]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: Fix steal time asm constraints
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * If neither the current CR3 nor any of the prev_roots use the given
1096 * PCID, then nothing needs to be done here because a resync will
1097 * happen anyway before switching to any other CR3.
1098 */
1099 if (kvm_get_active_pcid(vcpu) == pcid) {
1100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 }
1103
1104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 bool skip_tlb_flush = false;
1114 unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118 if (pcid_enabled) {
1119 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 pcid = cr3 & X86_CR3_PCID_MASK;
1122 }
1123 #endif
1124
1125 /* PDPTRs are always reloaded for PAE paging. */
1126 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 goto handle_tlb_flush;
1128
1129 /*
1130 * Do not condition the GPA check on long mode, this helper is used to
1131 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 * the current vCPU mode is accurate.
1133 */
1134 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 return 1;
1136
1137 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 return 1;
1139
1140 if (cr3 != kvm_read_cr3(vcpu))
1141 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143 vcpu->arch.cr3 = cr3;
1144 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147 /*
1148 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1150 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 * i.e. only PCID=0 can be relevant.
1153 */
1154 if (!skip_tlb_flush)
1155 kvm_invalidate_pcid(vcpu, pcid);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 if (cr8 & CR8_RESERVED_BITS)
1164 return 1;
1165 if (lapic_in_kernel(vcpu))
1166 kvm_lapic_set_tpr(vcpu, cr8);
1167 else
1168 vcpu->arch.cr8 = cr8;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 if (lapic_in_kernel(vcpu))
1176 return kvm_lapic_get_cr8(vcpu);
1177 else
1178 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 int i;
1185
1186 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 unsigned long dr7;
1195
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 dr7 = vcpu->arch.guest_debug_dr7;
1198 else
1199 dr7 = vcpu->arch.dr7;
1200 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 if (dr7 & DR7_BP_EN_MASK)
1203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 u64 fixed = DR6_FIXED_1;
1210
1211 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 fixed |= DR6_RTM;
1213
1214 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 fixed |= DR6_BUS_LOCK;
1216 return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223 switch (dr) {
1224 case 0 ... 3:
1225 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 vcpu->arch.eff_db[dr] = val;
1228 break;
1229 case 4:
1230 case 6:
1231 if (!kvm_dr6_valid(val))
1232 return 1; /* #GP */
1233 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 break;
1235 case 5:
1236 default: /* 7 */
1237 if (!kvm_dr7_valid(val))
1238 return 1; /* #GP */
1239 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 kvm_update_dr7(vcpu);
1241 break;
1242 }
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 break;
1256 case 4:
1257 case 6:
1258 *val = vcpu->arch.dr6;
1259 break;
1260 case 5:
1261 default: /* 7 */
1262 *val = vcpu->arch.dr7;
1263 break;
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 u32 ecx = kvm_rcx_read(vcpu);
1271 u64 data;
1272
1273 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 kvm_inject_gp(vcpu, 0);
1275 return 1;
1276 }
1277
1278 kvm_rax_write(vcpu, (u32)data);
1279 kvm_rdx_write(vcpu, data >> 32);
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296 static const u32 msrs_to_save_all[] = {
1297 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 MSR_IA32_SPEC_CTRL,
1305 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 MSR_IA32_UMWAIT_CONTROL,
1312
1313 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342 };
1343
1344 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345 static unsigned num_msrs_to_save;
1346
1347 static const u32 emulated_msrs_all[] = {
1348 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355 HV_X64_MSR_RESET,
1356 HV_X64_MSR_VP_INDEX,
1357 HV_X64_MSR_VP_RUNTIME,
1358 HV_X64_MSR_SCONTROL,
1359 HV_X64_MSR_STIMER0_CONFIG,
1360 HV_X64_MSR_VP_ASSIST_PAGE,
1361 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362 HV_X64_MSR_TSC_EMULATION_STATUS,
1363 HV_X64_MSR_SYNDBG_OPTIONS,
1364 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371 MSR_IA32_TSC_ADJUST,
1372 MSR_IA32_TSC_DEADLINE,
1373 MSR_IA32_ARCH_CAPABILITIES,
1374 MSR_IA32_PERF_CAPABILITIES,
1375 MSR_IA32_MISC_ENABLE,
1376 MSR_IA32_MCG_STATUS,
1377 MSR_IA32_MCG_CTL,
1378 MSR_IA32_MCG_EXT_CTL,
1379 MSR_IA32_SMBASE,
1380 MSR_SMI_COUNT,
1381 MSR_PLATFORM_INFO,
1382 MSR_MISC_FEATURES_ENABLES,
1383 MSR_AMD64_VIRT_SPEC_CTRL,
1384 MSR_IA32_POWER_CTL,
1385 MSR_IA32_UCODE_REV,
1386
1387 /*
1388 * The following list leaves out MSRs whose values are determined
1389 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390 * We always support the "true" VMX control MSRs, even if the host
1391 * processor does not, so I am putting these registers here rather
1392 * than in msrs_to_save_all.
1393 */
1394 MSR_IA32_VMX_BASIC,
1395 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399 MSR_IA32_VMX_MISC,
1400 MSR_IA32_VMX_CR0_FIXED0,
1401 MSR_IA32_VMX_CR4_FIXED0,
1402 MSR_IA32_VMX_VMCS_ENUM,
1403 MSR_IA32_VMX_PROCBASED_CTLS2,
1404 MSR_IA32_VMX_EPT_VPID_CAP,
1405 MSR_IA32_VMX_VMFUNC,
1406
1407 MSR_K7_HWCR,
1408 MSR_KVM_POLL_CONTROL,
1409 };
1410
1411 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412 static unsigned num_emulated_msrs;
1413
1414 /*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418 static const u32 msr_based_features_all[] = {
1419 MSR_IA32_VMX_BASIC,
1420 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421 MSR_IA32_VMX_PINBASED_CTLS,
1422 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423 MSR_IA32_VMX_PROCBASED_CTLS,
1424 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425 MSR_IA32_VMX_EXIT_CTLS,
1426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427 MSR_IA32_VMX_ENTRY_CTLS,
1428 MSR_IA32_VMX_MISC,
1429 MSR_IA32_VMX_CR0_FIXED0,
1430 MSR_IA32_VMX_CR0_FIXED1,
1431 MSR_IA32_VMX_CR4_FIXED0,
1432 MSR_IA32_VMX_CR4_FIXED1,
1433 MSR_IA32_VMX_VMCS_ENUM,
1434 MSR_IA32_VMX_PROCBASED_CTLS2,
1435 MSR_IA32_VMX_EPT_VPID_CAP,
1436 MSR_IA32_VMX_VMFUNC,
1437
1438 MSR_F10H_DECFG,
1439 MSR_IA32_UCODE_REV,
1440 MSR_IA32_ARCH_CAPABILITIES,
1441 MSR_IA32_PERF_CAPABILITIES,
1442 };
1443
1444 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445 static unsigned int num_msr_based_features;
1446
1447 static u64 kvm_get_arch_capabilities(void)
1448 {
1449 u64 data = 0;
1450
1451 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454 /*
1455 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456 * the nested hypervisor runs with NX huge pages. If it is not,
1457 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458 * L1 guests, so it need not worry about its own (L2) guests.
1459 */
1460 data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462 /*
1463 * If we're doing cache flushes (either "always" or "cond")
1464 * we will do one whenever the guest does a vmlaunch/vmresume.
1465 * If an outer hypervisor is doing the cache flush for us
1466 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467 * capability to the guest too, and if EPT is disabled we're not
1468 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1469 * require a nested hypervisor to do a flush of its own.
1470 */
1471 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475 data |= ARCH_CAP_RDCL_NO;
1476 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477 data |= ARCH_CAP_SSB_NO;
1478 if (!boot_cpu_has_bug(X86_BUG_MDS))
1479 data |= ARCH_CAP_MDS_NO;
1480
1481 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482 /*
1483 * If RTM=0 because the kernel has disabled TSX, the host might
1484 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1485 * and therefore knows that there cannot be TAA) but keep
1486 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487 * and we want to allow migrating those guests to tsx=off hosts.
1488 */
1489 data &= ~ARCH_CAP_TAA_NO;
1490 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491 data |= ARCH_CAP_TAA_NO;
1492 } else {
1493 /*
1494 * Nothing to do here; we emulate TSX_CTRL if present on the
1495 * host so the guest can choose between disabling TSX or
1496 * using VERW to clear CPU buffers.
1497 */
1498 }
1499
1500 return data;
1501 }
1502
1503 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504 {
1505 switch (msr->index) {
1506 case MSR_IA32_ARCH_CAPABILITIES:
1507 msr->data = kvm_get_arch_capabilities();
1508 break;
1509 case MSR_IA32_UCODE_REV:
1510 rdmsrl_safe(msr->index, &msr->data);
1511 break;
1512 default:
1513 return static_call(kvm_x86_get_msr_feature)(msr);
1514 }
1515 return 0;
1516 }
1517
1518 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520 struct kvm_msr_entry msr;
1521 int r;
1522
1523 msr.index = index;
1524 r = kvm_get_msr_feature(&msr);
1525
1526 if (r == KVM_MSR_RET_INVALID) {
1527 /* Unconditionally clear the output for simplicity */
1528 *data = 0;
1529 if (kvm_msr_ignored_check(index, 0, false))
1530 r = 0;
1531 }
1532
1533 if (r)
1534 return r;
1535
1536 *data = msr.data;
1537
1538 return 0;
1539 }
1540
1541 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542 {
1543 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544 return false;
1545
1546 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547 return false;
1548
1549 if (efer & (EFER_LME | EFER_LMA) &&
1550 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551 return false;
1552
1553 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554 return false;
1555
1556 return true;
1557
1558 }
1559 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560 {
1561 if (efer & efer_reserved_bits)
1562 return false;
1563
1564 return __kvm_valid_efer(vcpu, efer);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569 {
1570 u64 old_efer = vcpu->arch.efer;
1571 u64 efer = msr_info->data;
1572 int r;
1573
1574 if (efer & efer_reserved_bits)
1575 return 1;
1576
1577 if (!msr_info->host_initiated) {
1578 if (!__kvm_valid_efer(vcpu, efer))
1579 return 1;
1580
1581 if (is_paging(vcpu) &&
1582 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583 return 1;
1584 }
1585
1586 efer &= ~EFER_LMA;
1587 efer |= vcpu->arch.efer & EFER_LMA;
1588
1589 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590 if (r) {
1591 WARN_ON(r > 0);
1592 return r;
1593 }
1594
1595 /* Update reserved bits */
1596 if ((efer ^ old_efer) & EFER_NX)
1597 kvm_mmu_reset_context(vcpu);
1598
1599 return 0;
1600 }
1601
1602 void kvm_enable_efer_bits(u64 mask)
1603 {
1604 efer_reserved_bits &= ~mask;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609 {
1610 struct kvm_x86_msr_filter *msr_filter;
1611 struct msr_bitmap_range *ranges;
1612 struct kvm *kvm = vcpu->kvm;
1613 bool allowed;
1614 int idx;
1615 u32 i;
1616
1617 /* x2APIC MSRs do not support filtering. */
1618 if (index >= 0x800 && index <= 0x8ff)
1619 return true;
1620
1621 idx = srcu_read_lock(&kvm->srcu);
1622
1623 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624 if (!msr_filter) {
1625 allowed = true;
1626 goto out;
1627 }
1628
1629 allowed = msr_filter->default_allow;
1630 ranges = msr_filter->ranges;
1631
1632 for (i = 0; i < msr_filter->count; i++) {
1633 u32 start = ranges[i].base;
1634 u32 end = start + ranges[i].nmsrs;
1635 u32 flags = ranges[i].flags;
1636 unsigned long *bitmap = ranges[i].bitmap;
1637
1638 if ((index >= start) && (index < end) && (flags & type)) {
1639 allowed = !!test_bit(index - start, bitmap);
1640 break;
1641 }
1642 }
1643
1644 out:
1645 srcu_read_unlock(&kvm->srcu, idx);
1646
1647 return allowed;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651 /*
1652 * Write @data into the MSR specified by @index. Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658 bool host_initiated)
1659 {
1660 struct msr_data msr;
1661
1662 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663 return KVM_MSR_RET_FILTERED;
1664
1665 switch (index) {
1666 case MSR_FS_BASE:
1667 case MSR_GS_BASE:
1668 case MSR_KERNEL_GS_BASE:
1669 case MSR_CSTAR:
1670 case MSR_LSTAR:
1671 if (is_noncanonical_address(data, vcpu))
1672 return 1;
1673 break;
1674 case MSR_IA32_SYSENTER_EIP:
1675 case MSR_IA32_SYSENTER_ESP:
1676 /*
1677 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678 * non-canonical address is written on Intel but not on
1679 * AMD (which ignores the top 32-bits, because it does
1680 * not implement 64-bit SYSENTER).
1681 *
1682 * 64-bit code should hence be able to write a non-canonical
1683 * value on AMD. Making the address canonical ensures that
1684 * vmentry does not fail on Intel after writing a non-canonical
1685 * value, and that something deterministic happens if the guest
1686 * invokes 64-bit SYSENTER.
1687 */
1688 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689 break;
1690 case MSR_TSC_AUX:
1691 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692 return 1;
1693
1694 if (!host_initiated &&
1695 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697 return 1;
1698
1699 /*
1700 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701 * incomplete and conflicting architectural behavior. Current
1702 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703 * reserved and always read as zeros. Enforce Intel's reserved
1704 * bits check if and only if the guest CPU is Intel, and clear
1705 * the bits in all other cases. This ensures cross-vendor
1706 * migration will provide consistent behavior for the guest.
1707 */
1708 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709 return 1;
1710
1711 data = (u32)data;
1712 break;
1713 }
1714
1715 msr.data = data;
1716 msr.index = index;
1717 msr.host_initiated = host_initiated;
1718
1719 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720 }
1721
1722 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723 u32 index, u64 data, bool host_initiated)
1724 {
1725 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727 if (ret == KVM_MSR_RET_INVALID)
1728 if (kvm_msr_ignored_check(index, data, true))
1729 ret = 0;
1730
1731 return ret;
1732 }
1733
1734 /*
1735 * Read the MSR specified by @index into @data. Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741 bool host_initiated)
1742 {
1743 struct msr_data msr;
1744 int ret;
1745
1746 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747 return KVM_MSR_RET_FILTERED;
1748
1749 switch (index) {
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758 break;
1759 }
1760
1761 msr.index = index;
1762 msr.host_initiated = host_initiated;
1763
1764 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765 if (!ret)
1766 *data = msr.data;
1767 return ret;
1768 }
1769
1770 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771 u32 index, u64 *data, bool host_initiated)
1772 {
1773 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775 if (ret == KVM_MSR_RET_INVALID) {
1776 /* Unconditionally clear *data for simplicity */
1777 *data = 0;
1778 if (kvm_msr_ignored_check(index, 0, false))
1779 ret = 0;
1780 }
1781
1782 return ret;
1783 }
1784
1785 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786 {
1787 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792 {
1793 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798 {
1799 int err = vcpu->run->msr.error;
1800 if (!err) {
1801 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803 }
1804
1805 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806 }
1807
1808 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811 }
1812
1813 static u64 kvm_msr_reason(int r)
1814 {
1815 switch (r) {
1816 case KVM_MSR_RET_INVALID:
1817 return KVM_MSR_EXIT_REASON_UNKNOWN;
1818 case KVM_MSR_RET_FILTERED:
1819 return KVM_MSR_EXIT_REASON_FILTER;
1820 default:
1821 return KVM_MSR_EXIT_REASON_INVAL;
1822 }
1823 }
1824
1825 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826 u32 exit_reason, u64 data,
1827 int (*completion)(struct kvm_vcpu *vcpu),
1828 int r)
1829 {
1830 u64 msr_reason = kvm_msr_reason(r);
1831
1832 /* Check if the user wanted to know about this MSR fault */
1833 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834 return 0;
1835
1836 vcpu->run->exit_reason = exit_reason;
1837 vcpu->run->msr.error = 0;
1838 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839 vcpu->run->msr.reason = msr_reason;
1840 vcpu->run->msr.index = index;
1841 vcpu->run->msr.data = data;
1842 vcpu->arch.complete_userspace_io = completion;
1843
1844 return 1;
1845 }
1846
1847 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848 {
1849 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850 complete_emulated_rdmsr, r);
1851 }
1852
1853 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854 {
1855 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856 complete_emulated_wrmsr, r);
1857 }
1858
1859 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860 {
1861 u32 ecx = kvm_rcx_read(vcpu);
1862 u64 data;
1863 int r;
1864
1865 r = kvm_get_msr(vcpu, ecx, &data);
1866
1867 /* MSR read failed? See if we should ask user space */
1868 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869 /* Bounce to user space */
1870 return 0;
1871 }
1872
1873 if (!r) {
1874 trace_kvm_msr_read(ecx, data);
1875
1876 kvm_rax_write(vcpu, data & -1u);
1877 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878 } else {
1879 trace_kvm_msr_read_ex(ecx);
1880 }
1881
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887 {
1888 u32 ecx = kvm_rcx_read(vcpu);
1889 u64 data = kvm_read_edx_eax(vcpu);
1890 int r;
1891
1892 r = kvm_set_msr(vcpu, ecx, data);
1893
1894 /* MSR write failed? See if we should ask user space */
1895 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896 /* Bounce to user space */
1897 return 0;
1898
1899 /* Signal all other negative errors to userspace */
1900 if (r < 0)
1901 return r;
1902
1903 if (!r)
1904 trace_kvm_msr_write(ecx, data);
1905 else
1906 trace_kvm_msr_write_ex(ecx, data);
1907
1908 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913 {
1914 return kvm_skip_emulated_instruction(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919 {
1920 /* Treat an INVD instruction as a NOP and just skip it. */
1921 return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926 {
1927 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928 return kvm_emulate_as_nop(vcpu);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933 {
1934 kvm_queue_exception(vcpu, UD_VECTOR);
1935 return 1;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940 {
1941 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942 return kvm_emulate_as_nop(vcpu);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947 {
1948 xfer_to_guest_mode_prepare();
1949 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950 xfer_to_guest_mode_work_pending();
1951 }
1952
1953 /*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961 {
1962 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963 return 1;
1964
1965 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970 data &= ~(1 << 12);
1971 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974 trace_kvm_apic_write(APIC_ICR, (u32)data);
1975 return 0;
1976 }
1977
1978 return 1;
1979 }
1980
1981 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982 {
1983 if (!kvm_can_use_hv_timer(vcpu))
1984 return 1;
1985
1986 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987 return 0;
1988 }
1989
1990 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991 {
1992 u32 msr = kvm_rcx_read(vcpu);
1993 u64 data;
1994 fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996 switch (msr) {
1997 case APIC_BASE_MSR + (APIC_ICR >> 4):
1998 data = kvm_read_edx_eax(vcpu);
1999 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000 kvm_skip_emulated_instruction(vcpu);
2001 ret = EXIT_FASTPATH_EXIT_HANDLED;
2002 }
2003 break;
2004 case MSR_IA32_TSC_DEADLINE:
2005 data = kvm_read_edx_eax(vcpu);
2006 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007 kvm_skip_emulated_instruction(vcpu);
2008 ret = EXIT_FASTPATH_REENTER_GUEST;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (ret != EXIT_FASTPATH_NONE)
2016 trace_kvm_msr_write(msr, data);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022 /*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026 {
2027 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028 }
2029
2030 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031 {
2032 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033 }
2034
2035 #ifdef CONFIG_X86_64
2036 struct pvclock_clock {
2037 int vclock_mode;
2038 u64 cycle_last;
2039 u64 mask;
2040 u32 mult;
2041 u32 shift;
2042 u64 base_cycles;
2043 u64 offset;
2044 };
2045
2046 struct pvclock_gtod_data {
2047 seqcount_t seq;
2048
2049 struct pvclock_clock clock; /* extract of a clocksource struct */
2050 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052 ktime_t offs_boot;
2053 u64 wall_time_sec;
2054 };
2055
2056 static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058 static void update_pvclock_gtod(struct timekeeper *tk)
2059 {
2060 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062 write_seqcount_begin(&vdata->seq);
2063
2064 /* copy pvclock gtod data */
2065 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2066 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2067 vdata->clock.mask = tk->tkr_mono.mask;
2068 vdata->clock.mult = tk->tkr_mono.mult;
2069 vdata->clock.shift = tk->tkr_mono.shift;
2070 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2071 vdata->clock.offset = tk->tkr_mono.base;
2072
2073 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2074 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2075 vdata->raw_clock.mask = tk->tkr_raw.mask;
2076 vdata->raw_clock.mult = tk->tkr_raw.mult;
2077 vdata->raw_clock.shift = tk->tkr_raw.shift;
2078 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2079 vdata->raw_clock.offset = tk->tkr_raw.base;
2080
2081 vdata->wall_time_sec = tk->xtime_sec;
2082
2083 vdata->offs_boot = tk->offs_boot;
2084
2085 write_seqcount_end(&vdata->seq);
2086 }
2087
2088 static s64 get_kvmclock_base_ns(void)
2089 {
2090 /* Count up from boot time, but with the frequency of the raw clock. */
2091 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092 }
2093 #else
2094 static s64 get_kvmclock_base_ns(void)
2095 {
2096 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2097 return ktime_get_boottime_ns();
2098 }
2099 #endif
2100
2101 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102 {
2103 int version;
2104 int r;
2105 struct pvclock_wall_clock wc;
2106 u32 wc_sec_hi;
2107 u64 wall_nsec;
2108
2109 if (!wall_clock)
2110 return;
2111
2112 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113 if (r)
2114 return;
2115
2116 if (version & 1)
2117 ++version; /* first time write, random junk */
2118
2119 ++version;
2120
2121 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122 return;
2123
2124 /*
2125 * The guest calculates current wall clock time by adding
2126 * system time (updated by kvm_guest_time_update below) to the
2127 * wall clock specified here. We do the reverse here.
2128 */
2129 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131 wc.nsec = do_div(wall_nsec, 1000000000);
2132 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133 wc.version = version;
2134
2135 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137 if (sec_hi_ofs) {
2138 wc_sec_hi = wall_nsec >> 32;
2139 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140 &wc_sec_hi, sizeof(wc_sec_hi));
2141 }
2142
2143 version++;
2144 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145 }
2146
2147 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148 bool old_msr, bool host_initiated)
2149 {
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152 if (vcpu->vcpu_id == 0 && !host_initiated) {
2153 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157 }
2158
2159 vcpu->arch.time = system_time;
2160 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162 /* we verify if the enable bit is set... */
2163 vcpu->arch.pv_time_enabled = false;
2164 if (!(system_time & 1))
2165 return;
2166
2167 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168 &vcpu->arch.pv_time, system_time & ~1ULL,
2169 sizeof(struct pvclock_vcpu_time_info)))
2170 vcpu->arch.pv_time_enabled = true;
2171
2172 return;
2173 }
2174
2175 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176 {
2177 do_shl32_div32(dividend, divisor);
2178 return dividend;
2179 }
2180
2181 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182 s8 *pshift, u32 *pmultiplier)
2183 {
2184 uint64_t scaled64;
2185 int32_t shift = 0;
2186 uint64_t tps64;
2187 uint32_t tps32;
2188
2189 tps64 = base_hz;
2190 scaled64 = scaled_hz;
2191 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192 tps64 >>= 1;
2193 shift--;
2194 }
2195
2196 tps32 = (uint32_t)tps64;
2197 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199 scaled64 >>= 1;
2200 else
2201 tps32 <<= 1;
2202 shift++;
2203 }
2204
2205 *pshift = shift;
2206 *pmultiplier = div_frac(scaled64, tps32);
2207 }
2208
2209 #ifdef CONFIG_X86_64
2210 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211 #endif
2212
2213 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214 static unsigned long max_tsc_khz;
2215
2216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217 {
2218 u64 v = (u64)khz * (1000000 + ppm);
2219 do_div(v, 1000000);
2220 return v;
2221 }
2222
2223 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226 {
2227 u64 ratio;
2228
2229 /* Guest TSC same frequency as host TSC? */
2230 if (!scale) {
2231 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232 return 0;
2233 }
2234
2235 /* TSC scaling supported? */
2236 if (!kvm_has_tsc_control) {
2237 if (user_tsc_khz > tsc_khz) {
2238 vcpu->arch.tsc_catchup = 1;
2239 vcpu->arch.tsc_always_catchup = 1;
2240 return 0;
2241 } else {
2242 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243 return -1;
2244 }
2245 }
2246
2247 /* TSC scaling required - calculate ratio */
2248 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249 user_tsc_khz, tsc_khz);
2250
2251 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253 user_tsc_khz);
2254 return -1;
2255 }
2256
2257 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258 return 0;
2259 }
2260
2261 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262 {
2263 u32 thresh_lo, thresh_hi;
2264 int use_scaling = 0;
2265
2266 /* tsc_khz can be zero if TSC calibration fails */
2267 if (user_tsc_khz == 0) {
2268 /* set tsc_scaling_ratio to a safe value */
2269 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270 return -1;
2271 }
2272
2273 /* Compute a scale to convert nanoseconds in TSC cycles */
2274 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275 &vcpu->arch.virtual_tsc_shift,
2276 &vcpu->arch.virtual_tsc_mult);
2277 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279 /*
2280 * Compute the variation in TSC rate which is acceptable
2281 * within the range of tolerance and decide if the
2282 * rate being applied is within that bounds of the hardware
2283 * rate. If so, no scaling or compensation need be done.
2284 */
2285 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289 use_scaling = 1;
2290 }
2291 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292 }
2293
2294 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295 {
2296 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297 vcpu->arch.virtual_tsc_mult,
2298 vcpu->arch.virtual_tsc_shift);
2299 tsc += vcpu->arch.this_tsc_write;
2300 return tsc;
2301 }
2302
2303 static inline int gtod_is_based_on_tsc(int mode)
2304 {
2305 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306 }
2307
2308 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309 {
2310 #ifdef CONFIG_X86_64
2311 bool vcpus_matched;
2312 struct kvm_arch *ka = &vcpu->kvm->arch;
2313 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316 atomic_read(&vcpu->kvm->online_vcpus));
2317
2318 /*
2319 * Once the masterclock is enabled, always perform request in
2320 * order to update it.
2321 *
2322 * In order to enable masterclock, the host clocksource must be TSC
2323 * and the vcpus need to have matched TSCs. When that happens,
2324 * perform request to enable masterclock.
2325 */
2326 if (ka->use_master_clock ||
2327 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331 atomic_read(&vcpu->kvm->online_vcpus),
2332 ka->use_master_clock, gtod->clock.vclock_mode);
2333 #endif
2334 }
2335
2336 /*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347 {
2348 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349 }
2350
2351 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352 {
2353 u64 _tsc = tsc;
2354
2355 if (ratio != kvm_default_tsc_scaling_ratio)
2356 _tsc = __scale_tsc(ratio, tsc);
2357
2358 return _tsc;
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363 {
2364 u64 tsc;
2365
2366 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368 return target_tsc - tsc;
2369 }
2370
2371 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372 {
2373 return vcpu->arch.l1_tsc_offset +
2374 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379 {
2380 u64 nested_offset;
2381
2382 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383 nested_offset = l1_offset;
2384 else
2385 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 nested_offset += l2_offset;
2389 return nested_offset;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394 {
2395 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397 kvm_tsc_scaling_ratio_frac_bits);
2398
2399 return l1_multiplier;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404 {
2405 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406 vcpu->arch.l1_tsc_offset,
2407 l1_offset);
2408
2409 vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411 /*
2412 * If we are here because L1 chose not to trap WRMSR to TSC then
2413 * according to the spec this should set L1's TSC (as opposed to
2414 * setting L1's offset for L2).
2415 */
2416 if (is_guest_mode(vcpu))
2417 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418 l1_offset,
2419 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421 else
2422 vcpu->arch.tsc_offset = l1_offset;
2423
2424 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425 }
2426
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428 {
2429 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431 /* Userspace is changing the multiplier while L2 is active */
2432 if (is_guest_mode(vcpu))
2433 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434 l1_multiplier,
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439 if (kvm_has_tsc_control)
2440 static_call(kvm_x86_write_tsc_multiplier)(
2441 vcpu, vcpu->arch.tsc_scaling_ratio);
2442 }
2443
2444 static inline bool kvm_check_tsc_unstable(void)
2445 {
2446 #ifdef CONFIG_X86_64
2447 /*
2448 * TSC is marked unstable when we're running on Hyper-V,
2449 * 'TSC page' clocksource is good.
2450 */
2451 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452 return false;
2453 #endif
2454 return check_tsc_unstable();
2455 }
2456
2457 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458 {
2459 struct kvm *kvm = vcpu->kvm;
2460 u64 offset, ns, elapsed;
2461 unsigned long flags;
2462 bool matched;
2463 bool already_matched;
2464 bool synchronizing = false;
2465
2466 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468 ns = get_kvmclock_base_ns();
2469 elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471 if (vcpu->arch.virtual_tsc_khz) {
2472 if (data == 0) {
2473 /*
2474 * detection of vcpu initialization -- need to sync
2475 * with other vCPUs. This particularly helps to keep
2476 * kvm_clock stable after CPU hotplug
2477 */
2478 synchronizing = true;
2479 } else {
2480 u64 tsc_exp = kvm->arch.last_tsc_write +
2481 nsec_to_cycles(vcpu, elapsed);
2482 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483 /*
2484 * Special case: TSC write with a small delta (1 second)
2485 * of virtual cycle time against real time is
2486 * interpreted as an attempt to synchronize the CPU.
2487 */
2488 synchronizing = data < tsc_exp + tsc_hz &&
2489 data + tsc_hz > tsc_exp;
2490 }
2491 }
2492
2493 /*
2494 * For a reliable TSC, we can match TSC offsets, and for an unstable
2495 * TSC, we add elapsed time in this computation. We could let the
2496 * compensation code attempt to catch up if we fall behind, but
2497 * it's better to try to match offsets from the beginning.
2498 */
2499 if (synchronizing &&
2500 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501 if (!kvm_check_tsc_unstable()) {
2502 offset = kvm->arch.cur_tsc_offset;
2503 } else {
2504 u64 delta = nsec_to_cycles(vcpu, elapsed);
2505 data += delta;
2506 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507 }
2508 matched = true;
2509 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510 } else {
2511 /*
2512 * We split periods of matched TSC writes into generations.
2513 * For each generation, we track the original measured
2514 * nanosecond time, offset, and write, so if TSCs are in
2515 * sync, we can match exact offset, and if not, we can match
2516 * exact software computation in compute_guest_tsc()
2517 *
2518 * These values are tracked in kvm->arch.cur_xxx variables.
2519 */
2520 kvm->arch.cur_tsc_generation++;
2521 kvm->arch.cur_tsc_nsec = ns;
2522 kvm->arch.cur_tsc_write = data;
2523 kvm->arch.cur_tsc_offset = offset;
2524 matched = false;
2525 }
2526
2527 /*
2528 * We also track th most recent recorded KHZ, write and time to
2529 * allow the matching interval to be extended at each write.
2530 */
2531 kvm->arch.last_tsc_nsec = ns;
2532 kvm->arch.last_tsc_write = data;
2533 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535 vcpu->arch.last_guest_tsc = data;
2536
2537 /* Keep track of which generation this VCPU has synchronized to */
2538 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542 kvm_vcpu_write_tsc_offset(vcpu, offset);
2543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546 if (!matched) {
2547 kvm->arch.nr_vcpus_matched_tsc = 0;
2548 } else if (!already_matched) {
2549 kvm->arch.nr_vcpus_matched_tsc++;
2550 }
2551
2552 kvm_track_tsc_matching(vcpu);
2553 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554 }
2555
2556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557 s64 adjustment)
2558 {
2559 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561 }
2562
2563 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564 {
2565 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566 WARN_ON(adjustment < 0);
2567 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568 vcpu->arch.l1_tsc_scaling_ratio);
2569 adjust_tsc_offset_guest(vcpu, adjustment);
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573
2574 static u64 read_tsc(void)
2575 {
2576 u64 ret = (u64)rdtsc_ordered();
2577 u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579 if (likely(ret >= last))
2580 return ret;
2581
2582 /*
2583 * GCC likes to generate cmov here, but this branch is extremely
2584 * predictable (it's just a function of time and the likely is
2585 * very likely) and there's a data dependence, so force GCC
2586 * to generate a branch instead. I don't barrier() because
2587 * we don't actually need a barrier, and if this function
2588 * ever gets inlined it will generate worse code.
2589 */
2590 asm volatile ("");
2591 return last;
2592 }
2593
2594 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595 int *mode)
2596 {
2597 long v;
2598 u64 tsc_pg_val;
2599
2600 switch (clock->vclock_mode) {
2601 case VDSO_CLOCKMODE_HVCLOCK:
2602 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603 tsc_timestamp);
2604 if (tsc_pg_val != U64_MAX) {
2605 /* TSC page valid */
2606 *mode = VDSO_CLOCKMODE_HVCLOCK;
2607 v = (tsc_pg_val - clock->cycle_last) &
2608 clock->mask;
2609 } else {
2610 /* TSC page invalid */
2611 *mode = VDSO_CLOCKMODE_NONE;
2612 }
2613 break;
2614 case VDSO_CLOCKMODE_TSC:
2615 *mode = VDSO_CLOCKMODE_TSC;
2616 *tsc_timestamp = read_tsc();
2617 v = (*tsc_timestamp - clock->cycle_last) &
2618 clock->mask;
2619 break;
2620 default:
2621 *mode = VDSO_CLOCKMODE_NONE;
2622 }
2623
2624 if (*mode == VDSO_CLOCKMODE_NONE)
2625 *tsc_timestamp = v = 0;
2626
2627 return v * clock->mult;
2628 }
2629
2630 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631 {
2632 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633 unsigned long seq;
2634 int mode;
2635 u64 ns;
2636
2637 do {
2638 seq = read_seqcount_begin(&gtod->seq);
2639 ns = gtod->raw_clock.base_cycles;
2640 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641 ns >>= gtod->raw_clock.shift;
2642 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644 *t = ns;
2645
2646 return mode;
2647 }
2648
2649 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650 {
2651 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652 unsigned long seq;
2653 int mode;
2654 u64 ns;
2655
2656 do {
2657 seq = read_seqcount_begin(&gtod->seq);
2658 ts->tv_sec = gtod->wall_time_sec;
2659 ns = gtod->clock.base_cycles;
2660 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661 ns >>= gtod->clock.shift;
2662 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665 ts->tv_nsec = ns;
2666
2667 return mode;
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672 {
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 return false;
2676
2677 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678 tsc_timestamp));
2679 }
2680
2681 /* returns true if host is using TSC based clocksource */
2682 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683 u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690 }
2691 #endif
2692
2693 /*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 * VCPU0 on CPU0 | VCPU1 on CPU1
2704 *
2705 * 1. read timespec0,tsc0
2706 * 2. | timespec1 = timespec0 + N
2707 * | tsc1 = tsc0 + M
2708 * 3. transition to guest | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2711 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 * - ret0 < ret1
2716 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 * ...
2718 * - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735 {
2736 #ifdef CONFIG_X86_64
2737 struct kvm_arch *ka = &kvm->arch;
2738 int vclock_mode;
2739 bool host_tsc_clocksource, vcpus_matched;
2740
2741 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742 atomic_read(&kvm->online_vcpus));
2743
2744 /*
2745 * If the host uses TSC clock, then passthrough TSC as stable
2746 * to the guest.
2747 */
2748 host_tsc_clocksource = kvm_get_time_and_clockread(
2749 &ka->master_kernel_ns,
2750 &ka->master_cycle_now);
2751
2752 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753 && !ka->backwards_tsc_observed
2754 && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756 if (ka->use_master_clock)
2757 atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761 vcpus_matched);
2762 #endif
2763 }
2764
2765 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766 {
2767 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768 }
2769
2770 static void kvm_gen_update_masterclock(struct kvm *kvm)
2771 {
2772 #ifdef CONFIG_X86_64
2773 int i;
2774 struct kvm_vcpu *vcpu;
2775 struct kvm_arch *ka = &kvm->arch;
2776 unsigned long flags;
2777
2778 kvm_hv_invalidate_tsc_page(kvm);
2779
2780 kvm_make_mclock_inprogress_request(kvm);
2781
2782 /* no guest entries from this point */
2783 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784 pvclock_update_vm_gtod_copy(kvm);
2785 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787 kvm_for_each_vcpu(i, vcpu, kvm)
2788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790 /* guest entries allowed */
2791 kvm_for_each_vcpu(i, vcpu, kvm)
2792 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793 #endif
2794 }
2795
2796 u64 get_kvmclock_ns(struct kvm *kvm)
2797 {
2798 struct kvm_arch *ka = &kvm->arch;
2799 struct pvclock_vcpu_time_info hv_clock;
2800 unsigned long flags;
2801 u64 ret;
2802
2803 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804 if (!ka->use_master_clock) {
2805 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807 }
2808
2809 hv_clock.tsc_timestamp = ka->master_cycle_now;
2810 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814 get_cpu();
2815
2816 if (__this_cpu_read(cpu_tsc_khz)) {
2817 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818 &hv_clock.tsc_shift,
2819 &hv_clock.tsc_to_system_mul);
2820 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821 } else
2822 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824 put_cpu();
2825
2826 return ret;
2827 }
2828
2829 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830 struct gfn_to_hva_cache *cache,
2831 unsigned int offset)
2832 {
2833 struct kvm_vcpu_arch *vcpu = &v->arch;
2834 struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838 return;
2839
2840 /* This VCPU is paused, but it's legal for a guest to read another
2841 * VCPU's kvmclock, so we really have to follow the specification where
2842 * it says that version is odd if data is being modified, and even after
2843 * it is consistent.
