]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Update vCPU's runtime CPUID on write to MSR_IA32_XSS
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1096 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1097 * also via the emulator. KVM's TDP page tables are not in the scope of
1098 * the invalidation, but the guest's TLB entries need to be flushed as
1099 * the CPU may have cached entries in its TLB for the target PCID.
1100 */
1101 if (unlikely(tdp_enabled)) {
1102 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1103 return;
1104 }
1105
1106 /*
1107 * If neither the current CR3 nor any of the prev_roots use the given
1108 * PCID, then nothing needs to be done here because a resync will
1109 * happen anyway before switching to any other CR3.
1110 */
1111 if (kvm_get_active_pcid(vcpu) == pcid) {
1112 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1113 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1114 }
1115
1116 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1117 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1118 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1119
1120 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1121 }
1122
1123 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1124 {
1125 bool skip_tlb_flush = false;
1126 unsigned long pcid = 0;
1127 #ifdef CONFIG_X86_64
1128 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1129
1130 if (pcid_enabled) {
1131 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1132 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1133 pcid = cr3 & X86_CR3_PCID_MASK;
1134 }
1135 #endif
1136
1137 /* PDPTRs are always reloaded for PAE paging. */
1138 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1139 goto handle_tlb_flush;
1140
1141 /*
1142 * Do not condition the GPA check on long mode, this helper is used to
1143 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1144 * the current vCPU mode is accurate.
1145 */
1146 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1147 return 1;
1148
1149 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1150 return 1;
1151
1152 if (cr3 != kvm_read_cr3(vcpu))
1153 kvm_mmu_new_pgd(vcpu, cr3);
1154
1155 vcpu->arch.cr3 = cr3;
1156 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1157
1158 handle_tlb_flush:
1159 /*
1160 * A load of CR3 that flushes the TLB flushes only the current PCID,
1161 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1162 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1163 * and it's impossible to use a non-zero PCID when PCID is disabled,
1164 * i.e. only PCID=0 can be relevant.
1165 */
1166 if (!skip_tlb_flush)
1167 kvm_invalidate_pcid(vcpu, pcid);
1168
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1172
1173 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1174 {
1175 if (cr8 & CR8_RESERVED_BITS)
1176 return 1;
1177 if (lapic_in_kernel(vcpu))
1178 kvm_lapic_set_tpr(vcpu, cr8);
1179 else
1180 vcpu->arch.cr8 = cr8;
1181 return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1184
1185 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1186 {
1187 if (lapic_in_kernel(vcpu))
1188 return kvm_lapic_get_cr8(vcpu);
1189 else
1190 return vcpu->arch.cr8;
1191 }
1192 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1193
1194 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1195 {
1196 int i;
1197
1198 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1199 for (i = 0; i < KVM_NR_DB_REGS; i++)
1200 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1201 }
1202 }
1203
1204 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1205 {
1206 unsigned long dr7;
1207
1208 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1209 dr7 = vcpu->arch.guest_debug_dr7;
1210 else
1211 dr7 = vcpu->arch.dr7;
1212 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1213 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1214 if (dr7 & DR7_BP_EN_MASK)
1215 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1218
1219 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1220 {
1221 u64 fixed = DR6_FIXED_1;
1222
1223 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1224 fixed |= DR6_RTM;
1225
1226 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1227 fixed |= DR6_BUS_LOCK;
1228 return fixed;
1229 }
1230
1231 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1232 {
1233 size_t size = ARRAY_SIZE(vcpu->arch.db);
1234
1235 switch (dr) {
1236 case 0 ... 3:
1237 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1238 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1239 vcpu->arch.eff_db[dr] = val;
1240 break;
1241 case 4:
1242 case 6:
1243 if (!kvm_dr6_valid(val))
1244 return 1; /* #GP */
1245 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1246 break;
1247 case 5:
1248 default: /* 7 */
1249 if (!kvm_dr7_valid(val))
1250 return 1; /* #GP */
1251 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1252 kvm_update_dr7(vcpu);
1253 break;
1254 }
1255
1256 return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(kvm_set_dr);
1259
1260 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1261 {
1262 size_t size = ARRAY_SIZE(vcpu->arch.db);
1263
1264 switch (dr) {
1265 case 0 ... 3:
1266 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1267 break;
1268 case 4:
1269 case 6:
1270 *val = vcpu->arch.dr6;
1271 break;
1272 case 5:
1273 default: /* 7 */
1274 *val = vcpu->arch.dr7;
1275 break;
1276 }
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_get_dr);
1279
1280 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1281 {
1282 u32 ecx = kvm_rcx_read(vcpu);
1283 u64 data;
1284
1285 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1286 kvm_inject_gp(vcpu, 0);
1287 return 1;
1288 }
1289
1290 kvm_rax_write(vcpu, (u32)data);
1291 kvm_rdx_write(vcpu, data >> 32);
1292 return kvm_skip_emulated_instruction(vcpu);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1295
1296 /*
1297 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1298 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1299 *
1300 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1301 * extract the supported MSRs from the related const lists.
1302 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1303 * capabilities of the host cpu. This capabilities test skips MSRs that are
1304 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1305 * may depend on host virtualization features rather than host cpu features.
1306 */
1307
1308 static const u32 msrs_to_save_all[] = {
1309 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1310 MSR_STAR,
1311 #ifdef CONFIG_X86_64
1312 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1313 #endif
1314 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1315 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1316 MSR_IA32_SPEC_CTRL,
1317 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1318 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1319 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1320 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1321 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1322 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1323 MSR_IA32_UMWAIT_CONTROL,
1324
1325 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1326 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1327 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1328 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1329 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1330 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1331 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1332 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1333 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1334 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1335 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1336 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1337 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1338 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1339 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1340 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1341 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1342 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1343 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1344 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1345 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1346 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1347
1348 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1349 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1350 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1351 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1352 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1353 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1354 };
1355
1356 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1357 static unsigned num_msrs_to_save;
1358
1359 static const u32 emulated_msrs_all[] = {
1360 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1361 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1362 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1363 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1364 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1365 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1366 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1367 HV_X64_MSR_RESET,
1368 HV_X64_MSR_VP_INDEX,
1369 HV_X64_MSR_VP_RUNTIME,
1370 HV_X64_MSR_SCONTROL,
1371 HV_X64_MSR_STIMER0_CONFIG,
1372 HV_X64_MSR_VP_ASSIST_PAGE,
1373 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1374 HV_X64_MSR_TSC_EMULATION_STATUS,
1375 HV_X64_MSR_SYNDBG_OPTIONS,
1376 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1377 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1378 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1379
1380 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1381 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1382
1383 MSR_IA32_TSC_ADJUST,
1384 MSR_IA32_TSC_DEADLINE,
1385 MSR_IA32_ARCH_CAPABILITIES,
1386 MSR_IA32_PERF_CAPABILITIES,
1387 MSR_IA32_MISC_ENABLE,
1388 MSR_IA32_MCG_STATUS,
1389 MSR_IA32_MCG_CTL,
1390 MSR_IA32_MCG_EXT_CTL,
1391 MSR_IA32_SMBASE,
1392 MSR_SMI_COUNT,
1393 MSR_PLATFORM_INFO,
1394 MSR_MISC_FEATURES_ENABLES,
1395 MSR_AMD64_VIRT_SPEC_CTRL,
1396 MSR_IA32_POWER_CTL,
1397 MSR_IA32_UCODE_REV,
1398
1399 /*
1400 * The following list leaves out MSRs whose values are determined
1401 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1402 * We always support the "true" VMX control MSRs, even if the host
1403 * processor does not, so I am putting these registers here rather
1404 * than in msrs_to_save_all.
1405 */
1406 MSR_IA32_VMX_BASIC,
1407 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1408 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1409 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1410 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1411 MSR_IA32_VMX_MISC,
1412 MSR_IA32_VMX_CR0_FIXED0,
1413 MSR_IA32_VMX_CR4_FIXED0,
1414 MSR_IA32_VMX_VMCS_ENUM,
1415 MSR_IA32_VMX_PROCBASED_CTLS2,
1416 MSR_IA32_VMX_EPT_VPID_CAP,
1417 MSR_IA32_VMX_VMFUNC,
1418
1419 MSR_K7_HWCR,
1420 MSR_KVM_POLL_CONTROL,
1421 };
1422
1423 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1424 static unsigned num_emulated_msrs;
1425
1426 /*
1427 * List of msr numbers which are used to expose MSR-based features that
1428 * can be used by a hypervisor to validate requested CPU features.
1429 */
1430 static const u32 msr_based_features_all[] = {
1431 MSR_IA32_VMX_BASIC,
1432 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1433 MSR_IA32_VMX_PINBASED_CTLS,
1434 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1435 MSR_IA32_VMX_PROCBASED_CTLS,
1436 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1437 MSR_IA32_VMX_EXIT_CTLS,
1438 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1439 MSR_IA32_VMX_ENTRY_CTLS,
1440 MSR_IA32_VMX_MISC,
1441 MSR_IA32_VMX_CR0_FIXED0,
1442 MSR_IA32_VMX_CR0_FIXED1,
1443 MSR_IA32_VMX_CR4_FIXED0,
1444 MSR_IA32_VMX_CR4_FIXED1,
1445 MSR_IA32_VMX_VMCS_ENUM,
1446 MSR_IA32_VMX_PROCBASED_CTLS2,
1447 MSR_IA32_VMX_EPT_VPID_CAP,
1448 MSR_IA32_VMX_VMFUNC,
1449
1450 MSR_F10H_DECFG,
1451 MSR_IA32_UCODE_REV,
1452 MSR_IA32_ARCH_CAPABILITIES,
1453 MSR_IA32_PERF_CAPABILITIES,
1454 };
1455
1456 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1457 static unsigned int num_msr_based_features;
1458
1459 static u64 kvm_get_arch_capabilities(void)
1460 {
1461 u64 data = 0;
1462
1463 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1464 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1465
1466 /*
1467 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1468 * the nested hypervisor runs with NX huge pages. If it is not,
1469 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1470 * L1 guests, so it need not worry about its own (L2) guests.
1471 */
1472 data |= ARCH_CAP_PSCHANGE_MC_NO;
1473
1474 /*
1475 * If we're doing cache flushes (either "always" or "cond")
1476 * we will do one whenever the guest does a vmlaunch/vmresume.
1477 * If an outer hypervisor is doing the cache flush for us
1478 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1479 * capability to the guest too, and if EPT is disabled we're not
1480 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1481 * require a nested hypervisor to do a flush of its own.
1482 */
1483 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1484 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1485
1486 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1487 data |= ARCH_CAP_RDCL_NO;
1488 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1489 data |= ARCH_CAP_SSB_NO;
1490 if (!boot_cpu_has_bug(X86_BUG_MDS))
1491 data |= ARCH_CAP_MDS_NO;
1492
1493 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1494 /*
1495 * If RTM=0 because the kernel has disabled TSX, the host might
1496 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1497 * and therefore knows that there cannot be TAA) but keep
1498 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1499 * and we want to allow migrating those guests to tsx=off hosts.
1500 */
1501 data &= ~ARCH_CAP_TAA_NO;
1502 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1503 data |= ARCH_CAP_TAA_NO;
1504 } else {
1505 /*
1506 * Nothing to do here; we emulate TSX_CTRL if present on the
1507 * host so the guest can choose between disabling TSX or
1508 * using VERW to clear CPU buffers.
1509 */
1510 }
1511
1512 return data;
1513 }
1514
1515 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1516 {
1517 switch (msr->index) {
1518 case MSR_IA32_ARCH_CAPABILITIES:
1519 msr->data = kvm_get_arch_capabilities();
1520 break;
1521 case MSR_IA32_UCODE_REV:
1522 rdmsrl_safe(msr->index, &msr->data);
1523 break;
1524 default:
1525 return static_call(kvm_x86_get_msr_feature)(msr);
1526 }
1527 return 0;
1528 }
1529
1530 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1531 {
1532 struct kvm_msr_entry msr;
1533 int r;
1534
1535 msr.index = index;
1536 r = kvm_get_msr_feature(&msr);
1537
1538 if (r == KVM_MSR_RET_INVALID) {
1539 /* Unconditionally clear the output for simplicity */
1540 *data = 0;
1541 if (kvm_msr_ignored_check(index, 0, false))
1542 r = 0;
1543 }
1544
1545 if (r)
1546 return r;
1547
1548 *data = msr.data;
1549
1550 return 0;
1551 }
1552
1553 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1554 {
1555 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1556 return false;
1557
1558 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1559 return false;
1560
1561 if (efer & (EFER_LME | EFER_LMA) &&
1562 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1563 return false;
1564
1565 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1566 return false;
1567
1568 return true;
1569
1570 }
1571 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1572 {
1573 if (efer & efer_reserved_bits)
1574 return false;
1575
1576 return __kvm_valid_efer(vcpu, efer);
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1579
1580 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1581 {
1582 u64 old_efer = vcpu->arch.efer;
1583 u64 efer = msr_info->data;
1584 int r;
1585
1586 if (efer & efer_reserved_bits)
1587 return 1;
1588
1589 if (!msr_info->host_initiated) {
1590 if (!__kvm_valid_efer(vcpu, efer))
1591 return 1;
1592
1593 if (is_paging(vcpu) &&
1594 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1595 return 1;
1596 }
1597
1598 efer &= ~EFER_LMA;
1599 efer |= vcpu->arch.efer & EFER_LMA;
1600
1601 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1602 if (r) {
1603 WARN_ON(r > 0);
1604 return r;
1605 }
1606
1607 /* Update reserved bits */
1608 if ((efer ^ old_efer) & EFER_NX)
1609 kvm_mmu_reset_context(vcpu);
1610
1611 return 0;
1612 }
1613
1614 void kvm_enable_efer_bits(u64 mask)
1615 {
1616 efer_reserved_bits &= ~mask;
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1619
1620 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1621 {
1622 struct kvm_x86_msr_filter *msr_filter;
1623 struct msr_bitmap_range *ranges;
1624 struct kvm *kvm = vcpu->kvm;
1625 bool allowed;
1626 int idx;
1627 u32 i;
1628
1629 /* x2APIC MSRs do not support filtering. */
1630 if (index >= 0x800 && index <= 0x8ff)
1631 return true;
1632
1633 idx = srcu_read_lock(&kvm->srcu);
1634
1635 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1636 if (!msr_filter) {
1637 allowed = true;
1638 goto out;
1639 }
1640
1641 allowed = msr_filter->default_allow;
1642 ranges = msr_filter->ranges;
1643
1644 for (i = 0; i < msr_filter->count; i++) {
1645 u32 start = ranges[i].base;
1646 u32 end = start + ranges[i].nmsrs;
1647 u32 flags = ranges[i].flags;
1648 unsigned long *bitmap = ranges[i].bitmap;
1649
1650 if ((index >= start) && (index < end) && (flags & type)) {
1651 allowed = !!test_bit(index - start, bitmap);
1652 break;
1653 }
1654 }
1655
1656 out:
1657 srcu_read_unlock(&kvm->srcu, idx);
1658
1659 return allowed;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1662
1663 /*
1664 * Write @data into the MSR specified by @index. Select MSR specific fault
1665 * checks are bypassed if @host_initiated is %true.
1666 * Returns 0 on success, non-0 otherwise.
1667 * Assumes vcpu_load() was already called.
1668 */
1669 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1670 bool host_initiated)
1671 {
1672 struct msr_data msr;
1673
1674 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1675 return KVM_MSR_RET_FILTERED;
1676
1677 switch (index) {
1678 case MSR_FS_BASE:
1679 case MSR_GS_BASE:
1680 case MSR_KERNEL_GS_BASE:
1681 case MSR_CSTAR:
1682 case MSR_LSTAR:
1683 if (is_noncanonical_address(data, vcpu))
1684 return 1;
1685 break;
1686 case MSR_IA32_SYSENTER_EIP:
1687 case MSR_IA32_SYSENTER_ESP:
1688 /*
1689 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1690 * non-canonical address is written on Intel but not on
1691 * AMD (which ignores the top 32-bits, because it does
1692 * not implement 64-bit SYSENTER).
1693 *
1694 * 64-bit code should hence be able to write a non-canonical
1695 * value on AMD. Making the address canonical ensures that
1696 * vmentry does not fail on Intel after writing a non-canonical
1697 * value, and that something deterministic happens if the guest
1698 * invokes 64-bit SYSENTER.
1699 */
1700 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1701 break;
1702 case MSR_TSC_AUX:
1703 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1704 return 1;
1705
1706 if (!host_initiated &&
1707 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1708 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1709 return 1;
1710
1711 /*
1712 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1713 * incomplete and conflicting architectural behavior. Current
1714 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1715 * reserved and always read as zeros. Enforce Intel's reserved
1716 * bits check if and only if the guest CPU is Intel, and clear
1717 * the bits in all other cases. This ensures cross-vendor
1718 * migration will provide consistent behavior for the guest.
1719 */
1720 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1721 return 1;
1722
1723 data = (u32)data;
1724 break;
1725 }
1726
1727 msr.data = data;
1728 msr.index = index;
1729 msr.host_initiated = host_initiated;
1730
1731 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1732 }
1733
1734 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1735 u32 index, u64 data, bool host_initiated)
1736 {
1737 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1738
1739 if (ret == KVM_MSR_RET_INVALID)
1740 if (kvm_msr_ignored_check(index, data, true))
1741 ret = 0;
1742
1743 return ret;
1744 }
1745
1746 /*
1747 * Read the MSR specified by @index into @data. Select MSR specific fault
1748 * checks are bypassed if @host_initiated is %true.
1749 * Returns 0 on success, non-0 otherwise.
1750 * Assumes vcpu_load() was already called.
1751 */
1752 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1753 bool host_initiated)
1754 {
1755 struct msr_data msr;
1756 int ret;
1757
1758 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1759 return KVM_MSR_RET_FILTERED;
1760
1761 switch (index) {
1762 case MSR_TSC_AUX:
1763 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1764 return 1;
1765
1766 if (!host_initiated &&
1767 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1768 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1769 return 1;
1770 break;
1771 }
1772
1773 msr.index = index;
1774 msr.host_initiated = host_initiated;
1775
1776 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1777 if (!ret)
1778 *data = msr.data;
1779 return ret;
1780 }
1781
1782 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1783 u32 index, u64 *data, bool host_initiated)
1784 {
1785 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1786
1787 if (ret == KVM_MSR_RET_INVALID) {
1788 /* Unconditionally clear *data for simplicity */
1789 *data = 0;
1790 if (kvm_msr_ignored_check(index, 0, false))
1791 ret = 0;
1792 }
1793
1794 return ret;
1795 }
1796
1797 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1798 {
1799 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_get_msr);
1802
1803 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1804 {
1805 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_set_msr);
1808
1809 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1810 {
1811 int err = vcpu->run->msr.error;
1812 if (!err) {
1813 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1814 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1815 }
1816
1817 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1818 }
1819
1820 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1821 {
1822 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1823 }
1824
1825 static u64 kvm_msr_reason(int r)
1826 {
1827 switch (r) {
1828 case KVM_MSR_RET_INVALID:
1829 return KVM_MSR_EXIT_REASON_UNKNOWN;
1830 case KVM_MSR_RET_FILTERED:
1831 return KVM_MSR_EXIT_REASON_FILTER;
1832 default:
1833 return KVM_MSR_EXIT_REASON_INVAL;
1834 }
1835 }
1836
1837 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1838 u32 exit_reason, u64 data,
1839 int (*completion)(struct kvm_vcpu *vcpu),
1840 int r)
1841 {
1842 u64 msr_reason = kvm_msr_reason(r);
1843
1844 /* Check if the user wanted to know about this MSR fault */
1845 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1846 return 0;
1847
1848 vcpu->run->exit_reason = exit_reason;
1849 vcpu->run->msr.error = 0;
1850 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1851 vcpu->run->msr.reason = msr_reason;
1852 vcpu->run->msr.index = index;
1853 vcpu->run->msr.data = data;
1854 vcpu->arch.complete_userspace_io = completion;
1855
1856 return 1;
1857 }
1858
1859 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1860 {
1861 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1862 complete_emulated_rdmsr, r);
1863 }
1864
1865 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1866 {
1867 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1868 complete_emulated_wrmsr, r);
1869 }
1870
1871 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1872 {
1873 u32 ecx = kvm_rcx_read(vcpu);
1874 u64 data;
1875 int r;
1876
1877 r = kvm_get_msr(vcpu, ecx, &data);
1878
1879 /* MSR read failed? See if we should ask user space */
1880 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1881 /* Bounce to user space */
1882 return 0;
1883 }
1884
1885 if (!r) {
1886 trace_kvm_msr_read(ecx, data);
1887
1888 kvm_rax_write(vcpu, data & -1u);
1889 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1890 } else {
1891 trace_kvm_msr_read_ex(ecx);
1892 }
1893
1894 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1897
1898 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1899 {
1900 u32 ecx = kvm_rcx_read(vcpu);
1901 u64 data = kvm_read_edx_eax(vcpu);
1902 int r;
1903
1904 r = kvm_set_msr(vcpu, ecx, data);
1905
1906 /* MSR write failed? See if we should ask user space */
1907 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1908 /* Bounce to user space */
1909 return 0;
1910
1911 /* Signal all other negative errors to userspace */
1912 if (r < 0)
1913 return r;
1914
1915 if (!r)
1916 trace_kvm_msr_write(ecx, data);
1917 else
1918 trace_kvm_msr_write_ex(ecx, data);
1919
1920 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1923
1924 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1925 {
1926 return kvm_skip_emulated_instruction(vcpu);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1929
1930 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1931 {
1932 /* Treat an INVD instruction as a NOP and just skip it. */
1933 return kvm_emulate_as_nop(vcpu);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1936
1937 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1938 {
1939 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1940 return kvm_emulate_as_nop(vcpu);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1943
1944 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1945 {
1946 kvm_queue_exception(vcpu, UD_VECTOR);
1947 return 1;
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1950
1951 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1952 {
1953 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1954 return kvm_emulate_as_nop(vcpu);
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1957
1958 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1959 {
1960 xfer_to_guest_mode_prepare();
1961 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1962 xfer_to_guest_mode_work_pending();
1963 }
1964
1965 /*
1966 * The fast path for frequent and performance sensitive wrmsr emulation,
1967 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1968 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1969 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1970 * other cases which must be called after interrupts are enabled on the host.
1971 */
1972 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1973 {
1974 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1975 return 1;
1976
1977 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1978 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1979 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1980 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1981
1982 data &= ~(1 << 12);
1983 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1984 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1985 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1986 trace_kvm_apic_write(APIC_ICR, (u32)data);
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1994 {
1995 if (!kvm_can_use_hv_timer(vcpu))
1996 return 1;
1997
1998 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1999 return 0;
2000 }
2001
2002 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2003 {
2004 u32 msr = kvm_rcx_read(vcpu);
2005 u64 data;
2006 fastpath_t ret = EXIT_FASTPATH_NONE;
2007
2008 switch (msr) {
2009 case APIC_BASE_MSR + (APIC_ICR >> 4):
2010 data = kvm_read_edx_eax(vcpu);
2011 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2012 kvm_skip_emulated_instruction(vcpu);
2013 ret = EXIT_FASTPATH_EXIT_HANDLED;
2014 }
2015 break;
2016 case MSR_IA32_TSC_DEADLINE:
2017 data = kvm_read_edx_eax(vcpu);
2018 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2019 kvm_skip_emulated_instruction(vcpu);
2020 ret = EXIT_FASTPATH_REENTER_GUEST;
2021 }
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 if (ret != EXIT_FASTPATH_NONE)
2028 trace_kvm_msr_write(msr, data);
2029
2030 return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2033
2034 /*
2035 * Adapt set_msr() to msr_io()'s calling convention
2036 */
2037 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2038 {
2039 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2040 }
2041
2042 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2043 {
2044 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2045 }
2046
2047 #ifdef CONFIG_X86_64
2048 struct pvclock_clock {
2049 int vclock_mode;
2050 u64 cycle_last;
2051 u64 mask;
2052 u32 mult;
2053 u32 shift;
2054 u64 base_cycles;
2055 u64 offset;
2056 };
2057
2058 struct pvclock_gtod_data {
2059 seqcount_t seq;
2060
2061 struct pvclock_clock clock; /* extract of a clocksource struct */
2062 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2063
2064 ktime_t offs_boot;
2065 u64 wall_time_sec;
2066 };
2067
2068 static struct pvclock_gtod_data pvclock_gtod_data;
2069
2070 static void update_pvclock_gtod(struct timekeeper *tk)
2071 {
2072 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2073
2074 write_seqcount_begin(&vdata->seq);
2075
2076 /* copy pvclock gtod data */
2077 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2078 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2079 vdata->clock.mask = tk->tkr_mono.mask;
2080 vdata->clock.mult = tk->tkr_mono.mult;
2081 vdata->clock.shift = tk->tkr_mono.shift;
2082 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2083 vdata->clock.offset = tk->tkr_mono.base;
2084
2085 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2086 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2087 vdata->raw_clock.mask = tk->tkr_raw.mask;
2088 vdata->raw_clock.mult = tk->tkr_raw.mult;
2089 vdata->raw_clock.shift = tk->tkr_raw.shift;
2090 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2091 vdata->raw_clock.offset = tk->tkr_raw.base;
2092
2093 vdata->wall_time_sec = tk->xtime_sec;
2094
2095 vdata->offs_boot = tk->offs_boot;
2096
2097 write_seqcount_end(&vdata->seq);
2098 }
2099
2100 static s64 get_kvmclock_base_ns(void)
2101 {
2102 /* Count up from boot time, but with the frequency of the raw clock. */
2103 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2104 }
2105 #else
2106 static s64 get_kvmclock_base_ns(void)
2107 {
2108 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2109 return ktime_get_boottime_ns();
2110 }
2111 #endif
2112
2113 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2114 {
2115 int version;
2116 int r;
2117 struct pvclock_wall_clock wc;
2118 u32 wc_sec_hi;
2119 u64 wall_nsec;
2120
2121 if (!wall_clock)
2122 return;
2123
2124 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2125 if (r)
2126 return;
2127
2128 if (version & 1)
2129 ++version; /* first time write, random junk */
2130
2131 ++version;
2132
2133 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2134 return;
2135
2136 /*
2137 * The guest calculates current wall clock time by adding
2138 * system time (updated by kvm_guest_time_update below) to the
2139 * wall clock specified here. We do the reverse here.
2140 */
2141 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2142
2143 wc.nsec = do_div(wall_nsec, 1000000000);
2144 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2145 wc.version = version;
2146
2147 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2148
2149 if (sec_hi_ofs) {
2150 wc_sec_hi = wall_nsec >> 32;
2151 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2152 &wc_sec_hi, sizeof(wc_sec_hi));
2153 }
2154
2155 version++;
2156 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2157 }
2158
2159 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2160 bool old_msr, bool host_initiated)
2161 {
2162 struct kvm_arch *ka = &vcpu->kvm->arch;
2163
2164 if (vcpu->vcpu_id == 0 && !host_initiated) {
2165 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2166 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2167
2168 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2169 }
2170
2171 vcpu->arch.time = system_time;
2172 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2173
2174 /* we verify if the enable bit is set... */
2175 vcpu->arch.pv_time_enabled = false;
2176 if (!(system_time & 1))
2177 return;
2178
2179 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2180 &vcpu->arch.pv_time, system_time & ~1ULL,
2181 sizeof(struct pvclock_vcpu_time_info)))
2182 vcpu->arch.pv_time_enabled = true;
2183
2184 return;
2185 }
2186
2187 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2188 {
2189 do_shl32_div32(dividend, divisor);
2190 return dividend;
2191 }
2192
2193 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2194 s8 *pshift, u32 *pmultiplier)
2195 {
2196 uint64_t scaled64;
2197 int32_t shift = 0;
2198 uint64_t tps64;
2199 uint32_t tps32;
2200
2201 tps64 = base_hz;
2202 scaled64 = scaled_hz;
2203 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2204 tps64 >>= 1;
2205 shift--;
2206 }
2207
2208 tps32 = (uint32_t)tps64;
2209 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2210 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2211 scaled64 >>= 1;
2212 else
2213 tps32 <<= 1;
2214 shift++;
2215 }
2216
2217 *pshift = shift;
2218 *pmultiplier = div_frac(scaled64, tps32);
2219 }
2220
2221 #ifdef CONFIG_X86_64
2222 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2223 #endif
2224
2225 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2226 static unsigned long max_tsc_khz;
2227
2228 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2229 {
2230 u64 v = (u64)khz * (1000000 + ppm);
2231 do_div(v, 1000000);
2232 return v;
2233 }
2234
2235 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2236
2237 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2238 {
2239 u64 ratio;
2240
2241 /* Guest TSC same frequency as host TSC? */
2242 if (!scale) {
2243 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2244 return 0;
2245 }
2246
2247 /* TSC scaling supported? */
2248 if (!kvm_has_tsc_control) {
2249 if (user_tsc_khz > tsc_khz) {
2250 vcpu->arch.tsc_catchup = 1;
2251 vcpu->arch.tsc_always_catchup = 1;
2252 return 0;
2253 } else {
2254 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2255 return -1;
2256 }
2257 }
2258
2259 /* TSC scaling required - calculate ratio */
2260 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2261 user_tsc_khz, tsc_khz);
2262
2263 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2264 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2265 user_tsc_khz);
2266 return -1;
2267 }
2268
2269 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2270 return 0;
2271 }
2272
2273 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2274 {
2275 u32 thresh_lo, thresh_hi;
2276 int use_scaling = 0;
2277
2278 /* tsc_khz can be zero if TSC calibration fails */
2279 if (user_tsc_khz == 0) {
2280 /* set tsc_scaling_ratio to a safe value */
2281 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2282 return -1;
2283 }
2284
2285 /* Compute a scale to convert nanoseconds in TSC cycles */
2286 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2287 &vcpu->arch.virtual_tsc_shift,
2288 &vcpu->arch.virtual_tsc_mult);
2289 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2290
2291 /*
2292 * Compute the variation in TSC rate which is acceptable
2293 * within the range of tolerance and decide if the
2294 * rate being applied is within that bounds of the hardware
2295 * rate. If so, no scaling or compensation need be done.
2296 */
2297 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2298 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2299 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2300 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2301 use_scaling = 1;
2302 }
2303 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2304 }
2305
2306 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2307 {
2308 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2309 vcpu->arch.virtual_tsc_mult,
2310 vcpu->arch.virtual_tsc_shift);
2311 tsc += vcpu->arch.this_tsc_write;
2312 return tsc;
2313 }
2314
2315 static inline int gtod_is_based_on_tsc(int mode)
2316 {
2317 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2318 }
2319
2320 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2321 {
2322 #ifdef CONFIG_X86_64
2323 bool vcpus_matched;
2324 struct kvm_arch *ka = &vcpu->kvm->arch;
2325 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2326
2327 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2328 atomic_read(&vcpu->kvm->online_vcpus));
2329
2330 /*
2331 * Once the masterclock is enabled, always perform request in
2332 * order to update it.
2333 *
2334 * In order to enable masterclock, the host clocksource must be TSC
2335 * and the vcpus need to have matched TSCs. When that happens,
2336 * perform request to enable masterclock.
2337 */
2338 if (ka->use_master_clock ||
2339 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2340 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2341
2342 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2343 atomic_read(&vcpu->kvm->online_vcpus),
2344 ka->use_master_clock, gtod->clock.vclock_mode);
2345 #endif
2346 }
2347
2348 /*
2349 * Multiply tsc by a fixed point number represented by ratio.
2350 *
2351 * The most significant 64-N bits (mult) of ratio represent the
2352 * integral part of the fixed point number; the remaining N bits
2353 * (frac) represent the fractional part, ie. ratio represents a fixed
2354 * point number (mult + frac * 2^(-N)).
2355 *
2356 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2357 */
2358 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2359 {
2360 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2361 }
2362
2363 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2364 {
2365 u64 _tsc = tsc;
2366
2367 if (ratio != kvm_default_tsc_scaling_ratio)
2368 _tsc = __scale_tsc(ratio, tsc);
2369
2370 return _tsc;
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2373
2374 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2375 {
2376 u64 tsc;
2377
2378 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2379
2380 return target_tsc - tsc;
2381 }
2382
2383 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2384 {
2385 return vcpu->arch.l1_tsc_offset +
2386 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2389
2390 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2391 {
2392 u64 nested_offset;
2393
2394 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2395 nested_offset = l1_offset;
2396 else
2397 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2398 kvm_tsc_scaling_ratio_frac_bits);
2399
2400 nested_offset += l2_offset;
2401 return nested_offset;
2402 }
2403 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2404
2405 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2406 {
2407 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2408 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2409 kvm_tsc_scaling_ratio_frac_bits);
2410
2411 return l1_multiplier;
2412 }
2413 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2414
2415 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2416 {
2417 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2418 vcpu->arch.l1_tsc_offset,
2419 l1_offset);
2420
2421 vcpu->arch.l1_tsc_offset = l1_offset;
2422
2423 /*
2424 * If we are here because L1 chose not to trap WRMSR to TSC then
2425 * according to the spec this should set L1's TSC (as opposed to
2426 * setting L1's offset for L2).
2427 */
2428 if (is_guest_mode(vcpu))
2429 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2430 l1_offset,
2431 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2432 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2433 else
2434 vcpu->arch.tsc_offset = l1_offset;
2435
2436 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2437 }
2438
2439 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2440 {
2441 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2442
2443 /* Userspace is changing the multiplier while L2 is active */
2444 if (is_guest_mode(vcpu))
2445 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2446 l1_multiplier,
2447 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2448 else
2449 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2450
2451 if (kvm_has_tsc_control)
2452 static_call(kvm_x86_write_tsc_multiplier)(
2453 vcpu, vcpu->arch.tsc_scaling_ratio);
2454 }
2455
2456 static inline bool kvm_check_tsc_unstable(void)
2457 {
2458 #ifdef CONFIG_X86_64
2459 /*
2460 * TSC is marked unstable when we're running on Hyper-V,
2461 * 'TSC page' clocksource is good.
2462 */
2463 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2464 return false;
2465 #endif
2466 return check_tsc_unstable();
2467 }
2468
2469 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2470 {
2471 struct kvm *kvm = vcpu->kvm;
2472 u64 offset, ns, elapsed;
2473 unsigned long flags;
2474 bool matched;
2475 bool already_matched;
2476 bool synchronizing = false;
2477
2478 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2479 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2480 ns = get_kvmclock_base_ns();
2481 elapsed = ns - kvm->arch.last_tsc_nsec;
2482
2483 if (vcpu->arch.virtual_tsc_khz) {
2484 if (data == 0) {
2485 /*
2486 * detection of vcpu initialization -- need to sync
2487 * with other vCPUs. This particularly helps to keep
2488 * kvm_clock stable after CPU hotplug
2489 */
2490 synchronizing = true;
2491 } else {
2492 u64 tsc_exp = kvm->arch.last_tsc_write +
2493 nsec_to_cycles(vcpu, elapsed);
2494 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2495 /*
2496 * Special case: TSC write with a small delta (1 second)
2497 * of virtual cycle time against real time is
2498 * interpreted as an attempt to synchronize the CPU.
2499 */
2500 synchronizing = data < tsc_exp + tsc_hz &&
2501 data + tsc_hz > tsc_exp;
2502 }
2503 }
2504
2505 /*
2506 * For a reliable TSC, we can match TSC offsets, and for an unstable
2507 * TSC, we add elapsed time in this computation. We could let the
2508 * compensation code attempt to catch up if we fall behind, but
2509 * it's better to try to match offsets from the beginning.
2510 */
2511 if (synchronizing &&
2512 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2513 if (!kvm_check_tsc_unstable()) {
2514 offset = kvm->arch.cur_tsc_offset;
2515 } else {
2516 u64 delta = nsec_to_cycles(vcpu, elapsed);
2517 data += delta;
2518 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2519 }
2520 matched = true;
2521 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2522 } else {
2523 /*
2524 * We split periods of matched TSC writes into generations.
2525 * For each generation, we track the original measured
2526 * nanosecond time, offset, and write, so if TSCs are in
2527 * sync, we can match exact offset, and if not, we can match
2528 * exact software computation in compute_guest_tsc()
2529 *
2530 * These values are tracked in kvm->arch.cur_xxx variables.
2531 */
2532 kvm->arch.cur_tsc_generation++;
2533 kvm->arch.cur_tsc_nsec = ns;
2534 kvm->arch.cur_tsc_write = data;
2535 kvm->arch.cur_tsc_offset = offset;
2536 matched = false;
2537 }
2538
2539 /*
2540 * We also track th most recent recorded KHZ, write and time to
2541 * allow the matching interval to be extended at each write.
2542 */
2543 kvm->arch.last_tsc_nsec = ns;
2544 kvm->arch.last_tsc_write = data;
2545 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2546
2547 vcpu->arch.last_guest_tsc = data;
2548
2549 /* Keep track of which generation this VCPU has synchronized to */
2550 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2551 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2552 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2553
2554 kvm_vcpu_write_tsc_offset(vcpu, offset);
2555 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2556
2557 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2558 if (!matched) {
2559 kvm->arch.nr_vcpus_matched_tsc = 0;
2560 } else if (!already_matched) {
2561 kvm->arch.nr_vcpus_matched_tsc++;
2562 }
2563
2564 kvm_track_tsc_matching(vcpu);
2565 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2566 }
2567
2568 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2569 s64 adjustment)
2570 {
2571 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2572 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2573 }
2574
2575 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2576 {
2577 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2578 WARN_ON(adjustment < 0);
2579 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2580 vcpu->arch.l1_tsc_scaling_ratio);
2581 adjust_tsc_offset_guest(vcpu, adjustment);
2582 }
2583
2584 #ifdef CONFIG_X86_64
2585
2586 static u64 read_tsc(void)
2587 {
2588 u64 ret = (u64)rdtsc_ordered();
2589 u64 last = pvclock_gtod_data.clock.cycle_last;
2590
2591 if (likely(ret >= last))
2592 return ret;
2593
2594 /*
2595 * GCC likes to generate cmov here, but this branch is extremely
2596 * predictable (it's just a function of time and the likely is
2597 * very likely) and there's a data dependence, so force GCC
2598 * to generate a branch instead. I don't barrier() because
2599 * we don't actually need a barrier, and if this function
2600 * ever gets inlined it will generate worse code.
