]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
Merge branch 'x86/process' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142 int nr;
143 u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
148 bool registered;
149 struct kvm_shared_msr_values {
150 u64 host;
151 u64 curr;
152 } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
197 { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206 int i;
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213 unsigned slot;
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
217 unsigned long flags;
218
219 /*
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
222 */
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
227 }
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
234 }
235 }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240 u64 value;
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
248 return;
249 }
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266 unsigned i;
267
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276 int err;
277
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 return 0;
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282 if (err)
283 return 1;
284
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
289 }
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324 old_state == 0)))
325 return 1;
326
327 kvm_lapic_set_base(vcpu, msr_info->data);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334 /* Fault while not rebooting. We want the trace. */
335 BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
341 #define EXCPT_PF 2
342
343 static int exception_class(int vector)
344 {
345 switch (vector) {
346 case PF_VECTOR:
347 return EXCPT_PF;
348 case DE_VECTOR:
349 case TS_VECTOR:
350 case NP_VECTOR:
351 case SS_VECTOR:
352 case GP_VECTOR:
353 return EXCPT_CONTRIBUTORY;
354 default:
355 break;
356 }
357 return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT 0
361 #define EXCPT_TRAP 1
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
364
365 static int exception_type(int vector)
366 {
367 unsigned int mask;
368
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
371
372 mask = 1 << vector;
373
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376 return EXCPT_TRAP;
377
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379 return EXCPT_ABORT;
380
381 /* Reserved exceptions will result in fault */
382 return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
387 bool reinject)
388 {
389 u32 prev_nr;
390 int class1, class2;
391
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394 if (!vcpu->arch.exception.pending) {
395 queue:
396 if (has_error && !is_protmode(vcpu))
397 has_error = false;
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
403 return;
404 }
405
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411 return;
412 }
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
422 } else
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
425 exception */
426 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443 if (err)
444 kvm_inject_gp(vcpu, 0);
445 else
446 return kvm_skip_emulated_instruction(vcpu);
447
448 return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 else
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467 return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
492 */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 return true;
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498 return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505 return true;
506
507 kvm_queue_exception(vcpu, UD_VECTOR);
508 return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
516 */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
519 u32 access)
520 {
521 struct x86_exception exception;
522 gfn_t real_gfn;
523 gpa_t ngpa;
524
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
528 return -EFAULT;
529
530 real_gfn = gpa_to_gfn(real_gfn);
531
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
538 {
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
541 }
542
543 /*
544 * Load the pae pdptrs. Return true is they are all valid.
545 */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550 int i;
551 int ret;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
557 if (ret < 0) {
558 ret = 0;
559 goto out;
560 }
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 (pdpte[i] &
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565 ret = 0;
566 goto out;
567 }
568 }
569 ret = 1;
570
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578 return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585 bool changed = true;
586 int offset;
587 gfn_t gfn;
588 int r;
589
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
591 return false;
592
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
595 return true;
596
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
601 if (r < 0)
602 goto out;
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606 return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615 cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618 if (cr0 & 0xffffffff00000000UL)
619 return 1;
620 #endif
621
622 cr0 &= ~CR0_RESERVED_BITS;
623
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625 return 1;
626
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628 return 1;
629
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632 if ((vcpu->arch.efer & EFER_LME)) {
633 int cs_db, cs_l;
634
635 if (!is_pae(vcpu))
636 return 1;
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638 if (cs_l)
639 return 1;
640 } else
641 #endif
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643 kvm_read_cr3(vcpu)))
644 return 1;
645 }
646
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648 return 1;
649
650 kvm_x86_ops->set_cr0(vcpu, cr0);
651
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
655 }
656
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
659
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
682 }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
691 }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696 u64 xcr0 = xcr;
697 u64 old_xcr0 = vcpu->arch.xcr0;
698 u64 valid_bits;
699
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
702 return 1;
703 if (!(xcr0 & XFEATURE_MASK_FP))
704 return 1;
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706 return 1;
707
708 /*
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
712 */
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
715 return 1;
716
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719 return 1;
720
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
723 return 1;
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725 return 1;
726 }
727 vcpu->arch.xcr0 = xcr0;
728
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
731 return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
739 return 1;
740 }
741 return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751 if (cr4 & CR4_RESERVED_BITS)
752 return 1;
753
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755 return 1;
756
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758 return 1;
759
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761 return 1;
762
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764 return 1;
765
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767 return 1;
768
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
771 return 1;
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 kvm_read_cr3(vcpu)))
776 return 1;
777
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
780 return 1;
781
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784 return 1;
785 }
786
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
788 return 1;
789
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
793
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804 cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810 return 0;
811 }
812
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 return 1;
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818 return 1;
819
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829 if (cr8 & CR8_RESERVED_BITS)
830 return 1;
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
833 else
834 vcpu->arch.cr8 = cr8;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
843 else
844 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850 int i;
851
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856 }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867 unsigned long dr7;
868
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
871 else
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881 u64 fixed = DR6_FIXED_1;
882
883 if (!guest_cpuid_has_rtm(vcpu))
884 fixed |= DR6_RTM;
885 return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 switch (dr) {
891 case 0 ... 3:
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
895 break;
896 case 4:
897 /* fall through */
898 case 6:
899 if (val & 0xffffffff00000000ULL)
900 return -1; /* #GP */
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
903 break;
904 case 5:
905 /* fall through */
906 default: /* 7 */
907 if (val & 0xffffffff00000000ULL)
908 return -1; /* #GP */
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
911 break;
912 }
913
914 return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
921 return 1;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 *val = vcpu->arch.db[dr];
932 break;
933 case 4:
934 /* fall through */
935 case 6:
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
938 else
939 *val = kvm_x86_ops->get_dr6(vcpu);
940 break;
941 case 5:
942 /* fall through */
943 default: /* 7 */
944 *val = vcpu->arch.dr7;
945 break;
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954 u64 data;
955 int err;
956
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958 if (err)
959 return err;
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 *
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
974 */
975
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978 MSR_STAR,
979 #ifdef CONFIG_X86_64
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995 HV_X64_MSR_RESET,
996 HV_X64_MSR_VP_INDEX,
997 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_SCONTROL,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001 MSR_KVM_PV_EOI_EN,
1002
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_CTL,
1008 MSR_IA32_MCG_EXT_CTL,
1009 MSR_IA32_SMBASE,
1010 };
1011
1012 static unsigned num_emulated_msrs;
1013
1014 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 {
1016 if (efer & efer_reserved_bits)
1017 return false;
1018
1019 if (efer & EFER_FFXSR) {
1020 struct kvm_cpuid_entry2 *feat;
1021
1022 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1023 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1024 return false;
1025 }
1026
1027 if (efer & EFER_SVME) {
1028 struct kvm_cpuid_entry2 *feat;
1029
1030 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1031 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1032 return false;
1033 }
1034
1035 return true;
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1038
1039 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1040 {
1041 u64 old_efer = vcpu->arch.efer;
1042
1043 if (!kvm_valid_efer(vcpu, efer))
1044 return 1;
1045
1046 if (is_paging(vcpu)
1047 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1048 return 1;
1049
1050 efer &= ~EFER_LMA;
1051 efer |= vcpu->arch.efer & EFER_LMA;
1052
1053 kvm_x86_ops->set_efer(vcpu, efer);
1054
1055 /* Update reserved bits */
1056 if ((efer ^ old_efer) & EFER_NX)
1057 kvm_mmu_reset_context(vcpu);
1058
1059 return 0;
1060 }
1061
1062 void kvm_enable_efer_bits(u64 mask)
1063 {
1064 efer_reserved_bits &= ~mask;
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1067
1068 /*
1069 * Writes msr value into into the appropriate "register".
1070 * Returns 0 on success, non-0 otherwise.
1071 * Assumes vcpu_load() was already called.
1072 */
1073 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1074 {
1075 switch (msr->index) {
1076 case MSR_FS_BASE:
1077 case MSR_GS_BASE:
1078 case MSR_KERNEL_GS_BASE:
1079 case MSR_CSTAR:
1080 case MSR_LSTAR:
1081 if (is_noncanonical_address(msr->data))
1082 return 1;
1083 break;
1084 case MSR_IA32_SYSENTER_EIP:
1085 case MSR_IA32_SYSENTER_ESP:
1086 /*
1087 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1088 * non-canonical address is written on Intel but not on
1089 * AMD (which ignores the top 32-bits, because it does
1090 * not implement 64-bit SYSENTER).
1091 *
1092 * 64-bit code should hence be able to write a non-canonical
1093 * value on AMD. Making the address canonical ensures that
1094 * vmentry does not fail on Intel after writing a non-canonical
1095 * value, and that something deterministic happens if the guest
1096 * invokes 64-bit SYSENTER.
1097 */
1098 msr->data = get_canonical(msr->data);
1099 }
1100 return kvm_x86_ops->set_msr(vcpu, msr);
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_set_msr);
1103
1104 /*
1105 * Adapt set_msr() to msr_io()'s calling convention
1106 */
1107 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1108 {
1109 struct msr_data msr;
1110 int r;
1111
1112 msr.index = index;
1113 msr.host_initiated = true;
1114 r = kvm_get_msr(vcpu, &msr);
1115 if (r)
1116 return r;
1117
1118 *data = msr.data;
1119 return 0;
1120 }
1121
1122 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1123 {
1124 struct msr_data msr;
1125
1126 msr.data = *data;
1127 msr.index = index;
1128 msr.host_initiated = true;
1129 return kvm_set_msr(vcpu, &msr);
1130 }
1131
1132 #ifdef CONFIG_X86_64
1133 struct pvclock_gtod_data {
1134 seqcount_t seq;
1135
1136 struct { /* extract of a clocksource struct */
1137 int vclock_mode;
1138 u64 cycle_last;
1139 u64 mask;
1140 u32 mult;
1141 u32 shift;
1142 } clock;
1143
1144 u64 boot_ns;
1145 u64 nsec_base;
1146 u64 wall_time_sec;
1147 };
1148
1149 static struct pvclock_gtod_data pvclock_gtod_data;
1150
1151 static void update_pvclock_gtod(struct timekeeper *tk)
1152 {
1153 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1154 u64 boot_ns;
1155
1156 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1157
1158 write_seqcount_begin(&vdata->seq);
1159
1160 /* copy pvclock gtod data */
1161 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1162 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1163 vdata->clock.mask = tk->tkr_mono.mask;
1164 vdata->clock.mult = tk->tkr_mono.mult;
1165 vdata->clock.shift = tk->tkr_mono.shift;
1166
1167 vdata->boot_ns = boot_ns;
1168 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1169
1170 vdata->wall_time_sec = tk->xtime_sec;
1171
1172 write_seqcount_end(&vdata->seq);
1173 }
1174 #endif
1175
1176 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1177 {
1178 /*
1179 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1180 * vcpu_enter_guest. This function is only called from
1181 * the physical CPU that is running vcpu.
1182 */
1183 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1184 }
1185
1186 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1187 {
1188 int version;
1189 int r;
1190 struct pvclock_wall_clock wc;
1191 struct timespec64 boot;
1192
1193 if (!wall_clock)
1194 return;
1195
1196 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1197 if (r)
1198 return;
1199
1200 if (version & 1)
1201 ++version; /* first time write, random junk */
1202
1203 ++version;
1204
1205 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1206 return;
1207
1208 /*
1209 * The guest calculates current wall clock time by adding
1210 * system time (updated by kvm_guest_time_update below) to the
1211 * wall clock specified here. guest system time equals host
1212 * system time for us, thus we must fill in host boot time here.
1213 */
1214 getboottime64(&boot);
1215
1216 if (kvm->arch.kvmclock_offset) {
1217 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1218 boot = timespec64_sub(boot, ts);
1219 }
1220 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1221 wc.nsec = boot.tv_nsec;
1222 wc.version = version;
1223
1224 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1225
1226 version++;
1227 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1228 }
1229
1230 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1231 {
1232 do_shl32_div32(dividend, divisor);
1233 return dividend;
1234 }
1235
1236 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1237 s8 *pshift, u32 *pmultiplier)
1238 {
1239 uint64_t scaled64;
1240 int32_t shift = 0;
1241 uint64_t tps64;
1242 uint32_t tps32;
1243
1244 tps64 = base_hz;
1245 scaled64 = scaled_hz;
1246 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1247 tps64 >>= 1;
1248 shift--;
1249 }
1250
1251 tps32 = (uint32_t)tps64;
1252 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1253 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1254 scaled64 >>= 1;
1255 else
1256 tps32 <<= 1;
1257 shift++;
1258 }
1259
1260 *pshift = shift;
1261 *pmultiplier = div_frac(scaled64, tps32);
1262
1263 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1264 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1265 }
1266
1267 #ifdef CONFIG_X86_64
1268 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1269 #endif
1270
1271 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1272 static unsigned long max_tsc_khz;
1273
1274 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1275 {
1276 u64 v = (u64)khz * (1000000 + ppm);
1277 do_div(v, 1000000);
1278 return v;
1279 }
1280
1281 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1282 {
1283 u64 ratio;
1284
1285 /* Guest TSC same frequency as host TSC? */
1286 if (!scale) {
1287 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1288 return 0;
1289 }
1290
1291 /* TSC scaling supported? */
1292 if (!kvm_has_tsc_control) {
1293 if (user_tsc_khz > tsc_khz) {
1294 vcpu->arch.tsc_catchup = 1;
1295 vcpu->arch.tsc_always_catchup = 1;
1296 return 0;
1297 } else {
1298 WARN(1, "user requested TSC rate below hardware speed\n");
1299 return -1;
1300 }
1301 }
1302
1303 /* TSC scaling required - calculate ratio */
1304 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1305 user_tsc_khz, tsc_khz);
1306
1307 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1308 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1309 user_tsc_khz);
1310 return -1;
1311 }
1312
1313 vcpu->arch.tsc_scaling_ratio = ratio;
1314 return 0;
1315 }
1316
1317 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1318 {
1319 u32 thresh_lo, thresh_hi;
1320 int use_scaling = 0;
1321
1322 /* tsc_khz can be zero if TSC calibration fails */
1323 if (user_tsc_khz == 0) {
1324 /* set tsc_scaling_ratio to a safe value */
1325 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1326 return -1;
1327 }
1328
1329 /* Compute a scale to convert nanoseconds in TSC cycles */
1330 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1331 &vcpu->arch.virtual_tsc_shift,
1332 &vcpu->arch.virtual_tsc_mult);
1333 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1334
1335 /*
1336 * Compute the variation in TSC rate which is acceptable
1337 * within the range of tolerance and decide if the
1338 * rate being applied is within that bounds of the hardware
1339 * rate. If so, no scaling or compensation need be done.
1340 */
1341 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1342 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1343 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1344 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1345 use_scaling = 1;
1346 }
1347 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1348 }
1349
1350 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1351 {
1352 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1353 vcpu->arch.virtual_tsc_mult,
1354 vcpu->arch.virtual_tsc_shift);
1355 tsc += vcpu->arch.this_tsc_write;
1356 return tsc;
1357 }
1358
1359 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1360 {
1361 #ifdef CONFIG_X86_64
1362 bool vcpus_matched;
1363 struct kvm_arch *ka = &vcpu->kvm->arch;
1364 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1365
1366 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1367 atomic_read(&vcpu->kvm->online_vcpus));
1368
1369 /*
1370 * Once the masterclock is enabled, always perform request in
1371 * order to update it.
1372 *
1373 * In order to enable masterclock, the host clocksource must be TSC
1374 * and the vcpus need to have matched TSCs. When that happens,
1375 * perform request to enable masterclock.
1376 */
1377 if (ka->use_master_clock ||
1378 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1379 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1380
1381 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1382 atomic_read(&vcpu->kvm->online_vcpus),
1383 ka->use_master_clock, gtod->clock.vclock_mode);
1384 #endif
1385 }
1386
1387 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1388 {
1389 u64 curr_offset = vcpu->arch.tsc_offset;
1390 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1391 }
1392
1393 /*
1394 * Multiply tsc by a fixed point number represented by ratio.
1395 *
1396 * The most significant 64-N bits (mult) of ratio represent the
1397 * integral part of the fixed point number; the remaining N bits
1398 * (frac) represent the fractional part, ie. ratio represents a fixed
1399 * point number (mult + frac * 2^(-N)).
1400 *
1401 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1402 */
1403 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1404 {
1405 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1406 }
1407
1408 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1409 {
1410 u64 _tsc = tsc;
1411 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1412
1413 if (ratio != kvm_default_tsc_scaling_ratio)
1414 _tsc = __scale_tsc(ratio, tsc);
1415
1416 return _tsc;
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1419
1420 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1421 {
1422 u64 tsc;
1423
1424 tsc = kvm_scale_tsc(vcpu, rdtsc());
1425
1426 return target_tsc - tsc;
1427 }
1428
1429 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1430 {
1431 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1434
1435 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1436 {
1437 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1438 vcpu->arch.tsc_offset = offset;
1439 }
1440
1441 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1442 {
1443 struct kvm *kvm = vcpu->kvm;
1444 u64 offset, ns, elapsed;
1445 unsigned long flags;
1446 bool matched;
1447 bool already_matched;
1448 u64 data = msr->data;
1449 bool synchronizing = false;
1450
1451 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1452 offset = kvm_compute_tsc_offset(vcpu, data);
1453 ns = ktime_get_boot_ns();
1454 elapsed = ns - kvm->arch.last_tsc_nsec;
1455
1456 if (vcpu->arch.virtual_tsc_khz) {
1457 if (data == 0 && msr->host_initiated) {
1458 /*
1459 * detection of vcpu initialization -- need to sync
1460 * with other vCPUs. This particularly helps to keep
1461 * kvm_clock stable after CPU hotplug
1462 */
1463 synchronizing = true;
1464 } else {
1465 u64 tsc_exp = kvm->arch.last_tsc_write +
1466 nsec_to_cycles(vcpu, elapsed);
1467 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1468 /*
1469 * Special case: TSC write with a small delta (1 second)
1470 * of virtual cycle time against real time is
1471 * interpreted as an attempt to synchronize the CPU.
1472 */
1473 synchronizing = data < tsc_exp + tsc_hz &&
1474 data + tsc_hz > tsc_exp;
1475 }
1476 }
1477
1478 /*
1479 * For a reliable TSC, we can match TSC offsets, and for an unstable
1480 * TSC, we add elapsed time in this computation. We could let the
1481 * compensation code attempt to catch up if we fall behind, but
1482 * it's better to try to match offsets from the beginning.
1483 */
1484 if (synchronizing &&
1485 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1486 if (!check_tsc_unstable()) {
1487 offset = kvm->arch.cur_tsc_offset;
1488 pr_debug("kvm: matched tsc offset for %llu\n", data);
1489 } else {
1490 u64 delta = nsec_to_cycles(vcpu, elapsed);
1491 data += delta;
1492 offset = kvm_compute_tsc_offset(vcpu, data);
1493 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1494 }
1495 matched = true;
1496 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1497 } else {
1498 /*
1499 * We split periods of matched TSC writes into generations.
1500 * For each generation, we track the original measured
1501 * nanosecond time, offset, and write, so if TSCs are in
1502 * sync, we can match exact offset, and if not, we can match
1503 * exact software computation in compute_guest_tsc()
1504 *
1505 * These values are tracked in kvm->arch.cur_xxx variables.
1506 */
1507 kvm->arch.cur_tsc_generation++;
1508 kvm->arch.cur_tsc_nsec = ns;
1509 kvm->arch.cur_tsc_write = data;
1510 kvm->arch.cur_tsc_offset = offset;
1511 matched = false;
1512 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1513 kvm->arch.cur_tsc_generation, data);
1514 }
1515
1516 /*
1517 * We also track th most recent recorded KHZ, write and time to
1518 * allow the matching interval to be extended at each write.
1519 */
1520 kvm->arch.last_tsc_nsec = ns;
1521 kvm->arch.last_tsc_write = data;
1522 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1523
1524 vcpu->arch.last_guest_tsc = data;
1525
1526 /* Keep track of which generation this VCPU has synchronized to */
1527 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1528 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1529 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1530
1531 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1532 update_ia32_tsc_adjust_msr(vcpu, offset);
1533 kvm_vcpu_write_tsc_offset(vcpu, offset);
1534 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1535
1536 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1537 if (!matched) {
1538 kvm->arch.nr_vcpus_matched_tsc = 0;
1539 } else if (!already_matched) {
1540 kvm->arch.nr_vcpus_matched_tsc++;
1541 }
1542
1543 kvm_track_tsc_matching(vcpu);
1544 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1545 }
1546
1547 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1548
1549 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1550 s64 adjustment)
1551 {
1552 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1553 }
1554
1555 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1556 {
1557 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1558 WARN_ON(adjustment < 0);
1559 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1560 adjust_tsc_offset_guest(vcpu, adjustment);
1561 }
1562
1563 #ifdef CONFIG_X86_64
1564
1565 static u64 read_tsc(void)
1566 {
1567 u64 ret = (u64)rdtsc_ordered();
1568 u64 last = pvclock_gtod_data.clock.cycle_last;
1569
1570 if (likely(ret >= last))
1571 return ret;
1572
1573 /*
1574 * GCC likes to generate cmov here, but this branch is extremely
1575 * predictable (it's just a function of time and the likely is
1576 * very likely) and there's a data dependence, so force GCC
1577 * to generate a branch instead. I don't barrier() because
1578 * we don't actually need a barrier, and if this function
1579 * ever gets inlined it will generate worse code.
1580 */
1581 asm volatile ("");
1582 return last;
1583 }
1584
1585 static inline u64 vgettsc(u64 *cycle_now)
1586 {
1587 long v;
1588 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589
1590 *cycle_now = read_tsc();
1591
1592 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1593 return v * gtod->clock.mult;
1594 }
1595
1596 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1597 {
1598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599 unsigned long seq;
1600 int mode;
1601 u64 ns;
1602
1603 do {
1604 seq = read_seqcount_begin(&gtod->seq);
1605 mode = gtod->clock.vclock_mode;
1606 ns = gtod->nsec_base;
1607 ns += vgettsc(cycle_now);
1608 ns >>= gtod->clock.shift;
1609 ns += gtod->boot_ns;
1610 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1611 *t = ns;
1612
1613 return mode;
1614 }
1615
1616 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1617 {
1618 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1619 unsigned long seq;
1620 int mode;
1621 u64 ns;
1622
1623 do {
1624 seq = read_seqcount_begin(&gtod->seq);
1625 mode = gtod->clock.vclock_mode;
1626 ts->tv_sec = gtod->wall_time_sec;
1627 ns = gtod->nsec_base;
1628 ns += vgettsc(cycle_now);
1629 ns >>= gtod->clock.shift;
1630 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1631
1632 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1633 ts->tv_nsec = ns;
1634
1635 return mode;
1636 }
1637
1638 /* returns true if host is using tsc clocksource */
1639 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1640 {
1641 /* checked again under seqlock below */
1642 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1643 return false;
1644
1645 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1646 }
1647
1648 /* returns true if host is using tsc clocksource */
1649 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1650 u64 *cycle_now)
1651 {
1652 /* checked again under seqlock below */
1653 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1654 return false;
1655
1656 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1657 }
1658 #endif
1659
1660 /*
1661 *
1662 * Assuming a stable TSC across physical CPUS, and a stable TSC
1663 * across virtual CPUs, the following condition is possible.
1664 * Each numbered line represents an event visible to both
1665 * CPUs at the next numbered event.
1666 *
1667 * "timespecX" represents host monotonic time. "tscX" represents
1668 * RDTSC value.
1669 *
1670 * VCPU0 on CPU0 | VCPU1 on CPU1
1671 *
1672 * 1. read timespec0,tsc0
1673 * 2. | timespec1 = timespec0 + N
1674 * | tsc1 = tsc0 + M
1675 * 3. transition to guest | transition to guest
1676 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1677 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1678 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1679 *
1680 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1681 *
1682 * - ret0 < ret1
1683 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1684 * ...
1685 * - 0 < N - M => M < N
1686 *
1687 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1688 * always the case (the difference between two distinct xtime instances
1689 * might be smaller then the difference between corresponding TSC reads,
1690 * when updating guest vcpus pvclock areas).
1691 *
1692 * To avoid that problem, do not allow visibility of distinct
1693 * system_timestamp/tsc_timestamp values simultaneously: use a master
1694 * copy of host monotonic time values. Update that master copy
1695 * in lockstep.
1696 *
1697 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1698 *
1699 */
1700
1701 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1702 {
1703 #ifdef CONFIG_X86_64
1704 struct kvm_arch *ka = &kvm->arch;
1705 int vclock_mode;
1706 bool host_tsc_clocksource, vcpus_matched;
1707
1708 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1709 atomic_read(&kvm->online_vcpus));
1710
1711 /*
1712 * If the host uses TSC clock, then passthrough TSC as stable
1713 * to the guest.
1714 */
1715 host_tsc_clocksource = kvm_get_time_and_clockread(
1716 &ka->master_kernel_ns,
1717 &ka->master_cycle_now);
1718
1719 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1720 && !backwards_tsc_observed
1721 && !ka->boot_vcpu_runs_old_kvmclock;
1722
1723 if (ka->use_master_clock)
1724 atomic_set(&kvm_guest_has_master_clock, 1);
1725
1726 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1727 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1728 vcpus_matched);
1729 #endif
1730 }
1731
1732 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1733 {
1734 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1735 }
1736
1737 static void kvm_gen_update_masterclock(struct kvm *kvm)
1738 {
1739 #ifdef CONFIG_X86_64
1740 int i;
1741 struct kvm_vcpu *vcpu;
1742 struct kvm_arch *ka = &kvm->arch;
1743
1744 spin_lock(&ka->pvclock_gtod_sync_lock);
1745 kvm_make_mclock_inprogress_request(kvm);
1746 /* no guest entries from this point */
1747 pvclock_update_vm_gtod_copy(kvm);
1748
1749 kvm_for_each_vcpu(i, vcpu, kvm)
1750 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1751
1752 /* guest entries allowed */
1753 kvm_for_each_vcpu(i, vcpu, kvm)
1754 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1755
1756 spin_unlock(&ka->pvclock_gtod_sync_lock);
1757 #endif
1758 }
1759
1760 static u64 __get_kvmclock_ns(struct kvm *kvm)
1761 {
1762 struct kvm_arch *ka = &kvm->arch;
1763 struct pvclock_vcpu_time_info hv_clock;
1764
1765 spin_lock(&ka->pvclock_gtod_sync_lock);
1766 if (!ka->use_master_clock) {
1767 spin_unlock(&ka->pvclock_gtod_sync_lock);
1768 return ktime_get_boot_ns() + ka->kvmclock_offset;
1769 }
1770
1771 hv_clock.tsc_timestamp = ka->master_cycle_now;
1772 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1773 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774
1775 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1776 &hv_clock.tsc_shift,
1777 &hv_clock.tsc_to_system_mul);
1778 return __pvclock_read_cycles(&hv_clock, rdtsc());
1779 }
1780
1781 u64 get_kvmclock_ns(struct kvm *kvm)
1782 {
1783 unsigned long flags;
1784 s64 ns;
1785
1786 local_irq_save(flags);
1787 ns = __get_kvmclock_ns(kvm);
1788 local_irq_restore(flags);
1789
1790 return ns;
1791 }
1792
1793 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1794 {
1795 struct kvm_vcpu_arch *vcpu = &v->arch;
1796 struct pvclock_vcpu_time_info guest_hv_clock;
1797
1798 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1799 &guest_hv_clock, sizeof(guest_hv_clock))))
1800 return;
1801
1802 /* This VCPU is paused, but it's legal for a guest to read another
1803 * VCPU's kvmclock, so we really have to follow the specification where
1804 * it says that version is odd if data is being modified, and even after
1805 * it is consistent.
