]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge remote-tracking branches 'regulator/topic/abb', 'regulator/topic/act8865',...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
81 */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32 __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64 __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134 int nr;
135 u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139 struct user_return_notifier urn;
140 bool registered;
141 struct kvm_shared_msr_values {
142 u64 host;
143 u64 curr;
144 } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 { "pf_fixed", VCPU_STAT(pf_fixed) },
152 { "pf_guest", VCPU_STAT(pf_guest) },
153 { "tlb_flush", VCPU_STAT(tlb_flush) },
154 { "invlpg", VCPU_STAT(invlpg) },
155 { "exits", VCPU_STAT(exits) },
156 { "io_exits", VCPU_STAT(io_exits) },
157 { "mmio_exits", VCPU_STAT(mmio_exits) },
158 { "signal_exits", VCPU_STAT(signal_exits) },
159 { "irq_window", VCPU_STAT(irq_window_exits) },
160 { "nmi_window", VCPU_STAT(nmi_window_exits) },
161 { "halt_exits", VCPU_STAT(halt_exits) },
162 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
165 { "hypercalls", VCPU_STAT(hypercalls) },
166 { "request_irq", VCPU_STAT(request_irq_exits) },
167 { "irq_exits", VCPU_STAT(irq_exits) },
168 { "host_state_reload", VCPU_STAT(host_state_reload) },
169 { "efer_reload", VCPU_STAT(efer_reload) },
170 { "fpu_reload", VCPU_STAT(fpu_reload) },
171 { "insn_emulation", VCPU_STAT(insn_emulation) },
172 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173 { "irq_injections", VCPU_STAT(irq_injections) },
174 { "nmi_injections", VCPU_STAT(nmi_injections) },
175 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
177 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179 { "mmu_flooded", VM_STAT(mmu_flooded) },
180 { "mmu_recycled", VM_STAT(mmu_recycled) },
181 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182 { "mmu_unsync", VM_STAT(mmu_unsync) },
183 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184 { "largepages", VM_STAT(lpages) },
185 { NULL }
186 };
187
188 u64 __read_mostly host_xcr0;
189
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194 int i;
195 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196 vcpu->arch.apf.gfns[i] = ~0;
197 }
198
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201 unsigned slot;
202 struct kvm_shared_msrs *locals
203 = container_of(urn, struct kvm_shared_msrs, urn);
204 struct kvm_shared_msr_values *values;
205
206 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207 values = &locals->values[slot];
208 if (values->host != values->curr) {
209 wrmsrl(shared_msrs_global.msrs[slot], values->host);
210 values->curr = values->host;
211 }
212 }
213 locals->registered = false;
214 user_return_notifier_unregister(urn);
215 }
216
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219 u64 value;
220 unsigned int cpu = smp_processor_id();
221 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222
223 /* only read, and nobody should modify it at this time,
224 * so don't need lock */
225 if (slot >= shared_msrs_global.nr) {
226 printk(KERN_ERR "kvm: invalid MSR slot!");
227 return;
228 }
229 rdmsrl_safe(msr, &value);
230 smsr->values[slot].host = value;
231 smsr->values[slot].curr = value;
232 }
233
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237 shared_msrs_global.msrs[slot] = msr;
238 if (slot >= shared_msrs_global.nr)
239 shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242
243 static void kvm_shared_msr_cpu_online(void)
244 {
245 unsigned i;
246
247 for (i = 0; i < shared_msrs_global.nr; ++i)
248 shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253 unsigned int cpu = smp_processor_id();
254 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 int err;
256
257 if (((value ^ smsr->values[slot].curr) & mask) == 0)
258 return 0;
259 smsr->values[slot].curr = value;
260 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261 if (err)
262 return 1;
263
264 if (!smsr->registered) {
265 smsr->urn.on_user_return = kvm_on_user_return;
266 user_return_notifier_register(&smsr->urn);
267 smsr->registered = true;
268 }
269 return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272
273 static void drop_user_return_notifiers(void)
274 {
275 unsigned int cpu = smp_processor_id();
276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277
278 if (smsr->registered)
279 kvm_on_user_return(&smsr->urn);
280 }
281
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284 return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290 u64 old_state = vcpu->arch.apic_base &
291 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292 u64 new_state = msr_info->data &
293 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296
297 if (!msr_info->host_initiated &&
298 ((msr_info->data & reserved_bits) != 0 ||
299 new_state == X2APIC_ENABLE ||
300 (new_state == MSR_IA32_APICBASE_ENABLE &&
301 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303 old_state == 0)))
304 return 1;
305
306 kvm_lapic_set_base(vcpu, msr_info->data);
307 return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313 /* Fault while not rebooting. We want the trace. */
314 BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317
318 #define EXCPT_BENIGN 0
319 #define EXCPT_CONTRIBUTORY 1
320 #define EXCPT_PF 2
321
322 static int exception_class(int vector)
323 {
324 switch (vector) {
325 case PF_VECTOR:
326 return EXCPT_PF;
327 case DE_VECTOR:
328 case TS_VECTOR:
329 case NP_VECTOR:
330 case SS_VECTOR:
331 case GP_VECTOR:
332 return EXCPT_CONTRIBUTORY;
333 default:
334 break;
335 }
336 return EXCPT_BENIGN;
337 }
338
339 #define EXCPT_FAULT 0
340 #define EXCPT_TRAP 1
341 #define EXCPT_ABORT 2
342 #define EXCPT_INTERRUPT 3
343
344 static int exception_type(int vector)
345 {
346 unsigned int mask;
347
348 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349 return EXCPT_INTERRUPT;
350
351 mask = 1 << vector;
352
353 /* #DB is trap, as instruction watchpoints are handled elsewhere */
354 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355 return EXCPT_TRAP;
356
357 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358 return EXCPT_ABORT;
359
360 /* Reserved exceptions will result in fault */
361 return EXCPT_FAULT;
362 }
363
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365 unsigned nr, bool has_error, u32 error_code,
366 bool reinject)
367 {
368 u32 prev_nr;
369 int class1, class2;
370
371 kvm_make_request(KVM_REQ_EVENT, vcpu);
372
373 if (!vcpu->arch.exception.pending) {
374 queue:
375 if (has_error && !is_protmode(vcpu))
376 has_error = false;
377 vcpu->arch.exception.pending = true;
378 vcpu->arch.exception.has_error_code = has_error;
379 vcpu->arch.exception.nr = nr;
380 vcpu->arch.exception.error_code = error_code;
381 vcpu->arch.exception.reinject = reinject;
382 return;
383 }
384
385 /* to check exception */
386 prev_nr = vcpu->arch.exception.nr;
387 if (prev_nr == DF_VECTOR) {
388 /* triple fault -> shutdown */
389 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390 return;
391 }
392 class1 = exception_class(prev_nr);
393 class2 = exception_class(nr);
394 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396 /* generate double fault per SDM Table 5-5 */
397 vcpu->arch.exception.pending = true;
398 vcpu->arch.exception.has_error_code = true;
399 vcpu->arch.exception.nr = DF_VECTOR;
400 vcpu->arch.exception.error_code = 0;
401 } else
402 /* replace previous exception with a new one in a hope
403 that instruction re-execution will regenerate lost
404 exception */
405 goto queue;
406 }
407
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410 kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416 kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422 if (err)
423 kvm_inject_gp(vcpu, 0);
424 else
425 kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431 ++vcpu->stat.pf_guest;
432 vcpu->arch.cr2 = fault->address;
433 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441 else
442 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443
444 return fault->nested_page_fault;
445 }
446
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449 atomic_inc(&vcpu->arch.nmi_queued);
450 kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456 kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462 kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465
466 /*
467 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
468 * a #GP and return false.
469 */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473 return true;
474 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475 return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482 return true;
483
484 kvm_queue_exception(vcpu, UD_VECTOR);
485 return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488
489 /*
490 * This function will be used to read from the physical memory of the currently
491 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492 * can read from guest physical or from the guest's guest physical memory.
493 */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495 gfn_t ngfn, void *data, int offset, int len,
496 u32 access)
497 {
498 struct x86_exception exception;
499 gfn_t real_gfn;
500 gpa_t ngpa;
501
502 ngpa = gfn_to_gpa(ngfn);
503 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504 if (real_gfn == UNMAPPED_GVA)
505 return -EFAULT;
506
507 real_gfn = gpa_to_gfn(real_gfn);
508
509 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514 void *data, int offset, int len, u32 access)
515 {
516 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517 data, offset, len, access);
518 }
519
520 /*
521 * Load the pae pdptrs. Return true is they are all valid.
522 */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527 int i;
528 int ret;
529 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530
531 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532 offset * sizeof(u64), sizeof(pdpte),
533 PFERR_USER_MASK|PFERR_WRITE_MASK);
534 if (ret < 0) {
535 ret = 0;
536 goto out;
537 }
538 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539 if (is_present_gpte(pdpte[i]) &&
540 (pdpte[i] &
541 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542 ret = 0;
543 goto out;
544 }
545 }
546 ret = 1;
547
548 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549 __set_bit(VCPU_EXREG_PDPTR,
550 (unsigned long *)&vcpu->arch.regs_avail);
551 __set_bit(VCPU_EXREG_PDPTR,
552 (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554
555 return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562 bool changed = true;
563 int offset;
564 gfn_t gfn;
565 int r;
566
567 if (is_long_mode(vcpu) || !is_pae(vcpu))
568 return false;
569
570 if (!test_bit(VCPU_EXREG_PDPTR,
571 (unsigned long *)&vcpu->arch.regs_avail))
572 return true;
573
574 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577 PFERR_USER_MASK | PFERR_WRITE_MASK);
578 if (r < 0)
579 goto out;
580 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582
583 return changed;
584 }
585
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588 unsigned long old_cr0 = kvm_read_cr0(vcpu);
589 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590
591 cr0 |= X86_CR0_ET;
592
593 #ifdef CONFIG_X86_64
594 if (cr0 & 0xffffffff00000000UL)
595 return 1;
596 #endif
597
598 cr0 &= ~CR0_RESERVED_BITS;
599
600 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601 return 1;
602
603 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604 return 1;
605
606 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608 if ((vcpu->arch.efer & EFER_LME)) {
609 int cs_db, cs_l;
610
611 if (!is_pae(vcpu))
612 return 1;
613 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614 if (cs_l)
615 return 1;
616 } else
617 #endif
618 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619 kvm_read_cr3(vcpu)))
620 return 1;
621 }
622
623 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624 return 1;
625
626 kvm_x86_ops->set_cr0(vcpu, cr0);
627
628 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629 kvm_clear_async_pf_completion_queue(vcpu);
630 kvm_async_pf_hash_reset(vcpu);
631 }
632
633 if ((cr0 ^ old_cr0) & update_bits)
634 kvm_mmu_reset_context(vcpu);
635
636 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640
641 return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654 !vcpu->guest_xcr0_loaded) {
655 /* kvm_set_xcr() also depends on this */
656 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657 vcpu->guest_xcr0_loaded = 1;
658 }
659 }
660
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663 if (vcpu->guest_xcr0_loaded) {
664 if (vcpu->arch.xcr0 != host_xcr0)
665 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666 vcpu->guest_xcr0_loaded = 0;
667 }
668 }
669
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672 u64 xcr0 = xcr;
673 u64 old_xcr0 = vcpu->arch.xcr0;
674 u64 valid_bits;
675
676 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
677 if (index != XCR_XFEATURE_ENABLED_MASK)
678 return 1;
679 if (!(xcr0 & XFEATURE_MASK_FP))
680 return 1;
681 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682 return 1;
683
684 /*
685 * Do not allow the guest to set bits that we do not support
686 * saving. However, xcr0 bit 0 is always set, even if the
687 * emulated CPU does not support XSAVE (see fx_init).
688 */
689 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690 if (xcr0 & ~valid_bits)
691 return 1;
692
693 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695 return 1;
696
697 if (xcr0 & XFEATURE_MASK_AVX512) {
698 if (!(xcr0 & XFEATURE_MASK_YMM))
699 return 1;
700 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701 return 1;
702 }
703 vcpu->arch.xcr0 = xcr0;
704
705 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
706 kvm_update_cpuid(vcpu);
707 return 0;
708 }
709
710 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
711 {
712 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
713 __kvm_set_xcr(vcpu, index, xcr)) {
714 kvm_inject_gp(vcpu, 0);
715 return 1;
716 }
717 return 0;
718 }
719 EXPORT_SYMBOL_GPL(kvm_set_xcr);
720
721 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
722 {
723 unsigned long old_cr4 = kvm_read_cr4(vcpu);
724 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
725 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
726
727 if (cr4 & CR4_RESERVED_BITS)
728 return 1;
729
730 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
731 return 1;
732
733 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
734 return 1;
735
736 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
737 return 1;
738
739 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
740 return 1;
741
742 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
743 return 1;
744
745 if (is_long_mode(vcpu)) {
746 if (!(cr4 & X86_CR4_PAE))
747 return 1;
748 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
749 && ((cr4 ^ old_cr4) & pdptr_bits)
750 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
751 kvm_read_cr3(vcpu)))
752 return 1;
753
754 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
755 if (!guest_cpuid_has_pcid(vcpu))
756 return 1;
757
758 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
759 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
760 return 1;
761 }
762
763 if (kvm_x86_ops->set_cr4(vcpu, cr4))
764 return 1;
765
766 if (((cr4 ^ old_cr4) & pdptr_bits) ||
767 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
768 kvm_mmu_reset_context(vcpu);
769
770 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
771 kvm_update_cpuid(vcpu);
772
773 return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_set_cr4);
776
777 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
778 {
779 #ifdef CONFIG_X86_64
780 cr3 &= ~CR3_PCID_INVD;
781 #endif
782
783 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
784 kvm_mmu_sync_roots(vcpu);
785 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
786 return 0;
787 }
788
789 if (is_long_mode(vcpu)) {
790 if (cr3 & CR3_L_MODE_RESERVED_BITS)
791 return 1;
792 } else if (is_pae(vcpu) && is_paging(vcpu) &&
793 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
794 return 1;
795
796 vcpu->arch.cr3 = cr3;
797 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
798 kvm_mmu_new_cr3(vcpu);
799 return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr3);
802
803 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
804 {
805 if (cr8 & CR8_RESERVED_BITS)
806 return 1;
807 if (lapic_in_kernel(vcpu))
808 kvm_lapic_set_tpr(vcpu, cr8);
809 else
810 vcpu->arch.cr8 = cr8;
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_set_cr8);
814
815 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
816 {
817 if (lapic_in_kernel(vcpu))
818 return kvm_lapic_get_cr8(vcpu);
819 else
820 return vcpu->arch.cr8;
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_cr8);
823
824 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
825 {
826 int i;
827
828 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
829 for (i = 0; i < KVM_NR_DB_REGS; i++)
830 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
831 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
832 }
833 }
834
835 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
836 {
837 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
838 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
839 }
840
841 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
842 {
843 unsigned long dr7;
844
845 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
846 dr7 = vcpu->arch.guest_debug_dr7;
847 else
848 dr7 = vcpu->arch.dr7;
849 kvm_x86_ops->set_dr7(vcpu, dr7);
850 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
851 if (dr7 & DR7_BP_EN_MASK)
852 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
853 }
854
855 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
856 {
857 u64 fixed = DR6_FIXED_1;
858
859 if (!guest_cpuid_has_rtm(vcpu))
860 fixed |= DR6_RTM;
861 return fixed;
862 }
863
864 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
865 {
866 switch (dr) {
867 case 0 ... 3:
868 vcpu->arch.db[dr] = val;
869 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
870 vcpu->arch.eff_db[dr] = val;
871 break;
872 case 4:
873 /* fall through */
874 case 6:
875 if (val & 0xffffffff00000000ULL)
876 return -1; /* #GP */
877 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
878 kvm_update_dr6(vcpu);
879 break;
880 case 5:
881 /* fall through */
882 default: /* 7 */
883 if (val & 0xffffffff00000000ULL)
884 return -1; /* #GP */
885 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
886 kvm_update_dr7(vcpu);
887 break;
888 }
889
890 return 0;
891 }
892
893 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
894 {
895 if (__kvm_set_dr(vcpu, dr, val)) {
896 kvm_inject_gp(vcpu, 0);
897 return 1;
898 }
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(kvm_set_dr);
902
903 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
904 {
905 switch (dr) {
906 case 0 ... 3:
907 *val = vcpu->arch.db[dr];
908 break;
909 case 4:
910 /* fall through */
911 case 6:
912 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
913 *val = vcpu->arch.dr6;
914 else
915 *val = kvm_x86_ops->get_dr6(vcpu);
916 break;
917 case 5:
918 /* fall through */
919 default: /* 7 */
920 *val = vcpu->arch.dr7;
921 break;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_get_dr);
926
927 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
928 {
929 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
930 u64 data;
931 int err;
932
933 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
934 if (err)
935 return err;
936 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
937 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
938 return err;
939 }
940 EXPORT_SYMBOL_GPL(kvm_rdpmc);
941
942 /*
943 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
944 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
945 *
946 * This list is modified at module load time to reflect the
947 * capabilities of the host cpu. This capabilities test skips MSRs that are
948 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
949 * may depend on host virtualization features rather than host cpu features.
950 */
951
952 static u32 msrs_to_save[] = {
953 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
954 MSR_STAR,
955 #ifdef CONFIG_X86_64
956 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
957 #endif
958 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
959 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
960 };
961
962 static unsigned num_msrs_to_save;
963
964 static u32 emulated_msrs[] = {
965 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
966 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
967 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
968 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
969 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
970 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
971 HV_X64_MSR_RESET,
972 HV_X64_MSR_VP_INDEX,
973 HV_X64_MSR_VP_RUNTIME,
974 HV_X64_MSR_SCONTROL,
975 HV_X64_MSR_STIMER0_CONFIG,
976 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
977 MSR_KVM_PV_EOI_EN,
978
979 MSR_IA32_TSC_ADJUST,
980 MSR_IA32_TSCDEADLINE,
981 MSR_IA32_MISC_ENABLE,
982 MSR_IA32_MCG_STATUS,
983 MSR_IA32_MCG_CTL,
984 MSR_IA32_SMBASE,
985 };
986
987 static unsigned num_emulated_msrs;
988
989 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
990 {
991 if (efer & efer_reserved_bits)
992 return false;
993
994 if (efer & EFER_FFXSR) {
995 struct kvm_cpuid_entry2 *feat;
996
997 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
999 return false;
1000 }
1001
1002 if (efer & EFER_SVME) {
1003 struct kvm_cpuid_entry2 *feat;
1004
1005 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1006 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1007 return false;
1008 }
1009
1010 return true;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1013
1014 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 {
1016 u64 old_efer = vcpu->arch.efer;
1017
1018 if (!kvm_valid_efer(vcpu, efer))
1019 return 1;
1020
1021 if (is_paging(vcpu)
1022 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1023 return 1;
1024
1025 efer &= ~EFER_LMA;
1026 efer |= vcpu->arch.efer & EFER_LMA;
1027
1028 kvm_x86_ops->set_efer(vcpu, efer);
1029
1030 /* Update reserved bits */
1031 if ((efer ^ old_efer) & EFER_NX)
1032 kvm_mmu_reset_context(vcpu);
1033
1034 return 0;
1035 }
1036
1037 void kvm_enable_efer_bits(u64 mask)
1038 {
1039 efer_reserved_bits &= ~mask;
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1042
1043 /*
1044 * Writes msr value into into the appropriate "register".
1045 * Returns 0 on success, non-0 otherwise.
1046 * Assumes vcpu_load() was already called.
1047 */
1048 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1049 {
1050 switch (msr->index) {
1051 case MSR_FS_BASE:
1052 case MSR_GS_BASE:
1053 case MSR_KERNEL_GS_BASE:
1054 case MSR_CSTAR:
1055 case MSR_LSTAR:
1056 if (is_noncanonical_address(msr->data))
1057 return 1;
1058 break;
1059 case MSR_IA32_SYSENTER_EIP:
1060 case MSR_IA32_SYSENTER_ESP:
1061 /*
1062 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1063 * non-canonical address is written on Intel but not on
1064 * AMD (which ignores the top 32-bits, because it does
1065 * not implement 64-bit SYSENTER).
1066 *
1067 * 64-bit code should hence be able to write a non-canonical
1068 * value on AMD. Making the address canonical ensures that
1069 * vmentry does not fail on Intel after writing a non-canonical
1070 * value, and that something deterministic happens if the guest
1071 * invokes 64-bit SYSENTER.
1072 */
1073 msr->data = get_canonical(msr->data);
1074 }
1075 return kvm_x86_ops->set_msr(vcpu, msr);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_msr);
1078
1079 /*
1080 * Adapt set_msr() to msr_io()'s calling convention
1081 */
1082 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1083 {
1084 struct msr_data msr;
1085 int r;
1086
1087 msr.index = index;
1088 msr.host_initiated = true;
1089 r = kvm_get_msr(vcpu, &msr);
1090 if (r)
1091 return r;
1092
1093 *data = msr.data;
1094 return 0;
1095 }
1096
1097 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1098 {
1099 struct msr_data msr;
1100
1101 msr.data = *data;
1102 msr.index = index;
1103 msr.host_initiated = true;
1104 return kvm_set_msr(vcpu, &msr);
1105 }
1106
1107 #ifdef CONFIG_X86_64
1108 struct pvclock_gtod_data {
1109 seqcount_t seq;
1110
1111 struct { /* extract of a clocksource struct */
1112 int vclock_mode;
1113 cycle_t cycle_last;
1114 cycle_t mask;
1115 u32 mult;
1116 u32 shift;
1117 } clock;
1118
1119 u64 boot_ns;
1120 u64 nsec_base;
1121 };
1122
1123 static struct pvclock_gtod_data pvclock_gtod_data;
1124
1125 static void update_pvclock_gtod(struct timekeeper *tk)
1126 {
1127 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1128 u64 boot_ns;
1129
1130 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1131
1132 write_seqcount_begin(&vdata->seq);
1133
1134 /* copy pvclock gtod data */
1135 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1136 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1137 vdata->clock.mask = tk->tkr_mono.mask;
1138 vdata->clock.mult = tk->tkr_mono.mult;
1139 vdata->clock.shift = tk->tkr_mono.shift;
1140
1141 vdata->boot_ns = boot_ns;
1142 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1143
1144 write_seqcount_end(&vdata->seq);
1145 }
1146 #endif
1147
1148 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1149 {
1150 /*
1151 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1152 * vcpu_enter_guest. This function is only called from
1153 * the physical CPU that is running vcpu.
1154 */
1155 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1156 }
1157
1158 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1159 {
1160 int version;
1161 int r;
1162 struct pvclock_wall_clock wc;
1163 struct timespec boot;
1164
1165 if (!wall_clock)
1166 return;
1167
1168 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1169 if (r)
1170 return;
1171
1172 if (version & 1)
1173 ++version; /* first time write, random junk */
1174
1175 ++version;
1176
1177 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1178 return;
1179
1180 /*
1181 * The guest calculates current wall clock time by adding
1182 * system time (updated by kvm_guest_time_update below) to the
1183 * wall clock specified here. guest system time equals host
1184 * system time for us, thus we must fill in host boot time here.
1185 */
1186 getboottime(&boot);
1187
1188 if (kvm->arch.kvmclock_offset) {
1189 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1190 boot = timespec_sub(boot, ts);
1191 }
1192 wc.sec = boot.tv_sec;
1193 wc.nsec = boot.tv_nsec;
1194 wc.version = version;
1195
1196 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1197
1198 version++;
1199 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1200 }
1201
1202 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1203 {
1204 do_shl32_div32(dividend, divisor);
1205 return dividend;
1206 }
1207
1208 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1209 s8 *pshift, u32 *pmultiplier)
1210 {
1211 uint64_t scaled64;
1212 int32_t shift = 0;
1213 uint64_t tps64;
1214 uint32_t tps32;
1215
1216 tps64 = base_hz;
1217 scaled64 = scaled_hz;
1218 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1219 tps64 >>= 1;
1220 shift--;
1221 }
1222
1223 tps32 = (uint32_t)tps64;
1224 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1225 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1226 scaled64 >>= 1;
1227 else
1228 tps32 <<= 1;
1229 shift++;
1230 }
1231
1232 *pshift = shift;
1233 *pmultiplier = div_frac(scaled64, tps32);
1234
1235 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1236 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1237 }
1238
1239 #ifdef CONFIG_X86_64
1240 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1241 #endif
1242
1243 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1244 static unsigned long max_tsc_khz;
1245
1246 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1247 {
1248 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1249 vcpu->arch.virtual_tsc_shift);
1250 }
1251
1252 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1253 {
1254 u64 v = (u64)khz * (1000000 + ppm);
1255 do_div(v, 1000000);
1256 return v;
1257 }
1258
1259 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1260 {
1261 u64 ratio;
1262
1263 /* Guest TSC same frequency as host TSC? */
1264 if (!scale) {
1265 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1266 return 0;
1267 }
1268
1269 /* TSC scaling supported? */
1270 if (!kvm_has_tsc_control) {
1271 if (user_tsc_khz > tsc_khz) {
1272 vcpu->arch.tsc_catchup = 1;
1273 vcpu->arch.tsc_always_catchup = 1;
1274 return 0;
1275 } else {
1276 WARN(1, "user requested TSC rate below hardware speed\n");
1277 return -1;
1278 }
1279 }
1280
1281 /* TSC scaling required - calculate ratio */
1282 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1283 user_tsc_khz, tsc_khz);
1284
1285 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1286 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1287 user_tsc_khz);
1288 return -1;
1289 }
1290
1291 vcpu->arch.tsc_scaling_ratio = ratio;
1292 return 0;
1293 }
1294
1295 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1296 {
1297 u32 thresh_lo, thresh_hi;
1298 int use_scaling = 0;
1299
1300 /* tsc_khz can be zero if TSC calibration fails */
1301 if (user_tsc_khz == 0) {
1302 /* set tsc_scaling_ratio to a safe value */
1303 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1304 return -1;
1305 }
1306
1307 /* Compute a scale to convert nanoseconds in TSC cycles */
1308 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1309 &vcpu->arch.virtual_tsc_shift,
1310 &vcpu->arch.virtual_tsc_mult);
1311 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1312
1313 /*
1314 * Compute the variation in TSC rate which is acceptable
1315 * within the range of tolerance and decide if the
1316 * rate being applied is within that bounds of the hardware
1317 * rate. If so, no scaling or compensation need be done.
1318 */
1319 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1320 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1321 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1322 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1323 use_scaling = 1;
1324 }
1325 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1326 }
1327
1328 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1329 {
1330 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1331 vcpu->arch.virtual_tsc_mult,
1332 vcpu->arch.virtual_tsc_shift);
1333 tsc += vcpu->arch.this_tsc_write;
1334 return tsc;
1335 }
1336
1337 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1338 {
1339 #ifdef CONFIG_X86_64
1340 bool vcpus_matched;
1341 struct kvm_arch *ka = &vcpu->kvm->arch;
1342 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343
1344 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1345 atomic_read(&vcpu->kvm->online_vcpus));
1346
1347 /*
1348 * Once the masterclock is enabled, always perform request in
1349 * order to update it.
1350 *
1351 * In order to enable masterclock, the host clocksource must be TSC
1352 * and the vcpus need to have matched TSCs. When that happens,
1353 * perform request to enable masterclock.
1354 */
1355 if (ka->use_master_clock ||
1356 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1357 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1358
1359 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1360 atomic_read(&vcpu->kvm->online_vcpus),
1361 ka->use_master_clock, gtod->clock.vclock_mode);
1362 #endif
1363 }
1364
1365 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1366 {
1367 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1368 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1369 }
1370
1371 /*
1372 * Multiply tsc by a fixed point number represented by ratio.
