1;
9322 cs.l = ds.l = 0;
9323 cs.g = ds.g = 1;
9324 cs.avl = ds.avl = 0;
9325 cs.present = ds.present = 1;
9326 cs.unusable = ds.unusable = 0;
9327 cs.padding = ds.padding = 0;
9328
9329 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9330 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9331 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9332 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9333 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9334 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9335
9336 #ifdef CONFIG_X86_64
9337 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9338 static_call(kvm_x86_set_efer)(vcpu, 0);
9339 #endif
9340
9341 kvm_update_cpuid_runtime(vcpu);
9342 kvm_mmu_reset_context(vcpu);
9343 }
9344
9345 static void process_smi(struct kvm_vcpu *vcpu)
9346 {
9347 vcpu->arch.smi_pending = true;
9348 kvm_make_request(KVM_REQ_EVENT, vcpu);
9349 }
9350
9351 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9352 unsigned long *vcpu_bitmap)
9353 {
9354 cpumask_var_t cpus;
9355
9356 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9357
9358 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9359 NULL, vcpu_bitmap, cpus);
9360
9361 free_cpumask_var(cpus);
9362 }
9363
9364 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9365 {
9366 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9367 }
9368
9369 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9370 {
9371 bool activate;
9372
9373 if (!lapic_in_kernel(vcpu))
9374 return;
9375
9376 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9377
9378 activate = kvm_apicv_activated(vcpu->kvm);
9379 if (vcpu->arch.apicv_active == activate)
9380 goto out;
9381
9382 vcpu->arch.apicv_active = activate;
9383 kvm_apic_update_apicv(vcpu);
9384 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9385
9386 /*
9387 * When APICv gets disabled, we may still have injected interrupts
9388 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9389 * still active when the interrupt got accepted. Make sure
9390 * inject_pending_event() is called to check for that.
9391 */
9392 if (!vcpu->arch.apicv_active)
9393 kvm_make_request(KVM_REQ_EVENT, vcpu);
9394
9395 out:
9396 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9397 }
9398 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9399
9400 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9401 {
9402 unsigned long old, new;
9403
9404 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9405 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9406 return;
9407
9408 old = new = kvm->arch.apicv_inhibit_reasons;
9409
9410 if (activate)
9411 __clear_bit(bit, &new);
9412 else
9413 __set_bit(bit, &new);
9414
9415 if (!!old != !!new) {
9416 trace_kvm_apicv_update_request(activate, bit);
9417 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9418 kvm->arch.apicv_inhibit_reasons = new;
9419 if (new) {
9420 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9421 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9422 }
9423 } else
9424 kvm->arch.apicv_inhibit_reasons = new;
9425 }
9426 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9427
9428 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9429 {
9430 mutex_lock(&kvm->arch.apicv_update_lock);
9431 __kvm_request_apicv_update(kvm, activate, bit);
9432 mutex_unlock(&kvm->arch.apicv_update_lock);
9433 }
9434 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9435
9436 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9437 {
9438 if (!kvm_apic_present(vcpu))
9439 return;
9440
9441 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9442
9443 if (irqchip_split(vcpu->kvm))
9444 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9445 else {
9446 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9447 if (ioapic_in_kernel(vcpu->kvm))
9448 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9449 }
9450
9451 if (is_guest_mode(vcpu))
9452 vcpu->arch.load_eoi_exitmap_pending = true;
9453 else
9454 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9455 }
9456
9457 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9458 {
9459 u64 eoi_exit_bitmap[4];
9460
9461 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9462 return;
9463
9464 if (to_hv_vcpu(vcpu)) {
9465 bitmap_or((ulong *)eoi_exit_bitmap,
9466 vcpu->arch.ioapic_handled_vectors,
9467 to_hv_synic(vcpu)->vec_bitmap, 256);
9468 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9469 return;
9470 }
9471
9472 static_call(kvm_x86_load_eoi_exitmap)(
9473 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9474 }
9475
9476 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9477 unsigned long start, unsigned long end)
9478 {
9479 unsigned long apic_address;
9480
9481 /*
9482 * The physical address of apic access page is stored in the VMCS.
9483 * Update it when it becomes invalid.
9484 */
9485 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9486 if (start <= apic_address && apic_address < end)
9487 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9488 }
9489
9490 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9491 {
9492 if (!lapic_in_kernel(vcpu))
9493 return;
9494
9495 if (!kvm_x86_ops.set_apic_access_page_addr)
9496 return;
9497
9498 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9499 }
9500
9501 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9502 {
9503 smp_send_reschedule(vcpu->cpu);
9504 }
9505 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9506
9507 /*
9508 * Returns 1 to let vcpu_run() continue the guest execution loop without
9509 * exiting to the userspace. Otherwise, the value will be returned to the
9510 * userspace.
9511 */
9512 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9513 {
9514 int r;
9515 bool req_int_win =
9516 dm_request_for_irq_injection(vcpu) &&
9517 kvm_cpu_accept_dm_intr(vcpu);
9518 fastpath_t exit_fastpath;
9519
9520 bool req_immediate_exit = false;
9521
9522 /* Forbid vmenter if vcpu dirty ring is soft-full */
9523 if (unlikely(vcpu->kvm->dirty_ring_size &&
9524 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9525 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9526 trace_kvm_dirty_ring_exit(vcpu);
9527 r = 0;
9528 goto out;
9529 }
9530
9531 if (kvm_request_pending(vcpu)) {
9532 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9533 r = -EIO;
9534 goto out;
9535 }
9536 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9537 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9538 r = 0;
9539 goto out;
9540 }
9541 }
9542 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9543 kvm_mmu_unload(vcpu);
9544 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9545 __kvm_migrate_timers(vcpu);
9546 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9547 kvm_gen_update_masterclock(vcpu->kvm);
9548 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9549 kvm_gen_kvmclock_update(vcpu);
9550 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9551 r = kvm_guest_time_update(vcpu);
9552 if (unlikely(r))
9553 goto out;
9554 }
9555 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9556 kvm_mmu_sync_roots(vcpu);
9557 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9558 kvm_mmu_load_pgd(vcpu);
9559 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9560 kvm_vcpu_flush_tlb_all(vcpu);
9561
9562 /* Flushing all ASIDs flushes the current ASID... */
9563 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9564 }
9565 kvm_service_local_tlb_flush_requests(vcpu);
9566
9567 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9568 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9569 r = 0;
9570 goto out;
9571 }
9572 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9573 if (is_guest_mode(vcpu)) {
9574 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9575 } else {
9576 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9577 vcpu->mmio_needed = 0;
9578 r = 0;
9579 goto out;
9580 }
9581 }
9582 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9583 /* Page is swapped out. Do synthetic halt */
9584 vcpu->arch.apf.halted = true;
9585 r = 1;
9586 goto out;
9587 }
9588 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9589 record_steal_time(vcpu);
9590 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9591 process_smi(vcpu);
9592 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9593 process_nmi(vcpu);
9594 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9595 kvm_pmu_handle_event(vcpu);
9596 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9597 kvm_pmu_deliver_pmi(vcpu);
9598 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9599 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9600 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9601 vcpu->arch.ioapic_handled_vectors)) {
9602 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9603 vcpu->run->eoi.vector =
9604 vcpu->arch.pending_ioapic_eoi;
9605 r = 0;
9606 goto out;
9607 }
9608 }
9609 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9610 vcpu_scan_ioapic(vcpu);
9611 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9612 vcpu_load_eoi_exitmap(vcpu);
9613 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9614 kvm_vcpu_reload_apic_access_page(vcpu);
9615 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9616 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9617 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9618 r = 0;
9619 goto out;
9620 }
9621 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9622 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9623 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9624 r = 0;
9625 goto out;
9626 }
9627 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9628 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9629
9630 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9631 vcpu->run->hyperv = hv_vcpu->exit;
9632 r = 0;
9633 goto out;
9634 }
9635
9636 /*
9637 * KVM_REQ_HV_STIMER has to be processed after
9638 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9639 * depend on the guest clock being up-to-date
9640 */
9641 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9642 kvm_hv_process_stimers(vcpu);
9643 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9644 kvm_vcpu_update_apicv(vcpu);
9645 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9646 kvm_check_async_pf_completion(vcpu);
9647 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9648 static_call(kvm_x86_msr_filter_changed)(vcpu);
9649
9650 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9651 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9652 }
9653
9654 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9655 kvm_xen_has_interrupt(vcpu)) {
9656 ++vcpu->stat.req_event;
9657 r = kvm_apic_accept_events(vcpu);
9658 if (r < 0) {
9659 r = 0;
9660 goto out;
9661 }
9662 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9663 r = 1;
9664 goto out;
9665 }
9666
9667 r = inject_pending_event(vcpu, &req_immediate_exit);
9668 if (r < 0) {
9669 r = 0;
9670 goto out;
9671 }
9672 if (req_int_win)
9673 static_call(kvm_x86_enable_irq_window)(vcpu);
9674
9675 if (kvm_lapic_enabled(vcpu)) {
9676 update_cr8_intercept(vcpu);
9677 kvm_lapic_sync_to_vapic(vcpu);
9678 }
9679 }
9680
9681 r = kvm_mmu_reload(vcpu);
9682 if (unlikely(r)) {
9683 goto cancel_injection;
9684 }
9685
9686 preempt_disable();
9687
9688 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9689
9690 /*
9691 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9692 * IPI are then delayed after guest entry, which ensures that they
9693 * result in virtual interrupt delivery.
9694 */
9695 local_irq_disable();
9696 vcpu->mode = IN_GUEST_MODE;
9697
9698 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9699
9700 /*
9701 * 1) We should set ->mode before checking ->requests. Please see
9702 * the comment in kvm_vcpu_exiting_guest_mode().
9703 *
9704 * 2) For APICv, we should set ->mode before checking PID.ON. This
9705 * pairs with the memory barrier implicit in pi_test_and_set_on
9706 * (see vmx_deliver_posted_interrupt).
9707 *
9708 * 3) This also orders the write to mode from any reads to the page
9709 * tables done while the VCPU is running. Please see the comment
9710 * in kvm_flush_remote_tlbs.
9711 */
9712 smp_mb__after_srcu_read_unlock();
9713
9714 /*
9715 * This handles the case where a posted interrupt was
9716 * notified with kvm_vcpu_kick. Assigned devices can
9717 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9718 * so do it even if APICv is disabled on this vCPU.