1806 *
1807 * Version field updates must be kept separate. This is because
1808 * kvm_write_guest_cached might use a "rep movs" instruction, and
1809 * writes within a string instruction are weakly ordered. So there
1810 * are three writes overall.
1811 *
1812 * As a small optimization, only write the version field in the first
1813 * and third write. The vcpu->pv_time cache is still valid, because the
1814 * version field is the first in the struct.
1815 */
1816 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1817
1818 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1819 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1820 &vcpu->hv_clock,
1821 sizeof(vcpu->hv_clock.version));
1822
1823 smp_wmb();
1824
1825 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1826 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1827
1828 if (vcpu->pvclock_set_guest_stopped_request) {
1829 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1830 vcpu->pvclock_set_guest_stopped_request = false;
1831 }
1832
1833 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1834
1835 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1836 &vcpu->hv_clock,
1837 sizeof(vcpu->hv_clock));
1838
1839 smp_wmb();
1840
1841 vcpu->hv_clock.version++;
1842 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1843 &vcpu->hv_clock,
1844 sizeof(vcpu->hv_clock.version));
1845 }
1846
1847 static int kvm_guest_time_update(struct kvm_vcpu *v)
1848 {
1849 unsigned long flags, tgt_tsc_khz;
1850 struct kvm_vcpu_arch *vcpu = &v->arch;
1851 struct kvm_arch *ka = &v->kvm->arch;
1852 s64 kernel_ns;
1853 u64 tsc_timestamp, host_tsc;
1854 u8 pvclock_flags;
1855 bool use_master_clock;
1856
1857 kernel_ns = 0;
1858 host_tsc = 0;
1859
1860 /*
1861 * If the host uses TSC clock, then passthrough TSC as stable
1862 * to the guest.
1863 */
1864 spin_lock(&ka->pvclock_gtod_sync_lock);
1865 use_master_clock = ka->use_master_clock;
1866 if (use_master_clock) {
1867 host_tsc = ka->master_cycle_now;
1868 kernel_ns = ka->master_kernel_ns;
1869 }
1870 spin_unlock(&ka->pvclock_gtod_sync_lock);
1871
1872 /* Keep irq disabled to prevent changes to the clock */
1873 local_irq_save(flags);
1874 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1875 if (unlikely(tgt_tsc_khz == 0)) {
1876 local_irq_restore(flags);
1877 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1878 return 1;
1879 }
1880 if (!use_master_clock) {
1881 host_tsc = rdtsc();
1882 kernel_ns = ktime_get_boot_ns();
1883 }
1884
1885 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1886
1887 /*
1888 * We may have to catch up the TSC to match elapsed wall clock
1889 * time for two reasons, even if kvmclock is used.
1890 * 1) CPU could have been running below the maximum TSC rate
1891 * 2) Broken TSC compensation resets the base at each VCPU
1892 * entry to avoid unknown leaps of TSC even when running
1893 * again on the same CPU. This may cause apparent elapsed
1894 * time to disappear, and the guest to stand still or run
1895 * very slowly.
1896 */
1897 if (vcpu->tsc_catchup) {
1898 u64 tsc = compute_guest_tsc(v, kernel_ns);
1899 if (tsc > tsc_timestamp) {
1900 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1901 tsc_timestamp = tsc;
1902 }
1903 }
1904
1905 local_irq_restore(flags);
1906
1907 /* With all the info we got, fill in the values */
1908
1909 if (kvm_has_tsc_control)
1910 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1911
1912 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1913 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1914 &vcpu->hv_clock.tsc_shift,
1915 &vcpu->hv_clock.tsc_to_system_mul);
1916 vcpu->hw_tsc_khz = tgt_tsc_khz;
1917 }
1918
1919 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1920 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1921 vcpu->last_guest_tsc = tsc_timestamp;
1922
1923 /* If the host uses TSC clocksource, then it is stable */
1924 pvclock_flags = 0;
1925 if (use_master_clock)
1926 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1927
1928 vcpu->hv_clock.flags = pvclock_flags;
1929
1930 if (vcpu->pv_time_enabled)
1931 kvm_setup_pvclock_page(v);
1932 if (v == kvm_get_vcpu(v->kvm, 0))
1933 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1934 return 0;
1935 }
1936
1937 /*
1938 * kvmclock updates which are isolated to a given vcpu, such as
1939 * vcpu->cpu migration, should not allow system_timestamp from
1940 * the rest of the vcpus to remain static. Otherwise ntp frequency
1941 * correction applies to one vcpu's system_timestamp but not
1942 * the others.
1943 *
1944 * So in those cases, request a kvmclock update for all vcpus.
1945 * We need to rate-limit these requests though, as they can
1946 * considerably slow guests that have a large number of vcpus.
1947 * The time for a remote vcpu to update its kvmclock is bound
1948 * by the delay we use to rate-limit the updates.
1949 */
1950
1951 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1952
1953 static void kvmclock_update_fn(struct work_struct *work)
1954 {
1955 int i;
1956 struct delayed_work *dwork = to_delayed_work(work);
1957 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1958 kvmclock_update_work);
1959 struct kvm *kvm = container_of(ka, struct kvm, arch);
1960 struct kvm_vcpu *vcpu;
1961
1962 kvm_for_each_vcpu(i, vcpu, kvm) {
1963 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1964 kvm_vcpu_kick(vcpu);
1965 }
1966 }
1967
1968 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1969 {
1970 struct kvm *kvm = v->kvm;
1971
1972 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1973 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1974 KVMCLOCK_UPDATE_DELAY);
1975 }
1976
1977 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1978
1979 static void kvmclock_sync_fn(struct work_struct *work)
1980 {
1981 struct delayed_work *dwork = to_delayed_work(work);
1982 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1983 kvmclock_sync_work);
1984 struct kvm *kvm = container_of(ka, struct kvm, arch);
1985
1986 if (!kvmclock_periodic_sync)
1987 return;
1988
1989 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1990 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1991 KVMCLOCK_SYNC_PERIOD);
1992 }
1993
1994 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1995 {
1996 u64 mcg_cap = vcpu->arch.mcg_cap;
1997 unsigned bank_num = mcg_cap & 0xff;
1998
1999 switch (msr) {
2000 case MSR_IA32_MCG_STATUS:
2001 vcpu->arch.mcg_status = data;
2002 break;
2003 case MSR_IA32_MCG_CTL:
2004 if (!(mcg_cap & MCG_CTL_P))
2005 return 1;
2006 if (data != 0 && data != ~(u64)0)
2007 return -1;
2008 vcpu->arch.mcg_ctl = data;
2009 break;
2010 default:
2011 if (msr >= MSR_IA32_MC0_CTL &&
2012 msr < MSR_IA32_MCx_CTL(bank_num)) {
2013 u32 offset = msr - MSR_IA32_MC0_CTL;
2014 /* only 0 or all 1s can be written to IA32_MCi_CTL
2015 * some Linux kernels though clear bit 10 in bank 4 to
2016 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2017 * this to avoid an uncatched #GP in the guest
2018 */
2019 if ((offset & 0x3) == 0 &&
2020 data != 0 && (data | (1 << 10)) != ~(u64)0)
2021 return -1;
2022 vcpu->arch.mce_banks[offset] = data;
2023 break;
2024 }
2025 return 1;
2026 }
2027 return 0;
2028 }
2029
2030 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2031 {
2032 struct kvm *kvm = vcpu->kvm;
2033 int lm = is_long_mode(vcpu);
2034 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2035 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2036 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2037 : kvm->arch.xen_hvm_config.blob_size_32;
2038 u32 page_num = data & ~PAGE_MASK;
2039 u64 page_addr = data & PAGE_MASK;
2040 u8 *page;
2041 int r;
2042
2043 r = -E2BIG;
2044 if (page_num >= blob_size)
2045 goto out;
2046 r = -ENOMEM;
2047 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2048 if (IS_ERR(page)) {
2049 r = PTR_ERR(page);
2050 goto out;
2051 }
2052 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2053 goto out_free;
2054 r = 0;
2055 out_free:
2056 kfree(page);
2057 out:
2058 return r;
2059 }
2060
2061 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2062 {
2063 gpa_t gpa = data & ~0x3f;
2064
2065 /* Bits 2:5 are reserved, Should be zero */
2066 if (data & 0x3c)
2067 return 1;
2068
2069 vcpu->arch.apf.msr_val = data;
2070
2071 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2072 kvm_clear_async_pf_completion_queue(vcpu);
2073 kvm_async_pf_hash_reset(vcpu);
2074 return 0;
2075 }
2076
2077 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2078 sizeof(u32)))
2079 return 1;
2080
2081 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2082 kvm_async_pf_wakeup_all(vcpu);
2083 return 0;
2084 }
2085
2086 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2087 {
2088 vcpu->arch.pv_time_enabled = false;
2089 }
2090
2091 static void record_steal_time(struct kvm_vcpu *vcpu)
2092 {
2093 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2094 return;
2095
2096 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2097 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2098 return;
2099
2100 vcpu->arch.st.steal.preempted = 0;
2101
2102 if (vcpu->arch.st.steal.version & 1)
2103 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2104
2105 vcpu->arch.st.steal.version += 1;
2106
2107 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2108 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2109
2110 smp_wmb();
2111
2112 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2113 vcpu->arch.st.last_steal;
2114 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2115
2116 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2117 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2118
2119 smp_wmb();
2120
2121 vcpu->arch.st.steal.version += 1;
2122
2123 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2124 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2125 }
2126
2127 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2128 {
2129 bool pr = false;
2130 u32 msr = msr_info->index;
2131 u64 data = msr_info->data;
2132
2133 switch (msr) {
2134 case MSR_AMD64_NB_CFG:
2135 case MSR_IA32_UCODE_REV:
2136 case MSR_IA32_UCODE_WRITE:
2137 case MSR_VM_HSAVE_PA:
2138 case MSR_AMD64_PATCH_LOADER:
2139 case MSR_AMD64_BU_CFG2:
2140 case MSR_AMD64_DC_CFG:
2141 break;
2142
2143 case MSR_EFER:
2144 return set_efer(vcpu, data);
2145 case MSR_K7_HWCR:
2146 data &= ~(u64)0x40; /* ignore flush filter disable */
2147 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2148 data &= ~(u64)0x8; /* ignore TLB cache disable */
2149 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2150 if (data != 0) {
2151 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2152 data);
2153 return 1;
2154 }
2155 break;
2156 case MSR_FAM10H_MMIO_CONF_BASE:
2157 if (data != 0) {
2158 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2159 "0x%llx\n", data);
2160 return 1;
2161 }
2162 break;
2163 case MSR_IA32_DEBUGCTLMSR:
2164 if (!data) {
2165 /* We support the non-activated case already */
2166 break;
2167 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2168 /* Values other than LBR and BTF are vendor-specific,
2169 thus reserved and should throw a #GP */
2170 return 1;
2171 }
2172 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2173 __func__, data);
2174 break;
2175 case 0x200 ... 0x2ff:
2176 return kvm_mtrr_set_msr(vcpu, msr, data);
2177 case MSR_IA32_APICBASE:
2178 return kvm_set_apic_base(vcpu, msr_info);
2179 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2180 return kvm_x2apic_msr_write(vcpu, msr, data);
2181 case MSR_IA32_TSCDEADLINE:
2182 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2183 break;
2184 case MSR_IA32_TSC_ADJUST:
2185 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2186 if (!msr_info->host_initiated) {
2187 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2188 adjust_tsc_offset_guest(vcpu, adj);
2189 }
2190 vcpu->arch.ia32_tsc_adjust_msr = data;
2191 }
2192 break;
2193 case MSR_IA32_MISC_ENABLE:
2194 vcpu->arch.ia32_misc_enable_msr = data;
2195 break;
2196 case MSR_IA32_SMBASE:
2197 if (!msr_info->host_initiated)
2198 return 1;
2199 vcpu->arch.smbase = data;
2200 break;
2201 case MSR_KVM_WALL_CLOCK_NEW:
2202 case MSR_KVM_WALL_CLOCK:
2203 vcpu->kvm->arch.wall_clock = data;
2204 kvm_write_wall_clock(vcpu->kvm, data);
2205 break;
2206 case MSR_KVM_SYSTEM_TIME_NEW:
2207 case MSR_KVM_SYSTEM_TIME: {
2208 struct kvm_arch *ka = &vcpu->kvm->arch;
2209
2210 kvmclock_reset(vcpu);
2211
2212 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2213 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2214
2215 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2216 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2217 &vcpu->requests);
2218
2219 ka->boot_vcpu_runs_old_kvmclock = tmp;
2220 }
2221
2222 vcpu->arch.time = data;
2223 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2224
2225 /* we verify if the enable bit is set... */
2226 if (!(data & 1))
2227 break;
2228
2229 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2230 &vcpu->arch.pv_time, data & ~1ULL,
2231 sizeof(struct pvclock_vcpu_time_info)))
2232 vcpu->arch.pv_time_enabled = false;
2233 else
2234 vcpu->arch.pv_time_enabled = true;
2235
2236 break;
2237 }
2238 case MSR_KVM_ASYNC_PF_EN:
2239 if (kvm_pv_enable_async_pf(vcpu, data))
2240 return 1;
2241 break;
2242 case MSR_KVM_STEAL_TIME:
2243
2244 if (unlikely(!sched_info_on()))
2245 return 1;
2246
2247 if (data & KVM_STEAL_RESERVED_MASK)
2248 return 1;
2249
2250 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2251 data & KVM_STEAL_VALID_BITS,
2252 sizeof(struct kvm_steal_time)))
2253 return 1;
2254
2255 vcpu->arch.st.msr_val = data;
2256
2257 if (!(data & KVM_MSR_ENABLED))
2258 break;
2259
2260 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2261
2262 break;
2263 case MSR_KVM_PV_EOI_EN:
2264 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2265 return 1;
2266 break;
2267
2268 case MSR_IA32_MCG_CTL:
2269 case MSR_IA32_MCG_STATUS:
2270 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2271 return set_msr_mce(vcpu, msr, data);
2272
2273 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2274 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2275 pr = true; /* fall through */
2276 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2277 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2278 if (kvm_pmu_is_valid_msr(vcpu, msr))
2279 return kvm_pmu_set_msr(vcpu, msr_info);
2280
2281 if (pr || data != 0)
2282 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2283 "0x%x data 0x%llx\n", msr, data);
2284 break;
2285 case MSR_K7_CLK_CTL:
2286 /*
2287 * Ignore all writes to this no longer documented MSR.
2288 * Writes are only relevant for old K7 processors,
2289 * all pre-dating SVM, but a recommended workaround from
2290 * AMD for these chips. It is possible to specify the
2291 * affected processor models on the command line, hence
2292 * the need to ignore the workaround.
2293 */
2294 break;
2295 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2296 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2297 case HV_X64_MSR_CRASH_CTL:
2298 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2299 return kvm_hv_set_msr_common(vcpu, msr, data,
2300 msr_info->host_initiated);
2301 case MSR_IA32_BBL_CR_CTL3:
2302 /* Drop writes to this legacy MSR -- see rdmsr
2303 * counterpart for further detail.
2304 */
2305 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2306 break;
2307 case MSR_AMD64_OSVW_ID_LENGTH:
2308 if (!guest_cpuid_has_osvw(vcpu))
2309 return 1;
2310 vcpu->arch.osvw.length = data;
2311 break;
2312 case MSR_AMD64_OSVW_STATUS:
2313 if (!guest_cpuid_has_osvw(vcpu))
2314 return 1;
2315 vcpu->arch.osvw.status = data;
2316 break;
2317 default:
2318 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2319 return xen_hvm_config(vcpu, data);
2320 if (kvm_pmu_is_valid_msr(vcpu, msr))
2321 return kvm_pmu_set_msr(vcpu, msr_info);
2322 if (!ignore_msrs) {
2323 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2324 msr, data);
2325 return 1;
2326 } else {
2327 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2328 msr, data);
2329 break;
2330 }
2331 }
2332 return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2335
2336
2337 /*
2338 * Reads an msr value (of 'msr_index') into 'pdata'.
2339 * Returns 0 on success, non-0 otherwise.
2340 * Assumes vcpu_load() was already called.
2341 */
2342 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2343 {
2344 return kvm_x86_ops->get_msr(vcpu, msr);
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_get_msr);
2347
2348 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2349 {
2350 u64 data;
2351 u64 mcg_cap = vcpu->arch.mcg_cap;
2352 unsigned bank_num = mcg_cap & 0xff;
2353
2354 switch (msr) {
2355 case MSR_IA32_P5_MC_ADDR:
2356 case MSR_IA32_P5_MC_TYPE:
2357 data = 0;
2358 break;
2359 case MSR_IA32_MCG_CAP:
2360 data = vcpu->arch.mcg_cap;
2361 break;
2362 case MSR_IA32_MCG_CTL:
2363 if (!(mcg_cap & MCG_CTL_P))
2364 return 1;
2365 data = vcpu->arch.mcg_ctl;
2366 break;
2367 case MSR_IA32_MCG_STATUS:
2368 data = vcpu->arch.mcg_status;
2369 break;
2370 default:
2371 if (msr >= MSR_IA32_MC0_CTL &&
2372 msr < MSR_IA32_MCx_CTL(bank_num)) {
2373 u32 offset = msr - MSR_IA32_MC0_CTL;
2374 data = vcpu->arch.mce_banks[offset];
2375 break;
2376 }
2377 return 1;
2378 }
2379 *pdata = data;
2380 return 0;
2381 }
2382
2383 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2384 {
2385 switch (msr_info->index) {
2386 case MSR_IA32_PLATFORM_ID:
2387 case MSR_IA32_EBL_CR_POWERON:
2388 case MSR_IA32_DEBUGCTLMSR:
2389 case MSR_IA32_LASTBRANCHFROMIP:
2390 case MSR_IA32_LASTBRANCHTOIP:
2391 case MSR_IA32_LASTINTFROMIP:
2392 case MSR_IA32_LASTINTTOIP:
2393 case MSR_K8_SYSCFG:
2394 case MSR_K8_TSEG_ADDR:
2395 case MSR_K8_TSEG_MASK:
2396 case MSR_K7_HWCR:
2397 case MSR_VM_HSAVE_PA:
2398 case MSR_K8_INT_PENDING_MSG:
2399 case MSR_AMD64_NB_CFG:
2400 case MSR_FAM10H_MMIO_CONF_BASE:
2401 case MSR_AMD64_BU_CFG2:
2402 case MSR_IA32_PERF_CTL:
2403 case MSR_AMD64_DC_CFG:
2404 msr_info->data = 0;
2405 break;
2406 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2407 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2408 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2409 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2410 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2411 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2412 msr_info->data = 0;
2413 break;
2414 case MSR_IA32_UCODE_REV:
2415 msr_info->data = 0x100000000ULL;
2416 break;
2417 case MSR_MTRRcap:
2418 case 0x200 ... 0x2ff:
2419 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2420 case 0xcd: /* fsb frequency */
2421 msr_info->data = 3;
2422 break;
2423 /*
2424 * MSR_EBC_FREQUENCY_ID
2425 * Conservative value valid for even the basic CPU models.
2426 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2427 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2428 * and 266MHz for model 3, or 4. Set Core Clock
2429 * Frequency to System Bus Frequency Ratio to 1 (bits
2430 * 31:24) even though these are only valid for CPU
2431 * models > 2, however guests may end up dividing or
2432 * multiplying by zero otherwise.
2433 */
2434 case MSR_EBC_FREQUENCY_ID:
2435 msr_info->data = 1 << 24;
2436 break;
2437 case MSR_IA32_APICBASE:
2438 msr_info->data = kvm_get_apic_base(vcpu);
2439 break;
2440 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2441 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2442 break;
2443 case MSR_IA32_TSCDEADLINE:
2444 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2445 break;
2446 case MSR_IA32_TSC_ADJUST:
2447 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2448 break;
2449 case MSR_IA32_MISC_ENABLE:
2450 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2451 break;
2452 case MSR_IA32_SMBASE:
2453 if (!msr_info->host_initiated)
2454 return 1;
2455 msr_info->data = vcpu->arch.smbase;
2456 break;
2457 case MSR_IA32_PERF_STATUS:
2458 /* TSC increment by tick */
2459 msr_info->data = 1000ULL;
2460 /* CPU multiplier */
2461 msr_info->data |= (((uint64_t)4ULL) << 40);
2462 break;
2463 case MSR_EFER:
2464 msr_info->data = vcpu->arch.efer;
2465 break;
2466 case MSR_KVM_WALL_CLOCK:
2467 case MSR_KVM_WALL_CLOCK_NEW:
2468 msr_info->data = vcpu->kvm->arch.wall_clock;
2469 break;
2470 case MSR_KVM_SYSTEM_TIME:
2471 case MSR_KVM_SYSTEM_TIME_NEW:
2472 msr_info->data = vcpu->arch.time;
2473 break;
2474 case MSR_KVM_ASYNC_PF_EN:
2475 msr_info->data = vcpu->arch.apf.msr_val;
2476 break;
2477 case MSR_KVM_STEAL_TIME:
2478 msr_info->data = vcpu->arch.st.msr_val;
2479 break;
2480 case MSR_KVM_PV_EOI_EN:
2481 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2482 break;
2483 case MSR_IA32_P5_MC_ADDR:
2484 case MSR_IA32_P5_MC_TYPE:
2485 case MSR_IA32_MCG_CAP:
2486 case MSR_IA32_MCG_CTL:
2487 case MSR_IA32_MCG_STATUS:
2488 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2489 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2490 case MSR_K7_CLK_CTL:
2491 /*
2492 * Provide expected ramp-up count for K7. All other
2493 * are set to zero, indicating minimum divisors for
2494 * every field.
2495 *
2496 * This prevents guest kernels on AMD host with CPU
2497 * type 6, model 8 and higher from exploding due to
2498 * the rdmsr failing.
2499 */
2500 msr_info->data = 0x20000000;
2501 break;
2502 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2503 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2504 case HV_X64_MSR_CRASH_CTL:
2505 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2506 return kvm_hv_get_msr_common(vcpu,
2507 msr_info->index, &msr_info->data);
2508 break;
2509 case MSR_IA32_BBL_CR_CTL3:
2510 /* This legacy MSR exists but isn't fully documented in current
2511 * silicon. It is however accessed by winxp in very narrow
2512 * scenarios where it sets bit #19, itself documented as
2513 * a "reserved" bit. Best effort attempt to source coherent
2514 * read data here should the balance of the register be
2515 * interpreted by the guest:
2516 *
2517 * L2 cache control register 3: 64GB range, 256KB size,
2518 * enabled, latency 0x1, configured
2519 */
2520 msr_info->data = 0xbe702111;
2521 break;
2522 case MSR_AMD64_OSVW_ID_LENGTH:
2523 if (!guest_cpuid_has_osvw(vcpu))
2524 return 1;
2525 msr_info->data = vcpu->arch.osvw.length;
2526 break;
2527 case MSR_AMD64_OSVW_STATUS:
2528 if (!guest_cpuid_has_osvw(vcpu))
2529 return 1;
2530 msr_info->data = vcpu->arch.osvw.status;
2531 break;
2532 default:
2533 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2534 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2535 if (!ignore_msrs) {
2536 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2537 msr_info->index);
2538 return 1;
2539 } else {
2540 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2541 msr_info->data = 0;
2542 }
2543 break;
2544 }
2545 return 0;
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2548
2549 /*
2550 * Read or write a bunch of msrs. All parameters are kernel addresses.
2551 *
2552 * @return number of msrs set successfully.
2553 */
2554 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2555 struct kvm_msr_entry *entries,
2556 int (*do_msr)(struct kvm_vcpu *vcpu,
2557 unsigned index, u64 *data))
2558 {
2559 int i, idx;
2560
2561 idx = srcu_read_lock(&vcpu->kvm->srcu);
2562 for (i = 0; i < msrs->nmsrs; ++i)
2563 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2564 break;
2565 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2566
2567 return i;
2568 }
2569
2570 /*
2571 * Read or write a bunch of msrs. Parameters are user addresses.
2572 *
2573 * @return number of msrs set successfully.
2574 */
2575 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2576 int (*do_msr)(struct kvm_vcpu *vcpu,
2577 unsigned index, u64 *data),
2578 int writeback)
2579 {
2580 struct kvm_msrs msrs;
2581 struct kvm_msr_entry *entries;
2582 int r, n;
2583 unsigned size;
2584
2585 r = -EFAULT;
2586 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2587 goto out;
2588
2589 r = -E2BIG;
2590 if (msrs.nmsrs >= MAX_IO_MSRS)
2591 goto out;
2592
2593 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2594 entries = memdup_user(user_msrs->entries, size);
2595 if (IS_ERR(entries)) {
2596 r = PTR_ERR(entries);
2597 goto out;
2598 }
2599
2600 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2601 if (r < 0)
2602 goto out_free;
2603
2604 r = -EFAULT;
2605 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2606 goto out_free;
2607
2608 r = n;
2609
2610 out_free:
2611 kfree(entries);
2612 out:
2613 return r;
2614 }
2615
2616 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2617 {
2618 int r;
2619
2620 switch (ext) {
2621 case KVM_CAP_IRQCHIP:
2622 case KVM_CAP_HLT:
2623 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2624 case KVM_CAP_SET_TSS_ADDR:
2625 case KVM_CAP_EXT_CPUID:
2626 case KVM_CAP_EXT_EMUL_CPUID:
2627 case KVM_CAP_CLOCKSOURCE:
2628 case KVM_CAP_PIT:
2629 case KVM_CAP_NOP_IO_DELAY:
2630 case KVM_CAP_MP_STATE:
2631 case KVM_CAP_SYNC_MMU:
2632 case KVM_CAP_USER_NMI:
2633 case KVM_CAP_REINJECT_CONTROL:
2634 case KVM_CAP_IRQ_INJECT_STATUS:
2635 case KVM_CAP_IOEVENTFD:
2636 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2637 case KVM_CAP_PIT2:
2638 case KVM_CAP_PIT_STATE2:
2639 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2640 case KVM_CAP_XEN_HVM:
2641 case KVM_CAP_VCPU_EVENTS:
2642 case KVM_CAP_HYPERV:
2643 case KVM_CAP_HYPERV_VAPIC:
2644 case KVM_CAP_HYPERV_SPIN:
2645 case KVM_CAP_HYPERV_SYNIC:
2646 case KVM_CAP_PCI_SEGMENT:
2647 case KVM_CAP_DEBUGREGS:
2648 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2649 case KVM_CAP_XSAVE:
2650 case KVM_CAP_ASYNC_PF:
2651 case KVM_CAP_GET_TSC_KHZ:
2652 case KVM_CAP_KVMCLOCK_CTRL:
2653 case KVM_CAP_READONLY_MEM:
2654 case KVM_CAP_HYPERV_TIME:
2655 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2656 case KVM_CAP_TSC_DEADLINE_TIMER:
2657 case KVM_CAP_ENABLE_CAP_VM:
2658 case KVM_CAP_DISABLE_QUIRKS:
2659 case KVM_CAP_SET_BOOT_CPU_ID:
2660 case KVM_CAP_SPLIT_IRQCHIP:
2661 case KVM_CAP_IMMEDIATE_EXIT:
2662 r = 1;
2663 break;
2664 case KVM_CAP_ADJUST_CLOCK:
2665 r = KVM_CLOCK_TSC_STABLE;
2666 break;
2667 case KVM_CAP_X86_SMM:
2668 /* SMBASE is usually relocated above 1M on modern chipsets,
2669 * and SMM handlers might indeed rely on 4G segment limits,
2670 * so do not report SMM to be available if real mode is
2671 * emulated via vm86 mode. Still, do not go to great lengths
2672 * to avoid userspace's usage of the feature, because it is a
2673 * fringe case that is not enabled except via specific settings
2674 * of the module parameters.