2844 *
2845 * Version field updates must be kept separate. This is because
2846 * kvm_write_guest_cached might use a "rep movs" instruction, and
2847 * writes within a string instruction are weakly ordered. So there
2848 * are three writes overall.
2849 *
2850 * As a small optimization, only write the version field in the first
2851 * and third write. The vcpu->pv_time cache is still valid, because the
2852 * version field is the first in the struct.
2853 */
2854 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856 if (guest_hv_clock.version & 1)
2857 ++guest_hv_clock.version; /* first time write, random junk */
2858
2859 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860 kvm_write_guest_offset_cached(v->kvm, cache,
2861 &vcpu->hv_clock, offset,
2862 sizeof(vcpu->hv_clock.version));
2863
2864 smp_wmb();
2865
2866 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869 if (vcpu->pvclock_set_guest_stopped_request) {
2870 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871 vcpu->pvclock_set_guest_stopped_request = false;
2872 }
2873
2874 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876 kvm_write_guest_offset_cached(v->kvm, cache,
2877 &vcpu->hv_clock, offset,
2878 sizeof(vcpu->hv_clock));
2879
2880 smp_wmb();
2881
2882 vcpu->hv_clock.version++;
2883 kvm_write_guest_offset_cached(v->kvm, cache,
2884 &vcpu->hv_clock, offset,
2885 sizeof(vcpu->hv_clock.version));
2886 }
2887
2888 static int kvm_guest_time_update(struct kvm_vcpu *v)
2889 {
2890 unsigned long flags, tgt_tsc_khz;
2891 struct kvm_vcpu_arch *vcpu = &v->arch;
2892 struct kvm_arch *ka = &v->kvm->arch;
2893 s64 kernel_ns;
2894 u64 tsc_timestamp, host_tsc;
2895 u8 pvclock_flags;
2896 bool use_master_clock;
2897
2898 kernel_ns = 0;
2899 host_tsc = 0;
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906 use_master_clock = ka->use_master_clock;
2907 if (use_master_clock) {
2908 host_tsc = ka->master_cycle_now;
2909 kernel_ns = ka->master_kernel_ns;
2910 }
2911 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913 /* Keep irq disabled to prevent changes to the clock */
2914 local_irq_save(flags);
2915 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916 if (unlikely(tgt_tsc_khz == 0)) {
2917 local_irq_restore(flags);
2918 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919 return 1;
2920 }
2921 if (!use_master_clock) {
2922 host_tsc = rdtsc();
2923 kernel_ns = get_kvmclock_base_ns();
2924 }
2925
2926 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928 /*
2929 * We may have to catch up the TSC to match elapsed wall clock
2930 * time for two reasons, even if kvmclock is used.
2931 * 1) CPU could have been running below the maximum TSC rate
2932 * 2) Broken TSC compensation resets the base at each VCPU
2933 * entry to avoid unknown leaps of TSC even when running
2934 * again on the same CPU. This may cause apparent elapsed
2935 * time to disappear, and the guest to stand still or run
2936 * very slowly.
2937 */
2938 if (vcpu->tsc_catchup) {
2939 u64 tsc = compute_guest_tsc(v, kernel_ns);
2940 if (tsc > tsc_timestamp) {
2941 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942 tsc_timestamp = tsc;
2943 }
2944 }
2945
2946 local_irq_restore(flags);
2947
2948 /* With all the info we got, fill in the values */
2949
2950 if (kvm_has_tsc_control)
2951 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952 v->arch.l1_tsc_scaling_ratio);
2953
2954 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956 &vcpu->hv_clock.tsc_shift,
2957 &vcpu->hv_clock.tsc_to_system_mul);
2958 vcpu->hw_tsc_khz = tgt_tsc_khz;
2959 }
2960
2961 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963 vcpu->last_guest_tsc = tsc_timestamp;
2964
2965 /* If the host uses TSC clocksource, then it is stable */
2966 pvclock_flags = 0;
2967 if (use_master_clock)
2968 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970 vcpu->hv_clock.flags = pvclock_flags;
2971
2972 if (vcpu->pv_time_enabled)
2973 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974 if (vcpu->xen.vcpu_info_set)
2975 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976 offsetof(struct compat_vcpu_info, time));
2977 if (vcpu->xen.vcpu_time_info_set)
2978 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979 if (!v->vcpu_idx)
2980 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981 return 0;
2982 }
2983
2984 /*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000 static void kvmclock_update_fn(struct work_struct *work)
3001 {
3002 int i;
3003 struct delayed_work *dwork = to_delayed_work(work);
3004 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005 kvmclock_update_work);
3006 struct kvm *kvm = container_of(ka, struct kvm, arch);
3007 struct kvm_vcpu *vcpu;
3008
3009 kvm_for_each_vcpu(i, vcpu, kvm) {
3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011 kvm_vcpu_kick(vcpu);
3012 }
3013 }
3014
3015 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016 {
3017 struct kvm *kvm = v->kvm;
3018
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021 KVMCLOCK_UPDATE_DELAY);
3022 }
3023
3024 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026 static void kvmclock_sync_fn(struct work_struct *work)
3027 {
3028 struct delayed_work *dwork = to_delayed_work(work);
3029 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030 kvmclock_sync_work);
3031 struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033 if (!kvmclock_periodic_sync)
3034 return;
3035
3036 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038 KVMCLOCK_SYNC_PERIOD);
3039 }
3040
3041 /*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045 {
3046 /* McStatusWrEn enabled? */
3047 if (guest_cpuid_is_amd_or_hygon(vcpu))
3048 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050 return false;
3051 }
3052
3053 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054 {
3055 u64 mcg_cap = vcpu->arch.mcg_cap;
3056 unsigned bank_num = mcg_cap & 0xff;
3057 u32 msr = msr_info->index;
3058 u64 data = msr_info->data;
3059
3060 switch (msr) {
3061 case MSR_IA32_MCG_STATUS:
3062 vcpu->arch.mcg_status = data;
3063 break;
3064 case MSR_IA32_MCG_CTL:
3065 if (!(mcg_cap & MCG_CTL_P) &&
3066 (data || !msr_info->host_initiated))
3067 return 1;
3068 if (data != 0 && data != ~(u64)0)
3069 return 1;
3070 vcpu->arch.mcg_ctl = data;
3071 break;
3072 default:
3073 if (msr >= MSR_IA32_MC0_CTL &&
3074 msr < MSR_IA32_MCx_CTL(bank_num)) {
3075 u32 offset = array_index_nospec(
3076 msr - MSR_IA32_MC0_CTL,
3077 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079 /* only 0 or all 1s can be written to IA32_MCi_CTL
3080 * some Linux kernels though clear bit 10 in bank 4 to
3081 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082 * this to avoid an uncatched #GP in the guest
3083 */
3084 if ((offset & 0x3) == 0 &&
3085 data != 0 && (data | (1 << 10)) != ~(u64)0)
3086 return -1;
3087
3088 /* MCi_STATUS */
3089 if (!msr_info->host_initiated &&
3090 (offset & 0x3) == 1 && data != 0) {
3091 if (!can_set_mci_status(vcpu))
3092 return -1;
3093 }
3094
3095 vcpu->arch.mce_banks[offset] = data;
3096 break;
3097 }
3098 return 1;
3099 }
3100 return 0;
3101 }
3102
3103 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104 {
3105 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108 }
3109
3110 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111 {
3112 gpa_t gpa = data & ~0x3f;
3113
3114 /* Bits 4:5 are reserved, Should be zero */
3115 if (data & 0x30)
3116 return 1;
3117
3118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120 return 1;
3121
3122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124 return 1;
3125
3126 if (!lapic_in_kernel(vcpu))
3127 return data ? 1 : 0;
3128
3129 vcpu->arch.apf.msr_en_val = data;
3130
3131 if (!kvm_pv_async_pf_enabled(vcpu)) {
3132 kvm_clear_async_pf_completion_queue(vcpu);
3133 kvm_async_pf_hash_reset(vcpu);
3134 return 0;
3135 }
3136
3137 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138 sizeof(u64)))
3139 return 1;
3140
3141 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144 kvm_async_pf_wakeup_all(vcpu);
3145
3146 return 0;
3147 }
3148
3149 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 /* Bits 8-63 are reserved */
3152 if (data >> 8)
3153 return 1;
3154
3155 if (!lapic_in_kernel(vcpu))
3156 return 1;
3157
3158 vcpu->arch.apf.msr_int_val = data;
3159
3160 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162 return 0;
3163 }
3164
3165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166 {
3167 vcpu->arch.pv_time_enabled = false;
3168 vcpu->arch.time = 0;
3169 }
3170
3171 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 ++vcpu->stat.tlb_flush;
3174 static_call(kvm_x86_tlb_flush_all)(vcpu);
3175 }
3176
3177 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178 {
3179 ++vcpu->stat.tlb_flush;
3180
3181 if (!tdp_enabled) {
3182 /*
3183 * A TLB flush on behalf of the guest is equivalent to
3184 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185 * a forced sync of the shadow page tables. Unload the
3186 * entire MMU here and the subsequent load will sync the
3187 * shadow page tables, and also flush the TLB.
3188 */
3189 kvm_mmu_unload(vcpu);
3190 return;
3191 }
3192
3193 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194 }
3195
3196 static void record_steal_time(struct kvm_vcpu *vcpu)
3197 {
3198 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3199 struct kvm_steal_time __user *st;
3200 struct kvm_memslots *slots;
3201 u64 steal;
3202 u32 version;
3203
3204 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3205 kvm_xen_runstate_set_running(vcpu);
3206 return;
3207 }
3208
3209 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3210 return;
3211
3212 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3213 return;
3214
3215 slots = kvm_memslots(vcpu->kvm);
3216
3217 if (unlikely(slots->generation != ghc->generation ||
3218 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3219 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3220
3221 /* We rely on the fact that it fits in a single page. */
3222 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3223
3224 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3225 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3226 return;
3227 }
3228
3229 st = (struct kvm_steal_time __user *)ghc->hva;
3230 /*
3231 * Doing a TLB flush here, on the guest's behalf, can avoid
3232 * expensive IPIs.
3233 */
3234 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3235 u8 st_preempted = 0;
3236 int err = -EFAULT;
3237
3238 if (!user_access_begin(st, sizeof(*st)))
3239 return;
3240
3241 asm volatile("1: xchgb %0, %2\n"
3242 "xor %1, %1\n"
3243 "2:\n"
3244 _ASM_EXTABLE_UA(1b, 2b)
3245 : "+q" (st_preempted),
3246 "+&r" (err),
3247 "+m" (st->preempted));
3248 if (err)
3249 goto out;
3250
3251 user_access_end();
3252
3253 vcpu->arch.st.preempted = 0;
3254
3255 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3256 st_preempted & KVM_VCPU_FLUSH_TLB);
3257 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3258 kvm_vcpu_flush_tlb_guest(vcpu);
3259
3260 if (!user_access_begin(st, sizeof(*st)))
3261 goto dirty;
3262 } else {
3263 if (!user_access_begin(st, sizeof(*st)))
3264 return;
3265
3266 unsafe_put_user(0, &st->preempted, out);
3267 vcpu->arch.st.preempted = 0;
3268 }
3269
3270 unsafe_get_user(version, &st->version, out);
3271 if (version & 1)
3272 version += 1; /* first time write, random junk */
3273
3274 version += 1;
3275 unsafe_put_user(version, &st->version, out);
3276
3277 smp_wmb();
3278
3279 unsafe_get_user(steal, &st->steal, out);
3280 steal += current->sched_info.run_delay -
3281 vcpu->arch.st.last_steal;
3282 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3283 unsafe_put_user(steal, &st->steal, out);
3284
3285 version += 1;
3286 unsafe_put_user(version, &st->version, out);
3287
3288 out:
3289 user_access_end();
3290 dirty:
3291 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3292 }
3293
3294 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3295 {
3296 bool pr = false;
3297 u32 msr = msr_info->index;
3298 u64 data = msr_info->data;
3299
3300 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3301 return kvm_xen_write_hypercall_page(vcpu, data);
3302
3303 switch (msr) {
3304 case MSR_AMD64_NB_CFG:
3305 case MSR_IA32_UCODE_WRITE:
3306 case MSR_VM_HSAVE_PA:
3307 case MSR_AMD64_PATCH_LOADER:
3308 case MSR_AMD64_BU_CFG2:
3309 case MSR_AMD64_DC_CFG:
3310 case MSR_F15H_EX_CFG:
3311 break;
3312
3313 case MSR_IA32_UCODE_REV:
3314 if (msr_info->host_initiated)
3315 vcpu->arch.microcode_version = data;
3316 break;
3317 case MSR_IA32_ARCH_CAPABILITIES:
3318 if (!msr_info->host_initiated)
3319 return 1;
3320 vcpu->arch.arch_capabilities = data;
3321 break;
3322 case MSR_IA32_PERF_CAPABILITIES: {
3323 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3324
3325 if (!msr_info->host_initiated)
3326 return 1;
3327 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3328 return 1;
3329 if (data & ~msr_ent.data)
3330 return 1;
3331
3332 vcpu->arch.perf_capabilities = data;
3333
3334 return 0;
3335 }
3336 case MSR_EFER:
3337 return set_efer(vcpu, msr_info);
3338 case MSR_K7_HWCR:
3339 data &= ~(u64)0x40; /* ignore flush filter disable */
3340 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3341 data &= ~(u64)0x8; /* ignore TLB cache disable */
3342
3343 /* Handle McStatusWrEn */
3344 if (data == BIT_ULL(18)) {
3345 vcpu->arch.msr_hwcr = data;
3346 } else if (data != 0) {
3347 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3348 data);
3349 return 1;
3350 }
3351 break;
3352 case MSR_FAM10H_MMIO_CONF_BASE:
3353 if (data != 0) {
3354 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3355 "0x%llx\n", data);
3356 return 1;
3357 }
3358 break;
3359 case 0x200 ... 0x2ff:
3360 return kvm_mtrr_set_msr(vcpu, msr, data);
3361 case MSR_IA32_APICBASE:
3362 return kvm_set_apic_base(vcpu, msr_info);
3363 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3364 return kvm_x2apic_msr_write(vcpu, msr, data);
3365 case MSR_IA32_TSC_DEADLINE:
3366 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3367 break;
3368 case MSR_IA32_TSC_ADJUST:
3369 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3370 if (!msr_info->host_initiated) {
3371 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3372 adjust_tsc_offset_guest(vcpu, adj);
3373 /* Before back to guest, tsc_timestamp must be adjusted
3374 * as well, otherwise guest's percpu pvclock time could jump.
3375 */
3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377 }
3378 vcpu->arch.ia32_tsc_adjust_msr = data;
3379 }
3380 break;
3381 case MSR_IA32_MISC_ENABLE:
3382 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3383 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3384 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3385 return 1;
3386 vcpu->arch.ia32_misc_enable_msr = data;
3387 kvm_update_cpuid_runtime(vcpu);
3388 } else {
3389 vcpu->arch.ia32_misc_enable_msr = data;
3390 }
3391 break;
3392 case MSR_IA32_SMBASE:
3393 if (!msr_info->host_initiated)
3394 return 1;
3395 vcpu->arch.smbase = data;
3396 break;
3397 case MSR_IA32_POWER_CTL:
3398 vcpu->arch.msr_ia32_power_ctl = data;
3399 break;
3400 case MSR_IA32_TSC:
3401 if (msr_info->host_initiated) {
3402 kvm_synchronize_tsc(vcpu, data);
3403 } else {
3404 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3405 adjust_tsc_offset_guest(vcpu, adj);
3406 vcpu->arch.ia32_tsc_adjust_msr += adj;
3407 }
3408 break;
3409 case MSR_IA32_XSS:
3410 if (!msr_info->host_initiated &&
3411 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3412 return 1;
3413 /*
3414 * KVM supports exposing PT to the guest, but does not support
3415 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3416 * XSAVES/XRSTORS to save/restore PT MSRs.
3417 */
3418 if (data & ~supported_xss)
3419 return 1;
3420 vcpu->arch.ia32_xss = data;
3421 break;
3422 case MSR_SMI_COUNT:
3423 if (!msr_info->host_initiated)
3424 return 1;
3425 vcpu->arch.smi_count = data;
3426 break;
3427 case MSR_KVM_WALL_CLOCK_NEW:
3428 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3429 return 1;
3430
3431 vcpu->kvm->arch.wall_clock = data;
3432 kvm_write_wall_clock(vcpu->kvm, data, 0);
3433 break;
3434 case MSR_KVM_WALL_CLOCK:
3435 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3436 return 1;
3437
3438 vcpu->kvm->arch.wall_clock = data;
3439 kvm_write_wall_clock(vcpu->kvm, data, 0);
3440 break;
3441 case MSR_KVM_SYSTEM_TIME_NEW:
3442 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3443 return 1;
3444
3445 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3446 break;
3447 case MSR_KVM_SYSTEM_TIME:
3448 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3449 return 1;
3450
3451 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3452 break;
3453 case MSR_KVM_ASYNC_PF_EN:
3454 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3455 return 1;
3456
3457 if (kvm_pv_enable_async_pf(vcpu, data))
3458 return 1;
3459 break;
3460 case MSR_KVM_ASYNC_PF_INT:
3461 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3462 return 1;
3463
3464 if (kvm_pv_enable_async_pf_int(vcpu, data))
3465 return 1;
3466 break;
3467 case MSR_KVM_ASYNC_PF_ACK:
3468 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3469 return 1;
3470 if (data & 0x1) {
3471 vcpu->arch.apf.pageready_pending = false;
3472 kvm_check_async_pf_completion(vcpu);
3473 }
3474 break;
3475 case MSR_KVM_STEAL_TIME:
3476 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3477 return 1;
3478
3479 if (unlikely(!sched_info_on()))
3480 return 1;
3481
3482 if (data & KVM_STEAL_RESERVED_MASK)
3483 return 1;
3484
3485 vcpu->arch.st.msr_val = data;
3486
3487 if (!(data & KVM_MSR_ENABLED))
3488 break;
3489
3490 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3491
3492 break;
3493 case MSR_KVM_PV_EOI_EN:
3494 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3495 return 1;
3496
3497 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3498 return 1;
3499 break;
3500
3501 case MSR_KVM_POLL_CONTROL:
3502 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3503 return 1;
3504
3505 /* only enable bit supported */
3506 if (data & (-1ULL << 1))
3507 return 1;
3508
3509 vcpu->arch.msr_kvm_poll_control = data;
3510 break;
3511
3512 case MSR_IA32_MCG_CTL:
3513 case MSR_IA32_MCG_STATUS:
3514 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3515 return set_msr_mce(vcpu, msr_info);
3516
3517 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3518 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3519 pr = true;
3520 fallthrough;
3521 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3522 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3523 if (kvm_pmu_is_valid_msr(vcpu, msr))
3524 return kvm_pmu_set_msr(vcpu, msr_info);
3525
3526 if (pr || data != 0)
3527 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3528 "0x%x data 0x%llx\n", msr, data);
3529 break;
3530 case MSR_K7_CLK_CTL:
3531 /*
3532 * Ignore all writes to this no longer documented MSR.
3533 * Writes are only relevant for old K7 processors,
3534 * all pre-dating SVM, but a recommended workaround from
3535 * AMD for these chips. It is possible to specify the
3536 * affected processor models on the command line, hence
3537 * the need to ignore the workaround.
3538 */
3539 break;
3540 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3541 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3542 case HV_X64_MSR_SYNDBG_OPTIONS:
3543 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3544 case HV_X64_MSR_CRASH_CTL:
3545 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3546 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3547 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3548 case HV_X64_MSR_TSC_EMULATION_STATUS:
3549 return kvm_hv_set_msr_common(vcpu, msr, data,
3550 msr_info->host_initiated);
3551 case MSR_IA32_BBL_CR_CTL3:
3552 /* Drop writes to this legacy MSR -- see rdmsr
3553 * counterpart for further detail.
3554 */
3555 if (report_ignored_msrs)
3556 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3557 msr, data);
3558 break;
3559 case MSR_AMD64_OSVW_ID_LENGTH:
3560 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3561 return 1;
3562 vcpu->arch.osvw.length = data;
3563 break;
3564 case MSR_AMD64_OSVW_STATUS:
3565 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3566 return 1;
3567 vcpu->arch.osvw.status = data;
3568 break;
3569 case MSR_PLATFORM_INFO:
3570 if (!msr_info->host_initiated ||
3571 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3572 cpuid_fault_enabled(vcpu)))
3573 return 1;
3574 vcpu->arch.msr_platform_info = data;
3575 break;
3576 case MSR_MISC_FEATURES_ENABLES:
3577 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3578 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3579 !supports_cpuid_fault(vcpu)))
3580 return 1;
3581 vcpu->arch.msr_misc_features_enables = data;
3582 break;
3583 default:
3584 if (kvm_pmu_is_valid_msr(vcpu, msr))
3585 return kvm_pmu_set_msr(vcpu, msr_info);
3586 return KVM_MSR_RET_INVALID;
3587 }
3588 return 0;
3589 }
3590 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3591
3592 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3593 {
3594 u64 data;
3595 u64 mcg_cap = vcpu->arch.mcg_cap;
3596 unsigned bank_num = mcg_cap & 0xff;
3597
3598 switch (msr) {
3599 case MSR_IA32_P5_MC_ADDR:
3600 case MSR_IA32_P5_MC_TYPE:
3601 data = 0;
3602 break;
3603 case MSR_IA32_MCG_CAP:
3604 data = vcpu->arch.mcg_cap;
3605 break;
3606 case MSR_IA32_MCG_CTL:
3607 if (!(mcg_cap & MCG_CTL_P) && !host)
3608 return 1;
3609 data = vcpu->arch.mcg_ctl;
3610 break;
3611 case MSR_IA32_MCG_STATUS:
3612 data = vcpu->arch.mcg_status;
3613 break;
3614 default:
3615 if (msr >= MSR_IA32_MC0_CTL &&
3616 msr < MSR_IA32_MCx_CTL(bank_num)) {
3617 u32 offset = array_index_nospec(
3618 msr - MSR_IA32_MC0_CTL,
3619 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3620
3621 data = vcpu->arch.mce_banks[offset];
3622 break;
3623 }
3624 return 1;
3625 }
3626 *pdata = data;
3627 return 0;
3628 }
3629
3630 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3631 {
3632 switch (msr_info->index) {
3633 case MSR_IA32_PLATFORM_ID:
3634 case MSR_IA32_EBL_CR_POWERON:
3635 case MSR_IA32_LASTBRANCHFROMIP:
3636 case MSR_IA32_LASTBRANCHTOIP:
3637 case MSR_IA32_LASTINTFROMIP:
3638 case MSR_IA32_LASTINTTOIP:
3639 case MSR_AMD64_SYSCFG:
3640 case MSR_K8_TSEG_ADDR:
3641 case MSR_K8_TSEG_MASK:
3642 case MSR_VM_HSAVE_PA:
3643 case MSR_K8_INT_PENDING_MSG:
3644 case MSR_AMD64_NB_CFG:
3645 case MSR_FAM10H_MMIO_CONF_BASE:
3646 case MSR_AMD64_BU_CFG2:
3647 case MSR_IA32_PERF_CTL:
3648 case MSR_AMD64_DC_CFG:
3649 case MSR_F15H_EX_CFG:
3650 /*
3651 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3652 * limit) MSRs. Just return 0, as we do not want to expose the host
3653 * data here. Do not conditionalize this on CPUID, as KVM does not do
3654 * so for existing CPU-specific MSRs.
3655 */
3656 case MSR_RAPL_POWER_UNIT:
3657 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3658 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3659 case MSR_PKG_ENERGY_STATUS: /* Total package */
3660 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3661 msr_info->data = 0;
3662 break;
3663 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3664 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3665 return kvm_pmu_get_msr(vcpu, msr_info);
3666 if (!msr_info->host_initiated)
3667 return 1;
3668 msr_info->data = 0;
3669 break;
3670 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3671 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3672 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3673 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3674 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3675 return kvm_pmu_get_msr(vcpu, msr_info);
3676 msr_info->data = 0;
3677 break;
3678 case MSR_IA32_UCODE_REV:
3679 msr_info->data = vcpu->arch.microcode_version;
3680 break;
3681 case MSR_IA32_ARCH_CAPABILITIES:
3682 if (!msr_info->host_initiated &&
3683 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3684 return 1;
3685 msr_info->data = vcpu->arch.arch_capabilities;
3686 break;
3687 case MSR_IA32_PERF_CAPABILITIES:
3688 if (!msr_info->host_initiated &&
3689 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3690 return 1;
3691 msr_info->data = vcpu->arch.perf_capabilities;
3692 break;
3693 case MSR_IA32_POWER_CTL:
3694 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3695 break;
3696 case MSR_IA32_TSC: {
3697 /*
3698 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3699 * even when not intercepted. AMD manual doesn't explicitly
3700 * state this but appears to behave the same.
3701 *
3702 * On userspace reads and writes, however, we unconditionally
3703 * return L1's TSC value to ensure backwards-compatible
3704 * behavior for migration.
3705 */
3706 u64 offset, ratio;
3707
3708 if (msr_info->host_initiated) {
3709 offset = vcpu->arch.l1_tsc_offset;
3710 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3711 } else {
3712 offset = vcpu->arch.tsc_offset;
3713 ratio = vcpu->arch.tsc_scaling_ratio;
3714 }
3715
3716 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3717 break;
3718 }
3719 case MSR_MTRRcap:
3720 case 0x200 ... 0x2ff:
3721 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3722 case 0xcd: /* fsb frequency */
3723 msr_info->data = 3;
3724 break;
3725 /*
3726 * MSR_EBC_FREQUENCY_ID
3727 * Conservative value valid for even the basic CPU models.
3728 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3729 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3730 * and 266MHz for model 3, or 4. Set Core Clock
3731 * Frequency to System Bus Frequency Ratio to 1 (bits
3732 * 31:24) even though these are only valid for CPU
3733 * models > 2, however guests may end up dividing or
3734 * multiplying by zero otherwise.
3735 */
3736 case MSR_EBC_FREQUENCY_ID:
3737 msr_info->data = 1 << 24;
3738 break;
3739 case MSR_IA32_APICBASE:
3740 msr_info->data = kvm_get_apic_base(vcpu);
3741 break;
3742 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3743 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3744 case MSR_IA32_TSC_DEADLINE:
3745 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3746 break;
3747 case MSR_IA32_TSC_ADJUST:
3748 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3749 break;
3750 case MSR_IA32_MISC_ENABLE:
3751 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3752 break;
3753 case MSR_IA32_SMBASE:
3754 if (!msr_info->host_initiated)
3755 return 1;
3756 msr_info->data = vcpu->arch.smbase;
3757 break;
3758 case MSR_SMI_COUNT:
3759 msr_info->data = vcpu->arch.smi_count;
3760 break;
3761 case MSR_IA32_PERF_STATUS:
3762 /* TSC increment by tick */
3763 msr_info->data = 1000ULL;
3764 /* CPU multiplier */
3765 msr_info->data |= (((uint64_t)4ULL) << 40);
3766 break;
3767 case MSR_EFER:
3768 msr_info->data = vcpu->arch.efer;
3769 break;
3770 case MSR_KVM_WALL_CLOCK:
3771 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3772 return 1;
3773
3774 msr_info->data = vcpu->kvm->arch.wall_clock;
3775 break;
3776 case MSR_KVM_WALL_CLOCK_NEW:
3777 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3778 return 1;
3779
3780 msr_info->data = vcpu->kvm->arch.wall_clock;
3781 break;
3782 case MSR_KVM_SYSTEM_TIME:
3783 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3784 return 1;
3785
3786 msr_info->data = vcpu->arch.time;
3787 break;
3788 case MSR_KVM_SYSTEM_TIME_NEW:
3789 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3790 return 1;
3791
3792 msr_info->data = vcpu->arch.time;
3793 break;
3794 case MSR_KVM_ASYNC_PF_EN:
3795 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3796 return 1;
3797
3798 msr_info->data = vcpu->arch.apf.msr_en_val;
3799 break;
3800 case MSR_KVM_ASYNC_PF_INT:
3801 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3802 return 1;
3803
3804 msr_info->data = vcpu->arch.apf.msr_int_val;
3805 break;
3806 case MSR_KVM_ASYNC_PF_ACK:
3807 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3808 return 1;
3809
3810 msr_info->data = 0;
3811 break;
3812 case MSR_KVM_STEAL_TIME:
3813 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3814 return 1;
3815
3816 msr_info->data = vcpu->arch.st.msr_val;
3817 break;
3818 case MSR_KVM_PV_EOI_EN:
3819 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3820 return 1;
3821
3822 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3823 break;
3824 case MSR_KVM_POLL_CONTROL:
3825 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3826 return 1;
3827
3828 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3829 break;
3830 case MSR_IA32_P5_MC_ADDR:
3831 case MSR_IA32_P5_MC_TYPE:
3832 case MSR_IA32_MCG_CAP:
3833 case MSR_IA32_MCG_CTL:
3834 case MSR_IA32_MCG_STATUS:
3835 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3836 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3837 msr_info->host_initiated);
3838 case MSR_IA32_XSS:
3839 if (!msr_info->host_initiated &&
3840 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3841 return 1;
3842 msr_info->data = vcpu->arch.ia32_xss;
3843 break;
3844 case MSR_K7_CLK_CTL:
3845 /*
3846 * Provide expected ramp-up count for K7. All other
3847 * are set to zero, indicating minimum divisors for
3848 * every field.
3849 *
3850 * This prevents guest kernels on AMD host with CPU
3851 * type 6, model 8 and higher from exploding due to
3852 * the rdmsr failing.
3853 */
3854 msr_info->data = 0x20000000;
3855 break;
3856 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3857 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3858 case HV_X64_MSR_SYNDBG_OPTIONS:
3859 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3860 case HV_X64_MSR_CRASH_CTL:
3861 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3862 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3863 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3864 case HV_X64_MSR_TSC_EMULATION_STATUS:
3865 return kvm_hv_get_msr_common(vcpu,
3866 msr_info->index, &msr_info->data,
3867 msr_info->host_initiated);
3868 case MSR_IA32_BBL_CR_CTL3:
3869 /* This legacy MSR exists but isn't fully documented in current
3870 * silicon. It is however accessed by winxp in very narrow
3871 * scenarios where it sets bit #19, itself documented as
3872 * a "reserved" bit. Best effort attempt to source coherent
3873 * read data here should the balance of the register be
3874 * interpreted by the guest:
3875 *
3876 * L2 cache control register 3: 64GB range, 256KB size,
3877 * enabled, latency 0x1, configured
3878 */
3879 msr_info->data = 0xbe702111;
3880 break;
3881 case MSR_AMD64_OSVW_ID_LENGTH:
3882 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3883 return 1;
3884 msr_info->data = vcpu->arch.osvw.length;
3885 break;
3886 case MSR_AMD64_OSVW_STATUS:
3887 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3888 return 1;
3889 msr_info->data = vcpu->arch.osvw.status;
3890 break;
3891 case MSR_PLATFORM_INFO:
3892 if (!msr_info->host_initiated &&
3893 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3894 return 1;
3895 msr_info->data = vcpu->arch.msr_platform_info;
3896 break;
3897 case MSR_MISC_FEATURES_ENABLES:
3898 msr_info->data = vcpu->arch.msr_misc_features_enables;
3899 break;
3900 case MSR_K7_HWCR:
3901 msr_info->data = vcpu->arch.msr_hwcr;
3902 break;
3903 default:
3904 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3905 return kvm_pmu_get_msr(vcpu, msr_info);
3906 return KVM_MSR_RET_INVALID;
3907 }
3908 return 0;
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3911
3912 /*
3913 * Read or write a bunch of msrs. All parameters are kernel addresses.
3914 *
3915 * @return number of msrs set successfully.
3916 */
3917 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3918 struct kvm_msr_entry *entries,
3919 int (*do_msr)(struct kvm_vcpu *vcpu,
3920 unsigned index, u64 *data))
3921 {
3922 int i;
3923
3924 for (i = 0; i < msrs->nmsrs; ++i)
3925 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3926 break;
3927
3928 return i;
3929 }
3930
3931 /*
3932 * Read or write a bunch of msrs. Parameters are user addresses.
3933 *
3934 * @return number of msrs set successfully.
3935 */
3936 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3937 int (*do_msr)(struct kvm_vcpu *vcpu,
3938 unsigned index, u64 *data),
3939 int writeback)
3940 {
3941 struct kvm_msrs msrs;
3942 struct kvm_msr_entry *entries;
3943 int r, n;
3944 unsigned size;
3945
3946 r = -EFAULT;
3947 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3948 goto out;
3949
3950 r = -E2BIG;
3951 if (msrs.nmsrs >= MAX_IO_MSRS)
3952 goto out;
3953
3954 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3955 entries = memdup_user(user_msrs->entries, size);
3956 if (IS_ERR(entries)) {
3957 r = PTR_ERR(entries);
3958 goto out;
3959 }
3960
3961 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3962 if (r < 0)
3963 goto out_free;
3964
3965 r = -EFAULT;
3966 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3967 goto out_free;
3968
3969 r = n;
3970
3971 out_free:
3972 kfree(entries);
3973 out:
3974 return r;
3975 }
3976
3977 static inline bool kvm_can_mwait_in_guest(void)
3978 {
3979 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3980 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3981 boot_cpu_has(X86_FEATURE_ARAT);
3982 }
3983
3984 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3985 struct kvm_cpuid2 __user *cpuid_arg)
3986 {
3987 struct kvm_cpuid2 cpuid;
3988 int r;
3989
3990 r = -EFAULT;
3991 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3992 return r;
3993
3994 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3995 if (r)
3996 return r;
3997
3998 r = -EFAULT;
3999 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4000 return r;
4001
4002 return 0;
4003 }
4004
4005 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4006 {
4007 int r = 0;
4008
4009 switch (ext) {
4010 case KVM_CAP_IRQCHIP:
4011 case KVM_CAP_HLT:
4012 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4013 case KVM_CAP_SET_TSS_ADDR:
4014 case KVM_CAP_EXT_CPUID:
4015 case KVM_CAP_EXT_EMUL_CPUID:
4016 case KVM_CAP_CLOCKSOURCE:
4017 case KVM_CAP_PIT:
4018 case KVM_CAP_NOP_IO_DELAY:
4019 case KVM_CAP_MP_STATE:
4020 case KVM_CAP_SYNC_MMU:
4021 case KVM_CAP_USER_NMI:
4022 case KVM_CAP_REINJECT_CONTROL:
4023 case KVM_CAP_IRQ_INJECT_STATUS:
4024 case KVM_CAP_IOEVENTFD:
4025 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4026 case KVM_CAP_PIT2:
4027 case KVM_CAP_PIT_STATE2:
4028 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4029 case KVM_CAP_VCPU_EVENTS:
4030 case KVM_CAP_HYPERV:
4031 case KVM_CAP_HYPERV_VAPIC:
4032 case KVM_CAP_HYPERV_SPIN:
4033 case KVM_CAP_HYPERV_SYNIC:
4034 case KVM_CAP_HYPERV_SYNIC2:
4035 case KVM_CAP_HYPERV_VP_INDEX:
4036 case KVM_CAP_HYPERV_EVENTFD:
4037 case KVM_CAP_HYPERV_TLBFLUSH:
4038 case KVM_CAP_HYPERV_SEND_IPI:
4039 case KVM_CAP_HYPERV_CPUID:
4040 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4041 case KVM_CAP_SYS_HYPERV_CPUID:
4042 case KVM_CAP_PCI_SEGMENT:
4043 case KVM_CAP_DEBUGREGS:
4044 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4045 case KVM_CAP_XSAVE:
4046 case KVM_CAP_ASYNC_PF:
4047 case KVM_CAP_ASYNC_PF_INT:
4048 case KVM_CAP_GET_TSC_KHZ:
4049 case KVM_CAP_KVMCLOCK_CTRL:
4050 case KVM_CAP_READONLY_MEM:
4051 case KVM_CAP_HYPERV_TIME:
4052 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4053 case KVM_CAP_TSC_DEADLINE_TIMER:
4054 case KVM_CAP_DISABLE_QUIRKS:
4055 case KVM_CAP_SET_BOOT_CPU_ID:
4056 case KVM_CAP_SPLIT_IRQCHIP:
4057 case KVM_CAP_IMMEDIATE_EXIT:
4058 case KVM_CAP_PMU_EVENT_FILTER:
4059 case KVM_CAP_GET_MSR_FEATURES:
4060 case KVM_CAP_MSR_PLATFORM_INFO:
4061 case KVM_CAP_EXCEPTION_PAYLOAD:
4062 case KVM_CAP_SET_GUEST_DEBUG:
4063 case KVM_CAP_LAST_CPU:
4064 case KVM_CAP_X86_USER_SPACE_MSR:
4065 case KVM_CAP_X86_MSR_FILTER:
4066 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4067 #ifdef CONFIG_X86_SGX_KVM
4068 case KVM_CAP_SGX_ATTRIBUTE:
4069 #endif
4070 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4071 case KVM_CAP_SREGS2:
4072 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4073 r = 1;
4074 break;
4075 case KVM_CAP_EXIT_HYPERCALL:
4076 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4077 break;
4078 case KVM_CAP_SET_GUEST_DEBUG2:
4079 return KVM_GUESTDBG_VALID_MASK;
4080 #ifdef CONFIG_KVM_XEN
4081 case KVM_CAP_XEN_HVM:
4082 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4083 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4084 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4085 if (sched_info_on())
4086 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4087 break;
4088 #endif
4089 case KVM_CAP_SYNC_REGS:
4090 r = KVM_SYNC_X86_VALID_FIELDS;
4091 break;
4092 case KVM_CAP_ADJUST_CLOCK:
4093 r = KVM_CLOCK_TSC_STABLE;
4094 break;
4095 case KVM_CAP_X86_DISABLE_EXITS:
4096 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4097 KVM_X86_DISABLE_EXITS_CSTATE;
4098 if(kvm_can_mwait_in_guest())
4099 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4100 break;
4101 case KVM_CAP_X86_SMM:
4102 /* SMBASE is usually relocated above 1M on modern chipsets,
4103 * and SMM handlers might indeed rely on 4G segment limits,
4104 * so do not report SMM to be available if real mode is
4105 * emulated via vm86 mode. Still, do not go to great lengths
4106 * to avoid userspace's usage of the feature, because it is a
4107 * fringe case that is not enabled except via specific settings
4108 * of the module parameters.
