]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
Merge commit '3e10585335b7967326ca7b4118cada0d2d00a2ab' into v5.12/vfio/next
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87
88 #define emul_to_vcpu(ctxt) \
89 ((struct kvm_vcpu *)(ctxt)->vcpu)
90
91 /* EFER defaults:
92 * - enable syscall per default because its emulated by KVM
93 * - enable LME and LMA per default on 64 bit KVM
94 */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117
118 #define KVM_X86_OP(func) \
119 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
120 *(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32 __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64 __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156
157 /*
158 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
159 * adaptive tuning starting from default advancment of 1000ns. '0' disables
160 * advancement entirely. Any other value is used as-is and disables adaptive
161 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
162 */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178
179 /*
180 * Restoring the host value for MSRs that are only consumed when running in
181 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182 * returns to userspace, i.e. the kernel can run with the guest's value.
183 */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185
186 struct kvm_user_return_msrs_global {
187 int nr;
188 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190
191 struct kvm_user_return_msrs {
192 struct user_return_notifier urn;
193 bool registered;
194 struct kvm_user_return_msr_values {
195 u64 host;
196 u64 curr;
197 } values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202
203 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206 | XFEATURE_MASK_PKRU)
207
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220 VCPU_STAT("pf_fixed", pf_fixed),
221 VCPU_STAT("pf_guest", pf_guest),
222 VCPU_STAT("tlb_flush", tlb_flush),
223 VCPU_STAT("invlpg", invlpg),
224 VCPU_STAT("exits", exits),
225 VCPU_STAT("io_exits", io_exits),
226 VCPU_STAT("mmio_exits", mmio_exits),
227 VCPU_STAT("signal_exits", signal_exits),
228 VCPU_STAT("irq_window", irq_window_exits),
229 VCPU_STAT("nmi_window", nmi_window_exits),
230 VCPU_STAT("halt_exits", halt_exits),
231 VCPU_STAT("halt_successful_poll", halt_successful_poll),
232 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234 VCPU_STAT("halt_wakeup", halt_wakeup),
235 VCPU_STAT("hypercalls", hypercalls),
236 VCPU_STAT("request_irq", request_irq_exits),
237 VCPU_STAT("irq_exits", irq_exits),
238 VCPU_STAT("host_state_reload", host_state_reload),
239 VCPU_STAT("fpu_reload", fpu_reload),
240 VCPU_STAT("insn_emulation", insn_emulation),
241 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242 VCPU_STAT("irq_injections", irq_injections),
243 VCPU_STAT("nmi_injections", nmi_injections),
244 VCPU_STAT("req_event", req_event),
245 VCPU_STAT("l1d_flush", l1d_flush),
246 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249 VM_STAT("mmu_pte_write", mmu_pte_write),
250 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251 VM_STAT("mmu_flooded", mmu_flooded),
252 VM_STAT("mmu_recycled", mmu_recycled),
253 VM_STAT("mmu_cache_miss", mmu_cache_miss),
254 VM_STAT("mmu_unsync", mmu_unsync),
255 VM_STAT("remote_tlb_flush", remote_tlb_flush),
256 VM_STAT("largepages", lpages, .mode = 0444),
257 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259 { NULL }
260 };
261
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265
266 static struct kmem_cache *x86_fpu_cache;
267
268 static struct kmem_cache *x86_emulator_cache;
269
270 /*
271 * When called, it means the previous get/set msr reached an invalid msr.
272 * Return true if we want to ignore/silent this failed msr access.
273 */
274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
275 u64 data, bool write)
276 {
277 const char *op = write ? "wrmsr" : "rdmsr";
278
279 if (ignore_msrs) {
280 if (report_ignored_msrs)
281 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282 op, msr, data);
283 /* Mask the error */
284 return true;
285 } else {
286 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287 op, msr, data);
288 return false;
289 }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295 unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297 return kmem_cache_create_usercopy("x86_emulator", size,
298 __alignof__(struct x86_emulate_ctxt),
299 SLAB_ACCOUNT, useroffset,
300 size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307 int i;
308 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314 unsigned slot;
315 struct kvm_user_return_msrs *msrs
316 = container_of(urn, struct kvm_user_return_msrs, urn);
317 struct kvm_user_return_msr_values *values;
318 unsigned long flags;
319
320 /*
321 * Disabling irqs at this point since the following code could be
322 * interrupted and executed through kvm_arch_hardware_disable()
323 */
324 local_irq_save(flags);
325 if (msrs->registered) {
326 msrs->registered = false;
327 user_return_notifier_unregister(urn);
328 }
329 local_irq_restore(flags);
330 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
331 values = &msrs->values[slot];
332 if (values->host != values->curr) {
333 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
334 values->curr = values->host;
335 }
336 }
337 }
338
339 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 {
341 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
342 user_return_msrs_global.msrs[slot] = msr;
343 if (slot >= user_return_msrs_global.nr)
344 user_return_msrs_global.nr = slot + 1;
345 }
346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347
348 static void kvm_user_return_msr_cpu_online(void)
349 {
350 unsigned int cpu = smp_processor_id();
351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352 u64 value;
353 int i;
354
355 for (i = 0; i < user_return_msrs_global.nr; ++i) {
356 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
357 msrs->values[i].host = value;
358 msrs->values[i].curr = value;
359 }
360 }
361
362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 {
364 unsigned int cpu = smp_processor_id();
365 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
366 int err;
367
368 value = (value & mask) | (msrs->values[slot].host & ~mask);
369 if (value == msrs->values[slot].curr)
370 return 0;
371 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
372 if (err)
373 return 1;
374
375 msrs->values[slot].curr = value;
376 if (!msrs->registered) {
377 msrs->urn.on_user_return = kvm_on_user_return;
378 user_return_notifier_register(&msrs->urn);
379 msrs->registered = true;
380 }
381 return 0;
382 }
383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384
385 static void drop_user_return_notifiers(void)
386 {
387 unsigned int cpu = smp_processor_id();
388 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389
390 if (msrs->registered)
391 kvm_on_user_return(&msrs->urn);
392 }
393
394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 {
396 return vcpu->arch.apic_base;
397 }
398 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399
400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 {
402 return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 }
404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405
406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
409 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
410 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
411 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412
413 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414 return 1;
415 if (!msr_info->host_initiated) {
416 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417 return 1;
418 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
419 return 1;
420 }
421
422 kvm_lapic_set_base(vcpu, msr_info->data);
423 kvm_recalculate_apic_map(vcpu->kvm);
424 return 0;
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427
428 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 {
430 /* Fault while not rebooting. We want the trace. */
431 BUG_ON(!kvm_rebooting);
432 }
433 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434
435 #define EXCPT_BENIGN 0
436 #define EXCPT_CONTRIBUTORY 1
437 #define EXCPT_PF 2
438
439 static int exception_class(int vector)
440 {
441 switch (vector) {
442 case PF_VECTOR:
443 return EXCPT_PF;
444 case DE_VECTOR:
445 case TS_VECTOR:
446 case NP_VECTOR:
447 case SS_VECTOR:
448 case GP_VECTOR:
449 return EXCPT_CONTRIBUTORY;
450 default:
451 break;
452 }
453 return EXCPT_BENIGN;
454 }
455
456 #define EXCPT_FAULT 0
457 #define EXCPT_TRAP 1
458 #define EXCPT_ABORT 2
459 #define EXCPT_INTERRUPT 3
460
461 static int exception_type(int vector)
462 {
463 unsigned int mask;
464
465 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
466 return EXCPT_INTERRUPT;
467
468 mask = 1 << vector;
469
470 /* #DB is trap, as instruction watchpoints are handled elsewhere */
471 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
472 return EXCPT_TRAP;
473
474 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
475 return EXCPT_ABORT;
476
477 /* Reserved exceptions will result in fault */
478 return EXCPT_FAULT;
479 }
480
481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 {
483 unsigned nr = vcpu->arch.exception.nr;
484 bool has_payload = vcpu->arch.exception.has_payload;
485 unsigned long payload = vcpu->arch.exception.payload;
486
487 if (!has_payload)
488 return;
489
490 switch (nr) {
491 case DB_VECTOR:
492 /*
493 * "Certain debug exceptions may clear bit 0-3. The
494 * remaining contents of the DR6 register are never
495 * cleared by the processor".
496 */
497 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498 /*
499 * In order to reflect the #DB exception payload in guest
500 * dr6, three components need to be considered: active low
501 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502 * DR6_BS and DR6_BT)
503 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
504 * In the target guest dr6:
505 * FIXED_1 bits should always be set.
506 * Active low bits should be cleared if 1-setting in payload.
507 * Active high bits should be set if 1-setting in payload.
508 *
509 * Note, the payload is compatible with the pending debug
510 * exceptions/exit qualification under VMX, that active_low bits
511 * are active high in payload.
512 * So they need to be flipped for DR6.
513 */
514 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
515 vcpu->arch.dr6 |= payload;
516 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
517
518 /*
519 * The #DB payload is defined as compatible with the 'pending
520 * debug exceptions' field under VMX, not DR6. While bit 12 is
521 * defined in the 'pending debug exceptions' field (enabled
522 * breakpoint), it is reserved and must be zero in DR6.
523 */
524 vcpu->arch.dr6 &= ~BIT(12);
525 break;
526 case PF_VECTOR:
527 vcpu->arch.cr2 = payload;
528 break;
529 }
530
531 vcpu->arch.exception.has_payload = false;
532 vcpu->arch.exception.payload = 0;
533 }
534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535
536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
537 unsigned nr, bool has_error, u32 error_code,
538 bool has_payload, unsigned long payload, bool reinject)
539 {
540 u32 prev_nr;
541 int class1, class2;
542
543 kvm_make_request(KVM_REQ_EVENT, vcpu);
544
545 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546 queue:
547 if (has_error && !is_protmode(vcpu))
548 has_error = false;
549 if (reinject) {
550 /*
551 * On vmentry, vcpu->arch.exception.pending is only
552 * true if an event injection was blocked by
553 * nested_run_pending. In that case, however,
554 * vcpu_enter_guest requests an immediate exit,
555 * and the guest shouldn't proceed far enough to
556 * need reinjection.
557 */
558 WARN_ON_ONCE(vcpu->arch.exception.pending);
559 vcpu->arch.exception.injected = true;
560 if (WARN_ON_ONCE(has_payload)) {
561 /*
562 * A reinjected event has already
563 * delivered its payload.
564 */
565 has_payload = false;
566 payload = 0;
567 }
568 } else {
569 vcpu->arch.exception.pending = true;
570 vcpu->arch.exception.injected = false;
571 }
572 vcpu->arch.exception.has_error_code = has_error;
573 vcpu->arch.exception.nr = nr;
574 vcpu->arch.exception.error_code = error_code;
575 vcpu->arch.exception.has_payload = has_payload;
576 vcpu->arch.exception.payload = payload;
577 if (!is_guest_mode(vcpu))
578 kvm_deliver_exception_payload(vcpu);
579 return;
580 }
581
582 /* to check exception */
583 prev_nr = vcpu->arch.exception.nr;
584 if (prev_nr == DF_VECTOR) {
585 /* triple fault -> shutdown */
586 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
587 return;
588 }
589 class1 = exception_class(prev_nr);
590 class2 = exception_class(nr);
591 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
592 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593 /*
594 * Generate double fault per SDM Table 5-5. Set
595 * exception.pending = true so that the double fault
596 * can trigger a nested vmexit.
597 */
598 vcpu->arch.exception.pending = true;
599 vcpu->arch.exception.injected = false;
600 vcpu->arch.exception.has_error_code = true;
601 vcpu->arch.exception.nr = DF_VECTOR;
602 vcpu->arch.exception.error_code = 0;
603 vcpu->arch.exception.has_payload = false;
604 vcpu->arch.exception.payload = 0;
605 } else
606 /* replace previous exception with a new one in a hope
607 that instruction re-execution will regenerate lost
608 exception */
609 goto queue;
610 }
611
612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 {
614 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617
618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 {
620 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623
624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
625 unsigned long payload)
626 {
627 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 }
629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630
631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
632 u32 error_code, unsigned long payload)
633 {
634 kvm_multiple_exception(vcpu, nr, true, error_code,
635 true, payload, false);
636 }
637
638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
639 {
640 if (err)
641 kvm_inject_gp(vcpu, 0);
642 else
643 return kvm_skip_emulated_instruction(vcpu);
644
645 return 1;
646 }
647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648
649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 {
651 ++vcpu->stat.pf_guest;
652 vcpu->arch.exception.nested_apf =
653 is_guest_mode(vcpu) && fault->async_page_fault;
654 if (vcpu->arch.exception.nested_apf) {
655 vcpu->arch.apf.nested_apf_token = fault->address;
656 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657 } else {
658 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
659 fault->address);
660 }
661 }
662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663
664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
665 struct x86_exception *fault)
666 {
667 struct kvm_mmu *fault_mmu;
668 WARN_ON_ONCE(fault->vector != PF_VECTOR);
669
670 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
671 vcpu->arch.walk_mmu;
672
673 /*
674 * Invalidate the TLB entry for the faulting address, if it exists,
675 * else the access will fault indefinitely (and to emulate hardware).
676 */
677 if ((fault->error_code & PFERR_PRESENT_MASK) &&
678 !(fault->error_code & PFERR_RSVD_MASK))
679 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
680 fault_mmu->root_hpa);
681
682 fault_mmu->inject_page_fault(vcpu, fault);
683 return fault->nested_page_fault;
684 }
685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686
687 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 {
689 atomic_inc(&vcpu->arch.nmi_queued);
690 kvm_make_request(KVM_REQ_NMI, vcpu);
691 }
692 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693
694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 {
696 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699
700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 {
702 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 }
704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
705
706 /*
707 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
708 * a #GP and return false.
709 */
710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 {
712 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713 return true;
714 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
715 return false;
716 }
717 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718
719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 {
721 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
722 return true;
723
724 kvm_queue_exception(vcpu, UD_VECTOR);
725 return false;
726 }
727 EXPORT_SYMBOL_GPL(kvm_require_dr);
728
729 /*
730 * This function will be used to read from the physical memory of the currently
731 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
732 * can read from guest physical or from the guest's guest physical memory.
733 */
734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
735 gfn_t ngfn, void *data, int offset, int len,
736 u32 access)
737 {
738 struct x86_exception exception;
739 gfn_t real_gfn;
740 gpa_t ngpa;
741
742 ngpa = gfn_to_gpa(ngfn);
743 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
744 if (real_gfn == UNMAPPED_GVA)
745 return -EFAULT;
746
747 real_gfn = gpa_to_gfn(real_gfn);
748
749 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 }
751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752
753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
754 void *data, int offset, int len, u32 access)
755 {
756 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
757 data, offset, len, access);
758 }
759
760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 {
762 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
763 }
764
765 /*
766 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
767 */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772 int i;
773 int ret;
774 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775
776 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777 offset * sizeof(u64), sizeof(pdpte),
778 PFERR_USER_MASK|PFERR_WRITE_MASK);
779 if (ret < 0) {
780 ret = 0;
781 goto out;
782 }
783 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784 if ((pdpte[i] & PT_PRESENT_MASK) &&
785 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786 ret = 0;
787 goto out;
788 }
789 }
790 ret = 1;
791
792 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794
795 out:
796
797 return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804 int offset;
805 gfn_t gfn;
806 int r;
807
808 if (!is_pae_paging(vcpu))
809 return false;
810
811 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812 return true;
813
814 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817 PFERR_USER_MASK | PFERR_WRITE_MASK);
818 if (r < 0)
819 return true;
820
821 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828
829 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830 kvm_clear_async_pf_completion_queue(vcpu);
831 kvm_async_pf_hash_reset(vcpu);
832 }
833
834 if ((cr0 ^ old_cr0) & update_bits)
835 kvm_mmu_reset_context(vcpu);
836
837 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846 unsigned long old_cr0 = kvm_read_cr0(vcpu);
847 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848
849 cr0 |= X86_CR0_ET;
850
851 #ifdef CONFIG_X86_64
852 if (cr0 & 0xffffffff00000000UL)
853 return 1;
854 #endif
855
856 cr0 &= ~CR0_RESERVED_BITS;
857
858 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859 return 1;
860
861 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862 return 1;
863
864 #ifdef CONFIG_X86_64
865 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866 (cr0 & X86_CR0_PG)) {
867 int cs_db, cs_l;
868
869 if (!is_pae(vcpu))
870 return 1;
871 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872 if (cs_l)
873 return 1;
874 }
875 #endif
876 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879 return 1;
880
881 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882 return 1;
883
884 static_call(kvm_x86_set_cr0)(vcpu, cr0);
885
886 kvm_post_set_cr0(vcpu, old_cr0, cr0);
887
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900 if (vcpu->arch.guest_state_protected)
901 return;
902
903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905 if (vcpu->arch.xcr0 != host_xcr0)
906 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907
908 if (vcpu->arch.xsaves_enabled &&
909 vcpu->arch.ia32_xss != host_xss)
910 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911 }
912
913 if (static_cpu_has(X86_FEATURE_PKU) &&
914 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916 vcpu->arch.pkru != vcpu->arch.host_pkru)
917 __write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923 if (vcpu->arch.guest_state_protected)
924 return;
925
926 if (static_cpu_has(X86_FEATURE_PKU) &&
927 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929 vcpu->arch.pkru = rdpkru();
930 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931 __write_pkru(vcpu->arch.host_pkru);
932 }
933
934 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935
936 if (vcpu->arch.xcr0 != host_xcr0)
937 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938
939 if (vcpu->arch.xsaves_enabled &&
940 vcpu->arch.ia32_xss != host_xss)
941 wrmsrl(MSR_IA32_XSS, host_xss);
942 }
943
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949 u64 xcr0 = xcr;
950 u64 old_xcr0 = vcpu->arch.xcr0;
951 u64 valid_bits;
952
953 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
954 if (index != XCR_XFEATURE_ENABLED_MASK)
955 return 1;
956 if (!(xcr0 & XFEATURE_MASK_FP))
957 return 1;
958 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959 return 1;
960
961 /*
962 * Do not allow the guest to set bits that we do not support
963 * saving. However, xcr0 bit 0 is always set, even if the
964 * emulated CPU does not support XSAVE (see fx_init).
965 */
966 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967 if (xcr0 & ~valid_bits)
968 return 1;
969
970 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972 return 1;
973
974 if (xcr0 & XFEATURE_MASK_AVX512) {
975 if (!(xcr0 & XFEATURE_MASK_YMM))
976 return 1;
977 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978 return 1;
979 }
980 vcpu->arch.xcr0 = xcr0;
981
982 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983 kvm_update_cpuid_runtime(vcpu);
984 return 0;
985 }
986
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989 if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
990 return __kvm_set_xcr(vcpu, index, xcr);
991
992 return 1;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995
996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998 if (cr4 & cr4_reserved_bits)
999 return false;
1000
1001 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1002 return false;
1003
1004 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007
1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 {
1010 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1011 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012
1013 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015 kvm_mmu_reset_context(vcpu);
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018
1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 {
1021 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1022 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1023 X86_CR4_SMEP;
1024
1025 if (!kvm_is_valid_cr4(vcpu, cr4))
1026 return 1;
1027
1028 if (is_long_mode(vcpu)) {
1029 if (!(cr4 & X86_CR4_PAE))
1030 return 1;
1031 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032 return 1;
1033 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1034 && ((cr4 ^ old_cr4) & pdptr_bits)
1035 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1036 kvm_read_cr3(vcpu)))
1037 return 1;
1038
1039 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1040 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1041 return 1;
1042
1043 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1044 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1045 return 1;
1046 }
1047
1048 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049
1050 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1051
1052 return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055
1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058 bool skip_tlb_flush = false;
1059 #ifdef CONFIG_X86_64
1060 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1061
1062 if (pcid_enabled) {
1063 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1064 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1065 }
1066 #endif
1067
1068 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1069 if (!skip_tlb_flush) {
1070 kvm_mmu_sync_roots(vcpu);
1071 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1072 }
1073 return 0;
1074 }
1075
1076 if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077 return 1;
1078 else if (is_pae_paging(vcpu) &&
1079 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1080 return 1;
1081
1082 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1083 vcpu->arch.cr3 = cr3;
1084 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1085
1086 return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089
1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 {
1092 if (cr8 & CR8_RESERVED_BITS)
1093 return 1;
1094 if (lapic_in_kernel(vcpu))
1095 kvm_lapic_set_tpr(vcpu, cr8);
1096 else
1097 vcpu->arch.cr8 = cr8;
1098 return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101
1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 {
1104 if (lapic_in_kernel(vcpu))
1105 return kvm_lapic_get_cr8(vcpu);
1106 else
1107 return vcpu->arch.cr8;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110
1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1112 {
1113 int i;
1114
1115 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1116 for (i = 0; i < KVM_NR_DB_REGS; i++)
1117 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1118 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1119 }
1120 }
1121
1122 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1123 {
1124 unsigned long dr7;
1125
1126 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127 dr7 = vcpu->arch.guest_debug_dr7;
1128 else
1129 dr7 = vcpu->arch.dr7;
1130 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1131 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1132 if (dr7 & DR7_BP_EN_MASK)
1133 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136
1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 {
1139 u64 fixed = DR6_FIXED_1;
1140
1141 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1142 fixed |= DR6_RTM;
1143 return fixed;
1144 }
1145
1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 {
1148 size_t size = ARRAY_SIZE(vcpu->arch.db);
1149
1150 switch (dr) {
1151 case 0 ... 3:
1152 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1153 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1154 vcpu->arch.eff_db[dr] = val;
1155 break;
1156 case 4:
1157 case 6:
1158 if (!kvm_dr6_valid(val))
1159 return 1; /* #GP */
1160 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1161 break;
1162 case 5:
1163 default: /* 7 */
1164 if (!kvm_dr7_valid(val))
1165 return 1; /* #GP */
1166 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1167 kvm_update_dr7(vcpu);
1168 break;
1169 }
1170
1171 return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174
1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 {
1177 size_t size = ARRAY_SIZE(vcpu->arch.db);
1178
1179 switch (dr) {
1180 case 0 ... 3:
1181 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1182 break;
1183 case 4:
1184 case 6:
1185 *val = vcpu->arch.dr6;
1186 break;
1187 case 5:
1188 default: /* 7 */
1189 *val = vcpu->arch.dr7;
1190 break;
1191 }
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194
1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 {
1197 u32 ecx = kvm_rcx_read(vcpu);
1198 u64 data;
1199 int err;
1200
1201 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1202 if (err)
1203 return err;
1204 kvm_rax_write(vcpu, (u32)data);
1205 kvm_rdx_write(vcpu, data >> 32);
1206 return err;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1209
1210 /*
1211 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1212 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213 *
1214 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1215 * extract the supported MSRs from the related const lists.
1216 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1217 * capabilities of the host cpu. This capabilities test skips MSRs that are
1218 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1219 * may depend on host virtualization features rather than host cpu features.
1220 */
1221
1222 static const u32 msrs_to_save_all[] = {
1223 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224 MSR_STAR,
1225 #ifdef CONFIG_X86_64
1226 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 #endif
1228 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1229 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230 MSR_IA32_SPEC_CTRL,
1231 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1232 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1233 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1234 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1235 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1236 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1237 MSR_IA32_UMWAIT_CONTROL,
1238
1239 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1240 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1241 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1242 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1243 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1244 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1245 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1246 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1247 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1248 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1249 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1250 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1251 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1252 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1253 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1254 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1255 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1256 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1257 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1258 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1259 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1260 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1261 };
1262
1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1264 static unsigned num_msrs_to_save;
1265
1266 static const u32 emulated_msrs_all[] = {
1267 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1268 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1269 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1270 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1271 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1272 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1273 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274 HV_X64_MSR_RESET,
1275 HV_X64_MSR_VP_INDEX,
1276 HV_X64_MSR_VP_RUNTIME,
1277 HV_X64_MSR_SCONTROL,
1278 HV_X64_MSR_STIMER0_CONFIG,
1279 HV_X64_MSR_VP_ASSIST_PAGE,
1280 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1281 HV_X64_MSR_TSC_EMULATION_STATUS,
1282 HV_X64_MSR_SYNDBG_OPTIONS,
1283 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1284 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1285 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286
1287 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1288 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289
1290 MSR_IA32_TSC_ADJUST,
1291 MSR_IA32_TSCDEADLINE,
1292 MSR_IA32_ARCH_CAPABILITIES,
1293 MSR_IA32_PERF_CAPABILITIES,
1294 MSR_IA32_MISC_ENABLE,
1295 MSR_IA32_MCG_STATUS,
1296 MSR_IA32_MCG_CTL,
1297 MSR_IA32_MCG_EXT_CTL,
1298 MSR_IA32_SMBASE,
1299 MSR_SMI_COUNT,
1300 MSR_PLATFORM_INFO,
1301 MSR_MISC_FEATURES_ENABLES,
1302 MSR_AMD64_VIRT_SPEC_CTRL,
1303 MSR_IA32_POWER_CTL,
1304 MSR_IA32_UCODE_REV,
1305
1306 /*
1307 * The following list leaves out MSRs whose values are determined
1308 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1309 * We always support the "true" VMX control MSRs, even if the host
1310 * processor does not, so I am putting these registers here rather
1311 * than in msrs_to_save_all.
1312 */
1313 MSR_IA32_VMX_BASIC,
1314 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1315 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318 MSR_IA32_VMX_MISC,
1319 MSR_IA32_VMX_CR0_FIXED0,
1320 MSR_IA32_VMX_CR4_FIXED0,
1321 MSR_IA32_VMX_VMCS_ENUM,
1322 MSR_IA32_VMX_PROCBASED_CTLS2,
1323 MSR_IA32_VMX_EPT_VPID_CAP,
1324 MSR_IA32_VMX_VMFUNC,
1325
1326 MSR_K7_HWCR,
1327 MSR_KVM_POLL_CONTROL,
1328 };
1329
1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1331 static unsigned num_emulated_msrs;
1332
1333 /*
1334 * List of msr numbers which are used to expose MSR-based features that
1335 * can be used by a hypervisor to validate requested CPU features.
1336 */
1337 static const u32 msr_based_features_all[] = {
1338 MSR_IA32_VMX_BASIC,
1339 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1340 MSR_IA32_VMX_PINBASED_CTLS,
1341 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1342 MSR_IA32_VMX_PROCBASED_CTLS,
1343 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1344 MSR_IA32_VMX_EXIT_CTLS,
1345 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1346 MSR_IA32_VMX_ENTRY_CTLS,
1347 MSR_IA32_VMX_MISC,
1348 MSR_IA32_VMX_CR0_FIXED0,
1349 MSR_IA32_VMX_CR0_FIXED1,
1350 MSR_IA32_VMX_CR4_FIXED0,
1351 MSR_IA32_VMX_CR4_FIXED1,
1352 MSR_IA32_VMX_VMCS_ENUM,
1353 MSR_IA32_VMX_PROCBASED_CTLS2,
1354 MSR_IA32_VMX_EPT_VPID_CAP,
1355 MSR_IA32_VMX_VMFUNC,
1356
1357 MSR_F10H_DECFG,
1358 MSR_IA32_UCODE_REV,
1359 MSR_IA32_ARCH_CAPABILITIES,
1360 MSR_IA32_PERF_CAPABILITIES,
1361 };
1362
1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1364 static unsigned int num_msr_based_features;
1365
1366 static u64 kvm_get_arch_capabilities(void)
1367 {
1368 u64 data = 0;
1369
1370 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1371 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1372
1373 /*
1374 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1375 * the nested hypervisor runs with NX huge pages. If it is not,
1376 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1377 * L1 guests, so it need not worry about its own (L2) guests.
1378 */
1379 data |= ARCH_CAP_PSCHANGE_MC_NO;
1380
1381 /*
1382 * If we're doing cache flushes (either "always" or "cond")
1383 * we will do one whenever the guest does a vmlaunch/vmresume.
1384 * If an outer hypervisor is doing the cache flush for us
1385 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1386 * capability to the guest too, and if EPT is disabled we're not
1387 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1388 * require a nested hypervisor to do a flush of its own.
1389 */
1390 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1391 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392
1393 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1394 data |= ARCH_CAP_RDCL_NO;
1395 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1396 data |= ARCH_CAP_SSB_NO;
1397 if (!boot_cpu_has_bug(X86_BUG_MDS))
1398 data |= ARCH_CAP_MDS_NO;
1399
1400 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401 /*
1402 * If RTM=0 because the kernel has disabled TSX, the host might
1403 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1404 * and therefore knows that there cannot be TAA) but keep
1405 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1406 * and we want to allow migrating those guests to tsx=off hosts.
1407 */
1408 data &= ~ARCH_CAP_TAA_NO;
1409 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1410 data |= ARCH_CAP_TAA_NO;
1411 } else {
1412 /*
1413 * Nothing to do here; we emulate TSX_CTRL if present on the
1414 * host so the guest can choose between disabling TSX or
1415 * using VERW to clear CPU buffers.
1416 */
1417 }
1418
1419 return data;
1420 }
1421
1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 {
1424 switch (msr->index) {
1425 case MSR_IA32_ARCH_CAPABILITIES:
1426 msr->data = kvm_get_arch_capabilities();
1427 break;
1428 case MSR_IA32_UCODE_REV:
1429 rdmsrl_safe(msr->index, &msr->data);
1430 break;
1431 default:
1432 return static_call(kvm_x86_get_msr_feature)(msr);
1433 }
1434 return 0;
1435 }
1436
1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 {
1439 struct kvm_msr_entry msr;
1440 int r;
1441
1442 msr.index = index;
1443 r = kvm_get_msr_feature(&msr);
1444
1445 if (r == KVM_MSR_RET_INVALID) {
1446 /* Unconditionally clear the output for simplicity */
1447 *data = 0;
1448 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1449 r = 0;
1450 }
1451
1452 if (r)
1453 return r;
1454
1455 *data = msr.data;
1456
1457 return 0;
1458 }
1459
1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 {
1462 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1463 return false;
1464
1465 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1466 return false;
1467
1468 if (efer & (EFER_LME | EFER_LMA) &&
1469 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1470 return false;
1471
1472 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1473 return false;
1474
1475 return true;
1476
1477 }
1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 {
1480 if (efer & efer_reserved_bits)
1481 return false;
1482
1483 return __kvm_valid_efer(vcpu, efer);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486
1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 {
1489 u64 old_efer = vcpu->arch.efer;
1490 u64 efer = msr_info->data;
1491 int r;
1492
1493 if (efer & efer_reserved_bits)
1494 return 1;
1495
1496 if (!msr_info->host_initiated) {
1497 if (!__kvm_valid_efer(vcpu, efer))
1498 return 1;
1499
1500 if (is_paging(vcpu) &&
1501 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1502 return 1;
1503 }
1504
1505 efer &= ~EFER_LMA;
1506 efer |= vcpu->arch.efer & EFER_LMA;
1507
1508 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1509 if (r) {
1510 WARN_ON(r > 0);
1511 return r;
1512 }
1513
1514 /* Update reserved bits */
1515 if ((efer ^ old_efer) & EFER_NX)
1516 kvm_mmu_reset_context(vcpu);
1517
1518 return 0;
1519 }
1520
1521 void kvm_enable_efer_bits(u64 mask)
1522 {
1523 efer_reserved_bits &= ~mask;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526
1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 {
1529 struct kvm *kvm = vcpu->kvm;
1530 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1531 u32 count = kvm->arch.msr_filter.count;
1532 u32 i;
1533 bool r = kvm->arch.msr_filter.default_allow;
1534 int idx;
1535
1536 /* MSR filtering not set up or x2APIC enabled, allow everything */
1537 if (!count || (index >= 0x800 && index <= 0x8ff))
1538 return true;
1539
1540 /* Prevent collision with set_msr_filter */
1541 idx = srcu_read_lock(&kvm->srcu);
1542
1543 for (i = 0; i < count; i++) {
1544 u32 start = ranges[i].base;
1545 u32 end = start + ranges[i].nmsrs;
1546 u32 flags = ranges[i].flags;
1547 unsigned long *bitmap = ranges[i].bitmap;
1548
1549 if ((index >= start) && (index < end) && (flags & type)) {
1550 r = !!test_bit(index - start, bitmap);
1551 break;
1552 }
1553 }
1554
1555 srcu_read_unlock(&kvm->srcu, idx);
1556
1557 return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1560
1561 /*
1562 * Write @data into the MSR specified by @index. Select MSR specific fault
1563 * checks are bypassed if @host_initiated is %true.
1564 * Returns 0 on success, non-0 otherwise.
1565 * Assumes vcpu_load() was already called.
1566 */
1567 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1568 bool host_initiated)
1569 {
1570 struct msr_data msr;
1571
1572 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1573 return KVM_MSR_RET_FILTERED;
1574
1575 switch (index) {
1576 case MSR_FS_BASE:
1577 case MSR_GS_BASE:
1578 case MSR_KERNEL_GS_BASE:
1579 case MSR_CSTAR:
1580 case MSR_LSTAR:
1581 if (is_noncanonical_address(data, vcpu))
1582 return 1;
1583 break;
1584 case MSR_IA32_SYSENTER_EIP:
1585 case MSR_IA32_SYSENTER_ESP:
1586 /*
1587 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1588 * non-canonical address is written on Intel but not on
1589 * AMD (which ignores the top 32-bits, because it does
1590 * not implement 64-bit SYSENTER).
1591 *
1592 * 64-bit code should hence be able to write a non-canonical
1593 * value on AMD. Making the address canonical ensures that
1594 * vmentry does not fail on Intel after writing a non-canonical
1595 * value, and that something deterministic happens if the guest
1596 * invokes 64-bit SYSENTER.
1597 */
1598 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1599 }
1600
1601 msr.data = data;
1602 msr.index = index;
1603 msr.host_initiated = host_initiated;
1604
1605 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1606 }
1607
1608 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1609 u32 index, u64 data, bool host_initiated)
1610 {
1611 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1612
1613 if (ret == KVM_MSR_RET_INVALID)
1614 if (kvm_msr_ignored_check(vcpu, index, data, true))
1615 ret = 0;
1616
1617 return ret;
1618 }
1619
1620 /*
1621 * Read the MSR specified by @index into @data. Select MSR specific fault
1622 * checks are bypassed if @host_initiated is %true.
1623 * Returns 0 on success, non-0 otherwise.
1624 * Assumes vcpu_load() was already called.
1625 */
1626 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1627 bool host_initiated)
1628 {
1629 struct msr_data msr;
1630 int ret;
1631
1632 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1633 return KVM_MSR_RET_FILTERED;
1634
1635 msr.index = index;
1636 msr.host_initiated = host_initiated;
1637
1638 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1639 if (!ret)
1640 *data = msr.data;
1641 return ret;
1642 }
1643
1644 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1645 u32 index, u64 *data, bool host_initiated)
1646 {
1647 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1648
1649 if (ret == KVM_MSR_RET_INVALID) {
1650 /* Unconditionally clear *data for simplicity */
1651 *data = 0;
1652 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1653 ret = 0;
1654 }
1655
1656 return ret;
1657 }
1658
1659 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1660 {
1661 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_get_msr);
1664
1665 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1666 {
1667 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr);
1670
1671 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1672 {
1673 int err = vcpu->run->msr.error;
1674 if (!err) {
1675 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1676 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1677 }
1678
1679 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1680 }
1681
1682 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1683 {
1684 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1685 }
1686
1687 static u64 kvm_msr_reason(int r)
1688 {
1689 switch (r) {
1690 case KVM_MSR_RET_INVALID:
1691 return KVM_MSR_EXIT_REASON_UNKNOWN;
1692 case KVM_MSR_RET_FILTERED:
1693 return KVM_MSR_EXIT_REASON_FILTER;
1694 default:
1695 return KVM_MSR_EXIT_REASON_INVAL;
1696 }
1697 }
1698
1699 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1700 u32 exit_reason, u64 data,
1701 int (*completion)(struct kvm_vcpu *vcpu),
1702 int r)
1703 {
1704 u64 msr_reason = kvm_msr_reason(r);
1705
1706 /* Check if the user wanted to know about this MSR fault */
1707 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1708 return 0;
1709
1710 vcpu->run->exit_reason = exit_reason;
1711 vcpu->run->msr.error = 0;
1712 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1713 vcpu->run->msr.reason = msr_reason;
1714 vcpu->run->msr.index = index;
1715 vcpu->run->msr.data = data;
1716 vcpu->arch.complete_userspace_io = completion;
1717
1718 return 1;
1719 }
1720
1721 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1722 {
1723 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1724 complete_emulated_rdmsr, r);
1725 }
1726
1727 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1728 {
1729 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1730 complete_emulated_wrmsr, r);
1731 }
1732
1733 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1734 {
1735 u32 ecx = kvm_rcx_read(vcpu);
1736 u64 data;
1737 int r;
1738
1739 r = kvm_get_msr(vcpu, ecx, &data);
1740
1741 /* MSR read failed? See if we should ask user space */
1742 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1743 /* Bounce to user space */
1744 return 0;
1745 }
1746
1747 if (!r) {
1748 trace_kvm_msr_read(ecx, data);
1749
1750 kvm_rax_write(vcpu, data & -1u);
1751 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1752 } else {
1753 trace_kvm_msr_read_ex(ecx);
1754 }
1755
1756 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1759
1760 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1761 {
1762 u32 ecx = kvm_rcx_read(vcpu);
1763 u64 data = kvm_read_edx_eax(vcpu);
1764 int r;
1765
1766 r = kvm_set_msr(vcpu, ecx, data);
1767
1768 /* MSR write failed? See if we should ask user space */
1769 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1770 /* Bounce to user space */
1771 return 0;
1772
1773 /* Signal all other negative errors to userspace */
1774 if (r < 0)
1775 return r;
1776
1777 if (!r)
1778 trace_kvm_msr_write(ecx, data);
1779 else
1780 trace_kvm_msr_write_ex(ecx, data);
1781
1782 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1785
1786 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1787 {
1788 xfer_to_guest_mode_prepare();
1789 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1790 xfer_to_guest_mode_work_pending();
1791 }
1792
1793 /*
1794 * The fast path for frequent and performance sensitive wrmsr emulation,
1795 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1796 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1797 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1798 * other cases which must be called after interrupts are enabled on the host.