2675 */
2676 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2677 break;
2678 case KVM_CAP_VAPIC:
2679 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2680 break;
2681 case KVM_CAP_NR_VCPUS:
2682 r = KVM_SOFT_MAX_VCPUS;
2683 break;
2684 case KVM_CAP_MAX_VCPUS:
2685 r = KVM_MAX_VCPUS;
2686 break;
2687 case KVM_CAP_NR_MEMSLOTS:
2688 r = KVM_USER_MEM_SLOTS;
2689 break;
2690 case KVM_CAP_PV_MMU: /* obsolete */
2691 r = 0;
2692 break;
2693 case KVM_CAP_MCE:
2694 r = KVM_MAX_MCE_BANKS;
2695 break;
2696 case KVM_CAP_XCRS:
2697 r = boot_cpu_has(X86_FEATURE_XSAVE);
2698 break;
2699 case KVM_CAP_TSC_CONTROL:
2700 r = kvm_has_tsc_control;
2701 break;
2702 case KVM_CAP_X2APIC_API:
2703 r = KVM_X2APIC_API_VALID_FLAGS;
2704 break;
2705 default:
2706 r = 0;
2707 break;
2708 }
2709 return r;
2710
2711 }
2712
2713 long kvm_arch_dev_ioctl(struct file *filp,
2714 unsigned int ioctl, unsigned long arg)
2715 {
2716 void __user *argp = (void __user *)arg;
2717 long r;
2718
2719 switch (ioctl) {
2720 case KVM_GET_MSR_INDEX_LIST: {
2721 struct kvm_msr_list __user *user_msr_list = argp;
2722 struct kvm_msr_list msr_list;
2723 unsigned n;
2724
2725 r = -EFAULT;
2726 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2727 goto out;
2728 n = msr_list.nmsrs;
2729 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2730 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2731 goto out;
2732 r = -E2BIG;
2733 if (n < msr_list.nmsrs)
2734 goto out;
2735 r = -EFAULT;
2736 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2737 num_msrs_to_save * sizeof(u32)))
2738 goto out;
2739 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2740 &emulated_msrs,
2741 num_emulated_msrs * sizeof(u32)))
2742 goto out;
2743 r = 0;
2744 break;
2745 }
2746 case KVM_GET_SUPPORTED_CPUID:
2747 case KVM_GET_EMULATED_CPUID: {
2748 struct kvm_cpuid2 __user *cpuid_arg = argp;
2749 struct kvm_cpuid2 cpuid;
2750
2751 r = -EFAULT;
2752 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2753 goto out;
2754
2755 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2756 ioctl);
2757 if (r)
2758 goto out;
2759
2760 r = -EFAULT;
2761 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762 goto out;
2763 r = 0;
2764 break;
2765 }
2766 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2767 r = -EFAULT;
2768 if (copy_to_user(argp, &kvm_mce_cap_supported,
2769 sizeof(kvm_mce_cap_supported)))
2770 goto out;
2771 r = 0;
2772 break;
2773 }
2774 default:
2775 r = -EINVAL;
2776 }
2777 out:
2778 return r;
2779 }
2780
2781 static void wbinvd_ipi(void *garbage)
2782 {
2783 wbinvd();
2784 }
2785
2786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2787 {
2788 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2789 }
2790
2791 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2792 {
2793 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2794 }
2795
2796 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2797 {
2798 /* Address WBINVD may be executed by guest */
2799 if (need_emulate_wbinvd(vcpu)) {
2800 if (kvm_x86_ops->has_wbinvd_exit())
2801 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2802 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2803 smp_call_function_single(vcpu->cpu,
2804 wbinvd_ipi, NULL, 1);
2805 }
2806
2807 kvm_x86_ops->vcpu_load(vcpu, cpu);
2808
2809 /* Apply any externally detected TSC adjustments (due to suspend) */
2810 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2811 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2812 vcpu->arch.tsc_offset_adjustment = 0;
2813 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2814 }
2815
2816 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2817 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2818 rdtsc() - vcpu->arch.last_host_tsc;
2819 if (tsc_delta < 0)
2820 mark_tsc_unstable("KVM discovered backwards TSC");
2821
2822 if (check_tsc_unstable()) {
2823 u64 offset = kvm_compute_tsc_offset(vcpu,
2824 vcpu->arch.last_guest_tsc);
2825 kvm_vcpu_write_tsc_offset(vcpu, offset);
2826 vcpu->arch.tsc_catchup = 1;
2827 }
2828 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2829 kvm_x86_ops->set_hv_timer(vcpu,
2830 kvm_get_lapic_target_expiration_tsc(vcpu)))
2831 kvm_lapic_switch_to_sw_timer(vcpu);
2832 /*
2833 * On a host with synchronized TSC, there is no need to update
2834 * kvmclock on vcpu->cpu migration
2835 */
2836 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2837 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2838 if (vcpu->cpu != cpu)
2839 kvm_migrate_timers(vcpu);
2840 vcpu->cpu = cpu;
2841 }
2842
2843 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2844 }
2845
2846 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2847 {
2848 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2849 return;
2850
2851 vcpu->arch.st.steal.preempted = 1;
2852
2853 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2854 &vcpu->arch.st.steal.preempted,
2855 offsetof(struct kvm_steal_time, preempted),
2856 sizeof(vcpu->arch.st.steal.preempted));
2857 }
2858
2859 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2860 {
2861 int idx;
2862 /*
2863 * Disable page faults because we're in atomic context here.
2864 * kvm_write_guest_offset_cached() would call might_fault()
2865 * that relies on pagefault_disable() to tell if there's a
2866 * bug. NOTE: the write to guest memory may not go through if
2867 * during postcopy live migration or if there's heavy guest
2868 * paging.
2869 */
2870 pagefault_disable();
2871 /*
2872 * kvm_memslots() will be called by
2873 * kvm_write_guest_offset_cached() so take the srcu lock.
2874 */
2875 idx = srcu_read_lock(&vcpu->kvm->srcu);
2876 kvm_steal_time_set_preempted(vcpu);
2877 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2878 pagefault_enable();
2879 kvm_x86_ops->vcpu_put(vcpu);
2880 kvm_put_guest_fpu(vcpu);
2881 vcpu->arch.last_host_tsc = rdtsc();
2882 }
2883
2884 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2885 struct kvm_lapic_state *s)
2886 {
2887 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2888 kvm_x86_ops->sync_pir_to_irr(vcpu);
2889
2890 return kvm_apic_get_state(vcpu, s);
2891 }
2892
2893 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2894 struct kvm_lapic_state *s)
2895 {
2896 int r;
2897
2898 r = kvm_apic_set_state(vcpu, s);
2899 if (r)
2900 return r;
2901 update_cr8_intercept(vcpu);
2902
2903 return 0;
2904 }
2905
2906 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2907 {
2908 return (!lapic_in_kernel(vcpu) ||
2909 kvm_apic_accept_pic_intr(vcpu));
2910 }
2911
2912 /*
2913 * if userspace requested an interrupt window, check that the
2914 * interrupt window is open.
2915 *
2916 * No need to exit to userspace if we already have an interrupt queued.
2917 */
2918 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2919 {
2920 return kvm_arch_interrupt_allowed(vcpu) &&
2921 !kvm_cpu_has_interrupt(vcpu) &&
2922 !kvm_event_needs_reinjection(vcpu) &&
2923 kvm_cpu_accept_dm_intr(vcpu);
2924 }
2925
2926 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2927 struct kvm_interrupt *irq)
2928 {
2929 if (irq->irq >= KVM_NR_INTERRUPTS)
2930 return -EINVAL;
2931
2932 if (!irqchip_in_kernel(vcpu->kvm)) {
2933 kvm_queue_interrupt(vcpu, irq->irq, false);
2934 kvm_make_request(KVM_REQ_EVENT, vcpu);
2935 return 0;
2936 }
2937
2938 /*
2939 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2940 * fail for in-kernel 8259.
2941 */
2942 if (pic_in_kernel(vcpu->kvm))
2943 return -ENXIO;
2944
2945 if (vcpu->arch.pending_external_vector != -1)
2946 return -EEXIST;
2947
2948 vcpu->arch.pending_external_vector = irq->irq;
2949 kvm_make_request(KVM_REQ_EVENT, vcpu);
2950 return 0;
2951 }
2952
2953 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2954 {
2955 kvm_inject_nmi(vcpu);
2956
2957 return 0;
2958 }
2959
2960 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2961 {
2962 kvm_make_request(KVM_REQ_SMI, vcpu);
2963
2964 return 0;
2965 }
2966
2967 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2968 struct kvm_tpr_access_ctl *tac)
2969 {
2970 if (tac->flags)
2971 return -EINVAL;
2972 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2973 return 0;
2974 }
2975
2976 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2977 u64 mcg_cap)
2978 {
2979 int r;
2980 unsigned bank_num = mcg_cap & 0xff, bank;
2981
2982 r = -EINVAL;
2983 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2984 goto out;
2985 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2986 goto out;
2987 r = 0;
2988 vcpu->arch.mcg_cap = mcg_cap;
2989 /* Init IA32_MCG_CTL to all 1s */
2990 if (mcg_cap & MCG_CTL_P)
2991 vcpu->arch.mcg_ctl = ~(u64)0;
2992 /* Init IA32_MCi_CTL to all 1s */
2993 for (bank = 0; bank < bank_num; bank++)
2994 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2995
2996 if (kvm_x86_ops->setup_mce)
2997 kvm_x86_ops->setup_mce(vcpu);
2998 out:
2999 return r;
3000 }
3001
3002 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3003 struct kvm_x86_mce *mce)
3004 {
3005 u64 mcg_cap = vcpu->arch.mcg_cap;
3006 unsigned bank_num = mcg_cap & 0xff;
3007 u64 *banks = vcpu->arch.mce_banks;
3008
3009 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3010 return -EINVAL;
3011 /*
3012 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3013 * reporting is disabled
3014 */
3015 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3016 vcpu->arch.mcg_ctl != ~(u64)0)
3017 return 0;
3018 banks += 4 * mce->bank;
3019 /*
3020 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3021 * reporting is disabled for the bank
3022 */
3023 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3024 return 0;
3025 if (mce->status & MCI_STATUS_UC) {
3026 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3027 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3028 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3029 return 0;
3030 }
3031 if (banks[1] & MCI_STATUS_VAL)
3032 mce->status |= MCI_STATUS_OVER;
3033 banks[2] = mce->addr;
3034 banks[3] = mce->misc;
3035 vcpu->arch.mcg_status = mce->mcg_status;
3036 banks[1] = mce->status;
3037 kvm_queue_exception(vcpu, MC_VECTOR);
3038 } else if (!(banks[1] & MCI_STATUS_VAL)
3039 || !(banks[1] & MCI_STATUS_UC)) {
3040 if (banks[1] & MCI_STATUS_VAL)
3041 mce->status |= MCI_STATUS_OVER;
3042 banks[2] = mce->addr;
3043 banks[3] = mce->misc;
3044 banks[1] = mce->status;
3045 } else
3046 banks[1] |= MCI_STATUS_OVER;
3047 return 0;
3048 }
3049
3050 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3051 struct kvm_vcpu_events *events)
3052 {
3053 process_nmi(vcpu);
3054 events->exception.injected =
3055 vcpu->arch.exception.pending &&
3056 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3057 events->exception.nr = vcpu->arch.exception.nr;
3058 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3059 events->exception.pad = 0;
3060 events->exception.error_code = vcpu->arch.exception.error_code;
3061
3062 events->interrupt.injected =
3063 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3064 events->interrupt.nr = vcpu->arch.interrupt.nr;
3065 events->interrupt.soft = 0;
3066 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3067
3068 events->nmi.injected = vcpu->arch.nmi_injected;
3069 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3070 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3071 events->nmi.pad = 0;
3072
3073 events->sipi_vector = 0; /* never valid when reporting to user space */
3074
3075 events->smi.smm = is_smm(vcpu);
3076 events->smi.pending = vcpu->arch.smi_pending;
3077 events->smi.smm_inside_nmi =
3078 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3079 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3080
3081 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3082 | KVM_VCPUEVENT_VALID_SHADOW
3083 | KVM_VCPUEVENT_VALID_SMM);
3084 memset(&events->reserved, 0, sizeof(events->reserved));
3085 }
3086
3087 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3088
3089 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3090 struct kvm_vcpu_events *events)
3091 {
3092 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3093 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3094 | KVM_VCPUEVENT_VALID_SHADOW
3095 | KVM_VCPUEVENT_VALID_SMM))
3096 return -EINVAL;
3097
3098 if (events->exception.injected &&
3099 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3100 is_guest_mode(vcpu)))
3101 return -EINVAL;
3102
3103 /* INITs are latched while in SMM */
3104 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3105 (events->smi.smm || events->smi.pending) &&
3106 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3107 return -EINVAL;
3108
3109 process_nmi(vcpu);
3110 vcpu->arch.exception.pending = events->exception.injected;
3111 vcpu->arch.exception.nr = events->exception.nr;
3112 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3113 vcpu->arch.exception.error_code = events->exception.error_code;
3114
3115 vcpu->arch.interrupt.pending = events->interrupt.injected;
3116 vcpu->arch.interrupt.nr = events->interrupt.nr;
3117 vcpu->arch.interrupt.soft = events->interrupt.soft;
3118 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3119 kvm_x86_ops->set_interrupt_shadow(vcpu,
3120 events->interrupt.shadow);
3121
3122 vcpu->arch.nmi_injected = events->nmi.injected;
3123 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3124 vcpu->arch.nmi_pending = events->nmi.pending;
3125 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3126
3127 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3128 lapic_in_kernel(vcpu))
3129 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3130
3131 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3132 u32 hflags = vcpu->arch.hflags;
3133 if (events->smi.smm)
3134 hflags |= HF_SMM_MASK;
3135 else
3136 hflags &= ~HF_SMM_MASK;
3137 kvm_set_hflags(vcpu, hflags);
3138
3139 vcpu->arch.smi_pending = events->smi.pending;
3140 if (events->smi.smm_inside_nmi)
3141 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3142 else
3143 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3144 if (lapic_in_kernel(vcpu)) {
3145 if (events->smi.latched_init)
3146 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3147 else
3148 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3149 }
3150 }
3151
3152 kvm_make_request(KVM_REQ_EVENT, vcpu);
3153
3154 return 0;
3155 }
3156
3157 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3158 struct kvm_debugregs *dbgregs)
3159 {
3160 unsigned long val;
3161
3162 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3163 kvm_get_dr(vcpu, 6, &val);
3164 dbgregs->dr6 = val;
3165 dbgregs->dr7 = vcpu->arch.dr7;
3166 dbgregs->flags = 0;
3167 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3168 }
3169
3170 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3171 struct kvm_debugregs *dbgregs)
3172 {
3173 if (dbgregs->flags)
3174 return -EINVAL;
3175
3176 if (dbgregs->dr6 & ~0xffffffffull)
3177 return -EINVAL;
3178 if (dbgregs->dr7 & ~0xffffffffull)
3179 return -EINVAL;
3180
3181 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3182 kvm_update_dr0123(vcpu);
3183 vcpu->arch.dr6 = dbgregs->dr6;
3184 kvm_update_dr6(vcpu);
3185 vcpu->arch.dr7 = dbgregs->dr7;
3186 kvm_update_dr7(vcpu);
3187
3188 return 0;
3189 }
3190
3191 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3192
3193 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3194 {
3195 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3196 u64 xstate_bv = xsave->header.xfeatures;
3197 u64 valid;
3198
3199 /*
3200 * Copy legacy XSAVE area, to avoid complications with CPUID
3201 * leaves 0 and 1 in the loop below.
3202 */
3203 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3204
3205 /* Set XSTATE_BV */
3206 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3207 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3208
3209 /*
3210 * Copy each region from the possibly compacted offset to the
3211 * non-compacted offset.
3212 */
3213 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3214 while (valid) {
3215 u64 feature = valid & -valid;
3216 int index = fls64(feature) - 1;
3217 void *src = get_xsave_addr(xsave, feature);
3218
3219 if (src) {
3220 u32 size, offset, ecx, edx;
3221 cpuid_count(XSTATE_CPUID, index,
3222 &size, &offset, &ecx, &edx);
3223 memcpy(dest + offset, src, size);
3224 }
3225
3226 valid -= feature;
3227 }
3228 }
3229
3230 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3231 {
3232 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3233 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3234 u64 valid;
3235
3236 /*
3237 * Copy legacy XSAVE area, to avoid complications with CPUID
3238 * leaves 0 and 1 in the loop below.
3239 */
3240 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3241
3242 /* Set XSTATE_BV and possibly XCOMP_BV. */
3243 xsave->header.xfeatures = xstate_bv;
3244 if (boot_cpu_has(X86_FEATURE_XSAVES))
3245 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3246
3247 /*
3248 * Copy each region from the non-compacted offset to the
3249 * possibly compacted offset.
3250 */
3251 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3252 while (valid) {
3253 u64 feature = valid & -valid;
3254 int index = fls64(feature) - 1;
3255 void *dest = get_xsave_addr(xsave, feature);
3256
3257 if (dest) {
3258 u32 size, offset, ecx, edx;
3259 cpuid_count(XSTATE_CPUID, index,
3260 &size, &offset, &ecx, &edx);
3261 memcpy(dest, src + offset, size);
3262 }
3263
3264 valid -= feature;
3265 }
3266 }
3267
3268 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3269 struct kvm_xsave *guest_xsave)
3270 {
3271 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3272 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3273 fill_xsave((u8 *) guest_xsave->region, vcpu);
3274 } else {
3275 memcpy(guest_xsave->region,
3276 &vcpu->arch.guest_fpu.state.fxsave,
3277 sizeof(struct fxregs_state));
3278 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3279 XFEATURE_MASK_FPSSE;
3280 }
3281 }
3282
3283 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3284 struct kvm_xsave *guest_xsave)
3285 {
3286 u64 xstate_bv =
3287 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3288
3289 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3290 /*
3291 * Here we allow setting states that are not present in
3292 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3293 * with old userspace.
3294 */
3295 if (xstate_bv & ~kvm_supported_xcr0())
3296 return -EINVAL;
3297 load_xsave(vcpu, (u8 *)guest_xsave->region);
3298 } else {
3299 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3300 return -EINVAL;
3301 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3302 guest_xsave->region, sizeof(struct fxregs_state));
3303 }
3304 return 0;
3305 }
3306
3307 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3308 struct kvm_xcrs *guest_xcrs)
3309 {
3310 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3311 guest_xcrs->nr_xcrs = 0;
3312 return;
3313 }
3314
3315 guest_xcrs->nr_xcrs = 1;
3316 guest_xcrs->flags = 0;
3317 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3318 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3319 }
3320
3321 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3322 struct kvm_xcrs *guest_xcrs)
3323 {
3324 int i, r = 0;
3325
3326 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3327 return -EINVAL;
3328
3329 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3330 return -EINVAL;
3331
3332 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3333 /* Only support XCR0 currently */
3334 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3335 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3336 guest_xcrs->xcrs[i].value);
3337 break;
3338 }
3339 if (r)
3340 r = -EINVAL;
3341 return r;
3342 }
3343
3344 /*
3345 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3346 * stopped by the hypervisor. This function will be called from the host only.
3347 * EINVAL is returned when the host attempts to set the flag for a guest that
3348 * does not support pv clocks.