9719 */
9720 if (kvm_lapic_enabled(vcpu))
9721 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9722
9723 if (kvm_vcpu_exit_request(vcpu)) {
9724 vcpu->mode = OUTSIDE_GUEST_MODE;
9725 smp_wmb();
9726 local_irq_enable();
9727 preempt_enable();
9728 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9729 r = 1;
9730 goto cancel_injection;
9731 }
9732
9733 if (req_immediate_exit) {
9734 kvm_make_request(KVM_REQ_EVENT, vcpu);
9735 static_call(kvm_x86_request_immediate_exit)(vcpu);
9736 }
9737
9738 fpregs_assert_state_consistent();
9739 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9740 switch_fpu_return();
9741
9742 if (unlikely(vcpu->arch.switch_db_regs)) {
9743 set_debugreg(0, 7);
9744 set_debugreg(vcpu->arch.eff_db[0], 0);
9745 set_debugreg(vcpu->arch.eff_db[1], 1);
9746 set_debugreg(vcpu->arch.eff_db[2], 2);
9747 set_debugreg(vcpu->arch.eff_db[3], 3);
9748 } else if (unlikely(hw_breakpoint_active())) {
9749 set_debugreg(0, 7);
9750 }
9751
9752 for (;;) {
9753 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9754 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9755 break;
9756
9757 if (kvm_lapic_enabled(vcpu))
9758 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9759
9760 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9761 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9762 break;
9763 }
9764 }
9765
9766 /*
9767 * Do this here before restoring debug registers on the host. And
9768 * since we do this before handling the vmexit, a DR access vmexit
9769 * can (a) read the correct value of the debug registers, (b) set
9770 * KVM_DEBUGREG_WONT_EXIT again.
9771 */
9772 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9773 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9774 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9775 kvm_update_dr0123(vcpu);
9776 kvm_update_dr7(vcpu);
9777 }
9778
9779 /*
9780 * If the guest has used debug registers, at least dr7
9781 * will be disabled while returning to the host.
9782 * If we don't have active breakpoints in the host, we don't
9783 * care about the messed up debug address registers. But if
9784 * we have some of them active, restore the old state.
9785 */
9786 if (hw_breakpoint_active())
9787 hw_breakpoint_restore();
9788
9789 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9790 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9791
9792 vcpu->mode = OUTSIDE_GUEST_MODE;
9793 smp_wmb();
9794
9795 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9796
9797 /*
9798 * Consume any pending interrupts, including the possible source of
9799 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9800 * An instruction is required after local_irq_enable() to fully unblock
9801 * interrupts on processors that implement an interrupt shadow, the
9802 * stat.exits increment will do nicely.
9803 */
9804 kvm_before_interrupt(vcpu);
9805 local_irq_enable();
9806 ++vcpu->stat.exits;
9807 local_irq_disable();
9808 kvm_after_interrupt(vcpu);
9809
9810 /*
9811 * Wait until after servicing IRQs to account guest time so that any
9812 * ticks that occurred while running the guest are properly accounted
9813 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9814 * of accounting via context tracking, but the loss of accuracy is
9815 * acceptable for all known use cases.
9816 */
9817 vtime_account_guest_exit();
9818
9819 if (lapic_in_kernel(vcpu)) {
9820 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9821 if (delta != S64_MIN) {
9822 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9823 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9824 }
9825 }
9826
9827 local_irq_enable();
9828 preempt_enable();
9829
9830 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9831
9832 /*
9833 * Profile KVM exit RIPs:
9834 */
9835 if (unlikely(prof_on == KVM_PROFILING)) {
9836 unsigned long rip = kvm_rip_read(vcpu);
9837 profile_hit(KVM_PROFILING, (void *)rip);
9838 }
9839
9840 if (unlikely(vcpu->arch.tsc_always_catchup))
9841 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9842
9843 if (vcpu->arch.apic_attention)
9844 kvm_lapic_sync_from_vapic(vcpu);
9845
9846 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9847 return r;
9848
9849 cancel_injection:
9850 if (req_immediate_exit)
9851 kvm_make_request(KVM_REQ_EVENT, vcpu);
9852 static_call(kvm_x86_cancel_injection)(vcpu);
9853 if (unlikely(vcpu->arch.apic_attention))
9854 kvm_lapic_sync_from_vapic(vcpu);
9855 out:
9856 return r;
9857 }
9858
9859 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9860 {
9861 if (!kvm_arch_vcpu_runnable(vcpu) &&
9862 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9863 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9864 kvm_vcpu_block(vcpu);
9865 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9866
9867 if (kvm_x86_ops.post_block)
9868 static_call(kvm_x86_post_block)(vcpu);
9869
9870 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9871 return 1;
9872 }
9873
9874 if (kvm_apic_accept_events(vcpu) < 0)
9875 return 0;
9876 switch(vcpu->arch.mp_state) {
9877 case KVM_MP_STATE_HALTED:
9878 case KVM_MP_STATE_AP_RESET_HOLD:
9879 vcpu->arch.pv.pv_unhalted = false;
9880 vcpu->arch.mp_state =
9881 KVM_MP_STATE_RUNNABLE;
9882 fallthrough;
9883 case KVM_MP_STATE_RUNNABLE:
9884 vcpu->arch.apf.halted = false;
9885 break;
9886 case KVM_MP_STATE_INIT_RECEIVED:
9887 break;
9888 default:
9889 return -EINTR;
9890 }
9891 return 1;
9892 }
9893
9894 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9895 {
9896 if (is_guest_mode(vcpu))
9897 kvm_check_nested_events(vcpu);
9898
9899 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9900 !vcpu->arch.apf.halted);
9901 }
9902
9903 static int vcpu_run(struct kvm_vcpu *vcpu)
9904 {
9905 int r;
9906 struct kvm *kvm = vcpu->kvm;
9907
9908 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9909 vcpu->arch.l1tf_flush_l1d = true;
9910
9911 for (;;) {
9912 if (kvm_vcpu_running(vcpu)) {
9913 r = vcpu_enter_guest(vcpu);
9914 } else {
9915 r = vcpu_block(kvm, vcpu);
9916 }
9917
9918 if (r <= 0)
9919 break;
9920
9921 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9922 if (kvm_cpu_has_pending_timer(vcpu))
9923 kvm_inject_pending_timer_irqs(vcpu);
9924
9925 if (dm_request_for_irq_injection(vcpu) &&
9926 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9927 r = 0;
9928 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9929 ++vcpu->stat.request_irq_exits;
9930 break;
9931 }
9932
9933 if (__xfer_to_guest_mode_work_pending()) {
9934 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9935 r = xfer_to_guest_mode_handle_work(vcpu);
9936 if (r)
9937 return r;
9938 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9939 }
9940 }
9941
9942 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9943
9944 return r;
9945 }
9946
9947 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9948 {
9949 int r;
9950
9951 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9952 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9953 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9954 return r;
9955 }
9956
9957 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9958 {
9959 BUG_ON(!vcpu->arch.pio.count);
9960
9961 return complete_emulated_io(vcpu);
9962 }
9963
9964 /*
9965 * Implements the following, as a state machine:
9966 *
9967 * read:
9968 * for each fragment
9969 * for each mmio piece in the fragment
9970 * write gpa, len
9971 * exit
9972 * copy data
9973 * execute insn
9974 *
9975 * write:
9976 * for each fragment
9977 * for each mmio piece in the fragment
9978 * write gpa, len
9979 * copy data
9980 * exit
9981 */
9982 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9983 {
9984 struct kvm_run *run = vcpu->run;
9985 struct kvm_mmio_fragment *frag;
9986 unsigned len;
9987
9988 BUG_ON(!vcpu->mmio_needed);
9989
9990 /* Complete previous fragment */
9991 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9992 len = min(8u, frag->len);
9993 if (!vcpu->mmio_is_write)
9994 memcpy(frag->data, run->mmio.data, len);
9995
9996 if (frag->len <= 8) {
9997 /* Switch to the next fragment. */
9998 frag++;
9999 vcpu->mmio_cur_fragment++;
10000 } else {
10001 /* Go forward to the next mmio piece. */
10002 frag->data += len;
10003 frag->gpa += len;
10004 frag->len -= len;
10005 }
10006
10007 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10008 vcpu->mmio_needed = 0;
10009
10010 /* FIXME: return into emulator if single-stepping. */
10011 if (vcpu->mmio_is_write)
10012 return 1;
10013 vcpu->mmio_read_completed = 1;
10014 return complete_emulated_io(vcpu);
10015 }
10016
10017 run->exit_reason = KVM_EXIT_MMIO;
10018 run->mmio.phys_addr = frag->gpa;
10019 if (vcpu->mmio_is_write)
10020 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10021 run->mmio.len = min(8u, frag->len);
10022 run->mmio.is_write = vcpu->mmio_is_write;
10023 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10024 return 0;
10025 }
10026
10027 static void kvm_save_current_fpu(struct fpu *fpu)
10028 {
10029 /*
10030 * If the target FPU state is not resident in the CPU registers, just
10031 * memcpy() from current, else save CPU state directly to the target.
10032 */
10033 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10034 memcpy(&fpu->state, &current->thread.fpu.state,
10035 fpu_kernel_xstate_size);
10036 else
10037 save_fpregs_to_fpstate(fpu);
10038 }
10039
10040 /* Swap (qemu) user FPU context for the guest FPU context. */
10041 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10042 {
10043 fpregs_lock();
10044
10045 kvm_save_current_fpu(vcpu->arch.user_fpu);
10046
10047 /*
10048 * Guests with protected state can't have it set by the hypervisor,
10049 * so skip trying to set it.
10050 */
10051 if (vcpu->arch.guest_fpu)
10052 /* PKRU is separately restored in kvm_x86_ops.run. */
10053 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10054 ~XFEATURE_MASK_PKRU);
10055
10056 fpregs_mark_activate();
10057 fpregs_unlock();
10058
10059 trace_kvm_fpu(1);
10060 }
10061
10062 /* When vcpu_run ends, restore user space FPU context. */
10063 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10064 {
10065 fpregs_lock();
10066
10067 /*
10068 * Guests with protected state can't have it read by the hypervisor,
10069 * so skip trying to save it.