4109 */
4110 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4111 break;
4112 case KVM_CAP_VAPIC:
4113 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4114 break;
4115 case KVM_CAP_NR_VCPUS:
4116 r = KVM_SOFT_MAX_VCPUS;
4117 break;
4118 case KVM_CAP_MAX_VCPUS:
4119 r = KVM_MAX_VCPUS;
4120 break;
4121 case KVM_CAP_MAX_VCPU_ID:
4122 r = KVM_MAX_VCPU_ID;
4123 break;
4124 case KVM_CAP_PV_MMU: /* obsolete */
4125 r = 0;
4126 break;
4127 case KVM_CAP_MCE:
4128 r = KVM_MAX_MCE_BANKS;
4129 break;
4130 case KVM_CAP_XCRS:
4131 r = boot_cpu_has(X86_FEATURE_XSAVE);
4132 break;
4133 case KVM_CAP_TSC_CONTROL:
4134 r = kvm_has_tsc_control;
4135 break;
4136 case KVM_CAP_X2APIC_API:
4137 r = KVM_X2APIC_API_VALID_FLAGS;
4138 break;
4139 case KVM_CAP_NESTED_STATE:
4140 r = kvm_x86_ops.nested_ops->get_state ?
4141 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4142 break;
4143 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4144 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4145 break;
4146 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4147 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4148 break;
4149 case KVM_CAP_SMALLER_MAXPHYADDR:
4150 r = (int) allow_smaller_maxphyaddr;
4151 break;
4152 case KVM_CAP_STEAL_TIME:
4153 r = sched_info_on();
4154 break;
4155 case KVM_CAP_X86_BUS_LOCK_EXIT:
4156 if (kvm_has_bus_lock_exit)
4157 r = KVM_BUS_LOCK_DETECTION_OFF |
4158 KVM_BUS_LOCK_DETECTION_EXIT;
4159 else
4160 r = 0;
4161 break;
4162 default:
4163 break;
4164 }
4165 return r;
4166
4167 }
4168
4169 long kvm_arch_dev_ioctl(struct file *filp,
4170 unsigned int ioctl, unsigned long arg)
4171 {
4172 void __user *argp = (void __user *)arg;
4173 long r;
4174
4175 switch (ioctl) {
4176 case KVM_GET_MSR_INDEX_LIST: {
4177 struct kvm_msr_list __user *user_msr_list = argp;
4178 struct kvm_msr_list msr_list;
4179 unsigned n;
4180
4181 r = -EFAULT;
4182 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4183 goto out;
4184 n = msr_list.nmsrs;
4185 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4186 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4187 goto out;
4188 r = -E2BIG;
4189 if (n < msr_list.nmsrs)
4190 goto out;
4191 r = -EFAULT;
4192 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4193 num_msrs_to_save * sizeof(u32)))
4194 goto out;
4195 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4196 &emulated_msrs,
4197 num_emulated_msrs * sizeof(u32)))
4198 goto out;
4199 r = 0;
4200 break;
4201 }
4202 case KVM_GET_SUPPORTED_CPUID:
4203 case KVM_GET_EMULATED_CPUID: {
4204 struct kvm_cpuid2 __user *cpuid_arg = argp;
4205 struct kvm_cpuid2 cpuid;
4206
4207 r = -EFAULT;
4208 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4209 goto out;
4210
4211 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4212 ioctl);
4213 if (r)
4214 goto out;
4215
4216 r = -EFAULT;
4217 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4218 goto out;
4219 r = 0;
4220 break;
4221 }
4222 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4223 r = -EFAULT;
4224 if (copy_to_user(argp, &kvm_mce_cap_supported,
4225 sizeof(kvm_mce_cap_supported)))
4226 goto out;
4227 r = 0;
4228 break;
4229 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4230 struct kvm_msr_list __user *user_msr_list = argp;
4231 struct kvm_msr_list msr_list;
4232 unsigned int n;
4233
4234 r = -EFAULT;
4235 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4236 goto out;
4237 n = msr_list.nmsrs;
4238 msr_list.nmsrs = num_msr_based_features;
4239 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4240 goto out;
4241 r = -E2BIG;
4242 if (n < msr_list.nmsrs)
4243 goto out;
4244 r = -EFAULT;
4245 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4246 num_msr_based_features * sizeof(u32)))
4247 goto out;
4248 r = 0;
4249 break;
4250 }
4251 case KVM_GET_MSRS:
4252 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4253 break;
4254 case KVM_GET_SUPPORTED_HV_CPUID:
4255 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4256 break;
4257 default:
4258 r = -EINVAL;
4259 break;
4260 }
4261 out:
4262 return r;
4263 }
4264
4265 static void wbinvd_ipi(void *garbage)
4266 {
4267 wbinvd();
4268 }
4269
4270 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4271 {
4272 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4273 }
4274
4275 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4276 {
4277 /* Address WBINVD may be executed by guest */
4278 if (need_emulate_wbinvd(vcpu)) {
4279 if (static_call(kvm_x86_has_wbinvd_exit)())
4280 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4281 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4282 smp_call_function_single(vcpu->cpu,
4283 wbinvd_ipi, NULL, 1);
4284 }
4285
4286 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4287
4288 /* Save host pkru register if supported */
4289 vcpu->arch.host_pkru = read_pkru();
4290
4291 /* Apply any externally detected TSC adjustments (due to suspend) */
4292 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4293 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4294 vcpu->arch.tsc_offset_adjustment = 0;
4295 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4296 }
4297
4298 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4299 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4300 rdtsc() - vcpu->arch.last_host_tsc;
4301 if (tsc_delta < 0)
4302 mark_tsc_unstable("KVM discovered backwards TSC");
4303
4304 if (kvm_check_tsc_unstable()) {
4305 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4306 vcpu->arch.last_guest_tsc);
4307 kvm_vcpu_write_tsc_offset(vcpu, offset);
4308 vcpu->arch.tsc_catchup = 1;
4309 }
4310
4311 if (kvm_lapic_hv_timer_in_use(vcpu))
4312 kvm_lapic_restart_hv_timer(vcpu);
4313
4314 /*
4315 * On a host with synchronized TSC, there is no need to update
4316 * kvmclock on vcpu->cpu migration
4317 */
4318 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4319 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4320 if (vcpu->cpu != cpu)
4321 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4322 vcpu->cpu = cpu;
4323 }
4324
4325 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4326 }
4327
4328 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4329 {
4330 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4331 struct kvm_steal_time __user *st;
4332 struct kvm_memslots *slots;
4333 static const u8 preempted = KVM_VCPU_PREEMPTED;
4334
4335 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4336 return;
4337
4338 if (vcpu->arch.st.preempted)
4339 return;
4340
4341 /* This happens on process exit */
4342 if (unlikely(current->mm != vcpu->kvm->mm))
4343 return;
4344
4345 slots = kvm_memslots(vcpu->kvm);
4346
4347 if (unlikely(slots->generation != ghc->generation ||
4348 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4349 return;
4350
4351 st = (struct kvm_steal_time __user *)ghc->hva;
4352 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4353
4354 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4355 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4356
4357 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4358 }
4359
4360 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4361 {
4362 int idx;
4363
4364 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4365 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4366
4367 /*
4368 * Take the srcu lock as memslots will be accessed to check the gfn
4369 * cache generation against the memslots generation.
4370 */
4371 idx = srcu_read_lock(&vcpu->kvm->srcu);
4372 if (kvm_xen_msr_enabled(vcpu->kvm))
4373 kvm_xen_runstate_set_preempted(vcpu);
4374 else
4375 kvm_steal_time_set_preempted(vcpu);
4376 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4377
4378 static_call(kvm_x86_vcpu_put)(vcpu);
4379 vcpu->arch.last_host_tsc = rdtsc();
4380 }
4381
4382 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4383 struct kvm_lapic_state *s)
4384 {
4385 if (vcpu->arch.apicv_active)
4386 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4387
4388 return kvm_apic_get_state(vcpu, s);
4389 }
4390
4391 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4392 struct kvm_lapic_state *s)
4393 {
4394 int r;
4395
4396 r = kvm_apic_set_state(vcpu, s);
4397 if (r)
4398 return r;
4399 update_cr8_intercept(vcpu);
4400
4401 return 0;
4402 }
4403
4404 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4405 {
4406 /*
4407 * We can accept userspace's request for interrupt injection
4408 * as long as we have a place to store the interrupt number.
4409 * The actual injection will happen when the CPU is able to
4410 * deliver the interrupt.
4411 */
4412 if (kvm_cpu_has_extint(vcpu))
4413 return false;
4414
4415 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4416 return (!lapic_in_kernel(vcpu) ||
4417 kvm_apic_accept_pic_intr(vcpu));
4418 }
4419
4420 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4421 {
4422 /*
4423 * Do not cause an interrupt window exit if an exception
4424 * is pending or an event needs reinjection; userspace
4425 * might want to inject the interrupt manually using KVM_SET_REGS
4426 * or KVM_SET_SREGS. For that to work, we must be at an
4427 * instruction boundary and with no events half-injected.
4428 */
4429 return (kvm_arch_interrupt_allowed(vcpu) &&
4430 kvm_cpu_accept_dm_intr(vcpu) &&
4431 !kvm_event_needs_reinjection(vcpu) &&
4432 !vcpu->arch.exception.pending);
4433 }
4434
4435 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4436 struct kvm_interrupt *irq)
4437 {
4438 if (irq->irq >= KVM_NR_INTERRUPTS)
4439 return -EINVAL;
4440
4441 if (!irqchip_in_kernel(vcpu->kvm)) {
4442 kvm_queue_interrupt(vcpu, irq->irq, false);
4443 kvm_make_request(KVM_REQ_EVENT, vcpu);
4444 return 0;
4445 }
4446
4447 /*
4448 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4449 * fail for in-kernel 8259.
4450 */
4451 if (pic_in_kernel(vcpu->kvm))
4452 return -ENXIO;
4453
4454 if (vcpu->arch.pending_external_vector != -1)
4455 return -EEXIST;
4456
4457 vcpu->arch.pending_external_vector = irq->irq;
4458 kvm_make_request(KVM_REQ_EVENT, vcpu);
4459 return 0;
4460 }
4461
4462 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4463 {
4464 kvm_inject_nmi(vcpu);
4465
4466 return 0;
4467 }
4468
4469 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4470 {
4471 kvm_make_request(KVM_REQ_SMI, vcpu);
4472
4473 return 0;
4474 }
4475
4476 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4477 struct kvm_tpr_access_ctl *tac)
4478 {
4479 if (tac->flags)
4480 return -EINVAL;
4481 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4482 return 0;
4483 }
4484
4485 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4486 u64 mcg_cap)
4487 {
4488 int r;
4489 unsigned bank_num = mcg_cap & 0xff, bank;
4490
4491 r = -EINVAL;
4492 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4493 goto out;
4494 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4495 goto out;
4496 r = 0;
4497 vcpu->arch.mcg_cap = mcg_cap;
4498 /* Init IA32_MCG_CTL to all 1s */
4499 if (mcg_cap & MCG_CTL_P)
4500 vcpu->arch.mcg_ctl = ~(u64)0;
4501 /* Init IA32_MCi_CTL to all 1s */
4502 for (bank = 0; bank < bank_num; bank++)
4503 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4504
4505 static_call(kvm_x86_setup_mce)(vcpu);
4506 out:
4507 return r;
4508 }
4509
4510 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4511 struct kvm_x86_mce *mce)
4512 {
4513 u64 mcg_cap = vcpu->arch.mcg_cap;
4514 unsigned bank_num = mcg_cap & 0xff;
4515 u64 *banks = vcpu->arch.mce_banks;
4516
4517 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4518 return -EINVAL;
4519 /*
4520 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4521 * reporting is disabled
4522 */
4523 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4524 vcpu->arch.mcg_ctl != ~(u64)0)
4525 return 0;
4526 banks += 4 * mce->bank;
4527 /*
4528 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4529 * reporting is disabled for the bank
4530 */
4531 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4532 return 0;
4533 if (mce->status & MCI_STATUS_UC) {
4534 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4535 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4536 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4537 return 0;
4538 }
4539 if (banks[1] & MCI_STATUS_VAL)
4540 mce->status |= MCI_STATUS_OVER;
4541 banks[2] = mce->addr;
4542 banks[3] = mce->misc;
4543 vcpu->arch.mcg_status = mce->mcg_status;
4544 banks[1] = mce->status;
4545 kvm_queue_exception(vcpu, MC_VECTOR);
4546 } else if (!(banks[1] & MCI_STATUS_VAL)
4547 || !(banks[1] & MCI_STATUS_UC)) {
4548 if (banks[1] & MCI_STATUS_VAL)
4549 mce->status |= MCI_STATUS_OVER;
4550 banks[2] = mce->addr;
4551 banks[3] = mce->misc;
4552 banks[1] = mce->status;
4553 } else
4554 banks[1] |= MCI_STATUS_OVER;
4555 return 0;
4556 }
4557
4558 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4559 struct kvm_vcpu_events *events)
4560 {
4561 process_nmi(vcpu);
4562
4563 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4564 process_smi(vcpu);
4565
4566 /*
4567 * In guest mode, payload delivery should be deferred,
4568 * so that the L1 hypervisor can intercept #PF before
4569 * CR2 is modified (or intercept #DB before DR6 is
4570 * modified under nVMX). Unless the per-VM capability,
4571 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4572 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4573 * opportunistically defer the exception payload, deliver it if the
4574 * capability hasn't been requested before processing a
4575 * KVM_GET_VCPU_EVENTS.
4576 */
4577 if (!vcpu->kvm->arch.exception_payload_enabled &&
4578 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4579 kvm_deliver_exception_payload(vcpu);
4580
4581 /*
4582 * The API doesn't provide the instruction length for software
4583 * exceptions, so don't report them. As long as the guest RIP
4584 * isn't advanced, we should expect to encounter the exception
4585 * again.
4586 */
4587 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4588 events->exception.injected = 0;
4589 events->exception.pending = 0;
4590 } else {
4591 events->exception.injected = vcpu->arch.exception.injected;
4592 events->exception.pending = vcpu->arch.exception.pending;
4593 /*
4594 * For ABI compatibility, deliberately conflate
4595 * pending and injected exceptions when
4596 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4597 */
4598 if (!vcpu->kvm->arch.exception_payload_enabled)
4599 events->exception.injected |=
4600 vcpu->arch.exception.pending;
4601 }
4602 events->exception.nr = vcpu->arch.exception.nr;
4603 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4604 events->exception.error_code = vcpu->arch.exception.error_code;
4605 events->exception_has_payload = vcpu->arch.exception.has_payload;
4606 events->exception_payload = vcpu->arch.exception.payload;
4607
4608 events->interrupt.injected =
4609 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4610 events->interrupt.nr = vcpu->arch.interrupt.nr;
4611 events->interrupt.soft = 0;
4612 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4613
4614 events->nmi.injected = vcpu->arch.nmi_injected;
4615 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4616 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4617 events->nmi.pad = 0;
4618
4619 events->sipi_vector = 0; /* never valid when reporting to user space */
4620
4621 events->smi.smm = is_smm(vcpu);
4622 events->smi.pending = vcpu->arch.smi_pending;
4623 events->smi.smm_inside_nmi =
4624 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4625 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4626
4627 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4628 | KVM_VCPUEVENT_VALID_SHADOW
4629 | KVM_VCPUEVENT_VALID_SMM);
4630 if (vcpu->kvm->arch.exception_payload_enabled)
4631 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4632
4633 memset(&events->reserved, 0, sizeof(events->reserved));
4634 }
4635
4636 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4637
4638 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4639 struct kvm_vcpu_events *events)
4640 {
4641 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4642 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4643 | KVM_VCPUEVENT_VALID_SHADOW
4644 | KVM_VCPUEVENT_VALID_SMM
4645 | KVM_VCPUEVENT_VALID_PAYLOAD))
4646 return -EINVAL;
4647
4648 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4649 if (!vcpu->kvm->arch.exception_payload_enabled)
4650 return -EINVAL;
4651 if (events->exception.pending)
4652 events->exception.injected = 0;
4653 else
4654 events->exception_has_payload = 0;
4655 } else {
4656 events->exception.pending = 0;
4657 events->exception_has_payload = 0;
4658 }
4659
4660 if ((events->exception.injected || events->exception.pending) &&
4661 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4662 return -EINVAL;
4663
4664 /* INITs are latched while in SMM */
4665 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4666 (events->smi.smm || events->smi.pending) &&
4667 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4668 return -EINVAL;
4669
4670 process_nmi(vcpu);
4671 vcpu->arch.exception.injected = events->exception.injected;
4672 vcpu->arch.exception.pending = events->exception.pending;
4673 vcpu->arch.exception.nr = events->exception.nr;
4674 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4675 vcpu->arch.exception.error_code = events->exception.error_code;
4676 vcpu->arch.exception.has_payload = events->exception_has_payload;
4677 vcpu->arch.exception.payload = events->exception_payload;
4678
4679 vcpu->arch.interrupt.injected = events->interrupt.injected;
4680 vcpu->arch.interrupt.nr = events->interrupt.nr;
4681 vcpu->arch.interrupt.soft = events->interrupt.soft;
4682 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4683 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4684 events->interrupt.shadow);
4685
4686 vcpu->arch.nmi_injected = events->nmi.injected;
4687 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4688 vcpu->arch.nmi_pending = events->nmi.pending;
4689 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4690
4691 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4692 lapic_in_kernel(vcpu))
4693 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4694
4695 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4696 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4697 kvm_smm_changed(vcpu, events->smi.smm);
4698
4699 vcpu->arch.smi_pending = events->smi.pending;
4700
4701 if (events->smi.smm) {
4702 if (events->smi.smm_inside_nmi)
4703 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4704 else
4705 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4706 }
4707
4708 if (lapic_in_kernel(vcpu)) {
4709 if (events->smi.latched_init)
4710 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4711 else
4712 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4713 }
4714 }
4715
4716 kvm_make_request(KVM_REQ_EVENT, vcpu);
4717
4718 return 0;
4719 }
4720
4721 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4722 struct kvm_debugregs *dbgregs)
4723 {
4724 unsigned long val;
4725
4726 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4727 kvm_get_dr(vcpu, 6, &val);
4728 dbgregs->dr6 = val;
4729 dbgregs->dr7 = vcpu->arch.dr7;
4730 dbgregs->flags = 0;
4731 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4732 }
4733
4734 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4735 struct kvm_debugregs *dbgregs)
4736 {
4737 if (dbgregs->flags)
4738 return -EINVAL;
4739
4740 if (!kvm_dr6_valid(dbgregs->dr6))
4741 return -EINVAL;
4742 if (!kvm_dr7_valid(dbgregs->dr7))
4743 return -EINVAL;
4744
4745 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4746 kvm_update_dr0123(vcpu);
4747 vcpu->arch.dr6 = dbgregs->dr6;
4748 vcpu->arch.dr7 = dbgregs->dr7;
4749 kvm_update_dr7(vcpu);
4750
4751 return 0;
4752 }
4753
4754 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4755
4756 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4757 {
4758 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4759 u64 xstate_bv = xsave->header.xfeatures;
4760 u64 valid;
4761
4762 /*
4763 * Copy legacy XSAVE area, to avoid complications with CPUID
4764 * leaves 0 and 1 in the loop below.
4765 */
4766 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4767
4768 /* Set XSTATE_BV */
4769 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4770 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4771
4772 /*
4773 * Copy each region from the possibly compacted offset to the
4774 * non-compacted offset.
4775 */
4776 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4777 while (valid) {
4778 u32 size, offset, ecx, edx;
4779 u64 xfeature_mask = valid & -valid;
4780 int xfeature_nr = fls64(xfeature_mask) - 1;
4781 void *src;
4782
4783 cpuid_count(XSTATE_CPUID, xfeature_nr,
4784 &size, &offset, &ecx, &edx);
4785
4786 if (xfeature_nr == XFEATURE_PKRU) {
4787 memcpy(dest + offset, &vcpu->arch.pkru,
4788 sizeof(vcpu->arch.pkru));
4789 } else {
4790 src = get_xsave_addr(xsave, xfeature_nr);
4791 if (src)
4792 memcpy(dest + offset, src, size);
4793 }
4794
4795 valid -= xfeature_mask;
4796 }
4797 }
4798
4799 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4800 {
4801 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4802 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4803 u64 valid;
4804
4805 /*
4806 * Copy legacy XSAVE area, to avoid complications with CPUID
4807 * leaves 0 and 1 in the loop below.
4808 */
4809 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4810
4811 /* Set XSTATE_BV and possibly XCOMP_BV. */
4812 xsave->header.xfeatures = xstate_bv;
4813 if (boot_cpu_has(X86_FEATURE_XSAVES))
4814 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4815
4816 /*
4817 * Copy each region from the non-compacted offset to the
4818 * possibly compacted offset.
4819 */
4820 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4821 while (valid) {
4822 u32 size, offset, ecx, edx;
4823 u64 xfeature_mask = valid & -valid;
4824 int xfeature_nr = fls64(xfeature_mask) - 1;
4825
4826 cpuid_count(XSTATE_CPUID, xfeature_nr,
4827 &size, &offset, &ecx, &edx);
4828
4829 if (xfeature_nr == XFEATURE_PKRU) {
4830 memcpy(&vcpu->arch.pkru, src + offset,
4831 sizeof(vcpu->arch.pkru));
4832 } else {
4833 void *dest = get_xsave_addr(xsave, xfeature_nr);
4834
4835 if (dest)
4836 memcpy(dest, src + offset, size);
4837 }
4838
4839 valid -= xfeature_mask;
4840 }
4841 }
4842
4843 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4844 struct kvm_xsave *guest_xsave)
4845 {
4846 if (!vcpu->arch.guest_fpu)
4847 return;
4848
4849 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4850 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4851 fill_xsave((u8 *) guest_xsave->region, vcpu);
4852 } else {
4853 memcpy(guest_xsave->region,
4854 &vcpu->arch.guest_fpu->state.fxsave,
4855 sizeof(struct fxregs_state));
4856 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4857 XFEATURE_MASK_FPSSE;
4858 }
4859 }
4860
4861 #define XSAVE_MXCSR_OFFSET 24
4862
4863 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4864 struct kvm_xsave *guest_xsave)
4865 {
4866 u64 xstate_bv;
4867 u32 mxcsr;
4868
4869 if (!vcpu->arch.guest_fpu)
4870 return 0;
4871
4872 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4873 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4874
4875 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4876 /*
4877 * Here we allow setting states that are not present in
4878 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4879 * with old userspace.
4880 */
4881 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4882 return -EINVAL;
4883 load_xsave(vcpu, (u8 *)guest_xsave->region);
4884 } else {
4885 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4886 mxcsr & ~mxcsr_feature_mask)
4887 return -EINVAL;
4888 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4889 guest_xsave->region, sizeof(struct fxregs_state));
4890 }
4891 return 0;
4892 }
4893
4894 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4895 struct kvm_xcrs *guest_xcrs)
4896 {
4897 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4898 guest_xcrs->nr_xcrs = 0;
4899 return;
4900 }
4901
4902 guest_xcrs->nr_xcrs = 1;
4903 guest_xcrs->flags = 0;
4904 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4905 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4906 }
4907
4908 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4909 struct kvm_xcrs *guest_xcrs)
4910 {
4911 int i, r = 0;
4912
4913 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4914 return -EINVAL;
4915
4916 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4917 return -EINVAL;
4918
4919 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4920 /* Only support XCR0 currently */
4921 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4922 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4923 guest_xcrs->xcrs[i].value);
4924 break;
4925 }
4926 if (r)
4927 r = -EINVAL;
4928 return r;
4929 }
4930
4931 /*
4932 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4933 * stopped by the hypervisor. This function will be called from the host only.
4934 * EINVAL is returned when the host attempts to set the flag for a guest that
4935 * does not support pv clocks.
4936 */
4937 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4938 {
4939 if (!vcpu->arch.pv_time_enabled)
4940 return -EINVAL;
4941 vcpu->arch.pvclock_set_guest_stopped_request = true;
4942 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4943 return 0;
4944 }
4945
4946 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4947 struct kvm_enable_cap *cap)
4948 {
4949 int r;
4950 uint16_t vmcs_version;
4951 void __user *user_ptr;
4952
4953 if (cap->flags)
4954 return -EINVAL;
4955
4956 switch (cap->cap) {
4957 case KVM_CAP_HYPERV_SYNIC2:
4958 if (cap->args[0])
4959 return -EINVAL;
4960 fallthrough;
4961
4962 case KVM_CAP_HYPERV_SYNIC:
4963 if (!irqchip_in_kernel(vcpu->kvm))
4964 return -EINVAL;
4965 return kvm_hv_activate_synic(vcpu, cap->cap ==
4966 KVM_CAP_HYPERV_SYNIC2);
4967 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4968 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4969 return -ENOTTY;
4970 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4971 if (!r) {
4972 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4973 if (copy_to_user(user_ptr, &vmcs_version,
4974 sizeof(vmcs_version)))
4975 r = -EFAULT;
4976 }
4977 return r;
4978 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4979 if (!kvm_x86_ops.enable_direct_tlbflush)
4980 return -ENOTTY;
4981
4982 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4983
4984 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4985 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4986
4987 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4988 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4989 if (vcpu->arch.pv_cpuid.enforce)
4990 kvm_update_pv_runtime(vcpu);
4991
4992 return 0;
4993 default:
4994 return -EINVAL;
4995 }
4996 }
4997
4998 long kvm_arch_vcpu_ioctl(struct file *filp,
4999 unsigned int ioctl, unsigned long arg)
5000 {
5001 struct kvm_vcpu *vcpu = filp->private_data;
5002 void __user *argp = (void __user *)arg;
5003 int r;
5004 union {
5005 struct kvm_sregs2 *sregs2;
5006 struct kvm_lapic_state *lapic;
5007 struct kvm_xsave *xsave;
5008 struct kvm_xcrs *xcrs;
5009 void *buffer;
5010 } u;
5011
5012 vcpu_load(vcpu);
5013
5014 u.buffer = NULL;
5015 switch (ioctl) {
5016 case KVM_GET_LAPIC: {
5017 r = -EINVAL;
5018 if (!lapic_in_kernel(vcpu))
5019 goto out;
5020 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5021 GFP_KERNEL_ACCOUNT);
5022
5023 r = -ENOMEM;
5024 if (!u.lapic)
5025 goto out;
5026 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5027 if (r)
5028 goto out;
5029 r = -EFAULT;
5030 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5031 goto out;
5032 r = 0;
5033 break;
5034 }
5035 case KVM_SET_LAPIC: {
5036 r = -EINVAL;
5037 if (!lapic_in_kernel(vcpu))
5038 goto out;
5039 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5040 if (IS_ERR(u.lapic)) {
5041 r = PTR_ERR(u.lapic);
5042 goto out_nofree;
5043 }
5044
5045 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5046 break;
5047 }
5048 case KVM_INTERRUPT: {
5049 struct kvm_interrupt irq;
5050
5051 r = -EFAULT;
5052 if (copy_from_user(&irq, argp, sizeof(irq)))
5053 goto out;
5054 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5055 break;
5056 }
5057 case KVM_NMI: {
5058 r = kvm_vcpu_ioctl_nmi(vcpu);
5059 break;
5060 }
5061 case KVM_SMI: {
5062 r = kvm_vcpu_ioctl_smi(vcpu);
5063 break;
5064 }
5065 case KVM_SET_CPUID: {
5066 struct kvm_cpuid __user *cpuid_arg = argp;
5067 struct kvm_cpuid cpuid;
5068
5069 r = -EFAULT;
5070 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5071 goto out;
5072 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5073 break;
5074 }
5075 case KVM_SET_CPUID2: {
5076 struct kvm_cpuid2 __user *cpuid_arg = argp;
5077 struct kvm_cpuid2 cpuid;
5078
5079 r = -EFAULT;
5080 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5081 goto out;
5082 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5083 cpuid_arg->entries);
5084 break;
5085 }
5086 case KVM_GET_CPUID2: {
5087 struct kvm_cpuid2 __user *cpuid_arg = argp;
5088 struct kvm_cpuid2 cpuid;
5089
5090 r = -EFAULT;
5091 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5092 goto out;
5093 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5094 cpuid_arg->entries);
5095 if (r)
5096 goto out;
5097 r = -EFAULT;
5098 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5099 goto out;
5100 r = 0;
5101 break;
5102 }
5103 case KVM_GET_MSRS: {
5104 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5105 r = msr_io(vcpu, argp, do_get_msr, 1);
5106 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5107 break;
5108 }
5109 case KVM_SET_MSRS: {
5110 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5111 r = msr_io(vcpu, argp, do_set_msr, 0);
5112 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5113 break;
5114 }
5115 case KVM_TPR_ACCESS_REPORTING: {
5116 struct kvm_tpr_access_ctl tac;
5117
5118 r = -EFAULT;
5119 if (copy_from_user(&tac, argp, sizeof(tac)))
5120 goto out;
5121 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5122 if (r)
5123 goto out;
5124 r = -EFAULT;
5125 if (copy_to_user(argp, &tac, sizeof(tac)))
5126 goto out;
5127 r = 0;
5128 break;
5129 };
5130 case KVM_SET_VAPIC_ADDR: {
5131 struct kvm_vapic_addr va;
5132 int idx;
5133
5134 r = -EINVAL;
5135 if (!lapic_in_kernel(vcpu))
5136 goto out;
5137 r = -EFAULT;
5138 if (copy_from_user(&va, argp, sizeof(va)))
5139 goto out;
5140 idx = srcu_read_lock(&vcpu->kvm->srcu);
5141 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5142 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5143 break;
5144 }
5145 case KVM_X86_SETUP_MCE: {
5146 u64 mcg_cap;
5147
5148 r = -EFAULT;
5149 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5150 goto out;
5151 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5152 break;
5153 }
5154 case KVM_X86_SET_MCE: {
5155 struct kvm_x86_mce mce;
5156
5157 r = -EFAULT;
5158 if (copy_from_user(&mce, argp, sizeof(mce)))
5159 goto out;
5160 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5161 break;
5162 }
5163 case KVM_GET_VCPU_EVENTS: {
5164 struct kvm_vcpu_events events;
5165
5166 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5167
5168 r = -EFAULT;
5169 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5170 break;
5171 r = 0;
5172 break;
5173 }
5174 case KVM_SET_VCPU_EVENTS: {
5175 struct kvm_vcpu_events events;
5176
5177 r = -EFAULT;
5178 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5179 break;
5180
5181 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5182 break;
5183 }
5184 case KVM_GET_DEBUGREGS: {
5185 struct kvm_debugregs dbgregs;
5186
5187 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5188
5189 r = -EFAULT;
5190 if (copy_to_user(argp, &dbgregs,
5191 sizeof(struct kvm_debugregs)))
5192 break;
5193 r = 0;
5194 break;
5195 }
5196 case KVM_SET_DEBUGREGS: {
5197 struct kvm_debugregs dbgregs;
5198
5199 r = -EFAULT;
5200 if (copy_from_user(&dbgregs, argp,
5201 sizeof(struct kvm_debugregs)))
5202 break;
5203
5204 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5205 break;
5206 }
5207 case KVM_GET_XSAVE: {
5208 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5209 r = -ENOMEM;
5210 if (!u.xsave)
5211 break;
5212
5213 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5214
5215 r = -EFAULT;
5216 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5217 break;
5218 r = 0;
5219 break;
5220 }
5221 case KVM_SET_XSAVE: {
5222 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5223 if (IS_ERR(u.xsave)) {
5224 r = PTR_ERR(u.xsave);
5225 goto out_nofree;
5226 }
5227
5228 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5229 break;
5230 }
5231 case KVM_GET_XCRS: {
5232 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5233 r = -ENOMEM;
5234 if (!u.xcrs)
5235 break;
5236
5237 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5238
5239 r = -EFAULT;
5240 if (copy_to_user(argp, u.xcrs,
5241 sizeof(struct kvm_xcrs)))
5242 break;
5243 r = 0;
5244 break;
5245 }
5246 case KVM_SET_XCRS: {
5247 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5248 if (IS_ERR(u.xcrs)) {
5249 r = PTR_ERR(u.xcrs);
5250 goto out_nofree;
5251 }
5252
5253 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5254 break;
5255 }
5256 case KVM_SET_TSC_KHZ: {
5257 u32 user_tsc_khz;
5258
5259 r = -EINVAL;
5260 user_tsc_khz = (u32)arg;
5261
5262 if (kvm_has_tsc_control &&
5263 user_tsc_khz >= kvm_max_guest_tsc_khz)
5264 goto out;
5265
5266 if (user_tsc_khz == 0)
5267 user_tsc_khz = tsc_khz;
5268
5269 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5270 r = 0;
5271
5272 goto out;
5273 }
5274 case KVM_GET_TSC_KHZ: {
5275 r = vcpu->arch.virtual_tsc_khz;
5276 goto out;
5277 }
5278 case KVM_KVMCLOCK_CTRL: {
5279 r = kvm_set_guest_paused(vcpu);
5280 goto out;
5281 }
5282 case KVM_ENABLE_CAP: {
5283 struct kvm_enable_cap cap;
5284
5285 r = -EFAULT;
5286 if (copy_from_user(&cap, argp, sizeof(cap)))
5287 goto out;
5288 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5289 break;
5290 }
5291 case KVM_GET_NESTED_STATE: {
5292 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5293 u32 user_data_size;
5294
5295 r = -EINVAL;
5296 if (!kvm_x86_ops.nested_ops->get_state)
5297 break;
5298
5299 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5300 r = -EFAULT;
5301 if (get_user(user_data_size, &user_kvm_nested_state->size))
5302 break;
5303
5304 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5305 user_data_size);
5306 if (r < 0)
5307 break;
5308
5309 if (r > user_data_size) {
5310 if (put_user(r, &user_kvm_nested_state->size))
5311 r = -EFAULT;
5312 else
5313 r = -E2BIG;
5314 break;
5315 }
5316
5317 r = 0;
5318 break;
5319 }
5320 case KVM_SET_NESTED_STATE: {
5321 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5322 struct kvm_nested_state kvm_state;
5323 int idx;
5324
5325 r = -EINVAL;
5326 if (!kvm_x86_ops.nested_ops->set_state)
5327 break;
5328
5329 r = -EFAULT;
5330 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5331 break;
5332
5333 r = -EINVAL;
5334 if (kvm_state.size < sizeof(kvm_state))
5335 break;
5336
5337 if (kvm_state.flags &
5338 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5339 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5340 | KVM_STATE_NESTED_GIF_SET))
5341 break;
5342
5343 /* nested_run_pending implies guest_mode. */
5344 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5345 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5346 break;
5347
5348 idx = srcu_read_lock(&vcpu->kvm->srcu);
5349 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5350 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5351 break;
5352 }
5353 case KVM_GET_SUPPORTED_HV_CPUID:
5354 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5355 break;
5356 #ifdef CONFIG_KVM_XEN
5357 case KVM_XEN_VCPU_GET_ATTR: {
5358 struct kvm_xen_vcpu_attr xva;
5359
5360 r = -EFAULT;
5361 if (copy_from_user(&xva, argp, sizeof(xva)))
5362 goto out;
5363 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5364 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5365 r = -EFAULT;
5366 break;
5367 }
5368 case KVM_XEN_VCPU_SET_ATTR: {
5369 struct kvm_xen_vcpu_attr xva;
5370
5371 r = -EFAULT;
5372 if (copy_from_user(&xva, argp, sizeof(xva)))
5373 goto out;
5374 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5375 break;
5376 }
5377 #endif
5378 case KVM_GET_SREGS2: {
5379 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5380 r = -ENOMEM;
5381 if (!u.sregs2)
5382 goto out;
5383 __get_sregs2(vcpu, u.sregs2);
5384 r = -EFAULT;
5385 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5386 goto out;
5387 r = 0;
5388 break;
5389 }
5390 case KVM_SET_SREGS2: {
5391 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5392 if (IS_ERR(u.sregs2)) {
5393 r = PTR_ERR(u.sregs2);
5394 u.sregs2 = NULL;
5395 goto out;
5396 }
5397 r = __set_sregs2(vcpu, u.sregs2);
5398 break;
5399 }
5400 default:
5401 r = -EINVAL;
5402 }
5403 out:
5404 kfree(u.buffer);
5405 out_nofree:
5406 vcpu_put(vcpu);
5407 return r;
5408 }
5409
5410 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5411 {
5412 return VM_FAULT_SIGBUS;
5413 }
5414
5415 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5416 {
5417 int ret;
5418
5419 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5420 return -EINVAL;
5421 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5422 return ret;
5423 }
5424
5425 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5426 u64 ident_addr)
5427 {
5428 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5429 }
5430
5431 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5432 unsigned long kvm_nr_mmu_pages)
5433 {
5434 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5435 return -EINVAL;
5436
5437 mutex_lock(&kvm->slots_lock);
5438
5439 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5440 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5441
5442 mutex_unlock(&kvm->slots_lock);
5443 return 0;
5444 }
5445
5446 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5447 {
5448 return kvm->arch.n_max_mmu_pages;
5449 }
5450
5451 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5452 {
5453 struct kvm_pic *pic = kvm->arch.vpic;
5454 int r;
5455
5456 r = 0;
5457 switch (chip->chip_id) {
5458 case KVM_IRQCHIP_PIC_MASTER:
5459 memcpy(&chip->chip.pic, &pic->pics[0],
5460 sizeof(struct kvm_pic_state));
5461 break;
5462 case KVM_IRQCHIP_PIC_SLAVE:
5463 memcpy(&chip->chip.pic, &pic->pics[1],
5464 sizeof(struct kvm_pic_state));
5465 break;
5466 case KVM_IRQCHIP_IOAPIC:
5467 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5468 break;
5469 default:
5470 r = -EINVAL;
5471 break;
5472 }
5473 return r;
5474 }
5475
5476 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5477 {
5478 struct kvm_pic *pic = kvm->arch.vpic;
5479 int r;
5480
5481 r = 0;
5482 switch (chip->chip_id) {
5483 case KVM_IRQCHIP_PIC_MASTER:
5484 spin_lock(&pic->lock);
5485 memcpy(&pic->pics[0], &chip->chip.pic,
5486 sizeof(struct kvm_pic_state));
5487 spin_unlock(&pic->lock);
5488 break;
5489 case KVM_IRQCHIP_PIC_SLAVE:
5490 spin_lock(&pic->lock);
5491 memcpy(&pic->pics[1], &chip->chip.pic,
5492 sizeof(struct kvm_pic_state));
5493 spin_unlock(&pic->lock);
5494 break;
5495 case KVM_IRQCHIP_IOAPIC:
5496 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5497 break;
5498 default:
5499 r = -EINVAL;
5500 break;
5501 }
5502 kvm_pic_update_irq(pic);
5503 return r;
5504 }
5505
5506 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5507 {
5508 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5509
5510 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5511
5512 mutex_lock(&kps->lock);
5513 memcpy(ps, &kps->channels, sizeof(*ps));
5514 mutex_unlock(&kps->lock);
5515 return 0;
5516 }
5517
5518 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5519 {
5520 int i;
5521 struct kvm_pit *pit = kvm->arch.vpit;
5522
5523 mutex_lock(&pit->pit_state.lock);
5524 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5525 for (i = 0; i < 3; i++)
5526 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5527 mutex_unlock(&pit->pit_state.lock);
5528 return 0;
5529 }
5530
5531 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5532 {
5533 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5534 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5535 sizeof(ps->channels));
5536 ps->flags = kvm->arch.vpit->pit_state.flags;
5537 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5538 memset(&ps->reserved, 0, sizeof(ps->reserved));
5539 return 0;
5540 }
5541
5542 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5543 {
5544 int start = 0;
5545 int i;
5546 u32 prev_legacy, cur_legacy;
5547 struct kvm_pit *pit = kvm->arch.vpit;
5548
5549 mutex_lock(&pit->pit_state.lock);
5550 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5551 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5552 if (!prev_legacy && cur_legacy)
5553 start = 1;
5554 memcpy(&pit->pit_state.channels, &ps->channels,
5555 sizeof(pit->pit_state.channels));
5556 pit->pit_state.flags = ps->flags;
5557 for (i = 0; i < 3; i++)
5558 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5559 start && i == 0);
5560 mutex_unlock(&pit->pit_state.lock);
5561 return 0;
5562 }
5563
5564 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5565 struct kvm_reinject_control *control)
5566 {
5567 struct kvm_pit *pit = kvm->arch.vpit;
5568
5569 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5570 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5571 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5572 */
5573 mutex_lock(&pit->pit_state.lock);
5574 kvm_pit_set_reinject(pit, control->pit_reinject);
5575 mutex_unlock(&pit->pit_state.lock);
5576
5577 return 0;
5578 }
5579
5580 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5581 {
5582
5583 /*
5584 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5585 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5586 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5587 * VM-Exit.