1799 */
1800 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1801 {
1802 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1803 return 1;
1804
1805 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1806 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1807 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1808 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1809
1810 data &= ~(1 << 12);
1811 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1812 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1813 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1814 trace_kvm_apic_write(APIC_ICR, (u32)data);
1815 return 0;
1816 }
1817
1818 return 1;
1819 }
1820
1821 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1822 {
1823 if (!kvm_can_use_hv_timer(vcpu))
1824 return 1;
1825
1826 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1827 return 0;
1828 }
1829
1830 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1831 {
1832 u32 msr = kvm_rcx_read(vcpu);
1833 u64 data;
1834 fastpath_t ret = EXIT_FASTPATH_NONE;
1835
1836 switch (msr) {
1837 case APIC_BASE_MSR + (APIC_ICR >> 4):
1838 data = kvm_read_edx_eax(vcpu);
1839 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1840 kvm_skip_emulated_instruction(vcpu);
1841 ret = EXIT_FASTPATH_EXIT_HANDLED;
1842 }
1843 break;
1844 case MSR_IA32_TSCDEADLINE:
1845 data = kvm_read_edx_eax(vcpu);
1846 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1847 kvm_skip_emulated_instruction(vcpu);
1848 ret = EXIT_FASTPATH_REENTER_GUEST;
1849 }
1850 break;
1851 default:
1852 break;
1853 }
1854
1855 if (ret != EXIT_FASTPATH_NONE)
1856 trace_kvm_msr_write(msr, data);
1857
1858 return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1861
1862 /*
1863 * Adapt set_msr() to msr_io()'s calling convention
1864 */
1865 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1866 {
1867 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1868 }
1869
1870 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1871 {
1872 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1873 }
1874
1875 #ifdef CONFIG_X86_64
1876 struct pvclock_clock {
1877 int vclock_mode;
1878 u64 cycle_last;
1879 u64 mask;
1880 u32 mult;
1881 u32 shift;
1882 u64 base_cycles;
1883 u64 offset;
1884 };
1885
1886 struct pvclock_gtod_data {
1887 seqcount_t seq;
1888
1889 struct pvclock_clock clock; /* extract of a clocksource struct */
1890 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1891
1892 ktime_t offs_boot;
1893 u64 wall_time_sec;
1894 };
1895
1896 static struct pvclock_gtod_data pvclock_gtod_data;
1897
1898 static void update_pvclock_gtod(struct timekeeper *tk)
1899 {
1900 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1901
1902 write_seqcount_begin(&vdata->seq);
1903
1904 /* copy pvclock gtod data */
1905 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1906 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1907 vdata->clock.mask = tk->tkr_mono.mask;
1908 vdata->clock.mult = tk->tkr_mono.mult;
1909 vdata->clock.shift = tk->tkr_mono.shift;
1910 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1911 vdata->clock.offset = tk->tkr_mono.base;
1912
1913 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1914 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1915 vdata->raw_clock.mask = tk->tkr_raw.mask;
1916 vdata->raw_clock.mult = tk->tkr_raw.mult;
1917 vdata->raw_clock.shift = tk->tkr_raw.shift;
1918 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1919 vdata->raw_clock.offset = tk->tkr_raw.base;
1920
1921 vdata->wall_time_sec = tk->xtime_sec;
1922
1923 vdata->offs_boot = tk->offs_boot;
1924
1925 write_seqcount_end(&vdata->seq);
1926 }
1927
1928 static s64 get_kvmclock_base_ns(void)
1929 {
1930 /* Count up from boot time, but with the frequency of the raw clock. */
1931 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1932 }
1933 #else
1934 static s64 get_kvmclock_base_ns(void)
1935 {
1936 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1937 return ktime_get_boottime_ns();
1938 }
1939 #endif
1940
1941 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1942 {
1943 int version;
1944 int r;
1945 struct pvclock_wall_clock wc;
1946 u32 wc_sec_hi;
1947 u64 wall_nsec;
1948
1949 if (!wall_clock)
1950 return;
1951
1952 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1953 if (r)
1954 return;
1955
1956 if (version & 1)
1957 ++version; /* first time write, random junk */
1958
1959 ++version;
1960
1961 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1962 return;
1963
1964 /*
1965 * The guest calculates current wall clock time by adding
1966 * system time (updated by kvm_guest_time_update below) to the
1967 * wall clock specified here. We do the reverse here.
1968 */
1969 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1970
1971 wc.nsec = do_div(wall_nsec, 1000000000);
1972 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1973 wc.version = version;
1974
1975 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1976
1977 if (sec_hi_ofs) {
1978 wc_sec_hi = wall_nsec >> 32;
1979 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1980 &wc_sec_hi, sizeof(wc_sec_hi));
1981 }
1982
1983 version++;
1984 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1985 }
1986
1987 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1988 bool old_msr, bool host_initiated)
1989 {
1990 struct kvm_arch *ka = &vcpu->kvm->arch;
1991
1992 if (vcpu->vcpu_id == 0 && !host_initiated) {
1993 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1994 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1995
1996 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1997 }
1998
1999 vcpu->arch.time = system_time;
2000 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2001
2002 /* we verify if the enable bit is set... */
2003 vcpu->arch.pv_time_enabled = false;
2004 if (!(system_time & 1))
2005 return;
2006
2007 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2008 &vcpu->arch.pv_time, system_time & ~1ULL,
2009 sizeof(struct pvclock_vcpu_time_info)))
2010 vcpu->arch.pv_time_enabled = true;
2011
2012 return;
2013 }
2014
2015 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2016 {
2017 do_shl32_div32(dividend, divisor);
2018 return dividend;
2019 }
2020
2021 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2022 s8 *pshift, u32 *pmultiplier)
2023 {
2024 uint64_t scaled64;
2025 int32_t shift = 0;
2026 uint64_t tps64;
2027 uint32_t tps32;
2028
2029 tps64 = base_hz;
2030 scaled64 = scaled_hz;
2031 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2032 tps64 >>= 1;
2033 shift--;
2034 }
2035
2036 tps32 = (uint32_t)tps64;
2037 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2038 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2039 scaled64 >>= 1;
2040 else
2041 tps32 <<= 1;
2042 shift++;
2043 }
2044
2045 *pshift = shift;
2046 *pmultiplier = div_frac(scaled64, tps32);
2047 }
2048
2049 #ifdef CONFIG_X86_64
2050 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2051 #endif
2052
2053 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2054 static unsigned long max_tsc_khz;
2055
2056 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2057 {
2058 u64 v = (u64)khz * (1000000 + ppm);
2059 do_div(v, 1000000);
2060 return v;
2061 }
2062
2063 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2064 {
2065 u64 ratio;
2066
2067 /* Guest TSC same frequency as host TSC? */
2068 if (!scale) {
2069 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2070 return 0;
2071 }
2072
2073 /* TSC scaling supported? */
2074 if (!kvm_has_tsc_control) {
2075 if (user_tsc_khz > tsc_khz) {
2076 vcpu->arch.tsc_catchup = 1;
2077 vcpu->arch.tsc_always_catchup = 1;
2078 return 0;
2079 } else {
2080 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2081 return -1;
2082 }
2083 }
2084
2085 /* TSC scaling required - calculate ratio */
2086 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2087 user_tsc_khz, tsc_khz);
2088
2089 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2090 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2091 user_tsc_khz);
2092 return -1;
2093 }
2094
2095 vcpu->arch.tsc_scaling_ratio = ratio;
2096 return 0;
2097 }
2098
2099 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2100 {
2101 u32 thresh_lo, thresh_hi;
2102 int use_scaling = 0;
2103
2104 /* tsc_khz can be zero if TSC calibration fails */
2105 if (user_tsc_khz == 0) {
2106 /* set tsc_scaling_ratio to a safe value */
2107 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2108 return -1;
2109 }
2110
2111 /* Compute a scale to convert nanoseconds in TSC cycles */
2112 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2113 &vcpu->arch.virtual_tsc_shift,
2114 &vcpu->arch.virtual_tsc_mult);
2115 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2116
2117 /*
2118 * Compute the variation in TSC rate which is acceptable
2119 * within the range of tolerance and decide if the
2120 * rate being applied is within that bounds of the hardware
2121 * rate. If so, no scaling or compensation need be done.
2122 */
2123 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2124 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2125 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2126 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2127 use_scaling = 1;
2128 }
2129 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2130 }
2131
2132 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2133 {
2134 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2135 vcpu->arch.virtual_tsc_mult,
2136 vcpu->arch.virtual_tsc_shift);
2137 tsc += vcpu->arch.this_tsc_write;
2138 return tsc;
2139 }
2140
2141 static inline int gtod_is_based_on_tsc(int mode)
2142 {
2143 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2144 }
2145
2146 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2147 {
2148 #ifdef CONFIG_X86_64
2149 bool vcpus_matched;
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2152
2153 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2154 atomic_read(&vcpu->kvm->online_vcpus));
2155
2156 /*
2157 * Once the masterclock is enabled, always perform request in
2158 * order to update it.
2159 *
2160 * In order to enable masterclock, the host clocksource must be TSC
2161 * and the vcpus need to have matched TSCs. When that happens,
2162 * perform request to enable masterclock.
2163 */
2164 if (ka->use_master_clock ||
2165 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2166 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2167
2168 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2169 atomic_read(&vcpu->kvm->online_vcpus),
2170 ka->use_master_clock, gtod->clock.vclock_mode);
2171 #endif
2172 }
2173
2174 /*
2175 * Multiply tsc by a fixed point number represented by ratio.
2176 *
2177 * The most significant 64-N bits (mult) of ratio represent the
2178 * integral part of the fixed point number; the remaining N bits
2179 * (frac) represent the fractional part, ie. ratio represents a fixed
2180 * point number (mult + frac * 2^(-N)).
2181 *
2182 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2183 */
2184 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2185 {
2186 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2187 }
2188
2189 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2190 {
2191 u64 _tsc = tsc;
2192 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2193
2194 if (ratio != kvm_default_tsc_scaling_ratio)
2195 _tsc = __scale_tsc(ratio, tsc);
2196
2197 return _tsc;
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2200
2201 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2202 {
2203 u64 tsc;
2204
2205 tsc = kvm_scale_tsc(vcpu, rdtsc());
2206
2207 return target_tsc - tsc;
2208 }
2209
2210 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2211 {
2212 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2215
2216 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2217 {
2218 vcpu->arch.l1_tsc_offset = offset;
2219 vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2220 }
2221
2222 static inline bool kvm_check_tsc_unstable(void)
2223 {
2224 #ifdef CONFIG_X86_64
2225 /*
2226 * TSC is marked unstable when we're running on Hyper-V,
2227 * 'TSC page' clocksource is good.
2228 */
2229 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2230 return false;
2231 #endif
2232 return check_tsc_unstable();
2233 }
2234
2235 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2236 {
2237 struct kvm *kvm = vcpu->kvm;
2238 u64 offset, ns, elapsed;
2239 unsigned long flags;
2240 bool matched;
2241 bool already_matched;
2242 bool synchronizing = false;
2243
2244 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2245 offset = kvm_compute_tsc_offset(vcpu, data);
2246 ns = get_kvmclock_base_ns();
2247 elapsed = ns - kvm->arch.last_tsc_nsec;
2248
2249 if (vcpu->arch.virtual_tsc_khz) {
2250 if (data == 0) {
2251 /*
2252 * detection of vcpu initialization -- need to sync
2253 * with other vCPUs. This particularly helps to keep
2254 * kvm_clock stable after CPU hotplug
2255 */
2256 synchronizing = true;
2257 } else {
2258 u64 tsc_exp = kvm->arch.last_tsc_write +
2259 nsec_to_cycles(vcpu, elapsed);
2260 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2261 /*
2262 * Special case: TSC write with a small delta (1 second)
2263 * of virtual cycle time against real time is
2264 * interpreted as an attempt to synchronize the CPU.
2265 */
2266 synchronizing = data < tsc_exp + tsc_hz &&
2267 data + tsc_hz > tsc_exp;
2268 }
2269 }
2270
2271 /*
2272 * For a reliable TSC, we can match TSC offsets, and for an unstable
2273 * TSC, we add elapsed time in this computation. We could let the
2274 * compensation code attempt to catch up if we fall behind, but
2275 * it's better to try to match offsets from the beginning.
2276 */
2277 if (synchronizing &&
2278 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2279 if (!kvm_check_tsc_unstable()) {
2280 offset = kvm->arch.cur_tsc_offset;
2281 } else {
2282 u64 delta = nsec_to_cycles(vcpu, elapsed);
2283 data += delta;
2284 offset = kvm_compute_tsc_offset(vcpu, data);
2285 }
2286 matched = true;
2287 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2288 } else {
2289 /*
2290 * We split periods of matched TSC writes into generations.
2291 * For each generation, we track the original measured
2292 * nanosecond time, offset, and write, so if TSCs are in
2293 * sync, we can match exact offset, and if not, we can match
2294 * exact software computation in compute_guest_tsc()
2295 *
2296 * These values are tracked in kvm->arch.cur_xxx variables.
2297 */
2298 kvm->arch.cur_tsc_generation++;
2299 kvm->arch.cur_tsc_nsec = ns;
2300 kvm->arch.cur_tsc_write = data;
2301 kvm->arch.cur_tsc_offset = offset;
2302 matched = false;
2303 }
2304
2305 /*
2306 * We also track th most recent recorded KHZ, write and time to
2307 * allow the matching interval to be extended at each write.
2308 */
2309 kvm->arch.last_tsc_nsec = ns;
2310 kvm->arch.last_tsc_write = data;
2311 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2312
2313 vcpu->arch.last_guest_tsc = data;
2314
2315 /* Keep track of which generation this VCPU has synchronized to */
2316 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2317 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2318 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2319
2320 kvm_vcpu_write_tsc_offset(vcpu, offset);
2321 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2322
2323 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2324 if (!matched) {
2325 kvm->arch.nr_vcpus_matched_tsc = 0;
2326 } else if (!already_matched) {
2327 kvm->arch.nr_vcpus_matched_tsc++;
2328 }
2329
2330 kvm_track_tsc_matching(vcpu);
2331 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2332 }
2333
2334 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2335 s64 adjustment)
2336 {
2337 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2338 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2339 }
2340
2341 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2342 {
2343 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2344 WARN_ON(adjustment < 0);
2345 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2346 adjust_tsc_offset_guest(vcpu, adjustment);
2347 }
2348
2349 #ifdef CONFIG_X86_64
2350
2351 static u64 read_tsc(void)
2352 {
2353 u64 ret = (u64)rdtsc_ordered();
2354 u64 last = pvclock_gtod_data.clock.cycle_last;
2355
2356 if (likely(ret >= last))
2357 return ret;
2358
2359 /*
2360 * GCC likes to generate cmov here, but this branch is extremely
2361 * predictable (it's just a function of time and the likely is
2362 * very likely) and there's a data dependence, so force GCC
2363 * to generate a branch instead. I don't barrier() because
2364 * we don't actually need a barrier, and if this function
2365 * ever gets inlined it will generate worse code.
2366 */
2367 asm volatile ("");
2368 return last;
2369 }
2370
2371 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2372 int *mode)
2373 {
2374 long v;
2375 u64 tsc_pg_val;
2376
2377 switch (clock->vclock_mode) {
2378 case VDSO_CLOCKMODE_HVCLOCK:
2379 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2380 tsc_timestamp);
2381 if (tsc_pg_val != U64_MAX) {
2382 /* TSC page valid */
2383 *mode = VDSO_CLOCKMODE_HVCLOCK;
2384 v = (tsc_pg_val - clock->cycle_last) &
2385 clock->mask;
2386 } else {
2387 /* TSC page invalid */
2388 *mode = VDSO_CLOCKMODE_NONE;
2389 }
2390 break;
2391 case VDSO_CLOCKMODE_TSC:
2392 *mode = VDSO_CLOCKMODE_TSC;
2393 *tsc_timestamp = read_tsc();
2394 v = (*tsc_timestamp - clock->cycle_last) &
2395 clock->mask;
2396 break;
2397 default:
2398 *mode = VDSO_CLOCKMODE_NONE;
2399 }
2400
2401 if (*mode == VDSO_CLOCKMODE_NONE)
2402 *tsc_timestamp = v = 0;
2403
2404 return v * clock->mult;
2405 }
2406
2407 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2408 {
2409 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2410 unsigned long seq;
2411 int mode;
2412 u64 ns;
2413
2414 do {
2415 seq = read_seqcount_begin(&gtod->seq);
2416 ns = gtod->raw_clock.base_cycles;
2417 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2418 ns >>= gtod->raw_clock.shift;
2419 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2420 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2421 *t = ns;
2422
2423 return mode;
2424 }
2425
2426 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2427 {
2428 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2429 unsigned long seq;
2430 int mode;
2431 u64 ns;
2432
2433 do {
2434 seq = read_seqcount_begin(&gtod->seq);
2435 ts->tv_sec = gtod->wall_time_sec;
2436 ns = gtod->clock.base_cycles;
2437 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2438 ns >>= gtod->clock.shift;
2439 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2440
2441 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2442 ts->tv_nsec = ns;
2443
2444 return mode;
2445 }
2446
2447 /* returns true if host is using TSC based clocksource */
2448 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2449 {
2450 /* checked again under seqlock below */
2451 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2452 return false;
2453
2454 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2455 tsc_timestamp));
2456 }
2457
2458 /* returns true if host is using TSC based clocksource */
2459 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2460 u64 *tsc_timestamp)
2461 {
2462 /* checked again under seqlock below */
2463 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2464 return false;
2465
2466 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2467 }
2468 #endif
2469
2470 /*
2471 *
2472 * Assuming a stable TSC across physical CPUS, and a stable TSC
2473 * across virtual CPUs, the following condition is possible.
2474 * Each numbered line represents an event visible to both
2475 * CPUs at the next numbered event.
2476 *
2477 * "timespecX" represents host monotonic time. "tscX" represents
2478 * RDTSC value.
2479 *
2480 * VCPU0 on CPU0 | VCPU1 on CPU1
2481 *
2482 * 1. read timespec0,tsc0
2483 * 2. | timespec1 = timespec0 + N
2484 * | tsc1 = tsc0 + M
2485 * 3. transition to guest | transition to guest
2486 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2487 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2488 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2489 *
2490 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2491 *
2492 * - ret0 < ret1
2493 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2494 * ...
2495 * - 0 < N - M => M < N
2496 *
2497 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2498 * always the case (the difference between two distinct xtime instances
2499 * might be smaller then the difference between corresponding TSC reads,
2500 * when updating guest vcpus pvclock areas).
2501 *
2502 * To avoid that problem, do not allow visibility of distinct
2503 * system_timestamp/tsc_timestamp values simultaneously: use a master
2504 * copy of host monotonic time values. Update that master copy
2505 * in lockstep.
2506 *
2507 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2508 *
2509 */
2510
2511 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2512 {
2513 #ifdef CONFIG_X86_64
2514 struct kvm_arch *ka = &kvm->arch;
2515 int vclock_mode;
2516 bool host_tsc_clocksource, vcpus_matched;
2517
2518 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2519 atomic_read(&kvm->online_vcpus));
2520
2521 /*
2522 * If the host uses TSC clock, then passthrough TSC as stable
2523 * to the guest.
2524 */
2525 host_tsc_clocksource = kvm_get_time_and_clockread(
2526 &ka->master_kernel_ns,
2527 &ka->master_cycle_now);
2528
2529 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2530 && !ka->backwards_tsc_observed
2531 && !ka->boot_vcpu_runs_old_kvmclock;
2532
2533 if (ka->use_master_clock)
2534 atomic_set(&kvm_guest_has_master_clock, 1);
2535
2536 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2537 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2538 vcpus_matched);
2539 #endif
2540 }
2541
2542 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2543 {
2544 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2545 }
2546
2547 static void kvm_gen_update_masterclock(struct kvm *kvm)
2548 {
2549 #ifdef CONFIG_X86_64
2550 int i;
2551 struct kvm_vcpu *vcpu;
2552 struct kvm_arch *ka = &kvm->arch;
2553
2554 spin_lock(&ka->pvclock_gtod_sync_lock);
2555 kvm_make_mclock_inprogress_request(kvm);
2556 /* no guest entries from this point */
2557 pvclock_update_vm_gtod_copy(kvm);
2558
2559 kvm_for_each_vcpu(i, vcpu, kvm)
2560 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2561
2562 /* guest entries allowed */
2563 kvm_for_each_vcpu(i, vcpu, kvm)
2564 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2565
2566 spin_unlock(&ka->pvclock_gtod_sync_lock);
2567 #endif
2568 }
2569
2570 u64 get_kvmclock_ns(struct kvm *kvm)
2571 {
2572 struct kvm_arch *ka = &kvm->arch;
2573 struct pvclock_vcpu_time_info hv_clock;
2574 u64 ret;
2575
2576 spin_lock(&ka->pvclock_gtod_sync_lock);
2577 if (!ka->use_master_clock) {
2578 spin_unlock(&ka->pvclock_gtod_sync_lock);
2579 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2580 }
2581
2582 hv_clock.tsc_timestamp = ka->master_cycle_now;
2583 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2584 spin_unlock(&ka->pvclock_gtod_sync_lock);
2585
2586 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2587 get_cpu();
2588
2589 if (__this_cpu_read(cpu_tsc_khz)) {
2590 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2591 &hv_clock.tsc_shift,
2592 &hv_clock.tsc_to_system_mul);
2593 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2594 } else
2595 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2596
2597 put_cpu();
2598
2599 return ret;
2600 }
2601
2602 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2603 struct gfn_to_hva_cache *cache,
2604 unsigned int offset)
2605 {
2606 struct kvm_vcpu_arch *vcpu = &v->arch;
2607 struct pvclock_vcpu_time_info guest_hv_clock;
2608
2609 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2610 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2611 return;
2612
2613 /* This VCPU is paused, but it's legal for a guest to read another
2614 * VCPU's kvmclock, so we really have to follow the specification where
2615 * it says that version is odd if data is being modified, and even after
2616 * it is consistent.
2617 *
2618 * Version field updates must be kept separate. This is because
2619 * kvm_write_guest_cached might use a "rep movs" instruction, and
2620 * writes within a string instruction are weakly ordered. So there
2621 * are three writes overall.
2622 *
2623 * As a small optimization, only write the version field in the first
2624 * and third write. The vcpu->pv_time cache is still valid, because the
2625 * version field is the first in the struct.
2626 */
2627 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2628
2629 if (guest_hv_clock.version & 1)
2630 ++guest_hv_clock.version; /* first time write, random junk */
2631
2632 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2633 kvm_write_guest_offset_cached(v->kvm, cache,
2634 &vcpu->hv_clock, offset,
2635 sizeof(vcpu->hv_clock.version));
2636
2637 smp_wmb();
2638
2639 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2640 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2641
2642 if (vcpu->pvclock_set_guest_stopped_request) {
2643 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2644 vcpu->pvclock_set_guest_stopped_request = false;
2645 }
2646
2647 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2648
2649 kvm_write_guest_offset_cached(v->kvm, cache,
2650 &vcpu->hv_clock, offset,
2651 sizeof(vcpu->hv_clock));
2652
2653 smp_wmb();
2654
2655 vcpu->hv_clock.version++;
2656 kvm_write_guest_offset_cached(v->kvm, cache,
2657 &vcpu->hv_clock, offset,
2658 sizeof(vcpu->hv_clock.version));
2659 }
2660
2661 static int kvm_guest_time_update(struct kvm_vcpu *v)
2662 {
2663 unsigned long flags, tgt_tsc_khz;
2664 struct kvm_vcpu_arch *vcpu = &v->arch;
2665 struct kvm_arch *ka = &v->kvm->arch;
2666 s64 kernel_ns;
2667 u64 tsc_timestamp, host_tsc;
2668 u8 pvclock_flags;
2669 bool use_master_clock;
2670
2671 kernel_ns = 0;
2672 host_tsc = 0;
2673
2674 /*
2675 * If the host uses TSC clock, then passthrough TSC as stable
2676 * to the guest.
2677 */
2678 spin_lock(&ka->pvclock_gtod_sync_lock);
2679 use_master_clock = ka->use_master_clock;
2680 if (use_master_clock) {
2681 host_tsc = ka->master_cycle_now;
2682 kernel_ns = ka->master_kernel_ns;
2683 }
2684 spin_unlock(&ka->pvclock_gtod_sync_lock);
2685
2686 /* Keep irq disabled to prevent changes to the clock */
2687 local_irq_save(flags);
2688 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2689 if (unlikely(tgt_tsc_khz == 0)) {
2690 local_irq_restore(flags);
2691 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2692 return 1;
2693 }
2694 if (!use_master_clock) {
2695 host_tsc = rdtsc();
2696 kernel_ns = get_kvmclock_base_ns();
2697 }
2698
2699 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2700
2701 /*
2702 * We may have to catch up the TSC to match elapsed wall clock
2703 * time for two reasons, even if kvmclock is used.
2704 * 1) CPU could have been running below the maximum TSC rate
2705 * 2) Broken TSC compensation resets the base at each VCPU
2706 * entry to avoid unknown leaps of TSC even when running
2707 * again on the same CPU. This may cause apparent elapsed
2708 * time to disappear, and the guest to stand still or run
2709 * very slowly.
2710 */
2711 if (vcpu->tsc_catchup) {
2712 u64 tsc = compute_guest_tsc(v, kernel_ns);
2713 if (tsc > tsc_timestamp) {
2714 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2715 tsc_timestamp = tsc;
2716 }
2717 }
2718
2719 local_irq_restore(flags);
2720
2721 /* With all the info we got, fill in the values */
2722
2723 if (kvm_has_tsc_control)
2724 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2725
2726 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2727 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2728 &vcpu->hv_clock.tsc_shift,
2729 &vcpu->hv_clock.tsc_to_system_mul);
2730 vcpu->hw_tsc_khz = tgt_tsc_khz;
2731 }
2732
2733 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2734 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2735 vcpu->last_guest_tsc = tsc_timestamp;
2736
2737 /* If the host uses TSC clocksource, then it is stable */
2738 pvclock_flags = 0;
2739 if (use_master_clock)
2740 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2741
2742 vcpu->hv_clock.flags = pvclock_flags;
2743
2744 if (vcpu->pv_time_enabled)
2745 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2746 if (vcpu->xen.vcpu_info_set)
2747 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2748 offsetof(struct compat_vcpu_info, time));
2749 if (vcpu->xen.vcpu_time_info_set)
2750 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2751 if (v == kvm_get_vcpu(v->kvm, 0))
2752 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2753 return 0;
2754 }
2755
2756 /*
2757 * kvmclock updates which are isolated to a given vcpu, such as
2758 * vcpu->cpu migration, should not allow system_timestamp from
2759 * the rest of the vcpus to remain static. Otherwise ntp frequency
2760 * correction applies to one vcpu's system_timestamp but not
2761 * the others.
2762 *
2763 * So in those cases, request a kvmclock update for all vcpus.
2764 * We need to rate-limit these requests though, as they can
2765 * considerably slow guests that have a large number of vcpus.
2766 * The time for a remote vcpu to update its kvmclock is bound
2767 * by the delay we use to rate-limit the updates.
2768 */
2769
2770 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2771
2772 static void kvmclock_update_fn(struct work_struct *work)
2773 {
2774 int i;
2775 struct delayed_work *dwork = to_delayed_work(work);
2776 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2777 kvmclock_update_work);
2778 struct kvm *kvm = container_of(ka, struct kvm, arch);
2779 struct kvm_vcpu *vcpu;
2780
2781 kvm_for_each_vcpu(i, vcpu, kvm) {
2782 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2783 kvm_vcpu_kick(vcpu);
2784 }
2785 }
2786
2787 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2788 {
2789 struct kvm *kvm = v->kvm;
2790
2791 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2792 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2793 KVMCLOCK_UPDATE_DELAY);
2794 }
2795
2796 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2797
2798 static void kvmclock_sync_fn(struct work_struct *work)
2799 {
2800 struct delayed_work *dwork = to_delayed_work(work);
2801 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2802 kvmclock_sync_work);
2803 struct kvm *kvm = container_of(ka, struct kvm, arch);
2804
2805 if (!kvmclock_periodic_sync)
2806 return;
2807
2808 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2809 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2810 KVMCLOCK_SYNC_PERIOD);
2811 }
2812
2813 /*
2814 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2815 */
2816 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2817 {
2818 /* McStatusWrEn enabled? */
2819 if (guest_cpuid_is_amd_or_hygon(vcpu))
2820 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2821
2822 return false;
2823 }
2824
2825 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827 u64 mcg_cap = vcpu->arch.mcg_cap;
2828 unsigned bank_num = mcg_cap & 0xff;
2829 u32 msr = msr_info->index;
2830 u64 data = msr_info->data;
2831
2832 switch (msr) {
2833 case MSR_IA32_MCG_STATUS:
2834 vcpu->arch.mcg_status = data;
2835 break;
2836 case MSR_IA32_MCG_CTL:
2837 if (!(mcg_cap & MCG_CTL_P) &&
2838 (data || !msr_info->host_initiated))
2839 return 1;
2840 if (data != 0 && data != ~(u64)0)
2841 return 1;
2842 vcpu->arch.mcg_ctl = data;
2843 break;
2844 default:
2845 if (msr >= MSR_IA32_MC0_CTL &&
2846 msr < MSR_IA32_MCx_CTL(bank_num)) {
2847 u32 offset = array_index_nospec(
2848 msr - MSR_IA32_MC0_CTL,
2849 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2850
2851 /* only 0 or all 1s can be written to IA32_MCi_CTL
2852 * some Linux kernels though clear bit 10 in bank 4 to
2853 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2854 * this to avoid an uncatched #GP in the guest
2855 */
2856 if ((offset & 0x3) == 0 &&
2857 data != 0 && (data | (1 << 10)) != ~(u64)0)
2858 return -1;
2859
2860 /* MCi_STATUS */
2861 if (!msr_info->host_initiated &&
2862 (offset & 0x3) == 1 && data != 0) {
2863 if (!can_set_mci_status(vcpu))
2864 return -1;
2865 }
2866
2867 vcpu->arch.mce_banks[offset] = data;
2868 break;
2869 }
2870 return 1;
2871 }
2872 return 0;
2873 }
2874
2875 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2876 {
2877 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2878
2879 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2880 }
2881
2882 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2883 {
2884 gpa_t gpa = data & ~0x3f;
2885
2886 /* Bits 4:5 are reserved, Should be zero */
2887 if (data & 0x30)
2888 return 1;
2889
2890 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2891 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2892 return 1;
2893
2894 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2895 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2896 return 1;
2897
2898 if (!lapic_in_kernel(vcpu))
2899 return data ? 1 : 0;
2900
2901 vcpu->arch.apf.msr_en_val = data;
2902
2903 if (!kvm_pv_async_pf_enabled(vcpu)) {
2904 kvm_clear_async_pf_completion_queue(vcpu);
2905 kvm_async_pf_hash_reset(vcpu);
2906 return 0;
2907 }
2908
2909 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2910 sizeof(u64)))
2911 return 1;
2912
2913 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2914 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2915
2916 kvm_async_pf_wakeup_all(vcpu);
2917
2918 return 0;
2919 }
2920
2921 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2922 {
2923 /* Bits 8-63 are reserved */
2924 if (data >> 8)
2925 return 1;
2926
2927 if (!lapic_in_kernel(vcpu))
2928 return 1;
2929
2930 vcpu->arch.apf.msr_int_val = data;
2931
2932 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2933
2934 return 0;
2935 }
2936
2937 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2938 {
2939 vcpu->arch.pv_time_enabled = false;
2940 vcpu->arch.time = 0;
2941 }
2942
2943 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2944 {
2945 ++vcpu->stat.tlb_flush;
2946 static_call(kvm_x86_tlb_flush_all)(vcpu);
2947 }
2948
2949 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2950 {
2951 ++vcpu->stat.tlb_flush;
2952 static_call(kvm_x86_tlb_flush_guest)(vcpu);
2953 }
2954
2955 static void record_steal_time(struct kvm_vcpu *vcpu)
2956 {
2957 struct kvm_host_map map;
2958 struct kvm_steal_time *st;
2959
2960 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2961 return;
2962
2963 /* -EAGAIN is returned in atomic context so we can just return. */
2964 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2965 &map, &vcpu->arch.st.cache, false))
2966 return;
2967
2968 st = map.hva +
2969 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2970
2971 /*
2972 * Doing a TLB flush here, on the guest's behalf, can avoid
2973 * expensive IPIs.
2974 */
2975 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2976 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2977 st->preempted & KVM_VCPU_FLUSH_TLB);
2978 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2979 kvm_vcpu_flush_tlb_guest(vcpu);
2980 }
2981
2982 vcpu->arch.st.preempted = 0;
2983
2984 if (st->version & 1)
2985 st->version += 1; /* first time write, random junk */
2986
2987 st->version += 1;
2988
2989 smp_wmb();
2990
2991 st->steal += current->sched_info.run_delay -
2992 vcpu->arch.st.last_steal;
2993 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2994
2995 smp_wmb();
2996
2997 st->version += 1;
2998
2999 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3000 }
3001
3002 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3003 {
3004 bool pr = false;
3005 u32 msr = msr_info->index;
3006 u64 data = msr_info->data;
3007
3008 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3009 return kvm_xen_write_hypercall_page(vcpu, data);
3010
3011 switch (msr) {
3012 case MSR_AMD64_NB_CFG:
3013 case MSR_IA32_UCODE_WRITE:
3014 case MSR_VM_HSAVE_PA:
3015 case MSR_AMD64_PATCH_LOADER:
3016 case MSR_AMD64_BU_CFG2:
3017 case MSR_AMD64_DC_CFG:
3018 case MSR_F15H_EX_CFG:
3019 break;
3020
3021 case MSR_IA32_UCODE_REV:
3022 if (msr_info->host_initiated)
3023 vcpu->arch.microcode_version = data;
3024 break;
3025 case MSR_IA32_ARCH_CAPABILITIES:
3026 if (!msr_info->host_initiated)
3027 return 1;
3028 vcpu->arch.arch_capabilities = data;
3029 break;
3030 case MSR_IA32_PERF_CAPABILITIES: {
3031 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3032
3033 if (!msr_info->host_initiated)
3034 return 1;
3035 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3036 return 1;
3037 if (data & ~msr_ent.data)
3038 return 1;
3039
3040 vcpu->arch.perf_capabilities = data;
3041
3042 return 0;
3043 }
3044 case MSR_EFER:
3045 return set_efer(vcpu, msr_info);
3046 case MSR_K7_HWCR:
3047 data &= ~(u64)0x40; /* ignore flush filter disable */
3048 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3049 data &= ~(u64)0x8; /* ignore TLB cache disable */
3050
3051 /* Handle McStatusWrEn */
3052 if (data == BIT_ULL(18)) {
3053 vcpu->arch.msr_hwcr = data;
3054 } else if (data != 0) {
3055 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3056 data);
3057 return 1;
3058 }
3059 break;
3060 case MSR_FAM10H_MMIO_CONF_BASE:
3061 if (data != 0) {
3062 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3063 "0x%llx\n", data);
3064 return 1;
3065 }
3066 break;
3067 case 0x200 ... 0x2ff:
3068 return kvm_mtrr_set_msr(vcpu, msr, data);
3069 case MSR_IA32_APICBASE:
3070 return kvm_set_apic_base(vcpu, msr_info);
3071 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3072 return kvm_x2apic_msr_write(vcpu, msr, data);
3073 case MSR_IA32_TSCDEADLINE:
3074 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3075 break;
3076 case MSR_IA32_TSC_ADJUST:
3077 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3078 if (!msr_info->host_initiated) {
3079 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3080 adjust_tsc_offset_guest(vcpu, adj);
3081 }
3082 vcpu->arch.ia32_tsc_adjust_msr = data;
3083 }
3084 break;
3085 case MSR_IA32_MISC_ENABLE:
3086 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3087 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3088 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3089 return 1;
3090 vcpu->arch.ia32_misc_enable_msr = data;
3091 kvm_update_cpuid_runtime(vcpu);
3092 } else {
3093 vcpu->arch.ia32_misc_enable_msr = data;
3094 }
3095 break;
3096 case MSR_IA32_SMBASE:
3097 if (!msr_info->host_initiated)
3098 return 1;
3099 vcpu->arch.smbase = data;
3100 break;
3101 case MSR_IA32_POWER_CTL:
3102 vcpu->arch.msr_ia32_power_ctl = data;
3103 break;
3104 case MSR_IA32_TSC:
3105 if (msr_info->host_initiated) {
3106 kvm_synchronize_tsc(vcpu, data);
3107 } else {
3108 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3109 adjust_tsc_offset_guest(vcpu, adj);
3110 vcpu->arch.ia32_tsc_adjust_msr += adj;
3111 }
3112 break;
3113 case MSR_IA32_XSS:
3114 if (!msr_info->host_initiated &&
3115 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3116 return 1;
3117 /*
3118 * KVM supports exposing PT to the guest, but does not support
3119 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3120 * XSAVES/XRSTORS to save/restore PT MSRs.
3121 */
3122 if (data & ~supported_xss)
3123 return 1;
3124 vcpu->arch.ia32_xss = data;
3125 break;
3126 case MSR_SMI_COUNT:
3127 if (!msr_info->host_initiated)
3128 return 1;
3129 vcpu->arch.smi_count = data;
3130 break;
3131 case MSR_KVM_WALL_CLOCK_NEW:
3132 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3133 return 1;
3134
3135 vcpu->kvm->arch.wall_clock = data;
3136 kvm_write_wall_clock(vcpu->kvm, data, 0);
3137 break;
3138 case MSR_KVM_WALL_CLOCK:
3139 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3140 return 1;
3141
3142 vcpu->kvm->arch.wall_clock = data;
3143 kvm_write_wall_clock(vcpu->kvm, data, 0);
3144 break;
3145 case MSR_KVM_SYSTEM_TIME_NEW:
3146 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3147 return 1;
3148
3149 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3150 break;
3151 case MSR_KVM_SYSTEM_TIME:
3152 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3153 return 1;
3154
3155 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3156 break;
3157 case MSR_KVM_ASYNC_PF_EN:
3158 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3159 return 1;
3160
3161 if (kvm_pv_enable_async_pf(vcpu, data))
3162 return 1;
3163 break;
3164 case MSR_KVM_ASYNC_PF_INT:
3165 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3166 return 1;
3167
3168 if (kvm_pv_enable_async_pf_int(vcpu, data))
3169 return 1;
3170 break;
3171 case MSR_KVM_ASYNC_PF_ACK:
3172 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3173 return 1;
3174 if (data & 0x1) {
3175 vcpu->arch.apf.pageready_pending = false;
3176 kvm_check_async_pf_completion(vcpu);
3177 }
3178 break;
3179 case MSR_KVM_STEAL_TIME:
3180 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3181 return 1;
3182
3183 if (unlikely(!sched_info_on()))
3184 return 1;
3185
3186 if (data & KVM_STEAL_RESERVED_MASK)
3187 return 1;
3188
3189 vcpu->arch.st.msr_val = data;
3190
3191 if (!(data & KVM_MSR_ENABLED))
3192 break;
3193
3194 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3195
3196 break;
3197 case MSR_KVM_PV_EOI_EN:
3198 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3199 return 1;
3200
3201 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3202 return 1;
3203 break;
3204
3205 case MSR_KVM_POLL_CONTROL:
3206 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3207 return 1;
3208
3209 /* only enable bit supported */
3210 if (data & (-1ULL << 1))
3211 return 1;
3212
3213 vcpu->arch.msr_kvm_poll_control = data;
3214 break;
3215
3216 case MSR_IA32_MCG_CTL:
3217 case MSR_IA32_MCG_STATUS:
3218 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3219 return set_msr_mce(vcpu, msr_info);
3220
3221 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3222 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3223 pr = true;
3224 fallthrough;
3225 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3226 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3227 if (kvm_pmu_is_valid_msr(vcpu, msr))
3228 return kvm_pmu_set_msr(vcpu, msr_info);
3229
3230 if (pr || data != 0)
3231 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3232 "0x%x data 0x%llx\n", msr, data);
3233 break;
3234 case MSR_K7_CLK_CTL:
3235 /*
3236 * Ignore all writes to this no longer documented MSR.