10070 */
10071 if (vcpu->arch.guest_fpu)
10072 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10073
10074 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10075
10076 fpregs_mark_activate();
10077 fpregs_unlock();
10078
10079 ++vcpu->stat.fpu_reload;
10080 trace_kvm_fpu(0);
10081 }
10082
10083 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10084 {
10085 struct kvm_run *kvm_run = vcpu->run;
10086 int r;
10087
10088 vcpu_load(vcpu);
10089 kvm_sigset_activate(vcpu);
10090 kvm_run->flags = 0;
10091 kvm_load_guest_fpu(vcpu);
10092
10093 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10094 if (kvm_run->immediate_exit) {
10095 r = -EINTR;
10096 goto out;
10097 }
10098 kvm_vcpu_block(vcpu);
10099 if (kvm_apic_accept_events(vcpu) < 0) {
10100 r = 0;
10101 goto out;
10102 }
10103 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10104 r = -EAGAIN;
10105 if (signal_pending(current)) {
10106 r = -EINTR;
10107 kvm_run->exit_reason = KVM_EXIT_INTR;
10108 ++vcpu->stat.signal_exits;
10109 }
10110 goto out;
10111 }
10112
10113 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10114 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10115 r = -EINVAL;
10116 goto out;
10117 }
10118
10119 if (kvm_run->kvm_dirty_regs) {
10120 r = sync_regs(vcpu);
10121 if (r != 0)
10122 goto out;
10123 }
10124
10125 /* re-sync apic's tpr */
10126 if (!lapic_in_kernel(vcpu)) {
10127 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10128 r = -EINVAL;
10129 goto out;
10130 }
10131 }
10132
10133 if (unlikely(vcpu->arch.complete_userspace_io)) {
10134 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10135 vcpu->arch.complete_userspace_io = NULL;
10136 r = cui(vcpu);
10137 if (r <= 0)
10138 goto out;
10139 } else
10140 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10141
10142 if (kvm_run->immediate_exit)
10143 r = -EINTR;
10144 else
10145 r = vcpu_run(vcpu);
10146
10147 out:
10148 kvm_put_guest_fpu(vcpu);
10149 if (kvm_run->kvm_valid_regs)
10150 store_regs(vcpu);
10151 post_kvm_run_save(vcpu);
10152 kvm_sigset_deactivate(vcpu);
10153
10154 vcpu_put(vcpu);
10155 return r;
10156 }
10157
10158 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10159 {
10160 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10161 /*
10162 * We are here if userspace calls get_regs() in the middle of
10163 * instruction emulation. Registers state needs to be copied
10164 * back from emulation context to vcpu. Userspace shouldn't do
10165 * that usually, but some bad designed PV devices (vmware
10166 * backdoor interface) need this to work
10167 */
10168 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10169 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10170 }
10171 regs->rax = kvm_rax_read(vcpu);
10172 regs->rbx = kvm_rbx_read(vcpu);
10173 regs->rcx = kvm_rcx_read(vcpu);
10174 regs->rdx = kvm_rdx_read(vcpu);
10175 regs->rsi = kvm_rsi_read(vcpu);
10176 regs->rdi = kvm_rdi_read(vcpu);
10177 regs->rsp = kvm_rsp_read(vcpu);
10178 regs->rbp = kvm_rbp_read(vcpu);
10179 #ifdef CONFIG_X86_64
10180 regs->r8 = kvm_r8_read(vcpu);
10181 regs->r9 = kvm_r9_read(vcpu);
10182 regs->r10 = kvm_r10_read(vcpu);
10183 regs->r11 = kvm_r11_read(vcpu);
10184 regs->r12 = kvm_r12_read(vcpu);
10185 regs->r13 = kvm_r13_read(vcpu);
10186 regs->r14 = kvm_r14_read(vcpu);
10187 regs->r15 = kvm_r15_read(vcpu);
10188 #endif
10189
10190 regs->rip = kvm_rip_read(vcpu);
10191 regs->rflags = kvm_get_rflags(vcpu);
10192 }
10193
10194 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10195 {
10196 vcpu_load(vcpu);
10197 __get_regs(vcpu, regs);
10198 vcpu_put(vcpu);
10199 return 0;
10200 }
10201
10202 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10203 {
10204 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10205 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10206
10207 kvm_rax_write(vcpu, regs->rax);
10208 kvm_rbx_write(vcpu, regs->rbx);
10209 kvm_rcx_write(vcpu, regs->rcx);
10210 kvm_rdx_write(vcpu, regs->rdx);
10211 kvm_rsi_write(vcpu, regs->rsi);
10212 kvm_rdi_write(vcpu, regs->rdi);
10213 kvm_rsp_write(vcpu, regs->rsp);
10214 kvm_rbp_write(vcpu, regs->rbp);
10215 #ifdef CONFIG_X86_64
10216 kvm_r8_write(vcpu, regs->r8);
10217 kvm_r9_write(vcpu, regs->r9);
10218 kvm_r10_write(vcpu, regs->r10);
10219 kvm_r11_write(vcpu, regs->r11);
10220 kvm_r12_write(vcpu, regs->r12);
10221 kvm_r13_write(vcpu, regs->r13);
10222 kvm_r14_write(vcpu, regs->r14);
10223 kvm_r15_write(vcpu, regs->r15);
10224 #endif
10225
10226 kvm_rip_write(vcpu, regs->rip);
10227 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10228
10229 vcpu->arch.exception.pending = false;
10230
10231 kvm_make_request(KVM_REQ_EVENT, vcpu);
10232 }
10233
10234 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10235 {
10236 vcpu_load(vcpu);
10237 __set_regs(vcpu, regs);
10238 vcpu_put(vcpu);
10239 return 0;
10240 }
10241
10242 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10243 {
10244 struct kvm_segment cs;
10245
10246 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10247 *db = cs.db;
10248 *l = cs.l;
10249 }
10250 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10251
10252 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10253 {
10254 struct desc_ptr dt;
10255
10256 if (vcpu->arch.guest_state_protected)
10257 goto skip_protected_regs;
10258
10259 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10260 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10261 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10262 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10263 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10264 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10265
10266 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10267 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10268
10269 static_call(kvm_x86_get_idt)(vcpu, &dt);
10270 sregs->idt.limit = dt.size;
10271 sregs->idt.base = dt.address;
10272 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10273 sregs->gdt.limit = dt.size;
10274 sregs->gdt.base = dt.address;
10275
10276 sregs->cr2 = vcpu->arch.cr2;
10277 sregs->cr3 = kvm_read_cr3(vcpu);
10278
10279 skip_protected_regs:
10280 sregs->cr0 = kvm_read_cr0(vcpu);
10281 sregs->cr4 = kvm_read_cr4(vcpu);
10282 sregs->cr8 = kvm_get_cr8(vcpu);
10283 sregs->efer = vcpu->arch.efer;
10284 sregs->apic_base = kvm_get_apic_base(vcpu);
10285 }
10286
10287 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10288 {
10289 __get_sregs_common(vcpu, sregs);
10290
10291 if (vcpu->arch.guest_state_protected)
10292 return;
10293
10294 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10295 set_bit(vcpu->arch.interrupt.nr,
10296 (unsigned long *)sregs->interrupt_bitmap);
10297 }
10298
10299 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10300 {
10301 int i;
10302
10303 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10304
10305 if (vcpu->arch.guest_state_protected)
10306 return;
10307
10308 if (is_pae_paging(vcpu)) {
10309 for (i = 0 ; i < 4 ; i++)
10310 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10311 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10312 }
10313 }
10314
10315 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10316 struct kvm_sregs *sregs)
10317 {
10318 vcpu_load(vcpu);
10319 __get_sregs(vcpu, sregs);
10320 vcpu_put(vcpu);
10321 return 0;
10322 }
10323
10324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10325 struct kvm_mp_state *mp_state)
10326 {
10327 int r;
10328
10329 vcpu_load(vcpu);
10330 if (kvm_mpx_supported())
10331 kvm_load_guest_fpu(vcpu);
10332
10333 r = kvm_apic_accept_events(vcpu);
10334 if (r < 0)
10335 goto out;
10336 r = 0;
10337
10338 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10339 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10340 vcpu->arch.pv.pv_unhalted)
10341 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10342 else
10343 mp_state->mp_state = vcpu->arch.mp_state;
10344
10345 out:
10346 if (kvm_mpx_supported())
10347 kvm_put_guest_fpu(vcpu);
10348 vcpu_put(vcpu);
10349 return r;
10350 }
10351
10352 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10353 struct kvm_mp_state *mp_state)
10354 {
10355 int ret = -EINVAL;
10356
10357 vcpu_load(vcpu);
10358
10359 if (!lapic_in_kernel(vcpu) &&
10360 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10361 goto out;
10362
10363 /*
10364 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10365 * INIT state; latched init should be reported using
10366 * KVM_SET_VCPU_EVENTS, so reject it here.
10367 */
10368 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10369 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10370 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10371 goto out;
10372
10373 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10374 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10375 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10376 } else
10377 vcpu->arch.mp_state = mp_state->mp_state;
10378 kvm_make_request(KVM_REQ_EVENT, vcpu);
10379
10380 ret = 0;
10381 out:
10382 vcpu_put(vcpu);
10383 return ret;
10384 }
10385
10386 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10387 int reason, bool has_error_code, u32 error_code)
10388 {
10389 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10390 int ret;
10391
10392 init_emulate_ctxt(vcpu);
10393
10394 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10395 has_error_code, error_code);
10396 if (ret) {
10397 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10398 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10399 vcpu->run->internal.ndata = 0;
10400 return 0;
10401 }
10402
10403 kvm_rip_write(vcpu, ctxt->eip);
10404 kvm_set_rflags(vcpu, ctxt->eflags);
10405 return 1;
10406 }
10407 EXPORT_SYMBOL_GPL(kvm_task_switch);
10408
10409 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10410 {
10411 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10412 /*
10413 * When EFER.LME and CR0.PG are set, the processor is in
10414 * 64-bit mode (though maybe in a 32-bit code segment).
10415 * CR4.PAE and EFER.LMA must be set.
10416 */
10417 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10418 return false;
10419 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10420 return false;
10421 } else {
10422 /*
10423 * Not in 64-bit mode: EFER.LMA is clear and the code
10424 * segment cannot be 64-bit.
10425 */
10426 if (sregs->efer & EFER_LMA || sregs->cs.l)
10427 return false;
10428 }
10429
10430 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10431 }
10432
10433 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10434 int *mmu_reset_needed, bool update_pdptrs)
10435 {
10436 struct msr_data apic_base_msr;
10437 int idx;
10438 struct desc_ptr dt;
10439
10440 if (!kvm_is_valid_sregs(vcpu, sregs))
10441 return -EINVAL;
10442
10443 apic_base_msr.data = sregs->apic_base;
10444 apic_base_msr.host_initiated = true;
10445 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10446 return -EINVAL;
10447
10448 if (vcpu->arch.guest_state_protected)
10449 return 0;
10450
10451 dt.size = sregs->idt.limit;
10452 dt.address = sregs->idt.base;
10453 static_call(kvm_x86_set_idt)(vcpu, &dt);
10454 dt.size = sregs->gdt.limit;
10455 dt.address = sregs->gdt.base;
10456 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10457
10458 vcpu->arch.cr2 = sregs->cr2;
10459 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10460 vcpu->arch.cr3 = sregs->cr3;
10461 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10462
10463 kvm_set_cr8(vcpu, sregs->cr8);
10464
10465 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10466 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10467
10468 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10469 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10470 vcpu->arch.cr0 = sregs->cr0;
10471
10472 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10473 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10474
10475 if (update_pdptrs) {
10476 idx = srcu_read_lock(&vcpu->kvm->srcu);
10477 if (is_pae_paging(vcpu)) {
10478 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10479 *mmu_reset_needed = 1;
10480 }
10481 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10482 }
10483
10484 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10485 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10486 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10487 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10488 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10489 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10490
10491 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10492 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10493
10494 update_cr8_intercept(vcpu);
10495
10496 /* Older userspace won't unhalt the vcpu on reset. */
10497 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10498 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10499 !is_protmode(vcpu))
10500 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10501
10502 return 0;
10503 }
10504
10505 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10506 {
10507 int pending_vec, max_bits;
10508 int mmu_reset_needed = 0;
10509 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10510
10511 if (ret)
10512 return ret;
10513
10514 if (mmu_reset_needed)
10515 kvm_mmu_reset_context(vcpu);
10516
10517 max_bits = KVM_NR_INTERRUPTS;
10518 pending_vec = find_first_bit(
10519 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10520
10521 if (pending_vec < max_bits) {
10522 kvm_queue_interrupt(vcpu, pending_vec, false);
10523 pr_debug("Set back pending irq %d\n", pending_vec);
10524 kvm_make_request(KVM_REQ_EVENT, vcpu);
10525 }
10526 return 0;
10527 }
10528
10529 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10530 {
10531 int mmu_reset_needed = 0;
10532 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10533 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10534 !(sregs2->efer & EFER_LMA);
10535 int i, ret;
10536
10537 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10538 return -EINVAL;
10539
10540 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10541 return -EINVAL;
10542
10543 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10544 &mmu_reset_needed, !valid_pdptrs);
10545 if (ret)
10546 return ret;
10547
10548 if (valid_pdptrs) {
10549 for (i = 0; i < 4 ; i++)
10550 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10551
10552 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10553 mmu_reset_needed = 1;
10554 vcpu->arch.pdptrs_from_userspace = true;
10555 }
10556 if (mmu_reset_needed)
10557 kvm_mmu_reset_context(vcpu);
10558 return 0;
10559 }
10560
10561 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10562 struct kvm_sregs *sregs)
10563 {
10564 int ret;
10565
10566 vcpu_load(vcpu);
10567 ret = __set_sregs(vcpu, sregs);
10568 vcpu_put(vcpu);
10569 return ret;
10570 }
10571
10572 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10573 struct kvm_guest_debug *dbg)
10574 {
10575 unsigned long rflags;
10576 int i, r;
10577
10578 if (vcpu->arch.guest_state_protected)
10579 return -EINVAL;
10580
10581 vcpu_load(vcpu);
10582
10583 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10584 r = -EBUSY;
10585 if (vcpu->arch.exception.pending)
10586 goto out;
10587 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10588 kvm_queue_exception(vcpu, DB_VECTOR);
10589 else
10590 kvm_queue_exception(vcpu, BP_VECTOR);
10591 }
10592
10593 /*
10594 * Read rflags as long as potentially injected trace flags are still
10595 * filtered out.