1373 *
1374 * The most significant 64-N bits (mult) of ratio represent the
1375 * integral part of the fixed point number; the remaining N bits
1376 * (frac) represent the fractional part, ie. ratio represents a fixed
1377 * point number (mult + frac * 2^(-N)).
1378 *
1379 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1380 */
1381 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1382 {
1383 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1384 }
1385
1386 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1387 {
1388 u64 _tsc = tsc;
1389 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1390
1391 if (ratio != kvm_default_tsc_scaling_ratio)
1392 _tsc = __scale_tsc(ratio, tsc);
1393
1394 return _tsc;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1397
1398 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1399 {
1400 u64 tsc;
1401
1402 tsc = kvm_scale_tsc(vcpu, rdtsc());
1403
1404 return target_tsc - tsc;
1405 }
1406
1407 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1408 {
1409 return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1412
1413 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1414 {
1415 struct kvm *kvm = vcpu->kvm;
1416 u64 offset, ns, elapsed;
1417 unsigned long flags;
1418 s64 usdiff;
1419 bool matched;
1420 bool already_matched;
1421 u64 data = msr->data;
1422
1423 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1424 offset = kvm_compute_tsc_offset(vcpu, data);
1425 ns = get_kernel_ns();
1426 elapsed = ns - kvm->arch.last_tsc_nsec;
1427
1428 if (vcpu->arch.virtual_tsc_khz) {
1429 int faulted = 0;
1430
1431 /* n.b - signed multiplication and division required */
1432 usdiff = data - kvm->arch.last_tsc_write;
1433 #ifdef CONFIG_X86_64
1434 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1435 #else
1436 /* do_div() only does unsigned */
1437 asm("1: idivl %[divisor]\n"
1438 "2: xor %%edx, %%edx\n"
1439 " movl $0, %[faulted]\n"
1440 "3:\n"
1441 ".section .fixup,\"ax\"\n"
1442 "4: movl $1, %[faulted]\n"
1443 " jmp 3b\n"
1444 ".previous\n"
1445
1446 _ASM_EXTABLE(1b, 4b)
1447
1448 : "=A"(usdiff), [faulted] "=r" (faulted)
1449 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1450
1451 #endif
1452 do_div(elapsed, 1000);
1453 usdiff -= elapsed;
1454 if (usdiff < 0)
1455 usdiff = -usdiff;
1456
1457 /* idivl overflow => difference is larger than USEC_PER_SEC */
1458 if (faulted)
1459 usdiff = USEC_PER_SEC;
1460 } else
1461 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1462
1463 /*
1464 * Special case: TSC write with a small delta (1 second) of virtual
1465 * cycle time against real time is interpreted as an attempt to
1466 * synchronize the CPU.
1467 *
1468 * For a reliable TSC, we can match TSC offsets, and for an unstable
1469 * TSC, we add elapsed time in this computation. We could let the
1470 * compensation code attempt to catch up if we fall behind, but
1471 * it's better to try to match offsets from the beginning.
1472 */
1473 if (usdiff < USEC_PER_SEC &&
1474 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1475 if (!check_tsc_unstable()) {
1476 offset = kvm->arch.cur_tsc_offset;
1477 pr_debug("kvm: matched tsc offset for %llu\n", data);
1478 } else {
1479 u64 delta = nsec_to_cycles(vcpu, elapsed);
1480 data += delta;
1481 offset = kvm_compute_tsc_offset(vcpu, data);
1482 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1483 }
1484 matched = true;
1485 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1486 } else {
1487 /*
1488 * We split periods of matched TSC writes into generations.
1489 * For each generation, we track the original measured
1490 * nanosecond time, offset, and write, so if TSCs are in
1491 * sync, we can match exact offset, and if not, we can match
1492 * exact software computation in compute_guest_tsc()
1493 *
1494 * These values are tracked in kvm->arch.cur_xxx variables.
1495 */
1496 kvm->arch.cur_tsc_generation++;
1497 kvm->arch.cur_tsc_nsec = ns;
1498 kvm->arch.cur_tsc_write = data;
1499 kvm->arch.cur_tsc_offset = offset;
1500 matched = false;
1501 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1502 kvm->arch.cur_tsc_generation, data);
1503 }
1504
1505 /*
1506 * We also track th most recent recorded KHZ, write and time to
1507 * allow the matching interval to be extended at each write.
1508 */
1509 kvm->arch.last_tsc_nsec = ns;
1510 kvm->arch.last_tsc_write = data;
1511 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1512
1513 vcpu->arch.last_guest_tsc = data;
1514
1515 /* Keep track of which generation this VCPU has synchronized to */
1516 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1517 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1518 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1519
1520 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1521 update_ia32_tsc_adjust_msr(vcpu, offset);
1522 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1523 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1524
1525 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1526 if (!matched) {
1527 kvm->arch.nr_vcpus_matched_tsc = 0;
1528 } else if (!already_matched) {
1529 kvm->arch.nr_vcpus_matched_tsc++;
1530 }
1531
1532 kvm_track_tsc_matching(vcpu);
1533 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1534 }
1535
1536 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1537
1538 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1539 s64 adjustment)
1540 {
1541 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1542 }
1543
1544 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1545 {
1546 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1547 WARN_ON(adjustment < 0);
1548 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1549 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1550 }
1551
1552 #ifdef CONFIG_X86_64
1553
1554 static cycle_t read_tsc(void)
1555 {
1556 cycle_t ret = (cycle_t)rdtsc_ordered();
1557 u64 last = pvclock_gtod_data.clock.cycle_last;
1558
1559 if (likely(ret >= last))
1560 return ret;
1561
1562 /*
1563 * GCC likes to generate cmov here, but this branch is extremely
1564 * predictable (it's just a function of time and the likely is
1565 * very likely) and there's a data dependence, so force GCC
1566 * to generate a branch instead. I don't barrier() because
1567 * we don't actually need a barrier, and if this function
1568 * ever gets inlined it will generate worse code.
1569 */
1570 asm volatile ("");
1571 return last;
1572 }
1573
1574 static inline u64 vgettsc(cycle_t *cycle_now)
1575 {
1576 long v;
1577 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1578
1579 *cycle_now = read_tsc();
1580
1581 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1582 return v * gtod->clock.mult;
1583 }
1584
1585 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1586 {
1587 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1588 unsigned long seq;
1589 int mode;
1590 u64 ns;
1591
1592 do {
1593 seq = read_seqcount_begin(&gtod->seq);
1594 mode = gtod->clock.vclock_mode;
1595 ns = gtod->nsec_base;
1596 ns += vgettsc(cycle_now);
1597 ns >>= gtod->clock.shift;
1598 ns += gtod->boot_ns;
1599 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1600 *t = ns;
1601
1602 return mode;
1603 }
1604
1605 /* returns true if host is using tsc clocksource */
1606 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1607 {
1608 /* checked again under seqlock below */
1609 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1610 return false;
1611
1612 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1613 }
1614 #endif
1615
1616 /*
1617 *
1618 * Assuming a stable TSC across physical CPUS, and a stable TSC
1619 * across virtual CPUs, the following condition is possible.
1620 * Each numbered line represents an event visible to both
1621 * CPUs at the next numbered event.
1622 *
1623 * "timespecX" represents host monotonic time. "tscX" represents
1624 * RDTSC value.
1625 *
1626 * VCPU0 on CPU0 | VCPU1 on CPU1
1627 *
1628 * 1. read timespec0,tsc0
1629 * 2. | timespec1 = timespec0 + N
1630 * | tsc1 = tsc0 + M
1631 * 3. transition to guest | transition to guest
1632 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1633 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1634 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1635 *
1636 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1637 *
1638 * - ret0 < ret1
1639 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1640 * ...
1641 * - 0 < N - M => M < N
1642 *
1643 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1644 * always the case (the difference between two distinct xtime instances
1645 * might be smaller then the difference between corresponding TSC reads,
1646 * when updating guest vcpus pvclock areas).
1647 *
1648 * To avoid that problem, do not allow visibility of distinct
1649 * system_timestamp/tsc_timestamp values simultaneously: use a master
1650 * copy of host monotonic time values. Update that master copy
1651 * in lockstep.
1652 *
1653 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1654 *
1655 */
1656
1657 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1658 {
1659 #ifdef CONFIG_X86_64
1660 struct kvm_arch *ka = &kvm->arch;
1661 int vclock_mode;
1662 bool host_tsc_clocksource, vcpus_matched;
1663
1664 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1665 atomic_read(&kvm->online_vcpus));
1666
1667 /*
1668 * If the host uses TSC clock, then passthrough TSC as stable
1669 * to the guest.
1670 */
1671 host_tsc_clocksource = kvm_get_time_and_clockread(
1672 &ka->master_kernel_ns,
1673 &ka->master_cycle_now);
1674
1675 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1676 && !backwards_tsc_observed
1677 && !ka->boot_vcpu_runs_old_kvmclock;
1678
1679 if (ka->use_master_clock)
1680 atomic_set(&kvm_guest_has_master_clock, 1);
1681
1682 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1683 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1684 vcpus_matched);
1685 #endif
1686 }
1687
1688 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1689 {
1690 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1691 }
1692
1693 static void kvm_gen_update_masterclock(struct kvm *kvm)
1694 {
1695 #ifdef CONFIG_X86_64
1696 int i;
1697 struct kvm_vcpu *vcpu;
1698 struct kvm_arch *ka = &kvm->arch;
1699
1700 spin_lock(&ka->pvclock_gtod_sync_lock);
1701 kvm_make_mclock_inprogress_request(kvm);
1702 /* no guest entries from this point */
1703 pvclock_update_vm_gtod_copy(kvm);
1704
1705 kvm_for_each_vcpu(i, vcpu, kvm)
1706 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1707
1708 /* guest entries allowed */
1709 kvm_for_each_vcpu(i, vcpu, kvm)
1710 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1711
1712 spin_unlock(&ka->pvclock_gtod_sync_lock);
1713 #endif
1714 }
1715
1716 static int kvm_guest_time_update(struct kvm_vcpu *v)
1717 {
1718 unsigned long flags, tgt_tsc_khz;
1719 struct kvm_vcpu_arch *vcpu = &v->arch;
1720 struct kvm_arch *ka = &v->kvm->arch;
1721 s64 kernel_ns;
1722 u64 tsc_timestamp, host_tsc;
1723 struct pvclock_vcpu_time_info guest_hv_clock;
1724 u8 pvclock_flags;
1725 bool use_master_clock;
1726
1727 kernel_ns = 0;
1728 host_tsc = 0;
1729
1730 /*
1731 * If the host uses TSC clock, then passthrough TSC as stable
1732 * to the guest.
1733 */
1734 spin_lock(&ka->pvclock_gtod_sync_lock);
1735 use_master_clock = ka->use_master_clock;
1736 if (use_master_clock) {
1737 host_tsc = ka->master_cycle_now;
1738 kernel_ns = ka->master_kernel_ns;
1739 }
1740 spin_unlock(&ka->pvclock_gtod_sync_lock);
1741
1742 /* Keep irq disabled to prevent changes to the clock */
1743 local_irq_save(flags);
1744 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1745 if (unlikely(tgt_tsc_khz == 0)) {
1746 local_irq_restore(flags);
1747 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1748 return 1;
1749 }
1750 if (!use_master_clock) {
1751 host_tsc = rdtsc();
1752 kernel_ns = get_kernel_ns();
1753 }
1754
1755 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1756
1757 /*
1758 * We may have to catch up the TSC to match elapsed wall clock
1759 * time for two reasons, even if kvmclock is used.
1760 * 1) CPU could have been running below the maximum TSC rate
1761 * 2) Broken TSC compensation resets the base at each VCPU
1762 * entry to avoid unknown leaps of TSC even when running
1763 * again on the same CPU. This may cause apparent elapsed
1764 * time to disappear, and the guest to stand still or run
1765 * very slowly.
1766 */
1767 if (vcpu->tsc_catchup) {
1768 u64 tsc = compute_guest_tsc(v, kernel_ns);
1769 if (tsc > tsc_timestamp) {
1770 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1771 tsc_timestamp = tsc;
1772 }
1773 }
1774
1775 local_irq_restore(flags);
1776
1777 if (!vcpu->pv_time_enabled)
1778 return 0;
1779
1780 if (kvm_has_tsc_control)
1781 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1782
1783 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1784 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1785 &vcpu->hv_clock.tsc_shift,
1786 &vcpu->hv_clock.tsc_to_system_mul);
1787 vcpu->hw_tsc_khz = tgt_tsc_khz;
1788 }
1789
1790 /* With all the info we got, fill in the values */
1791 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1792 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1793 vcpu->last_guest_tsc = tsc_timestamp;
1794
1795 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1796 &guest_hv_clock, sizeof(guest_hv_clock))))
1797 return 0;
1798
1799 /* This VCPU is paused, but it's legal for a guest to read another
1800 * VCPU's kvmclock, so we really have to follow the specification where
1801 * it says that version is odd if data is being modified, and even after
1802 * it is consistent.
1803 *
1804 * Version field updates must be kept separate. This is because
1805 * kvm_write_guest_cached might use a "rep movs" instruction, and
1806 * writes within a string instruction are weakly ordered. So there
1807 * are three writes overall.
1808 *
1809 * As a small optimization, only write the version field in the first
1810 * and third write. The vcpu->pv_time cache is still valid, because the
1811 * version field is the first in the struct.
1812 */
1813 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1814
1815 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1816 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1817 &vcpu->hv_clock,
1818 sizeof(vcpu->hv_clock.version));
1819
1820 smp_wmb();
1821
1822 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1823 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1824
1825 if (vcpu->pvclock_set_guest_stopped_request) {
1826 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1827 vcpu->pvclock_set_guest_stopped_request = false;
1828 }
1829
1830 /* If the host uses TSC clocksource, then it is stable */
1831 if (use_master_clock)
1832 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1833
1834 vcpu->hv_clock.flags = pvclock_flags;
1835
1836 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1837
1838 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1839 &vcpu->hv_clock,
1840 sizeof(vcpu->hv_clock));
1841
1842 smp_wmb();
1843
1844 vcpu->hv_clock.version++;
1845 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1846 &vcpu->hv_clock,
1847 sizeof(vcpu->hv_clock.version));
1848 return 0;
1849 }
1850
1851 /*
1852 * kvmclock updates which are isolated to a given vcpu, such as
1853 * vcpu->cpu migration, should not allow system_timestamp from
1854 * the rest of the vcpus to remain static. Otherwise ntp frequency
1855 * correction applies to one vcpu's system_timestamp but not
1856 * the others.
1857 *
1858 * So in those cases, request a kvmclock update for all vcpus.
1859 * We need to rate-limit these requests though, as they can
1860 * considerably slow guests that have a large number of vcpus.
1861 * The time for a remote vcpu to update its kvmclock is bound
1862 * by the delay we use to rate-limit the updates.
1863 */
1864
1865 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1866
1867 static void kvmclock_update_fn(struct work_struct *work)
1868 {
1869 int i;
1870 struct delayed_work *dwork = to_delayed_work(work);
1871 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1872 kvmclock_update_work);
1873 struct kvm *kvm = container_of(ka, struct kvm, arch);
1874 struct kvm_vcpu *vcpu;
1875
1876 kvm_for_each_vcpu(i, vcpu, kvm) {
1877 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1878 kvm_vcpu_kick(vcpu);
1879 }
1880 }
1881
1882 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1883 {
1884 struct kvm *kvm = v->kvm;
1885
1886 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1887 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1888 KVMCLOCK_UPDATE_DELAY);
1889 }
1890
1891 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1892
1893 static void kvmclock_sync_fn(struct work_struct *work)
1894 {
1895 struct delayed_work *dwork = to_delayed_work(work);
1896 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1897 kvmclock_sync_work);
1898 struct kvm *kvm = container_of(ka, struct kvm, arch);
1899
1900 if (!kvmclock_periodic_sync)
1901 return;
1902
1903 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1904 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1905 KVMCLOCK_SYNC_PERIOD);
1906 }
1907
1908 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1909 {
1910 u64 mcg_cap = vcpu->arch.mcg_cap;
1911 unsigned bank_num = mcg_cap & 0xff;
1912
1913 switch (msr) {
1914 case MSR_IA32_MCG_STATUS:
1915 vcpu->arch.mcg_status = data;
1916 break;
1917 case MSR_IA32_MCG_CTL:
1918 if (!(mcg_cap & MCG_CTL_P))
1919 return 1;
1920 if (data != 0 && data != ~(u64)0)
1921 return -1;
1922 vcpu->arch.mcg_ctl = data;
1923 break;
1924 default:
1925 if (msr >= MSR_IA32_MC0_CTL &&
1926 msr < MSR_IA32_MCx_CTL(bank_num)) {
1927 u32 offset = msr - MSR_IA32_MC0_CTL;
1928 /* only 0 or all 1s can be written to IA32_MCi_CTL
1929 * some Linux kernels though clear bit 10 in bank 4 to
1930 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1931 * this to avoid an uncatched #GP in the guest
1932 */
1933 if ((offset & 0x3) == 0 &&
1934 data != 0 && (data | (1 << 10)) != ~(u64)0)
1935 return -1;
1936 vcpu->arch.mce_banks[offset] = data;
1937 break;
1938 }
1939 return 1;
1940 }
1941 return 0;
1942 }
1943
1944 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1945 {
1946 struct kvm *kvm = vcpu->kvm;
1947 int lm = is_long_mode(vcpu);
1948 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1949 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1950 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1951 : kvm->arch.xen_hvm_config.blob_size_32;
1952 u32 page_num = data & ~PAGE_MASK;
1953 u64 page_addr = data & PAGE_MASK;
1954 u8 *page;
1955 int r;
1956
1957 r = -E2BIG;
1958 if (page_num >= blob_size)
1959 goto out;
1960 r = -ENOMEM;
1961 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1962 if (IS_ERR(page)) {
1963 r = PTR_ERR(page);
1964 goto out;
1965 }
1966 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1967 goto out_free;
1968 r = 0;
1969 out_free:
1970 kfree(page);
1971 out:
1972 return r;
1973 }
1974
1975 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1976 {
1977 gpa_t gpa = data & ~0x3f;
1978
1979 /* Bits 2:5 are reserved, Should be zero */
1980 if (data & 0x3c)
1981 return 1;
1982
1983 vcpu->arch.apf.msr_val = data;
1984
1985 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1986 kvm_clear_async_pf_completion_queue(vcpu);
1987 kvm_async_pf_hash_reset(vcpu);
1988 return 0;
1989 }
1990
1991 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1992 sizeof(u32)))
1993 return 1;
1994
1995 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1996 kvm_async_pf_wakeup_all(vcpu);
1997 return 0;
1998 }
1999
2000 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2001 {
2002 vcpu->arch.pv_time_enabled = false;
2003 }
2004
2005 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2006 {
2007 u64 delta;
2008
2009 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010 return;
2011
2012 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2013 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2014 vcpu->arch.st.accum_steal = delta;
2015 }
2016
2017 static void record_steal_time(struct kvm_vcpu *vcpu)
2018 {
2019 accumulate_steal_time(vcpu);
2020
2021 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2022 return;
2023
2024 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2026 return;
2027
2028 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2029 vcpu->arch.st.steal.version += 2;
2030 vcpu->arch.st.accum_steal = 0;
2031
2032 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2033 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2034 }
2035
2036 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2037 {
2038 bool pr = false;
2039 u32 msr = msr_info->index;
2040 u64 data = msr_info->data;
2041
2042 switch (msr) {
2043 case MSR_AMD64_NB_CFG:
2044 case MSR_IA32_UCODE_REV:
2045 case MSR_IA32_UCODE_WRITE:
2046 case MSR_VM_HSAVE_PA:
2047 case MSR_AMD64_PATCH_LOADER:
2048 case MSR_AMD64_BU_CFG2:
2049 break;
2050
2051 case MSR_EFER:
2052 return set_efer(vcpu, data);
2053 case MSR_K7_HWCR:
2054 data &= ~(u64)0x40; /* ignore flush filter disable */
2055 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2056 data &= ~(u64)0x8; /* ignore TLB cache disable */
2057 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2058 if (data != 0) {
2059 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2060 data);
2061 return 1;
2062 }
2063 break;
2064 case MSR_FAM10H_MMIO_CONF_BASE:
2065 if (data != 0) {
2066 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2067 "0x%llx\n", data);
2068 return 1;
2069 }
2070 break;
2071 case MSR_IA32_DEBUGCTLMSR:
2072 if (!data) {
2073 /* We support the non-activated case already */
2074 break;
2075 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2076 /* Values other than LBR and BTF are vendor-specific,
2077 thus reserved and should throw a #GP */
2078 return 1;
2079 }
2080 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2081 __func__, data);
2082 break;
2083 case 0x200 ... 0x2ff:
2084 return kvm_mtrr_set_msr(vcpu, msr, data);
2085 case MSR_IA32_APICBASE:
2086 return kvm_set_apic_base(vcpu, msr_info);
2087 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2088 return kvm_x2apic_msr_write(vcpu, msr, data);
2089 case MSR_IA32_TSCDEADLINE:
2090 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2091 break;
2092 case MSR_IA32_TSC_ADJUST:
2093 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2094 if (!msr_info->host_initiated) {
2095 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2096 adjust_tsc_offset_guest(vcpu, adj);
2097 }
2098 vcpu->arch.ia32_tsc_adjust_msr = data;
2099 }
2100 break;
2101 case MSR_IA32_MISC_ENABLE:
2102 vcpu->arch.ia32_misc_enable_msr = data;
2103 break;
2104 case MSR_IA32_SMBASE:
2105 if (!msr_info->host_initiated)
2106 return 1;
2107 vcpu->arch.smbase = data;
2108 break;
2109 case MSR_KVM_WALL_CLOCK_NEW:
2110 case MSR_KVM_WALL_CLOCK:
2111 vcpu->kvm->arch.wall_clock = data;
2112 kvm_write_wall_clock(vcpu->kvm, data);
2113 break;
2114 case MSR_KVM_SYSTEM_TIME_NEW:
2115 case MSR_KVM_SYSTEM_TIME: {
2116 u64 gpa_offset;
2117 struct kvm_arch *ka = &vcpu->kvm->arch;
2118
2119 kvmclock_reset(vcpu);
2120
2121 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2122 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2123
2124 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2125 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2126 &vcpu->requests);
2127
2128 ka->boot_vcpu_runs_old_kvmclock = tmp;
2129 }
2130
2131 vcpu->arch.time = data;
2132 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2133
2134 /* we verify if the enable bit is set... */
2135 if (!(data & 1))
2136 break;
2137
2138 gpa_offset = data & ~(PAGE_MASK | 1);
2139
2140 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2141 &vcpu->arch.pv_time, data & ~1ULL,
2142 sizeof(struct pvclock_vcpu_time_info)))
2143 vcpu->arch.pv_time_enabled = false;
2144 else
2145 vcpu->arch.pv_time_enabled = true;
2146
2147 break;
2148 }
2149 case MSR_KVM_ASYNC_PF_EN:
2150 if (kvm_pv_enable_async_pf(vcpu, data))
2151 return 1;
2152 break;
2153 case MSR_KVM_STEAL_TIME:
2154
2155 if (unlikely(!sched_info_on()))
2156 return 1;
2157
2158 if (data & KVM_STEAL_RESERVED_MASK)
2159 return 1;
2160
2161 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2162 data & KVM_STEAL_VALID_BITS,
2163 sizeof(struct kvm_steal_time)))
2164 return 1;
2165
2166 vcpu->arch.st.msr_val = data;
2167
2168 if (!(data & KVM_MSR_ENABLED))
2169 break;
2170
2171 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2172
2173 break;
2174 case MSR_KVM_PV_EOI_EN:
2175 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2176 return 1;
2177 break;
2178
2179 case MSR_IA32_MCG_CTL:
2180 case MSR_IA32_MCG_STATUS:
2181 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2182 return set_msr_mce(vcpu, msr, data);
2183
2184 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2185 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2186 pr = true; /* fall through */
2187 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2188 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2189 if (kvm_pmu_is_valid_msr(vcpu, msr))
2190 return kvm_pmu_set_msr(vcpu, msr_info);
2191
2192 if (pr || data != 0)
2193 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2194 "0x%x data 0x%llx\n", msr, data);
2195 break;
2196 case MSR_K7_CLK_CTL:
2197 /*
2198 * Ignore all writes to this no longer documented MSR.
2199 * Writes are only relevant for old K7 processors,
2200 * all pre-dating SVM, but a recommended workaround from
2201 * AMD for these chips. It is possible to specify the
2202 * affected processor models on the command line, hence
2203 * the need to ignore the workaround.
2204 */
2205 break;
2206 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2207 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2208 case HV_X64_MSR_CRASH_CTL:
2209 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2210 return kvm_hv_set_msr_common(vcpu, msr, data,
2211 msr_info->host_initiated);
2212 case MSR_IA32_BBL_CR_CTL3:
2213 /* Drop writes to this legacy MSR -- see rdmsr
2214 * counterpart for further detail.
2215 */
2216 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2217 break;
2218 case MSR_AMD64_OSVW_ID_LENGTH:
2219 if (!guest_cpuid_has_osvw(vcpu))
2220 return 1;
2221 vcpu->arch.osvw.length = data;
2222 break;
2223 case MSR_AMD64_OSVW_STATUS:
2224 if (!guest_cpuid_has_osvw(vcpu))
2225 return 1;
2226 vcpu->arch.osvw.status = data;
2227 break;
2228 default:
2229 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2230 return xen_hvm_config(vcpu, data);
2231 if (kvm_pmu_is_valid_msr(vcpu, msr))
2232 return kvm_pmu_set_msr(vcpu, msr_info);
2233 if (!ignore_msrs) {
2234 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2235 msr, data);
2236 return 1;
2237 } else {
2238 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2239 msr, data);
2240 break;
2241 }
2242 }
2243 return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2246
2247
2248 /*
2249 * Reads an msr value (of 'msr_index') into 'pdata'.
2250 * Returns 0 on success, non-0 otherwise.
2251 * Assumes vcpu_load() was already called.
2252 */
2253 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2254 {
2255 return kvm_x86_ops->get_msr(vcpu, msr);
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_get_msr);
2258
2259 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2260 {
2261 u64 data;
2262 u64 mcg_cap = vcpu->arch.mcg_cap;
2263 unsigned bank_num = mcg_cap & 0xff;
2264
2265 switch (msr) {
2266 case MSR_IA32_P5_MC_ADDR:
2267 case MSR_IA32_P5_MC_TYPE:
2268 data = 0;
2269 break;
2270 case MSR_IA32_MCG_CAP:
2271 data = vcpu->arch.mcg_cap;
2272 break;
2273 case MSR_IA32_MCG_CTL:
2274 if (!(mcg_cap & MCG_CTL_P))
2275 return 1;
2276 data = vcpu->arch.mcg_ctl;
2277 break;
2278 case MSR_IA32_MCG_STATUS:
2279 data = vcpu->arch.mcg_status;
2280 break;
2281 default:
2282 if (msr >= MSR_IA32_MC0_CTL &&
2283 msr < MSR_IA32_MCx_CTL(bank_num)) {
2284 u32 offset = msr - MSR_IA32_MC0_CTL;
2285 data = vcpu->arch.mce_banks[offset];
2286 break;
2287 }
2288 return 1;
2289 }
2290 *pdata = data;
2291 return 0;
2292 }
2293
2294 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2295 {
2296 switch (msr_info->index) {
2297 case MSR_IA32_PLATFORM_ID:
2298 case MSR_IA32_EBL_CR_POWERON:
2299 case MSR_IA32_DEBUGCTLMSR:
2300 case MSR_IA32_LASTBRANCHFROMIP:
2301 case MSR_IA32_LASTBRANCHTOIP:
2302 case MSR_IA32_LASTINTFROMIP:
2303 case MSR_IA32_LASTINTTOIP:
2304 case MSR_K8_SYSCFG:
2305 case MSR_K8_TSEG_ADDR:
2306 case MSR_K8_TSEG_MASK:
2307 case MSR_K7_HWCR:
2308 case MSR_VM_HSAVE_PA:
2309 case MSR_K8_INT_PENDING_MSG:
2310 case MSR_AMD64_NB_CFG:
2311 case MSR_FAM10H_MMIO_CONF_BASE:
2312 case MSR_AMD64_BU_CFG2:
2313 msr_info->data = 0;
2314 break;
2315 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321 msr_info->data = 0;
2322 break;
2323 case MSR_IA32_UCODE_REV:
2324 msr_info->data = 0x100000000ULL;
2325 break;
2326 case MSR_MTRRcap:
2327 case 0x200 ... 0x2ff:
2328 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329 case 0xcd: /* fsb frequency */
2330 msr_info->data = 3;
2331 break;
2332 /*
2333 * MSR_EBC_FREQUENCY_ID
2334 * Conservative value valid for even the basic CPU models.