3237 * Writes are only relevant for old K7 processors,
3238 * all pre-dating SVM, but a recommended workaround from
3239 * AMD for these chips. It is possible to specify the
3240 * affected processor models on the command line, hence
3241 * the need to ignore the workaround.
3242 */
3243 break;
3244 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3245 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3246 case HV_X64_MSR_SYNDBG_OPTIONS:
3247 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3248 case HV_X64_MSR_CRASH_CTL:
3249 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3250 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3251 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3252 case HV_X64_MSR_TSC_EMULATION_STATUS:
3253 return kvm_hv_set_msr_common(vcpu, msr, data,
3254 msr_info->host_initiated);
3255 case MSR_IA32_BBL_CR_CTL3:
3256 /* Drop writes to this legacy MSR -- see rdmsr
3257 * counterpart for further detail.
3258 */
3259 if (report_ignored_msrs)
3260 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3261 msr, data);
3262 break;
3263 case MSR_AMD64_OSVW_ID_LENGTH:
3264 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3265 return 1;
3266 vcpu->arch.osvw.length = data;
3267 break;
3268 case MSR_AMD64_OSVW_STATUS:
3269 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3270 return 1;
3271 vcpu->arch.osvw.status = data;
3272 break;
3273 case MSR_PLATFORM_INFO:
3274 if (!msr_info->host_initiated ||
3275 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3276 cpuid_fault_enabled(vcpu)))
3277 return 1;
3278 vcpu->arch.msr_platform_info = data;
3279 break;
3280 case MSR_MISC_FEATURES_ENABLES:
3281 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3282 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3283 !supports_cpuid_fault(vcpu)))
3284 return 1;
3285 vcpu->arch.msr_misc_features_enables = data;
3286 break;
3287 default:
3288 if (kvm_pmu_is_valid_msr(vcpu, msr))
3289 return kvm_pmu_set_msr(vcpu, msr_info);
3290 return KVM_MSR_RET_INVALID;
3291 }
3292 return 0;
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3295
3296 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3297 {
3298 u64 data;
3299 u64 mcg_cap = vcpu->arch.mcg_cap;
3300 unsigned bank_num = mcg_cap & 0xff;
3301
3302 switch (msr) {
3303 case MSR_IA32_P5_MC_ADDR:
3304 case MSR_IA32_P5_MC_TYPE:
3305 data = 0;
3306 break;
3307 case MSR_IA32_MCG_CAP:
3308 data = vcpu->arch.mcg_cap;
3309 break;
3310 case MSR_IA32_MCG_CTL:
3311 if (!(mcg_cap & MCG_CTL_P) && !host)
3312 return 1;
3313 data = vcpu->arch.mcg_ctl;
3314 break;
3315 case MSR_IA32_MCG_STATUS:
3316 data = vcpu->arch.mcg_status;
3317 break;
3318 default:
3319 if (msr >= MSR_IA32_MC0_CTL &&
3320 msr < MSR_IA32_MCx_CTL(bank_num)) {
3321 u32 offset = array_index_nospec(
3322 msr - MSR_IA32_MC0_CTL,
3323 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3324
3325 data = vcpu->arch.mce_banks[offset];
3326 break;
3327 }
3328 return 1;
3329 }
3330 *pdata = data;
3331 return 0;
3332 }
3333
3334 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3335 {
3336 switch (msr_info->index) {
3337 case MSR_IA32_PLATFORM_ID:
3338 case MSR_IA32_EBL_CR_POWERON:
3339 case MSR_IA32_LASTBRANCHFROMIP:
3340 case MSR_IA32_LASTBRANCHTOIP:
3341 case MSR_IA32_LASTINTFROMIP:
3342 case MSR_IA32_LASTINTTOIP:
3343 case MSR_K8_SYSCFG:
3344 case MSR_K8_TSEG_ADDR:
3345 case MSR_K8_TSEG_MASK:
3346 case MSR_VM_HSAVE_PA:
3347 case MSR_K8_INT_PENDING_MSG:
3348 case MSR_AMD64_NB_CFG:
3349 case MSR_FAM10H_MMIO_CONF_BASE:
3350 case MSR_AMD64_BU_CFG2:
3351 case MSR_IA32_PERF_CTL:
3352 case MSR_AMD64_DC_CFG:
3353 case MSR_F15H_EX_CFG:
3354 /*
3355 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3356 * limit) MSRs. Just return 0, as we do not want to expose the host
3357 * data here. Do not conditionalize this on CPUID, as KVM does not do
3358 * so for existing CPU-specific MSRs.
3359 */
3360 case MSR_RAPL_POWER_UNIT:
3361 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3362 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3363 case MSR_PKG_ENERGY_STATUS: /* Total package */
3364 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3365 msr_info->data = 0;
3366 break;
3367 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3368 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3369 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3370 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3371 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3372 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3373 return kvm_pmu_get_msr(vcpu, msr_info);
3374 msr_info->data = 0;
3375 break;
3376 case MSR_IA32_UCODE_REV:
3377 msr_info->data = vcpu->arch.microcode_version;
3378 break;
3379 case MSR_IA32_ARCH_CAPABILITIES:
3380 if (!msr_info->host_initiated &&
3381 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3382 return 1;
3383 msr_info->data = vcpu->arch.arch_capabilities;
3384 break;
3385 case MSR_IA32_PERF_CAPABILITIES:
3386 if (!msr_info->host_initiated &&
3387 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3388 return 1;
3389 msr_info->data = vcpu->arch.perf_capabilities;
3390 break;
3391 case MSR_IA32_POWER_CTL:
3392 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3393 break;
3394 case MSR_IA32_TSC: {
3395 /*
3396 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3397 * even when not intercepted. AMD manual doesn't explicitly
3398 * state this but appears to behave the same.
3399 *
3400 * On userspace reads and writes, however, we unconditionally
3401 * return L1's TSC value to ensure backwards-compatible
3402 * behavior for migration.
3403 */
3404 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3405 vcpu->arch.tsc_offset;
3406
3407 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3408 break;
3409 }
3410 case MSR_MTRRcap:
3411 case 0x200 ... 0x2ff:
3412 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3413 case 0xcd: /* fsb frequency */
3414 msr_info->data = 3;
3415 break;
3416 /*
3417 * MSR_EBC_FREQUENCY_ID
3418 * Conservative value valid for even the basic CPU models.
3419 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3420 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3421 * and 266MHz for model 3, or 4. Set Core Clock
3422 * Frequency to System Bus Frequency Ratio to 1 (bits
3423 * 31:24) even though these are only valid for CPU
3424 * models > 2, however guests may end up dividing or
3425 * multiplying by zero otherwise.
3426 */
3427 case MSR_EBC_FREQUENCY_ID:
3428 msr_info->data = 1 << 24;
3429 break;
3430 case MSR_IA32_APICBASE:
3431 msr_info->data = kvm_get_apic_base(vcpu);
3432 break;
3433 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3434 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3435 case MSR_IA32_TSCDEADLINE:
3436 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3437 break;
3438 case MSR_IA32_TSC_ADJUST:
3439 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3440 break;
3441 case MSR_IA32_MISC_ENABLE:
3442 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3443 break;
3444 case MSR_IA32_SMBASE:
3445 if (!msr_info->host_initiated)
3446 return 1;
3447 msr_info->data = vcpu->arch.smbase;
3448 break;
3449 case MSR_SMI_COUNT:
3450 msr_info->data = vcpu->arch.smi_count;
3451 break;
3452 case MSR_IA32_PERF_STATUS:
3453 /* TSC increment by tick */
3454 msr_info->data = 1000ULL;
3455 /* CPU multiplier */
3456 msr_info->data |= (((uint64_t)4ULL) << 40);
3457 break;
3458 case MSR_EFER:
3459 msr_info->data = vcpu->arch.efer;
3460 break;
3461 case MSR_KVM_WALL_CLOCK:
3462 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3463 return 1;
3464
3465 msr_info->data = vcpu->kvm->arch.wall_clock;
3466 break;
3467 case MSR_KVM_WALL_CLOCK_NEW:
3468 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3469 return 1;
3470
3471 msr_info->data = vcpu->kvm->arch.wall_clock;
3472 break;
3473 case MSR_KVM_SYSTEM_TIME:
3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3475 return 1;
3476
3477 msr_info->data = vcpu->arch.time;
3478 break;
3479 case MSR_KVM_SYSTEM_TIME_NEW:
3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3481 return 1;
3482
3483 msr_info->data = vcpu->arch.time;
3484 break;
3485 case MSR_KVM_ASYNC_PF_EN:
3486 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3487 return 1;
3488
3489 msr_info->data = vcpu->arch.apf.msr_en_val;
3490 break;
3491 case MSR_KVM_ASYNC_PF_INT:
3492 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3493 return 1;
3494
3495 msr_info->data = vcpu->arch.apf.msr_int_val;
3496 break;
3497 case MSR_KVM_ASYNC_PF_ACK:
3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3499 return 1;
3500
3501 msr_info->data = 0;
3502 break;
3503 case MSR_KVM_STEAL_TIME:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3505 return 1;
3506
3507 msr_info->data = vcpu->arch.st.msr_val;
3508 break;
3509 case MSR_KVM_PV_EOI_EN:
3510 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3511 return 1;
3512
3513 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3514 break;
3515 case MSR_KVM_POLL_CONTROL:
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3517 return 1;
3518
3519 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3520 break;
3521 case MSR_IA32_P5_MC_ADDR:
3522 case MSR_IA32_P5_MC_TYPE:
3523 case MSR_IA32_MCG_CAP:
3524 case MSR_IA32_MCG_CTL:
3525 case MSR_IA32_MCG_STATUS:
3526 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3527 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3528 msr_info->host_initiated);
3529 case MSR_IA32_XSS:
3530 if (!msr_info->host_initiated &&
3531 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3532 return 1;
3533 msr_info->data = vcpu->arch.ia32_xss;
3534 break;
3535 case MSR_K7_CLK_CTL:
3536 /*
3537 * Provide expected ramp-up count for K7. All other
3538 * are set to zero, indicating minimum divisors for
3539 * every field.
3540 *
3541 * This prevents guest kernels on AMD host with CPU
3542 * type 6, model 8 and higher from exploding due to
3543 * the rdmsr failing.
3544 */
3545 msr_info->data = 0x20000000;
3546 break;
3547 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3548 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3549 case HV_X64_MSR_SYNDBG_OPTIONS:
3550 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3551 case HV_X64_MSR_CRASH_CTL:
3552 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3553 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3554 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3555 case HV_X64_MSR_TSC_EMULATION_STATUS:
3556 return kvm_hv_get_msr_common(vcpu,
3557 msr_info->index, &msr_info->data,
3558 msr_info->host_initiated);
3559 case MSR_IA32_BBL_CR_CTL3:
3560 /* This legacy MSR exists but isn't fully documented in current
3561 * silicon. It is however accessed by winxp in very narrow
3562 * scenarios where it sets bit #19, itself documented as
3563 * a "reserved" bit. Best effort attempt to source coherent
3564 * read data here should the balance of the register be
3565 * interpreted by the guest:
3566 *
3567 * L2 cache control register 3: 64GB range, 256KB size,
3568 * enabled, latency 0x1, configured
3569 */
3570 msr_info->data = 0xbe702111;
3571 break;
3572 case MSR_AMD64_OSVW_ID_LENGTH:
3573 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3574 return 1;
3575 msr_info->data = vcpu->arch.osvw.length;
3576 break;
3577 case MSR_AMD64_OSVW_STATUS:
3578 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3579 return 1;
3580 msr_info->data = vcpu->arch.osvw.status;
3581 break;
3582 case MSR_PLATFORM_INFO:
3583 if (!msr_info->host_initiated &&
3584 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3585 return 1;
3586 msr_info->data = vcpu->arch.msr_platform_info;
3587 break;
3588 case MSR_MISC_FEATURES_ENABLES:
3589 msr_info->data = vcpu->arch.msr_misc_features_enables;
3590 break;
3591 case MSR_K7_HWCR:
3592 msr_info->data = vcpu->arch.msr_hwcr;
3593 break;
3594 default:
3595 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3596 return kvm_pmu_get_msr(vcpu, msr_info);
3597 return KVM_MSR_RET_INVALID;
3598 }
3599 return 0;
3600 }
3601 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3602
3603 /*
3604 * Read or write a bunch of msrs. All parameters are kernel addresses.
3605 *
3606 * @return number of msrs set successfully.
3607 */
3608 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3609 struct kvm_msr_entry *entries,
3610 int (*do_msr)(struct kvm_vcpu *vcpu,
3611 unsigned index, u64 *data))
3612 {
3613 int i;
3614
3615 for (i = 0; i < msrs->nmsrs; ++i)
3616 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3617 break;
3618
3619 return i;
3620 }
3621
3622 /*
3623 * Read or write a bunch of msrs. Parameters are user addresses.
3624 *
3625 * @return number of msrs set successfully.
3626 */
3627 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3628 int (*do_msr)(struct kvm_vcpu *vcpu,
3629 unsigned index, u64 *data),
3630 int writeback)
3631 {
3632 struct kvm_msrs msrs;
3633 struct kvm_msr_entry *entries;
3634 int r, n;
3635 unsigned size;
3636
3637 r = -EFAULT;
3638 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3639 goto out;
3640
3641 r = -E2BIG;
3642 if (msrs.nmsrs >= MAX_IO_MSRS)
3643 goto out;
3644
3645 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3646 entries = memdup_user(user_msrs->entries, size);
3647 if (IS_ERR(entries)) {
3648 r = PTR_ERR(entries);
3649 goto out;
3650 }
3651
3652 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3653 if (r < 0)
3654 goto out_free;
3655
3656 r = -EFAULT;
3657 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3658 goto out_free;
3659
3660 r = n;
3661
3662 out_free:
3663 kfree(entries);
3664 out:
3665 return r;
3666 }
3667
3668 static inline bool kvm_can_mwait_in_guest(void)
3669 {
3670 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3671 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3672 boot_cpu_has(X86_FEATURE_ARAT);
3673 }
3674
3675 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3676 struct kvm_cpuid2 __user *cpuid_arg)
3677 {
3678 struct kvm_cpuid2 cpuid;
3679 int r;
3680
3681 r = -EFAULT;
3682 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3683 return r;
3684
3685 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3686 if (r)
3687 return r;
3688
3689 r = -EFAULT;
3690 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3691 return r;
3692
3693 return 0;
3694 }
3695
3696 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3697 {
3698 int r = 0;
3699
3700 switch (ext) {
3701 case KVM_CAP_IRQCHIP:
3702 case KVM_CAP_HLT:
3703 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3704 case KVM_CAP_SET_TSS_ADDR:
3705 case KVM_CAP_EXT_CPUID:
3706 case KVM_CAP_EXT_EMUL_CPUID:
3707 case KVM_CAP_CLOCKSOURCE:
3708 case KVM_CAP_PIT:
3709 case KVM_CAP_NOP_IO_DELAY:
3710 case KVM_CAP_MP_STATE:
3711 case KVM_CAP_SYNC_MMU:
3712 case KVM_CAP_USER_NMI:
3713 case KVM_CAP_REINJECT_CONTROL:
3714 case KVM_CAP_IRQ_INJECT_STATUS:
3715 case KVM_CAP_IOEVENTFD:
3716 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3717 case KVM_CAP_PIT2:
3718 case KVM_CAP_PIT_STATE2:
3719 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3720 case KVM_CAP_VCPU_EVENTS:
3721 case KVM_CAP_HYPERV:
3722 case KVM_CAP_HYPERV_VAPIC:
3723 case KVM_CAP_HYPERV_SPIN:
3724 case KVM_CAP_HYPERV_SYNIC:
3725 case KVM_CAP_HYPERV_SYNIC2:
3726 case KVM_CAP_HYPERV_VP_INDEX:
3727 case KVM_CAP_HYPERV_EVENTFD:
3728 case KVM_CAP_HYPERV_TLBFLUSH:
3729 case KVM_CAP_HYPERV_SEND_IPI:
3730 case KVM_CAP_HYPERV_CPUID:
3731 case KVM_CAP_SYS_HYPERV_CPUID:
3732 case KVM_CAP_PCI_SEGMENT:
3733 case KVM_CAP_DEBUGREGS:
3734 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3735 case KVM_CAP_XSAVE:
3736 case KVM_CAP_ASYNC_PF:
3737 case KVM_CAP_ASYNC_PF_INT:
3738 case KVM_CAP_GET_TSC_KHZ:
3739 case KVM_CAP_KVMCLOCK_CTRL:
3740 case KVM_CAP_READONLY_MEM:
3741 case KVM_CAP_HYPERV_TIME:
3742 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3743 case KVM_CAP_TSC_DEADLINE_TIMER:
3744 case KVM_CAP_DISABLE_QUIRKS:
3745 case KVM_CAP_SET_BOOT_CPU_ID:
3746 case KVM_CAP_SPLIT_IRQCHIP:
3747 case KVM_CAP_IMMEDIATE_EXIT:
3748 case KVM_CAP_PMU_EVENT_FILTER:
3749 case KVM_CAP_GET_MSR_FEATURES:
3750 case KVM_CAP_MSR_PLATFORM_INFO:
3751 case KVM_CAP_EXCEPTION_PAYLOAD:
3752 case KVM_CAP_SET_GUEST_DEBUG:
3753 case KVM_CAP_LAST_CPU:
3754 case KVM_CAP_X86_USER_SPACE_MSR:
3755 case KVM_CAP_X86_MSR_FILTER:
3756 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3757 r = 1;
3758 break;
3759 case KVM_CAP_XEN_HVM:
3760 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3761 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3762 KVM_XEN_HVM_CONFIG_SHARED_INFO;
3763 break;
3764 case KVM_CAP_SYNC_REGS:
3765 r = KVM_SYNC_X86_VALID_FIELDS;
3766 break;
3767 case KVM_CAP_ADJUST_CLOCK:
3768 r = KVM_CLOCK_TSC_STABLE;
3769 break;
3770 case KVM_CAP_X86_DISABLE_EXITS:
3771 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3772 KVM_X86_DISABLE_EXITS_CSTATE;
3773 if(kvm_can_mwait_in_guest())
3774 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3775 break;
3776 case KVM_CAP_X86_SMM:
3777 /* SMBASE is usually relocated above 1M on modern chipsets,
3778 * and SMM handlers might indeed rely on 4G segment limits,
3779 * so do not report SMM to be available if real mode is
3780 * emulated via vm86 mode. Still, do not go to great lengths
3781 * to avoid userspace's usage of the feature, because it is a
3782 * fringe case that is not enabled except via specific settings
3783 * of the module parameters.
3784 */
3785 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3786 break;
3787 case KVM_CAP_VAPIC:
3788 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3789 break;
3790 case KVM_CAP_NR_VCPUS:
3791 r = KVM_SOFT_MAX_VCPUS;
3792 break;
3793 case KVM_CAP_MAX_VCPUS:
3794 r = KVM_MAX_VCPUS;
3795 break;
3796 case KVM_CAP_MAX_VCPU_ID:
3797 r = KVM_MAX_VCPU_ID;
3798 break;
3799 case KVM_CAP_PV_MMU: /* obsolete */
3800 r = 0;
3801 break;
3802 case KVM_CAP_MCE:
3803 r = KVM_MAX_MCE_BANKS;
3804 break;
3805 case KVM_CAP_XCRS:
3806 r = boot_cpu_has(X86_FEATURE_XSAVE);
3807 break;
3808 case KVM_CAP_TSC_CONTROL:
3809 r = kvm_has_tsc_control;
3810 break;
3811 case KVM_CAP_X2APIC_API:
3812 r = KVM_X2APIC_API_VALID_FLAGS;
3813 break;
3814 case KVM_CAP_NESTED_STATE:
3815 r = kvm_x86_ops.nested_ops->get_state ?
3816 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3817 break;
3818 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3819 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3820 break;
3821 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3822 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3823 break;
3824 case KVM_CAP_SMALLER_MAXPHYADDR:
3825 r = (int) allow_smaller_maxphyaddr;
3826 break;
3827 case KVM_CAP_STEAL_TIME:
3828 r = sched_info_on();
3829 break;
3830 case KVM_CAP_X86_BUS_LOCK_EXIT:
3831 if (kvm_has_bus_lock_exit)
3832 r = KVM_BUS_LOCK_DETECTION_OFF |
3833 KVM_BUS_LOCK_DETECTION_EXIT;
3834 else
3835 r = 0;
3836 break;
3837 default:
3838 break;
3839 }
3840 return r;
3841
3842 }
3843
3844 long kvm_arch_dev_ioctl(struct file *filp,
3845 unsigned int ioctl, unsigned long arg)
3846 {
3847 void __user *argp = (void __user *)arg;
3848 long r;
3849
3850 switch (ioctl) {
3851 case KVM_GET_MSR_INDEX_LIST: {
3852 struct kvm_msr_list __user *user_msr_list = argp;
3853 struct kvm_msr_list msr_list;
3854 unsigned n;
3855
3856 r = -EFAULT;
3857 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3858 goto out;
3859 n = msr_list.nmsrs;
3860 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3861 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3862 goto out;
3863 r = -E2BIG;
3864 if (n < msr_list.nmsrs)
3865 goto out;
3866 r = -EFAULT;
3867 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3868 num_msrs_to_save * sizeof(u32)))
3869 goto out;
3870 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3871 &emulated_msrs,
3872 num_emulated_msrs * sizeof(u32)))
3873 goto out;
3874 r = 0;
3875 break;
3876 }
3877 case KVM_GET_SUPPORTED_CPUID:
3878 case KVM_GET_EMULATED_CPUID: {
3879 struct kvm_cpuid2 __user *cpuid_arg = argp;
3880 struct kvm_cpuid2 cpuid;
3881
3882 r = -EFAULT;
3883 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3884 goto out;
3885
3886 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3887 ioctl);
3888 if (r)
3889 goto out;
3890
3891 r = -EFAULT;
3892 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3893 goto out;
3894 r = 0;
3895 break;
3896 }
3897 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3898 r = -EFAULT;
3899 if (copy_to_user(argp, &kvm_mce_cap_supported,
3900 sizeof(kvm_mce_cap_supported)))
3901 goto out;
3902 r = 0;
3903 break;
3904 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3905 struct kvm_msr_list __user *user_msr_list = argp;
3906 struct kvm_msr_list msr_list;
3907 unsigned int n;
3908
3909 r = -EFAULT;
3910 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3911 goto out;
3912 n = msr_list.nmsrs;
3913 msr_list.nmsrs = num_msr_based_features;
3914 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3915 goto out;
3916 r = -E2BIG;
3917 if (n < msr_list.nmsrs)
3918 goto out;
3919 r = -EFAULT;
3920 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3921 num_msr_based_features * sizeof(u32)))
3922 goto out;
3923 r = 0;
3924 break;
3925 }
3926 case KVM_GET_MSRS:
3927 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3928 break;
3929 case KVM_GET_SUPPORTED_HV_CPUID:
3930 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3931 break;
3932 default:
3933 r = -EINVAL;
3934 break;
3935 }
3936 out:
3937 return r;
3938 }
3939
3940 static void wbinvd_ipi(void *garbage)
3941 {
3942 wbinvd();
3943 }
3944
3945 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3946 {
3947 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3948 }
3949
3950 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3951 {
3952 /* Address WBINVD may be executed by guest */
3953 if (need_emulate_wbinvd(vcpu)) {
3954 if (static_call(kvm_x86_has_wbinvd_exit)())
3955 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3956 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3957 smp_call_function_single(vcpu->cpu,
3958 wbinvd_ipi, NULL, 1);
3959 }
3960
3961 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3962
3963 /* Save host pkru register if supported */
3964 vcpu->arch.host_pkru = read_pkru();
3965
3966 /* Apply any externally detected TSC adjustments (due to suspend) */
3967 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3968 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3969 vcpu->arch.tsc_offset_adjustment = 0;
3970 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3971 }
3972
3973 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3974 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3975 rdtsc() - vcpu->arch.last_host_tsc;
3976 if (tsc_delta < 0)
3977 mark_tsc_unstable("KVM discovered backwards TSC");
3978
3979 if (kvm_check_tsc_unstable()) {
3980 u64 offset = kvm_compute_tsc_offset(vcpu,
3981 vcpu->arch.last_guest_tsc);
3982 kvm_vcpu_write_tsc_offset(vcpu, offset);
3983 vcpu->arch.tsc_catchup = 1;
3984 }
3985
3986 if (kvm_lapic_hv_timer_in_use(vcpu))
3987 kvm_lapic_restart_hv_timer(vcpu);
3988
3989 /*
3990 * On a host with synchronized TSC, there is no need to update
3991 * kvmclock on vcpu->cpu migration
3992 */
3993 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3994 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3995 if (vcpu->cpu != cpu)
3996 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3997 vcpu->cpu = cpu;
3998 }
3999
4000 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4001 }
4002
4003 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4004 {
4005 struct kvm_host_map map;
4006 struct kvm_steal_time *st;
4007 int idx;
4008
4009 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4010 return;
4011
4012 if (vcpu->arch.st.preempted)
4013 return;
4014
4015 /*
4016 * Take the srcu lock as memslots will be accessed to check the gfn
4017 * cache generation against the memslots generation.
4018 */
4019 idx = srcu_read_lock(&vcpu->kvm->srcu);
4020
4021 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4022 &vcpu->arch.st.cache, true))
4023 goto out;
4024
4025 st = map.hva +
4026 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4027
4028 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4029
4030 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4031
4032 out:
4033 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4034 }
4035
4036 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4037 {
4038 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4039 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4040
4041 kvm_steal_time_set_preempted(vcpu);
4042 static_call(kvm_x86_vcpu_put)(vcpu);
4043 vcpu->arch.last_host_tsc = rdtsc();
4044 /*
4045 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4046 * on every vmexit, but if not, we might have a stale dr6 from the
4047 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4048 */
4049 set_debugreg(0, 6);
4050 }
4051
4052 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4053 struct kvm_lapic_state *s)
4054 {
4055 if (vcpu->arch.apicv_active)
4056 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4057
4058 return kvm_apic_get_state(vcpu, s);
4059 }
4060
4061 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4062 struct kvm_lapic_state *s)
4063 {
4064 int r;
4065
4066 r = kvm_apic_set_state(vcpu, s);
4067 if (r)
4068 return r;
4069 update_cr8_intercept(vcpu);
4070
4071 return 0;
4072 }
4073
4074 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4075 {
4076 /*
4077 * We can accept userspace's request for interrupt injection
4078 * as long as we have a place to store the interrupt number.
4079 * The actual injection will happen when the CPU is able to
4080 * deliver the interrupt.
4081 */
4082 if (kvm_cpu_has_extint(vcpu))
4083 return false;
4084
4085 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4086 return (!lapic_in_kernel(vcpu) ||
4087 kvm_apic_accept_pic_intr(vcpu));
4088 }
4089
4090 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4091 {
4092 return kvm_arch_interrupt_allowed(vcpu) &&
4093 kvm_cpu_accept_dm_intr(vcpu);
4094 }
4095
4096 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4097 struct kvm_interrupt *irq)
4098 {
4099 if (irq->irq >= KVM_NR_INTERRUPTS)
4100 return -EINVAL;
4101
4102 if (!irqchip_in_kernel(vcpu->kvm)) {
4103 kvm_queue_interrupt(vcpu, irq->irq, false);
4104 kvm_make_request(KVM_REQ_EVENT, vcpu);
4105 return 0;
4106 }
4107
4108 /*
4109 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4110 * fail for in-kernel 8259.
4111 */
4112 if (pic_in_kernel(vcpu->kvm))
4113 return -ENXIO;
4114
4115 if (vcpu->arch.pending_external_vector != -1)
4116 return -EEXIST;
4117
4118 vcpu->arch.pending_external_vector = irq->irq;
4119 kvm_make_request(KVM_REQ_EVENT, vcpu);
4120 return 0;
4121 }
4122
4123 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4124 {
4125 kvm_inject_nmi(vcpu);
4126
4127 return 0;
4128 }
4129
4130 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4131 {
4132 kvm_make_request(KVM_REQ_SMI, vcpu);
4133
4134 return 0;
4135 }
4136
4137 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4138 struct kvm_tpr_access_ctl *tac)
4139 {
4140 if (tac->flags)
4141 return -EINVAL;
4142 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4143 return 0;
4144 }
4145
4146 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4147 u64 mcg_cap)
4148 {
4149 int r;
4150 unsigned bank_num = mcg_cap & 0xff, bank;
4151
4152 r = -EINVAL;
4153 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4154 goto out;
4155 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4156 goto out;
4157 r = 0;
4158 vcpu->arch.mcg_cap = mcg_cap;
4159 /* Init IA32_MCG_CTL to all 1s */
4160 if (mcg_cap & MCG_CTL_P)
4161 vcpu->arch.mcg_ctl = ~(u64)0;
4162 /* Init IA32_MCi_CTL to all 1s */
4163 for (bank = 0; bank < bank_num; bank++)
4164 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4165
4166 static_call(kvm_x86_setup_mce)(vcpu);
4167 out:
4168 return r;
4169 }
4170
4171 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4172 struct kvm_x86_mce *mce)
4173 {
4174 u64 mcg_cap = vcpu->arch.mcg_cap;
4175 unsigned bank_num = mcg_cap & 0xff;
4176 u64 *banks = vcpu->arch.mce_banks;
4177
4178 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4179 return -EINVAL;
4180 /*
4181 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4182 * reporting is disabled
4183 */
4184 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4185 vcpu->arch.mcg_ctl != ~(u64)0)
4186 return 0;
4187 banks += 4 * mce->bank;
4188 /*
4189 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4190 * reporting is disabled for the bank
4191 */
4192 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4193 return 0;
4194 if (mce->status & MCI_STATUS_UC) {
4195 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4196 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4197 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4198 return 0;
4199 }
4200 if (banks[1] & MCI_STATUS_VAL)
4201 mce->status |= MCI_STATUS_OVER;
4202 banks[2] = mce->addr;
4203 banks[3] = mce->misc;
4204 vcpu->arch.mcg_status = mce->mcg_status;
4205 banks[1] = mce->status;
4206 kvm_queue_exception(vcpu, MC_VECTOR);
4207 } else if (!(banks[1] & MCI_STATUS_VAL)
4208 || !(banks[1] & MCI_STATUS_UC)) {
4209 if (banks[1] & MCI_STATUS_VAL)
4210 mce->status |= MCI_STATUS_OVER;
4211 banks[2] = mce->addr;
4212 banks[3] = mce->misc;
4213 banks[1] = mce->status;
4214 } else
4215 banks[1] |= MCI_STATUS_OVER;
4216 return 0;
4217 }
4218
4219 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4220 struct kvm_vcpu_events *events)
4221 {
4222 process_nmi(vcpu);
4223
4224 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4225 process_smi(vcpu);
4226
4227 /*
4228 * In guest mode, payload delivery should be deferred,
4229 * so that the L1 hypervisor can intercept #PF before
4230 * CR2 is modified (or intercept #DB before DR6 is
4231 * modified under nVMX). Unless the per-VM capability,
4232 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4233 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4234 * opportunistically defer the exception payload, deliver it if the
4235 * capability hasn't been requested before processing a
4236 * KVM_GET_VCPU_EVENTS.
4237 */
4238 if (!vcpu->kvm->arch.exception_payload_enabled &&
4239 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4240 kvm_deliver_exception_payload(vcpu);
4241
4242 /*
4243 * The API doesn't provide the instruction length for software
4244 * exceptions, so don't report them. As long as the guest RIP
4245 * isn't advanced, we should expect to encounter the exception
4246 * again.
4247 */
4248 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4249 events->exception.injected = 0;
4250 events->exception.pending = 0;
4251 } else {
4252 events->exception.injected = vcpu->arch.exception.injected;
4253 events->exception.pending = vcpu->arch.exception.pending;
4254 /*
4255 * For ABI compatibility, deliberately conflate
4256 * pending and injected exceptions when
4257 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4258 */
4259 if (!vcpu->kvm->arch.exception_payload_enabled)
4260 events->exception.injected |=
4261 vcpu->arch.exception.pending;
4262 }
4263 events->exception.nr = vcpu->arch.exception.nr;
4264 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4265 events->exception.error_code = vcpu->arch.exception.error_code;
4266 events->exception_has_payload = vcpu->arch.exception.has_payload;
4267 events->exception_payload = vcpu->arch.exception.payload;
4268
4269 events->interrupt.injected =
4270 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4271 events->interrupt.nr = vcpu->arch.interrupt.nr;
4272 events->interrupt.soft = 0;
4273 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4274
4275 events->nmi.injected = vcpu->arch.nmi_injected;
4276 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4277 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4278 events->nmi.pad = 0;
4279
4280 events->sipi_vector = 0; /* never valid when reporting to user space */
4281
4282 events->smi.smm = is_smm(vcpu);
4283 events->smi.pending = vcpu->arch.smi_pending;
4284 events->smi.smm_inside_nmi =
4285 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4286 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4287
4288 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4289 | KVM_VCPUEVENT_VALID_SHADOW
4290 | KVM_VCPUEVENT_VALID_SMM);
4291 if (vcpu->kvm->arch.exception_payload_enabled)
4292 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4293
4294 memset(&events->reserved, 0, sizeof(events->reserved));
4295 }
4296
4297 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4298
4299 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4300 struct kvm_vcpu_events *events)
4301 {
4302 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4303 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4304 | KVM_VCPUEVENT_VALID_SHADOW
4305 | KVM_VCPUEVENT_VALID_SMM
4306 | KVM_VCPUEVENT_VALID_PAYLOAD))
4307 return -EINVAL;
4308
4309 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4310 if (!vcpu->kvm->arch.exception_payload_enabled)
4311 return -EINVAL;
4312 if (events->exception.pending)
4313 events->exception.injected = 0;
4314 else
4315 events->exception_has_payload = 0;
4316 } else {
4317 events->exception.pending = 0;
4318 events->exception_has_payload = 0;
4319 }
4320
4321 if ((events->exception.injected || events->exception.pending) &&
4322 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4323 return -EINVAL;
4324
4325 /* INITs are latched while in SMM */
4326 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4327 (events->smi.smm || events->smi.pending) &&
4328 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4329 return -EINVAL;
4330
4331 process_nmi(vcpu);
4332 vcpu->arch.exception.injected = events->exception.injected;
4333 vcpu->arch.exception.pending = events->exception.pending;
4334 vcpu->arch.exception.nr = events->exception.nr;
4335 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4336 vcpu->arch.exception.error_code = events->exception.error_code;
4337 vcpu->arch.exception.has_payload = events->exception_has_payload;
4338 vcpu->arch.exception.payload = events->exception_payload;
4339
4340 vcpu->arch.interrupt.injected = events->interrupt.injected;
4341 vcpu->arch.interrupt.nr = events->interrupt.nr;
4342 vcpu->arch.interrupt.soft = events->interrupt.soft;
4343 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4344 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4345 events->interrupt.shadow);
4346
4347 vcpu->arch.nmi_injected = events->nmi.injected;
4348 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4349 vcpu->arch.nmi_pending = events->nmi.pending;
4350 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4351
4352 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4353 lapic_in_kernel(vcpu))
4354 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4355
4356 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4357 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4358 if (events->smi.smm)
4359 vcpu->arch.hflags |= HF_SMM_MASK;
4360 else
4361 vcpu->arch.hflags &= ~HF_SMM_MASK;
4362 kvm_smm_changed(vcpu);
4363 }
4364
4365 vcpu->arch.smi_pending = events->smi.pending;
4366
4367 if (events->smi.smm) {
4368 if (events->smi.smm_inside_nmi)
4369 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4370 else
4371 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4372 }
4373
4374 if (lapic_in_kernel(vcpu)) {
4375 if (events->smi.latched_init)
4376 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4377 else
4378 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4379 }
4380 }
4381
4382 kvm_make_request(KVM_REQ_EVENT, vcpu);
4383
4384 return 0;
4385 }
4386
4387 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4388 struct kvm_debugregs *dbgregs)
4389 {
4390 unsigned long val;
4391
4392 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4393 kvm_get_dr(vcpu, 6, &val);
4394 dbgregs->dr6 = val;
4395 dbgregs->dr7 = vcpu->arch.dr7;
4396 dbgregs->flags = 0;
4397 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4398 }
4399
4400 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4401 struct kvm_debugregs *dbgregs)
4402 {
4403 if (dbgregs->flags)
4404 return -EINVAL;
4405
4406 if (!kvm_dr6_valid(dbgregs->dr6))
4407 return -EINVAL;
4408 if (!kvm_dr7_valid(dbgregs->dr7))
4409 return -EINVAL;
4410
4411 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4412 kvm_update_dr0123(vcpu);
4413 vcpu->arch.dr6 = dbgregs->dr6;
4414 vcpu->arch.dr7 = dbgregs->dr7;
4415 kvm_update_dr7(vcpu);
4416
4417 return 0;
4418 }
4419
4420 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4421
4422 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4423 {
4424 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4425 u64 xstate_bv = xsave->header.xfeatures;
4426 u64 valid;
4427
4428 /*
4429 * Copy legacy XSAVE area, to avoid complications with CPUID
4430 * leaves 0 and 1 in the loop below.
