]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: don't take kvm->irq_lock when creating IRQCHIP
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142 int nr;
143 u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
148 bool registered;
149 struct kvm_shared_msr_values {
150 u64 host;
151 u64 curr;
152 } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
197 { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206 int i;
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213 unsigned slot;
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
217 unsigned long flags;
218
219 /*
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
222 */
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
227 }
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
234 }
235 }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240 u64 value;
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
248 return;
249 }
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266 unsigned i;
267
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276 int err;
277
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 return 0;
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282 if (err)
283 return 1;
284
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
289 }
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324 old_state == 0)))
325 return 1;
326
327 kvm_lapic_set_base(vcpu, msr_info->data);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334 /* Fault while not rebooting. We want the trace. */
335 BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
341 #define EXCPT_PF 2
342
343 static int exception_class(int vector)
344 {
345 switch (vector) {
346 case PF_VECTOR:
347 return EXCPT_PF;
348 case DE_VECTOR:
349 case TS_VECTOR:
350 case NP_VECTOR:
351 case SS_VECTOR:
352 case GP_VECTOR:
353 return EXCPT_CONTRIBUTORY;
354 default:
355 break;
356 }
357 return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT 0
361 #define EXCPT_TRAP 1
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
364
365 static int exception_type(int vector)
366 {
367 unsigned int mask;
368
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
371
372 mask = 1 << vector;
373
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376 return EXCPT_TRAP;
377
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379 return EXCPT_ABORT;
380
381 /* Reserved exceptions will result in fault */
382 return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
387 bool reinject)
388 {
389 u32 prev_nr;
390 int class1, class2;
391
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394 if (!vcpu->arch.exception.pending) {
395 queue:
396 if (has_error && !is_protmode(vcpu))
397 has_error = false;
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
403 return;
404 }
405
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411 return;
412 }
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
422 } else
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
425 exception */
426 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443 if (err)
444 kvm_inject_gp(vcpu, 0);
445 else
446 return kvm_skip_emulated_instruction(vcpu);
447
448 return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 else
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467 return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
492 */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 return true;
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498 return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505 return true;
506
507 kvm_queue_exception(vcpu, UD_VECTOR);
508 return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
516 */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
519 u32 access)
520 {
521 struct x86_exception exception;
522 gfn_t real_gfn;
523 gpa_t ngpa;
524
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
528 return -EFAULT;
529
530 real_gfn = gpa_to_gfn(real_gfn);
531
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
538 {
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
541 }
542
543 /*
544 * Load the pae pdptrs. Return true is they are all valid.
545 */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550 int i;
551 int ret;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
557 if (ret < 0) {
558 ret = 0;
559 goto out;
560 }
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 (pdpte[i] &
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565 ret = 0;
566 goto out;
567 }
568 }
569 ret = 1;
570
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578 return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585 bool changed = true;
586 int offset;
587 gfn_t gfn;
588 int r;
589
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
591 return false;
592
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
595 return true;
596
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
601 if (r < 0)
602 goto out;
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606 return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615 cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618 if (cr0 & 0xffffffff00000000UL)
619 return 1;
620 #endif
621
622 cr0 &= ~CR0_RESERVED_BITS;
623
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625 return 1;
626
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628 return 1;
629
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632 if ((vcpu->arch.efer & EFER_LME)) {
633 int cs_db, cs_l;
634
635 if (!is_pae(vcpu))
636 return 1;
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638 if (cs_l)
639 return 1;
640 } else
641 #endif
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643 kvm_read_cr3(vcpu)))
644 return 1;
645 }
646
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648 return 1;
649
650 kvm_x86_ops->set_cr0(vcpu, cr0);
651
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
655 }
656
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
659
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
682 }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
691 }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696 u64 xcr0 = xcr;
697 u64 old_xcr0 = vcpu->arch.xcr0;
698 u64 valid_bits;
699
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
702 return 1;
703 if (!(xcr0 & XFEATURE_MASK_FP))
704 return 1;
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706 return 1;
707
708 /*
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
712 */
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
715 return 1;
716
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719 return 1;
720
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
723 return 1;
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725 return 1;
726 }
727 vcpu->arch.xcr0 = xcr0;
728
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
731 return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
739 return 1;
740 }
741 return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751 if (cr4 & CR4_RESERVED_BITS)
752 return 1;
753
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755 return 1;
756
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758 return 1;
759
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761 return 1;
762
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764 return 1;
765
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767 return 1;
768
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
771 return 1;
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 kvm_read_cr3(vcpu)))
776 return 1;
777
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
780 return 1;
781
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784 return 1;
785 }
786
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
788 return 1;
789
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
793
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804 cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810 return 0;
811 }
812
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 return 1;
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818 return 1;
819
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829 if (cr8 & CR8_RESERVED_BITS)
830 return 1;
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
833 else
834 vcpu->arch.cr8 = cr8;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
843 else
844 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850 int i;
851
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856 }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867 unsigned long dr7;
868
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
871 else
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881 u64 fixed = DR6_FIXED_1;
882
883 if (!guest_cpuid_has_rtm(vcpu))
884 fixed |= DR6_RTM;
885 return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 switch (dr) {
891 case 0 ... 3:
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
895 break;
896 case 4:
897 /* fall through */
898 case 6:
899 if (val & 0xffffffff00000000ULL)
900 return -1; /* #GP */
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
903 break;
904 case 5:
905 /* fall through */
906 default: /* 7 */
907 if (val & 0xffffffff00000000ULL)
908 return -1; /* #GP */
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
911 break;
912 }
913
914 return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
921 return 1;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 *val = vcpu->arch.db[dr];
932 break;
933 case 4:
934 /* fall through */
935 case 6:
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
938 else
939 *val = kvm_x86_ops->get_dr6(vcpu);
940 break;
941 case 5:
942 /* fall through */
943 default: /* 7 */
944 *val = vcpu->arch.dr7;
945 break;
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954 u64 data;
955 int err;
956
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958 if (err)
959 return err;
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 *
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
974 */
975
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978 MSR_STAR,
979 #ifdef CONFIG_X86_64
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995 HV_X64_MSR_RESET,
996 HV_X64_MSR_VP_INDEX,
997 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_SCONTROL,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001 MSR_KVM_PV_EOI_EN,
1002
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_CTL,
1008 MSR_IA32_MCG_EXT_CTL,
1009 MSR_IA32_SMBASE,
1010 };
1011
1012 static unsigned num_emulated_msrs;
1013
1014 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 {
1016 if (efer & efer_reserved_bits)
1017 return false;
1018
1019 if (efer & EFER_FFXSR) {
1020 struct kvm_cpuid_entry2 *feat;
1021
1022 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1023 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1024 return false;
1025 }
1026
1027 if (efer & EFER_SVME) {
1028 struct kvm_cpuid_entry2 *feat;
1029
1030 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1031 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1032 return false;
1033 }
1034
1035 return true;
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1038
1039 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1040 {
1041 u64 old_efer = vcpu->arch.efer;
1042
1043 if (!kvm_valid_efer(vcpu, efer))
1044 return 1;
1045
1046 if (is_paging(vcpu)
1047 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1048 return 1;
1049
1050 efer &= ~EFER_LMA;
1051 efer |= vcpu->arch.efer & EFER_LMA;
1052
1053 kvm_x86_ops->set_efer(vcpu, efer);
1054
1055 /* Update reserved bits */
1056 if ((efer ^ old_efer) & EFER_NX)
1057 kvm_mmu_reset_context(vcpu);
1058
1059 return 0;
1060 }
1061
1062 void kvm_enable_efer_bits(u64 mask)
1063 {
1064 efer_reserved_bits &= ~mask;
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1067
1068 /*
1069 * Writes msr value into into the appropriate "register".
1070 * Returns 0 on success, non-0 otherwise.
1071 * Assumes vcpu_load() was already called.
1072 */
1073 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1074 {
1075 switch (msr->index) {
1076 case MSR_FS_BASE:
1077 case MSR_GS_BASE:
1078 case MSR_KERNEL_GS_BASE:
1079 case MSR_CSTAR:
1080 case MSR_LSTAR:
1081 if (is_noncanonical_address(msr->data))
1082 return 1;
1083 break;
1084 case MSR_IA32_SYSENTER_EIP:
1085 case MSR_IA32_SYSENTER_ESP:
1086 /*
1087 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1088 * non-canonical address is written on Intel but not on
1089 * AMD (which ignores the top 32-bits, because it does
1090 * not implement 64-bit SYSENTER).
1091 *
1092 * 64-bit code should hence be able to write a non-canonical
1093 * value on AMD. Making the address canonical ensures that
1094 * vmentry does not fail on Intel after writing a non-canonical
1095 * value, and that something deterministic happens if the guest
1096 * invokes 64-bit SYSENTER.
1097 */
1098 msr->data = get_canonical(msr->data);
1099 }
1100 return kvm_x86_ops->set_msr(vcpu, msr);
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_set_msr);
1103
1104 /*
1105 * Adapt set_msr() to msr_io()'s calling convention
1106 */
1107 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1108 {
1109 struct msr_data msr;
1110 int r;
1111
1112 msr.index = index;
1113 msr.host_initiated = true;
1114 r = kvm_get_msr(vcpu, &msr);
1115 if (r)
1116 return r;
1117
1118 *data = msr.data;
1119 return 0;
1120 }
1121
1122 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1123 {
1124 struct msr_data msr;
1125
1126 msr.data = *data;
1127 msr.index = index;
1128 msr.host_initiated = true;
1129 return kvm_set_msr(vcpu, &msr);
1130 }
1131
1132 #ifdef CONFIG_X86_64
1133 struct pvclock_gtod_data {
1134 seqcount_t seq;
1135
1136 struct { /* extract of a clocksource struct */
1137 int vclock_mode;
1138 u64 cycle_last;
1139 u64 mask;
1140 u32 mult;
1141 u32 shift;
1142 } clock;
1143
1144 u64 boot_ns;
1145 u64 nsec_base;
1146 u64 wall_time_sec;
1147 };
1148
1149 static struct pvclock_gtod_data pvclock_gtod_data;
1150
1151 static void update_pvclock_gtod(struct timekeeper *tk)
1152 {
1153 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1154 u64 boot_ns;
1155
1156 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1157
1158 write_seqcount_begin(&vdata->seq);
1159
1160 /* copy pvclock gtod data */
1161 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1162 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1163 vdata->clock.mask = tk->tkr_mono.mask;
1164 vdata->clock.mult = tk->tkr_mono.mult;
1165 vdata->clock.shift = tk->tkr_mono.shift;
1166
1167 vdata->boot_ns = boot_ns;
1168 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1169
1170 vdata->wall_time_sec = tk->xtime_sec;
1171
1172 write_seqcount_end(&vdata->seq);
1173 }
1174 #endif
1175
1176 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1177 {
1178 /*
1179 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1180 * vcpu_enter_guest. This function is only called from
1181 * the physical CPU that is running vcpu.
1182 */
1183 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1184 }
1185
1186 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1187 {
1188 int version;
1189 int r;
1190 struct pvclock_wall_clock wc;
1191 struct timespec64 boot;
1192
1193 if (!wall_clock)
1194 return;
1195
1196 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1197 if (r)
1198 return;
1199
1200 if (version & 1)
1201 ++version; /* first time write, random junk */
1202
1203 ++version;
1204
1205 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1206 return;
1207
1208 /*
1209 * The guest calculates current wall clock time by adding
1210 * system time (updated by kvm_guest_time_update below) to the
1211 * wall clock specified here. guest system time equals host
1212 * system time for us, thus we must fill in host boot time here.
1213 */
1214 getboottime64(&boot);
1215
1216 if (kvm->arch.kvmclock_offset) {
1217 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1218 boot = timespec64_sub(boot, ts);
1219 }
1220 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1221 wc.nsec = boot.tv_nsec;
1222 wc.version = version;
1223
1224 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1225
1226 version++;
1227 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1228 }
1229
1230 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1231 {
1232 do_shl32_div32(dividend, divisor);
1233 return dividend;
1234 }
1235
1236 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1237 s8 *pshift, u32 *pmultiplier)
1238 {
1239 uint64_t scaled64;
1240 int32_t shift = 0;
1241 uint64_t tps64;
1242 uint32_t tps32;
1243
1244 tps64 = base_hz;
1245 scaled64 = scaled_hz;
1246 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1247 tps64 >>= 1;
1248 shift--;
1249 }
1250
1251 tps32 = (uint32_t)tps64;
1252 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1253 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1254 scaled64 >>= 1;
1255 else
1256 tps32 <<= 1;
1257 shift++;
1258 }
1259
1260 *pshift = shift;
1261 *pmultiplier = div_frac(scaled64, tps32);
1262
1263 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1264 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1265 }
1266
1267 #ifdef CONFIG_X86_64
1268 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1269 #endif
1270
1271 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1272 static unsigned long max_tsc_khz;
1273
1274 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1275 {
1276 u64 v = (u64)khz * (1000000 + ppm);
1277 do_div(v, 1000000);
1278 return v;
1279 }
1280
1281 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1282 {
1283 u64 ratio;
1284
1285 /* Guest TSC same frequency as host TSC? */
1286 if (!scale) {
1287 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1288 return 0;
1289 }
1290
1291 /* TSC scaling supported? */
1292 if (!kvm_has_tsc_control) {
1293 if (user_tsc_khz > tsc_khz) {
1294 vcpu->arch.tsc_catchup = 1;
1295 vcpu->arch.tsc_always_catchup = 1;
1296 return 0;
1297 } else {
1298 WARN(1, "user requested TSC rate below hardware speed\n");
1299 return -1;
1300 }
1301 }
1302
1303 /* TSC scaling required - calculate ratio */
1304 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1305 user_tsc_khz, tsc_khz);
1306
1307 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1308 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1309 user_tsc_khz);
1310 return -1;
1311 }
1312
1313 vcpu->arch.tsc_scaling_ratio = ratio;
1314 return 0;
1315 }
1316
1317 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1318 {
1319 u32 thresh_lo, thresh_hi;
1320 int use_scaling = 0;
1321
1322 /* tsc_khz can be zero if TSC calibration fails */
1323 if (user_tsc_khz == 0) {
1324 /* set tsc_scaling_ratio to a safe value */
1325 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1326 return -1;
1327 }
1328
1329 /* Compute a scale to convert nanoseconds in TSC cycles */
1330 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1331 &vcpu->arch.virtual_tsc_shift,
1332 &vcpu->arch.virtual_tsc_mult);
1333 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1334
1335 /*
1336 * Compute the variation in TSC rate which is acceptable
1337 * within the range of tolerance and decide if the
1338 * rate being applied is within that bounds of the hardware
1339 * rate. If so, no scaling or compensation need be done.
1340 */
1341 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1342 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1343 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1344 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1345 use_scaling = 1;
1346 }
1347 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1348 }
1349
1350 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1351 {
1352 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1353 vcpu->arch.virtual_tsc_mult,
1354 vcpu->arch.virtual_tsc_shift);
1355 tsc += vcpu->arch.this_tsc_write;
1356 return tsc;
1357 }
1358
1359 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1360 {
1361 #ifdef CONFIG_X86_64
1362 bool vcpus_matched;
1363 struct kvm_arch *ka = &vcpu->kvm->arch;
1364 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1365
1366 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1367 atomic_read(&vcpu->kvm->online_vcpus));
1368
1369 /*
1370 * Once the masterclock is enabled, always perform request in
1371 * order to update it.
1372 *
1373 * In order to enable masterclock, the host clocksource must be TSC
1374 * and the vcpus need to have matched TSCs. When that happens,
1375 * perform request to enable masterclock.
1376 */
1377 if (ka->use_master_clock ||
1378 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1379 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1380
1381 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1382 atomic_read(&vcpu->kvm->online_vcpus),
1383 ka->use_master_clock, gtod->clock.vclock_mode);
1384 #endif
1385 }
1386
1387 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1388 {
1389 u64 curr_offset = vcpu->arch.tsc_offset;
1390 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1391 }
1392
1393 /*
1394 * Multiply tsc by a fixed point number represented by ratio.
1395 *
1396 * The most significant 64-N bits (mult) of ratio represent the
1397 * integral part of the fixed point number; the remaining N bits
1398 * (frac) represent the fractional part, ie. ratio represents a fixed
1399 * point number (mult + frac * 2^(-N)).
1400 *
1401 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1402 */
1403 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1404 {
1405 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1406 }
1407
1408 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1409 {
1410 u64 _tsc = tsc;
1411 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1412
1413 if (ratio != kvm_default_tsc_scaling_ratio)
1414 _tsc = __scale_tsc(ratio, tsc);
1415
1416 return _tsc;
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1419
1420 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1421 {
1422 u64 tsc;
1423
1424 tsc = kvm_scale_tsc(vcpu, rdtsc());
1425
1426 return target_tsc - tsc;
1427 }
1428
1429 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1430 {
1431 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1434
1435 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1436 {
1437 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1438 vcpu->arch.tsc_offset = offset;
1439 }
1440
1441 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1442 {
1443 struct kvm *kvm = vcpu->kvm;
1444 u64 offset, ns, elapsed;
1445 unsigned long flags;
1446 s64 usdiff;
1447 bool matched;
1448 bool already_matched;
1449 u64 data = msr->data;
1450
1451 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1452 offset = kvm_compute_tsc_offset(vcpu, data);
1453 ns = ktime_get_boot_ns();
1454 elapsed = ns - kvm->arch.last_tsc_nsec;
1455
1456 if (vcpu->arch.virtual_tsc_khz) {
1457 int faulted = 0;
1458
1459 /* n.b - signed multiplication and division required */
1460 usdiff = data - kvm->arch.last_tsc_write;
1461 #ifdef CONFIG_X86_64
1462 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1463 #else
1464 /* do_div() only does unsigned */
1465 asm("1: idivl %[divisor]\n"
1466 "2: xor %%edx, %%edx\n"
1467 " movl $0, %[faulted]\n"
1468 "3:\n"
1469 ".section .fixup,\"ax\"\n"
1470 "4: movl $1, %[faulted]\n"
1471 " jmp 3b\n"
1472 ".previous\n"
1473
1474 _ASM_EXTABLE(1b, 4b)
1475
1476 : "=A"(usdiff), [faulted] "=r" (faulted)
1477 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1478
1479 #endif
1480 do_div(elapsed, 1000);
1481 usdiff -= elapsed;
1482 if (usdiff < 0)
1483 usdiff = -usdiff;
1484
1485 /* idivl overflow => difference is larger than USEC_PER_SEC */
1486 if (faulted)
1487 usdiff = USEC_PER_SEC;
1488 } else
1489 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1490
1491 /*
1492 * Special case: TSC write with a small delta (1 second) of virtual
1493 * cycle time against real time is interpreted as an attempt to
1494 * synchronize the CPU.
1495 *
1496 * For a reliable TSC, we can match TSC offsets, and for an unstable
1497 * TSC, we add elapsed time in this computation. We could let the
1498 * compensation code attempt to catch up if we fall behind, but
1499 * it's better to try to match offsets from the beginning.