5588 */
5589 struct kvm_vcpu *vcpu;
5590 int i;
5591
5592 kvm_for_each_vcpu(i, vcpu, kvm)
5593 kvm_vcpu_kick(vcpu);
5594 }
5595
5596 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5597 bool line_status)
5598 {
5599 if (!irqchip_in_kernel(kvm))
5600 return -ENXIO;
5601
5602 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5603 irq_event->irq, irq_event->level,
5604 line_status);
5605 return 0;
5606 }
5607
5608 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5609 struct kvm_enable_cap *cap)
5610 {
5611 int r;
5612
5613 if (cap->flags)
5614 return -EINVAL;
5615
5616 switch (cap->cap) {
5617 case KVM_CAP_DISABLE_QUIRKS:
5618 kvm->arch.disabled_quirks = cap->args[0];
5619 r = 0;
5620 break;
5621 case KVM_CAP_SPLIT_IRQCHIP: {
5622 mutex_lock(&kvm->lock);
5623 r = -EINVAL;
5624 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5625 goto split_irqchip_unlock;
5626 r = -EEXIST;
5627 if (irqchip_in_kernel(kvm))
5628 goto split_irqchip_unlock;
5629 if (kvm->created_vcpus)
5630 goto split_irqchip_unlock;
5631 r = kvm_setup_empty_irq_routing(kvm);
5632 if (r)
5633 goto split_irqchip_unlock;
5634 /* Pairs with irqchip_in_kernel. */
5635 smp_wmb();
5636 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5637 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5638 r = 0;
5639 split_irqchip_unlock:
5640 mutex_unlock(&kvm->lock);
5641 break;
5642 }
5643 case KVM_CAP_X2APIC_API:
5644 r = -EINVAL;
5645 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5646 break;
5647
5648 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5649 kvm->arch.x2apic_format = true;
5650 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5651 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5652
5653 r = 0;
5654 break;
5655 case KVM_CAP_X86_DISABLE_EXITS:
5656 r = -EINVAL;
5657 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5658 break;
5659
5660 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5661 kvm_can_mwait_in_guest())
5662 kvm->arch.mwait_in_guest = true;
5663 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5664 kvm->arch.hlt_in_guest = true;
5665 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5666 kvm->arch.pause_in_guest = true;
5667 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5668 kvm->arch.cstate_in_guest = true;
5669 r = 0;
5670 break;
5671 case KVM_CAP_MSR_PLATFORM_INFO:
5672 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5673 r = 0;
5674 break;
5675 case KVM_CAP_EXCEPTION_PAYLOAD:
5676 kvm->arch.exception_payload_enabled = cap->args[0];
5677 r = 0;
5678 break;
5679 case KVM_CAP_X86_USER_SPACE_MSR:
5680 kvm->arch.user_space_msr_mask = cap->args[0];
5681 r = 0;
5682 break;
5683 case KVM_CAP_X86_BUS_LOCK_EXIT:
5684 r = -EINVAL;
5685 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5686 break;
5687
5688 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5689 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5690 break;
5691
5692 if (kvm_has_bus_lock_exit &&
5693 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5694 kvm->arch.bus_lock_detection_enabled = true;
5695 r = 0;
5696 break;
5697 #ifdef CONFIG_X86_SGX_KVM
5698 case KVM_CAP_SGX_ATTRIBUTE: {
5699 unsigned long allowed_attributes = 0;
5700
5701 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5702 if (r)
5703 break;
5704
5705 /* KVM only supports the PROVISIONKEY privileged attribute. */
5706 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5707 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5708 kvm->arch.sgx_provisioning_allowed = true;
5709 else
5710 r = -EINVAL;
5711 break;
5712 }
5713 #endif
5714 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5715 r = -EINVAL;
5716 if (kvm_x86_ops.vm_copy_enc_context_from)
5717 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5718 return r;
5719 case KVM_CAP_EXIT_HYPERCALL:
5720 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5721 r = -EINVAL;
5722 break;
5723 }
5724 kvm->arch.hypercall_exit_enabled = cap->args[0];
5725 r = 0;
5726 break;
5727 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5728 r = -EINVAL;
5729 if (cap->args[0] & ~1)
5730 break;
5731 kvm->arch.exit_on_emulation_error = cap->args[0];
5732 r = 0;
5733 break;
5734 default:
5735 r = -EINVAL;
5736 break;
5737 }
5738 return r;
5739 }
5740
5741 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5742 {
5743 struct kvm_x86_msr_filter *msr_filter;
5744
5745 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5746 if (!msr_filter)
5747 return NULL;
5748
5749 msr_filter->default_allow = default_allow;
5750 return msr_filter;
5751 }
5752
5753 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5754 {
5755 u32 i;
5756
5757 if (!msr_filter)
5758 return;
5759
5760 for (i = 0; i < msr_filter->count; i++)
5761 kfree(msr_filter->ranges[i].bitmap);
5762
5763 kfree(msr_filter);
5764 }
5765
5766 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5767 struct kvm_msr_filter_range *user_range)
5768 {
5769 unsigned long *bitmap = NULL;
5770 size_t bitmap_size;
5771
5772 if (!user_range->nmsrs)
5773 return 0;
5774
5775 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5776 return -EINVAL;
5777
5778 if (!user_range->flags)
5779 return -EINVAL;
5780
5781 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5782 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5783 return -EINVAL;
5784
5785 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5786 if (IS_ERR(bitmap))
5787 return PTR_ERR(bitmap);
5788
5789 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5790 .flags = user_range->flags,
5791 .base = user_range->base,
5792 .nmsrs = user_range->nmsrs,
5793 .bitmap = bitmap,
5794 };
5795
5796 msr_filter->count++;
5797 return 0;
5798 }
5799
5800 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5801 {
5802 struct kvm_msr_filter __user *user_msr_filter = argp;
5803 struct kvm_x86_msr_filter *new_filter, *old_filter;
5804 struct kvm_msr_filter filter;
5805 bool default_allow;
5806 bool empty = true;
5807 int r = 0;
5808 u32 i;
5809
5810 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5811 return -EFAULT;
5812
5813 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5814 empty &= !filter.ranges[i].nmsrs;
5815
5816 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5817 if (empty && !default_allow)
5818 return -EINVAL;
5819
5820 new_filter = kvm_alloc_msr_filter(default_allow);
5821 if (!new_filter)
5822 return -ENOMEM;
5823
5824 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5825 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5826 if (r) {
5827 kvm_free_msr_filter(new_filter);
5828 return r;
5829 }
5830 }
5831
5832 mutex_lock(&kvm->lock);
5833
5834 /* The per-VM filter is protected by kvm->lock... */
5835 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5836
5837 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5838 synchronize_srcu(&kvm->srcu);
5839
5840 kvm_free_msr_filter(old_filter);
5841
5842 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5843 mutex_unlock(&kvm->lock);
5844
5845 return 0;
5846 }
5847
5848 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5849 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5850 {
5851 struct kvm_vcpu *vcpu;
5852 int i, ret = 0;
5853
5854 mutex_lock(&kvm->lock);
5855 kvm_for_each_vcpu(i, vcpu, kvm) {
5856 if (!vcpu->arch.pv_time_enabled)
5857 continue;
5858
5859 ret = kvm_set_guest_paused(vcpu);
5860 if (ret) {
5861 kvm_err("Failed to pause guest VCPU%d: %d\n",
5862 vcpu->vcpu_id, ret);
5863 break;
5864 }
5865 }
5866 mutex_unlock(&kvm->lock);
5867
5868 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5869 }
5870
5871 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5872 {
5873 switch (state) {
5874 case PM_HIBERNATION_PREPARE:
5875 case PM_SUSPEND_PREPARE:
5876 return kvm_arch_suspend_notifier(kvm);
5877 }
5878
5879 return NOTIFY_DONE;
5880 }
5881 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5882
5883 long kvm_arch_vm_ioctl(struct file *filp,
5884 unsigned int ioctl, unsigned long arg)
5885 {
5886 struct kvm *kvm = filp->private_data;
5887 void __user *argp = (void __user *)arg;
5888 int r = -ENOTTY;
5889 /*
5890 * This union makes it completely explicit to gcc-3.x
5891 * that these two variables' stack usage should be
5892 * combined, not added together.
5893 */
5894 union {
5895 struct kvm_pit_state ps;
5896 struct kvm_pit_state2 ps2;
5897 struct kvm_pit_config pit_config;
5898 } u;
5899
5900 switch (ioctl) {
5901 case KVM_SET_TSS_ADDR:
5902 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5903 break;
5904 case KVM_SET_IDENTITY_MAP_ADDR: {
5905 u64 ident_addr;
5906
5907 mutex_lock(&kvm->lock);
5908 r = -EINVAL;
5909 if (kvm->created_vcpus)
5910 goto set_identity_unlock;
5911 r = -EFAULT;
5912 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5913 goto set_identity_unlock;
5914 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5915 set_identity_unlock:
5916 mutex_unlock(&kvm->lock);
5917 break;
5918 }
5919 case KVM_SET_NR_MMU_PAGES:
5920 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5921 break;
5922 case KVM_GET_NR_MMU_PAGES:
5923 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5924 break;
5925 case KVM_CREATE_IRQCHIP: {
5926 mutex_lock(&kvm->lock);
5927
5928 r = -EEXIST;
5929 if (irqchip_in_kernel(kvm))
5930 goto create_irqchip_unlock;
5931
5932 r = -EINVAL;
5933 if (kvm->created_vcpus)
5934 goto create_irqchip_unlock;
5935
5936 r = kvm_pic_init(kvm);
5937 if (r)
5938 goto create_irqchip_unlock;
5939
5940 r = kvm_ioapic_init(kvm);
5941 if (r) {
5942 kvm_pic_destroy(kvm);
5943 goto create_irqchip_unlock;
5944 }
5945
5946 r = kvm_setup_default_irq_routing(kvm);
5947 if (r) {
5948 kvm_ioapic_destroy(kvm);
5949 kvm_pic_destroy(kvm);
5950 goto create_irqchip_unlock;
5951 }
5952 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5953 smp_wmb();
5954 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5955 create_irqchip_unlock:
5956 mutex_unlock(&kvm->lock);
5957 break;
5958 }
5959 case KVM_CREATE_PIT:
5960 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5961 goto create_pit;
5962 case KVM_CREATE_PIT2:
5963 r = -EFAULT;
5964 if (copy_from_user(&u.pit_config, argp,
5965 sizeof(struct kvm_pit_config)))
5966 goto out;
5967 create_pit:
5968 mutex_lock(&kvm->lock);
5969 r = -EEXIST;
5970 if (kvm->arch.vpit)
5971 goto create_pit_unlock;
5972 r = -ENOMEM;
5973 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5974 if (kvm->arch.vpit)
5975 r = 0;
5976 create_pit_unlock:
5977 mutex_unlock(&kvm->lock);
5978 break;
5979 case KVM_GET_IRQCHIP: {
5980 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5981 struct kvm_irqchip *chip;
5982
5983 chip = memdup_user(argp, sizeof(*chip));
5984 if (IS_ERR(chip)) {
5985 r = PTR_ERR(chip);
5986 goto out;
5987 }
5988
5989 r = -ENXIO;
5990 if (!irqchip_kernel(kvm))
5991 goto get_irqchip_out;
5992 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5993 if (r)
5994 goto get_irqchip_out;
5995 r = -EFAULT;
5996 if (copy_to_user(argp, chip, sizeof(*chip)))
5997 goto get_irqchip_out;
5998 r = 0;
5999 get_irqchip_out:
6000 kfree(chip);
6001 break;
6002 }
6003 case KVM_SET_IRQCHIP: {
6004 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6005 struct kvm_irqchip *chip;
6006
6007 chip = memdup_user(argp, sizeof(*chip));
6008 if (IS_ERR(chip)) {
6009 r = PTR_ERR(chip);
6010 goto out;
6011 }
6012
6013 r = -ENXIO;
6014 if (!irqchip_kernel(kvm))
6015 goto set_irqchip_out;
6016 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6017 set_irqchip_out:
6018 kfree(chip);
6019 break;
6020 }
6021 case KVM_GET_PIT: {
6022 r = -EFAULT;
6023 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6024 goto out;
6025 r = -ENXIO;
6026 if (!kvm->arch.vpit)
6027 goto out;
6028 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6029 if (r)
6030 goto out;
6031 r = -EFAULT;
6032 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6033 goto out;
6034 r = 0;
6035 break;
6036 }
6037 case KVM_SET_PIT: {
6038 r = -EFAULT;
6039 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6040 goto out;
6041 mutex_lock(&kvm->lock);
6042 r = -ENXIO;
6043 if (!kvm->arch.vpit)
6044 goto set_pit_out;
6045 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6046 set_pit_out:
6047 mutex_unlock(&kvm->lock);
6048 break;
6049 }
6050 case KVM_GET_PIT2: {
6051 r = -ENXIO;
6052 if (!kvm->arch.vpit)
6053 goto out;
6054 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6055 if (r)
6056 goto out;
6057 r = -EFAULT;
6058 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6059 goto out;
6060 r = 0;
6061 break;
6062 }
6063 case KVM_SET_PIT2: {
6064 r = -EFAULT;
6065 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6066 goto out;
6067 mutex_lock(&kvm->lock);
6068 r = -ENXIO;
6069 if (!kvm->arch.vpit)
6070 goto set_pit2_out;
6071 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6072 set_pit2_out:
6073 mutex_unlock(&kvm->lock);
6074 break;
6075 }
6076 case KVM_REINJECT_CONTROL: {
6077 struct kvm_reinject_control control;
6078 r = -EFAULT;
6079 if (copy_from_user(&control, argp, sizeof(control)))
6080 goto out;
6081 r = -ENXIO;
6082 if (!kvm->arch.vpit)
6083 goto out;
6084 r = kvm_vm_ioctl_reinject(kvm, &control);
6085 break;
6086 }
6087 case KVM_SET_BOOT_CPU_ID:
6088 r = 0;
6089 mutex_lock(&kvm->lock);
6090 if (kvm->created_vcpus)
6091 r = -EBUSY;
6092 else
6093 kvm->arch.bsp_vcpu_id = arg;
6094 mutex_unlock(&kvm->lock);
6095 break;
6096 #ifdef CONFIG_KVM_XEN
6097 case KVM_XEN_HVM_CONFIG: {
6098 struct kvm_xen_hvm_config xhc;
6099 r = -EFAULT;
6100 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6101 goto out;
6102 r = kvm_xen_hvm_config(kvm, &xhc);
6103 break;
6104 }
6105 case KVM_XEN_HVM_GET_ATTR: {
6106 struct kvm_xen_hvm_attr xha;
6107
6108 r = -EFAULT;
6109 if (copy_from_user(&xha, argp, sizeof(xha)))
6110 goto out;
6111 r = kvm_xen_hvm_get_attr(kvm, &xha);
6112 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6113 r = -EFAULT;
6114 break;
6115 }
6116 case KVM_XEN_HVM_SET_ATTR: {
6117 struct kvm_xen_hvm_attr xha;
6118
6119 r = -EFAULT;
6120 if (copy_from_user(&xha, argp, sizeof(xha)))
6121 goto out;
6122 r = kvm_xen_hvm_set_attr(kvm, &xha);
6123 break;
6124 }
6125 #endif
6126 case KVM_SET_CLOCK: {
6127 struct kvm_arch *ka = &kvm->arch;
6128 struct kvm_clock_data user_ns;
6129 u64 now_ns;
6130
6131 r = -EFAULT;
6132 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6133 goto out;
6134
6135 r = -EINVAL;
6136 if (user_ns.flags)
6137 goto out;
6138
6139 r = 0;
6140 /*
6141 * TODO: userspace has to take care of races with VCPU_RUN, so
6142 * kvm_gen_update_masterclock() can be cut down to locked
6143 * pvclock_update_vm_gtod_copy().
6144 */
6145 kvm_gen_update_masterclock(kvm);
6146
6147 /*
6148 * This pairs with kvm_guest_time_update(): when masterclock is
6149 * in use, we use master_kernel_ns + kvmclock_offset to set
6150 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6151 * is slightly ahead) here we risk going negative on unsigned
6152 * 'system_time' when 'user_ns.clock' is very small.
6153 */
6154 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6155 if (kvm->arch.use_master_clock)
6156 now_ns = ka->master_kernel_ns;
6157 else
6158 now_ns = get_kvmclock_base_ns();
6159 ka->kvmclock_offset = user_ns.clock - now_ns;
6160 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6161
6162 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6163 break;
6164 }
6165 case KVM_GET_CLOCK: {
6166 struct kvm_clock_data user_ns;
6167 u64 now_ns;
6168
6169 now_ns = get_kvmclock_ns(kvm);
6170 user_ns.clock = now_ns;
6171 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6172 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6173
6174 r = -EFAULT;
6175 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6176 goto out;
6177 r = 0;
6178 break;
6179 }
6180 case KVM_MEMORY_ENCRYPT_OP: {
6181 r = -ENOTTY;
6182 if (kvm_x86_ops.mem_enc_op)
6183 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6184 break;
6185 }
6186 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6187 struct kvm_enc_region region;
6188
6189 r = -EFAULT;
6190 if (copy_from_user(&region, argp, sizeof(region)))
6191 goto out;
6192
6193 r = -ENOTTY;
6194 if (kvm_x86_ops.mem_enc_reg_region)
6195 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6196 break;
6197 }
6198 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6199 struct kvm_enc_region region;
6200
6201 r = -EFAULT;
6202 if (copy_from_user(&region, argp, sizeof(region)))
6203 goto out;
6204
6205 r = -ENOTTY;
6206 if (kvm_x86_ops.mem_enc_unreg_region)
6207 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6208 break;
6209 }
6210 case KVM_HYPERV_EVENTFD: {
6211 struct kvm_hyperv_eventfd hvevfd;
6212
6213 r = -EFAULT;
6214 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6215 goto out;
6216 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6217 break;
6218 }
6219 case KVM_SET_PMU_EVENT_FILTER:
6220 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6221 break;
6222 case KVM_X86_SET_MSR_FILTER:
6223 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6224 break;
6225 default:
6226 r = -ENOTTY;
6227 }
6228 out:
6229 return r;
6230 }
6231
6232 static void kvm_init_msr_list(void)
6233 {
6234 struct x86_pmu_capability x86_pmu;
6235 u32 dummy[2];
6236 unsigned i;
6237
6238 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6239 "Please update the fixed PMCs in msrs_to_saved_all[]");
6240
6241 perf_get_x86_pmu_capability(&x86_pmu);
6242
6243 num_msrs_to_save = 0;
6244 num_emulated_msrs = 0;
6245 num_msr_based_features = 0;
6246
6247 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6248 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6249 continue;
6250
6251 /*
6252 * Even MSRs that are valid in the host may not be exposed
6253 * to the guests in some cases.
6254 */
6255 switch (msrs_to_save_all[i]) {
6256 case MSR_IA32_BNDCFGS:
6257 if (!kvm_mpx_supported())
6258 continue;
6259 break;
6260 case MSR_TSC_AUX:
6261 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6262 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6263 continue;
6264 break;
6265 case MSR_IA32_UMWAIT_CONTROL:
6266 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6267 continue;
6268 break;
6269 case MSR_IA32_RTIT_CTL:
6270 case MSR_IA32_RTIT_STATUS:
6271 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6272 continue;
6273 break;
6274 case MSR_IA32_RTIT_CR3_MATCH:
6275 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6276 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6277 continue;
6278 break;
6279 case MSR_IA32_RTIT_OUTPUT_BASE:
6280 case MSR_IA32_RTIT_OUTPUT_MASK:
6281 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6282 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6283 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6284 continue;
6285 break;
6286 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6287 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6288 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6289 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6290 continue;
6291 break;
6292 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6293 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6294 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6295 continue;
6296 break;
6297 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6298 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6299 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6300 continue;
6301 break;
6302 default:
6303 break;
6304 }
6305
6306 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6307 }
6308
6309 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6310 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6311 continue;
6312
6313 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6314 }
6315
6316 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6317 struct kvm_msr_entry msr;
6318
6319 msr.index = msr_based_features_all[i];
6320 if (kvm_get_msr_feature(&msr))
6321 continue;
6322
6323 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6324 }
6325 }
6326
6327 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6328 const void *v)
6329 {
6330 int handled = 0;
6331 int n;
6332
6333 do {
6334 n = min(len, 8);
6335 if (!(lapic_in_kernel(vcpu) &&
6336 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6337 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6338 break;
6339 handled += n;
6340 addr += n;
6341 len -= n;
6342 v += n;
6343 } while (len);
6344
6345 return handled;
6346 }
6347
6348 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6349 {
6350 int handled = 0;
6351 int n;
6352
6353 do {
6354 n = min(len, 8);
6355 if (!(lapic_in_kernel(vcpu) &&
6356 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6357 addr, n, v))
6358 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6359 break;
6360 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6361 handled += n;
6362 addr += n;
6363 len -= n;
6364 v += n;
6365 } while (len);
6366
6367 return handled;
6368 }
6369
6370 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6371 struct kvm_segment *var, int seg)
6372 {
6373 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6374 }
6375
6376 void kvm_get_segment(struct kvm_vcpu *vcpu,
6377 struct kvm_segment *var, int seg)
6378 {
6379 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6380 }
6381
6382 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6383 struct x86_exception *exception)
6384 {
6385 gpa_t t_gpa;
6386
6387 BUG_ON(!mmu_is_nested(vcpu));
6388
6389 /* NPT walks are always user-walks */
6390 access |= PFERR_USER_MASK;
6391 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6392
6393 return t_gpa;
6394 }
6395
6396 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6397 struct x86_exception *exception)
6398 {
6399 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6400 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6401 }
6402 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6403
6404 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6405 struct x86_exception *exception)
6406 {
6407 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6408 access |= PFERR_FETCH_MASK;
6409 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6410 }
6411
6412 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6413 struct x86_exception *exception)
6414 {
6415 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6416 access |= PFERR_WRITE_MASK;
6417 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6418 }
6419 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6420
6421 /* uses this to access any guest's mapped memory without checking CPL */
6422 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6423 struct x86_exception *exception)
6424 {
6425 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6426 }
6427
6428 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6429 struct kvm_vcpu *vcpu, u32 access,
6430 struct x86_exception *exception)
6431 {
6432 void *data = val;
6433 int r = X86EMUL_CONTINUE;
6434
6435 while (bytes) {
6436 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6437 exception);
6438 unsigned offset = addr & (PAGE_SIZE-1);
6439 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6440 int ret;
6441
6442 if (gpa == UNMAPPED_GVA)
6443 return X86EMUL_PROPAGATE_FAULT;
6444 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6445 offset, toread);
6446 if (ret < 0) {
6447 r = X86EMUL_IO_NEEDED;
6448 goto out;
6449 }
6450
6451 bytes -= toread;
6452 data += toread;
6453 addr += toread;
6454 }
6455 out:
6456 return r;
6457 }
6458
6459 /* used for instruction fetching */
6460 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6461 gva_t addr, void *val, unsigned int bytes,
6462 struct x86_exception *exception)
6463 {
6464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6465 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6466 unsigned offset;
6467 int ret;
6468
6469 /* Inline kvm_read_guest_virt_helper for speed. */
6470 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6471 exception);
6472 if (unlikely(gpa == UNMAPPED_GVA))
6473 return X86EMUL_PROPAGATE_FAULT;
6474
6475 offset = addr & (PAGE_SIZE-1);
6476 if (WARN_ON(offset + bytes > PAGE_SIZE))
6477 bytes = (unsigned)PAGE_SIZE - offset;
6478 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6479 offset, bytes);
6480 if (unlikely(ret < 0))
6481 return X86EMUL_IO_NEEDED;
6482
6483 return X86EMUL_CONTINUE;
6484 }
6485
6486 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6487 gva_t addr, void *val, unsigned int bytes,
6488 struct x86_exception *exception)
6489 {
6490 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6491
6492 /*
6493 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6494 * is returned, but our callers are not ready for that and they blindly
6495 * call kvm_inject_page_fault. Ensure that they at least do not leak
6496 * uninitialized kernel stack memory into cr2 and error code.
6497 */
6498 memset(exception, 0, sizeof(*exception));
6499 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6500 exception);
6501 }
6502 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6503
6504 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6505 gva_t addr, void *val, unsigned int bytes,
6506 struct x86_exception *exception, bool system)
6507 {
6508 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6509 u32 access = 0;
6510
6511 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6512 access |= PFERR_USER_MASK;
6513
6514 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6515 }
6516
6517 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6518 unsigned long addr, void *val, unsigned int bytes)
6519 {
6520 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6521 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6522
6523 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6524 }
6525
6526 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6527 struct kvm_vcpu *vcpu, u32 access,
6528 struct x86_exception *exception)
6529 {
6530 void *data = val;
6531 int r = X86EMUL_CONTINUE;
6532
6533 while (bytes) {
6534 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6535 access,
6536 exception);
6537 unsigned offset = addr & (PAGE_SIZE-1);
6538 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6539 int ret;
6540
6541 if (gpa == UNMAPPED_GVA)
6542 return X86EMUL_PROPAGATE_FAULT;
6543 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6544 if (ret < 0) {
6545 r = X86EMUL_IO_NEEDED;
6546 goto out;
6547 }
6548
6549 bytes -= towrite;
6550 data += towrite;
6551 addr += towrite;
6552 }
6553 out:
6554 return r;
6555 }
6556
6557 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6558 unsigned int bytes, struct x86_exception *exception,
6559 bool system)
6560 {
6561 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6562 u32 access = PFERR_WRITE_MASK;
6563
6564 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6565 access |= PFERR_USER_MASK;
6566
6567 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6568 access, exception);
6569 }
6570
6571 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6572 unsigned int bytes, struct x86_exception *exception)
6573 {
6574 /* kvm_write_guest_virt_system can pull in tons of pages. */
6575 vcpu->arch.l1tf_flush_l1d = true;
6576
6577 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6578 PFERR_WRITE_MASK, exception);
6579 }
6580 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6581
6582 int handle_ud(struct kvm_vcpu *vcpu)
6583 {
6584 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6585 int emul_type = EMULTYPE_TRAP_UD;
6586 char sig[5]; /* ud2; .ascii "kvm" */
6587 struct x86_exception e;
6588
6589 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6590 return 1;
6591
6592 if (force_emulation_prefix &&
6593 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6594 sig, sizeof(sig), &e) == 0 &&
6595 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6596 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6597 emul_type = EMULTYPE_TRAP_UD_FORCED;
6598 }
6599
6600 return kvm_emulate_instruction(vcpu, emul_type);
6601 }
6602 EXPORT_SYMBOL_GPL(handle_ud);
6603
6604 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6605 gpa_t gpa, bool write)
6606 {
6607 /* For APIC access vmexit */
6608 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6609 return 1;
6610
6611 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6612 trace_vcpu_match_mmio(gva, gpa, write, true);
6613 return 1;
6614 }
6615
6616 return 0;
6617 }
6618
6619 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6620 gpa_t *gpa, struct x86_exception *exception,
6621 bool write)
6622 {
6623 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6624 | (write ? PFERR_WRITE_MASK : 0);
6625
6626 /*
6627 * currently PKRU is only applied to ept enabled guest so
6628 * there is no pkey in EPT page table for L1 guest or EPT
6629 * shadow page table for L2 guest.
6630 */
6631 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6632 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6633 vcpu->arch.mmio_access, 0, access))) {
6634 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6635 (gva & (PAGE_SIZE - 1));
6636 trace_vcpu_match_mmio(gva, *gpa, write, false);
6637 return 1;
6638 }
6639
6640 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6641
6642 if (*gpa == UNMAPPED_GVA)
6643 return -1;
6644
6645 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6646 }
6647
6648 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6649 const void *val, int bytes)
6650 {
6651 int ret;
6652
6653 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6654 if (ret < 0)
6655 return 0;
6656 kvm_page_track_write(vcpu, gpa, val, bytes);
6657 return 1;
6658 }
6659
6660 struct read_write_emulator_ops {
6661 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6662 int bytes);
6663 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6664 void *val, int bytes);
6665 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6666 int bytes, void *val);
6667 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6668 void *val, int bytes);
6669 bool write;
6670 };
6671
6672 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6673 {
6674 if (vcpu->mmio_read_completed) {
6675 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6676 vcpu->mmio_fragments[0].gpa, val);
6677 vcpu->mmio_read_completed = 0;
6678 return 1;
6679 }
6680
6681 return 0;
6682 }
6683
6684 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6685 void *val, int bytes)
6686 {
6687 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6688 }
6689
6690 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6691 void *val, int bytes)
6692 {
6693 return emulator_write_phys(vcpu, gpa, val, bytes);
6694 }
6695
6696 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6697 {
6698 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6699 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6700 }
6701
6702 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6703 void *val, int bytes)
6704 {
6705 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6706 return X86EMUL_IO_NEEDED;
6707 }
6708
6709 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6710 void *val, int bytes)
6711 {
6712 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6713
6714 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6715 return X86EMUL_CONTINUE;
6716 }
6717
6718 static const struct read_write_emulator_ops read_emultor = {
6719 .read_write_prepare = read_prepare,
6720 .read_write_emulate = read_emulate,
6721 .read_write_mmio = vcpu_mmio_read,
6722 .read_write_exit_mmio = read_exit_mmio,
6723 };
6724
6725 static const struct read_write_emulator_ops write_emultor = {
6726 .read_write_emulate = write_emulate,
6727 .read_write_mmio = write_mmio,
6728 .read_write_exit_mmio = write_exit_mmio,
6729 .write = true,
6730 };
6731
6732 static int emulator_read_write_onepage(unsigned long addr, void *val,
6733 unsigned int bytes,
6734 struct x86_exception *exception,
6735 struct kvm_vcpu *vcpu,
6736 const struct read_write_emulator_ops *ops)
6737 {
6738 gpa_t gpa;
6739 int handled, ret;
6740 bool write = ops->write;
6741 struct kvm_mmio_fragment *frag;
6742 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6743
6744 /*
6745 * If the exit was due to a NPF we may already have a GPA.
6746 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6747 * Note, this cannot be used on string operations since string
6748 * operation using rep will only have the initial GPA from the NPF
6749 * occurred.
6750 */
6751 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6752 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6753 gpa = ctxt->gpa_val;
6754 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6755 } else {
6756 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6757 if (ret < 0)
6758 return X86EMUL_PROPAGATE_FAULT;
6759 }
6760
6761 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6762 return X86EMUL_CONTINUE;
6763
6764 /*
6765 * Is this MMIO handled locally?
6766 */
6767 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6768 if (handled == bytes)
6769 return X86EMUL_CONTINUE;
6770
6771 gpa += handled;
6772 bytes -= handled;
6773 val += handled;
6774
6775 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6776 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6777 frag->gpa = gpa;
6778 frag->data = val;
6779 frag->len = bytes;
6780 return X86EMUL_CONTINUE;
6781 }
6782
6783 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6784 unsigned long addr,
6785 void *val, unsigned int bytes,
6786 struct x86_exception *exception,
6787 const struct read_write_emulator_ops *ops)
6788 {
6789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6790 gpa_t gpa;
6791 int rc;
6792
6793 if (ops->read_write_prepare &&
6794 ops->read_write_prepare(vcpu, val, bytes))
6795 return X86EMUL_CONTINUE;
6796
6797 vcpu->mmio_nr_fragments = 0;
6798
6799 /* Crossing a page boundary? */
6800 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6801 int now;
6802
6803 now = -addr & ~PAGE_MASK;
6804 rc = emulator_read_write_onepage(addr, val, now, exception,
6805 vcpu, ops);
6806
6807 if (rc != X86EMUL_CONTINUE)
6808 return rc;
6809 addr += now;
6810 if (ctxt->mode != X86EMUL_MODE_PROT64)
6811 addr = (u32)addr;
6812 val += now;
6813 bytes -= now;
6814 }
6815
6816 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6817 vcpu, ops);
6818 if (rc != X86EMUL_CONTINUE)
6819 return rc;
6820
6821 if (!vcpu->mmio_nr_fragments)
6822 return rc;
6823
6824 gpa = vcpu->mmio_fragments[0].gpa;
6825
6826 vcpu->mmio_needed = 1;
6827 vcpu->mmio_cur_fragment = 0;
6828
6829 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6830 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6831 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6832 vcpu->run->mmio.phys_addr = gpa;
6833
6834 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6835 }
6836
6837 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6838 unsigned long addr,
6839 void *val,
6840 unsigned int bytes,
6841 struct x86_exception *exception)
6842 {
6843 return emulator_read_write(ctxt, addr, val, bytes,
6844 exception, &read_emultor);
6845 }
6846
6847 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6848 unsigned long addr,
6849 const void *val,
6850 unsigned int bytes,
6851 struct x86_exception *exception)
6852 {
6853 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6854 exception, &write_emultor);
6855 }
6856
6857 #define CMPXCHG_TYPE(t, ptr, old, new) \
6858 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6859
6860 #ifdef CONFIG_X86_64
6861 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6862 #else
6863 # define CMPXCHG64(ptr, old, new) \
6864 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6865 #endif
6866
6867 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6868 unsigned long addr,
6869 const void *old,
6870 const void *new,
6871 unsigned int bytes,
6872 struct x86_exception *exception)
6873 {
6874 struct kvm_host_map map;
6875 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6876 u64 page_line_mask;
6877 gpa_t gpa;
6878 char *kaddr;
6879 bool exchanged;
6880
6881 /* guests cmpxchg8b have to be emulated atomically */
6882 if (bytes > 8 || (bytes & (bytes - 1)))
6883 goto emul_write;
6884
6885 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6886
6887 if (gpa == UNMAPPED_GVA ||
6888 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6889 goto emul_write;
6890
6891 /*
6892 * Emulate the atomic as a straight write to avoid #AC if SLD is
6893 * enabled in the host and the access splits a cache line.