2601 */
2602 asm volatile ("");
2603 return last;
2604 }
2605
2606 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2607 int *mode)
2608 {
2609 long v;
2610 u64 tsc_pg_val;
2611
2612 switch (clock->vclock_mode) {
2613 case VDSO_CLOCKMODE_HVCLOCK:
2614 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2615 tsc_timestamp);
2616 if (tsc_pg_val != U64_MAX) {
2617 /* TSC page valid */
2618 *mode = VDSO_CLOCKMODE_HVCLOCK;
2619 v = (tsc_pg_val - clock->cycle_last) &
2620 clock->mask;
2621 } else {
2622 /* TSC page invalid */
2623 *mode = VDSO_CLOCKMODE_NONE;
2624 }
2625 break;
2626 case VDSO_CLOCKMODE_TSC:
2627 *mode = VDSO_CLOCKMODE_TSC;
2628 *tsc_timestamp = read_tsc();
2629 v = (*tsc_timestamp - clock->cycle_last) &
2630 clock->mask;
2631 break;
2632 default:
2633 *mode = VDSO_CLOCKMODE_NONE;
2634 }
2635
2636 if (*mode == VDSO_CLOCKMODE_NONE)
2637 *tsc_timestamp = v = 0;
2638
2639 return v * clock->mult;
2640 }
2641
2642 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2643 {
2644 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2645 unsigned long seq;
2646 int mode;
2647 u64 ns;
2648
2649 do {
2650 seq = read_seqcount_begin(&gtod->seq);
2651 ns = gtod->raw_clock.base_cycles;
2652 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2653 ns >>= gtod->raw_clock.shift;
2654 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2655 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2656 *t = ns;
2657
2658 return mode;
2659 }
2660
2661 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2662 {
2663 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2664 unsigned long seq;
2665 int mode;
2666 u64 ns;
2667
2668 do {
2669 seq = read_seqcount_begin(&gtod->seq);
2670 ts->tv_sec = gtod->wall_time_sec;
2671 ns = gtod->clock.base_cycles;
2672 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2673 ns >>= gtod->clock.shift;
2674 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2675
2676 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2677 ts->tv_nsec = ns;
2678
2679 return mode;
2680 }
2681
2682 /* returns true if host is using TSC based clocksource */
2683 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2690 tsc_timestamp));
2691 }
2692
2693 /* returns true if host is using TSC based clocksource */
2694 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2695 u64 *tsc_timestamp)
2696 {
2697 /* checked again under seqlock below */
2698 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2699 return false;
2700
2701 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2702 }
2703 #endif
2704
2705 /*
2706 *
2707 * Assuming a stable TSC across physical CPUS, and a stable TSC
2708 * across virtual CPUs, the following condition is possible.
2709 * Each numbered line represents an event visible to both
2710 * CPUs at the next numbered event.
2711 *
2712 * "timespecX" represents host monotonic time. "tscX" represents
2713 * RDTSC value.
2714 *
2715 * VCPU0 on CPU0 | VCPU1 on CPU1
2716 *
2717 * 1. read timespec0,tsc0
2718 * 2. | timespec1 = timespec0 + N
2719 * | tsc1 = tsc0 + M
2720 * 3. transition to guest | transition to guest
2721 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2722 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2723 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2724 *
2725 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2726 *
2727 * - ret0 < ret1
2728 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2729 * ...
2730 * - 0 < N - M => M < N
2731 *
2732 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2733 * always the case (the difference between two distinct xtime instances
2734 * might be smaller then the difference between corresponding TSC reads,
2735 * when updating guest vcpus pvclock areas).
2736 *
2737 * To avoid that problem, do not allow visibility of distinct
2738 * system_timestamp/tsc_timestamp values simultaneously: use a master
2739 * copy of host monotonic time values. Update that master copy
2740 * in lockstep.
2741 *
2742 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2743 *
2744 */
2745
2746 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2747 {
2748 #ifdef CONFIG_X86_64
2749 struct kvm_arch *ka = &kvm->arch;
2750 int vclock_mode;
2751 bool host_tsc_clocksource, vcpus_matched;
2752
2753 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2754 atomic_read(&kvm->online_vcpus));
2755
2756 /*
2757 * If the host uses TSC clock, then passthrough TSC as stable
2758 * to the guest.
2759 */
2760 host_tsc_clocksource = kvm_get_time_and_clockread(
2761 &ka->master_kernel_ns,
2762 &ka->master_cycle_now);
2763
2764 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2765 && !ka->backwards_tsc_observed
2766 && !ka->boot_vcpu_runs_old_kvmclock;
2767
2768 if (ka->use_master_clock)
2769 atomic_set(&kvm_guest_has_master_clock, 1);
2770
2771 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2772 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2773 vcpus_matched);
2774 #endif
2775 }
2776
2777 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2778 {
2779 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2780 }
2781
2782 static void kvm_gen_update_masterclock(struct kvm *kvm)
2783 {
2784 #ifdef CONFIG_X86_64
2785 int i;
2786 struct kvm_vcpu *vcpu;
2787 struct kvm_arch *ka = &kvm->arch;
2788 unsigned long flags;
2789
2790 kvm_hv_invalidate_tsc_page(kvm);
2791
2792 kvm_make_mclock_inprogress_request(kvm);
2793
2794 /* no guest entries from this point */
2795 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2796 pvclock_update_vm_gtod_copy(kvm);
2797 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2798
2799 kvm_for_each_vcpu(i, vcpu, kvm)
2800 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2801
2802 /* guest entries allowed */
2803 kvm_for_each_vcpu(i, vcpu, kvm)
2804 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2805 #endif
2806 }
2807
2808 u64 get_kvmclock_ns(struct kvm *kvm)
2809 {
2810 struct kvm_arch *ka = &kvm->arch;
2811 struct pvclock_vcpu_time_info hv_clock;
2812 unsigned long flags;
2813 u64 ret;
2814
2815 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2816 if (!ka->use_master_clock) {
2817 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2818 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2819 }
2820
2821 hv_clock.tsc_timestamp = ka->master_cycle_now;
2822 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2823 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2824
2825 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2826 get_cpu();
2827
2828 if (__this_cpu_read(cpu_tsc_khz)) {
2829 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2830 &hv_clock.tsc_shift,
2831 &hv_clock.tsc_to_system_mul);
2832 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2833 } else
2834 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2835
2836 put_cpu();
2837
2838 return ret;
2839 }
2840
2841 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2842 struct gfn_to_hva_cache *cache,
2843 unsigned int offset)
2844 {
2845 struct kvm_vcpu_arch *vcpu = &v->arch;
2846 struct pvclock_vcpu_time_info guest_hv_clock;
2847
2848 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2849 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2850 return;
2851
2852 /* This VCPU is paused, but it's legal for a guest to read another
2853 * VCPU's kvmclock, so we really have to follow the specification where
2854 * it says that version is odd if data is being modified, and even after
2855 * it is consistent.
2856 *
2857 * Version field updates must be kept separate. This is because
2858 * kvm_write_guest_cached might use a "rep movs" instruction, and
2859 * writes within a string instruction are weakly ordered. So there
2860 * are three writes overall.
2861 *
2862 * As a small optimization, only write the version field in the first
2863 * and third write. The vcpu->pv_time cache is still valid, because the
2864 * version field is the first in the struct.
2865 */
2866 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2867
2868 if (guest_hv_clock.version & 1)
2869 ++guest_hv_clock.version; /* first time write, random junk */
2870
2871 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2872 kvm_write_guest_offset_cached(v->kvm, cache,
2873 &vcpu->hv_clock, offset,
2874 sizeof(vcpu->hv_clock.version));
2875
2876 smp_wmb();
2877
2878 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2879 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2880
2881 if (vcpu->pvclock_set_guest_stopped_request) {
2882 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2883 vcpu->pvclock_set_guest_stopped_request = false;
2884 }
2885
2886 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2887
2888 kvm_write_guest_offset_cached(v->kvm, cache,
2889 &vcpu->hv_clock, offset,
2890 sizeof(vcpu->hv_clock));
2891
2892 smp_wmb();
2893
2894 vcpu->hv_clock.version++;
2895 kvm_write_guest_offset_cached(v->kvm, cache,
2896 &vcpu->hv_clock, offset,
2897 sizeof(vcpu->hv_clock.version));
2898 }
2899
2900 static int kvm_guest_time_update(struct kvm_vcpu *v)
2901 {
2902 unsigned long flags, tgt_tsc_khz;
2903 struct kvm_vcpu_arch *vcpu = &v->arch;
2904 struct kvm_arch *ka = &v->kvm->arch;
2905 s64 kernel_ns;
2906 u64 tsc_timestamp, host_tsc;
2907 u8 pvclock_flags;
2908 bool use_master_clock;
2909
2910 kernel_ns = 0;
2911 host_tsc = 0;
2912
2913 /*
2914 * If the host uses TSC clock, then passthrough TSC as stable
2915 * to the guest.
2916 */
2917 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2918 use_master_clock = ka->use_master_clock;
2919 if (use_master_clock) {
2920 host_tsc = ka->master_cycle_now;
2921 kernel_ns = ka->master_kernel_ns;
2922 }
2923 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2924
2925 /* Keep irq disabled to prevent changes to the clock */
2926 local_irq_save(flags);
2927 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2928 if (unlikely(tgt_tsc_khz == 0)) {
2929 local_irq_restore(flags);
2930 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2931 return 1;
2932 }
2933 if (!use_master_clock) {
2934 host_tsc = rdtsc();
2935 kernel_ns = get_kvmclock_base_ns();
2936 }
2937
2938 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2939
2940 /*
2941 * We may have to catch up the TSC to match elapsed wall clock
2942 * time for two reasons, even if kvmclock is used.
2943 * 1) CPU could have been running below the maximum TSC rate
2944 * 2) Broken TSC compensation resets the base at each VCPU
2945 * entry to avoid unknown leaps of TSC even when running
2946 * again on the same CPU. This may cause apparent elapsed
2947 * time to disappear, and the guest to stand still or run
2948 * very slowly.
2949 */
2950 if (vcpu->tsc_catchup) {
2951 u64 tsc = compute_guest_tsc(v, kernel_ns);
2952 if (tsc > tsc_timestamp) {
2953 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2954 tsc_timestamp = tsc;
2955 }
2956 }
2957
2958 local_irq_restore(flags);
2959
2960 /* With all the info we got, fill in the values */
2961
2962 if (kvm_has_tsc_control)
2963 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2964 v->arch.l1_tsc_scaling_ratio);
2965
2966 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2967 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2968 &vcpu->hv_clock.tsc_shift,
2969 &vcpu->hv_clock.tsc_to_system_mul);
2970 vcpu->hw_tsc_khz = tgt_tsc_khz;
2971 }
2972
2973 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2974 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2975 vcpu->last_guest_tsc = tsc_timestamp;
2976
2977 /* If the host uses TSC clocksource, then it is stable */
2978 pvclock_flags = 0;
2979 if (use_master_clock)
2980 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2981
2982 vcpu->hv_clock.flags = pvclock_flags;
2983
2984 if (vcpu->pv_time_enabled)
2985 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2986 if (vcpu->xen.vcpu_info_set)
2987 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2988 offsetof(struct compat_vcpu_info, time));
2989 if (vcpu->xen.vcpu_time_info_set)
2990 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2991 if (!v->vcpu_idx)
2992 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2993 return 0;
2994 }
2995
2996 /*
2997 * kvmclock updates which are isolated to a given vcpu, such as
2998 * vcpu->cpu migration, should not allow system_timestamp from
2999 * the rest of the vcpus to remain static. Otherwise ntp frequency
3000 * correction applies to one vcpu's system_timestamp but not
3001 * the others.
3002 *
3003 * So in those cases, request a kvmclock update for all vcpus.
3004 * We need to rate-limit these requests though, as they can
3005 * considerably slow guests that have a large number of vcpus.
3006 * The time for a remote vcpu to update its kvmclock is bound
3007 * by the delay we use to rate-limit the updates.
3008 */
3009
3010 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3011
3012 static void kvmclock_update_fn(struct work_struct *work)
3013 {
3014 int i;
3015 struct delayed_work *dwork = to_delayed_work(work);
3016 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3017 kvmclock_update_work);
3018 struct kvm *kvm = container_of(ka, struct kvm, arch);
3019 struct kvm_vcpu *vcpu;
3020
3021 kvm_for_each_vcpu(i, vcpu, kvm) {
3022 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3023 kvm_vcpu_kick(vcpu);
3024 }
3025 }
3026
3027 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3028 {
3029 struct kvm *kvm = v->kvm;
3030
3031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3032 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3033 KVMCLOCK_UPDATE_DELAY);
3034 }
3035
3036 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3037
3038 static void kvmclock_sync_fn(struct work_struct *work)
3039 {
3040 struct delayed_work *dwork = to_delayed_work(work);
3041 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3042 kvmclock_sync_work);
3043 struct kvm *kvm = container_of(ka, struct kvm, arch);
3044
3045 if (!kvmclock_periodic_sync)
3046 return;
3047
3048 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3049 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3050 KVMCLOCK_SYNC_PERIOD);
3051 }
3052
3053 /*
3054 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3055 */
3056 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3057 {
3058 /* McStatusWrEn enabled? */
3059 if (guest_cpuid_is_amd_or_hygon(vcpu))
3060 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3061
3062 return false;
3063 }
3064
3065 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3066 {
3067 u64 mcg_cap = vcpu->arch.mcg_cap;
3068 unsigned bank_num = mcg_cap & 0xff;
3069 u32 msr = msr_info->index;
3070 u64 data = msr_info->data;
3071
3072 switch (msr) {
3073 case MSR_IA32_MCG_STATUS:
3074 vcpu->arch.mcg_status = data;
3075 break;
3076 case MSR_IA32_MCG_CTL:
3077 if (!(mcg_cap & MCG_CTL_P) &&
3078 (data || !msr_info->host_initiated))
3079 return 1;
3080 if (data != 0 && data != ~(u64)0)
3081 return 1;
3082 vcpu->arch.mcg_ctl = data;
3083 break;
3084 default:
3085 if (msr >= MSR_IA32_MC0_CTL &&
3086 msr < MSR_IA32_MCx_CTL(bank_num)) {
3087 u32 offset = array_index_nospec(
3088 msr - MSR_IA32_MC0_CTL,
3089 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3090
3091 /* only 0 or all 1s can be written to IA32_MCi_CTL
3092 * some Linux kernels though clear bit 10 in bank 4 to
3093 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3094 * this to avoid an uncatched #GP in the guest
3095 */
3096 if ((offset & 0x3) == 0 &&
3097 data != 0 && (data | (1 << 10)) != ~(u64)0)
3098 return -1;
3099
3100 /* MCi_STATUS */
3101 if (!msr_info->host_initiated &&
3102 (offset & 0x3) == 1 && data != 0) {
3103 if (!can_set_mci_status(vcpu))
3104 return -1;
3105 }
3106
3107 vcpu->arch.mce_banks[offset] = data;
3108 break;
3109 }
3110 return 1;
3111 }
3112 return 0;
3113 }
3114
3115 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3116 {
3117 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3118
3119 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3120 }
3121
3122 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3123 {
3124 gpa_t gpa = data & ~0x3f;
3125
3126 /* Bits 4:5 are reserved, Should be zero */
3127 if (data & 0x30)
3128 return 1;
3129
3130 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3131 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3132 return 1;
3133
3134 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3135 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3136 return 1;
3137
3138 if (!lapic_in_kernel(vcpu))
3139 return data ? 1 : 0;
3140
3141 vcpu->arch.apf.msr_en_val = data;
3142
3143 if (!kvm_pv_async_pf_enabled(vcpu)) {
3144 kvm_clear_async_pf_completion_queue(vcpu);
3145 kvm_async_pf_hash_reset(vcpu);
3146 return 0;
3147 }
3148
3149 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3150 sizeof(u64)))
3151 return 1;
3152
3153 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3154 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3155
3156 kvm_async_pf_wakeup_all(vcpu);
3157
3158 return 0;
3159 }
3160
3161 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3162 {
3163 /* Bits 8-63 are reserved */
3164 if (data >> 8)
3165 return 1;
3166
3167 if (!lapic_in_kernel(vcpu))
3168 return 1;
3169
3170 vcpu->arch.apf.msr_int_val = data;
3171
3172 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3173
3174 return 0;
3175 }
3176
3177 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3178 {
3179 vcpu->arch.pv_time_enabled = false;
3180 vcpu->arch.time = 0;
3181 }
3182
3183 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3184 {
3185 ++vcpu->stat.tlb_flush;
3186 static_call(kvm_x86_tlb_flush_all)(vcpu);
3187 }
3188
3189 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3190 {
3191 ++vcpu->stat.tlb_flush;
3192
3193 if (!tdp_enabled) {
3194 /*
3195 * A TLB flush on behalf of the guest is equivalent to
3196 * INVPCID(all), toggling CR4.PGE, etc., which requires
3197 * a forced sync of the shadow page tables. Unload the
3198 * entire MMU here and the subsequent load will sync the
3199 * shadow page tables, and also flush the TLB.
3200 */
3201 kvm_mmu_unload(vcpu);
3202 return;
3203 }
3204
3205 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3206 }
3207
3208
3209 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3210 {
3211 ++vcpu->stat.tlb_flush;
3212 static_call(kvm_x86_tlb_flush_current)(vcpu);
3213 }
3214
3215 /*
3216 * Service "local" TLB flush requests, which are specific to the current MMU
3217 * context. In addition to the generic event handling in vcpu_enter_guest(),
3218 * TLB flushes that are targeted at an MMU context also need to be serviced
3219 * prior before nested VM-Enter/VM-Exit.
3220 */
3221 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3222 {
3223 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3224 kvm_vcpu_flush_tlb_current(vcpu);
3225
3226 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3227 kvm_vcpu_flush_tlb_guest(vcpu);
3228 }
3229 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3230
3231 static void record_steal_time(struct kvm_vcpu *vcpu)
3232 {
3233 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3234 struct kvm_steal_time __user *st;
3235 struct kvm_memslots *slots;
3236 u64 steal;
3237 u32 version;
3238
3239 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3240 kvm_xen_runstate_set_running(vcpu);
3241 return;
3242 }
3243
3244 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3245 return;
3246
3247 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3248 return;
3249
3250 slots = kvm_memslots(vcpu->kvm);
3251
3252 if (unlikely(slots->generation != ghc->generation ||
3253 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3254 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3255
3256 /* We rely on the fact that it fits in a single page. */
3257 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3258
3259 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3260 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3261 return;
3262 }
3263
3264 st = (struct kvm_steal_time __user *)ghc->hva;
3265 /*
3266 * Doing a TLB flush here, on the guest's behalf, can avoid
3267 * expensive IPIs.
3268 */
3269 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3270 u8 st_preempted = 0;
3271 int err = -EFAULT;
3272
3273 if (!user_access_begin(st, sizeof(*st)))
3274 return;
3275
3276 asm volatile("1: xchgb %0, %2\n"
3277 "xor %1, %1\n"
3278 "2:\n"
3279 _ASM_EXTABLE_UA(1b, 2b)
3280 : "+q" (st_preempted),
3281 "+&r" (err),
3282 "+m" (st->preempted));
3283 if (err)
3284 goto out;
3285
3286 user_access_end();
3287
3288 vcpu->arch.st.preempted = 0;
3289
3290 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3291 st_preempted & KVM_VCPU_FLUSH_TLB);
3292 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3293 kvm_vcpu_flush_tlb_guest(vcpu);
3294
3295 if (!user_access_begin(st, sizeof(*st)))
3296 goto dirty;
3297 } else {
3298 if (!user_access_begin(st, sizeof(*st)))
3299 return;
3300
3301 unsafe_put_user(0, &st->preempted, out);
3302 vcpu->arch.st.preempted = 0;
3303 }
3304
3305 unsafe_get_user(version, &st->version, out);
3306 if (version & 1)
3307 version += 1; /* first time write, random junk */
3308
3309 version += 1;
3310 unsafe_put_user(version, &st->version, out);
3311
3312 smp_wmb();
3313
3314 unsafe_get_user(steal, &st->steal, out);
3315 steal += current->sched_info.run_delay -
3316 vcpu->arch.st.last_steal;
3317 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3318 unsafe_put_user(steal, &st->steal, out);
3319
3320 version += 1;
3321 unsafe_put_user(version, &st->version, out);
3322
3323 out:
3324 user_access_end();
3325 dirty:
3326 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3327 }
3328
3329 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3330 {
3331 bool pr = false;
3332 u32 msr = msr_info->index;
3333 u64 data = msr_info->data;
3334
3335 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3336 return kvm_xen_write_hypercall_page(vcpu, data);
3337
3338 switch (msr) {
3339 case MSR_AMD64_NB_CFG:
3340 case MSR_IA32_UCODE_WRITE:
3341 case MSR_VM_HSAVE_PA:
3342 case MSR_AMD64_PATCH_LOADER:
3343 case MSR_AMD64_BU_CFG2:
3344 case MSR_AMD64_DC_CFG:
3345 case MSR_F15H_EX_CFG:
3346 break;
3347
3348 case MSR_IA32_UCODE_REV:
3349 if (msr_info->host_initiated)
3350 vcpu->arch.microcode_version = data;
3351 break;
3352 case MSR_IA32_ARCH_CAPABILITIES:
3353 if (!msr_info->host_initiated)
3354 return 1;
3355 vcpu->arch.arch_capabilities = data;
3356 break;
3357 case MSR_IA32_PERF_CAPABILITIES: {
3358 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3359
3360 if (!msr_info->host_initiated)
3361 return 1;
3362 if (kvm_get_msr_feature(&msr_ent))
3363 return 1;
3364 if (data & ~msr_ent.data)
3365 return 1;
3366
3367 vcpu->arch.perf_capabilities = data;
3368
3369 return 0;
3370 }
3371 case MSR_EFER:
3372 return set_efer(vcpu, msr_info);
3373 case MSR_K7_HWCR:
3374 data &= ~(u64)0x40; /* ignore flush filter disable */
3375 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3376 data &= ~(u64)0x8; /* ignore TLB cache disable */
3377
3378 /* Handle McStatusWrEn */
3379 if (data == BIT_ULL(18)) {
3380 vcpu->arch.msr_hwcr = data;
3381 } else if (data != 0) {
3382 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3383 data);
3384 return 1;
3385 }
3386 break;
3387 case MSR_FAM10H_MMIO_CONF_BASE:
3388 if (data != 0) {
3389 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3390 "0x%llx\n", data);
3391 return 1;
3392 }
3393 break;
3394 case 0x200 ... 0x2ff:
3395 return kvm_mtrr_set_msr(vcpu, msr, data);
3396 case MSR_IA32_APICBASE:
3397 return kvm_set_apic_base(vcpu, msr_info);
3398 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3399 return kvm_x2apic_msr_write(vcpu, msr, data);
3400 case MSR_IA32_TSC_DEADLINE:
3401 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3402 break;
3403 case MSR_IA32_TSC_ADJUST:
3404 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3405 if (!msr_info->host_initiated) {
3406 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3407 adjust_tsc_offset_guest(vcpu, adj);
3408 /* Before back to guest, tsc_timestamp must be adjusted
3409 * as well, otherwise guest's percpu pvclock time could jump.
3410 */
3411 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3412 }
3413 vcpu->arch.ia32_tsc_adjust_msr = data;
3414 }
3415 break;
3416 case MSR_IA32_MISC_ENABLE:
3417 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3418 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3419 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3420 return 1;
3421 vcpu->arch.ia32_misc_enable_msr = data;
3422 kvm_update_cpuid_runtime(vcpu);
3423 } else {
3424 vcpu->arch.ia32_misc_enable_msr = data;
3425 }
3426 break;
3427 case MSR_IA32_SMBASE:
3428 if (!msr_info->host_initiated)
3429 return 1;
3430 vcpu->arch.smbase = data;
3431 break;
3432 case MSR_IA32_POWER_CTL:
3433 vcpu->arch.msr_ia32_power_ctl = data;
3434 break;
3435 case MSR_IA32_TSC:
3436 if (msr_info->host_initiated) {
3437 kvm_synchronize_tsc(vcpu, data);
3438 } else {
3439 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3440 adjust_tsc_offset_guest(vcpu, adj);
3441 vcpu->arch.ia32_tsc_adjust_msr += adj;
3442 }
3443 break;
3444 case MSR_IA32_XSS:
3445 if (!msr_info->host_initiated &&
3446 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3447 return 1;
3448 /*
3449 * KVM supports exposing PT to the guest, but does not support
3450 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3451 * XSAVES/XRSTORS to save/restore PT MSRs.
3452 */
3453 if (data & ~supported_xss)
3454 return 1;
3455 vcpu->arch.ia32_xss = data;
3456 kvm_update_cpuid_runtime(vcpu);
3457 break;
3458 case MSR_SMI_COUNT:
3459 if (!msr_info->host_initiated)
3460 return 1;
3461 vcpu->arch.smi_count = data;
3462 break;
3463 case MSR_KVM_WALL_CLOCK_NEW:
3464 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3465 return 1;
3466
3467 vcpu->kvm->arch.wall_clock = data;
3468 kvm_write_wall_clock(vcpu->kvm, data, 0);
3469 break;
3470 case MSR_KVM_WALL_CLOCK:
3471 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3472 return 1;
3473
3474 vcpu->kvm->arch.wall_clock = data;
3475 kvm_write_wall_clock(vcpu->kvm, data, 0);
3476 break;
3477 case MSR_KVM_SYSTEM_TIME_NEW:
3478 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3479 return 1;
3480
3481 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3482 break;
3483 case MSR_KVM_SYSTEM_TIME:
3484 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3485 return 1;
3486
3487 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3488 break;
3489 case MSR_KVM_ASYNC_PF_EN:
3490 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3491 return 1;
3492
3493 if (kvm_pv_enable_async_pf(vcpu, data))
3494 return 1;
3495 break;
3496 case MSR_KVM_ASYNC_PF_INT:
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3498 return 1;
3499
3500 if (kvm_pv_enable_async_pf_int(vcpu, data))
3501 return 1;
3502 break;
3503 case MSR_KVM_ASYNC_PF_ACK:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3505 return 1;
3506 if (data & 0x1) {
3507 vcpu->arch.apf.pageready_pending = false;
3508 kvm_check_async_pf_completion(vcpu);
3509 }
3510 break;
3511 case MSR_KVM_STEAL_TIME:
3512 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3513 return 1;
3514
3515 if (unlikely(!sched_info_on()))
3516 return 1;
3517
3518 if (data & KVM_STEAL_RESERVED_MASK)
3519 return 1;
3520
3521 vcpu->arch.st.msr_val = data;
3522
3523 if (!(data & KVM_MSR_ENABLED))
3524 break;
3525
3526 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3527
3528 break;
3529 case MSR_KVM_PV_EOI_EN:
3530 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3531 return 1;
3532
3533 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3534 return 1;
3535 break;
3536
3537 case MSR_KVM_POLL_CONTROL:
3538 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3539 return 1;
3540
3541 /* only enable bit supported */
3542 if (data & (-1ULL << 1))
3543 return 1;
3544
3545 vcpu->arch.msr_kvm_poll_control = data;
3546 break;
3547
3548 case MSR_IA32_MCG_CTL:
3549 case MSR_IA32_MCG_STATUS:
3550 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3551 return set_msr_mce(vcpu, msr_info);
3552
3553 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3554 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3555 pr = true;
3556 fallthrough;
3557 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3558 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3559 if (kvm_pmu_is_valid_msr(vcpu, msr))
3560 return kvm_pmu_set_msr(vcpu, msr_info);
3561
3562 if (pr || data != 0)
3563 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3564 "0x%x data 0x%llx\n", msr, data);
3565 break;
3566 case MSR_K7_CLK_CTL:
3567 /*
3568 * Ignore all writes to this no longer documented MSR.
3569 * Writes are only relevant for old K7 processors,
3570 * all pre-dating SVM, but a recommended workaround from
3571 * AMD for these chips. It is possible to specify the
3572 * affected processor models on the command line, hence
3573 * the need to ignore the workaround.
3574 */
3575 break;
3576 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3577 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3578 case HV_X64_MSR_SYNDBG_OPTIONS:
3579 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3580 case HV_X64_MSR_CRASH_CTL:
3581 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3582 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3583 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3584 case HV_X64_MSR_TSC_EMULATION_STATUS:
3585 return kvm_hv_set_msr_common(vcpu, msr, data,
3586 msr_info->host_initiated);
3587 case MSR_IA32_BBL_CR_CTL3:
3588 /* Drop writes to this legacy MSR -- see rdmsr
3589 * counterpart for further detail.
3590 */
3591 if (report_ignored_msrs)
3592 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3593 msr, data);
3594 break;
3595 case MSR_AMD64_OSVW_ID_LENGTH:
3596 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3597 return 1;
3598 vcpu->arch.osvw.length = data;
3599 break;
3600 case MSR_AMD64_OSVW_STATUS:
3601 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3602 return 1;
3603 vcpu->arch.osvw.status = data;
3604 break;
3605 case MSR_PLATFORM_INFO:
3606 if (!msr_info->host_initiated ||
3607 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3608 cpuid_fault_enabled(vcpu)))
3609 return 1;
3610 vcpu->arch.msr_platform_info = data;
3611 break;
3612 case MSR_MISC_FEATURES_ENABLES:
3613 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3614 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3615 !supports_cpuid_fault(vcpu)))
3616 return 1;
3617 vcpu->arch.msr_misc_features_enables = data;
3618 break;
3619 default:
3620 if (kvm_pmu_is_valid_msr(vcpu, msr))
3621 return kvm_pmu_set_msr(vcpu, msr_info);
3622 return KVM_MSR_RET_INVALID;
3623 }
3624 return 0;
3625 }
3626 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3627
3628 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3629 {
3630 u64 data;
3631 u64 mcg_cap = vcpu->arch.mcg_cap;
3632 unsigned bank_num = mcg_cap & 0xff;
3633
3634 switch (msr) {
3635 case MSR_IA32_P5_MC_ADDR:
3636 case MSR_IA32_P5_MC_TYPE:
3637 data = 0;
3638 break;
3639 case MSR_IA32_MCG_CAP:
3640 data = vcpu->arch.mcg_cap;
3641 break;
3642 case MSR_IA32_MCG_CTL:
3643 if (!(mcg_cap & MCG_CTL_P) && !host)
3644 return 1;
3645 data = vcpu->arch.mcg_ctl;
3646 break;
3647 case MSR_IA32_MCG_STATUS:
3648 data = vcpu->arch.mcg_status;
3649 break;
3650 default:
3651 if (msr >= MSR_IA32_MC0_CTL &&
3652 msr < MSR_IA32_MCx_CTL(bank_num)) {
3653 u32 offset = array_index_nospec(
3654 msr - MSR_IA32_MC0_CTL,
3655 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3656
3657 data = vcpu->arch.mce_banks[offset];
3658 break;
3659 }
3660 return 1;
3661 }
3662 *pdata = data;
3663 return 0;
3664 }
3665
3666 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3667 {
3668 switch (msr_info->index) {
3669 case MSR_IA32_PLATFORM_ID:
3670 case MSR_IA32_EBL_CR_POWERON:
3671 case MSR_IA32_LASTBRANCHFROMIP:
3672 case MSR_IA32_LASTBRANCHTOIP:
3673 case MSR_IA32_LASTINTFROMIP:
3674 case MSR_IA32_LASTINTTOIP:
3675 case MSR_AMD64_SYSCFG:
3676 case MSR_K8_TSEG_ADDR:
3677 case MSR_K8_TSEG_MASK:
3678 case MSR_VM_HSAVE_PA:
3679 case MSR_K8_INT_PENDING_MSG:
3680 case MSR_AMD64_NB_CFG:
3681 case MSR_FAM10H_MMIO_CONF_BASE:
3682 case MSR_AMD64_BU_CFG2:
3683 case MSR_IA32_PERF_CTL:
3684 case MSR_AMD64_DC_CFG:
3685 case MSR_F15H_EX_CFG:
3686 /*
3687 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3688 * limit) MSRs. Just return 0, as we do not want to expose the host
3689 * data here. Do not conditionalize this on CPUID, as KVM does not do
3690 * so for existing CPU-specific MSRs.
3691 */
3692 case MSR_RAPL_POWER_UNIT:
3693 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3694 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3695 case MSR_PKG_ENERGY_STATUS: /* Total package */
3696 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3697 msr_info->data = 0;
3698 break;
3699 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3700 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3701 return kvm_pmu_get_msr(vcpu, msr_info);
3702 if (!msr_info->host_initiated)
3703 return 1;
3704 msr_info->data = 0;
3705 break;
3706 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3707 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3708 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3709 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3710 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3711 return kvm_pmu_get_msr(vcpu, msr_info);
3712 msr_info->data = 0;
3713 break;
3714 case MSR_IA32_UCODE_REV:
3715 msr_info->data = vcpu->arch.microcode_version;
3716 break;
3717 case MSR_IA32_ARCH_CAPABILITIES:
3718 if (!msr_info->host_initiated &&
3719 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3720 return 1;
3721 msr_info->data = vcpu->arch.arch_capabilities;
3722 break;
3723 case MSR_IA32_PERF_CAPABILITIES:
3724 if (!msr_info->host_initiated &&
3725 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3726 return 1;
3727 msr_info->data = vcpu->arch.perf_capabilities;
3728 break;
3729 case MSR_IA32_POWER_CTL:
3730 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3731 break;
3732 case MSR_IA32_TSC: {
3733 /*
3734 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3735 * even when not intercepted. AMD manual doesn't explicitly
3736 * state this but appears to behave the same.
3737 *
3738 * On userspace reads and writes, however, we unconditionally
3739 * return L1's TSC value to ensure backwards-compatible
3740 * behavior for migration.
3741 */
3742 u64 offset, ratio;
3743
3744 if (msr_info->host_initiated) {
3745 offset = vcpu->arch.l1_tsc_offset;
3746 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3747 } else {
3748 offset = vcpu->arch.tsc_offset;
3749 ratio = vcpu->arch.tsc_scaling_ratio;
3750 }
3751
3752 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3753 break;
3754 }
3755 case MSR_MTRRcap:
3756 case 0x200 ... 0x2ff:
3757 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3758 case 0xcd: /* fsb frequency */
3759 msr_info->data = 3;
3760 break;
3761 /*
3762 * MSR_EBC_FREQUENCY_ID
3763 * Conservative value valid for even the basic CPU models.
3764 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3765 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3766 * and 266MHz for model 3, or 4. Set Core Clock
3767 * Frequency to System Bus Frequency Ratio to 1 (bits
3768 * 31:24) even though these are only valid for CPU
3769 * models > 2, however guests may end up dividing or
3770 * multiplying by zero otherwise.
3771 */
3772 case MSR_EBC_FREQUENCY_ID:
3773 msr_info->data = 1 << 24;
3774 break;
3775 case MSR_IA32_APICBASE:
3776 msr_info->data = kvm_get_apic_base(vcpu);
3777 break;
3778 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3779 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3780 case MSR_IA32_TSC_DEADLINE:
3781 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3782 break;
3783 case MSR_IA32_TSC_ADJUST:
3784 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3785 break;
3786 case MSR_IA32_MISC_ENABLE:
3787 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3788 break;
3789 case MSR_IA32_SMBASE:
3790 if (!msr_info->host_initiated)
3791 return 1;
3792 msr_info->data = vcpu->arch.smbase;
3793 break;
3794 case MSR_SMI_COUNT:
3795 msr_info->data = vcpu->arch.smi_count;
3796 break;
3797 case MSR_IA32_PERF_STATUS:
3798 /* TSC increment by tick */
3799 msr_info->data = 1000ULL;
3800 /* CPU multiplier */
3801 msr_info->data |= (((uint64_t)4ULL) << 40);
3802 break;
3803 case MSR_EFER:
3804 msr_info->data = vcpu->arch.efer;
3805 break;
3806 case MSR_KVM_WALL_CLOCK:
3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3808 return 1;
3809
3810 msr_info->data = vcpu->kvm->arch.wall_clock;
3811 break;
3812 case MSR_KVM_WALL_CLOCK_NEW:
3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3814 return 1;
3815
3816 msr_info->data = vcpu->kvm->arch.wall_clock;
3817 break;
3818 case MSR_KVM_SYSTEM_TIME:
3819 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3820 return 1;
3821
3822 msr_info->data = vcpu->arch.time;
3823 break;
3824 case MSR_KVM_SYSTEM_TIME_NEW:
3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826 return 1;
3827
3828 msr_info->data = vcpu->arch.time;
3829 break;
3830 case MSR_KVM_ASYNC_PF_EN:
3831 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3832 return 1;
3833
3834 msr_info->data = vcpu->arch.apf.msr_en_val;
3835 break;
3836 case MSR_KVM_ASYNC_PF_INT:
3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3838 return 1;
3839
3840 msr_info->data = vcpu->arch.apf.msr_int_val;
3841 break;
3842 case MSR_KVM_ASYNC_PF_ACK:
3843 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3844 return 1;
3845
3846 msr_info->data = 0;
3847 break;
3848 case MSR_KVM_STEAL_TIME:
3849 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3850 return 1;
3851
3852 msr_info->data = vcpu->arch.st.msr_val;
3853 break;
3854 case MSR_KVM_PV_EOI_EN:
3855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3856 return 1;
3857
3858 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3859 break;
3860 case MSR_KVM_POLL_CONTROL:
3861 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3862 return 1;
3863
3864 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3865 break;
3866 case MSR_IA32_P5_MC_ADDR:
3867 case MSR_IA32_P5_MC_TYPE:
3868 case MSR_IA32_MCG_CAP:
3869 case MSR_IA32_MCG_CTL:
3870 case MSR_IA32_MCG_STATUS:
3871 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3872 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3873 msr_info->host_initiated);
3874 case MSR_IA32_XSS:
3875 if (!msr_info->host_initiated &&
3876 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3877 return 1;
3878 msr_info->data = vcpu->arch.ia32_xss;
3879 break;
3880 case MSR_K7_CLK_CTL:
3881 /*
3882 * Provide expected ramp-up count for K7. All other
3883 * are set to zero, indicating minimum divisors for
3884 * every field.
3885 *
3886 * This prevents guest kernels on AMD host with CPU
3887 * type 6, model 8 and higher from exploding due to
3888 * the rdmsr failing.
3889 */
3890 msr_info->data = 0x20000000;
3891 break;
3892 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3893 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3894 case HV_X64_MSR_SYNDBG_OPTIONS:
3895 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3896 case HV_X64_MSR_CRASH_CTL:
3897 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3898 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3899 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3900 case HV_X64_MSR_TSC_EMULATION_STATUS:
3901 return kvm_hv_get_msr_common(vcpu,
3902 msr_info->index, &msr_info->data,
3903 msr_info->host_initiated);
3904 case MSR_IA32_BBL_CR_CTL3:
3905 /* This legacy MSR exists but isn't fully documented in current
3906 * silicon. It is however accessed by winxp in very narrow
3907 * scenarios where it sets bit #19, itself documented as
3908 * a "reserved" bit. Best effort attempt to source coherent
3909 * read data here should the balance of the register be
3910 * interpreted by the guest:
3911 *
3912 * L2 cache control register 3: 64GB range, 256KB size,
3913 * enabled, latency 0x1, configured
3914 */
3915 msr_info->data = 0xbe702111;
3916 break;
3917 case MSR_AMD64_OSVW_ID_LENGTH:
3918 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3919 return 1;
3920 msr_info->data = vcpu->arch.osvw.length;
3921 break;
3922 case MSR_AMD64_OSVW_STATUS:
3923 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3924 return 1;
3925 msr_info->data = vcpu->arch.osvw.status;
3926 break;
3927 case MSR_PLATFORM_INFO:
3928 if (!msr_info->host_initiated &&
3929 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3930 return 1;
3931 msr_info->data = vcpu->arch.msr_platform_info;
3932 break;
3933 case MSR_MISC_FEATURES_ENABLES:
3934 msr_info->data = vcpu->arch.msr_misc_features_enables;
3935 break;
3936 case MSR_K7_HWCR:
3937 msr_info->data = vcpu->arch.msr_hwcr;
3938 break;
3939 default:
3940 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3941 return kvm_pmu_get_msr(vcpu, msr_info);
3942 return KVM_MSR_RET_INVALID;
3943 }
3944 return 0;
3945 }
3946 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3947
3948 /*
3949 * Read or write a bunch of msrs. All parameters are kernel addresses.