1500 */
1501 if (usdiff < USEC_PER_SEC &&
1502 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1503 if (!check_tsc_unstable()) {
1504 offset = kvm->arch.cur_tsc_offset;
1505 pr_debug("kvm: matched tsc offset for %llu\n", data);
1506 } else {
1507 u64 delta = nsec_to_cycles(vcpu, elapsed);
1508 data += delta;
1509 offset = kvm_compute_tsc_offset(vcpu, data);
1510 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1511 }
1512 matched = true;
1513 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1514 } else {
1515 /*
1516 * We split periods of matched TSC writes into generations.
1517 * For each generation, we track the original measured
1518 * nanosecond time, offset, and write, so if TSCs are in
1519 * sync, we can match exact offset, and if not, we can match
1520 * exact software computation in compute_guest_tsc()
1521 *
1522 * These values are tracked in kvm->arch.cur_xxx variables.
1523 */
1524 kvm->arch.cur_tsc_generation++;
1525 kvm->arch.cur_tsc_nsec = ns;
1526 kvm->arch.cur_tsc_write = data;
1527 kvm->arch.cur_tsc_offset = offset;
1528 matched = false;
1529 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1530 kvm->arch.cur_tsc_generation, data);
1531 }
1532
1533 /*
1534 * We also track th most recent recorded KHZ, write and time to
1535 * allow the matching interval to be extended at each write.
1536 */
1537 kvm->arch.last_tsc_nsec = ns;
1538 kvm->arch.last_tsc_write = data;
1539 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1540
1541 vcpu->arch.last_guest_tsc = data;
1542
1543 /* Keep track of which generation this VCPU has synchronized to */
1544 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1545 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1546 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1547
1548 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1549 update_ia32_tsc_adjust_msr(vcpu, offset);
1550 kvm_vcpu_write_tsc_offset(vcpu, offset);
1551 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1552
1553 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1554 if (!matched) {
1555 kvm->arch.nr_vcpus_matched_tsc = 0;
1556 } else if (!already_matched) {
1557 kvm->arch.nr_vcpus_matched_tsc++;
1558 }
1559
1560 kvm_track_tsc_matching(vcpu);
1561 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1562 }
1563
1564 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1565
1566 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1567 s64 adjustment)
1568 {
1569 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1570 }
1571
1572 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1573 {
1574 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1575 WARN_ON(adjustment < 0);
1576 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1577 adjust_tsc_offset_guest(vcpu, adjustment);
1578 }
1579
1580 #ifdef CONFIG_X86_64
1581
1582 static u64 read_tsc(void)
1583 {
1584 u64 ret = (u64)rdtsc_ordered();
1585 u64 last = pvclock_gtod_data.clock.cycle_last;
1586
1587 if (likely(ret >= last))
1588 return ret;
1589
1590 /*
1591 * GCC likes to generate cmov here, but this branch is extremely
1592 * predictable (it's just a function of time and the likely is
1593 * very likely) and there's a data dependence, so force GCC
1594 * to generate a branch instead. I don't barrier() because
1595 * we don't actually need a barrier, and if this function
1596 * ever gets inlined it will generate worse code.
1597 */
1598 asm volatile ("");
1599 return last;
1600 }
1601
1602 static inline u64 vgettsc(u64 *cycle_now)
1603 {
1604 long v;
1605 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1606
1607 *cycle_now = read_tsc();
1608
1609 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1610 return v * gtod->clock.mult;
1611 }
1612
1613 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1614 {
1615 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1616 unsigned long seq;
1617 int mode;
1618 u64 ns;
1619
1620 do {
1621 seq = read_seqcount_begin(&gtod->seq);
1622 mode = gtod->clock.vclock_mode;
1623 ns = gtod->nsec_base;
1624 ns += vgettsc(cycle_now);
1625 ns >>= gtod->clock.shift;
1626 ns += gtod->boot_ns;
1627 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1628 *t = ns;
1629
1630 return mode;
1631 }
1632
1633 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1634 {
1635 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1636 unsigned long seq;
1637 int mode;
1638 u64 ns;
1639
1640 do {
1641 seq = read_seqcount_begin(&gtod->seq);
1642 mode = gtod->clock.vclock_mode;
1643 ts->tv_sec = gtod->wall_time_sec;
1644 ns = gtod->nsec_base;
1645 ns += vgettsc(cycle_now);
1646 ns >>= gtod->clock.shift;
1647 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1648
1649 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1650 ts->tv_nsec = ns;
1651
1652 return mode;
1653 }
1654
1655 /* returns true if host is using tsc clocksource */
1656 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1657 {
1658 /* checked again under seqlock below */
1659 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1660 return false;
1661
1662 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1663 }
1664
1665 /* returns true if host is using tsc clocksource */
1666 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1667 u64 *cycle_now)
1668 {
1669 /* checked again under seqlock below */
1670 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1671 return false;
1672
1673 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1674 }
1675 #endif
1676
1677 /*
1678 *
1679 * Assuming a stable TSC across physical CPUS, and a stable TSC
1680 * across virtual CPUs, the following condition is possible.
1681 * Each numbered line represents an event visible to both
1682 * CPUs at the next numbered event.
1683 *
1684 * "timespecX" represents host monotonic time. "tscX" represents
1685 * RDTSC value.
1686 *
1687 * VCPU0 on CPU0 | VCPU1 on CPU1
1688 *
1689 * 1. read timespec0,tsc0
1690 * 2. | timespec1 = timespec0 + N
1691 * | tsc1 = tsc0 + M
1692 * 3. transition to guest | transition to guest
1693 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1694 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1695 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1696 *
1697 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1698 *
1699 * - ret0 < ret1
1700 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1701 * ...
1702 * - 0 < N - M => M < N
1703 *
1704 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1705 * always the case (the difference between two distinct xtime instances
1706 * might be smaller then the difference between corresponding TSC reads,
1707 * when updating guest vcpus pvclock areas).
1708 *
1709 * To avoid that problem, do not allow visibility of distinct
1710 * system_timestamp/tsc_timestamp values simultaneously: use a master
1711 * copy of host monotonic time values. Update that master copy
1712 * in lockstep.
1713 *
1714 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1715 *
1716 */
1717
1718 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1719 {
1720 #ifdef CONFIG_X86_64
1721 struct kvm_arch *ka = &kvm->arch;
1722 int vclock_mode;
1723 bool host_tsc_clocksource, vcpus_matched;
1724
1725 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1726 atomic_read(&kvm->online_vcpus));
1727
1728 /*
1729 * If the host uses TSC clock, then passthrough TSC as stable
1730 * to the guest.
1731 */
1732 host_tsc_clocksource = kvm_get_time_and_clockread(
1733 &ka->master_kernel_ns,
1734 &ka->master_cycle_now);
1735
1736 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1737 && !backwards_tsc_observed
1738 && !ka->boot_vcpu_runs_old_kvmclock;
1739
1740 if (ka->use_master_clock)
1741 atomic_set(&kvm_guest_has_master_clock, 1);
1742
1743 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1744 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1745 vcpus_matched);
1746 #endif
1747 }
1748
1749 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1750 {
1751 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1752 }
1753
1754 static void kvm_gen_update_masterclock(struct kvm *kvm)
1755 {
1756 #ifdef CONFIG_X86_64
1757 int i;
1758 struct kvm_vcpu *vcpu;
1759 struct kvm_arch *ka = &kvm->arch;
1760
1761 spin_lock(&ka->pvclock_gtod_sync_lock);
1762 kvm_make_mclock_inprogress_request(kvm);
1763 /* no guest entries from this point */
1764 pvclock_update_vm_gtod_copy(kvm);
1765
1766 kvm_for_each_vcpu(i, vcpu, kvm)
1767 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1768
1769 /* guest entries allowed */
1770 kvm_for_each_vcpu(i, vcpu, kvm)
1771 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1772
1773 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774 #endif
1775 }
1776
1777 static u64 __get_kvmclock_ns(struct kvm *kvm)
1778 {
1779 struct kvm_arch *ka = &kvm->arch;
1780 struct pvclock_vcpu_time_info hv_clock;
1781
1782 spin_lock(&ka->pvclock_gtod_sync_lock);
1783 if (!ka->use_master_clock) {
1784 spin_unlock(&ka->pvclock_gtod_sync_lock);
1785 return ktime_get_boot_ns() + ka->kvmclock_offset;
1786 }
1787
1788 hv_clock.tsc_timestamp = ka->master_cycle_now;
1789 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1790 spin_unlock(&ka->pvclock_gtod_sync_lock);
1791
1792 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1793 &hv_clock.tsc_shift,
1794 &hv_clock.tsc_to_system_mul);
1795 return __pvclock_read_cycles(&hv_clock, rdtsc());
1796 }
1797
1798 u64 get_kvmclock_ns(struct kvm *kvm)
1799 {
1800 unsigned long flags;
1801 s64 ns;
1802
1803 local_irq_save(flags);
1804 ns = __get_kvmclock_ns(kvm);
1805 local_irq_restore(flags);
1806
1807 return ns;
1808 }
1809
1810 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1811 {
1812 struct kvm_vcpu_arch *vcpu = &v->arch;
1813 struct pvclock_vcpu_time_info guest_hv_clock;
1814
1815 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1816 &guest_hv_clock, sizeof(guest_hv_clock))))
1817 return;
1818
1819 /* This VCPU is paused, but it's legal for a guest to read another
1820 * VCPU's kvmclock, so we really have to follow the specification where
1821 * it says that version is odd if data is being modified, and even after
1822 * it is consistent.
1823 *
1824 * Version field updates must be kept separate. This is because
1825 * kvm_write_guest_cached might use a "rep movs" instruction, and
1826 * writes within a string instruction are weakly ordered. So there
1827 * are three writes overall.
1828 *
1829 * As a small optimization, only write the version field in the first
1830 * and third write. The vcpu->pv_time cache is still valid, because the
1831 * version field is the first in the struct.
1832 */
1833 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1834
1835 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1836 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1837 &vcpu->hv_clock,
1838 sizeof(vcpu->hv_clock.version));
1839
1840 smp_wmb();
1841
1842 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1843 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1844
1845 if (vcpu->pvclock_set_guest_stopped_request) {
1846 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1847 vcpu->pvclock_set_guest_stopped_request = false;
1848 }
1849
1850 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1851
1852 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1853 &vcpu->hv_clock,
1854 sizeof(vcpu->hv_clock));
1855
1856 smp_wmb();
1857
1858 vcpu->hv_clock.version++;
1859 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1860 &vcpu->hv_clock,
1861 sizeof(vcpu->hv_clock.version));
1862 }
1863
1864 static int kvm_guest_time_update(struct kvm_vcpu *v)
1865 {
1866 unsigned long flags, tgt_tsc_khz;
1867 struct kvm_vcpu_arch *vcpu = &v->arch;
1868 struct kvm_arch *ka = &v->kvm->arch;
1869 s64 kernel_ns;
1870 u64 tsc_timestamp, host_tsc;
1871 u8 pvclock_flags;
1872 bool use_master_clock;
1873
1874 kernel_ns = 0;
1875 host_tsc = 0;
1876
1877 /*
1878 * If the host uses TSC clock, then passthrough TSC as stable
1879 * to the guest.
1880 */
1881 spin_lock(&ka->pvclock_gtod_sync_lock);
1882 use_master_clock = ka->use_master_clock;
1883 if (use_master_clock) {
1884 host_tsc = ka->master_cycle_now;
1885 kernel_ns = ka->master_kernel_ns;
1886 }
1887 spin_unlock(&ka->pvclock_gtod_sync_lock);
1888
1889 /* Keep irq disabled to prevent changes to the clock */
1890 local_irq_save(flags);
1891 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1892 if (unlikely(tgt_tsc_khz == 0)) {
1893 local_irq_restore(flags);
1894 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1895 return 1;
1896 }
1897 if (!use_master_clock) {
1898 host_tsc = rdtsc();
1899 kernel_ns = ktime_get_boot_ns();
1900 }
1901
1902 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1903
1904 /*
1905 * We may have to catch up the TSC to match elapsed wall clock
1906 * time for two reasons, even if kvmclock is used.
1907 * 1) CPU could have been running below the maximum TSC rate
1908 * 2) Broken TSC compensation resets the base at each VCPU
1909 * entry to avoid unknown leaps of TSC even when running
1910 * again on the same CPU. This may cause apparent elapsed
1911 * time to disappear, and the guest to stand still or run
1912 * very slowly.
1913 */
1914 if (vcpu->tsc_catchup) {
1915 u64 tsc = compute_guest_tsc(v, kernel_ns);
1916 if (tsc > tsc_timestamp) {
1917 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1918 tsc_timestamp = tsc;
1919 }
1920 }
1921
1922 local_irq_restore(flags);
1923
1924 /* With all the info we got, fill in the values */
1925
1926 if (kvm_has_tsc_control)
1927 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1928
1929 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1930 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1931 &vcpu->hv_clock.tsc_shift,
1932 &vcpu->hv_clock.tsc_to_system_mul);
1933 vcpu->hw_tsc_khz = tgt_tsc_khz;
1934 }
1935
1936 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1937 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1938 vcpu->last_guest_tsc = tsc_timestamp;
1939
1940 /* If the host uses TSC clocksource, then it is stable */
1941 pvclock_flags = 0;
1942 if (use_master_clock)
1943 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1944
1945 vcpu->hv_clock.flags = pvclock_flags;
1946
1947 if (vcpu->pv_time_enabled)
1948 kvm_setup_pvclock_page(v);
1949 if (v == kvm_get_vcpu(v->kvm, 0))
1950 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1951 return 0;
1952 }
1953
1954 /*
1955 * kvmclock updates which are isolated to a given vcpu, such as
1956 * vcpu->cpu migration, should not allow system_timestamp from
1957 * the rest of the vcpus to remain static. Otherwise ntp frequency
1958 * correction applies to one vcpu's system_timestamp but not
1959 * the others.
1960 *
1961 * So in those cases, request a kvmclock update for all vcpus.
1962 * We need to rate-limit these requests though, as they can
1963 * considerably slow guests that have a large number of vcpus.
1964 * The time for a remote vcpu to update its kvmclock is bound
1965 * by the delay we use to rate-limit the updates.
1966 */
1967
1968 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1969
1970 static void kvmclock_update_fn(struct work_struct *work)
1971 {
1972 int i;
1973 struct delayed_work *dwork = to_delayed_work(work);
1974 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1975 kvmclock_update_work);
1976 struct kvm *kvm = container_of(ka, struct kvm, arch);
1977 struct kvm_vcpu *vcpu;
1978
1979 kvm_for_each_vcpu(i, vcpu, kvm) {
1980 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1981 kvm_vcpu_kick(vcpu);
1982 }
1983 }
1984
1985 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1986 {
1987 struct kvm *kvm = v->kvm;
1988
1989 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1990 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1991 KVMCLOCK_UPDATE_DELAY);
1992 }
1993
1994 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1995
1996 static void kvmclock_sync_fn(struct work_struct *work)
1997 {
1998 struct delayed_work *dwork = to_delayed_work(work);
1999 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2000 kvmclock_sync_work);
2001 struct kvm *kvm = container_of(ka, struct kvm, arch);
2002
2003 if (!kvmclock_periodic_sync)
2004 return;
2005
2006 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2007 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2008 KVMCLOCK_SYNC_PERIOD);
2009 }
2010
2011 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2012 {
2013 u64 mcg_cap = vcpu->arch.mcg_cap;
2014 unsigned bank_num = mcg_cap & 0xff;
2015
2016 switch (msr) {
2017 case MSR_IA32_MCG_STATUS:
2018 vcpu->arch.mcg_status = data;
2019 break;
2020 case MSR_IA32_MCG_CTL:
2021 if (!(mcg_cap & MCG_CTL_P))
2022 return 1;
2023 if (data != 0 && data != ~(u64)0)
2024 return -1;
2025 vcpu->arch.mcg_ctl = data;
2026 break;
2027 default:
2028 if (msr >= MSR_IA32_MC0_CTL &&
2029 msr < MSR_IA32_MCx_CTL(bank_num)) {
2030 u32 offset = msr - MSR_IA32_MC0_CTL;
2031 /* only 0 or all 1s can be written to IA32_MCi_CTL
2032 * some Linux kernels though clear bit 10 in bank 4 to
2033 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2034 * this to avoid an uncatched #GP in the guest
2035 */
2036 if ((offset & 0x3) == 0 &&
2037 data != 0 && (data | (1 << 10)) != ~(u64)0)
2038 return -1;
2039 vcpu->arch.mce_banks[offset] = data;
2040 break;
2041 }
2042 return 1;
2043 }
2044 return 0;
2045 }
2046
2047 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2048 {
2049 struct kvm *kvm = vcpu->kvm;
2050 int lm = is_long_mode(vcpu);
2051 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2052 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2053 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2054 : kvm->arch.xen_hvm_config.blob_size_32;
2055 u32 page_num = data & ~PAGE_MASK;
2056 u64 page_addr = data & PAGE_MASK;
2057 u8 *page;
2058 int r;
2059
2060 r = -E2BIG;
2061 if (page_num >= blob_size)
2062 goto out;
2063 r = -ENOMEM;
2064 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2065 if (IS_ERR(page)) {
2066 r = PTR_ERR(page);
2067 goto out;
2068 }
2069 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2070 goto out_free;
2071 r = 0;
2072 out_free:
2073 kfree(page);
2074 out:
2075 return r;
2076 }
2077
2078 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 {
2080 gpa_t gpa = data & ~0x3f;
2081
2082 /* Bits 2:5 are reserved, Should be zero */
2083 if (data & 0x3c)
2084 return 1;
2085
2086 vcpu->arch.apf.msr_val = data;
2087
2088 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2089 kvm_clear_async_pf_completion_queue(vcpu);
2090 kvm_async_pf_hash_reset(vcpu);
2091 return 0;
2092 }
2093
2094 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2095 sizeof(u32)))
2096 return 1;
2097
2098 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2099 kvm_async_pf_wakeup_all(vcpu);
2100 return 0;
2101 }
2102
2103 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 {
2105 vcpu->arch.pv_time_enabled = false;
2106 }
2107
2108 static void record_steal_time(struct kvm_vcpu *vcpu)
2109 {
2110 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2111 return;
2112
2113 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2114 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2115 return;
2116
2117 vcpu->arch.st.steal.preempted = 0;
2118
2119 if (vcpu->arch.st.steal.version & 1)
2120 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2121
2122 vcpu->arch.st.steal.version += 1;
2123
2124 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2125 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2126
2127 smp_wmb();
2128
2129 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2130 vcpu->arch.st.last_steal;
2131 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2132
2133 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2134 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2135
2136 smp_wmb();
2137
2138 vcpu->arch.st.steal.version += 1;
2139
2140 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2141 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2142 }
2143
2144 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2145 {
2146 bool pr = false;
2147 u32 msr = msr_info->index;
2148 u64 data = msr_info->data;
2149
2150 switch (msr) {
2151 case MSR_AMD64_NB_CFG:
2152 case MSR_IA32_UCODE_REV:
2153 case MSR_IA32_UCODE_WRITE:
2154 case MSR_VM_HSAVE_PA:
2155 case MSR_AMD64_PATCH_LOADER:
2156 case MSR_AMD64_BU_CFG2:
2157 break;
2158
2159 case MSR_EFER:
2160 return set_efer(vcpu, data);
2161 case MSR_K7_HWCR:
2162 data &= ~(u64)0x40; /* ignore flush filter disable */
2163 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2164 data &= ~(u64)0x8; /* ignore TLB cache disable */
2165 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2166 if (data != 0) {
2167 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2168 data);
2169 return 1;
2170 }
2171 break;
2172 case MSR_FAM10H_MMIO_CONF_BASE:
2173 if (data != 0) {
2174 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2175 "0x%llx\n", data);
2176 return 1;
2177 }
2178 break;
2179 case MSR_IA32_DEBUGCTLMSR:
2180 if (!data) {
2181 /* We support the non-activated case already */
2182 break;
2183 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2184 /* Values other than LBR and BTF are vendor-specific,
2185 thus reserved and should throw a #GP */
2186 return 1;
2187 }
2188 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2189 __func__, data);
2190 break;
2191 case 0x200 ... 0x2ff:
2192 return kvm_mtrr_set_msr(vcpu, msr, data);
2193 case MSR_IA32_APICBASE:
2194 return kvm_set_apic_base(vcpu, msr_info);
2195 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2196 return kvm_x2apic_msr_write(vcpu, msr, data);
2197 case MSR_IA32_TSCDEADLINE:
2198 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2199 break;
2200 case MSR_IA32_TSC_ADJUST:
2201 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2202 if (!msr_info->host_initiated) {
2203 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2204 adjust_tsc_offset_guest(vcpu, adj);
2205 }
2206 vcpu->arch.ia32_tsc_adjust_msr = data;
2207 }
2208 break;
2209 case MSR_IA32_MISC_ENABLE:
2210 vcpu->arch.ia32_misc_enable_msr = data;
2211 break;
2212 case MSR_IA32_SMBASE:
2213 if (!msr_info->host_initiated)
2214 return 1;
2215 vcpu->arch.smbase = data;
2216 break;
2217 case MSR_KVM_WALL_CLOCK_NEW:
2218 case MSR_KVM_WALL_CLOCK:
2219 vcpu->kvm->arch.wall_clock = data;
2220 kvm_write_wall_clock(vcpu->kvm, data);
2221 break;
2222 case MSR_KVM_SYSTEM_TIME_NEW:
2223 case MSR_KVM_SYSTEM_TIME: {
2224 struct kvm_arch *ka = &vcpu->kvm->arch;
2225
2226 kvmclock_reset(vcpu);
2227
2228 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2229 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2230
2231 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2232 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2233 &vcpu->requests);
2234
2235 ka->boot_vcpu_runs_old_kvmclock = tmp;
2236 }
2237
2238 vcpu->arch.time = data;
2239 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2240
2241 /* we verify if the enable bit is set... */
2242 if (!(data & 1))
2243 break;
2244
2245 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2246 &vcpu->arch.pv_time, data & ~1ULL,
2247 sizeof(struct pvclock_vcpu_time_info)))
2248 vcpu->arch.pv_time_enabled = false;
2249 else
2250 vcpu->arch.pv_time_enabled = true;
2251
2252 break;
2253 }
2254 case MSR_KVM_ASYNC_PF_EN:
2255 if (kvm_pv_enable_async_pf(vcpu, data))
2256 return 1;
2257 break;
2258 case MSR_KVM_STEAL_TIME:
2259
2260 if (unlikely(!sched_info_on()))
2261 return 1;
2262
2263 if (data & KVM_STEAL_RESERVED_MASK)
2264 return 1;
2265
2266 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2267 data & KVM_STEAL_VALID_BITS,
2268 sizeof(struct kvm_steal_time)))
2269 return 1;
2270
2271 vcpu->arch.st.msr_val = data;
2272
2273 if (!(data & KVM_MSR_ENABLED))
2274 break;
2275
2276 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2277
2278 break;
2279 case MSR_KVM_PV_EOI_EN:
2280 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2281 return 1;
2282 break;
2283
2284 case MSR_IA32_MCG_CTL:
2285 case MSR_IA32_MCG_STATUS:
2286 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2287 return set_msr_mce(vcpu, msr, data);
2288
2289 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2290 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2291 pr = true; /* fall through */
2292 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2293 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2294 if (kvm_pmu_is_valid_msr(vcpu, msr))
2295 return kvm_pmu_set_msr(vcpu, msr_info);
2296
2297 if (pr || data != 0)
2298 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2299 "0x%x data 0x%llx\n", msr, data);
2300 break;
2301 case MSR_K7_CLK_CTL:
2302 /*
2303 * Ignore all writes to this no longer documented MSR.