3349 */
3350 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3351 {
3352 if (!vcpu->arch.pv_time_enabled)
3353 return -EINVAL;
3354 vcpu->arch.pvclock_set_guest_stopped_request = true;
3355 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3356 return 0;
3357 }
3358
3359 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3360 struct kvm_enable_cap *cap)
3361 {
3362 if (cap->flags)
3363 return -EINVAL;
3364
3365 switch (cap->cap) {
3366 case KVM_CAP_HYPERV_SYNIC:
3367 if (!irqchip_in_kernel(vcpu->kvm))
3368 return -EINVAL;
3369 return kvm_hv_activate_synic(vcpu);
3370 default:
3371 return -EINVAL;
3372 }
3373 }
3374
3375 long kvm_arch_vcpu_ioctl(struct file *filp,
3376 unsigned int ioctl, unsigned long arg)
3377 {
3378 struct kvm_vcpu *vcpu = filp->private_data;
3379 void __user *argp = (void __user *)arg;
3380 int r;
3381 union {
3382 struct kvm_lapic_state *lapic;
3383 struct kvm_xsave *xsave;
3384 struct kvm_xcrs *xcrs;
3385 void *buffer;
3386 } u;
3387
3388 u.buffer = NULL;
3389 switch (ioctl) {
3390 case KVM_GET_LAPIC: {
3391 r = -EINVAL;
3392 if (!lapic_in_kernel(vcpu))
3393 goto out;
3394 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3395
3396 r = -ENOMEM;
3397 if (!u.lapic)
3398 goto out;
3399 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3400 if (r)
3401 goto out;
3402 r = -EFAULT;
3403 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3404 goto out;
3405 r = 0;
3406 break;
3407 }
3408 case KVM_SET_LAPIC: {
3409 r = -EINVAL;
3410 if (!lapic_in_kernel(vcpu))
3411 goto out;
3412 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3413 if (IS_ERR(u.lapic))
3414 return PTR_ERR(u.lapic);
3415
3416 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3417 break;
3418 }
3419 case KVM_INTERRUPT: {
3420 struct kvm_interrupt irq;
3421
3422 r = -EFAULT;
3423 if (copy_from_user(&irq, argp, sizeof irq))
3424 goto out;
3425 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3426 break;
3427 }
3428 case KVM_NMI: {
3429 r = kvm_vcpu_ioctl_nmi(vcpu);
3430 break;
3431 }
3432 case KVM_SMI: {
3433 r = kvm_vcpu_ioctl_smi(vcpu);
3434 break;
3435 }
3436 case KVM_SET_CPUID: {
3437 struct kvm_cpuid __user *cpuid_arg = argp;
3438 struct kvm_cpuid cpuid;
3439
3440 r = -EFAULT;
3441 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3442 goto out;
3443 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3444 break;
3445 }
3446 case KVM_SET_CPUID2: {
3447 struct kvm_cpuid2 __user *cpuid_arg = argp;
3448 struct kvm_cpuid2 cpuid;
3449
3450 r = -EFAULT;
3451 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3452 goto out;
3453 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3454 cpuid_arg->entries);
3455 break;
3456 }
3457 case KVM_GET_CPUID2: {
3458 struct kvm_cpuid2 __user *cpuid_arg = argp;
3459 struct kvm_cpuid2 cpuid;
3460
3461 r = -EFAULT;
3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463 goto out;
3464 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3465 cpuid_arg->entries);
3466 if (r)
3467 goto out;
3468 r = -EFAULT;
3469 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3470 goto out;
3471 r = 0;
3472 break;
3473 }
3474 case KVM_GET_MSRS:
3475 r = msr_io(vcpu, argp, do_get_msr, 1);
3476 break;
3477 case KVM_SET_MSRS:
3478 r = msr_io(vcpu, argp, do_set_msr, 0);
3479 break;
3480 case KVM_TPR_ACCESS_REPORTING: {
3481 struct kvm_tpr_access_ctl tac;
3482
3483 r = -EFAULT;
3484 if (copy_from_user(&tac, argp, sizeof tac))
3485 goto out;
3486 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3487 if (r)
3488 goto out;
3489 r = -EFAULT;
3490 if (copy_to_user(argp, &tac, sizeof tac))
3491 goto out;
3492 r = 0;
3493 break;
3494 };
3495 case KVM_SET_VAPIC_ADDR: {
3496 struct kvm_vapic_addr va;
3497 int idx;
3498
3499 r = -EINVAL;
3500 if (!lapic_in_kernel(vcpu))
3501 goto out;
3502 r = -EFAULT;
3503 if (copy_from_user(&va, argp, sizeof va))
3504 goto out;
3505 idx = srcu_read_lock(&vcpu->kvm->srcu);
3506 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3507 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3508 break;
3509 }
3510 case KVM_X86_SETUP_MCE: {
3511 u64 mcg_cap;
3512
3513 r = -EFAULT;
3514 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3515 goto out;
3516 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3517 break;
3518 }
3519 case KVM_X86_SET_MCE: {
3520 struct kvm_x86_mce mce;
3521
3522 r = -EFAULT;
3523 if (copy_from_user(&mce, argp, sizeof mce))
3524 goto out;
3525 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3526 break;
3527 }
3528 case KVM_GET_VCPU_EVENTS: {
3529 struct kvm_vcpu_events events;
3530
3531 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3532
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3535 break;
3536 r = 0;
3537 break;
3538 }
3539 case KVM_SET_VCPU_EVENTS: {
3540 struct kvm_vcpu_events events;
3541
3542 r = -EFAULT;
3543 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3544 break;
3545
3546 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3547 break;
3548 }
3549 case KVM_GET_DEBUGREGS: {
3550 struct kvm_debugregs dbgregs;
3551
3552 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3553
3554 r = -EFAULT;
3555 if (copy_to_user(argp, &dbgregs,
3556 sizeof(struct kvm_debugregs)))
3557 break;
3558 r = 0;
3559 break;
3560 }
3561 case KVM_SET_DEBUGREGS: {
3562 struct kvm_debugregs dbgregs;
3563
3564 r = -EFAULT;
3565 if (copy_from_user(&dbgregs, argp,
3566 sizeof(struct kvm_debugregs)))
3567 break;
3568
3569 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3570 break;
3571 }
3572 case KVM_GET_XSAVE: {
3573 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3574 r = -ENOMEM;
3575 if (!u.xsave)
3576 break;
3577
3578 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3579
3580 r = -EFAULT;
3581 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3582 break;
3583 r = 0;
3584 break;
3585 }
3586 case KVM_SET_XSAVE: {
3587 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3588 if (IS_ERR(u.xsave))
3589 return PTR_ERR(u.xsave);
3590
3591 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3592 break;
3593 }
3594 case KVM_GET_XCRS: {
3595 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3596 r = -ENOMEM;
3597 if (!u.xcrs)
3598 break;
3599
3600 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3601
3602 r = -EFAULT;
3603 if (copy_to_user(argp, u.xcrs,
3604 sizeof(struct kvm_xcrs)))
3605 break;
3606 r = 0;
3607 break;
3608 }
3609 case KVM_SET_XCRS: {
3610 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3611 if (IS_ERR(u.xcrs))
3612 return PTR_ERR(u.xcrs);
3613
3614 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3615 break;
3616 }
3617 case KVM_SET_TSC_KHZ: {
3618 u32 user_tsc_khz;
3619
3620 r = -EINVAL;
3621 user_tsc_khz = (u32)arg;
3622
3623 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3624 goto out;
3625
3626 if (user_tsc_khz == 0)
3627 user_tsc_khz = tsc_khz;
3628
3629 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3630 r = 0;
3631
3632 goto out;
3633 }
3634 case KVM_GET_TSC_KHZ: {
3635 r = vcpu->arch.virtual_tsc_khz;
3636 goto out;
3637 }
3638 case KVM_KVMCLOCK_CTRL: {
3639 r = kvm_set_guest_paused(vcpu);
3640 goto out;
3641 }
3642 case KVM_ENABLE_CAP: {
3643 struct kvm_enable_cap cap;
3644
3645 r = -EFAULT;
3646 if (copy_from_user(&cap, argp, sizeof(cap)))
3647 goto out;
3648 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3649 break;
3650 }
3651 default:
3652 r = -EINVAL;
3653 }
3654 out:
3655 kfree(u.buffer);
3656 return r;
3657 }
3658
3659 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3660 {
3661 return VM_FAULT_SIGBUS;
3662 }
3663
3664 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3665 {
3666 int ret;
3667
3668 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3669 return -EINVAL;
3670 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3671 return ret;
3672 }
3673
3674 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3675 u64 ident_addr)
3676 {
3677 kvm->arch.ept_identity_map_addr = ident_addr;
3678 return 0;
3679 }
3680
3681 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3682 u32 kvm_nr_mmu_pages)
3683 {
3684 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3685 return -EINVAL;
3686
3687 mutex_lock(&kvm->slots_lock);
3688
3689 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3690 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3691
3692 mutex_unlock(&kvm->slots_lock);
3693 return 0;
3694 }
3695
3696 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3697 {
3698 return kvm->arch.n_max_mmu_pages;
3699 }
3700
3701 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3702 {
3703 struct kvm_pic *pic = kvm->arch.vpic;
3704 int r;
3705
3706 r = 0;
3707 switch (chip->chip_id) {
3708 case KVM_IRQCHIP_PIC_MASTER:
3709 memcpy(&chip->chip.pic, &pic->pics[0],
3710 sizeof(struct kvm_pic_state));
3711 break;
3712 case KVM_IRQCHIP_PIC_SLAVE:
3713 memcpy(&chip->chip.pic, &pic->pics[1],
3714 sizeof(struct kvm_pic_state));
3715 break;
3716 case KVM_IRQCHIP_IOAPIC:
3717 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3718 break;
3719 default:
3720 r = -EINVAL;
3721 break;
3722 }
3723 return r;
3724 }
3725
3726 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3727 {
3728 struct kvm_pic *pic = kvm->arch.vpic;
3729 int r;
3730
3731 r = 0;
3732 switch (chip->chip_id) {
3733 case KVM_IRQCHIP_PIC_MASTER:
3734 spin_lock(&pic->lock);
3735 memcpy(&pic->pics[0], &chip->chip.pic,
3736 sizeof(struct kvm_pic_state));
3737 spin_unlock(&pic->lock);
3738 break;
3739 case KVM_IRQCHIP_PIC_SLAVE:
3740 spin_lock(&pic->lock);
3741 memcpy(&pic->pics[1], &chip->chip.pic,
3742 sizeof(struct kvm_pic_state));
3743 spin_unlock(&pic->lock);
3744 break;
3745 case KVM_IRQCHIP_IOAPIC:
3746 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3747 break;
3748 default:
3749 r = -EINVAL;
3750 break;
3751 }
3752 kvm_pic_update_irq(pic);
3753 return r;
3754 }
3755
3756 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3757 {
3758 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3759
3760 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3761
3762 mutex_lock(&kps->lock);
3763 memcpy(ps, &kps->channels, sizeof(*ps));
3764 mutex_unlock(&kps->lock);
3765 return 0;
3766 }
3767
3768 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3769 {
3770 int i;
3771 struct kvm_pit *pit = kvm->arch.vpit;
3772
3773 mutex_lock(&pit->pit_state.lock);
3774 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3775 for (i = 0; i < 3; i++)
3776 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3777 mutex_unlock(&pit->pit_state.lock);
3778 return 0;
3779 }
3780
3781 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3782 {
3783 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3784 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3785 sizeof(ps->channels));
3786 ps->flags = kvm->arch.vpit->pit_state.flags;
3787 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3788 memset(&ps->reserved, 0, sizeof(ps->reserved));
3789 return 0;
3790 }
3791
3792 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3793 {
3794 int start = 0;
3795 int i;
3796 u32 prev_legacy, cur_legacy;
3797 struct kvm_pit *pit = kvm->arch.vpit;
3798
3799 mutex_lock(&pit->pit_state.lock);
3800 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3801 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3802 if (!prev_legacy && cur_legacy)
3803 start = 1;
3804 memcpy(&pit->pit_state.channels, &ps->channels,
3805 sizeof(pit->pit_state.channels));
3806 pit->pit_state.flags = ps->flags;
3807 for (i = 0; i < 3; i++)
3808 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3809 start && i == 0);
3810 mutex_unlock(&pit->pit_state.lock);
3811 return 0;
3812 }
3813
3814 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3815 struct kvm_reinject_control *control)
3816 {
3817 struct kvm_pit *pit = kvm->arch.vpit;
3818
3819 if (!pit)
3820 return -ENXIO;
3821
3822 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3823 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3824 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3825 */
3826 mutex_lock(&pit->pit_state.lock);
3827 kvm_pit_set_reinject(pit, control->pit_reinject);
3828 mutex_unlock(&pit->pit_state.lock);
3829
3830 return 0;
3831 }
3832
3833 /**
3834 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3835 * @kvm: kvm instance
3836 * @log: slot id and address to which we copy the log
3837 *
3838 * Steps 1-4 below provide general overview of dirty page logging. See
3839 * kvm_get_dirty_log_protect() function description for additional details.
3840 *
3841 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3842 * always flush the TLB (step 4) even if previous step failed and the dirty
3843 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3844 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3845 * writes will be marked dirty for next log read.
3846 *
3847 * 1. Take a snapshot of the bit and clear it if needed.
3848 * 2. Write protect the corresponding page.
3849 * 3. Copy the snapshot to the userspace.
3850 * 4. Flush TLB's if needed.
3851 */
3852 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3853 {
3854 bool is_dirty = false;
3855 int r;
3856
3857 mutex_lock(&kvm->slots_lock);
3858
3859 /*
3860 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3861 */
3862 if (kvm_x86_ops->flush_log_dirty)
3863 kvm_x86_ops->flush_log_dirty(kvm);
3864
3865 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3866
3867 /*
3868 * All the TLBs can be flushed out of mmu lock, see the comments in
3869 * kvm_mmu_slot_remove_write_access().
3870 */
3871 lockdep_assert_held(&kvm->slots_lock);
3872 if (is_dirty)
3873 kvm_flush_remote_tlbs(kvm);
3874
3875 mutex_unlock(&kvm->slots_lock);
3876 return r;
3877 }
3878
3879 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3880 bool line_status)
3881 {
3882 if (!irqchip_in_kernel(kvm))
3883 return -ENXIO;
3884
3885 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3886 irq_event->irq, irq_event->level,
3887 line_status);
3888 return 0;
3889 }
3890
3891 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3892 struct kvm_enable_cap *cap)
3893 {
3894 int r;
3895
3896 if (cap->flags)
3897 return -EINVAL;
3898
3899 switch (cap->cap) {
3900 case KVM_CAP_DISABLE_QUIRKS:
3901 kvm->arch.disabled_quirks = cap->args[0];
3902 r = 0;
3903 break;
3904 case KVM_CAP_SPLIT_IRQCHIP: {
3905 mutex_lock(&kvm->lock);
3906 r = -EINVAL;
3907 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3908 goto split_irqchip_unlock;
3909 r = -EEXIST;
3910 if (irqchip_in_kernel(kvm))
3911 goto split_irqchip_unlock;
3912 if (kvm->created_vcpus)
3913 goto split_irqchip_unlock;
3914 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
3915 r = kvm_setup_empty_irq_routing(kvm);
3916 if (r) {
3917 kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
3918 /* Pairs with smp_rmb() when reading irqchip_mode */
3919 smp_wmb();
3920 goto split_irqchip_unlock;
3921 }
3922 /* Pairs with irqchip_in_kernel. */
3923 smp_wmb();
3924 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3925 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3926 r = 0;
3927 split_irqchip_unlock:
3928 mutex_unlock(&kvm->lock);
3929 break;
3930 }
3931 case KVM_CAP_X2APIC_API:
3932 r = -EINVAL;
3933 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3934 break;
3935
3936 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3937 kvm->arch.x2apic_format = true;
3938 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3939 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3940
3941 r = 0;
3942 break;
3943 default:
3944 r = -EINVAL;
3945 break;
3946 }
3947 return r;
3948 }
3949
3950 long kvm_arch_vm_ioctl(struct file *filp,
3951 unsigned int ioctl, unsigned long arg)
3952 {
3953 struct kvm *kvm = filp->private_data;
3954 void __user *argp = (void __user *)arg;
3955 int r = -ENOTTY;
3956 /*
3957 * This union makes it completely explicit to gcc-3.x
3958 * that these two variables' stack usage should be
3959 * combined, not added together.
3960 */
3961 union {
3962 struct kvm_pit_state ps;
3963 struct kvm_pit_state2 ps2;
3964 struct kvm_pit_config pit_config;
3965 } u;
3966
3967 switch (ioctl) {
3968 case KVM_SET_TSS_ADDR:
3969 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3970 break;
3971 case KVM_SET_IDENTITY_MAP_ADDR: {
3972 u64 ident_addr;
3973
3974 r = -EFAULT;
3975 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3976 goto out;
3977 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3978 break;
3979 }
3980 case KVM_SET_NR_MMU_PAGES:
3981 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3982 break;
3983 case KVM_GET_NR_MMU_PAGES:
3984 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3985 break;
3986 case KVM_CREATE_IRQCHIP: {
3987 mutex_lock(&kvm->lock);
3988
3989 r = -EEXIST;
3990 if (irqchip_in_kernel(kvm))
3991 goto create_irqchip_unlock;
3992
3993 r = -EINVAL;
3994 if (kvm->created_vcpus)
3995 goto create_irqchip_unlock;
3996
3997 r = kvm_pic_init(kvm);
3998 if (r)
3999 goto create_irqchip_unlock;
4000
4001 r = kvm_ioapic_init(kvm);
4002 if (r) {
4003 kvm_pic_destroy(kvm);
4004 goto create_irqchip_unlock;
4005 }
4006
4007 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
4008 r = kvm_setup_default_irq_routing(kvm);
4009 if (r) {
4010 kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
4011 /* Pairs with smp_rmb() when reading irqchip_mode */
4012 smp_wmb();
4013 kvm_ioapic_destroy(kvm);
4014 kvm_pic_destroy(kvm);
4015 goto create_irqchip_unlock;
4016 }
4017 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4018 smp_wmb();
4019 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4020 create_irqchip_unlock:
4021 mutex_unlock(&kvm->lock);
4022 break;
4023 }
4024 case KVM_CREATE_PIT:
4025 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4026 goto create_pit;
4027 case KVM_CREATE_PIT2:
4028 r = -EFAULT;
4029 if (copy_from_user(&u.pit_config, argp,
4030 sizeof(struct kvm_pit_config)))
4031 goto out;
4032 create_pit:
4033 mutex_lock(&kvm->lock);
4034 r = -EEXIST;
4035 if (kvm->arch.vpit)
4036 goto create_pit_unlock;
4037 r = -ENOMEM;
4038 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4039 if (kvm->arch.vpit)
4040 r = 0;
4041 create_pit_unlock:
4042 mutex_unlock(&kvm->lock);
4043 break;
4044 case KVM_GET_IRQCHIP: {
4045 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4046 struct kvm_irqchip *chip;
4047
4048 chip = memdup_user(argp, sizeof(*chip));
4049 if (IS_ERR(chip)) {
4050 r = PTR_ERR(chip);
4051 goto out;
4052 }
4053
4054 r = -ENXIO;
4055 if (!irqchip_kernel(kvm))
4056 goto get_irqchip_out;
4057 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4058 if (r)
4059 goto get_irqchip_out;
4060 r = -EFAULT;
4061 if (copy_to_user(argp, chip, sizeof *chip))
4062 goto get_irqchip_out;
4063 r = 0;
4064 get_irqchip_out:
4065 kfree(chip);
4066 break;
4067 }
4068 case KVM_SET_IRQCHIP: {
4069 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4070 struct kvm_irqchip *chip;
4071
4072 chip = memdup_user(argp, sizeof(*chip));
4073 if (IS_ERR(chip)) {
4074 r = PTR_ERR(chip);
4075 goto out;
4076 }
4077
4078 r = -ENXIO;
4079 if (!irqchip_kernel(kvm))
4080 goto set_irqchip_out;
4081 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4082 if (r)
4083 goto set_irqchip_out;
4084 r = 0;
4085 set_irqchip_out:
4086 kfree(chip);
4087 break;
4088 }
4089 case KVM_GET_PIT: {
4090 r = -EFAULT;
4091 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4092 goto out;
4093 r = -ENXIO;
4094 if (!kvm->arch.vpit)
4095 goto out;
4096 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4097 if (r)
4098 goto out;
4099 r = -EFAULT;
4100 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4101 goto out;
4102 r = 0;
4103 break;
4104 }
4105 case KVM_SET_PIT: {
4106 r = -EFAULT;
4107 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4108 goto out;
4109 r = -ENXIO;
4110 if (!kvm->arch.vpit)
4111 goto out;
4112 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4113 break;
4114 }
4115 case KVM_GET_PIT2: {
4116 r = -ENXIO;
4117 if (!kvm->arch.vpit)
4118 goto out;
4119 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4120 if (r)
4121 goto out;
4122 r = -EFAULT;
4123 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4124 goto out;
4125 r = 0;
4126 break;
4127 }
4128 case KVM_SET_PIT2: {
4129 r = -EFAULT;
4130 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4131 goto out;
4132 r = -ENXIO;
4133 if (!kvm->arch.vpit)
4134 goto out;
4135 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4136 break;
4137 }
4138 case KVM_REINJECT_CONTROL: {
4139 struct kvm_reinject_control control;
4140 r = -EFAULT;
4141 if (copy_from_user(&control, argp, sizeof(control)))
4142 goto out;
4143 r = kvm_vm_ioctl_reinject(kvm, &control);
4144 break;
4145 }
4146 case KVM_SET_BOOT_CPU_ID:
4147 r = 0;
4148 mutex_lock(&kvm->lock);
4149 if (kvm->created_vcpus)
4150 r = -EBUSY;
4151 else
4152 kvm->arch.bsp_vcpu_id = arg;
4153 mutex_unlock(&kvm->lock);
4154 break;
4155 case KVM_XEN_HVM_CONFIG: {
4156 r = -EFAULT;
4157 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4158 sizeof(struct kvm_xen_hvm_config)))
4159 goto out;
4160 r = -EINVAL;
4161 if (kvm->arch.xen_hvm_config.flags)
4162 goto out;
4163 r = 0;
4164 break;
4165 }
4166 case KVM_SET_CLOCK: {
4167 struct kvm_clock_data user_ns;
4168 u64 now_ns;
4169
4170 r = -EFAULT;
4171 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4172 goto out;
4173
4174 r = -EINVAL;
4175 if (user_ns.flags)
4176 goto out;
4177
4178 r = 0;
4179 local_irq_disable();
4180 now_ns = __get_kvmclock_ns(kvm);
4181 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4182 local_irq_enable();
4183 kvm_gen_update_masterclock(kvm);
4184 break;
4185 }
4186 case KVM_GET_CLOCK: {
4187 struct kvm_clock_data user_ns;
4188 u64 now_ns;
4189
4190 local_irq_disable();
4191 now_ns = __get_kvmclock_ns(kvm);
4192 user_ns.clock = now_ns;
4193 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4194 local_irq_enable();
4195 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4196
4197 r = -EFAULT;
4198 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4199 goto out;
4200 r = 0;
4201 break;
4202 }
4203 case KVM_ENABLE_CAP: {
4204 struct kvm_enable_cap cap;
4205
4206 r = -EFAULT;
4207 if (copy_from_user(&cap, argp, sizeof(cap)))
4208 goto out;
4209 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4210 break;
4211 }
4212 default:
4213 r = -ENOTTY;
4214 }
4215 out:
4216 return r;
4217 }
4218
4219 static void kvm_init_msr_list(void)
4220 {
4221 u32 dummy[2];
4222 unsigned i, j;
4223
4224 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4225 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4226 continue;
4227
4228 /*
4229 * Even MSRs that are valid in the host may not be exposed
4230 * to the guests in some cases.
4231 */
4232 switch (msrs_to_save[i]) {
4233 case MSR_IA32_BNDCFGS:
4234 if (!kvm_x86_ops->mpx_supported())
4235 continue;
4236 break;
4237 case MSR_TSC_AUX:
4238 if (!kvm_x86_ops->rdtscp_supported())
4239 continue;
4240 break;
4241 default:
4242 break;
4243 }
4244
4245 if (j < i)
4246 msrs_to_save[j] = msrs_to_save[i];
4247 j++;
4248 }
4249 num_msrs_to_save = j;
4250
4251 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4252 switch (emulated_msrs[i]) {
4253 case MSR_IA32_SMBASE:
4254 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4255 continue;
4256 break;
4257 default:
4258 break;
4259 }
4260
4261 if (j < i)
4262 emulated_msrs[j] = emulated_msrs[i];
4263 j++;
4264 }
4265 num_emulated_msrs = j;
4266 }
4267
4268 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4269 const void *v)
4270 {
4271 int handled = 0;
4272 int n;
4273
4274 do {
4275 n = min(len, 8);
4276 if (!(lapic_in_kernel(vcpu) &&
4277 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4278 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4279 break;
4280 handled += n;
4281 addr += n;
4282 len -= n;
4283 v += n;
4284 } while (len);
4285
4286 return handled;
4287 }
4288
4289 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4290 {
4291 int handled = 0;
4292 int n;
4293
4294 do {
4295 n = min(len, 8);
4296 if (!(lapic_in_kernel(vcpu) &&
4297 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4298 addr, n, v))
4299 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4300 break;
4301 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4302 handled += n;
4303 addr += n;
4304 len -= n;
4305 v += n;
4306 } while (len);
4307
4308 return handled;
4309 }
4310
4311 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4312 struct kvm_segment *var, int seg)
4313 {
4314 kvm_x86_ops->set_segment(vcpu, var, seg);
4315 }
4316
4317 void kvm_get_segment(struct kvm_vcpu *vcpu,
4318 struct kvm_segment *var, int seg)
4319 {
4320 kvm_x86_ops->get_segment(vcpu, var, seg);
4321 }
4322
4323 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4324 struct x86_exception *exception)
4325 {
4326 gpa_t t_gpa;
4327
4328 BUG_ON(!mmu_is_nested(vcpu));
4329
4330 /* NPT walks are always user-walks */
4331 access |= PFERR_USER_MASK;
4332 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4333
4334 return t_gpa;
4335 }
4336
4337 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4338 struct x86_exception *exception)
4339 {
4340 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4341 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4342 }
4343
4344 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4345 struct x86_exception *exception)
4346 {
4347 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4348 access |= PFERR_FETCH_MASK;
4349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350 }
4351
4352 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4353 struct x86_exception *exception)
4354 {
4355 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4356 access |= PFERR_WRITE_MASK;
4357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4358 }
4359
4360 /* uses this to access any guest's mapped memory without checking CPL */
4361 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4362 struct x86_exception *exception)
4363 {
4364 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4365 }
4366
4367 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4368 struct kvm_vcpu *vcpu, u32 access,
4369 struct x86_exception *exception)
4370 {
4371 void *data = val;
4372 int r = X86EMUL_CONTINUE;
4373
4374 while (bytes) {
4375 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4376 exception);
4377 unsigned offset = addr & (PAGE_SIZE-1);
4378 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4379 int ret;
4380
4381 if (gpa == UNMAPPED_GVA)
4382 return X86EMUL_PROPAGATE_FAULT;
4383 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4384 offset, toread);
4385 if (ret < 0) {
4386 r = X86EMUL_IO_NEEDED;
4387 goto out;
4388 }
4389
4390 bytes -= toread;
4391 data += toread;
4392 addr += toread;
4393 }
4394 out:
4395 return r;
4396 }
4397
4398 /* used for instruction fetching */
4399 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4400 gva_t addr, void *val, unsigned int bytes,
4401 struct x86_exception *exception)
4402 {
4403 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4404 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4405 unsigned offset;
4406 int ret;
4407
4408 /* Inline kvm_read_guest_virt_helper for speed. */
4409 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4410 exception);
4411 if (unlikely(gpa == UNMAPPED_GVA))
4412 return X86EMUL_PROPAGATE_FAULT;
4413
4414 offset = addr & (PAGE_SIZE-1);
4415 if (WARN_ON(offset + bytes > PAGE_SIZE))
4416 bytes = (unsigned)PAGE_SIZE - offset;
4417 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4418 offset, bytes);
4419 if (unlikely(ret < 0))
4420 return X86EMUL_IO_NEEDED;
4421
4422 return X86EMUL_CONTINUE;
4423 }
4424
4425 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4426 gva_t addr, void *val, unsigned int bytes,
4427 struct x86_exception *exception)
4428 {
4429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4430 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4431
4432 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4433 exception);
4434 }
4435 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4436
4437 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4438 gva_t addr, void *val, unsigned int bytes,
4439 struct x86_exception *exception)
4440 {
4441 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4442 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4443 }
4444
4445 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4446 unsigned long addr, void *val, unsigned int bytes)
4447 {
4448 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4449 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4450
4451 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4452 }
4453
4454 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4455 gva_t addr, void *val,
4456 unsigned int bytes,
4457 struct x86_exception *exception)
4458 {
4459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4460 void *data = val;
4461 int r = X86EMUL_CONTINUE;
4462
4463 while (bytes) {
4464 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4465 PFERR_WRITE_MASK,
4466 exception);
4467 unsigned offset = addr & (PAGE_SIZE-1);
4468 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4469 int ret;
4470
4471 if (gpa == UNMAPPED_GVA)
4472 return X86EMUL_PROPAGATE_FAULT;
4473 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4474 if (ret < 0) {
4475 r = X86EMUL_IO_NEEDED;
4476 goto out;
4477 }
4478
4479 bytes -= towrite;
4480 data += towrite;
4481 addr += towrite;
4482 }
4483 out:
4484 return r;
4485 }
4486 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4487
4488 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4489 gpa_t gpa, bool write)
4490 {
4491 /* For APIC access vmexit */
4492 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4493 return 1;
4494
4495 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4496 trace_vcpu_match_mmio(gva, gpa, write, true);
4497 return 1;
4498 }
4499
4500 return 0;
4501 }
4502
4503 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4504 gpa_t *gpa, struct x86_exception *exception,
4505 bool write)
4506 {
4507 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4508 | (write ? PFERR_WRITE_MASK : 0);
4509
4510 /*
4511 * currently PKRU is only applied to ept enabled guest so
4512 * there is no pkey in EPT page table for L1 guest or EPT
4513 * shadow page table for L2 guest.
4514 */
4515 if (vcpu_match_mmio_gva(vcpu, gva)
4516 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4517 vcpu->arch.access, 0, access)) {
4518 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4519 (gva & (PAGE_SIZE - 1));
4520 trace_vcpu_match_mmio(gva, *gpa, write, false);
4521 return 1;
4522 }
4523
4524 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4525
4526 if (*gpa == UNMAPPED_GVA)
4527 return -1;
4528
4529 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4530 }
4531
4532 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4533 const void *val, int bytes)
4534 {
4535 int ret;
4536
4537 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4538 if (ret < 0)
4539 return 0;
4540 kvm_page_track_write(vcpu, gpa, val, bytes);
4541 return 1;
4542 }
4543
4544 struct read_write_emulator_ops {
4545 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4546 int bytes);
4547 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4548 void *val, int bytes);
4549 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4550 int bytes, void *val);
4551 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4552 void *val, int bytes);
4553 bool write;
4554 };
4555
4556 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4557 {
4558 if (vcpu->mmio_read_completed) {
4559 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4560 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4561 vcpu->mmio_read_completed = 0;
4562 return 1;
4563 }
4564
4565 return 0;
4566 }
4567
4568 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4569 void *val, int bytes)
4570 {
4571 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4572 }
4573
4574 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4575 void *val, int bytes)
4576 {
4577 return emulator_write_phys(vcpu, gpa, val, bytes);
4578 }
4579
4580 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4581 {
4582 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4583 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4584 }
4585
4586 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4587 void *val, int bytes)
4588 {
4589 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4590 return X86EMUL_IO_NEEDED;
4591 }
4592
4593 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4594 void *val, int bytes)
4595 {
4596 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4597
4598 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4599 return X86EMUL_CONTINUE;
4600 }
4601
4602 static const struct read_write_emulator_ops read_emultor = {
4603 .read_write_prepare = read_prepare,
4604 .read_write_emulate = read_emulate,
4605 .read_write_mmio = vcpu_mmio_read,
4606 .read_write_exit_mmio = read_exit_mmio,
4607 };
4608
4609 static const struct read_write_emulator_ops write_emultor = {
4610 .read_write_emulate = write_emulate,
4611 .read_write_mmio = write_mmio,
4612 .read_write_exit_mmio = write_exit_mmio,
4613 .write = true,
4614 };
4615
4616 static int emulator_read_write_onepage(unsigned long addr, void *val,
4617 unsigned int bytes,
4618 struct x86_exception *exception,
4619 struct kvm_vcpu *vcpu,
4620 const struct read_write_emulator_ops *ops)
4621 {
4622 gpa_t gpa;
4623 int handled, ret;
4624 bool write = ops->write;
4625 struct kvm_mmio_fragment *frag;
4626 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4627
4628 /*
4629 * If the exit was due to a NPF we may already have a GPA.
4630 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4631 * Note, this cannot be used on string operations since string
4632 * operation using rep will only have the initial GPA from the NPF
4633 * occurred.