10596 */
10597 rflags = kvm_get_rflags(vcpu);
10598
10599 vcpu->guest_debug = dbg->control;
10600 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10601 vcpu->guest_debug = 0;
10602
10603 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10604 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10605 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10606 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10607 } else {
10608 for (i = 0; i < KVM_NR_DB_REGS; i++)
10609 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10610 }
10611 kvm_update_dr7(vcpu);
10612
10613 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10614 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10615
10616 /*
10617 * Trigger an rflags update that will inject or remove the trace
10618 * flags.
10619 */
10620 kvm_set_rflags(vcpu, rflags);
10621
10622 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10623
10624 r = 0;
10625
10626 out:
10627 vcpu_put(vcpu);
10628 return r;
10629 }
10630
10631 /*
10632 * Translate a guest virtual address to a guest physical address.
10633 */
10634 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10635 struct kvm_translation *tr)
10636 {
10637 unsigned long vaddr = tr->linear_address;
10638 gpa_t gpa;
10639 int idx;
10640
10641 vcpu_load(vcpu);
10642
10643 idx = srcu_read_lock(&vcpu->kvm->srcu);
10644 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10645 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10646 tr->physical_address = gpa;
10647 tr->valid = gpa != UNMAPPED_GVA;
10648 tr->writeable = 1;
10649 tr->usermode = 0;
10650
10651 vcpu_put(vcpu);
10652 return 0;
10653 }
10654
10655 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10656 {
10657 struct fxregs_state *fxsave;
10658
10659 if (!vcpu->arch.guest_fpu)
10660 return 0;
10661
10662 vcpu_load(vcpu);
10663
10664 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10665 memcpy(fpu->fpr, fxsave->st_space, 128);
10666 fpu->fcw = fxsave->cwd;
10667 fpu->fsw = fxsave->swd;
10668 fpu->ftwx = fxsave->twd;
10669 fpu->last_opcode = fxsave->fop;
10670 fpu->last_ip = fxsave->rip;
10671 fpu->last_dp = fxsave->rdp;
10672 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10673
10674 vcpu_put(vcpu);
10675 return 0;
10676 }
10677
10678 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10679 {
10680 struct fxregs_state *fxsave;
10681
10682 if (!vcpu->arch.guest_fpu)
10683 return 0;
10684
10685 vcpu_load(vcpu);
10686
10687 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10688
10689 memcpy(fxsave->st_space, fpu->fpr, 128);
10690 fxsave->cwd = fpu->fcw;
10691 fxsave->swd = fpu->fsw;
10692 fxsave->twd = fpu->ftwx;
10693 fxsave->fop = fpu->last_opcode;
10694 fxsave->rip = fpu->last_ip;
10695 fxsave->rdp = fpu->last_dp;
10696 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10697
10698 vcpu_put(vcpu);
10699 return 0;
10700 }
10701
10702 static void store_regs(struct kvm_vcpu *vcpu)
10703 {
10704 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10705
10706 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10707 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10708
10709 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10710 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10711
10712 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10713 kvm_vcpu_ioctl_x86_get_vcpu_events(
10714 vcpu, &vcpu->run->s.regs.events);
10715 }
10716
10717 static int sync_regs(struct kvm_vcpu *vcpu)
10718 {
10719 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10720 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10721 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10722 }
10723 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10724 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10725 return -EINVAL;
10726 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10727 }
10728 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10729 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10730 vcpu, &vcpu->run->s.regs.events))
10731 return -EINVAL;
10732 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10733 }
10734
10735 return 0;
10736 }
10737
10738 static void fx_init(struct kvm_vcpu *vcpu)
10739 {
10740 if (!vcpu->arch.guest_fpu)
10741 return;
10742
10743 fpstate_init(&vcpu->arch.guest_fpu->state);
10744 if (boot_cpu_has(X86_FEATURE_XSAVES))
10745 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10746 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10747
10748 /*
10749 * Ensure guest xcr0 is valid for loading
10750 */
10751 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10752
10753 vcpu->arch.cr0 |= X86_CR0_ET;
10754 }
10755
10756 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10757 {
10758 if (vcpu->arch.guest_fpu) {
10759 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10760 vcpu->arch.guest_fpu = NULL;
10761 }
10762 }
10763 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10764
10765 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10766 {
10767 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10768 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10769 "guest TSC will not be reliable\n");
10770
10771 return 0;
10772 }
10773
10774 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10775 {
10776 struct page *page;
10777 int r;
10778
10779 vcpu->arch.last_vmentry_cpu = -1;
10780 vcpu->arch.regs_avail = ~0;
10781 vcpu->arch.regs_dirty = ~0;
10782
10783 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10784 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10785 else
10786 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10787
10788 r = kvm_mmu_create(vcpu);
10789 if (r < 0)
10790 return r;
10791
10792 if (irqchip_in_kernel(vcpu->kvm)) {
10793 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10794 if (r < 0)
10795 goto fail_mmu_destroy;
10796 if (kvm_apicv_activated(vcpu->kvm))
10797 vcpu->arch.apicv_active = true;
10798 } else
10799 static_branch_inc(&kvm_has_noapic_vcpu);
10800
10801 r = -ENOMEM;
10802
10803 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10804 if (!page)
10805 goto fail_free_lapic;
10806 vcpu->arch.pio_data = page_address(page);
10807
10808 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10809 GFP_KERNEL_ACCOUNT);
10810 if (!vcpu->arch.mce_banks)
10811 goto fail_free_pio_data;
10812 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10813
10814 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10815 GFP_KERNEL_ACCOUNT))
10816 goto fail_free_mce_banks;
10817
10818 if (!alloc_emulate_ctxt(vcpu))
10819 goto free_wbinvd_dirty_mask;
10820
10821 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10822 GFP_KERNEL_ACCOUNT);
10823 if (!vcpu->arch.user_fpu) {
10824 pr_err("kvm: failed to allocate userspace's fpu\n");
10825 goto free_emulate_ctxt;
10826 }
10827
10828 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10829 GFP_KERNEL_ACCOUNT);
10830 if (!vcpu->arch.guest_fpu) {
10831 pr_err("kvm: failed to allocate vcpu's fpu\n");
10832 goto free_user_fpu;
10833 }
10834 fx_init(vcpu);
10835
10836 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10837 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10838
10839 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10840
10841 kvm_async_pf_hash_reset(vcpu);
10842 kvm_pmu_init(vcpu);
10843
10844 vcpu->arch.pending_external_vector = -1;
10845 vcpu->arch.preempted_in_kernel = false;
10846
10847 #if IS_ENABLED(CONFIG_HYPERV)
10848 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10849 #endif
10850
10851 r = static_call(kvm_x86_vcpu_create)(vcpu);
10852 if (r)
10853 goto free_guest_fpu;
10854
10855 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10856 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10857 kvm_vcpu_mtrr_init(vcpu);
10858 vcpu_load(vcpu);
10859 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10860 kvm_vcpu_reset(vcpu, false);
10861 kvm_init_mmu(vcpu);
10862 vcpu_put(vcpu);
10863 return 0;
10864
10865 free_guest_fpu:
10866 kvm_free_guest_fpu(vcpu);
10867 free_user_fpu:
10868 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10869 free_emulate_ctxt:
10870 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10871 free_wbinvd_dirty_mask:
10872 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10873 fail_free_mce_banks:
10874 kfree(vcpu->arch.mce_banks);
10875 fail_free_pio_data:
10876 free_page((unsigned long)vcpu->arch.pio_data);
10877 fail_free_lapic:
10878 kvm_free_lapic(vcpu);
10879 fail_mmu_destroy:
10880 kvm_mmu_destroy(vcpu);
10881 return r;
10882 }
10883
10884 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10885 {
10886 struct kvm *kvm = vcpu->kvm;
10887
10888 if (mutex_lock_killable(&vcpu->mutex))
10889 return;
10890 vcpu_load(vcpu);
10891 kvm_synchronize_tsc(vcpu, 0);
10892 vcpu_put(vcpu);
10893
10894 /* poll control enabled by default */
10895 vcpu->arch.msr_kvm_poll_control = 1;
10896
10897 mutex_unlock(&vcpu->mutex);
10898
10899 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10900 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10901 KVMCLOCK_SYNC_PERIOD);
10902 }
10903
10904 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10905 {
10906 int idx;
10907
10908 kvmclock_reset(vcpu);
10909
10910 static_call(kvm_x86_vcpu_free)(vcpu);
10911
10912 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10913 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10914 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10915 kvm_free_guest_fpu(vcpu);
10916
10917 kvm_hv_vcpu_uninit(vcpu);
10918 kvm_pmu_destroy(vcpu);
10919 kfree(vcpu->arch.mce_banks);
10920 kvm_free_lapic(vcpu);
10921 idx = srcu_read_lock(&vcpu->kvm->srcu);
10922 kvm_mmu_destroy(vcpu);
10923 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10924 free_page((unsigned long)vcpu->arch.pio_data);
10925 kvfree(vcpu->arch.cpuid_entries);
10926 if (!lapic_in_kernel(vcpu))
10927 static_branch_dec(&kvm_has_noapic_vcpu);
10928 }
10929
10930 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10931 {
10932 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10933 unsigned long new_cr0;
10934 u32 eax, dummy;
10935
10936 kvm_lapic_reset(vcpu, init_event);
10937
10938 vcpu->arch.hflags = 0;
10939
10940 vcpu->arch.smi_pending = 0;
10941 vcpu->arch.smi_count = 0;
10942 atomic_set(&vcpu->arch.nmi_queued, 0);
10943 vcpu->arch.nmi_pending = 0;
10944 vcpu->arch.nmi_injected = false;
10945 kvm_clear_interrupt_queue(vcpu);
10946 kvm_clear_exception_queue(vcpu);
10947
10948 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10949 kvm_update_dr0123(vcpu);
10950 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10951 vcpu->arch.dr7 = DR7_FIXED_1;
10952 kvm_update_dr7(vcpu);
10953
10954 vcpu->arch.cr2 = 0;
10955
10956 kvm_make_request(KVM_REQ_EVENT, vcpu);
10957 vcpu->arch.apf.msr_en_val = 0;
10958 vcpu->arch.apf.msr_int_val = 0;
10959 vcpu->arch.st.msr_val = 0;
10960
10961 kvmclock_reset(vcpu);
10962
10963 kvm_clear_async_pf_completion_queue(vcpu);
10964 kvm_async_pf_hash_reset(vcpu);
10965 vcpu->arch.apf.halted = false;
10966
10967 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10968 void *mpx_state_buffer;
10969
10970 /*
10971 * To avoid have the INIT path from kvm_apic_has_events() that be
10972 * called with loaded FPU and does not let userspace fix the state.