6894 */
6895 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6896 page_line_mask = ~(cache_line_size() - 1);
6897 else
6898 page_line_mask = PAGE_MASK;
6899
6900 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6901 goto emul_write;
6902
6903 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6904 goto emul_write;
6905
6906 kaddr = map.hva + offset_in_page(gpa);
6907
6908 switch (bytes) {
6909 case 1:
6910 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6911 break;
6912 case 2:
6913 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6914 break;
6915 case 4:
6916 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6917 break;
6918 case 8:
6919 exchanged = CMPXCHG64(kaddr, old, new);
6920 break;
6921 default:
6922 BUG();
6923 }
6924
6925 kvm_vcpu_unmap(vcpu, &map, true);
6926
6927 if (!exchanged)
6928 return X86EMUL_CMPXCHG_FAILED;
6929
6930 kvm_page_track_write(vcpu, gpa, new, bytes);
6931
6932 return X86EMUL_CONTINUE;
6933
6934 emul_write:
6935 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6936
6937 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6938 }
6939
6940 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6941 {
6942 int r = 0, i;
6943
6944 for (i = 0; i < vcpu->arch.pio.count; i++) {
6945 if (vcpu->arch.pio.in)
6946 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6947 vcpu->arch.pio.size, pd);
6948 else
6949 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6950 vcpu->arch.pio.port, vcpu->arch.pio.size,
6951 pd);
6952 if (r)
6953 break;
6954 pd += vcpu->arch.pio.size;
6955 }
6956 return r;
6957 }
6958
6959 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6960 unsigned short port,
6961 unsigned int count, bool in)
6962 {
6963 vcpu->arch.pio.port = port;
6964 vcpu->arch.pio.in = in;
6965 vcpu->arch.pio.count = count;
6966 vcpu->arch.pio.size = size;
6967
6968 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6969 return 1;
6970
6971 vcpu->run->exit_reason = KVM_EXIT_IO;
6972 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6973 vcpu->run->io.size = size;
6974 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6975 vcpu->run->io.count = count;
6976 vcpu->run->io.port = port;
6977
6978 return 0;
6979 }
6980
6981 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6982 unsigned short port, unsigned int count)
6983 {
6984 WARN_ON(vcpu->arch.pio.count);
6985 memset(vcpu->arch.pio_data, 0, size * count);
6986 return emulator_pio_in_out(vcpu, size, port, count, true);
6987 }
6988
6989 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6990 {
6991 int size = vcpu->arch.pio.size;
6992 unsigned count = vcpu->arch.pio.count;
6993 memcpy(val, vcpu->arch.pio_data, size * count);
6994 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6995 vcpu->arch.pio.count = 0;
6996 }
6997
6998 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6999 unsigned short port, void *val, unsigned int count)
7000 {
7001 if (vcpu->arch.pio.count) {
7002 /* Complete previous iteration. */
7003 } else {
7004 int r = __emulator_pio_in(vcpu, size, port, count);
7005 if (!r)
7006 return r;
7007
7008 /* Results already available, fall through. */
7009 }
7010
7011 WARN_ON(count != vcpu->arch.pio.count);
7012 complete_emulator_pio_in(vcpu, val);
7013 return 1;
7014 }
7015
7016 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7017 int size, unsigned short port, void *val,
7018 unsigned int count)
7019 {
7020 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7021
7022 }
7023
7024 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7025 unsigned short port, const void *val,
7026 unsigned int count)
7027 {
7028 int ret;
7029
7030 memcpy(vcpu->arch.pio_data, val, size * count);
7031 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7032 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7033 if (ret)
7034 vcpu->arch.pio.count = 0;
7035
7036 return ret;
7037 }
7038
7039 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7040 int size, unsigned short port,
7041 const void *val, unsigned int count)
7042 {
7043 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7044 }
7045
7046 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7047 {
7048 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7049 }
7050
7051 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7052 {
7053 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7054 }
7055
7056 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7057 {
7058 if (!need_emulate_wbinvd(vcpu))
7059 return X86EMUL_CONTINUE;
7060
7061 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7062 int cpu = get_cpu();
7063
7064 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7065 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7066 wbinvd_ipi, NULL, 1);
7067 put_cpu();
7068 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7069 } else
7070 wbinvd();
7071 return X86EMUL_CONTINUE;
7072 }
7073
7074 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7075 {
7076 kvm_emulate_wbinvd_noskip(vcpu);
7077 return kvm_skip_emulated_instruction(vcpu);
7078 }
7079 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7080
7081
7082
7083 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7084 {
7085 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7086 }
7087
7088 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7089 unsigned long *dest)
7090 {
7091 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7092 }
7093
7094 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7095 unsigned long value)
7096 {
7097
7098 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7099 }
7100
7101 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7102 {
7103 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7104 }
7105
7106 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7107 {
7108 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7109 unsigned long value;
7110
7111 switch (cr) {
7112 case 0:
7113 value = kvm_read_cr0(vcpu);
7114 break;
7115 case 2:
7116 value = vcpu->arch.cr2;
7117 break;
7118 case 3:
7119 value = kvm_read_cr3(vcpu);
7120 break;
7121 case 4:
7122 value = kvm_read_cr4(vcpu);
7123 break;
7124 case 8:
7125 value = kvm_get_cr8(vcpu);
7126 break;
7127 default:
7128 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7129 return 0;
7130 }
7131
7132 return value;
7133 }
7134
7135 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7136 {
7137 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7138 int res = 0;
7139
7140 switch (cr) {
7141 case 0:
7142 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7143 break;
7144 case 2:
7145 vcpu->arch.cr2 = val;
7146 break;
7147 case 3:
7148 res = kvm_set_cr3(vcpu, val);
7149 break;
7150 case 4:
7151 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7152 break;
7153 case 8:
7154 res = kvm_set_cr8(vcpu, val);
7155 break;
7156 default:
7157 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7158 res = -1;
7159 }
7160
7161 return res;
7162 }
7163
7164 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7165 {
7166 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7167 }
7168
7169 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7170 {
7171 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7172 }
7173
7174 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7175 {
7176 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7177 }
7178
7179 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7180 {
7181 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7182 }
7183
7184 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7185 {
7186 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7187 }
7188
7189 static unsigned long emulator_get_cached_segment_base(
7190 struct x86_emulate_ctxt *ctxt, int seg)
7191 {
7192 return get_segment_base(emul_to_vcpu(ctxt), seg);
7193 }
7194
7195 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7196 struct desc_struct *desc, u32 *base3,
7197 int seg)
7198 {
7199 struct kvm_segment var;
7200
7201 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7202 *selector = var.selector;
7203
7204 if (var.unusable) {
7205 memset(desc, 0, sizeof(*desc));
7206 if (base3)
7207 *base3 = 0;
7208 return false;
7209 }
7210
7211 if (var.g)
7212 var.limit >>= 12;
7213 set_desc_limit(desc, var.limit);
7214 set_desc_base(desc, (unsigned long)var.base);
7215 #ifdef CONFIG_X86_64
7216 if (base3)
7217 *base3 = var.base >> 32;
7218 #endif
7219 desc->type = var.type;
7220 desc->s = var.s;
7221 desc->dpl = var.dpl;
7222 desc->p = var.present;
7223 desc->avl = var.avl;
7224 desc->l = var.l;
7225 desc->d = var.db;
7226 desc->g = var.g;
7227
7228 return true;
7229 }
7230
7231 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7232 struct desc_struct *desc, u32 base3,
7233 int seg)
7234 {
7235 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7236 struct kvm_segment var;
7237
7238 var.selector = selector;
7239 var.base = get_desc_base(desc);
7240 #ifdef CONFIG_X86_64
7241 var.base |= ((u64)base3) << 32;
7242 #endif
7243 var.limit = get_desc_limit(desc);
7244 if (desc->g)
7245 var.limit = (var.limit << 12) | 0xfff;
7246 var.type = desc->type;
7247 var.dpl = desc->dpl;
7248 var.db = desc->d;
7249 var.s = desc->s;
7250 var.l = desc->l;
7251 var.g = desc->g;
7252 var.avl = desc->avl;
7253 var.present = desc->p;
7254 var.unusable = !var.present;
7255 var.padding = 0;
7256
7257 kvm_set_segment(vcpu, &var, seg);
7258 return;
7259 }
7260
7261 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7262 u32 msr_index, u64 *pdata)
7263 {
7264 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7265 int r;
7266
7267 r = kvm_get_msr(vcpu, msr_index, pdata);
7268
7269 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7270 /* Bounce to user space */
7271 return X86EMUL_IO_NEEDED;
7272 }
7273
7274 return r;
7275 }
7276
7277 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7278 u32 msr_index, u64 data)
7279 {
7280 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7281 int r;
7282
7283 r = kvm_set_msr(vcpu, msr_index, data);
7284
7285 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7286 /* Bounce to user space */
7287 return X86EMUL_IO_NEEDED;
7288 }
7289
7290 return r;
7291 }
7292
7293 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7294 {
7295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7296
7297 return vcpu->arch.smbase;
7298 }
7299
7300 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7301 {
7302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7303
7304 vcpu->arch.smbase = smbase;
7305 }
7306
7307 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7308 u32 pmc)
7309 {
7310 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7311 }
7312
7313 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7314 u32 pmc, u64 *pdata)
7315 {
7316 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7317 }
7318
7319 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7320 {
7321 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7322 }
7323
7324 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7325 struct x86_instruction_info *info,
7326 enum x86_intercept_stage stage)
7327 {
7328 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7329 &ctxt->exception);
7330 }
7331
7332 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7333 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7334 bool exact_only)
7335 {
7336 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7337 }
7338
7339 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7340 {
7341 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7342 }
7343
7344 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7345 {
7346 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7347 }
7348
7349 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7350 {
7351 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7352 }
7353
7354 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7355 {
7356 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7357 }
7358
7359 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7360 {
7361 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7362 }
7363
7364 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7365 {
7366 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7367 }
7368
7369 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7370 {
7371 return emul_to_vcpu(ctxt)->arch.hflags;
7372 }
7373
7374 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7375 {
7376 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7377
7378 kvm_smm_changed(vcpu, false);
7379 }
7380
7381 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7382 const char *smstate)
7383 {
7384 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7385 }
7386
7387 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7388 {
7389 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7390 }
7391
7392 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7393 {
7394 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7395 }
7396
7397 static const struct x86_emulate_ops emulate_ops = {
7398 .read_gpr = emulator_read_gpr,
7399 .write_gpr = emulator_write_gpr,
7400 .read_std = emulator_read_std,
7401 .write_std = emulator_write_std,
7402 .read_phys = kvm_read_guest_phys_system,
7403 .fetch = kvm_fetch_guest_virt,
7404 .read_emulated = emulator_read_emulated,
7405 .write_emulated = emulator_write_emulated,
7406 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7407 .invlpg = emulator_invlpg,
7408 .pio_in_emulated = emulator_pio_in_emulated,
7409 .pio_out_emulated = emulator_pio_out_emulated,
7410 .get_segment = emulator_get_segment,
7411 .set_segment = emulator_set_segment,
7412 .get_cached_segment_base = emulator_get_cached_segment_base,
7413 .get_gdt = emulator_get_gdt,
7414 .get_idt = emulator_get_idt,
7415 .set_gdt = emulator_set_gdt,
7416 .set_idt = emulator_set_idt,
7417 .get_cr = emulator_get_cr,
7418 .set_cr = emulator_set_cr,
7419 .cpl = emulator_get_cpl,
7420 .get_dr = emulator_get_dr,
7421 .set_dr = emulator_set_dr,
7422 .get_smbase = emulator_get_smbase,
7423 .set_smbase = emulator_set_smbase,
7424 .set_msr = emulator_set_msr,
7425 .get_msr = emulator_get_msr,
7426 .check_pmc = emulator_check_pmc,
7427 .read_pmc = emulator_read_pmc,
7428 .halt = emulator_halt,
7429 .wbinvd = emulator_wbinvd,
7430 .fix_hypercall = emulator_fix_hypercall,
7431 .intercept = emulator_intercept,
7432 .get_cpuid = emulator_get_cpuid,
7433 .guest_has_long_mode = emulator_guest_has_long_mode,
7434 .guest_has_movbe = emulator_guest_has_movbe,
7435 .guest_has_fxsr = emulator_guest_has_fxsr,
7436 .set_nmi_mask = emulator_set_nmi_mask,
7437 .get_hflags = emulator_get_hflags,
7438 .exiting_smm = emulator_exiting_smm,
7439 .leave_smm = emulator_leave_smm,
7440 .triple_fault = emulator_triple_fault,
7441 .set_xcr = emulator_set_xcr,
7442 };
7443
7444 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7445 {
7446 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7447 /*
7448 * an sti; sti; sequence only disable interrupts for the first
7449 * instruction. So, if the last instruction, be it emulated or
7450 * not, left the system with the INT_STI flag enabled, it
7451 * means that the last instruction is an sti. We should not
7452 * leave the flag on in this case. The same goes for mov ss
7453 */
7454 if (int_shadow & mask)
7455 mask = 0;
7456 if (unlikely(int_shadow || mask)) {
7457 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7458 if (!mask)
7459 kvm_make_request(KVM_REQ_EVENT, vcpu);
7460 }
7461 }
7462
7463 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7464 {
7465 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7466 if (ctxt->exception.vector == PF_VECTOR)
7467 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7468
7469 if (ctxt->exception.error_code_valid)
7470 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7471 ctxt->exception.error_code);
7472 else
7473 kvm_queue_exception(vcpu, ctxt->exception.vector);
7474 return false;
7475 }
7476
7477 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7478 {
7479 struct x86_emulate_ctxt *ctxt;
7480
7481 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7482 if (!ctxt) {
7483 pr_err("kvm: failed to allocate vcpu's emulator\n");
7484 return NULL;
7485 }
7486
7487 ctxt->vcpu = vcpu;
7488 ctxt->ops = &emulate_ops;
7489 vcpu->arch.emulate_ctxt = ctxt;
7490
7491 return ctxt;
7492 }
7493
7494 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7495 {
7496 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7497 int cs_db, cs_l;
7498
7499 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7500
7501 ctxt->gpa_available = false;
7502 ctxt->eflags = kvm_get_rflags(vcpu);
7503 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7504
7505 ctxt->eip = kvm_rip_read(vcpu);
7506 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7507 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7508 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7509 cs_db ? X86EMUL_MODE_PROT32 :
7510 X86EMUL_MODE_PROT16;
7511 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7512 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7513 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7514
7515 ctxt->interruptibility = 0;
7516 ctxt->have_exception = false;
7517 ctxt->exception.vector = -1;
7518 ctxt->perm_ok = false;
7519
7520 init_decode_cache(ctxt);
7521 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7522 }
7523
7524 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7525 {
7526 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7527 int ret;
7528
7529 init_emulate_ctxt(vcpu);
7530
7531 ctxt->op_bytes = 2;
7532 ctxt->ad_bytes = 2;
7533 ctxt->_eip = ctxt->eip + inc_eip;
7534 ret = emulate_int_real(ctxt, irq);
7535
7536 if (ret != X86EMUL_CONTINUE) {
7537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7538 } else {
7539 ctxt->eip = ctxt->_eip;
7540 kvm_rip_write(vcpu, ctxt->eip);
7541 kvm_set_rflags(vcpu, ctxt->eflags);
7542 }
7543 }
7544 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7545
7546 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7547 {
7548 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7549 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7550 struct kvm_run *run = vcpu->run;
7551
7552 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7553 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7554 run->emulation_failure.ndata = 0;
7555 run->emulation_failure.flags = 0;
7556
7557 if (insn_size) {
7558 run->emulation_failure.ndata = 3;
7559 run->emulation_failure.flags |=
7560 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7561 run->emulation_failure.insn_size = insn_size;
7562 memset(run->emulation_failure.insn_bytes, 0x90,
7563 sizeof(run->emulation_failure.insn_bytes));
7564 memcpy(run->emulation_failure.insn_bytes,
7565 ctxt->fetch.data, insn_size);
7566 }
7567 }
7568
7569 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7570 {
7571 struct kvm *kvm = vcpu->kvm;
7572
7573 ++vcpu->stat.insn_emulation_fail;
7574 trace_kvm_emulate_insn_failed(vcpu);
7575
7576 if (emulation_type & EMULTYPE_VMWARE_GP) {
7577 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7578 return 1;
7579 }
7580
7581 if (kvm->arch.exit_on_emulation_error ||
7582 (emulation_type & EMULTYPE_SKIP)) {
7583 prepare_emulation_failure_exit(vcpu);
7584 return 0;
7585 }
7586
7587 kvm_queue_exception(vcpu, UD_VECTOR);
7588
7589 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7590 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7591 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7592 vcpu->run->internal.ndata = 0;
7593 return 0;
7594 }
7595
7596 return 1;
7597 }
7598
7599 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7600 bool write_fault_to_shadow_pgtable,
7601 int emulation_type)
7602 {
7603 gpa_t gpa = cr2_or_gpa;
7604 kvm_pfn_t pfn;
7605
7606 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7607 return false;
7608
7609 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7610 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7611 return false;
7612
7613 if (!vcpu->arch.mmu->direct_map) {
7614 /*
7615 * Write permission should be allowed since only
7616 * write access need to be emulated.
7617 */
7618 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7619
7620 /*
7621 * If the mapping is invalid in guest, let cpu retry
7622 * it to generate fault.
7623 */
7624 if (gpa == UNMAPPED_GVA)
7625 return true;
7626 }
7627
7628 /*
7629 * Do not retry the unhandleable instruction if it faults on the
7630 * readonly host memory, otherwise it will goto a infinite loop:
7631 * retry instruction -> write #PF -> emulation fail -> retry
7632 * instruction -> ...
7633 */
7634 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7635
7636 /*
7637 * If the instruction failed on the error pfn, it can not be fixed,
7638 * report the error to userspace.
7639 */
7640 if (is_error_noslot_pfn(pfn))
7641 return false;
7642
7643 kvm_release_pfn_clean(pfn);
7644
7645 /* The instructions are well-emulated on direct mmu. */
7646 if (vcpu->arch.mmu->direct_map) {
7647 unsigned int indirect_shadow_pages;
7648
7649 write_lock(&vcpu->kvm->mmu_lock);
7650 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7651 write_unlock(&vcpu->kvm->mmu_lock);
7652
7653 if (indirect_shadow_pages)
7654 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7655
7656 return true;
7657 }
7658
7659 /*
7660 * if emulation was due to access to shadowed page table
7661 * and it failed try to unshadow page and re-enter the
7662 * guest to let CPU execute the instruction.
7663 */
7664 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7665
7666 /*
7667 * If the access faults on its page table, it can not
7668 * be fixed by unprotecting shadow page and it should
7669 * be reported to userspace.
7670 */
7671 return !write_fault_to_shadow_pgtable;
7672 }
7673
7674 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7675 gpa_t cr2_or_gpa, int emulation_type)
7676 {
7677 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7678 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7679
7680 last_retry_eip = vcpu->arch.last_retry_eip;
7681 last_retry_addr = vcpu->arch.last_retry_addr;
7682
7683 /*
7684 * If the emulation is caused by #PF and it is non-page_table
7685 * writing instruction, it means the VM-EXIT is caused by shadow
7686 * page protected, we can zap the shadow page and retry this
7687 * instruction directly.
7688 *
7689 * Note: if the guest uses a non-page-table modifying instruction
7690 * on the PDE that points to the instruction, then we will unmap
7691 * the instruction and go to an infinite loop. So, we cache the
7692 * last retried eip and the last fault address, if we meet the eip
7693 * and the address again, we can break out of the potential infinite
7694 * loop.
7695 */
7696 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7697
7698 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7699 return false;
7700
7701 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7702 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7703 return false;
7704
7705 if (x86_page_table_writing_insn(ctxt))
7706 return false;
7707
7708 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7709 return false;
7710
7711 vcpu->arch.last_retry_eip = ctxt->eip;
7712 vcpu->arch.last_retry_addr = cr2_or_gpa;
7713
7714 if (!vcpu->arch.mmu->direct_map)
7715 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7716
7717 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7718
7719 return true;
7720 }
7721
7722 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7723 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7724
7725 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7726 {
7727 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7728
7729 if (entering_smm) {
7730 vcpu->arch.hflags |= HF_SMM_MASK;
7731 } else {
7732 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7733
7734 /* Process a latched INIT or SMI, if any. */
7735 kvm_make_request(KVM_REQ_EVENT, vcpu);
7736
7737 /*
7738 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7739 * on SMM exit we still need to reload them from
7740 * guest memory
7741 */
7742 vcpu->arch.pdptrs_from_userspace = false;
7743 }
7744
7745 kvm_mmu_reset_context(vcpu);
7746 }
7747
7748 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7749 unsigned long *db)
7750 {
7751 u32 dr6 = 0;
7752 int i;
7753 u32 enable, rwlen;
7754
7755 enable = dr7;
7756 rwlen = dr7 >> 16;
7757 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7758 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7759 dr6 |= (1 << i);
7760 return dr6;
7761 }
7762
7763 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7764 {
7765 struct kvm_run *kvm_run = vcpu->run;
7766
7767 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7768 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7769 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7770 kvm_run->debug.arch.exception = DB_VECTOR;
7771 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7772 return 0;
7773 }
7774 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7775 return 1;
7776 }
7777
7778 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7779 {
7780 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7781 int r;
7782
7783 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7784 if (unlikely(!r))
7785 return 0;
7786
7787 /*
7788 * rflags is the old, "raw" value of the flags. The new value has
7789 * not been saved yet.
7790 *
7791 * This is correct even for TF set by the guest, because "the
7792 * processor will not generate this exception after the instruction
7793 * that sets the TF flag".
7794 */
7795 if (unlikely(rflags & X86_EFLAGS_TF))
7796 r = kvm_vcpu_do_singlestep(vcpu);
7797 return r;
7798 }
7799 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7800
7801 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7802 {
7803 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7804 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7805 struct kvm_run *kvm_run = vcpu->run;
7806 unsigned long eip = kvm_get_linear_rip(vcpu);
7807 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7808 vcpu->arch.guest_debug_dr7,
7809 vcpu->arch.eff_db);
7810
7811 if (dr6 != 0) {
7812 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7813 kvm_run->debug.arch.pc = eip;
7814 kvm_run->debug.arch.exception = DB_VECTOR;
7815 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7816 *r = 0;
7817 return true;
7818 }
7819 }
7820
7821 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7822 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7823 unsigned long eip = kvm_get_linear_rip(vcpu);
7824 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7825 vcpu->arch.dr7,
7826 vcpu->arch.db);
7827
7828 if (dr6 != 0) {
7829 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7830 *r = 1;
7831 return true;
7832 }
7833 }
7834
7835 return false;
7836 }
7837
7838 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7839 {
7840 switch (ctxt->opcode_len) {
7841 case 1:
7842 switch (ctxt->b) {
7843 case 0xe4: /* IN */
7844 case 0xe5:
7845 case 0xec:
7846 case 0xed:
7847 case 0xe6: /* OUT */
7848 case 0xe7:
7849 case 0xee:
7850 case 0xef:
7851 case 0x6c: /* INS */
7852 case 0x6d:
7853 case 0x6e: /* OUTS */
7854 case 0x6f:
7855 return true;
7856 }
7857 break;
7858 case 2:
7859 switch (ctxt->b) {
7860 case 0x33: /* RDPMC */
7861 return true;
7862 }
7863 break;
7864 }
7865
7866 return false;
7867 }
7868
7869 /*
7870 * Decode to be emulated instruction. Return EMULATION_OK if success.
7871 */
7872 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7873 void *insn, int insn_len)
7874 {
7875 int r = EMULATION_OK;
7876 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7877
7878 init_emulate_ctxt(vcpu);
7879
7880 /*
7881 * We will reenter on the same instruction since we do not set
7882 * complete_userspace_io. This does not handle watchpoints yet,
7883 * those would be handled in the emulate_ops.
7884 */
7885 if (!(emulation_type & EMULTYPE_SKIP) &&
7886 kvm_vcpu_check_breakpoint(vcpu, &r))
7887 return r;
7888
7889 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7890
7891 trace_kvm_emulate_insn_start(vcpu);
7892 ++vcpu->stat.insn_emulation;
7893
7894 return r;
7895 }
7896 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7897
7898 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7899 int emulation_type, void *insn, int insn_len)
7900 {
7901 int r;
7902 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7903 bool writeback = true;
7904 bool write_fault_to_spt;
7905
7906 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7907 return 1;
7908
7909 vcpu->arch.l1tf_flush_l1d = true;
7910
7911 /*
7912 * Clear write_fault_to_shadow_pgtable here to ensure it is
7913 * never reused.
7914 */
7915 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7916 vcpu->arch.write_fault_to_shadow_pgtable = false;
7917
7918 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7919 kvm_clear_exception_queue(vcpu);
7920
7921 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7922 insn, insn_len);
7923 if (r != EMULATION_OK) {
7924 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7925 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7926 kvm_queue_exception(vcpu, UD_VECTOR);
7927 return 1;
7928 }
7929 if (reexecute_instruction(vcpu, cr2_or_gpa,
7930 write_fault_to_spt,
7931 emulation_type))
7932 return 1;
7933 if (ctxt->have_exception) {
7934 /*
7935 * #UD should result in just EMULATION_FAILED, and trap-like
7936 * exception should not be encountered during decode.
7937 */
7938 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7939 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7940 inject_emulated_exception(vcpu);
7941 return 1;
7942 }
7943 return handle_emulation_failure(vcpu, emulation_type);
7944 }
7945 }
7946
7947 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7948 !is_vmware_backdoor_opcode(ctxt)) {
7949 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7950 return 1;
7951 }
7952
7953 /*
7954 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7955 * for kvm_skip_emulated_instruction(). The caller is responsible for
7956 * updating interruptibility state and injecting single-step #DBs.
7957 */
7958 if (emulation_type & EMULTYPE_SKIP) {
7959 kvm_rip_write(vcpu, ctxt->_eip);
7960 if (ctxt->eflags & X86_EFLAGS_RF)
7961 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7962 return 1;
7963 }
7964
7965 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7966 return 1;
7967
7968 /* this is needed for vmware backdoor interface to work since it
7969 changes registers values during IO operation */
7970 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7971 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7972 emulator_invalidate_register_cache(ctxt);
7973 }
7974
7975 restart:
7976 if (emulation_type & EMULTYPE_PF) {
7977 /* Save the faulting GPA (cr2) in the address field */
7978 ctxt->exception.address = cr2_or_gpa;
7979
7980 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7981 if (vcpu->arch.mmu->direct_map) {
7982 ctxt->gpa_available = true;
7983 ctxt->gpa_val = cr2_or_gpa;
7984 }
7985 } else {
7986 /* Sanitize the address out of an abundance of paranoia. */
7987 ctxt->exception.address = 0;
7988 }
7989
7990 r = x86_emulate_insn(ctxt);
7991
7992 if (r == EMULATION_INTERCEPTED)
7993 return 1;
7994
7995 if (r == EMULATION_FAILED) {
7996 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7997 emulation_type))
7998 return 1;
7999
8000 return handle_emulation_failure(vcpu, emulation_type);
8001 }
8002
8003 if (ctxt->have_exception) {
8004 r = 1;
8005 if (inject_emulated_exception(vcpu))
8006 return r;
8007 } else if (vcpu->arch.pio.count) {
8008 if (!vcpu->arch.pio.in) {
8009 /* FIXME: return into emulator if single-stepping. */
8010 vcpu->arch.pio.count = 0;
8011 } else {
8012 writeback = false;
8013 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8014 }
8015 r = 0;
8016 } else if (vcpu->mmio_needed) {
8017 ++vcpu->stat.mmio_exits;
8018
8019 if (!vcpu->mmio_is_write)
8020 writeback = false;
8021 r = 0;
8022 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8023 } else if (r == EMULATION_RESTART)
8024 goto restart;
8025 else
8026 r = 1;
8027
8028 if (writeback) {
8029 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8030 toggle_interruptibility(vcpu, ctxt->interruptibility);
8031 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8032 if (!ctxt->have_exception ||
8033 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8034 kvm_rip_write(vcpu, ctxt->eip);
8035 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8036 r = kvm_vcpu_do_singlestep(vcpu);
8037 if (kvm_x86_ops.update_emulated_instruction)
8038 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8039 __kvm_set_rflags(vcpu, ctxt->eflags);
8040 }
8041
8042 /*
8043 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8044 * do nothing, and it will be requested again as soon as
8045 * the shadow expires. But we still need to check here,
8046 * because POPF has no interrupt shadow.
8047 */
8048 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8049 kvm_make_request(KVM_REQ_EVENT, vcpu);
8050 } else
8051 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8052
8053 return r;
8054 }
8055
8056 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8057 {
8058 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8059 }
8060 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8061
8062 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8063 void *insn, int insn_len)
8064 {
8065 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8066 }
8067 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8068
8069 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8070 {
8071 vcpu->arch.pio.count = 0;
8072 return 1;
8073 }
8074
8075 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8076 {
8077 vcpu->arch.pio.count = 0;
8078
8079 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8080 return 1;
8081
8082 return kvm_skip_emulated_instruction(vcpu);
8083 }
8084
8085 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8086 unsigned short port)
8087 {
8088 unsigned long val = kvm_rax_read(vcpu);
8089 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8090
8091 if (ret)
8092 return ret;
8093
8094 /*
8095 * Workaround userspace that relies on old KVM behavior of %rip being
8096 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8097 */
8098 if (port == 0x7e &&
8099 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8100 vcpu->arch.complete_userspace_io =
8101 complete_fast_pio_out_port_0x7e;
8102 kvm_skip_emulated_instruction(vcpu);
8103 } else {
8104 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8105 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8106 }
8107 return 0;
8108 }
8109
8110 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8111 {
8112 unsigned long val;
8113
8114 /* We should only ever be called with arch.pio.count equal to 1 */
8115 BUG_ON(vcpu->arch.pio.count != 1);
8116
8117 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8118 vcpu->arch.pio.count = 0;
8119 return 1;
8120 }
8121
8122 /* For size less than 4 we merge, else we zero extend */
8123 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8124
8125 /*
8126 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8127 * the copy and tracing
8128 */
8129 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8130 kvm_rax_write(vcpu, val);
8131
8132 return kvm_skip_emulated_instruction(vcpu);
8133 }
8134
8135 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8136 unsigned short port)
8137 {
8138 unsigned long val;
8139 int ret;
8140
8141 /* For size less than 4 we merge, else we zero extend */
8142 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8143
8144 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8145 if (ret) {
8146 kvm_rax_write(vcpu, val);
8147 return ret;
8148 }
8149
8150 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8151 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8152
8153 return 0;
8154 }
8155
8156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8157 {
8158 int ret;
8159
8160 if (in)
8161 ret = kvm_fast_pio_in(vcpu, size, port);
8162 else
8163 ret = kvm_fast_pio_out(vcpu, size, port);
8164 return ret && kvm_skip_emulated_instruction(vcpu);
8165 }
8166 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8167
8168 static int kvmclock_cpu_down_prep(unsigned int cpu)
8169 {
8170 __this_cpu_write(cpu_tsc_khz, 0);
8171 return 0;
8172 }
8173
8174 static void tsc_khz_changed(void *data)
8175 {
8176 struct cpufreq_freqs *freq = data;
8177 unsigned long khz = 0;
8178
8179 if (data)
8180 khz = freq->new;
8181 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8182 khz = cpufreq_quick_get(raw_smp_processor_id());
8183 if (!khz)
8184 khz = tsc_khz;
8185 __this_cpu_write(cpu_tsc_khz, khz);
8186 }
8187
8188 #ifdef CONFIG_X86_64
8189 static void kvm_hyperv_tsc_notifier(void)
8190 {
8191 struct kvm *kvm;
8192 struct kvm_vcpu *vcpu;
8193 int cpu;
8194 unsigned long flags;
8195
8196 mutex_lock(&kvm_lock);
8197 list_for_each_entry(kvm, &vm_list, vm_list)
8198 kvm_make_mclock_inprogress_request(kvm);
8199
8200 hyperv_stop_tsc_emulation();
8201
8202 /* TSC frequency always matches when on Hyper-V */
8203 for_each_present_cpu(cpu)
8204 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8205 kvm_max_guest_tsc_khz = tsc_khz;
8206
8207 list_for_each_entry(kvm, &vm_list, vm_list) {
8208 struct kvm_arch *ka = &kvm->arch;
8209
8210 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8211 pvclock_update_vm_gtod_copy(kvm);
8212 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8213
8214 kvm_for_each_vcpu(cpu, vcpu, kvm)
8215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8216
8217 kvm_for_each_vcpu(cpu, vcpu, kvm)
8218 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8219 }
8220 mutex_unlock(&kvm_lock);
8221 }
8222 #endif
8223
8224 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8225 {
8226 struct kvm *kvm;
8227 struct kvm_vcpu *vcpu;
8228 int i, send_ipi = 0;
8229
8230 /*
8231 * We allow guests to temporarily run on slowing clocks,
8232 * provided we notify them after, or to run on accelerating
8233 * clocks, provided we notify them before. Thus time never
8234 * goes backwards.
8235 *
8236 * However, we have a problem. We can't atomically update
8237 * the frequency of a given CPU from this function; it is
8238 * merely a notifier, which can be called from any CPU.
8239 * Changing the TSC frequency at arbitrary points in time
8240 * requires a recomputation of local variables related to
8241 * the TSC for each VCPU. We must flag these local variables
8242 * to be updated and be sure the update takes place with the
8243 * new frequency before any guests proceed.
8244 *
8245 * Unfortunately, the combination of hotplug CPU and frequency
8246 * change creates an intractable locking scenario; the order
8247 * of when these callouts happen is undefined with respect to
8248 * CPU hotplug, and they can race with each other. As such,
8249 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8250 * undefined; you can actually have a CPU frequency change take
8251 * place in between the computation of X and the setting of the
8252 * variable. To protect against this problem, all updates of
8253 * the per_cpu tsc_khz variable are done in an interrupt
8254 * protected IPI, and all callers wishing to update the value
8255 * must wait for a synchronous IPI to complete (which is trivial
8256 * if the caller is on the CPU already). This establishes the
8257 * necessary total order on variable updates.
8258 *
8259 * Note that because a guest time update may take place
8260 * anytime after the setting of the VCPU's request bit, the
8261 * correct TSC value must be set before the request. However,
8262 * to ensure the update actually makes it to any guest which
8263 * starts running in hardware virtualization between the set
8264 * and the acquisition of the spinlock, we must also ping the
8265 * CPU after setting the request bit.
8266 *
8267 */
8268
8269 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8270
8271 mutex_lock(&kvm_lock);
8272 list_for_each_entry(kvm, &vm_list, vm_list) {
8273 kvm_for_each_vcpu(i, vcpu, kvm) {
8274 if (vcpu->cpu != cpu)
8275 continue;
8276 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8277 if (vcpu->cpu != raw_smp_processor_id())
8278 send_ipi = 1;
8279 }
8280 }
8281 mutex_unlock(&kvm_lock);
8282
8283 if (freq->old < freq->new && send_ipi) {
8284 /*
8285 * We upscale the frequency. Must make the guest
8286 * doesn't see old kvmclock values while running with
8287 * the new frequency, otherwise we risk the guest sees
8288 * time go backwards.
8289 *
8290 * In case we update the frequency for another cpu
8291 * (which might be in guest context) send an interrupt
8292 * to kick the cpu out of guest context. Next time
8293 * guest context is entered kvmclock will be updated,
8294 * so the guest will not see stale values.
8295 */
8296 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8297 }
8298 }
8299
8300 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8301 void *data)
8302 {
8303 struct cpufreq_freqs *freq = data;
8304 int cpu;
8305
8306 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8307 return 0;
8308 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8309 return 0;
8310
8311 for_each_cpu(cpu, freq->policy->cpus)
8312 __kvmclock_cpufreq_notifier(freq, cpu);
8313
8314 return 0;
8315 }
8316
8317 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8318 .notifier_call = kvmclock_cpufreq_notifier
8319 };
8320
8321 static int kvmclock_cpu_online(unsigned int cpu)
8322 {
8323 tsc_khz_changed(NULL);
8324 return 0;
8325 }
8326
8327 static void kvm_timer_init(void)
8328 {
8329 max_tsc_khz = tsc_khz;
8330
8331 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8332 #ifdef CONFIG_CPU_FREQ
8333 struct cpufreq_policy *policy;
8334 int cpu;
8335
8336 cpu = get_cpu();
8337 policy = cpufreq_cpu_get(cpu);
8338 if (policy) {
8339 if (policy->cpuinfo.max_freq)
8340 max_tsc_khz = policy->cpuinfo.max_freq;
8341 cpufreq_cpu_put(policy);
8342 }
8343 put_cpu();
8344 #endif
8345 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8346 CPUFREQ_TRANSITION_NOTIFIER);
8347 }
8348
8349 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8350 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8351 }
8352
8353 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8354 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8355
8356 int kvm_is_in_guest(void)
8357 {
8358 return __this_cpu_read(current_vcpu) != NULL;
8359 }
8360
8361 static int kvm_is_user_mode(void)
8362 {
8363 int user_mode = 3;
8364
8365 if (__this_cpu_read(current_vcpu))
8366 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8367
8368 return user_mode != 0;
8369 }
8370
8371 static unsigned long kvm_get_guest_ip(void)
8372 {
8373 unsigned long ip = 0;
8374
8375 if (__this_cpu_read(current_vcpu))
8376 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8377
8378 return ip;
8379 }
8380
8381 static void kvm_handle_intel_pt_intr(void)
8382 {
8383 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8384
8385 kvm_make_request(KVM_REQ_PMI, vcpu);
8386 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8387 (unsigned long *)&vcpu->arch.pmu.global_status);
8388 }
8389
8390 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8391 .is_in_guest = kvm_is_in_guest,
8392 .is_user_mode = kvm_is_user_mode,
8393 .get_guest_ip = kvm_get_guest_ip,
8394 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8395 };
8396
8397 #ifdef CONFIG_X86_64
8398 static void pvclock_gtod_update_fn(struct work_struct *work)
8399 {
8400 struct kvm *kvm;
8401
8402 struct kvm_vcpu *vcpu;
8403 int i;
8404
8405 mutex_lock(&kvm_lock);
8406 list_for_each_entry(kvm, &vm_list, vm_list)
8407 kvm_for_each_vcpu(i, vcpu, kvm)
8408 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8409 atomic_set(&kvm_guest_has_master_clock, 0);
8410 mutex_unlock(&kvm_lock);
8411 }
8412
8413 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8414
8415 /*
8416 * Indirection to move queue_work() out of the tk_core.seq write held
8417 * region to prevent possible deadlocks against time accessors which
8418 * are invoked with work related locks held.