4634 */
4635 if (vcpu->arch.gpa_available &&
4636 emulator_can_use_gpa(ctxt) &&
4637 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4638 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4639 gpa = exception->address;
4640 goto mmio;
4641 }
4642
4643 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4644
4645 if (ret < 0)
4646 return X86EMUL_PROPAGATE_FAULT;
4647
4648 /* For APIC access vmexit */
4649 if (ret)
4650 goto mmio;
4651
4652 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4653 return X86EMUL_CONTINUE;
4654
4655 mmio:
4656 /*
4657 * Is this MMIO handled locally?
4658 */
4659 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4660 if (handled == bytes)
4661 return X86EMUL_CONTINUE;
4662
4663 gpa += handled;
4664 bytes -= handled;
4665 val += handled;
4666
4667 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4668 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4669 frag->gpa = gpa;
4670 frag->data = val;
4671 frag->len = bytes;
4672 return X86EMUL_CONTINUE;
4673 }
4674
4675 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4676 unsigned long addr,
4677 void *val, unsigned int bytes,
4678 struct x86_exception *exception,
4679 const struct read_write_emulator_ops *ops)
4680 {
4681 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4682 gpa_t gpa;
4683 int rc;
4684
4685 if (ops->read_write_prepare &&
4686 ops->read_write_prepare(vcpu, val, bytes))
4687 return X86EMUL_CONTINUE;
4688
4689 vcpu->mmio_nr_fragments = 0;
4690
4691 /* Crossing a page boundary? */
4692 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4693 int now;
4694
4695 now = -addr & ~PAGE_MASK;
4696 rc = emulator_read_write_onepage(addr, val, now, exception,
4697 vcpu, ops);
4698
4699 if (rc != X86EMUL_CONTINUE)
4700 return rc;
4701 addr += now;
4702 if (ctxt->mode != X86EMUL_MODE_PROT64)
4703 addr = (u32)addr;
4704 val += now;
4705 bytes -= now;
4706 }
4707
4708 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4709 vcpu, ops);
4710 if (rc != X86EMUL_CONTINUE)
4711 return rc;
4712
4713 if (!vcpu->mmio_nr_fragments)
4714 return rc;
4715
4716 gpa = vcpu->mmio_fragments[0].gpa;
4717
4718 vcpu->mmio_needed = 1;
4719 vcpu->mmio_cur_fragment = 0;
4720
4721 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4722 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4723 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4724 vcpu->run->mmio.phys_addr = gpa;
4725
4726 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4727 }
4728
4729 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4730 unsigned long addr,
4731 void *val,
4732 unsigned int bytes,
4733 struct x86_exception *exception)
4734 {
4735 return emulator_read_write(ctxt, addr, val, bytes,
4736 exception, &read_emultor);
4737 }
4738
4739 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4740 unsigned long addr,
4741 const void *val,
4742 unsigned int bytes,
4743 struct x86_exception *exception)
4744 {
4745 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4746 exception, &write_emultor);
4747 }
4748
4749 #define CMPXCHG_TYPE(t, ptr, old, new) \
4750 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4751
4752 #ifdef CONFIG_X86_64
4753 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4754 #else
4755 # define CMPXCHG64(ptr, old, new) \
4756 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4757 #endif
4758
4759 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4760 unsigned long addr,
4761 const void *old,
4762 const void *new,
4763 unsigned int bytes,
4764 struct x86_exception *exception)
4765 {
4766 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4767 gpa_t gpa;
4768 struct page *page;
4769 char *kaddr;
4770 bool exchanged;
4771
4772 /* guests cmpxchg8b have to be emulated atomically */
4773 if (bytes > 8 || (bytes & (bytes - 1)))
4774 goto emul_write;
4775
4776 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4777
4778 if (gpa == UNMAPPED_GVA ||
4779 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4780 goto emul_write;
4781
4782 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4783 goto emul_write;
4784
4785 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4786 if (is_error_page(page))
4787 goto emul_write;
4788
4789 kaddr = kmap_atomic(page);
4790 kaddr += offset_in_page(gpa);
4791 switch (bytes) {
4792 case 1:
4793 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4794 break;
4795 case 2:
4796 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4797 break;
4798 case 4:
4799 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4800 break;
4801 case 8:
4802 exchanged = CMPXCHG64(kaddr, old, new);
4803 break;
4804 default:
4805 BUG();
4806 }
4807 kunmap_atomic(kaddr);
4808 kvm_release_page_dirty(page);
4809
4810 if (!exchanged)
4811 return X86EMUL_CMPXCHG_FAILED;
4812
4813 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4814 kvm_page_track_write(vcpu, gpa, new, bytes);
4815
4816 return X86EMUL_CONTINUE;
4817
4818 emul_write:
4819 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4820
4821 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4822 }
4823
4824 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4825 {
4826 /* TODO: String I/O for in kernel device */
4827 int r;
4828
4829 if (vcpu->arch.pio.in)
4830 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4831 vcpu->arch.pio.size, pd);
4832 else
4833 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4834 vcpu->arch.pio.port, vcpu->arch.pio.size,
4835 pd);
4836 return r;
4837 }
4838
4839 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4840 unsigned short port, void *val,
4841 unsigned int count, bool in)
4842 {
4843 vcpu->arch.pio.port = port;
4844 vcpu->arch.pio.in = in;
4845 vcpu->arch.pio.count = count;
4846 vcpu->arch.pio.size = size;
4847
4848 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4849 vcpu->arch.pio.count = 0;
4850 return 1;
4851 }
4852
4853 vcpu->run->exit_reason = KVM_EXIT_IO;
4854 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4855 vcpu->run->io.size = size;
4856 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4857 vcpu->run->io.count = count;
4858 vcpu->run->io.port = port;
4859
4860 return 0;
4861 }
4862
4863 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4864 int size, unsigned short port, void *val,
4865 unsigned int count)
4866 {
4867 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4868 int ret;
4869
4870 if (vcpu->arch.pio.count)
4871 goto data_avail;
4872
4873 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4874 if (ret) {
4875 data_avail:
4876 memcpy(val, vcpu->arch.pio_data, size * count);
4877 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4878 vcpu->arch.pio.count = 0;
4879 return 1;
4880 }
4881
4882 return 0;
4883 }
4884
4885 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4886 int size, unsigned short port,
4887 const void *val, unsigned int count)
4888 {
4889 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4890
4891 memcpy(vcpu->arch.pio_data, val, size * count);
4892 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4893 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4894 }
4895
4896 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4897 {
4898 return kvm_x86_ops->get_segment_base(vcpu, seg);
4899 }
4900
4901 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4902 {
4903 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4904 }
4905
4906 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4907 {
4908 if (!need_emulate_wbinvd(vcpu))
4909 return X86EMUL_CONTINUE;
4910
4911 if (kvm_x86_ops->has_wbinvd_exit()) {
4912 int cpu = get_cpu();
4913
4914 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4915 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4916 wbinvd_ipi, NULL, 1);
4917 put_cpu();
4918 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4919 } else
4920 wbinvd();
4921 return X86EMUL_CONTINUE;
4922 }
4923
4924 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4925 {
4926 kvm_emulate_wbinvd_noskip(vcpu);
4927 return kvm_skip_emulated_instruction(vcpu);
4928 }
4929 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4930
4931
4932
4933 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4934 {
4935 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4936 }
4937
4938 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4939 unsigned long *dest)
4940 {
4941 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4942 }
4943
4944 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4945 unsigned long value)
4946 {
4947
4948 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4949 }
4950
4951 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4952 {
4953 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4954 }
4955
4956 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4957 {
4958 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4959 unsigned long value;
4960
4961 switch (cr) {
4962 case 0:
4963 value = kvm_read_cr0(vcpu);
4964 break;
4965 case 2:
4966 value = vcpu->arch.cr2;
4967 break;
4968 case 3:
4969 value = kvm_read_cr3(vcpu);
4970 break;
4971 case 4:
4972 value = kvm_read_cr4(vcpu);
4973 break;
4974 case 8:
4975 value = kvm_get_cr8(vcpu);
4976 break;
4977 default:
4978 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4979 return 0;
4980 }
4981
4982 return value;
4983 }
4984
4985 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4986 {
4987 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4988 int res = 0;
4989
4990 switch (cr) {
4991 case 0:
4992 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4993 break;
4994 case 2:
4995 vcpu->arch.cr2 = val;
4996 break;
4997 case 3:
4998 res = kvm_set_cr3(vcpu, val);
4999 break;
5000 case 4:
5001 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5002 break;
5003 case 8:
5004 res = kvm_set_cr8(vcpu, val);
5005 break;
5006 default:
5007 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5008 res = -1;
5009 }
5010
5011 return res;
5012 }
5013
5014 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5015 {
5016 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5017 }
5018
5019 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5020 {
5021 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5022 }
5023
5024 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5025 {
5026 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5027 }
5028
5029 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5030 {
5031 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5032 }
5033
5034 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5035 {
5036 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5037 }
5038
5039 static unsigned long emulator_get_cached_segment_base(
5040 struct x86_emulate_ctxt *ctxt, int seg)
5041 {
5042 return get_segment_base(emul_to_vcpu(ctxt), seg);
5043 }
5044
5045 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5046 struct desc_struct *desc, u32 *base3,
5047 int seg)
5048 {
5049 struct kvm_segment var;
5050
5051 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5052 *selector = var.selector;
5053
5054 if (var.unusable) {
5055 memset(desc, 0, sizeof(*desc));
5056 return false;
5057 }
5058
5059 if (var.g)
5060 var.limit >>= 12;
5061 set_desc_limit(desc, var.limit);
5062 set_desc_base(desc, (unsigned long)var.base);
5063 #ifdef CONFIG_X86_64
5064 if (base3)
5065 *base3 = var.base >> 32;
5066 #endif
5067 desc->type = var.type;
5068 desc->s = var.s;
5069 desc->dpl = var.dpl;
5070 desc->p = var.present;
5071 desc->avl = var.avl;
5072 desc->l = var.l;
5073 desc->d = var.db;
5074 desc->g = var.g;
5075
5076 return true;
5077 }
5078
5079 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5080 struct desc_struct *desc, u32 base3,
5081 int seg)
5082 {
5083 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5084 struct kvm_segment var;
5085
5086 var.selector = selector;
5087 var.base = get_desc_base(desc);
5088 #ifdef CONFIG_X86_64
5089 var.base |= ((u64)base3) << 32;
5090 #endif
5091 var.limit = get_desc_limit(desc);
5092 if (desc->g)
5093 var.limit = (var.limit << 12) | 0xfff;
5094 var.type = desc->type;
5095 var.dpl = desc->dpl;
5096 var.db = desc->d;
5097 var.s = desc->s;
5098 var.l = desc->l;
5099 var.g = desc->g;
5100 var.avl = desc->avl;
5101 var.present = desc->p;
5102 var.unusable = !var.present;
5103 var.padding = 0;
5104
5105 kvm_set_segment(vcpu, &var, seg);
5106 return;
5107 }
5108
5109 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5110 u32 msr_index, u64 *pdata)
5111 {
5112 struct msr_data msr;
5113 int r;
5114
5115 msr.index = msr_index;
5116 msr.host_initiated = false;
5117 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5118 if (r)
5119 return r;
5120
5121 *pdata = msr.data;
5122 return 0;
5123 }
5124
5125 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5126 u32 msr_index, u64 data)
5127 {
5128 struct msr_data msr;
5129
5130 msr.data = data;
5131 msr.index = msr_index;
5132 msr.host_initiated = false;
5133 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5134 }
5135
5136 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5137 {
5138 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5139
5140 return vcpu->arch.smbase;
5141 }
5142
5143 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5144 {
5145 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5146
5147 vcpu->arch.smbase = smbase;
5148 }
5149
5150 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5151 u32 pmc)
5152 {
5153 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5154 }
5155
5156 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5157 u32 pmc, u64 *pdata)
5158 {
5159 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5160 }
5161
5162 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5163 {
5164 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5165 }
5166
5167 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5168 {
5169 preempt_disable();
5170 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5171 }
5172
5173 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5174 {
5175 preempt_enable();
5176 }
5177
5178 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5179 struct x86_instruction_info *info,
5180 enum x86_intercept_stage stage)
5181 {
5182 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5183 }
5184
5185 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5186 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5187 {
5188 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5189 }
5190
5191 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5192 {
5193 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5194 }
5195
5196 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5197 {
5198 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5199 }
5200
5201 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5202 {
5203 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5204 }
5205
5206 static const struct x86_emulate_ops emulate_ops = {
5207 .read_gpr = emulator_read_gpr,
5208 .write_gpr = emulator_write_gpr,
5209 .read_std = kvm_read_guest_virt_system,
5210 .write_std = kvm_write_guest_virt_system,
5211 .read_phys = kvm_read_guest_phys_system,
5212 .fetch = kvm_fetch_guest_virt,
5213 .read_emulated = emulator_read_emulated,
5214 .write_emulated = emulator_write_emulated,
5215 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5216 .invlpg = emulator_invlpg,
5217 .pio_in_emulated = emulator_pio_in_emulated,
5218 .pio_out_emulated = emulator_pio_out_emulated,
5219 .get_segment = emulator_get_segment,
5220 .set_segment = emulator_set_segment,
5221 .get_cached_segment_base = emulator_get_cached_segment_base,
5222 .get_gdt = emulator_get_gdt,
5223 .get_idt = emulator_get_idt,
5224 .set_gdt = emulator_set_gdt,
5225 .set_idt = emulator_set_idt,
5226 .get_cr = emulator_get_cr,
5227 .set_cr = emulator_set_cr,
5228 .cpl = emulator_get_cpl,
5229 .get_dr = emulator_get_dr,
5230 .set_dr = emulator_set_dr,
5231 .get_smbase = emulator_get_smbase,
5232 .set_smbase = emulator_set_smbase,
5233 .set_msr = emulator_set_msr,
5234 .get_msr = emulator_get_msr,
5235 .check_pmc = emulator_check_pmc,
5236 .read_pmc = emulator_read_pmc,
5237 .halt = emulator_halt,
5238 .wbinvd = emulator_wbinvd,
5239 .fix_hypercall = emulator_fix_hypercall,
5240 .get_fpu = emulator_get_fpu,
5241 .put_fpu = emulator_put_fpu,
5242 .intercept = emulator_intercept,
5243 .get_cpuid = emulator_get_cpuid,
5244 .set_nmi_mask = emulator_set_nmi_mask,
5245 };
5246
5247 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5248 {
5249 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5250 /*
5251 * an sti; sti; sequence only disable interrupts for the first
5252 * instruction. So, if the last instruction, be it emulated or
5253 * not, left the system with the INT_STI flag enabled, it
5254 * means that the last instruction is an sti. We should not
5255 * leave the flag on in this case. The same goes for mov ss
5256 */
5257 if (int_shadow & mask)
5258 mask = 0;
5259 if (unlikely(int_shadow || mask)) {
5260 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5261 if (!mask)
5262 kvm_make_request(KVM_REQ_EVENT, vcpu);
5263 }
5264 }
5265
5266 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5267 {
5268 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5269 if (ctxt->exception.vector == PF_VECTOR)
5270 return kvm_propagate_fault(vcpu, &ctxt->exception);
5271
5272 if (ctxt->exception.error_code_valid)
5273 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5274 ctxt->exception.error_code);
5275 else
5276 kvm_queue_exception(vcpu, ctxt->exception.vector);
5277 return false;
5278 }
5279
5280 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5281 {
5282 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5283 int cs_db, cs_l;
5284
5285 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5286
5287 ctxt->eflags = kvm_get_rflags(vcpu);
5288 ctxt->eip = kvm_rip_read(vcpu);
5289 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5290 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5291 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5292 cs_db ? X86EMUL_MODE_PROT32 :
5293 X86EMUL_MODE_PROT16;
5294 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5295 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5296 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5297 ctxt->emul_flags = vcpu->arch.hflags;
5298
5299 init_decode_cache(ctxt);
5300 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5301 }
5302
5303 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5304 {
5305 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5306 int ret;
5307
5308 init_emulate_ctxt(vcpu);
5309
5310 ctxt->op_bytes = 2;
5311 ctxt->ad_bytes = 2;
5312 ctxt->_eip = ctxt->eip + inc_eip;
5313 ret = emulate_int_real(ctxt, irq);
5314
5315 if (ret != X86EMUL_CONTINUE)
5316 return EMULATE_FAIL;
5317
5318 ctxt->eip = ctxt->_eip;
5319 kvm_rip_write(vcpu, ctxt->eip);
5320 kvm_set_rflags(vcpu, ctxt->eflags);
5321
5322 if (irq == NMI_VECTOR)
5323 vcpu->arch.nmi_pending = 0;
5324 else
5325 vcpu->arch.interrupt.pending = false;
5326
5327 return EMULATE_DONE;
5328 }
5329 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5330
5331 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5332 {
5333 int r = EMULATE_DONE;
5334
5335 ++vcpu->stat.insn_emulation_fail;
5336 trace_kvm_emulate_insn_failed(vcpu);
5337 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5338 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5339 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5340 vcpu->run->internal.ndata = 0;
5341 r = EMULATE_FAIL;
5342 }
5343 kvm_queue_exception(vcpu, UD_VECTOR);
5344
5345 return r;
5346 }
5347
5348 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5349 bool write_fault_to_shadow_pgtable,
5350 int emulation_type)
5351 {
5352 gpa_t gpa = cr2;
5353 kvm_pfn_t pfn;
5354
5355 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5356 return false;
5357
5358 if (!vcpu->arch.mmu.direct_map) {
5359 /*
5360 * Write permission should be allowed since only
5361 * write access need to be emulated.
5362 */
5363 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5364
5365 /*
5366 * If the mapping is invalid in guest, let cpu retry
5367 * it to generate fault.
5368 */
5369 if (gpa == UNMAPPED_GVA)
5370 return true;
5371 }
5372
5373 /*
5374 * Do not retry the unhandleable instruction if it faults on the
5375 * readonly host memory, otherwise it will goto a infinite loop:
5376 * retry instruction -> write #PF -> emulation fail -> retry
5377 * instruction -> ...
5378 */
5379 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5380
5381 /*
5382 * If the instruction failed on the error pfn, it can not be fixed,
5383 * report the error to userspace.
5384 */
5385 if (is_error_noslot_pfn(pfn))
5386 return false;
5387
5388 kvm_release_pfn_clean(pfn);
5389
5390 /* The instructions are well-emulated on direct mmu. */
5391 if (vcpu->arch.mmu.direct_map) {
5392 unsigned int indirect_shadow_pages;
5393
5394 spin_lock(&vcpu->kvm->mmu_lock);
5395 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5396 spin_unlock(&vcpu->kvm->mmu_lock);
5397
5398 if (indirect_shadow_pages)
5399 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5400
5401 return true;
5402 }
5403
5404 /*
5405 * if emulation was due to access to shadowed page table
5406 * and it failed try to unshadow page and re-enter the
5407 * guest to let CPU execute the instruction.
5408 */
5409 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5410
5411 /*
5412 * If the access faults on its page table, it can not
5413 * be fixed by unprotecting shadow page and it should
5414 * be reported to userspace.
5415 */
5416 return !write_fault_to_shadow_pgtable;
5417 }
5418
5419 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5420 unsigned long cr2, int emulation_type)
5421 {
5422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5423 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5424
5425 last_retry_eip = vcpu->arch.last_retry_eip;
5426 last_retry_addr = vcpu->arch.last_retry_addr;
5427
5428 /*
5429 * If the emulation is caused by #PF and it is non-page_table
5430 * writing instruction, it means the VM-EXIT is caused by shadow
5431 * page protected, we can zap the shadow page and retry this
5432 * instruction directly.
5433 *
5434 * Note: if the guest uses a non-page-table modifying instruction
5435 * on the PDE that points to the instruction, then we will unmap
5436 * the instruction and go to an infinite loop. So, we cache the
5437 * last retried eip and the last fault address, if we meet the eip
5438 * and the address again, we can break out of the potential infinite
5439 * loop.
5440 */
5441 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5442
5443 if (!(emulation_type & EMULTYPE_RETRY))
5444 return false;
5445
5446 if (x86_page_table_writing_insn(ctxt))
5447 return false;
5448
5449 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5450 return false;
5451
5452 vcpu->arch.last_retry_eip = ctxt->eip;
5453 vcpu->arch.last_retry_addr = cr2;
5454
5455 if (!vcpu->arch.mmu.direct_map)
5456 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5457
5458 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5459
5460 return true;
5461 }
5462
5463 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5464 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5465
5466 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5467 {
5468 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5469 /* This is a good place to trace that we are exiting SMM. */
5470 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5471
5472 /* Process a latched INIT or SMI, if any. */
5473 kvm_make_request(KVM_REQ_EVENT, vcpu);
5474 }
5475
5476 kvm_mmu_reset_context(vcpu);
5477 }
5478
5479 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5480 {
5481 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5482
5483 vcpu->arch.hflags = emul_flags;
5484
5485 if (changed & HF_SMM_MASK)
5486 kvm_smm_changed(vcpu);
5487 }
5488
5489 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5490 unsigned long *db)
5491 {
5492 u32 dr6 = 0;
5493 int i;
5494 u32 enable, rwlen;
5495
5496 enable = dr7;
5497 rwlen = dr7 >> 16;
5498 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5499 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5500 dr6 |= (1 << i);
5501 return dr6;
5502 }
5503
5504 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5505 {
5506 struct kvm_run *kvm_run = vcpu->run;
5507
5508 /*
5509 * rflags is the old, "raw" value of the flags. The new value has
5510 * not been saved yet.
5511 *
5512 * This is correct even for TF set by the guest, because "the
5513 * processor will not generate this exception after the instruction
5514 * that sets the TF flag".
5515 */
5516 if (unlikely(rflags & X86_EFLAGS_TF)) {
5517 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5518 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5519 DR6_RTM;
5520 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5521 kvm_run->debug.arch.exception = DB_VECTOR;
5522 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5523 *r = EMULATE_USER_EXIT;
5524 } else {
5525 /*
5526 * "Certain debug exceptions may clear bit 0-3. The
5527 * remaining contents of the DR6 register are never
5528 * cleared by the processor".
5529 */
5530 vcpu->arch.dr6 &= ~15;
5531 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5532 kvm_queue_exception(vcpu, DB_VECTOR);
5533 }
5534 }
5535 }
5536
5537 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5538 {
5539 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5540 int r = EMULATE_DONE;
5541
5542 kvm_x86_ops->skip_emulated_instruction(vcpu);
5543 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5544 return r == EMULATE_DONE;
5545 }
5546 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5547
5548 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5549 {
5550 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5551 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5552 struct kvm_run *kvm_run = vcpu->run;
5553 unsigned long eip = kvm_get_linear_rip(vcpu);
5554 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5555 vcpu->arch.guest_debug_dr7,
5556 vcpu->arch.eff_db);
5557
5558 if (dr6 != 0) {
5559 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5560 kvm_run->debug.arch.pc = eip;
5561 kvm_run->debug.arch.exception = DB_VECTOR;
5562 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5563 *r = EMULATE_USER_EXIT;
5564 return true;
5565 }
5566 }
5567
5568 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5569 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5570 unsigned long eip = kvm_get_linear_rip(vcpu);
5571 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5572 vcpu->arch.dr7,
5573 vcpu->arch.db);
5574
5575 if (dr6 != 0) {
5576 vcpu->arch.dr6 &= ~15;
5577 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5578 kvm_queue_exception(vcpu, DB_VECTOR);
5579 *r = EMULATE_DONE;
5580 return true;
5581 }
5582 }
5583
5584 return false;
5585 }
5586
5587 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5588 unsigned long cr2,
5589 int emulation_type,
5590 void *insn,
5591 int insn_len)
5592 {
5593 int r;
5594 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5595 bool writeback = true;
5596 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5597
5598 /*
5599 * Clear write_fault_to_shadow_pgtable here to ensure it is
5600 * never reused.
5601 */
5602 vcpu->arch.write_fault_to_shadow_pgtable = false;
5603 kvm_clear_exception_queue(vcpu);
5604
5605 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5606 init_emulate_ctxt(vcpu);
5607
5608 /*
5609 * We will reenter on the same instruction since
5610 * we do not set complete_userspace_io. This does not
5611 * handle watchpoints yet, those would be handled in
5612 * the emulate_ops.
5613 */
5614 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5615 return r;
5616
5617 ctxt->interruptibility = 0;
5618 ctxt->have_exception = false;
5619 ctxt->exception.vector = -1;
5620 ctxt->perm_ok = false;
5621
5622 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5623
5624 r = x86_decode_insn(ctxt, insn, insn_len);
5625
5626 trace_kvm_emulate_insn_start(vcpu);
5627 ++vcpu->stat.insn_emulation;
5628 if (r != EMULATION_OK) {
5629 if (emulation_type & EMULTYPE_TRAP_UD)
5630 return EMULATE_FAIL;
5631 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5632 emulation_type))
5633 return EMULATE_DONE;
5634 if (emulation_type & EMULTYPE_SKIP)
5635 return EMULATE_FAIL;
5636 return handle_emulation_failure(vcpu);
5637 }
5638 }
5639
5640 if (emulation_type & EMULTYPE_SKIP) {
5641 kvm_rip_write(vcpu, ctxt->_eip);
5642 if (ctxt->eflags & X86_EFLAGS_RF)
5643 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5644 return EMULATE_DONE;
5645 }
5646
5647 if (retry_instruction(ctxt, cr2, emulation_type))
5648 return EMULATE_DONE;
5649
5650 /* this is needed for vmware backdoor interface to work since it
5651 changes registers values during IO operation */
5652 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5653 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5654 emulator_invalidate_register_cache(ctxt);
5655 }
5656
5657 restart:
5658 /* Save the faulting GPA (cr2) in the address field */
5659 ctxt->exception.address = cr2;
5660
5661 r = x86_emulate_insn(ctxt);
5662
5663 if (r == EMULATION_INTERCEPTED)
5664 return EMULATE_DONE;
5665
5666 if (r == EMULATION_FAILED) {
5667 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5668 emulation_type))
5669 return EMULATE_DONE;
5670
5671 return handle_emulation_failure(vcpu);
5672 }
5673
5674 if (ctxt->have_exception) {
5675 r = EMULATE_DONE;
5676 if (inject_emulated_exception(vcpu))
5677 return r;
5678 } else if (vcpu->arch.pio.count) {
5679 if (!vcpu->arch.pio.in) {
5680 /* FIXME: return into emulator if single-stepping. */
5681 vcpu->arch.pio.count = 0;
5682 } else {
5683 writeback = false;
5684 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5685 }
5686 r = EMULATE_USER_EXIT;
5687 } else if (vcpu->mmio_needed) {
5688 if (!vcpu->mmio_is_write)
5689 writeback = false;
5690 r = EMULATE_USER_EXIT;
5691 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5692 } else if (r == EMULATION_RESTART)
5693 goto restart;
5694 else
5695 r = EMULATE_DONE;
5696
5697 if (writeback) {
5698 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5699 toggle_interruptibility(vcpu, ctxt->interruptibility);
5700 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5701 if (vcpu->arch.hflags != ctxt->emul_flags)
5702 kvm_set_hflags(vcpu, ctxt->emul_flags);
5703 kvm_rip_write(vcpu, ctxt->eip);
5704 if (r == EMULATE_DONE)
5705 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5706 if (!ctxt->have_exception ||
5707 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5708 __kvm_set_rflags(vcpu, ctxt->eflags);
5709
5710 /*
5711 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5712 * do nothing, and it will be requested again as soon as
5713 * the shadow expires. But we still need to check here,
5714 * because POPF has no interrupt shadow.