3950 *
3951 * @return number of msrs set successfully.
3952 */
3953 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3954 struct kvm_msr_entry *entries,
3955 int (*do_msr)(struct kvm_vcpu *vcpu,
3956 unsigned index, u64 *data))
3957 {
3958 int i;
3959
3960 for (i = 0; i < msrs->nmsrs; ++i)
3961 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3962 break;
3963
3964 return i;
3965 }
3966
3967 /*
3968 * Read or write a bunch of msrs. Parameters are user addresses.
3969 *
3970 * @return number of msrs set successfully.
3971 */
3972 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3973 int (*do_msr)(struct kvm_vcpu *vcpu,
3974 unsigned index, u64 *data),
3975 int writeback)
3976 {
3977 struct kvm_msrs msrs;
3978 struct kvm_msr_entry *entries;
3979 int r, n;
3980 unsigned size;
3981
3982 r = -EFAULT;
3983 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3984 goto out;
3985
3986 r = -E2BIG;
3987 if (msrs.nmsrs >= MAX_IO_MSRS)
3988 goto out;
3989
3990 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3991 entries = memdup_user(user_msrs->entries, size);
3992 if (IS_ERR(entries)) {
3993 r = PTR_ERR(entries);
3994 goto out;
3995 }
3996
3997 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3998 if (r < 0)
3999 goto out_free;
4000
4001 r = -EFAULT;
4002 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4003 goto out_free;
4004
4005 r = n;
4006
4007 out_free:
4008 kfree(entries);
4009 out:
4010 return r;
4011 }
4012
4013 static inline bool kvm_can_mwait_in_guest(void)
4014 {
4015 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4016 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4017 boot_cpu_has(X86_FEATURE_ARAT);
4018 }
4019
4020 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4021 struct kvm_cpuid2 __user *cpuid_arg)
4022 {
4023 struct kvm_cpuid2 cpuid;
4024 int r;
4025
4026 r = -EFAULT;
4027 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4028 return r;
4029
4030 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4031 if (r)
4032 return r;
4033
4034 r = -EFAULT;
4035 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4036 return r;
4037
4038 return 0;
4039 }
4040
4041 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4042 {
4043 int r = 0;
4044
4045 switch (ext) {
4046 case KVM_CAP_IRQCHIP:
4047 case KVM_CAP_HLT:
4048 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4049 case KVM_CAP_SET_TSS_ADDR:
4050 case KVM_CAP_EXT_CPUID:
4051 case KVM_CAP_EXT_EMUL_CPUID:
4052 case KVM_CAP_CLOCKSOURCE:
4053 case KVM_CAP_PIT:
4054 case KVM_CAP_NOP_IO_DELAY:
4055 case KVM_CAP_MP_STATE:
4056 case KVM_CAP_SYNC_MMU:
4057 case KVM_CAP_USER_NMI:
4058 case KVM_CAP_REINJECT_CONTROL:
4059 case KVM_CAP_IRQ_INJECT_STATUS:
4060 case KVM_CAP_IOEVENTFD:
4061 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4062 case KVM_CAP_PIT2:
4063 case KVM_CAP_PIT_STATE2:
4064 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4065 case KVM_CAP_VCPU_EVENTS:
4066 case KVM_CAP_HYPERV:
4067 case KVM_CAP_HYPERV_VAPIC:
4068 case KVM_CAP_HYPERV_SPIN:
4069 case KVM_CAP_HYPERV_SYNIC:
4070 case KVM_CAP_HYPERV_SYNIC2:
4071 case KVM_CAP_HYPERV_VP_INDEX:
4072 case KVM_CAP_HYPERV_EVENTFD:
4073 case KVM_CAP_HYPERV_TLBFLUSH:
4074 case KVM_CAP_HYPERV_SEND_IPI:
4075 case KVM_CAP_HYPERV_CPUID:
4076 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4077 case KVM_CAP_SYS_HYPERV_CPUID:
4078 case KVM_CAP_PCI_SEGMENT:
4079 case KVM_CAP_DEBUGREGS:
4080 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4081 case KVM_CAP_XSAVE:
4082 case KVM_CAP_ASYNC_PF:
4083 case KVM_CAP_ASYNC_PF_INT:
4084 case KVM_CAP_GET_TSC_KHZ:
4085 case KVM_CAP_KVMCLOCK_CTRL:
4086 case KVM_CAP_READONLY_MEM:
4087 case KVM_CAP_HYPERV_TIME:
4088 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4089 case KVM_CAP_TSC_DEADLINE_TIMER:
4090 case KVM_CAP_DISABLE_QUIRKS:
4091 case KVM_CAP_SET_BOOT_CPU_ID:
4092 case KVM_CAP_SPLIT_IRQCHIP:
4093 case KVM_CAP_IMMEDIATE_EXIT:
4094 case KVM_CAP_PMU_EVENT_FILTER:
4095 case KVM_CAP_GET_MSR_FEATURES:
4096 case KVM_CAP_MSR_PLATFORM_INFO:
4097 case KVM_CAP_EXCEPTION_PAYLOAD:
4098 case KVM_CAP_SET_GUEST_DEBUG:
4099 case KVM_CAP_LAST_CPU:
4100 case KVM_CAP_X86_USER_SPACE_MSR:
4101 case KVM_CAP_X86_MSR_FILTER:
4102 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4103 #ifdef CONFIG_X86_SGX_KVM
4104 case KVM_CAP_SGX_ATTRIBUTE:
4105 #endif
4106 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4107 case KVM_CAP_SREGS2:
4108 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4109 r = 1;
4110 break;
4111 case KVM_CAP_EXIT_HYPERCALL:
4112 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4113 break;
4114 case KVM_CAP_SET_GUEST_DEBUG2:
4115 return KVM_GUESTDBG_VALID_MASK;
4116 #ifdef CONFIG_KVM_XEN
4117 case KVM_CAP_XEN_HVM:
4118 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4119 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4120 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4121 if (sched_info_on())
4122 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4123 break;
4124 #endif
4125 case KVM_CAP_SYNC_REGS:
4126 r = KVM_SYNC_X86_VALID_FIELDS;
4127 break;
4128 case KVM_CAP_ADJUST_CLOCK:
4129 r = KVM_CLOCK_TSC_STABLE;
4130 break;
4131 case KVM_CAP_X86_DISABLE_EXITS:
4132 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4133 KVM_X86_DISABLE_EXITS_CSTATE;
4134 if(kvm_can_mwait_in_guest())
4135 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4136 break;
4137 case KVM_CAP_X86_SMM:
4138 /* SMBASE is usually relocated above 1M on modern chipsets,
4139 * and SMM handlers might indeed rely on 4G segment limits,
4140 * so do not report SMM to be available if real mode is
4141 * emulated via vm86 mode. Still, do not go to great lengths
4142 * to avoid userspace's usage of the feature, because it is a
4143 * fringe case that is not enabled except via specific settings
4144 * of the module parameters.
4145 */
4146 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4147 break;
4148 case KVM_CAP_VAPIC:
4149 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4150 break;
4151 case KVM_CAP_NR_VCPUS:
4152 r = KVM_SOFT_MAX_VCPUS;
4153 break;
4154 case KVM_CAP_MAX_VCPUS:
4155 r = KVM_MAX_VCPUS;
4156 break;
4157 case KVM_CAP_MAX_VCPU_ID:
4158 r = KVM_MAX_VCPU_ID;
4159 break;
4160 case KVM_CAP_PV_MMU: /* obsolete */
4161 r = 0;
4162 break;
4163 case KVM_CAP_MCE:
4164 r = KVM_MAX_MCE_BANKS;
4165 break;
4166 case KVM_CAP_XCRS:
4167 r = boot_cpu_has(X86_FEATURE_XSAVE);
4168 break;
4169 case KVM_CAP_TSC_CONTROL:
4170 r = kvm_has_tsc_control;
4171 break;
4172 case KVM_CAP_X2APIC_API:
4173 r = KVM_X2APIC_API_VALID_FLAGS;
4174 break;
4175 case KVM_CAP_NESTED_STATE:
4176 r = kvm_x86_ops.nested_ops->get_state ?
4177 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4178 break;
4179 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4180 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4181 break;
4182 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4183 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4184 break;
4185 case KVM_CAP_SMALLER_MAXPHYADDR:
4186 r = (int) allow_smaller_maxphyaddr;
4187 break;
4188 case KVM_CAP_STEAL_TIME:
4189 r = sched_info_on();
4190 break;
4191 case KVM_CAP_X86_BUS_LOCK_EXIT:
4192 if (kvm_has_bus_lock_exit)
4193 r = KVM_BUS_LOCK_DETECTION_OFF |
4194 KVM_BUS_LOCK_DETECTION_EXIT;
4195 else
4196 r = 0;
4197 break;
4198 default:
4199 break;
4200 }
4201 return r;
4202
4203 }
4204
4205 long kvm_arch_dev_ioctl(struct file *filp,
4206 unsigned int ioctl, unsigned long arg)
4207 {
4208 void __user *argp = (void __user *)arg;
4209 long r;
4210
4211 switch (ioctl) {
4212 case KVM_GET_MSR_INDEX_LIST: {
4213 struct kvm_msr_list __user *user_msr_list = argp;
4214 struct kvm_msr_list msr_list;
4215 unsigned n;
4216
4217 r = -EFAULT;
4218 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4219 goto out;
4220 n = msr_list.nmsrs;
4221 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4222 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4223 goto out;
4224 r = -E2BIG;
4225 if (n < msr_list.nmsrs)
4226 goto out;
4227 r = -EFAULT;
4228 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4229 num_msrs_to_save * sizeof(u32)))
4230 goto out;
4231 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4232 &emulated_msrs,
4233 num_emulated_msrs * sizeof(u32)))
4234 goto out;
4235 r = 0;
4236 break;
4237 }
4238 case KVM_GET_SUPPORTED_CPUID:
4239 case KVM_GET_EMULATED_CPUID: {
4240 struct kvm_cpuid2 __user *cpuid_arg = argp;
4241 struct kvm_cpuid2 cpuid;
4242
4243 r = -EFAULT;
4244 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4245 goto out;
4246
4247 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4248 ioctl);
4249 if (r)
4250 goto out;
4251
4252 r = -EFAULT;
4253 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4254 goto out;
4255 r = 0;
4256 break;
4257 }
4258 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4259 r = -EFAULT;
4260 if (copy_to_user(argp, &kvm_mce_cap_supported,
4261 sizeof(kvm_mce_cap_supported)))
4262 goto out;
4263 r = 0;
4264 break;
4265 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4266 struct kvm_msr_list __user *user_msr_list = argp;
4267 struct kvm_msr_list msr_list;
4268 unsigned int n;
4269
4270 r = -EFAULT;
4271 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4272 goto out;
4273 n = msr_list.nmsrs;
4274 msr_list.nmsrs = num_msr_based_features;
4275 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4276 goto out;
4277 r = -E2BIG;
4278 if (n < msr_list.nmsrs)
4279 goto out;
4280 r = -EFAULT;
4281 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4282 num_msr_based_features * sizeof(u32)))
4283 goto out;
4284 r = 0;
4285 break;
4286 }
4287 case KVM_GET_MSRS:
4288 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4289 break;
4290 case KVM_GET_SUPPORTED_HV_CPUID:
4291 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4292 break;
4293 default:
4294 r = -EINVAL;
4295 break;
4296 }
4297 out:
4298 return r;
4299 }
4300
4301 static void wbinvd_ipi(void *garbage)
4302 {
4303 wbinvd();
4304 }
4305
4306 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4307 {
4308 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4309 }
4310
4311 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4312 {
4313 /* Address WBINVD may be executed by guest */
4314 if (need_emulate_wbinvd(vcpu)) {
4315 if (static_call(kvm_x86_has_wbinvd_exit)())
4316 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4317 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4318 smp_call_function_single(vcpu->cpu,
4319 wbinvd_ipi, NULL, 1);
4320 }
4321
4322 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4323
4324 /* Save host pkru register if supported */
4325 vcpu->arch.host_pkru = read_pkru();
4326
4327 /* Apply any externally detected TSC adjustments (due to suspend) */
4328 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4329 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4330 vcpu->arch.tsc_offset_adjustment = 0;
4331 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4332 }
4333
4334 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4335 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4336 rdtsc() - vcpu->arch.last_host_tsc;
4337 if (tsc_delta < 0)
4338 mark_tsc_unstable("KVM discovered backwards TSC");
4339
4340 if (kvm_check_tsc_unstable()) {
4341 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4342 vcpu->arch.last_guest_tsc);
4343 kvm_vcpu_write_tsc_offset(vcpu, offset);
4344 vcpu->arch.tsc_catchup = 1;
4345 }
4346
4347 if (kvm_lapic_hv_timer_in_use(vcpu))
4348 kvm_lapic_restart_hv_timer(vcpu);
4349
4350 /*
4351 * On a host with synchronized TSC, there is no need to update
4352 * kvmclock on vcpu->cpu migration
4353 */
4354 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4355 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4356 if (vcpu->cpu != cpu)
4357 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4358 vcpu->cpu = cpu;
4359 }
4360
4361 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4362 }
4363
4364 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4365 {
4366 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4367 struct kvm_steal_time __user *st;
4368 struct kvm_memslots *slots;
4369 static const u8 preempted = KVM_VCPU_PREEMPTED;
4370
4371 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4372 return;
4373
4374 if (vcpu->arch.st.preempted)
4375 return;
4376
4377 /* This happens on process exit */
4378 if (unlikely(current->mm != vcpu->kvm->mm))
4379 return;
4380
4381 slots = kvm_memslots(vcpu->kvm);
4382
4383 if (unlikely(slots->generation != ghc->generation ||
4384 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4385 return;
4386
4387 st = (struct kvm_steal_time __user *)ghc->hva;
4388 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4389
4390 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4391 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4392
4393 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4394 }
4395
4396 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4397 {
4398 int idx;
4399
4400 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4401 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4402
4403 /*
4404 * Take the srcu lock as memslots will be accessed to check the gfn
4405 * cache generation against the memslots generation.
4406 */
4407 idx = srcu_read_lock(&vcpu->kvm->srcu);
4408 if (kvm_xen_msr_enabled(vcpu->kvm))
4409 kvm_xen_runstate_set_preempted(vcpu);
4410 else
4411 kvm_steal_time_set_preempted(vcpu);
4412 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4413
4414 static_call(kvm_x86_vcpu_put)(vcpu);
4415 vcpu->arch.last_host_tsc = rdtsc();
4416 }
4417
4418 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4419 struct kvm_lapic_state *s)
4420 {
4421 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4422
4423 return kvm_apic_get_state(vcpu, s);
4424 }
4425
4426 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4427 struct kvm_lapic_state *s)
4428 {
4429 int r;
4430
4431 r = kvm_apic_set_state(vcpu, s);
4432 if (r)
4433 return r;
4434 update_cr8_intercept(vcpu);
4435
4436 return 0;
4437 }
4438
4439 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4440 {
4441 /*
4442 * We can accept userspace's request for interrupt injection
4443 * as long as we have a place to store the interrupt number.
4444 * The actual injection will happen when the CPU is able to
4445 * deliver the interrupt.
4446 */
4447 if (kvm_cpu_has_extint(vcpu))
4448 return false;
4449
4450 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4451 return (!lapic_in_kernel(vcpu) ||
4452 kvm_apic_accept_pic_intr(vcpu));
4453 }
4454
4455 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4456 {
4457 /*
4458 * Do not cause an interrupt window exit if an exception
4459 * is pending or an event needs reinjection; userspace
4460 * might want to inject the interrupt manually using KVM_SET_REGS
4461 * or KVM_SET_SREGS. For that to work, we must be at an
4462 * instruction boundary and with no events half-injected.
4463 */
4464 return (kvm_arch_interrupt_allowed(vcpu) &&
4465 kvm_cpu_accept_dm_intr(vcpu) &&
4466 !kvm_event_needs_reinjection(vcpu) &&
4467 !vcpu->arch.exception.pending);
4468 }
4469
4470 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4471 struct kvm_interrupt *irq)
4472 {
4473 if (irq->irq >= KVM_NR_INTERRUPTS)
4474 return -EINVAL;
4475
4476 if (!irqchip_in_kernel(vcpu->kvm)) {
4477 kvm_queue_interrupt(vcpu, irq->irq, false);
4478 kvm_make_request(KVM_REQ_EVENT, vcpu);
4479 return 0;
4480 }
4481
4482 /*
4483 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4484 * fail for in-kernel 8259.
4485 */
4486 if (pic_in_kernel(vcpu->kvm))
4487 return -ENXIO;
4488
4489 if (vcpu->arch.pending_external_vector != -1)
4490 return -EEXIST;
4491
4492 vcpu->arch.pending_external_vector = irq->irq;
4493 kvm_make_request(KVM_REQ_EVENT, vcpu);
4494 return 0;
4495 }
4496
4497 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4498 {
4499 kvm_inject_nmi(vcpu);
4500
4501 return 0;
4502 }
4503
4504 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4505 {
4506 kvm_make_request(KVM_REQ_SMI, vcpu);
4507
4508 return 0;
4509 }
4510
4511 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4512 struct kvm_tpr_access_ctl *tac)
4513 {
4514 if (tac->flags)
4515 return -EINVAL;
4516 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4517 return 0;
4518 }
4519
4520 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4521 u64 mcg_cap)
4522 {
4523 int r;
4524 unsigned bank_num = mcg_cap & 0xff, bank;
4525
4526 r = -EINVAL;
4527 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4528 goto out;
4529 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4530 goto out;
4531 r = 0;
4532 vcpu->arch.mcg_cap = mcg_cap;
4533 /* Init IA32_MCG_CTL to all 1s */
4534 if (mcg_cap & MCG_CTL_P)
4535 vcpu->arch.mcg_ctl = ~(u64)0;
4536 /* Init IA32_MCi_CTL to all 1s */
4537 for (bank = 0; bank < bank_num; bank++)
4538 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4539
4540 static_call(kvm_x86_setup_mce)(vcpu);
4541 out:
4542 return r;
4543 }
4544
4545 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4546 struct kvm_x86_mce *mce)
4547 {
4548 u64 mcg_cap = vcpu->arch.mcg_cap;
4549 unsigned bank_num = mcg_cap & 0xff;
4550 u64 *banks = vcpu->arch.mce_banks;
4551
4552 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4553 return -EINVAL;
4554 /*
4555 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4556 * reporting is disabled
4557 */
4558 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4559 vcpu->arch.mcg_ctl != ~(u64)0)
4560 return 0;
4561 banks += 4 * mce->bank;
4562 /*
4563 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4564 * reporting is disabled for the bank
4565 */
4566 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4567 return 0;
4568 if (mce->status & MCI_STATUS_UC) {
4569 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4570 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4571 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4572 return 0;
4573 }
4574 if (banks[1] & MCI_STATUS_VAL)
4575 mce->status |= MCI_STATUS_OVER;
4576 banks[2] = mce->addr;
4577 banks[3] = mce->misc;
4578 vcpu->arch.mcg_status = mce->mcg_status;
4579 banks[1] = mce->status;
4580 kvm_queue_exception(vcpu, MC_VECTOR);
4581 } else if (!(banks[1] & MCI_STATUS_VAL)
4582 || !(banks[1] & MCI_STATUS_UC)) {
4583 if (banks[1] & MCI_STATUS_VAL)
4584 mce->status |= MCI_STATUS_OVER;
4585 banks[2] = mce->addr;
4586 banks[3] = mce->misc;
4587 banks[1] = mce->status;
4588 } else
4589 banks[1] |= MCI_STATUS_OVER;
4590 return 0;
4591 }
4592
4593 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4594 struct kvm_vcpu_events *events)
4595 {
4596 process_nmi(vcpu);
4597
4598 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4599 process_smi(vcpu);
4600
4601 /*
4602 * In guest mode, payload delivery should be deferred,
4603 * so that the L1 hypervisor can intercept #PF before
4604 * CR2 is modified (or intercept #DB before DR6 is
4605 * modified under nVMX). Unless the per-VM capability,
4606 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4607 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4608 * opportunistically defer the exception payload, deliver it if the
4609 * capability hasn't been requested before processing a
4610 * KVM_GET_VCPU_EVENTS.
4611 */
4612 if (!vcpu->kvm->arch.exception_payload_enabled &&
4613 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4614 kvm_deliver_exception_payload(vcpu);
4615
4616 /*
4617 * The API doesn't provide the instruction length for software
4618 * exceptions, so don't report them. As long as the guest RIP
4619 * isn't advanced, we should expect to encounter the exception
4620 * again.
4621 */
4622 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4623 events->exception.injected = 0;
4624 events->exception.pending = 0;
4625 } else {
4626 events->exception.injected = vcpu->arch.exception.injected;
4627 events->exception.pending = vcpu->arch.exception.pending;
4628 /*
4629 * For ABI compatibility, deliberately conflate
4630 * pending and injected exceptions when
4631 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4632 */
4633 if (!vcpu->kvm->arch.exception_payload_enabled)
4634 events->exception.injected |=
4635 vcpu->arch.exception.pending;
4636 }
4637 events->exception.nr = vcpu->arch.exception.nr;
4638 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4639 events->exception.error_code = vcpu->arch.exception.error_code;
4640 events->exception_has_payload = vcpu->arch.exception.has_payload;
4641 events->exception_payload = vcpu->arch.exception.payload;
4642
4643 events->interrupt.injected =
4644 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4645 events->interrupt.nr = vcpu->arch.interrupt.nr;
4646 events->interrupt.soft = 0;
4647 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4648
4649 events->nmi.injected = vcpu->arch.nmi_injected;
4650 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4651 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4652 events->nmi.pad = 0;
4653
4654 events->sipi_vector = 0; /* never valid when reporting to user space */
4655
4656 events->smi.smm = is_smm(vcpu);
4657 events->smi.pending = vcpu->arch.smi_pending;
4658 events->smi.smm_inside_nmi =
4659 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4660 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4661
4662 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4663 | KVM_VCPUEVENT_VALID_SHADOW
4664 | KVM_VCPUEVENT_VALID_SMM);
4665 if (vcpu->kvm->arch.exception_payload_enabled)
4666 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4667
4668 memset(&events->reserved, 0, sizeof(events->reserved));
4669 }
4670
4671 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4672
4673 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4674 struct kvm_vcpu_events *events)
4675 {
4676 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4677 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4678 | KVM_VCPUEVENT_VALID_SHADOW
4679 | KVM_VCPUEVENT_VALID_SMM
4680 | KVM_VCPUEVENT_VALID_PAYLOAD))
4681 return -EINVAL;
4682
4683 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4684 if (!vcpu->kvm->arch.exception_payload_enabled)
4685 return -EINVAL;
4686 if (events->exception.pending)
4687 events->exception.injected = 0;
4688 else
4689 events->exception_has_payload = 0;
4690 } else {
4691 events->exception.pending = 0;
4692 events->exception_has_payload = 0;
4693 }
4694
4695 if ((events->exception.injected || events->exception.pending) &&
4696 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4697 return -EINVAL;
4698
4699 /* INITs are latched while in SMM */
4700 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4701 (events->smi.smm || events->smi.pending) &&
4702 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4703 return -EINVAL;
4704
4705 process_nmi(vcpu);
4706 vcpu->arch.exception.injected = events->exception.injected;
4707 vcpu->arch.exception.pending = events->exception.pending;
4708 vcpu->arch.exception.nr = events->exception.nr;
4709 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4710 vcpu->arch.exception.error_code = events->exception.error_code;
4711 vcpu->arch.exception.has_payload = events->exception_has_payload;
4712 vcpu->arch.exception.payload = events->exception_payload;
4713
4714 vcpu->arch.interrupt.injected = events->interrupt.injected;
4715 vcpu->arch.interrupt.nr = events->interrupt.nr;
4716 vcpu->arch.interrupt.soft = events->interrupt.soft;
4717 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4718 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4719 events->interrupt.shadow);
4720
4721 vcpu->arch.nmi_injected = events->nmi.injected;
4722 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4723 vcpu->arch.nmi_pending = events->nmi.pending;
4724 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4725
4726 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4727 lapic_in_kernel(vcpu))
4728 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4729
4730 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4731 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4732 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4733 kvm_smm_changed(vcpu, events->smi.smm);
4734 }
4735
4736 vcpu->arch.smi_pending = events->smi.pending;
4737
4738 if (events->smi.smm) {
4739 if (events->smi.smm_inside_nmi)
4740 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4741 else
4742 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4743 }
4744
4745 if (lapic_in_kernel(vcpu)) {
4746 if (events->smi.latched_init)
4747 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4748 else
4749 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4750 }
4751 }
4752
4753 kvm_make_request(KVM_REQ_EVENT, vcpu);
4754
4755 return 0;
4756 }
4757
4758 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4759 struct kvm_debugregs *dbgregs)
4760 {
4761 unsigned long val;
4762
4763 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4764 kvm_get_dr(vcpu, 6, &val);
4765 dbgregs->dr6 = val;
4766 dbgregs->dr7 = vcpu->arch.dr7;
4767 dbgregs->flags = 0;
4768 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4769 }
4770
4771 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4772 struct kvm_debugregs *dbgregs)
4773 {
4774 if (dbgregs->flags)
4775 return -EINVAL;
4776
4777 if (!kvm_dr6_valid(dbgregs->dr6))
4778 return -EINVAL;
4779 if (!kvm_dr7_valid(dbgregs->dr7))
4780 return -EINVAL;
4781
4782 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4783 kvm_update_dr0123(vcpu);
4784 vcpu->arch.dr6 = dbgregs->dr6;
4785 vcpu->arch.dr7 = dbgregs->dr7;
4786 kvm_update_dr7(vcpu);
4787
4788 return 0;
4789 }
4790
4791 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4792
4793 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4794 {
4795 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4796 u64 xstate_bv = xsave->header.xfeatures;
4797 u64 valid;
4798
4799 /*
4800 * Copy legacy XSAVE area, to avoid complications with CPUID
4801 * leaves 0 and 1 in the loop below.
4802 */
4803 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4804
4805 /* Set XSTATE_BV */
4806 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4807 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4808
4809 /*
4810 * Copy each region from the possibly compacted offset to the
4811 * non-compacted offset.
4812 */
4813 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4814 while (valid) {
4815 u32 size, offset, ecx, edx;
4816 u64 xfeature_mask = valid & -valid;
4817 int xfeature_nr = fls64(xfeature_mask) - 1;
4818 void *src;
4819
4820 cpuid_count(XSTATE_CPUID, xfeature_nr,
4821 &size, &offset, &ecx, &edx);
4822
4823 if (xfeature_nr == XFEATURE_PKRU) {
4824 memcpy(dest + offset, &vcpu->arch.pkru,
4825 sizeof(vcpu->arch.pkru));
4826 } else {
4827 src = get_xsave_addr(xsave, xfeature_nr);
4828 if (src)
4829 memcpy(dest + offset, src, size);
4830 }
4831
4832 valid -= xfeature_mask;
4833 }
4834 }
4835
4836 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4837 {
4838 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4839 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4840 u64 valid;
4841
4842 /*
4843 * Copy legacy XSAVE area, to avoid complications with CPUID
4844 * leaves 0 and 1 in the loop below.
4845 */
4846 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4847
4848 /* Set XSTATE_BV and possibly XCOMP_BV. */
4849 xsave->header.xfeatures = xstate_bv;
4850 if (boot_cpu_has(X86_FEATURE_XSAVES))
4851 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4852
4853 /*
4854 * Copy each region from the non-compacted offset to the
4855 * possibly compacted offset.
4856 */
4857 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4858 while (valid) {
4859 u32 size, offset, ecx, edx;
4860 u64 xfeature_mask = valid & -valid;
4861 int xfeature_nr = fls64(xfeature_mask) - 1;
4862
4863 cpuid_count(XSTATE_CPUID, xfeature_nr,
4864 &size, &offset, &ecx, &edx);
4865
4866 if (xfeature_nr == XFEATURE_PKRU) {
4867 memcpy(&vcpu->arch.pkru, src + offset,
4868 sizeof(vcpu->arch.pkru));
4869 } else {
4870 void *dest = get_xsave_addr(xsave, xfeature_nr);
4871
4872 if (dest)
4873 memcpy(dest, src + offset, size);
4874 }
4875
4876 valid -= xfeature_mask;
4877 }
4878 }
4879
4880 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4881 struct kvm_xsave *guest_xsave)
4882 {
4883 if (!vcpu->arch.guest_fpu)
4884 return;
4885
4886 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4887 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4888 fill_xsave((u8 *) guest_xsave->region, vcpu);
4889 } else {
4890 memcpy(guest_xsave->region,
4891 &vcpu->arch.guest_fpu->state.fxsave,
4892 sizeof(struct fxregs_state));
4893 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4894 XFEATURE_MASK_FPSSE;
4895 }
4896 }
4897
4898 #define XSAVE_MXCSR_OFFSET 24
4899
4900 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4901 struct kvm_xsave *guest_xsave)
4902 {
4903 u64 xstate_bv;
4904 u32 mxcsr;
4905
4906 if (!vcpu->arch.guest_fpu)
4907 return 0;
4908
4909 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4910 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4911
4912 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4913 /*
4914 * Here we allow setting states that are not present in
4915 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4916 * with old userspace.
4917 */
4918 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4919 return -EINVAL;
4920 load_xsave(vcpu, (u8 *)guest_xsave->region);
4921 } else {
4922 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4923 mxcsr & ~mxcsr_feature_mask)
4924 return -EINVAL;
4925 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4926 guest_xsave->region, sizeof(struct fxregs_state));
4927 }
4928 return 0;
4929 }
4930
4931 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4932 struct kvm_xcrs *guest_xcrs)
4933 {
4934 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4935 guest_xcrs->nr_xcrs = 0;
4936 return;
4937 }
4938
4939 guest_xcrs->nr_xcrs = 1;
4940 guest_xcrs->flags = 0;
4941 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4942 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4943 }
4944
4945 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4946 struct kvm_xcrs *guest_xcrs)
4947 {
4948 int i, r = 0;
4949
4950 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4951 return -EINVAL;
4952
4953 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4954 return -EINVAL;
4955
4956 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4957 /* Only support XCR0 currently */
4958 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4959 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4960 guest_xcrs->xcrs[i].value);
4961 break;
4962 }
4963 if (r)
4964 r = -EINVAL;
4965 return r;
4966 }
4967
4968 /*
4969 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4970 * stopped by the hypervisor. This function will be called from the host only.
4971 * EINVAL is returned when the host attempts to set the flag for a guest that
4972 * does not support pv clocks.