10973 */
10974 if (init_event)
10975 kvm_put_guest_fpu(vcpu);
10976 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10977 XFEATURE_BNDREGS);
10978 if (mpx_state_buffer)
10979 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10980 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10981 XFEATURE_BNDCSR);
10982 if (mpx_state_buffer)
10983 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10984 if (init_event)
10985 kvm_load_guest_fpu(vcpu);
10986 }
10987
10988 if (!init_event) {
10989 kvm_pmu_reset(vcpu);
10990 vcpu->arch.smbase = 0x30000;
10991
10992 vcpu->arch.msr_misc_features_enables = 0;
10993
10994 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
10995 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
10996 }
10997
10998 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10999 vcpu->arch.regs_avail = ~0;
11000 vcpu->arch.regs_dirty = ~0;
11001
11002 /*
11003 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11004 * if no CPUID match is found. Note, it's impossible to get a match at
11005 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11006 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
11007 * But, go through the motions in case that's ever remedied.
11008 */
11009 eax = 1;
11010 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
11011 eax = 0x600;
11012 kvm_rdx_write(vcpu, eax);
11013
11014 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11015
11016 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11017 kvm_rip_write(vcpu, 0xfff0);
11018
11019 vcpu->arch.cr3 = 0;
11020 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11021
11022 /*
11023 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11024 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11025 * (or qualify) that with a footnote stating that CD/NW are preserved.
11026 */
11027 new_cr0 = X86_CR0_ET;
11028 if (init_event)
11029 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11030 else
11031 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11032
11033 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11034 static_call(kvm_x86_set_cr4)(vcpu, 0);
11035 static_call(kvm_x86_set_efer)(vcpu, 0);
11036 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11037
11038 /*
11039 * Reset the MMU context if paging was enabled prior to INIT (which is
11040 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11041 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11042 * checked because it is unconditionally cleared on INIT and all other
11043 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11044 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11045 */
11046 if (old_cr0 & X86_CR0_PG)
11047 kvm_mmu_reset_context(vcpu);
11048
11049 /*
11050 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11051 * APM states the TLBs are untouched by INIT, but it also states that
11052 * the TLBs are flushed on "External initialization of the processor."
11053 * Flush the guest TLB regardless of vendor, there is no meaningful
11054 * benefit in relying on the guest to flush the TLB immediately after
11055 * INIT. A spurious TLB flush is benign and likely negligible from a
11056 * performance perspective.
11057 */
11058 if (init_event)
11059 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11060 }
11061 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11062
11063 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11064 {
11065 struct kvm_segment cs;
11066
11067 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11068 cs.selector = vector << 8;
11069 cs.base = vector << 12;
11070 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11071 kvm_rip_write(vcpu, 0);
11072 }
11073 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11074
11075 int kvm_arch_hardware_enable(void)
11076 {
11077 struct kvm *kvm;
11078 struct kvm_vcpu *vcpu;
11079 int i;
11080 int ret;
11081 u64 local_tsc;
11082 u64 max_tsc = 0;
11083 bool stable, backwards_tsc = false;
11084
11085 kvm_user_return_msr_cpu_online();
11086 ret = static_call(kvm_x86_hardware_enable)();
11087 if (ret != 0)
11088 return ret;
11089
11090 local_tsc = rdtsc();
11091 stable = !kvm_check_tsc_unstable();
11092 list_for_each_entry(kvm, &vm_list, vm_list) {
11093 kvm_for_each_vcpu(i, vcpu, kvm) {
11094 if (!stable && vcpu->cpu == smp_processor_id())
11095 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11096 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11097 backwards_tsc = true;
11098 if (vcpu->arch.last_host_tsc > max_tsc)
11099 max_tsc = vcpu->arch.last_host_tsc;
11100 }
11101 }
11102 }
11103
11104 /*
11105 * Sometimes, even reliable TSCs go backwards. This happens on
11106 * platforms that reset TSC during suspend or hibernate actions, but
11107 * maintain synchronization. We must compensate. Fortunately, we can
11108 * detect that condition here, which happens early in CPU bringup,
11109 * before any KVM threads can be running. Unfortunately, we can't
11110 * bring the TSCs fully up to date with real time, as we aren't yet far
11111 * enough into CPU bringup that we know how much real time has actually
11112 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11113 * variables that haven't been updated yet.
11114 *
11115 * So we simply find the maximum observed TSC above, then record the
11116 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11117 * the adjustment will be applied. Note that we accumulate
11118 * adjustments, in case multiple suspend cycles happen before some VCPU
11119 * gets a chance to run again. In the event that no KVM threads get a
11120 * chance to run, we will miss the entire elapsed period, as we'll have
11121 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11122 * loose cycle time. This isn't too big a deal, since the loss will be
11123 * uniform across all VCPUs (not to mention the scenario is extremely
11124 * unlikely). It is possible that a second hibernate recovery happens
11125 * much faster than a first, causing the observed TSC here to be
11126 * smaller; this would require additional padding adjustment, which is
11127 * why we set last_host_tsc to the local tsc observed here.
11128 *
11129 * N.B. - this code below runs only on platforms with reliable TSC,
11130 * as that is the only way backwards_tsc is set above. Also note
11131 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11132 * have the same delta_cyc adjustment applied if backwards_tsc
11133 * is detected. Note further, this adjustment is only done once,
11134 * as we reset last_host_tsc on all VCPUs to stop this from being
11135 * called multiple times (one for each physical CPU bringup).
11136 *
11137 * Platforms with unreliable TSCs don't have to deal with this, they
11138 * will be compensated by the logic in vcpu_load, which sets the TSC to
11139 * catchup mode. This will catchup all VCPUs to real time, but cannot
11140 * guarantee that they stay in perfect synchronization.
11141 */
11142 if (backwards_tsc) {
11143 u64 delta_cyc = max_tsc - local_tsc;
11144 list_for_each_entry(kvm, &vm_list, vm_list) {
11145 kvm->arch.backwards_tsc_observed = true;
11146 kvm_for_each_vcpu(i, vcpu, kvm) {
11147 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11148 vcpu->arch.last_host_tsc = local_tsc;
11149 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11150 }
11151
11152 /*
11153 * We have to disable TSC offset matching.. if you were
11154 * booting a VM while issuing an S4 host suspend....
11155 * you may have some problem. Solving this issue is
11156 * left as an exercise to the reader.
11157 */
11158 kvm->arch.last_tsc_nsec = 0;
11159 kvm->arch.last_tsc_write = 0;
11160 }
11161
11162 }
11163 return 0;
11164 }
11165
11166 void kvm_arch_hardware_disable(void)
11167 {
11168 static_call(kvm_x86_hardware_disable)();
11169 drop_user_return_notifiers();
11170 }
11171
11172 int kvm_arch_hardware_setup(void *opaque)
11173 {
11174 struct kvm_x86_init_ops *ops = opaque;
11175 int r;
11176
11177 rdmsrl_safe(MSR_EFER, &host_efer);
11178
11179 if (boot_cpu_has(X86_FEATURE_XSAVES))
11180 rdmsrl(MSR_IA32_XSS, host_xss);
11181
11182 r = ops->hardware_setup();
11183 if (r != 0)
11184 return r;
11185
11186 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11187 kvm_ops_static_call_update();
11188
11189 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11190 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11191 perf_register_guest_info_callbacks(&kvm_guest_cbs);
11192
11193 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11194 supported_xss = 0;
11195
11196 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11197 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11198 #undef __kvm_cpu_cap_has
11199
11200 if (kvm_has_tsc_control) {
11201 /*
11202 * Make sure the user can only configure tsc_khz values that
11203 * fit into a signed integer.
11204 * A min value is not calculated because it will always
11205 * be 1 on all machines.
11206 */
11207 u64 max = min(0x7fffffffULL,
11208 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11209 kvm_max_guest_tsc_khz = max;
11210
11211 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11212 }
11213
11214 kvm_init_msr_list();
11215 return 0;
11216 }
11217
11218 void kvm_arch_hardware_unsetup(void)
11219 {
11220 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11221 kvm_guest_cbs.handle_intel_pt_intr = NULL;
11222
11223 static_call(kvm_x86_hardware_unsetup)();
11224 }
11225
11226 int kvm_arch_check_processor_compat(void *opaque)
11227 {
11228 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11229 struct kvm_x86_init_ops *ops = opaque;
11230
11231 WARN_ON(!irqs_disabled());
11232
11233 if (__cr4_reserved_bits(cpu_has, c) !=
11234 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11235 return -EIO;
11236
11237 return ops->check_processor_compatibility();
11238 }
11239
11240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11241 {
11242 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11243 }
11244 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11245
11246 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11247 {
11248 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11249 }
11250
11251 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11252 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11253
11254 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11255 {
11256 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11257
11258 vcpu->arch.l1tf_flush_l1d = true;
11259 if (pmu->version && unlikely(pmu->event_count)) {
11260 pmu->need_cleanup = true;
11261 kvm_make_request(KVM_REQ_PMU, vcpu);
11262 }
11263 static_call(kvm_x86_sched_in)(vcpu, cpu);
11264 }
11265
11266 void kvm_arch_free_vm(struct kvm *kvm)
11267 {
11268 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11269 vfree(kvm);
11270 }
11271
11272
11273 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11274 {
11275 int ret;
11276
11277 if (type)
11278 return -EINVAL;
11279
11280 ret = kvm_page_track_init(kvm);
11281 if (ret)
11282 return ret;
11283
11284 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11285 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11286 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11287 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11288 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11289 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11290
11291 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11292 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11293 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11294 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11295 &kvm->arch.irq_sources_bitmap);
11296
11297 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11298 mutex_init(&kvm->arch.apic_map_lock);
11299 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11300
11301 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11302 pvclock_update_vm_gtod_copy(kvm);
11303
11304 kvm->arch.guest_can_read_msr_platform_info = true;
11305
11306 #if IS_ENABLED(CONFIG_HYPERV)
11307 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11308 kvm->arch.hv_root_tdp = INVALID_PAGE;
11309 #endif
11310
11311 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11312 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11313
11314 kvm_apicv_init(kvm);
11315 kvm_hv_init_vm(kvm);
11316 kvm_mmu_init_vm(kvm);
11317 kvm_xen_init_vm(kvm);
11318
11319 return static_call(kvm_x86_vm_init)(kvm);
11320 }
11321
11322 int kvm_arch_post_init_vm(struct kvm *kvm)
11323 {
11324 return kvm_mmu_post_init_vm(kvm);
11325 }
11326
11327 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11328 {
11329 vcpu_load(vcpu);
11330 kvm_mmu_unload(vcpu);
11331 vcpu_put(vcpu);
11332 }
11333
11334 static void kvm_free_vcpus(struct kvm *kvm)
11335 {
11336 unsigned int i;
11337 struct kvm_vcpu *vcpu;
11338
11339 /*
11340 * Unpin any mmu pages first.