5715 */
5716 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5717 kvm_make_request(KVM_REQ_EVENT, vcpu);
5718 } else
5719 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5720
5721 return r;
5722 }
5723 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5724
5725 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5726 {
5727 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5728 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5729 size, port, &val, 1);
5730 /* do not return to emulator after return from userspace */
5731 vcpu->arch.pio.count = 0;
5732 return ret;
5733 }
5734 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5735
5736 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5737 {
5738 unsigned long val;
5739
5740 /* We should only ever be called with arch.pio.count equal to 1 */
5741 BUG_ON(vcpu->arch.pio.count != 1);
5742
5743 /* For size less than 4 we merge, else we zero extend */
5744 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5745 : 0;
5746
5747 /*
5748 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5749 * the copy and tracing
5750 */
5751 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5752 vcpu->arch.pio.port, &val, 1);
5753 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5754
5755 return 1;
5756 }
5757
5758 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5759 {
5760 unsigned long val;
5761 int ret;
5762
5763 /* For size less than 4 we merge, else we zero extend */
5764 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5765
5766 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5767 &val, 1);
5768 if (ret) {
5769 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5770 return ret;
5771 }
5772
5773 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5774
5775 return 0;
5776 }
5777 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5778
5779 static int kvmclock_cpu_down_prep(unsigned int cpu)
5780 {
5781 __this_cpu_write(cpu_tsc_khz, 0);
5782 return 0;
5783 }
5784
5785 static void tsc_khz_changed(void *data)
5786 {
5787 struct cpufreq_freqs *freq = data;
5788 unsigned long khz = 0;
5789
5790 if (data)
5791 khz = freq->new;
5792 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5793 khz = cpufreq_quick_get(raw_smp_processor_id());
5794 if (!khz)
5795 khz = tsc_khz;
5796 __this_cpu_write(cpu_tsc_khz, khz);
5797 }
5798
5799 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5800 void *data)
5801 {
5802 struct cpufreq_freqs *freq = data;
5803 struct kvm *kvm;
5804 struct kvm_vcpu *vcpu;
5805 int i, send_ipi = 0;
5806
5807 /*
5808 * We allow guests to temporarily run on slowing clocks,
5809 * provided we notify them after, or to run on accelerating
5810 * clocks, provided we notify them before. Thus time never
5811 * goes backwards.
5812 *
5813 * However, we have a problem. We can't atomically update
5814 * the frequency of a given CPU from this function; it is
5815 * merely a notifier, which can be called from any CPU.
5816 * Changing the TSC frequency at arbitrary points in time
5817 * requires a recomputation of local variables related to
5818 * the TSC for each VCPU. We must flag these local variables
5819 * to be updated and be sure the update takes place with the
5820 * new frequency before any guests proceed.
5821 *
5822 * Unfortunately, the combination of hotplug CPU and frequency
5823 * change creates an intractable locking scenario; the order
5824 * of when these callouts happen is undefined with respect to
5825 * CPU hotplug, and they can race with each other. As such,
5826 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5827 * undefined; you can actually have a CPU frequency change take
5828 * place in between the computation of X and the setting of the
5829 * variable. To protect against this problem, all updates of
5830 * the per_cpu tsc_khz variable are done in an interrupt
5831 * protected IPI, and all callers wishing to update the value
5832 * must wait for a synchronous IPI to complete (which is trivial
5833 * if the caller is on the CPU already). This establishes the
5834 * necessary total order on variable updates.
5835 *
5836 * Note that because a guest time update may take place
5837 * anytime after the setting of the VCPU's request bit, the
5838 * correct TSC value must be set before the request. However,
5839 * to ensure the update actually makes it to any guest which
5840 * starts running in hardware virtualization between the set
5841 * and the acquisition of the spinlock, we must also ping the
5842 * CPU after setting the request bit.
5843 *
5844 */
5845
5846 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5847 return 0;
5848 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5849 return 0;
5850
5851 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5852
5853 spin_lock(&kvm_lock);
5854 list_for_each_entry(kvm, &vm_list, vm_list) {
5855 kvm_for_each_vcpu(i, vcpu, kvm) {
5856 if (vcpu->cpu != freq->cpu)
5857 continue;
5858 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5859 if (vcpu->cpu != smp_processor_id())
5860 send_ipi = 1;
5861 }
5862 }
5863 spin_unlock(&kvm_lock);
5864
5865 if (freq->old < freq->new && send_ipi) {
5866 /*
5867 * We upscale the frequency. Must make the guest
5868 * doesn't see old kvmclock values while running with
5869 * the new frequency, otherwise we risk the guest sees
5870 * time go backwards.
5871 *
5872 * In case we update the frequency for another cpu
5873 * (which might be in guest context) send an interrupt
5874 * to kick the cpu out of guest context. Next time
5875 * guest context is entered kvmclock will be updated,
5876 * so the guest will not see stale values.
5877 */
5878 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5879 }
5880 return 0;
5881 }
5882
5883 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5884 .notifier_call = kvmclock_cpufreq_notifier
5885 };
5886
5887 static int kvmclock_cpu_online(unsigned int cpu)
5888 {
5889 tsc_khz_changed(NULL);
5890 return 0;
5891 }
5892
5893 static void kvm_timer_init(void)
5894 {
5895 max_tsc_khz = tsc_khz;
5896
5897 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5898 #ifdef CONFIG_CPU_FREQ
5899 struct cpufreq_policy policy;
5900 int cpu;
5901
5902 memset(&policy, 0, sizeof(policy));
5903 cpu = get_cpu();
5904 cpufreq_get_policy(&policy, cpu);
5905 if (policy.cpuinfo.max_freq)
5906 max_tsc_khz = policy.cpuinfo.max_freq;
5907 put_cpu();
5908 #endif
5909 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5910 CPUFREQ_TRANSITION_NOTIFIER);
5911 }
5912 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5913
5914 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5915 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5916 }
5917
5918 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5919
5920 int kvm_is_in_guest(void)
5921 {
5922 return __this_cpu_read(current_vcpu) != NULL;
5923 }
5924
5925 static int kvm_is_user_mode(void)
5926 {
5927 int user_mode = 3;
5928
5929 if (__this_cpu_read(current_vcpu))
5930 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5931
5932 return user_mode != 0;
5933 }
5934
5935 static unsigned long kvm_get_guest_ip(void)
5936 {
5937 unsigned long ip = 0;
5938
5939 if (__this_cpu_read(current_vcpu))
5940 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5941
5942 return ip;
5943 }
5944
5945 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5946 .is_in_guest = kvm_is_in_guest,
5947 .is_user_mode = kvm_is_user_mode,
5948 .get_guest_ip = kvm_get_guest_ip,
5949 };
5950
5951 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5952 {
5953 __this_cpu_write(current_vcpu, vcpu);
5954 }
5955 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5956
5957 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5958 {
5959 __this_cpu_write(current_vcpu, NULL);
5960 }
5961 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5962
5963 static void kvm_set_mmio_spte_mask(void)
5964 {
5965 u64 mask;
5966 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5967
5968 /*
5969 * Set the reserved bits and the present bit of an paging-structure
5970 * entry to generate page fault with PFER.RSV = 1.
5971 */
5972 /* Mask the reserved physical address bits. */
5973 mask = rsvd_bits(maxphyaddr, 51);
5974
5975 /* Set the present bit. */
5976 mask |= 1ull;
5977
5978 #ifdef CONFIG_X86_64
5979 /*
5980 * If reserved bit is not supported, clear the present bit to disable
5981 * mmio page fault.
5982 */
5983 if (maxphyaddr == 52)
5984 mask &= ~1ull;
5985 #endif
5986
5987 kvm_mmu_set_mmio_spte_mask(mask);
5988 }
5989
5990 #ifdef CONFIG_X86_64
5991 static void pvclock_gtod_update_fn(struct work_struct *work)
5992 {
5993 struct kvm *kvm;
5994
5995 struct kvm_vcpu *vcpu;
5996 int i;
5997
5998 spin_lock(&kvm_lock);
5999 list_for_each_entry(kvm, &vm_list, vm_list)
6000 kvm_for_each_vcpu(i, vcpu, kvm)
6001 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6002 atomic_set(&kvm_guest_has_master_clock, 0);
6003 spin_unlock(&kvm_lock);
6004 }
6005
6006 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6007
6008 /*
6009 * Notification about pvclock gtod data update.
6010 */
6011 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6012 void *priv)
6013 {
6014 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6015 struct timekeeper *tk = priv;
6016
6017 update_pvclock_gtod(tk);
6018
6019 /* disable master clock if host does not trust, or does not
6020 * use, TSC clocksource
6021 */
6022 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6023 atomic_read(&kvm_guest_has_master_clock) != 0)
6024 queue_work(system_long_wq, &pvclock_gtod_work);
6025
6026 return 0;
6027 }
6028
6029 static struct notifier_block pvclock_gtod_notifier = {
6030 .notifier_call = pvclock_gtod_notify,
6031 };
6032 #endif
6033
6034 int kvm_arch_init(void *opaque)
6035 {
6036 int r;
6037 struct kvm_x86_ops *ops = opaque;
6038
6039 if (kvm_x86_ops) {
6040 printk(KERN_ERR "kvm: already loaded the other module\n");
6041 r = -EEXIST;
6042 goto out;
6043 }
6044
6045 if (!ops->cpu_has_kvm_support()) {
6046 printk(KERN_ERR "kvm: no hardware support\n");
6047 r = -EOPNOTSUPP;
6048 goto out;
6049 }
6050 if (ops->disabled_by_bios()) {
6051 printk(KERN_ERR "kvm: disabled by bios\n");
6052 r = -EOPNOTSUPP;
6053 goto out;
6054 }
6055
6056 r = -ENOMEM;
6057 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6058 if (!shared_msrs) {
6059 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6060 goto out;
6061 }
6062
6063 r = kvm_mmu_module_init();
6064 if (r)
6065 goto out_free_percpu;
6066
6067 kvm_set_mmio_spte_mask();
6068
6069 kvm_x86_ops = ops;
6070
6071 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6072 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6073 PT_PRESENT_MASK, 0);
6074 kvm_timer_init();
6075
6076 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6077
6078 if (boot_cpu_has(X86_FEATURE_XSAVE))
6079 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6080
6081 kvm_lapic_init();
6082 #ifdef CONFIG_X86_64
6083 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6084 #endif
6085
6086 return 0;
6087
6088 out_free_percpu:
6089 free_percpu(shared_msrs);
6090 out:
6091 return r;
6092 }
6093
6094 void kvm_arch_exit(void)
6095 {
6096 kvm_lapic_exit();
6097 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6098
6099 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6100 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6101 CPUFREQ_TRANSITION_NOTIFIER);
6102 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6103 #ifdef CONFIG_X86_64
6104 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6105 #endif
6106 kvm_x86_ops = NULL;
6107 kvm_mmu_module_exit();
6108 free_percpu(shared_msrs);
6109 }
6110
6111 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6112 {
6113 ++vcpu->stat.halt_exits;
6114 if (lapic_in_kernel(vcpu)) {
6115 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6116 return 1;
6117 } else {
6118 vcpu->run->exit_reason = KVM_EXIT_HLT;
6119 return 0;
6120 }
6121 }
6122 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6123
6124 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6125 {
6126 int ret = kvm_skip_emulated_instruction(vcpu);
6127 /*
6128 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6129 * KVM_EXIT_DEBUG here.
6130 */
6131 return kvm_vcpu_halt(vcpu) && ret;
6132 }
6133 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6134
6135 #ifdef CONFIG_X86_64
6136 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6137 unsigned long clock_type)
6138 {
6139 struct kvm_clock_pairing clock_pairing;
6140 struct timespec ts;
6141 u64 cycle;
6142 int ret;
6143
6144 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6145 return -KVM_EOPNOTSUPP;
6146
6147 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6148 return -KVM_EOPNOTSUPP;
6149
6150 clock_pairing.sec = ts.tv_sec;
6151 clock_pairing.nsec = ts.tv_nsec;
6152 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6153 clock_pairing.flags = 0;
6154
6155 ret = 0;
6156 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6157 sizeof(struct kvm_clock_pairing)))
6158 ret = -KVM_EFAULT;
6159
6160 return ret;
6161 }
6162 #endif
6163
6164 /*
6165 * kvm_pv_kick_cpu_op: Kick a vcpu.
6166 *
6167 * @apicid - apicid of vcpu to be kicked.
6168 */
6169 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6170 {
6171 struct kvm_lapic_irq lapic_irq;
6172
6173 lapic_irq.shorthand = 0;
6174 lapic_irq.dest_mode = 0;
6175 lapic_irq.dest_id = apicid;
6176 lapic_irq.msi_redir_hint = false;
6177
6178 lapic_irq.delivery_mode = APIC_DM_REMRD;
6179 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6180 }
6181
6182 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6183 {
6184 vcpu->arch.apicv_active = false;
6185 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6186 }
6187
6188 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6189 {
6190 unsigned long nr, a0, a1, a2, a3, ret;
6191 int op_64_bit, r;
6192
6193 r = kvm_skip_emulated_instruction(vcpu);
6194
6195 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6196 return kvm_hv_hypercall(vcpu);
6197
6198 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6199 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6200 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6201 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6202 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6203
6204 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6205
6206 op_64_bit = is_64_bit_mode(vcpu);
6207 if (!op_64_bit) {
6208 nr &= 0xFFFFFFFF;
6209 a0 &= 0xFFFFFFFF;
6210 a1 &= 0xFFFFFFFF;
6211 a2 &= 0xFFFFFFFF;
6212 a3 &= 0xFFFFFFFF;
6213 }
6214
6215 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6216 ret = -KVM_EPERM;
6217 goto out;
6218 }
6219
6220 switch (nr) {
6221 case KVM_HC_VAPIC_POLL_IRQ:
6222 ret = 0;
6223 break;
6224 case KVM_HC_KICK_CPU:
6225 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6226 ret = 0;
6227 break;
6228 #ifdef CONFIG_X86_64
6229 case KVM_HC_CLOCK_PAIRING:
6230 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6231 break;
6232 #endif
6233 default:
6234 ret = -KVM_ENOSYS;
6235 break;
6236 }
6237 out:
6238 if (!op_64_bit)
6239 ret = (u32)ret;
6240 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6241 ++vcpu->stat.hypercalls;
6242 return r;
6243 }
6244 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6245
6246 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6247 {
6248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6249 char instruction[3];
6250 unsigned long rip = kvm_rip_read(vcpu);
6251
6252 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6253
6254 return emulator_write_emulated(ctxt, rip, instruction, 3,
6255 &ctxt->exception);
6256 }
6257
6258 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6259 {
6260 return vcpu->run->request_interrupt_window &&
6261 likely(!pic_in_kernel(vcpu->kvm));
6262 }
6263
6264 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6265 {
6266 struct kvm_run *kvm_run = vcpu->run;
6267
6268 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6269 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6270 kvm_run->cr8 = kvm_get_cr8(vcpu);
6271 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6272 kvm_run->ready_for_interrupt_injection =
6273 pic_in_kernel(vcpu->kvm) ||
6274 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6275 }
6276
6277 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6278 {
6279 int max_irr, tpr;
6280
6281 if (!kvm_x86_ops->update_cr8_intercept)
6282 return;
6283
6284 if (!lapic_in_kernel(vcpu))
6285 return;
6286
6287 if (vcpu->arch.apicv_active)
6288 return;
6289
6290 if (!vcpu->arch.apic->vapic_addr)
6291 max_irr = kvm_lapic_find_highest_irr(vcpu);
6292 else
6293 max_irr = -1;
6294
6295 if (max_irr != -1)
6296 max_irr >>= 4;
6297
6298 tpr = kvm_lapic_get_cr8(vcpu);
6299
6300 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6301 }
6302
6303 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6304 {
6305 int r;
6306
6307 /* try to reinject previous events if any */
6308 if (vcpu->arch.exception.pending) {
6309 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6310 vcpu->arch.exception.has_error_code,
6311 vcpu->arch.exception.error_code);
6312
6313 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6314 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6315 X86_EFLAGS_RF);
6316
6317 if (vcpu->arch.exception.nr == DB_VECTOR &&
6318 (vcpu->arch.dr7 & DR7_GD)) {
6319 vcpu->arch.dr7 &= ~DR7_GD;
6320 kvm_update_dr7(vcpu);
6321 }
6322
6323 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6324 vcpu->arch.exception.has_error_code,
6325 vcpu->arch.exception.error_code,
6326 vcpu->arch.exception.reinject);
6327 return 0;
6328 }
6329
6330 if (vcpu->arch.nmi_injected) {
6331 kvm_x86_ops->set_nmi(vcpu);
6332 return 0;
6333 }
6334
6335 if (vcpu->arch.interrupt.pending) {
6336 kvm_x86_ops->set_irq(vcpu);
6337 return 0;
6338 }
6339
6340 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6341 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6342 if (r != 0)
6343 return r;
6344 }
6345
6346 /* try to inject new event if pending */
6347 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6348 vcpu->arch.smi_pending = false;
6349 enter_smm(vcpu);
6350 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6351 --vcpu->arch.nmi_pending;
6352 vcpu->arch.nmi_injected = true;
6353 kvm_x86_ops->set_nmi(vcpu);
6354 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6355 /*
6356 * Because interrupts can be injected asynchronously, we are
6357 * calling check_nested_events again here to avoid a race condition.
6358 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6359 * proposal and current concerns. Perhaps we should be setting
6360 * KVM_REQ_EVENT only on certain events and not unconditionally?
6361 */
6362 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6363 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6364 if (r != 0)
6365 return r;
6366 }
6367 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6368 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6369 false);
6370 kvm_x86_ops->set_irq(vcpu);
6371 }
6372 }
6373
6374 return 0;
6375 }
6376
6377 static void process_nmi(struct kvm_vcpu *vcpu)
6378 {
6379 unsigned limit = 2;
6380
6381 /*
6382 * x86 is limited to one NMI running, and one NMI pending after it.
6383 * If an NMI is already in progress, limit further NMIs to just one.
6384 * Otherwise, allow two (and we'll inject the first one immediately).
6385 */
6386 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6387 limit = 1;
6388
6389 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6390 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6391 kvm_make_request(KVM_REQ_EVENT, vcpu);
6392 }
6393
6394 #define put_smstate(type, buf, offset, val) \
6395 *(type *)((buf) + (offset) - 0x7e00) = val
6396
6397 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6398 {
6399 u32 flags = 0;
6400 flags |= seg->g << 23;
6401 flags |= seg->db << 22;
6402 flags |= seg->l << 21;
6403 flags |= seg->avl << 20;
6404 flags |= seg->present << 15;
6405 flags |= seg->dpl << 13;
6406 flags |= seg->s << 12;
6407 flags |= seg->type << 8;
6408 return flags;
6409 }
6410
6411 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6412 {
6413 struct kvm_segment seg;
6414 int offset;
6415
6416 kvm_get_segment(vcpu, &seg, n);
6417 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6418
6419 if (n < 3)
6420 offset = 0x7f84 + n * 12;
6421 else
6422 offset = 0x7f2c + (n - 3) * 12;
6423
6424 put_smstate(u32, buf, offset + 8, seg.base);
6425 put_smstate(u32, buf, offset + 4, seg.limit);
6426 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6427 }
6428
6429 #ifdef CONFIG_X86_64
6430 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6431 {
6432 struct kvm_segment seg;
6433 int offset;
6434 u16 flags;
6435
6436 kvm_get_segment(vcpu, &seg, n);
6437 offset = 0x7e00 + n * 16;
6438
6439 flags = enter_smm_get_segment_flags(&seg) >> 8;
6440 put_smstate(u16, buf, offset, seg.selector);
6441 put_smstate(u16, buf, offset + 2, flags);
6442 put_smstate(u32, buf, offset + 4, seg.limit);
6443 put_smstate(u64, buf, offset + 8, seg.base);
6444 }
6445 #endif
6446
6447 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6448 {
6449 struct desc_ptr dt;
6450 struct kvm_segment seg;
6451 unsigned long val;
6452 int i;
6453
6454 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6455 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6456 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6457 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6458
6459 for (i = 0; i < 8; i++)
6460 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6461
6462 kvm_get_dr(vcpu, 6, &val);
6463 put_smstate(u32, buf, 0x7fcc, (u32)val);
6464 kvm_get_dr(vcpu, 7, &val);
6465 put_smstate(u32, buf, 0x7fc8, (u32)val);
6466
6467 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6468 put_smstate(u32, buf, 0x7fc4, seg.selector);
6469 put_smstate(u32, buf, 0x7f64, seg.base);
6470 put_smstate(u32, buf, 0x7f60, seg.limit);
6471 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6472
6473 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6474 put_smstate(u32, buf, 0x7fc0, seg.selector);
6475 put_smstate(u32, buf, 0x7f80, seg.base);
6476 put_smstate(u32, buf, 0x7f7c, seg.limit);
6477 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6478
6479 kvm_x86_ops->get_gdt(vcpu, &dt);
6480 put_smstate(u32, buf, 0x7f74, dt.address);
6481 put_smstate(u32, buf, 0x7f70, dt.size);
6482
6483 kvm_x86_ops->get_idt(vcpu, &dt);
6484 put_smstate(u32, buf, 0x7f58, dt.address);
6485 put_smstate(u32, buf, 0x7f54, dt.size);
6486
6487 for (i = 0; i < 6; i++)
6488 enter_smm_save_seg_32(vcpu, buf, i);
6489
6490 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6491
6492 /* revision id */
6493 put_smstate(u32, buf, 0x7efc, 0x00020000);
6494 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6495 }
6496
6497 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6498 {
6499 #ifdef CONFIG_X86_64
6500 struct desc_ptr dt;
6501 struct kvm_segment seg;
6502 unsigned long val;
6503 int i;
6504
6505 for (i = 0; i < 16; i++)
6506 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6507
6508 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6509 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6510
6511 kvm_get_dr(vcpu, 6, &val);
6512 put_smstate(u64, buf, 0x7f68, val);
6513 kvm_get_dr(vcpu, 7, &val);
6514 put_smstate(u64, buf, 0x7f60, val);
6515
6516 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6517 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6518 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6519
6520 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6521
6522 /* revision id */
6523 put_smstate(u32, buf, 0x7efc, 0x00020064);
6524
6525 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6526
6527 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6528 put_smstate(u16, buf, 0x7e90, seg.selector);
6529 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6530 put_smstate(u32, buf, 0x7e94, seg.limit);
6531 put_smstate(u64, buf, 0x7e98, seg.base);
6532
6533 kvm_x86_ops->get_idt(vcpu, &dt);
6534 put_smstate(u32, buf, 0x7e84, dt.size);
6535 put_smstate(u64, buf, 0x7e88, dt.address);
6536
6537 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6538 put_smstate(u16, buf, 0x7e70, seg.selector);
6539 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6540 put_smstate(u32, buf, 0x7e74, seg.limit);
6541 put_smstate(u64, buf, 0x7e78, seg.base);
6542
6543 kvm_x86_ops->get_gdt(vcpu, &dt);
6544 put_smstate(u32, buf, 0x7e64, dt.size);
6545 put_smstate(u64, buf, 0x7e68, dt.address);
6546
6547 for (i = 0; i < 6; i++)
6548 enter_smm_save_seg_64(vcpu, buf, i);
6549 #else
6550 WARN_ON_ONCE(1);
6551 #endif
6552 }
6553
6554 static void enter_smm(struct kvm_vcpu *vcpu)
6555 {
6556 struct kvm_segment cs, ds;
6557 struct desc_ptr dt;
6558 char buf[512];
6559 u32 cr0;
6560
6561 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6562 vcpu->arch.hflags |= HF_SMM_MASK;
6563 memset(buf, 0, 512);
6564 if (guest_cpuid_has_longmode(vcpu))
6565 enter_smm_save_state_64(vcpu, buf);
6566 else
6567 enter_smm_save_state_32(vcpu, buf);
6568
6569 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6570
6571 if (kvm_x86_ops->get_nmi_mask(vcpu))
6572 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6573 else
6574 kvm_x86_ops->set_nmi_mask(vcpu, true);
6575
6576 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6577 kvm_rip_write(vcpu, 0x8000);
6578
6579 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6580 kvm_x86_ops->set_cr0(vcpu, cr0);
6581 vcpu->arch.cr0 = cr0;
6582
6583 kvm_x86_ops->set_cr4(vcpu, 0);
6584
6585 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6586 dt.address = dt.size = 0;
6587 kvm_x86_ops->set_idt(vcpu, &dt);
6588
6589 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6590
6591 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6592 cs.base = vcpu->arch.smbase;
6593
6594 ds.selector = 0;
6595 ds.base = 0;
6596
6597 cs.limit = ds.limit = 0xffffffff;
6598 cs.type = ds.type = 0x3;
6599 cs.dpl = ds.dpl = 0;
6600 cs.db = ds.db = 0;
6601 cs.s = ds.s = 1;
6602 cs.l = ds.l = 0;
6603 cs.g = ds.g = 1;
6604 cs.avl = ds.avl = 0;
6605 cs.present = ds.present = 1;
6606 cs.unusable = ds.unusable = 0;
6607 cs.padding = ds.padding = 0;
6608
6609 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6610 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6611 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6612 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6613 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6614 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6615
6616 if (guest_cpuid_has_longmode(vcpu))
6617 kvm_x86_ops->set_efer(vcpu, 0);
6618
6619 kvm_update_cpuid(vcpu);
6620 kvm_mmu_reset_context(vcpu);
6621 }
6622
6623 static void process_smi(struct kvm_vcpu *vcpu)
6624 {
6625 vcpu->arch.smi_pending = true;
6626 kvm_make_request(KVM_REQ_EVENT, vcpu);
6627 }
6628
6629 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6630 {
6631 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6632 }
6633
6634 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6635 {
6636 u64 eoi_exit_bitmap[4];
6637
6638 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6639 return;
6640
6641 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6642
6643 if (irqchip_split(vcpu->kvm))
6644 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6645 else {
6646 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6647 kvm_x86_ops->sync_pir_to_irr(vcpu);
6648 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6649 }
6650 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6651 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6652 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6653 }
6654
6655 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6656 {
6657 ++vcpu->stat.tlb_flush;
6658 kvm_x86_ops->tlb_flush(vcpu);
6659 }
6660
6661 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6662 {
6663 struct page *page = NULL;
6664
6665 if (!lapic_in_kernel(vcpu))
6666 return;
6667
6668 if (!kvm_x86_ops->set_apic_access_page_addr)
6669 return;
6670
6671 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6672 if (is_error_page(page))
6673 return;
6674 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6675
6676 /*
6677 * Do not pin apic access page in memory, the MMU notifier
6678 * will call us again if it is migrated or swapped out.