4431 */
4432 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4433
4434 /* Set XSTATE_BV */
4435 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4436 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4437
4438 /*
4439 * Copy each region from the possibly compacted offset to the
4440 * non-compacted offset.
4441 */
4442 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4443 while (valid) {
4444 u64 xfeature_mask = valid & -valid;
4445 int xfeature_nr = fls64(xfeature_mask) - 1;
4446 void *src = get_xsave_addr(xsave, xfeature_nr);
4447
4448 if (src) {
4449 u32 size, offset, ecx, edx;
4450 cpuid_count(XSTATE_CPUID, xfeature_nr,
4451 &size, &offset, &ecx, &edx);
4452 if (xfeature_nr == XFEATURE_PKRU)
4453 memcpy(dest + offset, &vcpu->arch.pkru,
4454 sizeof(vcpu->arch.pkru));
4455 else
4456 memcpy(dest + offset, src, size);
4457
4458 }
4459
4460 valid -= xfeature_mask;
4461 }
4462 }
4463
4464 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4465 {
4466 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4467 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4468 u64 valid;
4469
4470 /*
4471 * Copy legacy XSAVE area, to avoid complications with CPUID
4472 * leaves 0 and 1 in the loop below.
4473 */
4474 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4475
4476 /* Set XSTATE_BV and possibly XCOMP_BV. */
4477 xsave->header.xfeatures = xstate_bv;
4478 if (boot_cpu_has(X86_FEATURE_XSAVES))
4479 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4480
4481 /*
4482 * Copy each region from the non-compacted offset to the
4483 * possibly compacted offset.
4484 */
4485 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4486 while (valid) {
4487 u64 xfeature_mask = valid & -valid;
4488 int xfeature_nr = fls64(xfeature_mask) - 1;
4489 void *dest = get_xsave_addr(xsave, xfeature_nr);
4490
4491 if (dest) {
4492 u32 size, offset, ecx, edx;
4493 cpuid_count(XSTATE_CPUID, xfeature_nr,
4494 &size, &offset, &ecx, &edx);
4495 if (xfeature_nr == XFEATURE_PKRU)
4496 memcpy(&vcpu->arch.pkru, src + offset,
4497 sizeof(vcpu->arch.pkru));
4498 else
4499 memcpy(dest, src + offset, size);
4500 }
4501
4502 valid -= xfeature_mask;
4503 }
4504 }
4505
4506 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4507 struct kvm_xsave *guest_xsave)
4508 {
4509 if (!vcpu->arch.guest_fpu)
4510 return;
4511
4512 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4513 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4514 fill_xsave((u8 *) guest_xsave->region, vcpu);
4515 } else {
4516 memcpy(guest_xsave->region,
4517 &vcpu->arch.guest_fpu->state.fxsave,
4518 sizeof(struct fxregs_state));
4519 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4520 XFEATURE_MASK_FPSSE;
4521 }
4522 }
4523
4524 #define XSAVE_MXCSR_OFFSET 24
4525
4526 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4527 struct kvm_xsave *guest_xsave)
4528 {
4529 u64 xstate_bv;
4530 u32 mxcsr;
4531
4532 if (!vcpu->arch.guest_fpu)
4533 return 0;
4534
4535 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4536 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4537
4538 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4539 /*
4540 * Here we allow setting states that are not present in
4541 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4542 * with old userspace.
4543 */
4544 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4545 return -EINVAL;
4546 load_xsave(vcpu, (u8 *)guest_xsave->region);
4547 } else {
4548 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4549 mxcsr & ~mxcsr_feature_mask)
4550 return -EINVAL;
4551 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4552 guest_xsave->region, sizeof(struct fxregs_state));
4553 }
4554 return 0;
4555 }
4556
4557 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4558 struct kvm_xcrs *guest_xcrs)
4559 {
4560 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4561 guest_xcrs->nr_xcrs = 0;
4562 return;
4563 }
4564
4565 guest_xcrs->nr_xcrs = 1;
4566 guest_xcrs->flags = 0;
4567 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4568 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4569 }
4570
4571 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4572 struct kvm_xcrs *guest_xcrs)
4573 {
4574 int i, r = 0;
4575
4576 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4577 return -EINVAL;
4578
4579 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4580 return -EINVAL;
4581
4582 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4583 /* Only support XCR0 currently */
4584 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4585 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4586 guest_xcrs->xcrs[i].value);
4587 break;
4588 }
4589 if (r)
4590 r = -EINVAL;
4591 return r;
4592 }
4593
4594 /*
4595 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4596 * stopped by the hypervisor. This function will be called from the host only.
4597 * EINVAL is returned when the host attempts to set the flag for a guest that
4598 * does not support pv clocks.
4599 */
4600 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4601 {
4602 if (!vcpu->arch.pv_time_enabled)
4603 return -EINVAL;
4604 vcpu->arch.pvclock_set_guest_stopped_request = true;
4605 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4606 return 0;
4607 }
4608
4609 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4610 struct kvm_enable_cap *cap)
4611 {
4612 int r;
4613 uint16_t vmcs_version;
4614 void __user *user_ptr;
4615
4616 if (cap->flags)
4617 return -EINVAL;
4618
4619 switch (cap->cap) {
4620 case KVM_CAP_HYPERV_SYNIC2:
4621 if (cap->args[0])
4622 return -EINVAL;
4623 fallthrough;
4624
4625 case KVM_CAP_HYPERV_SYNIC:
4626 if (!irqchip_in_kernel(vcpu->kvm))
4627 return -EINVAL;
4628 return kvm_hv_activate_synic(vcpu, cap->cap ==
4629 KVM_CAP_HYPERV_SYNIC2);
4630 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4631 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4632 return -ENOTTY;
4633 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4634 if (!r) {
4635 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4636 if (copy_to_user(user_ptr, &vmcs_version,
4637 sizeof(vmcs_version)))
4638 r = -EFAULT;
4639 }
4640 return r;
4641 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4642 if (!kvm_x86_ops.enable_direct_tlbflush)
4643 return -ENOTTY;
4644
4645 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4646
4647 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4648 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4649 if (vcpu->arch.pv_cpuid.enforce)
4650 kvm_update_pv_runtime(vcpu);
4651
4652 return 0;
4653
4654 default:
4655 return -EINVAL;
4656 }
4657 }
4658
4659 long kvm_arch_vcpu_ioctl(struct file *filp,
4660 unsigned int ioctl, unsigned long arg)
4661 {
4662 struct kvm_vcpu *vcpu = filp->private_data;
4663 void __user *argp = (void __user *)arg;
4664 int r;
4665 union {
4666 struct kvm_lapic_state *lapic;
4667 struct kvm_xsave *xsave;
4668 struct kvm_xcrs *xcrs;
4669 void *buffer;
4670 } u;
4671
4672 vcpu_load(vcpu);
4673
4674 u.buffer = NULL;
4675 switch (ioctl) {
4676 case KVM_GET_LAPIC: {
4677 r = -EINVAL;
4678 if (!lapic_in_kernel(vcpu))
4679 goto out;
4680 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4681 GFP_KERNEL_ACCOUNT);
4682
4683 r = -ENOMEM;
4684 if (!u.lapic)
4685 goto out;
4686 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4687 if (r)
4688 goto out;
4689 r = -EFAULT;
4690 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4691 goto out;
4692 r = 0;
4693 break;
4694 }
4695 case KVM_SET_LAPIC: {
4696 r = -EINVAL;
4697 if (!lapic_in_kernel(vcpu))
4698 goto out;
4699 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4700 if (IS_ERR(u.lapic)) {
4701 r = PTR_ERR(u.lapic);
4702 goto out_nofree;
4703 }
4704
4705 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4706 break;
4707 }
4708 case KVM_INTERRUPT: {
4709 struct kvm_interrupt irq;
4710
4711 r = -EFAULT;
4712 if (copy_from_user(&irq, argp, sizeof(irq)))
4713 goto out;
4714 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4715 break;
4716 }
4717 case KVM_NMI: {
4718 r = kvm_vcpu_ioctl_nmi(vcpu);
4719 break;
4720 }
4721 case KVM_SMI: {
4722 r = kvm_vcpu_ioctl_smi(vcpu);
4723 break;
4724 }
4725 case KVM_SET_CPUID: {
4726 struct kvm_cpuid __user *cpuid_arg = argp;
4727 struct kvm_cpuid cpuid;
4728
4729 r = -EFAULT;
4730 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4731 goto out;
4732 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4733 break;
4734 }
4735 case KVM_SET_CPUID2: {
4736 struct kvm_cpuid2 __user *cpuid_arg = argp;
4737 struct kvm_cpuid2 cpuid;
4738
4739 r = -EFAULT;
4740 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4741 goto out;
4742 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4743 cpuid_arg->entries);
4744 break;
4745 }
4746 case KVM_GET_CPUID2: {
4747 struct kvm_cpuid2 __user *cpuid_arg = argp;
4748 struct kvm_cpuid2 cpuid;
4749
4750 r = -EFAULT;
4751 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4752 goto out;
4753 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4754 cpuid_arg->entries);
4755 if (r)
4756 goto out;
4757 r = -EFAULT;
4758 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4759 goto out;
4760 r = 0;
4761 break;
4762 }
4763 case KVM_GET_MSRS: {
4764 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4765 r = msr_io(vcpu, argp, do_get_msr, 1);
4766 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4767 break;
4768 }
4769 case KVM_SET_MSRS: {
4770 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4771 r = msr_io(vcpu, argp, do_set_msr, 0);
4772 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4773 break;
4774 }
4775 case KVM_TPR_ACCESS_REPORTING: {
4776 struct kvm_tpr_access_ctl tac;
4777
4778 r = -EFAULT;
4779 if (copy_from_user(&tac, argp, sizeof(tac)))
4780 goto out;
4781 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4782 if (r)
4783 goto out;
4784 r = -EFAULT;
4785 if (copy_to_user(argp, &tac, sizeof(tac)))
4786 goto out;
4787 r = 0;
4788 break;
4789 };
4790 case KVM_SET_VAPIC_ADDR: {
4791 struct kvm_vapic_addr va;
4792 int idx;
4793
4794 r = -EINVAL;
4795 if (!lapic_in_kernel(vcpu))
4796 goto out;
4797 r = -EFAULT;
4798 if (copy_from_user(&va, argp, sizeof(va)))
4799 goto out;
4800 idx = srcu_read_lock(&vcpu->kvm->srcu);
4801 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4802 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4803 break;
4804 }
4805 case KVM_X86_SETUP_MCE: {
4806 u64 mcg_cap;
4807
4808 r = -EFAULT;
4809 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4810 goto out;
4811 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4812 break;
4813 }
4814 case KVM_X86_SET_MCE: {
4815 struct kvm_x86_mce mce;
4816
4817 r = -EFAULT;
4818 if (copy_from_user(&mce, argp, sizeof(mce)))
4819 goto out;
4820 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4821 break;
4822 }
4823 case KVM_GET_VCPU_EVENTS: {
4824 struct kvm_vcpu_events events;
4825
4826 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4827
4828 r = -EFAULT;
4829 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4830 break;
4831 r = 0;
4832 break;
4833 }
4834 case KVM_SET_VCPU_EVENTS: {
4835 struct kvm_vcpu_events events;
4836
4837 r = -EFAULT;
4838 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4839 break;
4840
4841 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4842 break;
4843 }
4844 case KVM_GET_DEBUGREGS: {
4845 struct kvm_debugregs dbgregs;
4846
4847 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4848
4849 r = -EFAULT;
4850 if (copy_to_user(argp, &dbgregs,
4851 sizeof(struct kvm_debugregs)))
4852 break;
4853 r = 0;
4854 break;
4855 }
4856 case KVM_SET_DEBUGREGS: {
4857 struct kvm_debugregs dbgregs;
4858
4859 r = -EFAULT;
4860 if (copy_from_user(&dbgregs, argp,
4861 sizeof(struct kvm_debugregs)))
4862 break;
4863
4864 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4865 break;
4866 }
4867 case KVM_GET_XSAVE: {
4868 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4869 r = -ENOMEM;
4870 if (!u.xsave)
4871 break;
4872
4873 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4874
4875 r = -EFAULT;
4876 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4877 break;
4878 r = 0;
4879 break;
4880 }
4881 case KVM_SET_XSAVE: {
4882 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4883 if (IS_ERR(u.xsave)) {
4884 r = PTR_ERR(u.xsave);
4885 goto out_nofree;
4886 }
4887
4888 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4889 break;
4890 }
4891 case KVM_GET_XCRS: {
4892 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4893 r = -ENOMEM;
4894 if (!u.xcrs)
4895 break;
4896
4897 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4898
4899 r = -EFAULT;
4900 if (copy_to_user(argp, u.xcrs,
4901 sizeof(struct kvm_xcrs)))
4902 break;
4903 r = 0;
4904 break;
4905 }
4906 case KVM_SET_XCRS: {
4907 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4908 if (IS_ERR(u.xcrs)) {
4909 r = PTR_ERR(u.xcrs);
4910 goto out_nofree;
4911 }
4912
4913 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4914 break;
4915 }
4916 case KVM_SET_TSC_KHZ: {
4917 u32 user_tsc_khz;
4918
4919 r = -EINVAL;
4920 user_tsc_khz = (u32)arg;
4921
4922 if (kvm_has_tsc_control &&
4923 user_tsc_khz >= kvm_max_guest_tsc_khz)
4924 goto out;
4925
4926 if (user_tsc_khz == 0)
4927 user_tsc_khz = tsc_khz;
4928
4929 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4930 r = 0;
4931
4932 goto out;
4933 }
4934 case KVM_GET_TSC_KHZ: {
4935 r = vcpu->arch.virtual_tsc_khz;
4936 goto out;
4937 }
4938 case KVM_KVMCLOCK_CTRL: {
4939 r = kvm_set_guest_paused(vcpu);
4940 goto out;
4941 }
4942 case KVM_ENABLE_CAP: {
4943 struct kvm_enable_cap cap;
4944
4945 r = -EFAULT;
4946 if (copy_from_user(&cap, argp, sizeof(cap)))
4947 goto out;
4948 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4949 break;
4950 }
4951 case KVM_GET_NESTED_STATE: {
4952 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4953 u32 user_data_size;
4954
4955 r = -EINVAL;
4956 if (!kvm_x86_ops.nested_ops->get_state)
4957 break;
4958
4959 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4960 r = -EFAULT;
4961 if (get_user(user_data_size, &user_kvm_nested_state->size))
4962 break;
4963
4964 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4965 user_data_size);
4966 if (r < 0)
4967 break;
4968
4969 if (r > user_data_size) {
4970 if (put_user(r, &user_kvm_nested_state->size))
4971 r = -EFAULT;
4972 else
4973 r = -E2BIG;
4974 break;
4975 }
4976
4977 r = 0;
4978 break;
4979 }
4980 case KVM_SET_NESTED_STATE: {
4981 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4982 struct kvm_nested_state kvm_state;
4983 int idx;
4984
4985 r = -EINVAL;
4986 if (!kvm_x86_ops.nested_ops->set_state)
4987 break;
4988
4989 r = -EFAULT;
4990 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4991 break;
4992
4993 r = -EINVAL;
4994 if (kvm_state.size < sizeof(kvm_state))
4995 break;
4996
4997 if (kvm_state.flags &
4998 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4999 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5000 | KVM_STATE_NESTED_GIF_SET))
5001 break;
5002
5003 /* nested_run_pending implies guest_mode. */
5004 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5005 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5006 break;
5007
5008 idx = srcu_read_lock(&vcpu->kvm->srcu);
5009 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5010 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5011 break;
5012 }
5013 case KVM_GET_SUPPORTED_HV_CPUID:
5014 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5015 break;
5016 case KVM_XEN_VCPU_GET_ATTR: {
5017 struct kvm_xen_vcpu_attr xva;
5018
5019 r = -EFAULT;
5020 if (copy_from_user(&xva, argp, sizeof(xva)))
5021 goto out;
5022 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5023 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5024 r = -EFAULT;
5025 break;
5026 }
5027 case KVM_XEN_VCPU_SET_ATTR: {
5028 struct kvm_xen_vcpu_attr xva;
5029
5030 r = -EFAULT;
5031 if (copy_from_user(&xva, argp, sizeof(xva)))
5032 goto out;
5033 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5034 break;
5035 }
5036 default:
5037 r = -EINVAL;
5038 }
5039 out:
5040 kfree(u.buffer);
5041 out_nofree:
5042 vcpu_put(vcpu);
5043 return r;
5044 }
5045
5046 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5047 {
5048 return VM_FAULT_SIGBUS;
5049 }
5050
5051 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5052 {
5053 int ret;
5054
5055 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5056 return -EINVAL;
5057 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5058 return ret;
5059 }
5060
5061 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5062 u64 ident_addr)
5063 {
5064 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5065 }
5066
5067 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5068 unsigned long kvm_nr_mmu_pages)
5069 {
5070 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5071 return -EINVAL;
5072
5073 mutex_lock(&kvm->slots_lock);
5074
5075 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5076 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5077
5078 mutex_unlock(&kvm->slots_lock);
5079 return 0;
5080 }
5081
5082 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5083 {
5084 return kvm->arch.n_max_mmu_pages;
5085 }
5086
5087 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5088 {
5089 struct kvm_pic *pic = kvm->arch.vpic;
5090 int r;
5091
5092 r = 0;
5093 switch (chip->chip_id) {
5094 case KVM_IRQCHIP_PIC_MASTER:
5095 memcpy(&chip->chip.pic, &pic->pics[0],
5096 sizeof(struct kvm_pic_state));
5097 break;
5098 case KVM_IRQCHIP_PIC_SLAVE:
5099 memcpy(&chip->chip.pic, &pic->pics[1],
5100 sizeof(struct kvm_pic_state));
5101 break;
5102 case KVM_IRQCHIP_IOAPIC:
5103 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5104 break;
5105 default:
5106 r = -EINVAL;
5107 break;
5108 }
5109 return r;
5110 }
5111
5112 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5113 {
5114 struct kvm_pic *pic = kvm->arch.vpic;
5115 int r;
5116
5117 r = 0;
5118 switch (chip->chip_id) {
5119 case KVM_IRQCHIP_PIC_MASTER:
5120 spin_lock(&pic->lock);
5121 memcpy(&pic->pics[0], &chip->chip.pic,
5122 sizeof(struct kvm_pic_state));
5123 spin_unlock(&pic->lock);
5124 break;
5125 case KVM_IRQCHIP_PIC_SLAVE:
5126 spin_lock(&pic->lock);
5127 memcpy(&pic->pics[1], &chip->chip.pic,
5128 sizeof(struct kvm_pic_state));
5129 spin_unlock(&pic->lock);
5130 break;
5131 case KVM_IRQCHIP_IOAPIC:
5132 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5133 break;
5134 default:
5135 r = -EINVAL;
5136 break;
5137 }
5138 kvm_pic_update_irq(pic);
5139 return r;
5140 }
5141
5142 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5143 {
5144 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5145
5146 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5147
5148 mutex_lock(&kps->lock);
5149 memcpy(ps, &kps->channels, sizeof(*ps));
5150 mutex_unlock(&kps->lock);
5151 return 0;
5152 }
5153
5154 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5155 {
5156 int i;
5157 struct kvm_pit *pit = kvm->arch.vpit;
5158
5159 mutex_lock(&pit->pit_state.lock);
5160 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5161 for (i = 0; i < 3; i++)
5162 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5163 mutex_unlock(&pit->pit_state.lock);
5164 return 0;
5165 }
5166
5167 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5168 {
5169 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5170 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5171 sizeof(ps->channels));
5172 ps->flags = kvm->arch.vpit->pit_state.flags;
5173 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5174 memset(&ps->reserved, 0, sizeof(ps->reserved));
5175 return 0;
5176 }
5177
5178 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5179 {
5180 int start = 0;
5181 int i;
5182 u32 prev_legacy, cur_legacy;
5183 struct kvm_pit *pit = kvm->arch.vpit;
5184
5185 mutex_lock(&pit->pit_state.lock);
5186 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5187 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5188 if (!prev_legacy && cur_legacy)
5189 start = 1;
5190 memcpy(&pit->pit_state.channels, &ps->channels,
5191 sizeof(pit->pit_state.channels));
5192 pit->pit_state.flags = ps->flags;
5193 for (i = 0; i < 3; i++)
5194 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5195 start && i == 0);
5196 mutex_unlock(&pit->pit_state.lock);
5197 return 0;
5198 }
5199
5200 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5201 struct kvm_reinject_control *control)
5202 {
5203 struct kvm_pit *pit = kvm->arch.vpit;
5204
5205 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5206 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5207 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5208 */
5209 mutex_lock(&pit->pit_state.lock);
5210 kvm_pit_set_reinject(pit, control->pit_reinject);
5211 mutex_unlock(&pit->pit_state.lock);
5212
5213 return 0;
5214 }
5215
5216 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5217 {
5218 /*
5219 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5220 */
5221 static_call_cond(kvm_x86_flush_log_dirty)(kvm);
5222 }
5223
5224 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5225 bool line_status)
5226 {
5227 if (!irqchip_in_kernel(kvm))
5228 return -ENXIO;
5229
5230 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5231 irq_event->irq, irq_event->level,
5232 line_status);
5233 return 0;
5234 }
5235
5236 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5237 struct kvm_enable_cap *cap)
5238 {
5239 int r;
5240
5241 if (cap->flags)
5242 return -EINVAL;
5243
5244 switch (cap->cap) {
5245 case KVM_CAP_DISABLE_QUIRKS:
5246 kvm->arch.disabled_quirks = cap->args[0];
5247 r = 0;
5248 break;
5249 case KVM_CAP_SPLIT_IRQCHIP: {
5250 mutex_lock(&kvm->lock);
5251 r = -EINVAL;
5252 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5253 goto split_irqchip_unlock;
5254 r = -EEXIST;
5255 if (irqchip_in_kernel(kvm))
5256 goto split_irqchip_unlock;
5257 if (kvm->created_vcpus)
5258 goto split_irqchip_unlock;
5259 r = kvm_setup_empty_irq_routing(kvm);
5260 if (r)
5261 goto split_irqchip_unlock;
5262 /* Pairs with irqchip_in_kernel. */
5263 smp_wmb();
5264 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5265 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5266 r = 0;
5267 split_irqchip_unlock:
5268 mutex_unlock(&kvm->lock);
5269 break;
5270 }
5271 case KVM_CAP_X2APIC_API:
5272 r = -EINVAL;
5273 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5274 break;
5275
5276 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5277 kvm->arch.x2apic_format = true;
5278 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5279 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5280
5281 r = 0;
5282 break;
5283 case KVM_CAP_X86_DISABLE_EXITS:
5284 r = -EINVAL;
5285 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5286 break;
5287
5288 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5289 kvm_can_mwait_in_guest())
5290 kvm->arch.mwait_in_guest = true;
5291 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5292 kvm->arch.hlt_in_guest = true;
5293 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5294 kvm->arch.pause_in_guest = true;
5295 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5296 kvm->arch.cstate_in_guest = true;
5297 r = 0;
5298 break;
5299 case KVM_CAP_MSR_PLATFORM_INFO:
5300 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5301 r = 0;
5302 break;
5303 case KVM_CAP_EXCEPTION_PAYLOAD:
5304 kvm->arch.exception_payload_enabled = cap->args[0];
5305 r = 0;
5306 break;
5307 case KVM_CAP_X86_USER_SPACE_MSR:
5308 kvm->arch.user_space_msr_mask = cap->args[0];
5309 r = 0;
5310 break;
5311 case KVM_CAP_X86_BUS_LOCK_EXIT:
5312 r = -EINVAL;
5313 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5314 break;
5315
5316 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5317 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5318 break;
5319
5320 if (kvm_has_bus_lock_exit &&
5321 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5322 kvm->arch.bus_lock_detection_enabled = true;
5323 r = 0;
5324 break;
5325 default:
5326 r = -EINVAL;
5327 break;
5328 }
5329 return r;
5330 }
5331
5332 static void kvm_clear_msr_filter(struct kvm *kvm)
5333 {
5334 u32 i;
5335 u32 count = kvm->arch.msr_filter.count;
5336 struct msr_bitmap_range ranges[16];
5337
5338 mutex_lock(&kvm->lock);
5339 kvm->arch.msr_filter.count = 0;
5340 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5341 mutex_unlock(&kvm->lock);
5342 synchronize_srcu(&kvm->srcu);
5343
5344 for (i = 0; i < count; i++)
5345 kfree(ranges[i].bitmap);
5346 }
5347
5348 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5349 {
5350 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5351 struct msr_bitmap_range range;
5352 unsigned long *bitmap = NULL;
5353 size_t bitmap_size;
5354 int r;
5355
5356 if (!user_range->nmsrs)
5357 return 0;
5358
5359 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5360 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5361 return -EINVAL;
5362
5363 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5364 if (IS_ERR(bitmap))
5365 return PTR_ERR(bitmap);
5366
5367 range = (struct msr_bitmap_range) {
5368 .flags = user_range->flags,
5369 .base = user_range->base,
5370 .nmsrs = user_range->nmsrs,
5371 .bitmap = bitmap,
5372 };
5373
5374 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5375 r = -EINVAL;
5376 goto err;
5377 }
5378
5379 if (!range.flags) {
5380 r = -EINVAL;
5381 goto err;
5382 }
5383
5384 /* Everything ok, add this range identifier to our global pool */
5385 ranges[kvm->arch.msr_filter.count] = range;
5386 /* Make sure we filled the array before we tell anyone to walk it */
5387 smp_wmb();
5388 kvm->arch.msr_filter.count++;
5389
5390 return 0;
5391 err:
5392 kfree(bitmap);
5393 return r;
5394 }
5395
5396 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5397 {
5398 struct kvm_msr_filter __user *user_msr_filter = argp;
5399 struct kvm_msr_filter filter;
5400 bool default_allow;
5401 int r = 0;
5402 bool empty = true;
5403 u32 i;
5404
5405 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5406 return -EFAULT;
5407
5408 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5409 empty &= !filter.ranges[i].nmsrs;
5410
5411 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5412 if (empty && !default_allow)
5413 return -EINVAL;
5414
5415 kvm_clear_msr_filter(kvm);
5416
5417 kvm->arch.msr_filter.default_allow = default_allow;
5418
5419 /*
5420 * Protect from concurrent calls to this function that could trigger
5421 * a TOCTOU violation on kvm->arch.msr_filter.count.
5422 */
5423 mutex_lock(&kvm->lock);
5424 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5425 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5426 if (r)
5427 break;
5428 }
5429
5430 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5431 mutex_unlock(&kvm->lock);
5432
5433 return r;
5434 }
5435
5436 long kvm_arch_vm_ioctl(struct file *filp,
5437 unsigned int ioctl, unsigned long arg)
5438 {
5439 struct kvm *kvm = filp->private_data;
5440 void __user *argp = (void __user *)arg;
5441 int r = -ENOTTY;
5442 /*
5443 * This union makes it completely explicit to gcc-3.x
5444 * that these two variables' stack usage should be
5445 * combined, not added together.
5446 */
5447 union {
5448 struct kvm_pit_state ps;
5449 struct kvm_pit_state2 ps2;
5450 struct kvm_pit_config pit_config;
5451 } u;
5452
5453 switch (ioctl) {
5454 case KVM_SET_TSS_ADDR:
5455 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5456 break;
5457 case KVM_SET_IDENTITY_MAP_ADDR: {
5458 u64 ident_addr;
5459
5460 mutex_lock(&kvm->lock);
5461 r = -EINVAL;
5462 if (kvm->created_vcpus)
5463 goto set_identity_unlock;
5464 r = -EFAULT;
5465 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5466 goto set_identity_unlock;
5467 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5468 set_identity_unlock:
5469 mutex_unlock(&kvm->lock);
5470 break;
5471 }
5472 case KVM_SET_NR_MMU_PAGES:
5473 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5474 break;
5475 case KVM_GET_NR_MMU_PAGES:
5476 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5477 break;
5478 case KVM_CREATE_IRQCHIP: {
5479 mutex_lock(&kvm->lock);
5480
5481 r = -EEXIST;
5482 if (irqchip_in_kernel(kvm))
5483 goto create_irqchip_unlock;
5484
5485 r = -EINVAL;
5486 if (kvm->created_vcpus)
5487 goto create_irqchip_unlock;
5488
5489 r = kvm_pic_init(kvm);
5490 if (r)
5491 goto create_irqchip_unlock;
5492
5493 r = kvm_ioapic_init(kvm);
5494 if (r) {
5495 kvm_pic_destroy(kvm);
5496 goto create_irqchip_unlock;
5497 }
5498
5499 r = kvm_setup_default_irq_routing(kvm);
5500 if (r) {
5501 kvm_ioapic_destroy(kvm);
5502 kvm_pic_destroy(kvm);
5503 goto create_irqchip_unlock;
5504 }
5505 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5506 smp_wmb();
5507 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5508 create_irqchip_unlock:
5509 mutex_unlock(&kvm->lock);
5510 break;
5511 }
5512 case KVM_CREATE_PIT:
5513 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5514 goto create_pit;
5515 case KVM_CREATE_PIT2:
5516 r = -EFAULT;
5517 if (copy_from_user(&u.pit_config, argp,
5518 sizeof(struct kvm_pit_config)))
5519 goto out;
5520 create_pit:
5521 mutex_lock(&kvm->lock);
5522 r = -EEXIST;
5523 if (kvm->arch.vpit)
5524 goto create_pit_unlock;
5525 r = -ENOMEM;
5526 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5527 if (kvm->arch.vpit)
5528 r = 0;
5529 create_pit_unlock:
5530 mutex_unlock(&kvm->lock);
5531 break;
5532 case KVM_GET_IRQCHIP: {
5533 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5534 struct kvm_irqchip *chip;
5535
5536 chip = memdup_user(argp, sizeof(*chip));
5537 if (IS_ERR(chip)) {
5538 r = PTR_ERR(chip);
5539 goto out;
5540 }
5541
5542 r = -ENXIO;
5543 if (!irqchip_kernel(kvm))
5544 goto get_irqchip_out;
5545 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5546 if (r)
5547 goto get_irqchip_out;
5548 r = -EFAULT;
5549 if (copy_to_user(argp, chip, sizeof(*chip)))
5550 goto get_irqchip_out;
5551 r = 0;
5552 get_irqchip_out:
5553 kfree(chip);
5554 break;
5555 }
5556 case KVM_SET_IRQCHIP: {
5557 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5558 struct kvm_irqchip *chip;
5559
5560 chip = memdup_user(argp, sizeof(*chip));
5561 if (IS_ERR(chip)) {
5562 r = PTR_ERR(chip);
5563 goto out;
5564 }
5565
5566 r = -ENXIO;
5567 if (!irqchip_kernel(kvm))
5568 goto set_irqchip_out;
5569 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5570 set_irqchip_out:
5571 kfree(chip);
5572 break;
5573 }
5574 case KVM_GET_PIT: {
5575 r = -EFAULT;
5576 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5577 goto out;
5578 r = -ENXIO;
5579 if (!kvm->arch.vpit)
5580 goto out;
5581 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5582 if (r)
5583 goto out;
5584 r = -EFAULT;
5585 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5586 goto out;
5587 r = 0;
5588 break;
5589 }
5590 case KVM_SET_PIT: {
5591 r = -EFAULT;
5592 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5593 goto out;
5594 mutex_lock(&kvm->lock);
5595 r = -ENXIO;
5596 if (!kvm->arch.vpit)
5597 goto set_pit_out;
5598 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5599 set_pit_out:
5600 mutex_unlock(&kvm->lock);
5601 break;
5602 }
5603 case KVM_GET_PIT2: {
5604 r = -ENXIO;
5605 if (!kvm->arch.vpit)
5606 goto out;
5607 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5608 if (r)
5609 goto out;
5610 r = -EFAULT;
5611 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5612 goto out;
5613 r = 0;
5614 break;
5615 }
5616 case KVM_SET_PIT2: {
5617 r = -EFAULT;
5618 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5619 goto out;
5620 mutex_lock(&kvm->lock);
5621 r = -ENXIO;
5622 if (!kvm->arch.vpit)
5623 goto set_pit2_out;
5624 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5625 set_pit2_out:
5626 mutex_unlock(&kvm->lock);
5627 break;
5628 }
5629 case KVM_REINJECT_CONTROL: {
5630 struct kvm_reinject_control control;
5631 r = -EFAULT;
5632 if (copy_from_user(&control, argp, sizeof(control)))
5633 goto out;
5634 r = -ENXIO;
5635 if (!kvm->arch.vpit)
5636 goto out;
5637 r = kvm_vm_ioctl_reinject(kvm, &control);
5638 break;
5639 }
5640 case KVM_SET_BOOT_CPU_ID:
5641 r = 0;
5642 mutex_lock(&kvm->lock);
5643 if (kvm->created_vcpus)
5644 r = -EBUSY;
5645 else
5646 kvm->arch.bsp_vcpu_id = arg;
5647 mutex_unlock(&kvm->lock);
5648 break;
5649 case KVM_XEN_HVM_CONFIG: {
5650 struct kvm_xen_hvm_config xhc;
5651 r = -EFAULT;
5652 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5653 goto out;
5654 r = kvm_xen_hvm_config(kvm, &xhc);
5655 break;
5656 }
5657 case KVM_XEN_HVM_GET_ATTR: {
5658 struct kvm_xen_hvm_attr xha;
5659
5660 r = -EFAULT;
5661 if (copy_from_user(&xha, argp, sizeof(xha)))
5662 goto out;
5663 r = kvm_xen_hvm_get_attr(kvm, &xha);
5664 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5665 r = -EFAULT;
5666 break;
5667 }
5668 case KVM_XEN_HVM_SET_ATTR: {
5669 struct kvm_xen_hvm_attr xha;
5670
5671 r = -EFAULT;
5672 if (copy_from_user(&xha, argp, sizeof(xha)))
5673 goto out;
5674 r = kvm_xen_hvm_set_attr(kvm, &xha);
5675 break;
5676 }
5677 case KVM_SET_CLOCK: {
5678 struct kvm_clock_data user_ns;
5679 u64 now_ns;
5680
5681 r = -EFAULT;
5682 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5683 goto out;
5684
5685 r = -EINVAL;
5686 if (user_ns.flags)
5687 goto out;
5688
5689 r = 0;
5690 /*
5691 * TODO: userspace has to take care of races with VCPU_RUN, so
5692 * kvm_gen_update_masterclock() can be cut down to locked
5693 * pvclock_update_vm_gtod_copy().
5694 */
5695 kvm_gen_update_masterclock(kvm);
5696 now_ns = get_kvmclock_ns(kvm);
5697 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5698 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5699 break;
5700 }
5701 case KVM_GET_CLOCK: {
5702 struct kvm_clock_data user_ns;
5703 u64 now_ns;
5704
5705 now_ns = get_kvmclock_ns(kvm);
5706 user_ns.clock = now_ns;
5707 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5708 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5709
5710 r = -EFAULT;
5711 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5712 goto out;
5713 r = 0;
5714 break;
5715 }
5716 case KVM_MEMORY_ENCRYPT_OP: {
5717 r = -ENOTTY;
5718 if (kvm_x86_ops.mem_enc_op)
5719 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5720 break;
5721 }
5722 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5723 struct kvm_enc_region region;
5724
5725 r = -EFAULT;
5726 if (copy_from_user(&region, argp, sizeof(region)))
5727 goto out;
5728
5729 r = -ENOTTY;
5730 if (kvm_x86_ops.mem_enc_reg_region)
5731 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5732 break;
5733 }
5734 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5735 struct kvm_enc_region region;
5736
5737 r = -EFAULT;
5738 if (copy_from_user(&region, argp, sizeof(region)))
5739 goto out;
5740
5741 r = -ENOTTY;
5742 if (kvm_x86_ops.mem_enc_unreg_region)
5743 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5744 break;
5745 }
5746 case KVM_HYPERV_EVENTFD: {
5747 struct kvm_hyperv_eventfd hvevfd;
5748
5749 r = -EFAULT;
5750 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5751 goto out;
5752 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5753 break;
5754 }
5755 case KVM_SET_PMU_EVENT_FILTER:
5756 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5757 break;
5758 case KVM_X86_SET_MSR_FILTER:
5759 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5760 break;
5761 default:
5762 r = -ENOTTY;
5763 }
5764 out:
5765 return r;
5766 }
5767
5768 static void kvm_init_msr_list(void)
5769 {
5770 struct x86_pmu_capability x86_pmu;
5771 u32 dummy[2];
5772 unsigned i;
5773
5774 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5775 "Please update the fixed PMCs in msrs_to_saved_all[]");
5776
5777 perf_get_x86_pmu_capability(&x86_pmu);
5778
5779 num_msrs_to_save = 0;
5780 num_emulated_msrs = 0;
5781 num_msr_based_features = 0;
5782
5783 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5784 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5785 continue;
5786
5787 /*
5788 * Even MSRs that are valid in the host may not be exposed
5789 * to the guests in some cases.