2335 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337 * and 266MHz for model 3, or 4. Set Core Clock
2338 * Frequency to System Bus Frequency Ratio to 1 (bits
2339 * 31:24) even though these are only valid for CPU
2340 * models > 2, however guests may end up dividing or
2341 * multiplying by zero otherwise.
2342 */
2343 case MSR_EBC_FREQUENCY_ID:
2344 msr_info->data = 1 << 24;
2345 break;
2346 case MSR_IA32_APICBASE:
2347 msr_info->data = kvm_get_apic_base(vcpu);
2348 break;
2349 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351 break;
2352 case MSR_IA32_TSCDEADLINE:
2353 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354 break;
2355 case MSR_IA32_TSC_ADJUST:
2356 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357 break;
2358 case MSR_IA32_MISC_ENABLE:
2359 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360 break;
2361 case MSR_IA32_SMBASE:
2362 if (!msr_info->host_initiated)
2363 return 1;
2364 msr_info->data = vcpu->arch.smbase;
2365 break;
2366 case MSR_IA32_PERF_STATUS:
2367 /* TSC increment by tick */
2368 msr_info->data = 1000ULL;
2369 /* CPU multiplier */
2370 msr_info->data |= (((uint64_t)4ULL) << 40);
2371 break;
2372 case MSR_EFER:
2373 msr_info->data = vcpu->arch.efer;
2374 break;
2375 case MSR_KVM_WALL_CLOCK:
2376 case MSR_KVM_WALL_CLOCK_NEW:
2377 msr_info->data = vcpu->kvm->arch.wall_clock;
2378 break;
2379 case MSR_KVM_SYSTEM_TIME:
2380 case MSR_KVM_SYSTEM_TIME_NEW:
2381 msr_info->data = vcpu->arch.time;
2382 break;
2383 case MSR_KVM_ASYNC_PF_EN:
2384 msr_info->data = vcpu->arch.apf.msr_val;
2385 break;
2386 case MSR_KVM_STEAL_TIME:
2387 msr_info->data = vcpu->arch.st.msr_val;
2388 break;
2389 case MSR_KVM_PV_EOI_EN:
2390 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391 break;
2392 case MSR_IA32_P5_MC_ADDR:
2393 case MSR_IA32_P5_MC_TYPE:
2394 case MSR_IA32_MCG_CAP:
2395 case MSR_IA32_MCG_CTL:
2396 case MSR_IA32_MCG_STATUS:
2397 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399 case MSR_K7_CLK_CTL:
2400 /*
2401 * Provide expected ramp-up count for K7. All other
2402 * are set to zero, indicating minimum divisors for
2403 * every field.
2404 *
2405 * This prevents guest kernels on AMD host with CPU
2406 * type 6, model 8 and higher from exploding due to
2407 * the rdmsr failing.
2408 */
2409 msr_info->data = 0x20000000;
2410 break;
2411 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413 case HV_X64_MSR_CRASH_CTL:
2414 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415 return kvm_hv_get_msr_common(vcpu,
2416 msr_info->index, &msr_info->data);
2417 break;
2418 case MSR_IA32_BBL_CR_CTL3:
2419 /* This legacy MSR exists but isn't fully documented in current
2420 * silicon. It is however accessed by winxp in very narrow
2421 * scenarios where it sets bit #19, itself documented as
2422 * a "reserved" bit. Best effort attempt to source coherent
2423 * read data here should the balance of the register be
2424 * interpreted by the guest:
2425 *
2426 * L2 cache control register 3: 64GB range, 256KB size,
2427 * enabled, latency 0x1, configured
2428 */
2429 msr_info->data = 0xbe702111;
2430 break;
2431 case MSR_AMD64_OSVW_ID_LENGTH:
2432 if (!guest_cpuid_has_osvw(vcpu))
2433 return 1;
2434 msr_info->data = vcpu->arch.osvw.length;
2435 break;
2436 case MSR_AMD64_OSVW_STATUS:
2437 if (!guest_cpuid_has_osvw(vcpu))
2438 return 1;
2439 msr_info->data = vcpu->arch.osvw.status;
2440 break;
2441 default:
2442 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444 if (!ignore_msrs) {
2445 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446 return 1;
2447 } else {
2448 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449 msr_info->data = 0;
2450 }
2451 break;
2452 }
2453 return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456
2457 /*
2458 * Read or write a bunch of msrs. All parameters are kernel addresses.
2459 *
2460 * @return number of msrs set successfully.
2461 */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463 struct kvm_msr_entry *entries,
2464 int (*do_msr)(struct kvm_vcpu *vcpu,
2465 unsigned index, u64 *data))
2466 {
2467 int i, idx;
2468
2469 idx = srcu_read_lock(&vcpu->kvm->srcu);
2470 for (i = 0; i < msrs->nmsrs; ++i)
2471 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472 break;
2473 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474
2475 return i;
2476 }
2477
2478 /*
2479 * Read or write a bunch of msrs. Parameters are user addresses.
2480 *
2481 * @return number of msrs set successfully.
2482 */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484 int (*do_msr)(struct kvm_vcpu *vcpu,
2485 unsigned index, u64 *data),
2486 int writeback)
2487 {
2488 struct kvm_msrs msrs;
2489 struct kvm_msr_entry *entries;
2490 int r, n;
2491 unsigned size;
2492
2493 r = -EFAULT;
2494 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495 goto out;
2496
2497 r = -E2BIG;
2498 if (msrs.nmsrs >= MAX_IO_MSRS)
2499 goto out;
2500
2501 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502 entries = memdup_user(user_msrs->entries, size);
2503 if (IS_ERR(entries)) {
2504 r = PTR_ERR(entries);
2505 goto out;
2506 }
2507
2508 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509 if (r < 0)
2510 goto out_free;
2511
2512 r = -EFAULT;
2513 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514 goto out_free;
2515
2516 r = n;
2517
2518 out_free:
2519 kfree(entries);
2520 out:
2521 return r;
2522 }
2523
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526 int r;
2527
2528 switch (ext) {
2529 case KVM_CAP_IRQCHIP:
2530 case KVM_CAP_HLT:
2531 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532 case KVM_CAP_SET_TSS_ADDR:
2533 case KVM_CAP_EXT_CPUID:
2534 case KVM_CAP_EXT_EMUL_CPUID:
2535 case KVM_CAP_CLOCKSOURCE:
2536 case KVM_CAP_PIT:
2537 case KVM_CAP_NOP_IO_DELAY:
2538 case KVM_CAP_MP_STATE:
2539 case KVM_CAP_SYNC_MMU:
2540 case KVM_CAP_USER_NMI:
2541 case KVM_CAP_REINJECT_CONTROL:
2542 case KVM_CAP_IRQ_INJECT_STATUS:
2543 case KVM_CAP_IOEVENTFD:
2544 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545 case KVM_CAP_PIT2:
2546 case KVM_CAP_PIT_STATE2:
2547 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548 case KVM_CAP_XEN_HVM:
2549 case KVM_CAP_ADJUST_CLOCK:
2550 case KVM_CAP_VCPU_EVENTS:
2551 case KVM_CAP_HYPERV:
2552 case KVM_CAP_HYPERV_VAPIC:
2553 case KVM_CAP_HYPERV_SPIN:
2554 case KVM_CAP_HYPERV_SYNIC:
2555 case KVM_CAP_PCI_SEGMENT:
2556 case KVM_CAP_DEBUGREGS:
2557 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558 case KVM_CAP_XSAVE:
2559 case KVM_CAP_ASYNC_PF:
2560 case KVM_CAP_GET_TSC_KHZ:
2561 case KVM_CAP_KVMCLOCK_CTRL:
2562 case KVM_CAP_READONLY_MEM:
2563 case KVM_CAP_HYPERV_TIME:
2564 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565 case KVM_CAP_TSC_DEADLINE_TIMER:
2566 case KVM_CAP_ENABLE_CAP_VM:
2567 case KVM_CAP_DISABLE_QUIRKS:
2568 case KVM_CAP_SET_BOOT_CPU_ID:
2569 case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571 case KVM_CAP_ASSIGN_DEV_IRQ:
2572 case KVM_CAP_PCI_2_3:
2573 #endif
2574 r = 1;
2575 break;
2576 case KVM_CAP_X86_SMM:
2577 /* SMBASE is usually relocated above 1M on modern chipsets,
2578 * and SMM handlers might indeed rely on 4G segment limits,
2579 * so do not report SMM to be available if real mode is
2580 * emulated via vm86 mode. Still, do not go to great lengths
2581 * to avoid userspace's usage of the feature, because it is a
2582 * fringe case that is not enabled except via specific settings
2583 * of the module parameters.
2584 */
2585 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586 break;
2587 case KVM_CAP_COALESCED_MMIO:
2588 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589 break;
2590 case KVM_CAP_VAPIC:
2591 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592 break;
2593 case KVM_CAP_NR_VCPUS:
2594 r = KVM_SOFT_MAX_VCPUS;
2595 break;
2596 case KVM_CAP_MAX_VCPUS:
2597 r = KVM_MAX_VCPUS;
2598 break;
2599 case KVM_CAP_NR_MEMSLOTS:
2600 r = KVM_USER_MEM_SLOTS;
2601 break;
2602 case KVM_CAP_PV_MMU: /* obsolete */
2603 r = 0;
2604 break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606 case KVM_CAP_IOMMU:
2607 r = iommu_present(&pci_bus_type);
2608 break;
2609 #endif
2610 case KVM_CAP_MCE:
2611 r = KVM_MAX_MCE_BANKS;
2612 break;
2613 case KVM_CAP_XCRS:
2614 r = cpu_has_xsave;
2615 break;
2616 case KVM_CAP_TSC_CONTROL:
2617 r = kvm_has_tsc_control;
2618 break;
2619 default:
2620 r = 0;
2621 break;
2622 }
2623 return r;
2624
2625 }
2626
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628 unsigned int ioctl, unsigned long arg)
2629 {
2630 void __user *argp = (void __user *)arg;
2631 long r;
2632
2633 switch (ioctl) {
2634 case KVM_GET_MSR_INDEX_LIST: {
2635 struct kvm_msr_list __user *user_msr_list = argp;
2636 struct kvm_msr_list msr_list;
2637 unsigned n;
2638
2639 r = -EFAULT;
2640 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641 goto out;
2642 n = msr_list.nmsrs;
2643 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645 goto out;
2646 r = -E2BIG;
2647 if (n < msr_list.nmsrs)
2648 goto out;
2649 r = -EFAULT;
2650 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651 num_msrs_to_save * sizeof(u32)))
2652 goto out;
2653 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654 &emulated_msrs,
2655 num_emulated_msrs * sizeof(u32)))
2656 goto out;
2657 r = 0;
2658 break;
2659 }
2660 case KVM_GET_SUPPORTED_CPUID:
2661 case KVM_GET_EMULATED_CPUID: {
2662 struct kvm_cpuid2 __user *cpuid_arg = argp;
2663 struct kvm_cpuid2 cpuid;
2664
2665 r = -EFAULT;
2666 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667 goto out;
2668
2669 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670 ioctl);
2671 if (r)
2672 goto out;
2673
2674 r = -EFAULT;
2675 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676 goto out;
2677 r = 0;
2678 break;
2679 }
2680 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681 u64 mce_cap;
2682
2683 mce_cap = KVM_MCE_CAP_SUPPORTED;
2684 r = -EFAULT;
2685 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686 goto out;
2687 r = 0;
2688 break;
2689 }
2690 default:
2691 r = -EINVAL;
2692 }
2693 out:
2694 return r;
2695 }
2696
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699 wbinvd();
2700 }
2701
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714 /* Address WBINVD may be executed by guest */
2715 if (need_emulate_wbinvd(vcpu)) {
2716 if (kvm_x86_ops->has_wbinvd_exit())
2717 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719 smp_call_function_single(vcpu->cpu,
2720 wbinvd_ipi, NULL, 1);
2721 }
2722
2723 kvm_x86_ops->vcpu_load(vcpu, cpu);
2724
2725 /* Apply any externally detected TSC adjustments (due to suspend) */
2726 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728 vcpu->arch.tsc_offset_adjustment = 0;
2729 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730 }
2731
2732 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734 rdtsc() - vcpu->arch.last_host_tsc;
2735 if (tsc_delta < 0)
2736 mark_tsc_unstable("KVM discovered backwards TSC");
2737 if (check_tsc_unstable()) {
2738 u64 offset = kvm_compute_tsc_offset(vcpu,
2739 vcpu->arch.last_guest_tsc);
2740 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741 vcpu->arch.tsc_catchup = 1;
2742 }
2743 /*
2744 * On a host with synchronized TSC, there is no need to update
2745 * kvmclock on vcpu->cpu migration
2746 */
2747 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749 if (vcpu->cpu != cpu)
2750 kvm_migrate_timers(vcpu);
2751 vcpu->cpu = cpu;
2752 }
2753
2754 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759 kvm_x86_ops->vcpu_put(vcpu);
2760 kvm_put_guest_fpu(vcpu);
2761 vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765 struct kvm_lapic_state *s)
2766 {
2767 if (vcpu->arch.apicv_active)
2768 kvm_x86_ops->sync_pir_to_irr(vcpu);
2769
2770 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771
2772 return 0;
2773 }
2774
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776 struct kvm_lapic_state *s)
2777 {
2778 kvm_apic_post_state_restore(vcpu, s);
2779 update_cr8_intercept(vcpu);
2780
2781 return 0;
2782 }
2783
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786 return (!lapic_in_kernel(vcpu) ||
2787 kvm_apic_accept_pic_intr(vcpu));
2788 }
2789
2790 /*
2791 * if userspace requested an interrupt window, check that the
2792 * interrupt window is open.
2793 *
2794 * No need to exit to userspace if we already have an interrupt queued.
2795 */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798 return kvm_arch_interrupt_allowed(vcpu) &&
2799 !kvm_cpu_has_interrupt(vcpu) &&
2800 !kvm_event_needs_reinjection(vcpu) &&
2801 kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805 struct kvm_interrupt *irq)
2806 {
2807 if (irq->irq >= KVM_NR_INTERRUPTS)
2808 return -EINVAL;
2809
2810 if (!irqchip_in_kernel(vcpu->kvm)) {
2811 kvm_queue_interrupt(vcpu, irq->irq, false);
2812 kvm_make_request(KVM_REQ_EVENT, vcpu);
2813 return 0;
2814 }
2815
2816 /*
2817 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818 * fail for in-kernel 8259.
2819 */
2820 if (pic_in_kernel(vcpu->kvm))
2821 return -ENXIO;
2822
2823 if (vcpu->arch.pending_external_vector != -1)
2824 return -EEXIST;
2825
2826 vcpu->arch.pending_external_vector = irq->irq;
2827 kvm_make_request(KVM_REQ_EVENT, vcpu);
2828 return 0;
2829 }
2830
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833 kvm_inject_nmi(vcpu);
2834
2835 return 0;
2836 }
2837
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840 kvm_make_request(KVM_REQ_SMI, vcpu);
2841
2842 return 0;
2843 }
2844
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846 struct kvm_tpr_access_ctl *tac)
2847 {
2848 if (tac->flags)
2849 return -EINVAL;
2850 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851 return 0;
2852 }
2853
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855 u64 mcg_cap)
2856 {
2857 int r;
2858 unsigned bank_num = mcg_cap & 0xff, bank;
2859
2860 r = -EINVAL;
2861 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862 goto out;
2863 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864 goto out;
2865 r = 0;
2866 vcpu->arch.mcg_cap = mcg_cap;
2867 /* Init IA32_MCG_CTL to all 1s */
2868 if (mcg_cap & MCG_CTL_P)
2869 vcpu->arch.mcg_ctl = ~(u64)0;
2870 /* Init IA32_MCi_CTL to all 1s */
2871 for (bank = 0; bank < bank_num; bank++)
2872 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874 return r;
2875 }
2876
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878 struct kvm_x86_mce *mce)
2879 {
2880 u64 mcg_cap = vcpu->arch.mcg_cap;
2881 unsigned bank_num = mcg_cap & 0xff;
2882 u64 *banks = vcpu->arch.mce_banks;
2883
2884 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885 return -EINVAL;
2886 /*
2887 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888 * reporting is disabled
2889 */
2890 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891 vcpu->arch.mcg_ctl != ~(u64)0)
2892 return 0;
2893 banks += 4 * mce->bank;
2894 /*
2895 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896 * reporting is disabled for the bank
2897 */
2898 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899 return 0;
2900 if (mce->status & MCI_STATUS_UC) {
2901 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904 return 0;
2905 }
2906 if (banks[1] & MCI_STATUS_VAL)
2907 mce->status |= MCI_STATUS_OVER;
2908 banks[2] = mce->addr;
2909 banks[3] = mce->misc;
2910 vcpu->arch.mcg_status = mce->mcg_status;
2911 banks[1] = mce->status;
2912 kvm_queue_exception(vcpu, MC_VECTOR);
2913 } else if (!(banks[1] & MCI_STATUS_VAL)
2914 || !(banks[1] & MCI_STATUS_UC)) {
2915 if (banks[1] & MCI_STATUS_VAL)
2916 mce->status |= MCI_STATUS_OVER;
2917 banks[2] = mce->addr;
2918 banks[3] = mce->misc;
2919 banks[1] = mce->status;
2920 } else
2921 banks[1] |= MCI_STATUS_OVER;
2922 return 0;
2923 }
2924
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926 struct kvm_vcpu_events *events)
2927 {
2928 process_nmi(vcpu);
2929 events->exception.injected =
2930 vcpu->arch.exception.pending &&
2931 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2932 events->exception.nr = vcpu->arch.exception.nr;
2933 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934 events->exception.pad = 0;
2935 events->exception.error_code = vcpu->arch.exception.error_code;
2936
2937 events->interrupt.injected =
2938 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939 events->interrupt.nr = vcpu->arch.interrupt.nr;
2940 events->interrupt.soft = 0;
2941 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942
2943 events->nmi.injected = vcpu->arch.nmi_injected;
2944 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946 events->nmi.pad = 0;
2947
2948 events->sipi_vector = 0; /* never valid when reporting to user space */
2949
2950 events->smi.smm = is_smm(vcpu);
2951 events->smi.pending = vcpu->arch.smi_pending;
2952 events->smi.smm_inside_nmi =
2953 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955
2956 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 | KVM_VCPUEVENT_VALID_SHADOW
2958 | KVM_VCPUEVENT_VALID_SMM);
2959 memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963 struct kvm_vcpu_events *events)
2964 {
2965 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967 | KVM_VCPUEVENT_VALID_SHADOW
2968 | KVM_VCPUEVENT_VALID_SMM))
2969 return -EINVAL;
2970
2971 process_nmi(vcpu);
2972 vcpu->arch.exception.pending = events->exception.injected;
2973 vcpu->arch.exception.nr = events->exception.nr;
2974 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2975 vcpu->arch.exception.error_code = events->exception.error_code;
2976
2977 vcpu->arch.interrupt.pending = events->interrupt.injected;
2978 vcpu->arch.interrupt.nr = events->interrupt.nr;
2979 vcpu->arch.interrupt.soft = events->interrupt.soft;
2980 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2981 kvm_x86_ops->set_interrupt_shadow(vcpu,
2982 events->interrupt.shadow);
2983
2984 vcpu->arch.nmi_injected = events->nmi.injected;
2985 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2986 vcpu->arch.nmi_pending = events->nmi.pending;
2987 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2988
2989 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2990 lapic_in_kernel(vcpu))
2991 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2992
2993 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2994 if (events->smi.smm)
2995 vcpu->arch.hflags |= HF_SMM_MASK;
2996 else
2997 vcpu->arch.hflags &= ~HF_SMM_MASK;
2998 vcpu->arch.smi_pending = events->smi.pending;
2999 if (events->smi.smm_inside_nmi)
3000 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3001 else
3002 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3003 if (lapic_in_kernel(vcpu)) {
3004 if (events->smi.latched_init)
3005 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3006 else
3007 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3008 }
3009 }
3010
3011 kvm_make_request(KVM_REQ_EVENT, vcpu);
3012
3013 return 0;
3014 }
3015
3016 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3017 struct kvm_debugregs *dbgregs)
3018 {
3019 unsigned long val;
3020
3021 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3022 kvm_get_dr(vcpu, 6, &val);
3023 dbgregs->dr6 = val;
3024 dbgregs->dr7 = vcpu->arch.dr7;
3025 dbgregs->flags = 0;
3026 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3027 }
3028
3029 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3030 struct kvm_debugregs *dbgregs)
3031 {
3032 if (dbgregs->flags)
3033 return -EINVAL;
3034
3035 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3036 kvm_update_dr0123(vcpu);
3037 vcpu->arch.dr6 = dbgregs->dr6;
3038 kvm_update_dr6(vcpu);
3039 vcpu->arch.dr7 = dbgregs->dr7;
3040 kvm_update_dr7(vcpu);
3041
3042 return 0;
3043 }
3044
3045 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3046
3047 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3048 {
3049 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3050 u64 xstate_bv = xsave->header.xfeatures;
3051 u64 valid;
3052
3053 /*
3054 * Copy legacy XSAVE area, to avoid complications with CPUID
3055 * leaves 0 and 1 in the loop below.
3056 */
3057 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3058
3059 /* Set XSTATE_BV */
3060 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3061
3062 /*
3063 * Copy each region from the possibly compacted offset to the
3064 * non-compacted offset.
3065 */
3066 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3067 while (valid) {
3068 u64 feature = valid & -valid;
3069 int index = fls64(feature) - 1;
3070 void *src = get_xsave_addr(xsave, feature);
3071
3072 if (src) {
3073 u32 size, offset, ecx, edx;
3074 cpuid_count(XSTATE_CPUID, index,
3075 &size, &offset, &ecx, &edx);
3076 memcpy(dest + offset, src, size);
3077 }
3078
3079 valid -= feature;
3080 }
3081 }
3082
3083 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3084 {
3085 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3086 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3087 u64 valid;
3088
3089 /*
3090 * Copy legacy XSAVE area, to avoid complications with CPUID
3091 * leaves 0 and 1 in the loop below.
3092 */
3093 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3094
3095 /* Set XSTATE_BV and possibly XCOMP_BV. */
3096 xsave->header.xfeatures = xstate_bv;
3097 if (cpu_has_xsaves)
3098 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3099
3100 /*
3101 * Copy each region from the non-compacted offset to the
3102 * possibly compacted offset.
3103 */
3104 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3105 while (valid) {
3106 u64 feature = valid & -valid;
3107 int index = fls64(feature) - 1;
3108 void *dest = get_xsave_addr(xsave, feature);
3109
3110 if (dest) {
3111 u32 size, offset, ecx, edx;
3112 cpuid_count(XSTATE_CPUID, index,
3113 &size, &offset, &ecx, &edx);
3114 memcpy(dest, src + offset, size);
3115 }
3116
3117 valid -= feature;
3118 }
3119 }
3120
3121 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3122 struct kvm_xsave *guest_xsave)
3123 {
3124 if (cpu_has_xsave) {
3125 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3126 fill_xsave((u8 *) guest_xsave->region, vcpu);
3127 } else {
3128 memcpy(guest_xsave->region,
3129 &vcpu->arch.guest_fpu.state.fxsave,
3130 sizeof(struct fxregs_state));
3131 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3132 XFEATURE_MASK_FPSSE;
3133 }
3134 }
3135
3136 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3137 struct kvm_xsave *guest_xsave)
3138 {
3139 u64 xstate_bv =
3140 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3141
3142 if (cpu_has_xsave) {
3143 /*
3144 * Here we allow setting states that are not present in
3145 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3146 * with old userspace.
3147 */
3148 if (xstate_bv & ~kvm_supported_xcr0())
3149 return -EINVAL;
3150 load_xsave(vcpu, (u8 *)guest_xsave->region);
3151 } else {
3152 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3153 return -EINVAL;
3154 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3155 guest_xsave->region, sizeof(struct fxregs_state));
3156 }
3157 return 0;
3158 }
3159
3160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3161 struct kvm_xcrs *guest_xcrs)
3162 {
3163 if (!cpu_has_xsave) {
3164 guest_xcrs->nr_xcrs = 0;
3165 return;
3166 }
3167
3168 guest_xcrs->nr_xcrs = 1;
3169 guest_xcrs->flags = 0;
3170 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3171 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3172 }
3173
3174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3175 struct kvm_xcrs *guest_xcrs)
3176 {
3177 int i, r = 0;
3178
3179 if (!cpu_has_xsave)
3180 return -EINVAL;
3181
3182 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3183 return -EINVAL;
3184
3185 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3186 /* Only support XCR0 currently */
3187 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3188 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3189 guest_xcrs->xcrs[i].value);
3190 break;
3191 }
3192 if (r)
3193 r = -EINVAL;
3194 return r;
3195 }
3196
3197 /*
3198 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3199 * stopped by the hypervisor. This function will be called from the host only.
3200 * EINVAL is returned when the host attempts to set the flag for a guest that
3201 * does not support pv clocks.