2304 * Writes are only relevant for old K7 processors,
2305 * all pre-dating SVM, but a recommended workaround from
2306 * AMD for these chips. It is possible to specify the
2307 * affected processor models on the command line, hence
2308 * the need to ignore the workaround.
2309 */
2310 break;
2311 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2312 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2313 case HV_X64_MSR_CRASH_CTL:
2314 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2315 return kvm_hv_set_msr_common(vcpu, msr, data,
2316 msr_info->host_initiated);
2317 case MSR_IA32_BBL_CR_CTL3:
2318 /* Drop writes to this legacy MSR -- see rdmsr
2319 * counterpart for further detail.
2320 */
2321 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2322 break;
2323 case MSR_AMD64_OSVW_ID_LENGTH:
2324 if (!guest_cpuid_has_osvw(vcpu))
2325 return 1;
2326 vcpu->arch.osvw.length = data;
2327 break;
2328 case MSR_AMD64_OSVW_STATUS:
2329 if (!guest_cpuid_has_osvw(vcpu))
2330 return 1;
2331 vcpu->arch.osvw.status = data;
2332 break;
2333 default:
2334 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335 return xen_hvm_config(vcpu, data);
2336 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337 return kvm_pmu_set_msr(vcpu, msr_info);
2338 if (!ignore_msrs) {
2339 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340 msr, data);
2341 return 1;
2342 } else {
2343 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344 msr, data);
2345 break;
2346 }
2347 }
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354 * Reads an msr value (of 'msr_index') into 'pdata'.
2355 * Returns 0 on success, non-0 otherwise.
2356 * Assumes vcpu_load() was already called.
2357 */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360 return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366 u64 data;
2367 u64 mcg_cap = vcpu->arch.mcg_cap;
2368 unsigned bank_num = mcg_cap & 0xff;
2369
2370 switch (msr) {
2371 case MSR_IA32_P5_MC_ADDR:
2372 case MSR_IA32_P5_MC_TYPE:
2373 data = 0;
2374 break;
2375 case MSR_IA32_MCG_CAP:
2376 data = vcpu->arch.mcg_cap;
2377 break;
2378 case MSR_IA32_MCG_CTL:
2379 if (!(mcg_cap & MCG_CTL_P))
2380 return 1;
2381 data = vcpu->arch.mcg_ctl;
2382 break;
2383 case MSR_IA32_MCG_STATUS:
2384 data = vcpu->arch.mcg_status;
2385 break;
2386 default:
2387 if (msr >= MSR_IA32_MC0_CTL &&
2388 msr < MSR_IA32_MCx_CTL(bank_num)) {
2389 u32 offset = msr - MSR_IA32_MC0_CTL;
2390 data = vcpu->arch.mce_banks[offset];
2391 break;
2392 }
2393 return 1;
2394 }
2395 *pdata = data;
2396 return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401 switch (msr_info->index) {
2402 case MSR_IA32_PLATFORM_ID:
2403 case MSR_IA32_EBL_CR_POWERON:
2404 case MSR_IA32_DEBUGCTLMSR:
2405 case MSR_IA32_LASTBRANCHFROMIP:
2406 case MSR_IA32_LASTBRANCHTOIP:
2407 case MSR_IA32_LASTINTFROMIP:
2408 case MSR_IA32_LASTINTTOIP:
2409 case MSR_K8_SYSCFG:
2410 case MSR_K8_TSEG_ADDR:
2411 case MSR_K8_TSEG_MASK:
2412 case MSR_K7_HWCR:
2413 case MSR_VM_HSAVE_PA:
2414 case MSR_K8_INT_PENDING_MSG:
2415 case MSR_AMD64_NB_CFG:
2416 case MSR_FAM10H_MMIO_CONF_BASE:
2417 case MSR_AMD64_BU_CFG2:
2418 case MSR_IA32_PERF_CTL:
2419 msr_info->data = 0;
2420 break;
2421 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2422 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2423 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2424 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2425 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2426 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2427 msr_info->data = 0;
2428 break;
2429 case MSR_IA32_UCODE_REV:
2430 msr_info->data = 0x100000000ULL;
2431 break;
2432 case MSR_MTRRcap:
2433 case 0x200 ... 0x2ff:
2434 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2435 case 0xcd: /* fsb frequency */
2436 msr_info->data = 3;
2437 break;
2438 /*
2439 * MSR_EBC_FREQUENCY_ID
2440 * Conservative value valid for even the basic CPU models.
2441 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2442 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2443 * and 266MHz for model 3, or 4. Set Core Clock
2444 * Frequency to System Bus Frequency Ratio to 1 (bits
2445 * 31:24) even though these are only valid for CPU
2446 * models > 2, however guests may end up dividing or
2447 * multiplying by zero otherwise.
2448 */
2449 case MSR_EBC_FREQUENCY_ID:
2450 msr_info->data = 1 << 24;
2451 break;
2452 case MSR_IA32_APICBASE:
2453 msr_info->data = kvm_get_apic_base(vcpu);
2454 break;
2455 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2456 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2457 break;
2458 case MSR_IA32_TSCDEADLINE:
2459 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2460 break;
2461 case MSR_IA32_TSC_ADJUST:
2462 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2463 break;
2464 case MSR_IA32_MISC_ENABLE:
2465 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2466 break;
2467 case MSR_IA32_SMBASE:
2468 if (!msr_info->host_initiated)
2469 return 1;
2470 msr_info->data = vcpu->arch.smbase;
2471 break;
2472 case MSR_IA32_PERF_STATUS:
2473 /* TSC increment by tick */
2474 msr_info->data = 1000ULL;
2475 /* CPU multiplier */
2476 msr_info->data |= (((uint64_t)4ULL) << 40);
2477 break;
2478 case MSR_EFER:
2479 msr_info->data = vcpu->arch.efer;
2480 break;
2481 case MSR_KVM_WALL_CLOCK:
2482 case MSR_KVM_WALL_CLOCK_NEW:
2483 msr_info->data = vcpu->kvm->arch.wall_clock;
2484 break;
2485 case MSR_KVM_SYSTEM_TIME:
2486 case MSR_KVM_SYSTEM_TIME_NEW:
2487 msr_info->data = vcpu->arch.time;
2488 break;
2489 case MSR_KVM_ASYNC_PF_EN:
2490 msr_info->data = vcpu->arch.apf.msr_val;
2491 break;
2492 case MSR_KVM_STEAL_TIME:
2493 msr_info->data = vcpu->arch.st.msr_val;
2494 break;
2495 case MSR_KVM_PV_EOI_EN:
2496 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2497 break;
2498 case MSR_IA32_P5_MC_ADDR:
2499 case MSR_IA32_P5_MC_TYPE:
2500 case MSR_IA32_MCG_CAP:
2501 case MSR_IA32_MCG_CTL:
2502 case MSR_IA32_MCG_STATUS:
2503 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2504 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2505 case MSR_K7_CLK_CTL:
2506 /*
2507 * Provide expected ramp-up count for K7. All other
2508 * are set to zero, indicating minimum divisors for
2509 * every field.
2510 *
2511 * This prevents guest kernels on AMD host with CPU
2512 * type 6, model 8 and higher from exploding due to
2513 * the rdmsr failing.
2514 */
2515 msr_info->data = 0x20000000;
2516 break;
2517 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2518 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2519 case HV_X64_MSR_CRASH_CTL:
2520 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2521 return kvm_hv_get_msr_common(vcpu,
2522 msr_info->index, &msr_info->data);
2523 break;
2524 case MSR_IA32_BBL_CR_CTL3:
2525 /* This legacy MSR exists but isn't fully documented in current
2526 * silicon. It is however accessed by winxp in very narrow
2527 * scenarios where it sets bit #19, itself documented as
2528 * a "reserved" bit. Best effort attempt to source coherent
2529 * read data here should the balance of the register be
2530 * interpreted by the guest:
2531 *
2532 * L2 cache control register 3: 64GB range, 256KB size,
2533 * enabled, latency 0x1, configured
2534 */
2535 msr_info->data = 0xbe702111;
2536 break;
2537 case MSR_AMD64_OSVW_ID_LENGTH:
2538 if (!guest_cpuid_has_osvw(vcpu))
2539 return 1;
2540 msr_info->data = vcpu->arch.osvw.length;
2541 break;
2542 case MSR_AMD64_OSVW_STATUS:
2543 if (!guest_cpuid_has_osvw(vcpu))
2544 return 1;
2545 msr_info->data = vcpu->arch.osvw.status;
2546 break;
2547 default:
2548 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2549 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2550 if (!ignore_msrs) {
2551 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2552 msr_info->index);
2553 return 1;
2554 } else {
2555 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2556 msr_info->data = 0;
2557 }
2558 break;
2559 }
2560 return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2563
2564 /*
2565 * Read or write a bunch of msrs. All parameters are kernel addresses.
2566 *
2567 * @return number of msrs set successfully.
2568 */
2569 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2570 struct kvm_msr_entry *entries,
2571 int (*do_msr)(struct kvm_vcpu *vcpu,
2572 unsigned index, u64 *data))
2573 {
2574 int i, idx;
2575
2576 idx = srcu_read_lock(&vcpu->kvm->srcu);
2577 for (i = 0; i < msrs->nmsrs; ++i)
2578 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2579 break;
2580 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2581
2582 return i;
2583 }
2584
2585 /*
2586 * Read or write a bunch of msrs. Parameters are user addresses.
2587 *
2588 * @return number of msrs set successfully.
2589 */
2590 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2591 int (*do_msr)(struct kvm_vcpu *vcpu,
2592 unsigned index, u64 *data),
2593 int writeback)
2594 {
2595 struct kvm_msrs msrs;
2596 struct kvm_msr_entry *entries;
2597 int r, n;
2598 unsigned size;
2599
2600 r = -EFAULT;
2601 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2602 goto out;
2603
2604 r = -E2BIG;
2605 if (msrs.nmsrs >= MAX_IO_MSRS)
2606 goto out;
2607
2608 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2609 entries = memdup_user(user_msrs->entries, size);
2610 if (IS_ERR(entries)) {
2611 r = PTR_ERR(entries);
2612 goto out;
2613 }
2614
2615 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2616 if (r < 0)
2617 goto out_free;
2618
2619 r = -EFAULT;
2620 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2621 goto out_free;
2622
2623 r = n;
2624
2625 out_free:
2626 kfree(entries);
2627 out:
2628 return r;
2629 }
2630
2631 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2632 {
2633 int r;
2634
2635 switch (ext) {
2636 case KVM_CAP_IRQCHIP:
2637 case KVM_CAP_HLT:
2638 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2639 case KVM_CAP_SET_TSS_ADDR:
2640 case KVM_CAP_EXT_CPUID:
2641 case KVM_CAP_EXT_EMUL_CPUID:
2642 case KVM_CAP_CLOCKSOURCE:
2643 case KVM_CAP_PIT:
2644 case KVM_CAP_NOP_IO_DELAY:
2645 case KVM_CAP_MP_STATE:
2646 case KVM_CAP_SYNC_MMU:
2647 case KVM_CAP_USER_NMI:
2648 case KVM_CAP_REINJECT_CONTROL:
2649 case KVM_CAP_IRQ_INJECT_STATUS:
2650 case KVM_CAP_IOEVENTFD:
2651 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2652 case KVM_CAP_PIT2:
2653 case KVM_CAP_PIT_STATE2:
2654 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2655 case KVM_CAP_XEN_HVM:
2656 case KVM_CAP_VCPU_EVENTS:
2657 case KVM_CAP_HYPERV:
2658 case KVM_CAP_HYPERV_VAPIC:
2659 case KVM_CAP_HYPERV_SPIN:
2660 case KVM_CAP_HYPERV_SYNIC:
2661 case KVM_CAP_PCI_SEGMENT:
2662 case KVM_CAP_DEBUGREGS:
2663 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2664 case KVM_CAP_XSAVE:
2665 case KVM_CAP_ASYNC_PF:
2666 case KVM_CAP_GET_TSC_KHZ:
2667 case KVM_CAP_KVMCLOCK_CTRL:
2668 case KVM_CAP_READONLY_MEM:
2669 case KVM_CAP_HYPERV_TIME:
2670 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2671 case KVM_CAP_TSC_DEADLINE_TIMER:
2672 case KVM_CAP_ENABLE_CAP_VM:
2673 case KVM_CAP_DISABLE_QUIRKS:
2674 case KVM_CAP_SET_BOOT_CPU_ID:
2675 case KVM_CAP_SPLIT_IRQCHIP:
2676 case KVM_CAP_IMMEDIATE_EXIT:
2677 r = 1;
2678 break;
2679 case KVM_CAP_ADJUST_CLOCK:
2680 r = KVM_CLOCK_TSC_STABLE;
2681 break;
2682 case KVM_CAP_X86_SMM:
2683 /* SMBASE is usually relocated above 1M on modern chipsets,
2684 * and SMM handlers might indeed rely on 4G segment limits,
2685 * so do not report SMM to be available if real mode is
2686 * emulated via vm86 mode. Still, do not go to great lengths
2687 * to avoid userspace's usage of the feature, because it is a
2688 * fringe case that is not enabled except via specific settings
2689 * of the module parameters.