8419 */
8420 static void pvclock_irq_work_fn(struct irq_work *w)
8421 {
8422 queue_work(system_long_wq, &pvclock_gtod_work);
8423 }
8424
8425 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8426
8427 /*
8428 * Notification about pvclock gtod data update.
8429 */
8430 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8431 void *priv)
8432 {
8433 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8434 struct timekeeper *tk = priv;
8435
8436 update_pvclock_gtod(tk);
8437
8438 /*
8439 * Disable master clock if host does not trust, or does not use,
8440 * TSC based clocksource. Delegate queue_work() to irq_work as
8441 * this is invoked with tk_core.seq write held.
8442 */
8443 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8444 atomic_read(&kvm_guest_has_master_clock) != 0)
8445 irq_work_queue(&pvclock_irq_work);
8446 return 0;
8447 }
8448
8449 static struct notifier_block pvclock_gtod_notifier = {
8450 .notifier_call = pvclock_gtod_notify,
8451 };
8452 #endif
8453
8454 int kvm_arch_init(void *opaque)
8455 {
8456 struct kvm_x86_init_ops *ops = opaque;
8457 int r;
8458
8459 if (kvm_x86_ops.hardware_enable) {
8460 printk(KERN_ERR "kvm: already loaded the other module\n");
8461 r = -EEXIST;
8462 goto out;
8463 }
8464
8465 if (!ops->cpu_has_kvm_support()) {
8466 pr_err_ratelimited("kvm: no hardware support\n");
8467 r = -EOPNOTSUPP;
8468 goto out;
8469 }
8470 if (ops->disabled_by_bios()) {
8471 pr_warn_ratelimited("kvm: disabled by bios\n");
8472 r = -EOPNOTSUPP;
8473 goto out;
8474 }
8475
8476 /*
8477 * KVM explicitly assumes that the guest has an FPU and
8478 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8479 * vCPU's FPU state as a fxregs_state struct.
8480 */
8481 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8482 printk(KERN_ERR "kvm: inadequate fpu\n");
8483 r = -EOPNOTSUPP;
8484 goto out;
8485 }
8486
8487 r = -ENOMEM;
8488 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8489 __alignof__(struct fpu), SLAB_ACCOUNT,
8490 NULL);
8491 if (!x86_fpu_cache) {
8492 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8493 goto out;
8494 }
8495
8496 x86_emulator_cache = kvm_alloc_emulator_cache();
8497 if (!x86_emulator_cache) {
8498 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8499 goto out_free_x86_fpu_cache;
8500 }
8501
8502 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8503 if (!user_return_msrs) {
8504 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8505 goto out_free_x86_emulator_cache;
8506 }
8507 kvm_nr_uret_msrs = 0;
8508
8509 r = kvm_mmu_module_init();
8510 if (r)
8511 goto out_free_percpu;
8512
8513 kvm_timer_init();
8514
8515 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8516
8517 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8518 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8519 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8520 }
8521
8522 if (pi_inject_timer == -1)
8523 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8524 #ifdef CONFIG_X86_64
8525 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8526
8527 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8528 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8529 #endif
8530
8531 return 0;
8532
8533 out_free_percpu:
8534 free_percpu(user_return_msrs);
8535 out_free_x86_emulator_cache:
8536 kmem_cache_destroy(x86_emulator_cache);
8537 out_free_x86_fpu_cache:
8538 kmem_cache_destroy(x86_fpu_cache);
8539 out:
8540 return r;
8541 }
8542
8543 void kvm_arch_exit(void)
8544 {
8545 #ifdef CONFIG_X86_64
8546 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8547 clear_hv_tscchange_cb();
8548 #endif
8549 kvm_lapic_exit();
8550 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8551
8552 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8553 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8554 CPUFREQ_TRANSITION_NOTIFIER);
8555 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8556 #ifdef CONFIG_X86_64
8557 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8558 irq_work_sync(&pvclock_irq_work);
8559 cancel_work_sync(&pvclock_gtod_work);
8560 #endif
8561 kvm_x86_ops.hardware_enable = NULL;
8562 kvm_mmu_module_exit();
8563 free_percpu(user_return_msrs);
8564 kmem_cache_destroy(x86_emulator_cache);
8565 kmem_cache_destroy(x86_fpu_cache);
8566 #ifdef CONFIG_KVM_XEN
8567 static_key_deferred_flush(&kvm_xen_enabled);
8568 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8569 #endif
8570 }
8571
8572 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8573 {
8574 ++vcpu->stat.halt_exits;
8575 if (lapic_in_kernel(vcpu)) {
8576 vcpu->arch.mp_state = state;
8577 return 1;
8578 } else {
8579 vcpu->run->exit_reason = reason;
8580 return 0;
8581 }
8582 }
8583
8584 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8585 {
8586 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8587 }
8588 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8589
8590 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8591 {
8592 int ret = kvm_skip_emulated_instruction(vcpu);
8593 /*
8594 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8595 * KVM_EXIT_DEBUG here.
8596 */
8597 return kvm_vcpu_halt(vcpu) && ret;
8598 }
8599 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8600
8601 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8602 {
8603 int ret = kvm_skip_emulated_instruction(vcpu);
8604
8605 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8606 }
8607 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8608
8609 #ifdef CONFIG_X86_64
8610 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8611 unsigned long clock_type)
8612 {
8613 struct kvm_clock_pairing clock_pairing;
8614 struct timespec64 ts;
8615 u64 cycle;
8616 int ret;
8617
8618 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8619 return -KVM_EOPNOTSUPP;
8620
8621 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8622 return -KVM_EOPNOTSUPP;
8623
8624 clock_pairing.sec = ts.tv_sec;
8625 clock_pairing.nsec = ts.tv_nsec;
8626 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8627 clock_pairing.flags = 0;
8628 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8629
8630 ret = 0;
8631 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8632 sizeof(struct kvm_clock_pairing)))
8633 ret = -KVM_EFAULT;
8634
8635 return ret;
8636 }
8637 #endif
8638
8639 /*
8640 * kvm_pv_kick_cpu_op: Kick a vcpu.
8641 *
8642 * @apicid - apicid of vcpu to be kicked.
8643 */
8644 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8645 {
8646 struct kvm_lapic_irq lapic_irq;
8647
8648 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8649 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8650 lapic_irq.level = 0;
8651 lapic_irq.dest_id = apicid;
8652 lapic_irq.msi_redir_hint = false;
8653
8654 lapic_irq.delivery_mode = APIC_DM_REMRD;
8655 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8656 }
8657
8658 bool kvm_apicv_activated(struct kvm *kvm)
8659 {
8660 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8661 }
8662 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8663
8664 static void kvm_apicv_init(struct kvm *kvm)
8665 {
8666 mutex_init(&kvm->arch.apicv_update_lock);
8667
8668 if (enable_apicv)
8669 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8670 &kvm->arch.apicv_inhibit_reasons);
8671 else
8672 set_bit(APICV_INHIBIT_REASON_DISABLE,
8673 &kvm->arch.apicv_inhibit_reasons);
8674 }
8675
8676 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8677 {
8678 struct kvm_vcpu *target = NULL;
8679 struct kvm_apic_map *map;
8680
8681 vcpu->stat.directed_yield_attempted++;
8682
8683 if (single_task_running())
8684 goto no_yield;
8685
8686 rcu_read_lock();
8687 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8688
8689 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8690 target = map->phys_map[dest_id]->vcpu;
8691
8692 rcu_read_unlock();
8693
8694 if (!target || !READ_ONCE(target->ready))
8695 goto no_yield;
8696
8697 /* Ignore requests to yield to self */
8698 if (vcpu == target)
8699 goto no_yield;
8700
8701 if (kvm_vcpu_yield_to(target) <= 0)
8702 goto no_yield;
8703
8704 vcpu->stat.directed_yield_successful++;
8705
8706 no_yield:
8707 return;
8708 }
8709
8710 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8711 {
8712 u64 ret = vcpu->run->hypercall.ret;
8713
8714 if (!is_64_bit_mode(vcpu))
8715 ret = (u32)ret;
8716 kvm_rax_write(vcpu, ret);
8717 ++vcpu->stat.hypercalls;
8718 return kvm_skip_emulated_instruction(vcpu);
8719 }
8720
8721 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8722 {
8723 unsigned long nr, a0, a1, a2, a3, ret;
8724 int op_64_bit;
8725
8726 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8727 return kvm_xen_hypercall(vcpu);
8728
8729 if (kvm_hv_hypercall_enabled(vcpu))
8730 return kvm_hv_hypercall(vcpu);
8731
8732 nr = kvm_rax_read(vcpu);
8733 a0 = kvm_rbx_read(vcpu);
8734 a1 = kvm_rcx_read(vcpu);
8735 a2 = kvm_rdx_read(vcpu);
8736 a3 = kvm_rsi_read(vcpu);
8737
8738 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8739
8740 op_64_bit = is_64_bit_mode(vcpu);
8741 if (!op_64_bit) {
8742 nr &= 0xFFFFFFFF;
8743 a0 &= 0xFFFFFFFF;
8744 a1 &= 0xFFFFFFFF;
8745 a2 &= 0xFFFFFFFF;
8746 a3 &= 0xFFFFFFFF;
8747 }
8748
8749 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8750 ret = -KVM_EPERM;
8751 goto out;
8752 }
8753
8754 ret = -KVM_ENOSYS;
8755
8756 switch (nr) {
8757 case KVM_HC_VAPIC_POLL_IRQ:
8758 ret = 0;
8759 break;
8760 case KVM_HC_KICK_CPU:
8761 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8762 break;
8763
8764 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8765 kvm_sched_yield(vcpu, a1);
8766 ret = 0;
8767 break;
8768 #ifdef CONFIG_X86_64
8769 case KVM_HC_CLOCK_PAIRING:
8770 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8771 break;
8772 #endif
8773 case KVM_HC_SEND_IPI:
8774 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8775 break;
8776
8777 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8778 break;
8779 case KVM_HC_SCHED_YIELD:
8780 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8781 break;
8782
8783 kvm_sched_yield(vcpu, a0);
8784 ret = 0;
8785 break;
8786 case KVM_HC_MAP_GPA_RANGE: {
8787 u64 gpa = a0, npages = a1, attrs = a2;
8788
8789 ret = -KVM_ENOSYS;
8790 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8791 break;
8792
8793 if (!PAGE_ALIGNED(gpa) || !npages ||
8794 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8795 ret = -KVM_EINVAL;
8796 break;
8797 }
8798
8799 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8800 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8801 vcpu->run->hypercall.args[0] = gpa;
8802 vcpu->run->hypercall.args[1] = npages;
8803 vcpu->run->hypercall.args[2] = attrs;
8804 vcpu->run->hypercall.longmode = op_64_bit;
8805 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8806 return 0;
8807 }
8808 default:
8809 ret = -KVM_ENOSYS;
8810 break;
8811 }
8812 out:
8813 if (!op_64_bit)
8814 ret = (u32)ret;
8815 kvm_rax_write(vcpu, ret);
8816
8817 ++vcpu->stat.hypercalls;
8818 return kvm_skip_emulated_instruction(vcpu);
8819 }
8820 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8821
8822 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8823 {
8824 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8825 char instruction[3];
8826 unsigned long rip = kvm_rip_read(vcpu);
8827
8828 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8829
8830 return emulator_write_emulated(ctxt, rip, instruction, 3,
8831 &ctxt->exception);
8832 }
8833
8834 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8835 {
8836 return vcpu->run->request_interrupt_window &&
8837 likely(!pic_in_kernel(vcpu->kvm));
8838 }
8839
8840 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8841 {
8842 struct kvm_run *kvm_run = vcpu->run;
8843
8844 /*
8845 * if_flag is obsolete and useless, so do not bother
8846 * setting it for SEV-ES guests. Userspace can just
8847 * use kvm_run->ready_for_interrupt_injection.
8848 */
8849 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8850 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8851
8852 kvm_run->cr8 = kvm_get_cr8(vcpu);
8853 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8854
8855 /*
8856 * The call to kvm_ready_for_interrupt_injection() may end up in
8857 * kvm_xen_has_interrupt() which may require the srcu lock to be
8858 * held, to protect against changes in the vcpu_info address.
8859 */
8860 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8861 kvm_run->ready_for_interrupt_injection =
8862 pic_in_kernel(vcpu->kvm) ||
8863 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8864 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8865
8866 if (is_smm(vcpu))
8867 kvm_run->flags |= KVM_RUN_X86_SMM;
8868 }
8869
8870 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8871 {
8872 int max_irr, tpr;
8873
8874 if (!kvm_x86_ops.update_cr8_intercept)
8875 return;
8876
8877 if (!lapic_in_kernel(vcpu))
8878 return;
8879
8880 if (vcpu->arch.apicv_active)
8881 return;
8882
8883 if (!vcpu->arch.apic->vapic_addr)
8884 max_irr = kvm_lapic_find_highest_irr(vcpu);
8885 else
8886 max_irr = -1;
8887
8888 if (max_irr != -1)
8889 max_irr >>= 4;
8890
8891 tpr = kvm_lapic_get_cr8(vcpu);
8892
8893 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8894 }
8895
8896
8897 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8898 {
8899 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8900 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8901 return 1;
8902 }
8903
8904 return kvm_x86_ops.nested_ops->check_events(vcpu);
8905 }
8906
8907 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8908 {
8909 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8910 vcpu->arch.exception.error_code = false;
8911 static_call(kvm_x86_queue_exception)(vcpu);
8912 }
8913
8914 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8915 {
8916 int r;
8917 bool can_inject = true;
8918
8919 /* try to reinject previous events if any */
8920
8921 if (vcpu->arch.exception.injected) {
8922 kvm_inject_exception(vcpu);
8923 can_inject = false;
8924 }
8925 /*
8926 * Do not inject an NMI or interrupt if there is a pending
8927 * exception. Exceptions and interrupts are recognized at
8928 * instruction boundaries, i.e. the start of an instruction.
8929 * Trap-like exceptions, e.g. #DB, have higher priority than
8930 * NMIs and interrupts, i.e. traps are recognized before an
8931 * NMI/interrupt that's pending on the same instruction.
8932 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8933 * priority, but are only generated (pended) during instruction
8934 * execution, i.e. a pending fault-like exception means the
8935 * fault occurred on the *previous* instruction and must be
8936 * serviced prior to recognizing any new events in order to
8937 * fully complete the previous instruction.
8938 */
8939 else if (!vcpu->arch.exception.pending) {
8940 if (vcpu->arch.nmi_injected) {
8941 static_call(kvm_x86_set_nmi)(vcpu);
8942 can_inject = false;
8943 } else if (vcpu->arch.interrupt.injected) {
8944 static_call(kvm_x86_set_irq)(vcpu);
8945 can_inject = false;
8946 }
8947 }
8948
8949 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8950 vcpu->arch.exception.pending);
8951
8952 /*
8953 * Call check_nested_events() even if we reinjected a previous event
8954 * in order for caller to determine if it should require immediate-exit
8955 * from L2 to L1 due to pending L1 events which require exit
8956 * from L2 to L1.
8957 */
8958 if (is_guest_mode(vcpu)) {
8959 r = kvm_check_nested_events(vcpu);
8960 if (r < 0)
8961 goto out;
8962 }
8963
8964 /* try to inject new event if pending */
8965 if (vcpu->arch.exception.pending) {
8966 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8967 vcpu->arch.exception.has_error_code,
8968 vcpu->arch.exception.error_code);
8969
8970 vcpu->arch.exception.pending = false;
8971 vcpu->arch.exception.injected = true;
8972
8973 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8974 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8975 X86_EFLAGS_RF);
8976
8977 if (vcpu->arch.exception.nr == DB_VECTOR) {
8978 kvm_deliver_exception_payload(vcpu);
8979 if (vcpu->arch.dr7 & DR7_GD) {
8980 vcpu->arch.dr7 &= ~DR7_GD;
8981 kvm_update_dr7(vcpu);
8982 }
8983 }
8984
8985 kvm_inject_exception(vcpu);
8986 can_inject = false;
8987 }
8988
8989 /* Don't inject interrupts if the user asked to avoid doing so */
8990 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8991 return 0;
8992
8993 /*
8994 * Finally, inject interrupt events. If an event cannot be injected
8995 * due to architectural conditions (e.g. IF=0) a window-open exit
8996 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8997 * and can architecturally be injected, but we cannot do it right now:
8998 * an interrupt could have arrived just now and we have to inject it
8999 * as a vmexit, or there could already an event in the queue, which is
9000 * indicated by can_inject. In that case we request an immediate exit
9001 * in order to make progress and get back here for another iteration.
9002 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9003 */
9004 if (vcpu->arch.smi_pending) {
9005 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9006 if (r < 0)
9007 goto out;
9008 if (r) {
9009 vcpu->arch.smi_pending = false;
9010 ++vcpu->arch.smi_count;
9011 enter_smm(vcpu);
9012 can_inject = false;
9013 } else
9014 static_call(kvm_x86_enable_smi_window)(vcpu);
9015 }
9016
9017 if (vcpu->arch.nmi_pending) {
9018 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9019 if (r < 0)
9020 goto out;
9021 if (r) {
9022 --vcpu->arch.nmi_pending;
9023 vcpu->arch.nmi_injected = true;
9024 static_call(kvm_x86_set_nmi)(vcpu);
9025 can_inject = false;
9026 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9027 }
9028 if (vcpu->arch.nmi_pending)
9029 static_call(kvm_x86_enable_nmi_window)(vcpu);
9030 }
9031
9032 if (kvm_cpu_has_injectable_intr(vcpu)) {
9033 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9034 if (r < 0)
9035 goto out;
9036 if (r) {
9037 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9038 static_call(kvm_x86_set_irq)(vcpu);
9039 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9040 }
9041 if (kvm_cpu_has_injectable_intr(vcpu))
9042 static_call(kvm_x86_enable_irq_window)(vcpu);
9043 }
9044
9045 if (is_guest_mode(vcpu) &&
9046 kvm_x86_ops.nested_ops->hv_timer_pending &&
9047 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9048 *req_immediate_exit = true;
9049
9050 WARN_ON(vcpu->arch.exception.pending);
9051 return 0;
9052
9053 out:
9054 if (r == -EBUSY) {
9055 *req_immediate_exit = true;
9056 r = 0;
9057 }
9058 return r;
9059 }
9060
9061 static void process_nmi(struct kvm_vcpu *vcpu)
9062 {
9063 unsigned limit = 2;
9064
9065 /*
9066 * x86 is limited to one NMI running, and one NMI pending after it.
9067 * If an NMI is already in progress, limit further NMIs to just one.
9068 * Otherwise, allow two (and we'll inject the first one immediately).
9069 */
9070 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9071 limit = 1;
9072
9073 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9074 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9075 kvm_make_request(KVM_REQ_EVENT, vcpu);
9076 }
9077
9078 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9079 {
9080 u32 flags = 0;
9081 flags |= seg->g << 23;
9082 flags |= seg->db << 22;
9083 flags |= seg->l << 21;
9084 flags |= seg->avl << 20;
9085 flags |= seg->present << 15;
9086 flags |= seg->dpl << 13;
9087 flags |= seg->s << 12;
9088 flags |= seg->type << 8;
9089 return flags;
9090 }
9091
9092 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9093 {
9094 struct kvm_segment seg;
9095 int offset;
9096
9097 kvm_get_segment(vcpu, &seg, n);
9098 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9099
9100 if (n < 3)
9101 offset = 0x7f84 + n * 12;
9102 else
9103 offset = 0x7f2c + (n - 3) * 12;
9104
9105 put_smstate(u32, buf, offset + 8, seg.base);
9106 put_smstate(u32, buf, offset + 4, seg.limit);
9107 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9108 }
9109
9110 #ifdef CONFIG_X86_64
9111 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9112 {
9113 struct kvm_segment seg;
9114 int offset;
9115 u16 flags;
9116
9117 kvm_get_segment(vcpu, &seg, n);
9118 offset = 0x7e00 + n * 16;
9119
9120 flags = enter_smm_get_segment_flags(&seg) >> 8;
9121 put_smstate(u16, buf, offset, seg.selector);
9122 put_smstate(u16, buf, offset + 2, flags);
9123 put_smstate(u32, buf, offset + 4, seg.limit);
9124 put_smstate(u64, buf, offset + 8, seg.base);
9125 }
9126 #endif
9127
9128 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9129 {
9130 struct desc_ptr dt;
9131 struct kvm_segment seg;
9132 unsigned long val;
9133 int i;
9134
9135 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9136 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9137 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9138 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9139
9140 for (i = 0; i < 8; i++)
9141 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9142
9143 kvm_get_dr(vcpu, 6, &val);
9144 put_smstate(u32, buf, 0x7fcc, (u32)val);
9145 kvm_get_dr(vcpu, 7, &val);
9146 put_smstate(u32, buf, 0x7fc8, (u32)val);
9147
9148 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9149 put_smstate(u32, buf, 0x7fc4, seg.selector);
9150 put_smstate(u32, buf, 0x7f64, seg.base);
9151 put_smstate(u32, buf, 0x7f60, seg.limit);
9152 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9153
9154 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9155 put_smstate(u32, buf, 0x7fc0, seg.selector);
9156 put_smstate(u32, buf, 0x7f80, seg.base);
9157 put_smstate(u32, buf, 0x7f7c, seg.limit);
9158 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9159
9160 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9161 put_smstate(u32, buf, 0x7f74, dt.address);
9162 put_smstate(u32, buf, 0x7f70, dt.size);
9163
9164 static_call(kvm_x86_get_idt)(vcpu, &dt);
9165 put_smstate(u32, buf, 0x7f58, dt.address);
9166 put_smstate(u32, buf, 0x7f54, dt.size);
9167
9168 for (i = 0; i < 6; i++)
9169 enter_smm_save_seg_32(vcpu, buf, i);
9170
9171 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9172
9173 /* revision id */
9174 put_smstate(u32, buf, 0x7efc, 0x00020000);
9175 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9176 }
9177
9178 #ifdef CONFIG_X86_64
9179 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9180 {
9181 struct desc_ptr dt;
9182 struct kvm_segment seg;
9183 unsigned long val;
9184 int i;
9185
9186 for (i = 0; i < 16; i++)
9187 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9188
9189 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9190 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9191
9192 kvm_get_dr(vcpu, 6, &val);
9193 put_smstate(u64, buf, 0x7f68, val);
9194 kvm_get_dr(vcpu, 7, &val);
9195 put_smstate(u64, buf, 0x7f60, val);
9196
9197 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9198 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9199 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9200
9201 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9202
9203 /* revision id */
9204 put_smstate(u32, buf, 0x7efc, 0x00020064);
9205
9206 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9207
9208 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9209 put_smstate(u16, buf, 0x7e90, seg.selector);
9210 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9211 put_smstate(u32, buf, 0x7e94, seg.limit);
9212 put_smstate(u64, buf, 0x7e98, seg.base);
9213
9214 static_call(kvm_x86_get_idt)(vcpu, &dt);
9215 put_smstate(u32, buf, 0x7e84, dt.size);
9216 put_smstate(u64, buf, 0x7e88, dt.address);
9217
9218 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9219 put_smstate(u16, buf, 0x7e70, seg.selector);
9220 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9221 put_smstate(u32, buf, 0x7e74, seg.limit);
9222 put_smstate(u64, buf, 0x7e78, seg.base);
9223
9224 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9225 put_smstate(u32, buf, 0x7e64, dt.size);
9226 put_smstate(u64, buf, 0x7e68, dt.address);
9227
9228 for (i = 0; i < 6; i++)
9229 enter_smm_save_seg_64(vcpu, buf, i);
9230 }
9231 #endif
9232
9233 static void enter_smm(struct kvm_vcpu *vcpu)
9234 {
9235 struct kvm_segment cs, ds;
9236 struct desc_ptr dt;
9237 unsigned long cr0;
9238 char buf[512];
9239
9240 memset(buf, 0, 512);
9241 #ifdef CONFIG_X86_64
9242 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9243 enter_smm_save_state_64(vcpu, buf);
9244 else
9245 #endif
9246 enter_smm_save_state_32(vcpu, buf);
9247
9248 /*
9249 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9250 * state (e.g. leave guest mode) after we've saved the state into the
9251 * SMM state-save area.
9252 */
9253 static_call(kvm_x86_enter_smm)(vcpu, buf);
9254
9255 kvm_smm_changed(vcpu, true);
9256 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9257
9258 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9259 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9260 else
9261 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9262
9263 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9264 kvm_rip_write(vcpu, 0x8000);
9265
9266 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9267 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9268 vcpu->arch.cr0 = cr0;
9269
9270 static_call(kvm_x86_set_cr4)(vcpu, 0);
9271
9272 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9273 dt.address = dt.size = 0;
9274 static_call(kvm_x86_set_idt)(vcpu, &dt);
9275
9276 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9277
9278 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9279 cs.base = vcpu->arch.smbase;
9280
9281 ds.selector = 0;
9282 ds.base = 0;
9283
9284 cs.limit = ds.limit = 0xffffffff;
9285 cs.type = ds.type = 0x3;
9286 cs.dpl = ds.dpl = 0;
9287 cs.db = ds.db = 0;
9288 cs.s = ds.s = 1;
9289 cs.l = ds.l = 0;
9290 cs.g = ds.g = 1;
9291 cs.avl = ds.avl = 0;
9292 cs.present = ds.present = 1;
9293 cs.unusable = ds.unusable = 0;
9294 cs.padding = ds.padding = 0;
9295
9296 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9297 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9298 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9299 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9300 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9301 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9302
9303 #ifdef CONFIG_X86_64
9304 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9305 static_call(kvm_x86_set_efer)(vcpu, 0);
9306 #endif
9307
9308 kvm_update_cpuid_runtime(vcpu);
9309 kvm_mmu_reset_context(vcpu);
9310 }
9311
9312 static void process_smi(struct kvm_vcpu *vcpu)
9313 {
9314 vcpu->arch.smi_pending = true;
9315 kvm_make_request(KVM_REQ_EVENT, vcpu);
9316 }
9317
9318 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9319 unsigned long *vcpu_bitmap)
9320 {
9321 cpumask_var_t cpus;
9322
9323 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9324
9325 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9326 NULL, vcpu_bitmap, cpus);
9327
9328 free_cpumask_var(cpus);
9329 }
9330
9331 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9332 {
9333 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9334 }
9335
9336 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9337 {
9338 bool activate;
9339
9340 if (!lapic_in_kernel(vcpu))
9341 return;
9342
9343 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9344
9345 activate = kvm_apicv_activated(vcpu->kvm);
9346 if (vcpu->arch.apicv_active == activate)
9347 goto out;
9348
9349 vcpu->arch.apicv_active = activate;
9350 kvm_apic_update_apicv(vcpu);
9351 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9352
9353 /*
9354 * When APICv gets disabled, we may still have injected interrupts
9355 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9356 * still active when the interrupt got accepted. Make sure
9357 * inject_pending_event() is called to check for that.
9358 */
9359 if (!vcpu->arch.apicv_active)
9360 kvm_make_request(KVM_REQ_EVENT, vcpu);
9361
9362 out:
9363 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9364 }
9365 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9366
9367 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9368 {
9369 unsigned long old, new;
9370
9371 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9372 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9373 return;
9374
9375 old = new = kvm->arch.apicv_inhibit_reasons;
9376
9377 if (activate)
9378 __clear_bit(bit, &new);
9379 else
9380 __set_bit(bit, &new);
9381
9382 if (!!old != !!new) {
9383 trace_kvm_apicv_update_request(activate, bit);
9384 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9385 kvm->arch.apicv_inhibit_reasons = new;
9386 if (new) {
9387 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9388 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9389 }
9390 } else
9391 kvm->arch.apicv_inhibit_reasons = new;
9392 }
9393 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9394
9395 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9396 {
9397 mutex_lock(&kvm->arch.apicv_update_lock);
9398 __kvm_request_apicv_update(kvm, activate, bit);
9399 mutex_unlock(&kvm->arch.apicv_update_lock);
9400 }
9401 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9402
9403 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9404 {
9405 if (!kvm_apic_present(vcpu))
9406 return;
9407
9408 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9409
9410 if (irqchip_split(vcpu->kvm))
9411 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9412 else {
9413 if (vcpu->arch.apicv_active)
9414 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9415 if (ioapic_in_kernel(vcpu->kvm))
9416 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9417 }
9418
9419 if (is_guest_mode(vcpu))
9420 vcpu->arch.load_eoi_exitmap_pending = true;
9421 else
9422 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9423 }
9424
9425 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9426 {
9427 u64 eoi_exit_bitmap[4];
9428
9429 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9430 return;
9431
9432 if (to_hv_vcpu(vcpu))
9433 bitmap_or((ulong *)eoi_exit_bitmap,
9434 vcpu->arch.ioapic_handled_vectors,
9435 to_hv_synic(vcpu)->vec_bitmap, 256);
9436
9437 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9438 }
9439
9440 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9441 unsigned long start, unsigned long end)
9442 {
9443 unsigned long apic_address;
9444
9445 /*
9446 * The physical address of apic access page is stored in the VMCS.
9447 * Update it when it becomes invalid.
9448 */
9449 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9450 if (start <= apic_address && apic_address < end)
9451 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9452 }
9453
9454 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9455 {
9456 if (!lapic_in_kernel(vcpu))
9457 return;
9458
9459 if (!kvm_x86_ops.set_apic_access_page_addr)
9460 return;
9461
9462 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9463 }
9464
9465 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9466 {
9467 smp_send_reschedule(vcpu->cpu);
9468 }
9469 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9470
9471 /*
9472 * Returns 1 to let vcpu_run() continue the guest execution loop without
9473 * exiting to the userspace. Otherwise, the value will be returned to the
9474 * userspace.
9475 */
9476 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9477 {
9478 int r;
9479 bool req_int_win =
9480 dm_request_for_irq_injection(vcpu) &&
9481 kvm_cpu_accept_dm_intr(vcpu);
9482 fastpath_t exit_fastpath;
9483
9484 bool req_immediate_exit = false;
9485
9486 /* Forbid vmenter if vcpu dirty ring is soft-full */
9487 if (unlikely(vcpu->kvm->dirty_ring_size &&
9488 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9489 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9490 trace_kvm_dirty_ring_exit(vcpu);
9491 r = 0;
9492 goto out;
9493 }
9494
9495 if (kvm_request_pending(vcpu)) {
9496 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9497 r = -EIO;
9498 goto out;
9499 }
9500 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9501 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9502 r = 0;
9503 goto out;
9504 }
9505 }
9506 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9507 kvm_mmu_unload(vcpu);
9508 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9509 __kvm_migrate_timers(vcpu);
9510 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9511 kvm_gen_update_masterclock(vcpu->kvm);
9512 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9513 kvm_gen_kvmclock_update(vcpu);
9514 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9515 r = kvm_guest_time_update(vcpu);
9516 if (unlikely(r))
9517 goto out;
9518 }
9519 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9520 kvm_mmu_sync_roots(vcpu);
9521 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9522 kvm_mmu_load_pgd(vcpu);
9523 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9524 kvm_vcpu_flush_tlb_all(vcpu);
9525
9526 /* Flushing all ASIDs flushes the current ASID... */
9527 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9528 }
9529 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9530 kvm_vcpu_flush_tlb_current(vcpu);
9531 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9532 kvm_vcpu_flush_tlb_guest(vcpu);
9533
9534 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9535 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9536 r = 0;
9537 goto out;
9538 }
9539 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9540 if (is_guest_mode(vcpu)) {
9541 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9542 } else {
9543 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9544 vcpu->mmio_needed = 0;
9545 r = 0;
9546 goto out;
9547 }
9548 }
9549 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9550 /* Page is swapped out. Do synthetic halt */
9551 vcpu->arch.apf.halted = true;
9552 r = 1;
9553 goto out;
9554 }
9555 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9556 record_steal_time(vcpu);
9557 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9558 process_smi(vcpu);
9559 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9560 process_nmi(vcpu);
9561 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9562 kvm_pmu_handle_event(vcpu);
9563 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9564 kvm_pmu_deliver_pmi(vcpu);
9565 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9566 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9567 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9568 vcpu->arch.ioapic_handled_vectors)) {
9569 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9570 vcpu->run->eoi.vector =
9571 vcpu->arch.pending_ioapic_eoi;
9572 r = 0;
9573 goto out;
9574 }
9575 }
9576 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9577 vcpu_scan_ioapic(vcpu);
9578 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9579 vcpu_load_eoi_exitmap(vcpu);
9580 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9581 kvm_vcpu_reload_apic_access_page(vcpu);
9582 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9583 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9584 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9585 r = 0;
9586 goto out;
9587 }
9588 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9589 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9590 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9591 r = 0;
9592 goto out;
9593 }
9594 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9595 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9596
9597 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9598 vcpu->run->hyperv = hv_vcpu->exit;
9599 r = 0;
9600 goto out;
9601 }
9602
9603 /*
9604 * KVM_REQ_HV_STIMER has to be processed after
9605 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9606 * depend on the guest clock being up-to-date
9607 */
9608 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9609 kvm_hv_process_stimers(vcpu);
9610 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9611 kvm_vcpu_update_apicv(vcpu);
9612 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9613 kvm_check_async_pf_completion(vcpu);
9614 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9615 static_call(kvm_x86_msr_filter_changed)(vcpu);
9616
9617 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9618 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9619 }
9620
9621 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9622 kvm_xen_has_interrupt(vcpu)) {
9623 ++vcpu->stat.req_event;
9624 r = kvm_apic_accept_events(vcpu);
9625 if (r < 0) {
9626 r = 0;
9627 goto out;
9628 }
9629 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9630 r = 1;
9631 goto out;
9632 }
9633
9634 r = inject_pending_event(vcpu, &req_immediate_exit);
9635 if (r < 0) {
9636 r = 0;
9637 goto out;
9638 }
9639 if (req_int_win)
9640 static_call(kvm_x86_enable_irq_window)(vcpu);
9641
9642 if (kvm_lapic_enabled(vcpu)) {
9643 update_cr8_intercept(vcpu);
9644 kvm_lapic_sync_to_vapic(vcpu);
9645 }
9646 }
9647
9648 r = kvm_mmu_reload(vcpu);
9649 if (unlikely(r)) {
9650 goto cancel_injection;
9651 }
9652
9653 preempt_disable();
9654
9655 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9656
9657 /*
9658 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9659 * IPI are then delayed after guest entry, which ensures that they
9660 * result in virtual interrupt delivery.
9661 */
9662 local_irq_disable();
9663 vcpu->mode = IN_GUEST_MODE;
9664
9665 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9666
9667 /*
9668 * 1) We should set ->mode before checking ->requests. Please see
9669 * the comment in kvm_vcpu_exiting_guest_mode().
9670 *
9671 * 2) For APICv, we should set ->mode before checking PID.ON. This
9672 * pairs with the memory barrier implicit in pi_test_and_set_on
9673 * (see vmx_deliver_posted_interrupt).
9674 *
9675 * 3) This also orders the write to mode from any reads to the page
9676 * tables done while the VCPU is running. Please see the comment
9677 * in kvm_flush_remote_tlbs.
9678 */
9679 smp_mb__after_srcu_read_unlock();
9680
9681 /*
9682 * This handles the case where a posted interrupt was
9683 * notified with kvm_vcpu_kick.
9684 */
9685 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9686 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9687
9688 if (kvm_vcpu_exit_request(vcpu)) {
9689 vcpu->mode = OUTSIDE_GUEST_MODE;
9690 smp_wmb();
9691 local_irq_enable();
9692 preempt_enable();
9693 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9694 r = 1;
9695 goto cancel_injection;
9696 }
9697
9698 if (req_immediate_exit) {
9699 kvm_make_request(KVM_REQ_EVENT, vcpu);
9700 static_call(kvm_x86_request_immediate_exit)(vcpu);
9701 }
9702
9703 fpregs_assert_state_consistent();
9704 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9705 switch_fpu_return();
9706
9707 if (unlikely(vcpu->arch.switch_db_regs)) {
9708 set_debugreg(0, 7);
9709 set_debugreg(vcpu->arch.eff_db[0], 0);
9710 set_debugreg(vcpu->arch.eff_db[1], 1);
9711 set_debugreg(vcpu->arch.eff_db[2], 2);
9712 set_debugreg(vcpu->arch.eff_db[3], 3);
9713 } else if (unlikely(hw_breakpoint_active())) {
9714 set_debugreg(0, 7);
9715 }
9716
9717 for (;;) {
9718 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9719 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9720 break;
9721
9722 if (vcpu->arch.apicv_active)
9723 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9724
9725 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9726 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9727 break;
9728 }
9729 }
9730
9731 /*
9732 * Do this here before restoring debug registers on the host. And
9733 * since we do this before handling the vmexit, a DR access vmexit
9734 * can (a) read the correct value of the debug registers, (b) set
9735 * KVM_DEBUGREG_WONT_EXIT again.
9736 */
9737 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9738 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9739 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9740 kvm_update_dr0123(vcpu);
9741 kvm_update_dr7(vcpu);
9742 }
9743
9744 /*
9745 * If the guest has used debug registers, at least dr7
9746 * will be disabled while returning to the host.