6679 */
6680 put_page(page);
6681 }
6682 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6683
6684 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6685 unsigned long address)
6686 {
6687 /*
6688 * The physical address of apic access page is stored in the VMCS.
6689 * Update it when it becomes invalid.
6690 */
6691 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6692 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6693 }
6694
6695 /*
6696 * Returns 1 to let vcpu_run() continue the guest execution loop without
6697 * exiting to the userspace. Otherwise, the value will be returned to the
6698 * userspace.
6699 */
6700 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6701 {
6702 int r;
6703 bool req_int_win =
6704 dm_request_for_irq_injection(vcpu) &&
6705 kvm_cpu_accept_dm_intr(vcpu);
6706
6707 bool req_immediate_exit = false;
6708
6709 if (vcpu->requests) {
6710 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6711 kvm_mmu_unload(vcpu);
6712 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6713 __kvm_migrate_timers(vcpu);
6714 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6715 kvm_gen_update_masterclock(vcpu->kvm);
6716 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6717 kvm_gen_kvmclock_update(vcpu);
6718 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6719 r = kvm_guest_time_update(vcpu);
6720 if (unlikely(r))
6721 goto out;
6722 }
6723 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6724 kvm_mmu_sync_roots(vcpu);
6725 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6726 kvm_vcpu_flush_tlb(vcpu);
6727 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6728 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6729 r = 0;
6730 goto out;
6731 }
6732 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6733 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6734 r = 0;
6735 goto out;
6736 }
6737 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6738 /* Page is swapped out. Do synthetic halt */
6739 vcpu->arch.apf.halted = true;
6740 r = 1;
6741 goto out;
6742 }
6743 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6744 record_steal_time(vcpu);
6745 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6746 process_smi(vcpu);
6747 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6748 process_nmi(vcpu);
6749 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6750 kvm_pmu_handle_event(vcpu);
6751 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6752 kvm_pmu_deliver_pmi(vcpu);
6753 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6754 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6755 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6756 vcpu->arch.ioapic_handled_vectors)) {
6757 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6758 vcpu->run->eoi.vector =
6759 vcpu->arch.pending_ioapic_eoi;
6760 r = 0;
6761 goto out;
6762 }
6763 }
6764 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6765 vcpu_scan_ioapic(vcpu);
6766 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6767 kvm_vcpu_reload_apic_access_page(vcpu);
6768 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6769 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6770 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6771 r = 0;
6772 goto out;
6773 }
6774 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6775 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6776 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6777 r = 0;
6778 goto out;
6779 }
6780 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6781 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6782 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6783 r = 0;
6784 goto out;
6785 }
6786
6787 /*
6788 * KVM_REQ_HV_STIMER has to be processed after
6789 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6790 * depend on the guest clock being up-to-date
6791 */
6792 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6793 kvm_hv_process_stimers(vcpu);
6794 }
6795
6796 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6797 ++vcpu->stat.req_event;
6798 kvm_apic_accept_events(vcpu);
6799 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6800 r = 1;
6801 goto out;
6802 }
6803
6804 if (inject_pending_event(vcpu, req_int_win) != 0)
6805 req_immediate_exit = true;
6806 else {
6807 /* Enable NMI/IRQ window open exits if needed.
6808 *
6809 * SMIs have two cases: 1) they can be nested, and
6810 * then there is nothing to do here because RSM will
6811 * cause a vmexit anyway; 2) or the SMI can be pending
6812 * because inject_pending_event has completed the
6813 * injection of an IRQ or NMI from the previous vmexit,
6814 * and then we request an immediate exit to inject the SMI.
6815 */
6816 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6817 req_immediate_exit = true;
6818 if (vcpu->arch.nmi_pending)
6819 kvm_x86_ops->enable_nmi_window(vcpu);
6820 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6821 kvm_x86_ops->enable_irq_window(vcpu);
6822 }
6823
6824 if (kvm_lapic_enabled(vcpu)) {
6825 update_cr8_intercept(vcpu);
6826 kvm_lapic_sync_to_vapic(vcpu);
6827 }
6828 }
6829
6830 r = kvm_mmu_reload(vcpu);
6831 if (unlikely(r)) {
6832 goto cancel_injection;
6833 }
6834
6835 preempt_disable();
6836
6837 kvm_x86_ops->prepare_guest_switch(vcpu);
6838 kvm_load_guest_fpu(vcpu);
6839
6840 /*
6841 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6842 * IPI are then delayed after guest entry, which ensures that they
6843 * result in virtual interrupt delivery.
6844 */
6845 local_irq_disable();
6846 vcpu->mode = IN_GUEST_MODE;
6847
6848 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6849
6850 /*
6851 * 1) We should set ->mode before checking ->requests. Please see
6852 * the comment in kvm_make_all_cpus_request.
6853 *
6854 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6855 * pairs with the memory barrier implicit in pi_test_and_set_on
6856 * (see vmx_deliver_posted_interrupt).
6857 *
6858 * 3) This also orders the write to mode from any reads to the page
6859 * tables done while the VCPU is running. Please see the comment
6860 * in kvm_flush_remote_tlbs.
6861 */
6862 smp_mb__after_srcu_read_unlock();
6863
6864 /*
6865 * This handles the case where a posted interrupt was
6866 * notified with kvm_vcpu_kick.
6867 */
6868 if (kvm_lapic_enabled(vcpu)) {
6869 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6870 kvm_x86_ops->sync_pir_to_irr(vcpu);
6871 }
6872
6873 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6874 || need_resched() || signal_pending(current)) {
6875 vcpu->mode = OUTSIDE_GUEST_MODE;
6876 smp_wmb();
6877 local_irq_enable();
6878 preempt_enable();
6879 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6880 r = 1;
6881 goto cancel_injection;
6882 }
6883
6884 kvm_load_guest_xcr0(vcpu);
6885
6886 if (req_immediate_exit) {
6887 kvm_make_request(KVM_REQ_EVENT, vcpu);
6888 smp_send_reschedule(vcpu->cpu);
6889 }
6890
6891 trace_kvm_entry(vcpu->vcpu_id);
6892 wait_lapic_expire(vcpu);
6893 guest_enter_irqoff();
6894
6895 if (unlikely(vcpu->arch.switch_db_regs)) {
6896 set_debugreg(0, 7);
6897 set_debugreg(vcpu->arch.eff_db[0], 0);
6898 set_debugreg(vcpu->arch.eff_db[1], 1);
6899 set_debugreg(vcpu->arch.eff_db[2], 2);
6900 set_debugreg(vcpu->arch.eff_db[3], 3);
6901 set_debugreg(vcpu->arch.dr6, 6);
6902 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6903 }
6904
6905 kvm_x86_ops->run(vcpu);
6906
6907 /*
6908 * Do this here before restoring debug registers on the host. And
6909 * since we do this before handling the vmexit, a DR access vmexit
6910 * can (a) read the correct value of the debug registers, (b) set
6911 * KVM_DEBUGREG_WONT_EXIT again.
6912 */
6913 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6914 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6915 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6916 kvm_update_dr0123(vcpu);
6917 kvm_update_dr6(vcpu);
6918 kvm_update_dr7(vcpu);
6919 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6920 }
6921
6922 /*
6923 * If the guest has used debug registers, at least dr7
6924 * will be disabled while returning to the host.
6925 * If we don't have active breakpoints in the host, we don't
6926 * care about the messed up debug address registers. But if
6927 * we have some of them active, restore the old state.
6928 */
6929 if (hw_breakpoint_active())
6930 hw_breakpoint_restore();
6931
6932 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6933
6934 vcpu->mode = OUTSIDE_GUEST_MODE;
6935 smp_wmb();
6936
6937 kvm_put_guest_xcr0(vcpu);
6938
6939 kvm_x86_ops->handle_external_intr(vcpu);
6940
6941 ++vcpu->stat.exits;
6942
6943 guest_exit_irqoff();
6944
6945 local_irq_enable();
6946 preempt_enable();
6947
6948 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6949
6950 /*
6951 * Profile KVM exit RIPs:
6952 */
6953 if (unlikely(prof_on == KVM_PROFILING)) {
6954 unsigned long rip = kvm_rip_read(vcpu);
6955 profile_hit(KVM_PROFILING, (void *)rip);
6956 }
6957
6958 if (unlikely(vcpu->arch.tsc_always_catchup))
6959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6960
6961 if (vcpu->arch.apic_attention)
6962 kvm_lapic_sync_from_vapic(vcpu);
6963
6964 r = kvm_x86_ops->handle_exit(vcpu);
6965 return r;
6966
6967 cancel_injection:
6968 kvm_x86_ops->cancel_injection(vcpu);
6969 if (unlikely(vcpu->arch.apic_attention))
6970 kvm_lapic_sync_from_vapic(vcpu);
6971 out:
6972 return r;
6973 }
6974
6975 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6976 {
6977 if (!kvm_arch_vcpu_runnable(vcpu) &&
6978 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6979 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6980 kvm_vcpu_block(vcpu);
6981 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6982
6983 if (kvm_x86_ops->post_block)
6984 kvm_x86_ops->post_block(vcpu);
6985
6986 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6987 return 1;
6988 }
6989
6990 kvm_apic_accept_events(vcpu);
6991 switch(vcpu->arch.mp_state) {
6992 case KVM_MP_STATE_HALTED:
6993 vcpu->arch.pv.pv_unhalted = false;
6994 vcpu->arch.mp_state =
6995 KVM_MP_STATE_RUNNABLE;
6996 case KVM_MP_STATE_RUNNABLE:
6997 vcpu->arch.apf.halted = false;
6998 break;
6999 case KVM_MP_STATE_INIT_RECEIVED:
7000 break;
7001 default:
7002 return -EINTR;
7003 break;
7004 }
7005 return 1;
7006 }
7007
7008 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7009 {
7010 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7011 kvm_x86_ops->check_nested_events(vcpu, false);
7012
7013 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7014 !vcpu->arch.apf.halted);
7015 }
7016
7017 static int vcpu_run(struct kvm_vcpu *vcpu)
7018 {
7019 int r;
7020 struct kvm *kvm = vcpu->kvm;
7021
7022 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7023
7024 for (;;) {
7025 if (kvm_vcpu_running(vcpu)) {
7026 r = vcpu_enter_guest(vcpu);
7027 } else {
7028 r = vcpu_block(kvm, vcpu);
7029 }
7030
7031 if (r <= 0)
7032 break;
7033
7034 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7035 if (kvm_cpu_has_pending_timer(vcpu))
7036 kvm_inject_pending_timer_irqs(vcpu);
7037
7038 if (dm_request_for_irq_injection(vcpu) &&
7039 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7040 r = 0;
7041 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7042 ++vcpu->stat.request_irq_exits;
7043 break;
7044 }
7045
7046 kvm_check_async_pf_completion(vcpu);
7047
7048 if (signal_pending(current)) {
7049 r = -EINTR;
7050 vcpu->run->exit_reason = KVM_EXIT_INTR;
7051 ++vcpu->stat.signal_exits;
7052 break;
7053 }
7054 if (need_resched()) {
7055 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7056 cond_resched();
7057 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7058 }
7059 }
7060
7061 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7062
7063 return r;
7064 }
7065
7066 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7067 {
7068 int r;
7069 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7070 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7071 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7072 if (r != EMULATE_DONE)
7073 return 0;
7074 return 1;
7075 }
7076
7077 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7078 {
7079 BUG_ON(!vcpu->arch.pio.count);
7080
7081 return complete_emulated_io(vcpu);
7082 }
7083
7084 /*
7085 * Implements the following, as a state machine:
7086 *
7087 * read:
7088 * for each fragment
7089 * for each mmio piece in the fragment
7090 * write gpa, len
7091 * exit
7092 * copy data
7093 * execute insn
7094 *
7095 * write:
7096 * for each fragment
7097 * for each mmio piece in the fragment
7098 * write gpa, len
7099 * copy data
7100 * exit
7101 */
7102 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7103 {
7104 struct kvm_run *run = vcpu->run;
7105 struct kvm_mmio_fragment *frag;
7106 unsigned len;
7107
7108 BUG_ON(!vcpu->mmio_needed);
7109
7110 /* Complete previous fragment */
7111 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7112 len = min(8u, frag->len);
7113 if (!vcpu->mmio_is_write)
7114 memcpy(frag->data, run->mmio.data, len);
7115
7116 if (frag->len <= 8) {
7117 /* Switch to the next fragment. */
7118 frag++;
7119 vcpu->mmio_cur_fragment++;
7120 } else {
7121 /* Go forward to the next mmio piece. */
7122 frag->data += len;
7123 frag->gpa += len;
7124 frag->len -= len;
7125 }
7126
7127 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7128 vcpu->mmio_needed = 0;
7129
7130 /* FIXME: return into emulator if single-stepping. */
7131 if (vcpu->mmio_is_write)
7132 return 1;
7133 vcpu->mmio_read_completed = 1;
7134 return complete_emulated_io(vcpu);
7135 }
7136
7137 run->exit_reason = KVM_EXIT_MMIO;
7138 run->mmio.phys_addr = frag->gpa;
7139 if (vcpu->mmio_is_write)
7140 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7141 run->mmio.len = min(8u, frag->len);
7142 run->mmio.is_write = vcpu->mmio_is_write;
7143 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7144 return 0;
7145 }
7146
7147
7148 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7149 {
7150 struct fpu *fpu = &current->thread.fpu;
7151 int r;
7152 sigset_t sigsaved;
7153
7154 fpu__activate_curr(fpu);
7155
7156 if (vcpu->sigset_active)
7157 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7158
7159 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7160 kvm_vcpu_block(vcpu);
7161 kvm_apic_accept_events(vcpu);
7162 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7163 r = -EAGAIN;
7164 goto out;
7165 }
7166
7167 /* re-sync apic's tpr */
7168 if (!lapic_in_kernel(vcpu)) {
7169 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7170 r = -EINVAL;
7171 goto out;
7172 }
7173 }
7174
7175 if (unlikely(vcpu->arch.complete_userspace_io)) {
7176 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7177 vcpu->arch.complete_userspace_io = NULL;
7178 r = cui(vcpu);
7179 if (r <= 0)
7180 goto out;
7181 } else
7182 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7183
7184 if (kvm_run->immediate_exit)
7185 r = -EINTR;
7186 else
7187 r = vcpu_run(vcpu);
7188
7189 out:
7190 post_kvm_run_save(vcpu);
7191 if (vcpu->sigset_active)
7192 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7193
7194 return r;
7195 }
7196
7197 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7198 {
7199 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7200 /*
7201 * We are here if userspace calls get_regs() in the middle of
7202 * instruction emulation. Registers state needs to be copied
7203 * back from emulation context to vcpu. Userspace shouldn't do
7204 * that usually, but some bad designed PV devices (vmware
7205 * backdoor interface) need this to work
7206 */
7207 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7208 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7209 }
7210 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7211 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7212 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7213 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7214 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7215 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7216 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7217 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7218 #ifdef CONFIG_X86_64
7219 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7220 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7221 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7222 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7223 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7224 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7225 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7226 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7227 #endif
7228
7229 regs->rip = kvm_rip_read(vcpu);
7230 regs->rflags = kvm_get_rflags(vcpu);
7231
7232 return 0;
7233 }
7234
7235 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7236 {
7237 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7238 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7239
7240 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7241 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7242 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7243 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7244 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7245 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7246 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7247 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7248 #ifdef CONFIG_X86_64
7249 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7250 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7251 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7252 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7253 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7254 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7255 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7256 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7257 #endif
7258
7259 kvm_rip_write(vcpu, regs->rip);
7260 kvm_set_rflags(vcpu, regs->rflags);
7261
7262 vcpu->arch.exception.pending = false;
7263
7264 kvm_make_request(KVM_REQ_EVENT, vcpu);
7265
7266 return 0;
7267 }
7268
7269 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7270 {
7271 struct kvm_segment cs;
7272
7273 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7274 *db = cs.db;
7275 *l = cs.l;
7276 }
7277 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7278
7279 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7280 struct kvm_sregs *sregs)
7281 {
7282 struct desc_ptr dt;
7283
7284 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7285 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7286 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7287 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7288 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7289 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7290
7291 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7292 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7293
7294 kvm_x86_ops->get_idt(vcpu, &dt);
7295 sregs->idt.limit = dt.size;
7296 sregs->idt.base = dt.address;
7297 kvm_x86_ops->get_gdt(vcpu, &dt);
7298 sregs->gdt.limit = dt.size;
7299 sregs->gdt.base = dt.address;
7300
7301 sregs->cr0 = kvm_read_cr0(vcpu);
7302 sregs->cr2 = vcpu->arch.cr2;
7303 sregs->cr3 = kvm_read_cr3(vcpu);
7304 sregs->cr4 = kvm_read_cr4(vcpu);
7305 sregs->cr8 = kvm_get_cr8(vcpu);
7306 sregs->efer = vcpu->arch.efer;
7307 sregs->apic_base = kvm_get_apic_base(vcpu);
7308
7309 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7310
7311 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7312 set_bit(vcpu->arch.interrupt.nr,
7313 (unsigned long *)sregs->interrupt_bitmap);
7314
7315 return 0;
7316 }
7317
7318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7319 struct kvm_mp_state *mp_state)
7320 {
7321 kvm_apic_accept_events(vcpu);
7322 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7323 vcpu->arch.pv.pv_unhalted)
7324 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7325 else
7326 mp_state->mp_state = vcpu->arch.mp_state;
7327
7328 return 0;
7329 }
7330
7331 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7332 struct kvm_mp_state *mp_state)
7333 {
7334 if (!lapic_in_kernel(vcpu) &&
7335 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7336 return -EINVAL;
7337
7338 /* INITs are latched while in SMM */
7339 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7340 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7341 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7342 return -EINVAL;
7343
7344 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7345 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7346 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7347 } else
7348 vcpu->arch.mp_state = mp_state->mp_state;
7349 kvm_make_request(KVM_REQ_EVENT, vcpu);
7350 return 0;
7351 }
7352
7353 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7354 int reason, bool has_error_code, u32 error_code)
7355 {
7356 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7357 int ret;
7358
7359 init_emulate_ctxt(vcpu);
7360
7361 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7362 has_error_code, error_code);
7363
7364 if (ret)
7365 return EMULATE_FAIL;
7366
7367 kvm_rip_write(vcpu, ctxt->eip);
7368 kvm_set_rflags(vcpu, ctxt->eflags);
7369 kvm_make_request(KVM_REQ_EVENT, vcpu);
7370 return EMULATE_DONE;
7371 }
7372 EXPORT_SYMBOL_GPL(kvm_task_switch);
7373
7374 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7375 struct kvm_sregs *sregs)
7376 {
7377 struct msr_data apic_base_msr;
7378 int mmu_reset_needed = 0;
7379 int pending_vec, max_bits, idx;
7380 struct desc_ptr dt;
7381
7382 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7383 return -EINVAL;
7384
7385 dt.size = sregs->idt.limit;
7386 dt.address = sregs->idt.base;
7387 kvm_x86_ops->set_idt(vcpu, &dt);
7388 dt.size = sregs->gdt.limit;
7389 dt.address = sregs->gdt.base;
7390 kvm_x86_ops->set_gdt(vcpu, &dt);
7391
7392 vcpu->arch.cr2 = sregs->cr2;
7393 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7394 vcpu->arch.cr3 = sregs->cr3;
7395 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7396
7397 kvm_set_cr8(vcpu, sregs->cr8);
7398
7399 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7400 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7401 apic_base_msr.data = sregs->apic_base;
7402 apic_base_msr.host_initiated = true;
7403 kvm_set_apic_base(vcpu, &apic_base_msr);
7404
7405 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7406 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7407 vcpu->arch.cr0 = sregs->cr0;
7408
7409 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7410 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7411 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7412 kvm_update_cpuid(vcpu);
7413
7414 idx = srcu_read_lock(&vcpu->kvm->srcu);
7415 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7416 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7417 mmu_reset_needed = 1;
7418 }
7419 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7420
7421 if (mmu_reset_needed)
7422 kvm_mmu_reset_context(vcpu);
7423
7424 max_bits = KVM_NR_INTERRUPTS;
7425 pending_vec = find_first_bit(
7426 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7427 if (pending_vec < max_bits) {
7428 kvm_queue_interrupt(vcpu, pending_vec, false);
7429 pr_debug("Set back pending irq %d\n", pending_vec);
7430 }
7431
7432 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7433 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7434 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7435 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7436 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7437 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7438
7439 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7440 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7441
7442 update_cr8_intercept(vcpu);
7443
7444 /* Older userspace won't unhalt the vcpu on reset. */
7445 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7446 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7447 !is_protmode(vcpu))
7448 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7449
7450 kvm_make_request(KVM_REQ_EVENT, vcpu);
7451
7452 return 0;
7453 }
7454
7455 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7456 struct kvm_guest_debug *dbg)
7457 {
7458 unsigned long rflags;
7459 int i, r;
7460
7461 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7462 r = -EBUSY;
7463 if (vcpu->arch.exception.pending)
7464 goto out;
7465 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7466 kvm_queue_exception(vcpu, DB_VECTOR);
7467 else
7468 kvm_queue_exception(vcpu, BP_VECTOR);
7469 }
7470
7471 /*
7472 * Read rflags as long as potentially injected trace flags are still
7473 * filtered out.
7474 */
7475 rflags = kvm_get_rflags(vcpu);
7476
7477 vcpu->guest_debug = dbg->control;
7478 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7479 vcpu->guest_debug = 0;
7480
7481 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7482 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7483 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7484 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7485 } else {
7486 for (i = 0; i < KVM_NR_DB_REGS; i++)
7487 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7488 }
7489 kvm_update_dr7(vcpu);
7490
7491 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7492 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7493 get_segment_base(vcpu, VCPU_SREG_CS);
7494
7495 /*
7496 * Trigger an rflags update that will inject or remove the trace
7497 * flags.
7498 */
7499 kvm_set_rflags(vcpu, rflags);
7500
7501 kvm_x86_ops->update_bp_intercept(vcpu);
7502
7503 r = 0;
7504
7505 out:
7506
7507 return r;
7508 }
7509
7510 /*
7511 * Translate a guest virtual address to a guest physical address.
7512 */
7513 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7514 struct kvm_translation *tr)
7515 {
7516 unsigned long vaddr = tr->linear_address;
7517 gpa_t gpa;
7518 int idx;
7519
7520 idx = srcu_read_lock(&vcpu->kvm->srcu);
7521 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7522 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7523 tr->physical_address = gpa;
7524 tr->valid = gpa != UNMAPPED_GVA;
7525 tr->writeable = 1;
7526 tr->usermode = 0;
7527
7528 return 0;
7529 }
7530
7531 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7532 {
7533 struct fxregs_state *fxsave =
7534 &vcpu->arch.guest_fpu.state.fxsave;
7535
7536 memcpy(fpu->fpr, fxsave->st_space, 128);
7537 fpu->fcw = fxsave->cwd;
7538 fpu->fsw = fxsave->swd;
7539 fpu->ftwx = fxsave->twd;
7540 fpu->last_opcode = fxsave->fop;
7541 fpu->last_ip = fxsave->rip;
7542 fpu->last_dp = fxsave->rdp;
7543 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7544
7545 return 0;
7546 }
7547
7548 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7549 {
7550 struct fxregs_state *fxsave =
7551 &vcpu->arch.guest_fpu.state.fxsave;
7552
7553 memcpy(fxsave->st_space, fpu->fpr, 128);
7554 fxsave->cwd = fpu->fcw;
7555 fxsave->swd = fpu->fsw;
7556 fxsave->twd = fpu->ftwx;
7557 fxsave->fop = fpu->last_opcode;
7558 fxsave->rip = fpu->last_ip;
7559 fxsave->rdp = fpu->last_dp;
7560 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7561
7562 return 0;
7563 }
7564
7565 static void fx_init(struct kvm_vcpu *vcpu)
7566 {
7567 fpstate_init(&vcpu->arch.guest_fpu.state);
7568 if (boot_cpu_has(X86_FEATURE_XSAVES))
7569 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7570 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7571
7572 /*
7573 * Ensure guest xcr0 is valid for loading
7574 */
7575 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7576
7577 vcpu->arch.cr0 |= X86_CR0_ET;
7578 }
7579
7580 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7581 {
7582 if (vcpu->guest_fpu_loaded)
7583 return;
7584
7585 /*
7586 * Restore all possible states in the guest,
7587 * and assume host would use all available bits.
7588 * Guest xcr0 would be loaded later.