5790 */
5791 switch (msrs_to_save_all[i]) {
5792 case MSR_IA32_BNDCFGS:
5793 if (!kvm_mpx_supported())
5794 continue;
5795 break;
5796 case MSR_TSC_AUX:
5797 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5798 continue;
5799 break;
5800 case MSR_IA32_UMWAIT_CONTROL:
5801 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5802 continue;
5803 break;
5804 case MSR_IA32_RTIT_CTL:
5805 case MSR_IA32_RTIT_STATUS:
5806 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5807 continue;
5808 break;
5809 case MSR_IA32_RTIT_CR3_MATCH:
5810 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5811 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5812 continue;
5813 break;
5814 case MSR_IA32_RTIT_OUTPUT_BASE:
5815 case MSR_IA32_RTIT_OUTPUT_MASK:
5816 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5817 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5818 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5819 continue;
5820 break;
5821 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5822 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5823 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5824 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5825 continue;
5826 break;
5827 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5828 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5829 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5830 continue;
5831 break;
5832 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5833 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5834 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5835 continue;
5836 break;
5837 default:
5838 break;
5839 }
5840
5841 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5842 }
5843
5844 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5845 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5846 continue;
5847
5848 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5849 }
5850
5851 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5852 struct kvm_msr_entry msr;
5853
5854 msr.index = msr_based_features_all[i];
5855 if (kvm_get_msr_feature(&msr))
5856 continue;
5857
5858 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5859 }
5860 }
5861
5862 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5863 const void *v)
5864 {
5865 int handled = 0;
5866 int n;
5867
5868 do {
5869 n = min(len, 8);
5870 if (!(lapic_in_kernel(vcpu) &&
5871 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5872 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5873 break;
5874 handled += n;
5875 addr += n;
5876 len -= n;
5877 v += n;
5878 } while (len);
5879
5880 return handled;
5881 }
5882
5883 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5884 {
5885 int handled = 0;
5886 int n;
5887
5888 do {
5889 n = min(len, 8);
5890 if (!(lapic_in_kernel(vcpu) &&
5891 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5892 addr, n, v))
5893 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5894 break;
5895 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5896 handled += n;
5897 addr += n;
5898 len -= n;
5899 v += n;
5900 } while (len);
5901
5902 return handled;
5903 }
5904
5905 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5906 struct kvm_segment *var, int seg)
5907 {
5908 static_call(kvm_x86_set_segment)(vcpu, var, seg);
5909 }
5910
5911 void kvm_get_segment(struct kvm_vcpu *vcpu,
5912 struct kvm_segment *var, int seg)
5913 {
5914 static_call(kvm_x86_get_segment)(vcpu, var, seg);
5915 }
5916
5917 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5918 struct x86_exception *exception)
5919 {
5920 gpa_t t_gpa;
5921
5922 BUG_ON(!mmu_is_nested(vcpu));
5923
5924 /* NPT walks are always user-walks */
5925 access |= PFERR_USER_MASK;
5926 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5927
5928 return t_gpa;
5929 }
5930
5931 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5932 struct x86_exception *exception)
5933 {
5934 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5935 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5936 }
5937
5938 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5939 struct x86_exception *exception)
5940 {
5941 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5942 access |= PFERR_FETCH_MASK;
5943 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5944 }
5945
5946 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5947 struct x86_exception *exception)
5948 {
5949 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5950 access |= PFERR_WRITE_MASK;
5951 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5952 }
5953
5954 /* uses this to access any guest's mapped memory without checking CPL */
5955 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5956 struct x86_exception *exception)
5957 {
5958 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5959 }
5960
5961 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5962 struct kvm_vcpu *vcpu, u32 access,
5963 struct x86_exception *exception)
5964 {
5965 void *data = val;
5966 int r = X86EMUL_CONTINUE;
5967
5968 while (bytes) {
5969 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5970 exception);
5971 unsigned offset = addr & (PAGE_SIZE-1);
5972 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5973 int ret;
5974
5975 if (gpa == UNMAPPED_GVA)
5976 return X86EMUL_PROPAGATE_FAULT;
5977 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5978 offset, toread);
5979 if (ret < 0) {
5980 r = X86EMUL_IO_NEEDED;
5981 goto out;
5982 }
5983
5984 bytes -= toread;
5985 data += toread;
5986 addr += toread;
5987 }
5988 out:
5989 return r;
5990 }
5991
5992 /* used for instruction fetching */
5993 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5994 gva_t addr, void *val, unsigned int bytes,
5995 struct x86_exception *exception)
5996 {
5997 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5998 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5999 unsigned offset;
6000 int ret;
6001
6002 /* Inline kvm_read_guest_virt_helper for speed. */
6003 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6004 exception);
6005 if (unlikely(gpa == UNMAPPED_GVA))
6006 return X86EMUL_PROPAGATE_FAULT;
6007
6008 offset = addr & (PAGE_SIZE-1);
6009 if (WARN_ON(offset + bytes > PAGE_SIZE))
6010 bytes = (unsigned)PAGE_SIZE - offset;
6011 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6012 offset, bytes);
6013 if (unlikely(ret < 0))
6014 return X86EMUL_IO_NEEDED;
6015
6016 return X86EMUL_CONTINUE;
6017 }
6018
6019 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6020 gva_t addr, void *val, unsigned int bytes,
6021 struct x86_exception *exception)
6022 {
6023 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6024
6025 /*
6026 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6027 * is returned, but our callers are not ready for that and they blindly
6028 * call kvm_inject_page_fault. Ensure that they at least do not leak
6029 * uninitialized kernel stack memory into cr2 and error code.
6030 */
6031 memset(exception, 0, sizeof(*exception));
6032 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6033 exception);
6034 }
6035 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6036
6037 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6038 gva_t addr, void *val, unsigned int bytes,
6039 struct x86_exception *exception, bool system)
6040 {
6041 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6042 u32 access = 0;
6043
6044 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6045 access |= PFERR_USER_MASK;
6046
6047 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6048 }
6049
6050 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6051 unsigned long addr, void *val, unsigned int bytes)
6052 {
6053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6054 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6055
6056 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6057 }
6058
6059 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6060 struct kvm_vcpu *vcpu, u32 access,
6061 struct x86_exception *exception)
6062 {
6063 void *data = val;
6064 int r = X86EMUL_CONTINUE;
6065
6066 while (bytes) {
6067 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6068 access,
6069 exception);
6070 unsigned offset = addr & (PAGE_SIZE-1);
6071 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6072 int ret;
6073
6074 if (gpa == UNMAPPED_GVA)
6075 return X86EMUL_PROPAGATE_FAULT;
6076 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6077 if (ret < 0) {
6078 r = X86EMUL_IO_NEEDED;
6079 goto out;
6080 }
6081
6082 bytes -= towrite;
6083 data += towrite;
6084 addr += towrite;
6085 }
6086 out:
6087 return r;
6088 }
6089
6090 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6091 unsigned int bytes, struct x86_exception *exception,
6092 bool system)
6093 {
6094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6095 u32 access = PFERR_WRITE_MASK;
6096
6097 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6098 access |= PFERR_USER_MASK;
6099
6100 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6101 access, exception);
6102 }
6103
6104 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6105 unsigned int bytes, struct x86_exception *exception)
6106 {
6107 /* kvm_write_guest_virt_system can pull in tons of pages. */
6108 vcpu->arch.l1tf_flush_l1d = true;
6109
6110 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6111 PFERR_WRITE_MASK, exception);
6112 }
6113 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6114
6115 int handle_ud(struct kvm_vcpu *vcpu)
6116 {
6117 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6118 int emul_type = EMULTYPE_TRAP_UD;
6119 char sig[5]; /* ud2; .ascii "kvm" */
6120 struct x86_exception e;
6121
6122 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6123 return 1;
6124
6125 if (force_emulation_prefix &&
6126 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6127 sig, sizeof(sig), &e) == 0 &&
6128 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6129 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6130 emul_type = EMULTYPE_TRAP_UD_FORCED;
6131 }
6132
6133 return kvm_emulate_instruction(vcpu, emul_type);
6134 }
6135 EXPORT_SYMBOL_GPL(handle_ud);
6136
6137 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6138 gpa_t gpa, bool write)
6139 {
6140 /* For APIC access vmexit */
6141 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6142 return 1;
6143
6144 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6145 trace_vcpu_match_mmio(gva, gpa, write, true);
6146 return 1;
6147 }
6148
6149 return 0;
6150 }
6151
6152 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6153 gpa_t *gpa, struct x86_exception *exception,
6154 bool write)
6155 {
6156 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6157 | (write ? PFERR_WRITE_MASK : 0);
6158
6159 /*
6160 * currently PKRU is only applied to ept enabled guest so
6161 * there is no pkey in EPT page table for L1 guest or EPT
6162 * shadow page table for L2 guest.
6163 */
6164 if (vcpu_match_mmio_gva(vcpu, gva)
6165 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6166 vcpu->arch.mmio_access, 0, access)) {
6167 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6168 (gva & (PAGE_SIZE - 1));
6169 trace_vcpu_match_mmio(gva, *gpa, write, false);
6170 return 1;
6171 }
6172
6173 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6174
6175 if (*gpa == UNMAPPED_GVA)
6176 return -1;
6177
6178 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6179 }
6180
6181 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6182 const void *val, int bytes)
6183 {
6184 int ret;
6185
6186 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6187 if (ret < 0)
6188 return 0;
6189 kvm_page_track_write(vcpu, gpa, val, bytes);
6190 return 1;
6191 }
6192
6193 struct read_write_emulator_ops {
6194 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6195 int bytes);
6196 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6197 void *val, int bytes);
6198 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6199 int bytes, void *val);
6200 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6201 void *val, int bytes);
6202 bool write;
6203 };
6204
6205 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6206 {
6207 if (vcpu->mmio_read_completed) {
6208 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6209 vcpu->mmio_fragments[0].gpa, val);
6210 vcpu->mmio_read_completed = 0;
6211 return 1;
6212 }
6213
6214 return 0;
6215 }
6216
6217 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6218 void *val, int bytes)
6219 {
6220 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6221 }
6222
6223 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6224 void *val, int bytes)
6225 {
6226 return emulator_write_phys(vcpu, gpa, val, bytes);
6227 }
6228
6229 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6230 {
6231 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6232 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6233 }
6234
6235 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6236 void *val, int bytes)
6237 {
6238 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6239 return X86EMUL_IO_NEEDED;
6240 }
6241
6242 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6243 void *val, int bytes)
6244 {
6245 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6246
6247 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6248 return X86EMUL_CONTINUE;
6249 }
6250
6251 static const struct read_write_emulator_ops read_emultor = {
6252 .read_write_prepare = read_prepare,
6253 .read_write_emulate = read_emulate,
6254 .read_write_mmio = vcpu_mmio_read,
6255 .read_write_exit_mmio = read_exit_mmio,
6256 };
6257
6258 static const struct read_write_emulator_ops write_emultor = {
6259 .read_write_emulate = write_emulate,
6260 .read_write_mmio = write_mmio,
6261 .read_write_exit_mmio = write_exit_mmio,
6262 .write = true,
6263 };
6264
6265 static int emulator_read_write_onepage(unsigned long addr, void *val,
6266 unsigned int bytes,
6267 struct x86_exception *exception,
6268 struct kvm_vcpu *vcpu,
6269 const struct read_write_emulator_ops *ops)
6270 {
6271 gpa_t gpa;
6272 int handled, ret;
6273 bool write = ops->write;
6274 struct kvm_mmio_fragment *frag;
6275 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6276
6277 /*
6278 * If the exit was due to a NPF we may already have a GPA.
6279 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6280 * Note, this cannot be used on string operations since string
6281 * operation using rep will only have the initial GPA from the NPF
6282 * occurred.
6283 */
6284 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6285 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6286 gpa = ctxt->gpa_val;
6287 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6288 } else {
6289 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6290 if (ret < 0)
6291 return X86EMUL_PROPAGATE_FAULT;
6292 }
6293
6294 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6295 return X86EMUL_CONTINUE;
6296
6297 /*
6298 * Is this MMIO handled locally?
6299 */
6300 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6301 if (handled == bytes)
6302 return X86EMUL_CONTINUE;
6303
6304 gpa += handled;
6305 bytes -= handled;
6306 val += handled;
6307
6308 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6309 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6310 frag->gpa = gpa;
6311 frag->data = val;
6312 frag->len = bytes;
6313 return X86EMUL_CONTINUE;
6314 }
6315
6316 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6317 unsigned long addr,
6318 void *val, unsigned int bytes,
6319 struct x86_exception *exception,
6320 const struct read_write_emulator_ops *ops)
6321 {
6322 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6323 gpa_t gpa;
6324 int rc;
6325
6326 if (ops->read_write_prepare &&
6327 ops->read_write_prepare(vcpu, val, bytes))
6328 return X86EMUL_CONTINUE;
6329
6330 vcpu->mmio_nr_fragments = 0;
6331
6332 /* Crossing a page boundary? */
6333 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6334 int now;
6335
6336 now = -addr & ~PAGE_MASK;
6337 rc = emulator_read_write_onepage(addr, val, now, exception,
6338 vcpu, ops);
6339
6340 if (rc != X86EMUL_CONTINUE)
6341 return rc;
6342 addr += now;
6343 if (ctxt->mode != X86EMUL_MODE_PROT64)
6344 addr = (u32)addr;
6345 val += now;
6346 bytes -= now;
6347 }
6348
6349 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6350 vcpu, ops);
6351 if (rc != X86EMUL_CONTINUE)
6352 return rc;
6353
6354 if (!vcpu->mmio_nr_fragments)
6355 return rc;
6356
6357 gpa = vcpu->mmio_fragments[0].gpa;
6358
6359 vcpu->mmio_needed = 1;
6360 vcpu->mmio_cur_fragment = 0;
6361
6362 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6363 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6364 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6365 vcpu->run->mmio.phys_addr = gpa;
6366
6367 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6368 }
6369
6370 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6371 unsigned long addr,
6372 void *val,
6373 unsigned int bytes,
6374 struct x86_exception *exception)
6375 {
6376 return emulator_read_write(ctxt, addr, val, bytes,
6377 exception, &read_emultor);
6378 }
6379
6380 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6381 unsigned long addr,
6382 const void *val,
6383 unsigned int bytes,
6384 struct x86_exception *exception)
6385 {
6386 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6387 exception, &write_emultor);
6388 }
6389
6390 #define CMPXCHG_TYPE(t, ptr, old, new) \
6391 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6392
6393 #ifdef CONFIG_X86_64
6394 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6395 #else
6396 # define CMPXCHG64(ptr, old, new) \
6397 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6398 #endif
6399
6400 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6401 unsigned long addr,
6402 const void *old,
6403 const void *new,
6404 unsigned int bytes,
6405 struct x86_exception *exception)
6406 {
6407 struct kvm_host_map map;
6408 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6409 u64 page_line_mask;
6410 gpa_t gpa;
6411 char *kaddr;
6412 bool exchanged;
6413
6414 /* guests cmpxchg8b have to be emulated atomically */
6415 if (bytes > 8 || (bytes & (bytes - 1)))
6416 goto emul_write;
6417
6418 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6419
6420 if (gpa == UNMAPPED_GVA ||
6421 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6422 goto emul_write;
6423
6424 /*
6425 * Emulate the atomic as a straight write to avoid #AC if SLD is
6426 * enabled in the host and the access splits a cache line.
6427 */
6428 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6429 page_line_mask = ~(cache_line_size() - 1);
6430 else
6431 page_line_mask = PAGE_MASK;
6432
6433 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6434 goto emul_write;
6435
6436 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6437 goto emul_write;
6438
6439 kaddr = map.hva + offset_in_page(gpa);
6440
6441 switch (bytes) {
6442 case 1:
6443 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6444 break;
6445 case 2:
6446 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6447 break;
6448 case 4:
6449 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6450 break;
6451 case 8:
6452 exchanged = CMPXCHG64(kaddr, old, new);
6453 break;
6454 default:
6455 BUG();
6456 }
6457
6458 kvm_vcpu_unmap(vcpu, &map, true);
6459
6460 if (!exchanged)
6461 return X86EMUL_CMPXCHG_FAILED;
6462
6463 kvm_page_track_write(vcpu, gpa, new, bytes);
6464
6465 return X86EMUL_CONTINUE;
6466
6467 emul_write:
6468 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6469
6470 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6471 }
6472
6473 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6474 {
6475 int r = 0, i;
6476
6477 for (i = 0; i < vcpu->arch.pio.count; i++) {
6478 if (vcpu->arch.pio.in)
6479 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6480 vcpu->arch.pio.size, pd);
6481 else
6482 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6483 vcpu->arch.pio.port, vcpu->arch.pio.size,
6484 pd);
6485 if (r)
6486 break;
6487 pd += vcpu->arch.pio.size;
6488 }
6489 return r;
6490 }
6491
6492 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6493 unsigned short port, void *val,
6494 unsigned int count, bool in)
6495 {
6496 vcpu->arch.pio.port = port;
6497 vcpu->arch.pio.in = in;
6498 vcpu->arch.pio.count = count;
6499 vcpu->arch.pio.size = size;
6500
6501 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6502 vcpu->arch.pio.count = 0;
6503 return 1;
6504 }
6505
6506 vcpu->run->exit_reason = KVM_EXIT_IO;
6507 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6508 vcpu->run->io.size = size;
6509 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6510 vcpu->run->io.count = count;
6511 vcpu->run->io.port = port;
6512
6513 return 0;
6514 }
6515
6516 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6517 unsigned short port, void *val, unsigned int count)
6518 {
6519 int ret;
6520
6521 if (vcpu->arch.pio.count)
6522 goto data_avail;
6523
6524 memset(vcpu->arch.pio_data, 0, size * count);
6525
6526 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6527 if (ret) {
6528 data_avail:
6529 memcpy(val, vcpu->arch.pio_data, size * count);
6530 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6531 vcpu->arch.pio.count = 0;
6532 return 1;
6533 }
6534
6535 return 0;
6536 }
6537
6538 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6539 int size, unsigned short port, void *val,
6540 unsigned int count)
6541 {
6542 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6543
6544 }
6545
6546 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6547 unsigned short port, const void *val,
6548 unsigned int count)
6549 {
6550 memcpy(vcpu->arch.pio_data, val, size * count);
6551 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6552 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6553 }
6554
6555 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6556 int size, unsigned short port,
6557 const void *val, unsigned int count)
6558 {
6559 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6560 }
6561
6562 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6563 {
6564 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6565 }
6566
6567 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6568 {
6569 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6570 }
6571
6572 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6573 {
6574 if (!need_emulate_wbinvd(vcpu))
6575 return X86EMUL_CONTINUE;
6576
6577 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6578 int cpu = get_cpu();
6579
6580 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6581 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6582 wbinvd_ipi, NULL, 1);
6583 put_cpu();
6584 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6585 } else
6586 wbinvd();
6587 return X86EMUL_CONTINUE;
6588 }
6589
6590 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6591 {
6592 kvm_emulate_wbinvd_noskip(vcpu);
6593 return kvm_skip_emulated_instruction(vcpu);
6594 }
6595 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6596
6597
6598
6599 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6600 {
6601 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6602 }
6603
6604 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6605 unsigned long *dest)
6606 {
6607 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6608 }
6609
6610 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6611 unsigned long value)
6612 {
6613
6614 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6615 }
6616
6617 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6618 {
6619 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6620 }
6621
6622 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6623 {
6624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6625 unsigned long value;
6626
6627 switch (cr) {
6628 case 0:
6629 value = kvm_read_cr0(vcpu);
6630 break;
6631 case 2:
6632 value = vcpu->arch.cr2;
6633 break;
6634 case 3:
6635 value = kvm_read_cr3(vcpu);
6636 break;
6637 case 4:
6638 value = kvm_read_cr4(vcpu);
6639 break;
6640 case 8:
6641 value = kvm_get_cr8(vcpu);
6642 break;
6643 default:
6644 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6645 return 0;
6646 }
6647
6648 return value;
6649 }
6650
6651 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6652 {
6653 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6654 int res = 0;
6655
6656 switch (cr) {
6657 case 0:
6658 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6659 break;
6660 case 2:
6661 vcpu->arch.cr2 = val;
6662 break;
6663 case 3:
6664 res = kvm_set_cr3(vcpu, val);
6665 break;
6666 case 4:
6667 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6668 break;
6669 case 8:
6670 res = kvm_set_cr8(vcpu, val);
6671 break;
6672 default:
6673 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6674 res = -1;
6675 }
6676
6677 return res;
6678 }
6679
6680 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6681 {
6682 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6683 }
6684
6685 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6686 {
6687 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6688 }
6689
6690 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6691 {
6692 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6693 }
6694
6695 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6696 {
6697 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6698 }
6699
6700 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6701 {
6702 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6703 }
6704
6705 static unsigned long emulator_get_cached_segment_base(
6706 struct x86_emulate_ctxt *ctxt, int seg)
6707 {
6708 return get_segment_base(emul_to_vcpu(ctxt), seg);
6709 }
6710
6711 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6712 struct desc_struct *desc, u32 *base3,
6713 int seg)
6714 {
6715 struct kvm_segment var;
6716
6717 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6718 *selector = var.selector;
6719
6720 if (var.unusable) {
6721 memset(desc, 0, sizeof(*desc));
6722 if (base3)
6723 *base3 = 0;
6724 return false;
6725 }
6726
6727 if (var.g)
6728 var.limit >>= 12;
6729 set_desc_limit(desc, var.limit);
6730 set_desc_base(desc, (unsigned long)var.base);
6731 #ifdef CONFIG_X86_64
6732 if (base3)
6733 *base3 = var.base >> 32;
6734 #endif
6735 desc->type = var.type;
6736 desc->s = var.s;
6737 desc->dpl = var.dpl;
6738 desc->p = var.present;
6739 desc->avl = var.avl;
6740 desc->l = var.l;
6741 desc->d = var.db;
6742 desc->g = var.g;
6743
6744 return true;
6745 }
6746
6747 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6748 struct desc_struct *desc, u32 base3,
6749 int seg)
6750 {
6751 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6752 struct kvm_segment var;
6753
6754 var.selector = selector;
6755 var.base = get_desc_base(desc);
6756 #ifdef CONFIG_X86_64
6757 var.base |= ((u64)base3) << 32;
6758 #endif
6759 var.limit = get_desc_limit(desc);
6760 if (desc->g)
6761 var.limit = (var.limit << 12) | 0xfff;
6762 var.type = desc->type;
6763 var.dpl = desc->dpl;
6764 var.db = desc->d;
6765 var.s = desc->s;
6766 var.l = desc->l;
6767 var.g = desc->g;
6768 var.avl = desc->avl;
6769 var.present = desc->p;
6770 var.unusable = !var.present;
6771 var.padding = 0;
6772
6773 kvm_set_segment(vcpu, &var, seg);
6774 return;
6775 }
6776
6777 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6778 u32 msr_index, u64 *pdata)
6779 {
6780 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6781 int r;
6782
6783 r = kvm_get_msr(vcpu, msr_index, pdata);
6784
6785 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6786 /* Bounce to user space */
6787 return X86EMUL_IO_NEEDED;
6788 }
6789
6790 return r;
6791 }
6792
6793 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6794 u32 msr_index, u64 data)
6795 {
6796 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6797 int r;
6798
6799 r = kvm_set_msr(vcpu, msr_index, data);
6800
6801 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6802 /* Bounce to user space */
6803 return X86EMUL_IO_NEEDED;
6804 }
6805
6806 return r;
6807 }
6808
6809 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6810 {
6811 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6812
6813 return vcpu->arch.smbase;
6814 }
6815
6816 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6817 {
6818 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6819
6820 vcpu->arch.smbase = smbase;
6821 }
6822
6823 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6824 u32 pmc)
6825 {
6826 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6827 }
6828
6829 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6830 u32 pmc, u64 *pdata)
6831 {
6832 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6833 }
6834
6835 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6836 {
6837 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6838 }
6839
6840 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6841 struct x86_instruction_info *info,
6842 enum x86_intercept_stage stage)
6843 {
6844 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6845 &ctxt->exception);
6846 }
6847
6848 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6849 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6850 bool exact_only)
6851 {
6852 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6853 }
6854
6855 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6856 {
6857 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6858 }
6859
6860 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6861 {
6862 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6863 }
6864
6865 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6866 {
6867 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6868 }
6869
6870 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6871 {
6872 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6873 }
6874
6875 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6876 {
6877 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6878 }
6879
6880 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6881 {
6882 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6883 }
6884
6885 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6886 {
6887 return emul_to_vcpu(ctxt)->arch.hflags;
6888 }
6889
6890 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6891 {
6892 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6893 }
6894
6895 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6896 const char *smstate)
6897 {
6898 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6899 }
6900
6901 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6902 {
6903 kvm_smm_changed(emul_to_vcpu(ctxt));
6904 }
6905
6906 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6907 {
6908 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6909 }
6910
6911 static const struct x86_emulate_ops emulate_ops = {
6912 .read_gpr = emulator_read_gpr,
6913 .write_gpr = emulator_write_gpr,
6914 .read_std = emulator_read_std,
6915 .write_std = emulator_write_std,
6916 .read_phys = kvm_read_guest_phys_system,
6917 .fetch = kvm_fetch_guest_virt,
6918 .read_emulated = emulator_read_emulated,
6919 .write_emulated = emulator_write_emulated,
6920 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6921 .invlpg = emulator_invlpg,
6922 .pio_in_emulated = emulator_pio_in_emulated,
6923 .pio_out_emulated = emulator_pio_out_emulated,
6924 .get_segment = emulator_get_segment,
6925 .set_segment = emulator_set_segment,
6926 .get_cached_segment_base = emulator_get_cached_segment_base,
6927 .get_gdt = emulator_get_gdt,
6928 .get_idt = emulator_get_idt,
6929 .set_gdt = emulator_set_gdt,
6930 .set_idt = emulator_set_idt,
6931 .get_cr = emulator_get_cr,
6932 .set_cr = emulator_set_cr,
6933 .cpl = emulator_get_cpl,
6934 .get_dr = emulator_get_dr,
6935 .set_dr = emulator_set_dr,
6936 .get_smbase = emulator_get_smbase,
6937 .set_smbase = emulator_set_smbase,
6938 .set_msr = emulator_set_msr,
6939 .get_msr = emulator_get_msr,
6940 .check_pmc = emulator_check_pmc,
6941 .read_pmc = emulator_read_pmc,
6942 .halt = emulator_halt,
6943 .wbinvd = emulator_wbinvd,
6944 .fix_hypercall = emulator_fix_hypercall,
6945 .intercept = emulator_intercept,
6946 .get_cpuid = emulator_get_cpuid,
6947 .guest_has_long_mode = emulator_guest_has_long_mode,
6948 .guest_has_movbe = emulator_guest_has_movbe,
6949 .guest_has_fxsr = emulator_guest_has_fxsr,
6950 .set_nmi_mask = emulator_set_nmi_mask,
6951 .get_hflags = emulator_get_hflags,
6952 .set_hflags = emulator_set_hflags,
6953 .pre_leave_smm = emulator_pre_leave_smm,
6954 .post_leave_smm = emulator_post_leave_smm,
6955 .set_xcr = emulator_set_xcr,
6956 };
6957
6958 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6959 {
6960 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
6961 /*
6962 * an sti; sti; sequence only disable interrupts for the first
6963 * instruction. So, if the last instruction, be it emulated or
6964 * not, left the system with the INT_STI flag enabled, it
6965 * means that the last instruction is an sti. We should not
6966 * leave the flag on in this case. The same goes for mov ss
6967 */
6968 if (int_shadow & mask)
6969 mask = 0;
6970 if (unlikely(int_shadow || mask)) {
6971 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6972 if (!mask)
6973 kvm_make_request(KVM_REQ_EVENT, vcpu);
6974 }
6975 }
6976
6977 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6978 {
6979 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6980 if (ctxt->exception.vector == PF_VECTOR)
6981 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6982
6983 if (ctxt->exception.error_code_valid)
6984 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6985 ctxt->exception.error_code);
6986 else
6987 kvm_queue_exception(vcpu, ctxt->exception.vector);
6988 return false;
6989 }
6990
6991 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6992 {
6993 struct x86_emulate_ctxt *ctxt;
6994
6995 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6996 if (!ctxt) {
6997 pr_err("kvm: failed to allocate vcpu's emulator\n");
6998 return NULL;
6999 }
7000
7001 ctxt->vcpu = vcpu;
7002 ctxt->ops = &emulate_ops;
7003 vcpu->arch.emulate_ctxt = ctxt;
7004
7005 return ctxt;
7006 }
7007
7008 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7009 {
7010 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7011 int cs_db, cs_l;
7012
7013 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7014
7015 ctxt->gpa_available = false;
7016 ctxt->eflags = kvm_get_rflags(vcpu);
7017 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7018
7019 ctxt->eip = kvm_rip_read(vcpu);
7020 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7021 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7022 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7023 cs_db ? X86EMUL_MODE_PROT32 :
7024 X86EMUL_MODE_PROT16;
7025 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7026 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7027 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7028
7029 init_decode_cache(ctxt);
7030 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7031 }
7032
7033 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7034 {
7035 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7036 int ret;
7037
7038 init_emulate_ctxt(vcpu);
7039
7040 ctxt->op_bytes = 2;
7041 ctxt->ad_bytes = 2;
7042 ctxt->_eip = ctxt->eip + inc_eip;
7043 ret = emulate_int_real(ctxt, irq);
7044
7045 if (ret != X86EMUL_CONTINUE) {
7046 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7047 } else {
7048 ctxt->eip = ctxt->_eip;
7049 kvm_rip_write(vcpu, ctxt->eip);
7050 kvm_set_rflags(vcpu, ctxt->eflags);
7051 }
7052 }
7053 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7054
7055 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7056 {
7057 ++vcpu->stat.insn_emulation_fail;
7058 trace_kvm_emulate_insn_failed(vcpu);
7059
7060 if (emulation_type & EMULTYPE_VMWARE_GP) {
7061 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7062 return 1;
7063 }
7064
7065 if (emulation_type & EMULTYPE_SKIP) {
7066 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7067 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7068 vcpu->run->internal.ndata = 0;
7069 return 0;
7070 }
7071
7072 kvm_queue_exception(vcpu, UD_VECTOR);
7073
7074 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7075 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7076 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7077 vcpu->run->internal.ndata = 0;
7078 return 0;
7079 }
7080
7081 return 1;
7082 }
7083
7084 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7085 bool write_fault_to_shadow_pgtable,
7086 int emulation_type)
7087 {
7088 gpa_t gpa = cr2_or_gpa;
7089 kvm_pfn_t pfn;
7090
7091 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7092 return false;
7093
7094 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7095 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7096 return false;
7097
7098 if (!vcpu->arch.mmu->direct_map) {
7099 /*
7100 * Write permission should be allowed since only
7101 * write access need to be emulated.
7102 */
7103 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7104
7105 /*
7106 * If the mapping is invalid in guest, let cpu retry
7107 * it to generate fault.
7108 */
7109 if (gpa == UNMAPPED_GVA)
7110 return true;
7111 }
7112
7113 /*
7114 * Do not retry the unhandleable instruction if it faults on the
7115 * readonly host memory, otherwise it will goto a infinite loop:
7116 * retry instruction -> write #PF -> emulation fail -> retry
7117 * instruction -> ...
7118 */
7119 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7120
7121 /*
7122 * If the instruction failed on the error pfn, it can not be fixed,
7123 * report the error to userspace.
7124 */
7125 if (is_error_noslot_pfn(pfn))
7126 return false;
7127
7128 kvm_release_pfn_clean(pfn);
7129
7130 /* The instructions are well-emulated on direct mmu. */
7131 if (vcpu->arch.mmu->direct_map) {
7132 unsigned int indirect_shadow_pages;
7133
7134 write_lock(&vcpu->kvm->mmu_lock);
7135 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7136 write_unlock(&vcpu->kvm->mmu_lock);
7137
7138 if (indirect_shadow_pages)
7139 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7140
7141 return true;
7142 }
7143
7144 /*
7145 * if emulation was due to access to shadowed page table
7146 * and it failed try to unshadow page and re-enter the
7147 * guest to let CPU execute the instruction.
7148 */
7149 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7150
7151 /*
7152 * If the access faults on its page table, it can not
7153 * be fixed by unprotecting shadow page and it should
7154 * be reported to userspace.
7155 */
7156 return !write_fault_to_shadow_pgtable;
7157 }
7158
7159 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7160 gpa_t cr2_or_gpa, int emulation_type)
7161 {
7162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7163 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7164
7165 last_retry_eip = vcpu->arch.last_retry_eip;
7166 last_retry_addr = vcpu->arch.last_retry_addr;
7167
7168 /*
7169 * If the emulation is caused by #PF and it is non-page_table
7170 * writing instruction, it means the VM-EXIT is caused by shadow
7171 * page protected, we can zap the shadow page and retry this
7172 * instruction directly.
7173 *
7174 * Note: if the guest uses a non-page-table modifying instruction
7175 * on the PDE that points to the instruction, then we will unmap
7176 * the instruction and go to an infinite loop. So, we cache the
7177 * last retried eip and the last fault address, if we meet the eip
7178 * and the address again, we can break out of the potential infinite
7179 * loop.
7180 */
7181 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7182
7183 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7184 return false;
7185
7186 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7187 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7188 return false;
7189
7190 if (x86_page_table_writing_insn(ctxt))
7191 return false;
7192
7193 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7194 return false;
7195
7196 vcpu->arch.last_retry_eip = ctxt->eip;
7197 vcpu->arch.last_retry_addr = cr2_or_gpa;
7198
7199 if (!vcpu->arch.mmu->direct_map)
7200 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7201
7202 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7203
7204 return true;
7205 }
7206
7207 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7208 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7209
7210 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7211 {
7212 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7213 /* This is a good place to trace that we are exiting SMM. */
7214 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7215
7216 /* Process a latched INIT or SMI, if any. */
7217 kvm_make_request(KVM_REQ_EVENT, vcpu);
7218 }
7219
7220 kvm_mmu_reset_context(vcpu);
7221 }
7222
7223 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7224 unsigned long *db)
7225 {
7226 u32 dr6 = 0;
7227 int i;
7228 u32 enable, rwlen;
7229
7230 enable = dr7;
7231 rwlen = dr7 >> 16;
7232 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7233 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7234 dr6 |= (1 << i);
7235 return dr6;
7236 }
7237
7238 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7239 {
7240 struct kvm_run *kvm_run = vcpu->run;
7241
7242 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7243 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7244 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7245 kvm_run->debug.arch.exception = DB_VECTOR;
7246 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7247 return 0;
7248 }
7249 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7250 return 1;
7251 }
7252
7253 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7254 {
7255 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7256 int r;
7257
7258 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7259 if (unlikely(!r))
7260 return 0;
7261
7262 /*
7263 * rflags is the old, "raw" value of the flags. The new value has
7264 * not been saved yet.
7265 *
7266 * This is correct even for TF set by the guest, because "the
7267 * processor will not generate this exception after the instruction
7268 * that sets the TF flag".
7269 */
7270 if (unlikely(rflags & X86_EFLAGS_TF))
7271 r = kvm_vcpu_do_singlestep(vcpu);
7272 return r;
7273 }
7274 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7275
7276 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7277 {
7278 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7279 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7280 struct kvm_run *kvm_run = vcpu->run;
7281 unsigned long eip = kvm_get_linear_rip(vcpu);
7282 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7283 vcpu->arch.guest_debug_dr7,
7284 vcpu->arch.eff_db);
7285
7286 if (dr6 != 0) {
7287 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7288 kvm_run->debug.arch.pc = eip;
7289 kvm_run->debug.arch.exception = DB_VECTOR;
7290 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7291 *r = 0;
7292 return true;
7293 }
7294 }
7295
7296 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7297 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7298 unsigned long eip = kvm_get_linear_rip(vcpu);
7299 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7300 vcpu->arch.dr7,
7301 vcpu->arch.db);
7302
7303 if (dr6 != 0) {
7304 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7305 *r = 1;
7306 return true;
7307 }
7308 }
7309
7310 return false;
7311 }
7312
7313 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7314 {
7315 switch (ctxt->opcode_len) {
7316 case 1:
7317 switch (ctxt->b) {
7318 case 0xe4: /* IN */
7319 case 0xe5:
7320 case 0xec:
7321 case 0xed:
7322 case 0xe6: /* OUT */
7323 case 0xe7:
7324 case 0xee:
7325 case 0xef:
7326 case 0x6c: /* INS */
7327 case 0x6d:
7328 case 0x6e: /* OUTS */
7329 case 0x6f:
7330 return true;
7331 }
7332 break;
7333 case 2:
7334 switch (ctxt->b) {
7335 case 0x33: /* RDPMC */
7336 return true;
7337 }
7338 break;
7339 }
7340
7341 return false;
7342 }
7343
7344 /*
7345 * Decode to be emulated instruction. Return EMULATION_OK if success.
7346 */
7347 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7348 void *insn, int insn_len)
7349 {
7350 int r = EMULATION_OK;
7351 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7352
7353 init_emulate_ctxt(vcpu);
7354
7355 /*
7356 * We will reenter on the same instruction since we do not set
7357 * complete_userspace_io. This does not handle watchpoints yet,
7358 * those would be handled in the emulate_ops.
7359 */
7360 if (!(emulation_type & EMULTYPE_SKIP) &&
7361 kvm_vcpu_check_breakpoint(vcpu, &r))
7362 return r;
7363
7364 ctxt->interruptibility = 0;
7365 ctxt->have_exception = false;
7366 ctxt->exception.vector = -1;
7367 ctxt->perm_ok = false;
7368
7369 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7370
7371 r = x86_decode_insn(ctxt, insn, insn_len);
7372
7373 trace_kvm_emulate_insn_start(vcpu);
7374 ++vcpu->stat.insn_emulation;
7375
7376 return r;
7377 }
7378 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7379
7380 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7381 int emulation_type, void *insn, int insn_len)
7382 {
7383 int r;
7384 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7385 bool writeback = true;
7386 bool write_fault_to_spt;
7387
7388 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7389 return 1;
7390
7391 vcpu->arch.l1tf_flush_l1d = true;
7392
7393 /*
7394 * Clear write_fault_to_shadow_pgtable here to ensure it is
7395 * never reused.
7396 */
7397 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7398 vcpu->arch.write_fault_to_shadow_pgtable = false;
7399
7400 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7401 kvm_clear_exception_queue(vcpu);
7402
7403 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7404 insn, insn_len);
7405 if (r != EMULATION_OK) {
7406 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7407 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7408 kvm_queue_exception(vcpu, UD_VECTOR);
7409 return 1;
7410 }
7411 if (reexecute_instruction(vcpu, cr2_or_gpa,
7412 write_fault_to_spt,
7413 emulation_type))
7414 return 1;
7415 if (ctxt->have_exception) {
7416 /*
7417 * #UD should result in just EMULATION_FAILED, and trap-like
7418 * exception should not be encountered during decode.
7419 */
7420 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7421 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7422 inject_emulated_exception(vcpu);
7423 return 1;
7424 }
7425 return handle_emulation_failure(vcpu, emulation_type);
7426 }
7427 }
7428
7429 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7430 !is_vmware_backdoor_opcode(ctxt)) {
7431 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7432 return 1;
7433 }
7434
7435 /*
7436 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7437 * for kvm_skip_emulated_instruction(). The caller is responsible for
7438 * updating interruptibility state and injecting single-step #DBs.