4973 */
4974 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4975 {
4976 if (!vcpu->arch.pv_time_enabled)
4977 return -EINVAL;
4978 vcpu->arch.pvclock_set_guest_stopped_request = true;
4979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4980 return 0;
4981 }
4982
4983 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4984 struct kvm_enable_cap *cap)
4985 {
4986 int r;
4987 uint16_t vmcs_version;
4988 void __user *user_ptr;
4989
4990 if (cap->flags)
4991 return -EINVAL;
4992
4993 switch (cap->cap) {
4994 case KVM_CAP_HYPERV_SYNIC2:
4995 if (cap->args[0])
4996 return -EINVAL;
4997 fallthrough;
4998
4999 case KVM_CAP_HYPERV_SYNIC:
5000 if (!irqchip_in_kernel(vcpu->kvm))
5001 return -EINVAL;
5002 return kvm_hv_activate_synic(vcpu, cap->cap ==
5003 KVM_CAP_HYPERV_SYNIC2);
5004 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5005 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5006 return -ENOTTY;
5007 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5008 if (!r) {
5009 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5010 if (copy_to_user(user_ptr, &vmcs_version,
5011 sizeof(vmcs_version)))
5012 r = -EFAULT;
5013 }
5014 return r;
5015 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5016 if (!kvm_x86_ops.enable_direct_tlbflush)
5017 return -ENOTTY;
5018
5019 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5020
5021 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5022 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5023
5024 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5025 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5026 if (vcpu->arch.pv_cpuid.enforce)
5027 kvm_update_pv_runtime(vcpu);
5028
5029 return 0;
5030 default:
5031 return -EINVAL;
5032 }
5033 }
5034
5035 long kvm_arch_vcpu_ioctl(struct file *filp,
5036 unsigned int ioctl, unsigned long arg)
5037 {
5038 struct kvm_vcpu *vcpu = filp->private_data;
5039 void __user *argp = (void __user *)arg;
5040 int r;
5041 union {
5042 struct kvm_sregs2 *sregs2;
5043 struct kvm_lapic_state *lapic;
5044 struct kvm_xsave *xsave;
5045 struct kvm_xcrs *xcrs;
5046 void *buffer;
5047 } u;
5048
5049 vcpu_load(vcpu);
5050
5051 u.buffer = NULL;
5052 switch (ioctl) {
5053 case KVM_GET_LAPIC: {
5054 r = -EINVAL;
5055 if (!lapic_in_kernel(vcpu))
5056 goto out;
5057 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5058 GFP_KERNEL_ACCOUNT);
5059
5060 r = -ENOMEM;
5061 if (!u.lapic)
5062 goto out;
5063 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5064 if (r)
5065 goto out;
5066 r = -EFAULT;
5067 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5068 goto out;
5069 r = 0;
5070 break;
5071 }
5072 case KVM_SET_LAPIC: {
5073 r = -EINVAL;
5074 if (!lapic_in_kernel(vcpu))
5075 goto out;
5076 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5077 if (IS_ERR(u.lapic)) {
5078 r = PTR_ERR(u.lapic);
5079 goto out_nofree;
5080 }
5081
5082 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5083 break;
5084 }
5085 case KVM_INTERRUPT: {
5086 struct kvm_interrupt irq;
5087
5088 r = -EFAULT;
5089 if (copy_from_user(&irq, argp, sizeof(irq)))
5090 goto out;
5091 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5092 break;
5093 }
5094 case KVM_NMI: {
5095 r = kvm_vcpu_ioctl_nmi(vcpu);
5096 break;
5097 }
5098 case KVM_SMI: {
5099 r = kvm_vcpu_ioctl_smi(vcpu);
5100 break;
5101 }
5102 case KVM_SET_CPUID: {
5103 struct kvm_cpuid __user *cpuid_arg = argp;
5104 struct kvm_cpuid cpuid;
5105
5106 r = -EFAULT;
5107 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5108 goto out;
5109 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5110 break;
5111 }
5112 case KVM_SET_CPUID2: {
5113 struct kvm_cpuid2 __user *cpuid_arg = argp;
5114 struct kvm_cpuid2 cpuid;
5115
5116 r = -EFAULT;
5117 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5118 goto out;
5119 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5120 cpuid_arg->entries);
5121 break;
5122 }
5123 case KVM_GET_CPUID2: {
5124 struct kvm_cpuid2 __user *cpuid_arg = argp;
5125 struct kvm_cpuid2 cpuid;
5126
5127 r = -EFAULT;
5128 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5129 goto out;
5130 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5131 cpuid_arg->entries);
5132 if (r)
5133 goto out;
5134 r = -EFAULT;
5135 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5136 goto out;
5137 r = 0;
5138 break;
5139 }
5140 case KVM_GET_MSRS: {
5141 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5142 r = msr_io(vcpu, argp, do_get_msr, 1);
5143 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5144 break;
5145 }
5146 case KVM_SET_MSRS: {
5147 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5148 r = msr_io(vcpu, argp, do_set_msr, 0);
5149 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5150 break;
5151 }
5152 case KVM_TPR_ACCESS_REPORTING: {
5153 struct kvm_tpr_access_ctl tac;
5154
5155 r = -EFAULT;
5156 if (copy_from_user(&tac, argp, sizeof(tac)))
5157 goto out;
5158 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5159 if (r)
5160 goto out;
5161 r = -EFAULT;
5162 if (copy_to_user(argp, &tac, sizeof(tac)))
5163 goto out;
5164 r = 0;
5165 break;
5166 };
5167 case KVM_SET_VAPIC_ADDR: {
5168 struct kvm_vapic_addr va;
5169 int idx;
5170
5171 r = -EINVAL;
5172 if (!lapic_in_kernel(vcpu))
5173 goto out;
5174 r = -EFAULT;
5175 if (copy_from_user(&va, argp, sizeof(va)))
5176 goto out;
5177 idx = srcu_read_lock(&vcpu->kvm->srcu);
5178 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5179 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5180 break;
5181 }
5182 case KVM_X86_SETUP_MCE: {
5183 u64 mcg_cap;
5184
5185 r = -EFAULT;
5186 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5187 goto out;
5188 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5189 break;
5190 }
5191 case KVM_X86_SET_MCE: {
5192 struct kvm_x86_mce mce;
5193
5194 r = -EFAULT;
5195 if (copy_from_user(&mce, argp, sizeof(mce)))
5196 goto out;
5197 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5198 break;
5199 }
5200 case KVM_GET_VCPU_EVENTS: {
5201 struct kvm_vcpu_events events;
5202
5203 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5204
5205 r = -EFAULT;
5206 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5207 break;
5208 r = 0;
5209 break;
5210 }
5211 case KVM_SET_VCPU_EVENTS: {
5212 struct kvm_vcpu_events events;
5213
5214 r = -EFAULT;
5215 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5216 break;
5217
5218 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5219 break;
5220 }
5221 case KVM_GET_DEBUGREGS: {
5222 struct kvm_debugregs dbgregs;
5223
5224 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5225
5226 r = -EFAULT;
5227 if (copy_to_user(argp, &dbgregs,
5228 sizeof(struct kvm_debugregs)))
5229 break;
5230 r = 0;
5231 break;
5232 }
5233 case KVM_SET_DEBUGREGS: {
5234 struct kvm_debugregs dbgregs;
5235
5236 r = -EFAULT;
5237 if (copy_from_user(&dbgregs, argp,
5238 sizeof(struct kvm_debugregs)))
5239 break;
5240
5241 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5242 break;
5243 }
5244 case KVM_GET_XSAVE: {
5245 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5246 r = -ENOMEM;
5247 if (!u.xsave)
5248 break;
5249
5250 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5251
5252 r = -EFAULT;
5253 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5254 break;
5255 r = 0;
5256 break;
5257 }
5258 case KVM_SET_XSAVE: {
5259 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5260 if (IS_ERR(u.xsave)) {
5261 r = PTR_ERR(u.xsave);
5262 goto out_nofree;
5263 }
5264
5265 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5266 break;
5267 }
5268 case KVM_GET_XCRS: {
5269 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5270 r = -ENOMEM;
5271 if (!u.xcrs)
5272 break;
5273
5274 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5275
5276 r = -EFAULT;
5277 if (copy_to_user(argp, u.xcrs,
5278 sizeof(struct kvm_xcrs)))
5279 break;
5280 r = 0;
5281 break;
5282 }
5283 case KVM_SET_XCRS: {
5284 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5285 if (IS_ERR(u.xcrs)) {
5286 r = PTR_ERR(u.xcrs);
5287 goto out_nofree;
5288 }
5289
5290 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5291 break;
5292 }
5293 case KVM_SET_TSC_KHZ: {
5294 u32 user_tsc_khz;
5295
5296 r = -EINVAL;
5297 user_tsc_khz = (u32)arg;
5298
5299 if (kvm_has_tsc_control &&
5300 user_tsc_khz >= kvm_max_guest_tsc_khz)
5301 goto out;
5302
5303 if (user_tsc_khz == 0)
5304 user_tsc_khz = tsc_khz;
5305
5306 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5307 r = 0;
5308
5309 goto out;
5310 }
5311 case KVM_GET_TSC_KHZ: {
5312 r = vcpu->arch.virtual_tsc_khz;
5313 goto out;
5314 }
5315 case KVM_KVMCLOCK_CTRL: {
5316 r = kvm_set_guest_paused(vcpu);
5317 goto out;
5318 }
5319 case KVM_ENABLE_CAP: {
5320 struct kvm_enable_cap cap;
5321
5322 r = -EFAULT;
5323 if (copy_from_user(&cap, argp, sizeof(cap)))
5324 goto out;
5325 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5326 break;
5327 }
5328 case KVM_GET_NESTED_STATE: {
5329 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5330 u32 user_data_size;
5331
5332 r = -EINVAL;
5333 if (!kvm_x86_ops.nested_ops->get_state)
5334 break;
5335
5336 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5337 r = -EFAULT;
5338 if (get_user(user_data_size, &user_kvm_nested_state->size))
5339 break;
5340
5341 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5342 user_data_size);
5343 if (r < 0)
5344 break;
5345
5346 if (r > user_data_size) {
5347 if (put_user(r, &user_kvm_nested_state->size))
5348 r = -EFAULT;
5349 else
5350 r = -E2BIG;
5351 break;
5352 }
5353
5354 r = 0;
5355 break;
5356 }
5357 case KVM_SET_NESTED_STATE: {
5358 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5359 struct kvm_nested_state kvm_state;
5360 int idx;
5361
5362 r = -EINVAL;
5363 if (!kvm_x86_ops.nested_ops->set_state)
5364 break;
5365
5366 r = -EFAULT;
5367 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5368 break;
5369
5370 r = -EINVAL;
5371 if (kvm_state.size < sizeof(kvm_state))
5372 break;
5373
5374 if (kvm_state.flags &
5375 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5376 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5377 | KVM_STATE_NESTED_GIF_SET))
5378 break;
5379
5380 /* nested_run_pending implies guest_mode. */
5381 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5382 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5383 break;
5384
5385 idx = srcu_read_lock(&vcpu->kvm->srcu);
5386 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5387 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5388 break;
5389 }
5390 case KVM_GET_SUPPORTED_HV_CPUID:
5391 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5392 break;
5393 #ifdef CONFIG_KVM_XEN
5394 case KVM_XEN_VCPU_GET_ATTR: {
5395 struct kvm_xen_vcpu_attr xva;
5396
5397 r = -EFAULT;
5398 if (copy_from_user(&xva, argp, sizeof(xva)))
5399 goto out;
5400 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5401 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5402 r = -EFAULT;
5403 break;
5404 }
5405 case KVM_XEN_VCPU_SET_ATTR: {
5406 struct kvm_xen_vcpu_attr xva;
5407
5408 r = -EFAULT;
5409 if (copy_from_user(&xva, argp, sizeof(xva)))
5410 goto out;
5411 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5412 break;
5413 }
5414 #endif
5415 case KVM_GET_SREGS2: {
5416 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5417 r = -ENOMEM;
5418 if (!u.sregs2)
5419 goto out;
5420 __get_sregs2(vcpu, u.sregs2);
5421 r = -EFAULT;
5422 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5423 goto out;
5424 r = 0;
5425 break;
5426 }
5427 case KVM_SET_SREGS2: {
5428 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5429 if (IS_ERR(u.sregs2)) {
5430 r = PTR_ERR(u.sregs2);
5431 u.sregs2 = NULL;
5432 goto out;
5433 }
5434 r = __set_sregs2(vcpu, u.sregs2);
5435 break;
5436 }
5437 default:
5438 r = -EINVAL;
5439 }
5440 out:
5441 kfree(u.buffer);
5442 out_nofree:
5443 vcpu_put(vcpu);
5444 return r;
5445 }
5446
5447 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5448 {
5449 return VM_FAULT_SIGBUS;
5450 }
5451
5452 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5453 {
5454 int ret;
5455
5456 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5457 return -EINVAL;
5458 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5459 return ret;
5460 }
5461
5462 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5463 u64 ident_addr)
5464 {
5465 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5466 }
5467
5468 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5469 unsigned long kvm_nr_mmu_pages)
5470 {
5471 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5472 return -EINVAL;
5473
5474 mutex_lock(&kvm->slots_lock);
5475
5476 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5477 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5478
5479 mutex_unlock(&kvm->slots_lock);
5480 return 0;
5481 }
5482
5483 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5484 {
5485 return kvm->arch.n_max_mmu_pages;
5486 }
5487
5488 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5489 {
5490 struct kvm_pic *pic = kvm->arch.vpic;
5491 int r;
5492
5493 r = 0;
5494 switch (chip->chip_id) {
5495 case KVM_IRQCHIP_PIC_MASTER:
5496 memcpy(&chip->chip.pic, &pic->pics[0],
5497 sizeof(struct kvm_pic_state));
5498 break;
5499 case KVM_IRQCHIP_PIC_SLAVE:
5500 memcpy(&chip->chip.pic, &pic->pics[1],
5501 sizeof(struct kvm_pic_state));
5502 break;
5503 case KVM_IRQCHIP_IOAPIC:
5504 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5505 break;
5506 default:
5507 r = -EINVAL;
5508 break;
5509 }
5510 return r;
5511 }
5512
5513 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5514 {
5515 struct kvm_pic *pic = kvm->arch.vpic;
5516 int r;
5517
5518 r = 0;
5519 switch (chip->chip_id) {
5520 case KVM_IRQCHIP_PIC_MASTER:
5521 spin_lock(&pic->lock);
5522 memcpy(&pic->pics[0], &chip->chip.pic,
5523 sizeof(struct kvm_pic_state));
5524 spin_unlock(&pic->lock);
5525 break;
5526 case KVM_IRQCHIP_PIC_SLAVE:
5527 spin_lock(&pic->lock);
5528 memcpy(&pic->pics[1], &chip->chip.pic,
5529 sizeof(struct kvm_pic_state));
5530 spin_unlock(&pic->lock);
5531 break;
5532 case KVM_IRQCHIP_IOAPIC:
5533 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5534 break;
5535 default:
5536 r = -EINVAL;
5537 break;
5538 }
5539 kvm_pic_update_irq(pic);
5540 return r;
5541 }
5542
5543 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5544 {
5545 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5546
5547 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5548
5549 mutex_lock(&kps->lock);
5550 memcpy(ps, &kps->channels, sizeof(*ps));
5551 mutex_unlock(&kps->lock);
5552 return 0;
5553 }
5554
5555 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5556 {
5557 int i;
5558 struct kvm_pit *pit = kvm->arch.vpit;
5559
5560 mutex_lock(&pit->pit_state.lock);
5561 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5562 for (i = 0; i < 3; i++)
5563 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5564 mutex_unlock(&pit->pit_state.lock);
5565 return 0;
5566 }
5567
5568 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5569 {
5570 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5571 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5572 sizeof(ps->channels));
5573 ps->flags = kvm->arch.vpit->pit_state.flags;
5574 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5575 memset(&ps->reserved, 0, sizeof(ps->reserved));
5576 return 0;
5577 }
5578
5579 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5580 {
5581 int start = 0;
5582 int i;
5583 u32 prev_legacy, cur_legacy;
5584 struct kvm_pit *pit = kvm->arch.vpit;
5585
5586 mutex_lock(&pit->pit_state.lock);
5587 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5588 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5589 if (!prev_legacy && cur_legacy)
5590 start = 1;
5591 memcpy(&pit->pit_state.channels, &ps->channels,
5592 sizeof(pit->pit_state.channels));
5593 pit->pit_state.flags = ps->flags;
5594 for (i = 0; i < 3; i++)
5595 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5596 start && i == 0);
5597 mutex_unlock(&pit->pit_state.lock);
5598 return 0;
5599 }
5600
5601 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5602 struct kvm_reinject_control *control)
5603 {
5604 struct kvm_pit *pit = kvm->arch.vpit;
5605
5606 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5607 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5608 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5609 */
5610 mutex_lock(&pit->pit_state.lock);
5611 kvm_pit_set_reinject(pit, control->pit_reinject);
5612 mutex_unlock(&pit->pit_state.lock);
5613
5614 return 0;
5615 }
5616
5617 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5618 {
5619
5620 /*
5621 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5622 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5623 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5624 * VM-Exit.
5625 */
5626 struct kvm_vcpu *vcpu;
5627 int i;
5628
5629 kvm_for_each_vcpu(i, vcpu, kvm)
5630 kvm_vcpu_kick(vcpu);
5631 }
5632
5633 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5634 bool line_status)
5635 {
5636 if (!irqchip_in_kernel(kvm))
5637 return -ENXIO;
5638
5639 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5640 irq_event->irq, irq_event->level,
5641 line_status);
5642 return 0;
5643 }
5644
5645 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5646 struct kvm_enable_cap *cap)
5647 {
5648 int r;
5649
5650 if (cap->flags)
5651 return -EINVAL;
5652
5653 switch (cap->cap) {
5654 case KVM_CAP_DISABLE_QUIRKS:
5655 kvm->arch.disabled_quirks = cap->args[0];
5656 r = 0;
5657 break;
5658 case KVM_CAP_SPLIT_IRQCHIP: {
5659 mutex_lock(&kvm->lock);
5660 r = -EINVAL;
5661 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5662 goto split_irqchip_unlock;
5663 r = -EEXIST;
5664 if (irqchip_in_kernel(kvm))
5665 goto split_irqchip_unlock;
5666 if (kvm->created_vcpus)
5667 goto split_irqchip_unlock;
5668 r = kvm_setup_empty_irq_routing(kvm);
5669 if (r)
5670 goto split_irqchip_unlock;
5671 /* Pairs with irqchip_in_kernel. */
5672 smp_wmb();
5673 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5674 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5675 r = 0;
5676 split_irqchip_unlock:
5677 mutex_unlock(&kvm->lock);
5678 break;
5679 }
5680 case KVM_CAP_X2APIC_API:
5681 r = -EINVAL;
5682 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5683 break;
5684
5685 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5686 kvm->arch.x2apic_format = true;
5687 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5688 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5689
5690 r = 0;
5691 break;
5692 case KVM_CAP_X86_DISABLE_EXITS:
5693 r = -EINVAL;
5694 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5695 break;
5696
5697 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5698 kvm_can_mwait_in_guest())
5699 kvm->arch.mwait_in_guest = true;
5700 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5701 kvm->arch.hlt_in_guest = true;
5702 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5703 kvm->arch.pause_in_guest = true;
5704 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5705 kvm->arch.cstate_in_guest = true;
5706 r = 0;
5707 break;
5708 case KVM_CAP_MSR_PLATFORM_INFO:
5709 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5710 r = 0;
5711 break;
5712 case KVM_CAP_EXCEPTION_PAYLOAD:
5713 kvm->arch.exception_payload_enabled = cap->args[0];
5714 r = 0;
5715 break;
5716 case KVM_CAP_X86_USER_SPACE_MSR:
5717 kvm->arch.user_space_msr_mask = cap->args[0];
5718 r = 0;
5719 break;
5720 case KVM_CAP_X86_BUS_LOCK_EXIT:
5721 r = -EINVAL;
5722 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5723 break;
5724
5725 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5726 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5727 break;
5728
5729 if (kvm_has_bus_lock_exit &&
5730 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5731 kvm->arch.bus_lock_detection_enabled = true;
5732 r = 0;
5733 break;
5734 #ifdef CONFIG_X86_SGX_KVM
5735 case KVM_CAP_SGX_ATTRIBUTE: {
5736 unsigned long allowed_attributes = 0;
5737
5738 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5739 if (r)
5740 break;
5741
5742 /* KVM only supports the PROVISIONKEY privileged attribute. */
5743 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5744 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5745 kvm->arch.sgx_provisioning_allowed = true;
5746 else
5747 r = -EINVAL;
5748 break;
5749 }
5750 #endif
5751 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5752 r = -EINVAL;
5753 if (kvm_x86_ops.vm_copy_enc_context_from)
5754 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5755 return r;
5756 case KVM_CAP_EXIT_HYPERCALL:
5757 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5758 r = -EINVAL;
5759 break;
5760 }
5761 kvm->arch.hypercall_exit_enabled = cap->args[0];
5762 r = 0;
5763 break;
5764 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5765 r = -EINVAL;
5766 if (cap->args[0] & ~1)
5767 break;
5768 kvm->arch.exit_on_emulation_error = cap->args[0];
5769 r = 0;
5770 break;
5771 default:
5772 r = -EINVAL;
5773 break;
5774 }
5775 return r;
5776 }
5777
5778 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5779 {
5780 struct kvm_x86_msr_filter *msr_filter;
5781
5782 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5783 if (!msr_filter)
5784 return NULL;
5785
5786 msr_filter->default_allow = default_allow;
5787 return msr_filter;
5788 }
5789
5790 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5791 {
5792 u32 i;
5793
5794 if (!msr_filter)
5795 return;
5796
5797 for (i = 0; i < msr_filter->count; i++)
5798 kfree(msr_filter->ranges[i].bitmap);
5799
5800 kfree(msr_filter);
5801 }
5802
5803 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5804 struct kvm_msr_filter_range *user_range)
5805 {
5806 unsigned long *bitmap = NULL;
5807 size_t bitmap_size;
5808
5809 if (!user_range->nmsrs)
5810 return 0;
5811
5812 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5813 return -EINVAL;
5814
5815 if (!user_range->flags)
5816 return -EINVAL;
5817
5818 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5819 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5820 return -EINVAL;
5821
5822 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5823 if (IS_ERR(bitmap))
5824 return PTR_ERR(bitmap);
5825
5826 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5827 .flags = user_range->flags,
5828 .base = user_range->base,
5829 .nmsrs = user_range->nmsrs,
5830 .bitmap = bitmap,
5831 };
5832
5833 msr_filter->count++;
5834 return 0;
5835 }
5836
5837 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5838 {
5839 struct kvm_msr_filter __user *user_msr_filter = argp;
5840 struct kvm_x86_msr_filter *new_filter, *old_filter;
5841 struct kvm_msr_filter filter;
5842 bool default_allow;
5843 bool empty = true;
5844 int r = 0;
5845 u32 i;
5846
5847 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5848 return -EFAULT;
5849
5850 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5851 empty &= !filter.ranges[i].nmsrs;
5852
5853 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5854 if (empty && !default_allow)
5855 return -EINVAL;
5856
5857 new_filter = kvm_alloc_msr_filter(default_allow);
5858 if (!new_filter)
5859 return -ENOMEM;
5860
5861 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5862 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5863 if (r) {
5864 kvm_free_msr_filter(new_filter);
5865 return r;
5866 }
5867 }
5868
5869 mutex_lock(&kvm->lock);
5870
5871 /* The per-VM filter is protected by kvm->lock... */
5872 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5873
5874 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5875 synchronize_srcu(&kvm->srcu);
5876
5877 kvm_free_msr_filter(old_filter);
5878
5879 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5880 mutex_unlock(&kvm->lock);
5881
5882 return 0;
5883 }
5884
5885 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5886 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5887 {
5888 struct kvm_vcpu *vcpu;
5889 int i, ret = 0;
5890
5891 mutex_lock(&kvm->lock);
5892 kvm_for_each_vcpu(i, vcpu, kvm) {
5893 if (!vcpu->arch.pv_time_enabled)
5894 continue;
5895
5896 ret = kvm_set_guest_paused(vcpu);
5897 if (ret) {
5898 kvm_err("Failed to pause guest VCPU%d: %d\n",
5899 vcpu->vcpu_id, ret);
5900 break;
5901 }
5902 }
5903 mutex_unlock(&kvm->lock);
5904
5905 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5906 }
5907
5908 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5909 {
5910 switch (state) {
5911 case PM_HIBERNATION_PREPARE:
5912 case PM_SUSPEND_PREPARE:
5913 return kvm_arch_suspend_notifier(kvm);
5914 }
5915
5916 return NOTIFY_DONE;
5917 }
5918 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5919
5920 long kvm_arch_vm_ioctl(struct file *filp,
5921 unsigned int ioctl, unsigned long arg)
5922 {
5923 struct kvm *kvm = filp->private_data;
5924 void __user *argp = (void __user *)arg;
5925 int r = -ENOTTY;
5926 /*
5927 * This union makes it completely explicit to gcc-3.x
5928 * that these two variables' stack usage should be
5929 * combined, not added together.
5930 */
5931 union {
5932 struct kvm_pit_state ps;
5933 struct kvm_pit_state2 ps2;
5934 struct kvm_pit_config pit_config;
5935 } u;
5936
5937 switch (ioctl) {
5938 case KVM_SET_TSS_ADDR:
5939 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5940 break;
5941 case KVM_SET_IDENTITY_MAP_ADDR: {
5942 u64 ident_addr;
5943
5944 mutex_lock(&kvm->lock);
5945 r = -EINVAL;
5946 if (kvm->created_vcpus)
5947 goto set_identity_unlock;
5948 r = -EFAULT;
5949 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5950 goto set_identity_unlock;
5951 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5952 set_identity_unlock:
5953 mutex_unlock(&kvm->lock);
5954 break;
5955 }
5956 case KVM_SET_NR_MMU_PAGES:
5957 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5958 break;
5959 case KVM_GET_NR_MMU_PAGES:
5960 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5961 break;
5962 case KVM_CREATE_IRQCHIP: {
5963 mutex_lock(&kvm->lock);
5964
5965 r = -EEXIST;
5966 if (irqchip_in_kernel(kvm))
5967 goto create_irqchip_unlock;
5968
5969 r = -EINVAL;
5970 if (kvm->created_vcpus)
5971 goto create_irqchip_unlock;
5972
5973 r = kvm_pic_init(kvm);
5974 if (r)
5975 goto create_irqchip_unlock;
5976
5977 r = kvm_ioapic_init(kvm);
5978 if (r) {
5979 kvm_pic_destroy(kvm);
5980 goto create_irqchip_unlock;
5981 }
5982
5983 r = kvm_setup_default_irq_routing(kvm);
5984 if (r) {
5985 kvm_ioapic_destroy(kvm);
5986 kvm_pic_destroy(kvm);
5987 goto create_irqchip_unlock;
5988 }
5989 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5990 smp_wmb();
5991 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5992 create_irqchip_unlock:
5993 mutex_unlock(&kvm->lock);
5994 break;
5995 }
5996 case KVM_CREATE_PIT:
5997 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5998 goto create_pit;
5999 case KVM_CREATE_PIT2:
6000 r = -EFAULT;
6001 if (copy_from_user(&u.pit_config, argp,
6002 sizeof(struct kvm_pit_config)))
6003 goto out;
6004 create_pit:
6005 mutex_lock(&kvm->lock);
6006 r = -EEXIST;
6007 if (kvm->arch.vpit)
6008 goto create_pit_unlock;
6009 r = -ENOMEM;
6010 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6011 if (kvm->arch.vpit)
6012 r = 0;
6013 create_pit_unlock:
6014 mutex_unlock(&kvm->lock);
6015 break;
6016 case KVM_GET_IRQCHIP: {
6017 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6018 struct kvm_irqchip *chip;
6019
6020 chip = memdup_user(argp, sizeof(*chip));
6021 if (IS_ERR(chip)) {
6022 r = PTR_ERR(chip);
6023 goto out;
6024 }
6025
6026 r = -ENXIO;
6027 if (!irqchip_kernel(kvm))
6028 goto get_irqchip_out;
6029 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6030 if (r)
6031 goto get_irqchip_out;
6032 r = -EFAULT;
6033 if (copy_to_user(argp, chip, sizeof(*chip)))
6034 goto get_irqchip_out;
6035 r = 0;
6036 get_irqchip_out:
6037 kfree(chip);
6038 break;
6039 }
6040 case KVM_SET_IRQCHIP: {
6041 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6042 struct kvm_irqchip *chip;
6043
6044 chip = memdup_user(argp, sizeof(*chip));
6045 if (IS_ERR(chip)) {
6046 r = PTR_ERR(chip);
6047 goto out;
6048 }
6049
6050 r = -ENXIO;
6051 if (!irqchip_kernel(kvm))
6052 goto set_irqchip_out;
6053 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6054 set_irqchip_out:
6055 kfree(chip);
6056 break;
6057 }
6058 case KVM_GET_PIT: {
6059 r = -EFAULT;
6060 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6061 goto out;
6062 r = -ENXIO;
6063 if (!kvm->arch.vpit)
6064 goto out;
6065 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6066 if (r)
6067 goto out;
6068 r = -EFAULT;
6069 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6070 goto out;
6071 r = 0;
6072 break;
6073 }
6074 case KVM_SET_PIT: {
6075 r = -EFAULT;
6076 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6077 goto out;
6078 mutex_lock(&kvm->lock);
6079 r = -ENXIO;
6080 if (!kvm->arch.vpit)
6081 goto set_pit_out;
6082 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6083 set_pit_out:
6084 mutex_unlock(&kvm->lock);
6085 break;
6086 }
6087 case KVM_GET_PIT2: {
6088 r = -ENXIO;
6089 if (!kvm->arch.vpit)
6090 goto out;
6091 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6092 if (r)
6093 goto out;
6094 r = -EFAULT;
6095 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6096 goto out;
6097 r = 0;
6098 break;
6099 }
6100 case KVM_SET_PIT2: {
6101 r = -EFAULT;
6102 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6103 goto out;
6104 mutex_lock(&kvm->lock);
6105 r = -ENXIO;
6106 if (!kvm->arch.vpit)
6107 goto set_pit2_out;
6108 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6109 set_pit2_out:
6110 mutex_unlock(&kvm->lock);
6111 break;
6112 }
6113 case KVM_REINJECT_CONTROL: {
6114 struct kvm_reinject_control control;
6115 r = -EFAULT;
6116 if (copy_from_user(&control, argp, sizeof(control)))
6117 goto out;
6118 r = -ENXIO;
6119 if (!kvm->arch.vpit)
6120 goto out;
6121 r = kvm_vm_ioctl_reinject(kvm, &control);
6122 break;
6123 }
6124 case KVM_SET_BOOT_CPU_ID:
6125 r = 0;
6126 mutex_lock(&kvm->lock);
6127 if (kvm->created_vcpus)
6128 r = -EBUSY;
6129 else
6130 kvm->arch.bsp_vcpu_id = arg;
6131 mutex_unlock(&kvm->lock);
6132 break;
6133 #ifdef CONFIG_KVM_XEN
6134 case KVM_XEN_HVM_CONFIG: {
6135 struct kvm_xen_hvm_config xhc;
6136 r = -EFAULT;
6137 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6138 goto out;
6139 r = kvm_xen_hvm_config(kvm, &xhc);
6140 break;
6141 }
6142 case KVM_XEN_HVM_GET_ATTR: {
6143 struct kvm_xen_hvm_attr xha;
6144
6145 r = -EFAULT;
6146 if (copy_from_user(&xha, argp, sizeof(xha)))
6147 goto out;
6148 r = kvm_xen_hvm_get_attr(kvm, &xha);
6149 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6150 r = -EFAULT;
6151 break;
6152 }
6153 case KVM_XEN_HVM_SET_ATTR: {
6154 struct kvm_xen_hvm_attr xha;
6155
6156 r = -EFAULT;
6157 if (copy_from_user(&xha, argp, sizeof(xha)))
6158 goto out;
6159 r = kvm_xen_hvm_set_attr(kvm, &xha);
6160 break;
6161 }
6162 #endif
6163 case KVM_SET_CLOCK: {
6164 struct kvm_arch *ka = &kvm->arch;
6165 struct kvm_clock_data user_ns;
6166 u64 now_ns;
6167
6168 r = -EFAULT;
6169 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6170 goto out;
6171
6172 r = -EINVAL;
6173 if (user_ns.flags)
6174 goto out;
6175
6176 r = 0;
6177 /*
6178 * TODO: userspace has to take care of races with VCPU_RUN, so
6179 * kvm_gen_update_masterclock() can be cut down to locked
6180 * pvclock_update_vm_gtod_copy().
6181 */
6182 kvm_gen_update_masterclock(kvm);
6183
6184 /*
6185 * This pairs with kvm_guest_time_update(): when masterclock is
6186 * in use, we use master_kernel_ns + kvmclock_offset to set
6187 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6188 * is slightly ahead) here we risk going negative on unsigned
6189 * 'system_time' when 'user_ns.clock' is very small.
6190 */
6191 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6192 if (kvm->arch.use_master_clock)
6193 now_ns = ka->master_kernel_ns;
6194 else
6195 now_ns = get_kvmclock_base_ns();
6196 ka->kvmclock_offset = user_ns.clock - now_ns;
6197 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6198
6199 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6200 break;
6201 }
6202 case KVM_GET_CLOCK: {
6203 struct kvm_clock_data user_ns;
6204 u64 now_ns;
6205
6206 now_ns = get_kvmclock_ns(kvm);
6207 user_ns.clock = now_ns;
6208 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6209 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6210
6211 r = -EFAULT;
6212 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6213 goto out;
6214 r = 0;
6215 break;
6216 }
6217 case KVM_MEMORY_ENCRYPT_OP: {
6218 r = -ENOTTY;
6219 if (kvm_x86_ops.mem_enc_op)
6220 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6221 break;
6222 }
6223 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6224 struct kvm_enc_region region;
6225
6226 r = -EFAULT;
6227 if (copy_from_user(&region, argp, sizeof(region)))
6228 goto out;
6229
6230 r = -ENOTTY;
6231 if (kvm_x86_ops.mem_enc_reg_region)
6232 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6233 break;
6234 }
6235 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6236 struct kvm_enc_region region;
6237
6238 r = -EFAULT;
6239 if (copy_from_user(&region, argp, sizeof(region)))
6240 goto out;
6241
6242 r = -ENOTTY;
6243 if (kvm_x86_ops.mem_enc_unreg_region)
6244 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6245 break;
6246 }
6247 case KVM_HYPERV_EVENTFD: {
6248 struct kvm_hyperv_eventfd hvevfd;
6249
6250 r = -EFAULT;
6251 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6252 goto out;
6253 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6254 break;
6255 }
6256 case KVM_SET_PMU_EVENT_FILTER:
6257 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6258 break;
6259 case KVM_X86_SET_MSR_FILTER:
6260 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6261 break;
6262 default:
6263 r = -ENOTTY;
6264 }
6265 out:
6266 return r;
6267 }
6268
6269 static void kvm_init_msr_list(void)
6270 {
6271 struct x86_pmu_capability x86_pmu;
6272 u32 dummy[2];
6273 unsigned i;
6274
6275 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6276 "Please update the fixed PMCs in msrs_to_saved_all[]");
6277
6278 perf_get_x86_pmu_capability(&x86_pmu);
6279
6280 num_msrs_to_save = 0;
6281 num_emulated_msrs = 0;
6282 num_msr_based_features = 0;
6283
6284 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6285 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6286 continue;
6287
6288 /*
6289 * Even MSRs that are valid in the host may not be exposed
6290 * to the guests in some cases.
6291 */
6292 switch (msrs_to_save_all[i]) {
6293 case MSR_IA32_BNDCFGS:
6294 if (!kvm_mpx_supported())
6295 continue;
6296 break;
6297 case MSR_TSC_AUX:
6298 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6299 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6300 continue;
6301 break;
6302 case MSR_IA32_UMWAIT_CONTROL:
6303 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6304 continue;
6305 break;
6306 case MSR_IA32_RTIT_CTL:
6307 case MSR_IA32_RTIT_STATUS:
6308 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6309 continue;
6310 break;
6311 case MSR_IA32_RTIT_CR3_MATCH:
6312 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6313 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6314 continue;
6315 break;
6316 case MSR_IA32_RTIT_OUTPUT_BASE:
6317 case MSR_IA32_RTIT_OUTPUT_MASK:
6318 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6319 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6320 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6321 continue;
6322 break;
6323 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6324 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6325 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6326 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6327 continue;
6328 break;
6329 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6330 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6331 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6332 continue;
6333 break;
6334 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6335 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6336 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6337 continue;
6338 break;
6339 default:
6340 break;
6341 }
6342
6343 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6344 }
6345
6346 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6347 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6348 continue;
6349
6350 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6351 }
6352
6353 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6354 struct kvm_msr_entry msr;
6355
6356 msr.index = msr_based_features_all[i];
6357 if (kvm_get_msr_feature(&msr))
6358 continue;
6359
6360 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6361 }
6362 }
6363
6364 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6365 const void *v)
6366 {
6367 int handled = 0;
6368 int n;
6369
6370 do {
6371 n = min(len, 8);
6372 if (!(lapic_in_kernel(vcpu) &&
6373 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6374 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6375 break;
6376 handled += n;
6377 addr += n;
6378 len -= n;
6379 v += n;
6380 } while (len);
6381
6382 return handled;
6383 }
6384
6385 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6386 {
6387 int handled = 0;
6388 int n;
6389
6390 do {
6391 n = min(len, 8);
6392 if (!(lapic_in_kernel(vcpu) &&
6393 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6394 addr, n, v))
6395 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6396 break;
6397 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6398 handled += n;
6399 addr += n;
6400 len -= n;
6401 v += n;
6402 } while (len);
6403
6404 return handled;
6405 }
6406
6407 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6408 struct kvm_segment *var, int seg)
6409 {
6410 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6411 }
6412
6413 void kvm_get_segment(struct kvm_vcpu *vcpu,
6414 struct kvm_segment *var, int seg)
6415 {
6416 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6417 }
6418
6419 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6420 struct x86_exception *exception)
6421 {
6422 gpa_t t_gpa;
6423
6424 BUG_ON(!mmu_is_nested(vcpu));
6425
6426 /* NPT walks are always user-walks */
6427 access |= PFERR_USER_MASK;
6428 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6429
6430 return t_gpa;
6431 }
6432
6433 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6434 struct x86_exception *exception)
6435 {
6436 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6437 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6438 }
6439 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6440
6441 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6442 struct x86_exception *exception)
6443 {
6444 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6445 access |= PFERR_FETCH_MASK;
6446 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6447 }
6448
6449 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6450 struct x86_exception *exception)
6451 {
6452 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6453 access |= PFERR_WRITE_MASK;
6454 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6455 }
6456 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6457
6458 /* uses this to access any guest's mapped memory without checking CPL */
6459 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6460 struct x86_exception *exception)
6461 {
6462 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6463 }
6464
6465 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6466 struct kvm_vcpu *vcpu, u32 access,
6467 struct x86_exception *exception)
6468 {
6469 void *data = val;
6470 int r = X86EMUL_CONTINUE;
6471
6472 while (bytes) {
6473 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6474 exception);
6475 unsigned offset = addr & (PAGE_SIZE-1);
6476 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6477 int ret;
6478
6479 if (gpa == UNMAPPED_GVA)
6480 return X86EMUL_PROPAGATE_FAULT;
6481 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6482 offset, toread);
6483 if (ret < 0) {
6484 r = X86EMUL_IO_NEEDED;
6485 goto out;
6486 }
6487
6488 bytes -= toread;
6489 data += toread;
6490 addr += toread;
6491 }
6492 out:
6493 return r;
6494 }
6495
6496 /* used for instruction fetching */
6497 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6498 gva_t addr, void *val, unsigned int bytes,
6499 struct x86_exception *exception)
6500 {
6501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6502 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6503 unsigned offset;
6504 int ret;
6505
6506 /* Inline kvm_read_guest_virt_helper for speed. */
6507 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6508 exception);
6509 if (unlikely(gpa == UNMAPPED_GVA))
6510 return X86EMUL_PROPAGATE_FAULT;
6511
6512 offset = addr & (PAGE_SIZE-1);
6513 if (WARN_ON(offset + bytes > PAGE_SIZE))
6514 bytes = (unsigned)PAGE_SIZE - offset;
6515 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6516 offset, bytes);
6517 if (unlikely(ret < 0))
6518 return X86EMUL_IO_NEEDED;
6519
6520 return X86EMUL_CONTINUE;
6521 }
6522
6523 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6524 gva_t addr, void *val, unsigned int bytes,
6525 struct x86_exception *exception)
6526 {
6527 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6528
6529 /*
6530 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6531 * is returned, but our callers are not ready for that and they blindly
6532 * call kvm_inject_page_fault. Ensure that they at least do not leak
6533 * uninitialized kernel stack memory into cr2 and error code.
6534 */
6535 memset(exception, 0, sizeof(*exception));
6536 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6537 exception);
6538 }
6539 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6540
6541 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6542 gva_t addr, void *val, unsigned int bytes,
6543 struct x86_exception *exception, bool system)
6544 {
6545 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6546 u32 access = 0;
6547
6548 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6549 access |= PFERR_USER_MASK;
6550
6551 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6552 }
6553
6554 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6555 unsigned long addr, void *val, unsigned int bytes)
6556 {
6557 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6558 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6559
6560 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6561 }
6562
6563 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6564 struct kvm_vcpu *vcpu, u32 access,
6565 struct x86_exception *exception)
6566 {
6567 void *data = val;
6568 int r = X86EMUL_CONTINUE;
6569
6570 while (bytes) {
6571 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6572 access,
6573 exception);
6574 unsigned offset = addr & (PAGE_SIZE-1);
6575 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6576 int ret;
6577
6578 if (gpa == UNMAPPED_GVA)
6579 return X86EMUL_PROPAGATE_FAULT;
6580 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6581 if (ret < 0) {
6582 r = X86EMUL_IO_NEEDED;
6583 goto out;
6584 }
6585
6586 bytes -= towrite;
6587 data += towrite;
6588 addr += towrite;
6589 }
6590 out:
6591 return r;
6592 }
6593
6594 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6595 unsigned int bytes, struct x86_exception *exception,
6596 bool system)
6597 {
6598 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6599 u32 access = PFERR_WRITE_MASK;
6600
6601 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6602 access |= PFERR_USER_MASK;
6603
6604 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6605 access, exception);
6606 }
6607
6608 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6609 unsigned int bytes, struct x86_exception *exception)
6610 {
6611 /* kvm_write_guest_virt_system can pull in tons of pages. */
6612 vcpu->arch.l1tf_flush_l1d = true;
6613
6614 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6615 PFERR_WRITE_MASK, exception);
6616 }
6617 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6618
6619 int handle_ud(struct kvm_vcpu *vcpu)
6620 {
6621 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6622 int emul_type = EMULTYPE_TRAP_UD;
6623 char sig[5]; /* ud2; .ascii "kvm" */
6624 struct x86_exception e;
6625
6626 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6627 return 1;
6628
6629 if (force_emulation_prefix &&
6630 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6631 sig, sizeof(sig), &e) == 0 &&
6632 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6633 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6634 emul_type = EMULTYPE_TRAP_UD_FORCED;
6635 }
6636
6637 return kvm_emulate_instruction(vcpu, emul_type);
6638 }
6639 EXPORT_SYMBOL_GPL(handle_ud);
6640
6641 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6642 gpa_t gpa, bool write)
6643 {
6644 /* For APIC access vmexit */
6645 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6646 return 1;
6647
6648 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6649 trace_vcpu_match_mmio(gva, gpa, write, true);
6650 return 1;
6651 }
6652
6653 return 0;
6654 }
6655
6656 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6657 gpa_t *gpa, struct x86_exception *exception,
6658 bool write)
6659 {
6660 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6661 | (write ? PFERR_WRITE_MASK : 0);
6662
6663 /*
6664 * currently PKRU is only applied to ept enabled guest so
6665 * there is no pkey in EPT page table for L1 guest or EPT
6666 * shadow page table for L2 guest.
6667 */
6668 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6669 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6670 vcpu->arch.mmio_access, 0, access))) {
6671 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6672 (gva & (PAGE_SIZE - 1));
6673 trace_vcpu_match_mmio(gva, *gpa, write, false);
6674 return 1;
6675 }
6676
6677 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6678
6679 if (*gpa == UNMAPPED_GVA)
6680 return -1;
6681
6682 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6683 }
6684
6685 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6686 const void *val, int bytes)
6687 {
6688 int ret;
6689
6690 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6691 if (ret < 0)
6692 return 0;
6693 kvm_page_track_write(vcpu, gpa, val, bytes);
6694 return 1;
6695 }
6696
6697 struct read_write_emulator_ops {
6698 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6699 int bytes);
6700 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6701 void *val, int bytes);
6702 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6703 int bytes, void *val);
6704 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6705 void *val, int bytes);
6706 bool write;
6707 };
6708
6709 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6710 {
6711 if (vcpu->mmio_read_completed) {
6712 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6713 vcpu->mmio_fragments[0].gpa, val);
6714 vcpu->mmio_read_completed = 0;
6715 return 1;
6716 }
6717
6718 return 0;
6719 }
6720
6721 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6722 void *val, int bytes)
6723 {
6724 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6725 }
6726
6727 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6728 void *val, int bytes)
6729 {
6730 return emulator_write_phys(vcpu, gpa, val, bytes);
6731 }
6732
6733 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6734 {
6735 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6736 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6737 }
6738
6739 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6740 void *val, int bytes)
6741 {
6742 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6743 return X86EMUL_IO_NEEDED;
6744 }
6745
6746 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6747 void *val, int bytes)
6748 {
6749 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6750
6751 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6752 return X86EMUL_CONTINUE;
6753 }
6754
6755 static const struct read_write_emulator_ops read_emultor = {
6756 .read_write_prepare = read_prepare,
6757 .read_write_emulate = read_emulate,
6758 .read_write_mmio = vcpu_mmio_read,
6759 .read_write_exit_mmio = read_exit_mmio,
6760 };
6761
6762 static const struct read_write_emulator_ops write_emultor = {
6763 .read_write_emulate = write_emulate,
6764 .read_write_mmio = write_mmio,
6765 .read_write_exit_mmio = write_exit_mmio,
6766 .write = true,
6767 };
6768
6769 static int emulator_read_write_onepage(unsigned long addr, void *val,
6770 unsigned int bytes,
6771 struct x86_exception *exception,
6772 struct kvm_vcpu *vcpu,
6773 const struct read_write_emulator_ops *ops)
6774 {
6775 gpa_t gpa;
6776 int handled, ret;
6777 bool write = ops->write;
6778 struct kvm_mmio_fragment *frag;
6779 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6780
6781 /*
6782 * If the exit was due to a NPF we may already have a GPA.