11341 */
11342 kvm_for_each_vcpu(i, vcpu, kvm) {
11343 kvm_clear_async_pf_completion_queue(vcpu);
11344 kvm_unload_vcpu_mmu(vcpu);
11345 }
11346 kvm_for_each_vcpu(i, vcpu, kvm)
11347 kvm_vcpu_destroy(vcpu);
11348
11349 mutex_lock(&kvm->lock);
11350 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11351 kvm->vcpus[i] = NULL;
11352
11353 atomic_set(&kvm->online_vcpus, 0);
11354 mutex_unlock(&kvm->lock);
11355 }
11356
11357 void kvm_arch_sync_events(struct kvm *kvm)
11358 {
11359 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11360 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11361 kvm_free_pit(kvm);
11362 }
11363
11364 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11365
11366 /**
11367 * __x86_set_memory_region: Setup KVM internal memory slot
11368 *
11369 * @kvm: the kvm pointer to the VM.
11370 * @id: the slot ID to setup.
11371 * @gpa: the GPA to install the slot (unused when @size == 0).
11372 * @size: the size of the slot. Set to zero to uninstall a slot.
11373 *
11374 * This function helps to setup a KVM internal memory slot. Specify
11375 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11376 * slot. The return code can be one of the following:
11377 *
11378 * HVA: on success (uninstall will return a bogus HVA)
11379 * -errno: on error
11380 *
11381 * The caller should always use IS_ERR() to check the return value
11382 * before use. Note, the KVM internal memory slots are guaranteed to
11383 * remain valid and unchanged until the VM is destroyed, i.e., the
11384 * GPA->HVA translation will not change. However, the HVA is a user
11385 * address, i.e. its accessibility is not guaranteed, and must be
11386 * accessed via __copy_{to,from}_user().
11387 */
11388 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11389 u32 size)
11390 {
11391 int i, r;
11392 unsigned long hva, old_npages;
11393 struct kvm_memslots *slots = kvm_memslots(kvm);
11394 struct kvm_memory_slot *slot;
11395
11396 /* Called with kvm->slots_lock held. */
11397 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11398 return ERR_PTR_USR(-EINVAL);
11399
11400 slot = id_to_memslot(slots, id);
11401 if (size) {
11402 if (slot && slot->npages)
11403 return ERR_PTR_USR(-EEXIST);
11404
11405 /*
11406 * MAP_SHARED to prevent internal slot pages from being moved
11407 * by fork()/COW.
11408 */
11409 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11410 MAP_SHARED | MAP_ANONYMOUS, 0);
11411 if (IS_ERR((void *)hva))
11412 return (void __user *)hva;
11413 } else {
11414 if (!slot || !slot->npages)
11415 return NULL;
11416
11417 old_npages = slot->npages;
11418 hva = slot->userspace_addr;
11419 }
11420
11421 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11422 struct kvm_userspace_memory_region m;
11423
11424 m.slot = id | (i << 16);
11425 m.flags = 0;
11426 m.guest_phys_addr = gpa;
11427 m.userspace_addr = hva;
11428 m.memory_size = size;
11429 r = __kvm_set_memory_region(kvm, &m);
11430 if (r < 0)
11431 return ERR_PTR_USR(r);
11432 }
11433
11434 if (!size)
11435 vm_munmap(hva, old_npages * PAGE_SIZE);
11436
11437 return (void __user *)hva;
11438 }
11439 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11440
11441 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11442 {
11443 kvm_mmu_pre_destroy_vm(kvm);
11444 }
11445
11446 void kvm_arch_destroy_vm(struct kvm *kvm)
11447 {
11448 if (current->mm == kvm->mm) {
11449 /*
11450 * Free memory regions allocated on behalf of userspace,
11451 * unless the the memory map has changed due to process exit
11452 * or fd copying.
11453 */
11454 mutex_lock(&kvm->slots_lock);
11455 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11456 0, 0);
11457 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11458 0, 0);
11459 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11460 mutex_unlock(&kvm->slots_lock);
11461 }
11462 static_call_cond(kvm_x86_vm_destroy)(kvm);
11463 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11464 kvm_pic_destroy(kvm);
11465 kvm_ioapic_destroy(kvm);
11466 kvm_free_vcpus(kvm);
11467 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11468 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11469 kvm_mmu_uninit_vm(kvm);
11470 kvm_page_track_cleanup(kvm);
11471 kvm_xen_destroy_vm(kvm);
11472 kvm_hv_destroy_vm(kvm);
11473 }
11474
11475 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11476 {
11477 int i;
11478
11479 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11480 kvfree(slot->arch.rmap[i]);
11481 slot->arch.rmap[i] = NULL;
11482 }
11483 }
11484
11485 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11486 {
11487 int i;
11488
11489 memslot_rmap_free(slot);
11490
11491 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11492 kvfree(slot->arch.lpage_info[i - 1]);
11493 slot->arch.lpage_info[i - 1] = NULL;
11494 }
11495
11496 kvm_page_track_free_memslot(slot);
11497 }
11498
11499 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11500 unsigned long npages)
11501 {
11502 const int sz = sizeof(*slot->arch.rmap[0]);
11503 int i;
11504
11505 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11506 int level = i + 1;
11507 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11508
11509 if (slot->arch.rmap[i])
11510 continue;
11511
11512 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11513 if (!slot->arch.rmap[i]) {
11514 memslot_rmap_free(slot);
11515 return -ENOMEM;
11516 }
11517 }
11518
11519 return 0;
11520 }
11521
11522 int alloc_all_memslots_rmaps(struct kvm *kvm)
11523 {
11524 struct kvm_memslots *slots;
11525 struct kvm_memory_slot *slot;
11526 int r, i;
11527
11528 /*
11529 * Check if memslots alreday have rmaps early before acquiring
11530 * the slots_arch_lock below.
11531 */
11532 if (kvm_memslots_have_rmaps(kvm))
11533 return 0;
11534
11535 mutex_lock(&kvm->slots_arch_lock);
11536
11537 /*
11538 * Read memslots_have_rmaps again, under the slots arch lock,
11539 * before allocating the rmaps
11540 */
11541 if (kvm_memslots_have_rmaps(kvm)) {
11542 mutex_unlock(&kvm->slots_arch_lock);
11543 return 0;
11544 }
11545
11546 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11547 slots = __kvm_memslots(kvm, i);
11548 kvm_for_each_memslot(slot, slots) {
11549 r = memslot_rmap_alloc(slot, slot->npages);
11550 if (r) {
11551 mutex_unlock(&kvm->slots_arch_lock);
11552 return r;
11553 }
11554 }
11555 }
11556
11557 /*
11558 * Ensure that memslots_have_rmaps becomes true strictly after
11559 * all the rmap pointers are set.
11560 */
11561 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11562 mutex_unlock(&kvm->slots_arch_lock);
11563 return 0;
11564 }
11565
11566 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11567 struct kvm_memory_slot *slot,
11568 unsigned long npages)
11569 {
11570 int i, r;
11571
11572 /*
11573 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11574 * old arrays will be freed by __kvm_set_memory_region() if installing
11575 * the new memslot is successful.
11576 */
11577 memset(&slot->arch, 0, sizeof(slot->arch));
11578
11579 if (kvm_memslots_have_rmaps(kvm)) {
11580 r = memslot_rmap_alloc(slot, npages);
11581 if (r)
11582 return r;
11583 }
11584
11585 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11586 struct kvm_lpage_info *linfo;
11587 unsigned long ugfn;
11588 int lpages;
11589 int level = i + 1;
11590
11591 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11592
11593 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11594 if (!linfo)
11595 goto out_free;
11596
11597 slot->arch.lpage_info[i - 1] = linfo;
11598
11599 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11600 linfo[0].disallow_lpage = 1;
11601 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11602 linfo[lpages - 1].disallow_lpage = 1;
11603 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11604 /*
11605 * If the gfn and userspace address are not aligned wrt each
11606 * other, disable large page support for this slot.
11607 */
11608 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11609 unsigned long j;
11610
11611 for (j = 0; j < lpages; ++j)
11612 linfo[j].disallow_lpage = 1;
11613 }
11614 }
11615
11616 if (kvm_page_track_create_memslot(slot, npages))
11617 goto out_free;
11618
11619 return 0;
11620
11621 out_free:
11622 memslot_rmap_free(slot);
11623
11624 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11625 kvfree(slot->arch.lpage_info[i - 1]);
11626 slot->arch.lpage_info[i - 1] = NULL;
11627 }
11628 return -ENOMEM;
11629 }
11630
11631 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11632 {
11633 struct kvm_vcpu *vcpu;
11634 int i;
11635
11636 /*
11637 * memslots->generation has been incremented.
11638 * mmio generation may have reached its maximum value.
11639 */
11640 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11641
11642 /* Force re-initialization of steal_time cache */
11643 kvm_for_each_vcpu(i, vcpu, kvm)
11644 kvm_vcpu_kick(vcpu);
11645 }
11646
11647 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11648 struct kvm_memory_slot *memslot,
11649 const struct kvm_userspace_memory_region *mem,
11650 enum kvm_mr_change change)
11651 {
11652 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11653 return kvm_alloc_memslot_metadata(kvm, memslot,
11654 mem->memory_size >> PAGE_SHIFT);
11655 return 0;
11656 }
11657
11658
11659 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11660 {
11661 struct kvm_arch *ka = &kvm->arch;
11662
11663 if (!kvm_x86_ops.cpu_dirty_log_size)
11664 return;
11665
11666 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11667 (!enable && --ka->cpu_dirty_logging_count == 0))
11668 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11669
11670 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11671 }
11672
11673 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11674 struct kvm_memory_slot *old,
11675 const struct kvm_memory_slot *new,
11676 enum kvm_mr_change change)
11677 {
11678 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11679
11680 /*
11681 * Update CPU dirty logging if dirty logging is being toggled. This
11682 * applies to all operations.
11683 */
11684 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11685 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11686
11687 /*
11688 * Nothing more to do for RO slots (which can't be dirtied and can't be
11689 * made writable) or CREATE/MOVE/DELETE of a slot.
11690 *
11691 * For a memslot with dirty logging disabled:
11692 * CREATE: No dirty mappings will already exist.