2690 */
2691 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2692 break;
2693 case KVM_CAP_VAPIC:
2694 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2695 break;
2696 case KVM_CAP_NR_VCPUS:
2697 r = KVM_SOFT_MAX_VCPUS;
2698 break;
2699 case KVM_CAP_MAX_VCPUS:
2700 r = KVM_MAX_VCPUS;
2701 break;
2702 case KVM_CAP_NR_MEMSLOTS:
2703 r = KVM_USER_MEM_SLOTS;
2704 break;
2705 case KVM_CAP_PV_MMU: /* obsolete */
2706 r = 0;
2707 break;
2708 case KVM_CAP_MCE:
2709 r = KVM_MAX_MCE_BANKS;
2710 break;
2711 case KVM_CAP_XCRS:
2712 r = boot_cpu_has(X86_FEATURE_XSAVE);
2713 break;
2714 case KVM_CAP_TSC_CONTROL:
2715 r = kvm_has_tsc_control;
2716 break;
2717 case KVM_CAP_X2APIC_API:
2718 r = KVM_X2APIC_API_VALID_FLAGS;
2719 break;
2720 default:
2721 r = 0;
2722 break;
2723 }
2724 return r;
2725
2726 }
2727
2728 long kvm_arch_dev_ioctl(struct file *filp,
2729 unsigned int ioctl, unsigned long arg)
2730 {
2731 void __user *argp = (void __user *)arg;
2732 long r;
2733
2734 switch (ioctl) {
2735 case KVM_GET_MSR_INDEX_LIST: {
2736 struct kvm_msr_list __user *user_msr_list = argp;
2737 struct kvm_msr_list msr_list;
2738 unsigned n;
2739
2740 r = -EFAULT;
2741 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2742 goto out;
2743 n = msr_list.nmsrs;
2744 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2745 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2746 goto out;
2747 r = -E2BIG;
2748 if (n < msr_list.nmsrs)
2749 goto out;
2750 r = -EFAULT;
2751 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2752 num_msrs_to_save * sizeof(u32)))
2753 goto out;
2754 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2755 &emulated_msrs,
2756 num_emulated_msrs * sizeof(u32)))
2757 goto out;
2758 r = 0;
2759 break;
2760 }
2761 case KVM_GET_SUPPORTED_CPUID:
2762 case KVM_GET_EMULATED_CPUID: {
2763 struct kvm_cpuid2 __user *cpuid_arg = argp;
2764 struct kvm_cpuid2 cpuid;
2765
2766 r = -EFAULT;
2767 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2768 goto out;
2769
2770 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2771 ioctl);
2772 if (r)
2773 goto out;
2774
2775 r = -EFAULT;
2776 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2777 goto out;
2778 r = 0;
2779 break;
2780 }
2781 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2782 r = -EFAULT;
2783 if (copy_to_user(argp, &kvm_mce_cap_supported,
2784 sizeof(kvm_mce_cap_supported)))
2785 goto out;
2786 r = 0;
2787 break;
2788 }
2789 default:
2790 r = -EINVAL;
2791 }
2792 out:
2793 return r;
2794 }
2795
2796 static void wbinvd_ipi(void *garbage)
2797 {
2798 wbinvd();
2799 }
2800
2801 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2802 {
2803 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2804 }
2805
2806 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2807 {
2808 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2809 }
2810
2811 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2812 {
2813 /* Address WBINVD may be executed by guest */
2814 if (need_emulate_wbinvd(vcpu)) {
2815 if (kvm_x86_ops->has_wbinvd_exit())
2816 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2817 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2818 smp_call_function_single(vcpu->cpu,
2819 wbinvd_ipi, NULL, 1);
2820 }
2821
2822 kvm_x86_ops->vcpu_load(vcpu, cpu);
2823
2824 /* Apply any externally detected TSC adjustments (due to suspend) */
2825 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2826 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2827 vcpu->arch.tsc_offset_adjustment = 0;
2828 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2829 }
2830
2831 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2832 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2833 rdtsc() - vcpu->arch.last_host_tsc;
2834 if (tsc_delta < 0)
2835 mark_tsc_unstable("KVM discovered backwards TSC");
2836
2837 if (check_tsc_unstable()) {
2838 u64 offset = kvm_compute_tsc_offset(vcpu,
2839 vcpu->arch.last_guest_tsc);
2840 kvm_vcpu_write_tsc_offset(vcpu, offset);
2841 vcpu->arch.tsc_catchup = 1;
2842 }
2843 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2844 kvm_x86_ops->set_hv_timer(vcpu,
2845 kvm_get_lapic_target_expiration_tsc(vcpu)))
2846 kvm_lapic_switch_to_sw_timer(vcpu);
2847 /*
2848 * On a host with synchronized TSC, there is no need to update
2849 * kvmclock on vcpu->cpu migration
2850 */
2851 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2852 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2853 if (vcpu->cpu != cpu)
2854 kvm_migrate_timers(vcpu);
2855 vcpu->cpu = cpu;
2856 }
2857
2858 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2859 }
2860
2861 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2862 {
2863 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2864 return;
2865
2866 vcpu->arch.st.steal.preempted = 1;
2867
2868 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2869 &vcpu->arch.st.steal.preempted,
2870 offsetof(struct kvm_steal_time, preempted),
2871 sizeof(vcpu->arch.st.steal.preempted));
2872 }
2873
2874 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2875 {
2876 int idx;
2877 /*
2878 * Disable page faults because we're in atomic context here.
2879 * kvm_write_guest_offset_cached() would call might_fault()
2880 * that relies on pagefault_disable() to tell if there's a
2881 * bug. NOTE: the write to guest memory may not go through if
2882 * during postcopy live migration or if there's heavy guest
2883 * paging.
2884 */
2885 pagefault_disable();
2886 /*
2887 * kvm_memslots() will be called by
2888 * kvm_write_guest_offset_cached() so take the srcu lock.
2889 */
2890 idx = srcu_read_lock(&vcpu->kvm->srcu);
2891 kvm_steal_time_set_preempted(vcpu);
2892 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2893 pagefault_enable();
2894 kvm_x86_ops->vcpu_put(vcpu);
2895 kvm_put_guest_fpu(vcpu);
2896 vcpu->arch.last_host_tsc = rdtsc();
2897 }
2898
2899 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2900 struct kvm_lapic_state *s)
2901 {
2902 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2903 kvm_x86_ops->sync_pir_to_irr(vcpu);
2904
2905 return kvm_apic_get_state(vcpu, s);
2906 }
2907
2908 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2909 struct kvm_lapic_state *s)
2910 {
2911 int r;
2912
2913 r = kvm_apic_set_state(vcpu, s);
2914 if (r)
2915 return r;
2916 update_cr8_intercept(vcpu);
2917
2918 return 0;
2919 }
2920
2921 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2922 {
2923 return (!lapic_in_kernel(vcpu) ||
2924 kvm_apic_accept_pic_intr(vcpu));
2925 }
2926
2927 /*
2928 * if userspace requested an interrupt window, check that the
2929 * interrupt window is open.
2930 *
2931 * No need to exit to userspace if we already have an interrupt queued.
2932 */
2933 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2934 {
2935 return kvm_arch_interrupt_allowed(vcpu) &&
2936 !kvm_cpu_has_interrupt(vcpu) &&
2937 !kvm_event_needs_reinjection(vcpu) &&
2938 kvm_cpu_accept_dm_intr(vcpu);
2939 }
2940
2941 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2942 struct kvm_interrupt *irq)
2943 {
2944 if (irq->irq >= KVM_NR_INTERRUPTS)
2945 return -EINVAL;
2946
2947 if (!irqchip_in_kernel(vcpu->kvm)) {
2948 kvm_queue_interrupt(vcpu, irq->irq, false);
2949 kvm_make_request(KVM_REQ_EVENT, vcpu);
2950 return 0;
2951 }
2952
2953 /*
2954 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2955 * fail for in-kernel 8259.
2956 */
2957 if (pic_in_kernel(vcpu->kvm))
2958 return -ENXIO;
2959
2960 if (vcpu->arch.pending_external_vector != -1)
2961 return -EEXIST;
2962
2963 vcpu->arch.pending_external_vector = irq->irq;
2964 kvm_make_request(KVM_REQ_EVENT, vcpu);
2965 return 0;
2966 }
2967
2968 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2969 {
2970 kvm_inject_nmi(vcpu);
2971
2972 return 0;
2973 }
2974
2975 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2976 {
2977 kvm_make_request(KVM_REQ_SMI, vcpu);
2978
2979 return 0;
2980 }
2981
2982 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2983 struct kvm_tpr_access_ctl *tac)
2984 {
2985 if (tac->flags)
2986 return -EINVAL;
2987 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2988 return 0;
2989 }
2990
2991 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2992 u64 mcg_cap)
2993 {
2994 int r;
2995 unsigned bank_num = mcg_cap & 0xff, bank;
2996
2997 r = -EINVAL;
2998 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2999 goto out;
3000 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3001 goto out;
3002 r = 0;
3003 vcpu->arch.mcg_cap = mcg_cap;
3004 /* Init IA32_MCG_CTL to all 1s */
3005 if (mcg_cap & MCG_CTL_P)
3006 vcpu->arch.mcg_ctl = ~(u64)0;
3007 /* Init IA32_MCi_CTL to all 1s */
3008 for (bank = 0; bank < bank_num; bank++)
3009 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3010
3011 if (kvm_x86_ops->setup_mce)
3012 kvm_x86_ops->setup_mce(vcpu);
3013 out:
3014 return r;
3015 }
3016
3017 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3018 struct kvm_x86_mce *mce)
3019 {
3020 u64 mcg_cap = vcpu->arch.mcg_cap;
3021 unsigned bank_num = mcg_cap & 0xff;
3022 u64 *banks = vcpu->arch.mce_banks;
3023
3024 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3025 return -EINVAL;
3026 /*
3027 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3028 * reporting is disabled
3029 */
3030 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3031 vcpu->arch.mcg_ctl != ~(u64)0)
3032 return 0;
3033 banks += 4 * mce->bank;
3034 /*
3035 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3036 * reporting is disabled for the bank
3037 */
3038 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3039 return 0;
3040 if (mce->status & MCI_STATUS_UC) {
3041 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3042 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3043 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3044 return 0;
3045 }
3046 if (banks[1] & MCI_STATUS_VAL)
3047 mce->status |= MCI_STATUS_OVER;
3048 banks[2] = mce->addr;
3049 banks[3] = mce->misc;
3050 vcpu->arch.mcg_status = mce->mcg_status;
3051 banks[1] = mce->status;
3052 kvm_queue_exception(vcpu, MC_VECTOR);
3053 } else if (!(banks[1] & MCI_STATUS_VAL)
3054 || !(banks[1] & MCI_STATUS_UC)) {
3055 if (banks[1] & MCI_STATUS_VAL)
3056 mce->status |= MCI_STATUS_OVER;
3057 banks[2] = mce->addr;
3058 banks[3] = mce->misc;
3059 banks[1] = mce->status;
3060 } else
3061 banks[1] |= MCI_STATUS_OVER;
3062 return 0;
3063 }
3064
3065 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3066 struct kvm_vcpu_events *events)
3067 {
3068 process_nmi(vcpu);
3069 events->exception.injected =
3070 vcpu->arch.exception.pending &&
3071 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3072 events->exception.nr = vcpu->arch.exception.nr;
3073 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3074 events->exception.pad = 0;
3075 events->exception.error_code = vcpu->arch.exception.error_code;
3076
3077 events->interrupt.injected =
3078 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3079 events->interrupt.nr = vcpu->arch.interrupt.nr;
3080 events->interrupt.soft = 0;
3081 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3082
3083 events->nmi.injected = vcpu->arch.nmi_injected;
3084 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3085 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3086 events->nmi.pad = 0;
3087
3088 events->sipi_vector = 0; /* never valid when reporting to user space */
3089
3090 events->smi.smm = is_smm(vcpu);
3091 events->smi.pending = vcpu->arch.smi_pending;
3092 events->smi.smm_inside_nmi =
3093 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3094 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3095
3096 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3097 | KVM_VCPUEVENT_VALID_SHADOW
3098 | KVM_VCPUEVENT_VALID_SMM);
3099 memset(&events->reserved, 0, sizeof(events->reserved));
3100 }
3101
3102 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3103
3104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3105 struct kvm_vcpu_events *events)
3106 {
3107 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3108 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3109 | KVM_VCPUEVENT_VALID_SHADOW
3110 | KVM_VCPUEVENT_VALID_SMM))
3111 return -EINVAL;
3112
3113 if (events->exception.injected &&
3114 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3115 is_guest_mode(vcpu)))
3116 return -EINVAL;
3117
3118 /* INITs are latched while in SMM */
3119 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3120 (events->smi.smm || events->smi.pending) &&
3121 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3122 return -EINVAL;
3123
3124 process_nmi(vcpu);
3125 vcpu->arch.exception.pending = events->exception.injected;
3126 vcpu->arch.exception.nr = events->exception.nr;
3127 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3128 vcpu->arch.exception.error_code = events->exception.error_code;
3129
3130 vcpu->arch.interrupt.pending = events->interrupt.injected;
3131 vcpu->arch.interrupt.nr = events->interrupt.nr;
3132 vcpu->arch.interrupt.soft = events->interrupt.soft;
3133 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3134 kvm_x86_ops->set_interrupt_shadow(vcpu,
3135 events->interrupt.shadow);
3136
3137 vcpu->arch.nmi_injected = events->nmi.injected;
3138 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3139 vcpu->arch.nmi_pending = events->nmi.pending;
3140 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3141
3142 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3143 lapic_in_kernel(vcpu))
3144 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3145
3146 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3147 u32 hflags = vcpu->arch.hflags;
3148 if (events->smi.smm)
3149 hflags |= HF_SMM_MASK;
3150 else
3151 hflags &= ~HF_SMM_MASK;
3152 kvm_set_hflags(vcpu, hflags);
3153
3154 vcpu->arch.smi_pending = events->smi.pending;
3155 if (events->smi.smm_inside_nmi)
3156 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3157 else
3158 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3159 if (lapic_in_kernel(vcpu)) {
3160 if (events->smi.latched_init)
3161 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3162 else
3163 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3164 }
3165 }
3166
3167 kvm_make_request(KVM_REQ_EVENT, vcpu);
3168
3169 return 0;
3170 }
3171
3172 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3173 struct kvm_debugregs *dbgregs)
3174 {
3175 unsigned long val;
3176
3177 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3178 kvm_get_dr(vcpu, 6, &val);
3179 dbgregs->dr6 = val;
3180 dbgregs->dr7 = vcpu->arch.dr7;
3181 dbgregs->flags = 0;
3182 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3183 }
3184
3185 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3186 struct kvm_debugregs *dbgregs)
3187 {
3188 if (dbgregs->flags)
3189 return -EINVAL;
3190
3191 if (dbgregs->dr6 & ~0xffffffffull)
3192 return -EINVAL;
3193 if (dbgregs->dr7 & ~0xffffffffull)
3194 return -EINVAL;
3195
3196 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3197 kvm_update_dr0123(vcpu);
3198 vcpu->arch.dr6 = dbgregs->dr6;
3199 kvm_update_dr6(vcpu);
3200 vcpu->arch.dr7 = dbgregs->dr7;
3201 kvm_update_dr7(vcpu);
3202
3203 return 0;
3204 }
3205
3206 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3207
3208 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3209 {
3210 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3211 u64 xstate_bv = xsave->header.xfeatures;
3212 u64 valid;
3213
3214 /*
3215 * Copy legacy XSAVE area, to avoid complications with CPUID
3216 * leaves 0 and 1 in the loop below.
3217 */
3218 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3219
3220 /* Set XSTATE_BV */
3221 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3222 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3223
3224 /*
3225 * Copy each region from the possibly compacted offset to the
3226 * non-compacted offset.
3227 */
3228 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3229 while (valid) {
3230 u64 feature = valid & -valid;
3231 int index = fls64(feature) - 1;
3232 void *src = get_xsave_addr(xsave, feature);
3233
3234 if (src) {
3235 u32 size, offset, ecx, edx;
3236 cpuid_count(XSTATE_CPUID, index,
3237 &size, &offset, &ecx, &edx);
3238 memcpy(dest + offset, src, size);
3239 }
3240
3241 valid -= feature;
3242 }
3243 }
3244
3245 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3246 {
3247 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3248 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3249 u64 valid;
3250
3251 /*
3252 * Copy legacy XSAVE area, to avoid complications with CPUID
3253 * leaves 0 and 1 in the loop below.
3254 */
3255 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3256
3257 /* Set XSTATE_BV and possibly XCOMP_BV. */
3258 xsave->header.xfeatures = xstate_bv;
3259 if (boot_cpu_has(X86_FEATURE_XSAVES))
3260 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3261
3262 /*
3263 * Copy each region from the non-compacted offset to the
3264 * possibly compacted offset.
3265 */
3266 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3267 while (valid) {
3268 u64 feature = valid & -valid;
3269 int index = fls64(feature) - 1;
3270 void *dest = get_xsave_addr(xsave, feature);
3271
3272 if (dest) {
3273 u32 size, offset, ecx, edx;
3274 cpuid_count(XSTATE_CPUID, index,
3275 &size, &offset, &ecx, &edx);
3276 memcpy(dest, src + offset, size);
3277 }
3278
3279 valid -= feature;
3280 }
3281 }
3282
3283 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3284 struct kvm_xsave *guest_xsave)
3285 {
3286 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3287 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3288 fill_xsave((u8 *) guest_xsave->region, vcpu);
3289 } else {
3290 memcpy(guest_xsave->region,
3291 &vcpu->arch.guest_fpu.state.fxsave,
3292 sizeof(struct fxregs_state));
3293 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3294 XFEATURE_MASK_FPSSE;
3295 }
3296 }
3297
3298 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3299 struct kvm_xsave *guest_xsave)
3300 {
3301 u64 xstate_bv =
3302 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3303
3304 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3305 /*
3306 * Here we allow setting states that are not present in
3307 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3308 * with old userspace.
3309 */
3310 if (xstate_bv & ~kvm_supported_xcr0())
3311 return -EINVAL;
3312 load_xsave(vcpu, (u8 *)guest_xsave->region);
3313 } else {
3314 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3315 return -EINVAL;
3316 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3317 guest_xsave->region, sizeof(struct fxregs_state));
3318 }
3319 return 0;
3320 }
3321
3322 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3323 struct kvm_xcrs *guest_xcrs)
3324 {
3325 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3326 guest_xcrs->nr_xcrs = 0;
3327 return;
3328 }
3329
3330 guest_xcrs->nr_xcrs = 1;
3331 guest_xcrs->flags = 0;
3332 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3333 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3334 }
3335
3336 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3337 struct kvm_xcrs *guest_xcrs)
3338 {
3339 int i, r = 0;
3340
3341 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3342 return -EINVAL;
3343
3344 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3345 return -EINVAL;
3346
3347 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3348 /* Only support XCR0 currently */
3349 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3350 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3351 guest_xcrs->xcrs[i].value);
3352 break;
3353 }
3354 if (r)
3355 r = -EINVAL;
3356 return r;
3357 }
3358
3359 /*
3360 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3361 * stopped by the hypervisor. This function will be called from the host only.
3362 * EINVAL is returned when the host attempts to set the flag for a guest that
3363 * does not support pv clocks.