3202 */
3203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3204 {
3205 if (!vcpu->arch.pv_time_enabled)
3206 return -EINVAL;
3207 vcpu->arch.pvclock_set_guest_stopped_request = true;
3208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3209 return 0;
3210 }
3211
3212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3213 struct kvm_enable_cap *cap)
3214 {
3215 if (cap->flags)
3216 return -EINVAL;
3217
3218 switch (cap->cap) {
3219 case KVM_CAP_HYPERV_SYNIC:
3220 return kvm_hv_activate_synic(vcpu);
3221 default:
3222 return -EINVAL;
3223 }
3224 }
3225
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227 unsigned int ioctl, unsigned long arg)
3228 {
3229 struct kvm_vcpu *vcpu = filp->private_data;
3230 void __user *argp = (void __user *)arg;
3231 int r;
3232 union {
3233 struct kvm_lapic_state *lapic;
3234 struct kvm_xsave *xsave;
3235 struct kvm_xcrs *xcrs;
3236 void *buffer;
3237 } u;
3238
3239 u.buffer = NULL;
3240 switch (ioctl) {
3241 case KVM_GET_LAPIC: {
3242 r = -EINVAL;
3243 if (!lapic_in_kernel(vcpu))
3244 goto out;
3245 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246
3247 r = -ENOMEM;
3248 if (!u.lapic)
3249 goto out;
3250 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251 if (r)
3252 goto out;
3253 r = -EFAULT;
3254 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255 goto out;
3256 r = 0;
3257 break;
3258 }
3259 case KVM_SET_LAPIC: {
3260 r = -EINVAL;
3261 if (!lapic_in_kernel(vcpu))
3262 goto out;
3263 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264 if (IS_ERR(u.lapic))
3265 return PTR_ERR(u.lapic);
3266
3267 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268 break;
3269 }
3270 case KVM_INTERRUPT: {
3271 struct kvm_interrupt irq;
3272
3273 r = -EFAULT;
3274 if (copy_from_user(&irq, argp, sizeof irq))
3275 goto out;
3276 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277 break;
3278 }
3279 case KVM_NMI: {
3280 r = kvm_vcpu_ioctl_nmi(vcpu);
3281 break;
3282 }
3283 case KVM_SMI: {
3284 r = kvm_vcpu_ioctl_smi(vcpu);
3285 break;
3286 }
3287 case KVM_SET_CPUID: {
3288 struct kvm_cpuid __user *cpuid_arg = argp;
3289 struct kvm_cpuid cpuid;
3290
3291 r = -EFAULT;
3292 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3293 goto out;
3294 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3295 break;
3296 }
3297 case KVM_SET_CPUID2: {
3298 struct kvm_cpuid2 __user *cpuid_arg = argp;
3299 struct kvm_cpuid2 cpuid;
3300
3301 r = -EFAULT;
3302 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3303 goto out;
3304 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3305 cpuid_arg->entries);
3306 break;
3307 }
3308 case KVM_GET_CPUID2: {
3309 struct kvm_cpuid2 __user *cpuid_arg = argp;
3310 struct kvm_cpuid2 cpuid;
3311
3312 r = -EFAULT;
3313 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3314 goto out;
3315 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3316 cpuid_arg->entries);
3317 if (r)
3318 goto out;
3319 r = -EFAULT;
3320 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3321 goto out;
3322 r = 0;
3323 break;
3324 }
3325 case KVM_GET_MSRS:
3326 r = msr_io(vcpu, argp, do_get_msr, 1);
3327 break;
3328 case KVM_SET_MSRS:
3329 r = msr_io(vcpu, argp, do_set_msr, 0);
3330 break;
3331 case KVM_TPR_ACCESS_REPORTING: {
3332 struct kvm_tpr_access_ctl tac;
3333
3334 r = -EFAULT;
3335 if (copy_from_user(&tac, argp, sizeof tac))
3336 goto out;
3337 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3338 if (r)
3339 goto out;
3340 r = -EFAULT;
3341 if (copy_to_user(argp, &tac, sizeof tac))
3342 goto out;
3343 r = 0;
3344 break;
3345 };
3346 case KVM_SET_VAPIC_ADDR: {
3347 struct kvm_vapic_addr va;
3348
3349 r = -EINVAL;
3350 if (!lapic_in_kernel(vcpu))
3351 goto out;
3352 r = -EFAULT;
3353 if (copy_from_user(&va, argp, sizeof va))
3354 goto out;
3355 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3356 break;
3357 }
3358 case KVM_X86_SETUP_MCE: {
3359 u64 mcg_cap;
3360
3361 r = -EFAULT;
3362 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3363 goto out;
3364 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3365 break;
3366 }
3367 case KVM_X86_SET_MCE: {
3368 struct kvm_x86_mce mce;
3369
3370 r = -EFAULT;
3371 if (copy_from_user(&mce, argp, sizeof mce))
3372 goto out;
3373 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3374 break;
3375 }
3376 case KVM_GET_VCPU_EVENTS: {
3377 struct kvm_vcpu_events events;
3378
3379 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3380
3381 r = -EFAULT;
3382 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3383 break;
3384 r = 0;
3385 break;
3386 }
3387 case KVM_SET_VCPU_EVENTS: {
3388 struct kvm_vcpu_events events;
3389
3390 r = -EFAULT;
3391 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3392 break;
3393
3394 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3395 break;
3396 }
3397 case KVM_GET_DEBUGREGS: {
3398 struct kvm_debugregs dbgregs;
3399
3400 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3401
3402 r = -EFAULT;
3403 if (copy_to_user(argp, &dbgregs,
3404 sizeof(struct kvm_debugregs)))
3405 break;
3406 r = 0;
3407 break;
3408 }
3409 case KVM_SET_DEBUGREGS: {
3410 struct kvm_debugregs dbgregs;
3411
3412 r = -EFAULT;
3413 if (copy_from_user(&dbgregs, argp,
3414 sizeof(struct kvm_debugregs)))
3415 break;
3416
3417 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3418 break;
3419 }
3420 case KVM_GET_XSAVE: {
3421 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3422 r = -ENOMEM;
3423 if (!u.xsave)
3424 break;
3425
3426 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3427
3428 r = -EFAULT;
3429 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3430 break;
3431 r = 0;
3432 break;
3433 }
3434 case KVM_SET_XSAVE: {
3435 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3436 if (IS_ERR(u.xsave))
3437 return PTR_ERR(u.xsave);
3438
3439 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3440 break;
3441 }
3442 case KVM_GET_XCRS: {
3443 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3444 r = -ENOMEM;
3445 if (!u.xcrs)
3446 break;
3447
3448 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3449
3450 r = -EFAULT;
3451 if (copy_to_user(argp, u.xcrs,
3452 sizeof(struct kvm_xcrs)))
3453 break;
3454 r = 0;
3455 break;
3456 }
3457 case KVM_SET_XCRS: {
3458 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3459 if (IS_ERR(u.xcrs))
3460 return PTR_ERR(u.xcrs);
3461
3462 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3463 break;
3464 }
3465 case KVM_SET_TSC_KHZ: {
3466 u32 user_tsc_khz;
3467
3468 r = -EINVAL;
3469 user_tsc_khz = (u32)arg;
3470
3471 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3472 goto out;
3473
3474 if (user_tsc_khz == 0)
3475 user_tsc_khz = tsc_khz;
3476
3477 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3478 r = 0;
3479
3480 goto out;
3481 }
3482 case KVM_GET_TSC_KHZ: {
3483 r = vcpu->arch.virtual_tsc_khz;
3484 goto out;
3485 }
3486 case KVM_KVMCLOCK_CTRL: {
3487 r = kvm_set_guest_paused(vcpu);
3488 goto out;
3489 }
3490 case KVM_ENABLE_CAP: {
3491 struct kvm_enable_cap cap;
3492
3493 r = -EFAULT;
3494 if (copy_from_user(&cap, argp, sizeof(cap)))
3495 goto out;
3496 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3497 break;
3498 }
3499 default:
3500 r = -EINVAL;
3501 }
3502 out:
3503 kfree(u.buffer);
3504 return r;
3505 }
3506
3507 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3508 {
3509 return VM_FAULT_SIGBUS;
3510 }
3511
3512 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3513 {
3514 int ret;
3515
3516 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3517 return -EINVAL;
3518 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3519 return ret;
3520 }
3521
3522 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3523 u64 ident_addr)
3524 {
3525 kvm->arch.ept_identity_map_addr = ident_addr;
3526 return 0;
3527 }
3528
3529 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3530 u32 kvm_nr_mmu_pages)
3531 {
3532 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3533 return -EINVAL;
3534
3535 mutex_lock(&kvm->slots_lock);
3536
3537 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3538 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3539
3540 mutex_unlock(&kvm->slots_lock);
3541 return 0;
3542 }
3543
3544 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3545 {
3546 return kvm->arch.n_max_mmu_pages;
3547 }
3548
3549 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3550 {
3551 int r;
3552
3553 r = 0;
3554 switch (chip->chip_id) {
3555 case KVM_IRQCHIP_PIC_MASTER:
3556 memcpy(&chip->chip.pic,
3557 &pic_irqchip(kvm)->pics[0],
3558 sizeof(struct kvm_pic_state));
3559 break;
3560 case KVM_IRQCHIP_PIC_SLAVE:
3561 memcpy(&chip->chip.pic,
3562 &pic_irqchip(kvm)->pics[1],
3563 sizeof(struct kvm_pic_state));
3564 break;
3565 case KVM_IRQCHIP_IOAPIC:
3566 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3567 break;
3568 default:
3569 r = -EINVAL;
3570 break;
3571 }
3572 return r;
3573 }
3574
3575 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3576 {
3577 int r;
3578
3579 r = 0;
3580 switch (chip->chip_id) {
3581 case KVM_IRQCHIP_PIC_MASTER:
3582 spin_lock(&pic_irqchip(kvm)->lock);
3583 memcpy(&pic_irqchip(kvm)->pics[0],
3584 &chip->chip.pic,
3585 sizeof(struct kvm_pic_state));
3586 spin_unlock(&pic_irqchip(kvm)->lock);
3587 break;
3588 case KVM_IRQCHIP_PIC_SLAVE:
3589 spin_lock(&pic_irqchip(kvm)->lock);
3590 memcpy(&pic_irqchip(kvm)->pics[1],
3591 &chip->chip.pic,
3592 sizeof(struct kvm_pic_state));
3593 spin_unlock(&pic_irqchip(kvm)->lock);
3594 break;
3595 case KVM_IRQCHIP_IOAPIC:
3596 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3597 break;
3598 default:
3599 r = -EINVAL;
3600 break;
3601 }
3602 kvm_pic_update_irq(pic_irqchip(kvm));
3603 return r;
3604 }
3605
3606 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3607 {
3608 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3609
3610 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3611
3612 mutex_lock(&kps->lock);
3613 memcpy(ps, &kps->channels, sizeof(*ps));
3614 mutex_unlock(&kps->lock);
3615 return 0;
3616 }
3617
3618 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3619 {
3620 int i;
3621 struct kvm_pit *pit = kvm->arch.vpit;
3622
3623 mutex_lock(&pit->pit_state.lock);
3624 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3625 for (i = 0; i < 3; i++)
3626 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3627 mutex_unlock(&pit->pit_state.lock);
3628 return 0;
3629 }
3630
3631 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3632 {
3633 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3635 sizeof(ps->channels));
3636 ps->flags = kvm->arch.vpit->pit_state.flags;
3637 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3638 memset(&ps->reserved, 0, sizeof(ps->reserved));
3639 return 0;
3640 }
3641
3642 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3643 {
3644 int start = 0;
3645 int i;
3646 u32 prev_legacy, cur_legacy;
3647 struct kvm_pit *pit = kvm->arch.vpit;
3648
3649 mutex_lock(&pit->pit_state.lock);
3650 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3651 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3652 if (!prev_legacy && cur_legacy)
3653 start = 1;
3654 memcpy(&pit->pit_state.channels, &ps->channels,
3655 sizeof(pit->pit_state.channels));
3656 pit->pit_state.flags = ps->flags;
3657 for (i = 0; i < 3; i++)
3658 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3659 start && i == 0);
3660 mutex_unlock(&pit->pit_state.lock);
3661 return 0;
3662 }
3663
3664 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3665 struct kvm_reinject_control *control)
3666 {
3667 struct kvm_pit *pit = kvm->arch.vpit;
3668
3669 if (!pit)
3670 return -ENXIO;
3671
3672 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3673 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3674 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3675 */
3676 mutex_lock(&pit->pit_state.lock);
3677 kvm_pit_set_reinject(pit, control->pit_reinject);
3678 mutex_unlock(&pit->pit_state.lock);
3679
3680 return 0;
3681 }
3682
3683 /**
3684 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3685 * @kvm: kvm instance
3686 * @log: slot id and address to which we copy the log
3687 *
3688 * Steps 1-4 below provide general overview of dirty page logging. See
3689 * kvm_get_dirty_log_protect() function description for additional details.
3690 *
3691 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3692 * always flush the TLB (step 4) even if previous step failed and the dirty
3693 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3694 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3695 * writes will be marked dirty for next log read.
3696 *
3697 * 1. Take a snapshot of the bit and clear it if needed.
3698 * 2. Write protect the corresponding page.
3699 * 3. Copy the snapshot to the userspace.
3700 * 4. Flush TLB's if needed.
3701 */
3702 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3703 {
3704 bool is_dirty = false;
3705 int r;
3706
3707 mutex_lock(&kvm->slots_lock);
3708
3709 /*
3710 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3711 */
3712 if (kvm_x86_ops->flush_log_dirty)
3713 kvm_x86_ops->flush_log_dirty(kvm);
3714
3715 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3716
3717 /*
3718 * All the TLBs can be flushed out of mmu lock, see the comments in
3719 * kvm_mmu_slot_remove_write_access().
3720 */
3721 lockdep_assert_held(&kvm->slots_lock);
3722 if (is_dirty)
3723 kvm_flush_remote_tlbs(kvm);
3724
3725 mutex_unlock(&kvm->slots_lock);
3726 return r;
3727 }
3728
3729 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3730 bool line_status)
3731 {
3732 if (!irqchip_in_kernel(kvm))
3733 return -ENXIO;
3734
3735 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3736 irq_event->irq, irq_event->level,
3737 line_status);
3738 return 0;
3739 }
3740
3741 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3742 struct kvm_enable_cap *cap)
3743 {
3744 int r;
3745
3746 if (cap->flags)
3747 return -EINVAL;
3748
3749 switch (cap->cap) {
3750 case KVM_CAP_DISABLE_QUIRKS:
3751 kvm->arch.disabled_quirks = cap->args[0];
3752 r = 0;
3753 break;
3754 case KVM_CAP_SPLIT_IRQCHIP: {
3755 mutex_lock(&kvm->lock);
3756 r = -EINVAL;
3757 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3758 goto split_irqchip_unlock;
3759 r = -EEXIST;
3760 if (irqchip_in_kernel(kvm))
3761 goto split_irqchip_unlock;
3762 if (atomic_read(&kvm->online_vcpus))
3763 goto split_irqchip_unlock;
3764 r = kvm_setup_empty_irq_routing(kvm);
3765 if (r)
3766 goto split_irqchip_unlock;
3767 /* Pairs with irqchip_in_kernel. */
3768 smp_wmb();
3769 kvm->arch.irqchip_split = true;
3770 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3771 r = 0;
3772 split_irqchip_unlock:
3773 mutex_unlock(&kvm->lock);
3774 break;
3775 }
3776 default:
3777 r = -EINVAL;
3778 break;
3779 }
3780 return r;
3781 }
3782
3783 long kvm_arch_vm_ioctl(struct file *filp,
3784 unsigned int ioctl, unsigned long arg)
3785 {
3786 struct kvm *kvm = filp->private_data;
3787 void __user *argp = (void __user *)arg;
3788 int r = -ENOTTY;
3789 /*
3790 * This union makes it completely explicit to gcc-3.x
3791 * that these two variables' stack usage should be
3792 * combined, not added together.
3793 */
3794 union {
3795 struct kvm_pit_state ps;
3796 struct kvm_pit_state2 ps2;
3797 struct kvm_pit_config pit_config;
3798 } u;
3799
3800 switch (ioctl) {
3801 case KVM_SET_TSS_ADDR:
3802 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3803 break;
3804 case KVM_SET_IDENTITY_MAP_ADDR: {
3805 u64 ident_addr;
3806
3807 r = -EFAULT;
3808 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3809 goto out;
3810 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3811 break;
3812 }
3813 case KVM_SET_NR_MMU_PAGES:
3814 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3815 break;
3816 case KVM_GET_NR_MMU_PAGES:
3817 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3818 break;
3819 case KVM_CREATE_IRQCHIP: {
3820 struct kvm_pic *vpic;
3821
3822 mutex_lock(&kvm->lock);
3823 r = -EEXIST;
3824 if (kvm->arch.vpic)
3825 goto create_irqchip_unlock;
3826 r = -EINVAL;
3827 if (atomic_read(&kvm->online_vcpus))
3828 goto create_irqchip_unlock;
3829 r = -ENOMEM;
3830 vpic = kvm_create_pic(kvm);
3831 if (vpic) {
3832 r = kvm_ioapic_init(kvm);
3833 if (r) {
3834 mutex_lock(&kvm->slots_lock);
3835 kvm_destroy_pic(vpic);
3836 mutex_unlock(&kvm->slots_lock);
3837 goto create_irqchip_unlock;
3838 }
3839 } else
3840 goto create_irqchip_unlock;
3841 r = kvm_setup_default_irq_routing(kvm);
3842 if (r) {
3843 mutex_lock(&kvm->slots_lock);
3844 mutex_lock(&kvm->irq_lock);
3845 kvm_ioapic_destroy(kvm);
3846 kvm_destroy_pic(vpic);
3847 mutex_unlock(&kvm->irq_lock);
3848 mutex_unlock(&kvm->slots_lock);
3849 goto create_irqchip_unlock;
3850 }
3851 /* Write kvm->irq_routing before kvm->arch.vpic. */
3852 smp_wmb();
3853 kvm->arch.vpic = vpic;
3854 create_irqchip_unlock:
3855 mutex_unlock(&kvm->lock);
3856 break;
3857 }
3858 case KVM_CREATE_PIT:
3859 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3860 goto create_pit;
3861 case KVM_CREATE_PIT2:
3862 r = -EFAULT;
3863 if (copy_from_user(&u.pit_config, argp,
3864 sizeof(struct kvm_pit_config)))
3865 goto out;
3866 create_pit:
3867 mutex_lock(&kvm->slots_lock);
3868 r = -EEXIST;
3869 if (kvm->arch.vpit)
3870 goto create_pit_unlock;
3871 r = -ENOMEM;
3872 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3873 if (kvm->arch.vpit)
3874 r = 0;
3875 create_pit_unlock:
3876 mutex_unlock(&kvm->slots_lock);
3877 break;
3878 case KVM_GET_IRQCHIP: {
3879 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3880 struct kvm_irqchip *chip;
3881
3882 chip = memdup_user(argp, sizeof(*chip));
3883 if (IS_ERR(chip)) {
3884 r = PTR_ERR(chip);
3885 goto out;
3886 }
3887
3888 r = -ENXIO;
3889 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3890 goto get_irqchip_out;
3891 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3892 if (r)
3893 goto get_irqchip_out;
3894 r = -EFAULT;
3895 if (copy_to_user(argp, chip, sizeof *chip))
3896 goto get_irqchip_out;
3897 r = 0;
3898 get_irqchip_out:
3899 kfree(chip);
3900 break;
3901 }
3902 case KVM_SET_IRQCHIP: {
3903 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3904 struct kvm_irqchip *chip;
3905
3906 chip = memdup_user(argp, sizeof(*chip));
3907 if (IS_ERR(chip)) {
3908 r = PTR_ERR(chip);
3909 goto out;
3910 }
3911
3912 r = -ENXIO;
3913 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3914 goto set_irqchip_out;
3915 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3916 if (r)
3917 goto set_irqchip_out;
3918 r = 0;
3919 set_irqchip_out:
3920 kfree(chip);
3921 break;
3922 }
3923 case KVM_GET_PIT: {
3924 r = -EFAULT;
3925 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3926 goto out;
3927 r = -ENXIO;
3928 if (!kvm->arch.vpit)
3929 goto out;
3930 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3931 if (r)
3932 goto out;
3933 r = -EFAULT;
3934 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3935 goto out;
3936 r = 0;
3937 break;
3938 }
3939 case KVM_SET_PIT: {
3940 r = -EFAULT;
3941 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3942 goto out;
3943 r = -ENXIO;
3944 if (!kvm->arch.vpit)
3945 goto out;
3946 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3947 break;
3948 }
3949 case KVM_GET_PIT2: {
3950 r = -ENXIO;
3951 if (!kvm->arch.vpit)
3952 goto out;
3953 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3954 if (r)
3955 goto out;
3956 r = -EFAULT;
3957 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3958 goto out;
3959 r = 0;
3960 break;
3961 }
3962 case KVM_SET_PIT2: {
3963 r = -EFAULT;
3964 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3965 goto out;
3966 r = -ENXIO;
3967 if (!kvm->arch.vpit)
3968 goto out;
3969 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3970 break;
3971 }
3972 case KVM_REINJECT_CONTROL: {
3973 struct kvm_reinject_control control;
3974 r = -EFAULT;
3975 if (copy_from_user(&control, argp, sizeof(control)))
3976 goto out;
3977 r = kvm_vm_ioctl_reinject(kvm, &control);
3978 break;
3979 }
3980 case KVM_SET_BOOT_CPU_ID:
3981 r = 0;
3982 mutex_lock(&kvm->lock);
3983 if (atomic_read(&kvm->online_vcpus) != 0)
3984 r = -EBUSY;
3985 else
3986 kvm->arch.bsp_vcpu_id = arg;
3987 mutex_unlock(&kvm->lock);
3988 break;
3989 case KVM_XEN_HVM_CONFIG: {
3990 r = -EFAULT;
3991 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3992 sizeof(struct kvm_xen_hvm_config)))
3993 goto out;
3994 r = -EINVAL;
3995 if (kvm->arch.xen_hvm_config.flags)
3996 goto out;
3997 r = 0;
3998 break;
3999 }
4000 case KVM_SET_CLOCK: {
4001 struct kvm_clock_data user_ns;
4002 u64 now_ns;
4003 s64 delta;
4004
4005 r = -EFAULT;
4006 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4007 goto out;
4008
4009 r = -EINVAL;
4010 if (user_ns.flags)
4011 goto out;
4012
4013 r = 0;
4014 local_irq_disable();
4015 now_ns = get_kernel_ns();
4016 delta = user_ns.clock - now_ns;
4017 local_irq_enable();
4018 kvm->arch.kvmclock_offset = delta;
4019 kvm_gen_update_masterclock(kvm);
4020 break;
4021 }
4022 case KVM_GET_CLOCK: {
4023 struct kvm_clock_data user_ns;
4024 u64 now_ns;
4025
4026 local_irq_disable();
4027 now_ns = get_kernel_ns();
4028 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4029 local_irq_enable();
4030 user_ns.flags = 0;
4031 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4032
4033 r = -EFAULT;
4034 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4035 goto out;
4036 r = 0;
4037 break;
4038 }
4039 case KVM_ENABLE_CAP: {
4040 struct kvm_enable_cap cap;
4041
4042 r = -EFAULT;
4043 if (copy_from_user(&cap, argp, sizeof(cap)))
4044 goto out;
4045 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4046 break;
4047 }
4048 default:
4049 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4050 }
4051 out:
4052 return r;
4053 }
4054
4055 static void kvm_init_msr_list(void)
4056 {
4057 u32 dummy[2];
4058 unsigned i, j;
4059
4060 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4061 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4062 continue;
4063
4064 /*
4065 * Even MSRs that are valid in the host may not be exposed
4066 * to the guests in some cases.
4067 */
4068 switch (msrs_to_save[i]) {
4069 case MSR_IA32_BNDCFGS:
4070 if (!kvm_x86_ops->mpx_supported())
4071 continue;
4072 break;
4073 case MSR_TSC_AUX:
4074 if (!kvm_x86_ops->rdtscp_supported())
4075 continue;
4076 break;
4077 default:
4078 break;
4079 }
4080
4081 if (j < i)
4082 msrs_to_save[j] = msrs_to_save[i];
4083 j++;
4084 }
4085 num_msrs_to_save = j;
4086
4087 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4088 switch (emulated_msrs[i]) {
4089 case MSR_IA32_SMBASE:
4090 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4091 continue;
4092 break;
4093 default:
4094 break;
4095 }
4096
4097 if (j < i)
4098 emulated_msrs[j] = emulated_msrs[i];
4099 j++;
4100 }
4101 num_emulated_msrs = j;
4102 }
4103
4104 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4105 const void *v)
4106 {
4107 int handled = 0;
4108 int n;
4109
4110 do {
4111 n = min(len, 8);
4112 if (!(lapic_in_kernel(vcpu) &&
4113 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4114 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4115 break;
4116 handled += n;
4117 addr += n;
4118 len -= n;
4119 v += n;
4120 } while (len);
4121
4122 return handled;
4123 }
4124
4125 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4126 {
4127 int handled = 0;
4128 int n;
4129
4130 do {
4131 n = min(len, 8);
4132 if (!(lapic_in_kernel(vcpu) &&
4133 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4134 addr, n, v))
4135 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4136 break;
4137 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4138 handled += n;
4139 addr += n;
4140 len -= n;
4141 v += n;
4142 } while (len);
4143
4144 return handled;
4145 }
4146
4147 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4148 struct kvm_segment *var, int seg)
4149 {
4150 kvm_x86_ops->set_segment(vcpu, var, seg);
4151 }
4152
4153 void kvm_get_segment(struct kvm_vcpu *vcpu,
4154 struct kvm_segment *var, int seg)
4155 {
4156 kvm_x86_ops->get_segment(vcpu, var, seg);
4157 }
4158
4159 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4160 struct x86_exception *exception)
4161 {
4162 gpa_t t_gpa;
4163
4164 BUG_ON(!mmu_is_nested(vcpu));
4165
4166 /* NPT walks are always user-walks */
4167 access |= PFERR_USER_MASK;
4168 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4169
4170 return t_gpa;
4171 }
4172
4173 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4174 struct x86_exception *exception)
4175 {
4176 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4177 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4178 }
4179
4180 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4181 struct x86_exception *exception)
4182 {
4183 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4184 access |= PFERR_FETCH_MASK;
4185 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4186 }
4187
4188 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4189 struct x86_exception *exception)
4190 {
4191 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192 access |= PFERR_WRITE_MASK;
4193 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195
4196 /* uses this to access any guest's mapped memory without checking CPL */
4197 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4198 struct x86_exception *exception)
4199 {
4200 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4201 }
4202
4203 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4204 struct kvm_vcpu *vcpu, u32 access,
4205 struct x86_exception *exception)
4206 {
4207 void *data = val;
4208 int r = X86EMUL_CONTINUE;
4209
4210 while (bytes) {
4211 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4212 exception);
4213 unsigned offset = addr & (PAGE_SIZE-1);
4214 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4215 int ret;
4216
4217 if (gpa == UNMAPPED_GVA)
4218 return X86EMUL_PROPAGATE_FAULT;
4219 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4220 offset, toread);
4221 if (ret < 0) {
4222 r = X86EMUL_IO_NEEDED;
4223 goto out;
4224 }
4225
4226 bytes -= toread;
4227 data += toread;
4228 addr += toread;
4229 }
4230 out:
4231 return r;
4232 }
4233
4234 /* used for instruction fetching */
4235 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4236 gva_t addr, void *val, unsigned int bytes,
4237 struct x86_exception *exception)
4238 {
4239 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4240 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4241 unsigned offset;
4242 int ret;
4243
4244 /* Inline kvm_read_guest_virt_helper for speed. */
4245 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4246 exception);
4247 if (unlikely(gpa == UNMAPPED_GVA))
4248 return X86EMUL_PROPAGATE_FAULT;
4249
4250 offset = addr & (PAGE_SIZE-1);
4251 if (WARN_ON(offset + bytes > PAGE_SIZE))
4252 bytes = (unsigned)PAGE_SIZE - offset;
4253 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4254 offset, bytes);
4255 if (unlikely(ret < 0))
4256 return X86EMUL_IO_NEEDED;
4257
4258 return X86EMUL_CONTINUE;
4259 }
4260
4261 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4262 gva_t addr, void *val, unsigned int bytes,
4263 struct x86_exception *exception)
4264 {
4265 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4266 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4267
4268 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4269 exception);
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4272
4273 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4274 gva_t addr, void *val, unsigned int bytes,
4275 struct x86_exception *exception)
4276 {
4277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4278 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4279 }
4280
4281 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4282 unsigned long addr, void *val, unsigned int bytes)
4283 {
4284 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4285 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4286
4287 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4288 }
4289
4290 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4291 gva_t addr, void *val,
4292 unsigned int bytes,
4293 struct x86_exception *exception)
4294 {
4295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296 void *data = val;
4297 int r = X86EMUL_CONTINUE;
4298
4299 while (bytes) {
4300 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4301 PFERR_WRITE_MASK,
4302 exception);
4303 unsigned offset = addr & (PAGE_SIZE-1);
4304 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4305 int ret;
4306
4307 if (gpa == UNMAPPED_GVA)
4308 return X86EMUL_PROPAGATE_FAULT;
4309 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4310 if (ret < 0) {
4311 r = X86EMUL_IO_NEEDED;
4312 goto out;
4313 }
4314
4315 bytes -= towrite;
4316 data += towrite;
4317 addr += towrite;
4318 }
4319 out:
4320 return r;
4321 }
4322 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4323
4324 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4325 gpa_t *gpa, struct x86_exception *exception,
4326 bool write)
4327 {
4328 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4329 | (write ? PFERR_WRITE_MASK : 0);
4330
4331 /*
4332 * currently PKRU is only applied to ept enabled guest so
4333 * there is no pkey in EPT page table for L1 guest or EPT
4334 * shadow page table for L2 guest.