11693 * MOVE/DELETE: The old mappings will already have been cleaned up by
11694 * kvm_arch_flush_shadow_memslot()
11695 *
11696 * For a memslot with dirty logging enabled:
11697 * CREATE: No shadow pages exist, thus nothing to write-protect
11698 * and no dirty bits to clear.
11699 * MOVE/DELETE: The old mappings will already have been cleaned up by
11700 * kvm_arch_flush_shadow_memslot().
11701 */
11702 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11703 return;
11704
11705 /*
11706 * READONLY and non-flags changes were filtered out above, and the only
11707 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11708 * logging isn't being toggled on or off.
11709 */
11710 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11711 return;
11712
11713 if (!log_dirty_pages) {
11714 /*
11715 * Dirty logging tracks sptes in 4k granularity, meaning that
11716 * large sptes have to be split. If live migration succeeds,
11717 * the guest in the source machine will be destroyed and large
11718 * sptes will be created in the destination. However, if the
11719 * guest continues to run in the source machine (for example if
11720 * live migration fails), small sptes will remain around and
11721 * cause bad performance.
11722 *
11723 * Scan sptes if dirty logging has been stopped, dropping those
11724 * which can be collapsed into a single large-page spte. Later
11725 * page faults will create the large-page sptes.
11726 */
11727 kvm_mmu_zap_collapsible_sptes(kvm, new);
11728 } else {
11729 /*
11730 * Initially-all-set does not require write protecting any page,
11731 * because they're all assumed to be dirty.
11732 */
11733 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11734 return;
11735
11736 if (kvm_x86_ops.cpu_dirty_log_size) {
11737 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11738 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11739 } else {
11740 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11741 }
11742 }
11743 }
11744
11745 void kvm_arch_commit_memory_region(struct kvm *kvm,
11746 const struct kvm_userspace_memory_region *mem,
11747 struct kvm_memory_slot *old,
11748 const struct kvm_memory_slot *new,
11749 enum kvm_mr_change change)
11750 {
11751 if (!kvm->arch.n_requested_mmu_pages)
11752 kvm_mmu_change_mmu_pages(kvm,
11753 kvm_mmu_calculate_default_mmu_pages(kvm));
11754
11755 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11756
11757 /* Free the arrays associated with the old memslot. */
11758 if (change == KVM_MR_MOVE)
11759 kvm_arch_free_memslot(kvm, old);
11760 }
11761
11762 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11763 {
11764 kvm_mmu_zap_all(kvm);
11765 }
11766
11767 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11768 struct kvm_memory_slot *slot)
11769 {
11770 kvm_page_track_flush_slot(kvm, slot);
11771 }
11772
11773 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11774 {
11775 return (is_guest_mode(vcpu) &&
11776 kvm_x86_ops.guest_apic_has_interrupt &&
11777 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11778 }
11779
11780 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11781 {
11782 if (!list_empty_careful(&vcpu->async_pf.done))
11783 return true;
11784
11785 if (kvm_apic_has_events(vcpu))
11786 return true;
11787
11788 if (vcpu->arch.pv.pv_unhalted)
11789 return true;
11790
11791 if (vcpu->arch.exception.pending)
11792 return true;
11793
11794 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11795 (vcpu->arch.nmi_pending &&
11796 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11797 return true;
11798
11799 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11800 (vcpu->arch.smi_pending &&
11801 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11802 return true;
11803
11804 if (kvm_arch_interrupt_allowed(vcpu) &&
11805 (kvm_cpu_has_interrupt(vcpu) ||
11806 kvm_guest_apic_has_interrupt(vcpu)))
11807 return true;
11808
11809 if (kvm_hv_has_stimer_pending(vcpu))
11810 return true;
11811
11812 if (is_guest_mode(vcpu) &&
11813 kvm_x86_ops.nested_ops->hv_timer_pending &&
11814 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11815 return true;
11816
11817 return false;
11818 }
11819
11820 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11821 {
11822 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11823 }
11824
11825 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11826 {
11827 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11828 return true;
11829
11830 return false;
11831 }
11832
11833 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11834 {
11835 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11836 return true;
11837
11838 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11839 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11840 kvm_test_request(KVM_REQ_EVENT, vcpu))
11841 return true;
11842
11843 return kvm_arch_dy_has_pending_interrupt(vcpu);
11844 }
11845
11846 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11847 {
11848 if (vcpu->arch.guest_state_protected)
11849 return true;
11850
11851 return vcpu->arch.preempted_in_kernel;
11852 }
11853
11854 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11855 {
11856 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11857 }
11858
11859 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11860 {
11861 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11862 }
11863
11864 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11865 {
11866 /* Can't read the RIP when guest state is protected, just return 0 */
11867 if (vcpu->arch.guest_state_protected)
11868 return 0;
11869
11870 if (is_64_bit_mode(vcpu))
11871 return kvm_rip_read(vcpu);
11872 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11873 kvm_rip_read(vcpu));
11874 }
11875 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11876
11877 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11878 {
11879 return kvm_get_linear_rip(vcpu) == linear_rip;
11880 }
11881 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11882
11883 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11884 {
11885 unsigned long rflags;
11886
11887 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11888 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11889 rflags &= ~X86_EFLAGS_TF;
11890 return rflags;
11891 }
11892 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11893
11894 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11895 {
11896 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11897 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11898 rflags |= X86_EFLAGS_TF;
11899 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11900 }
11901
11902 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11903 {
11904 __kvm_set_rflags(vcpu, rflags);
11905 kvm_make_request(KVM_REQ_EVENT, vcpu);
11906 }
11907 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11908
11909 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11910 {
11911 int r;
11912
11913 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11914 work->wakeup_all)
11915 return;
11916
11917 r = kvm_mmu_reload(vcpu);
11918 if (unlikely(r))
11919 return;
11920
11921 if (!vcpu->arch.mmu->direct_map &&
11922 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11923 return;
11924
11925 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11926 }
11927
11928 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11929 {
11930 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11931
11932 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11933 }
11934
11935 static inline u32 kvm_async_pf_next_probe(u32 key)
11936 {
11937 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11938 }
11939
11940 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11941 {
11942 u32 key = kvm_async_pf_hash_fn(gfn);
11943
11944 while (vcpu->arch.apf.gfns[key] != ~0)
11945 key = kvm_async_pf_next_probe(key);
11946
11947 vcpu->arch.apf.gfns[key] = gfn;
11948 }
11949
11950 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11951 {
11952 int i;
11953 u32 key = kvm_async_pf_hash_fn(gfn);
11954
11955 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11956 (vcpu->arch.apf.gfns[key] != gfn &&
11957 vcpu->arch.apf.gfns[key] != ~0); i++)
11958 key = kvm_async_pf_next_probe(key);
11959
11960 return key;
11961 }
11962
11963 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11964 {
11965 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11966 }
11967
11968 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11969 {
11970 u32 i, j, k;
11971
11972 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11973
11974 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11975 return;
11976
11977 while (true) {
11978 vcpu->arch.apf.gfns[i] = ~0;
11979 do {
11980 j = kvm_async_pf_next_probe(j);
11981 if (vcpu->arch.apf.gfns[j] == ~0)
11982 return;
11983 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11984 /*
11985 * k lies cyclically in ]i,j]
11986 * | i.k.j |
11987 * |....j i.k.| or |.k..j i...|
11988 */
11989 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11990 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11991 i = j;
11992 }
11993 }
11994
11995 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11996 {
11997 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11998
11999 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12000 sizeof(reason));
12001 }
12002
12003 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12004 {
12005 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12006
12007 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12008 &token, offset, sizeof(token));
12009 }
12010
12011 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12012 {
12013 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12014 u32 val;
12015
12016 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12017 &val, offset, sizeof(val)))
12018 return false;
12019
12020 return !val;
12021 }
12022
12023 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12024 {
12025 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12026 return false;
12027
12028 if (!kvm_pv_async_pf_enabled(vcpu) ||
12029 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12030 return false;
12031
12032 return true;
12033 }
12034
12035 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12036 {
12037 if (unlikely(!lapic_in_kernel(vcpu) ||
12038 kvm_event_needs_reinjection(vcpu) ||
12039 vcpu->arch.exception.pending))
12040 return false;
12041
12042 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12043 return false;
12044
12045 /*
12046 * If interrupts are off we cannot even use an artificial
12047 * halt state.
12048 */
12049 return kvm_arch_interrupt_allowed(vcpu);
12050 }
12051
12052 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12053 struct kvm_async_pf *work)
12054 {
12055 struct x86_exception fault;
12056
12057 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12058 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12059
12060 if (kvm_can_deliver_async_pf(vcpu) &&
12061 !apf_put_user_notpresent(vcpu)) {
12062 fault.vector = PF_VECTOR;
12063 fault.error_code_valid = true;
12064 fault.error_code = 0;
12065 fault.nested_page_fault = false;
12066 fault.address = work->arch.token;
12067 fault.async_page_fault = true;
12068 kvm_inject_page_fault(vcpu, &fault);
12069 return true;
12070 } else {
12071 /*
12072 * It is not possible to deliver a paravirtualized asynchronous
12073 * page fault, but putting the guest in an artificial halt state
12074 * can be beneficial nevertheless: if an interrupt arrives, we
12075 * can deliver it timely and perhaps the guest will schedule
12076 * another process. When the instruction that triggered a page
12077 * fault is retried, hopefully the page will be ready in the host.
12078 */
12079 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12080 return false;
12081 }
12082 }
12083
12084 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12085 struct kvm_async_pf *work)
12086 {
12087 struct kvm_lapic_irq irq = {
12088 .delivery_mode = APIC_DM_FIXED,
12089 .vector = vcpu->arch.apf.vec
12090 };
12091
12092 if (work->wakeup_all)
12093 work->arch.token = ~0; /* broadcast wakeup */
12094 else
12095 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12096 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12097
12098 if ((work->wakeup_all || work->notpresent_injected) &&
12099 kvm_pv_async_pf_enabled(vcpu) &&
12100 !apf_put_user_ready(vcpu, work->arch.token)) {
12101 vcpu->arch.apf.pageready_pending = true;
12102 kvm_apic_set_irq(vcpu, &irq, NULL);
12103 }
12104
12105 vcpu->arch.apf.halted = false;
12106 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12107 }
12108
12109 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12110 {
12111 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12112 if (!vcpu->arch.apf.pageready_pending)
12113 kvm_vcpu_kick(vcpu);
12114 }
12115
12116 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12117 {
12118 if (!kvm_pv_async_pf_enabled(vcpu))
12119 return true;
12120 else
12121 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12122 }
12123
12124 void kvm_arch_start_assignment(struct kvm *kvm)
12125 {
12126 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12127 static_call_cond(kvm_x86_start_assignment)(kvm);
12128 }
12129 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12130
12131 void kvm_arch_end_assignment(struct kvm *kvm)
12132 {
12133 atomic_dec(&kvm->arch.assigned_device_count);
12134 }
12135 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12136
12137 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12138 {
12139 return atomic_read(&kvm->arch.assigned_device_count);
12140 }
12141 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12142
12143 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12144 {
12145 atomic_inc(&kvm->arch.noncoherent_dma_count);
12146 }
12147 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12148
12149 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12150 {
12151 atomic_dec(&kvm->arch.noncoherent_dma_count);
12152 }
12153 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12154
12155 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12156 {
12157 return atomic_read(&kvm->arch.noncoherent_dma_count);
12158 }
12159 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12160
12161 bool kvm_arch_has_irq_bypass(void)
12162 {
12163 return true;
12164 }
12165
12166 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12167 struct irq_bypass_producer *prod)
12168 {
12169 struct kvm_kernel_irqfd *irqfd =
12170 container_of(cons, struct kvm_kernel_irqfd, consumer);
12171 int ret;
12172
12173 irqfd->producer = prod;
12174 kvm_arch_start_assignment(irqfd->kvm);
12175 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12176 prod->irq, irqfd->gsi, 1);
12177
12178 if (ret)
12179 kvm_arch_end_assignment(irqfd->kvm);
12180
12181 return ret;
12182 }
12183
12184 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12185 struct irq_bypass_producer *prod)
12186 {
12187 int ret;
12188 struct kvm_kernel_irqfd *irqfd =
12189 container_of(cons, struct kvm_kernel_irqfd, consumer);
12190
12191 WARN_ON(irqfd->producer != prod);
12192 irqfd->producer = NULL;
12193
12194 /*
12195 * When producer of consumer is unregistered, we change back to
12196 * remapped mode, so we can re-use the current implementation
12197 * when the irq is masked/disabled or the consumer side (KVM
12198 * int this case doesn't want to receive the interrupts.