3364 */
3365 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3366 {
3367 if (!vcpu->arch.pv_time_enabled)
3368 return -EINVAL;
3369 vcpu->arch.pvclock_set_guest_stopped_request = true;
3370 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3371 return 0;
3372 }
3373
3374 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3375 struct kvm_enable_cap *cap)
3376 {
3377 if (cap->flags)
3378 return -EINVAL;
3379
3380 switch (cap->cap) {
3381 case KVM_CAP_HYPERV_SYNIC:
3382 if (!irqchip_in_kernel(vcpu->kvm))
3383 return -EINVAL;
3384 return kvm_hv_activate_synic(vcpu);
3385 default:
3386 return -EINVAL;
3387 }
3388 }
3389
3390 long kvm_arch_vcpu_ioctl(struct file *filp,
3391 unsigned int ioctl, unsigned long arg)
3392 {
3393 struct kvm_vcpu *vcpu = filp->private_data;
3394 void __user *argp = (void __user *)arg;
3395 int r;
3396 union {
3397 struct kvm_lapic_state *lapic;
3398 struct kvm_xsave *xsave;
3399 struct kvm_xcrs *xcrs;
3400 void *buffer;
3401 } u;
3402
3403 u.buffer = NULL;
3404 switch (ioctl) {
3405 case KVM_GET_LAPIC: {
3406 r = -EINVAL;
3407 if (!lapic_in_kernel(vcpu))
3408 goto out;
3409 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3410
3411 r = -ENOMEM;
3412 if (!u.lapic)
3413 goto out;
3414 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3415 if (r)
3416 goto out;
3417 r = -EFAULT;
3418 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3419 goto out;
3420 r = 0;
3421 break;
3422 }
3423 case KVM_SET_LAPIC: {
3424 r = -EINVAL;
3425 if (!lapic_in_kernel(vcpu))
3426 goto out;
3427 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3428 if (IS_ERR(u.lapic))
3429 return PTR_ERR(u.lapic);
3430
3431 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3432 break;
3433 }
3434 case KVM_INTERRUPT: {
3435 struct kvm_interrupt irq;
3436
3437 r = -EFAULT;
3438 if (copy_from_user(&irq, argp, sizeof irq))
3439 goto out;
3440 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3441 break;
3442 }
3443 case KVM_NMI: {
3444 r = kvm_vcpu_ioctl_nmi(vcpu);
3445 break;
3446 }
3447 case KVM_SMI: {
3448 r = kvm_vcpu_ioctl_smi(vcpu);
3449 break;
3450 }
3451 case KVM_SET_CPUID: {
3452 struct kvm_cpuid __user *cpuid_arg = argp;
3453 struct kvm_cpuid cpuid;
3454
3455 r = -EFAULT;
3456 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3457 goto out;
3458 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3459 break;
3460 }
3461 case KVM_SET_CPUID2: {
3462 struct kvm_cpuid2 __user *cpuid_arg = argp;
3463 struct kvm_cpuid2 cpuid;
3464
3465 r = -EFAULT;
3466 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3467 goto out;
3468 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3469 cpuid_arg->entries);
3470 break;
3471 }
3472 case KVM_GET_CPUID2: {
3473 struct kvm_cpuid2 __user *cpuid_arg = argp;
3474 struct kvm_cpuid2 cpuid;
3475
3476 r = -EFAULT;
3477 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3478 goto out;
3479 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3480 cpuid_arg->entries);
3481 if (r)
3482 goto out;
3483 r = -EFAULT;
3484 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3485 goto out;
3486 r = 0;
3487 break;
3488 }
3489 case KVM_GET_MSRS:
3490 r = msr_io(vcpu, argp, do_get_msr, 1);
3491 break;
3492 case KVM_SET_MSRS:
3493 r = msr_io(vcpu, argp, do_set_msr, 0);
3494 break;
3495 case KVM_TPR_ACCESS_REPORTING: {
3496 struct kvm_tpr_access_ctl tac;
3497
3498 r = -EFAULT;
3499 if (copy_from_user(&tac, argp, sizeof tac))
3500 goto out;
3501 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3502 if (r)
3503 goto out;
3504 r = -EFAULT;
3505 if (copy_to_user(argp, &tac, sizeof tac))
3506 goto out;
3507 r = 0;
3508 break;
3509 };
3510 case KVM_SET_VAPIC_ADDR: {
3511 struct kvm_vapic_addr va;
3512 int idx;
3513
3514 r = -EINVAL;
3515 if (!lapic_in_kernel(vcpu))
3516 goto out;
3517 r = -EFAULT;
3518 if (copy_from_user(&va, argp, sizeof va))
3519 goto out;
3520 idx = srcu_read_lock(&vcpu->kvm->srcu);
3521 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3522 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3523 break;
3524 }
3525 case KVM_X86_SETUP_MCE: {
3526 u64 mcg_cap;
3527
3528 r = -EFAULT;
3529 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3530 goto out;
3531 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3532 break;
3533 }
3534 case KVM_X86_SET_MCE: {
3535 struct kvm_x86_mce mce;
3536
3537 r = -EFAULT;
3538 if (copy_from_user(&mce, argp, sizeof mce))
3539 goto out;
3540 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3541 break;
3542 }
3543 case KVM_GET_VCPU_EVENTS: {
3544 struct kvm_vcpu_events events;
3545
3546 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3547
3548 r = -EFAULT;
3549 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3550 break;
3551 r = 0;
3552 break;
3553 }
3554 case KVM_SET_VCPU_EVENTS: {
3555 struct kvm_vcpu_events events;
3556
3557 r = -EFAULT;
3558 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3559 break;
3560
3561 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3562 break;
3563 }
3564 case KVM_GET_DEBUGREGS: {
3565 struct kvm_debugregs dbgregs;
3566
3567 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3568
3569 r = -EFAULT;
3570 if (copy_to_user(argp, &dbgregs,
3571 sizeof(struct kvm_debugregs)))
3572 break;
3573 r = 0;
3574 break;
3575 }
3576 case KVM_SET_DEBUGREGS: {
3577 struct kvm_debugregs dbgregs;
3578
3579 r = -EFAULT;
3580 if (copy_from_user(&dbgregs, argp,
3581 sizeof(struct kvm_debugregs)))
3582 break;
3583
3584 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3585 break;
3586 }
3587 case KVM_GET_XSAVE: {
3588 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3589 r = -ENOMEM;
3590 if (!u.xsave)
3591 break;
3592
3593 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3594
3595 r = -EFAULT;
3596 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3597 break;
3598 r = 0;
3599 break;
3600 }
3601 case KVM_SET_XSAVE: {
3602 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3603 if (IS_ERR(u.xsave))
3604 return PTR_ERR(u.xsave);
3605
3606 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3607 break;
3608 }
3609 case KVM_GET_XCRS: {
3610 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3611 r = -ENOMEM;
3612 if (!u.xcrs)
3613 break;
3614
3615 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3616
3617 r = -EFAULT;
3618 if (copy_to_user(argp, u.xcrs,
3619 sizeof(struct kvm_xcrs)))
3620 break;
3621 r = 0;
3622 break;
3623 }
3624 case KVM_SET_XCRS: {
3625 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3626 if (IS_ERR(u.xcrs))
3627 return PTR_ERR(u.xcrs);
3628
3629 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3630 break;
3631 }
3632 case KVM_SET_TSC_KHZ: {
3633 u32 user_tsc_khz;
3634
3635 r = -EINVAL;
3636 user_tsc_khz = (u32)arg;
3637
3638 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3639 goto out;
3640
3641 if (user_tsc_khz == 0)
3642 user_tsc_khz = tsc_khz;
3643
3644 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3645 r = 0;
3646
3647 goto out;
3648 }
3649 case KVM_GET_TSC_KHZ: {
3650 r = vcpu->arch.virtual_tsc_khz;
3651 goto out;
3652 }
3653 case KVM_KVMCLOCK_CTRL: {
3654 r = kvm_set_guest_paused(vcpu);
3655 goto out;
3656 }
3657 case KVM_ENABLE_CAP: {
3658 struct kvm_enable_cap cap;
3659
3660 r = -EFAULT;
3661 if (copy_from_user(&cap, argp, sizeof(cap)))
3662 goto out;
3663 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3664 break;
3665 }
3666 default:
3667 r = -EINVAL;
3668 }
3669 out:
3670 kfree(u.buffer);
3671 return r;
3672 }
3673
3674 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3675 {
3676 return VM_FAULT_SIGBUS;
3677 }
3678
3679 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3680 {
3681 int ret;
3682
3683 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3684 return -EINVAL;
3685 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3686 return ret;
3687 }
3688
3689 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3690 u64 ident_addr)
3691 {
3692 kvm->arch.ept_identity_map_addr = ident_addr;
3693 return 0;
3694 }
3695
3696 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3697 u32 kvm_nr_mmu_pages)
3698 {
3699 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3700 return -EINVAL;
3701
3702 mutex_lock(&kvm->slots_lock);
3703
3704 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3705 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3706
3707 mutex_unlock(&kvm->slots_lock);
3708 return 0;
3709 }
3710
3711 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3712 {
3713 return kvm->arch.n_max_mmu_pages;
3714 }
3715
3716 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3717 {
3718 struct kvm_pic *pic = kvm->arch.vpic;
3719 int r;
3720
3721 r = 0;
3722 switch (chip->chip_id) {
3723 case KVM_IRQCHIP_PIC_MASTER:
3724 memcpy(&chip->chip.pic, &pic->pics[0],
3725 sizeof(struct kvm_pic_state));
3726 break;
3727 case KVM_IRQCHIP_PIC_SLAVE:
3728 memcpy(&chip->chip.pic, &pic->pics[1],
3729 sizeof(struct kvm_pic_state));
3730 break;
3731 case KVM_IRQCHIP_IOAPIC:
3732 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3733 break;
3734 default:
3735 r = -EINVAL;
3736 break;
3737 }
3738 return r;
3739 }
3740
3741 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3742 {
3743 struct kvm_pic *pic = kvm->arch.vpic;
3744 int r;
3745
3746 r = 0;
3747 switch (chip->chip_id) {
3748 case KVM_IRQCHIP_PIC_MASTER:
3749 spin_lock(&pic->lock);
3750 memcpy(&pic->pics[0], &chip->chip.pic,
3751 sizeof(struct kvm_pic_state));
3752 spin_unlock(&pic->lock);
3753 break;
3754 case KVM_IRQCHIP_PIC_SLAVE:
3755 spin_lock(&pic->lock);
3756 memcpy(&pic->pics[1], &chip->chip.pic,
3757 sizeof(struct kvm_pic_state));
3758 spin_unlock(&pic->lock);
3759 break;
3760 case KVM_IRQCHIP_IOAPIC:
3761 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3762 break;
3763 default:
3764 r = -EINVAL;
3765 break;
3766 }
3767 kvm_pic_update_irq(pic);
3768 return r;
3769 }
3770
3771 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3772 {
3773 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3774
3775 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3776
3777 mutex_lock(&kps->lock);
3778 memcpy(ps, &kps->channels, sizeof(*ps));
3779 mutex_unlock(&kps->lock);
3780 return 0;
3781 }
3782
3783 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3784 {
3785 int i;
3786 struct kvm_pit *pit = kvm->arch.vpit;
3787
3788 mutex_lock(&pit->pit_state.lock);
3789 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3790 for (i = 0; i < 3; i++)
3791 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3792 mutex_unlock(&pit->pit_state.lock);
3793 return 0;
3794 }
3795
3796 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3797 {
3798 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3799 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3800 sizeof(ps->channels));
3801 ps->flags = kvm->arch.vpit->pit_state.flags;
3802 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3803 memset(&ps->reserved, 0, sizeof(ps->reserved));
3804 return 0;
3805 }
3806
3807 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3808 {
3809 int start = 0;
3810 int i;
3811 u32 prev_legacy, cur_legacy;
3812 struct kvm_pit *pit = kvm->arch.vpit;
3813
3814 mutex_lock(&pit->pit_state.lock);
3815 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3816 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3817 if (!prev_legacy && cur_legacy)
3818 start = 1;
3819 memcpy(&pit->pit_state.channels, &ps->channels,
3820 sizeof(pit->pit_state.channels));
3821 pit->pit_state.flags = ps->flags;
3822 for (i = 0; i < 3; i++)
3823 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3824 start && i == 0);
3825 mutex_unlock(&pit->pit_state.lock);
3826 return 0;
3827 }
3828
3829 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3830 struct kvm_reinject_control *control)
3831 {
3832 struct kvm_pit *pit = kvm->arch.vpit;
3833
3834 if (!pit)
3835 return -ENXIO;
3836
3837 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3838 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3839 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3840 */
3841 mutex_lock(&pit->pit_state.lock);
3842 kvm_pit_set_reinject(pit, control->pit_reinject);
3843 mutex_unlock(&pit->pit_state.lock);
3844
3845 return 0;
3846 }
3847
3848 /**
3849 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3850 * @kvm: kvm instance
3851 * @log: slot id and address to which we copy the log
3852 *
3853 * Steps 1-4 below provide general overview of dirty page logging. See
3854 * kvm_get_dirty_log_protect() function description for additional details.
3855 *
3856 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3857 * always flush the TLB (step 4) even if previous step failed and the dirty
3858 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3859 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3860 * writes will be marked dirty for next log read.
3861 *
3862 * 1. Take a snapshot of the bit and clear it if needed.
3863 * 2. Write protect the corresponding page.
3864 * 3. Copy the snapshot to the userspace.
3865 * 4. Flush TLB's if needed.
3866 */
3867 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3868 {
3869 bool is_dirty = false;
3870 int r;
3871
3872 mutex_lock(&kvm->slots_lock);
3873
3874 /*
3875 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3876 */
3877 if (kvm_x86_ops->flush_log_dirty)
3878 kvm_x86_ops->flush_log_dirty(kvm);
3879
3880 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3881
3882 /*
3883 * All the TLBs can be flushed out of mmu lock, see the comments in
3884 * kvm_mmu_slot_remove_write_access().
3885 */
3886 lockdep_assert_held(&kvm->slots_lock);
3887 if (is_dirty)
3888 kvm_flush_remote_tlbs(kvm);
3889
3890 mutex_unlock(&kvm->slots_lock);
3891 return r;
3892 }
3893
3894 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3895 bool line_status)
3896 {
3897 if (!irqchip_in_kernel(kvm))
3898 return -ENXIO;
3899
3900 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3901 irq_event->irq, irq_event->level,
3902 line_status);
3903 return 0;
3904 }
3905
3906 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3907 struct kvm_enable_cap *cap)
3908 {
3909 int r;
3910
3911 if (cap->flags)
3912 return -EINVAL;
3913
3914 switch (cap->cap) {
3915 case KVM_CAP_DISABLE_QUIRKS:
3916 kvm->arch.disabled_quirks = cap->args[0];
3917 r = 0;
3918 break;
3919 case KVM_CAP_SPLIT_IRQCHIP: {
3920 mutex_lock(&kvm->lock);
3921 r = -EINVAL;
3922 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3923 goto split_irqchip_unlock;
3924 r = -EEXIST;
3925 if (irqchip_in_kernel(kvm))
3926 goto split_irqchip_unlock;
3927 if (kvm->created_vcpus)
3928 goto split_irqchip_unlock;
3929 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
3930 r = kvm_setup_empty_irq_routing(kvm);
3931 if (r) {
3932 kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
3933 /* Pairs with smp_rmb() when reading irqchip_mode */
3934 smp_wmb();
3935 goto split_irqchip_unlock;
3936 }
3937 /* Pairs with irqchip_in_kernel. */
3938 smp_wmb();
3939 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3940 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3941 r = 0;
3942 split_irqchip_unlock:
3943 mutex_unlock(&kvm->lock);
3944 break;
3945 }
3946 case KVM_CAP_X2APIC_API:
3947 r = -EINVAL;
3948 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3949 break;
3950
3951 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3952 kvm->arch.x2apic_format = true;
3953 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3954 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3955
3956 r = 0;
3957 break;
3958 default:
3959 r = -EINVAL;
3960 break;
3961 }
3962 return r;
3963 }
3964
3965 long kvm_arch_vm_ioctl(struct file *filp,
3966 unsigned int ioctl, unsigned long arg)
3967 {
3968 struct kvm *kvm = filp->private_data;
3969 void __user *argp = (void __user *)arg;
3970 int r = -ENOTTY;
3971 /*
3972 * This union makes it completely explicit to gcc-3.x
3973 * that these two variables' stack usage should be
3974 * combined, not added together.
3975 */
3976 union {
3977 struct kvm_pit_state ps;
3978 struct kvm_pit_state2 ps2;
3979 struct kvm_pit_config pit_config;
3980 } u;
3981
3982 switch (ioctl) {
3983 case KVM_SET_TSS_ADDR:
3984 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3985 break;
3986 case KVM_SET_IDENTITY_MAP_ADDR: {
3987 u64 ident_addr;
3988
3989 r = -EFAULT;
3990 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3991 goto out;
3992 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3993 break;
3994 }
3995 case KVM_SET_NR_MMU_PAGES:
3996 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3997 break;
3998 case KVM_GET_NR_MMU_PAGES:
3999 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4000 break;
4001 case KVM_CREATE_IRQCHIP: {
4002 mutex_lock(&kvm->lock);
4003
4004 r = -EEXIST;
4005 if (irqchip_in_kernel(kvm))
4006 goto create_irqchip_unlock;
4007
4008 r = -EINVAL;
4009 if (kvm->created_vcpus)
4010 goto create_irqchip_unlock;
4011
4012 r = kvm_pic_init(kvm);
4013 if (r)
4014 goto create_irqchip_unlock;
4015
4016 r = kvm_ioapic_init(kvm);
4017 if (r) {
4018 mutex_lock(&kvm->slots_lock);
4019 kvm_pic_destroy(kvm);
4020 mutex_unlock(&kvm->slots_lock);
4021 goto create_irqchip_unlock;
4022 }
4023
4024 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
4025 r = kvm_setup_default_irq_routing(kvm);
4026 if (r) {
4027 kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
4028 /* Pairs with smp_rmb() when reading irqchip_mode */
4029 smp_wmb();
4030 mutex_lock(&kvm->slots_lock);
4031 kvm_ioapic_destroy(kvm);
4032 kvm_pic_destroy(kvm);
4033 mutex_unlock(&kvm->slots_lock);
4034 goto create_irqchip_unlock;
4035 }
4036 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4037 smp_wmb();
4038 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4039 create_irqchip_unlock:
4040 mutex_unlock(&kvm->lock);
4041 break;
4042 }
4043 case KVM_CREATE_PIT:
4044 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4045 goto create_pit;
4046 case KVM_CREATE_PIT2:
4047 r = -EFAULT;
4048 if (copy_from_user(&u.pit_config, argp,
4049 sizeof(struct kvm_pit_config)))
4050 goto out;
4051 create_pit:
4052 mutex_lock(&kvm->lock);
4053 r = -EEXIST;
4054 if (kvm->arch.vpit)
4055 goto create_pit_unlock;
4056 r = -ENOMEM;
4057 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4058 if (kvm->arch.vpit)
4059 r = 0;
4060 create_pit_unlock:
4061 mutex_unlock(&kvm->lock);
4062 break;
4063 case KVM_GET_IRQCHIP: {
4064 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4065 struct kvm_irqchip *chip;
4066
4067 chip = memdup_user(argp, sizeof(*chip));
4068 if (IS_ERR(chip)) {
4069 r = PTR_ERR(chip);
4070 goto out;
4071 }
4072
4073 r = -ENXIO;
4074 if (!irqchip_kernel(kvm))
4075 goto get_irqchip_out;
4076 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4077 if (r)
4078 goto get_irqchip_out;
4079 r = -EFAULT;
4080 if (copy_to_user(argp, chip, sizeof *chip))
4081 goto get_irqchip_out;
4082 r = 0;
4083 get_irqchip_out:
4084 kfree(chip);
4085 break;
4086 }
4087 case KVM_SET_IRQCHIP: {
4088 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4089 struct kvm_irqchip *chip;
4090
4091 chip = memdup_user(argp, sizeof(*chip));
4092 if (IS_ERR(chip)) {
4093 r = PTR_ERR(chip);
4094 goto out;
4095 }
4096
4097 r = -ENXIO;
4098 if (!irqchip_kernel(kvm))
4099 goto set_irqchip_out;
4100 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4101 if (r)
4102 goto set_irqchip_out;
4103 r = 0;
4104 set_irqchip_out:
4105 kfree(chip);
4106 break;
4107 }
4108 case KVM_GET_PIT: {
4109 r = -EFAULT;
4110 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4111 goto out;
4112 r = -ENXIO;
4113 if (!kvm->arch.vpit)
4114 goto out;
4115 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4116 if (r)
4117 goto out;
4118 r = -EFAULT;
4119 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4120 goto out;
4121 r = 0;
4122 break;
4123 }
4124 case KVM_SET_PIT: {
4125 r = -EFAULT;
4126 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4127 goto out;
4128 r = -ENXIO;
4129 if (!kvm->arch.vpit)
4130 goto out;
4131 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4132 break;
4133 }
4134 case KVM_GET_PIT2: {
4135 r = -ENXIO;
4136 if (!kvm->arch.vpit)
4137 goto out;
4138 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4139 if (r)
4140 goto out;
4141 r = -EFAULT;
4142 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4143 goto out;
4144 r = 0;
4145 break;
4146 }
4147 case KVM_SET_PIT2: {
4148 r = -EFAULT;
4149 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4150 goto out;
4151 r = -ENXIO;
4152 if (!kvm->arch.vpit)
4153 goto out;
4154 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4155 break;
4156 }
4157 case KVM_REINJECT_CONTROL: {
4158 struct kvm_reinject_control control;
4159 r = -EFAULT;
4160 if (copy_from_user(&control, argp, sizeof(control)))
4161 goto out;
4162 r = kvm_vm_ioctl_reinject(kvm, &control);
4163 break;
4164 }
4165 case KVM_SET_BOOT_CPU_ID:
4166 r = 0;
4167 mutex_lock(&kvm->lock);
4168 if (kvm->created_vcpus)
4169 r = -EBUSY;
4170 else
4171 kvm->arch.bsp_vcpu_id = arg;
4172 mutex_unlock(&kvm->lock);
4173 break;
4174 case KVM_XEN_HVM_CONFIG: {
4175 r = -EFAULT;
4176 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4177 sizeof(struct kvm_xen_hvm_config)))
4178 goto out;
4179 r = -EINVAL;
4180 if (kvm->arch.xen_hvm_config.flags)
4181 goto out;
4182 r = 0;
4183 break;
4184 }
4185 case KVM_SET_CLOCK: {
4186 struct kvm_clock_data user_ns;
4187 u64 now_ns;
4188
4189 r = -EFAULT;
4190 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4191 goto out;
4192
4193 r = -EINVAL;
4194 if (user_ns.flags)
4195 goto out;
4196
4197 r = 0;
4198 local_irq_disable();
4199 now_ns = __get_kvmclock_ns(kvm);
4200 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4201 local_irq_enable();
4202 kvm_gen_update_masterclock(kvm);
4203 break;
4204 }
4205 case KVM_GET_CLOCK: {
4206 struct kvm_clock_data user_ns;
4207 u64 now_ns;
4208
4209 local_irq_disable();
4210 now_ns = __get_kvmclock_ns(kvm);
4211 user_ns.clock = now_ns;
4212 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4213 local_irq_enable();
4214 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4215
4216 r = -EFAULT;
4217 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4218 goto out;
4219 r = 0;
4220 break;
4221 }
4222 case KVM_ENABLE_CAP: {
4223 struct kvm_enable_cap cap;
4224
4225 r = -EFAULT;
4226 if (copy_from_user(&cap, argp, sizeof(cap)))
4227 goto out;
4228 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4229 break;
4230 }
4231 default:
4232 r = -ENOTTY;
4233 }
4234 out:
4235 return r;
4236 }
4237
4238 static void kvm_init_msr_list(void)
4239 {
4240 u32 dummy[2];
4241 unsigned i, j;
4242
4243 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4244 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4245 continue;
4246
4247 /*
4248 * Even MSRs that are valid in the host may not be exposed
4249 * to the guests in some cases.