4335 */
4336 if (vcpu_match_mmio_gva(vcpu, gva)
4337 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4338 vcpu->arch.access, 0, access)) {
4339 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4340 (gva & (PAGE_SIZE - 1));
4341 trace_vcpu_match_mmio(gva, *gpa, write, false);
4342 return 1;
4343 }
4344
4345 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4346
4347 if (*gpa == UNMAPPED_GVA)
4348 return -1;
4349
4350 /* For APIC access vmexit */
4351 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4352 return 1;
4353
4354 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4355 trace_vcpu_match_mmio(gva, *gpa, write, true);
4356 return 1;
4357 }
4358
4359 return 0;
4360 }
4361
4362 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4363 const void *val, int bytes)
4364 {
4365 int ret;
4366
4367 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4368 if (ret < 0)
4369 return 0;
4370 kvm_page_track_write(vcpu, gpa, val, bytes);
4371 return 1;
4372 }
4373
4374 struct read_write_emulator_ops {
4375 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4376 int bytes);
4377 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4378 void *val, int bytes);
4379 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380 int bytes, void *val);
4381 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 void *val, int bytes);
4383 bool write;
4384 };
4385
4386 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4387 {
4388 if (vcpu->mmio_read_completed) {
4389 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4390 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4391 vcpu->mmio_read_completed = 0;
4392 return 1;
4393 }
4394
4395 return 0;
4396 }
4397
4398 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4399 void *val, int bytes)
4400 {
4401 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4402 }
4403
4404 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 void *val, int bytes)
4406 {
4407 return emulator_write_phys(vcpu, gpa, val, bytes);
4408 }
4409
4410 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4411 {
4412 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4413 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4414 }
4415
4416 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4417 void *val, int bytes)
4418 {
4419 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4420 return X86EMUL_IO_NEEDED;
4421 }
4422
4423 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4424 void *val, int bytes)
4425 {
4426 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4427
4428 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4429 return X86EMUL_CONTINUE;
4430 }
4431
4432 static const struct read_write_emulator_ops read_emultor = {
4433 .read_write_prepare = read_prepare,
4434 .read_write_emulate = read_emulate,
4435 .read_write_mmio = vcpu_mmio_read,
4436 .read_write_exit_mmio = read_exit_mmio,
4437 };
4438
4439 static const struct read_write_emulator_ops write_emultor = {
4440 .read_write_emulate = write_emulate,
4441 .read_write_mmio = write_mmio,
4442 .read_write_exit_mmio = write_exit_mmio,
4443 .write = true,
4444 };
4445
4446 static int emulator_read_write_onepage(unsigned long addr, void *val,
4447 unsigned int bytes,
4448 struct x86_exception *exception,
4449 struct kvm_vcpu *vcpu,
4450 const struct read_write_emulator_ops *ops)
4451 {
4452 gpa_t gpa;
4453 int handled, ret;
4454 bool write = ops->write;
4455 struct kvm_mmio_fragment *frag;
4456
4457 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4458
4459 if (ret < 0)
4460 return X86EMUL_PROPAGATE_FAULT;
4461
4462 /* For APIC access vmexit */
4463 if (ret)
4464 goto mmio;
4465
4466 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4467 return X86EMUL_CONTINUE;
4468
4469 mmio:
4470 /*
4471 * Is this MMIO handled locally?
4472 */
4473 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4474 if (handled == bytes)
4475 return X86EMUL_CONTINUE;
4476
4477 gpa += handled;
4478 bytes -= handled;
4479 val += handled;
4480
4481 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4482 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4483 frag->gpa = gpa;
4484 frag->data = val;
4485 frag->len = bytes;
4486 return X86EMUL_CONTINUE;
4487 }
4488
4489 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4490 unsigned long addr,
4491 void *val, unsigned int bytes,
4492 struct x86_exception *exception,
4493 const struct read_write_emulator_ops *ops)
4494 {
4495 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4496 gpa_t gpa;
4497 int rc;
4498
4499 if (ops->read_write_prepare &&
4500 ops->read_write_prepare(vcpu, val, bytes))
4501 return X86EMUL_CONTINUE;
4502
4503 vcpu->mmio_nr_fragments = 0;
4504
4505 /* Crossing a page boundary? */
4506 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4507 int now;
4508
4509 now = -addr & ~PAGE_MASK;
4510 rc = emulator_read_write_onepage(addr, val, now, exception,
4511 vcpu, ops);
4512
4513 if (rc != X86EMUL_CONTINUE)
4514 return rc;
4515 addr += now;
4516 if (ctxt->mode != X86EMUL_MODE_PROT64)
4517 addr = (u32)addr;
4518 val += now;
4519 bytes -= now;
4520 }
4521
4522 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4523 vcpu, ops);
4524 if (rc != X86EMUL_CONTINUE)
4525 return rc;
4526
4527 if (!vcpu->mmio_nr_fragments)
4528 return rc;
4529
4530 gpa = vcpu->mmio_fragments[0].gpa;
4531
4532 vcpu->mmio_needed = 1;
4533 vcpu->mmio_cur_fragment = 0;
4534
4535 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4536 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4537 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4538 vcpu->run->mmio.phys_addr = gpa;
4539
4540 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4541 }
4542
4543 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4544 unsigned long addr,
4545 void *val,
4546 unsigned int bytes,
4547 struct x86_exception *exception)
4548 {
4549 return emulator_read_write(ctxt, addr, val, bytes,
4550 exception, &read_emultor);
4551 }
4552
4553 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4554 unsigned long addr,
4555 const void *val,
4556 unsigned int bytes,
4557 struct x86_exception *exception)
4558 {
4559 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4560 exception, &write_emultor);
4561 }
4562
4563 #define CMPXCHG_TYPE(t, ptr, old, new) \
4564 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4565
4566 #ifdef CONFIG_X86_64
4567 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4568 #else
4569 # define CMPXCHG64(ptr, old, new) \
4570 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4571 #endif
4572
4573 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4574 unsigned long addr,
4575 const void *old,
4576 const void *new,
4577 unsigned int bytes,
4578 struct x86_exception *exception)
4579 {
4580 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4581 gpa_t gpa;
4582 struct page *page;
4583 char *kaddr;
4584 bool exchanged;
4585
4586 /* guests cmpxchg8b have to be emulated atomically */
4587 if (bytes > 8 || (bytes & (bytes - 1)))
4588 goto emul_write;
4589
4590 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4591
4592 if (gpa == UNMAPPED_GVA ||
4593 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4594 goto emul_write;
4595
4596 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4597 goto emul_write;
4598
4599 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4600 if (is_error_page(page))
4601 goto emul_write;
4602
4603 kaddr = kmap_atomic(page);
4604 kaddr += offset_in_page(gpa);
4605 switch (bytes) {
4606 case 1:
4607 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4608 break;
4609 case 2:
4610 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4611 break;
4612 case 4:
4613 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4614 break;
4615 case 8:
4616 exchanged = CMPXCHG64(kaddr, old, new);
4617 break;
4618 default:
4619 BUG();
4620 }
4621 kunmap_atomic(kaddr);
4622 kvm_release_page_dirty(page);
4623
4624 if (!exchanged)
4625 return X86EMUL_CMPXCHG_FAILED;
4626
4627 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4628 kvm_page_track_write(vcpu, gpa, new, bytes);
4629
4630 return X86EMUL_CONTINUE;
4631
4632 emul_write:
4633 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4634
4635 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4636 }
4637
4638 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4639 {
4640 /* TODO: String I/O for in kernel device */
4641 int r;
4642
4643 if (vcpu->arch.pio.in)
4644 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4645 vcpu->arch.pio.size, pd);
4646 else
4647 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4648 vcpu->arch.pio.port, vcpu->arch.pio.size,
4649 pd);
4650 return r;
4651 }
4652
4653 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4654 unsigned short port, void *val,
4655 unsigned int count, bool in)
4656 {
4657 vcpu->arch.pio.port = port;
4658 vcpu->arch.pio.in = in;
4659 vcpu->arch.pio.count = count;
4660 vcpu->arch.pio.size = size;
4661
4662 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4663 vcpu->arch.pio.count = 0;
4664 return 1;
4665 }
4666
4667 vcpu->run->exit_reason = KVM_EXIT_IO;
4668 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4669 vcpu->run->io.size = size;
4670 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4671 vcpu->run->io.count = count;
4672 vcpu->run->io.port = port;
4673
4674 return 0;
4675 }
4676
4677 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4678 int size, unsigned short port, void *val,
4679 unsigned int count)
4680 {
4681 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4682 int ret;
4683
4684 if (vcpu->arch.pio.count)
4685 goto data_avail;
4686
4687 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4688 if (ret) {
4689 data_avail:
4690 memcpy(val, vcpu->arch.pio_data, size * count);
4691 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4692 vcpu->arch.pio.count = 0;
4693 return 1;
4694 }
4695
4696 return 0;
4697 }
4698
4699 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4700 int size, unsigned short port,
4701 const void *val, unsigned int count)
4702 {
4703 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4704
4705 memcpy(vcpu->arch.pio_data, val, size * count);
4706 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4707 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4708 }
4709
4710 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4711 {
4712 return kvm_x86_ops->get_segment_base(vcpu, seg);
4713 }
4714
4715 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4716 {
4717 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4718 }
4719
4720 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4721 {
4722 if (!need_emulate_wbinvd(vcpu))
4723 return X86EMUL_CONTINUE;
4724
4725 if (kvm_x86_ops->has_wbinvd_exit()) {
4726 int cpu = get_cpu();
4727
4728 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4729 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4730 wbinvd_ipi, NULL, 1);
4731 put_cpu();
4732 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4733 } else
4734 wbinvd();
4735 return X86EMUL_CONTINUE;
4736 }
4737
4738 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4739 {
4740 kvm_x86_ops->skip_emulated_instruction(vcpu);
4741 return kvm_emulate_wbinvd_noskip(vcpu);
4742 }
4743 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4744
4745
4746
4747 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4748 {
4749 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4750 }
4751
4752 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4753 unsigned long *dest)
4754 {
4755 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4756 }
4757
4758 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4759 unsigned long value)
4760 {
4761
4762 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4763 }
4764
4765 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4766 {
4767 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4768 }
4769
4770 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4771 {
4772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4773 unsigned long value;
4774
4775 switch (cr) {
4776 case 0:
4777 value = kvm_read_cr0(vcpu);
4778 break;
4779 case 2:
4780 value = vcpu->arch.cr2;
4781 break;
4782 case 3:
4783 value = kvm_read_cr3(vcpu);
4784 break;
4785 case 4:
4786 value = kvm_read_cr4(vcpu);
4787 break;
4788 case 8:
4789 value = kvm_get_cr8(vcpu);
4790 break;
4791 default:
4792 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4793 return 0;
4794 }
4795
4796 return value;
4797 }
4798
4799 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4800 {
4801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4802 int res = 0;
4803
4804 switch (cr) {
4805 case 0:
4806 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4807 break;
4808 case 2:
4809 vcpu->arch.cr2 = val;
4810 break;
4811 case 3:
4812 res = kvm_set_cr3(vcpu, val);
4813 break;
4814 case 4:
4815 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4816 break;
4817 case 8:
4818 res = kvm_set_cr8(vcpu, val);
4819 break;
4820 default:
4821 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4822 res = -1;
4823 }
4824
4825 return res;
4826 }
4827
4828 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4829 {
4830 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4831 }
4832
4833 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4834 {
4835 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4836 }
4837
4838 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4839 {
4840 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4841 }
4842
4843 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4844 {
4845 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4846 }
4847
4848 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4849 {
4850 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4851 }
4852
4853 static unsigned long emulator_get_cached_segment_base(
4854 struct x86_emulate_ctxt *ctxt, int seg)
4855 {
4856 return get_segment_base(emul_to_vcpu(ctxt), seg);
4857 }
4858
4859 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4860 struct desc_struct *desc, u32 *base3,
4861 int seg)
4862 {
4863 struct kvm_segment var;
4864
4865 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4866 *selector = var.selector;
4867
4868 if (var.unusable) {
4869 memset(desc, 0, sizeof(*desc));
4870 return false;
4871 }
4872
4873 if (var.g)
4874 var.limit >>= 12;
4875 set_desc_limit(desc, var.limit);
4876 set_desc_base(desc, (unsigned long)var.base);
4877 #ifdef CONFIG_X86_64
4878 if (base3)
4879 *base3 = var.base >> 32;
4880 #endif
4881 desc->type = var.type;
4882 desc->s = var.s;
4883 desc->dpl = var.dpl;
4884 desc->p = var.present;
4885 desc->avl = var.avl;
4886 desc->l = var.l;
4887 desc->d = var.db;
4888 desc->g = var.g;
4889
4890 return true;
4891 }
4892
4893 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4894 struct desc_struct *desc, u32 base3,
4895 int seg)
4896 {
4897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4898 struct kvm_segment var;
4899
4900 var.selector = selector;
4901 var.base = get_desc_base(desc);
4902 #ifdef CONFIG_X86_64
4903 var.base |= ((u64)base3) << 32;
4904 #endif
4905 var.limit = get_desc_limit(desc);
4906 if (desc->g)
4907 var.limit = (var.limit << 12) | 0xfff;
4908 var.type = desc->type;
4909 var.dpl = desc->dpl;
4910 var.db = desc->d;
4911 var.s = desc->s;
4912 var.l = desc->l;
4913 var.g = desc->g;
4914 var.avl = desc->avl;
4915 var.present = desc->p;
4916 var.unusable = !var.present;
4917 var.padding = 0;
4918
4919 kvm_set_segment(vcpu, &var, seg);
4920 return;
4921 }
4922
4923 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4924 u32 msr_index, u64 *pdata)
4925 {
4926 struct msr_data msr;
4927 int r;
4928
4929 msr.index = msr_index;
4930 msr.host_initiated = false;
4931 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4932 if (r)
4933 return r;
4934
4935 *pdata = msr.data;
4936 return 0;
4937 }
4938
4939 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4940 u32 msr_index, u64 data)
4941 {
4942 struct msr_data msr;
4943
4944 msr.data = data;
4945 msr.index = msr_index;
4946 msr.host_initiated = false;
4947 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4948 }
4949
4950 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4951 {
4952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953
4954 return vcpu->arch.smbase;
4955 }
4956
4957 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4958 {
4959 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4960
4961 vcpu->arch.smbase = smbase;
4962 }
4963
4964 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4965 u32 pmc)
4966 {
4967 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4968 }
4969
4970 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4971 u32 pmc, u64 *pdata)
4972 {
4973 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4974 }
4975
4976 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4977 {
4978 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4979 }
4980
4981 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4982 {
4983 preempt_disable();
4984 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4985 /*
4986 * CR0.TS may reference the host fpu state, not the guest fpu state,
4987 * so it may be clear at this point.
4988 */
4989 clts();
4990 }
4991
4992 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4993 {
4994 preempt_enable();
4995 }
4996
4997 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4998 struct x86_instruction_info *info,
4999 enum x86_intercept_stage stage)
5000 {
5001 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5002 }
5003
5004 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5005 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5006 {
5007 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5008 }
5009
5010 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5011 {
5012 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5013 }
5014
5015 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5016 {
5017 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5018 }
5019
5020 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5021 {
5022 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5023 }
5024
5025 static const struct x86_emulate_ops emulate_ops = {
5026 .read_gpr = emulator_read_gpr,
5027 .write_gpr = emulator_write_gpr,
5028 .read_std = kvm_read_guest_virt_system,
5029 .write_std = kvm_write_guest_virt_system,
5030 .read_phys = kvm_read_guest_phys_system,
5031 .fetch = kvm_fetch_guest_virt,
5032 .read_emulated = emulator_read_emulated,
5033 .write_emulated = emulator_write_emulated,
5034 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5035 .invlpg = emulator_invlpg,
5036 .pio_in_emulated = emulator_pio_in_emulated,
5037 .pio_out_emulated = emulator_pio_out_emulated,
5038 .get_segment = emulator_get_segment,
5039 .set_segment = emulator_set_segment,
5040 .get_cached_segment_base = emulator_get_cached_segment_base,
5041 .get_gdt = emulator_get_gdt,
5042 .get_idt = emulator_get_idt,
5043 .set_gdt = emulator_set_gdt,
5044 .set_idt = emulator_set_idt,
5045 .get_cr = emulator_get_cr,
5046 .set_cr = emulator_set_cr,
5047 .cpl = emulator_get_cpl,
5048 .get_dr = emulator_get_dr,
5049 .set_dr = emulator_set_dr,
5050 .get_smbase = emulator_get_smbase,
5051 .set_smbase = emulator_set_smbase,
5052 .set_msr = emulator_set_msr,
5053 .get_msr = emulator_get_msr,
5054 .check_pmc = emulator_check_pmc,
5055 .read_pmc = emulator_read_pmc,
5056 .halt = emulator_halt,
5057 .wbinvd = emulator_wbinvd,
5058 .fix_hypercall = emulator_fix_hypercall,
5059 .get_fpu = emulator_get_fpu,
5060 .put_fpu = emulator_put_fpu,
5061 .intercept = emulator_intercept,
5062 .get_cpuid = emulator_get_cpuid,
5063 .set_nmi_mask = emulator_set_nmi_mask,
5064 };
5065
5066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5067 {
5068 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5069 /*
5070 * an sti; sti; sequence only disable interrupts for the first
5071 * instruction. So, if the last instruction, be it emulated or
5072 * not, left the system with the INT_STI flag enabled, it
5073 * means that the last instruction is an sti. We should not
5074 * leave the flag on in this case. The same goes for mov ss
5075 */
5076 if (int_shadow & mask)
5077 mask = 0;
5078 if (unlikely(int_shadow || mask)) {
5079 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5080 if (!mask)
5081 kvm_make_request(KVM_REQ_EVENT, vcpu);
5082 }
5083 }
5084
5085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5086 {
5087 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5088 if (ctxt->exception.vector == PF_VECTOR)
5089 return kvm_propagate_fault(vcpu, &ctxt->exception);
5090
5091 if (ctxt->exception.error_code_valid)
5092 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5093 ctxt->exception.error_code);
5094 else
5095 kvm_queue_exception(vcpu, ctxt->exception.vector);
5096 return false;
5097 }
5098
5099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5100 {
5101 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5102 int cs_db, cs_l;
5103
5104 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5105
5106 ctxt->eflags = kvm_get_rflags(vcpu);
5107 ctxt->eip = kvm_rip_read(vcpu);
5108 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5109 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5110 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5111 cs_db ? X86EMUL_MODE_PROT32 :
5112 X86EMUL_MODE_PROT16;
5113 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5114 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5115 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5116 ctxt->emul_flags = vcpu->arch.hflags;
5117
5118 init_decode_cache(ctxt);
5119 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5120 }
5121
5122 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5123 {
5124 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5125 int ret;
5126
5127 init_emulate_ctxt(vcpu);
5128
5129 ctxt->op_bytes = 2;
5130 ctxt->ad_bytes = 2;
5131 ctxt->_eip = ctxt->eip + inc_eip;
5132 ret = emulate_int_real(ctxt, irq);
5133
5134 if (ret != X86EMUL_CONTINUE)
5135 return EMULATE_FAIL;
5136
5137 ctxt->eip = ctxt->_eip;
5138 kvm_rip_write(vcpu, ctxt->eip);
5139 kvm_set_rflags(vcpu, ctxt->eflags);
5140
5141 if (irq == NMI_VECTOR)
5142 vcpu->arch.nmi_pending = 0;
5143 else
5144 vcpu->arch.interrupt.pending = false;
5145
5146 return EMULATE_DONE;
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5149
5150 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5151 {
5152 int r = EMULATE_DONE;
5153
5154 ++vcpu->stat.insn_emulation_fail;
5155 trace_kvm_emulate_insn_failed(vcpu);
5156 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5157 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5158 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5159 vcpu->run->internal.ndata = 0;
5160 r = EMULATE_FAIL;
5161 }
5162 kvm_queue_exception(vcpu, UD_VECTOR);
5163
5164 return r;
5165 }
5166
5167 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5168 bool write_fault_to_shadow_pgtable,
5169 int emulation_type)
5170 {
5171 gpa_t gpa = cr2;
5172 kvm_pfn_t pfn;
5173
5174 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5175 return false;
5176
5177 if (!vcpu->arch.mmu.direct_map) {
5178 /*
5179 * Write permission should be allowed since only
5180 * write access need to be emulated.
5181 */
5182 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5183
5184 /*
5185 * If the mapping is invalid in guest, let cpu retry
5186 * it to generate fault.
5187 */
5188 if (gpa == UNMAPPED_GVA)
5189 return true;
5190 }
5191
5192 /*
5193 * Do not retry the unhandleable instruction if it faults on the
5194 * readonly host memory, otherwise it will goto a infinite loop:
5195 * retry instruction -> write #PF -> emulation fail -> retry
5196 * instruction -> ...
5197 */
5198 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5199
5200 /*
5201 * If the instruction failed on the error pfn, it can not be fixed,
5202 * report the error to userspace.
5203 */
5204 if (is_error_noslot_pfn(pfn))
5205 return false;
5206
5207 kvm_release_pfn_clean(pfn);
5208
5209 /* The instructions are well-emulated on direct mmu. */
5210 if (vcpu->arch.mmu.direct_map) {
5211 unsigned int indirect_shadow_pages;
5212
5213 spin_lock(&vcpu->kvm->mmu_lock);
5214 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5215 spin_unlock(&vcpu->kvm->mmu_lock);
5216
5217 if (indirect_shadow_pages)
5218 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5219
5220 return true;
5221 }
5222
5223 /*
5224 * if emulation was due to access to shadowed page table
5225 * and it failed try to unshadow page and re-enter the
5226 * guest to let CPU execute the instruction.
5227 */
5228 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5229
5230 /*
5231 * If the access faults on its page table, it can not
5232 * be fixed by unprotecting shadow page and it should
5233 * be reported to userspace.
5234 */
5235 return !write_fault_to_shadow_pgtable;
5236 }
5237
5238 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5239 unsigned long cr2, int emulation_type)
5240 {
5241 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5242 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5243
5244 last_retry_eip = vcpu->arch.last_retry_eip;
5245 last_retry_addr = vcpu->arch.last_retry_addr;
5246
5247 /*
5248 * If the emulation is caused by #PF and it is non-page_table
5249 * writing instruction, it means the VM-EXIT is caused by shadow
5250 * page protected, we can zap the shadow page and retry this
5251 * instruction directly.
5252 *
5253 * Note: if the guest uses a non-page-table modifying instruction
5254 * on the PDE that points to the instruction, then we will unmap
5255 * the instruction and go to an infinite loop. So, we cache the
5256 * last retried eip and the last fault address, if we meet the eip
5257 * and the address again, we can break out of the potential infinite
5258 * loop.
5259 */
5260 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5261
5262 if (!(emulation_type & EMULTYPE_RETRY))
5263 return false;
5264
5265 if (x86_page_table_writing_insn(ctxt))
5266 return false;
5267
5268 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5269 return false;
5270
5271 vcpu->arch.last_retry_eip = ctxt->eip;
5272 vcpu->arch.last_retry_addr = cr2;
5273
5274 if (!vcpu->arch.mmu.direct_map)
5275 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5276
5277 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5278
5279 return true;
5280 }
5281
5282 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5283 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5284
5285 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5286 {
5287 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5288 /* This is a good place to trace that we are exiting SMM. */
5289 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5290
5291 if (unlikely(vcpu->arch.smi_pending)) {
5292 kvm_make_request(KVM_REQ_SMI, vcpu);
5293 vcpu->arch.smi_pending = 0;
5294 } else {
5295 /* Process a latched INIT, if any. */
5296 kvm_make_request(KVM_REQ_EVENT, vcpu);
5297 }
5298 }
5299
5300 kvm_mmu_reset_context(vcpu);
5301 }
5302
5303 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5304 {
5305 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5306
5307 vcpu->arch.hflags = emul_flags;
5308
5309 if (changed & HF_SMM_MASK)
5310 kvm_smm_changed(vcpu);
5311 }
5312
5313 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5314 unsigned long *db)
5315 {
5316 u32 dr6 = 0;
5317 int i;
5318 u32 enable, rwlen;
5319
5320 enable = dr7;
5321 rwlen = dr7 >> 16;
5322 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5323 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5324 dr6 |= (1 << i);
5325 return dr6;
5326 }
5327
5328 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5329 {
5330 struct kvm_run *kvm_run = vcpu->run;
5331
5332 /*
5333 * rflags is the old, "raw" value of the flags. The new value has
5334 * not been saved yet.
5335 *
5336 * This is correct even for TF set by the guest, because "the
5337 * processor will not generate this exception after the instruction
5338 * that sets the TF flag".
5339 */
5340 if (unlikely(rflags & X86_EFLAGS_TF)) {
5341 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5342 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5343 DR6_RTM;
5344 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5345 kvm_run->debug.arch.exception = DB_VECTOR;
5346 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5347 *r = EMULATE_USER_EXIT;
5348 } else {
5349 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5350 /*
5351 * "Certain debug exceptions may clear bit 0-3. The
5352 * remaining contents of the DR6 register are never
5353 * cleared by the processor".
5354 */
5355 vcpu->arch.dr6 &= ~15;
5356 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5357 kvm_queue_exception(vcpu, DB_VECTOR);
5358 }
5359 }
5360 }
5361
5362 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5363 {
5364 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5365 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5366 struct kvm_run *kvm_run = vcpu->run;
5367 unsigned long eip = kvm_get_linear_rip(vcpu);
5368 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5369 vcpu->arch.guest_debug_dr7,
5370 vcpu->arch.eff_db);
5371
5372 if (dr6 != 0) {
5373 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5374 kvm_run->debug.arch.pc = eip;
5375 kvm_run->debug.arch.exception = DB_VECTOR;
5376 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5377 *r = EMULATE_USER_EXIT;
5378 return true;
5379 }
5380 }
5381
5382 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5383 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5384 unsigned long eip = kvm_get_linear_rip(vcpu);
5385 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5386 vcpu->arch.dr7,
5387 vcpu->arch.db);
5388
5389 if (dr6 != 0) {
5390 vcpu->arch.dr6 &= ~15;
5391 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5392 kvm_queue_exception(vcpu, DB_VECTOR);
5393 *r = EMULATE_DONE;
5394 return true;
5395 }
5396 }
5397
5398 return false;
5399 }
5400
5401 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5402 unsigned long cr2,
5403 int emulation_type,
5404 void *insn,
5405 int insn_len)
5406 {
5407 int r;
5408 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5409 bool writeback = true;
5410 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5411
5412 /*
5413 * Clear write_fault_to_shadow_pgtable here to ensure it is
5414 * never reused.