7589 */
7590 vcpu->guest_fpu_loaded = 1;
7591 __kernel_fpu_begin();
7592 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7593 trace_kvm_fpu(1);
7594 }
7595
7596 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7597 {
7598 if (!vcpu->guest_fpu_loaded)
7599 return;
7600
7601 vcpu->guest_fpu_loaded = 0;
7602 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7603 __kernel_fpu_end();
7604 ++vcpu->stat.fpu_reload;
7605 trace_kvm_fpu(0);
7606 }
7607
7608 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7609 {
7610 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7611
7612 kvmclock_reset(vcpu);
7613
7614 kvm_x86_ops->vcpu_free(vcpu);
7615 free_cpumask_var(wbinvd_dirty_mask);
7616 }
7617
7618 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7619 unsigned int id)
7620 {
7621 struct kvm_vcpu *vcpu;
7622
7623 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7624 printk_once(KERN_WARNING
7625 "kvm: SMP vm created on host with unstable TSC; "
7626 "guest TSC will not be reliable\n");
7627
7628 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7629
7630 return vcpu;
7631 }
7632
7633 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7634 {
7635 int r;
7636
7637 kvm_vcpu_mtrr_init(vcpu);
7638 r = vcpu_load(vcpu);
7639 if (r)
7640 return r;
7641 kvm_vcpu_reset(vcpu, false);
7642 kvm_mmu_setup(vcpu);
7643 vcpu_put(vcpu);
7644 return r;
7645 }
7646
7647 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7648 {
7649 struct msr_data msr;
7650 struct kvm *kvm = vcpu->kvm;
7651
7652 if (vcpu_load(vcpu))
7653 return;
7654 msr.data = 0x0;
7655 msr.index = MSR_IA32_TSC;
7656 msr.host_initiated = true;
7657 kvm_write_tsc(vcpu, &msr);
7658 vcpu_put(vcpu);
7659
7660 if (!kvmclock_periodic_sync)
7661 return;
7662
7663 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7664 KVMCLOCK_SYNC_PERIOD);
7665 }
7666
7667 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7668 {
7669 int r;
7670 vcpu->arch.apf.msr_val = 0;
7671
7672 r = vcpu_load(vcpu);
7673 BUG_ON(r);
7674 kvm_mmu_unload(vcpu);
7675 vcpu_put(vcpu);
7676
7677 kvm_x86_ops->vcpu_free(vcpu);
7678 }
7679
7680 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7681 {
7682 vcpu->arch.hflags = 0;
7683
7684 vcpu->arch.smi_pending = 0;
7685 atomic_set(&vcpu->arch.nmi_queued, 0);
7686 vcpu->arch.nmi_pending = 0;
7687 vcpu->arch.nmi_injected = false;
7688 kvm_clear_interrupt_queue(vcpu);
7689 kvm_clear_exception_queue(vcpu);
7690
7691 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7692 kvm_update_dr0123(vcpu);
7693 vcpu->arch.dr6 = DR6_INIT;
7694 kvm_update_dr6(vcpu);
7695 vcpu->arch.dr7 = DR7_FIXED_1;
7696 kvm_update_dr7(vcpu);
7697
7698 vcpu->arch.cr2 = 0;
7699
7700 kvm_make_request(KVM_REQ_EVENT, vcpu);
7701 vcpu->arch.apf.msr_val = 0;
7702 vcpu->arch.st.msr_val = 0;
7703
7704 kvmclock_reset(vcpu);
7705
7706 kvm_clear_async_pf_completion_queue(vcpu);
7707 kvm_async_pf_hash_reset(vcpu);
7708 vcpu->arch.apf.halted = false;
7709
7710 if (!init_event) {
7711 kvm_pmu_reset(vcpu);
7712 vcpu->arch.smbase = 0x30000;
7713 }
7714
7715 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7716 vcpu->arch.regs_avail = ~0;
7717 vcpu->arch.regs_dirty = ~0;
7718
7719 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7720 }
7721
7722 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7723 {
7724 struct kvm_segment cs;
7725
7726 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7727 cs.selector = vector << 8;
7728 cs.base = vector << 12;
7729 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7730 kvm_rip_write(vcpu, 0);
7731 }
7732
7733 int kvm_arch_hardware_enable(void)
7734 {
7735 struct kvm *kvm;
7736 struct kvm_vcpu *vcpu;
7737 int i;
7738 int ret;
7739 u64 local_tsc;
7740 u64 max_tsc = 0;
7741 bool stable, backwards_tsc = false;
7742
7743 kvm_shared_msr_cpu_online();
7744 ret = kvm_x86_ops->hardware_enable();
7745 if (ret != 0)
7746 return ret;
7747
7748 local_tsc = rdtsc();
7749 stable = !check_tsc_unstable();
7750 list_for_each_entry(kvm, &vm_list, vm_list) {
7751 kvm_for_each_vcpu(i, vcpu, kvm) {
7752 if (!stable && vcpu->cpu == smp_processor_id())
7753 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7754 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7755 backwards_tsc = true;
7756 if (vcpu->arch.last_host_tsc > max_tsc)
7757 max_tsc = vcpu->arch.last_host_tsc;
7758 }
7759 }
7760 }
7761
7762 /*
7763 * Sometimes, even reliable TSCs go backwards. This happens on
7764 * platforms that reset TSC during suspend or hibernate actions, but
7765 * maintain synchronization. We must compensate. Fortunately, we can
7766 * detect that condition here, which happens early in CPU bringup,
7767 * before any KVM threads can be running. Unfortunately, we can't
7768 * bring the TSCs fully up to date with real time, as we aren't yet far
7769 * enough into CPU bringup that we know how much real time has actually
7770 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7771 * variables that haven't been updated yet.
7772 *
7773 * So we simply find the maximum observed TSC above, then record the
7774 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7775 * the adjustment will be applied. Note that we accumulate
7776 * adjustments, in case multiple suspend cycles happen before some VCPU
7777 * gets a chance to run again. In the event that no KVM threads get a
7778 * chance to run, we will miss the entire elapsed period, as we'll have
7779 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7780 * loose cycle time. This isn't too big a deal, since the loss will be
7781 * uniform across all VCPUs (not to mention the scenario is extremely
7782 * unlikely). It is possible that a second hibernate recovery happens
7783 * much faster than a first, causing the observed TSC here to be
7784 * smaller; this would require additional padding adjustment, which is
7785 * why we set last_host_tsc to the local tsc observed here.
7786 *
7787 * N.B. - this code below runs only on platforms with reliable TSC,
7788 * as that is the only way backwards_tsc is set above. Also note
7789 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7790 * have the same delta_cyc adjustment applied if backwards_tsc
7791 * is detected. Note further, this adjustment is only done once,
7792 * as we reset last_host_tsc on all VCPUs to stop this from being
7793 * called multiple times (one for each physical CPU bringup).
7794 *
7795 * Platforms with unreliable TSCs don't have to deal with this, they
7796 * will be compensated by the logic in vcpu_load, which sets the TSC to
7797 * catchup mode. This will catchup all VCPUs to real time, but cannot
7798 * guarantee that they stay in perfect synchronization.
7799 */
7800 if (backwards_tsc) {
7801 u64 delta_cyc = max_tsc - local_tsc;
7802 backwards_tsc_observed = true;
7803 list_for_each_entry(kvm, &vm_list, vm_list) {
7804 kvm_for_each_vcpu(i, vcpu, kvm) {
7805 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7806 vcpu->arch.last_host_tsc = local_tsc;
7807 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7808 }
7809
7810 /*
7811 * We have to disable TSC offset matching.. if you were
7812 * booting a VM while issuing an S4 host suspend....
7813 * you may have some problem. Solving this issue is
7814 * left as an exercise to the reader.
7815 */
7816 kvm->arch.last_tsc_nsec = 0;
7817 kvm->arch.last_tsc_write = 0;
7818 }
7819
7820 }
7821 return 0;
7822 }
7823
7824 void kvm_arch_hardware_disable(void)
7825 {
7826 kvm_x86_ops->hardware_disable();
7827 drop_user_return_notifiers();
7828 }
7829
7830 int kvm_arch_hardware_setup(void)
7831 {
7832 int r;
7833
7834 r = kvm_x86_ops->hardware_setup();
7835 if (r != 0)
7836 return r;
7837
7838 if (kvm_has_tsc_control) {
7839 /*
7840 * Make sure the user can only configure tsc_khz values that
7841 * fit into a signed integer.
7842 * A min value is not calculated needed because it will always
7843 * be 1 on all machines.
7844 */
7845 u64 max = min(0x7fffffffULL,
7846 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7847 kvm_max_guest_tsc_khz = max;
7848
7849 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7850 }
7851
7852 kvm_init_msr_list();
7853 return 0;
7854 }
7855
7856 void kvm_arch_hardware_unsetup(void)
7857 {
7858 kvm_x86_ops->hardware_unsetup();
7859 }
7860
7861 void kvm_arch_check_processor_compat(void *rtn)
7862 {
7863 kvm_x86_ops->check_processor_compatibility(rtn);
7864 }
7865
7866 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7867 {
7868 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7869 }
7870 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7871
7872 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7873 {
7874 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7875 }
7876
7877 struct static_key kvm_no_apic_vcpu __read_mostly;
7878 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7879
7880 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7881 {
7882 struct page *page;
7883 struct kvm *kvm;
7884 int r;
7885
7886 BUG_ON(vcpu->kvm == NULL);
7887 kvm = vcpu->kvm;
7888
7889 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7890 vcpu->arch.pv.pv_unhalted = false;
7891 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7892 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7893 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7894 else
7895 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7896
7897 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7898 if (!page) {
7899 r = -ENOMEM;
7900 goto fail;
7901 }
7902 vcpu->arch.pio_data = page_address(page);
7903
7904 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7905
7906 r = kvm_mmu_create(vcpu);
7907 if (r < 0)
7908 goto fail_free_pio_data;
7909
7910 if (irqchip_in_kernel(kvm)) {
7911 r = kvm_create_lapic(vcpu);
7912 if (r < 0)
7913 goto fail_mmu_destroy;
7914 } else
7915 static_key_slow_inc(&kvm_no_apic_vcpu);
7916
7917 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7918 GFP_KERNEL);
7919 if (!vcpu->arch.mce_banks) {
7920 r = -ENOMEM;
7921 goto fail_free_lapic;
7922 }
7923 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7924
7925 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7926 r = -ENOMEM;
7927 goto fail_free_mce_banks;
7928 }
7929
7930 fx_init(vcpu);
7931
7932 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7933 vcpu->arch.pv_time_enabled = false;
7934
7935 vcpu->arch.guest_supported_xcr0 = 0;
7936 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7937
7938 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7939
7940 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7941
7942 kvm_async_pf_hash_reset(vcpu);
7943 kvm_pmu_init(vcpu);
7944
7945 vcpu->arch.pending_external_vector = -1;
7946
7947 kvm_hv_vcpu_init(vcpu);
7948
7949 return 0;
7950
7951 fail_free_mce_banks:
7952 kfree(vcpu->arch.mce_banks);
7953 fail_free_lapic:
7954 kvm_free_lapic(vcpu);
7955 fail_mmu_destroy:
7956 kvm_mmu_destroy(vcpu);
7957 fail_free_pio_data:
7958 free_page((unsigned long)vcpu->arch.pio_data);
7959 fail:
7960 return r;
7961 }
7962
7963 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7964 {
7965 int idx;
7966
7967 kvm_hv_vcpu_uninit(vcpu);
7968 kvm_pmu_destroy(vcpu);
7969 kfree(vcpu->arch.mce_banks);
7970 kvm_free_lapic(vcpu);
7971 idx = srcu_read_lock(&vcpu->kvm->srcu);
7972 kvm_mmu_destroy(vcpu);
7973 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7974 free_page((unsigned long)vcpu->arch.pio_data);
7975 if (!lapic_in_kernel(vcpu))
7976 static_key_slow_dec(&kvm_no_apic_vcpu);
7977 }
7978
7979 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7980 {
7981 kvm_x86_ops->sched_in(vcpu, cpu);
7982 }
7983
7984 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7985 {
7986 if (type)
7987 return -EINVAL;
7988
7989 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7990 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7991 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7992 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7993 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7994
7995 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7996 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7997 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7998 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7999 &kvm->arch.irq_sources_bitmap);
8000
8001 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8002 mutex_init(&kvm->arch.apic_map_lock);
8003 mutex_init(&kvm->arch.hyperv.hv_lock);
8004 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8005
8006 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8007 pvclock_update_vm_gtod_copy(kvm);
8008
8009 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8010 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8011
8012 kvm_page_track_init(kvm);
8013 kvm_mmu_init_vm(kvm);
8014
8015 if (kvm_x86_ops->vm_init)
8016 return kvm_x86_ops->vm_init(kvm);
8017
8018 return 0;
8019 }
8020
8021 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8022 {
8023 int r;
8024 r = vcpu_load(vcpu);
8025 BUG_ON(r);
8026 kvm_mmu_unload(vcpu);
8027 vcpu_put(vcpu);
8028 }
8029
8030 static void kvm_free_vcpus(struct kvm *kvm)
8031 {
8032 unsigned int i;
8033 struct kvm_vcpu *vcpu;
8034
8035 /*
8036 * Unpin any mmu pages first.
8037 */
8038 kvm_for_each_vcpu(i, vcpu, kvm) {
8039 kvm_clear_async_pf_completion_queue(vcpu);
8040 kvm_unload_vcpu_mmu(vcpu);
8041 }
8042 kvm_for_each_vcpu(i, vcpu, kvm)
8043 kvm_arch_vcpu_free(vcpu);
8044
8045 mutex_lock(&kvm->lock);
8046 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8047 kvm->vcpus[i] = NULL;
8048
8049 atomic_set(&kvm->online_vcpus, 0);
8050 mutex_unlock(&kvm->lock);
8051 }
8052
8053 void kvm_arch_sync_events(struct kvm *kvm)
8054 {
8055 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8056 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8057 kvm_free_pit(kvm);
8058 }
8059
8060 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8061 {
8062 int i, r;
8063 unsigned long hva;
8064 struct kvm_memslots *slots = kvm_memslots(kvm);
8065 struct kvm_memory_slot *slot, old;
8066
8067 /* Called with kvm->slots_lock held. */
8068 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8069 return -EINVAL;
8070
8071 slot = id_to_memslot(slots, id);
8072 if (size) {
8073 if (slot->npages)
8074 return -EEXIST;
8075
8076 /*
8077 * MAP_SHARED to prevent internal slot pages from being moved
8078 * by fork()/COW.
8079 */
8080 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8081 MAP_SHARED | MAP_ANONYMOUS, 0);
8082 if (IS_ERR((void *)hva))
8083 return PTR_ERR((void *)hva);
8084 } else {
8085 if (!slot->npages)
8086 return 0;
8087
8088 hva = 0;
8089 }
8090
8091 old = *slot;
8092 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8093 struct kvm_userspace_memory_region m;
8094
8095 m.slot = id | (i << 16);
8096 m.flags = 0;
8097 m.guest_phys_addr = gpa;
8098 m.userspace_addr = hva;
8099 m.memory_size = size;
8100 r = __kvm_set_memory_region(kvm, &m);
8101 if (r < 0)
8102 return r;
8103 }
8104
8105 if (!size) {
8106 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8107 WARN_ON(r < 0);
8108 }
8109
8110 return 0;
8111 }
8112 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8113
8114 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8115 {
8116 int r;
8117
8118 mutex_lock(&kvm->slots_lock);
8119 r = __x86_set_memory_region(kvm, id, gpa, size);
8120 mutex_unlock(&kvm->slots_lock);
8121
8122 return r;
8123 }
8124 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8125
8126 void kvm_arch_destroy_vm(struct kvm *kvm)
8127 {
8128 if (current->mm == kvm->mm) {
8129 /*
8130 * Free memory regions allocated on behalf of userspace,
8131 * unless the the memory map has changed due to process exit
8132 * or fd copying.
8133 */
8134 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8135 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8136 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8137 }
8138 if (kvm_x86_ops->vm_destroy)
8139 kvm_x86_ops->vm_destroy(kvm);
8140 kvm_pic_destroy(kvm);
8141 kvm_ioapic_destroy(kvm);
8142 kvm_free_vcpus(kvm);
8143 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8144 kvm_mmu_uninit_vm(kvm);
8145 kvm_page_track_cleanup(kvm);
8146 }
8147
8148 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8149 struct kvm_memory_slot *dont)
8150 {
8151 int i;
8152
8153 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8154 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8155 kvfree(free->arch.rmap[i]);
8156 free->arch.rmap[i] = NULL;
8157 }
8158 if (i == 0)
8159 continue;
8160
8161 if (!dont || free->arch.lpage_info[i - 1] !=
8162 dont->arch.lpage_info[i - 1]) {
8163 kvfree(free->arch.lpage_info[i - 1]);
8164 free->arch.lpage_info[i - 1] = NULL;
8165 }
8166 }
8167
8168 kvm_page_track_free_memslot(free, dont);
8169 }
8170
8171 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8172 unsigned long npages)
8173 {
8174 int i;
8175
8176 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8177 struct kvm_lpage_info *linfo;
8178 unsigned long ugfn;
8179 int lpages;
8180 int level = i + 1;
8181
8182 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8183 slot->base_gfn, level) + 1;
8184
8185 slot->arch.rmap[i] =
8186 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8187 if (!slot->arch.rmap[i])
8188 goto out_free;
8189 if (i == 0)
8190 continue;
8191
8192 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8193 if (!linfo)
8194 goto out_free;
8195
8196 slot->arch.lpage_info[i - 1] = linfo;
8197
8198 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8199 linfo[0].disallow_lpage = 1;
8200 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8201 linfo[lpages - 1].disallow_lpage = 1;
8202 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8203 /*
8204 * If the gfn and userspace address are not aligned wrt each
8205 * other, or if explicitly asked to, disable large page
8206 * support for this slot
8207 */
8208 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8209 !kvm_largepages_enabled()) {
8210 unsigned long j;
8211
8212 for (j = 0; j < lpages; ++j)
8213 linfo[j].disallow_lpage = 1;
8214 }
8215 }
8216
8217 if (kvm_page_track_create_memslot(slot, npages))
8218 goto out_free;
8219
8220 return 0;
8221
8222 out_free:
8223 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8224 kvfree(slot->arch.rmap[i]);
8225 slot->arch.rmap[i] = NULL;
8226 if (i == 0)
8227 continue;
8228
8229 kvfree(slot->arch.lpage_info[i - 1]);
8230 slot->arch.lpage_info[i - 1] = NULL;
8231 }
8232 return -ENOMEM;
8233 }
8234
8235 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8236 {
8237 /*
8238 * memslots->generation has been incremented.
8239 * mmio generation may have reached its maximum value.
8240 */
8241 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8242 }
8243
8244 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8245 struct kvm_memory_slot *memslot,
8246 const struct kvm_userspace_memory_region *mem,
8247 enum kvm_mr_change change)
8248 {
8249 return 0;
8250 }
8251
8252 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8253 struct kvm_memory_slot *new)
8254 {
8255 /* Still write protect RO slot */
8256 if (new->flags & KVM_MEM_READONLY) {
8257 kvm_mmu_slot_remove_write_access(kvm, new);
8258 return;
8259 }
8260
8261 /*
8262 * Call kvm_x86_ops dirty logging hooks when they are valid.
8263 *
8264 * kvm_x86_ops->slot_disable_log_dirty is called when:
8265 *
8266 * - KVM_MR_CREATE with dirty logging is disabled
8267 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8268 *
8269 * The reason is, in case of PML, we need to set D-bit for any slots
8270 * with dirty logging disabled in order to eliminate unnecessary GPA
8271 * logging in PML buffer (and potential PML buffer full VMEXT). This
8272 * guarantees leaving PML enabled during guest's lifetime won't have
8273 * any additonal overhead from PML when guest is running with dirty
8274 * logging disabled for memory slots.
8275 *
8276 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8277 * to dirty logging mode.
8278 *
8279 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8280 *
8281 * In case of write protect:
8282 *
8283 * Write protect all pages for dirty logging.
8284 *
8285 * All the sptes including the large sptes which point to this
8286 * slot are set to readonly. We can not create any new large
8287 * spte on this slot until the end of the logging.
8288 *
8289 * See the comments in fast_page_fault().
8290 */
8291 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8292 if (kvm_x86_ops->slot_enable_log_dirty)
8293 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8294 else
8295 kvm_mmu_slot_remove_write_access(kvm, new);
8296 } else {
8297 if (kvm_x86_ops->slot_disable_log_dirty)
8298 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8299 }
8300 }
8301
8302 void kvm_arch_commit_memory_region(struct kvm *kvm,
8303 const struct kvm_userspace_memory_region *mem,
8304 const struct kvm_memory_slot *old,
8305 const struct kvm_memory_slot *new,
8306 enum kvm_mr_change change)
8307 {
8308 int nr_mmu_pages = 0;
8309
8310 if (!kvm->arch.n_requested_mmu_pages)
8311 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8312
8313 if (nr_mmu_pages)
8314 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8315
8316 /*
8317 * Dirty logging tracks sptes in 4k granularity, meaning that large
8318 * sptes have to be split. If live migration is successful, the guest
8319 * in the source machine will be destroyed and large sptes will be
8320 * created in the destination. However, if the guest continues to run
8321 * in the source machine (for example if live migration fails), small
8322 * sptes will remain around and cause bad performance.
8323 *
8324 * Scan sptes if dirty logging has been stopped, dropping those
8325 * which can be collapsed into a single large-page spte. Later
8326 * page faults will create the large-page sptes.
8327 */
8328 if ((change != KVM_MR_DELETE) &&
8329 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8330 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8331 kvm_mmu_zap_collapsible_sptes(kvm, new);
8332
8333 /*
8334 * Set up write protection and/or dirty logging for the new slot.
8335 *
8336 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8337 * been zapped so no dirty logging staff is needed for old slot. For
8338 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8339 * new and it's also covered when dealing with the new slot.
8340 *
8341 * FIXME: const-ify all uses of struct kvm_memory_slot.
8342 */
8343 if (change != KVM_MR_DELETE)
8344 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8345 }
8346
8347 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8348 {
8349 kvm_mmu_invalidate_zap_all_pages(kvm);
8350 }
8351
8352 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8353 struct kvm_memory_slot *slot)
8354 {
8355 kvm_page_track_flush_slot(kvm, slot);
8356 }
8357
8358 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8359 {
8360 if (!list_empty_careful(&vcpu->async_pf.done))
8361 return true;
8362
8363 if (kvm_apic_has_events(vcpu))
8364 return true;
8365
8366 if (vcpu->arch.pv.pv_unhalted)
8367 return true;
8368
8369 if (atomic_read(&vcpu->arch.nmi_queued))
8370 return true;
8371
8372 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8373 return true;
8374
8375 if (kvm_arch_interrupt_allowed(vcpu) &&
8376 kvm_cpu_has_interrupt(vcpu))
8377 return true;
8378
8379 if (kvm_hv_has_stimer_pending(vcpu))
8380 return true;
8381
8382 return false;
8383 }
8384
8385 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8386 {
8387 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8388 }
8389
8390 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8391 {
8392 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8393 }
8394
8395 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8396 {
8397 return kvm_x86_ops->interrupt_allowed(vcpu);
8398 }
8399
8400 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8401 {
8402 if (is_64_bit_mode(vcpu))
8403 return kvm_rip_read(vcpu);
8404 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8405 kvm_rip_read(vcpu));
8406 }
8407 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8408
8409 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8410 {
8411 return kvm_get_linear_rip(vcpu) == linear_rip;
8412 }
8413 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8414
8415 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8416 {
8417 unsigned long rflags;
8418
8419 rflags = kvm_x86_ops->get_rflags(vcpu);
8420 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8421 rflags &= ~X86_EFLAGS_TF;
8422 return rflags;
8423 }
8424 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8425
8426 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8427 {
8428 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8429 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8430 rflags |= X86_EFLAGS_TF;
8431 kvm_x86_ops->set_rflags(vcpu, rflags);
8432 }
8433
8434 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8435 {
8436 __kvm_set_rflags(vcpu, rflags);
8437 kvm_make_request(KVM_REQ_EVENT, vcpu);
8438 }
8439 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8440
8441 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8442 {
8443 int r;
8444
8445 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8446 work->wakeup_all)
8447 return;
8448
8449 r = kvm_mmu_reload(vcpu);
8450 if (unlikely(r))
8451 return;
8452
8453 if (!vcpu->arch.mmu.direct_map &&
8454 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8455 return;
8456
8457 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8458 }
8459
8460 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8461 {
8462 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8463 }
8464
8465 static inline u32 kvm_async_pf_next_probe(u32 key)
8466 {
8467 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8468 }
8469
8470 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8471 {
8472 u32 key = kvm_async_pf_hash_fn(gfn);
8473
8474 while (vcpu->arch.apf.gfns[key] != ~0)
8475 key = kvm_async_pf_next_probe(key);
8476
8477 vcpu->arch.apf.gfns[key] = gfn;
8478 }
8479
8480 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8481 {
8482 int i;
8483 u32 key = kvm_async_pf_hash_fn(gfn);
8484
8485 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8486 (vcpu->arch.apf.gfns[key] != gfn &&
8487 vcpu->arch.apf.gfns[key] != ~0); i++)
8488 key = kvm_async_pf_next_probe(key);
8489
8490 return key;
8491 }
8492
8493 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8494 {
8495 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8496 }
8497
8498 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8499 {
8500 u32 i, j, k;
8501
8502 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8503 while (true) {
8504 vcpu->arch.apf.gfns[i] = ~0;
8505 do {
8506 j = kvm_async_pf_next_probe(j);
8507 if (vcpu->arch.apf.gfns[j] == ~0)
8508 return;
8509 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8510 /*
8511 * k lies cyclically in ]i,j]
8512 * | i.k.j |
8513 * |....j i.k.| or |.k..j i...|
8514 */
8515 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8516 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8517 i = j;
8518 }
8519 }
8520
8521 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8522 {
8523 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8524 sizeof(val));
8525 }
8526
8527 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8528 struct kvm_async_pf *work)
8529 {
8530 struct x86_exception fault;
8531
8532 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8533 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8534
8535 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8536 (vcpu->arch.apf.send_user_only &&
8537 kvm_x86_ops->get_cpl(vcpu) == 0))
8538 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8539 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8540 fault.vector = PF_VECTOR;
8541 fault.error_code_valid = true;
8542 fault.error_code = 0;
8543 fault.nested_page_fault = false;
8544 fault.address = work->arch.token;
8545 kvm_inject_page_fault(vcpu, &fault);
8546 }
8547 }
8548
8549 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8550 struct kvm_async_pf *work)
8551 {
8552 struct x86_exception fault;
8553
8554 if (work->wakeup_all)
8555 work->arch.token = ~0; /* broadcast wakeup */
8556 else
8557 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8558 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8559
8560 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8561 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8562 fault.vector = PF_VECTOR;
8563 fault.error_code_valid = true;
8564 fault.error_code = 0;
8565 fault.nested_page_fault = false;
8566 fault.address = work->arch.token;
8567 kvm_inject_page_fault(vcpu, &fault);
8568 }
8569 vcpu->arch.apf.halted = false;
8570 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8571 }
8572
8573 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8574 {
8575 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8576 return true;
8577 else
8578 return !kvm_event_needs_reinjection(vcpu) &&
8579 kvm_x86_ops->interrupt_allowed(vcpu);
8580 }
8581
8582 void kvm_arch_start_assignment(struct kvm *kvm)
8583 {
8584 atomic_inc(&kvm->arch.assigned_device_count);
8585 }
8586 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8587
8588 void kvm_arch_end_assignment(struct kvm *kvm)
8589 {
8590 atomic_dec(&kvm->arch.assigned_device_count);
8591 }
8592 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8593
8594 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8595 {
8596 return atomic_read(&kvm->arch.assigned_device_count);
8597 }
8598 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8599
8600 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8601 {
8602 atomic_inc(&kvm->arch.noncoherent_dma_count);
8603 }
8604 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8605
8606 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8607 {
8608 atomic_dec(&kvm->arch.noncoherent_dma_count);
8609 }
8610 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8611
8612 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8613 {
8614 return atomic_read(&kvm->arch.noncoherent_dma_count);
8615 }
8616 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8617
8618 bool kvm_arch_has_irq_bypass(void)
8619 {
8620 return kvm_x86_ops->update_pi_irte != NULL;
8621 }
8622
8623 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8624 struct irq_bypass_producer *prod)
8625 {
8626 struct kvm_kernel_irqfd *irqfd =
8627 container_of(cons, struct kvm_kernel_irqfd, consumer);
8628
8629 irqfd->producer = prod;
8630
8631 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8632 prod->irq, irqfd->gsi, 1);
8633 }
8634
8635 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8636 struct irq_bypass_producer *prod)
8637 {
8638 int ret;
8639 struct kvm_kernel_irqfd *irqfd =
8640 container_of(cons, struct kvm_kernel_irqfd, consumer);
8641
8642 WARN_ON(irqfd->producer != prod);
8643 irqfd->producer = NULL;
8644
8645 /*
8646 * When producer of consumer is unregistered, we change back to
8647 * remapped mode, so we can re-use the current implementation
8648 * when the irq is masked/disabled or the consumer side (KVM
8649 * int this case doesn't want to receive the interrupts.
8650 */
8651 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8652 if (ret)
8653 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8654 " fails: %d\n", irqfd->consumer.token, ret);
8655 }
8656
8657 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8658 uint32_t guest_irq, bool set)
8659 {
8660 if (!kvm_x86_ops->update_pi_irte)
8661 return -EINVAL;
8662
8663 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8664 }
8665
8666 bool kvm_vector_hashing_enabled(void)
8667 {
8668 return vector_hashing;
8669 }
8670 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8671
8672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);