6783 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6784 * Note, this cannot be used on string operations since string
6785 * operation using rep will only have the initial GPA from the NPF
6786 * occurred.
6787 */
6788 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6789 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6790 gpa = ctxt->gpa_val;
6791 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6792 } else {
6793 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6794 if (ret < 0)
6795 return X86EMUL_PROPAGATE_FAULT;
6796 }
6797
6798 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6799 return X86EMUL_CONTINUE;
6800
6801 /*
6802 * Is this MMIO handled locally?
6803 */
6804 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6805 if (handled == bytes)
6806 return X86EMUL_CONTINUE;
6807
6808 gpa += handled;
6809 bytes -= handled;
6810 val += handled;
6811
6812 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6813 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6814 frag->gpa = gpa;
6815 frag->data = val;
6816 frag->len = bytes;
6817 return X86EMUL_CONTINUE;
6818 }
6819
6820 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6821 unsigned long addr,
6822 void *val, unsigned int bytes,
6823 struct x86_exception *exception,
6824 const struct read_write_emulator_ops *ops)
6825 {
6826 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6827 gpa_t gpa;
6828 int rc;
6829
6830 if (ops->read_write_prepare &&
6831 ops->read_write_prepare(vcpu, val, bytes))
6832 return X86EMUL_CONTINUE;
6833
6834 vcpu->mmio_nr_fragments = 0;
6835
6836 /* Crossing a page boundary? */
6837 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6838 int now;
6839
6840 now = -addr & ~PAGE_MASK;
6841 rc = emulator_read_write_onepage(addr, val, now, exception,
6842 vcpu, ops);
6843
6844 if (rc != X86EMUL_CONTINUE)
6845 return rc;
6846 addr += now;
6847 if (ctxt->mode != X86EMUL_MODE_PROT64)
6848 addr = (u32)addr;
6849 val += now;
6850 bytes -= now;
6851 }
6852
6853 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6854 vcpu, ops);
6855 if (rc != X86EMUL_CONTINUE)
6856 return rc;
6857
6858 if (!vcpu->mmio_nr_fragments)
6859 return rc;
6860
6861 gpa = vcpu->mmio_fragments[0].gpa;
6862
6863 vcpu->mmio_needed = 1;
6864 vcpu->mmio_cur_fragment = 0;
6865
6866 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6867 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6868 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6869 vcpu->run->mmio.phys_addr = gpa;
6870
6871 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6872 }
6873
6874 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6875 unsigned long addr,
6876 void *val,
6877 unsigned int bytes,
6878 struct x86_exception *exception)
6879 {
6880 return emulator_read_write(ctxt, addr, val, bytes,
6881 exception, &read_emultor);
6882 }
6883
6884 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6885 unsigned long addr,
6886 const void *val,
6887 unsigned int bytes,
6888 struct x86_exception *exception)
6889 {
6890 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6891 exception, &write_emultor);
6892 }
6893
6894 #define CMPXCHG_TYPE(t, ptr, old, new) \
6895 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6896
6897 #ifdef CONFIG_X86_64
6898 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6899 #else
6900 # define CMPXCHG64(ptr, old, new) \
6901 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6902 #endif
6903
6904 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6905 unsigned long addr,
6906 const void *old,
6907 const void *new,
6908 unsigned int bytes,
6909 struct x86_exception *exception)
6910 {
6911 struct kvm_host_map map;
6912 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6913 u64 page_line_mask;
6914 gpa_t gpa;
6915 char *kaddr;
6916 bool exchanged;
6917
6918 /* guests cmpxchg8b have to be emulated atomically */
6919 if (bytes > 8 || (bytes & (bytes - 1)))
6920 goto emul_write;
6921
6922 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6923
6924 if (gpa == UNMAPPED_GVA ||
6925 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6926 goto emul_write;
6927
6928 /*
6929 * Emulate the atomic as a straight write to avoid #AC if SLD is
6930 * enabled in the host and the access splits a cache line.
6931 */
6932 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6933 page_line_mask = ~(cache_line_size() - 1);
6934 else
6935 page_line_mask = PAGE_MASK;
6936
6937 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6938 goto emul_write;
6939
6940 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6941 goto emul_write;
6942
6943 kaddr = map.hva + offset_in_page(gpa);
6944
6945 switch (bytes) {
6946 case 1:
6947 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6948 break;
6949 case 2:
6950 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6951 break;
6952 case 4:
6953 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6954 break;
6955 case 8:
6956 exchanged = CMPXCHG64(kaddr, old, new);
6957 break;
6958 default:
6959 BUG();
6960 }
6961
6962 kvm_vcpu_unmap(vcpu, &map, true);
6963
6964 if (!exchanged)
6965 return X86EMUL_CMPXCHG_FAILED;
6966
6967 kvm_page_track_write(vcpu, gpa, new, bytes);
6968
6969 return X86EMUL_CONTINUE;
6970
6971 emul_write:
6972 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6973
6974 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6975 }
6976
6977 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6978 {
6979 int r = 0, i;
6980
6981 for (i = 0; i < vcpu->arch.pio.count; i++) {
6982 if (vcpu->arch.pio.in)
6983 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6984 vcpu->arch.pio.size, pd);
6985 else
6986 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6987 vcpu->arch.pio.port, vcpu->arch.pio.size,
6988 pd);
6989 if (r)
6990 break;
6991 pd += vcpu->arch.pio.size;
6992 }
6993 return r;
6994 }
6995
6996 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6997 unsigned short port,
6998 unsigned int count, bool in)
6999 {
7000 vcpu->arch.pio.port = port;
7001 vcpu->arch.pio.in = in;
7002 vcpu->arch.pio.count = count;
7003 vcpu->arch.pio.size = size;
7004
7005 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7006 return 1;
7007
7008 vcpu->run->exit_reason = KVM_EXIT_IO;
7009 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7010 vcpu->run->io.size = size;
7011 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7012 vcpu->run->io.count = count;
7013 vcpu->run->io.port = port;
7014
7015 return 0;
7016 }
7017
7018 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7019 unsigned short port, unsigned int count)
7020 {
7021 WARN_ON(vcpu->arch.pio.count);
7022 memset(vcpu->arch.pio_data, 0, size * count);
7023 return emulator_pio_in_out(vcpu, size, port, count, true);
7024 }
7025
7026 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7027 {
7028 int size = vcpu->arch.pio.size;
7029 unsigned count = vcpu->arch.pio.count;
7030 memcpy(val, vcpu->arch.pio_data, size * count);
7031 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7032 vcpu->arch.pio.count = 0;
7033 }
7034
7035 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7036 unsigned short port, void *val, unsigned int count)
7037 {
7038 if (vcpu->arch.pio.count) {
7039 /*
7040 * Complete a previous iteration that required userspace I/O.
7041 * Note, @count isn't guaranteed to match pio.count as userspace
7042 * can modify ECX before rerunning the vCPU. Ignore any such
7043 * shenanigans as KVM doesn't support modifying the rep count,
7044 * and the emulator ensures @count doesn't overflow the buffer.
7045 */
7046 } else {
7047 int r = __emulator_pio_in(vcpu, size, port, count);
7048 if (!r)
7049 return r;
7050
7051 /* Results already available, fall through. */
7052 }
7053
7054 complete_emulator_pio_in(vcpu, val);
7055 return 1;
7056 }
7057
7058 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7059 int size, unsigned short port, void *val,
7060 unsigned int count)
7061 {
7062 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7063
7064 }
7065
7066 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7067 unsigned short port, const void *val,
7068 unsigned int count)
7069 {
7070 int ret;
7071
7072 memcpy(vcpu->arch.pio_data, val, size * count);
7073 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7074 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7075 if (ret)
7076 vcpu->arch.pio.count = 0;
7077
7078 return ret;
7079 }
7080
7081 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7082 int size, unsigned short port,
7083 const void *val, unsigned int count)
7084 {
7085 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7086 }
7087
7088 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7089 {
7090 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7091 }
7092
7093 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7094 {
7095 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7096 }
7097
7098 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7099 {
7100 if (!need_emulate_wbinvd(vcpu))
7101 return X86EMUL_CONTINUE;
7102
7103 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7104 int cpu = get_cpu();
7105
7106 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7107 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7108 wbinvd_ipi, NULL, 1);
7109 put_cpu();
7110 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7111 } else
7112 wbinvd();
7113 return X86EMUL_CONTINUE;
7114 }
7115
7116 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7117 {
7118 kvm_emulate_wbinvd_noskip(vcpu);
7119 return kvm_skip_emulated_instruction(vcpu);
7120 }
7121 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7122
7123
7124
7125 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7126 {
7127 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7128 }
7129
7130 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7131 unsigned long *dest)
7132 {
7133 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7134 }
7135
7136 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7137 unsigned long value)
7138 {
7139
7140 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7141 }
7142
7143 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7144 {
7145 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7146 }
7147
7148 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7149 {
7150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7151 unsigned long value;
7152
7153 switch (cr) {
7154 case 0:
7155 value = kvm_read_cr0(vcpu);
7156 break;
7157 case 2:
7158 value = vcpu->arch.cr2;
7159 break;
7160 case 3:
7161 value = kvm_read_cr3(vcpu);
7162 break;
7163 case 4:
7164 value = kvm_read_cr4(vcpu);
7165 break;
7166 case 8:
7167 value = kvm_get_cr8(vcpu);
7168 break;
7169 default:
7170 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7171 return 0;
7172 }
7173
7174 return value;
7175 }
7176
7177 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7178 {
7179 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7180 int res = 0;
7181
7182 switch (cr) {
7183 case 0:
7184 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7185 break;
7186 case 2:
7187 vcpu->arch.cr2 = val;
7188 break;
7189 case 3:
7190 res = kvm_set_cr3(vcpu, val);
7191 break;
7192 case 4:
7193 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7194 break;
7195 case 8:
7196 res = kvm_set_cr8(vcpu, val);
7197 break;
7198 default:
7199 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7200 res = -1;
7201 }
7202
7203 return res;
7204 }
7205
7206 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7207 {
7208 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7209 }
7210
7211 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7212 {
7213 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7214 }
7215
7216 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7217 {
7218 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7219 }
7220
7221 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7222 {
7223 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7224 }
7225
7226 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7227 {
7228 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7229 }
7230
7231 static unsigned long emulator_get_cached_segment_base(
7232 struct x86_emulate_ctxt *ctxt, int seg)
7233 {
7234 return get_segment_base(emul_to_vcpu(ctxt), seg);
7235 }
7236
7237 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7238 struct desc_struct *desc, u32 *base3,
7239 int seg)
7240 {
7241 struct kvm_segment var;
7242
7243 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7244 *selector = var.selector;
7245
7246 if (var.unusable) {
7247 memset(desc, 0, sizeof(*desc));
7248 if (base3)
7249 *base3 = 0;
7250 return false;
7251 }
7252
7253 if (var.g)
7254 var.limit >>= 12;
7255 set_desc_limit(desc, var.limit);
7256 set_desc_base(desc, (unsigned long)var.base);
7257 #ifdef CONFIG_X86_64
7258 if (base3)
7259 *base3 = var.base >> 32;
7260 #endif
7261 desc->type = var.type;
7262 desc->s = var.s;
7263 desc->dpl = var.dpl;
7264 desc->p = var.present;
7265 desc->avl = var.avl;
7266 desc->l = var.l;
7267 desc->d = var.db;
7268 desc->g = var.g;
7269
7270 return true;
7271 }
7272
7273 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7274 struct desc_struct *desc, u32 base3,
7275 int seg)
7276 {
7277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7278 struct kvm_segment var;
7279
7280 var.selector = selector;
7281 var.base = get_desc_base(desc);
7282 #ifdef CONFIG_X86_64
7283 var.base |= ((u64)base3) << 32;
7284 #endif
7285 var.limit = get_desc_limit(desc);
7286 if (desc->g)
7287 var.limit = (var.limit << 12) | 0xfff;
7288 var.type = desc->type;
7289 var.dpl = desc->dpl;
7290 var.db = desc->d;
7291 var.s = desc->s;
7292 var.l = desc->l;
7293 var.g = desc->g;
7294 var.avl = desc->avl;
7295 var.present = desc->p;
7296 var.unusable = !var.present;
7297 var.padding = 0;
7298
7299 kvm_set_segment(vcpu, &var, seg);
7300 return;
7301 }
7302
7303 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7304 u32 msr_index, u64 *pdata)
7305 {
7306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7307 int r;
7308
7309 r = kvm_get_msr(vcpu, msr_index, pdata);
7310
7311 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7312 /* Bounce to user space */
7313 return X86EMUL_IO_NEEDED;
7314 }
7315
7316 return r;
7317 }
7318
7319 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7320 u32 msr_index, u64 data)
7321 {
7322 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7323 int r;
7324
7325 r = kvm_set_msr(vcpu, msr_index, data);
7326
7327 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7328 /* Bounce to user space */
7329 return X86EMUL_IO_NEEDED;
7330 }
7331
7332 return r;
7333 }
7334
7335 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7336 {
7337 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7338
7339 return vcpu->arch.smbase;
7340 }
7341
7342 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7343 {
7344 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7345
7346 vcpu->arch.smbase = smbase;
7347 }
7348
7349 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7350 u32 pmc)
7351 {
7352 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7353 }
7354
7355 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7356 u32 pmc, u64 *pdata)
7357 {
7358 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7359 }
7360
7361 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7362 {
7363 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7364 }
7365
7366 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7367 struct x86_instruction_info *info,
7368 enum x86_intercept_stage stage)
7369 {
7370 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7371 &ctxt->exception);
7372 }
7373
7374 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7375 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7376 bool exact_only)
7377 {
7378 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7379 }
7380
7381 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7382 {
7383 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7384 }
7385
7386 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7387 {
7388 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7389 }
7390
7391 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7392 {
7393 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7394 }
7395
7396 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7397 {
7398 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7399 }
7400
7401 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7402 {
7403 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7404 }
7405
7406 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7407 {
7408 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7409 }
7410
7411 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7412 {
7413 return emul_to_vcpu(ctxt)->arch.hflags;
7414 }
7415
7416 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7417 {
7418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7419
7420 kvm_smm_changed(vcpu, false);
7421 }
7422
7423 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7424 const char *smstate)
7425 {
7426 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7427 }
7428
7429 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7430 {
7431 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7432 }
7433
7434 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7435 {
7436 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7437 }
7438
7439 static const struct x86_emulate_ops emulate_ops = {
7440 .read_gpr = emulator_read_gpr,
7441 .write_gpr = emulator_write_gpr,
7442 .read_std = emulator_read_std,
7443 .write_std = emulator_write_std,
7444 .read_phys = kvm_read_guest_phys_system,
7445 .fetch = kvm_fetch_guest_virt,
7446 .read_emulated = emulator_read_emulated,
7447 .write_emulated = emulator_write_emulated,
7448 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7449 .invlpg = emulator_invlpg,
7450 .pio_in_emulated = emulator_pio_in_emulated,
7451 .pio_out_emulated = emulator_pio_out_emulated,
7452 .get_segment = emulator_get_segment,
7453 .set_segment = emulator_set_segment,
7454 .get_cached_segment_base = emulator_get_cached_segment_base,
7455 .get_gdt = emulator_get_gdt,
7456 .get_idt = emulator_get_idt,
7457 .set_gdt = emulator_set_gdt,
7458 .set_idt = emulator_set_idt,
7459 .get_cr = emulator_get_cr,
7460 .set_cr = emulator_set_cr,
7461 .cpl = emulator_get_cpl,
7462 .get_dr = emulator_get_dr,
7463 .set_dr = emulator_set_dr,
7464 .get_smbase = emulator_get_smbase,
7465 .set_smbase = emulator_set_smbase,
7466 .set_msr = emulator_set_msr,
7467 .get_msr = emulator_get_msr,
7468 .check_pmc = emulator_check_pmc,
7469 .read_pmc = emulator_read_pmc,
7470 .halt = emulator_halt,
7471 .wbinvd = emulator_wbinvd,
7472 .fix_hypercall = emulator_fix_hypercall,
7473 .intercept = emulator_intercept,
7474 .get_cpuid = emulator_get_cpuid,
7475 .guest_has_long_mode = emulator_guest_has_long_mode,
7476 .guest_has_movbe = emulator_guest_has_movbe,
7477 .guest_has_fxsr = emulator_guest_has_fxsr,
7478 .set_nmi_mask = emulator_set_nmi_mask,
7479 .get_hflags = emulator_get_hflags,
7480 .exiting_smm = emulator_exiting_smm,
7481 .leave_smm = emulator_leave_smm,
7482 .triple_fault = emulator_triple_fault,
7483 .set_xcr = emulator_set_xcr,
7484 };
7485
7486 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7487 {
7488 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7489 /*
7490 * an sti; sti; sequence only disable interrupts for the first
7491 * instruction. So, if the last instruction, be it emulated or
7492 * not, left the system with the INT_STI flag enabled, it
7493 * means that the last instruction is an sti. We should not
7494 * leave the flag on in this case. The same goes for mov ss
7495 */
7496 if (int_shadow & mask)
7497 mask = 0;
7498 if (unlikely(int_shadow || mask)) {
7499 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7500 if (!mask)
7501 kvm_make_request(KVM_REQ_EVENT, vcpu);
7502 }
7503 }
7504
7505 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7506 {
7507 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7508 if (ctxt->exception.vector == PF_VECTOR)
7509 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7510
7511 if (ctxt->exception.error_code_valid)
7512 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7513 ctxt->exception.error_code);
7514 else
7515 kvm_queue_exception(vcpu, ctxt->exception.vector);
7516 return false;
7517 }
7518
7519 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7520 {
7521 struct x86_emulate_ctxt *ctxt;
7522
7523 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7524 if (!ctxt) {
7525 pr_err("kvm: failed to allocate vcpu's emulator\n");
7526 return NULL;
7527 }
7528
7529 ctxt->vcpu = vcpu;
7530 ctxt->ops = &emulate_ops;
7531 vcpu->arch.emulate_ctxt = ctxt;
7532
7533 return ctxt;
7534 }
7535
7536 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7537 {
7538 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7539 int cs_db, cs_l;
7540
7541 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7542
7543 ctxt->gpa_available = false;
7544 ctxt->eflags = kvm_get_rflags(vcpu);
7545 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7546
7547 ctxt->eip = kvm_rip_read(vcpu);
7548 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7549 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7550 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7551 cs_db ? X86EMUL_MODE_PROT32 :
7552 X86EMUL_MODE_PROT16;
7553 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7554 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7555 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7556
7557 ctxt->interruptibility = 0;
7558 ctxt->have_exception = false;
7559 ctxt->exception.vector = -1;
7560 ctxt->perm_ok = false;
7561
7562 init_decode_cache(ctxt);
7563 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7564 }
7565
7566 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7567 {
7568 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7569 int ret;
7570
7571 init_emulate_ctxt(vcpu);
7572
7573 ctxt->op_bytes = 2;
7574 ctxt->ad_bytes = 2;
7575 ctxt->_eip = ctxt->eip + inc_eip;
7576 ret = emulate_int_real(ctxt, irq);
7577
7578 if (ret != X86EMUL_CONTINUE) {
7579 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7580 } else {
7581 ctxt->eip = ctxt->_eip;
7582 kvm_rip_write(vcpu, ctxt->eip);
7583 kvm_set_rflags(vcpu, ctxt->eflags);
7584 }
7585 }
7586 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7587
7588 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7589 {
7590 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7591 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7592 struct kvm_run *run = vcpu->run;
7593
7594 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7595 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7596 run->emulation_failure.ndata = 0;
7597 run->emulation_failure.flags = 0;
7598
7599 if (insn_size) {
7600 run->emulation_failure.ndata = 3;
7601 run->emulation_failure.flags |=
7602 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7603 run->emulation_failure.insn_size = insn_size;
7604 memset(run->emulation_failure.insn_bytes, 0x90,
7605 sizeof(run->emulation_failure.insn_bytes));
7606 memcpy(run->emulation_failure.insn_bytes,
7607 ctxt->fetch.data, insn_size);
7608 }
7609 }
7610
7611 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7612 {
7613 struct kvm *kvm = vcpu->kvm;
7614
7615 ++vcpu->stat.insn_emulation_fail;
7616 trace_kvm_emulate_insn_failed(vcpu);
7617
7618 if (emulation_type & EMULTYPE_VMWARE_GP) {
7619 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7620 return 1;
7621 }
7622
7623 if (kvm->arch.exit_on_emulation_error ||
7624 (emulation_type & EMULTYPE_SKIP)) {
7625 prepare_emulation_failure_exit(vcpu);
7626 return 0;
7627 }
7628
7629 kvm_queue_exception(vcpu, UD_VECTOR);
7630
7631 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7632 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7633 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7634 vcpu->run->internal.ndata = 0;
7635 return 0;
7636 }
7637
7638 return 1;
7639 }
7640
7641 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7642 bool write_fault_to_shadow_pgtable,
7643 int emulation_type)
7644 {
7645 gpa_t gpa = cr2_or_gpa;
7646 kvm_pfn_t pfn;
7647
7648 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7649 return false;
7650
7651 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7652 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7653 return false;
7654
7655 if (!vcpu->arch.mmu->direct_map) {
7656 /*
7657 * Write permission should be allowed since only
7658 * write access need to be emulated.
7659 */
7660 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7661
7662 /*
7663 * If the mapping is invalid in guest, let cpu retry
7664 * it to generate fault.
7665 */
7666 if (gpa == UNMAPPED_GVA)
7667 return true;
7668 }
7669
7670 /*
7671 * Do not retry the unhandleable instruction if it faults on the
7672 * readonly host memory, otherwise it will goto a infinite loop:
7673 * retry instruction -> write #PF -> emulation fail -> retry
7674 * instruction -> ...
7675 */
7676 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7677
7678 /*
7679 * If the instruction failed on the error pfn, it can not be fixed,
7680 * report the error to userspace.
7681 */
7682 if (is_error_noslot_pfn(pfn))
7683 return false;
7684
7685 kvm_release_pfn_clean(pfn);
7686
7687 /* The instructions are well-emulated on direct mmu. */
7688 if (vcpu->arch.mmu->direct_map) {
7689 unsigned int indirect_shadow_pages;
7690
7691 write_lock(&vcpu->kvm->mmu_lock);
7692 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7693 write_unlock(&vcpu->kvm->mmu_lock);
7694
7695 if (indirect_shadow_pages)
7696 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7697
7698 return true;
7699 }
7700
7701 /*
7702 * if emulation was due to access to shadowed page table
7703 * and it failed try to unshadow page and re-enter the
7704 * guest to let CPU execute the instruction.
7705 */
7706 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7707
7708 /*
7709 * If the access faults on its page table, it can not
7710 * be fixed by unprotecting shadow page and it should
7711 * be reported to userspace.
7712 */
7713 return !write_fault_to_shadow_pgtable;
7714 }
7715
7716 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7717 gpa_t cr2_or_gpa, int emulation_type)
7718 {
7719 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7720 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7721
7722 last_retry_eip = vcpu->arch.last_retry_eip;
7723 last_retry_addr = vcpu->arch.last_retry_addr;
7724
7725 /*
7726 * If the emulation is caused by #PF and it is non-page_table
7727 * writing instruction, it means the VM-EXIT is caused by shadow
7728 * page protected, we can zap the shadow page and retry this
7729 * instruction directly.
7730 *
7731 * Note: if the guest uses a non-page-table modifying instruction
7732 * on the PDE that points to the instruction, then we will unmap
7733 * the instruction and go to an infinite loop. So, we cache the
7734 * last retried eip and the last fault address, if we meet the eip
7735 * and the address again, we can break out of the potential infinite
7736 * loop.
7737 */
7738 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7739
7740 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7741 return false;
7742
7743 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7744 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7745 return false;
7746
7747 if (x86_page_table_writing_insn(ctxt))
7748 return false;
7749
7750 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7751 return false;
7752
7753 vcpu->arch.last_retry_eip = ctxt->eip;
7754 vcpu->arch.last_retry_addr = cr2_or_gpa;
7755
7756 if (!vcpu->arch.mmu->direct_map)
7757 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7758
7759 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7760
7761 return true;
7762 }
7763
7764 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7765 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7766
7767 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7768 {
7769 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7770
7771 if (entering_smm) {
7772 vcpu->arch.hflags |= HF_SMM_MASK;
7773 } else {
7774 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7775
7776 /* Process a latched INIT or SMI, if any. */
7777 kvm_make_request(KVM_REQ_EVENT, vcpu);
7778
7779 /*
7780 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7781 * on SMM exit we still need to reload them from
7782 * guest memory
7783 */
7784 vcpu->arch.pdptrs_from_userspace = false;
7785 }
7786
7787 kvm_mmu_reset_context(vcpu);
7788 }
7789
7790 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7791 unsigned long *db)
7792 {
7793 u32 dr6 = 0;
7794 int i;
7795 u32 enable, rwlen;
7796
7797 enable = dr7;
7798 rwlen = dr7 >> 16;
7799 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7800 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7801 dr6 |= (1 << i);
7802 return dr6;
7803 }
7804
7805 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7806 {
7807 struct kvm_run *kvm_run = vcpu->run;
7808
7809 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7810 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7811 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7812 kvm_run->debug.arch.exception = DB_VECTOR;
7813 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7814 return 0;
7815 }
7816 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7817 return 1;
7818 }
7819
7820 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7821 {
7822 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7823 int r;
7824
7825 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7826 if (unlikely(!r))
7827 return 0;
7828
7829 /*
7830 * rflags is the old, "raw" value of the flags. The new value has
7831 * not been saved yet.
7832 *
7833 * This is correct even for TF set by the guest, because "the
7834 * processor will not generate this exception after the instruction
7835 * that sets the TF flag".
7836 */
7837 if (unlikely(rflags & X86_EFLAGS_TF))
7838 r = kvm_vcpu_do_singlestep(vcpu);
7839 return r;
7840 }
7841 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7842
7843 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7844 {
7845 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7846 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7847 struct kvm_run *kvm_run = vcpu->run;
7848 unsigned long eip = kvm_get_linear_rip(vcpu);
7849 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7850 vcpu->arch.guest_debug_dr7,
7851 vcpu->arch.eff_db);
7852
7853 if (dr6 != 0) {
7854 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7855 kvm_run->debug.arch.pc = eip;
7856 kvm_run->debug.arch.exception = DB_VECTOR;
7857 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7858 *r = 0;
7859 return true;
7860 }
7861 }
7862
7863 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7864 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7865 unsigned long eip = kvm_get_linear_rip(vcpu);
7866 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7867 vcpu->arch.dr7,
7868 vcpu->arch.db);
7869
7870 if (dr6 != 0) {
7871 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7872 *r = 1;
7873 return true;
7874 }
7875 }
7876
7877 return false;
7878 }
7879
7880 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7881 {
7882 switch (ctxt->opcode_len) {
7883 case 1:
7884 switch (ctxt->b) {
7885 case 0xe4: /* IN */
7886 case 0xe5:
7887 case 0xec:
7888 case 0xed:
7889 case 0xe6: /* OUT */
7890 case 0xe7:
7891 case 0xee:
7892 case 0xef:
7893 case 0x6c: /* INS */
7894 case 0x6d:
7895 case 0x6e: /* OUTS */
7896 case 0x6f:
7897 return true;
7898 }
7899 break;
7900 case 2:
7901 switch (ctxt->b) {
7902 case 0x33: /* RDPMC */
7903 return true;
7904 }
7905 break;
7906 }
7907
7908 return false;
7909 }
7910
7911 /*
7912 * Decode to be emulated instruction. Return EMULATION_OK if success.
7913 */
7914 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7915 void *insn, int insn_len)
7916 {
7917 int r = EMULATION_OK;
7918 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7919
7920 init_emulate_ctxt(vcpu);
7921
7922 /*
7923 * We will reenter on the same instruction since we do not set
7924 * complete_userspace_io. This does not handle watchpoints yet,
7925 * those would be handled in the emulate_ops.
7926 */
7927 if (!(emulation_type & EMULTYPE_SKIP) &&
7928 kvm_vcpu_check_breakpoint(vcpu, &r))
7929 return r;
7930
7931 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7932
7933 trace_kvm_emulate_insn_start(vcpu);
7934 ++vcpu->stat.insn_emulation;
7935
7936 return r;
7937 }
7938 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7939
7940 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7941 int emulation_type, void *insn, int insn_len)
7942 {
7943 int r;
7944 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7945 bool writeback = true;
7946 bool write_fault_to_spt;
7947
7948 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7949 return 1;
7950
7951 vcpu->arch.l1tf_flush_l1d = true;
7952
7953 /*
7954 * Clear write_fault_to_shadow_pgtable here to ensure it is
7955 * never reused.
7956 */
7957 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7958 vcpu->arch.write_fault_to_shadow_pgtable = false;
7959
7960 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7961 kvm_clear_exception_queue(vcpu);
7962
7963 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7964 insn, insn_len);
7965 if (r != EMULATION_OK) {
7966 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7967 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7968 kvm_queue_exception(vcpu, UD_VECTOR);
7969 return 1;
7970 }
7971 if (reexecute_instruction(vcpu, cr2_or_gpa,
7972 write_fault_to_spt,
7973 emulation_type))
7974 return 1;
7975 if (ctxt->have_exception) {
7976 /*
7977 * #UD should result in just EMULATION_FAILED, and trap-like
7978 * exception should not be encountered during decode.
7979 */
7980 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7981 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7982 inject_emulated_exception(vcpu);
7983 return 1;
7984 }
7985 return handle_emulation_failure(vcpu, emulation_type);
7986 }
7987 }
7988
7989 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7990 !is_vmware_backdoor_opcode(ctxt)) {
7991 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7992 return 1;
7993 }
7994
7995 /*
7996 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7997 * for kvm_skip_emulated_instruction(). The caller is responsible for
7998 * updating interruptibility state and injecting single-step #DBs.
7999 */
8000 if (emulation_type & EMULTYPE_SKIP) {
8001 kvm_rip_write(vcpu, ctxt->_eip);
8002 if (ctxt->eflags & X86_EFLAGS_RF)
8003 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8004 return 1;
8005 }
8006
8007 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8008 return 1;
8009
8010 /* this is needed for vmware backdoor interface to work since it
8011 changes registers values during IO operation */
8012 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8013 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8014 emulator_invalidate_register_cache(ctxt);
8015 }
8016
8017 restart:
8018 if (emulation_type & EMULTYPE_PF) {
8019 /* Save the faulting GPA (cr2) in the address field */
8020 ctxt->exception.address = cr2_or_gpa;
8021
8022 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8023 if (vcpu->arch.mmu->direct_map) {
8024 ctxt->gpa_available = true;
8025 ctxt->gpa_val = cr2_or_gpa;
8026 }
8027 } else {
8028 /* Sanitize the address out of an abundance of paranoia. */
8029 ctxt->exception.address = 0;
8030 }
8031
8032 r = x86_emulate_insn(ctxt);
8033
8034 if (r == EMULATION_INTERCEPTED)
8035 return 1;
8036
8037 if (r == EMULATION_FAILED) {
8038 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8039 emulation_type))
8040 return 1;
8041
8042 return handle_emulation_failure(vcpu, emulation_type);
8043 }
8044
8045 if (ctxt->have_exception) {
8046 r = 1;
8047 if (inject_emulated_exception(vcpu))
8048 return r;
8049 } else if (vcpu->arch.pio.count) {
8050 if (!vcpu->arch.pio.in) {
8051 /* FIXME: return into emulator if single-stepping. */
8052 vcpu->arch.pio.count = 0;
8053 } else {
8054 writeback = false;
8055 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8056 }
8057 r = 0;
8058 } else if (vcpu->mmio_needed) {
8059 ++vcpu->stat.mmio_exits;
8060
8061 if (!vcpu->mmio_is_write)
8062 writeback = false;
8063 r = 0;
8064 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8065 } else if (r == EMULATION_RESTART)
8066 goto restart;
8067 else
8068 r = 1;
8069
8070 if (writeback) {
8071 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8072 toggle_interruptibility(vcpu, ctxt->interruptibility);
8073 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8074 if (!ctxt->have_exception ||
8075 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8076 kvm_rip_write(vcpu, ctxt->eip);
8077 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8078 r = kvm_vcpu_do_singlestep(vcpu);
8079 if (kvm_x86_ops.update_emulated_instruction)
8080 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8081 __kvm_set_rflags(vcpu, ctxt->eflags);
8082 }
8083
8084 /*
8085 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8086 * do nothing, and it will be requested again as soon as
8087 * the shadow expires. But we still need to check here,
8088 * because POPF has no interrupt shadow.
8089 */
8090 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8091 kvm_make_request(KVM_REQ_EVENT, vcpu);
8092 } else
8093 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8094
8095 return r;
8096 }
8097
8098 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8099 {
8100 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8101 }
8102 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8103
8104 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8105 void *insn, int insn_len)
8106 {
8107 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8108 }
8109 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8110
8111 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8112 {
8113 vcpu->arch.pio.count = 0;
8114 return 1;
8115 }
8116
8117 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8118 {
8119 vcpu->arch.pio.count = 0;
8120
8121 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8122 return 1;
8123
8124 return kvm_skip_emulated_instruction(vcpu);
8125 }
8126
8127 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8128 unsigned short port)
8129 {
8130 unsigned long val = kvm_rax_read(vcpu);
8131 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8132
8133 if (ret)
8134 return ret;
8135
8136 /*
8137 * Workaround userspace that relies on old KVM behavior of %rip being
8138 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8139 */
8140 if (port == 0x7e &&
8141 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8142 vcpu->arch.complete_userspace_io =
8143 complete_fast_pio_out_port_0x7e;
8144 kvm_skip_emulated_instruction(vcpu);
8145 } else {
8146 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8147 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8148 }
8149 return 0;
8150 }
8151
8152 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8153 {
8154 unsigned long val;
8155
8156 /* We should only ever be called with arch.pio.count equal to 1 */
8157 BUG_ON(vcpu->arch.pio.count != 1);
8158
8159 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8160 vcpu->arch.pio.count = 0;
8161 return 1;
8162 }
8163
8164 /* For size less than 4 we merge, else we zero extend */
8165 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8166
8167 /*
8168 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8169 * the copy and tracing
8170 */
8171 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8172 kvm_rax_write(vcpu, val);
8173
8174 return kvm_skip_emulated_instruction(vcpu);
8175 }
8176
8177 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8178 unsigned short port)
8179 {
8180 unsigned long val;
8181 int ret;
8182
8183 /* For size less than 4 we merge, else we zero extend */
8184 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8185
8186 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8187 if (ret) {
8188 kvm_rax_write(vcpu, val);
8189 return ret;
8190 }
8191
8192 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8193 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8194
8195 return 0;
8196 }
8197
8198 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8199 {
8200 int ret;
8201
8202 if (in)
8203 ret = kvm_fast_pio_in(vcpu, size, port);
8204 else
8205 ret = kvm_fast_pio_out(vcpu, size, port);
8206 return ret && kvm_skip_emulated_instruction(vcpu);
8207 }
8208 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8209
8210 static int kvmclock_cpu_down_prep(unsigned int cpu)
8211 {
8212 __this_cpu_write(cpu_tsc_khz, 0);
8213 return 0;
8214 }
8215
8216 static void tsc_khz_changed(void *data)
8217 {
8218 struct cpufreq_freqs *freq = data;
8219 unsigned long khz = 0;
8220
8221 if (data)
8222 khz = freq->new;
8223 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8224 khz = cpufreq_quick_get(raw_smp_processor_id());
8225 if (!khz)
8226 khz = tsc_khz;
8227 __this_cpu_write(cpu_tsc_khz, khz);
8228 }
8229
8230 #ifdef CONFIG_X86_64
8231 static void kvm_hyperv_tsc_notifier(void)
8232 {
8233 struct kvm *kvm;
8234 struct kvm_vcpu *vcpu;
8235 int cpu;
8236 unsigned long flags;
8237
8238 mutex_lock(&kvm_lock);
8239 list_for_each_entry(kvm, &vm_list, vm_list)
8240 kvm_make_mclock_inprogress_request(kvm);
8241
8242 hyperv_stop_tsc_emulation();
8243
8244 /* TSC frequency always matches when on Hyper-V */
8245 for_each_present_cpu(cpu)
8246 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8247 kvm_max_guest_tsc_khz = tsc_khz;
8248
8249 list_for_each_entry(kvm, &vm_list, vm_list) {
8250 struct kvm_arch *ka = &kvm->arch;
8251
8252 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8253 pvclock_update_vm_gtod_copy(kvm);
8254 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8255
8256 kvm_for_each_vcpu(cpu, vcpu, kvm)
8257 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8258
8259 kvm_for_each_vcpu(cpu, vcpu, kvm)
8260 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8261 }
8262 mutex_unlock(&kvm_lock);
8263 }
8264 #endif
8265
8266 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8267 {
8268 struct kvm *kvm;
8269 struct kvm_vcpu *vcpu;
8270 int i, send_ipi = 0;
8271
8272 /*
8273 * We allow guests to temporarily run on slowing clocks,
8274 * provided we notify them after, or to run on accelerating
8275 * clocks, provided we notify them before. Thus time never
8276 * goes backwards.
8277 *
8278 * However, we have a problem. We can't atomically update
8279 * the frequency of a given CPU from this function; it is
8280 * merely a notifier, which can be called from any CPU.
8281 * Changing the TSC frequency at arbitrary points in time
8282 * requires a recomputation of local variables related to
8283 * the TSC for each VCPU. We must flag these local variables
8284 * to be updated and be sure the update takes place with the
8285 * new frequency before any guests proceed.
8286 *
8287 * Unfortunately, the combination of hotplug CPU and frequency
8288 * change creates an intractable locking scenario; the order
8289 * of when these callouts happen is undefined with respect to
8290 * CPU hotplug, and they can race with each other. As such,
8291 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8292 * undefined; you can actually have a CPU frequency change take
8293 * place in between the computation of X and the setting of the
8294 * variable. To protect against this problem, all updates of
8295 * the per_cpu tsc_khz variable are done in an interrupt
8296 * protected IPI, and all callers wishing to update the value
8297 * must wait for a synchronous IPI to complete (which is trivial
8298 * if the caller is on the CPU already). This establishes the
8299 * necessary total order on variable updates.
8300 *
8301 * Note that because a guest time update may take place
8302 * anytime after the setting of the VCPU's request bit, the
8303 * correct TSC value must be set before the request. However,
8304 * to ensure the update actually makes it to any guest which
8305 * starts running in hardware virtualization between the set
8306 * and the acquisition of the spinlock, we must also ping the
8307 * CPU after setting the request bit.