12199 */
12200 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12201 if (ret)
12202 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12203 " fails: %d\n", irqfd->consumer.token, ret);
12204
12205 kvm_arch_end_assignment(irqfd->kvm);
12206 }
12207
12208 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12209 uint32_t guest_irq, bool set)
12210 {
12211 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12212 }
12213
12214 bool kvm_vector_hashing_enabled(void)
12215 {
12216 return vector_hashing;
12217 }
12218
12219 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12220 {
12221 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12222 }
12223 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12224
12225
12226 int kvm_spec_ctrl_test_value(u64 value)
12227 {
12228 /*
12229 * test that setting IA32_SPEC_CTRL to given value
12230 * is allowed by the host processor
12231 */
12232
12233 u64 saved_value;
12234 unsigned long flags;
12235 int ret = 0;
12236
12237 local_irq_save(flags);
12238
12239 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12240 ret = 1;
12241 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12242 ret = 1;
12243 else
12244 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12245
12246 local_irq_restore(flags);
12247
12248 return ret;
12249 }
12250 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12251
12252 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12253 {
12254 struct x86_exception fault;
12255 u32 access = error_code &
12256 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12257
12258 if (!(error_code & PFERR_PRESENT_MASK) ||
12259 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12260 /*
12261 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12262 * tables probably do not match the TLB. Just proceed
12263 * with the error code that the processor gave.
12264 */
12265 fault.vector = PF_VECTOR;
12266 fault.error_code_valid = true;
12267 fault.error_code = error_code;
12268 fault.nested_page_fault = false;
12269 fault.address = gva;
12270 }
12271 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12272 }
12273 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12274
12275 /*
12276 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12277 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12278 * indicates whether exit to userspace is needed.
12279 */
12280 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12281 struct x86_exception *e)
12282 {
12283 if (r == X86EMUL_PROPAGATE_FAULT) {
12284 kvm_inject_emulated_page_fault(vcpu, e);
12285 return 1;
12286 }
12287
12288 /*
12289 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12290 * while handling a VMX instruction KVM could've handled the request
12291 * correctly by exiting to userspace and performing I/O but there
12292 * doesn't seem to be a real use-case behind such requests, just return
12293 * KVM_EXIT_INTERNAL_ERROR for now.
12294 */
12295 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12296 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12297 vcpu->run->internal.ndata = 0;
12298
12299 return 0;
12300 }
12301 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12302
12303 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12304 {
12305 bool pcid_enabled;
12306 struct x86_exception e;
12307 struct {
12308 u64 pcid;
12309 u64 gla;
12310 } operand;
12311 int r;
12312
12313 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12314 if (r != X86EMUL_CONTINUE)
12315 return kvm_handle_memory_failure(vcpu, r, &e);
12316
12317 if (operand.pcid >> 12 != 0) {
12318 kvm_inject_gp(vcpu, 0);
12319 return 1;
12320 }
12321
12322 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12323
12324 switch (type) {
12325 case INVPCID_TYPE_INDIV_ADDR:
12326 if ((!pcid_enabled && (operand.pcid != 0)) ||
12327 is_noncanonical_address(operand.gla, vcpu)) {
12328 kvm_inject_gp(vcpu, 0);
12329 return 1;
12330 }
12331 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12332 return kvm_skip_emulated_instruction(vcpu);
12333
12334 case INVPCID_TYPE_SINGLE_CTXT:
12335 if (!pcid_enabled && (operand.pcid != 0)) {
12336 kvm_inject_gp(vcpu, 0);
12337 return 1;
12338 }
12339
12340 kvm_invalidate_pcid(vcpu, operand.pcid);
12341 return kvm_skip_emulated_instruction(vcpu);
12342
12343 case INVPCID_TYPE_ALL_NON_GLOBAL:
12344 /*
12345 * Currently, KVM doesn't mark global entries in the shadow
12346 * page tables, so a non-global flush just degenerates to a
12347 * global flush. If needed, we could optimize this later by
12348 * keeping track of global entries in shadow page tables.
12349 */
12350
12351 fallthrough;
12352 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12353 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12354 return kvm_skip_emulated_instruction(vcpu);
12355
12356 default:
12357 BUG(); /* We have already checked above that type <= 3 */
12358 }
12359 }
12360 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12361
12362 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12363 {
12364 struct kvm_run *run = vcpu->run;
12365 struct kvm_mmio_fragment *frag;
12366 unsigned int len;
12367
12368 BUG_ON(!vcpu->mmio_needed);
12369
12370 /* Complete previous fragment */
12371 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12372 len = min(8u, frag->len);
12373 if (!vcpu->mmio_is_write)
12374 memcpy(frag->data, run->mmio.data, len);
12375
12376 if (frag->len <= 8) {
12377 /* Switch to the next fragment. */
12378 frag++;
12379 vcpu->mmio_cur_fragment++;
12380 } else {
12381 /* Go forward to the next mmio piece. */
12382 frag->data += len;
12383 frag->gpa += len;
12384 frag->len -= len;
12385 }
12386
12387 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12388 vcpu->mmio_needed = 0;
12389
12390 // VMG change, at this point, we're always done
12391 // RIP has already been advanced
12392 return 1;
12393 }
12394
12395 // More MMIO is needed
12396 run->mmio.phys_addr = frag->gpa;
12397 run->mmio.len = min(8u, frag->len);
12398 run->mmio.is_write = vcpu->mmio_is_write;
12399 if (run->mmio.is_write)
12400 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12401 run->exit_reason = KVM_EXIT_MMIO;
12402
12403 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12404
12405 return 0;
12406 }
12407
12408 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12409 void *data)
12410 {
12411 int handled;
12412 struct kvm_mmio_fragment *frag;
12413
12414 if (!data)
12415 return -EINVAL;
12416
12417 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12418 if (handled == bytes)
12419 return 1;
12420
12421 bytes -= handled;
12422 gpa += handled;
12423 data += handled;
12424
12425 /*TODO: Check if need to increment number of frags */
12426 frag = vcpu->mmio_fragments;
12427 vcpu->mmio_nr_fragments = 1;
12428 frag->len = bytes;
12429 frag->gpa = gpa;
12430 frag->data = data;
12431
12432 vcpu->mmio_needed = 1;
12433 vcpu->mmio_cur_fragment = 0;
12434
12435 vcpu->run->mmio.phys_addr = gpa;
12436 vcpu->run->mmio.len = min(8u, frag->len);
12437 vcpu->run->mmio.is_write = 1;
12438 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12439 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12440
12441 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12442
12443 return 0;
12444 }
12445 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12446
12447 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12448 void *data)
12449 {
12450 int handled;
12451 struct kvm_mmio_fragment *frag;
12452
12453 if (!data)
12454 return -EINVAL;
12455
12456 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12457 if (handled == bytes)
12458 return 1;
12459
12460 bytes -= handled;
12461 gpa += handled;
12462 data += handled;
12463
12464 /*TODO: Check if need to increment number of frags */
12465 frag = vcpu->mmio_fragments;
12466 vcpu->mmio_nr_fragments = 1;
12467 frag->len = bytes;
12468 frag->gpa = gpa;
12469 frag->data = data;
12470
12471 vcpu->mmio_needed = 1;
12472 vcpu->mmio_cur_fragment = 0;
12473
12474 vcpu->run->mmio.phys_addr = gpa;
12475 vcpu->run->mmio.len = min(8u, frag->len);
12476 vcpu->run->mmio.is_write = 0;
12477 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12478
12479 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12480
12481 return 0;
12482 }
12483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12484
12485 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12486 unsigned int port);
12487
12488 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12489 {
12490 int size = vcpu->arch.pio.size;
12491 int port = vcpu->arch.pio.port;
12492
12493 vcpu->arch.pio.count = 0;
12494 if (vcpu->arch.sev_pio_count)
12495 return kvm_sev_es_outs(vcpu, size, port);
12496 return 1;
12497 }
12498
12499 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12500 unsigned int port)
12501 {
12502 for (;;) {
12503 unsigned int count =
12504 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12505 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12506
12507 /* memcpy done already by emulator_pio_out. */
12508 vcpu->arch.sev_pio_count -= count;
12509 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12510 if (!ret)
12511 break;
12512
12513 /* Emulation done by the kernel. */
12514 if (!vcpu->arch.sev_pio_count)
12515 return 1;
12516 }
12517
12518 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12519 return 0;
12520 }
12521
12522 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12523 unsigned int port);
12524
12525 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12526 {
12527 unsigned count = vcpu->arch.pio.count;
12528 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12529 vcpu->arch.sev_pio_count -= count;
12530 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12531 }
12532
12533 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12534 {
12535 int size = vcpu->arch.pio.size;
12536 int port = vcpu->arch.pio.port;
12537
12538 advance_sev_es_emulated_ins(vcpu);
12539 if (vcpu->arch.sev_pio_count)
12540 return kvm_sev_es_ins(vcpu, size, port);
12541 return 1;
12542 }
12543
12544 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12545 unsigned int port)
12546 {
12547 for (;;) {
12548 unsigned int count =
12549 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12550 if (!__emulator_pio_in(vcpu, size, port, count))
12551 break;
12552
12553 /* Emulation done by the kernel. */
12554 advance_sev_es_emulated_ins(vcpu);
12555 if (!vcpu->arch.sev_pio_count)
12556 return 1;
12557 }
12558
12559 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12560 return 0;
12561 }
12562
12563 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12564 unsigned int port, void *data, unsigned int count,
12565 int in)
12566 {
12567 vcpu->arch.sev_pio_data = data;
12568 vcpu->arch.sev_pio_count = count;
12569 return in ? kvm_sev_es_ins(vcpu, size, port)
12570 : kvm_sev_es_outs(vcpu, size, port);
12571 }
12572 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12573
12574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);