5415 */
5416 vcpu->arch.write_fault_to_shadow_pgtable = false;
5417 kvm_clear_exception_queue(vcpu);
5418
5419 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5420 init_emulate_ctxt(vcpu);
5421
5422 /*
5423 * We will reenter on the same instruction since
5424 * we do not set complete_userspace_io. This does not
5425 * handle watchpoints yet, those would be handled in
5426 * the emulate_ops.
5427 */
5428 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5429 return r;
5430
5431 ctxt->interruptibility = 0;
5432 ctxt->have_exception = false;
5433 ctxt->exception.vector = -1;
5434 ctxt->perm_ok = false;
5435
5436 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5437
5438 r = x86_decode_insn(ctxt, insn, insn_len);
5439
5440 trace_kvm_emulate_insn_start(vcpu);
5441 ++vcpu->stat.insn_emulation;
5442 if (r != EMULATION_OK) {
5443 if (emulation_type & EMULTYPE_TRAP_UD)
5444 return EMULATE_FAIL;
5445 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446 emulation_type))
5447 return EMULATE_DONE;
5448 if (emulation_type & EMULTYPE_SKIP)
5449 return EMULATE_FAIL;
5450 return handle_emulation_failure(vcpu);
5451 }
5452 }
5453
5454 if (emulation_type & EMULTYPE_SKIP) {
5455 kvm_rip_write(vcpu, ctxt->_eip);
5456 if (ctxt->eflags & X86_EFLAGS_RF)
5457 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5458 return EMULATE_DONE;
5459 }
5460
5461 if (retry_instruction(ctxt, cr2, emulation_type))
5462 return EMULATE_DONE;
5463
5464 /* this is needed for vmware backdoor interface to work since it
5465 changes registers values during IO operation */
5466 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5467 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5468 emulator_invalidate_register_cache(ctxt);
5469 }
5470
5471 restart:
5472 r = x86_emulate_insn(ctxt);
5473
5474 if (r == EMULATION_INTERCEPTED)
5475 return EMULATE_DONE;
5476
5477 if (r == EMULATION_FAILED) {
5478 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5479 emulation_type))
5480 return EMULATE_DONE;
5481
5482 return handle_emulation_failure(vcpu);
5483 }
5484
5485 if (ctxt->have_exception) {
5486 r = EMULATE_DONE;
5487 if (inject_emulated_exception(vcpu))
5488 return r;
5489 } else if (vcpu->arch.pio.count) {
5490 if (!vcpu->arch.pio.in) {
5491 /* FIXME: return into emulator if single-stepping. */
5492 vcpu->arch.pio.count = 0;
5493 } else {
5494 writeback = false;
5495 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5496 }
5497 r = EMULATE_USER_EXIT;
5498 } else if (vcpu->mmio_needed) {
5499 if (!vcpu->mmio_is_write)
5500 writeback = false;
5501 r = EMULATE_USER_EXIT;
5502 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5503 } else if (r == EMULATION_RESTART)
5504 goto restart;
5505 else
5506 r = EMULATE_DONE;
5507
5508 if (writeback) {
5509 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5510 toggle_interruptibility(vcpu, ctxt->interruptibility);
5511 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5512 if (vcpu->arch.hflags != ctxt->emul_flags)
5513 kvm_set_hflags(vcpu, ctxt->emul_flags);
5514 kvm_rip_write(vcpu, ctxt->eip);
5515 if (r == EMULATE_DONE)
5516 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5517 if (!ctxt->have_exception ||
5518 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5519 __kvm_set_rflags(vcpu, ctxt->eflags);
5520
5521 /*
5522 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5523 * do nothing, and it will be requested again as soon as
5524 * the shadow expires. But we still need to check here,
5525 * because POPF has no interrupt shadow.
5526 */
5527 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5528 kvm_make_request(KVM_REQ_EVENT, vcpu);
5529 } else
5530 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5531
5532 return r;
5533 }
5534 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5535
5536 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5537 {
5538 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5539 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5540 size, port, &val, 1);
5541 /* do not return to emulator after return from userspace */
5542 vcpu->arch.pio.count = 0;
5543 return ret;
5544 }
5545 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5546
5547 static void tsc_bad(void *info)
5548 {
5549 __this_cpu_write(cpu_tsc_khz, 0);
5550 }
5551
5552 static void tsc_khz_changed(void *data)
5553 {
5554 struct cpufreq_freqs *freq = data;
5555 unsigned long khz = 0;
5556
5557 if (data)
5558 khz = freq->new;
5559 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5560 khz = cpufreq_quick_get(raw_smp_processor_id());
5561 if (!khz)
5562 khz = tsc_khz;
5563 __this_cpu_write(cpu_tsc_khz, khz);
5564 }
5565
5566 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5567 void *data)
5568 {
5569 struct cpufreq_freqs *freq = data;
5570 struct kvm *kvm;
5571 struct kvm_vcpu *vcpu;
5572 int i, send_ipi = 0;
5573
5574 /*
5575 * We allow guests to temporarily run on slowing clocks,
5576 * provided we notify them after, or to run on accelerating
5577 * clocks, provided we notify them before. Thus time never
5578 * goes backwards.
5579 *
5580 * However, we have a problem. We can't atomically update
5581 * the frequency of a given CPU from this function; it is
5582 * merely a notifier, which can be called from any CPU.
5583 * Changing the TSC frequency at arbitrary points in time
5584 * requires a recomputation of local variables related to
5585 * the TSC for each VCPU. We must flag these local variables
5586 * to be updated and be sure the update takes place with the
5587 * new frequency before any guests proceed.
5588 *
5589 * Unfortunately, the combination of hotplug CPU and frequency
5590 * change creates an intractable locking scenario; the order
5591 * of when these callouts happen is undefined with respect to
5592 * CPU hotplug, and they can race with each other. As such,
5593 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5594 * undefined; you can actually have a CPU frequency change take
5595 * place in between the computation of X and the setting of the
5596 * variable. To protect against this problem, all updates of
5597 * the per_cpu tsc_khz variable are done in an interrupt
5598 * protected IPI, and all callers wishing to update the value
5599 * must wait for a synchronous IPI to complete (which is trivial
5600 * if the caller is on the CPU already). This establishes the
5601 * necessary total order on variable updates.
5602 *
5603 * Note that because a guest time update may take place
5604 * anytime after the setting of the VCPU's request bit, the
5605 * correct TSC value must be set before the request. However,
5606 * to ensure the update actually makes it to any guest which
5607 * starts running in hardware virtualization between the set
5608 * and the acquisition of the spinlock, we must also ping the
5609 * CPU after setting the request bit.
5610 *
5611 */
5612
5613 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5614 return 0;
5615 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5616 return 0;
5617
5618 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5619
5620 spin_lock(&kvm_lock);
5621 list_for_each_entry(kvm, &vm_list, vm_list) {
5622 kvm_for_each_vcpu(i, vcpu, kvm) {
5623 if (vcpu->cpu != freq->cpu)
5624 continue;
5625 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5626 if (vcpu->cpu != smp_processor_id())
5627 send_ipi = 1;
5628 }
5629 }
5630 spin_unlock(&kvm_lock);
5631
5632 if (freq->old < freq->new && send_ipi) {
5633 /*
5634 * We upscale the frequency. Must make the guest
5635 * doesn't see old kvmclock values while running with
5636 * the new frequency, otherwise we risk the guest sees
5637 * time go backwards.
5638 *
5639 * In case we update the frequency for another cpu
5640 * (which might be in guest context) send an interrupt
5641 * to kick the cpu out of guest context. Next time
5642 * guest context is entered kvmclock will be updated,
5643 * so the guest will not see stale values.
5644 */
5645 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5646 }
5647 return 0;
5648 }
5649
5650 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5651 .notifier_call = kvmclock_cpufreq_notifier
5652 };
5653
5654 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5655 unsigned long action, void *hcpu)
5656 {
5657 unsigned int cpu = (unsigned long)hcpu;
5658
5659 switch (action) {
5660 case CPU_ONLINE:
5661 case CPU_DOWN_FAILED:
5662 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5663 break;
5664 case CPU_DOWN_PREPARE:
5665 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5666 break;
5667 }
5668 return NOTIFY_OK;
5669 }
5670
5671 static struct notifier_block kvmclock_cpu_notifier_block = {
5672 .notifier_call = kvmclock_cpu_notifier,
5673 .priority = -INT_MAX
5674 };
5675
5676 static void kvm_timer_init(void)
5677 {
5678 int cpu;
5679
5680 max_tsc_khz = tsc_khz;
5681
5682 cpu_notifier_register_begin();
5683 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5684 #ifdef CONFIG_CPU_FREQ
5685 struct cpufreq_policy policy;
5686 memset(&policy, 0, sizeof(policy));
5687 cpu = get_cpu();
5688 cpufreq_get_policy(&policy, cpu);
5689 if (policy.cpuinfo.max_freq)
5690 max_tsc_khz = policy.cpuinfo.max_freq;
5691 put_cpu();
5692 #endif
5693 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5694 CPUFREQ_TRANSITION_NOTIFIER);
5695 }
5696 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5697 for_each_online_cpu(cpu)
5698 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5699
5700 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5701 cpu_notifier_register_done();
5702
5703 }
5704
5705 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5706
5707 int kvm_is_in_guest(void)
5708 {
5709 return __this_cpu_read(current_vcpu) != NULL;
5710 }
5711
5712 static int kvm_is_user_mode(void)
5713 {
5714 int user_mode = 3;
5715
5716 if (__this_cpu_read(current_vcpu))
5717 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5718
5719 return user_mode != 0;
5720 }
5721
5722 static unsigned long kvm_get_guest_ip(void)
5723 {
5724 unsigned long ip = 0;
5725
5726 if (__this_cpu_read(current_vcpu))
5727 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5728
5729 return ip;
5730 }
5731
5732 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5733 .is_in_guest = kvm_is_in_guest,
5734 .is_user_mode = kvm_is_user_mode,
5735 .get_guest_ip = kvm_get_guest_ip,
5736 };
5737
5738 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5739 {
5740 __this_cpu_write(current_vcpu, vcpu);
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5743
5744 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5745 {
5746 __this_cpu_write(current_vcpu, NULL);
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5749
5750 static void kvm_set_mmio_spte_mask(void)
5751 {
5752 u64 mask;
5753 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5754
5755 /*
5756 * Set the reserved bits and the present bit of an paging-structure
5757 * entry to generate page fault with PFER.RSV = 1.
5758 */
5759 /* Mask the reserved physical address bits. */
5760 mask = rsvd_bits(maxphyaddr, 51);
5761
5762 /* Bit 62 is always reserved for 32bit host. */
5763 mask |= 0x3ull << 62;
5764
5765 /* Set the present bit. */
5766 mask |= 1ull;
5767
5768 #ifdef CONFIG_X86_64
5769 /*
5770 * If reserved bit is not supported, clear the present bit to disable
5771 * mmio page fault.
5772 */
5773 if (maxphyaddr == 52)
5774 mask &= ~1ull;
5775 #endif
5776
5777 kvm_mmu_set_mmio_spte_mask(mask);
5778 }
5779
5780 #ifdef CONFIG_X86_64
5781 static void pvclock_gtod_update_fn(struct work_struct *work)
5782 {
5783 struct kvm *kvm;
5784
5785 struct kvm_vcpu *vcpu;
5786 int i;
5787
5788 spin_lock(&kvm_lock);
5789 list_for_each_entry(kvm, &vm_list, vm_list)
5790 kvm_for_each_vcpu(i, vcpu, kvm)
5791 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5792 atomic_set(&kvm_guest_has_master_clock, 0);
5793 spin_unlock(&kvm_lock);
5794 }
5795
5796 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5797
5798 /*
5799 * Notification about pvclock gtod data update.
5800 */
5801 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5802 void *priv)
5803 {
5804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5805 struct timekeeper *tk = priv;
5806
5807 update_pvclock_gtod(tk);
5808
5809 /* disable master clock if host does not trust, or does not
5810 * use, TSC clocksource
5811 */
5812 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5813 atomic_read(&kvm_guest_has_master_clock) != 0)
5814 queue_work(system_long_wq, &pvclock_gtod_work);
5815
5816 return 0;
5817 }
5818
5819 static struct notifier_block pvclock_gtod_notifier = {
5820 .notifier_call = pvclock_gtod_notify,
5821 };
5822 #endif
5823
5824 int kvm_arch_init(void *opaque)
5825 {
5826 int r;
5827 struct kvm_x86_ops *ops = opaque;
5828
5829 if (kvm_x86_ops) {
5830 printk(KERN_ERR "kvm: already loaded the other module\n");
5831 r = -EEXIST;
5832 goto out;
5833 }
5834
5835 if (!ops->cpu_has_kvm_support()) {
5836 printk(KERN_ERR "kvm: no hardware support\n");
5837 r = -EOPNOTSUPP;
5838 goto out;
5839 }
5840 if (ops->disabled_by_bios()) {
5841 printk(KERN_ERR "kvm: disabled by bios\n");
5842 r = -EOPNOTSUPP;
5843 goto out;
5844 }
5845
5846 r = -ENOMEM;
5847 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5848 if (!shared_msrs) {
5849 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5850 goto out;
5851 }
5852
5853 r = kvm_mmu_module_init();
5854 if (r)
5855 goto out_free_percpu;
5856
5857 kvm_set_mmio_spte_mask();
5858
5859 kvm_x86_ops = ops;
5860
5861 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5862 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5863
5864 kvm_timer_init();
5865
5866 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5867
5868 if (cpu_has_xsave)
5869 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5870
5871 kvm_lapic_init();
5872 #ifdef CONFIG_X86_64
5873 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5874 #endif
5875
5876 return 0;
5877
5878 out_free_percpu:
5879 free_percpu(shared_msrs);
5880 out:
5881 return r;
5882 }
5883
5884 void kvm_arch_exit(void)
5885 {
5886 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5887
5888 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5889 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5890 CPUFREQ_TRANSITION_NOTIFIER);
5891 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5892 #ifdef CONFIG_X86_64
5893 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5894 #endif
5895 kvm_x86_ops = NULL;
5896 kvm_mmu_module_exit();
5897 free_percpu(shared_msrs);
5898 }
5899
5900 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5901 {
5902 ++vcpu->stat.halt_exits;
5903 if (lapic_in_kernel(vcpu)) {
5904 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5905 return 1;
5906 } else {
5907 vcpu->run->exit_reason = KVM_EXIT_HLT;
5908 return 0;
5909 }
5910 }
5911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5912
5913 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5914 {
5915 kvm_x86_ops->skip_emulated_instruction(vcpu);
5916 return kvm_vcpu_halt(vcpu);
5917 }
5918 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5919
5920 /*
5921 * kvm_pv_kick_cpu_op: Kick a vcpu.
5922 *
5923 * @apicid - apicid of vcpu to be kicked.
5924 */
5925 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5926 {
5927 struct kvm_lapic_irq lapic_irq;
5928
5929 lapic_irq.shorthand = 0;
5930 lapic_irq.dest_mode = 0;
5931 lapic_irq.dest_id = apicid;
5932 lapic_irq.msi_redir_hint = false;
5933
5934 lapic_irq.delivery_mode = APIC_DM_REMRD;
5935 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5936 }
5937
5938 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5939 {
5940 vcpu->arch.apicv_active = false;
5941 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5942 }
5943
5944 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5945 {
5946 unsigned long nr, a0, a1, a2, a3, ret;
5947 int op_64_bit, r = 1;
5948
5949 kvm_x86_ops->skip_emulated_instruction(vcpu);
5950
5951 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5952 return kvm_hv_hypercall(vcpu);
5953
5954 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5955 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5956 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5957 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5958 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5959
5960 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5961
5962 op_64_bit = is_64_bit_mode(vcpu);
5963 if (!op_64_bit) {
5964 nr &= 0xFFFFFFFF;
5965 a0 &= 0xFFFFFFFF;
5966 a1 &= 0xFFFFFFFF;
5967 a2 &= 0xFFFFFFFF;
5968 a3 &= 0xFFFFFFFF;
5969 }
5970
5971 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5972 ret = -KVM_EPERM;
5973 goto out;
5974 }
5975
5976 switch (nr) {
5977 case KVM_HC_VAPIC_POLL_IRQ:
5978 ret = 0;
5979 break;
5980 case KVM_HC_KICK_CPU:
5981 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5982 ret = 0;
5983 break;
5984 default:
5985 ret = -KVM_ENOSYS;
5986 break;
5987 }
5988 out:
5989 if (!op_64_bit)
5990 ret = (u32)ret;
5991 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5992 ++vcpu->stat.hypercalls;
5993 return r;
5994 }
5995 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5996
5997 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5998 {
5999 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6000 char instruction[3];
6001 unsigned long rip = kvm_rip_read(vcpu);
6002
6003 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6004
6005 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6006 }
6007
6008 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6009 {
6010 return vcpu->run->request_interrupt_window &&
6011 likely(!pic_in_kernel(vcpu->kvm));
6012 }
6013
6014 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6015 {
6016 struct kvm_run *kvm_run = vcpu->run;
6017
6018 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6019 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6020 kvm_run->cr8 = kvm_get_cr8(vcpu);
6021 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6022 kvm_run->ready_for_interrupt_injection =
6023 pic_in_kernel(vcpu->kvm) ||
6024 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6025 }
6026
6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6028 {
6029 int max_irr, tpr;
6030
6031 if (!kvm_x86_ops->update_cr8_intercept)
6032 return;
6033
6034 if (!lapic_in_kernel(vcpu))
6035 return;
6036
6037 if (vcpu->arch.apicv_active)
6038 return;
6039
6040 if (!vcpu->arch.apic->vapic_addr)
6041 max_irr = kvm_lapic_find_highest_irr(vcpu);
6042 else
6043 max_irr = -1;
6044
6045 if (max_irr != -1)
6046 max_irr >>= 4;
6047
6048 tpr = kvm_lapic_get_cr8(vcpu);
6049
6050 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6051 }
6052
6053 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6054 {
6055 int r;
6056
6057 /* try to reinject previous events if any */
6058 if (vcpu->arch.exception.pending) {
6059 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6060 vcpu->arch.exception.has_error_code,
6061 vcpu->arch.exception.error_code);
6062
6063 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6064 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6065 X86_EFLAGS_RF);
6066
6067 if (vcpu->arch.exception.nr == DB_VECTOR &&
6068 (vcpu->arch.dr7 & DR7_GD)) {
6069 vcpu->arch.dr7 &= ~DR7_GD;
6070 kvm_update_dr7(vcpu);
6071 }
6072
6073 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6074 vcpu->arch.exception.has_error_code,
6075 vcpu->arch.exception.error_code,
6076 vcpu->arch.exception.reinject);
6077 return 0;
6078 }
6079
6080 if (vcpu->arch.nmi_injected) {
6081 kvm_x86_ops->set_nmi(vcpu);
6082 return 0;
6083 }
6084
6085 if (vcpu->arch.interrupt.pending) {
6086 kvm_x86_ops->set_irq(vcpu);
6087 return 0;
6088 }
6089
6090 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6091 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6092 if (r != 0)
6093 return r;
6094 }
6095
6096 /* try to inject new event if pending */
6097 if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6098 --vcpu->arch.nmi_pending;
6099 vcpu->arch.nmi_injected = true;
6100 kvm_x86_ops->set_nmi(vcpu);
6101 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6102 /*
6103 * Because interrupts can be injected asynchronously, we are
6104 * calling check_nested_events again here to avoid a race condition.
6105 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6106 * proposal and current concerns. Perhaps we should be setting
6107 * KVM_REQ_EVENT only on certain events and not unconditionally?
6108 */
6109 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6110 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6111 if (r != 0)
6112 return r;
6113 }
6114 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6115 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6116 false);
6117 kvm_x86_ops->set_irq(vcpu);
6118 }
6119 }
6120 return 0;
6121 }
6122
6123 static void process_nmi(struct kvm_vcpu *vcpu)
6124 {
6125 unsigned limit = 2;
6126
6127 /*
6128 * x86 is limited to one NMI running, and one NMI pending after it.
6129 * If an NMI is already in progress, limit further NMIs to just one.
6130 * Otherwise, allow two (and we'll inject the first one immediately).
6131 */
6132 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6133 limit = 1;
6134
6135 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6136 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6137 kvm_make_request(KVM_REQ_EVENT, vcpu);
6138 }
6139
6140 #define put_smstate(type, buf, offset, val) \
6141 *(type *)((buf) + (offset) - 0x7e00) = val
6142
6143 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6144 {
6145 u32 flags = 0;
6146 flags |= seg->g << 23;
6147 flags |= seg->db << 22;
6148 flags |= seg->l << 21;
6149 flags |= seg->avl << 20;
6150 flags |= seg->present << 15;
6151 flags |= seg->dpl << 13;
6152 flags |= seg->s << 12;
6153 flags |= seg->type << 8;
6154 return flags;
6155 }
6156
6157 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6158 {
6159 struct kvm_segment seg;
6160 int offset;
6161
6162 kvm_get_segment(vcpu, &seg, n);
6163 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6164
6165 if (n < 3)
6166 offset = 0x7f84 + n * 12;
6167 else
6168 offset = 0x7f2c + (n - 3) * 12;
6169
6170 put_smstate(u32, buf, offset + 8, seg.base);
6171 put_smstate(u32, buf, offset + 4, seg.limit);
6172 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6173 }
6174
6175 #ifdef CONFIG_X86_64
6176 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6177 {
6178 struct kvm_segment seg;
6179 int offset;
6180 u16 flags;
6181
6182 kvm_get_segment(vcpu, &seg, n);
6183 offset = 0x7e00 + n * 16;
6184
6185 flags = process_smi_get_segment_flags(&seg) >> 8;
6186 put_smstate(u16, buf, offset, seg.selector);
6187 put_smstate(u16, buf, offset + 2, flags);
6188 put_smstate(u32, buf, offset + 4, seg.limit);
6189 put_smstate(u64, buf, offset + 8, seg.base);
6190 }
6191 #endif
6192
6193 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6194 {
6195 struct desc_ptr dt;
6196 struct kvm_segment seg;
6197 unsigned long val;
6198 int i;
6199
6200 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6201 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6202 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6203 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6204
6205 for (i = 0; i < 8; i++)
6206 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6207
6208 kvm_get_dr(vcpu, 6, &val);
6209 put_smstate(u32, buf, 0x7fcc, (u32)val);
6210 kvm_get_dr(vcpu, 7, &val);
6211 put_smstate(u32, buf, 0x7fc8, (u32)val);
6212
6213 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6214 put_smstate(u32, buf, 0x7fc4, seg.selector);
6215 put_smstate(u32, buf, 0x7f64, seg.base);
6216 put_smstate(u32, buf, 0x7f60, seg.limit);
6217 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6218
6219 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6220 put_smstate(u32, buf, 0x7fc0, seg.selector);
6221 put_smstate(u32, buf, 0x7f80, seg.base);
6222 put_smstate(u32, buf, 0x7f7c, seg.limit);
6223 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6224
6225 kvm_x86_ops->get_gdt(vcpu, &dt);
6226 put_smstate(u32, buf, 0x7f74, dt.address);
6227 put_smstate(u32, buf, 0x7f70, dt.size);
6228
6229 kvm_x86_ops->get_idt(vcpu, &dt);
6230 put_smstate(u32, buf, 0x7f58, dt.address);
6231 put_smstate(u32, buf, 0x7f54, dt.size);
6232
6233 for (i = 0; i < 6; i++)
6234 process_smi_save_seg_32(vcpu, buf, i);
6235
6236 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6237
6238 /* revision id */
6239 put_smstate(u32, buf, 0x7efc, 0x00020000);
6240 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6241 }
6242
6243 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6244 {
6245 #ifdef CONFIG_X86_64
6246 struct desc_ptr dt;
6247 struct kvm_segment seg;
6248 unsigned long val;
6249 int i;
6250
6251 for (i = 0; i < 16; i++)
6252 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6253
6254 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6255 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6256
6257 kvm_get_dr(vcpu, 6, &val);
6258 put_smstate(u64, buf, 0x7f68, val);
6259 kvm_get_dr(vcpu, 7, &val);
6260 put_smstate(u64, buf, 0x7f60, val);
6261
6262 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6263 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6264 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6265
6266 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6267
6268 /* revision id */
6269 put_smstate(u32, buf, 0x7efc, 0x00020064);
6270
6271 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6272
6273 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6274 put_smstate(u16, buf, 0x7e90, seg.selector);
6275 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6276 put_smstate(u32, buf, 0x7e94, seg.limit);
6277 put_smstate(u64, buf, 0x7e98, seg.base);
6278
6279 kvm_x86_ops->get_idt(vcpu, &dt);
6280 put_smstate(u32, buf, 0x7e84, dt.size);
6281 put_smstate(u64, buf, 0x7e88, dt.address);
6282
6283 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6284 put_smstate(u16, buf, 0x7e70, seg.selector);
6285 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6286 put_smstate(u32, buf, 0x7e74, seg.limit);
6287 put_smstate(u64, buf, 0x7e78, seg.base);
6288
6289 kvm_x86_ops->get_gdt(vcpu, &dt);
6290 put_smstate(u32, buf, 0x7e64, dt.size);
6291 put_smstate(u64, buf, 0x7e68, dt.address);
6292
6293 for (i = 0; i < 6; i++)
6294 process_smi_save_seg_64(vcpu, buf, i);
6295 #else
6296 WARN_ON_ONCE(1);
6297 #endif
6298 }
6299
6300 static void process_smi(struct kvm_vcpu *vcpu)
6301 {
6302 struct kvm_segment cs, ds;
6303 struct desc_ptr dt;
6304 char buf[512];
6305 u32 cr0;
6306
6307 if (is_smm(vcpu)) {
6308 vcpu->arch.smi_pending = true;
6309 return;
6310 }
6311
6312 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6313 vcpu->arch.hflags |= HF_SMM_MASK;
6314 memset(buf, 0, 512);
6315 if (guest_cpuid_has_longmode(vcpu))
6316 process_smi_save_state_64(vcpu, buf);
6317 else
6318 process_smi_save_state_32(vcpu, buf);
6319
6320 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6321
6322 if (kvm_x86_ops->get_nmi_mask(vcpu))
6323 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6324 else
6325 kvm_x86_ops->set_nmi_mask(vcpu, true);
6326
6327 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6328 kvm_rip_write(vcpu, 0x8000);
6329
6330 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6331 kvm_x86_ops->set_cr0(vcpu, cr0);
6332 vcpu->arch.cr0 = cr0;
6333
6334 kvm_x86_ops->set_cr4(vcpu, 0);
6335
6336 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6337 dt.address = dt.size = 0;
6338 kvm_x86_ops->set_idt(vcpu, &dt);
6339
6340 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6341
6342 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6343 cs.base = vcpu->arch.smbase;
6344
6345 ds.selector = 0;
6346 ds.base = 0;
6347
6348 cs.limit = ds.limit = 0xffffffff;
6349 cs.type = ds.type = 0x3;
6350 cs.dpl = ds.dpl = 0;
6351 cs.db = ds.db = 0;
6352 cs.s = ds.s = 1;
6353 cs.l = ds.l = 0;
6354 cs.g = ds.g = 1;
6355 cs.avl = ds.avl = 0;
6356 cs.present = ds.present = 1;
6357 cs.unusable = ds.unusable = 0;
6358 cs.padding = ds.padding = 0;
6359
6360 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6361 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6362 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6363 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6364 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6365 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6366
6367 if (guest_cpuid_has_longmode(vcpu))
6368 kvm_x86_ops->set_efer(vcpu, 0);
6369
6370 kvm_update_cpuid(vcpu);
6371 kvm_mmu_reset_context(vcpu);
6372 }
6373
6374 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6375 {
6376 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6377 }
6378
6379 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6380 {
6381 u64 eoi_exit_bitmap[4];
6382
6383 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6384 return;
6385
6386 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6387
6388 if (irqchip_split(vcpu->kvm))
6389 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6390 else {
6391 if (vcpu->arch.apicv_active)
6392 kvm_x86_ops->sync_pir_to_irr(vcpu);
6393 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6394 }
6395 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6396 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6397 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6398 }
6399
6400 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6401 {
6402 ++vcpu->stat.tlb_flush;
6403 kvm_x86_ops->tlb_flush(vcpu);
6404 }
6405
6406 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6407 {
6408 struct page *page = NULL;
6409
6410 if (!lapic_in_kernel(vcpu))
6411 return;
6412
6413 if (!kvm_x86_ops->set_apic_access_page_addr)
6414 return;
6415
6416 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6417 if (is_error_page(page))
6418 return;
6419 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6420
6421 /*
6422 * Do not pin apic access page in memory, the MMU notifier
6423 * will call us again if it is migrated or swapped out.