7439 */
7440 if (emulation_type & EMULTYPE_SKIP) {
7441 kvm_rip_write(vcpu, ctxt->_eip);
7442 if (ctxt->eflags & X86_EFLAGS_RF)
7443 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7444 return 1;
7445 }
7446
7447 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7448 return 1;
7449
7450 /* this is needed for vmware backdoor interface to work since it
7451 changes registers values during IO operation */
7452 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7453 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7454 emulator_invalidate_register_cache(ctxt);
7455 }
7456
7457 restart:
7458 if (emulation_type & EMULTYPE_PF) {
7459 /* Save the faulting GPA (cr2) in the address field */
7460 ctxt->exception.address = cr2_or_gpa;
7461
7462 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7463 if (vcpu->arch.mmu->direct_map) {
7464 ctxt->gpa_available = true;
7465 ctxt->gpa_val = cr2_or_gpa;
7466 }
7467 } else {
7468 /* Sanitize the address out of an abundance of paranoia. */
7469 ctxt->exception.address = 0;
7470 }
7471
7472 r = x86_emulate_insn(ctxt);
7473
7474 if (r == EMULATION_INTERCEPTED)
7475 return 1;
7476
7477 if (r == EMULATION_FAILED) {
7478 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7479 emulation_type))
7480 return 1;
7481
7482 return handle_emulation_failure(vcpu, emulation_type);
7483 }
7484
7485 if (ctxt->have_exception) {
7486 r = 1;
7487 if (inject_emulated_exception(vcpu))
7488 return r;
7489 } else if (vcpu->arch.pio.count) {
7490 if (!vcpu->arch.pio.in) {
7491 /* FIXME: return into emulator if single-stepping. */
7492 vcpu->arch.pio.count = 0;
7493 } else {
7494 writeback = false;
7495 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7496 }
7497 r = 0;
7498 } else if (vcpu->mmio_needed) {
7499 ++vcpu->stat.mmio_exits;
7500
7501 if (!vcpu->mmio_is_write)
7502 writeback = false;
7503 r = 0;
7504 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7505 } else if (r == EMULATION_RESTART)
7506 goto restart;
7507 else
7508 r = 1;
7509
7510 if (writeback) {
7511 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7512 toggle_interruptibility(vcpu, ctxt->interruptibility);
7513 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7514 if (!ctxt->have_exception ||
7515 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7516 kvm_rip_write(vcpu, ctxt->eip);
7517 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7518 r = kvm_vcpu_do_singlestep(vcpu);
7519 if (kvm_x86_ops.update_emulated_instruction)
7520 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7521 __kvm_set_rflags(vcpu, ctxt->eflags);
7522 }
7523
7524 /*
7525 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7526 * do nothing, and it will be requested again as soon as
7527 * the shadow expires. But we still need to check here,
7528 * because POPF has no interrupt shadow.
7529 */
7530 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7531 kvm_make_request(KVM_REQ_EVENT, vcpu);
7532 } else
7533 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7534
7535 return r;
7536 }
7537
7538 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7539 {
7540 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7541 }
7542 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7543
7544 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7545 void *insn, int insn_len)
7546 {
7547 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7548 }
7549 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7550
7551 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7552 {
7553 vcpu->arch.pio.count = 0;
7554 return 1;
7555 }
7556
7557 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7558 {
7559 vcpu->arch.pio.count = 0;
7560
7561 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7562 return 1;
7563
7564 return kvm_skip_emulated_instruction(vcpu);
7565 }
7566
7567 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7568 unsigned short port)
7569 {
7570 unsigned long val = kvm_rax_read(vcpu);
7571 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7572
7573 if (ret)
7574 return ret;
7575
7576 /*
7577 * Workaround userspace that relies on old KVM behavior of %rip being
7578 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7579 */
7580 if (port == 0x7e &&
7581 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7582 vcpu->arch.complete_userspace_io =
7583 complete_fast_pio_out_port_0x7e;
7584 kvm_skip_emulated_instruction(vcpu);
7585 } else {
7586 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7587 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7588 }
7589 return 0;
7590 }
7591
7592 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7593 {
7594 unsigned long val;
7595
7596 /* We should only ever be called with arch.pio.count equal to 1 */
7597 BUG_ON(vcpu->arch.pio.count != 1);
7598
7599 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7600 vcpu->arch.pio.count = 0;
7601 return 1;
7602 }
7603
7604 /* For size less than 4 we merge, else we zero extend */
7605 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7606
7607 /*
7608 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7609 * the copy and tracing
7610 */
7611 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7612 kvm_rax_write(vcpu, val);
7613
7614 return kvm_skip_emulated_instruction(vcpu);
7615 }
7616
7617 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7618 unsigned short port)
7619 {
7620 unsigned long val;
7621 int ret;
7622
7623 /* For size less than 4 we merge, else we zero extend */
7624 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7625
7626 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7627 if (ret) {
7628 kvm_rax_write(vcpu, val);
7629 return ret;
7630 }
7631
7632 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7633 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7634
7635 return 0;
7636 }
7637
7638 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7639 {
7640 int ret;
7641
7642 if (in)
7643 ret = kvm_fast_pio_in(vcpu, size, port);
7644 else
7645 ret = kvm_fast_pio_out(vcpu, size, port);
7646 return ret && kvm_skip_emulated_instruction(vcpu);
7647 }
7648 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7649
7650 static int kvmclock_cpu_down_prep(unsigned int cpu)
7651 {
7652 __this_cpu_write(cpu_tsc_khz, 0);
7653 return 0;
7654 }
7655
7656 static void tsc_khz_changed(void *data)
7657 {
7658 struct cpufreq_freqs *freq = data;
7659 unsigned long khz = 0;
7660
7661 if (data)
7662 khz = freq->new;
7663 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7664 khz = cpufreq_quick_get(raw_smp_processor_id());
7665 if (!khz)
7666 khz = tsc_khz;
7667 __this_cpu_write(cpu_tsc_khz, khz);
7668 }
7669
7670 #ifdef CONFIG_X86_64
7671 static void kvm_hyperv_tsc_notifier(void)
7672 {
7673 struct kvm *kvm;
7674 struct kvm_vcpu *vcpu;
7675 int cpu;
7676
7677 mutex_lock(&kvm_lock);
7678 list_for_each_entry(kvm, &vm_list, vm_list)
7679 kvm_make_mclock_inprogress_request(kvm);
7680
7681 hyperv_stop_tsc_emulation();
7682
7683 /* TSC frequency always matches when on Hyper-V */
7684 for_each_present_cpu(cpu)
7685 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7686 kvm_max_guest_tsc_khz = tsc_khz;
7687
7688 list_for_each_entry(kvm, &vm_list, vm_list) {
7689 struct kvm_arch *ka = &kvm->arch;
7690
7691 spin_lock(&ka->pvclock_gtod_sync_lock);
7692
7693 pvclock_update_vm_gtod_copy(kvm);
7694
7695 kvm_for_each_vcpu(cpu, vcpu, kvm)
7696 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7697
7698 kvm_for_each_vcpu(cpu, vcpu, kvm)
7699 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7700
7701 spin_unlock(&ka->pvclock_gtod_sync_lock);
7702 }
7703 mutex_unlock(&kvm_lock);
7704 }
7705 #endif
7706
7707 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7708 {
7709 struct kvm *kvm;
7710 struct kvm_vcpu *vcpu;
7711 int i, send_ipi = 0;
7712
7713 /*
7714 * We allow guests to temporarily run on slowing clocks,
7715 * provided we notify them after, or to run on accelerating
7716 * clocks, provided we notify them before. Thus time never
7717 * goes backwards.
7718 *
7719 * However, we have a problem. We can't atomically update
7720 * the frequency of a given CPU from this function; it is
7721 * merely a notifier, which can be called from any CPU.
7722 * Changing the TSC frequency at arbitrary points in time
7723 * requires a recomputation of local variables related to
7724 * the TSC for each VCPU. We must flag these local variables
7725 * to be updated and be sure the update takes place with the
7726 * new frequency before any guests proceed.
7727 *
7728 * Unfortunately, the combination of hotplug CPU and frequency
7729 * change creates an intractable locking scenario; the order
7730 * of when these callouts happen is undefined with respect to
7731 * CPU hotplug, and they can race with each other. As such,
7732 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7733 * undefined; you can actually have a CPU frequency change take
7734 * place in between the computation of X and the setting of the
7735 * variable. To protect against this problem, all updates of
7736 * the per_cpu tsc_khz variable are done in an interrupt
7737 * protected IPI, and all callers wishing to update the value
7738 * must wait for a synchronous IPI to complete (which is trivial
7739 * if the caller is on the CPU already). This establishes the
7740 * necessary total order on variable updates.
7741 *
7742 * Note that because a guest time update may take place
7743 * anytime after the setting of the VCPU's request bit, the
7744 * correct TSC value must be set before the request. However,
7745 * to ensure the update actually makes it to any guest which
7746 * starts running in hardware virtualization between the set
7747 * and the acquisition of the spinlock, we must also ping the
7748 * CPU after setting the request bit.
7749 *
7750 */
7751
7752 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7753
7754 mutex_lock(&kvm_lock);
7755 list_for_each_entry(kvm, &vm_list, vm_list) {
7756 kvm_for_each_vcpu(i, vcpu, kvm) {
7757 if (vcpu->cpu != cpu)
7758 continue;
7759 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7760 if (vcpu->cpu != raw_smp_processor_id())
7761 send_ipi = 1;
7762 }
7763 }
7764 mutex_unlock(&kvm_lock);
7765
7766 if (freq->old < freq->new && send_ipi) {
7767 /*
7768 * We upscale the frequency. Must make the guest
7769 * doesn't see old kvmclock values while running with
7770 * the new frequency, otherwise we risk the guest sees
7771 * time go backwards.
7772 *
7773 * In case we update the frequency for another cpu
7774 * (which might be in guest context) send an interrupt
7775 * to kick the cpu out of guest context. Next time
7776 * guest context is entered kvmclock will be updated,
7777 * so the guest will not see stale values.
7778 */
7779 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7780 }
7781 }
7782
7783 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7784 void *data)
7785 {
7786 struct cpufreq_freqs *freq = data;
7787 int cpu;
7788
7789 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7790 return 0;
7791 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7792 return 0;
7793
7794 for_each_cpu(cpu, freq->policy->cpus)
7795 __kvmclock_cpufreq_notifier(freq, cpu);
7796
7797 return 0;
7798 }
7799
7800 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7801 .notifier_call = kvmclock_cpufreq_notifier
7802 };
7803
7804 static int kvmclock_cpu_online(unsigned int cpu)
7805 {
7806 tsc_khz_changed(NULL);
7807 return 0;
7808 }
7809
7810 static void kvm_timer_init(void)
7811 {
7812 max_tsc_khz = tsc_khz;
7813
7814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7815 #ifdef CONFIG_CPU_FREQ
7816 struct cpufreq_policy *policy;
7817 int cpu;
7818
7819 cpu = get_cpu();
7820 policy = cpufreq_cpu_get(cpu);
7821 if (policy) {
7822 if (policy->cpuinfo.max_freq)
7823 max_tsc_khz = policy->cpuinfo.max_freq;
7824 cpufreq_cpu_put(policy);
7825 }
7826 put_cpu();
7827 #endif
7828 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7829 CPUFREQ_TRANSITION_NOTIFIER);
7830 }
7831
7832 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7833 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7834 }
7835
7836 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7837 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7838
7839 int kvm_is_in_guest(void)
7840 {
7841 return __this_cpu_read(current_vcpu) != NULL;
7842 }
7843
7844 static int kvm_is_user_mode(void)
7845 {
7846 int user_mode = 3;
7847
7848 if (__this_cpu_read(current_vcpu))
7849 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7850
7851 return user_mode != 0;
7852 }
7853
7854 static unsigned long kvm_get_guest_ip(void)
7855 {
7856 unsigned long ip = 0;
7857
7858 if (__this_cpu_read(current_vcpu))
7859 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7860
7861 return ip;
7862 }
7863
7864 static void kvm_handle_intel_pt_intr(void)
7865 {
7866 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7867
7868 kvm_make_request(KVM_REQ_PMI, vcpu);
7869 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7870 (unsigned long *)&vcpu->arch.pmu.global_status);
7871 }
7872
7873 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7874 .is_in_guest = kvm_is_in_guest,
7875 .is_user_mode = kvm_is_user_mode,
7876 .get_guest_ip = kvm_get_guest_ip,
7877 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7878 };
7879
7880 #ifdef CONFIG_X86_64
7881 static void pvclock_gtod_update_fn(struct work_struct *work)
7882 {
7883 struct kvm *kvm;
7884
7885 struct kvm_vcpu *vcpu;
7886 int i;
7887
7888 mutex_lock(&kvm_lock);
7889 list_for_each_entry(kvm, &vm_list, vm_list)
7890 kvm_for_each_vcpu(i, vcpu, kvm)
7891 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7892 atomic_set(&kvm_guest_has_master_clock, 0);
7893 mutex_unlock(&kvm_lock);
7894 }
7895
7896 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7897
7898 /*
7899 * Notification about pvclock gtod data update.
7900 */
7901 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7902 void *priv)
7903 {
7904 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7905 struct timekeeper *tk = priv;
7906
7907 update_pvclock_gtod(tk);
7908
7909 /* disable master clock if host does not trust, or does not
7910 * use, TSC based clocksource.
7911 */
7912 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7913 atomic_read(&kvm_guest_has_master_clock) != 0)
7914 queue_work(system_long_wq, &pvclock_gtod_work);
7915
7916 return 0;
7917 }
7918
7919 static struct notifier_block pvclock_gtod_notifier = {
7920 .notifier_call = pvclock_gtod_notify,
7921 };
7922 #endif
7923
7924 int kvm_arch_init(void *opaque)
7925 {
7926 struct kvm_x86_init_ops *ops = opaque;
7927 int r;
7928
7929 if (kvm_x86_ops.hardware_enable) {
7930 printk(KERN_ERR "kvm: already loaded the other module\n");
7931 r = -EEXIST;
7932 goto out;
7933 }
7934
7935 if (!ops->cpu_has_kvm_support()) {
7936 pr_err_ratelimited("kvm: no hardware support\n");
7937 r = -EOPNOTSUPP;
7938 goto out;
7939 }
7940 if (ops->disabled_by_bios()) {
7941 pr_err_ratelimited("kvm: disabled by bios\n");
7942 r = -EOPNOTSUPP;
7943 goto out;
7944 }
7945
7946 /*
7947 * KVM explicitly assumes that the guest has an FPU and
7948 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7949 * vCPU's FPU state as a fxregs_state struct.
7950 */
7951 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7952 printk(KERN_ERR "kvm: inadequate fpu\n");
7953 r = -EOPNOTSUPP;
7954 goto out;
7955 }
7956
7957 r = -ENOMEM;
7958 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7959 __alignof__(struct fpu), SLAB_ACCOUNT,
7960 NULL);
7961 if (!x86_fpu_cache) {
7962 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7963 goto out;
7964 }
7965
7966 x86_emulator_cache = kvm_alloc_emulator_cache();
7967 if (!x86_emulator_cache) {
7968 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7969 goto out_free_x86_fpu_cache;
7970 }
7971
7972 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7973 if (!user_return_msrs) {
7974 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7975 goto out_free_x86_emulator_cache;
7976 }
7977
7978 r = kvm_mmu_module_init();
7979 if (r)
7980 goto out_free_percpu;
7981
7982 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7983 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7984 PT_PRESENT_MASK, 0, sme_me_mask);
7985 kvm_timer_init();
7986
7987 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7988
7989 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7990 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7991 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7992 }
7993
7994 if (pi_inject_timer == -1)
7995 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7996 #ifdef CONFIG_X86_64
7997 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7998
7999 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8000 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8001 #endif
8002
8003 return 0;
8004
8005 out_free_percpu:
8006 free_percpu(user_return_msrs);
8007 out_free_x86_emulator_cache:
8008 kmem_cache_destroy(x86_emulator_cache);
8009 out_free_x86_fpu_cache:
8010 kmem_cache_destroy(x86_fpu_cache);
8011 out:
8012 return r;
8013 }
8014
8015 void kvm_arch_exit(void)
8016 {
8017 #ifdef CONFIG_X86_64
8018 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8019 clear_hv_tscchange_cb();
8020 #endif
8021 kvm_lapic_exit();
8022 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8023
8024 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8025 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8026 CPUFREQ_TRANSITION_NOTIFIER);
8027 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8028 #ifdef CONFIG_X86_64
8029 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8030 #endif
8031 kvm_x86_ops.hardware_enable = NULL;
8032 kvm_mmu_module_exit();
8033 free_percpu(user_return_msrs);
8034 kmem_cache_destroy(x86_fpu_cache);
8035 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8036 }
8037
8038 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8039 {
8040 ++vcpu->stat.halt_exits;
8041 if (lapic_in_kernel(vcpu)) {
8042 vcpu->arch.mp_state = state;
8043 return 1;
8044 } else {
8045 vcpu->run->exit_reason = reason;
8046 return 0;
8047 }
8048 }
8049
8050 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8051 {
8052 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8053 }
8054 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8055
8056 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8057 {
8058 int ret = kvm_skip_emulated_instruction(vcpu);
8059 /*
8060 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8061 * KVM_EXIT_DEBUG here.
8062 */
8063 return kvm_vcpu_halt(vcpu) && ret;
8064 }
8065 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8066
8067 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8068 {
8069 int ret = kvm_skip_emulated_instruction(vcpu);
8070
8071 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8072 }
8073 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8074
8075 #ifdef CONFIG_X86_64
8076 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8077 unsigned long clock_type)
8078 {
8079 struct kvm_clock_pairing clock_pairing;
8080 struct timespec64 ts;
8081 u64 cycle;
8082 int ret;
8083
8084 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8085 return -KVM_EOPNOTSUPP;
8086
8087 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8088 return -KVM_EOPNOTSUPP;
8089
8090 clock_pairing.sec = ts.tv_sec;
8091 clock_pairing.nsec = ts.tv_nsec;
8092 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8093 clock_pairing.flags = 0;
8094 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8095
8096 ret = 0;
8097 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8098 sizeof(struct kvm_clock_pairing)))
8099 ret = -KVM_EFAULT;
8100
8101 return ret;
8102 }
8103 #endif
8104
8105 /*
8106 * kvm_pv_kick_cpu_op: Kick a vcpu.
8107 *
8108 * @apicid - apicid of vcpu to be kicked.
8109 */
8110 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8111 {
8112 struct kvm_lapic_irq lapic_irq;
8113
8114 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8115 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8116 lapic_irq.level = 0;
8117 lapic_irq.dest_id = apicid;
8118 lapic_irq.msi_redir_hint = false;
8119
8120 lapic_irq.delivery_mode = APIC_DM_REMRD;
8121 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8122 }
8123
8124 bool kvm_apicv_activated(struct kvm *kvm)
8125 {
8126 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8127 }
8128 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8129
8130 void kvm_apicv_init(struct kvm *kvm, bool enable)
8131 {
8132 if (enable)
8133 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8134 &kvm->arch.apicv_inhibit_reasons);
8135 else
8136 set_bit(APICV_INHIBIT_REASON_DISABLE,
8137 &kvm->arch.apicv_inhibit_reasons);
8138 }
8139 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8140
8141 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8142 {
8143 struct kvm_vcpu *target = NULL;
8144 struct kvm_apic_map *map;
8145
8146 rcu_read_lock();
8147 map = rcu_dereference(kvm->arch.apic_map);
8148
8149 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8150 target = map->phys_map[dest_id]->vcpu;
8151
8152 rcu_read_unlock();
8153
8154 if (target && READ_ONCE(target->ready))
8155 kvm_vcpu_yield_to(target);
8156 }
8157
8158 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8159 {
8160 unsigned long nr, a0, a1, a2, a3, ret;
8161 int op_64_bit;
8162
8163 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8164 return kvm_xen_hypercall(vcpu);
8165
8166 if (kvm_hv_hypercall_enabled(vcpu))
8167 return kvm_hv_hypercall(vcpu);
8168
8169 nr = kvm_rax_read(vcpu);
8170 a0 = kvm_rbx_read(vcpu);
8171 a1 = kvm_rcx_read(vcpu);
8172 a2 = kvm_rdx_read(vcpu);
8173 a3 = kvm_rsi_read(vcpu);
8174
8175 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8176
8177 op_64_bit = is_64_bit_mode(vcpu);
8178 if (!op_64_bit) {
8179 nr &= 0xFFFFFFFF;
8180 a0 &= 0xFFFFFFFF;
8181 a1 &= 0xFFFFFFFF;
8182 a2 &= 0xFFFFFFFF;
8183 a3 &= 0xFFFFFFFF;
8184 }
8185
8186 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8187 ret = -KVM_EPERM;
8188 goto out;
8189 }
8190
8191 ret = -KVM_ENOSYS;
8192
8193 switch (nr) {
8194 case KVM_HC_VAPIC_POLL_IRQ:
8195 ret = 0;
8196 break;
8197 case KVM_HC_KICK_CPU:
8198 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8199 break;
8200
8201 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8202 kvm_sched_yield(vcpu->kvm, a1);
8203 ret = 0;
8204 break;
8205 #ifdef CONFIG_X86_64
8206 case KVM_HC_CLOCK_PAIRING:
8207 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8208 break;
8209 #endif
8210 case KVM_HC_SEND_IPI:
8211 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8212 break;
8213
8214 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8215 break;
8216 case KVM_HC_SCHED_YIELD:
8217 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8218 break;
8219
8220 kvm_sched_yield(vcpu->kvm, a0);
8221 ret = 0;
8222 break;
8223 default:
8224 ret = -KVM_ENOSYS;
8225 break;
8226 }
8227 out:
8228 if (!op_64_bit)
8229 ret = (u32)ret;
8230 kvm_rax_write(vcpu, ret);
8231
8232 ++vcpu->stat.hypercalls;
8233 return kvm_skip_emulated_instruction(vcpu);
8234 }
8235 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8236
8237 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8238 {
8239 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8240 char instruction[3];
8241 unsigned long rip = kvm_rip_read(vcpu);
8242
8243 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8244
8245 return emulator_write_emulated(ctxt, rip, instruction, 3,
8246 &ctxt->exception);
8247 }
8248
8249 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8250 {
8251 return vcpu->run->request_interrupt_window &&
8252 likely(!pic_in_kernel(vcpu->kvm));
8253 }
8254
8255 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8256 {
8257 struct kvm_run *kvm_run = vcpu->run;
8258
8259 /*
8260 * if_flag is obsolete and useless, so do not bother
8261 * setting it for SEV-ES guests. Userspace can just
8262 * use kvm_run->ready_for_interrupt_injection.
8263 */
8264 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8265 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8266
8267 kvm_run->cr8 = kvm_get_cr8(vcpu);
8268 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8269 kvm_run->ready_for_interrupt_injection =
8270 pic_in_kernel(vcpu->kvm) ||
8271 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8272
8273 if (is_smm(vcpu))
8274 kvm_run->flags |= KVM_RUN_X86_SMM;
8275 }
8276
8277 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8278 {
8279 int max_irr, tpr;
8280
8281 if (!kvm_x86_ops.update_cr8_intercept)
8282 return;
8283
8284 if (!lapic_in_kernel(vcpu))
8285 return;
8286
8287 if (vcpu->arch.apicv_active)
8288 return;
8289
8290 if (!vcpu->arch.apic->vapic_addr)
8291 max_irr = kvm_lapic_find_highest_irr(vcpu);
8292 else
8293 max_irr = -1;
8294
8295 if (max_irr != -1)
8296 max_irr >>= 4;
8297
8298 tpr = kvm_lapic_get_cr8(vcpu);
8299
8300 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8301 }
8302
8303 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8304 {
8305 int r;
8306 bool can_inject = true;
8307
8308 /* try to reinject previous events if any */
8309
8310 if (vcpu->arch.exception.injected) {
8311 static_call(kvm_x86_queue_exception)(vcpu);
8312 can_inject = false;
8313 }
8314 /*
8315 * Do not inject an NMI or interrupt if there is a pending
8316 * exception. Exceptions and interrupts are recognized at
8317 * instruction boundaries, i.e. the start of an instruction.
8318 * Trap-like exceptions, e.g. #DB, have higher priority than
8319 * NMIs and interrupts, i.e. traps are recognized before an
8320 * NMI/interrupt that's pending on the same instruction.
8321 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8322 * priority, but are only generated (pended) during instruction
8323 * execution, i.e. a pending fault-like exception means the
8324 * fault occurred on the *previous* instruction and must be
8325 * serviced prior to recognizing any new events in order to
8326 * fully complete the previous instruction.
8327 */
8328 else if (!vcpu->arch.exception.pending) {
8329 if (vcpu->arch.nmi_injected) {
8330 static_call(kvm_x86_set_nmi)(vcpu);
8331 can_inject = false;
8332 } else if (vcpu->arch.interrupt.injected) {
8333 static_call(kvm_x86_set_irq)(vcpu);
8334 can_inject = false;
8335 }
8336 }
8337
8338 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8339 vcpu->arch.exception.pending);
8340
8341 /*
8342 * Call check_nested_events() even if we reinjected a previous event
8343 * in order for caller to determine if it should require immediate-exit
8344 * from L2 to L1 due to pending L1 events which require exit
8345 * from L2 to L1.
8346 */
8347 if (is_guest_mode(vcpu)) {
8348 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8349 if (r < 0)
8350 goto busy;
8351 }
8352
8353 /* try to inject new event if pending */
8354 if (vcpu->arch.exception.pending) {
8355 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8356 vcpu->arch.exception.has_error_code,
8357 vcpu->arch.exception.error_code);
8358
8359 vcpu->arch.exception.pending = false;
8360 vcpu->arch.exception.injected = true;
8361
8362 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8363 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8364 X86_EFLAGS_RF);
8365
8366 if (vcpu->arch.exception.nr == DB_VECTOR) {
8367 kvm_deliver_exception_payload(vcpu);
8368 if (vcpu->arch.dr7 & DR7_GD) {
8369 vcpu->arch.dr7 &= ~DR7_GD;
8370 kvm_update_dr7(vcpu);
8371 }
8372 }
8373
8374 static_call(kvm_x86_queue_exception)(vcpu);
8375 can_inject = false;
8376 }
8377
8378 /*
8379 * Finally, inject interrupt events. If an event cannot be injected
8380 * due to architectural conditions (e.g. IF=0) a window-open exit
8381 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8382 * and can architecturally be injected, but we cannot do it right now:
8383 * an interrupt could have arrived just now and we have to inject it
8384 * as a vmexit, or there could already an event in the queue, which is
8385 * indicated by can_inject. In that case we request an immediate exit
8386 * in order to make progress and get back here for another iteration.
8387 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8388 */
8389 if (vcpu->arch.smi_pending) {
8390 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8391 if (r < 0)
8392 goto busy;
8393 if (r) {
8394 vcpu->arch.smi_pending = false;
8395 ++vcpu->arch.smi_count;
8396 enter_smm(vcpu);
8397 can_inject = false;
8398 } else
8399 static_call(kvm_x86_enable_smi_window)(vcpu);
8400 }
8401
8402 if (vcpu->arch.nmi_pending) {
8403 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8404 if (r < 0)
8405 goto busy;
8406 if (r) {
8407 --vcpu->arch.nmi_pending;
8408 vcpu->arch.nmi_injected = true;
8409 static_call(kvm_x86_set_nmi)(vcpu);
8410 can_inject = false;
8411 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8412 }
8413 if (vcpu->arch.nmi_pending)
8414 static_call(kvm_x86_enable_nmi_window)(vcpu);
8415 }
8416
8417 if (kvm_cpu_has_injectable_intr(vcpu)) {
8418 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8419 if (r < 0)
8420 goto busy;
8421 if (r) {
8422 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8423 static_call(kvm_x86_set_irq)(vcpu);
8424 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8425 }
8426 if (kvm_cpu_has_injectable_intr(vcpu))
8427 static_call(kvm_x86_enable_irq_window)(vcpu);
8428 }
8429
8430 if (is_guest_mode(vcpu) &&
8431 kvm_x86_ops.nested_ops->hv_timer_pending &&
8432 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8433 *req_immediate_exit = true;
8434
8435 WARN_ON(vcpu->arch.exception.pending);
8436 return;
8437
8438 busy:
8439 *req_immediate_exit = true;
8440 return;
8441 }
8442
8443 static void process_nmi(struct kvm_vcpu *vcpu)
8444 {
8445 unsigned limit = 2;
8446
8447 /*
8448 * x86 is limited to one NMI running, and one NMI pending after it.
8449 * If an NMI is already in progress, limit further NMIs to just one.
8450 * Otherwise, allow two (and we'll inject the first one immediately).
8451 */
8452 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8453 limit = 1;
8454
8455 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8456 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8457 kvm_make_request(KVM_REQ_EVENT, vcpu);
8458 }
8459
8460 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8461 {
8462 u32 flags = 0;
8463 flags |= seg->g << 23;
8464 flags |= seg->db << 22;
8465 flags |= seg->l << 21;
8466 flags |= seg->avl << 20;
8467 flags |= seg->present << 15;
8468 flags |= seg->dpl << 13;
8469 flags |= seg->s << 12;
8470 flags |= seg->type << 8;
8471 return flags;
8472 }
8473
8474 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8475 {
8476 struct kvm_segment seg;
8477 int offset;
8478
8479 kvm_get_segment(vcpu, &seg, n);
8480 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8481
8482 if (n < 3)
8483 offset = 0x7f84 + n * 12;
8484 else
8485 offset = 0x7f2c + (n - 3) * 12;
8486
8487 put_smstate(u32, buf, offset + 8, seg.base);
8488 put_smstate(u32, buf, offset + 4, seg.limit);
8489 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8490 }
8491
8492 #ifdef CONFIG_X86_64
8493 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8494 {
8495 struct kvm_segment seg;
8496 int offset;
8497 u16 flags;
8498
8499 kvm_get_segment(vcpu, &seg, n);
8500 offset = 0x7e00 + n * 16;
8501
8502 flags = enter_smm_get_segment_flags(&seg) >> 8;
8503 put_smstate(u16, buf, offset, seg.selector);
8504 put_smstate(u16, buf, offset + 2, flags);
8505 put_smstate(u32, buf, offset + 4, seg.limit);
8506 put_smstate(u64, buf, offset + 8, seg.base);
8507 }
8508 #endif
8509
8510 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8511 {
8512 struct desc_ptr dt;
8513 struct kvm_segment seg;
8514 unsigned long val;
8515 int i;
8516
8517 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8518 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8519 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8520 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8521
8522 for (i = 0; i < 8; i++)
8523 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8524
8525 kvm_get_dr(vcpu, 6, &val);
8526 put_smstate(u32, buf, 0x7fcc, (u32)val);
8527 kvm_get_dr(vcpu, 7, &val);
8528 put_smstate(u32, buf, 0x7fc8, (u32)val);
8529
8530 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8531 put_smstate(u32, buf, 0x7fc4, seg.selector);
8532 put_smstate(u32, buf, 0x7f64, seg.base);
8533 put_smstate(u32, buf, 0x7f60, seg.limit);
8534 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8535
8536 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8537 put_smstate(u32, buf, 0x7fc0, seg.selector);
8538 put_smstate(u32, buf, 0x7f80, seg.base);
8539 put_smstate(u32, buf, 0x7f7c, seg.limit);
8540 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8541
8542 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8543 put_smstate(u32, buf, 0x7f74, dt.address);
8544 put_smstate(u32, buf, 0x7f70, dt.size);
8545
8546 static_call(kvm_x86_get_idt)(vcpu, &dt);
8547 put_smstate(u32, buf, 0x7f58, dt.address);
8548 put_smstate(u32, buf, 0x7f54, dt.size);
8549
8550 for (i = 0; i < 6; i++)
8551 enter_smm_save_seg_32(vcpu, buf, i);
8552
8553 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8554
8555 /* revision id */
8556 put_smstate(u32, buf, 0x7efc, 0x00020000);
8557 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8558 }
8559
8560 #ifdef CONFIG_X86_64
8561 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8562 {
8563 struct desc_ptr dt;
8564 struct kvm_segment seg;
8565 unsigned long val;
8566 int i;
8567
8568 for (i = 0; i < 16; i++)
8569 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8570
8571 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8572 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8573
8574 kvm_get_dr(vcpu, 6, &val);
8575 put_smstate(u64, buf, 0x7f68, val);
8576 kvm_get_dr(vcpu, 7, &val);
8577 put_smstate(u64, buf, 0x7f60, val);
8578
8579 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8580 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8581 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8582
8583 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8584
8585 /* revision id */
8586 put_smstate(u32, buf, 0x7efc, 0x00020064);
8587
8588 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8589
8590 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8591 put_smstate(u16, buf, 0x7e90, seg.selector);
8592 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8593 put_smstate(u32, buf, 0x7e94, seg.limit);
8594 put_smstate(u64, buf, 0x7e98, seg.base);
8595
8596 static_call(kvm_x86_get_idt)(vcpu, &dt);
8597 put_smstate(u32, buf, 0x7e84, dt.size);
8598 put_smstate(u64, buf, 0x7e88, dt.address);
8599
8600 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8601 put_smstate(u16, buf, 0x7e70, seg.selector);
8602 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8603 put_smstate(u32, buf, 0x7e74, seg.limit);
8604 put_smstate(u64, buf, 0x7e78, seg.base);
8605
8606 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8607 put_smstate(u32, buf, 0x7e64, dt.size);
8608 put_smstate(u64, buf, 0x7e68, dt.address);
8609
8610 for (i = 0; i < 6; i++)
8611 enter_smm_save_seg_64(vcpu, buf, i);
8612 }
8613 #endif
8614
8615 static void enter_smm(struct kvm_vcpu *vcpu)
8616 {
8617 struct kvm_segment cs, ds;
8618 struct desc_ptr dt;
8619 char buf[512];
8620 u32 cr0;
8621
8622 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8623 memset(buf, 0, 512);
8624 #ifdef CONFIG_X86_64
8625 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8626 enter_smm_save_state_64(vcpu, buf);
8627 else
8628 #endif
8629 enter_smm_save_state_32(vcpu, buf);
8630
8631 /*
8632 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8633 * vCPU state (e.g. leave guest mode) after we've saved the state into
8634 * the SMM state-save area.
8635 */
8636 static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8637
8638 vcpu->arch.hflags |= HF_SMM_MASK;
8639 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8640
8641 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8642 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8643 else
8644 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8645
8646 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8647 kvm_rip_write(vcpu, 0x8000);
8648
8649 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8650 static_call(kvm_x86_set_cr0)(vcpu, cr0);
8651 vcpu->arch.cr0 = cr0;
8652
8653 static_call(kvm_x86_set_cr4)(vcpu, 0);
8654
8655 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8656 dt.address = dt.size = 0;
8657 static_call(kvm_x86_set_idt)(vcpu, &dt);
8658
8659 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8660
8661 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8662 cs.base = vcpu->arch.smbase;
8663
8664 ds.selector = 0;
8665 ds.base = 0;
8666
8667 cs.limit = ds.limit = 0xffffffff;
8668 cs.type = ds.type = 0x3;
8669 cs.dpl = ds.dpl = 0;
8670 cs.db = ds.db = 0;
8671 cs.s = ds.s = 1;
8672 cs.l = ds.l = 0;
8673 cs.g = ds.g = 1;
8674 cs.avl = ds.avl = 0;
8675 cs.present = ds.present = 1;
8676 cs.unusable = ds.unusable = 0;
8677 cs.padding = ds.padding = 0;
8678
8679 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8680 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8681 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8682 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8683 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8684 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8685
8686 #ifdef CONFIG_X86_64
8687 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8688 static_call(kvm_x86_set_efer)(vcpu, 0);
8689 #endif
8690
8691 kvm_update_cpuid_runtime(vcpu);
8692 kvm_mmu_reset_context(vcpu);
8693 }
8694
8695 static void process_smi(struct kvm_vcpu *vcpu)
8696 {
8697 vcpu->arch.smi_pending = true;
8698 kvm_make_request(KVM_REQ_EVENT, vcpu);
8699 }
8700
8701 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8702 unsigned long *vcpu_bitmap)
8703 {
8704 cpumask_var_t cpus;
8705
8706 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8707
8708 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8709 NULL, vcpu_bitmap, cpus);
8710
8711 free_cpumask_var(cpus);
8712 }
8713
8714 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8715 {
8716 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8717 }
8718
8719 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8720 {
8721 if (!lapic_in_kernel(vcpu))
8722 return;
8723
8724 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8725 kvm_apic_update_apicv(vcpu);
8726 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8727 }
8728 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8729
8730 /*
8731 * NOTE: Do not hold any lock prior to calling this.
8732 *
8733 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8734 * locked, because it calls __x86_set_memory_region() which does
8735 * synchronize_srcu(&kvm->srcu).
8736 */
8737 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8738 {
8739 struct kvm_vcpu *except;
8740 unsigned long old, new, expected;
8741
8742 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8743 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8744 return;
8745
8746 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8747 do {
8748 expected = new = old;
8749 if (activate)
8750 __clear_bit(bit, &new);
8751 else
8752 __set_bit(bit, &new);
8753 if (new == old)
8754 break;
8755 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8756 } while (old != expected);
8757
8758 if (!!old == !!new)
8759 return;
8760
8761 trace_kvm_apicv_update_request(activate, bit);
8762 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8763 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8764
8765 /*
8766 * Sending request to update APICV for all other vcpus,
8767 * while update the calling vcpu immediately instead of
8768 * waiting for another #VMEXIT to handle the request.
8769 */
8770 except = kvm_get_running_vcpu();
8771 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8772 except);
8773 if (except)
8774 kvm_vcpu_update_apicv(except);
8775 }
8776 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8777
8778 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8779 {
8780 if (!kvm_apic_present(vcpu))
8781 return;
8782
8783 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8784
8785 if (irqchip_split(vcpu->kvm))
8786 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8787 else {
8788 if (vcpu->arch.apicv_active)
8789 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8790 if (ioapic_in_kernel(vcpu->kvm))
8791 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8792 }
8793
8794 if (is_guest_mode(vcpu))
8795 vcpu->arch.load_eoi_exitmap_pending = true;
8796 else
8797 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8798 }
8799
8800 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8801 {
8802 u64 eoi_exit_bitmap[4];
8803
8804 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8805 return;
8806
8807 if (to_hv_vcpu(vcpu))
8808 bitmap_or((ulong *)eoi_exit_bitmap,
8809 vcpu->arch.ioapic_handled_vectors,
8810 to_hv_synic(vcpu)->vec_bitmap, 256);
8811
8812 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8813 }
8814
8815 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8816 unsigned long start, unsigned long end)
8817 {
8818 unsigned long apic_address;
8819
8820 /*
8821 * The physical address of apic access page is stored in the VMCS.
8822 * Update it when it becomes invalid.
8823 */
8824 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8825 if (start <= apic_address && apic_address < end)
8826 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8827 }
8828
8829 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8830 {
8831 if (!lapic_in_kernel(vcpu))
8832 return;
8833
8834 if (!kvm_x86_ops.set_apic_access_page_addr)
8835 return;
8836
8837 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8838 }
8839
8840 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8841 {
8842 smp_send_reschedule(vcpu->cpu);
8843 }
8844 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8845
8846 /*
8847 * Returns 1 to let vcpu_run() continue the guest execution loop without
8848 * exiting to the userspace. Otherwise, the value will be returned to the
8849 * userspace.