9747 * If we don't have active breakpoints in the host, we don't
9748 * care about the messed up debug address registers. But if
9749 * we have some of them active, restore the old state.
9750 */
9751 if (hw_breakpoint_active())
9752 hw_breakpoint_restore();
9753
9754 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9755 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9756
9757 vcpu->mode = OUTSIDE_GUEST_MODE;
9758 smp_wmb();
9759
9760 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9761
9762 /*
9763 * Consume any pending interrupts, including the possible source of
9764 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9765 * An instruction is required after local_irq_enable() to fully unblock
9766 * interrupts on processors that implement an interrupt shadow, the
9767 * stat.exits increment will do nicely.
9768 */
9769 kvm_before_interrupt(vcpu);
9770 local_irq_enable();
9771 ++vcpu->stat.exits;
9772 local_irq_disable();
9773 kvm_after_interrupt(vcpu);
9774
9775 /*
9776 * Wait until after servicing IRQs to account guest time so that any
9777 * ticks that occurred while running the guest are properly accounted
9778 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9779 * of accounting via context tracking, but the loss of accuracy is
9780 * acceptable for all known use cases.
9781 */
9782 vtime_account_guest_exit();
9783
9784 if (lapic_in_kernel(vcpu)) {
9785 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9786 if (delta != S64_MIN) {
9787 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9788 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9789 }
9790 }
9791
9792 local_irq_enable();
9793 preempt_enable();
9794
9795 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9796
9797 /*
9798 * Profile KVM exit RIPs:
9799 */
9800 if (unlikely(prof_on == KVM_PROFILING)) {
9801 unsigned long rip = kvm_rip_read(vcpu);
9802 profile_hit(KVM_PROFILING, (void *)rip);
9803 }
9804
9805 if (unlikely(vcpu->arch.tsc_always_catchup))
9806 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9807
9808 if (vcpu->arch.apic_attention)
9809 kvm_lapic_sync_from_vapic(vcpu);
9810
9811 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9812 return r;
9813
9814 cancel_injection:
9815 if (req_immediate_exit)
9816 kvm_make_request(KVM_REQ_EVENT, vcpu);
9817 static_call(kvm_x86_cancel_injection)(vcpu);
9818 if (unlikely(vcpu->arch.apic_attention))
9819 kvm_lapic_sync_from_vapic(vcpu);
9820 out:
9821 return r;
9822 }
9823
9824 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9825 {
9826 if (!kvm_arch_vcpu_runnable(vcpu) &&
9827 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9828 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9829 kvm_vcpu_block(vcpu);
9830 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9831
9832 if (kvm_x86_ops.post_block)
9833 static_call(kvm_x86_post_block)(vcpu);
9834
9835 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9836 return 1;
9837 }
9838
9839 if (kvm_apic_accept_events(vcpu) < 0)
9840 return 0;
9841 switch(vcpu->arch.mp_state) {
9842 case KVM_MP_STATE_HALTED:
9843 case KVM_MP_STATE_AP_RESET_HOLD:
9844 vcpu->arch.pv.pv_unhalted = false;
9845 vcpu->arch.mp_state =
9846 KVM_MP_STATE_RUNNABLE;
9847 fallthrough;
9848 case KVM_MP_STATE_RUNNABLE:
9849 vcpu->arch.apf.halted = false;
9850 break;
9851 case KVM_MP_STATE_INIT_RECEIVED:
9852 break;
9853 default:
9854 return -EINTR;
9855 }
9856 return 1;
9857 }
9858
9859 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9860 {
9861 if (is_guest_mode(vcpu))
9862 kvm_check_nested_events(vcpu);
9863
9864 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9865 !vcpu->arch.apf.halted);
9866 }
9867
9868 static int vcpu_run(struct kvm_vcpu *vcpu)
9869 {
9870 int r;
9871 struct kvm *kvm = vcpu->kvm;
9872
9873 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9874 vcpu->arch.l1tf_flush_l1d = true;
9875
9876 for (;;) {
9877 if (kvm_vcpu_running(vcpu)) {
9878 r = vcpu_enter_guest(vcpu);
9879 } else {
9880 r = vcpu_block(kvm, vcpu);
9881 }
9882
9883 if (r <= 0)
9884 break;
9885
9886 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9887 if (kvm_cpu_has_pending_timer(vcpu))
9888 kvm_inject_pending_timer_irqs(vcpu);
9889
9890 if (dm_request_for_irq_injection(vcpu) &&
9891 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9892 r = 0;
9893 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9894 ++vcpu->stat.request_irq_exits;
9895 break;
9896 }
9897
9898 if (__xfer_to_guest_mode_work_pending()) {
9899 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9900 r = xfer_to_guest_mode_handle_work(vcpu);
9901 if (r)
9902 return r;
9903 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9904 }
9905 }
9906
9907 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9908
9909 return r;
9910 }
9911
9912 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9913 {
9914 int r;
9915
9916 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9917 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9918 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9919 return r;
9920 }
9921
9922 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9923 {
9924 BUG_ON(!vcpu->arch.pio.count);
9925
9926 return complete_emulated_io(vcpu);
9927 }
9928
9929 /*
9930 * Implements the following, as a state machine:
9931 *
9932 * read:
9933 * for each fragment
9934 * for each mmio piece in the fragment
9935 * write gpa, len
9936 * exit
9937 * copy data
9938 * execute insn
9939 *
9940 * write:
9941 * for each fragment
9942 * for each mmio piece in the fragment
9943 * write gpa, len
9944 * copy data
9945 * exit
9946 */
9947 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9948 {
9949 struct kvm_run *run = vcpu->run;
9950 struct kvm_mmio_fragment *frag;
9951 unsigned len;
9952
9953 BUG_ON(!vcpu->mmio_needed);
9954
9955 /* Complete previous fragment */
9956 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9957 len = min(8u, frag->len);
9958 if (!vcpu->mmio_is_write)
9959 memcpy(frag->data, run->mmio.data, len);
9960
9961 if (frag->len <= 8) {
9962 /* Switch to the next fragment. */
9963 frag++;
9964 vcpu->mmio_cur_fragment++;
9965 } else {
9966 /* Go forward to the next mmio piece. */
9967 frag->data += len;
9968 frag->gpa += len;
9969 frag->len -= len;
9970 }
9971
9972 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9973 vcpu->mmio_needed = 0;
9974
9975 /* FIXME: return into emulator if single-stepping. */
9976 if (vcpu->mmio_is_write)
9977 return 1;
9978 vcpu->mmio_read_completed = 1;
9979 return complete_emulated_io(vcpu);
9980 }
9981
9982 run->exit_reason = KVM_EXIT_MMIO;
9983 run->mmio.phys_addr = frag->gpa;
9984 if (vcpu->mmio_is_write)
9985 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9986 run->mmio.len = min(8u, frag->len);
9987 run->mmio.is_write = vcpu->mmio_is_write;
9988 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9989 return 0;
9990 }
9991
9992 static void kvm_save_current_fpu(struct fpu *fpu)
9993 {
9994 /*
9995 * If the target FPU state is not resident in the CPU registers, just
9996 * memcpy() from current, else save CPU state directly to the target.
9997 */
9998 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9999 memcpy(&fpu->state, &current->thread.fpu.state,
10000 fpu_kernel_xstate_size);
10001 else
10002 save_fpregs_to_fpstate(fpu);
10003 }
10004
10005 /* Swap (qemu) user FPU context for the guest FPU context. */
10006 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10007 {
10008 fpregs_lock();
10009
10010 kvm_save_current_fpu(vcpu->arch.user_fpu);
10011
10012 /*
10013 * Guests with protected state can't have it set by the hypervisor,
10014 * so skip trying to set it.
10015 */
10016 if (vcpu->arch.guest_fpu)
10017 /* PKRU is separately restored in kvm_x86_ops.run. */
10018 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10019 ~XFEATURE_MASK_PKRU);
10020
10021 fpregs_mark_activate();
10022 fpregs_unlock();
10023
10024 trace_kvm_fpu(1);
10025 }
10026
10027 /* When vcpu_run ends, restore user space FPU context. */
10028 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10029 {
10030 fpregs_lock();
10031
10032 /*
10033 * Guests with protected state can't have it read by the hypervisor,
10034 * so skip trying to save it.
10035 */
10036 if (vcpu->arch.guest_fpu)
10037 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10038
10039 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10040
10041 fpregs_mark_activate();
10042 fpregs_unlock();
10043
10044 ++vcpu->stat.fpu_reload;
10045 trace_kvm_fpu(0);
10046 }
10047
10048 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10049 {
10050 struct kvm_run *kvm_run = vcpu->run;
10051 int r;
10052
10053 vcpu_load(vcpu);
10054 kvm_sigset_activate(vcpu);
10055 kvm_run->flags = 0;
10056 kvm_load_guest_fpu(vcpu);
10057
10058 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10059 if (kvm_run->immediate_exit) {
10060 r = -EINTR;
10061 goto out;
10062 }
10063 kvm_vcpu_block(vcpu);
10064 if (kvm_apic_accept_events(vcpu) < 0) {
10065 r = 0;
10066 goto out;
10067 }
10068 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10069 r = -EAGAIN;
10070 if (signal_pending(current)) {
10071 r = -EINTR;
10072 kvm_run->exit_reason = KVM_EXIT_INTR;
10073 ++vcpu->stat.signal_exits;
10074 }
10075 goto out;
10076 }
10077
10078 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10079 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10080 r = -EINVAL;
10081 goto out;
10082 }
10083
10084 if (kvm_run->kvm_dirty_regs) {
10085 r = sync_regs(vcpu);
10086 if (r != 0)
10087 goto out;
10088 }
10089
10090 /* re-sync apic's tpr */
10091 if (!lapic_in_kernel(vcpu)) {
10092 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10093 r = -EINVAL;
10094 goto out;
10095 }
10096 }
10097
10098 if (unlikely(vcpu->arch.complete_userspace_io)) {
10099 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10100 vcpu->arch.complete_userspace_io = NULL;
10101 r = cui(vcpu);
10102 if (r <= 0)
10103 goto out;
10104 } else
10105 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10106
10107 if (kvm_run->immediate_exit)
10108 r = -EINTR;
10109 else
10110 r = vcpu_run(vcpu);
10111
10112 out:
10113 kvm_put_guest_fpu(vcpu);
10114 if (kvm_run->kvm_valid_regs)
10115 store_regs(vcpu);
10116 post_kvm_run_save(vcpu);
10117 kvm_sigset_deactivate(vcpu);
10118
10119 vcpu_put(vcpu);
10120 return r;
10121 }
10122
10123 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10124 {
10125 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10126 /*
10127 * We are here if userspace calls get_regs() in the middle of
10128 * instruction emulation. Registers state needs to be copied
10129 * back from emulation context to vcpu. Userspace shouldn't do
10130 * that usually, but some bad designed PV devices (vmware
10131 * backdoor interface) need this to work
10132 */
10133 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10134 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10135 }
10136 regs->rax = kvm_rax_read(vcpu);
10137 regs->rbx = kvm_rbx_read(vcpu);
10138 regs->rcx = kvm_rcx_read(vcpu);
10139 regs->rdx = kvm_rdx_read(vcpu);
10140 regs->rsi = kvm_rsi_read(vcpu);
10141 regs->rdi = kvm_rdi_read(vcpu);
10142 regs->rsp = kvm_rsp_read(vcpu);
10143 regs->rbp = kvm_rbp_read(vcpu);
10144 #ifdef CONFIG_X86_64
10145 regs->r8 = kvm_r8_read(vcpu);
10146 regs->r9 = kvm_r9_read(vcpu);
10147 regs->r10 = kvm_r10_read(vcpu);
10148 regs->r11 = kvm_r11_read(vcpu);
10149 regs->r12 = kvm_r12_read(vcpu);
10150 regs->r13 = kvm_r13_read(vcpu);
10151 regs->r14 = kvm_r14_read(vcpu);
10152 regs->r15 = kvm_r15_read(vcpu);
10153 #endif
10154
10155 regs->rip = kvm_rip_read(vcpu);
10156 regs->rflags = kvm_get_rflags(vcpu);
10157 }
10158
10159 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10160 {
10161 vcpu_load(vcpu);
10162 __get_regs(vcpu, regs);
10163 vcpu_put(vcpu);
10164 return 0;
10165 }
10166
10167 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10168 {
10169 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10170 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10171
10172 kvm_rax_write(vcpu, regs->rax);
10173 kvm_rbx_write(vcpu, regs->rbx);
10174 kvm_rcx_write(vcpu, regs->rcx);
10175 kvm_rdx_write(vcpu, regs->rdx);
10176 kvm_rsi_write(vcpu, regs->rsi);
10177 kvm_rdi_write(vcpu, regs->rdi);
10178 kvm_rsp_write(vcpu, regs->rsp);
10179 kvm_rbp_write(vcpu, regs->rbp);
10180 #ifdef CONFIG_X86_64
10181 kvm_r8_write(vcpu, regs->r8);
10182 kvm_r9_write(vcpu, regs->r9);
10183 kvm_r10_write(vcpu, regs->r10);
10184 kvm_r11_write(vcpu, regs->r11);
10185 kvm_r12_write(vcpu, regs->r12);
10186 kvm_r13_write(vcpu, regs->r13);
10187 kvm_r14_write(vcpu, regs->r14);
10188 kvm_r15_write(vcpu, regs->r15);
10189 #endif
10190
10191 kvm_rip_write(vcpu, regs->rip);
10192 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10193
10194 vcpu->arch.exception.pending = false;
10195
10196 kvm_make_request(KVM_REQ_EVENT, vcpu);
10197 }
10198
10199 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10200 {
10201 vcpu_load(vcpu);
10202 __set_regs(vcpu, regs);
10203 vcpu_put(vcpu);
10204 return 0;
10205 }
10206
10207 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10208 {
10209 struct kvm_segment cs;
10210
10211 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10212 *db = cs.db;
10213 *l = cs.l;
10214 }
10215 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10216
10217 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10218 {
10219 struct desc_ptr dt;
10220
10221 if (vcpu->arch.guest_state_protected)
10222 goto skip_protected_regs;
10223
10224 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10225 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10226 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10227 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10228 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10229 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10230
10231 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10232 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10233
10234 static_call(kvm_x86_get_idt)(vcpu, &dt);
10235 sregs->idt.limit = dt.size;
10236 sregs->idt.base = dt.address;
10237 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10238 sregs->gdt.limit = dt.size;
10239 sregs->gdt.base = dt.address;
10240
10241 sregs->cr2 = vcpu->arch.cr2;
10242 sregs->cr3 = kvm_read_cr3(vcpu);
10243
10244 skip_protected_regs:
10245 sregs->cr0 = kvm_read_cr0(vcpu);
10246 sregs->cr4 = kvm_read_cr4(vcpu);
10247 sregs->cr8 = kvm_get_cr8(vcpu);
10248 sregs->efer = vcpu->arch.efer;
10249 sregs->apic_base = kvm_get_apic_base(vcpu);
10250 }
10251
10252 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10253 {
10254 __get_sregs_common(vcpu, sregs);
10255
10256 if (vcpu->arch.guest_state_protected)
10257 return;
10258
10259 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10260 set_bit(vcpu->arch.interrupt.nr,
10261 (unsigned long *)sregs->interrupt_bitmap);
10262 }
10263
10264 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10265 {
10266 int i;
10267
10268 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10269
10270 if (vcpu->arch.guest_state_protected)
10271 return;
10272
10273 if (is_pae_paging(vcpu)) {
10274 for (i = 0 ; i < 4 ; i++)
10275 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10276 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10277 }
10278 }
10279
10280 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10281 struct kvm_sregs *sregs)
10282 {
10283 vcpu_load(vcpu);
10284 __get_sregs(vcpu, sregs);
10285 vcpu_put(vcpu);
10286 return 0;
10287 }
10288
10289 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10290 struct kvm_mp_state *mp_state)
10291 {
10292 int r;
10293
10294 vcpu_load(vcpu);
10295 if (kvm_mpx_supported())
10296 kvm_load_guest_fpu(vcpu);
10297
10298 r = kvm_apic_accept_events(vcpu);
10299 if (r < 0)
10300 goto out;
10301 r = 0;
10302
10303 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10304 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10305 vcpu->arch.pv.pv_unhalted)
10306 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10307 else
10308 mp_state->mp_state = vcpu->arch.mp_state;
10309
10310 out:
10311 if (kvm_mpx_supported())
10312 kvm_put_guest_fpu(vcpu);
10313 vcpu_put(vcpu);
10314 return r;
10315 }
10316
10317 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10318 struct kvm_mp_state *mp_state)
10319 {
10320 int ret = -EINVAL;
10321
10322 vcpu_load(vcpu);
10323
10324 if (!lapic_in_kernel(vcpu) &&
10325 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10326 goto out;
10327
10328 /*
10329 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10330 * INIT state; latched init should be reported using
10331 * KVM_SET_VCPU_EVENTS, so reject it here.
10332 */
10333 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10334 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10335 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10336 goto out;
10337
10338 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10339 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10340 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10341 } else
10342 vcpu->arch.mp_state = mp_state->mp_state;
10343 kvm_make_request(KVM_REQ_EVENT, vcpu);
10344
10345 ret = 0;
10346 out:
10347 vcpu_put(vcpu);
10348 return ret;
10349 }
10350
10351 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10352 int reason, bool has_error_code, u32 error_code)
10353 {
10354 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10355 int ret;
10356
10357 init_emulate_ctxt(vcpu);
10358
10359 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10360 has_error_code, error_code);
10361 if (ret) {
10362 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10363 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10364 vcpu->run->internal.ndata = 0;
10365 return 0;
10366 }
10367
10368 kvm_rip_write(vcpu, ctxt->eip);
10369 kvm_set_rflags(vcpu, ctxt->eflags);
10370 return 1;
10371 }
10372 EXPORT_SYMBOL_GPL(kvm_task_switch);
10373
10374 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10375 {
10376 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10377 /*
10378 * When EFER.LME and CR0.PG are set, the processor is in
10379 * 64-bit mode (though maybe in a 32-bit code segment).
10380 * CR4.PAE and EFER.LMA must be set.
10381 */
10382 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10383 return false;
10384 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10385 return false;
10386 } else {
10387 /*
10388 * Not in 64-bit mode: EFER.LMA is clear and the code
10389 * segment cannot be 64-bit.
10390 */
10391 if (sregs->efer & EFER_LMA || sregs->cs.l)
10392 return false;
10393 }
10394
10395 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10396 }
10397
10398 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10399 int *mmu_reset_needed, bool update_pdptrs)
10400 {
10401 struct msr_data apic_base_msr;
10402 int idx;
10403 struct desc_ptr dt;
10404
10405 if (!kvm_is_valid_sregs(vcpu, sregs))
10406 return -EINVAL;
10407
10408 apic_base_msr.data = sregs->apic_base;
10409 apic_base_msr.host_initiated = true;
10410 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10411 return -EINVAL;
10412
10413 if (vcpu->arch.guest_state_protected)
10414 return 0;
10415
10416 dt.size = sregs->idt.limit;
10417 dt.address = sregs->idt.base;
10418 static_call(kvm_x86_set_idt)(vcpu, &dt);
10419 dt.size = sregs->gdt.limit;
10420 dt.address = sregs->gdt.base;
10421 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10422
10423 vcpu->arch.cr2 = sregs->cr2;
10424 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10425 vcpu->arch.cr3 = sregs->cr3;
10426 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10427
10428 kvm_set_cr8(vcpu, sregs->cr8);
10429
10430 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10431 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10432
10433 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10434 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10435 vcpu->arch.cr0 = sregs->cr0;
10436
10437 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10438 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10439
10440 if (update_pdptrs) {
10441 idx = srcu_read_lock(&vcpu->kvm->srcu);
10442 if (is_pae_paging(vcpu)) {
10443 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10444 *mmu_reset_needed = 1;
10445 }
10446 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10447 }
10448
10449 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10450 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10451 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10452 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10453 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10454 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10455
10456 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10457 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10458
10459 update_cr8_intercept(vcpu);
10460
10461 /* Older userspace won't unhalt the vcpu on reset. */
10462 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10463 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10464 !is_protmode(vcpu))
10465 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10466
10467 return 0;
10468 }
10469
10470 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10471 {
10472 int pending_vec, max_bits;
10473 int mmu_reset_needed = 0;
10474 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10475
10476 if (ret)
10477 return ret;
10478
10479 if (mmu_reset_needed)
10480 kvm_mmu_reset_context(vcpu);
10481
10482 max_bits = KVM_NR_INTERRUPTS;
10483 pending_vec = find_first_bit(
10484 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10485
10486 if (pending_vec < max_bits) {
10487 kvm_queue_interrupt(vcpu, pending_vec, false);
10488 pr_debug("Set back pending irq %d\n", pending_vec);
10489 kvm_make_request(KVM_REQ_EVENT, vcpu);
10490 }
10491 return 0;
10492 }
10493
10494 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10495 {
10496 int mmu_reset_needed = 0;
10497 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10498 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10499 !(sregs2->efer & EFER_LMA);
10500 int i, ret;
10501
10502 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10503 return -EINVAL;
10504
10505 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10506 return -EINVAL;
10507
10508 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10509 &mmu_reset_needed, !valid_pdptrs);
10510 if (ret)
10511 return ret;
10512
10513 if (valid_pdptrs) {
10514 for (i = 0; i < 4 ; i++)
10515 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10516
10517 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10518 mmu_reset_needed = 1;
10519 vcpu->arch.pdptrs_from_userspace = true;
10520 }
10521 if (mmu_reset_needed)
10522 kvm_mmu_reset_context(vcpu);
10523 return 0;
10524 }
10525
10526 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10527 struct kvm_sregs *sregs)
10528 {
10529 int ret;
10530
10531 vcpu_load(vcpu);
10532 ret = __set_sregs(vcpu, sregs);
10533 vcpu_put(vcpu);
10534 return ret;
10535 }
10536
10537 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10538 struct kvm_guest_debug *dbg)
10539 {
10540 unsigned long rflags;
10541 int i, r;
10542
10543 if (vcpu->arch.guest_state_protected)
10544 return -EINVAL;
10545
10546 vcpu_load(vcpu);
10547
10548 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10549 r = -EBUSY;
10550 if (vcpu->arch.exception.pending)
10551 goto out;
10552 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10553 kvm_queue_exception(vcpu, DB_VECTOR);
10554 else
10555 kvm_queue_exception(vcpu, BP_VECTOR);
10556 }
10557
10558 /*
10559 * Read rflags as long as potentially injected trace flags are still
10560 * filtered out.
10561 */
10562 rflags = kvm_get_rflags(vcpu);
10563
10564 vcpu->guest_debug = dbg->control;
10565 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10566 vcpu->guest_debug = 0;
10567
10568 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10569 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10570 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10571 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10572 } else {
10573 for (i = 0; i < KVM_NR_DB_REGS; i++)
10574 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10575 }
10576 kvm_update_dr7(vcpu);
10577
10578 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10579 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10580
10581 /*
10582 * Trigger an rflags update that will inject or remove the trace
10583 * flags.
10584 */
10585 kvm_set_rflags(vcpu, rflags);
10586
10587 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10588
10589 r = 0;
10590
10591 out:
10592 vcpu_put(vcpu);
10593 return r;
10594 }
10595
10596 /*
10597 * Translate a guest virtual address to a guest physical address.
10598 */
10599 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10600 struct kvm_translation *tr)
10601 {
10602 unsigned long vaddr = tr->linear_address;
10603 gpa_t gpa;
10604 int idx;
10605
10606 vcpu_load(vcpu);
10607
10608 idx = srcu_read_lock(&vcpu->kvm->srcu);
10609 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10610 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10611 tr->physical_address = gpa;
10612 tr->valid = gpa != UNMAPPED_GVA;
10613 tr->writeable = 1;
10614 tr->usermode = 0;
10615
10616 vcpu_put(vcpu);
10617 return 0;
10618 }
10619
10620 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10621 {
10622 struct fxregs_state *fxsave;
10623
10624 if (!vcpu->arch.guest_fpu)
10625 return 0;
10626
10627 vcpu_load(vcpu);
10628
10629 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10630 memcpy(fpu->fpr, fxsave->st_space, 128);
10631 fpu->fcw = fxsave->cwd;
10632 fpu->fsw = fxsave->swd;
10633 fpu->ftwx = fxsave->twd;
10634 fpu->last_opcode = fxsave->fop;
10635 fpu->last_ip = fxsave->rip;
10636 fpu->last_dp = fxsave->rdp;
10637 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10638
10639 vcpu_put(vcpu);
10640 return 0;
10641 }
10642
10643 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10644 {
10645 struct fxregs_state *fxsave;
10646
10647 if (!vcpu->arch.guest_fpu)
10648 return 0;
10649
10650 vcpu_load(vcpu);
10651
10652 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10653
10654 memcpy(fxsave->st_space, fpu->fpr, 128);
10655 fxsave->cwd = fpu->fcw;
10656 fxsave->swd = fpu->fsw;
10657 fxsave->twd = fpu->ftwx;
10658 fxsave->fop = fpu->last_opcode;
10659 fxsave->rip = fpu->last_ip;
10660 fxsave->rdp = fpu->last_dp;
10661 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10662
10663 vcpu_put(vcpu);
10664 return 0;
10665 }
10666
10667 static void store_regs(struct kvm_vcpu *vcpu)
10668 {
10669 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10670
10671 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10672 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10673
10674 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10675 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10676
10677 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10678 kvm_vcpu_ioctl_x86_get_vcpu_events(
10679 vcpu, &vcpu->run->s.regs.events);
10680 }
10681
10682 static int sync_regs(struct kvm_vcpu *vcpu)
10683 {
10684 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10685 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10686 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10687 }
10688 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10689 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10690 return -EINVAL;
10691 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10692 }
10693 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10694 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10695 vcpu, &vcpu->run->s.regs.events))
10696 return -EINVAL;
10697 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10698 }
10699
10700 return 0;
10701 }
10702
10703 static void fx_init(struct kvm_vcpu *vcpu)
10704 {
10705 if (!vcpu->arch.guest_fpu)
10706 return;
10707
10708 fpstate_init(&vcpu->arch.guest_fpu->state);
10709 if (boot_cpu_has(X86_FEATURE_XSAVES))
10710 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10711 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10712
10713 /*
10714 * Ensure guest xcr0 is valid for loading
10715 */
10716 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10717
10718 vcpu->arch.cr0 |= X86_CR0_ET;
10719 }
10720
10721 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10722 {
10723 if (vcpu->arch.guest_fpu) {
10724 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10725 vcpu->arch.guest_fpu = NULL;
10726 }
10727 }
10728 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10729
10730 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10731 {
10732 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10733 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10734 "guest TSC will not be reliable\n");
10735
10736 return 0;
10737 }
10738
10739 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10740 {
10741 struct page *page;
10742 int r;
10743
10744 vcpu->arch.last_vmentry_cpu = -1;
10745 vcpu->arch.regs_avail = ~0;
10746 vcpu->arch.regs_dirty = ~0;
10747
10748 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10749 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10750 else
10751 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10752
10753 r = kvm_mmu_create(vcpu);
10754 if (r < 0)
10755 return r;
10756
10757 if (irqchip_in_kernel(vcpu->kvm)) {
10758 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10759 if (r < 0)
10760 goto fail_mmu_destroy;
10761 if (kvm_apicv_activated(vcpu->kvm))
10762 vcpu->arch.apicv_active = true;
10763 } else
10764 static_branch_inc(&kvm_has_noapic_vcpu);
10765
10766 r = -ENOMEM;
10767
10768 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10769 if (!page)
10770 goto fail_free_lapic;
10771 vcpu->arch.pio_data = page_address(page);
10772
10773 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10774 GFP_KERNEL_ACCOUNT);
10775 if (!vcpu->arch.mce_banks)
10776 goto fail_free_pio_data;
10777 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10778
10779 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10780 GFP_KERNEL_ACCOUNT))
10781 goto fail_free_mce_banks;
10782
10783 if (!alloc_emulate_ctxt(vcpu))
10784 goto free_wbinvd_dirty_mask;
10785
10786 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10787 GFP_KERNEL_ACCOUNT);
10788 if (!vcpu->arch.user_fpu) {
10789 pr_err("kvm: failed to allocate userspace's fpu\n");
10790 goto free_emulate_ctxt;
10791 }
10792
10793 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10794 GFP_KERNEL_ACCOUNT);
10795 if (!vcpu->arch.guest_fpu) {
10796 pr_err("kvm: failed to allocate vcpu's fpu\n");
10797 goto free_user_fpu;
10798 }
10799 fx_init(vcpu);
10800
10801 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10802 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10803
10804 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10805
10806 kvm_async_pf_hash_reset(vcpu);
10807 kvm_pmu_init(vcpu);
10808
10809 vcpu->arch.pending_external_vector = -1;
10810 vcpu->arch.preempted_in_kernel = false;
10811
10812 #if IS_ENABLED(CONFIG_HYPERV)
10813 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10814 #endif
10815
10816 r = static_call(kvm_x86_vcpu_create)(vcpu);
10817 if (r)
10818 goto free_guest_fpu;
10819
10820 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10821 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10822 kvm_vcpu_mtrr_init(vcpu);
10823 vcpu_load(vcpu);
10824 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10825 kvm_vcpu_reset(vcpu, false);
10826 kvm_init_mmu(vcpu);
10827 vcpu_put(vcpu);
10828 return 0;
10829
10830 free_guest_fpu:
10831 kvm_free_guest_fpu(vcpu);
10832 free_user_fpu:
10833 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10834 free_emulate_ctxt:
10835 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10836 free_wbinvd_dirty_mask:
10837 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10838 fail_free_mce_banks:
10839 kfree(vcpu->arch.mce_banks);
10840 fail_free_pio_data:
10841 free_page((unsigned long)vcpu->arch.pio_data);
10842 fail_free_lapic:
10843 kvm_free_lapic(vcpu);
10844 fail_mmu_destroy:
10845 kvm_mmu_destroy(vcpu);
10846 return r;
10847 }
10848
10849 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10850 {
10851 struct kvm *kvm = vcpu->kvm;
10852
10853 if (mutex_lock_killable(&vcpu->mutex))
10854 return;
10855 vcpu_load(vcpu);
10856 kvm_synchronize_tsc(vcpu, 0);
10857 vcpu_put(vcpu);
10858
10859 /* poll control enabled by default */
10860 vcpu->arch.msr_kvm_poll_control = 1;
10861
10862 mutex_unlock(&vcpu->mutex);
10863
10864 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10865 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10866 KVMCLOCK_SYNC_PERIOD);
10867 }
10868
10869 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10870 {
10871 int idx;
10872
10873 kvmclock_reset(vcpu);
10874
10875 static_call(kvm_x86_vcpu_free)(vcpu);
10876
10877 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10878 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10879 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10880 kvm_free_guest_fpu(vcpu);
10881
10882 kvm_hv_vcpu_uninit(vcpu);
10883 kvm_pmu_destroy(vcpu);
10884 kfree(vcpu->arch.mce_banks);
10885 kvm_free_lapic(vcpu);
10886 idx = srcu_read_lock(&vcpu->kvm->srcu);
10887 kvm_mmu_destroy(vcpu);
10888 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10889 free_page((unsigned long)vcpu->arch.pio_data);
10890 kvfree(vcpu->arch.cpuid_entries);
10891 if (!lapic_in_kernel(vcpu))
10892 static_branch_dec(&kvm_has_noapic_vcpu);
10893 }
10894
10895 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10896 {
10897 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10898 unsigned long new_cr0;
10899 u32 eax, dummy;
10900
10901 kvm_lapic_reset(vcpu, init_event);
10902
10903 vcpu->arch.hflags = 0;
10904
10905 vcpu->arch.smi_pending = 0;
10906 vcpu->arch.smi_count = 0;
10907 atomic_set(&vcpu->arch.nmi_queued, 0);
10908 vcpu->arch.nmi_pending = 0;
10909 vcpu->arch.nmi_injected = false;
10910 kvm_clear_interrupt_queue(vcpu);
10911 kvm_clear_exception_queue(vcpu);
10912
10913 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10914 kvm_update_dr0123(vcpu);
10915 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10916 vcpu->arch.dr7 = DR7_FIXED_1;
10917 kvm_update_dr7(vcpu);
10918
10919 vcpu->arch.cr2 = 0;
10920
10921 kvm_make_request(KVM_REQ_EVENT, vcpu);
10922 vcpu->arch.apf.msr_en_val = 0;
10923 vcpu->arch.apf.msr_int_val = 0;
10924 vcpu->arch.st.msr_val = 0;
10925
10926 kvmclock_reset(vcpu);
10927
10928 kvm_clear_async_pf_completion_queue(vcpu);
10929 kvm_async_pf_hash_reset(vcpu);
10930 vcpu->arch.apf.halted = false;
10931
10932 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10933 void *mpx_state_buffer;
10934
10935 /*
10936 * To avoid have the INIT path from kvm_apic_has_events() that be
10937 * called with loaded FPU and does not let userspace fix the state.
10938 */
10939 if (init_event)
10940 kvm_put_guest_fpu(vcpu);
10941 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10942 XFEATURE_BNDREGS);
10943 if (mpx_state_buffer)
10944 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10945 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10946 XFEATURE_BNDCSR);
10947 if (mpx_state_buffer)
10948 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10949 if (init_event)
10950 kvm_load_guest_fpu(vcpu);
10951 }
10952
10953 if (!init_event) {
10954 kvm_pmu_reset(vcpu);
10955 vcpu->arch.smbase = 0x30000;
10956
10957 vcpu->arch.msr_misc_features_enables = 0;
10958
10959 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10960 }
10961
10962 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10963 vcpu->arch.regs_avail = ~0;
10964 vcpu->arch.regs_dirty = ~0;
10965
10966 /*
10967 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10968 * if no CPUID match is found. Note, it's impossible to get a match at
10969 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10970 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10971 * But, go through the motions in case that's ever remedied.
10972 */
10973 eax = 1;
10974 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10975 eax = 0x600;
10976 kvm_rdx_write(vcpu, eax);
10977
10978 vcpu->arch.ia32_xss = 0;
10979
10980 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10981
10982 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10983 kvm_rip_write(vcpu, 0xfff0);
10984
10985 vcpu->arch.cr3 = 0;
10986 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10987
10988 /*
10989 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10990 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10991 * (or qualify) that with a footnote stating that CD/NW are preserved.
10992 */
10993 new_cr0 = X86_CR0_ET;
10994 if (init_event)
10995 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10996 else
10997 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10998
10999 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11000 static_call(kvm_x86_set_cr4)(vcpu, 0);
11001 static_call(kvm_x86_set_efer)(vcpu, 0);
11002 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11003
11004 /*
11005 * Reset the MMU context if paging was enabled prior to INIT (which is
11006 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11007 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11008 * checked because it is unconditionally cleared on INIT and all other
11009 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11010 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11011 */
11012 if (old_cr0 & X86_CR0_PG)
11013 kvm_mmu_reset_context(vcpu);
11014
11015 /*
11016 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11017 * APM states the TLBs are untouched by INIT, but it also states that
11018 * the TLBs are flushed on "External initialization of the processor."
11019 * Flush the guest TLB regardless of vendor, there is no meaningful
11020 * benefit in relying on the guest to flush the TLB immediately after
11021 * INIT. A spurious TLB flush is benign and likely negligible from a
11022 * performance perspective.
11023 */
11024 if (init_event)
11025 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11026 }
11027 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11028
11029 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11030 {
11031 struct kvm_segment cs;
11032
11033 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11034 cs.selector = vector << 8;
11035 cs.base = vector << 12;
11036 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11037 kvm_rip_write(vcpu, 0);
11038 }
11039 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11040
11041 int kvm_arch_hardware_enable(void)
11042 {
11043 struct kvm *kvm;
11044 struct kvm_vcpu *vcpu;
11045 int i;
11046 int ret;
11047 u64 local_tsc;
11048 u64 max_tsc = 0;
11049 bool stable, backwards_tsc = false;
11050
11051 kvm_user_return_msr_cpu_online();
11052 ret = static_call(kvm_x86_hardware_enable)();
11053 if (ret != 0)
11054 return ret;
11055
11056 local_tsc = rdtsc();
11057 stable = !kvm_check_tsc_unstable();
11058 list_for_each_entry(kvm, &vm_list, vm_list) {
11059 kvm_for_each_vcpu(i, vcpu, kvm) {
11060 if (!stable && vcpu->cpu == smp_processor_id())
11061 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11062 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11063 backwards_tsc = true;
11064 if (vcpu->arch.last_host_tsc > max_tsc)
11065 max_tsc = vcpu->arch.last_host_tsc;
11066 }
11067 }
11068 }
11069
11070 /*
11071 * Sometimes, even reliable TSCs go backwards. This happens on
11072 * platforms that reset TSC during suspend or hibernate actions, but
11073 * maintain synchronization. We must compensate. Fortunately, we can
11074 * detect that condition here, which happens early in CPU bringup,
11075 * before any KVM threads can be running. Unfortunately, we can't
11076 * bring the TSCs fully up to date with real time, as we aren't yet far
11077 * enough into CPU bringup that we know how much real time has actually
11078 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11079 * variables that haven't been updated yet.
11080 *
11081 * So we simply find the maximum observed TSC above, then record the
11082 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11083 * the adjustment will be applied. Note that we accumulate
11084 * adjustments, in case multiple suspend cycles happen before some VCPU
11085 * gets a chance to run again. In the event that no KVM threads get a
11086 * chance to run, we will miss the entire elapsed period, as we'll have
11087 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11088 * loose cycle time. This isn't too big a deal, since the loss will be
11089 * uniform across all VCPUs (not to mention the scenario is extremely
11090 * unlikely). It is possible that a second hibernate recovery happens
11091 * much faster than a first, causing the observed TSC here to be
11092 * smaller; this would require additional padding adjustment, which is
11093 * why we set last_host_tsc to the local tsc observed here.