6424 */
6425 put_page(page);
6426 }
6427 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6428
6429 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6430 unsigned long address)
6431 {
6432 /*
6433 * The physical address of apic access page is stored in the VMCS.
6434 * Update it when it becomes invalid.
6435 */
6436 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6437 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6438 }
6439
6440 /*
6441 * Returns 1 to let vcpu_run() continue the guest execution loop without
6442 * exiting to the userspace. Otherwise, the value will be returned to the
6443 * userspace.
6444 */
6445 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6446 {
6447 int r;
6448 bool req_int_win =
6449 dm_request_for_irq_injection(vcpu) &&
6450 kvm_cpu_accept_dm_intr(vcpu);
6451
6452 bool req_immediate_exit = false;
6453
6454 if (vcpu->requests) {
6455 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6456 kvm_mmu_unload(vcpu);
6457 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6458 __kvm_migrate_timers(vcpu);
6459 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6460 kvm_gen_update_masterclock(vcpu->kvm);
6461 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6462 kvm_gen_kvmclock_update(vcpu);
6463 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6464 r = kvm_guest_time_update(vcpu);
6465 if (unlikely(r))
6466 goto out;
6467 }
6468 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6469 kvm_mmu_sync_roots(vcpu);
6470 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6471 kvm_vcpu_flush_tlb(vcpu);
6472 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6473 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6474 r = 0;
6475 goto out;
6476 }
6477 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6478 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6479 r = 0;
6480 goto out;
6481 }
6482 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6483 vcpu->fpu_active = 0;
6484 kvm_x86_ops->fpu_deactivate(vcpu);
6485 }
6486 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6487 /* Page is swapped out. Do synthetic halt */
6488 vcpu->arch.apf.halted = true;
6489 r = 1;
6490 goto out;
6491 }
6492 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6493 record_steal_time(vcpu);
6494 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6495 process_smi(vcpu);
6496 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6497 process_nmi(vcpu);
6498 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6499 kvm_pmu_handle_event(vcpu);
6500 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6501 kvm_pmu_deliver_pmi(vcpu);
6502 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6503 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6504 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6505 vcpu->arch.ioapic_handled_vectors)) {
6506 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6507 vcpu->run->eoi.vector =
6508 vcpu->arch.pending_ioapic_eoi;
6509 r = 0;
6510 goto out;
6511 }
6512 }
6513 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514 vcpu_scan_ioapic(vcpu);
6515 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516 kvm_vcpu_reload_apic_access_page(vcpu);
6517 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6518 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6519 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6520 r = 0;
6521 goto out;
6522 }
6523 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6524 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6525 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6526 r = 0;
6527 goto out;
6528 }
6529 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6530 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6531 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6532 r = 0;
6533 goto out;
6534 }
6535
6536 /*
6537 * KVM_REQ_HV_STIMER has to be processed after
6538 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6539 * depend on the guest clock being up-to-date
6540 */
6541 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6542 kvm_hv_process_stimers(vcpu);
6543 }
6544
6545 /*
6546 * KVM_REQ_EVENT is not set when posted interrupts are set by
6547 * VT-d hardware, so we have to update RVI unconditionally.
6548 */
6549 if (kvm_lapic_enabled(vcpu)) {
6550 /*
6551 * Update architecture specific hints for APIC
6552 * virtual interrupt delivery.
6553 */
6554 if (vcpu->arch.apicv_active)
6555 kvm_x86_ops->hwapic_irr_update(vcpu,
6556 kvm_lapic_find_highest_irr(vcpu));
6557 }
6558
6559 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6560 kvm_apic_accept_events(vcpu);
6561 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6562 r = 1;
6563 goto out;
6564 }
6565
6566 if (inject_pending_event(vcpu, req_int_win) != 0)
6567 req_immediate_exit = true;
6568 /* enable NMI/IRQ window open exits if needed */
6569 else {
6570 if (vcpu->arch.nmi_pending)
6571 kvm_x86_ops->enable_nmi_window(vcpu);
6572 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6573 kvm_x86_ops->enable_irq_window(vcpu);
6574 }
6575
6576 if (kvm_lapic_enabled(vcpu)) {
6577 update_cr8_intercept(vcpu);
6578 kvm_lapic_sync_to_vapic(vcpu);
6579 }
6580 }
6581
6582 r = kvm_mmu_reload(vcpu);
6583 if (unlikely(r)) {
6584 goto cancel_injection;
6585 }
6586
6587 preempt_disable();
6588
6589 kvm_x86_ops->prepare_guest_switch(vcpu);
6590 if (vcpu->fpu_active)
6591 kvm_load_guest_fpu(vcpu);
6592 vcpu->mode = IN_GUEST_MODE;
6593
6594 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6595
6596 /*
6597 * We should set ->mode before check ->requests,
6598 * Please see the comment in kvm_make_all_cpus_request.
6599 * This also orders the write to mode from any reads
6600 * to the page tables done while the VCPU is running.
6601 * Please see the comment in kvm_flush_remote_tlbs.
6602 */
6603 smp_mb__after_srcu_read_unlock();
6604
6605 local_irq_disable();
6606
6607 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6608 || need_resched() || signal_pending(current)) {
6609 vcpu->mode = OUTSIDE_GUEST_MODE;
6610 smp_wmb();
6611 local_irq_enable();
6612 preempt_enable();
6613 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6614 r = 1;
6615 goto cancel_injection;
6616 }
6617
6618 kvm_load_guest_xcr0(vcpu);
6619
6620 if (req_immediate_exit)
6621 smp_send_reschedule(vcpu->cpu);
6622
6623 trace_kvm_entry(vcpu->vcpu_id);
6624 wait_lapic_expire(vcpu);
6625 __kvm_guest_enter();
6626
6627 if (unlikely(vcpu->arch.switch_db_regs)) {
6628 set_debugreg(0, 7);
6629 set_debugreg(vcpu->arch.eff_db[0], 0);
6630 set_debugreg(vcpu->arch.eff_db[1], 1);
6631 set_debugreg(vcpu->arch.eff_db[2], 2);
6632 set_debugreg(vcpu->arch.eff_db[3], 3);
6633 set_debugreg(vcpu->arch.dr6, 6);
6634 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6635 }
6636
6637 kvm_x86_ops->run(vcpu);
6638
6639 /*
6640 * Do this here before restoring debug registers on the host. And
6641 * since we do this before handling the vmexit, a DR access vmexit
6642 * can (a) read the correct value of the debug registers, (b) set
6643 * KVM_DEBUGREG_WONT_EXIT again.
6644 */
6645 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6646 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6647 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6648 kvm_update_dr0123(vcpu);
6649 kvm_update_dr6(vcpu);
6650 kvm_update_dr7(vcpu);
6651 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6652 }
6653
6654 /*
6655 * If the guest has used debug registers, at least dr7
6656 * will be disabled while returning to the host.
6657 * If we don't have active breakpoints in the host, we don't
6658 * care about the messed up debug address registers. But if
6659 * we have some of them active, restore the old state.
6660 */
6661 if (hw_breakpoint_active())
6662 hw_breakpoint_restore();
6663
6664 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6665
6666 vcpu->mode = OUTSIDE_GUEST_MODE;
6667 smp_wmb();
6668
6669 kvm_put_guest_xcr0(vcpu);
6670
6671 /* Interrupt is enabled by handle_external_intr() */
6672 kvm_x86_ops->handle_external_intr(vcpu);
6673
6674 ++vcpu->stat.exits;
6675
6676 /*
6677 * We must have an instruction between local_irq_enable() and
6678 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6679 * the interrupt shadow. The stat.exits increment will do nicely.
6680 * But we need to prevent reordering, hence this barrier():
6681 */
6682 barrier();
6683
6684 kvm_guest_exit();
6685
6686 preempt_enable();
6687
6688 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6689
6690 /*
6691 * Profile KVM exit RIPs:
6692 */
6693 if (unlikely(prof_on == KVM_PROFILING)) {
6694 unsigned long rip = kvm_rip_read(vcpu);
6695 profile_hit(KVM_PROFILING, (void *)rip);
6696 }
6697
6698 if (unlikely(vcpu->arch.tsc_always_catchup))
6699 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6700
6701 if (vcpu->arch.apic_attention)
6702 kvm_lapic_sync_from_vapic(vcpu);
6703
6704 r = kvm_x86_ops->handle_exit(vcpu);
6705 return r;
6706
6707 cancel_injection:
6708 kvm_x86_ops->cancel_injection(vcpu);
6709 if (unlikely(vcpu->arch.apic_attention))
6710 kvm_lapic_sync_from_vapic(vcpu);
6711 out:
6712 return r;
6713 }
6714
6715 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6716 {
6717 if (!kvm_arch_vcpu_runnable(vcpu) &&
6718 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6719 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6720 kvm_vcpu_block(vcpu);
6721 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6722
6723 if (kvm_x86_ops->post_block)
6724 kvm_x86_ops->post_block(vcpu);
6725
6726 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6727 return 1;
6728 }
6729
6730 kvm_apic_accept_events(vcpu);
6731 switch(vcpu->arch.mp_state) {
6732 case KVM_MP_STATE_HALTED:
6733 vcpu->arch.pv.pv_unhalted = false;
6734 vcpu->arch.mp_state =
6735 KVM_MP_STATE_RUNNABLE;
6736 case KVM_MP_STATE_RUNNABLE:
6737 vcpu->arch.apf.halted = false;
6738 break;
6739 case KVM_MP_STATE_INIT_RECEIVED:
6740 break;
6741 default:
6742 return -EINTR;
6743 break;
6744 }
6745 return 1;
6746 }
6747
6748 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6749 {
6750 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6751 !vcpu->arch.apf.halted);
6752 }
6753
6754 static int vcpu_run(struct kvm_vcpu *vcpu)
6755 {
6756 int r;
6757 struct kvm *kvm = vcpu->kvm;
6758
6759 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6760
6761 for (;;) {
6762 if (kvm_vcpu_running(vcpu)) {
6763 r = vcpu_enter_guest(vcpu);
6764 } else {
6765 r = vcpu_block(kvm, vcpu);
6766 }
6767
6768 if (r <= 0)
6769 break;
6770
6771 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6772 if (kvm_cpu_has_pending_timer(vcpu))
6773 kvm_inject_pending_timer_irqs(vcpu);
6774
6775 if (dm_request_for_irq_injection(vcpu) &&
6776 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6777 r = 0;
6778 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6779 ++vcpu->stat.request_irq_exits;
6780 break;
6781 }
6782
6783 kvm_check_async_pf_completion(vcpu);
6784
6785 if (signal_pending(current)) {
6786 r = -EINTR;
6787 vcpu->run->exit_reason = KVM_EXIT_INTR;
6788 ++vcpu->stat.signal_exits;
6789 break;
6790 }
6791 if (need_resched()) {
6792 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6793 cond_resched();
6794 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6795 }
6796 }
6797
6798 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6799
6800 return r;
6801 }
6802
6803 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6804 {
6805 int r;
6806 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6807 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6808 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6809 if (r != EMULATE_DONE)
6810 return 0;
6811 return 1;
6812 }
6813
6814 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6815 {
6816 BUG_ON(!vcpu->arch.pio.count);
6817
6818 return complete_emulated_io(vcpu);
6819 }
6820
6821 /*
6822 * Implements the following, as a state machine:
6823 *
6824 * read:
6825 * for each fragment
6826 * for each mmio piece in the fragment
6827 * write gpa, len
6828 * exit
6829 * copy data
6830 * execute insn
6831 *
6832 * write:
6833 * for each fragment
6834 * for each mmio piece in the fragment
6835 * write gpa, len
6836 * copy data
6837 * exit
6838 */
6839 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6840 {
6841 struct kvm_run *run = vcpu->run;
6842 struct kvm_mmio_fragment *frag;
6843 unsigned len;
6844
6845 BUG_ON(!vcpu->mmio_needed);
6846
6847 /* Complete previous fragment */
6848 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6849 len = min(8u, frag->len);
6850 if (!vcpu->mmio_is_write)
6851 memcpy(frag->data, run->mmio.data, len);
6852
6853 if (frag->len <= 8) {
6854 /* Switch to the next fragment. */
6855 frag++;
6856 vcpu->mmio_cur_fragment++;
6857 } else {
6858 /* Go forward to the next mmio piece. */
6859 frag->data += len;
6860 frag->gpa += len;
6861 frag->len -= len;
6862 }
6863
6864 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6865 vcpu->mmio_needed = 0;
6866
6867 /* FIXME: return into emulator if single-stepping. */
6868 if (vcpu->mmio_is_write)
6869 return 1;
6870 vcpu->mmio_read_completed = 1;
6871 return complete_emulated_io(vcpu);
6872 }
6873
6874 run->exit_reason = KVM_EXIT_MMIO;
6875 run->mmio.phys_addr = frag->gpa;
6876 if (vcpu->mmio_is_write)
6877 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6878 run->mmio.len = min(8u, frag->len);
6879 run->mmio.is_write = vcpu->mmio_is_write;
6880 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6881 return 0;
6882 }
6883
6884
6885 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6886 {
6887 struct fpu *fpu = &current->thread.fpu;
6888 int r;
6889 sigset_t sigsaved;
6890
6891 fpu__activate_curr(fpu);
6892
6893 if (vcpu->sigset_active)
6894 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6895
6896 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6897 kvm_vcpu_block(vcpu);
6898 kvm_apic_accept_events(vcpu);
6899 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6900 r = -EAGAIN;
6901 goto out;
6902 }
6903
6904 /* re-sync apic's tpr */
6905 if (!lapic_in_kernel(vcpu)) {
6906 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6907 r = -EINVAL;
6908 goto out;
6909 }
6910 }
6911
6912 if (unlikely(vcpu->arch.complete_userspace_io)) {
6913 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6914 vcpu->arch.complete_userspace_io = NULL;
6915 r = cui(vcpu);
6916 if (r <= 0)
6917 goto out;
6918 } else
6919 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6920
6921 r = vcpu_run(vcpu);
6922
6923 out:
6924 post_kvm_run_save(vcpu);
6925 if (vcpu->sigset_active)
6926 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6927
6928 return r;
6929 }
6930
6931 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6932 {
6933 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6934 /*
6935 * We are here if userspace calls get_regs() in the middle of
6936 * instruction emulation. Registers state needs to be copied
6937 * back from emulation context to vcpu. Userspace shouldn't do
6938 * that usually, but some bad designed PV devices (vmware
6939 * backdoor interface) need this to work
6940 */
6941 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6942 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6943 }
6944 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6945 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6946 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6947 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6948 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6949 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6950 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6951 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6952 #ifdef CONFIG_X86_64
6953 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6954 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6955 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6956 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6957 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6958 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6959 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6960 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6961 #endif
6962
6963 regs->rip = kvm_rip_read(vcpu);
6964 regs->rflags = kvm_get_rflags(vcpu);
6965
6966 return 0;
6967 }
6968
6969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6970 {
6971 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6972 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6973
6974 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6975 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6976 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6977 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6978 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6979 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6980 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6981 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6982 #ifdef CONFIG_X86_64
6983 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6984 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6985 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6986 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6987 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6988 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6989 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6990 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6991 #endif
6992
6993 kvm_rip_write(vcpu, regs->rip);
6994 kvm_set_rflags(vcpu, regs->rflags);
6995
6996 vcpu->arch.exception.pending = false;
6997
6998 kvm_make_request(KVM_REQ_EVENT, vcpu);
6999
7000 return 0;
7001 }
7002
7003 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7004 {
7005 struct kvm_segment cs;
7006
7007 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7008 *db = cs.db;
7009 *l = cs.l;
7010 }
7011 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7012
7013 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7014 struct kvm_sregs *sregs)
7015 {
7016 struct desc_ptr dt;
7017
7018 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7019 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7020 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7021 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7022 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7023 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7024
7025 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7026 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7027
7028 kvm_x86_ops->get_idt(vcpu, &dt);
7029 sregs->idt.limit = dt.size;
7030 sregs->idt.base = dt.address;
7031 kvm_x86_ops->get_gdt(vcpu, &dt);
7032 sregs->gdt.limit = dt.size;
7033 sregs->gdt.base = dt.address;
7034
7035 sregs->cr0 = kvm_read_cr0(vcpu);
7036 sregs->cr2 = vcpu->arch.cr2;
7037 sregs->cr3 = kvm_read_cr3(vcpu);
7038 sregs->cr4 = kvm_read_cr4(vcpu);
7039 sregs->cr8 = kvm_get_cr8(vcpu);
7040 sregs->efer = vcpu->arch.efer;
7041 sregs->apic_base = kvm_get_apic_base(vcpu);
7042
7043 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7044
7045 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7046 set_bit(vcpu->arch.interrupt.nr,
7047 (unsigned long *)sregs->interrupt_bitmap);
7048
7049 return 0;
7050 }
7051
7052 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7053 struct kvm_mp_state *mp_state)
7054 {
7055 kvm_apic_accept_events(vcpu);
7056 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7057 vcpu->arch.pv.pv_unhalted)
7058 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7059 else
7060 mp_state->mp_state = vcpu->arch.mp_state;
7061
7062 return 0;
7063 }
7064
7065 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7066 struct kvm_mp_state *mp_state)
7067 {
7068 if (!lapic_in_kernel(vcpu) &&
7069 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7070 return -EINVAL;
7071
7072 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7073 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7074 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7075 } else
7076 vcpu->arch.mp_state = mp_state->mp_state;
7077 kvm_make_request(KVM_REQ_EVENT, vcpu);
7078 return 0;
7079 }
7080
7081 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7082 int reason, bool has_error_code, u32 error_code)
7083 {
7084 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7085 int ret;
7086
7087 init_emulate_ctxt(vcpu);
7088
7089 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7090 has_error_code, error_code);
7091
7092 if (ret)
7093 return EMULATE_FAIL;
7094
7095 kvm_rip_write(vcpu, ctxt->eip);
7096 kvm_set_rflags(vcpu, ctxt->eflags);
7097 kvm_make_request(KVM_REQ_EVENT, vcpu);
7098 return EMULATE_DONE;
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_task_switch);
7101
7102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7103 struct kvm_sregs *sregs)
7104 {
7105 struct msr_data apic_base_msr;
7106 int mmu_reset_needed = 0;
7107 int pending_vec, max_bits, idx;
7108 struct desc_ptr dt;
7109
7110 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7111 return -EINVAL;
7112
7113 dt.size = sregs->idt.limit;
7114 dt.address = sregs->idt.base;
7115 kvm_x86_ops->set_idt(vcpu, &dt);
7116 dt.size = sregs->gdt.limit;
7117 dt.address = sregs->gdt.base;
7118 kvm_x86_ops->set_gdt(vcpu, &dt);
7119
7120 vcpu->arch.cr2 = sregs->cr2;
7121 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7122 vcpu->arch.cr3 = sregs->cr3;
7123 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7124
7125 kvm_set_cr8(vcpu, sregs->cr8);
7126
7127 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7128 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7129 apic_base_msr.data = sregs->apic_base;
7130 apic_base_msr.host_initiated = true;
7131 kvm_set_apic_base(vcpu, &apic_base_msr);
7132
7133 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7134 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7135 vcpu->arch.cr0 = sregs->cr0;
7136
7137 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7138 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7139 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7140 kvm_update_cpuid(vcpu);
7141
7142 idx = srcu_read_lock(&vcpu->kvm->srcu);
7143 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7144 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7145 mmu_reset_needed = 1;
7146 }
7147 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7148
7149 if (mmu_reset_needed)
7150 kvm_mmu_reset_context(vcpu);
7151
7152 max_bits = KVM_NR_INTERRUPTS;
7153 pending_vec = find_first_bit(
7154 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7155 if (pending_vec < max_bits) {
7156 kvm_queue_interrupt(vcpu, pending_vec, false);
7157 pr_debug("Set back pending irq %d\n", pending_vec);
7158 }
7159
7160 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7161 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7162 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7163 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7164 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7165 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7166
7167 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7168 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7169
7170 update_cr8_intercept(vcpu);
7171
7172 /* Older userspace won't unhalt the vcpu on reset. */
7173 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7174 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7175 !is_protmode(vcpu))
7176 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7177
7178 kvm_make_request(KVM_REQ_EVENT, vcpu);
7179
7180 return 0;
7181 }
7182
7183 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7184 struct kvm_guest_debug *dbg)
7185 {
7186 unsigned long rflags;
7187 int i, r;
7188
7189 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7190 r = -EBUSY;
7191 if (vcpu->arch.exception.pending)
7192 goto out;
7193 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7194 kvm_queue_exception(vcpu, DB_VECTOR);
7195 else
7196 kvm_queue_exception(vcpu, BP_VECTOR);
7197 }
7198
7199 /*
7200 * Read rflags as long as potentially injected trace flags are still
7201 * filtered out.
7202 */
7203 rflags = kvm_get_rflags(vcpu);
7204
7205 vcpu->guest_debug = dbg->control;
7206 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7207 vcpu->guest_debug = 0;
7208
7209 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7210 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7211 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7212 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7213 } else {
7214 for (i = 0; i < KVM_NR_DB_REGS; i++)
7215 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7216 }
7217 kvm_update_dr7(vcpu);
7218
7219 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7220 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7221 get_segment_base(vcpu, VCPU_SREG_CS);
7222
7223 /*
7224 * Trigger an rflags update that will inject or remove the trace
7225 * flags.
7226 */
7227 kvm_set_rflags(vcpu, rflags);
7228
7229 kvm_x86_ops->update_bp_intercept(vcpu);
7230
7231 r = 0;
7232
7233 out:
7234
7235 return r;
7236 }
7237
7238 /*
7239 * Translate a guest virtual address to a guest physical address.
7240 */
7241 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7242 struct kvm_translation *tr)
7243 {
7244 unsigned long vaddr = tr->linear_address;
7245 gpa_t gpa;
7246 int idx;
7247
7248 idx = srcu_read_lock(&vcpu->kvm->srcu);
7249 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7250 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7251 tr->physical_address = gpa;
7252 tr->valid = gpa != UNMAPPED_GVA;
7253 tr->writeable = 1;
7254 tr->usermode = 0;
7255
7256 return 0;
7257 }
7258
7259 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7260 {
7261 struct fxregs_state *fxsave =
7262 &vcpu->arch.guest_fpu.state.fxsave;
7263
7264 memcpy(fpu->fpr, fxsave->st_space, 128);
7265 fpu->fcw = fxsave->cwd;
7266 fpu->fsw = fxsave->swd;
7267 fpu->ftwx = fxsave->twd;
7268 fpu->last_opcode = fxsave->fop;
7269 fpu->last_ip = fxsave->rip;
7270 fpu->last_dp = fxsave->rdp;
7271 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7272
7273 return 0;
7274 }
7275
7276 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7277 {
7278 struct fxregs_state *fxsave =
7279 &vcpu->arch.guest_fpu.state.fxsave;
7280
7281 memcpy(fxsave->st_space, fpu->fpr, 128);
7282 fxsave->cwd = fpu->fcw;
7283 fxsave->swd = fpu->fsw;
7284 fxsave->twd = fpu->ftwx;
7285 fxsave->fop = fpu->last_opcode;
7286 fxsave->rip = fpu->last_ip;
7287 fxsave->rdp = fpu->last_dp;
7288 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7289
7290 return 0;
7291 }
7292
7293 static void fx_init(struct kvm_vcpu *vcpu)
7294 {
7295 fpstate_init(&vcpu->arch.guest_fpu.state);
7296 if (cpu_has_xsaves)
7297 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7298 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7299
7300 /*
7301 * Ensure guest xcr0 is valid for loading
7302 */
7303 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7304
7305 vcpu->arch.cr0 |= X86_CR0_ET;
7306 }
7307
7308 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7309 {
7310 if (vcpu->guest_fpu_loaded)
7311 return;
7312
7313 /*
7314 * Restore all possible states in the guest,
7315 * and assume host would use all available bits.
7316 * Guest xcr0 would be loaded later.
7317 */
7318 vcpu->guest_fpu_loaded = 1;
7319 __kernel_fpu_begin();
7320 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7321 trace_kvm_fpu(1);
7322 }
7323
7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7325 {
7326 if (!vcpu->guest_fpu_loaded) {
7327 vcpu->fpu_counter = 0;
7328 return;
7329 }
7330
7331 vcpu->guest_fpu_loaded = 0;
7332 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7333 __kernel_fpu_end();
7334 ++vcpu->stat.fpu_reload;
7335 /*
7336 * If using eager FPU mode, or if the guest is a frequent user
7337 * of the FPU, just leave the FPU active for next time.
7338 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7339 * the FPU in bursts will revert to loading it on demand.