8308 *
8309 */
8310
8311 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8312
8313 mutex_lock(&kvm_lock);
8314 list_for_each_entry(kvm, &vm_list, vm_list) {
8315 kvm_for_each_vcpu(i, vcpu, kvm) {
8316 if (vcpu->cpu != cpu)
8317 continue;
8318 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8319 if (vcpu->cpu != raw_smp_processor_id())
8320 send_ipi = 1;
8321 }
8322 }
8323 mutex_unlock(&kvm_lock);
8324
8325 if (freq->old < freq->new && send_ipi) {
8326 /*
8327 * We upscale the frequency. Must make the guest
8328 * doesn't see old kvmclock values while running with
8329 * the new frequency, otherwise we risk the guest sees
8330 * time go backwards.
8331 *
8332 * In case we update the frequency for another cpu
8333 * (which might be in guest context) send an interrupt
8334 * to kick the cpu out of guest context. Next time
8335 * guest context is entered kvmclock will be updated,
8336 * so the guest will not see stale values.
8337 */
8338 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8339 }
8340 }
8341
8342 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8343 void *data)
8344 {
8345 struct cpufreq_freqs *freq = data;
8346 int cpu;
8347
8348 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8349 return 0;
8350 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8351 return 0;
8352
8353 for_each_cpu(cpu, freq->policy->cpus)
8354 __kvmclock_cpufreq_notifier(freq, cpu);
8355
8356 return 0;
8357 }
8358
8359 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8360 .notifier_call = kvmclock_cpufreq_notifier
8361 };
8362
8363 static int kvmclock_cpu_online(unsigned int cpu)
8364 {
8365 tsc_khz_changed(NULL);
8366 return 0;
8367 }
8368
8369 static void kvm_timer_init(void)
8370 {
8371 max_tsc_khz = tsc_khz;
8372
8373 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8374 #ifdef CONFIG_CPU_FREQ
8375 struct cpufreq_policy *policy;
8376 int cpu;
8377
8378 cpu = get_cpu();
8379 policy = cpufreq_cpu_get(cpu);
8380 if (policy) {
8381 if (policy->cpuinfo.max_freq)
8382 max_tsc_khz = policy->cpuinfo.max_freq;
8383 cpufreq_cpu_put(policy);
8384 }
8385 put_cpu();
8386 #endif
8387 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8388 CPUFREQ_TRANSITION_NOTIFIER);
8389 }
8390
8391 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8392 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8393 }
8394
8395 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8396 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8397
8398 int kvm_is_in_guest(void)
8399 {
8400 return __this_cpu_read(current_vcpu) != NULL;
8401 }
8402
8403 static int kvm_is_user_mode(void)
8404 {
8405 int user_mode = 3;
8406
8407 if (__this_cpu_read(current_vcpu))
8408 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8409
8410 return user_mode != 0;
8411 }
8412
8413 static unsigned long kvm_get_guest_ip(void)
8414 {
8415 unsigned long ip = 0;
8416
8417 if (__this_cpu_read(current_vcpu))
8418 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8419
8420 return ip;
8421 }
8422
8423 static void kvm_handle_intel_pt_intr(void)
8424 {
8425 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8426
8427 kvm_make_request(KVM_REQ_PMI, vcpu);
8428 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8429 (unsigned long *)&vcpu->arch.pmu.global_status);
8430 }
8431
8432 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8433 .is_in_guest = kvm_is_in_guest,
8434 .is_user_mode = kvm_is_user_mode,
8435 .get_guest_ip = kvm_get_guest_ip,
8436 .handle_intel_pt_intr = NULL,
8437 };
8438
8439 #ifdef CONFIG_X86_64
8440 static void pvclock_gtod_update_fn(struct work_struct *work)
8441 {
8442 struct kvm *kvm;
8443
8444 struct kvm_vcpu *vcpu;
8445 int i;
8446
8447 mutex_lock(&kvm_lock);
8448 list_for_each_entry(kvm, &vm_list, vm_list)
8449 kvm_for_each_vcpu(i, vcpu, kvm)
8450 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8451 atomic_set(&kvm_guest_has_master_clock, 0);
8452 mutex_unlock(&kvm_lock);
8453 }
8454
8455 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8456
8457 /*
8458 * Indirection to move queue_work() out of the tk_core.seq write held
8459 * region to prevent possible deadlocks against time accessors which
8460 * are invoked with work related locks held.
8461 */
8462 static void pvclock_irq_work_fn(struct irq_work *w)
8463 {
8464 queue_work(system_long_wq, &pvclock_gtod_work);
8465 }
8466
8467 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8468
8469 /*
8470 * Notification about pvclock gtod data update.
8471 */
8472 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8473 void *priv)
8474 {
8475 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8476 struct timekeeper *tk = priv;
8477
8478 update_pvclock_gtod(tk);
8479
8480 /*
8481 * Disable master clock if host does not trust, or does not use,
8482 * TSC based clocksource. Delegate queue_work() to irq_work as
8483 * this is invoked with tk_core.seq write held.
8484 */
8485 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8486 atomic_read(&kvm_guest_has_master_clock) != 0)
8487 irq_work_queue(&pvclock_irq_work);
8488 return 0;
8489 }
8490
8491 static struct notifier_block pvclock_gtod_notifier = {
8492 .notifier_call = pvclock_gtod_notify,
8493 };
8494 #endif
8495
8496 int kvm_arch_init(void *opaque)
8497 {
8498 struct kvm_x86_init_ops *ops = opaque;
8499 int r;
8500
8501 if (kvm_x86_ops.hardware_enable) {
8502 printk(KERN_ERR "kvm: already loaded the other module\n");
8503 r = -EEXIST;
8504 goto out;
8505 }
8506
8507 if (!ops->cpu_has_kvm_support()) {
8508 pr_err_ratelimited("kvm: no hardware support\n");
8509 r = -EOPNOTSUPP;
8510 goto out;
8511 }
8512 if (ops->disabled_by_bios()) {
8513 pr_warn_ratelimited("kvm: disabled by bios\n");
8514 r = -EOPNOTSUPP;
8515 goto out;
8516 }
8517
8518 /*
8519 * KVM explicitly assumes that the guest has an FPU and
8520 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8521 * vCPU's FPU state as a fxregs_state struct.
8522 */
8523 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8524 printk(KERN_ERR "kvm: inadequate fpu\n");
8525 r = -EOPNOTSUPP;
8526 goto out;
8527 }
8528
8529 r = -ENOMEM;
8530 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8531 __alignof__(struct fpu), SLAB_ACCOUNT,
8532 NULL);
8533 if (!x86_fpu_cache) {
8534 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8535 goto out;
8536 }
8537
8538 x86_emulator_cache = kvm_alloc_emulator_cache();
8539 if (!x86_emulator_cache) {
8540 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8541 goto out_free_x86_fpu_cache;
8542 }
8543
8544 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8545 if (!user_return_msrs) {
8546 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8547 goto out_free_x86_emulator_cache;
8548 }
8549 kvm_nr_uret_msrs = 0;
8550
8551 r = kvm_mmu_module_init();
8552 if (r)
8553 goto out_free_percpu;
8554
8555 kvm_timer_init();
8556
8557 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8558 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8559 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8560 }
8561
8562 if (pi_inject_timer == -1)
8563 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8564 #ifdef CONFIG_X86_64
8565 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8566
8567 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8568 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8569 #endif
8570
8571 return 0;
8572
8573 out_free_percpu:
8574 free_percpu(user_return_msrs);
8575 out_free_x86_emulator_cache:
8576 kmem_cache_destroy(x86_emulator_cache);
8577 out_free_x86_fpu_cache:
8578 kmem_cache_destroy(x86_fpu_cache);
8579 out:
8580 return r;
8581 }
8582
8583 void kvm_arch_exit(void)
8584 {
8585 #ifdef CONFIG_X86_64
8586 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8587 clear_hv_tscchange_cb();
8588 #endif
8589 kvm_lapic_exit();
8590
8591 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8592 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8593 CPUFREQ_TRANSITION_NOTIFIER);
8594 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8595 #ifdef CONFIG_X86_64
8596 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8597 irq_work_sync(&pvclock_irq_work);
8598 cancel_work_sync(&pvclock_gtod_work);
8599 #endif
8600 kvm_x86_ops.hardware_enable = NULL;
8601 kvm_mmu_module_exit();
8602 free_percpu(user_return_msrs);
8603 kmem_cache_destroy(x86_emulator_cache);
8604 kmem_cache_destroy(x86_fpu_cache);
8605 #ifdef CONFIG_KVM_XEN
8606 static_key_deferred_flush(&kvm_xen_enabled);
8607 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8608 #endif
8609 }
8610
8611 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8612 {
8613 ++vcpu->stat.halt_exits;
8614 if (lapic_in_kernel(vcpu)) {
8615 vcpu->arch.mp_state = state;
8616 return 1;
8617 } else {
8618 vcpu->run->exit_reason = reason;
8619 return 0;
8620 }
8621 }
8622
8623 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8624 {
8625 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8626 }
8627 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8628
8629 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8630 {
8631 int ret = kvm_skip_emulated_instruction(vcpu);
8632 /*
8633 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8634 * KVM_EXIT_DEBUG here.
8635 */
8636 return kvm_vcpu_halt(vcpu) && ret;
8637 }
8638 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8639
8640 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8641 {
8642 int ret = kvm_skip_emulated_instruction(vcpu);
8643
8644 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8645 }
8646 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8647
8648 #ifdef CONFIG_X86_64
8649 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8650 unsigned long clock_type)
8651 {
8652 struct kvm_clock_pairing clock_pairing;
8653 struct timespec64 ts;
8654 u64 cycle;
8655 int ret;
8656
8657 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8658 return -KVM_EOPNOTSUPP;
8659
8660 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8661 return -KVM_EOPNOTSUPP;
8662
8663 clock_pairing.sec = ts.tv_sec;
8664 clock_pairing.nsec = ts.tv_nsec;
8665 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8666 clock_pairing.flags = 0;
8667 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8668
8669 ret = 0;
8670 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8671 sizeof(struct kvm_clock_pairing)))
8672 ret = -KVM_EFAULT;
8673
8674 return ret;
8675 }
8676 #endif
8677
8678 /*
8679 * kvm_pv_kick_cpu_op: Kick a vcpu.
8680 *
8681 * @apicid - apicid of vcpu to be kicked.
8682 */
8683 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8684 {
8685 struct kvm_lapic_irq lapic_irq;
8686
8687 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8688 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8689 lapic_irq.level = 0;
8690 lapic_irq.dest_id = apicid;
8691 lapic_irq.msi_redir_hint = false;
8692
8693 lapic_irq.delivery_mode = APIC_DM_REMRD;
8694 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8695 }
8696
8697 bool kvm_apicv_activated(struct kvm *kvm)
8698 {
8699 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8700 }
8701 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8702
8703 static void kvm_apicv_init(struct kvm *kvm)
8704 {
8705 mutex_init(&kvm->arch.apicv_update_lock);
8706
8707 if (enable_apicv)
8708 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8709 &kvm->arch.apicv_inhibit_reasons);
8710 else
8711 set_bit(APICV_INHIBIT_REASON_DISABLE,
8712 &kvm->arch.apicv_inhibit_reasons);
8713 }
8714
8715 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8716 {
8717 struct kvm_vcpu *target = NULL;
8718 struct kvm_apic_map *map;
8719
8720 vcpu->stat.directed_yield_attempted++;
8721
8722 if (single_task_running())
8723 goto no_yield;
8724
8725 rcu_read_lock();
8726 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8727
8728 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8729 target = map->phys_map[dest_id]->vcpu;
8730
8731 rcu_read_unlock();
8732
8733 if (!target || !READ_ONCE(target->ready))
8734 goto no_yield;
8735
8736 /* Ignore requests to yield to self */
8737 if (vcpu == target)
8738 goto no_yield;
8739
8740 if (kvm_vcpu_yield_to(target) <= 0)
8741 goto no_yield;
8742
8743 vcpu->stat.directed_yield_successful++;
8744
8745 no_yield:
8746 return;
8747 }
8748
8749 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8750 {
8751 u64 ret = vcpu->run->hypercall.ret;
8752
8753 if (!is_64_bit_mode(vcpu))
8754 ret = (u32)ret;
8755 kvm_rax_write(vcpu, ret);
8756 ++vcpu->stat.hypercalls;
8757 return kvm_skip_emulated_instruction(vcpu);
8758 }
8759
8760 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8761 {
8762 unsigned long nr, a0, a1, a2, a3, ret;
8763 int op_64_bit;
8764
8765 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8766 return kvm_xen_hypercall(vcpu);
8767
8768 if (kvm_hv_hypercall_enabled(vcpu))
8769 return kvm_hv_hypercall(vcpu);
8770
8771 nr = kvm_rax_read(vcpu);
8772 a0 = kvm_rbx_read(vcpu);
8773 a1 = kvm_rcx_read(vcpu);
8774 a2 = kvm_rdx_read(vcpu);
8775 a3 = kvm_rsi_read(vcpu);
8776
8777 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8778
8779 op_64_bit = is_64_bit_hypercall(vcpu);
8780 if (!op_64_bit) {
8781 nr &= 0xFFFFFFFF;
8782 a0 &= 0xFFFFFFFF;
8783 a1 &= 0xFFFFFFFF;
8784 a2 &= 0xFFFFFFFF;
8785 a3 &= 0xFFFFFFFF;
8786 }
8787
8788 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8789 ret = -KVM_EPERM;
8790 goto out;
8791 }
8792
8793 ret = -KVM_ENOSYS;
8794
8795 switch (nr) {
8796 case KVM_HC_VAPIC_POLL_IRQ:
8797 ret = 0;
8798 break;
8799 case KVM_HC_KICK_CPU:
8800 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8801 break;
8802
8803 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8804 kvm_sched_yield(vcpu, a1);
8805 ret = 0;
8806 break;
8807 #ifdef CONFIG_X86_64
8808 case KVM_HC_CLOCK_PAIRING:
8809 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8810 break;
8811 #endif
8812 case KVM_HC_SEND_IPI:
8813 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8814 break;
8815
8816 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8817 break;
8818 case KVM_HC_SCHED_YIELD:
8819 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8820 break;
8821
8822 kvm_sched_yield(vcpu, a0);
8823 ret = 0;
8824 break;
8825 case KVM_HC_MAP_GPA_RANGE: {
8826 u64 gpa = a0, npages = a1, attrs = a2;
8827
8828 ret = -KVM_ENOSYS;
8829 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8830 break;
8831
8832 if (!PAGE_ALIGNED(gpa) || !npages ||
8833 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8834 ret = -KVM_EINVAL;
8835 break;
8836 }
8837
8838 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8839 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8840 vcpu->run->hypercall.args[0] = gpa;
8841 vcpu->run->hypercall.args[1] = npages;
8842 vcpu->run->hypercall.args[2] = attrs;
8843 vcpu->run->hypercall.longmode = op_64_bit;
8844 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8845 return 0;
8846 }
8847 default:
8848 ret = -KVM_ENOSYS;
8849 break;
8850 }
8851 out:
8852 if (!op_64_bit)
8853 ret = (u32)ret;
8854 kvm_rax_write(vcpu, ret);
8855
8856 ++vcpu->stat.hypercalls;
8857 return kvm_skip_emulated_instruction(vcpu);
8858 }
8859 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8860
8861 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8862 {
8863 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8864 char instruction[3];
8865 unsigned long rip = kvm_rip_read(vcpu);
8866
8867 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8868
8869 return emulator_write_emulated(ctxt, rip, instruction, 3,
8870 &ctxt->exception);
8871 }
8872
8873 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8874 {
8875 return vcpu->run->request_interrupt_window &&
8876 likely(!pic_in_kernel(vcpu->kvm));
8877 }
8878
8879 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8880 {
8881 struct kvm_run *kvm_run = vcpu->run;
8882
8883 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
8884 kvm_run->cr8 = kvm_get_cr8(vcpu);
8885 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8886
8887 /*
8888 * The call to kvm_ready_for_interrupt_injection() may end up in
8889 * kvm_xen_has_interrupt() which may require the srcu lock to be
8890 * held, to protect against changes in the vcpu_info address.
8891 */
8892 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8893 kvm_run->ready_for_interrupt_injection =
8894 pic_in_kernel(vcpu->kvm) ||
8895 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8896 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8897
8898 if (is_smm(vcpu))
8899 kvm_run->flags |= KVM_RUN_X86_SMM;
8900 }
8901
8902 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8903 {
8904 int max_irr, tpr;
8905
8906 if (!kvm_x86_ops.update_cr8_intercept)
8907 return;
8908
8909 if (!lapic_in_kernel(vcpu))
8910 return;
8911
8912 if (vcpu->arch.apicv_active)
8913 return;
8914
8915 if (!vcpu->arch.apic->vapic_addr)
8916 max_irr = kvm_lapic_find_highest_irr(vcpu);
8917 else
8918 max_irr = -1;
8919
8920 if (max_irr != -1)
8921 max_irr >>= 4;
8922
8923 tpr = kvm_lapic_get_cr8(vcpu);
8924
8925 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8926 }
8927
8928
8929 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8930 {
8931 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8932 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8933 return 1;
8934 }
8935
8936 return kvm_x86_ops.nested_ops->check_events(vcpu);
8937 }
8938
8939 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8940 {
8941 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8942 vcpu->arch.exception.error_code = false;
8943 static_call(kvm_x86_queue_exception)(vcpu);
8944 }
8945
8946 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8947 {
8948 int r;
8949 bool can_inject = true;
8950
8951 /* try to reinject previous events if any */
8952
8953 if (vcpu->arch.exception.injected) {
8954 kvm_inject_exception(vcpu);
8955 can_inject = false;
8956 }
8957 /*
8958 * Do not inject an NMI or interrupt if there is a pending
8959 * exception. Exceptions and interrupts are recognized at
8960 * instruction boundaries, i.e. the start of an instruction.
8961 * Trap-like exceptions, e.g. #DB, have higher priority than
8962 * NMIs and interrupts, i.e. traps are recognized before an
8963 * NMI/interrupt that's pending on the same instruction.
8964 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8965 * priority, but are only generated (pended) during instruction
8966 * execution, i.e. a pending fault-like exception means the
8967 * fault occurred on the *previous* instruction and must be
8968 * serviced prior to recognizing any new events in order to
8969 * fully complete the previous instruction.
8970 */
8971 else if (!vcpu->arch.exception.pending) {
8972 if (vcpu->arch.nmi_injected) {
8973 static_call(kvm_x86_set_nmi)(vcpu);
8974 can_inject = false;
8975 } else if (vcpu->arch.interrupt.injected) {
8976 static_call(kvm_x86_set_irq)(vcpu);
8977 can_inject = false;
8978 }
8979 }
8980
8981 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8982 vcpu->arch.exception.pending);
8983
8984 /*
8985 * Call check_nested_events() even if we reinjected a previous event
8986 * in order for caller to determine if it should require immediate-exit
8987 * from L2 to L1 due to pending L1 events which require exit
8988 * from L2 to L1.
8989 */
8990 if (is_guest_mode(vcpu)) {
8991 r = kvm_check_nested_events(vcpu);
8992 if (r < 0)
8993 goto out;
8994 }
8995
8996 /* try to inject new event if pending */
8997 if (vcpu->arch.exception.pending) {
8998 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8999 vcpu->arch.exception.has_error_code,
9000 vcpu->arch.exception.error_code);
9001
9002 vcpu->arch.exception.pending = false;
9003 vcpu->arch.exception.injected = true;
9004
9005 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9006 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9007 X86_EFLAGS_RF);
9008
9009 if (vcpu->arch.exception.nr == DB_VECTOR) {
9010 kvm_deliver_exception_payload(vcpu);
9011 if (vcpu->arch.dr7 & DR7_GD) {
9012 vcpu->arch.dr7 &= ~DR7_GD;
9013 kvm_update_dr7(vcpu);
9014 }
9015 }
9016
9017 kvm_inject_exception(vcpu);
9018 can_inject = false;
9019 }
9020
9021 /* Don't inject interrupts if the user asked to avoid doing so */
9022 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9023 return 0;
9024
9025 /*
9026 * Finally, inject interrupt events. If an event cannot be injected
9027 * due to architectural conditions (e.g. IF=0) a window-open exit
9028 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9029 * and can architecturally be injected, but we cannot do it right now:
9030 * an interrupt could have arrived just now and we have to inject it
9031 * as a vmexit, or there could already an event in the queue, which is
9032 * indicated by can_inject. In that case we request an immediate exit
9033 * in order to make progress and get back here for another iteration.
9034 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9035 */
9036 if (vcpu->arch.smi_pending) {
9037 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9038 if (r < 0)
9039 goto out;
9040 if (r) {
9041 vcpu->arch.smi_pending = false;
9042 ++vcpu->arch.smi_count;
9043 enter_smm(vcpu);
9044 can_inject = false;
9045 } else
9046 static_call(kvm_x86_enable_smi_window)(vcpu);
9047 }
9048
9049 if (vcpu->arch.nmi_pending) {
9050 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9051 if (r < 0)
9052 goto out;
9053 if (r) {
9054 --vcpu->arch.nmi_pending;
9055 vcpu->arch.nmi_injected = true;
9056 static_call(kvm_x86_set_nmi)(vcpu);
9057 can_inject = false;
9058 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9059 }
9060 if (vcpu->arch.nmi_pending)
9061 static_call(kvm_x86_enable_nmi_window)(vcpu);
9062 }
9063
9064 if (kvm_cpu_has_injectable_intr(vcpu)) {
9065 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9066 if (r < 0)
9067 goto out;
9068 if (r) {
9069 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9070 static_call(kvm_x86_set_irq)(vcpu);
9071 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9072 }
9073 if (kvm_cpu_has_injectable_intr(vcpu))
9074 static_call(kvm_x86_enable_irq_window)(vcpu);
9075 }
9076
9077 if (is_guest_mode(vcpu) &&
9078 kvm_x86_ops.nested_ops->hv_timer_pending &&
9079 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9080 *req_immediate_exit = true;
9081
9082 WARN_ON(vcpu->arch.exception.pending);
9083 return 0;
9084
9085 out:
9086 if (r == -EBUSY) {
9087 *req_immediate_exit = true;
9088 r = 0;
9089 }
9090 return r;
9091 }
9092
9093 static void process_nmi(struct kvm_vcpu *vcpu)
9094 {
9095 unsigned limit = 2;
9096
9097 /*
9098 * x86 is limited to one NMI running, and one NMI pending after it.
9099 * If an NMI is already in progress, limit further NMIs to just one.
9100 * Otherwise, allow two (and we'll inject the first one immediately).
9101 */
9102 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9103 limit = 1;
9104
9105 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9106 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9107 kvm_make_request(KVM_REQ_EVENT, vcpu);
9108 }
9109
9110 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9111 {
9112 u32 flags = 0;
9113 flags |= seg->g << 23;
9114 flags |= seg->db << 22;
9115 flags |= seg->l << 21;
9116 flags |= seg->avl << 20;
9117 flags |= seg->present << 15;
9118 flags |= seg->dpl << 13;
9119 flags |= seg->s << 12;
9120 flags |= seg->type << 8;
9121 return flags;
9122 }
9123
9124 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9125 {
9126 struct kvm_segment seg;
9127 int offset;
9128
9129 kvm_get_segment(vcpu, &seg, n);
9130 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9131
9132 if (n < 3)
9133 offset = 0x7f84 + n * 12;
9134 else
9135 offset = 0x7f2c + (n - 3) * 12;
9136
9137 put_smstate(u32, buf, offset + 8, seg.base);
9138 put_smstate(u32, buf, offset + 4, seg.limit);
9139 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9140 }
9141
9142 #ifdef CONFIG_X86_64
9143 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9144 {
9145 struct kvm_segment seg;
9146 int offset;
9147 u16 flags;
9148
9149 kvm_get_segment(vcpu, &seg, n);
9150 offset = 0x7e00 + n * 16;
9151
9152 flags = enter_smm_get_segment_flags(&seg) >> 8;
9153 put_smstate(u16, buf, offset, seg.selector);
9154 put_smstate(u16, buf, offset + 2, flags);
9155 put_smstate(u32, buf, offset + 4, seg.limit);
9156 put_smstate(u64, buf, offset + 8, seg.base);
9157 }
9158 #endif
9159
9160 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9161 {
9162 struct desc_ptr dt;
9163 struct kvm_segment seg;
9164 unsigned long val;
9165 int i;
9166
9167 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9168 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9169 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9170 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9171
9172 for (i = 0; i < 8; i++)
9173 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9174
9175 kvm_get_dr(vcpu, 6, &val);
9176 put_smstate(u32, buf, 0x7fcc, (u32)val);
9177 kvm_get_dr(vcpu, 7, &val);
9178 put_smstate(u32, buf, 0x7fc8, (u32)val);
9179
9180 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9181 put_smstate(u32, buf, 0x7fc4, seg.selector);
9182 put_smstate(u32, buf, 0x7f64, seg.base);
9183 put_smstate(u32, buf, 0x7f60, seg.limit);
9184 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9185
9186 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9187 put_smstate(u32, buf, 0x7fc0, seg.selector);
9188 put_smstate(u32, buf, 0x7f80, seg.base);
9189 put_smstate(u32, buf, 0x7f7c, seg.limit);
9190 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9191
9192 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9193 put_smstate(u32, buf, 0x7f74, dt.address);
9194 put_smstate(u32, buf, 0x7f70, dt.size);
9195
9196 static_call(kvm_x86_get_idt)(vcpu, &dt);
9197 put_smstate(u32, buf, 0x7f58, dt.address);
9198 put_smstate(u32, buf, 0x7f54, dt.size);
9199
9200 for (i = 0; i < 6; i++)
9201 enter_smm_save_seg_32(vcpu, buf, i);
9202
9203 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9204
9205 /* revision id */
9206 put_smstate(u32, buf, 0x7efc, 0x00020000);
9207 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9208 }
9209
9210 #ifdef CONFIG_X86_64
9211 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9212 {
9213 struct desc_ptr dt;
9214 struct kvm_segment seg;
9215 unsigned long val;
9216 int i;
9217
9218 for (i = 0; i < 16; i++)
9219 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9220
9221 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9222 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9223
9224 kvm_get_dr(vcpu, 6, &val);
9225 put_smstate(u64, buf, 0x7f68, val);
9226 kvm_get_dr(vcpu, 7, &val);
9227 put_smstate(u64, buf, 0x7f60, val);
9228
9229 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9230 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9231 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9232
9233 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9234
9235 /* revision id */
9236 put_smstate(u32, buf, 0x7efc, 0x00020064);
9237
9238 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9239
9240 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9241 put_smstate(u16, buf, 0x7e90, seg.selector);
9242 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9243 put_smstate(u32, buf, 0x7e94, seg.limit);
9244 put_smstate(u64, buf, 0x7e98, seg.base);
9245
9246 static_call(kvm_x86_get_idt)(vcpu, &dt);
9247 put_smstate(u32, buf, 0x7e84, dt.size);
9248 put_smstate(u64, buf, 0x7e88, dt.address);
9249
9250 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9251 put_smstate(u16, buf, 0x7e70, seg.selector);
9252 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9253 put_smstate(u32, buf, 0x7e74, seg.limit);
9254 put_smstate(u64, buf, 0x7e78, seg.base);
9255
9256 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9257 put_smstate(u32, buf, 0x7e64, dt.size);
9258 put_smstate(u64, buf, 0x7e68, dt.address);
9259
9260 for (i = 0; i < 6; i++)
9261 enter_smm_save_seg_64(vcpu, buf, i);
9262 }
9263 #endif
9264
9265 static void enter_smm(struct kvm_vcpu *vcpu)
9266 {
9267 struct kvm_segment cs, ds;
9268 struct desc_ptr dt;
9269 unsigned long cr0;
9270 char buf[512];
9271
9272 memset(buf, 0, 512);
9273 #ifdef CONFIG_X86_64
9274 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9275 enter_smm_save_state_64(vcpu, buf);
9276 else
9277 #endif
9278 enter_smm_save_state_32(vcpu, buf);
9279
9280 /*
9281 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9282 * state (e.g. leave guest mode) after we've saved the state into the
9283 * SMM state-save area.
9284 */
9285 static_call(kvm_x86_enter_smm)(vcpu, buf);
9286
9287 kvm_smm_changed(vcpu, true);
9288 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9289
9290 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9291 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9292 else
9293 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9294
9295 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9296 kvm_rip_write(vcpu, 0x8000);
9297
9298 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9299 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9300 vcpu->arch.cr0 = cr0;
9301
9302 static_call(kvm_x86_set_cr4)(vcpu, 0);
9303
9304 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9305 dt.address = dt.size = 0;
9306 static_call(kvm_x86_set_idt)(vcpu, &dt);
9307
9308 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9309
9310 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9311 cs.base = vcpu->arch.smbase;
9312
9313 ds.selector = 0;
9314 ds.base = 0;
9315
9316 cs.limit = ds.limit = 0xffffffff;
9317 cs.type = ds.type = 0x3;
9318 cs.dpl = ds.dpl = 0;
9319 cs.db = ds.db = 0;
9320 cs.s = ds.s = 1;
9321 cs.l = ds.l = 0;
9322 cs.g = ds.g = 1;
9323 cs.avl = ds.avl = 0;
9324 cs.present = ds.present = 1;
9325 cs.unusable = ds.unusable = 0;
9326 cs.padding = ds.padding = 0;
9327
9328 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9329 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9330 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9331 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9332 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9333 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9334
9335 #ifdef CONFIG_X86_64
9336 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9337 static_call(kvm_x86_set_efer)(vcpu, 0);
9338 #endif
9339
9340 kvm_update_cpuid_runtime(vcpu);
9341 kvm_mmu_reset_context(vcpu);
9342 }
9343
9344 static void process_smi(struct kvm_vcpu *vcpu)
9345 {
9346 vcpu->arch.smi_pending = true;
9347 kvm_make_request(KVM_REQ_EVENT, vcpu);
9348 }
9349
9350 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9351 unsigned long *vcpu_bitmap)
9352 {
9353 cpumask_var_t cpus;
9354
9355 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9356
9357 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9358 NULL, vcpu_bitmap, cpus);
9359
9360 free_cpumask_var(cpus);
9361 }
9362
9363 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9364 {
9365 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9366 }
9367
9368 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9369 {
9370 bool activate;
9371
9372 if (!lapic_in_kernel(vcpu))
9373 return;
9374
9375 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9376
9377 activate = kvm_apicv_activated(vcpu->kvm);
9378 if (vcpu->arch.apicv_active == activate)
9379 goto out;
9380
9381 vcpu->arch.apicv_active = activate;
9382 kvm_apic_update_apicv(vcpu);
9383 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9384
9385 /*
9386 * When APICv gets disabled, we may still have injected interrupts
9387 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9388 * still active when the interrupt got accepted. Make sure
9389 * inject_pending_event() is called to check for that.
9390 */
9391 if (!vcpu->arch.apicv_active)
9392 kvm_make_request(KVM_REQ_EVENT, vcpu);
9393
9394 out:
9395 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9396 }
9397 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9398
9399 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9400 {
9401 unsigned long old, new;
9402
9403 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9404 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9405 return;
9406
9407 old = new = kvm->arch.apicv_inhibit_reasons;
9408
9409 if (activate)
9410 __clear_bit(bit, &new);
9411 else
9412 __set_bit(bit, &new);
9413
9414 if (!!old != !!new) {
9415 trace_kvm_apicv_update_request(activate, bit);
9416 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9417 kvm->arch.apicv_inhibit_reasons = new;
9418 if (new) {
9419 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9420 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9421 }
9422 } else
9423 kvm->arch.apicv_inhibit_reasons = new;
9424 }
9425 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9426
9427 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9428 {
9429 mutex_lock(&kvm->arch.apicv_update_lock);
9430 __kvm_request_apicv_update(kvm, activate, bit);
9431 mutex_unlock(&kvm->arch.apicv_update_lock);
9432 }
9433 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9434
9435 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9436 {
9437 if (!kvm_apic_present(vcpu))
9438 return;
9439
9440 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9441
9442 if (irqchip_split(vcpu->kvm))
9443 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9444 else {
9445 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9446 if (ioapic_in_kernel(vcpu->kvm))
9447 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9448 }
9449
9450 if (is_guest_mode(vcpu))
9451 vcpu->arch.load_eoi_exitmap_pending = true;
9452 else
9453 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9454 }
9455
9456 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9457 {
9458 u64 eoi_exit_bitmap[4];
9459
9460 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9461 return;
9462
9463 if (to_hv_vcpu(vcpu)) {
9464 bitmap_or((ulong *)eoi_exit_bitmap,
9465 vcpu->arch.ioapic_handled_vectors,
9466 to_hv_synic(vcpu)->vec_bitmap, 256);
9467 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9468 return;
9469 }
9470
9471 static_call(kvm_x86_load_eoi_exitmap)(
9472 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9473 }
9474
9475 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9476 unsigned long start, unsigned long end)
9477 {
9478 unsigned long apic_address;
9479
9480 /*
9481 * The physical address of apic access page is stored in the VMCS.
9482 * Update it when it becomes invalid.
9483 */
9484 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9485 if (start <= apic_address && apic_address < end)
9486 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9487 }
9488
9489 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9490 {
9491 if (!lapic_in_kernel(vcpu))
9492 return;
9493
9494 if (!kvm_x86_ops.set_apic_access_page_addr)
9495 return;
9496
9497 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9498 }
9499
9500 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9501 {
9502 smp_send_reschedule(vcpu->cpu);
9503 }
9504 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9505
9506 /*
9507 * Returns 1 to let vcpu_run() continue the guest execution loop without
9508 * exiting to the userspace. Otherwise, the value will be returned to the
9509 * userspace.
9510 */
9511 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9512 {
9513 int r;
9514 bool req_int_win =
9515 dm_request_for_irq_injection(vcpu) &&
9516 kvm_cpu_accept_dm_intr(vcpu);
9517 fastpath_t exit_fastpath;
9518
9519 bool req_immediate_exit = false;
9520
9521 /* Forbid vmenter if vcpu dirty ring is soft-full */
9522 if (unlikely(vcpu->kvm->dirty_ring_size &&
9523 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9524 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9525 trace_kvm_dirty_ring_exit(vcpu);
9526 r = 0;
9527 goto out;
9528 }
9529
9530 if (kvm_request_pending(vcpu)) {
9531 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9532 r = -EIO;
9533 goto out;
9534 }
9535 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9536 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9537 r = 0;
9538 goto out;
9539 }
9540 }
9541 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9542 kvm_mmu_unload(vcpu);
9543 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9544 __kvm_migrate_timers(vcpu);
9545 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9546 kvm_gen_update_masterclock(vcpu->kvm);
9547 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9548 kvm_gen_kvmclock_update(vcpu);
9549 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9550 r = kvm_guest_time_update(vcpu);
9551 if (unlikely(r))
9552 goto out;
9553 }
9554 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9555 kvm_mmu_sync_roots(vcpu);
9556 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9557 kvm_mmu_load_pgd(vcpu);
9558 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9559 kvm_vcpu_flush_tlb_all(vcpu);
9560
9561 /* Flushing all ASIDs flushes the current ASID... */
9562 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9563 }
9564 kvm_service_local_tlb_flush_requests(vcpu);
9565
9566 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9567 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9568 r = 0;
9569 goto out;
9570 }
9571 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9572 if (is_guest_mode(vcpu)) {
9573 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9574 } else {
9575 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9576 vcpu->mmio_needed = 0;
9577 r = 0;
9578 goto out;
9579 }
9580 }
9581 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9582 /* Page is swapped out. Do synthetic halt */
9583 vcpu->arch.apf.halted = true;
9584 r = 1;
9585 goto out;
9586 }
9587 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9588 record_steal_time(vcpu);
9589 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9590 process_smi(vcpu);
9591 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9592 process_nmi(vcpu);
9593 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9594 kvm_pmu_handle_event(vcpu);
9595 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9596 kvm_pmu_deliver_pmi(vcpu);
9597 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9598 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9599 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9600 vcpu->arch.ioapic_handled_vectors)) {
9601 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9602 vcpu->run->eoi.vector =
9603 vcpu->arch.pending_ioapic_eoi;
9604 r = 0;
9605 goto out;
9606 }
9607 }
9608 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9609 vcpu_scan_ioapic(vcpu);
9610 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9611 vcpu_load_eoi_exitmap(vcpu);
9612 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9613 kvm_vcpu_reload_apic_access_page(vcpu);
9614 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9615 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9616 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9617 r = 0;
9618 goto out;
9619 }
9620 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9621 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9622 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9623 r = 0;
9624 goto out;
9625 }
9626 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9627 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9628
9629 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9630 vcpu->run->hyperv = hv_vcpu->exit;
9631 r = 0;
9632 goto out;
9633 }
9634
9635 /*
9636 * KVM_REQ_HV_STIMER has to be processed after
9637 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9638 * depend on the guest clock being up-to-date
9639 */
9640 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9641 kvm_hv_process_stimers(vcpu);
9642 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9643 kvm_vcpu_update_apicv(vcpu);
9644 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9645 kvm_check_async_pf_completion(vcpu);
9646 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9647 static_call(kvm_x86_msr_filter_changed)(vcpu);
9648
9649 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9650 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9651 }
9652
9653 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9654 kvm_xen_has_interrupt(vcpu)) {
9655 ++vcpu->stat.req_event;
9656 r = kvm_apic_accept_events(vcpu);
9657 if (r < 0) {
9658 r = 0;
9659 goto out;
9660 }
9661 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9662 r = 1;
9663 goto out;
9664 }
9665
9666 r = inject_pending_event(vcpu, &req_immediate_exit);
9667 if (r < 0) {
9668 r = 0;
9669 goto out;
9670 }
9671 if (req_int_win)
9672 static_call(kvm_x86_enable_irq_window)(vcpu);
9673
9674 if (kvm_lapic_enabled(vcpu)) {
9675 update_cr8_intercept(vcpu);
9676 kvm_lapic_sync_to_vapic(vcpu);
9677 }
9678 }
9679
9680 r = kvm_mmu_reload(vcpu);
9681 if (unlikely(r)) {
9682 goto cancel_injection;
9683 }
9684
9685 preempt_disable();
9686
9687 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9688
9689 /*
9690 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9691 * IPI are then delayed after guest entry, which ensures that they
9692 * result in virtual interrupt delivery.
9693 */
9694 local_irq_disable();
9695 vcpu->mode = IN_GUEST_MODE;
9696
9697 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9698
9699 /*
9700 * 1) We should set ->mode before checking ->requests. Please see
9701 * the comment in kvm_vcpu_exiting_guest_mode().
9702 *
9703 * 2) For APICv, we should set ->mode before checking PID.ON. This
9704 * pairs with the memory barrier implicit in pi_test_and_set_on
9705 * (see vmx_deliver_posted_interrupt).
9706 *
9707 * 3) This also orders the write to mode from any reads to the page
9708 * tables done while the VCPU is running. Please see the comment
9709 * in kvm_flush_remote_tlbs.