8850 */
8851 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8852 {
8853 int r;
8854 bool req_int_win =
8855 dm_request_for_irq_injection(vcpu) &&
8856 kvm_cpu_accept_dm_intr(vcpu);
8857 fastpath_t exit_fastpath;
8858
8859 bool req_immediate_exit = false;
8860
8861 /* Forbid vmenter if vcpu dirty ring is soft-full */
8862 if (unlikely(vcpu->kvm->dirty_ring_size &&
8863 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8864 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8865 trace_kvm_dirty_ring_exit(vcpu);
8866 r = 0;
8867 goto out;
8868 }
8869
8870 if (kvm_request_pending(vcpu)) {
8871 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8872 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8873 r = 0;
8874 goto out;
8875 }
8876 }
8877 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8878 kvm_mmu_unload(vcpu);
8879 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8880 __kvm_migrate_timers(vcpu);
8881 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8882 kvm_gen_update_masterclock(vcpu->kvm);
8883 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8884 kvm_gen_kvmclock_update(vcpu);
8885 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8886 r = kvm_guest_time_update(vcpu);
8887 if (unlikely(r))
8888 goto out;
8889 }
8890 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8891 kvm_mmu_sync_roots(vcpu);
8892 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8893 kvm_mmu_load_pgd(vcpu);
8894 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8895 kvm_vcpu_flush_tlb_all(vcpu);
8896
8897 /* Flushing all ASIDs flushes the current ASID... */
8898 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8899 }
8900 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8901 kvm_vcpu_flush_tlb_current(vcpu);
8902 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8903 kvm_vcpu_flush_tlb_guest(vcpu);
8904
8905 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8906 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8907 r = 0;
8908 goto out;
8909 }
8910 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8911 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8912 vcpu->mmio_needed = 0;
8913 r = 0;
8914 goto out;
8915 }
8916 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8917 /* Page is swapped out. Do synthetic halt */
8918 vcpu->arch.apf.halted = true;
8919 r = 1;
8920 goto out;
8921 }
8922 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8923 record_steal_time(vcpu);
8924 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8925 process_smi(vcpu);
8926 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8927 process_nmi(vcpu);
8928 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8929 kvm_pmu_handle_event(vcpu);
8930 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8931 kvm_pmu_deliver_pmi(vcpu);
8932 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8933 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8934 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8935 vcpu->arch.ioapic_handled_vectors)) {
8936 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8937 vcpu->run->eoi.vector =
8938 vcpu->arch.pending_ioapic_eoi;
8939 r = 0;
8940 goto out;
8941 }
8942 }
8943 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8944 vcpu_scan_ioapic(vcpu);
8945 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8946 vcpu_load_eoi_exitmap(vcpu);
8947 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8948 kvm_vcpu_reload_apic_access_page(vcpu);
8949 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8950 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8951 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8952 r = 0;
8953 goto out;
8954 }
8955 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8956 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8957 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8958 r = 0;
8959 goto out;
8960 }
8961 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8962 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
8963
8964 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8965 vcpu->run->hyperv = hv_vcpu->exit;
8966 r = 0;
8967 goto out;
8968 }
8969
8970 /*
8971 * KVM_REQ_HV_STIMER has to be processed after
8972 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8973 * depend on the guest clock being up-to-date
8974 */
8975 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8976 kvm_hv_process_stimers(vcpu);
8977 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8978 kvm_vcpu_update_apicv(vcpu);
8979 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8980 kvm_check_async_pf_completion(vcpu);
8981 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8982 static_call(kvm_x86_msr_filter_changed)(vcpu);
8983 }
8984
8985 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
8986 kvm_xen_has_interrupt(vcpu)) {
8987 ++vcpu->stat.req_event;
8988 kvm_apic_accept_events(vcpu);
8989 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8990 r = 1;
8991 goto out;
8992 }
8993
8994 inject_pending_event(vcpu, &req_immediate_exit);
8995 if (req_int_win)
8996 static_call(kvm_x86_enable_irq_window)(vcpu);
8997
8998 if (kvm_lapic_enabled(vcpu)) {
8999 update_cr8_intercept(vcpu);
9000 kvm_lapic_sync_to_vapic(vcpu);
9001 }
9002 }
9003
9004 r = kvm_mmu_reload(vcpu);
9005 if (unlikely(r)) {
9006 goto cancel_injection;
9007 }
9008
9009 preempt_disable();
9010
9011 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9012
9013 /*
9014 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9015 * IPI are then delayed after guest entry, which ensures that they
9016 * result in virtual interrupt delivery.
9017 */
9018 local_irq_disable();
9019 vcpu->mode = IN_GUEST_MODE;
9020
9021 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9022
9023 /*
9024 * 1) We should set ->mode before checking ->requests. Please see
9025 * the comment in kvm_vcpu_exiting_guest_mode().
9026 *
9027 * 2) For APICv, we should set ->mode before checking PID.ON. This
9028 * pairs with the memory barrier implicit in pi_test_and_set_on
9029 * (see vmx_deliver_posted_interrupt).
9030 *
9031 * 3) This also orders the write to mode from any reads to the page
9032 * tables done while the VCPU is running. Please see the comment
9033 * in kvm_flush_remote_tlbs.
9034 */
9035 smp_mb__after_srcu_read_unlock();
9036
9037 /*
9038 * This handles the case where a posted interrupt was
9039 * notified with kvm_vcpu_kick.
9040 */
9041 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9042 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9043
9044 if (kvm_vcpu_exit_request(vcpu)) {
9045 vcpu->mode = OUTSIDE_GUEST_MODE;
9046 smp_wmb();
9047 local_irq_enable();
9048 preempt_enable();
9049 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9050 r = 1;
9051 goto cancel_injection;
9052 }
9053
9054 if (req_immediate_exit) {
9055 kvm_make_request(KVM_REQ_EVENT, vcpu);
9056 static_call(kvm_x86_request_immediate_exit)(vcpu);
9057 }
9058
9059 fpregs_assert_state_consistent();
9060 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9061 switch_fpu_return();
9062
9063 if (unlikely(vcpu->arch.switch_db_regs)) {
9064 set_debugreg(0, 7);
9065 set_debugreg(vcpu->arch.eff_db[0], 0);
9066 set_debugreg(vcpu->arch.eff_db[1], 1);
9067 set_debugreg(vcpu->arch.eff_db[2], 2);
9068 set_debugreg(vcpu->arch.eff_db[3], 3);
9069 set_debugreg(vcpu->arch.dr6, 6);
9070 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9071 }
9072
9073 for (;;) {
9074 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9075 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9076 break;
9077
9078 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9079 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9080 break;
9081 }
9082
9083 if (vcpu->arch.apicv_active)
9084 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9085 }
9086
9087 /*
9088 * Do this here before restoring debug registers on the host. And
9089 * since we do this before handling the vmexit, a DR access vmexit
9090 * can (a) read the correct value of the debug registers, (b) set
9091 * KVM_DEBUGREG_WONT_EXIT again.
9092 */
9093 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9094 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9095 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9096 kvm_update_dr0123(vcpu);
9097 kvm_update_dr7(vcpu);
9098 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9099 }
9100
9101 /*
9102 * If the guest has used debug registers, at least dr7
9103 * will be disabled while returning to the host.
9104 * If we don't have active breakpoints in the host, we don't
9105 * care about the messed up debug address registers. But if
9106 * we have some of them active, restore the old state.
9107 */
9108 if (hw_breakpoint_active())
9109 hw_breakpoint_restore();
9110
9111 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9112 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9113
9114 vcpu->mode = OUTSIDE_GUEST_MODE;
9115 smp_wmb();
9116
9117 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9118
9119 /*
9120 * Consume any pending interrupts, including the possible source of
9121 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9122 * An instruction is required after local_irq_enable() to fully unblock
9123 * interrupts on processors that implement an interrupt shadow, the
9124 * stat.exits increment will do nicely.
9125 */
9126 kvm_before_interrupt(vcpu);
9127 local_irq_enable();
9128 ++vcpu->stat.exits;
9129 local_irq_disable();
9130 kvm_after_interrupt(vcpu);
9131
9132 if (lapic_in_kernel(vcpu)) {
9133 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9134 if (delta != S64_MIN) {
9135 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9136 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9137 }
9138 }
9139
9140 local_irq_enable();
9141 preempt_enable();
9142
9143 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9144
9145 /*
9146 * Profile KVM exit RIPs:
9147 */
9148 if (unlikely(prof_on == KVM_PROFILING)) {
9149 unsigned long rip = kvm_rip_read(vcpu);
9150 profile_hit(KVM_PROFILING, (void *)rip);
9151 }
9152
9153 if (unlikely(vcpu->arch.tsc_always_catchup))
9154 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9155
9156 if (vcpu->arch.apic_attention)
9157 kvm_lapic_sync_from_vapic(vcpu);
9158
9159 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9160 return r;
9161
9162 cancel_injection:
9163 if (req_immediate_exit)
9164 kvm_make_request(KVM_REQ_EVENT, vcpu);
9165 static_call(kvm_x86_cancel_injection)(vcpu);
9166 if (unlikely(vcpu->arch.apic_attention))
9167 kvm_lapic_sync_from_vapic(vcpu);
9168 out:
9169 return r;
9170 }
9171
9172 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9173 {
9174 if (!kvm_arch_vcpu_runnable(vcpu) &&
9175 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9176 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9177 kvm_vcpu_block(vcpu);
9178 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9179
9180 if (kvm_x86_ops.post_block)
9181 static_call(kvm_x86_post_block)(vcpu);
9182
9183 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9184 return 1;
9185 }
9186
9187 kvm_apic_accept_events(vcpu);
9188 switch(vcpu->arch.mp_state) {
9189 case KVM_MP_STATE_HALTED:
9190 case KVM_MP_STATE_AP_RESET_HOLD:
9191 vcpu->arch.pv.pv_unhalted = false;
9192 vcpu->arch.mp_state =
9193 KVM_MP_STATE_RUNNABLE;
9194 fallthrough;
9195 case KVM_MP_STATE_RUNNABLE:
9196 vcpu->arch.apf.halted = false;
9197 break;
9198 case KVM_MP_STATE_INIT_RECEIVED:
9199 break;
9200 default:
9201 return -EINTR;
9202 }
9203 return 1;
9204 }
9205
9206 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9207 {
9208 if (is_guest_mode(vcpu))
9209 kvm_x86_ops.nested_ops->check_events(vcpu);
9210
9211 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9212 !vcpu->arch.apf.halted);
9213 }
9214
9215 static int vcpu_run(struct kvm_vcpu *vcpu)
9216 {
9217 int r;
9218 struct kvm *kvm = vcpu->kvm;
9219
9220 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9221 vcpu->arch.l1tf_flush_l1d = true;
9222
9223 for (;;) {
9224 if (kvm_vcpu_running(vcpu)) {
9225 r = vcpu_enter_guest(vcpu);
9226 } else {
9227 r = vcpu_block(kvm, vcpu);
9228 }
9229
9230 if (r <= 0)
9231 break;
9232
9233 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9234 if (kvm_cpu_has_pending_timer(vcpu))
9235 kvm_inject_pending_timer_irqs(vcpu);
9236
9237 if (dm_request_for_irq_injection(vcpu) &&
9238 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9239 r = 0;
9240 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9241 ++vcpu->stat.request_irq_exits;
9242 break;
9243 }
9244
9245 if (__xfer_to_guest_mode_work_pending()) {
9246 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9247 r = xfer_to_guest_mode_handle_work(vcpu);
9248 if (r)
9249 return r;
9250 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9251 }
9252 }
9253
9254 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9255
9256 return r;
9257 }
9258
9259 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9260 {
9261 int r;
9262
9263 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9264 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9265 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9266 return r;
9267 }
9268
9269 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9270 {
9271 BUG_ON(!vcpu->arch.pio.count);
9272
9273 return complete_emulated_io(vcpu);
9274 }
9275
9276 /*
9277 * Implements the following, as a state machine:
9278 *
9279 * read:
9280 * for each fragment
9281 * for each mmio piece in the fragment
9282 * write gpa, len
9283 * exit
9284 * copy data
9285 * execute insn
9286 *
9287 * write:
9288 * for each fragment
9289 * for each mmio piece in the fragment
9290 * write gpa, len
9291 * copy data
9292 * exit
9293 */
9294 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9295 {
9296 struct kvm_run *run = vcpu->run;
9297 struct kvm_mmio_fragment *frag;
9298 unsigned len;
9299
9300 BUG_ON(!vcpu->mmio_needed);
9301
9302 /* Complete previous fragment */
9303 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9304 len = min(8u, frag->len);
9305 if (!vcpu->mmio_is_write)
9306 memcpy(frag->data, run->mmio.data, len);
9307
9308 if (frag->len <= 8) {
9309 /* Switch to the next fragment. */
9310 frag++;
9311 vcpu->mmio_cur_fragment++;
9312 } else {
9313 /* Go forward to the next mmio piece. */
9314 frag->data += len;
9315 frag->gpa += len;
9316 frag->len -= len;
9317 }
9318
9319 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9320 vcpu->mmio_needed = 0;
9321
9322 /* FIXME: return into emulator if single-stepping. */
9323 if (vcpu->mmio_is_write)
9324 return 1;
9325 vcpu->mmio_read_completed = 1;
9326 return complete_emulated_io(vcpu);
9327 }
9328
9329 run->exit_reason = KVM_EXIT_MMIO;
9330 run->mmio.phys_addr = frag->gpa;
9331 if (vcpu->mmio_is_write)
9332 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9333 run->mmio.len = min(8u, frag->len);
9334 run->mmio.is_write = vcpu->mmio_is_write;
9335 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9336 return 0;
9337 }
9338
9339 static void kvm_save_current_fpu(struct fpu *fpu)
9340 {
9341 /*
9342 * If the target FPU state is not resident in the CPU registers, just
9343 * memcpy() from current, else save CPU state directly to the target.
9344 */
9345 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9346 memcpy(&fpu->state, &current->thread.fpu.state,
9347 fpu_kernel_xstate_size);
9348 else
9349 copy_fpregs_to_fpstate(fpu);
9350 }
9351
9352 /* Swap (qemu) user FPU context for the guest FPU context. */
9353 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9354 {
9355 fpregs_lock();
9356
9357 kvm_save_current_fpu(vcpu->arch.user_fpu);
9358
9359 /*
9360 * Guests with protected state can't have it set by the hypervisor,
9361 * so skip trying to set it.
9362 */
9363 if (vcpu->arch.guest_fpu)
9364 /* PKRU is separately restored in kvm_x86_ops.run. */
9365 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9366 ~XFEATURE_MASK_PKRU);
9367
9368 fpregs_mark_activate();
9369 fpregs_unlock();
9370
9371 trace_kvm_fpu(1);
9372 }
9373
9374 /* When vcpu_run ends, restore user space FPU context. */
9375 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9376 {
9377 fpregs_lock();
9378
9379 /*
9380 * Guests with protected state can't have it read by the hypervisor,
9381 * so skip trying to save it.
9382 */
9383 if (vcpu->arch.guest_fpu)
9384 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9385
9386 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9387
9388 fpregs_mark_activate();
9389 fpregs_unlock();
9390
9391 ++vcpu->stat.fpu_reload;
9392 trace_kvm_fpu(0);
9393 }
9394
9395 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9396 {
9397 struct kvm_run *kvm_run = vcpu->run;
9398 int r;
9399
9400 vcpu_load(vcpu);
9401 kvm_sigset_activate(vcpu);
9402 kvm_run->flags = 0;
9403 kvm_load_guest_fpu(vcpu);
9404
9405 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9406 if (kvm_run->immediate_exit) {
9407 r = -EINTR;
9408 goto out;
9409 }
9410 kvm_vcpu_block(vcpu);
9411 kvm_apic_accept_events(vcpu);
9412 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9413 r = -EAGAIN;
9414 if (signal_pending(current)) {
9415 r = -EINTR;
9416 kvm_run->exit_reason = KVM_EXIT_INTR;
9417 ++vcpu->stat.signal_exits;
9418 }
9419 goto out;
9420 }
9421
9422 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9423 r = -EINVAL;
9424 goto out;
9425 }
9426
9427 if (kvm_run->kvm_dirty_regs) {
9428 r = sync_regs(vcpu);
9429 if (r != 0)
9430 goto out;
9431 }
9432
9433 /* re-sync apic's tpr */
9434 if (!lapic_in_kernel(vcpu)) {
9435 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9436 r = -EINVAL;
9437 goto out;
9438 }
9439 }
9440
9441 if (unlikely(vcpu->arch.complete_userspace_io)) {
9442 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9443 vcpu->arch.complete_userspace_io = NULL;
9444 r = cui(vcpu);
9445 if (r <= 0)
9446 goto out;
9447 } else
9448 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9449
9450 if (kvm_run->immediate_exit)
9451 r = -EINTR;
9452 else
9453 r = vcpu_run(vcpu);
9454
9455 out:
9456 kvm_put_guest_fpu(vcpu);
9457 if (kvm_run->kvm_valid_regs)
9458 store_regs(vcpu);
9459 post_kvm_run_save(vcpu);
9460 kvm_sigset_deactivate(vcpu);
9461
9462 vcpu_put(vcpu);
9463 return r;
9464 }
9465
9466 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9467 {
9468 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9469 /*
9470 * We are here if userspace calls get_regs() in the middle of
9471 * instruction emulation. Registers state needs to be copied
9472 * back from emulation context to vcpu. Userspace shouldn't do
9473 * that usually, but some bad designed PV devices (vmware
9474 * backdoor interface) need this to work
9475 */
9476 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9477 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9478 }
9479 regs->rax = kvm_rax_read(vcpu);
9480 regs->rbx = kvm_rbx_read(vcpu);
9481 regs->rcx = kvm_rcx_read(vcpu);
9482 regs->rdx = kvm_rdx_read(vcpu);
9483 regs->rsi = kvm_rsi_read(vcpu);
9484 regs->rdi = kvm_rdi_read(vcpu);
9485 regs->rsp = kvm_rsp_read(vcpu);
9486 regs->rbp = kvm_rbp_read(vcpu);
9487 #ifdef CONFIG_X86_64
9488 regs->r8 = kvm_r8_read(vcpu);
9489 regs->r9 = kvm_r9_read(vcpu);
9490 regs->r10 = kvm_r10_read(vcpu);
9491 regs->r11 = kvm_r11_read(vcpu);
9492 regs->r12 = kvm_r12_read(vcpu);
9493 regs->r13 = kvm_r13_read(vcpu);
9494 regs->r14 = kvm_r14_read(vcpu);
9495 regs->r15 = kvm_r15_read(vcpu);
9496 #endif
9497
9498 regs->rip = kvm_rip_read(vcpu);
9499 regs->rflags = kvm_get_rflags(vcpu);
9500 }
9501
9502 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9503 {
9504 vcpu_load(vcpu);
9505 __get_regs(vcpu, regs);
9506 vcpu_put(vcpu);
9507 return 0;
9508 }
9509
9510 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9511 {
9512 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9513 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9514
9515 kvm_rax_write(vcpu, regs->rax);
9516 kvm_rbx_write(vcpu, regs->rbx);
9517 kvm_rcx_write(vcpu, regs->rcx);
9518 kvm_rdx_write(vcpu, regs->rdx);
9519 kvm_rsi_write(vcpu, regs->rsi);
9520 kvm_rdi_write(vcpu, regs->rdi);
9521 kvm_rsp_write(vcpu, regs->rsp);
9522 kvm_rbp_write(vcpu, regs->rbp);
9523 #ifdef CONFIG_X86_64
9524 kvm_r8_write(vcpu, regs->r8);
9525 kvm_r9_write(vcpu, regs->r9);
9526 kvm_r10_write(vcpu, regs->r10);
9527 kvm_r11_write(vcpu, regs->r11);
9528 kvm_r12_write(vcpu, regs->r12);
9529 kvm_r13_write(vcpu, regs->r13);
9530 kvm_r14_write(vcpu, regs->r14);
9531 kvm_r15_write(vcpu, regs->r15);
9532 #endif
9533
9534 kvm_rip_write(vcpu, regs->rip);
9535 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9536
9537 vcpu->arch.exception.pending = false;
9538
9539 kvm_make_request(KVM_REQ_EVENT, vcpu);
9540 }
9541
9542 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9543 {
9544 vcpu_load(vcpu);
9545 __set_regs(vcpu, regs);
9546 vcpu_put(vcpu);
9547 return 0;
9548 }
9549
9550 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9551 {
9552 struct kvm_segment cs;
9553
9554 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9555 *db = cs.db;
9556 *l = cs.l;
9557 }
9558 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9559
9560 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9561 {
9562 struct desc_ptr dt;
9563
9564 if (vcpu->arch.guest_state_protected)
9565 goto skip_protected_regs;
9566
9567 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9568 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9569 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9570 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9571 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9572 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9573
9574 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9575 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9576
9577 static_call(kvm_x86_get_idt)(vcpu, &dt);
9578 sregs->idt.limit = dt.size;
9579 sregs->idt.base = dt.address;
9580 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9581 sregs->gdt.limit = dt.size;
9582 sregs->gdt.base = dt.address;
9583
9584 sregs->cr2 = vcpu->arch.cr2;
9585 sregs->cr3 = kvm_read_cr3(vcpu);
9586
9587 skip_protected_regs:
9588 sregs->cr0 = kvm_read_cr0(vcpu);
9589 sregs->cr4 = kvm_read_cr4(vcpu);
9590 sregs->cr8 = kvm_get_cr8(vcpu);
9591 sregs->efer = vcpu->arch.efer;
9592 sregs->apic_base = kvm_get_apic_base(vcpu);
9593
9594 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9595
9596 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9597 set_bit(vcpu->arch.interrupt.nr,
9598 (unsigned long *)sregs->interrupt_bitmap);
9599 }
9600
9601 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9602 struct kvm_sregs *sregs)
9603 {
9604 vcpu_load(vcpu);
9605 __get_sregs(vcpu, sregs);
9606 vcpu_put(vcpu);
9607 return 0;
9608 }
9609
9610 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9611 struct kvm_mp_state *mp_state)
9612 {
9613 vcpu_load(vcpu);
9614 if (kvm_mpx_supported())
9615 kvm_load_guest_fpu(vcpu);
9616
9617 kvm_apic_accept_events(vcpu);
9618 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9619 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9620 vcpu->arch.pv.pv_unhalted)
9621 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9622 else
9623 mp_state->mp_state = vcpu->arch.mp_state;
9624
9625 if (kvm_mpx_supported())
9626 kvm_put_guest_fpu(vcpu);
9627 vcpu_put(vcpu);
9628 return 0;
9629 }
9630
9631 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9632 struct kvm_mp_state *mp_state)
9633 {
9634 int ret = -EINVAL;
9635
9636 vcpu_load(vcpu);
9637
9638 if (!lapic_in_kernel(vcpu) &&
9639 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9640 goto out;
9641
9642 /*
9643 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9644 * INIT state; latched init should be reported using
9645 * KVM_SET_VCPU_EVENTS, so reject it here.
9646 */
9647 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9648 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9649 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9650 goto out;
9651
9652 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9653 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9654 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9655 } else
9656 vcpu->arch.mp_state = mp_state->mp_state;
9657 kvm_make_request(KVM_REQ_EVENT, vcpu);
9658
9659 ret = 0;
9660 out:
9661 vcpu_put(vcpu);
9662 return ret;
9663 }
9664
9665 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9666 int reason, bool has_error_code, u32 error_code)
9667 {
9668 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9669 int ret;
9670
9671 init_emulate_ctxt(vcpu);
9672
9673 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9674 has_error_code, error_code);
9675 if (ret) {
9676 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9677 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9678 vcpu->run->internal.ndata = 0;
9679 return 0;
9680 }
9681
9682 kvm_rip_write(vcpu, ctxt->eip);
9683 kvm_set_rflags(vcpu, ctxt->eflags);
9684 return 1;
9685 }
9686 EXPORT_SYMBOL_GPL(kvm_task_switch);
9687
9688 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9689 {
9690 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9691 /*
9692 * When EFER.LME and CR0.PG are set, the processor is in
9693 * 64-bit mode (though maybe in a 32-bit code segment).
9694 * CR4.PAE and EFER.LMA must be set.
9695 */
9696 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9697 return false;
9698 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9699 return false;
9700 } else {
9701 /*
9702 * Not in 64-bit mode: EFER.LMA is clear and the code
9703 * segment cannot be 64-bit.
9704 */
9705 if (sregs->efer & EFER_LMA || sregs->cs.l)
9706 return false;
9707 }
9708
9709 return kvm_is_valid_cr4(vcpu, sregs->cr4);
9710 }
9711
9712 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9713 {
9714 struct msr_data apic_base_msr;
9715 int mmu_reset_needed = 0;
9716 int pending_vec, max_bits, idx;
9717 struct desc_ptr dt;
9718 int ret = -EINVAL;
9719
9720 if (!kvm_is_valid_sregs(vcpu, sregs))
9721 goto out;
9722
9723 apic_base_msr.data = sregs->apic_base;
9724 apic_base_msr.host_initiated = true;
9725 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9726 goto out;
9727
9728 if (vcpu->arch.guest_state_protected)
9729 goto skip_protected_regs;
9730
9731 dt.size = sregs->idt.limit;
9732 dt.address = sregs->idt.base;
9733 static_call(kvm_x86_set_idt)(vcpu, &dt);
9734 dt.size = sregs->gdt.limit;
9735 dt.address = sregs->gdt.base;
9736 static_call(kvm_x86_set_gdt)(vcpu, &dt);
9737
9738 vcpu->arch.cr2 = sregs->cr2;
9739 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9740 vcpu->arch.cr3 = sregs->cr3;
9741 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9742
9743 kvm_set_cr8(vcpu, sregs->cr8);
9744
9745 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9746 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9747
9748 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9749 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9750 vcpu->arch.cr0 = sregs->cr0;
9751
9752 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9753 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9754
9755 idx = srcu_read_lock(&vcpu->kvm->srcu);
9756 if (is_pae_paging(vcpu)) {
9757 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9758 mmu_reset_needed = 1;
9759 }
9760 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9761
9762 if (mmu_reset_needed)
9763 kvm_mmu_reset_context(vcpu);
9764
9765 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9766 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9767 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9768 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9769 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9770 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9771
9772 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9773 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9774
9775 update_cr8_intercept(vcpu);
9776
9777 /* Older userspace won't unhalt the vcpu on reset. */
9778 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9779 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9780 !is_protmode(vcpu))
9781 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9782
9783 skip_protected_regs:
9784 max_bits = KVM_NR_INTERRUPTS;
9785 pending_vec = find_first_bit(
9786 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9787 if (pending_vec < max_bits) {
9788 kvm_queue_interrupt(vcpu, pending_vec, false);
9789 pr_debug("Set back pending irq %d\n", pending_vec);
9790 }
9791
9792 kvm_make_request(KVM_REQ_EVENT, vcpu);
9793
9794 ret = 0;
9795 out:
9796 return ret;
9797 }
9798
9799 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9800 struct kvm_sregs *sregs)
9801 {
9802 int ret;
9803
9804 vcpu_load(vcpu);
9805 ret = __set_sregs(vcpu, sregs);
9806 vcpu_put(vcpu);
9807 return ret;
9808 }
9809
9810 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9811 struct kvm_guest_debug *dbg)
9812 {
9813 unsigned long rflags;
9814 int i, r;
9815
9816 if (vcpu->arch.guest_state_protected)
9817 return -EINVAL;
9818
9819 vcpu_load(vcpu);
9820
9821 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9822 r = -EBUSY;
9823 if (vcpu->arch.exception.pending)
9824 goto out;
9825 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9826 kvm_queue_exception(vcpu, DB_VECTOR);
9827 else
9828 kvm_queue_exception(vcpu, BP_VECTOR);
9829 }
9830
9831 /*
9832 * Read rflags as long as potentially injected trace flags are still
9833 * filtered out.
9834 */
9835 rflags = kvm_get_rflags(vcpu);
9836
9837 vcpu->guest_debug = dbg->control;
9838 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9839 vcpu->guest_debug = 0;
9840
9841 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9842 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9843 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9844 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9845 } else {
9846 for (i = 0; i < KVM_NR_DB_REGS; i++)
9847 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9848 }
9849 kvm_update_dr7(vcpu);
9850
9851 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9852 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9853 get_segment_base(vcpu, VCPU_SREG_CS);
9854
9855 /*
9856 * Trigger an rflags update that will inject or remove the trace
9857 * flags.
9858 */
9859 kvm_set_rflags(vcpu, rflags);
9860
9861 static_call(kvm_x86_update_exception_bitmap)(vcpu);
9862
9863 r = 0;
9864
9865 out:
9866 vcpu_put(vcpu);
9867 return r;
9868 }
9869
9870 /*
9871 * Translate a guest virtual address to a guest physical address.
9872 */
9873 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9874 struct kvm_translation *tr)
9875 {
9876 unsigned long vaddr = tr->linear_address;
9877 gpa_t gpa;
9878 int idx;
9879
9880 vcpu_load(vcpu);
9881
9882 idx = srcu_read_lock(&vcpu->kvm->srcu);
9883 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9884 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9885 tr->physical_address = gpa;
9886 tr->valid = gpa != UNMAPPED_GVA;
9887 tr->writeable = 1;
9888 tr->usermode = 0;
9889
9890 vcpu_put(vcpu);
9891 return 0;
9892 }
9893
9894 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9895 {
9896 struct fxregs_state *fxsave;
9897
9898 if (!vcpu->arch.guest_fpu)
9899 return 0;
9900
9901 vcpu_load(vcpu);
9902
9903 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9904 memcpy(fpu->fpr, fxsave->st_space, 128);
9905 fpu->fcw = fxsave->cwd;
9906 fpu->fsw = fxsave->swd;
9907 fpu->ftwx = fxsave->twd;
9908 fpu->last_opcode = fxsave->fop;
9909 fpu->last_ip = fxsave->rip;
9910 fpu->last_dp = fxsave->rdp;
9911 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9912
9913 vcpu_put(vcpu);
9914 return 0;
9915 }
9916
9917 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9918 {
9919 struct fxregs_state *fxsave;
9920
9921 if (!vcpu->arch.guest_fpu)
9922 return 0;
9923
9924 vcpu_load(vcpu);
9925
9926 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9927
9928 memcpy(fxsave->st_space, fpu->fpr, 128);
9929 fxsave->cwd = fpu->fcw;
9930 fxsave->swd = fpu->fsw;
9931 fxsave->twd = fpu->ftwx;
9932 fxsave->fop = fpu->last_opcode;
9933 fxsave->rip = fpu->last_ip;
9934 fxsave->rdp = fpu->last_dp;
9935 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9936
9937 vcpu_put(vcpu);
9938 return 0;
9939 }
9940
9941 static void store_regs(struct kvm_vcpu *vcpu)
9942 {
9943 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9944
9945 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9946 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9947
9948 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9949 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9950
9951 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9952 kvm_vcpu_ioctl_x86_get_vcpu_events(
9953 vcpu, &vcpu->run->s.regs.events);
9954 }
9955
9956 static int sync_regs(struct kvm_vcpu *vcpu)
9957 {
9958 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9959 return -EINVAL;
9960
9961 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9962 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9963 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9964 }
9965 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9966 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9967 return -EINVAL;
9968 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9969 }
9970 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9971 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9972 vcpu, &vcpu->run->s.regs.events))
9973 return -EINVAL;
9974 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9975 }
9976
9977 return 0;
9978 }
9979
9980 static void fx_init(struct kvm_vcpu *vcpu)
9981 {
9982 if (!vcpu->arch.guest_fpu)
9983 return;
9984
9985 fpstate_init(&vcpu->arch.guest_fpu->state);
9986 if (boot_cpu_has(X86_FEATURE_XSAVES))
9987 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9988 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9989
9990 /*
9991 * Ensure guest xcr0 is valid for loading
9992 */
9993 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9994
9995 vcpu->arch.cr0 |= X86_CR0_ET;
9996 }
9997
9998 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9999 {
10000 if (vcpu->arch.guest_fpu) {
10001 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10002 vcpu->arch.guest_fpu = NULL;
10003 }
10004 }
10005 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10006
10007 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10008 {
10009 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10010 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10011 "guest TSC will not be reliable\n");
10012
10013 return 0;
10014 }
10015
10016 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10017 {
10018 struct page *page;
10019 int r;
10020
10021 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10022 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10023 else
10024 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10025
10026 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10027
10028 r = kvm_mmu_create(vcpu);
10029 if (r < 0)
10030 return r;
10031
10032 if (irqchip_in_kernel(vcpu->kvm)) {
10033 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10034 if (r < 0)
10035 goto fail_mmu_destroy;
10036 if (kvm_apicv_activated(vcpu->kvm))
10037 vcpu->arch.apicv_active = true;
10038 } else
10039 static_branch_inc(&kvm_has_noapic_vcpu);
10040
10041 r = -ENOMEM;
10042
10043 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10044 if (!page)
10045 goto fail_free_lapic;
10046 vcpu->arch.pio_data = page_address(page);
10047
10048 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10049 GFP_KERNEL_ACCOUNT);
10050 if (!vcpu->arch.mce_banks)
10051 goto fail_free_pio_data;
10052 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10053
10054 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10055 GFP_KERNEL_ACCOUNT))
10056 goto fail_free_mce_banks;
10057
10058 if (!alloc_emulate_ctxt(vcpu))
10059 goto free_wbinvd_dirty_mask;
10060
10061 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10062 GFP_KERNEL_ACCOUNT);
10063 if (!vcpu->arch.user_fpu) {
10064 pr_err("kvm: failed to allocate userspace's fpu\n");
10065 goto free_emulate_ctxt;
10066 }
10067
10068 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10069 GFP_KERNEL_ACCOUNT);
10070 if (!vcpu->arch.guest_fpu) {
10071 pr_err("kvm: failed to allocate vcpu's fpu\n");
10072 goto free_user_fpu;
10073 }
10074 fx_init(vcpu);
10075
10076 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10077 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10078
10079 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10080
10081 kvm_async_pf_hash_reset(vcpu);
10082 kvm_pmu_init(vcpu);
10083
10084 vcpu->arch.pending_external_vector = -1;
10085 vcpu->arch.preempted_in_kernel = false;
10086
10087 r = static_call(kvm_x86_vcpu_create)(vcpu);
10088 if (r)
10089 goto free_guest_fpu;
10090
10091 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10092 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10093 kvm_vcpu_mtrr_init(vcpu);
10094 vcpu_load(vcpu);
10095 kvm_vcpu_reset(vcpu, false);
10096 kvm_init_mmu(vcpu, false);
10097 vcpu_put(vcpu);
10098 return 0;
10099
10100 free_guest_fpu:
10101 kvm_free_guest_fpu(vcpu);
10102 free_user_fpu:
10103 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10104 free_emulate_ctxt:
10105 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10106 free_wbinvd_dirty_mask:
10107 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10108 fail_free_mce_banks:
10109 kfree(vcpu->arch.mce_banks);
10110 fail_free_pio_data:
10111 free_page((unsigned long)vcpu->arch.pio_data);
10112 fail_free_lapic:
10113 kvm_free_lapic(vcpu);
10114 fail_mmu_destroy:
10115 kvm_mmu_destroy(vcpu);
10116 return r;
10117 }
10118
10119 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10120 {
10121 struct kvm *kvm = vcpu->kvm;
10122
10123 if (mutex_lock_killable(&vcpu->mutex))
10124 return;
10125 vcpu_load(vcpu);
10126 kvm_synchronize_tsc(vcpu, 0);
10127 vcpu_put(vcpu);
10128
10129 /* poll control enabled by default */
10130 vcpu->arch.msr_kvm_poll_control = 1;
10131
10132 mutex_unlock(&vcpu->mutex);
10133
10134 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10135 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10136 KVMCLOCK_SYNC_PERIOD);
10137 }
10138
10139 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10140 {
10141 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10142 int idx;
10143
10144 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10145
10146 kvmclock_reset(vcpu);
10147
10148 static_call(kvm_x86_vcpu_free)(vcpu);
10149
10150 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10151 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10152 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10153 kvm_free_guest_fpu(vcpu);
10154
10155 kvm_hv_vcpu_uninit(vcpu);
10156 kvm_pmu_destroy(vcpu);
10157 kfree(vcpu->arch.mce_banks);
10158 kvm_free_lapic(vcpu);
10159 idx = srcu_read_lock(&vcpu->kvm->srcu);
10160 kvm_mmu_destroy(vcpu);
10161 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10162 free_page((unsigned long)vcpu->arch.pio_data);
10163 kvfree(vcpu->arch.cpuid_entries);
10164 if (!lapic_in_kernel(vcpu))
10165 static_branch_dec(&kvm_has_noapic_vcpu);
10166 }
10167
10168 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10169 {
10170 kvm_lapic_reset(vcpu, init_event);
10171
10172 vcpu->arch.hflags = 0;
10173
10174 vcpu->arch.smi_pending = 0;
10175 vcpu->arch.smi_count = 0;
10176 atomic_set(&vcpu->arch.nmi_queued, 0);
10177 vcpu->arch.nmi_pending = 0;
10178 vcpu->arch.nmi_injected = false;
10179 kvm_clear_interrupt_queue(vcpu);
10180 kvm_clear_exception_queue(vcpu);
10181
10182 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10183 kvm_update_dr0123(vcpu);
10184 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10185 vcpu->arch.dr7 = DR7_FIXED_1;
10186 kvm_update_dr7(vcpu);
10187
10188 vcpu->arch.cr2 = 0;
10189
10190 kvm_make_request(KVM_REQ_EVENT, vcpu);
10191 vcpu->arch.apf.msr_en_val = 0;
10192 vcpu->arch.apf.msr_int_val = 0;
10193 vcpu->arch.st.msr_val = 0;
10194
10195 kvmclock_reset(vcpu);
10196
10197 kvm_clear_async_pf_completion_queue(vcpu);
10198 kvm_async_pf_hash_reset(vcpu);
10199 vcpu->arch.apf.halted = false;
10200
10201 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10202 void *mpx_state_buffer;
10203
10204 /*
10205 * To avoid have the INIT path from kvm_apic_has_events() that be
10206 * called with loaded FPU and does not let userspace fix the state.