4250 */
4251 switch (msrs_to_save[i]) {
4252 case MSR_IA32_BNDCFGS:
4253 if (!kvm_x86_ops->mpx_supported())
4254 continue;
4255 break;
4256 case MSR_TSC_AUX:
4257 if (!kvm_x86_ops->rdtscp_supported())
4258 continue;
4259 break;
4260 default:
4261 break;
4262 }
4263
4264 if (j < i)
4265 msrs_to_save[j] = msrs_to_save[i];
4266 j++;
4267 }
4268 num_msrs_to_save = j;
4269
4270 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4271 switch (emulated_msrs[i]) {
4272 case MSR_IA32_SMBASE:
4273 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4274 continue;
4275 break;
4276 default:
4277 break;
4278 }
4279
4280 if (j < i)
4281 emulated_msrs[j] = emulated_msrs[i];
4282 j++;
4283 }
4284 num_emulated_msrs = j;
4285 }
4286
4287 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4288 const void *v)
4289 {
4290 int handled = 0;
4291 int n;
4292
4293 do {
4294 n = min(len, 8);
4295 if (!(lapic_in_kernel(vcpu) &&
4296 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4297 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4298 break;
4299 handled += n;
4300 addr += n;
4301 len -= n;
4302 v += n;
4303 } while (len);
4304
4305 return handled;
4306 }
4307
4308 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4309 {
4310 int handled = 0;
4311 int n;
4312
4313 do {
4314 n = min(len, 8);
4315 if (!(lapic_in_kernel(vcpu) &&
4316 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4317 addr, n, v))
4318 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4319 break;
4320 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4321 handled += n;
4322 addr += n;
4323 len -= n;
4324 v += n;
4325 } while (len);
4326
4327 return handled;
4328 }
4329
4330 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4331 struct kvm_segment *var, int seg)
4332 {
4333 kvm_x86_ops->set_segment(vcpu, var, seg);
4334 }
4335
4336 void kvm_get_segment(struct kvm_vcpu *vcpu,
4337 struct kvm_segment *var, int seg)
4338 {
4339 kvm_x86_ops->get_segment(vcpu, var, seg);
4340 }
4341
4342 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4343 struct x86_exception *exception)
4344 {
4345 gpa_t t_gpa;
4346
4347 BUG_ON(!mmu_is_nested(vcpu));
4348
4349 /* NPT walks are always user-walks */
4350 access |= PFERR_USER_MASK;
4351 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4352
4353 return t_gpa;
4354 }
4355
4356 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4357 struct x86_exception *exception)
4358 {
4359 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4360 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4361 }
4362
4363 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4364 struct x86_exception *exception)
4365 {
4366 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4367 access |= PFERR_FETCH_MASK;
4368 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4369 }
4370
4371 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4372 struct x86_exception *exception)
4373 {
4374 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4375 access |= PFERR_WRITE_MASK;
4376 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4377 }
4378
4379 /* uses this to access any guest's mapped memory without checking CPL */
4380 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4381 struct x86_exception *exception)
4382 {
4383 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4384 }
4385
4386 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4387 struct kvm_vcpu *vcpu, u32 access,
4388 struct x86_exception *exception)
4389 {
4390 void *data = val;
4391 int r = X86EMUL_CONTINUE;
4392
4393 while (bytes) {
4394 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4395 exception);
4396 unsigned offset = addr & (PAGE_SIZE-1);
4397 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4398 int ret;
4399
4400 if (gpa == UNMAPPED_GVA)
4401 return X86EMUL_PROPAGATE_FAULT;
4402 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4403 offset, toread);
4404 if (ret < 0) {
4405 r = X86EMUL_IO_NEEDED;
4406 goto out;
4407 }
4408
4409 bytes -= toread;
4410 data += toread;
4411 addr += toread;
4412 }
4413 out:
4414 return r;
4415 }
4416
4417 /* used for instruction fetching */
4418 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4419 gva_t addr, void *val, unsigned int bytes,
4420 struct x86_exception *exception)
4421 {
4422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4424 unsigned offset;
4425 int ret;
4426
4427 /* Inline kvm_read_guest_virt_helper for speed. */
4428 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4429 exception);
4430 if (unlikely(gpa == UNMAPPED_GVA))
4431 return X86EMUL_PROPAGATE_FAULT;
4432
4433 offset = addr & (PAGE_SIZE-1);
4434 if (WARN_ON(offset + bytes > PAGE_SIZE))
4435 bytes = (unsigned)PAGE_SIZE - offset;
4436 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4437 offset, bytes);
4438 if (unlikely(ret < 0))
4439 return X86EMUL_IO_NEEDED;
4440
4441 return X86EMUL_CONTINUE;
4442 }
4443
4444 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4445 gva_t addr, void *val, unsigned int bytes,
4446 struct x86_exception *exception)
4447 {
4448 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4449 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4450
4451 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4452 exception);
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4455
4456 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4457 gva_t addr, void *val, unsigned int bytes,
4458 struct x86_exception *exception)
4459 {
4460 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4461 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4462 }
4463
4464 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4465 unsigned long addr, void *val, unsigned int bytes)
4466 {
4467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4468 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4469
4470 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4471 }
4472
4473 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4474 gva_t addr, void *val,
4475 unsigned int bytes,
4476 struct x86_exception *exception)
4477 {
4478 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4479 void *data = val;
4480 int r = X86EMUL_CONTINUE;
4481
4482 while (bytes) {
4483 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4484 PFERR_WRITE_MASK,
4485 exception);
4486 unsigned offset = addr & (PAGE_SIZE-1);
4487 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4488 int ret;
4489
4490 if (gpa == UNMAPPED_GVA)
4491 return X86EMUL_PROPAGATE_FAULT;
4492 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4493 if (ret < 0) {
4494 r = X86EMUL_IO_NEEDED;
4495 goto out;
4496 }
4497
4498 bytes -= towrite;
4499 data += towrite;
4500 addr += towrite;
4501 }
4502 out:
4503 return r;
4504 }
4505 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4506
4507 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4508 gpa_t gpa, bool write)
4509 {
4510 /* For APIC access vmexit */
4511 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4512 return 1;
4513
4514 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4515 trace_vcpu_match_mmio(gva, gpa, write, true);
4516 return 1;
4517 }
4518
4519 return 0;
4520 }
4521
4522 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4523 gpa_t *gpa, struct x86_exception *exception,
4524 bool write)
4525 {
4526 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4527 | (write ? PFERR_WRITE_MASK : 0);
4528
4529 /*
4530 * currently PKRU is only applied to ept enabled guest so
4531 * there is no pkey in EPT page table for L1 guest or EPT
4532 * shadow page table for L2 guest.
4533 */
4534 if (vcpu_match_mmio_gva(vcpu, gva)
4535 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4536 vcpu->arch.access, 0, access)) {
4537 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4538 (gva & (PAGE_SIZE - 1));
4539 trace_vcpu_match_mmio(gva, *gpa, write, false);
4540 return 1;
4541 }
4542
4543 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4544
4545 if (*gpa == UNMAPPED_GVA)
4546 return -1;
4547
4548 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4549 }
4550
4551 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4552 const void *val, int bytes)
4553 {
4554 int ret;
4555
4556 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4557 if (ret < 0)
4558 return 0;
4559 kvm_page_track_write(vcpu, gpa, val, bytes);
4560 return 1;
4561 }
4562
4563 struct read_write_emulator_ops {
4564 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4565 int bytes);
4566 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4567 void *val, int bytes);
4568 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4569 int bytes, void *val);
4570 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4571 void *val, int bytes);
4572 bool write;
4573 };
4574
4575 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4576 {
4577 if (vcpu->mmio_read_completed) {
4578 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4579 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4580 vcpu->mmio_read_completed = 0;
4581 return 1;
4582 }
4583
4584 return 0;
4585 }
4586
4587 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4588 void *val, int bytes)
4589 {
4590 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4591 }
4592
4593 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4594 void *val, int bytes)
4595 {
4596 return emulator_write_phys(vcpu, gpa, val, bytes);
4597 }
4598
4599 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4600 {
4601 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4602 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4603 }
4604
4605 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4606 void *val, int bytes)
4607 {
4608 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4609 return X86EMUL_IO_NEEDED;
4610 }
4611
4612 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4613 void *val, int bytes)
4614 {
4615 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4616
4617 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4618 return X86EMUL_CONTINUE;
4619 }
4620
4621 static const struct read_write_emulator_ops read_emultor = {
4622 .read_write_prepare = read_prepare,
4623 .read_write_emulate = read_emulate,
4624 .read_write_mmio = vcpu_mmio_read,
4625 .read_write_exit_mmio = read_exit_mmio,
4626 };
4627
4628 static const struct read_write_emulator_ops write_emultor = {
4629 .read_write_emulate = write_emulate,
4630 .read_write_mmio = write_mmio,
4631 .read_write_exit_mmio = write_exit_mmio,
4632 .write = true,
4633 };
4634
4635 static int emulator_read_write_onepage(unsigned long addr, void *val,
4636 unsigned int bytes,
4637 struct x86_exception *exception,
4638 struct kvm_vcpu *vcpu,
4639 const struct read_write_emulator_ops *ops)
4640 {
4641 gpa_t gpa;
4642 int handled, ret;
4643 bool write = ops->write;
4644 struct kvm_mmio_fragment *frag;
4645 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4646
4647 /*
4648 * If the exit was due to a NPF we may already have a GPA.
4649 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4650 * Note, this cannot be used on string operations since string
4651 * operation using rep will only have the initial GPA from the NPF
4652 * occurred.
4653 */
4654 if (vcpu->arch.gpa_available &&
4655 emulator_can_use_gpa(ctxt) &&
4656 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4657 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4658 gpa = exception->address;
4659 goto mmio;
4660 }
4661
4662 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4663
4664 if (ret < 0)
4665 return X86EMUL_PROPAGATE_FAULT;
4666
4667 /* For APIC access vmexit */
4668 if (ret)
4669 goto mmio;
4670
4671 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4672 return X86EMUL_CONTINUE;
4673
4674 mmio:
4675 /*
4676 * Is this MMIO handled locally?
4677 */
4678 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4679 if (handled == bytes)
4680 return X86EMUL_CONTINUE;
4681
4682 gpa += handled;
4683 bytes -= handled;
4684 val += handled;
4685
4686 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4687 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4688 frag->gpa = gpa;
4689 frag->data = val;
4690 frag->len = bytes;
4691 return X86EMUL_CONTINUE;
4692 }
4693
4694 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4695 unsigned long addr,
4696 void *val, unsigned int bytes,
4697 struct x86_exception *exception,
4698 const struct read_write_emulator_ops *ops)
4699 {
4700 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4701 gpa_t gpa;
4702 int rc;
4703
4704 if (ops->read_write_prepare &&
4705 ops->read_write_prepare(vcpu, val, bytes))
4706 return X86EMUL_CONTINUE;
4707
4708 vcpu->mmio_nr_fragments = 0;
4709
4710 /* Crossing a page boundary? */
4711 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4712 int now;
4713
4714 now = -addr & ~PAGE_MASK;
4715 rc = emulator_read_write_onepage(addr, val, now, exception,
4716 vcpu, ops);
4717
4718 if (rc != X86EMUL_CONTINUE)
4719 return rc;
4720 addr += now;
4721 if (ctxt->mode != X86EMUL_MODE_PROT64)
4722 addr = (u32)addr;
4723 val += now;
4724 bytes -= now;
4725 }
4726
4727 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4728 vcpu, ops);
4729 if (rc != X86EMUL_CONTINUE)
4730 return rc;
4731
4732 if (!vcpu->mmio_nr_fragments)
4733 return rc;
4734
4735 gpa = vcpu->mmio_fragments[0].gpa;
4736
4737 vcpu->mmio_needed = 1;
4738 vcpu->mmio_cur_fragment = 0;
4739
4740 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4741 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4742 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4743 vcpu->run->mmio.phys_addr = gpa;
4744
4745 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4746 }
4747
4748 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4749 unsigned long addr,
4750 void *val,
4751 unsigned int bytes,
4752 struct x86_exception *exception)
4753 {
4754 return emulator_read_write(ctxt, addr, val, bytes,
4755 exception, &read_emultor);
4756 }
4757
4758 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4759 unsigned long addr,
4760 const void *val,
4761 unsigned int bytes,
4762 struct x86_exception *exception)
4763 {
4764 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4765 exception, &write_emultor);
4766 }
4767
4768 #define CMPXCHG_TYPE(t, ptr, old, new) \
4769 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4770
4771 #ifdef CONFIG_X86_64
4772 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4773 #else
4774 # define CMPXCHG64(ptr, old, new) \
4775 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4776 #endif
4777
4778 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4779 unsigned long addr,
4780 const void *old,
4781 const void *new,
4782 unsigned int bytes,
4783 struct x86_exception *exception)
4784 {
4785 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4786 gpa_t gpa;
4787 struct page *page;
4788 char *kaddr;
4789 bool exchanged;
4790
4791 /* guests cmpxchg8b have to be emulated atomically */
4792 if (bytes > 8 || (bytes & (bytes - 1)))
4793 goto emul_write;
4794
4795 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4796
4797 if (gpa == UNMAPPED_GVA ||
4798 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4799 goto emul_write;
4800
4801 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4802 goto emul_write;
4803
4804 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4805 if (is_error_page(page))
4806 goto emul_write;
4807
4808 kaddr = kmap_atomic(page);
4809 kaddr += offset_in_page(gpa);
4810 switch (bytes) {
4811 case 1:
4812 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4813 break;
4814 case 2:
4815 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4816 break;
4817 case 4:
4818 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4819 break;
4820 case 8:
4821 exchanged = CMPXCHG64(kaddr, old, new);
4822 break;
4823 default:
4824 BUG();
4825 }
4826 kunmap_atomic(kaddr);
4827 kvm_release_page_dirty(page);
4828
4829 if (!exchanged)
4830 return X86EMUL_CMPXCHG_FAILED;
4831
4832 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4833 kvm_page_track_write(vcpu, gpa, new, bytes);
4834
4835 return X86EMUL_CONTINUE;
4836
4837 emul_write:
4838 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4839
4840 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4841 }
4842
4843 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4844 {
4845 /* TODO: String I/O for in kernel device */
4846 int r;
4847
4848 if (vcpu->arch.pio.in)
4849 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4850 vcpu->arch.pio.size, pd);
4851 else
4852 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4853 vcpu->arch.pio.port, vcpu->arch.pio.size,
4854 pd);
4855 return r;
4856 }
4857
4858 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4859 unsigned short port, void *val,
4860 unsigned int count, bool in)
4861 {
4862 vcpu->arch.pio.port = port;
4863 vcpu->arch.pio.in = in;
4864 vcpu->arch.pio.count = count;
4865 vcpu->arch.pio.size = size;
4866
4867 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4868 vcpu->arch.pio.count = 0;
4869 return 1;
4870 }
4871
4872 vcpu->run->exit_reason = KVM_EXIT_IO;
4873 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4874 vcpu->run->io.size = size;
4875 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4876 vcpu->run->io.count = count;
4877 vcpu->run->io.port = port;
4878
4879 return 0;
4880 }
4881
4882 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4883 int size, unsigned short port, void *val,
4884 unsigned int count)
4885 {
4886 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4887 int ret;
4888
4889 if (vcpu->arch.pio.count)
4890 goto data_avail;
4891
4892 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4893 if (ret) {
4894 data_avail:
4895 memcpy(val, vcpu->arch.pio_data, size * count);
4896 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4897 vcpu->arch.pio.count = 0;
4898 return 1;
4899 }
4900
4901 return 0;
4902 }
4903
4904 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4905 int size, unsigned short port,
4906 const void *val, unsigned int count)
4907 {
4908 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4909
4910 memcpy(vcpu->arch.pio_data, val, size * count);
4911 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4912 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4913 }
4914
4915 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4916 {
4917 return kvm_x86_ops->get_segment_base(vcpu, seg);
4918 }
4919
4920 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4921 {
4922 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4923 }
4924
4925 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4926 {
4927 if (!need_emulate_wbinvd(vcpu))
4928 return X86EMUL_CONTINUE;
4929
4930 if (kvm_x86_ops->has_wbinvd_exit()) {
4931 int cpu = get_cpu();
4932
4933 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4934 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4935 wbinvd_ipi, NULL, 1);
4936 put_cpu();
4937 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4938 } else
4939 wbinvd();
4940 return X86EMUL_CONTINUE;
4941 }
4942
4943 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4944 {
4945 kvm_emulate_wbinvd_noskip(vcpu);
4946 return kvm_skip_emulated_instruction(vcpu);
4947 }
4948 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4949
4950
4951
4952 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4953 {
4954 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4955 }
4956
4957 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4958 unsigned long *dest)