9710 */
9711 smp_mb__after_srcu_read_unlock();
9712
9713 /*
9714 * This handles the case where a posted interrupt was
9715 * notified with kvm_vcpu_kick. Assigned devices can
9716 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9717 * so do it even if APICv is disabled on this vCPU.
9718 */
9719 if (kvm_lapic_enabled(vcpu))
9720 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9721
9722 if (kvm_vcpu_exit_request(vcpu)) {
9723 vcpu->mode = OUTSIDE_GUEST_MODE;
9724 smp_wmb();
9725 local_irq_enable();
9726 preempt_enable();
9727 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9728 r = 1;
9729 goto cancel_injection;
9730 }
9731
9732 if (req_immediate_exit) {
9733 kvm_make_request(KVM_REQ_EVENT, vcpu);
9734 static_call(kvm_x86_request_immediate_exit)(vcpu);
9735 }
9736
9737 fpregs_assert_state_consistent();
9738 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9739 switch_fpu_return();
9740
9741 if (unlikely(vcpu->arch.switch_db_regs)) {
9742 set_debugreg(0, 7);
9743 set_debugreg(vcpu->arch.eff_db[0], 0);
9744 set_debugreg(vcpu->arch.eff_db[1], 1);
9745 set_debugreg(vcpu->arch.eff_db[2], 2);
9746 set_debugreg(vcpu->arch.eff_db[3], 3);
9747 } else if (unlikely(hw_breakpoint_active())) {
9748 set_debugreg(0, 7);
9749 }
9750
9751 for (;;) {
9752 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9753 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9754 break;
9755
9756 if (kvm_lapic_enabled(vcpu))
9757 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9758
9759 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9760 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9761 break;
9762 }
9763 }
9764
9765 /*
9766 * Do this here before restoring debug registers on the host. And
9767 * since we do this before handling the vmexit, a DR access vmexit
9768 * can (a) read the correct value of the debug registers, (b) set
9769 * KVM_DEBUGREG_WONT_EXIT again.
9770 */
9771 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9772 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9773 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9774 kvm_update_dr0123(vcpu);
9775 kvm_update_dr7(vcpu);
9776 }
9777
9778 /*
9779 * If the guest has used debug registers, at least dr7
9780 * will be disabled while returning to the host.
9781 * If we don't have active breakpoints in the host, we don't
9782 * care about the messed up debug address registers. But if
9783 * we have some of them active, restore the old state.
9784 */
9785 if (hw_breakpoint_active())
9786 hw_breakpoint_restore();
9787
9788 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9789 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9790
9791 vcpu->mode = OUTSIDE_GUEST_MODE;
9792 smp_wmb();
9793
9794 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9795
9796 /*
9797 * Consume any pending interrupts, including the possible source of
9798 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9799 * An instruction is required after local_irq_enable() to fully unblock
9800 * interrupts on processors that implement an interrupt shadow, the
9801 * stat.exits increment will do nicely.
9802 */
9803 kvm_before_interrupt(vcpu);
9804 local_irq_enable();
9805 ++vcpu->stat.exits;
9806 local_irq_disable();
9807 kvm_after_interrupt(vcpu);
9808
9809 /*
9810 * Wait until after servicing IRQs to account guest time so that any
9811 * ticks that occurred while running the guest are properly accounted
9812 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9813 * of accounting via context tracking, but the loss of accuracy is
9814 * acceptable for all known use cases.
9815 */
9816 vtime_account_guest_exit();
9817
9818 if (lapic_in_kernel(vcpu)) {
9819 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9820 if (delta != S64_MIN) {
9821 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9822 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9823 }
9824 }
9825
9826 local_irq_enable();
9827 preempt_enable();
9828
9829 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9830
9831 /*
9832 * Profile KVM exit RIPs:
9833 */
9834 if (unlikely(prof_on == KVM_PROFILING)) {
9835 unsigned long rip = kvm_rip_read(vcpu);
9836 profile_hit(KVM_PROFILING, (void *)rip);
9837 }
9838
9839 if (unlikely(vcpu->arch.tsc_always_catchup))
9840 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9841
9842 if (vcpu->arch.apic_attention)
9843 kvm_lapic_sync_from_vapic(vcpu);
9844
9845 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9846 return r;
9847
9848 cancel_injection:
9849 if (req_immediate_exit)
9850 kvm_make_request(KVM_REQ_EVENT, vcpu);
9851 static_call(kvm_x86_cancel_injection)(vcpu);
9852 if (unlikely(vcpu->arch.apic_attention))
9853 kvm_lapic_sync_from_vapic(vcpu);
9854 out:
9855 return r;
9856 }
9857
9858 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9859 {
9860 if (!kvm_arch_vcpu_runnable(vcpu) &&
9861 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9862 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9863 kvm_vcpu_block(vcpu);
9864 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9865
9866 if (kvm_x86_ops.post_block)
9867 static_call(kvm_x86_post_block)(vcpu);
9868
9869 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9870 return 1;
9871 }
9872
9873 if (kvm_apic_accept_events(vcpu) < 0)
9874 return 0;
9875 switch(vcpu->arch.mp_state) {
9876 case KVM_MP_STATE_HALTED:
9877 case KVM_MP_STATE_AP_RESET_HOLD:
9878 vcpu->arch.pv.pv_unhalted = false;
9879 vcpu->arch.mp_state =
9880 KVM_MP_STATE_RUNNABLE;
9881 fallthrough;
9882 case KVM_MP_STATE_RUNNABLE:
9883 vcpu->arch.apf.halted = false;
9884 break;
9885 case KVM_MP_STATE_INIT_RECEIVED:
9886 break;
9887 default:
9888 return -EINTR;
9889 }
9890 return 1;
9891 }
9892
9893 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9894 {
9895 if (is_guest_mode(vcpu))
9896 kvm_check_nested_events(vcpu);
9897
9898 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9899 !vcpu->arch.apf.halted);
9900 }
9901
9902 static int vcpu_run(struct kvm_vcpu *vcpu)
9903 {
9904 int r;
9905 struct kvm *kvm = vcpu->kvm;
9906
9907 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9908 vcpu->arch.l1tf_flush_l1d = true;
9909
9910 for (;;) {
9911 if (kvm_vcpu_running(vcpu)) {
9912 r = vcpu_enter_guest(vcpu);
9913 } else {
9914 r = vcpu_block(kvm, vcpu);
9915 }
9916
9917 if (r <= 0)
9918 break;
9919
9920 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9921 if (kvm_cpu_has_pending_timer(vcpu))
9922 kvm_inject_pending_timer_irqs(vcpu);
9923
9924 if (dm_request_for_irq_injection(vcpu) &&
9925 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9926 r = 0;
9927 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9928 ++vcpu->stat.request_irq_exits;
9929 break;
9930 }
9931
9932 if (__xfer_to_guest_mode_work_pending()) {
9933 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9934 r = xfer_to_guest_mode_handle_work(vcpu);
9935 if (r)
9936 return r;
9937 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9938 }
9939 }
9940
9941 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9942
9943 return r;
9944 }
9945
9946 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9947 {
9948 int r;
9949
9950 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9951 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9952 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9953 return r;
9954 }
9955
9956 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9957 {
9958 BUG_ON(!vcpu->arch.pio.count);
9959
9960 return complete_emulated_io(vcpu);
9961 }
9962
9963 /*
9964 * Implements the following, as a state machine:
9965 *
9966 * read:
9967 * for each fragment
9968 * for each mmio piece in the fragment
9969 * write gpa, len
9970 * exit
9971 * copy data
9972 * execute insn
9973 *
9974 * write:
9975 * for each fragment
9976 * for each mmio piece in the fragment
9977 * write gpa, len
9978 * copy data
9979 * exit
9980 */
9981 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9982 {
9983 struct kvm_run *run = vcpu->run;
9984 struct kvm_mmio_fragment *frag;
9985 unsigned len;
9986
9987 BUG_ON(!vcpu->mmio_needed);
9988
9989 /* Complete previous fragment */
9990 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9991 len = min(8u, frag->len);
9992 if (!vcpu->mmio_is_write)
9993 memcpy(frag->data, run->mmio.data, len);
9994
9995 if (frag->len <= 8) {
9996 /* Switch to the next fragment. */
9997 frag++;
9998 vcpu->mmio_cur_fragment++;
9999 } else {
10000 /* Go forward to the next mmio piece. */
10001 frag->data += len;
10002 frag->gpa += len;
10003 frag->len -= len;
10004 }
10005
10006 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10007 vcpu->mmio_needed = 0;
10008
10009 /* FIXME: return into emulator if single-stepping. */
10010 if (vcpu->mmio_is_write)
10011 return 1;
10012 vcpu->mmio_read_completed = 1;
10013 return complete_emulated_io(vcpu);
10014 }
10015
10016 run->exit_reason = KVM_EXIT_MMIO;
10017 run->mmio.phys_addr = frag->gpa;
10018 if (vcpu->mmio_is_write)
10019 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10020 run->mmio.len = min(8u, frag->len);
10021 run->mmio.is_write = vcpu->mmio_is_write;
10022 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10023 return 0;
10024 }
10025
10026 static void kvm_save_current_fpu(struct fpu *fpu)
10027 {
10028 /*
10029 * If the target FPU state is not resident in the CPU registers, just
10030 * memcpy() from current, else save CPU state directly to the target.
10031 */
10032 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10033 memcpy(&fpu->state, &current->thread.fpu.state,
10034 fpu_kernel_xstate_size);
10035 else
10036 save_fpregs_to_fpstate(fpu);
10037 }
10038
10039 /* Swap (qemu) user FPU context for the guest FPU context. */
10040 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10041 {
10042 fpregs_lock();
10043
10044 kvm_save_current_fpu(vcpu->arch.user_fpu);
10045
10046 /*
10047 * Guests with protected state can't have it set by the hypervisor,
10048 * so skip trying to set it.
10049 */
10050 if (vcpu->arch.guest_fpu)
10051 /* PKRU is separately restored in kvm_x86_ops.run. */
10052 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10053 ~XFEATURE_MASK_PKRU);
10054
10055 fpregs_mark_activate();
10056 fpregs_unlock();
10057
10058 trace_kvm_fpu(1);
10059 }
10060
10061 /* When vcpu_run ends, restore user space FPU context. */
10062 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10063 {
10064 fpregs_lock();
10065
10066 /*
10067 * Guests with protected state can't have it read by the hypervisor,
10068 * so skip trying to save it.
10069 */
10070 if (vcpu->arch.guest_fpu)
10071 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10072
10073 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10074
10075 fpregs_mark_activate();
10076 fpregs_unlock();
10077
10078 ++vcpu->stat.fpu_reload;
10079 trace_kvm_fpu(0);
10080 }
10081
10082 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10083 {
10084 struct kvm_run *kvm_run = vcpu->run;
10085 int r;
10086
10087 vcpu_load(vcpu);
10088 kvm_sigset_activate(vcpu);
10089 kvm_run->flags = 0;
10090 kvm_load_guest_fpu(vcpu);
10091
10092 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10093 if (kvm_run->immediate_exit) {
10094 r = -EINTR;
10095 goto out;
10096 }
10097 kvm_vcpu_block(vcpu);
10098 if (kvm_apic_accept_events(vcpu) < 0) {
10099 r = 0;
10100 goto out;
10101 }
10102 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10103 r = -EAGAIN;
10104 if (signal_pending(current)) {
10105 r = -EINTR;
10106 kvm_run->exit_reason = KVM_EXIT_INTR;
10107 ++vcpu->stat.signal_exits;
10108 }
10109 goto out;
10110 }
10111
10112 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10113 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10114 r = -EINVAL;
10115 goto out;
10116 }
10117
10118 if (kvm_run->kvm_dirty_regs) {
10119 r = sync_regs(vcpu);
10120 if (r != 0)
10121 goto out;
10122 }
10123
10124 /* re-sync apic's tpr */
10125 if (!lapic_in_kernel(vcpu)) {
10126 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10127 r = -EINVAL;
10128 goto out;
10129 }
10130 }
10131
10132 if (unlikely(vcpu->arch.complete_userspace_io)) {
10133 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10134 vcpu->arch.complete_userspace_io = NULL;
10135 r = cui(vcpu);
10136 if (r <= 0)
10137 goto out;
10138 } else
10139 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10140
10141 if (kvm_run->immediate_exit)
10142 r = -EINTR;
10143 else
10144 r = vcpu_run(vcpu);
10145
10146 out:
10147 kvm_put_guest_fpu(vcpu);
10148 if (kvm_run->kvm_valid_regs)
10149 store_regs(vcpu);
10150 post_kvm_run_save(vcpu);
10151 kvm_sigset_deactivate(vcpu);
10152
10153 vcpu_put(vcpu);
10154 return r;
10155 }
10156
10157 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10158 {
10159 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10160 /*
10161 * We are here if userspace calls get_regs() in the middle of
10162 * instruction emulation. Registers state needs to be copied
10163 * back from emulation context to vcpu. Userspace shouldn't do
10164 * that usually, but some bad designed PV devices (vmware
10165 * backdoor interface) need this to work
10166 */
10167 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10168 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10169 }
10170 regs->rax = kvm_rax_read(vcpu);
10171 regs->rbx = kvm_rbx_read(vcpu);
10172 regs->rcx = kvm_rcx_read(vcpu);
10173 regs->rdx = kvm_rdx_read(vcpu);
10174 regs->rsi = kvm_rsi_read(vcpu);
10175 regs->rdi = kvm_rdi_read(vcpu);
10176 regs->rsp = kvm_rsp_read(vcpu);
10177 regs->rbp = kvm_rbp_read(vcpu);
10178 #ifdef CONFIG_X86_64
10179 regs->r8 = kvm_r8_read(vcpu);
10180 regs->r9 = kvm_r9_read(vcpu);
10181 regs->r10 = kvm_r10_read(vcpu);
10182 regs->r11 = kvm_r11_read(vcpu);
10183 regs->r12 = kvm_r12_read(vcpu);
10184 regs->r13 = kvm_r13_read(vcpu);
10185 regs->r14 = kvm_r14_read(vcpu);
10186 regs->r15 = kvm_r15_read(vcpu);
10187 #endif
10188
10189 regs->rip = kvm_rip_read(vcpu);
10190 regs->rflags = kvm_get_rflags(vcpu);
10191 }
10192
10193 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10194 {
10195 vcpu_load(vcpu);
10196 __get_regs(vcpu, regs);
10197 vcpu_put(vcpu);
10198 return 0;
10199 }
10200
10201 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10202 {
10203 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10204 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10205
10206 kvm_rax_write(vcpu, regs->rax);
10207 kvm_rbx_write(vcpu, regs->rbx);
10208 kvm_rcx_write(vcpu, regs->rcx);
10209 kvm_rdx_write(vcpu, regs->rdx);
10210 kvm_rsi_write(vcpu, regs->rsi);
10211 kvm_rdi_write(vcpu, regs->rdi);
10212 kvm_rsp_write(vcpu, regs->rsp);
10213 kvm_rbp_write(vcpu, regs->rbp);
10214 #ifdef CONFIG_X86_64
10215 kvm_r8_write(vcpu, regs->r8);
10216 kvm_r9_write(vcpu, regs->r9);
10217 kvm_r10_write(vcpu, regs->r10);
10218 kvm_r11_write(vcpu, regs->r11);
10219 kvm_r12_write(vcpu, regs->r12);
10220 kvm_r13_write(vcpu, regs->r13);
10221 kvm_r14_write(vcpu, regs->r14);
10222 kvm_r15_write(vcpu, regs->r15);
10223 #endif
10224
10225 kvm_rip_write(vcpu, regs->rip);
10226 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10227
10228 vcpu->arch.exception.pending = false;
10229
10230 kvm_make_request(KVM_REQ_EVENT, vcpu);
10231 }
10232
10233 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10234 {
10235 vcpu_load(vcpu);
10236 __set_regs(vcpu, regs);
10237 vcpu_put(vcpu);
10238 return 0;
10239 }
10240
10241 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10242 {
10243 struct kvm_segment cs;
10244
10245 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10246 *db = cs.db;
10247 *l = cs.l;
10248 }
10249 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10250
10251 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10252 {
10253 struct desc_ptr dt;
10254
10255 if (vcpu->arch.guest_state_protected)
10256 goto skip_protected_regs;
10257
10258 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10259 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10260 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10261 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10262 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10263 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10264
10265 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10266 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10267
10268 static_call(kvm_x86_get_idt)(vcpu, &dt);
10269 sregs->idt.limit = dt.size;
10270 sregs->idt.base = dt.address;
10271 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10272 sregs->gdt.limit = dt.size;
10273 sregs->gdt.base = dt.address;
10274
10275 sregs->cr2 = vcpu->arch.cr2;
10276 sregs->cr3 = kvm_read_cr3(vcpu);
10277
10278 skip_protected_regs:
10279 sregs->cr0 = kvm_read_cr0(vcpu);
10280 sregs->cr4 = kvm_read_cr4(vcpu);
10281 sregs->cr8 = kvm_get_cr8(vcpu);
10282 sregs->efer = vcpu->arch.efer;
10283 sregs->apic_base = kvm_get_apic_base(vcpu);
10284 }
10285
10286 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10287 {
10288 __get_sregs_common(vcpu, sregs);
10289
10290 if (vcpu->arch.guest_state_protected)
10291 return;
10292
10293 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10294 set_bit(vcpu->arch.interrupt.nr,
10295 (unsigned long *)sregs->interrupt_bitmap);
10296 }
10297
10298 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10299 {
10300 int i;
10301
10302 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10303
10304 if (vcpu->arch.guest_state_protected)
10305 return;
10306
10307 if (is_pae_paging(vcpu)) {
10308 for (i = 0 ; i < 4 ; i++)
10309 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10310 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10311 }
10312 }
10313
10314 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10315 struct kvm_sregs *sregs)
10316 {
10317 vcpu_load(vcpu);
10318 __get_sregs(vcpu, sregs);
10319 vcpu_put(vcpu);
10320 return 0;
10321 }
10322
10323 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10324 struct kvm_mp_state *mp_state)
10325 {
10326 int r;
10327
10328 vcpu_load(vcpu);
10329 if (kvm_mpx_supported())
10330 kvm_load_guest_fpu(vcpu);
10331
10332 r = kvm_apic_accept_events(vcpu);
10333 if (r < 0)
10334 goto out;
10335 r = 0;
10336
10337 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10338 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10339 vcpu->arch.pv.pv_unhalted)
10340 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10341 else
10342 mp_state->mp_state = vcpu->arch.mp_state;
10343
10344 out:
10345 if (kvm_mpx_supported())
10346 kvm_put_guest_fpu(vcpu);
10347 vcpu_put(vcpu);
10348 return r;
10349 }
10350
10351 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10352 struct kvm_mp_state *mp_state)
10353 {
10354 int ret = -EINVAL;
10355
10356 vcpu_load(vcpu);
10357
10358 if (!lapic_in_kernel(vcpu) &&
10359 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10360 goto out;
10361
10362 /*
10363 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10364 * INIT state; latched init should be reported using
10365 * KVM_SET_VCPU_EVENTS, so reject it here.
10366 */
10367 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10368 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10369 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10370 goto out;
10371
10372 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10373 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10374 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10375 } else
10376 vcpu->arch.mp_state = mp_state->mp_state;
10377 kvm_make_request(KVM_REQ_EVENT, vcpu);
10378
10379 ret = 0;
10380 out:
10381 vcpu_put(vcpu);
10382 return ret;
10383 }
10384
10385 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10386 int reason, bool has_error_code, u32 error_code)
10387 {
10388 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10389 int ret;
10390
10391 init_emulate_ctxt(vcpu);
10392
10393 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10394 has_error_code, error_code);
10395 if (ret) {
10396 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10397 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10398 vcpu->run->internal.ndata = 0;
10399 return 0;
10400 }
10401
10402 kvm_rip_write(vcpu, ctxt->eip);
10403 kvm_set_rflags(vcpu, ctxt->eflags);
10404 return 1;
10405 }
10406 EXPORT_SYMBOL_GPL(kvm_task_switch);
10407
10408 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10409 {
10410 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10411 /*
10412 * When EFER.LME and CR0.PG are set, the processor is in
10413 * 64-bit mode (though maybe in a 32-bit code segment).
10414 * CR4.PAE and EFER.LMA must be set.
10415 */
10416 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10417 return false;
10418 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10419 return false;
10420 } else {
10421 /*
10422 * Not in 64-bit mode: EFER.LMA is clear and the code
10423 * segment cannot be 64-bit.
10424 */
10425 if (sregs->efer & EFER_LMA || sregs->cs.l)
10426 return false;
10427 }
10428
10429 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10430 }
10431
10432 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10433 int *mmu_reset_needed, bool update_pdptrs)
10434 {
10435 struct msr_data apic_base_msr;
10436 int idx;
10437 struct desc_ptr dt;
10438
10439 if (!kvm_is_valid_sregs(vcpu, sregs))
10440 return -EINVAL;
10441
10442 apic_base_msr.data = sregs->apic_base;
10443 apic_base_msr.host_initiated = true;
10444 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10445 return -EINVAL;
10446
10447 if (vcpu->arch.guest_state_protected)
10448 return 0;
10449
10450 dt.size = sregs->idt.limit;
10451 dt.address = sregs->idt.base;
10452 static_call(kvm_x86_set_idt)(vcpu, &dt);
10453 dt.size = sregs->gdt.limit;
10454 dt.address = sregs->gdt.base;
10455 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10456
10457 vcpu->arch.cr2 = sregs->cr2;
10458 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10459 vcpu->arch.cr3 = sregs->cr3;
10460 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10461
10462 kvm_set_cr8(vcpu, sregs->cr8);
10463
10464 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10465 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10466
10467 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10468 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10469 vcpu->arch.cr0 = sregs->cr0;
10470
10471 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10472 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10473
10474 if (update_pdptrs) {
10475 idx = srcu_read_lock(&vcpu->kvm->srcu);
10476 if (is_pae_paging(vcpu)) {
10477 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10478 *mmu_reset_needed = 1;
10479 }
10480 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10481 }
10482
10483 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10484 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10485 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10486 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10487 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10488 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10489
10490 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10491 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10492
10493 update_cr8_intercept(vcpu);
10494
10495 /* Older userspace won't unhalt the vcpu on reset. */
10496 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10497 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10498 !is_protmode(vcpu))
10499 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10500
10501 return 0;
10502 }
10503
10504 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10505 {
10506 int pending_vec, max_bits;
10507 int mmu_reset_needed = 0;
10508 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10509
10510 if (ret)
10511 return ret;
10512
10513 if (mmu_reset_needed)
10514 kvm_mmu_reset_context(vcpu);
10515
10516 max_bits = KVM_NR_INTERRUPTS;
10517 pending_vec = find_first_bit(
10518 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10519
10520 if (pending_vec < max_bits) {
10521 kvm_queue_interrupt(vcpu, pending_vec, false);
10522 pr_debug("Set back pending irq %d\n", pending_vec);
10523 kvm_make_request(KVM_REQ_EVENT, vcpu);
10524 }
10525 return 0;
10526 }
10527
10528 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10529 {
10530 int mmu_reset_needed = 0;
10531 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10532 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10533 !(sregs2->efer & EFER_LMA);
10534 int i, ret;
10535
10536 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10537 return -EINVAL;
10538
10539 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10540 return -EINVAL;
10541
10542 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10543 &mmu_reset_needed, !valid_pdptrs);
10544 if (ret)
10545 return ret;
10546
10547 if (valid_pdptrs) {
10548 for (i = 0; i < 4 ; i++)
10549 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10550
10551 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10552 mmu_reset_needed = 1;
10553 vcpu->arch.pdptrs_from_userspace = true;
10554 }
10555 if (mmu_reset_needed)
10556 kvm_mmu_reset_context(vcpu);
10557 return 0;
10558 }
10559
10560 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10561 struct kvm_sregs *sregs)
10562 {
10563 int ret;
10564
10565 vcpu_load(vcpu);
10566 ret = __set_sregs(vcpu, sregs);
10567 vcpu_put(vcpu);
10568 return ret;
10569 }
10570
10571 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10572 struct kvm_guest_debug *dbg)
10573 {
10574 unsigned long rflags;
10575 int i, r;
10576
10577 if (vcpu->arch.guest_state_protected)
10578 return -EINVAL;
10579
10580 vcpu_load(vcpu);
10581
10582 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10583 r = -EBUSY;
10584 if (vcpu->arch.exception.pending)
10585 goto out;
10586 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10587 kvm_queue_exception(vcpu, DB_VECTOR);
10588 else
10589 kvm_queue_exception(vcpu, BP_VECTOR);
10590 }
10591
10592 /*
10593 * Read rflags as long as potentially injected trace flags are still
10594 * filtered out.
10595 */
10596 rflags = kvm_get_rflags(vcpu);
10597
10598 vcpu->guest_debug = dbg->control;
10599 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10600 vcpu->guest_debug = 0;
10601
10602 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10603 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10604 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10605 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10606 } else {
10607 for (i = 0; i < KVM_NR_DB_REGS; i++)
10608 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10609 }
10610 kvm_update_dr7(vcpu);
10611
10612 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10613 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10614
10615 /*
10616 * Trigger an rflags update that will inject or remove the trace
10617 * flags.
10618 */
10619 kvm_set_rflags(vcpu, rflags);
10620
10621 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10622
10623 r = 0;
10624
10625 out:
10626 vcpu_put(vcpu);
10627 return r;
10628 }
10629
10630 /*
10631 * Translate a guest virtual address to a guest physical address.
10632 */
10633 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10634 struct kvm_translation *tr)
10635 {
10636 unsigned long vaddr = tr->linear_address;
10637 gpa_t gpa;
10638 int idx;
10639
10640 vcpu_load(vcpu);
10641
10642 idx = srcu_read_lock(&vcpu->kvm->srcu);
10643 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10644 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10645 tr->physical_address = gpa;
10646 tr->valid = gpa != UNMAPPED_GVA;
10647 tr->writeable = 1;
10648 tr->usermode = 0;
10649
10650 vcpu_put(vcpu);
10651 return 0;
10652 }
10653
10654 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10655 {
10656 struct fxregs_state *fxsave;
10657
10658 if (!vcpu->arch.guest_fpu)
10659 return 0;
10660
10661 vcpu_load(vcpu);
10662
10663 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10664 memcpy(fpu->fpr, fxsave->st_space, 128);
10665 fpu->fcw = fxsave->cwd;
10666 fpu->fsw = fxsave->swd;
10667 fpu->ftwx = fxsave->twd;
10668 fpu->last_opcode = fxsave->fop;
10669 fpu->last_ip = fxsave->rip;
10670 fpu->last_dp = fxsave->rdp;
10671 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10672
10673 vcpu_put(vcpu);
10674 return 0;
10675 }
10676
10677 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10678 {
10679 struct fxregs_state *fxsave;
10680
10681 if (!vcpu->arch.guest_fpu)
10682 return 0;
10683
10684 vcpu_load(vcpu);
10685
10686 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10687
10688 memcpy(fxsave->st_space, fpu->fpr, 128);
10689 fxsave->cwd = fpu->fcw;
10690 fxsave->swd = fpu->fsw;
10691 fxsave->twd = fpu->ftwx;
10692 fxsave->fop = fpu->last_opcode;
10693 fxsave->rip = fpu->last_ip;
10694 fxsave->rdp = fpu->last_dp;
10695 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10696
10697 vcpu_put(vcpu);
10698 return 0;
10699 }
10700
10701 static void store_regs(struct kvm_vcpu *vcpu)
10702 {
10703 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10704
10705 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10706 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10707
10708 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10709 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10710
10711 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10712 kvm_vcpu_ioctl_x86_get_vcpu_events(
10713 vcpu, &vcpu->run->s.regs.events);
10714 }
10715
10716 static int sync_regs(struct kvm_vcpu *vcpu)
10717 {
10718 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10719 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10720 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10721 }
10722 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10723 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10724 return -EINVAL;
10725 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10726 }
10727 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10728 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10729 vcpu, &vcpu->run->s.regs.events))
10730 return -EINVAL;
10731 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10732 }
10733
10734 return 0;
10735 }
10736
10737 static void fx_init(struct kvm_vcpu *vcpu)
10738 {
10739 if (!vcpu->arch.guest_fpu)
10740 return;
10741
10742 fpstate_init(&vcpu->arch.guest_fpu->state);
10743 if (boot_cpu_has(X86_FEATURE_XSAVES))
10744 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10745 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10746
10747 /*
10748 * Ensure guest xcr0 is valid for loading
10749 */
10750 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10751
10752 vcpu->arch.cr0 |= X86_CR0_ET;
10753 }
10754
10755 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10756 {
10757 if (vcpu->arch.guest_fpu) {
10758 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10759 vcpu->arch.guest_fpu = NULL;
10760 }
10761 }
10762 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10763
10764 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10765 {
10766 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10767 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10768 "guest TSC will not be reliable\n");
10769
10770 return 0;
10771 }
10772
10773 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10774 {
10775 struct page *page;
10776 int r;
10777
10778 vcpu->arch.last_vmentry_cpu = -1;
10779 vcpu->arch.regs_avail = ~0;
10780 vcpu->arch.regs_dirty = ~0;
10781
10782 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10783 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10784 else
10785 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10786
10787 r = kvm_mmu_create(vcpu);
10788 if (r < 0)
10789 return r;
10790
10791 if (irqchip_in_kernel(vcpu->kvm)) {
10792 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10793 if (r < 0)
10794 goto fail_mmu_destroy;
10795 if (kvm_apicv_activated(vcpu->kvm))
10796 vcpu->arch.apicv_active = true;
10797 } else
10798 static_branch_inc(&kvm_has_noapic_vcpu);
10799
10800 r = -ENOMEM;
10801
10802 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10803 if (!page)
10804 goto fail_free_lapic;
10805 vcpu->arch.pio_data = page_address(page);
10806
10807 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10808 GFP_KERNEL_ACCOUNT);
10809 if (!vcpu->arch.mce_banks)
10810 goto fail_free_pio_data;
10811 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10812
10813 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10814 GFP_KERNEL_ACCOUNT))
10815 goto fail_free_mce_banks;
10816
10817 if (!alloc_emulate_ctxt(vcpu))
10818 goto free_wbinvd_dirty_mask;
10819
10820 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10821 GFP_KERNEL_ACCOUNT);
10822 if (!vcpu->arch.user_fpu) {
10823 pr_err("kvm: failed to allocate userspace's fpu\n");
10824 goto free_emulate_ctxt;
10825 }
10826
10827 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10828 GFP_KERNEL_ACCOUNT);
10829 if (!vcpu->arch.guest_fpu) {
10830 pr_err("kvm: failed to allocate vcpu's fpu\n");
10831 goto free_user_fpu;
10832 }
10833 fx_init(vcpu);
10834
10835 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10836 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10837
10838 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10839
10840 kvm_async_pf_hash_reset(vcpu);
10841 kvm_pmu_init(vcpu);
10842
10843 vcpu->arch.pending_external_vector = -1;
10844 vcpu->arch.preempted_in_kernel = false;
10845
10846 #if IS_ENABLED(CONFIG_HYPERV)
10847 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10848 #endif
10849
10850 r = static_call(kvm_x86_vcpu_create)(vcpu);
10851 if (r)
10852 goto free_guest_fpu;
10853
10854 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10855 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10856 kvm_vcpu_mtrr_init(vcpu);
10857 vcpu_load(vcpu);
10858 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10859 kvm_vcpu_reset(vcpu, false);
10860 kvm_init_mmu(vcpu);
10861 vcpu_put(vcpu);
10862 return 0;
10863
10864 free_guest_fpu:
10865 kvm_free_guest_fpu(vcpu);
10866 free_user_fpu:
10867 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10868 free_emulate_ctxt:
10869 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10870 free_wbinvd_dirty_mask:
10871 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10872 fail_free_mce_banks:
10873 kfree(vcpu->arch.mce_banks);
10874 fail_free_pio_data:
10875 free_page((unsigned long)vcpu->arch.pio_data);
10876 fail_free_lapic:
10877 kvm_free_lapic(vcpu);
10878 fail_mmu_destroy:
10879 kvm_mmu_destroy(vcpu);
10880 return r;
10881 }
10882
10883 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10884 {
10885 struct kvm *kvm = vcpu->kvm;
10886
10887 if (mutex_lock_killable(&vcpu->mutex))
10888 return;
10889 vcpu_load(vcpu);
10890 kvm_synchronize_tsc(vcpu, 0);
10891 vcpu_put(vcpu);
10892
10893 /* poll control enabled by default */
10894 vcpu->arch.msr_kvm_poll_control = 1;
10895
10896 mutex_unlock(&vcpu->mutex);
10897
10898 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10899 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10900 KVMCLOCK_SYNC_PERIOD);
10901 }
10902
10903 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10904 {
10905 int idx;
10906
10907 kvmclock_reset(vcpu);
10908
10909 static_call(kvm_x86_vcpu_free)(vcpu);
10910
10911 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10912 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10913 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10914 kvm_free_guest_fpu(vcpu);
10915
10916 kvm_hv_vcpu_uninit(vcpu);
10917 kvm_pmu_destroy(vcpu);
10918 kfree(vcpu->arch.mce_banks);
10919 kvm_free_lapic(vcpu);
10920 idx = srcu_read_lock(&vcpu->kvm->srcu);
10921 kvm_mmu_destroy(vcpu);
10922 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10923 free_page((unsigned long)vcpu->arch.pio_data);
10924 kvfree(vcpu->arch.cpuid_entries);
10925 if (!lapic_in_kernel(vcpu))
10926 static_branch_dec(&kvm_has_noapic_vcpu);
10927 }
10928
10929 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10930 {
10931 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10932 unsigned long new_cr0;
10933 u32 eax, dummy;
10934
10935 kvm_lapic_reset(vcpu, init_event);
10936
10937 vcpu->arch.hflags = 0;
10938
10939 vcpu->arch.smi_pending = 0;
10940 vcpu->arch.smi_count = 0;
10941 atomic_set(&vcpu->arch.nmi_queued, 0);
10942 vcpu->arch.nmi_pending = 0;
10943 vcpu->arch.nmi_injected = false;
10944 kvm_clear_interrupt_queue(vcpu);
10945 kvm_clear_exception_queue(vcpu);
10946
10947 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10948 kvm_update_dr0123(vcpu);
10949 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10950 vcpu->arch.dr7 = DR7_FIXED_1;
10951 kvm_update_dr7(vcpu);
10952
10953 vcpu->arch.cr2 = 0;
10954
10955 kvm_make_request(KVM_REQ_EVENT, vcpu);
10956 vcpu->arch.apf.msr_en_val = 0;
10957 vcpu->arch.apf.msr_int_val = 0;
10958 vcpu->arch.st.msr_val = 0;
10959
10960 kvmclock_reset(vcpu);
10961
10962 kvm_clear_async_pf_completion_queue(vcpu);
10963 kvm_async_pf_hash_reset(vcpu);
10964 vcpu->arch.apf.halted = false;
10965
10966 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10967 void *mpx_state_buffer;
10968
10969 /*
10970 * To avoid have the INIT path from kvm_apic_has_events() that be
10971 * called with loaded FPU and does not let userspace fix the state.
10972 */
10973 if (init_event)
10974 kvm_put_guest_fpu(vcpu);
10975 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10976 XFEATURE_BNDREGS);
10977 if (mpx_state_buffer)
10978 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10979 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10980 XFEATURE_BNDCSR);
10981 if (mpx_state_buffer)
10982 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10983 if (init_event)
10984 kvm_load_guest_fpu(vcpu);
10985 }
10986
10987 if (!init_event) {
10988 kvm_pmu_reset(vcpu);
10989 vcpu->arch.smbase = 0x30000;
10990
10991 vcpu->arch.msr_misc_features_enables = 0;
10992
10993 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10994 vcpu->arch.ia32_xss = 0;
10995 }
10996
10997 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10998 vcpu->arch.regs_avail = ~0;
10999 vcpu->arch.regs_dirty = ~0;
11000
11001 /*
11002 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11003 * if no CPUID match is found. Note, it's impossible to get a match at
11004 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11005 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
11006 * But, go through the motions in case that's ever remedied.
11007 */
11008 eax = 1;
11009 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
11010 eax = 0x600;
11011 kvm_rdx_write(vcpu, eax);
11012
11013 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11014
11015 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11016 kvm_rip_write(vcpu, 0xfff0);
11017
11018 vcpu->arch.cr3 = 0;
11019 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11020
11021 /*
11022 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11023 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11024 * (or qualify) that with a footnote stating that CD/NW are preserved.
11025 */
11026 new_cr0 = X86_CR0_ET;
11027 if (init_event)
11028 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11029 else
11030 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11031
11032 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11033 static_call(kvm_x86_set_cr4)(vcpu, 0);
11034 static_call(kvm_x86_set_efer)(vcpu, 0);
11035 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11036
11037 /*
11038 * Reset the MMU context if paging was enabled prior to INIT (which is
11039 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11040 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11041 * checked because it is unconditionally cleared on INIT and all other
11042 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11043 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11044 */
11045 if (old_cr0 & X86_CR0_PG)
11046 kvm_mmu_reset_context(vcpu);
11047
11048 /*
11049 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11050 * APM states the TLBs are untouched by INIT, but it also states that
11051 * the TLBs are flushed on "External initialization of the processor."
11052 * Flush the guest TLB regardless of vendor, there is no meaningful
11053 * benefit in relying on the guest to flush the TLB immediately after
11054 * INIT. A spurious TLB flush is benign and likely negligible from a
11055 * performance perspective.
11056 */
11057 if (init_event)
11058 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11059 }
11060 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11061
11062 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11063 {
11064 struct kvm_segment cs;
11065
11066 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11067 cs.selector = vector << 8;
11068 cs.base = vector << 12;
11069 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11070 kvm_rip_write(vcpu, 0);
11071 }
11072 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11073
11074 int kvm_arch_hardware_enable(void)
11075 {
11076 struct kvm *kvm;
11077 struct kvm_vcpu *vcpu;
11078 int i;
11079 int ret;
11080 u64 local_tsc;
11081 u64 max_tsc = 0;
11082 bool stable, backwards_tsc = false;
11083
11084 kvm_user_return_msr_cpu_online();
11085 ret = static_call(kvm_x86_hardware_enable)();
11086 if (ret != 0)
11087 return ret;
11088
11089 local_tsc = rdtsc();
11090 stable = !kvm_check_tsc_unstable();
11091 list_for_each_entry(kvm, &vm_list, vm_list) {
11092 kvm_for_each_vcpu(i, vcpu, kvm) {
11093 if (!stable && vcpu->cpu == smp_processor_id())
11094 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11095 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11096 backwards_tsc = true;
11097 if (vcpu->arch.last_host_tsc > max_tsc)
11098 max_tsc = vcpu->arch.last_host_tsc;
11099 }
11100 }
11101 }
11102
11103 /*
11104 * Sometimes, even reliable TSCs go backwards. This happens on
11105 * platforms that reset TSC during suspend or hibernate actions, but
11106 * maintain synchronization. We must compensate. Fortunately, we can
11107 * detect that condition here, which happens early in CPU bringup,
11108 * before any KVM threads can be running. Unfortunately, we can't
11109 * bring the TSCs fully up to date with real time, as we aren't yet far
11110 * enough into CPU bringup that we know how much real time has actually
11111 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11112 * variables that haven't been updated yet.