11094 *
11095 * N.B. - this code below runs only on platforms with reliable TSC,
11096 * as that is the only way backwards_tsc is set above. Also note
11097 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11098 * have the same delta_cyc adjustment applied if backwards_tsc
11099 * is detected. Note further, this adjustment is only done once,
11100 * as we reset last_host_tsc on all VCPUs to stop this from being
11101 * called multiple times (one for each physical CPU bringup).
11102 *
11103 * Platforms with unreliable TSCs don't have to deal with this, they
11104 * will be compensated by the logic in vcpu_load, which sets the TSC to
11105 * catchup mode. This will catchup all VCPUs to real time, but cannot
11106 * guarantee that they stay in perfect synchronization.
11107 */
11108 if (backwards_tsc) {
11109 u64 delta_cyc = max_tsc - local_tsc;
11110 list_for_each_entry(kvm, &vm_list, vm_list) {
11111 kvm->arch.backwards_tsc_observed = true;
11112 kvm_for_each_vcpu(i, vcpu, kvm) {
11113 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11114 vcpu->arch.last_host_tsc = local_tsc;
11115 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11116 }
11117
11118 /*
11119 * We have to disable TSC offset matching.. if you were
11120 * booting a VM while issuing an S4 host suspend....
11121 * you may have some problem. Solving this issue is
11122 * left as an exercise to the reader.
11123 */
11124 kvm->arch.last_tsc_nsec = 0;
11125 kvm->arch.last_tsc_write = 0;
11126 }
11127
11128 }
11129 return 0;
11130 }
11131
11132 void kvm_arch_hardware_disable(void)
11133 {
11134 static_call(kvm_x86_hardware_disable)();
11135 drop_user_return_notifiers();
11136 }
11137
11138 int kvm_arch_hardware_setup(void *opaque)
11139 {
11140 struct kvm_x86_init_ops *ops = opaque;
11141 int r;
11142
11143 rdmsrl_safe(MSR_EFER, &host_efer);
11144
11145 if (boot_cpu_has(X86_FEATURE_XSAVES))
11146 rdmsrl(MSR_IA32_XSS, host_xss);
11147
11148 r = ops->hardware_setup();
11149 if (r != 0)
11150 return r;
11151
11152 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11153 kvm_ops_static_call_update();
11154
11155 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11156 supported_xss = 0;
11157
11158 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11159 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11160 #undef __kvm_cpu_cap_has
11161
11162 if (kvm_has_tsc_control) {
11163 /*
11164 * Make sure the user can only configure tsc_khz values that
11165 * fit into a signed integer.
11166 * A min value is not calculated because it will always
11167 * be 1 on all machines.
11168 */
11169 u64 max = min(0x7fffffffULL,
11170 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11171 kvm_max_guest_tsc_khz = max;
11172
11173 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11174 }
11175
11176 kvm_init_msr_list();
11177 return 0;
11178 }
11179
11180 void kvm_arch_hardware_unsetup(void)
11181 {
11182 static_call(kvm_x86_hardware_unsetup)();
11183 }
11184
11185 int kvm_arch_check_processor_compat(void *opaque)
11186 {
11187 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11188 struct kvm_x86_init_ops *ops = opaque;
11189
11190 WARN_ON(!irqs_disabled());
11191
11192 if (__cr4_reserved_bits(cpu_has, c) !=
11193 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11194 return -EIO;
11195
11196 return ops->check_processor_compatibility();
11197 }
11198
11199 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11200 {
11201 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11202 }
11203 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11204
11205 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11206 {
11207 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11208 }
11209
11210 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11211 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11212
11213 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11214 {
11215 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11216
11217 vcpu->arch.l1tf_flush_l1d = true;
11218 if (pmu->version && unlikely(pmu->event_count)) {
11219 pmu->need_cleanup = true;
11220 kvm_make_request(KVM_REQ_PMU, vcpu);
11221 }
11222 static_call(kvm_x86_sched_in)(vcpu, cpu);
11223 }
11224
11225 void kvm_arch_free_vm(struct kvm *kvm)
11226 {
11227 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11228 vfree(kvm);
11229 }
11230
11231
11232 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11233 {
11234 int ret;
11235
11236 if (type)
11237 return -EINVAL;
11238
11239 ret = kvm_page_track_init(kvm);
11240 if (ret)
11241 return ret;
11242
11243 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11244 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11245 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11246 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11247 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11248 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11249
11250 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11251 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11252 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11253 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11254 &kvm->arch.irq_sources_bitmap);
11255
11256 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11257 mutex_init(&kvm->arch.apic_map_lock);
11258 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11259
11260 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11261 pvclock_update_vm_gtod_copy(kvm);
11262
11263 kvm->arch.guest_can_read_msr_platform_info = true;
11264
11265 #if IS_ENABLED(CONFIG_HYPERV)
11266 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11267 kvm->arch.hv_root_tdp = INVALID_PAGE;
11268 #endif
11269
11270 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11271 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11272
11273 kvm_apicv_init(kvm);
11274 kvm_hv_init_vm(kvm);
11275 kvm_mmu_init_vm(kvm);
11276 kvm_xen_init_vm(kvm);
11277
11278 return static_call(kvm_x86_vm_init)(kvm);
11279 }
11280
11281 int kvm_arch_post_init_vm(struct kvm *kvm)
11282 {
11283 return kvm_mmu_post_init_vm(kvm);
11284 }
11285
11286 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11287 {
11288 vcpu_load(vcpu);
11289 kvm_mmu_unload(vcpu);
11290 vcpu_put(vcpu);
11291 }
11292
11293 static void kvm_free_vcpus(struct kvm *kvm)
11294 {
11295 unsigned int i;
11296 struct kvm_vcpu *vcpu;
11297
11298 /*
11299 * Unpin any mmu pages first.
11300 */
11301 kvm_for_each_vcpu(i, vcpu, kvm) {
11302 kvm_clear_async_pf_completion_queue(vcpu);
11303 kvm_unload_vcpu_mmu(vcpu);
11304 }
11305 kvm_for_each_vcpu(i, vcpu, kvm)
11306 kvm_vcpu_destroy(vcpu);
11307
11308 mutex_lock(&kvm->lock);
11309 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11310 kvm->vcpus[i] = NULL;
11311
11312 atomic_set(&kvm->online_vcpus, 0);
11313 mutex_unlock(&kvm->lock);
11314 }
11315
11316 void kvm_arch_sync_events(struct kvm *kvm)
11317 {
11318 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11319 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11320 kvm_free_pit(kvm);
11321 }
11322
11323 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11324
11325 /**
11326 * __x86_set_memory_region: Setup KVM internal memory slot
11327 *
11328 * @kvm: the kvm pointer to the VM.
11329 * @id: the slot ID to setup.
11330 * @gpa: the GPA to install the slot (unused when @size == 0).
11331 * @size: the size of the slot. Set to zero to uninstall a slot.
11332 *
11333 * This function helps to setup a KVM internal memory slot. Specify
11334 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11335 * slot. The return code can be one of the following:
11336 *
11337 * HVA: on success (uninstall will return a bogus HVA)
11338 * -errno: on error
11339 *
11340 * The caller should always use IS_ERR() to check the return value
11341 * before use. Note, the KVM internal memory slots are guaranteed to
11342 * remain valid and unchanged until the VM is destroyed, i.e., the
11343 * GPA->HVA translation will not change. However, the HVA is a user
11344 * address, i.e. its accessibility is not guaranteed, and must be
11345 * accessed via __copy_{to,from}_user().
11346 */
11347 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11348 u32 size)
11349 {
11350 int i, r;
11351 unsigned long hva, old_npages;
11352 struct kvm_memslots *slots = kvm_memslots(kvm);
11353 struct kvm_memory_slot *slot;
11354
11355 /* Called with kvm->slots_lock held. */
11356 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11357 return ERR_PTR_USR(-EINVAL);
11358
11359 slot = id_to_memslot(slots, id);
11360 if (size) {
11361 if (slot && slot->npages)
11362 return ERR_PTR_USR(-EEXIST);
11363
11364 /*
11365 * MAP_SHARED to prevent internal slot pages from being moved
11366 * by fork()/COW.
11367 */
11368 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11369 MAP_SHARED | MAP_ANONYMOUS, 0);
11370 if (IS_ERR((void *)hva))
11371 return (void __user *)hva;
11372 } else {
11373 if (!slot || !slot->npages)
11374 return NULL;
11375
11376 old_npages = slot->npages;
11377 hva = slot->userspace_addr;
11378 }
11379
11380 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11381 struct kvm_userspace_memory_region m;
11382
11383 m.slot = id | (i << 16);
11384 m.flags = 0;
11385 m.guest_phys_addr = gpa;
11386 m.userspace_addr = hva;
11387 m.memory_size = size;
11388 r = __kvm_set_memory_region(kvm, &m);
11389 if (r < 0)
11390 return ERR_PTR_USR(r);
11391 }
11392
11393 if (!size)
11394 vm_munmap(hva, old_npages * PAGE_SIZE);
11395
11396 return (void __user *)hva;
11397 }
11398 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11399
11400 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11401 {
11402 kvm_mmu_pre_destroy_vm(kvm);
11403 }
11404
11405 void kvm_arch_destroy_vm(struct kvm *kvm)
11406 {
11407 if (current->mm == kvm->mm) {
11408 /*
11409 * Free memory regions allocated on behalf of userspace,
11410 * unless the the memory map has changed due to process exit
11411 * or fd copying.
11412 */
11413 mutex_lock(&kvm->slots_lock);
11414 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11415 0, 0);
11416 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11417 0, 0);
11418 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11419 mutex_unlock(&kvm->slots_lock);
11420 }
11421 static_call_cond(kvm_x86_vm_destroy)(kvm);
11422 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11423 kvm_pic_destroy(kvm);
11424 kvm_ioapic_destroy(kvm);
11425 kvm_free_vcpus(kvm);
11426 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11427 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11428 kvm_mmu_uninit_vm(kvm);
11429 kvm_page_track_cleanup(kvm);
11430 kvm_xen_destroy_vm(kvm);
11431 kvm_hv_destroy_vm(kvm);
11432 }
11433
11434 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11435 {
11436 int i;
11437
11438 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11439 kvfree(slot->arch.rmap[i]);
11440 slot->arch.rmap[i] = NULL;
11441 }
11442 }
11443
11444 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11445 {
11446 int i;
11447
11448 memslot_rmap_free(slot);
11449
11450 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11451 kvfree(slot->arch.lpage_info[i - 1]);
11452 slot->arch.lpage_info[i - 1] = NULL;
11453 }
11454
11455 kvm_page_track_free_memslot(slot);
11456 }
11457
11458 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11459 unsigned long npages)
11460 {
11461 const int sz = sizeof(*slot->arch.rmap[0]);
11462 int i;
11463
11464 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11465 int level = i + 1;
11466 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11467
11468 if (slot->arch.rmap[i])
11469 continue;
11470
11471 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11472 if (!slot->arch.rmap[i]) {
11473 memslot_rmap_free(slot);
11474 return -ENOMEM;
11475 }
11476 }
11477
11478 return 0;
11479 }
11480
11481 int alloc_all_memslots_rmaps(struct kvm *kvm)
11482 {
11483 struct kvm_memslots *slots;
11484 struct kvm_memory_slot *slot;
11485 int r, i;
11486
11487 /*
11488 * Check if memslots alreday have rmaps early before acquiring
11489 * the slots_arch_lock below.
11490 */
11491 if (kvm_memslots_have_rmaps(kvm))
11492 return 0;
11493
11494 mutex_lock(&kvm->slots_arch_lock);
11495
11496 /*
11497 * Read memslots_have_rmaps again, under the slots arch lock,
11498 * before allocating the rmaps
11499 */
11500 if (kvm_memslots_have_rmaps(kvm)) {
11501 mutex_unlock(&kvm->slots_arch_lock);
11502 return 0;
11503 }
11504
11505 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11506 slots = __kvm_memslots(kvm, i);
11507 kvm_for_each_memslot(slot, slots) {
11508 r = memslot_rmap_alloc(slot, slot->npages);
11509 if (r) {
11510 mutex_unlock(&kvm->slots_arch_lock);
11511 return r;
11512 }
11513 }
11514 }
11515
11516 /*
11517 * Ensure that memslots_have_rmaps becomes true strictly after
11518 * all the rmap pointers are set.
11519 */
11520 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11521 mutex_unlock(&kvm->slots_arch_lock);
11522 return 0;
11523 }
11524
11525 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11526 struct kvm_memory_slot *slot,
11527 unsigned long npages)
11528 {
11529 int i, r;
11530
11531 /*
11532 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11533 * old arrays will be freed by __kvm_set_memory_region() if installing
11534 * the new memslot is successful.
11535 */
11536 memset(&slot->arch, 0, sizeof(slot->arch));
11537
11538 if (kvm_memslots_have_rmaps(kvm)) {
11539 r = memslot_rmap_alloc(slot, npages);
11540 if (r)
11541 return r;
11542 }
11543
11544 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11545 struct kvm_lpage_info *linfo;
11546 unsigned long ugfn;
11547 int lpages;
11548 int level = i + 1;
11549
11550 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11551
11552 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11553 if (!linfo)
11554 goto out_free;
11555
11556 slot->arch.lpage_info[i - 1] = linfo;
11557
11558 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11559 linfo[0].disallow_lpage = 1;
11560 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11561 linfo[lpages - 1].disallow_lpage = 1;
11562 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11563 /*
11564 * If the gfn and userspace address are not aligned wrt each
11565 * other, disable large page support for this slot.
11566 */
11567 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11568 unsigned long j;
11569
11570 for (j = 0; j < lpages; ++j)
11571 linfo[j].disallow_lpage = 1;
11572 }
11573 }
11574
11575 if (kvm_page_track_create_memslot(slot, npages))
11576 goto out_free;
11577
11578 return 0;
11579
11580 out_free:
11581 memslot_rmap_free(slot);
11582
11583 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11584 kvfree(slot->arch.lpage_info[i - 1]);
11585 slot->arch.lpage_info[i - 1] = NULL;
11586 }
11587 return -ENOMEM;
11588 }
11589
11590 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11591 {
11592 struct kvm_vcpu *vcpu;
11593 int i;
11594
11595 /*
11596 * memslots->generation has been incremented.
11597 * mmio generation may have reached its maximum value.
11598 */
11599 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11600
11601 /* Force re-initialization of steal_time cache */
11602 kvm_for_each_vcpu(i, vcpu, kvm)
11603 kvm_vcpu_kick(vcpu);
11604 }
11605
11606 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11607 struct kvm_memory_slot *memslot,
11608 const struct kvm_userspace_memory_region *mem,
11609 enum kvm_mr_change change)
11610 {
11611 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11612 return kvm_alloc_memslot_metadata(kvm, memslot,
11613 mem->memory_size >> PAGE_SHIFT);
11614 return 0;
11615 }
11616
11617
11618 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11619 {
11620 struct kvm_arch *ka = &kvm->arch;
11621
11622 if (!kvm_x86_ops.cpu_dirty_log_size)
11623 return;
11624
11625 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11626 (!enable && --ka->cpu_dirty_logging_count == 0))
11627 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11628
11629 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11630 }
11631
11632 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11633 struct kvm_memory_slot *old,
11634 const struct kvm_memory_slot *new,
11635 enum kvm_mr_change change)
11636 {
11637 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11638
11639 /*
11640 * Update CPU dirty logging if dirty logging is being toggled. This
11641 * applies to all operations.
11642 */
11643 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11644 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11645
11646 /*
11647 * Nothing more to do for RO slots (which can't be dirtied and can't be
11648 * made writable) or CREATE/MOVE/DELETE of a slot.
11649 *
11650 * For a memslot with dirty logging disabled:
11651 * CREATE: No dirty mappings will already exist.
11652 * MOVE/DELETE: The old mappings will already have been cleaned up by
11653 * kvm_arch_flush_shadow_memslot()
11654 *
11655 * For a memslot with dirty logging enabled:
11656 * CREATE: No shadow pages exist, thus nothing to write-protect
11657 * and no dirty bits to clear.
11658 * MOVE/DELETE: The old mappings will already have been cleaned up by
11659 * kvm_arch_flush_shadow_memslot().
11660 */
11661 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11662 return;
11663
11664 /*
11665 * READONLY and non-flags changes were filtered out above, and the only
11666 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11667 * logging isn't being toggled on or off.
11668 */
11669 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11670 return;
11671
11672 if (!log_dirty_pages) {
11673 /*
11674 * Dirty logging tracks sptes in 4k granularity, meaning that
11675 * large sptes have to be split. If live migration succeeds,
11676 * the guest in the source machine will be destroyed and large
11677 * sptes will be created in the destination. However, if the
11678 * guest continues to run in the source machine (for example if
11679 * live migration fails), small sptes will remain around and
11680 * cause bad performance.
11681 *
11682 * Scan sptes if dirty logging has been stopped, dropping those
11683 * which can be collapsed into a single large-page spte. Later
11684 * page faults will create the large-page sptes.
11685 */
11686 kvm_mmu_zap_collapsible_sptes(kvm, new);
11687 } else {
11688 /*
11689 * Initially-all-set does not require write protecting any page,
11690 * because they're all assumed to be dirty.
11691 */
11692 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11693 return;
11694
11695 if (kvm_x86_ops.cpu_dirty_log_size) {
11696 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11697 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11698 } else {
11699 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11700 }
11701 }
11702 }
11703
11704 void kvm_arch_commit_memory_region(struct kvm *kvm,
11705 const struct kvm_userspace_memory_region *mem,
11706 struct kvm_memory_slot *old,
11707 const struct kvm_memory_slot *new,
11708 enum kvm_mr_change change)
11709 {
11710 if (!kvm->arch.n_requested_mmu_pages)
11711 kvm_mmu_change_mmu_pages(kvm,
11712 kvm_mmu_calculate_default_mmu_pages(kvm));
11713
11714 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11715
11716 /* Free the arrays associated with the old memslot. */
11717 if (change == KVM_MR_MOVE)
11718 kvm_arch_free_memslot(kvm, old);
11719 }
11720
11721 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11722 {
11723 kvm_mmu_zap_all(kvm);
11724 }
11725
11726 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11727 struct kvm_memory_slot *slot)
11728 {
11729 kvm_page_track_flush_slot(kvm, slot);
11730 }
11731
11732 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11733 {
11734 return (is_guest_mode(vcpu) &&
11735 kvm_x86_ops.guest_apic_has_interrupt &&
11736 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11737 }
11738
11739 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11740 {
11741 if (!list_empty_careful(&vcpu->async_pf.done))
11742 return true;
11743
11744 if (kvm_apic_has_events(vcpu))
11745 return true;
11746
11747 if (vcpu->arch.pv.pv_unhalted)
11748 return true;
11749
11750 if (vcpu->arch.exception.pending)
11751 return true;
11752
11753 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11754 (vcpu->arch.nmi_pending &&
11755 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11756 return true;
11757
11758 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11759 (vcpu->arch.smi_pending &&
11760 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11761 return true;
11762
11763 if (kvm_arch_interrupt_allowed(vcpu) &&
11764 (kvm_cpu_has_interrupt(vcpu) ||
11765 kvm_guest_apic_has_interrupt(vcpu)))
11766 return true;
11767
11768 if (kvm_hv_has_stimer_pending(vcpu))
11769 return true;
11770
11771 if (is_guest_mode(vcpu) &&
11772 kvm_x86_ops.nested_ops->hv_timer_pending &&
11773 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11774 return true;
11775
11776 return false;
11777 }
11778
11779 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11780 {
11781 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11782 }
11783
11784 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11785 {
11786 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11787 return true;
11788
11789 return false;
11790 }
11791
11792 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11793 {
11794 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11795 return true;
11796
11797 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11798 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11799 kvm_test_request(KVM_REQ_EVENT, vcpu))
11800 return true;
11801
11802 return kvm_arch_dy_has_pending_interrupt(vcpu);
11803 }
11804
11805 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11806 {
11807 if (vcpu->arch.guest_state_protected)
11808 return true;
11809
11810 return vcpu->arch.preempted_in_kernel;
11811 }
11812
11813 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11814 {
11815 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11816 }
11817
11818 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11819 {
11820 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11821 }
11822
11823 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11824 {
11825 /* Can't read the RIP when guest state is protected, just return 0 */
11826 if (vcpu->arch.guest_state_protected)
11827 return 0;
11828
11829 if (is_64_bit_mode(vcpu))
11830 return kvm_rip_read(vcpu);
11831 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11832 kvm_rip_read(vcpu));
11833 }
11834 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11835
11836 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11837 {
11838 return kvm_get_linear_rip(vcpu) == linear_rip;
11839 }
11840 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11841
11842 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11843 {
11844 unsigned long rflags;
11845
11846 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11847 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11848 rflags &= ~X86_EFLAGS_TF;
11849 return rflags;
11850 }
11851 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11852
11853 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11854 {
11855 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11856 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11857 rflags |= X86_EFLAGS_TF;
11858 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11859 }
11860
11861 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11862 {
11863 __kvm_set_rflags(vcpu, rflags);
11864 kvm_make_request(KVM_REQ_EVENT, vcpu);
11865 }
11866 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11867
11868 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11869 {
11870 int r;
11871
11872 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11873 work->wakeup_all)
11874 return;
11875
11876 r = kvm_mmu_reload(vcpu);
11877 if (unlikely(r))
11878 return;
11879
11880 if (!vcpu->arch.mmu->direct_map &&
11881 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11882 return;
11883
11884 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11885 }
11886
11887 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11888 {
11889 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11890
11891 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11892 }
11893
11894 static inline u32 kvm_async_pf_next_probe(u32 key)
11895 {
11896 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11897 }
11898
11899 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11900 {
11901 u32 key = kvm_async_pf_hash_fn(gfn);
11902
11903 while (vcpu->arch.apf.gfns[key] != ~0)
11904 key = kvm_async_pf_next_probe(key);
11905
11906 vcpu->arch.apf.gfns[key] = gfn;
11907 }
11908
11909 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11910 {
11911 int i;
11912 u32 key = kvm_async_pf_hash_fn(gfn);
11913
11914 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11915 (vcpu->arch.apf.gfns[key] != gfn &&
11916 vcpu->arch.apf.gfns[key] != ~0); i++)
11917 key = kvm_async_pf_next_probe(key);
11918
11919 return key;
11920 }
11921
11922 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11923 {
11924 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11925 }
11926
11927 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11928 {
11929 u32 i, j, k;
11930
11931 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11932
11933 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11934 return;
11935
11936 while (true) {
11937 vcpu->arch.apf.gfns[i] = ~0;
11938 do {
11939 j = kvm_async_pf_next_probe(j);
11940 if (vcpu->arch.apf.gfns[j] == ~0)
11941 return;
11942 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11943 /*
11944 * k lies cyclically in ]i,j]
11945 * | i.k.j |
11946 * |....j i.k.| or |.k..j i...|
11947 */
11948 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11949 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11950 i = j;
11951 }
11952 }
11953
11954 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11955 {
11956 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11957
11958 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11959 sizeof(reason));
11960 }
11961
11962 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11963 {
11964 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11965
11966 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11967 &token, offset, sizeof(token));
11968 }
11969
11970 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11971 {
11972 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11973 u32 val;
11974
11975 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11976 &val, offset, sizeof(val)))
11977 return false;
11978
11979 return !val;
11980 }
11981
11982 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11983 {
11984 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11985 return false;
11986
11987 if (!kvm_pv_async_pf_enabled(vcpu) ||
11988 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11989 return false;
11990
11991 return true;
11992 }
11993
11994 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11995 {
11996 if (unlikely(!lapic_in_kernel(vcpu) ||
11997 kvm_event_needs_reinjection(vcpu) ||
11998 vcpu->arch.exception.pending))
11999 return false;
12000
12001 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12002 return false;
12003
12004 /*
12005 * If interrupts are off we cannot even use an artificial
12006 * halt state.
12007 */
12008 return kvm_arch_interrupt_allowed(vcpu);
12009 }
12010
12011 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12012 struct kvm_async_pf *work)
12013 {
12014 struct x86_exception fault;
12015
12016 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12017 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12018
12019 if (kvm_can_deliver_async_pf(vcpu) &&
12020 !apf_put_user_notpresent(vcpu)) {
12021 fault.vector = PF_VECTOR;
12022 fault.error_code_valid = true;
12023 fault.error_code = 0;
12024 fault.nested_page_fault = false;
12025 fault.address = work->arch.token;
12026 fault.async_page_fault = true;
12027 kvm_inject_page_fault(vcpu, &fault);
12028 return true;
12029 } else {
12030 /*
12031 * It is not possible to deliver a paravirtualized asynchronous
12032 * page fault, but putting the guest in an artificial halt state
12033 * can be beneficial nevertheless: if an interrupt arrives, we
12034 * can deliver it timely and perhaps the guest will schedule
12035 * another process. When the instruction that triggered a page
12036 * fault is retried, hopefully the page will be ready in the host.
12037 */
12038 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12039 return false;
12040 }
12041 }
12042
12043 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12044 struct kvm_async_pf *work)
12045 {
12046 struct kvm_lapic_irq irq = {
12047 .delivery_mode = APIC_DM_FIXED,
12048 .vector = vcpu->arch.apf.vec
12049 };
12050
12051 if (work->wakeup_all)
12052 work->arch.token = ~0; /* broadcast wakeup */
12053 else
12054 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12055 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12056
12057 if ((work->wakeup_all || work->notpresent_injected) &&
12058 kvm_pv_async_pf_enabled(vcpu) &&
12059 !apf_put_user_ready(vcpu, work->arch.token)) {
12060 vcpu->arch.apf.pageready_pending = true;
12061 kvm_apic_set_irq(vcpu, &irq, NULL);
12062 }
12063
12064 vcpu->arch.apf.halted = false;
12065 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12066 }
12067
12068 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12069 {
12070 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12071 if (!vcpu->arch.apf.pageready_pending)
12072 kvm_vcpu_kick(vcpu);
12073 }
12074
12075 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12076 {
12077 if (!kvm_pv_async_pf_enabled(vcpu))
12078 return true;
12079 else
12080 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12081 }
12082
12083 void kvm_arch_start_assignment(struct kvm *kvm)
12084 {
12085 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12086 static_call_cond(kvm_x86_start_assignment)(kvm);
12087 }
12088 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12089
12090 void kvm_arch_end_assignment(struct kvm *kvm)
12091 {
12092 atomic_dec(&kvm->arch.assigned_device_count);
12093 }
12094 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12095
12096 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12097 {
12098 return atomic_read(&kvm->arch.assigned_device_count);
12099 }
12100 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12101
12102 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12103 {
12104 atomic_inc(&kvm->arch.noncoherent_dma_count);
12105 }
12106 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12107
12108 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12109 {
12110 atomic_dec(&kvm->arch.noncoherent_dma_count);
12111 }
12112 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12113
12114 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12115 {
12116 return atomic_read(&kvm->arch.noncoherent_dma_count);
12117 }
12118 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12119
12120 bool kvm_arch_has_irq_bypass(void)
12121 {
12122 return true;
12123 }
12124
12125 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12126 struct irq_bypass_producer *prod)
12127 {
12128 struct kvm_kernel_irqfd *irqfd =
12129 container_of(cons, struct kvm_kernel_irqfd, consumer);
12130 int ret;
12131
12132 irqfd->producer = prod;
12133 kvm_arch_start_assignment(irqfd->kvm);
12134 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12135 prod->irq, irqfd->gsi, 1);
12136
12137 if (ret)
12138 kvm_arch_end_assignment(irqfd->kvm);
12139
12140 return ret;
12141 }
12142
12143 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12144 struct irq_bypass_producer *prod)
12145 {
12146 int ret;
12147 struct kvm_kernel_irqfd *irqfd =
12148 container_of(cons, struct kvm_kernel_irqfd, consumer);
12149
12150 WARN_ON(irqfd->producer != prod);
12151 irqfd->producer = NULL;
12152
12153 /*
12154 * When producer of consumer is unregistered, we change back to
12155 * remapped mode, so we can re-use the current implementation
12156 * when the irq is masked/disabled or the consumer side (KVM
12157 * int this case doesn't want to receive the interrupts.
12158 */
12159 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12160 if (ret)
12161 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12162 " fails: %d\n", irqfd->consumer.token, ret);
12163
12164 kvm_arch_end_assignment(irqfd->kvm);
12165 }
12166
12167 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12168 uint32_t guest_irq, bool set)
12169 {
12170 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12171 }
12172
12173 bool kvm_vector_hashing_enabled(void)
12174 {
12175 return vector_hashing;
12176 }
12177
12178 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12179 {
12180 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12181 }
12182 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12183
12184
12185 int kvm_spec_ctrl_test_value(u64 value)
12186 {
12187 /*
12188 * test that setting IA32_SPEC_CTRL to given value
12189 * is allowed by the host processor
12190 */
12191
12192 u64 saved_value;
12193 unsigned long flags;
12194 int ret = 0;
12195
12196 local_irq_save(flags);
12197
12198 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12199 ret = 1;
12200 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12201 ret = 1;
12202 else
12203 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12204
12205 local_irq_restore(flags);
12206
12207 return ret;
12208 }
12209 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12210
12211 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12212 {
12213 struct x86_exception fault;
12214 u32 access = error_code &
12215 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12216
12217 if (!(error_code & PFERR_PRESENT_MASK) ||
12218 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12219 /*
12220 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12221 * tables probably do not match the TLB. Just proceed
12222 * with the error code that the processor gave.
12223 */
12224 fault.vector = PF_VECTOR;
12225 fault.error_code_valid = true;
12226 fault.error_code = error_code;
12227 fault.nested_page_fault = false;
12228 fault.address = gva;
12229 }
12230 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12231 }
12232 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12233
12234 /*
12235 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12236 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12237 * indicates whether exit to userspace is needed.
12238 */
12239 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12240 struct x86_exception *e)
12241 {
12242 if (r == X86EMUL_PROPAGATE_FAULT) {
12243 kvm_inject_emulated_page_fault(vcpu, e);
12244 return 1;
12245 }
12246
12247 /*
12248 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12249 * while handling a VMX instruction KVM could've handled the request
12250 * correctly by exiting to userspace and performing I/O but there
12251 * doesn't seem to be a real use-case behind such requests, just return
12252 * KVM_EXIT_INTERNAL_ERROR for now.
12253 */
12254 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12255 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12256 vcpu->run->internal.ndata = 0;
12257
12258 return 0;
12259 }
12260 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12261
12262 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12263 {
12264 bool pcid_enabled;
12265 struct x86_exception e;
12266 struct {
12267 u64 pcid;
12268 u64 gla;
12269 } operand;
12270 int r;
12271
12272 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12273 if (r != X86EMUL_CONTINUE)
12274 return kvm_handle_memory_failure(vcpu, r, &e);
12275
12276 if (operand.pcid >> 12 != 0) {
12277 kvm_inject_gp(vcpu, 0);
12278 return 1;
12279 }
12280
12281 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12282
12283 switch (type) {
12284 case INVPCID_TYPE_INDIV_ADDR:
12285 if ((!pcid_enabled && (operand.pcid != 0)) ||
12286 is_noncanonical_address(operand.gla, vcpu)) {
12287 kvm_inject_gp(vcpu, 0);
12288 return 1;
12289 }
12290 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12291 return kvm_skip_emulated_instruction(vcpu);
12292
12293 case INVPCID_TYPE_SINGLE_CTXT:
12294 if (!pcid_enabled && (operand.pcid != 0)) {
12295 kvm_inject_gp(vcpu, 0);
12296 return 1;
12297 }
12298
12299 kvm_invalidate_pcid(vcpu, operand.pcid);
12300 return kvm_skip_emulated_instruction(vcpu);
12301
12302 case INVPCID_TYPE_ALL_NON_GLOBAL:
12303 /*
12304 * Currently, KVM doesn't mark global entries in the shadow
12305 * page tables, so a non-global flush just degenerates to a
12306 * global flush. If needed, we could optimize this later by
12307 * keeping track of global entries in shadow page tables.
12308 */
12309
12310 fallthrough;
12311 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12312 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12313 return kvm_skip_emulated_instruction(vcpu);
12314
12315 default:
12316 BUG(); /* We have already checked above that type <= 3 */
12317 }
12318 }
12319 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12320
12321 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12322 {
12323 struct kvm_run *run = vcpu->run;
12324 struct kvm_mmio_fragment *frag;
12325 unsigned int len;
12326
12327 BUG_ON(!vcpu->mmio_needed);
12328
12329 /* Complete previous fragment */
12330 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12331 len = min(8u, frag->len);
12332 if (!vcpu->mmio_is_write)
12333 memcpy(frag->data, run->mmio.data, len);
12334
12335 if (frag->len <= 8) {
12336 /* Switch to the next fragment. */
12337 frag++;
12338 vcpu->mmio_cur_fragment++;
12339 } else {
12340 /* Go forward to the next mmio piece. */
12341 frag->data += len;
12342 frag->gpa += len;
12343 frag->len -= len;
12344 }
12345
12346 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12347 vcpu->mmio_needed = 0;
12348
12349 // VMG change, at this point, we're always done
12350 // RIP has already been advanced
12351 return 1;
12352 }
12353
12354 // More MMIO is needed
12355 run->mmio.phys_addr = frag->gpa;
12356 run->mmio.len = min(8u, frag->len);
12357 run->mmio.is_write = vcpu->mmio_is_write;
12358 if (run->mmio.is_write)
12359 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12360 run->exit_reason = KVM_EXIT_MMIO;
12361
12362 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12363
12364 return 0;
12365 }
12366
12367 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12368 void *data)
12369 {
12370 int handled;
12371 struct kvm_mmio_fragment *frag;
12372
12373 if (!data)
12374 return -EINVAL;
12375
12376 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12377 if (handled == bytes)
12378 return 1;
12379
12380 bytes -= handled;
12381 gpa += handled;
12382 data += handled;
12383
12384 /*TODO: Check if need to increment number of frags */
12385 frag = vcpu->mmio_fragments;
12386 vcpu->mmio_nr_fragments = 1;
12387 frag->len = bytes;
12388 frag->gpa = gpa;
12389 frag->data = data;
12390
12391 vcpu->mmio_needed = 1;
12392 vcpu->mmio_cur_fragment = 0;
12393
12394 vcpu->run->mmio.phys_addr = gpa;
12395 vcpu->run->mmio.len = min(8u, frag->len);
12396 vcpu->run->mmio.is_write = 1;
12397 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12398 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12399
12400 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12401
12402 return 0;
12403 }
12404 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12405
12406 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12407 void *data)
12408 {
12409 int handled;
12410 struct kvm_mmio_fragment *frag;
12411
12412 if (!data)
12413 return -EINVAL;
12414
12415 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12416 if (handled == bytes)
12417 return 1;
12418
12419 bytes -= handled;
12420 gpa += handled;
12421 data += handled;
12422
12423 /*TODO: Check if need to increment number of frags */
12424 frag = vcpu->mmio_fragments;
12425 vcpu->mmio_nr_fragments = 1;
12426 frag->len = bytes;
12427 frag->gpa = gpa;
12428 frag->data = data;
12429
12430 vcpu->mmio_needed = 1;
12431 vcpu->mmio_cur_fragment = 0;
12432
12433 vcpu->run->mmio.phys_addr = gpa;
12434 vcpu->run->mmio.len = min(8u, frag->len);
12435 vcpu->run->mmio.is_write = 0;
12436 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12437
12438 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12439
12440 return 0;
12441 }
12442 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12443
12444 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12445 unsigned int port);
12446
12447 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12448 {
12449 int size = vcpu->arch.pio.size;
12450 int port = vcpu->arch.pio.port;
12451
12452 vcpu->arch.pio.count = 0;
12453 if (vcpu->arch.sev_pio_count)
12454 return kvm_sev_es_outs(vcpu, size, port);
12455 return 1;
12456 }
12457
12458 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12459 unsigned int port)
12460 {
12461 for (;;) {
12462 unsigned int count =
12463 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12464 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12465
12466 /* memcpy done already by emulator_pio_out. */
12467 vcpu->arch.sev_pio_count -= count;
12468 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12469 if (!ret)
12470 break;
12471
12472 /* Emulation done by the kernel. */
12473 if (!vcpu->arch.sev_pio_count)
12474 return 1;
12475 }
12476
12477 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12478 return 0;
12479 }
12480
12481 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12482 unsigned int port);
12483
12484 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12485 {
12486 unsigned count = vcpu->arch.pio.count;
12487 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12488 vcpu->arch.sev_pio_count -= count;
12489 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12490 }
12491
12492 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12493 {
12494 int size = vcpu->arch.pio.size;
12495 int port = vcpu->arch.pio.port;
12496
12497 advance_sev_es_emulated_ins(vcpu);
12498 if (vcpu->arch.sev_pio_count)
12499 return kvm_sev_es_ins(vcpu, size, port);
12500 return 1;
12501 }
12502
12503 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12504 unsigned int port)
12505 {
12506 for (;;) {
12507 unsigned int count =
12508 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12509 if (!__emulator_pio_in(vcpu, size, port, count))
12510 break;
12511
12512 /* Emulation done by the kernel. */
12513 advance_sev_es_emulated_ins(vcpu);
12514 if (!vcpu->arch.sev_pio_count)
12515 return 1;
12516 }
12517
12518 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12519 return 0;
12520 }
12521
12522 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12523 unsigned int port, void *data, unsigned int count,
12524 int in)
12525 {
12526 vcpu->arch.sev_pio_data = data;
12527 vcpu->arch.sev_pio_count = count;
12528 return in ? kvm_sev_es_ins(vcpu, size, port)
12529 : kvm_sev_es_outs(vcpu, size, port);
12530 }
12531 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12532
12533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);