10207 */
10208 if (init_event)
10209 kvm_put_guest_fpu(vcpu);
10210 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10211 XFEATURE_BNDREGS);
10212 if (mpx_state_buffer)
10213 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10214 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10215 XFEATURE_BNDCSR);
10216 if (mpx_state_buffer)
10217 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10218 if (init_event)
10219 kvm_load_guest_fpu(vcpu);
10220 }
10221
10222 if (!init_event) {
10223 kvm_pmu_reset(vcpu);
10224 vcpu->arch.smbase = 0x30000;
10225
10226 vcpu->arch.msr_misc_features_enables = 0;
10227
10228 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10229 }
10230
10231 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10232 vcpu->arch.regs_avail = ~0;
10233 vcpu->arch.regs_dirty = ~0;
10234
10235 vcpu->arch.ia32_xss = 0;
10236
10237 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10238 }
10239
10240 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10241 {
10242 struct kvm_segment cs;
10243
10244 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10245 cs.selector = vector << 8;
10246 cs.base = vector << 12;
10247 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10248 kvm_rip_write(vcpu, 0);
10249 }
10250 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10251
10252 int kvm_arch_hardware_enable(void)
10253 {
10254 struct kvm *kvm;
10255 struct kvm_vcpu *vcpu;
10256 int i;
10257 int ret;
10258 u64 local_tsc;
10259 u64 max_tsc = 0;
10260 bool stable, backwards_tsc = false;
10261
10262 kvm_user_return_msr_cpu_online();
10263 ret = static_call(kvm_x86_hardware_enable)();
10264 if (ret != 0)
10265 return ret;
10266
10267 local_tsc = rdtsc();
10268 stable = !kvm_check_tsc_unstable();
10269 list_for_each_entry(kvm, &vm_list, vm_list) {
10270 kvm_for_each_vcpu(i, vcpu, kvm) {
10271 if (!stable && vcpu->cpu == smp_processor_id())
10272 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10273 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10274 backwards_tsc = true;
10275 if (vcpu->arch.last_host_tsc > max_tsc)
10276 max_tsc = vcpu->arch.last_host_tsc;
10277 }
10278 }
10279 }
10280
10281 /*
10282 * Sometimes, even reliable TSCs go backwards. This happens on
10283 * platforms that reset TSC during suspend or hibernate actions, but
10284 * maintain synchronization. We must compensate. Fortunately, we can
10285 * detect that condition here, which happens early in CPU bringup,
10286 * before any KVM threads can be running. Unfortunately, we can't
10287 * bring the TSCs fully up to date with real time, as we aren't yet far
10288 * enough into CPU bringup that we know how much real time has actually
10289 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10290 * variables that haven't been updated yet.
10291 *
10292 * So we simply find the maximum observed TSC above, then record the
10293 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10294 * the adjustment will be applied. Note that we accumulate
10295 * adjustments, in case multiple suspend cycles happen before some VCPU
10296 * gets a chance to run again. In the event that no KVM threads get a
10297 * chance to run, we will miss the entire elapsed period, as we'll have
10298 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10299 * loose cycle time. This isn't too big a deal, since the loss will be
10300 * uniform across all VCPUs (not to mention the scenario is extremely
10301 * unlikely). It is possible that a second hibernate recovery happens
10302 * much faster than a first, causing the observed TSC here to be
10303 * smaller; this would require additional padding adjustment, which is
10304 * why we set last_host_tsc to the local tsc observed here.
10305 *
10306 * N.B. - this code below runs only on platforms with reliable TSC,
10307 * as that is the only way backwards_tsc is set above. Also note
10308 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10309 * have the same delta_cyc adjustment applied if backwards_tsc
10310 * is detected. Note further, this adjustment is only done once,
10311 * as we reset last_host_tsc on all VCPUs to stop this from being
10312 * called multiple times (one for each physical CPU bringup).
10313 *
10314 * Platforms with unreliable TSCs don't have to deal with this, they
10315 * will be compensated by the logic in vcpu_load, which sets the TSC to
10316 * catchup mode. This will catchup all VCPUs to real time, but cannot
10317 * guarantee that they stay in perfect synchronization.
10318 */
10319 if (backwards_tsc) {
10320 u64 delta_cyc = max_tsc - local_tsc;
10321 list_for_each_entry(kvm, &vm_list, vm_list) {
10322 kvm->arch.backwards_tsc_observed = true;
10323 kvm_for_each_vcpu(i, vcpu, kvm) {
10324 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10325 vcpu->arch.last_host_tsc = local_tsc;
10326 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10327 }
10328
10329 /*
10330 * We have to disable TSC offset matching.. if you were
10331 * booting a VM while issuing an S4 host suspend....
10332 * you may have some problem. Solving this issue is
10333 * left as an exercise to the reader.
10334 */
10335 kvm->arch.last_tsc_nsec = 0;
10336 kvm->arch.last_tsc_write = 0;
10337 }
10338
10339 }
10340 return 0;
10341 }
10342
10343 void kvm_arch_hardware_disable(void)
10344 {
10345 static_call(kvm_x86_hardware_disable)();
10346 drop_user_return_notifiers();
10347 }
10348
10349 int kvm_arch_hardware_setup(void *opaque)
10350 {
10351 struct kvm_x86_init_ops *ops = opaque;
10352 int r;
10353
10354 rdmsrl_safe(MSR_EFER, &host_efer);
10355
10356 if (boot_cpu_has(X86_FEATURE_XSAVES))
10357 rdmsrl(MSR_IA32_XSS, host_xss);
10358
10359 r = ops->hardware_setup();
10360 if (r != 0)
10361 return r;
10362
10363 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10364 kvm_ops_static_call_update();
10365
10366 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10367 supported_xss = 0;
10368
10369 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10370 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10371 #undef __kvm_cpu_cap_has
10372
10373 if (kvm_has_tsc_control) {
10374 /*
10375 * Make sure the user can only configure tsc_khz values that
10376 * fit into a signed integer.
10377 * A min value is not calculated because it will always
10378 * be 1 on all machines.
10379 */
10380 u64 max = min(0x7fffffffULL,
10381 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10382 kvm_max_guest_tsc_khz = max;
10383
10384 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10385 }
10386
10387 kvm_init_msr_list();
10388 return 0;
10389 }
10390
10391 void kvm_arch_hardware_unsetup(void)
10392 {
10393 static_call(kvm_x86_hardware_unsetup)();
10394 }
10395
10396 int kvm_arch_check_processor_compat(void *opaque)
10397 {
10398 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10399 struct kvm_x86_init_ops *ops = opaque;
10400
10401 WARN_ON(!irqs_disabled());
10402
10403 if (__cr4_reserved_bits(cpu_has, c) !=
10404 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10405 return -EIO;
10406
10407 return ops->check_processor_compatibility();
10408 }
10409
10410 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10411 {
10412 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10413 }
10414 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10415
10416 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10417 {
10418 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10419 }
10420
10421 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10422 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10423
10424 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10425 {
10426 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10427
10428 vcpu->arch.l1tf_flush_l1d = true;
10429 if (pmu->version && unlikely(pmu->event_count)) {
10430 pmu->need_cleanup = true;
10431 kvm_make_request(KVM_REQ_PMU, vcpu);
10432 }
10433 static_call(kvm_x86_sched_in)(vcpu, cpu);
10434 }
10435
10436 void kvm_arch_free_vm(struct kvm *kvm)
10437 {
10438 kfree(to_kvm_hv(kvm)->hv_pa_pg);
10439 vfree(kvm);
10440 }
10441
10442
10443 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10444 {
10445 if (type)
10446 return -EINVAL;
10447
10448 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10449 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10450 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10451 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10452 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10453 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10454
10455 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10456 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10457 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10458 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10459 &kvm->arch.irq_sources_bitmap);
10460
10461 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10462 mutex_init(&kvm->arch.apic_map_lock);
10463 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10464
10465 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10466 pvclock_update_vm_gtod_copy(kvm);
10467
10468 kvm->arch.guest_can_read_msr_platform_info = true;
10469
10470 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10471 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10472
10473 kvm_hv_init_vm(kvm);
10474 kvm_page_track_init(kvm);
10475 kvm_mmu_init_vm(kvm);
10476
10477 return static_call(kvm_x86_vm_init)(kvm);
10478 }
10479
10480 int kvm_arch_post_init_vm(struct kvm *kvm)
10481 {
10482 return kvm_mmu_post_init_vm(kvm);
10483 }
10484
10485 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10486 {
10487 vcpu_load(vcpu);
10488 kvm_mmu_unload(vcpu);
10489 vcpu_put(vcpu);
10490 }
10491
10492 static void kvm_free_vcpus(struct kvm *kvm)
10493 {
10494 unsigned int i;
10495 struct kvm_vcpu *vcpu;
10496
10497 /*
10498 * Unpin any mmu pages first.
10499 */
10500 kvm_for_each_vcpu(i, vcpu, kvm) {
10501 kvm_clear_async_pf_completion_queue(vcpu);
10502 kvm_unload_vcpu_mmu(vcpu);
10503 }
10504 kvm_for_each_vcpu(i, vcpu, kvm)
10505 kvm_vcpu_destroy(vcpu);
10506
10507 mutex_lock(&kvm->lock);
10508 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10509 kvm->vcpus[i] = NULL;
10510
10511 atomic_set(&kvm->online_vcpus, 0);
10512 mutex_unlock(&kvm->lock);
10513 }
10514
10515 void kvm_arch_sync_events(struct kvm *kvm)
10516 {
10517 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10518 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10519 kvm_free_pit(kvm);
10520 }
10521
10522 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10523
10524 /**
10525 * __x86_set_memory_region: Setup KVM internal memory slot
10526 *
10527 * @kvm: the kvm pointer to the VM.
10528 * @id: the slot ID to setup.
10529 * @gpa: the GPA to install the slot (unused when @size == 0).
10530 * @size: the size of the slot. Set to zero to uninstall a slot.
10531 *
10532 * This function helps to setup a KVM internal memory slot. Specify
10533 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10534 * slot. The return code can be one of the following:
10535 *
10536 * HVA: on success (uninstall will return a bogus HVA)
10537 * -errno: on error
10538 *
10539 * The caller should always use IS_ERR() to check the return value
10540 * before use. Note, the KVM internal memory slots are guaranteed to
10541 * remain valid and unchanged until the VM is destroyed, i.e., the
10542 * GPA->HVA translation will not change. However, the HVA is a user
10543 * address, i.e. its accessibility is not guaranteed, and must be
10544 * accessed via __copy_{to,from}_user().
10545 */
10546 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10547 u32 size)
10548 {
10549 int i, r;
10550 unsigned long hva, old_npages;
10551 struct kvm_memslots *slots = kvm_memslots(kvm);
10552 struct kvm_memory_slot *slot;
10553
10554 /* Called with kvm->slots_lock held. */
10555 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10556 return ERR_PTR_USR(-EINVAL);
10557
10558 slot = id_to_memslot(slots, id);
10559 if (size) {
10560 if (slot && slot->npages)
10561 return ERR_PTR_USR(-EEXIST);
10562
10563 /*
10564 * MAP_SHARED to prevent internal slot pages from being moved
10565 * by fork()/COW.
10566 */
10567 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10568 MAP_SHARED | MAP_ANONYMOUS, 0);
10569 if (IS_ERR((void *)hva))
10570 return (void __user *)hva;
10571 } else {
10572 if (!slot || !slot->npages)
10573 return 0;
10574
10575 old_npages = slot->npages;
10576 hva = slot->userspace_addr;
10577 }
10578
10579 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10580 struct kvm_userspace_memory_region m;
10581
10582 m.slot = id | (i << 16);
10583 m.flags = 0;
10584 m.guest_phys_addr = gpa;
10585 m.userspace_addr = hva;
10586 m.memory_size = size;
10587 r = __kvm_set_memory_region(kvm, &m);
10588 if (r < 0)
10589 return ERR_PTR_USR(r);
10590 }
10591
10592 if (!size)
10593 vm_munmap(hva, old_npages * PAGE_SIZE);
10594
10595 return (void __user *)hva;
10596 }
10597 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10598
10599 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10600 {
10601 kvm_mmu_pre_destroy_vm(kvm);
10602 }
10603
10604 void kvm_arch_destroy_vm(struct kvm *kvm)
10605 {
10606 u32 i;
10607
10608 if (current->mm == kvm->mm) {
10609 /*
10610 * Free memory regions allocated on behalf of userspace,
10611 * unless the the memory map has changed due to process exit
10612 * or fd copying.
10613 */
10614 mutex_lock(&kvm->slots_lock);
10615 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10616 0, 0);
10617 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10618 0, 0);
10619 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10620 mutex_unlock(&kvm->slots_lock);
10621 }
10622 static_call_cond(kvm_x86_vm_destroy)(kvm);
10623 for (i = 0; i < kvm->arch.msr_filter.count; i++)
10624 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10625 kvm_pic_destroy(kvm);
10626 kvm_ioapic_destroy(kvm);
10627 kvm_free_vcpus(kvm);
10628 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10629 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10630 kvm_mmu_uninit_vm(kvm);
10631 kvm_page_track_cleanup(kvm);
10632 kvm_xen_destroy_vm(kvm);
10633 kvm_hv_destroy_vm(kvm);
10634 }
10635
10636 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10637 {
10638 int i;
10639
10640 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10641 kvfree(slot->arch.rmap[i]);
10642 slot->arch.rmap[i] = NULL;
10643
10644 if (i == 0)
10645 continue;
10646
10647 kvfree(slot->arch.lpage_info[i - 1]);
10648 slot->arch.lpage_info[i - 1] = NULL;
10649 }
10650
10651 kvm_page_track_free_memslot(slot);
10652 }
10653
10654 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10655 unsigned long npages)
10656 {
10657 int i;
10658
10659 /*
10660 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10661 * old arrays will be freed by __kvm_set_memory_region() if installing
10662 * the new memslot is successful.
10663 */
10664 memset(&slot->arch, 0, sizeof(slot->arch));
10665
10666 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10667 struct kvm_lpage_info *linfo;
10668 unsigned long ugfn;
10669 int lpages;
10670 int level = i + 1;
10671
10672 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10673 slot->base_gfn, level) + 1;
10674
10675 slot->arch.rmap[i] =
10676 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10677 GFP_KERNEL_ACCOUNT);
10678 if (!slot->arch.rmap[i])
10679 goto out_free;
10680 if (i == 0)
10681 continue;
10682
10683 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10684 if (!linfo)
10685 goto out_free;
10686
10687 slot->arch.lpage_info[i - 1] = linfo;
10688
10689 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10690 linfo[0].disallow_lpage = 1;
10691 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10692 linfo[lpages - 1].disallow_lpage = 1;
10693 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10694 /*
10695 * If the gfn and userspace address are not aligned wrt each
10696 * other, disable large page support for this slot.
10697 */
10698 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10699 unsigned long j;
10700
10701 for (j = 0; j < lpages; ++j)
10702 linfo[j].disallow_lpage = 1;
10703 }
10704 }
10705
10706 if (kvm_page_track_create_memslot(slot, npages))
10707 goto out_free;
10708
10709 return 0;
10710
10711 out_free:
10712 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10713 kvfree(slot->arch.rmap[i]);
10714 slot->arch.rmap[i] = NULL;
10715 if (i == 0)
10716 continue;
10717
10718 kvfree(slot->arch.lpage_info[i - 1]);
10719 slot->arch.lpage_info[i - 1] = NULL;
10720 }
10721 return -ENOMEM;
10722 }
10723
10724 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10725 {
10726 struct kvm_vcpu *vcpu;
10727 int i;
10728
10729 /*
10730 * memslots->generation has been incremented.
10731 * mmio generation may have reached its maximum value.
10732 */
10733 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10734
10735 /* Force re-initialization of steal_time cache */
10736 kvm_for_each_vcpu(i, vcpu, kvm)
10737 kvm_vcpu_kick(vcpu);
10738 }
10739
10740 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10741 struct kvm_memory_slot *memslot,
10742 const struct kvm_userspace_memory_region *mem,
10743 enum kvm_mr_change change)
10744 {
10745 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10746 return kvm_alloc_memslot_metadata(memslot,
10747 mem->memory_size >> PAGE_SHIFT);
10748 return 0;
10749 }
10750
10751 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10752 struct kvm_memory_slot *old,
10753 struct kvm_memory_slot *new,
10754 enum kvm_mr_change change)
10755 {
10756 /*
10757 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10758 * See comments below.
10759 */
10760 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10761 return;
10762
10763 /*
10764 * Dirty logging tracks sptes in 4k granularity, meaning that large
10765 * sptes have to be split. If live migration is successful, the guest
10766 * in the source machine will be destroyed and large sptes will be
10767 * created in the destination. However, if the guest continues to run
10768 * in the source machine (for example if live migration fails), small
10769 * sptes will remain around and cause bad performance.
10770 *
10771 * Scan sptes if dirty logging has been stopped, dropping those
10772 * which can be collapsed into a single large-page spte. Later
10773 * page faults will create the large-page sptes.
10774 *
10775 * There is no need to do this in any of the following cases:
10776 * CREATE: No dirty mappings will already exist.
10777 * MOVE/DELETE: The old mappings will already have been cleaned up by
10778 * kvm_arch_flush_shadow_memslot()
10779 */
10780 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10781 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10782 kvm_mmu_zap_collapsible_sptes(kvm, new);
10783
10784 /*
10785 * Enable or disable dirty logging for the slot.
10786 *
10787 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10788 * slot have been zapped so no dirty logging updates are needed for
10789 * the old slot.
10790 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10791 * any mappings that might be created in it will consume the
10792 * properties of the new slot and do not need to be updated here.
10793 *
10794 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10795 * called to enable/disable dirty logging.
10796 *
10797 * When disabling dirty logging with PML enabled, the D-bit is set
10798 * for sptes in the slot in order to prevent unnecessary GPA
10799 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10800 * This guarantees leaving PML enabled for the guest's lifetime
10801 * won't have any additional overhead from PML when the guest is
10802 * running with dirty logging disabled.
10803 *
10804 * When enabling dirty logging, large sptes are write-protected
10805 * so they can be split on first write. New large sptes cannot
10806 * be created for this slot until the end of the logging.
10807 * See the comments in fast_page_fault().
10808 * For small sptes, nothing is done if the dirty log is in the
10809 * initial-all-set state. Otherwise, depending on whether pml
10810 * is enabled the D-bit or the W-bit will be cleared.
10811 */
10812 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10813 if (kvm_x86_ops.slot_enable_log_dirty) {
10814 static_call(kvm_x86_slot_enable_log_dirty)(kvm, new);
10815 } else {
10816 int level =
10817 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10818 PG_LEVEL_2M : PG_LEVEL_4K;
10819
10820 /*
10821 * If we're with initial-all-set, we don't need
10822 * to write protect any small page because
10823 * they're reported as dirty already. However
10824 * we still need to write-protect huge pages
10825 * so that the page split can happen lazily on
10826 * the first write to the huge page.
10827 */
10828 kvm_mmu_slot_remove_write_access(kvm, new, level);
10829 }
10830 } else {
10831 static_call_cond(kvm_x86_slot_disable_log_dirty)(kvm, new);
10832 }
10833 }
10834
10835 void kvm_arch_commit_memory_region(struct kvm *kvm,
10836 const struct kvm_userspace_memory_region *mem,
10837 struct kvm_memory_slot *old,
10838 const struct kvm_memory_slot *new,
10839 enum kvm_mr_change change)
10840 {
10841 if (!kvm->arch.n_requested_mmu_pages)
10842 kvm_mmu_change_mmu_pages(kvm,
10843 kvm_mmu_calculate_default_mmu_pages(kvm));
10844
10845 /*
10846 * FIXME: const-ify all uses of struct kvm_memory_slot.
10847 */
10848 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10849
10850 /* Free the arrays associated with the old memslot. */
10851 if (change == KVM_MR_MOVE)
10852 kvm_arch_free_memslot(kvm, old);
10853 }
10854
10855 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10856 {
10857 kvm_mmu_zap_all(kvm);
10858 }
10859
10860 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10861 struct kvm_memory_slot *slot)
10862 {
10863 kvm_page_track_flush_slot(kvm, slot);
10864 }
10865
10866 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10867 {
10868 return (is_guest_mode(vcpu) &&
10869 kvm_x86_ops.guest_apic_has_interrupt &&
10870 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10871 }
10872
10873 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10874 {
10875 if (!list_empty_careful(&vcpu->async_pf.done))
10876 return true;
10877
10878 if (kvm_apic_has_events(vcpu))
10879 return true;
10880
10881 if (vcpu->arch.pv.pv_unhalted)
10882 return true;
10883
10884 if (vcpu->arch.exception.pending)
10885 return true;
10886
10887 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10888 (vcpu->arch.nmi_pending &&
10889 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10890 return true;
10891
10892 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10893 (vcpu->arch.smi_pending &&
10894 static_call(kvm_x86_smi_allowed)(vcpu, false)))
10895 return true;
10896
10897 if (kvm_arch_interrupt_allowed(vcpu) &&
10898 (kvm_cpu_has_interrupt(vcpu) ||
10899 kvm_guest_apic_has_interrupt(vcpu)))
10900 return true;
10901
10902 if (kvm_hv_has_stimer_pending(vcpu))
10903 return true;
10904
10905 if (is_guest_mode(vcpu) &&
10906 kvm_x86_ops.nested_ops->hv_timer_pending &&
10907 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10908 return true;
10909
10910 return false;
10911 }
10912
10913 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10914 {
10915 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10916 }
10917
10918 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10919 {
10920 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10921 return true;
10922
10923 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10924 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10925 kvm_test_request(KVM_REQ_EVENT, vcpu))
10926 return true;
10927
10928 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
10929 return true;
10930
10931 return false;
10932 }
10933
10934 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10935 {
10936 return vcpu->arch.preempted_in_kernel;
10937 }
10938
10939 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10940 {
10941 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10942 }
10943
10944 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10945 {
10946 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
10947 }
10948
10949 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10950 {
10951 /* Can't read the RIP when guest state is protected, just return 0 */
10952 if (vcpu->arch.guest_state_protected)
10953 return 0;
10954
10955 if (is_64_bit_mode(vcpu))
10956 return kvm_rip_read(vcpu);
10957 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10958 kvm_rip_read(vcpu));
10959 }
10960 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10961
10962 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10963 {
10964 return kvm_get_linear_rip(vcpu) == linear_rip;
10965 }
10966 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10967
10968 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10969 {
10970 unsigned long rflags;
10971
10972 rflags = static_call(kvm_x86_get_rflags)(vcpu);
10973 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10974 rflags &= ~X86_EFLAGS_TF;
10975 return rflags;
10976 }
10977 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10978
10979 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10980 {
10981 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10982 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10983 rflags |= X86_EFLAGS_TF;
10984 static_call(kvm_x86_set_rflags)(vcpu, rflags);
10985 }
10986
10987 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10988 {
10989 __kvm_set_rflags(vcpu, rflags);
10990 kvm_make_request(KVM_REQ_EVENT, vcpu);
10991 }
10992 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10993
10994 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10995 {
10996 int r;
10997
10998 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10999 work->wakeup_all)
11000 return;
11001
11002 r = kvm_mmu_reload(vcpu);
11003 if (unlikely(r))
11004 return;
11005
11006 if (!vcpu->arch.mmu->direct_map &&
11007 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11008 return;
11009
11010 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11011 }
11012
11013 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11014 {
11015 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11016
11017 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11018 }
11019
11020 static inline u32 kvm_async_pf_next_probe(u32 key)
11021 {
11022 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11023 }
11024
11025 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11026 {
11027 u32 key = kvm_async_pf_hash_fn(gfn);
11028
11029 while (vcpu->arch.apf.gfns[key] != ~0)
11030 key = kvm_async_pf_next_probe(key);
11031
11032 vcpu->arch.apf.gfns[key] = gfn;
11033 }
11034
11035 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11036 {
11037 int i;
11038 u32 key = kvm_async_pf_hash_fn(gfn);
11039
11040 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11041 (vcpu->arch.apf.gfns[key] != gfn &&
11042 vcpu->arch.apf.gfns[key] != ~0); i++)
11043 key = kvm_async_pf_next_probe(key);
11044
11045 return key;
11046 }
11047
11048 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11049 {
11050 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11051 }
11052
11053 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11054 {
11055 u32 i, j, k;
11056
11057 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11058
11059 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11060 return;
11061
11062 while (true) {
11063 vcpu->arch.apf.gfns[i] = ~0;
11064 do {
11065 j = kvm_async_pf_next_probe(j);
11066 if (vcpu->arch.apf.gfns[j] == ~0)
11067 return;
11068 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11069 /*
11070 * k lies cyclically in ]i,j]
11071 * | i.k.j |
11072 * |....j i.k.| or |.k..j i...|
11073 */
11074 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11075 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11076 i = j;
11077 }
11078 }
11079
11080 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11081 {
11082 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11083
11084 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11085 sizeof(reason));
11086 }
11087
11088 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11089 {
11090 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11091
11092 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11093 &token, offset, sizeof(token));
11094 }
11095
11096 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11097 {
11098 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11099 u32 val;
11100
11101 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11102 &val, offset, sizeof(val)))
11103 return false;
11104
11105 return !val;
11106 }
11107
11108 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11109 {
11110 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11111 return false;
11112
11113 if (!kvm_pv_async_pf_enabled(vcpu) ||
11114 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11115 return false;
11116
11117 return true;
11118 }
11119
11120 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11121 {
11122 if (unlikely(!lapic_in_kernel(vcpu) ||
11123 kvm_event_needs_reinjection(vcpu) ||
11124 vcpu->arch.exception.pending))
11125 return false;
11126
11127 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11128 return false;
11129
11130 /*
11131 * If interrupts are off we cannot even use an artificial
11132 * halt state.
11133 */
11134 return kvm_arch_interrupt_allowed(vcpu);
11135 }
11136
11137 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11138 struct kvm_async_pf *work)
11139 {
11140 struct x86_exception fault;
11141
11142 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11143 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11144
11145 if (kvm_can_deliver_async_pf(vcpu) &&
11146 !apf_put_user_notpresent(vcpu)) {
11147 fault.vector = PF_VECTOR;
11148 fault.error_code_valid = true;
11149 fault.error_code = 0;
11150 fault.nested_page_fault = false;
11151 fault.address = work->arch.token;
11152 fault.async_page_fault = true;
11153 kvm_inject_page_fault(vcpu, &fault);
11154 return true;
11155 } else {
11156 /*
11157 * It is not possible to deliver a paravirtualized asynchronous
11158 * page fault, but putting the guest in an artificial halt state
11159 * can be beneficial nevertheless: if an interrupt arrives, we
11160 * can deliver it timely and perhaps the guest will schedule
11161 * another process. When the instruction that triggered a page
11162 * fault is retried, hopefully the page will be ready in the host.
11163 */
11164 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11165 return false;
11166 }
11167 }
11168
11169 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11170 struct kvm_async_pf *work)
11171 {
11172 struct kvm_lapic_irq irq = {
11173 .delivery_mode = APIC_DM_FIXED,
11174 .vector = vcpu->arch.apf.vec
11175 };
11176
11177 if (work->wakeup_all)
11178 work->arch.token = ~0; /* broadcast wakeup */
11179 else
11180 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11181 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11182
11183 if ((work->wakeup_all || work->notpresent_injected) &&
11184 kvm_pv_async_pf_enabled(vcpu) &&
11185 !apf_put_user_ready(vcpu, work->arch.token)) {
11186 vcpu->arch.apf.pageready_pending = true;
11187 kvm_apic_set_irq(vcpu, &irq, NULL);
11188 }
11189
11190 vcpu->arch.apf.halted = false;
11191 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11192 }
11193
11194 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11195 {
11196 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11197 if (!vcpu->arch.apf.pageready_pending)
11198 kvm_vcpu_kick(vcpu);
11199 }
11200
11201 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11202 {
11203 if (!kvm_pv_async_pf_enabled(vcpu))
11204 return true;
11205 else
11206 return apf_pageready_slot_free(vcpu);
11207 }
11208
11209 void kvm_arch_start_assignment(struct kvm *kvm)
11210 {
11211 atomic_inc(&kvm->arch.assigned_device_count);
11212 }
11213 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11214
11215 void kvm_arch_end_assignment(struct kvm *kvm)
11216 {
11217 atomic_dec(&kvm->arch.assigned_device_count);
11218 }
11219 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11220
11221 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11222 {
11223 return atomic_read(&kvm->arch.assigned_device_count);
11224 }
11225 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11226
11227 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11228 {
11229 atomic_inc(&kvm->arch.noncoherent_dma_count);
11230 }
11231 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11232
11233 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11234 {
11235 atomic_dec(&kvm->arch.noncoherent_dma_count);
11236 }
11237 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11238
11239 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11240 {
11241 return atomic_read(&kvm->arch.noncoherent_dma_count);
11242 }
11243 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11244
11245 bool kvm_arch_has_irq_bypass(void)
11246 {
11247 return true;
11248 }
11249
11250 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11251 struct irq_bypass_producer *prod)
11252 {
11253 struct kvm_kernel_irqfd *irqfd =
11254 container_of(cons, struct kvm_kernel_irqfd, consumer);
11255 int ret;
11256
11257 irqfd->producer = prod;
11258 kvm_arch_start_assignment(irqfd->kvm);
11259 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11260 prod->irq, irqfd->gsi, 1);
11261
11262 if (ret)
11263 kvm_arch_end_assignment(irqfd->kvm);
11264
11265 return ret;
11266 }
11267
11268 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11269 struct irq_bypass_producer *prod)
11270 {
11271 int ret;
11272 struct kvm_kernel_irqfd *irqfd =
11273 container_of(cons, struct kvm_kernel_irqfd, consumer);
11274
11275 WARN_ON(irqfd->producer != prod);
11276 irqfd->producer = NULL;
11277
11278 /*
11279 * When producer of consumer is unregistered, we change back to
11280 * remapped mode, so we can re-use the current implementation
11281 * when the irq is masked/disabled or the consumer side (KVM
11282 * int this case doesn't want to receive the interrupts.
11283 */
11284 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11285 if (ret)
11286 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11287 " fails: %d\n", irqfd->consumer.token, ret);
11288
11289 kvm_arch_end_assignment(irqfd->kvm);
11290 }
11291
11292 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11293 uint32_t guest_irq, bool set)
11294 {
11295 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11296 }
11297
11298 bool kvm_vector_hashing_enabled(void)
11299 {
11300 return vector_hashing;
11301 }
11302
11303 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11304 {
11305 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11306 }
11307 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11308
11309
11310 int kvm_spec_ctrl_test_value(u64 value)
11311 {
11312 /*
11313 * test that setting IA32_SPEC_CTRL to given value
11314 * is allowed by the host processor
11315 */
11316
11317 u64 saved_value;
11318 unsigned long flags;
11319 int ret = 0;
11320
11321 local_irq_save(flags);
11322
11323 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11324 ret = 1;
11325 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11326 ret = 1;
11327 else
11328 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11329
11330 local_irq_restore(flags);
11331
11332 return ret;
11333 }
11334 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11335
11336 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11337 {
11338 struct x86_exception fault;
11339 u32 access = error_code &
11340 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11341
11342 if (!(error_code & PFERR_PRESENT_MASK) ||
11343 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11344 /*
11345 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11346 * tables probably do not match the TLB. Just proceed
11347 * with the error code that the processor gave.
11348 */
11349 fault.vector = PF_VECTOR;
11350 fault.error_code_valid = true;
11351 fault.error_code = error_code;
11352 fault.nested_page_fault = false;
11353 fault.address = gva;
11354 }
11355 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11356 }
11357 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11358
11359 /*
11360 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11361 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11362 * indicates whether exit to userspace is needed.
11363 */
11364 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11365 struct x86_exception *e)
11366 {
11367 if (r == X86EMUL_PROPAGATE_FAULT) {
11368 kvm_inject_emulated_page_fault(vcpu, e);
11369 return 1;
11370 }
11371
11372 /*
11373 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11374 * while handling a VMX instruction KVM could've handled the request
11375 * correctly by exiting to userspace and performing I/O but there
11376 * doesn't seem to be a real use-case behind such requests, just return
11377 * KVM_EXIT_INTERNAL_ERROR for now.
11378 */
11379 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11380 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11381 vcpu->run->internal.ndata = 0;
11382
11383 return 0;
11384 }
11385 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11386
11387 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11388 {
11389 bool pcid_enabled;
11390 struct x86_exception e;
11391 unsigned i;
11392 unsigned long roots_to_free = 0;
11393 struct {
11394 u64 pcid;
11395 u64 gla;
11396 } operand;
11397 int r;
11398
11399 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11400 if (r != X86EMUL_CONTINUE)
11401 return kvm_handle_memory_failure(vcpu, r, &e);
11402
11403 if (operand.pcid >> 12 != 0) {
11404 kvm_inject_gp(vcpu, 0);
11405 return 1;
11406 }
11407
11408 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11409
11410 switch (type) {
11411 case INVPCID_TYPE_INDIV_ADDR:
11412 if ((!pcid_enabled && (operand.pcid != 0)) ||
11413 is_noncanonical_address(operand.gla, vcpu)) {
11414 kvm_inject_gp(vcpu, 0);
11415 return 1;
11416 }
11417 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11418 return kvm_skip_emulated_instruction(vcpu);
11419
11420 case INVPCID_TYPE_SINGLE_CTXT:
11421 if (!pcid_enabled && (operand.pcid != 0)) {
11422 kvm_inject_gp(vcpu, 0);
11423 return 1;
11424 }
11425
11426 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11427 kvm_mmu_sync_roots(vcpu);
11428 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11429 }
11430
11431 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11432 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11433 == operand.pcid)
11434 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11435
11436 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11437 /*
11438 * If neither the current cr3 nor any of the prev_roots use the
11439 * given PCID, then nothing needs to be done here because a
11440 * resync will happen anyway before switching to any other CR3.
11441 */
11442
11443 return kvm_skip_emulated_instruction(vcpu);
11444
11445 case INVPCID_TYPE_ALL_NON_GLOBAL:
11446 /*
11447 * Currently, KVM doesn't mark global entries in the shadow
11448 * page tables, so a non-global flush just degenerates to a
11449 * global flush. If needed, we could optimize this later by
11450 * keeping track of global entries in shadow page tables.
11451 */
11452
11453 fallthrough;
11454 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11455 kvm_mmu_unload(vcpu);
11456 return kvm_skip_emulated_instruction(vcpu);
11457
11458 default:
11459 BUG(); /* We have already checked above that type <= 3 */
11460 }
11461 }
11462 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11463
11464 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11465 {
11466 struct kvm_run *run = vcpu->run;
11467 struct kvm_mmio_fragment *frag;
11468 unsigned int len;
11469
11470 BUG_ON(!vcpu->mmio_needed);
11471
11472 /* Complete previous fragment */
11473 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11474 len = min(8u, frag->len);
11475 if (!vcpu->mmio_is_write)
11476 memcpy(frag->data, run->mmio.data, len);
11477
11478 if (frag->len <= 8) {
11479 /* Switch to the next fragment. */
11480 frag++;
11481 vcpu->mmio_cur_fragment++;
11482 } else {
11483 /* Go forward to the next mmio piece. */
11484 frag->data += len;
11485 frag->gpa += len;
11486 frag->len -= len;
11487 }
11488
11489 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11490 vcpu->mmio_needed = 0;
11491
11492 // VMG change, at this point, we're always done
11493 // RIP has already been advanced
11494 return 1;
11495 }
11496
11497 // More MMIO is needed
11498 run->mmio.phys_addr = frag->gpa;
11499 run->mmio.len = min(8u, frag->len);
11500 run->mmio.is_write = vcpu->mmio_is_write;
11501 if (run->mmio.is_write)
11502 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11503 run->exit_reason = KVM_EXIT_MMIO;
11504
11505 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11506
11507 return 0;
11508 }
11509
11510 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11511 void *data)
11512 {
11513 int handled;
11514 struct kvm_mmio_fragment *frag;
11515
11516 if (!data)
11517 return -EINVAL;
11518
11519 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11520 if (handled == bytes)
11521 return 1;
11522
11523 bytes -= handled;
11524 gpa += handled;
11525 data += handled;
11526
11527 /*TODO: Check if need to increment number of frags */
11528 frag = vcpu->mmio_fragments;
11529 vcpu->mmio_nr_fragments = 1;
11530 frag->len = bytes;
11531 frag->gpa = gpa;
11532 frag->data = data;
11533
11534 vcpu->mmio_needed = 1;
11535 vcpu->mmio_cur_fragment = 0;
11536
11537 vcpu->run->mmio.phys_addr = gpa;
11538 vcpu->run->mmio.len = min(8u, frag->len);
11539 vcpu->run->mmio.is_write = 1;
11540 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11541 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11542
11543 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11544
11545 return 0;
11546 }
11547 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11548
11549 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11550 void *data)
11551 {
11552 int handled;
11553 struct kvm_mmio_fragment *frag;
11554
11555 if (!data)
11556 return -EINVAL;
11557
11558 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11559 if (handled == bytes)
11560 return 1;
11561
11562 bytes -= handled;
11563 gpa += handled;
11564 data += handled;
11565
11566 /*TODO: Check if need to increment number of frags */
11567 frag = vcpu->mmio_fragments;
11568 vcpu->mmio_nr_fragments = 1;
11569 frag->len = bytes;
11570 frag->gpa = gpa;
11571 frag->data = data;
11572
11573 vcpu->mmio_needed = 1;
11574 vcpu->mmio_cur_fragment = 0;
11575
11576 vcpu->run->mmio.phys_addr = gpa;
11577 vcpu->run->mmio.len = min(8u, frag->len);
11578 vcpu->run->mmio.is_write = 0;
11579 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11580
11581 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11582
11583 return 0;
11584 }
11585 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11586
11587 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11588 {
11589 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11590 vcpu->arch.pio.count * vcpu->arch.pio.size);
11591 vcpu->arch.pio.count = 0;
11592
11593 return 1;
11594 }
11595
11596 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11597 unsigned int port, void *data, unsigned int count)
11598 {
11599 int ret;
11600
11601 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11602 data, count);
11603 if (ret)
11604 return ret;
11605
11606 vcpu->arch.pio.count = 0;
11607
11608 return 0;
11609 }
11610
11611 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11612 unsigned int port, void *data, unsigned int count)
11613 {
11614 int ret;
11615
11616 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11617 data, count);
11618 if (ret) {
11619 vcpu->arch.pio.count = 0;
11620 } else {
11621 vcpu->arch.guest_ins_data = data;
11622 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11623 }
11624
11625 return 0;
11626 }
11627
11628 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11629 unsigned int port, void *data, unsigned int count,
11630 int in)
11631 {
11632 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11633 : kvm_sev_es_outs(vcpu, size, port, data, count);
11634 }
11635 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11636
11637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);