7340 */
7341 if (!use_eager_fpu()) {
7342 if (++vcpu->fpu_counter < 5)
7343 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7344 }
7345 trace_kvm_fpu(0);
7346 }
7347
7348 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7349 {
7350 kvmclock_reset(vcpu);
7351
7352 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7353 kvm_x86_ops->vcpu_free(vcpu);
7354 }
7355
7356 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7357 unsigned int id)
7358 {
7359 struct kvm_vcpu *vcpu;
7360
7361 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7362 printk_once(KERN_WARNING
7363 "kvm: SMP vm created on host with unstable TSC; "
7364 "guest TSC will not be reliable\n");
7365
7366 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7367
7368 return vcpu;
7369 }
7370
7371 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7372 {
7373 int r;
7374
7375 kvm_vcpu_mtrr_init(vcpu);
7376 r = vcpu_load(vcpu);
7377 if (r)
7378 return r;
7379 kvm_vcpu_reset(vcpu, false);
7380 kvm_mmu_setup(vcpu);
7381 vcpu_put(vcpu);
7382 return r;
7383 }
7384
7385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7386 {
7387 struct msr_data msr;
7388 struct kvm *kvm = vcpu->kvm;
7389
7390 if (vcpu_load(vcpu))
7391 return;
7392 msr.data = 0x0;
7393 msr.index = MSR_IA32_TSC;
7394 msr.host_initiated = true;
7395 kvm_write_tsc(vcpu, &msr);
7396 vcpu_put(vcpu);
7397
7398 if (!kvmclock_periodic_sync)
7399 return;
7400
7401 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7402 KVMCLOCK_SYNC_PERIOD);
7403 }
7404
7405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7406 {
7407 int r;
7408 vcpu->arch.apf.msr_val = 0;
7409
7410 r = vcpu_load(vcpu);
7411 BUG_ON(r);
7412 kvm_mmu_unload(vcpu);
7413 vcpu_put(vcpu);
7414
7415 kvm_x86_ops->vcpu_free(vcpu);
7416 }
7417
7418 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7419 {
7420 vcpu->arch.hflags = 0;
7421
7422 atomic_set(&vcpu->arch.nmi_queued, 0);
7423 vcpu->arch.nmi_pending = 0;
7424 vcpu->arch.nmi_injected = false;
7425 kvm_clear_interrupt_queue(vcpu);
7426 kvm_clear_exception_queue(vcpu);
7427
7428 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7429 kvm_update_dr0123(vcpu);
7430 vcpu->arch.dr6 = DR6_INIT;
7431 kvm_update_dr6(vcpu);
7432 vcpu->arch.dr7 = DR7_FIXED_1;
7433 kvm_update_dr7(vcpu);
7434
7435 vcpu->arch.cr2 = 0;
7436
7437 kvm_make_request(KVM_REQ_EVENT, vcpu);
7438 vcpu->arch.apf.msr_val = 0;
7439 vcpu->arch.st.msr_val = 0;
7440
7441 kvmclock_reset(vcpu);
7442
7443 kvm_clear_async_pf_completion_queue(vcpu);
7444 kvm_async_pf_hash_reset(vcpu);
7445 vcpu->arch.apf.halted = false;
7446
7447 if (!init_event) {
7448 kvm_pmu_reset(vcpu);
7449 vcpu->arch.smbase = 0x30000;
7450 }
7451
7452 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7453 vcpu->arch.regs_avail = ~0;
7454 vcpu->arch.regs_dirty = ~0;
7455
7456 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7457 }
7458
7459 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7460 {
7461 struct kvm_segment cs;
7462
7463 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7464 cs.selector = vector << 8;
7465 cs.base = vector << 12;
7466 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7467 kvm_rip_write(vcpu, 0);
7468 }
7469
7470 int kvm_arch_hardware_enable(void)
7471 {
7472 struct kvm *kvm;
7473 struct kvm_vcpu *vcpu;
7474 int i;
7475 int ret;
7476 u64 local_tsc;
7477 u64 max_tsc = 0;
7478 bool stable, backwards_tsc = false;
7479
7480 kvm_shared_msr_cpu_online();
7481 ret = kvm_x86_ops->hardware_enable();
7482 if (ret != 0)
7483 return ret;
7484
7485 local_tsc = rdtsc();
7486 stable = !check_tsc_unstable();
7487 list_for_each_entry(kvm, &vm_list, vm_list) {
7488 kvm_for_each_vcpu(i, vcpu, kvm) {
7489 if (!stable && vcpu->cpu == smp_processor_id())
7490 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7491 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7492 backwards_tsc = true;
7493 if (vcpu->arch.last_host_tsc > max_tsc)
7494 max_tsc = vcpu->arch.last_host_tsc;
7495 }
7496 }
7497 }
7498
7499 /*
7500 * Sometimes, even reliable TSCs go backwards. This happens on
7501 * platforms that reset TSC during suspend or hibernate actions, but
7502 * maintain synchronization. We must compensate. Fortunately, we can
7503 * detect that condition here, which happens early in CPU bringup,
7504 * before any KVM threads can be running. Unfortunately, we can't
7505 * bring the TSCs fully up to date with real time, as we aren't yet far
7506 * enough into CPU bringup that we know how much real time has actually
7507 * elapsed; our helper function, get_kernel_ns() will be using boot
7508 * variables that haven't been updated yet.
7509 *
7510 * So we simply find the maximum observed TSC above, then record the
7511 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7512 * the adjustment will be applied. Note that we accumulate
7513 * adjustments, in case multiple suspend cycles happen before some VCPU
7514 * gets a chance to run again. In the event that no KVM threads get a
7515 * chance to run, we will miss the entire elapsed period, as we'll have
7516 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7517 * loose cycle time. This isn't too big a deal, since the loss will be
7518 * uniform across all VCPUs (not to mention the scenario is extremely
7519 * unlikely). It is possible that a second hibernate recovery happens
7520 * much faster than a first, causing the observed TSC here to be
7521 * smaller; this would require additional padding adjustment, which is
7522 * why we set last_host_tsc to the local tsc observed here.
7523 *
7524 * N.B. - this code below runs only on platforms with reliable TSC,
7525 * as that is the only way backwards_tsc is set above. Also note
7526 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7527 * have the same delta_cyc adjustment applied if backwards_tsc
7528 * is detected. Note further, this adjustment is only done once,
7529 * as we reset last_host_tsc on all VCPUs to stop this from being
7530 * called multiple times (one for each physical CPU bringup).
7531 *
7532 * Platforms with unreliable TSCs don't have to deal with this, they
7533 * will be compensated by the logic in vcpu_load, which sets the TSC to
7534 * catchup mode. This will catchup all VCPUs to real time, but cannot
7535 * guarantee that they stay in perfect synchronization.
7536 */
7537 if (backwards_tsc) {
7538 u64 delta_cyc = max_tsc - local_tsc;
7539 backwards_tsc_observed = true;
7540 list_for_each_entry(kvm, &vm_list, vm_list) {
7541 kvm_for_each_vcpu(i, vcpu, kvm) {
7542 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7543 vcpu->arch.last_host_tsc = local_tsc;
7544 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7545 }
7546
7547 /*
7548 * We have to disable TSC offset matching.. if you were
7549 * booting a VM while issuing an S4 host suspend....
7550 * you may have some problem. Solving this issue is
7551 * left as an exercise to the reader.
7552 */
7553 kvm->arch.last_tsc_nsec = 0;
7554 kvm->arch.last_tsc_write = 0;
7555 }
7556
7557 }
7558 return 0;
7559 }
7560
7561 void kvm_arch_hardware_disable(void)
7562 {
7563 kvm_x86_ops->hardware_disable();
7564 drop_user_return_notifiers();
7565 }
7566
7567 int kvm_arch_hardware_setup(void)
7568 {
7569 int r;
7570
7571 r = kvm_x86_ops->hardware_setup();
7572 if (r != 0)
7573 return r;
7574
7575 if (kvm_has_tsc_control) {
7576 /*
7577 * Make sure the user can only configure tsc_khz values that
7578 * fit into a signed integer.
7579 * A min value is not calculated needed because it will always
7580 * be 1 on all machines.
7581 */
7582 u64 max = min(0x7fffffffULL,
7583 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7584 kvm_max_guest_tsc_khz = max;
7585
7586 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7587 }
7588
7589 kvm_init_msr_list();
7590 return 0;
7591 }
7592
7593 void kvm_arch_hardware_unsetup(void)
7594 {
7595 kvm_x86_ops->hardware_unsetup();
7596 }
7597
7598 void kvm_arch_check_processor_compat(void *rtn)
7599 {
7600 kvm_x86_ops->check_processor_compatibility(rtn);
7601 }
7602
7603 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7604 {
7605 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7606 }
7607 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7608
7609 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7610 {
7611 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7612 }
7613
7614 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7615 {
7616 return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7617 }
7618
7619 struct static_key kvm_no_apic_vcpu __read_mostly;
7620 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7621
7622 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7623 {
7624 struct page *page;
7625 struct kvm *kvm;
7626 int r;
7627
7628 BUG_ON(vcpu->kvm == NULL);
7629 kvm = vcpu->kvm;
7630
7631 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7632 vcpu->arch.pv.pv_unhalted = false;
7633 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7634 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7635 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7636 else
7637 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7638
7639 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7640 if (!page) {
7641 r = -ENOMEM;
7642 goto fail;
7643 }
7644 vcpu->arch.pio_data = page_address(page);
7645
7646 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7647
7648 r = kvm_mmu_create(vcpu);
7649 if (r < 0)
7650 goto fail_free_pio_data;
7651
7652 if (irqchip_in_kernel(kvm)) {
7653 r = kvm_create_lapic(vcpu);
7654 if (r < 0)
7655 goto fail_mmu_destroy;
7656 } else
7657 static_key_slow_inc(&kvm_no_apic_vcpu);
7658
7659 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7660 GFP_KERNEL);
7661 if (!vcpu->arch.mce_banks) {
7662 r = -ENOMEM;
7663 goto fail_free_lapic;
7664 }
7665 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7666
7667 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7668 r = -ENOMEM;
7669 goto fail_free_mce_banks;
7670 }
7671
7672 fx_init(vcpu);
7673
7674 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7675 vcpu->arch.pv_time_enabled = false;
7676
7677 vcpu->arch.guest_supported_xcr0 = 0;
7678 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7679
7680 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7681
7682 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7683
7684 kvm_async_pf_hash_reset(vcpu);
7685 kvm_pmu_init(vcpu);
7686
7687 vcpu->arch.pending_external_vector = -1;
7688
7689 kvm_hv_vcpu_init(vcpu);
7690
7691 return 0;
7692
7693 fail_free_mce_banks:
7694 kfree(vcpu->arch.mce_banks);
7695 fail_free_lapic:
7696 kvm_free_lapic(vcpu);
7697 fail_mmu_destroy:
7698 kvm_mmu_destroy(vcpu);
7699 fail_free_pio_data:
7700 free_page((unsigned long)vcpu->arch.pio_data);
7701 fail:
7702 return r;
7703 }
7704
7705 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7706 {
7707 int idx;
7708
7709 kvm_hv_vcpu_uninit(vcpu);
7710 kvm_pmu_destroy(vcpu);
7711 kfree(vcpu->arch.mce_banks);
7712 kvm_free_lapic(vcpu);
7713 idx = srcu_read_lock(&vcpu->kvm->srcu);
7714 kvm_mmu_destroy(vcpu);
7715 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7716 free_page((unsigned long)vcpu->arch.pio_data);
7717 if (!lapic_in_kernel(vcpu))
7718 static_key_slow_dec(&kvm_no_apic_vcpu);
7719 }
7720
7721 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7722 {
7723 kvm_x86_ops->sched_in(vcpu, cpu);
7724 }
7725
7726 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7727 {
7728 if (type)
7729 return -EINVAL;
7730
7731 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7732 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7733 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7734 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7735 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7736
7737 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7738 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7739 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7740 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7741 &kvm->arch.irq_sources_bitmap);
7742
7743 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7744 mutex_init(&kvm->arch.apic_map_lock);
7745 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7746
7747 pvclock_update_vm_gtod_copy(kvm);
7748
7749 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7750 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7751
7752 kvm_page_track_init(kvm);
7753 kvm_mmu_init_vm(kvm);
7754
7755 return 0;
7756 }
7757
7758 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7759 {
7760 int r;
7761 r = vcpu_load(vcpu);
7762 BUG_ON(r);
7763 kvm_mmu_unload(vcpu);
7764 vcpu_put(vcpu);
7765 }
7766
7767 static void kvm_free_vcpus(struct kvm *kvm)
7768 {
7769 unsigned int i;
7770 struct kvm_vcpu *vcpu;
7771
7772 /*
7773 * Unpin any mmu pages first.
7774 */
7775 kvm_for_each_vcpu(i, vcpu, kvm) {
7776 kvm_clear_async_pf_completion_queue(vcpu);
7777 kvm_unload_vcpu_mmu(vcpu);
7778 }
7779 kvm_for_each_vcpu(i, vcpu, kvm)
7780 kvm_arch_vcpu_free(vcpu);
7781
7782 mutex_lock(&kvm->lock);
7783 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7784 kvm->vcpus[i] = NULL;
7785
7786 atomic_set(&kvm->online_vcpus, 0);
7787 mutex_unlock(&kvm->lock);
7788 }
7789
7790 void kvm_arch_sync_events(struct kvm *kvm)
7791 {
7792 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7793 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7794 kvm_free_all_assigned_devices(kvm);
7795 kvm_free_pit(kvm);
7796 }
7797
7798 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7799 {
7800 int i, r;
7801 unsigned long hva;
7802 struct kvm_memslots *slots = kvm_memslots(kvm);
7803 struct kvm_memory_slot *slot, old;
7804
7805 /* Called with kvm->slots_lock held. */
7806 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7807 return -EINVAL;
7808
7809 slot = id_to_memslot(slots, id);
7810 if (size) {
7811 if (WARN_ON(slot->npages))
7812 return -EEXIST;
7813
7814 /*
7815 * MAP_SHARED to prevent internal slot pages from being moved
7816 * by fork()/COW.
7817 */
7818 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7819 MAP_SHARED | MAP_ANONYMOUS, 0);
7820 if (IS_ERR((void *)hva))
7821 return PTR_ERR((void *)hva);
7822 } else {
7823 if (!slot->npages)
7824 return 0;
7825
7826 hva = 0;
7827 }
7828
7829 old = *slot;
7830 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7831 struct kvm_userspace_memory_region m;
7832
7833 m.slot = id | (i << 16);
7834 m.flags = 0;
7835 m.guest_phys_addr = gpa;
7836 m.userspace_addr = hva;
7837 m.memory_size = size;
7838 r = __kvm_set_memory_region(kvm, &m);
7839 if (r < 0)
7840 return r;
7841 }
7842
7843 if (!size) {
7844 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7845 WARN_ON(r < 0);
7846 }
7847
7848 return 0;
7849 }
7850 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7851
7852 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7853 {
7854 int r;
7855
7856 mutex_lock(&kvm->slots_lock);
7857 r = __x86_set_memory_region(kvm, id, gpa, size);
7858 mutex_unlock(&kvm->slots_lock);
7859
7860 return r;
7861 }
7862 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7863
7864 void kvm_arch_destroy_vm(struct kvm *kvm)
7865 {
7866 if (current->mm == kvm->mm) {
7867 /*
7868 * Free memory regions allocated on behalf of userspace,
7869 * unless the the memory map has changed due to process exit
7870 * or fd copying.
7871 */
7872 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7873 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7874 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7875 }
7876 kvm_iommu_unmap_guest(kvm);
7877 kfree(kvm->arch.vpic);
7878 kfree(kvm->arch.vioapic);
7879 kvm_free_vcpus(kvm);
7880 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7881 kvm_mmu_uninit_vm(kvm);
7882 }
7883
7884 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7885 struct kvm_memory_slot *dont)
7886 {
7887 int i;
7888
7889 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7890 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7891 kvfree(free->arch.rmap[i]);
7892 free->arch.rmap[i] = NULL;
7893 }
7894 if (i == 0)
7895 continue;
7896
7897 if (!dont || free->arch.lpage_info[i - 1] !=
7898 dont->arch.lpage_info[i - 1]) {
7899 kvfree(free->arch.lpage_info[i - 1]);
7900 free->arch.lpage_info[i - 1] = NULL;
7901 }
7902 }
7903
7904 kvm_page_track_free_memslot(free, dont);
7905 }
7906
7907 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7908 unsigned long npages)
7909 {
7910 int i;
7911
7912 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7913 struct kvm_lpage_info *linfo;
7914 unsigned long ugfn;
7915 int lpages;
7916 int level = i + 1;
7917
7918 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7919 slot->base_gfn, level) + 1;
7920
7921 slot->arch.rmap[i] =
7922 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7923 if (!slot->arch.rmap[i])
7924 goto out_free;
7925 if (i == 0)
7926 continue;
7927
7928 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7929 if (!linfo)
7930 goto out_free;
7931
7932 slot->arch.lpage_info[i - 1] = linfo;
7933
7934 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7935 linfo[0].disallow_lpage = 1;
7936 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7937 linfo[lpages - 1].disallow_lpage = 1;
7938 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7939 /*
7940 * If the gfn and userspace address are not aligned wrt each
7941 * other, or if explicitly asked to, disable large page
7942 * support for this slot
7943 */
7944 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7945 !kvm_largepages_enabled()) {
7946 unsigned long j;
7947
7948 for (j = 0; j < lpages; ++j)
7949 linfo[j].disallow_lpage = 1;
7950 }
7951 }
7952
7953 if (kvm_page_track_create_memslot(slot, npages))
7954 goto out_free;
7955
7956 return 0;
7957
7958 out_free:
7959 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7960 kvfree(slot->arch.rmap[i]);
7961 slot->arch.rmap[i] = NULL;
7962 if (i == 0)
7963 continue;
7964
7965 kvfree(slot->arch.lpage_info[i - 1]);
7966 slot->arch.lpage_info[i - 1] = NULL;
7967 }
7968 return -ENOMEM;
7969 }
7970
7971 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7972 {
7973 /*
7974 * memslots->generation has been incremented.
7975 * mmio generation may have reached its maximum value.
7976 */
7977 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7978 }
7979
7980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7981 struct kvm_memory_slot *memslot,
7982 const struct kvm_userspace_memory_region *mem,
7983 enum kvm_mr_change change)
7984 {
7985 return 0;
7986 }
7987
7988 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7989 struct kvm_memory_slot *new)
7990 {
7991 /* Still write protect RO slot */
7992 if (new->flags & KVM_MEM_READONLY) {
7993 kvm_mmu_slot_remove_write_access(kvm, new);
7994 return;
7995 }
7996
7997 /*
7998 * Call kvm_x86_ops dirty logging hooks when they are valid.
7999 *
8000 * kvm_x86_ops->slot_disable_log_dirty is called when:
8001 *
8002 * - KVM_MR_CREATE with dirty logging is disabled
8003 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8004 *
8005 * The reason is, in case of PML, we need to set D-bit for any slots
8006 * with dirty logging disabled in order to eliminate unnecessary GPA
8007 * logging in PML buffer (and potential PML buffer full VMEXT). This
8008 * guarantees leaving PML enabled during guest's lifetime won't have
8009 * any additonal overhead from PML when guest is running with dirty
8010 * logging disabled for memory slots.
8011 *
8012 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8013 * to dirty logging mode.
8014 *
8015 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8016 *
8017 * In case of write protect:
8018 *
8019 * Write protect all pages for dirty logging.
8020 *
8021 * All the sptes including the large sptes which point to this
8022 * slot are set to readonly. We can not create any new large
8023 * spte on this slot until the end of the logging.
8024 *
8025 * See the comments in fast_page_fault().
8026 */
8027 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8028 if (kvm_x86_ops->slot_enable_log_dirty)
8029 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8030 else
8031 kvm_mmu_slot_remove_write_access(kvm, new);
8032 } else {
8033 if (kvm_x86_ops->slot_disable_log_dirty)
8034 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8035 }
8036 }
8037
8038 void kvm_arch_commit_memory_region(struct kvm *kvm,
8039 const struct kvm_userspace_memory_region *mem,
8040 const struct kvm_memory_slot *old,
8041 const struct kvm_memory_slot *new,
8042 enum kvm_mr_change change)
8043 {
8044 int nr_mmu_pages = 0;
8045
8046 if (!kvm->arch.n_requested_mmu_pages)
8047 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8048
8049 if (nr_mmu_pages)
8050 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8051
8052 /*
8053 * Dirty logging tracks sptes in 4k granularity, meaning that large
8054 * sptes have to be split. If live migration is successful, the guest
8055 * in the source machine will be destroyed and large sptes will be
8056 * created in the destination. However, if the guest continues to run
8057 * in the source machine (for example if live migration fails), small
8058 * sptes will remain around and cause bad performance.
8059 *
8060 * Scan sptes if dirty logging has been stopped, dropping those
8061 * which can be collapsed into a single large-page spte. Later
8062 * page faults will create the large-page sptes.
8063 */
8064 if ((change != KVM_MR_DELETE) &&
8065 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8066 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8067 kvm_mmu_zap_collapsible_sptes(kvm, new);
8068
8069 /*
8070 * Set up write protection and/or dirty logging for the new slot.
8071 *
8072 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8073 * been zapped so no dirty logging staff is needed for old slot. For
8074 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8075 * new and it's also covered when dealing with the new slot.
8076 *
8077 * FIXME: const-ify all uses of struct kvm_memory_slot.
8078 */
8079 if (change != KVM_MR_DELETE)
8080 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8081 }
8082
8083 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8084 {
8085 kvm_mmu_invalidate_zap_all_pages(kvm);
8086 }
8087
8088 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8089 struct kvm_memory_slot *slot)
8090 {
8091 kvm_mmu_invalidate_zap_all_pages(kvm);
8092 }
8093
8094 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8095 {
8096 if (!list_empty_careful(&vcpu->async_pf.done))
8097 return true;
8098
8099 if (kvm_apic_has_events(vcpu))
8100 return true;
8101
8102 if (vcpu->arch.pv.pv_unhalted)
8103 return true;
8104
8105 if (atomic_read(&vcpu->arch.nmi_queued))
8106 return true;
8107
8108 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8109 return true;
8110
8111 if (kvm_arch_interrupt_allowed(vcpu) &&
8112 kvm_cpu_has_interrupt(vcpu))
8113 return true;
8114
8115 if (kvm_hv_has_stimer_pending(vcpu))
8116 return true;
8117
8118 return false;
8119 }
8120
8121 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8122 {
8123 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8124 kvm_x86_ops->check_nested_events(vcpu, false);
8125
8126 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8127 }
8128
8129 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8130 {
8131 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8132 }
8133
8134 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8135 {
8136 return kvm_x86_ops->interrupt_allowed(vcpu);
8137 }
8138
8139 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8140 {
8141 if (is_64_bit_mode(vcpu))
8142 return kvm_rip_read(vcpu);
8143 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8144 kvm_rip_read(vcpu));
8145 }
8146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8147
8148 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8149 {
8150 return kvm_get_linear_rip(vcpu) == linear_rip;
8151 }
8152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8153
8154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8155 {
8156 unsigned long rflags;
8157
8158 rflags = kvm_x86_ops->get_rflags(vcpu);
8159 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8160 rflags &= ~X86_EFLAGS_TF;
8161 return rflags;
8162 }
8163 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8164
8165 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8166 {
8167 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8168 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8169 rflags |= X86_EFLAGS_TF;
8170 kvm_x86_ops->set_rflags(vcpu, rflags);
8171 }
8172
8173 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8174 {
8175 __kvm_set_rflags(vcpu, rflags);
8176 kvm_make_request(KVM_REQ_EVENT, vcpu);
8177 }
8178 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8179
8180 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8181 {
8182 int r;
8183
8184 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8185 work->wakeup_all)
8186 return;
8187
8188 r = kvm_mmu_reload(vcpu);
8189 if (unlikely(r))
8190 return;
8191
8192 if (!vcpu->arch.mmu.direct_map &&
8193 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8194 return;
8195
8196 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8197 }
8198
8199 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8200 {
8201 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8202 }
8203
8204 static inline u32 kvm_async_pf_next_probe(u32 key)
8205 {
8206 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8207 }
8208
8209 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8210 {
8211 u32 key = kvm_async_pf_hash_fn(gfn);
8212
8213 while (vcpu->arch.apf.gfns[key] != ~0)
8214 key = kvm_async_pf_next_probe(key);
8215
8216 vcpu->arch.apf.gfns[key] = gfn;
8217 }
8218
8219 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8220 {
8221 int i;
8222 u32 key = kvm_async_pf_hash_fn(gfn);
8223
8224 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8225 (vcpu->arch.apf.gfns[key] != gfn &&
8226 vcpu->arch.apf.gfns[key] != ~0); i++)
8227 key = kvm_async_pf_next_probe(key);
8228
8229 return key;
8230 }
8231
8232 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8233 {
8234 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8235 }
8236
8237 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8238 {
8239 u32 i, j, k;
8240
8241 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8242 while (true) {
8243 vcpu->arch.apf.gfns[i] = ~0;
8244 do {
8245 j = kvm_async_pf_next_probe(j);
8246 if (vcpu->arch.apf.gfns[j] == ~0)
8247 return;
8248 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8249 /*
8250 * k lies cyclically in ]i,j]
8251 * | i.k.j |
8252 * |....j i.k.| or |.k..j i...|
8253 */
8254 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8255 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8256 i = j;
8257 }
8258 }
8259
8260 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8261 {
8262
8263 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8264 sizeof(val));
8265 }
8266
8267 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8268 struct kvm_async_pf *work)
8269 {
8270 struct x86_exception fault;
8271
8272 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8273 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8274
8275 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8276 (vcpu->arch.apf.send_user_only &&
8277 kvm_x86_ops->get_cpl(vcpu) == 0))
8278 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8279 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8280 fault.vector = PF_VECTOR;
8281 fault.error_code_valid = true;
8282 fault.error_code = 0;
8283 fault.nested_page_fault = false;
8284 fault.address = work->arch.token;
8285 kvm_inject_page_fault(vcpu, &fault);
8286 }
8287 }
8288
8289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8290 struct kvm_async_pf *work)
8291 {
8292 struct x86_exception fault;
8293
8294 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8295 if (work->wakeup_all)
8296 work->arch.token = ~0; /* broadcast wakeup */
8297 else
8298 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8299
8300 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8301 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8302 fault.vector = PF_VECTOR;
8303 fault.error_code_valid = true;
8304 fault.error_code = 0;
8305 fault.nested_page_fault = false;
8306 fault.address = work->arch.token;
8307 kvm_inject_page_fault(vcpu, &fault);
8308 }
8309 vcpu->arch.apf.halted = false;
8310 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8311 }
8312
8313 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8314 {
8315 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8316 return true;
8317 else
8318 return !kvm_event_needs_reinjection(vcpu) &&
8319 kvm_x86_ops->interrupt_allowed(vcpu);
8320 }
8321
8322 void kvm_arch_start_assignment(struct kvm *kvm)
8323 {
8324 atomic_inc(&kvm->arch.assigned_device_count);
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8327
8328 void kvm_arch_end_assignment(struct kvm *kvm)
8329 {
8330 atomic_dec(&kvm->arch.assigned_device_count);
8331 }
8332 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8333
8334 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8335 {
8336 return atomic_read(&kvm->arch.assigned_device_count);
8337 }
8338 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8339
8340 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8341 {
8342 atomic_inc(&kvm->arch.noncoherent_dma_count);
8343 }
8344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8345
8346 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8347 {
8348 atomic_dec(&kvm->arch.noncoherent_dma_count);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8351
8352 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8353 {
8354 return atomic_read(&kvm->arch.noncoherent_dma_count);
8355 }
8356 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8357
8358 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8359 struct irq_bypass_producer *prod)
8360 {
8361 struct kvm_kernel_irqfd *irqfd =
8362 container_of(cons, struct kvm_kernel_irqfd, consumer);
8363
8364 if (kvm_x86_ops->update_pi_irte) {
8365 irqfd->producer = prod;
8366 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8367 prod->irq, irqfd->gsi, 1);
8368 }
8369
8370 return -EINVAL;
8371 }
8372
8373 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8374 struct irq_bypass_producer *prod)
8375 {
8376 int ret;
8377 struct kvm_kernel_irqfd *irqfd =
8378 container_of(cons, struct kvm_kernel_irqfd, consumer);
8379
8380 if (!kvm_x86_ops->update_pi_irte) {
8381 WARN_ON(irqfd->producer != NULL);
8382 return;
8383 }
8384
8385 WARN_ON(irqfd->producer != prod);
8386 irqfd->producer = NULL;
8387
8388 /*
8389 * When producer of consumer is unregistered, we change back to
8390 * remapped mode, so we can re-use the current implementation
8391 * when the irq is masked/disabed or the consumer side (KVM
8392 * int this case doesn't want to receive the interrupts.
8393 */
8394 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8395 if (ret)
8396 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8397 " fails: %d\n", irqfd->consumer.token, ret);
8398 }
8399
8400 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8401 uint32_t guest_irq, bool set)
8402 {
8403 if (!kvm_x86_ops->update_pi_irte)
8404 return -EINVAL;
8405
8406 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8407 }
8408
8409 bool kvm_vector_hashing_enabled(void)
8410 {
8411 return vector_hashing;
8412 }
8413 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8414
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);