4959 {
4960 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4961 }
4962
4963 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4964 unsigned long value)
4965 {
4966
4967 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4968 }
4969
4970 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4971 {
4972 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4973 }
4974
4975 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4976 {
4977 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4978 unsigned long value;
4979
4980 switch (cr) {
4981 case 0:
4982 value = kvm_read_cr0(vcpu);
4983 break;
4984 case 2:
4985 value = vcpu->arch.cr2;
4986 break;
4987 case 3:
4988 value = kvm_read_cr3(vcpu);
4989 break;
4990 case 4:
4991 value = kvm_read_cr4(vcpu);
4992 break;
4993 case 8:
4994 value = kvm_get_cr8(vcpu);
4995 break;
4996 default:
4997 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4998 return 0;
4999 }
5000
5001 return value;
5002 }
5003
5004 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5005 {
5006 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5007 int res = 0;
5008
5009 switch (cr) {
5010 case 0:
5011 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5012 break;
5013 case 2:
5014 vcpu->arch.cr2 = val;
5015 break;
5016 case 3:
5017 res = kvm_set_cr3(vcpu, val);
5018 break;
5019 case 4:
5020 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5021 break;
5022 case 8:
5023 res = kvm_set_cr8(vcpu, val);
5024 break;
5025 default:
5026 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5027 res = -1;
5028 }
5029
5030 return res;
5031 }
5032
5033 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5034 {
5035 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5036 }
5037
5038 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5039 {
5040 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5041 }
5042
5043 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5044 {
5045 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5046 }
5047
5048 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5049 {
5050 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5051 }
5052
5053 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5054 {
5055 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5056 }
5057
5058 static unsigned long emulator_get_cached_segment_base(
5059 struct x86_emulate_ctxt *ctxt, int seg)
5060 {
5061 return get_segment_base(emul_to_vcpu(ctxt), seg);
5062 }
5063
5064 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5065 struct desc_struct *desc, u32 *base3,
5066 int seg)
5067 {
5068 struct kvm_segment var;
5069
5070 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5071 *selector = var.selector;
5072
5073 if (var.unusable) {
5074 memset(desc, 0, sizeof(*desc));
5075 return false;
5076 }
5077
5078 if (var.g)
5079 var.limit >>= 12;
5080 set_desc_limit(desc, var.limit);
5081 set_desc_base(desc, (unsigned long)var.base);
5082 #ifdef CONFIG_X86_64
5083 if (base3)
5084 *base3 = var.base >> 32;
5085 #endif
5086 desc->type = var.type;
5087 desc->s = var.s;
5088 desc->dpl = var.dpl;
5089 desc->p = var.present;
5090 desc->avl = var.avl;
5091 desc->l = var.l;
5092 desc->d = var.db;
5093 desc->g = var.g;
5094
5095 return true;
5096 }
5097
5098 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5099 struct desc_struct *desc, u32 base3,
5100 int seg)
5101 {
5102 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5103 struct kvm_segment var;
5104
5105 var.selector = selector;
5106 var.base = get_desc_base(desc);
5107 #ifdef CONFIG_X86_64
5108 var.base |= ((u64)base3) << 32;
5109 #endif
5110 var.limit = get_desc_limit(desc);
5111 if (desc->g)
5112 var.limit = (var.limit << 12) | 0xfff;
5113 var.type = desc->type;
5114 var.dpl = desc->dpl;
5115 var.db = desc->d;
5116 var.s = desc->s;
5117 var.l = desc->l;
5118 var.g = desc->g;
5119 var.avl = desc->avl;
5120 var.present = desc->p;
5121 var.unusable = !var.present;
5122 var.padding = 0;
5123
5124 kvm_set_segment(vcpu, &var, seg);
5125 return;
5126 }
5127
5128 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5129 u32 msr_index, u64 *pdata)
5130 {
5131 struct msr_data msr;
5132 int r;
5133
5134 msr.index = msr_index;
5135 msr.host_initiated = false;
5136 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5137 if (r)
5138 return r;
5139
5140 *pdata = msr.data;
5141 return 0;
5142 }
5143
5144 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5145 u32 msr_index, u64 data)
5146 {
5147 struct msr_data msr;
5148
5149 msr.data = data;
5150 msr.index = msr_index;
5151 msr.host_initiated = false;
5152 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5153 }
5154
5155 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5156 {
5157 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5158
5159 return vcpu->arch.smbase;
5160 }
5161
5162 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5163 {
5164 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5165
5166 vcpu->arch.smbase = smbase;
5167 }
5168
5169 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5170 u32 pmc)
5171 {
5172 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5173 }
5174
5175 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5176 u32 pmc, u64 *pdata)
5177 {
5178 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5179 }
5180
5181 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5182 {
5183 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5184 }
5185
5186 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5187 {
5188 preempt_disable();
5189 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5190 }
5191
5192 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5193 {
5194 preempt_enable();
5195 }
5196
5197 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5198 struct x86_instruction_info *info,
5199 enum x86_intercept_stage stage)
5200 {
5201 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5202 }
5203
5204 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5205 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5206 {
5207 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5208 }
5209
5210 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5211 {
5212 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5213 }
5214
5215 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5216 {
5217 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5218 }
5219
5220 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5221 {
5222 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5223 }
5224
5225 static const struct x86_emulate_ops emulate_ops = {
5226 .read_gpr = emulator_read_gpr,
5227 .write_gpr = emulator_write_gpr,
5228 .read_std = kvm_read_guest_virt_system,
5229 .write_std = kvm_write_guest_virt_system,
5230 .read_phys = kvm_read_guest_phys_system,
5231 .fetch = kvm_fetch_guest_virt,
5232 .read_emulated = emulator_read_emulated,
5233 .write_emulated = emulator_write_emulated,
5234 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5235 .invlpg = emulator_invlpg,
5236 .pio_in_emulated = emulator_pio_in_emulated,
5237 .pio_out_emulated = emulator_pio_out_emulated,
5238 .get_segment = emulator_get_segment,
5239 .set_segment = emulator_set_segment,
5240 .get_cached_segment_base = emulator_get_cached_segment_base,
5241 .get_gdt = emulator_get_gdt,
5242 .get_idt = emulator_get_idt,
5243 .set_gdt = emulator_set_gdt,
5244 .set_idt = emulator_set_idt,
5245 .get_cr = emulator_get_cr,
5246 .set_cr = emulator_set_cr,
5247 .cpl = emulator_get_cpl,
5248 .get_dr = emulator_get_dr,
5249 .set_dr = emulator_set_dr,
5250 .get_smbase = emulator_get_smbase,
5251 .set_smbase = emulator_set_smbase,
5252 .set_msr = emulator_set_msr,
5253 .get_msr = emulator_get_msr,
5254 .check_pmc = emulator_check_pmc,
5255 .read_pmc = emulator_read_pmc,
5256 .halt = emulator_halt,
5257 .wbinvd = emulator_wbinvd,
5258 .fix_hypercall = emulator_fix_hypercall,
5259 .get_fpu = emulator_get_fpu,
5260 .put_fpu = emulator_put_fpu,
5261 .intercept = emulator_intercept,
5262 .get_cpuid = emulator_get_cpuid,
5263 .set_nmi_mask = emulator_set_nmi_mask,
5264 };
5265
5266 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5267 {
5268 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5269 /*
5270 * an sti; sti; sequence only disable interrupts for the first
5271 * instruction. So, if the last instruction, be it emulated or
5272 * not, left the system with the INT_STI flag enabled, it
5273 * means that the last instruction is an sti. We should not
5274 * leave the flag on in this case. The same goes for mov ss
5275 */
5276 if (int_shadow & mask)
5277 mask = 0;
5278 if (unlikely(int_shadow || mask)) {
5279 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5280 if (!mask)
5281 kvm_make_request(KVM_REQ_EVENT, vcpu);
5282 }
5283 }
5284
5285 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5286 {
5287 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5288 if (ctxt->exception.vector == PF_VECTOR)
5289 return kvm_propagate_fault(vcpu, &ctxt->exception);
5290
5291 if (ctxt->exception.error_code_valid)
5292 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5293 ctxt->exception.error_code);
5294 else
5295 kvm_queue_exception(vcpu, ctxt->exception.vector);
5296 return false;
5297 }
5298
5299 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5300 {
5301 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5302 int cs_db, cs_l;
5303
5304 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5305
5306 ctxt->eflags = kvm_get_rflags(vcpu);
5307 ctxt->eip = kvm_rip_read(vcpu);
5308 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5309 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5310 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5311 cs_db ? X86EMUL_MODE_PROT32 :
5312 X86EMUL_MODE_PROT16;
5313 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5314 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5315 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5316 ctxt->emul_flags = vcpu->arch.hflags;
5317
5318 init_decode_cache(ctxt);
5319 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5320 }
5321
5322 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5323 {
5324 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5325 int ret;
5326
5327 init_emulate_ctxt(vcpu);
5328
5329 ctxt->op_bytes = 2;
5330 ctxt->ad_bytes = 2;
5331 ctxt->_eip = ctxt->eip + inc_eip;
5332 ret = emulate_int_real(ctxt, irq);
5333
5334 if (ret != X86EMUL_CONTINUE)
5335 return EMULATE_FAIL;
5336
5337 ctxt->eip = ctxt->_eip;
5338 kvm_rip_write(vcpu, ctxt->eip);
5339 kvm_set_rflags(vcpu, ctxt->eflags);
5340
5341 if (irq == NMI_VECTOR)
5342 vcpu->arch.nmi_pending = 0;
5343 else
5344 vcpu->arch.interrupt.pending = false;
5345
5346 return EMULATE_DONE;
5347 }
5348 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5349
5350 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5351 {
5352 int r = EMULATE_DONE;
5353
5354 ++vcpu->stat.insn_emulation_fail;
5355 trace_kvm_emulate_insn_failed(vcpu);
5356 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5357 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5358 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5359 vcpu->run->internal.ndata = 0;
5360 r = EMULATE_FAIL;
5361 }
5362 kvm_queue_exception(vcpu, UD_VECTOR);
5363
5364 return r;
5365 }
5366
5367 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5368 bool write_fault_to_shadow_pgtable,
5369 int emulation_type)
5370 {
5371 gpa_t gpa = cr2;
5372 kvm_pfn_t pfn;
5373
5374 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5375 return false;
5376
5377 if (!vcpu->arch.mmu.direct_map) {
5378 /*
5379 * Write permission should be allowed since only
5380 * write access need to be emulated.
5381 */
5382 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5383
5384 /*
5385 * If the mapping is invalid in guest, let cpu retry
5386 * it to generate fault.
5387 */
5388 if (gpa == UNMAPPED_GVA)
5389 return true;
5390 }
5391
5392 /*
5393 * Do not retry the unhandleable instruction if it faults on the
5394 * readonly host memory, otherwise it will goto a infinite loop:
5395 * retry instruction -> write #PF -> emulation fail -> retry
5396 * instruction -> ...
5397 */
5398 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5399
5400 /*
5401 * If the instruction failed on the error pfn, it can not be fixed,
5402 * report the error to userspace.
5403 */
5404 if (is_error_noslot_pfn(pfn))
5405 return false;
5406
5407 kvm_release_pfn_clean(pfn);
5408
5409 /* The instructions are well-emulated on direct mmu. */
5410 if (vcpu->arch.mmu.direct_map) {
5411 unsigned int indirect_shadow_pages;
5412
5413 spin_lock(&vcpu->kvm->mmu_lock);
5414 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5415 spin_unlock(&vcpu->kvm->mmu_lock);
5416
5417 if (indirect_shadow_pages)
5418 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5419
5420 return true;
5421 }
5422
5423 /*
5424 * if emulation was due to access to shadowed page table
5425 * and it failed try to unshadow page and re-enter the
5426 * guest to let CPU execute the instruction.
5427 */
5428 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5429
5430 /*
5431 * If the access faults on its page table, it can not
5432 * be fixed by unprotecting shadow page and it should
5433 * be reported to userspace.
5434 */
5435 return !write_fault_to_shadow_pgtable;
5436 }
5437
5438 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5439 unsigned long cr2, int emulation_type)
5440 {
5441 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5442 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5443
5444 last_retry_eip = vcpu->arch.last_retry_eip;
5445 last_retry_addr = vcpu->arch.last_retry_addr;
5446
5447 /*
5448 * If the emulation is caused by #PF and it is non-page_table
5449 * writing instruction, it means the VM-EXIT is caused by shadow
5450 * page protected, we can zap the shadow page and retry this
5451 * instruction directly.
5452 *
5453 * Note: if the guest uses a non-page-table modifying instruction
5454 * on the PDE that points to the instruction, then we will unmap
5455 * the instruction and go to an infinite loop. So, we cache the
5456 * last retried eip and the last fault address, if we meet the eip
5457 * and the address again, we can break out of the potential infinite
5458 * loop.
5459 */
5460 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5461
5462 if (!(emulation_type & EMULTYPE_RETRY))
5463 return false;
5464
5465 if (x86_page_table_writing_insn(ctxt))
5466 return false;
5467
5468 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5469 return false;
5470
5471 vcpu->arch.last_retry_eip = ctxt->eip;
5472 vcpu->arch.last_retry_addr = cr2;
5473
5474 if (!vcpu->arch.mmu.direct_map)
5475 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5476
5477 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5478
5479 return true;
5480 }
5481
5482 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5483 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5484
5485 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5486 {
5487 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5488 /* This is a good place to trace that we are exiting SMM. */
5489 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5490
5491 /* Process a latched INIT or SMI, if any. */
5492 kvm_make_request(KVM_REQ_EVENT, vcpu);
5493 }
5494
5495 kvm_mmu_reset_context(vcpu);
5496 }
5497
5498 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5499 {
5500 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5501
5502 vcpu->arch.hflags = emul_flags;
5503
5504 if (changed & HF_SMM_MASK)
5505 kvm_smm_changed(vcpu);
5506 }
5507
5508 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5509 unsigned long *db)
5510 {
5511 u32 dr6 = 0;
5512 int i;
5513 u32 enable, rwlen;
5514
5515 enable = dr7;
5516 rwlen = dr7 >> 16;
5517 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5518 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5519 dr6 |= (1 << i);
5520 return dr6;
5521 }
5522
5523 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5524 {
5525 struct kvm_run *kvm_run = vcpu->run;
5526
5527 /*
5528 * rflags is the old, "raw" value of the flags. The new value has
5529 * not been saved yet.
5530 *
5531 * This is correct even for TF set by the guest, because "the
5532 * processor will not generate this exception after the instruction
5533 * that sets the TF flag".
5534 */
5535 if (unlikely(rflags & X86_EFLAGS_TF)) {
5536 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5537 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5538 DR6_RTM;
5539 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5540 kvm_run->debug.arch.exception = DB_VECTOR;
5541 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5542 *r = EMULATE_USER_EXIT;
5543 } else {
5544 /*
5545 * "Certain debug exceptions may clear bit 0-3. The
5546 * remaining contents of the DR6 register are never
5547 * cleared by the processor".
5548 */
5549 vcpu->arch.dr6 &= ~15;
5550 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5551 kvm_queue_exception(vcpu, DB_VECTOR);
5552 }
5553 }
5554 }
5555
5556 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5557 {
5558 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5559 int r = EMULATE_DONE;
5560
5561 kvm_x86_ops->skip_emulated_instruction(vcpu);
5562 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5563 return r == EMULATE_DONE;
5564 }
5565 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5566
5567 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5568 {
5569 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5570 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5571 struct kvm_run *kvm_run = vcpu->run;
5572 unsigned long eip = kvm_get_linear_rip(vcpu);
5573 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5574 vcpu->arch.guest_debug_dr7,
5575 vcpu->arch.eff_db);
5576
5577 if (dr6 != 0) {
5578 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5579 kvm_run->debug.arch.pc = eip;
5580 kvm_run->debug.arch.exception = DB_VECTOR;
5581 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5582 *r = EMULATE_USER_EXIT;
5583 return true;
5584 }
5585 }
5586
5587 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5588 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5589 unsigned long eip = kvm_get_linear_rip(vcpu);
5590 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5591 vcpu->arch.dr7,
5592 vcpu->arch.db);
5593
5594 if (dr6 != 0) {
5595 vcpu->arch.dr6 &= ~15;
5596 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5597 kvm_queue_exception(vcpu, DB_VECTOR);
5598 *r = EMULATE_DONE;
5599 return true;
5600 }
5601 }
5602
5603 return false;
5604 }
5605
5606 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5607 unsigned long cr2,
5608 int emulation_type,
5609 void *insn,
5610 int insn_len)
5611 {
5612 int r;
5613 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5614 bool writeback = true;
5615 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5616
5617 /*
5618 * Clear write_fault_to_shadow_pgtable here to ensure it is
5619 * never reused.
5620 */
5621 vcpu->arch.write_fault_to_shadow_pgtable = false;
5622 kvm_clear_exception_queue(vcpu);
5623
5624 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5625 init_emulate_ctxt(vcpu);
5626
5627 /*
5628 * We will reenter on the same instruction since
5629 * we do not set complete_userspace_io. This does not
5630 * handle watchpoints yet, those would be handled in
5631 * the emulate_ops.