11113 *
11114 * So we simply find the maximum observed TSC above, then record the
11115 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11116 * the adjustment will be applied. Note that we accumulate
11117 * adjustments, in case multiple suspend cycles happen before some VCPU
11118 * gets a chance to run again. In the event that no KVM threads get a
11119 * chance to run, we will miss the entire elapsed period, as we'll have
11120 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11121 * loose cycle time. This isn't too big a deal, since the loss will be
11122 * uniform across all VCPUs (not to mention the scenario is extremely
11123 * unlikely). It is possible that a second hibernate recovery happens
11124 * much faster than a first, causing the observed TSC here to be
11125 * smaller; this would require additional padding adjustment, which is
11126 * why we set last_host_tsc to the local tsc observed here.
11127 *
11128 * N.B. - this code below runs only on platforms with reliable TSC,
11129 * as that is the only way backwards_tsc is set above. Also note
11130 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11131 * have the same delta_cyc adjustment applied if backwards_tsc
11132 * is detected. Note further, this adjustment is only done once,
11133 * as we reset last_host_tsc on all VCPUs to stop this from being
11134 * called multiple times (one for each physical CPU bringup).
11135 *
11136 * Platforms with unreliable TSCs don't have to deal with this, they
11137 * will be compensated by the logic in vcpu_load, which sets the TSC to
11138 * catchup mode. This will catchup all VCPUs to real time, but cannot
11139 * guarantee that they stay in perfect synchronization.
11140 */
11141 if (backwards_tsc) {
11142 u64 delta_cyc = max_tsc - local_tsc;
11143 list_for_each_entry(kvm, &vm_list, vm_list) {
11144 kvm->arch.backwards_tsc_observed = true;
11145 kvm_for_each_vcpu(i, vcpu, kvm) {
11146 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11147 vcpu->arch.last_host_tsc = local_tsc;
11148 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11149 }
11150
11151 /*
11152 * We have to disable TSC offset matching.. if you were
11153 * booting a VM while issuing an S4 host suspend....
11154 * you may have some problem. Solving this issue is
11155 * left as an exercise to the reader.
11156 */
11157 kvm->arch.last_tsc_nsec = 0;
11158 kvm->arch.last_tsc_write = 0;
11159 }
11160
11161 }
11162 return 0;
11163 }
11164
11165 void kvm_arch_hardware_disable(void)
11166 {
11167 static_call(kvm_x86_hardware_disable)();
11168 drop_user_return_notifiers();
11169 }
11170
11171 int kvm_arch_hardware_setup(void *opaque)
11172 {
11173 struct kvm_x86_init_ops *ops = opaque;
11174 int r;
11175
11176 rdmsrl_safe(MSR_EFER, &host_efer);
11177
11178 if (boot_cpu_has(X86_FEATURE_XSAVES))
11179 rdmsrl(MSR_IA32_XSS, host_xss);
11180
11181 r = ops->hardware_setup();
11182 if (r != 0)
11183 return r;
11184
11185 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11186 kvm_ops_static_call_update();
11187
11188 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11189 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11190 perf_register_guest_info_callbacks(&kvm_guest_cbs);
11191
11192 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11193 supported_xss = 0;
11194
11195 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11196 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11197 #undef __kvm_cpu_cap_has
11198
11199 if (kvm_has_tsc_control) {
11200 /*
11201 * Make sure the user can only configure tsc_khz values that
11202 * fit into a signed integer.
11203 * A min value is not calculated because it will always
11204 * be 1 on all machines.
11205 */
11206 u64 max = min(0x7fffffffULL,
11207 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11208 kvm_max_guest_tsc_khz = max;
11209
11210 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11211 }
11212
11213 kvm_init_msr_list();
11214 return 0;
11215 }
11216
11217 void kvm_arch_hardware_unsetup(void)
11218 {
11219 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11220 kvm_guest_cbs.handle_intel_pt_intr = NULL;
11221
11222 static_call(kvm_x86_hardware_unsetup)();
11223 }
11224
11225 int kvm_arch_check_processor_compat(void *opaque)
11226 {
11227 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11228 struct kvm_x86_init_ops *ops = opaque;
11229
11230 WARN_ON(!irqs_disabled());
11231
11232 if (__cr4_reserved_bits(cpu_has, c) !=
11233 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11234 return -EIO;
11235
11236 return ops->check_processor_compatibility();
11237 }
11238
11239 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11240 {
11241 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11242 }
11243 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11244
11245 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11246 {
11247 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11248 }
11249
11250 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11251 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11252
11253 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11254 {
11255 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11256
11257 vcpu->arch.l1tf_flush_l1d = true;
11258 if (pmu->version && unlikely(pmu->event_count)) {
11259 pmu->need_cleanup = true;
11260 kvm_make_request(KVM_REQ_PMU, vcpu);
11261 }
11262 static_call(kvm_x86_sched_in)(vcpu, cpu);
11263 }
11264
11265 void kvm_arch_free_vm(struct kvm *kvm)
11266 {
11267 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11268 vfree(kvm);
11269 }
11270
11271
11272 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11273 {
11274 int ret;
11275
11276 if (type)
11277 return -EINVAL;
11278
11279 ret = kvm_page_track_init(kvm);
11280 if (ret)
11281 return ret;
11282
11283 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11284 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11285 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11286 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11287 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11288 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11289
11290 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11291 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11292 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11293 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11294 &kvm->arch.irq_sources_bitmap);
11295
11296 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11297 mutex_init(&kvm->arch.apic_map_lock);
11298 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11299
11300 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11301 pvclock_update_vm_gtod_copy(kvm);
11302
11303 kvm->arch.guest_can_read_msr_platform_info = true;
11304
11305 #if IS_ENABLED(CONFIG_HYPERV)
11306 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11307 kvm->arch.hv_root_tdp = INVALID_PAGE;
11308 #endif
11309
11310 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11311 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11312
11313 kvm_apicv_init(kvm);
11314 kvm_hv_init_vm(kvm);
11315 kvm_mmu_init_vm(kvm);
11316 kvm_xen_init_vm(kvm);
11317
11318 return static_call(kvm_x86_vm_init)(kvm);
11319 }
11320
11321 int kvm_arch_post_init_vm(struct kvm *kvm)
11322 {
11323 return kvm_mmu_post_init_vm(kvm);
11324 }
11325
11326 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11327 {
11328 vcpu_load(vcpu);
11329 kvm_mmu_unload(vcpu);
11330 vcpu_put(vcpu);
11331 }
11332
11333 static void kvm_free_vcpus(struct kvm *kvm)
11334 {
11335 unsigned int i;
11336 struct kvm_vcpu *vcpu;
11337
11338 /*
11339 * Unpin any mmu pages first.
11340 */
11341 kvm_for_each_vcpu(i, vcpu, kvm) {
11342 kvm_clear_async_pf_completion_queue(vcpu);
11343 kvm_unload_vcpu_mmu(vcpu);
11344 }
11345 kvm_for_each_vcpu(i, vcpu, kvm)
11346 kvm_vcpu_destroy(vcpu);
11347
11348 mutex_lock(&kvm->lock);
11349 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11350 kvm->vcpus[i] = NULL;
11351
11352 atomic_set(&kvm->online_vcpus, 0);
11353 mutex_unlock(&kvm->lock);
11354 }
11355
11356 void kvm_arch_sync_events(struct kvm *kvm)
11357 {
11358 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11359 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11360 kvm_free_pit(kvm);
11361 }
11362
11363 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11364
11365 /**
11366 * __x86_set_memory_region: Setup KVM internal memory slot
11367 *
11368 * @kvm: the kvm pointer to the VM.
11369 * @id: the slot ID to setup.
11370 * @gpa: the GPA to install the slot (unused when @size == 0).
11371 * @size: the size of the slot. Set to zero to uninstall a slot.
11372 *
11373 * This function helps to setup a KVM internal memory slot. Specify
11374 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11375 * slot. The return code can be one of the following:
11376 *
11377 * HVA: on success (uninstall will return a bogus HVA)
11378 * -errno: on error
11379 *
11380 * The caller should always use IS_ERR() to check the return value
11381 * before use. Note, the KVM internal memory slots are guaranteed to
11382 * remain valid and unchanged until the VM is destroyed, i.e., the
11383 * GPA->HVA translation will not change. However, the HVA is a user
11384 * address, i.e. its accessibility is not guaranteed, and must be
11385 * accessed via __copy_{to,from}_user().
11386 */
11387 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11388 u32 size)
11389 {
11390 int i, r;
11391 unsigned long hva, old_npages;
11392 struct kvm_memslots *slots = kvm_memslots(kvm);
11393 struct kvm_memory_slot *slot;
11394
11395 /* Called with kvm->slots_lock held. */
11396 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11397 return ERR_PTR_USR(-EINVAL);
11398
11399 slot = id_to_memslot(slots, id);
11400 if (size) {
11401 if (slot && slot->npages)
11402 return ERR_PTR_USR(-EEXIST);
11403
11404 /*
11405 * MAP_SHARED to prevent internal slot pages from being moved
11406 * by fork()/COW.
11407 */
11408 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11409 MAP_SHARED | MAP_ANONYMOUS, 0);
11410 if (IS_ERR((void *)hva))
11411 return (void __user *)hva;
11412 } else {
11413 if (!slot || !slot->npages)
11414 return NULL;
11415
11416 old_npages = slot->npages;
11417 hva = slot->userspace_addr;
11418 }
11419
11420 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11421 struct kvm_userspace_memory_region m;
11422
11423 m.slot = id | (i << 16);
11424 m.flags = 0;
11425 m.guest_phys_addr = gpa;
11426 m.userspace_addr = hva;
11427 m.memory_size = size;
11428 r = __kvm_set_memory_region(kvm, &m);
11429 if (r < 0)
11430 return ERR_PTR_USR(r);
11431 }
11432
11433 if (!size)
11434 vm_munmap(hva, old_npages * PAGE_SIZE);
11435
11436 return (void __user *)hva;
11437 }
11438 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11439
11440 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11441 {
11442 kvm_mmu_pre_destroy_vm(kvm);
11443 }
11444
11445 void kvm_arch_destroy_vm(struct kvm *kvm)
11446 {
11447 if (current->mm == kvm->mm) {
11448 /*
11449 * Free memory regions allocated on behalf of userspace,
11450 * unless the the memory map has changed due to process exit
11451 * or fd copying.
11452 */
11453 mutex_lock(&kvm->slots_lock);
11454 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11455 0, 0);
11456 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11457 0, 0);
11458 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11459 mutex_unlock(&kvm->slots_lock);
11460 }
11461 static_call_cond(kvm_x86_vm_destroy)(kvm);
11462 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11463 kvm_pic_destroy(kvm);
11464 kvm_ioapic_destroy(kvm);
11465 kvm_free_vcpus(kvm);
11466 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11467 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11468 kvm_mmu_uninit_vm(kvm);
11469 kvm_page_track_cleanup(kvm);
11470 kvm_xen_destroy_vm(kvm);
11471 kvm_hv_destroy_vm(kvm);
11472 }
11473
11474 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11475 {
11476 int i;
11477
11478 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11479 kvfree(slot->arch.rmap[i]);
11480 slot->arch.rmap[i] = NULL;
11481 }
11482 }
11483
11484 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11485 {
11486 int i;
11487
11488 memslot_rmap_free(slot);
11489
11490 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11491 kvfree(slot->arch.lpage_info[i - 1]);
11492 slot->arch.lpage_info[i - 1] = NULL;
11493 }
11494
11495 kvm_page_track_free_memslot(slot);
11496 }
11497
11498 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11499 unsigned long npages)
11500 {
11501 const int sz = sizeof(*slot->arch.rmap[0]);
11502 int i;
11503
11504 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11505 int level = i + 1;
11506 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11507
11508 if (slot->arch.rmap[i])
11509 continue;
11510
11511 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11512 if (!slot->arch.rmap[i]) {
11513 memslot_rmap_free(slot);
11514 return -ENOMEM;
11515 }
11516 }
11517
11518 return 0;
11519 }
11520
11521 int alloc_all_memslots_rmaps(struct kvm *kvm)
11522 {
11523 struct kvm_memslots *slots;
11524 struct kvm_memory_slot *slot;
11525 int r, i;
11526
11527 /*
11528 * Check if memslots alreday have rmaps early before acquiring
11529 * the slots_arch_lock below.
11530 */
11531 if (kvm_memslots_have_rmaps(kvm))
11532 return 0;
11533
11534 mutex_lock(&kvm->slots_arch_lock);
11535
11536 /*
11537 * Read memslots_have_rmaps again, under the slots arch lock,
11538 * before allocating the rmaps
11539 */
11540 if (kvm_memslots_have_rmaps(kvm)) {
11541 mutex_unlock(&kvm->slots_arch_lock);
11542 return 0;
11543 }
11544
11545 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11546 slots = __kvm_memslots(kvm, i);
11547 kvm_for_each_memslot(slot, slots) {
11548 r = memslot_rmap_alloc(slot, slot->npages);
11549 if (r) {
11550 mutex_unlock(&kvm->slots_arch_lock);
11551 return r;
11552 }
11553 }
11554 }
11555
11556 /*
11557 * Ensure that memslots_have_rmaps becomes true strictly after
11558 * all the rmap pointers are set.
11559 */
11560 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11561 mutex_unlock(&kvm->slots_arch_lock);
11562 return 0;
11563 }
11564
11565 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11566 struct kvm_memory_slot *slot,
11567 unsigned long npages)
11568 {
11569 int i, r;
11570
11571 /*
11572 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11573 * old arrays will be freed by __kvm_set_memory_region() if installing
11574 * the new memslot is successful.
11575 */
11576 memset(&slot->arch, 0, sizeof(slot->arch));
11577
11578 if (kvm_memslots_have_rmaps(kvm)) {
11579 r = memslot_rmap_alloc(slot, npages);
11580 if (r)
11581 return r;
11582 }
11583
11584 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11585 struct kvm_lpage_info *linfo;
11586 unsigned long ugfn;
11587 int lpages;
11588 int level = i + 1;
11589
11590 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11591
11592 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11593 if (!linfo)
11594 goto out_free;
11595
11596 slot->arch.lpage_info[i - 1] = linfo;
11597
11598 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11599 linfo[0].disallow_lpage = 1;
11600 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11601 linfo[lpages - 1].disallow_lpage = 1;
11602 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11603 /*
11604 * If the gfn and userspace address are not aligned wrt each
11605 * other, disable large page support for this slot.
11606 */
11607 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11608 unsigned long j;
11609
11610 for (j = 0; j < lpages; ++j)
11611 linfo[j].disallow_lpage = 1;
11612 }
11613 }
11614
11615 if (kvm_page_track_create_memslot(slot, npages))
11616 goto out_free;
11617
11618 return 0;
11619
11620 out_free:
11621 memslot_rmap_free(slot);
11622
11623 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11624 kvfree(slot->arch.lpage_info[i - 1]);
11625 slot->arch.lpage_info[i - 1] = NULL;
11626 }
11627 return -ENOMEM;
11628 }
11629
11630 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11631 {
11632 struct kvm_vcpu *vcpu;
11633 int i;
11634
11635 /*
11636 * memslots->generation has been incremented.
11637 * mmio generation may have reached its maximum value.
11638 */
11639 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11640
11641 /* Force re-initialization of steal_time cache */
11642 kvm_for_each_vcpu(i, vcpu, kvm)
11643 kvm_vcpu_kick(vcpu);
11644 }
11645
11646 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11647 struct kvm_memory_slot *memslot,
11648 const struct kvm_userspace_memory_region *mem,
11649 enum kvm_mr_change change)
11650 {
11651 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11652 return kvm_alloc_memslot_metadata(kvm, memslot,
11653 mem->memory_size >> PAGE_SHIFT);
11654 return 0;
11655 }
11656
11657
11658 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11659 {
11660 struct kvm_arch *ka = &kvm->arch;
11661
11662 if (!kvm_x86_ops.cpu_dirty_log_size)
11663 return;
11664
11665 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11666 (!enable && --ka->cpu_dirty_logging_count == 0))
11667 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11668
11669 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11670 }
11671
11672 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11673 struct kvm_memory_slot *old,
11674 const struct kvm_memory_slot *new,
11675 enum kvm_mr_change change)
11676 {
11677 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11678
11679 /*
11680 * Update CPU dirty logging if dirty logging is being toggled. This
11681 * applies to all operations.
11682 */
11683 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11684 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11685
11686 /*
11687 * Nothing more to do for RO slots (which can't be dirtied and can't be
11688 * made writable) or CREATE/MOVE/DELETE of a slot.
11689 *
11690 * For a memslot with dirty logging disabled:
11691 * CREATE: No dirty mappings will already exist.
11692 * MOVE/DELETE: The old mappings will already have been cleaned up by
11693 * kvm_arch_flush_shadow_memslot()
11694 *
11695 * For a memslot with dirty logging enabled:
11696 * CREATE: No shadow pages exist, thus nothing to write-protect
11697 * and no dirty bits to clear.
11698 * MOVE/DELETE: The old mappings will already have been cleaned up by
11699 * kvm_arch_flush_shadow_memslot().
11700 */
11701 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11702 return;
11703
11704 /*
11705 * READONLY and non-flags changes were filtered out above, and the only
11706 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11707 * logging isn't being toggled on or off.
11708 */
11709 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11710 return;
11711
11712 if (!log_dirty_pages) {
11713 /*
11714 * Dirty logging tracks sptes in 4k granularity, meaning that
11715 * large sptes have to be split. If live migration succeeds,
11716 * the guest in the source machine will be destroyed and large
11717 * sptes will be created in the destination. However, if the
11718 * guest continues to run in the source machine (for example if
11719 * live migration fails), small sptes will remain around and
11720 * cause bad performance.
11721 *
11722 * Scan sptes if dirty logging has been stopped, dropping those
11723 * which can be collapsed into a single large-page spte. Later
11724 * page faults will create the large-page sptes.
11725 */
11726 kvm_mmu_zap_collapsible_sptes(kvm, new);
11727 } else {
11728 /*
11729 * Initially-all-set does not require write protecting any page,
11730 * because they're all assumed to be dirty.
11731 */
11732 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11733 return;
11734
11735 if (kvm_x86_ops.cpu_dirty_log_size) {
11736 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11737 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11738 } else {
11739 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11740 }
11741 }
11742 }
11743
11744 void kvm_arch_commit_memory_region(struct kvm *kvm,
11745 const struct kvm_userspace_memory_region *mem,
11746 struct kvm_memory_slot *old,
11747 const struct kvm_memory_slot *new,
11748 enum kvm_mr_change change)
11749 {
11750 if (!kvm->arch.n_requested_mmu_pages)
11751 kvm_mmu_change_mmu_pages(kvm,
11752 kvm_mmu_calculate_default_mmu_pages(kvm));
11753
11754 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11755
11756 /* Free the arrays associated with the old memslot. */
11757 if (change == KVM_MR_MOVE)
11758 kvm_arch_free_memslot(kvm, old);
11759 }
11760
11761 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11762 {
11763 kvm_mmu_zap_all(kvm);
11764 }
11765
11766 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11767 struct kvm_memory_slot *slot)
11768 {
11769 kvm_page_track_flush_slot(kvm, slot);
11770 }
11771
11772 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11773 {
11774 return (is_guest_mode(vcpu) &&
11775 kvm_x86_ops.guest_apic_has_interrupt &&
11776 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11777 }
11778
11779 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11780 {
11781 if (!list_empty_careful(&vcpu->async_pf.done))
11782 return true;
11783
11784 if (kvm_apic_has_events(vcpu))
11785 return true;
11786
11787 if (vcpu->arch.pv.pv_unhalted)
11788 return true;
11789
11790 if (vcpu->arch.exception.pending)
11791 return true;
11792
11793 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11794 (vcpu->arch.nmi_pending &&
11795 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11796 return true;
11797
11798 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11799 (vcpu->arch.smi_pending &&
11800 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11801 return true;
11802
11803 if (kvm_arch_interrupt_allowed(vcpu) &&
11804 (kvm_cpu_has_interrupt(vcpu) ||
11805 kvm_guest_apic_has_interrupt(vcpu)))
11806 return true;
11807
11808 if (kvm_hv_has_stimer_pending(vcpu))
11809 return true;
11810
11811 if (is_guest_mode(vcpu) &&
11812 kvm_x86_ops.nested_ops->hv_timer_pending &&
11813 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11814 return true;
11815
11816 return false;
11817 }
11818
11819 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11820 {
11821 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11822 }
11823
11824 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11825 {
11826 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11827 return true;
11828
11829 return false;
11830 }
11831
11832 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11833 {
11834 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11835 return true;
11836
11837 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11838 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11839 kvm_test_request(KVM_REQ_EVENT, vcpu))
11840 return true;
11841
11842 return kvm_arch_dy_has_pending_interrupt(vcpu);
11843 }
11844
11845 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11846 {
11847 if (vcpu->arch.guest_state_protected)
11848 return true;
11849
11850 return vcpu->arch.preempted_in_kernel;
11851 }
11852
11853 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11854 {
11855 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11856 }
11857
11858 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11859 {
11860 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11861 }
11862
11863 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11864 {
11865 /* Can't read the RIP when guest state is protected, just return 0 */
11866 if (vcpu->arch.guest_state_protected)
11867 return 0;
11868
11869 if (is_64_bit_mode(vcpu))
11870 return kvm_rip_read(vcpu);
11871 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11872 kvm_rip_read(vcpu));
11873 }
11874 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11875
11876 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11877 {
11878 return kvm_get_linear_rip(vcpu) == linear_rip;
11879 }
11880 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11881
11882 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11883 {
11884 unsigned long rflags;
11885
11886 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11887 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11888 rflags &= ~X86_EFLAGS_TF;
11889 return rflags;
11890 }
11891 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11892
11893 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11894 {
11895 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11896 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11897 rflags |= X86_EFLAGS_TF;
11898 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11899 }
11900
11901 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11902 {
11903 __kvm_set_rflags(vcpu, rflags);
11904 kvm_make_request(KVM_REQ_EVENT, vcpu);
11905 }
11906 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11907
11908 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11909 {
11910 int r;
11911
11912 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11913 work->wakeup_all)
11914 return;
11915
11916 r = kvm_mmu_reload(vcpu);
11917 if (unlikely(r))
11918 return;
11919
11920 if (!vcpu->arch.mmu->direct_map &&
11921 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11922 return;
11923
11924 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11925 }
11926
11927 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11928 {
11929 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11930
11931 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11932 }
11933
11934 static inline u32 kvm_async_pf_next_probe(u32 key)
11935 {
11936 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11937 }
11938
11939 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11940 {
11941 u32 key = kvm_async_pf_hash_fn(gfn);
11942
11943 while (vcpu->arch.apf.gfns[key] != ~0)
11944 key = kvm_async_pf_next_probe(key);
11945
11946 vcpu->arch.apf.gfns[key] = gfn;
11947 }
11948
11949 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11950 {
11951 int i;
11952 u32 key = kvm_async_pf_hash_fn(gfn);
11953
11954 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11955 (vcpu->arch.apf.gfns[key] != gfn &&
11956 vcpu->arch.apf.gfns[key] != ~0); i++)
11957 key = kvm_async_pf_next_probe(key);
11958
11959 return key;
11960 }
11961
11962 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11963 {
11964 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11965 }
11966
11967 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11968 {
11969 u32 i, j, k;
11970
11971 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11972
11973 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11974 return;
11975
11976 while (true) {
11977 vcpu->arch.apf.gfns[i] = ~0;
11978 do {
11979 j = kvm_async_pf_next_probe(j);
11980 if (vcpu->arch.apf.gfns[j] == ~0)
11981 return;
11982 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11983 /*
11984 * k lies cyclically in ]i,j]
11985 * | i.k.j |
11986 * |....j i.k.| or |.k..j i...|
11987 */
11988 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11989 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11990 i = j;
11991 }
11992 }
11993
11994 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11995 {
11996 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11997
11998 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11999 sizeof(reason));
12000 }
12001
12002 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12003 {
12004 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12005
12006 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12007 &token, offset, sizeof(token));
12008 }
12009
12010 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12011 {
12012 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12013 u32 val;
12014
12015 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12016 &val, offset, sizeof(val)))
12017 return false;
12018
12019 return !val;
12020 }
12021
12022 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12023 {
12024 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12025 return false;
12026
12027 if (!kvm_pv_async_pf_enabled(vcpu) ||
12028 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12029 return false;
12030
12031 return true;
12032 }
12033
12034 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12035 {
12036 if (unlikely(!lapic_in_kernel(vcpu) ||
12037 kvm_event_needs_reinjection(vcpu) ||
12038 vcpu->arch.exception.pending))
12039 return false;
12040
12041 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12042 return false;
12043
12044 /*
12045 * If interrupts are off we cannot even use an artificial
12046 * halt state.
12047 */
12048 return kvm_arch_interrupt_allowed(vcpu);
12049 }
12050
12051 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12052 struct kvm_async_pf *work)
12053 {
12054 struct x86_exception fault;
12055
12056 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12057 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12058
12059 if (kvm_can_deliver_async_pf(vcpu) &&
12060 !apf_put_user_notpresent(vcpu)) {
12061 fault.vector = PF_VECTOR;
12062 fault.error_code_valid = true;
12063 fault.error_code = 0;
12064 fault.nested_page_fault = false;
12065 fault.address = work->arch.token;
12066 fault.async_page_fault = true;
12067 kvm_inject_page_fault(vcpu, &fault);
12068 return true;
12069 } else {
12070 /*
12071 * It is not possible to deliver a paravirtualized asynchronous
12072 * page fault, but putting the guest in an artificial halt state
12073 * can be beneficial nevertheless: if an interrupt arrives, we
12074 * can deliver it timely and perhaps the guest will schedule
12075 * another process. When the instruction that triggered a page
12076 * fault is retried, hopefully the page will be ready in the host.
12077 */
12078 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12079 return false;
12080 }
12081 }
12082
12083 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12084 struct kvm_async_pf *work)
12085 {
12086 struct kvm_lapic_irq irq = {
12087 .delivery_mode = APIC_DM_FIXED,
12088 .vector = vcpu->arch.apf.vec
12089 };
12090
12091 if (work->wakeup_all)
12092 work->arch.token = ~0; /* broadcast wakeup */
12093 else
12094 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12095 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12096
12097 if ((work->wakeup_all || work->notpresent_injected) &&
12098 kvm_pv_async_pf_enabled(vcpu) &&
12099 !apf_put_user_ready(vcpu, work->arch.token)) {
12100 vcpu->arch.apf.pageready_pending = true;
12101 kvm_apic_set_irq(vcpu, &irq, NULL);
12102 }
12103
12104 vcpu->arch.apf.halted = false;
12105 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12106 }
12107
12108 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12109 {
12110 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12111 if (!vcpu->arch.apf.pageready_pending)
12112 kvm_vcpu_kick(vcpu);
12113 }
12114
12115 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12116 {
12117 if (!kvm_pv_async_pf_enabled(vcpu))
12118 return true;
12119 else
12120 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12121 }
12122
12123 void kvm_arch_start_assignment(struct kvm *kvm)
12124 {
12125 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12126 static_call_cond(kvm_x86_start_assignment)(kvm);
12127 }
12128 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12129
12130 void kvm_arch_end_assignment(struct kvm *kvm)
12131 {
12132 atomic_dec(&kvm->arch.assigned_device_count);
12133 }
12134 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12135
12136 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12137 {
12138 return atomic_read(&kvm->arch.assigned_device_count);
12139 }
12140 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12141
12142 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12143 {
12144 atomic_inc(&kvm->arch.noncoherent_dma_count);
12145 }
12146 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12147
12148 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12149 {
12150 atomic_dec(&kvm->arch.noncoherent_dma_count);
12151 }
12152 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12153
12154 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12155 {
12156 return atomic_read(&kvm->arch.noncoherent_dma_count);
12157 }
12158 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12159
12160 bool kvm_arch_has_irq_bypass(void)
12161 {
12162 return true;
12163 }
12164
12165 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12166 struct irq_bypass_producer *prod)
12167 {
12168 struct kvm_kernel_irqfd *irqfd =
12169 container_of(cons, struct kvm_kernel_irqfd, consumer);
12170 int ret;
12171
12172 irqfd->producer = prod;
12173 kvm_arch_start_assignment(irqfd->kvm);
12174 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12175 prod->irq, irqfd->gsi, 1);
12176
12177 if (ret)
12178 kvm_arch_end_assignment(irqfd->kvm);
12179
12180 return ret;
12181 }
12182
12183 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12184 struct irq_bypass_producer *prod)
12185 {
12186 int ret;
12187 struct kvm_kernel_irqfd *irqfd =
12188 container_of(cons, struct kvm_kernel_irqfd, consumer);
12189
12190 WARN_ON(irqfd->producer != prod);
12191 irqfd->producer = NULL;
12192
12193 /*
12194 * When producer of consumer is unregistered, we change back to
12195 * remapped mode, so we can re-use the current implementation
12196 * when the irq is masked/disabled or the consumer side (KVM
12197 * int this case doesn't want to receive the interrupts.
12198 */
12199 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12200 if (ret)
12201 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12202 " fails: %d\n", irqfd->consumer.token, ret);
12203
12204 kvm_arch_end_assignment(irqfd->kvm);
12205 }
12206
12207 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12208 uint32_t guest_irq, bool set)
12209 {
12210 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12211 }
12212
12213 bool kvm_vector_hashing_enabled(void)
12214 {
12215 return vector_hashing;
12216 }
12217
12218 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12219 {
12220 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12221 }
12222 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12223
12224
12225 int kvm_spec_ctrl_test_value(u64 value)
12226 {
12227 /*
12228 * test that setting IA32_SPEC_CTRL to given value
12229 * is allowed by the host processor
12230 */
12231
12232 u64 saved_value;
12233 unsigned long flags;
12234 int ret = 0;
12235
12236 local_irq_save(flags);
12237
12238 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12239 ret = 1;
12240 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12241 ret = 1;
12242 else
12243 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12244
12245 local_irq_restore(flags);
12246
12247 return ret;
12248 }
12249 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12250
12251 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12252 {
12253 struct x86_exception fault;
12254 u32 access = error_code &
12255 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12256
12257 if (!(error_code & PFERR_PRESENT_MASK) ||
12258 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12259 /*
12260 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12261 * tables probably do not match the TLB. Just proceed
12262 * with the error code that the processor gave.
12263 */
12264 fault.vector = PF_VECTOR;
12265 fault.error_code_valid = true;
12266 fault.error_code = error_code;
12267 fault.nested_page_fault = false;
12268 fault.address = gva;
12269 }
12270 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12271 }
12272 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12273
12274 /*
12275 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12276 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12277 * indicates whether exit to userspace is needed.
12278 */
12279 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12280 struct x86_exception *e)
12281 {
12282 if (r == X86EMUL_PROPAGATE_FAULT) {
12283 kvm_inject_emulated_page_fault(vcpu, e);
12284 return 1;
12285 }
12286
12287 /*
12288 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12289 * while handling a VMX instruction KVM could've handled the request
12290 * correctly by exiting to userspace and performing I/O but there
12291 * doesn't seem to be a real use-case behind such requests, just return
12292 * KVM_EXIT_INTERNAL_ERROR for now.
12293 */
12294 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12295 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12296 vcpu->run->internal.ndata = 0;
12297
12298 return 0;
12299 }
12300 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12301
12302 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12303 {
12304 bool pcid_enabled;
12305 struct x86_exception e;
12306 struct {
12307 u64 pcid;
12308 u64 gla;
12309 } operand;
12310 int r;
12311
12312 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12313 if (r != X86EMUL_CONTINUE)
12314 return kvm_handle_memory_failure(vcpu, r, &e);
12315
12316 if (operand.pcid >> 12 != 0) {
12317 kvm_inject_gp(vcpu, 0);
12318 return 1;
12319 }
12320
12321 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12322
12323 switch (type) {
12324 case INVPCID_TYPE_INDIV_ADDR:
12325 if ((!pcid_enabled && (operand.pcid != 0)) ||
12326 is_noncanonical_address(operand.gla, vcpu)) {
12327 kvm_inject_gp(vcpu, 0);
12328 return 1;
12329 }
12330 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12331 return kvm_skip_emulated_instruction(vcpu);
12332
12333 case INVPCID_TYPE_SINGLE_CTXT:
12334 if (!pcid_enabled && (operand.pcid != 0)) {
12335 kvm_inject_gp(vcpu, 0);
12336 return 1;
12337 }
12338
12339 kvm_invalidate_pcid(vcpu, operand.pcid);
12340 return kvm_skip_emulated_instruction(vcpu);
12341
12342 case INVPCID_TYPE_ALL_NON_GLOBAL:
12343 /*
12344 * Currently, KVM doesn't mark global entries in the shadow
12345 * page tables, so a non-global flush just degenerates to a
12346 * global flush. If needed, we could optimize this later by
12347 * keeping track of global entries in shadow page tables.
12348 */
12349
12350 fallthrough;
12351 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12352 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12353 return kvm_skip_emulated_instruction(vcpu);
12354
12355 default:
12356 BUG(); /* We have already checked above that type <= 3 */
12357 }
12358 }
12359 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12360
12361 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12362 {
12363 struct kvm_run *run = vcpu->run;
12364 struct kvm_mmio_fragment *frag;
12365 unsigned int len;
12366
12367 BUG_ON(!vcpu->mmio_needed);
12368
12369 /* Complete previous fragment */
12370 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12371 len = min(8u, frag->len);
12372 if (!vcpu->mmio_is_write)
12373 memcpy(frag->data, run->mmio.data, len);
12374
12375 if (frag->len <= 8) {
12376 /* Switch to the next fragment. */
12377 frag++;
12378 vcpu->mmio_cur_fragment++;
12379 } else {
12380 /* Go forward to the next mmio piece. */
12381 frag->data += len;
12382 frag->gpa += len;
12383 frag->len -= len;
12384 }
12385
12386 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12387 vcpu->mmio_needed = 0;
12388
12389 // VMG change, at this point, we're always done
12390 // RIP has already been advanced
12391 return 1;
12392 }
12393
12394 // More MMIO is needed
12395 run->mmio.phys_addr = frag->gpa;
12396 run->mmio.len = min(8u, frag->len);
12397 run->mmio.is_write = vcpu->mmio_is_write;
12398 if (run->mmio.is_write)
12399 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12400 run->exit_reason = KVM_EXIT_MMIO;
12401
12402 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12403
12404 return 0;
12405 }
12406
12407 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12408 void *data)
12409 {
12410 int handled;
12411 struct kvm_mmio_fragment *frag;
12412
12413 if (!data)
12414 return -EINVAL;
12415
12416 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12417 if (handled == bytes)
12418 return 1;
12419
12420 bytes -= handled;
12421 gpa += handled;
12422 data += handled;
12423
12424 /*TODO: Check if need to increment number of frags */
12425 frag = vcpu->mmio_fragments;
12426 vcpu->mmio_nr_fragments = 1;
12427 frag->len = bytes;
12428 frag->gpa = gpa;
12429 frag->data = data;
12430
12431 vcpu->mmio_needed = 1;
12432 vcpu->mmio_cur_fragment = 0;
12433
12434 vcpu->run->mmio.phys_addr = gpa;
12435 vcpu->run->mmio.len = min(8u, frag->len);
12436 vcpu->run->mmio.is_write = 1;
12437 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12438 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12439
12440 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12441
12442 return 0;
12443 }
12444 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12445
12446 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12447 void *data)
12448 {
12449 int handled;
12450 struct kvm_mmio_fragment *frag;
12451
12452 if (!data)
12453 return -EINVAL;
12454
12455 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12456 if (handled == bytes)
12457 return 1;
12458
12459 bytes -= handled;
12460 gpa += handled;
12461 data += handled;
12462
12463 /*TODO: Check if need to increment number of frags */
12464 frag = vcpu->mmio_fragments;
12465 vcpu->mmio_nr_fragments = 1;
12466 frag->len = bytes;
12467 frag->gpa = gpa;
12468 frag->data = data;
12469
12470 vcpu->mmio_needed = 1;
12471 vcpu->mmio_cur_fragment = 0;
12472
12473 vcpu->run->mmio.phys_addr = gpa;
12474 vcpu->run->mmio.len = min(8u, frag->len);
12475 vcpu->run->mmio.is_write = 0;
12476 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12477
12478 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12479
12480 return 0;
12481 }
12482 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12483
12484 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12485 unsigned int port);
12486
12487 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12488 {
12489 int size = vcpu->arch.pio.size;
12490 int port = vcpu->arch.pio.port;
12491
12492 vcpu->arch.pio.count = 0;
12493 if (vcpu->arch.sev_pio_count)
12494 return kvm_sev_es_outs(vcpu, size, port);
12495 return 1;
12496 }
12497
12498 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12499 unsigned int port)
12500 {
12501 for (;;) {
12502 unsigned int count =
12503 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12504 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12505
12506 /* memcpy done already by emulator_pio_out. */
12507 vcpu->arch.sev_pio_count -= count;
12508 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12509 if (!ret)
12510 break;
12511
12512 /* Emulation done by the kernel. */
12513 if (!vcpu->arch.sev_pio_count)
12514 return 1;
12515 }
12516
12517 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12518 return 0;
12519 }
12520
12521 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12522 unsigned int port);
12523
12524 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12525 {
12526 unsigned count = vcpu->arch.pio.count;
12527 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12528 vcpu->arch.sev_pio_count -= count;
12529 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12530 }
12531
12532 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12533 {
12534 int size = vcpu->arch.pio.size;
12535 int port = vcpu->arch.pio.port;
12536
12537 advance_sev_es_emulated_ins(vcpu);
12538 if (vcpu->arch.sev_pio_count)
12539 return kvm_sev_es_ins(vcpu, size, port);
12540 return 1;
12541 }
12542
12543 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12544 unsigned int port)
12545 {
12546 for (;;) {
12547 unsigned int count =
12548 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12549 if (!__emulator_pio_in(vcpu, size, port, count))
12550 break;
12551
12552 /* Emulation done by the kernel. */
12553 advance_sev_es_emulated_ins(vcpu);
12554 if (!vcpu->arch.sev_pio_count)
12555 return 1;
12556 }
12557
12558 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12559 return 0;
12560 }
12561
12562 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12563 unsigned int port, void *data, unsigned int count,
12564 int in)
12565 {
12566 vcpu->arch.sev_pio_data = data;
12567 vcpu->arch.sev_pio_count = count;
12568 return in ? kvm_sev_es_ins(vcpu, size, port)
12569 : kvm_sev_es_outs(vcpu, size, port);
12570 }
12571 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12572
12573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);