5632 */
5633 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5634 return r;
5635
5636 ctxt->interruptibility = 0;
5637 ctxt->have_exception = false;
5638 ctxt->exception.vector = -1;
5639 ctxt->perm_ok = false;
5640
5641 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5642
5643 r = x86_decode_insn(ctxt, insn, insn_len);
5644
5645 trace_kvm_emulate_insn_start(vcpu);
5646 ++vcpu->stat.insn_emulation;
5647 if (r != EMULATION_OK) {
5648 if (emulation_type & EMULTYPE_TRAP_UD)
5649 return EMULATE_FAIL;
5650 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5651 emulation_type))
5652 return EMULATE_DONE;
5653 if (emulation_type & EMULTYPE_SKIP)
5654 return EMULATE_FAIL;
5655 return handle_emulation_failure(vcpu);
5656 }
5657 }
5658
5659 if (emulation_type & EMULTYPE_SKIP) {
5660 kvm_rip_write(vcpu, ctxt->_eip);
5661 if (ctxt->eflags & X86_EFLAGS_RF)
5662 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5663 return EMULATE_DONE;
5664 }
5665
5666 if (retry_instruction(ctxt, cr2, emulation_type))
5667 return EMULATE_DONE;
5668
5669 /* this is needed for vmware backdoor interface to work since it
5670 changes registers values during IO operation */
5671 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5672 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5673 emulator_invalidate_register_cache(ctxt);
5674 }
5675
5676 restart:
5677 /* Save the faulting GPA (cr2) in the address field */
5678 ctxt->exception.address = cr2;
5679
5680 r = x86_emulate_insn(ctxt);
5681
5682 if (r == EMULATION_INTERCEPTED)
5683 return EMULATE_DONE;
5684
5685 if (r == EMULATION_FAILED) {
5686 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5687 emulation_type))
5688 return EMULATE_DONE;
5689
5690 return handle_emulation_failure(vcpu);
5691 }
5692
5693 if (ctxt->have_exception) {
5694 r = EMULATE_DONE;
5695 if (inject_emulated_exception(vcpu))
5696 return r;
5697 } else if (vcpu->arch.pio.count) {
5698 if (!vcpu->arch.pio.in) {
5699 /* FIXME: return into emulator if single-stepping. */
5700 vcpu->arch.pio.count = 0;
5701 } else {
5702 writeback = false;
5703 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5704 }
5705 r = EMULATE_USER_EXIT;
5706 } else if (vcpu->mmio_needed) {
5707 if (!vcpu->mmio_is_write)
5708 writeback = false;
5709 r = EMULATE_USER_EXIT;
5710 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5711 } else if (r == EMULATION_RESTART)
5712 goto restart;
5713 else
5714 r = EMULATE_DONE;
5715
5716 if (writeback) {
5717 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5718 toggle_interruptibility(vcpu, ctxt->interruptibility);
5719 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5720 if (vcpu->arch.hflags != ctxt->emul_flags)
5721 kvm_set_hflags(vcpu, ctxt->emul_flags);
5722 kvm_rip_write(vcpu, ctxt->eip);
5723 if (r == EMULATE_DONE)
5724 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5725 if (!ctxt->have_exception ||
5726 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5727 __kvm_set_rflags(vcpu, ctxt->eflags);
5728
5729 /*
5730 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5731 * do nothing, and it will be requested again as soon as
5732 * the shadow expires. But we still need to check here,
5733 * because POPF has no interrupt shadow.
5734 */
5735 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5736 kvm_make_request(KVM_REQ_EVENT, vcpu);
5737 } else
5738 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5739
5740 return r;
5741 }
5742 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5743
5744 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5745 {
5746 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5747 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5748 size, port, &val, 1);
5749 /* do not return to emulator after return from userspace */
5750 vcpu->arch.pio.count = 0;
5751 return ret;
5752 }
5753 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5754
5755 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5756 {
5757 unsigned long val;
5758
5759 /* We should only ever be called with arch.pio.count equal to 1 */
5760 BUG_ON(vcpu->arch.pio.count != 1);
5761
5762 /* For size less than 4 we merge, else we zero extend */
5763 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5764 : 0;
5765
5766 /*
5767 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5768 * the copy and tracing
5769 */
5770 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5771 vcpu->arch.pio.port, &val, 1);
5772 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5773
5774 return 1;
5775 }
5776
5777 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5778 {
5779 unsigned long val;
5780 int ret;
5781
5782 /* For size less than 4 we merge, else we zero extend */
5783 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5784
5785 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5786 &val, 1);
5787 if (ret) {
5788 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5789 return ret;
5790 }
5791
5792 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5793
5794 return 0;
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5797
5798 static int kvmclock_cpu_down_prep(unsigned int cpu)
5799 {
5800 __this_cpu_write(cpu_tsc_khz, 0);
5801 return 0;
5802 }
5803
5804 static void tsc_khz_changed(void *data)
5805 {
5806 struct cpufreq_freqs *freq = data;
5807 unsigned long khz = 0;
5808
5809 if (data)
5810 khz = freq->new;
5811 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5812 khz = cpufreq_quick_get(raw_smp_processor_id());
5813 if (!khz)
5814 khz = tsc_khz;
5815 __this_cpu_write(cpu_tsc_khz, khz);
5816 }
5817
5818 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5819 void *data)
5820 {
5821 struct cpufreq_freqs *freq = data;
5822 struct kvm *kvm;
5823 struct kvm_vcpu *vcpu;
5824 int i, send_ipi = 0;
5825
5826 /*
5827 * We allow guests to temporarily run on slowing clocks,
5828 * provided we notify them after, or to run on accelerating
5829 * clocks, provided we notify them before. Thus time never
5830 * goes backwards.
5831 *
5832 * However, we have a problem. We can't atomically update
5833 * the frequency of a given CPU from this function; it is
5834 * merely a notifier, which can be called from any CPU.
5835 * Changing the TSC frequency at arbitrary points in time
5836 * requires a recomputation of local variables related to
5837 * the TSC for each VCPU. We must flag these local variables
5838 * to be updated and be sure the update takes place with the
5839 * new frequency before any guests proceed.
5840 *
5841 * Unfortunately, the combination of hotplug CPU and frequency
5842 * change creates an intractable locking scenario; the order
5843 * of when these callouts happen is undefined with respect to
5844 * CPU hotplug, and they can race with each other. As such,
5845 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5846 * undefined; you can actually have a CPU frequency change take
5847 * place in between the computation of X and the setting of the
5848 * variable. To protect against this problem, all updates of
5849 * the per_cpu tsc_khz variable are done in an interrupt
5850 * protected IPI, and all callers wishing to update the value
5851 * must wait for a synchronous IPI to complete (which is trivial
5852 * if the caller is on the CPU already). This establishes the
5853 * necessary total order on variable updates.
5854 *
5855 * Note that because a guest time update may take place
5856 * anytime after the setting of the VCPU's request bit, the
5857 * correct TSC value must be set before the request. However,
5858 * to ensure the update actually makes it to any guest which
5859 * starts running in hardware virtualization between the set
5860 * and the acquisition of the spinlock, we must also ping the
5861 * CPU after setting the request bit.
5862 *
5863 */
5864
5865 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5866 return 0;
5867 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5868 return 0;
5869
5870 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5871
5872 spin_lock(&kvm_lock);
5873 list_for_each_entry(kvm, &vm_list, vm_list) {
5874 kvm_for_each_vcpu(i, vcpu, kvm) {
5875 if (vcpu->cpu != freq->cpu)
5876 continue;
5877 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5878 if (vcpu->cpu != smp_processor_id())
5879 send_ipi = 1;
5880 }
5881 }
5882 spin_unlock(&kvm_lock);
5883
5884 if (freq->old < freq->new && send_ipi) {
5885 /*
5886 * We upscale the frequency. Must make the guest
5887 * doesn't see old kvmclock values while running with
5888 * the new frequency, otherwise we risk the guest sees
5889 * time go backwards.
5890 *
5891 * In case we update the frequency for another cpu
5892 * (which might be in guest context) send an interrupt
5893 * to kick the cpu out of guest context. Next time
5894 * guest context is entered kvmclock will be updated,
5895 * so the guest will not see stale values.
5896 */
5897 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5898 }
5899 return 0;
5900 }
5901
5902 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5903 .notifier_call = kvmclock_cpufreq_notifier
5904 };
5905
5906 static int kvmclock_cpu_online(unsigned int cpu)
5907 {
5908 tsc_khz_changed(NULL);
5909 return 0;
5910 }
5911
5912 static void kvm_timer_init(void)
5913 {
5914 max_tsc_khz = tsc_khz;
5915
5916 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5917 #ifdef CONFIG_CPU_FREQ
5918 struct cpufreq_policy policy;
5919 int cpu;
5920
5921 memset(&policy, 0, sizeof(policy));
5922 cpu = get_cpu();
5923 cpufreq_get_policy(&policy, cpu);
5924 if (policy.cpuinfo.max_freq)
5925 max_tsc_khz = policy.cpuinfo.max_freq;
5926 put_cpu();
5927 #endif
5928 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5929 CPUFREQ_TRANSITION_NOTIFIER);
5930 }
5931 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5932
5933 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5934 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5935 }
5936
5937 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5938
5939 int kvm_is_in_guest(void)
5940 {
5941 return __this_cpu_read(current_vcpu) != NULL;
5942 }
5943
5944 static int kvm_is_user_mode(void)
5945 {
5946 int user_mode = 3;
5947
5948 if (__this_cpu_read(current_vcpu))
5949 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5950
5951 return user_mode != 0;
5952 }
5953
5954 static unsigned long kvm_get_guest_ip(void)
5955 {
5956 unsigned long ip = 0;
5957
5958 if (__this_cpu_read(current_vcpu))
5959 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5960
5961 return ip;
5962 }
5963
5964 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5965 .is_in_guest = kvm_is_in_guest,
5966 .is_user_mode = kvm_is_user_mode,
5967 .get_guest_ip = kvm_get_guest_ip,
5968 };
5969
5970 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5971 {
5972 __this_cpu_write(current_vcpu, vcpu);
5973 }
5974 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5975
5976 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5977 {
5978 __this_cpu_write(current_vcpu, NULL);
5979 }
5980 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5981
5982 static void kvm_set_mmio_spte_mask(void)
5983 {
5984 u64 mask;
5985 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5986
5987 /*
5988 * Set the reserved bits and the present bit of an paging-structure
5989 * entry to generate page fault with PFER.RSV = 1.
5990 */
5991 /* Mask the reserved physical address bits. */
5992 mask = rsvd_bits(maxphyaddr, 51);
5993
5994 /* Set the present bit. */
5995 mask |= 1ull;
5996
5997 #ifdef CONFIG_X86_64
5998 /*
5999 * If reserved bit is not supported, clear the present bit to disable
6000 * mmio page fault.
6001 */
6002 if (maxphyaddr == 52)
6003 mask &= ~1ull;
6004 #endif
6005
6006 kvm_mmu_set_mmio_spte_mask(mask);
6007 }
6008
6009 #ifdef CONFIG_X86_64
6010 static void pvclock_gtod_update_fn(struct work_struct *work)
6011 {
6012 struct kvm *kvm;
6013
6014 struct kvm_vcpu *vcpu;
6015 int i;
6016
6017 spin_lock(&kvm_lock);
6018 list_for_each_entry(kvm, &vm_list, vm_list)
6019 kvm_for_each_vcpu(i, vcpu, kvm)
6020 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6021 atomic_set(&kvm_guest_has_master_clock, 0);
6022 spin_unlock(&kvm_lock);
6023 }
6024
6025 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6026
6027 /*
6028 * Notification about pvclock gtod data update.
6029 */
6030 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6031 void *priv)
6032 {
6033 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6034 struct timekeeper *tk = priv;
6035
6036 update_pvclock_gtod(tk);
6037
6038 /* disable master clock if host does not trust, or does not
6039 * use, TSC clocksource
6040 */
6041 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6042 atomic_read(&kvm_guest_has_master_clock) != 0)
6043 queue_work(system_long_wq, &pvclock_gtod_work);
6044
6045 return 0;
6046 }
6047
6048 static struct notifier_block pvclock_gtod_notifier = {
6049 .notifier_call = pvclock_gtod_notify,
6050 };
6051 #endif
6052
6053 int kvm_arch_init(void *opaque)
6054 {
6055 int r;
6056 struct kvm_x86_ops *ops = opaque;
6057
6058 if (kvm_x86_ops) {
6059 printk(KERN_ERR "kvm: already loaded the other module\n");
6060 r = -EEXIST;
6061 goto out;
6062 }
6063
6064 if (!ops->cpu_has_kvm_support()) {
6065 printk(KERN_ERR "kvm: no hardware support\n");
6066 r = -EOPNOTSUPP;
6067 goto out;
6068 }
6069 if (ops->disabled_by_bios()) {
6070 printk(KERN_ERR "kvm: disabled by bios\n");
6071 r = -EOPNOTSUPP;
6072 goto out;
6073 }
6074
6075 r = -ENOMEM;
6076 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6077 if (!shared_msrs) {
6078 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6079 goto out;
6080 }
6081
6082 r = kvm_mmu_module_init();
6083 if (r)
6084 goto out_free_percpu;
6085
6086 kvm_set_mmio_spte_mask();
6087
6088 kvm_x86_ops = ops;
6089
6090 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6091 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6092 PT_PRESENT_MASK, 0);
6093 kvm_timer_init();
6094
6095 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6096
6097 if (boot_cpu_has(X86_FEATURE_XSAVE))
6098 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6099
6100 kvm_lapic_init();
6101 #ifdef CONFIG_X86_64
6102 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6103 #endif
6104
6105 return 0;
6106
6107 out_free_percpu:
6108 free_percpu(shared_msrs);
6109 out:
6110 return r;
6111 }
6112
6113 void kvm_arch_exit(void)
6114 {
6115 kvm_lapic_exit();
6116 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6117
6118 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6119 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6120 CPUFREQ_TRANSITION_NOTIFIER);
6121 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6122 #ifdef CONFIG_X86_64
6123 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6124 #endif
6125 kvm_x86_ops = NULL;
6126 kvm_mmu_module_exit();
6127 free_percpu(shared_msrs);
6128 }
6129
6130 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6131 {
6132 ++vcpu->stat.halt_exits;
6133 if (lapic_in_kernel(vcpu)) {
6134 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6135 return 1;
6136 } else {
6137 vcpu->run->exit_reason = KVM_EXIT_HLT;
6138 return 0;
6139 }
6140 }
6141 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6142
6143 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6144 {
6145 int ret = kvm_skip_emulated_instruction(vcpu);
6146 /*
6147 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6148 * KVM_EXIT_DEBUG here.
6149 */
6150 return kvm_vcpu_halt(vcpu) && ret;
6151 }
6152 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6153
6154 #ifdef CONFIG_X86_64
6155 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6156 unsigned long clock_type)
6157 {
6158 struct kvm_clock_pairing clock_pairing;
6159 struct timespec ts;
6160 u64 cycle;
6161 int ret;
6162
6163 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6164 return -KVM_EOPNOTSUPP;
6165
6166 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6167 return -KVM_EOPNOTSUPP;
6168
6169 clock_pairing.sec = ts.tv_sec;
6170 clock_pairing.nsec = ts.tv_nsec;
6171 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6172 clock_pairing.flags = 0;
6173
6174 ret = 0;
6175 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6176 sizeof(struct kvm_clock_pairing)))
6177 ret = -KVM_EFAULT;
6178
6179 return ret;
6180 }
6181 #endif
6182
6183 /*
6184 * kvm_pv_kick_cpu_op: Kick a vcpu.
6185 *
6186 * @apicid - apicid of vcpu to be kicked.
6187 */
6188 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6189 {
6190 struct kvm_lapic_irq lapic_irq;
6191
6192 lapic_irq.shorthand = 0;
6193 lapic_irq.dest_mode = 0;
6194 lapic_irq.dest_id = apicid;
6195 lapic_irq.msi_redir_hint = false;
6196
6197 lapic_irq.delivery_mode = APIC_DM_REMRD;
6198 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6199 }
6200
6201 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6202 {
6203 vcpu->arch.apicv_active = false;
6204 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6205 }
6206
6207 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6208 {
6209 unsigned long nr, a0, a1, a2, a3, ret;
6210 int op_64_bit, r;
6211
6212 r = kvm_skip_emulated_instruction(vcpu);
6213
6214 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6215 return kvm_hv_hypercall(vcpu);
6216
6217 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6218 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6219 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6220 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6221 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6222
6223 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6224
6225 op_64_bit = is_64_bit_mode(vcpu);
6226 if (!op_64_bit) {
6227 nr &= 0xFFFFFFFF;
6228 a0 &= 0xFFFFFFFF;
6229 a1 &= 0xFFFFFFFF;
6230 a2 &= 0xFFFFFFFF;
6231 a3 &= 0xFFFFFFFF;
6232 }
6233
6234 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6235 ret = -KVM_EPERM;
6236 goto out;
6237 }
6238
6239 switch (nr) {
6240 case KVM_HC_VAPIC_POLL_IRQ:
6241 ret = 0;
6242 break;
6243 case KVM_HC_KICK_CPU:
6244 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6245 ret = 0;
6246 break;
6247 #ifdef CONFIG_X86_64
6248 case KVM_HC_CLOCK_PAIRING:
6249 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6250 break;
6251 #endif
6252 default:
6253 ret = -KVM_ENOSYS;
6254 break;
6255 }
6256 out:
6257 if (!op_64_bit)
6258 ret = (u32)ret;
6259 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6260 ++vcpu->stat.hypercalls;
6261 return r;
6262 }
6263 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6264
6265 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6266 {
6267 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6268 char instruction[3];
6269 unsigned long rip = kvm_rip_read(vcpu);
6270
6271 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6272
6273 return emulator_write_emulated(ctxt, rip, instruction, 3,
6274 &ctxt->exception);
6275 }
6276
6277 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6278 {
6279 return vcpu->run->request_interrupt_window &&
6280 likely(!pic_in_kernel(vcpu->kvm));
6281 }
6282
6283 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6284 {
6285 struct kvm_run *kvm_run = vcpu->run;
6286
6287 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6288 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6289 kvm_run->cr8 = kvm_get_cr8(vcpu);
6290 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6291 kvm_run->ready_for_interrupt_injection =
6292 pic_in_kernel(vcpu->kvm) ||
6293 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6294 }
6295
6296 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6297 {
6298 int max_irr, tpr;
6299
6300 if (!kvm_x86_ops->update_cr8_intercept)
6301 return;
6302
6303 if (!lapic_in_kernel(vcpu))
6304 return;
6305
6306 if (vcpu->arch.apicv_active)
6307 return;
6308
6309 if (!vcpu->arch.apic->vapic_addr)
6310 max_irr = kvm_lapic_find_highest_irr(vcpu);
6311 else
6312 max_irr = -1;
6313
6314 if (max_irr != -1)
6315 max_irr >>= 4;
6316
6317 tpr = kvm_lapic_get_cr8(vcpu);
6318
6319 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6320 }
6321
6322 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6323 {
6324 int r;
6325
6326 /* try to reinject previous events if any */
6327 if (vcpu->arch.exception.pending) {
6328 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6329 vcpu->arch.exception.has_error_code,
6330 vcpu->arch.exception.error_code);
6331
6332 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6333 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6334 X86_EFLAGS_RF);
6335
6336 if (vcpu->arch.exception.nr == DB_VECTOR &&
6337 (vcpu->arch.dr7 & DR7_GD)) {
6338 vcpu->arch.dr7 &= ~DR7_GD;
6339 kvm_update_dr7(vcpu);
6340 }
6341
6342 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6343 vcpu->arch.exception.has_error_code,
6344 vcpu->arch.exception.error_code,
6345 vcpu->arch.exception.reinject);
6346 return 0;
6347 }
6348
6349 if (vcpu->arch.nmi_injected) {
6350 kvm_x86_ops->set_nmi(vcpu);
6351 return 0;
6352 }
6353
6354 if (vcpu->arch.interrupt.pending) {
6355 kvm_x86_ops->set_irq(vcpu);
6356 return 0;
6357 }
6358
6359 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6360 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6361 if (r != 0)
6362 return r;
6363 }
6364
6365 /* try to inject new event if pending */
6366 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6367 vcpu->arch.smi_pending = false;
6368 enter_smm(vcpu);
6369 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6370 --vcpu->arch.nmi_pending;
6371 vcpu->arch.nmi_injected = true;
6372 kvm_x86_ops->set_nmi(vcpu);
6373 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6374 /*
6375 * Because interrupts can be injected asynchronously, we are
6376 * calling check_nested_events again here to avoid a race condition.
6377 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6378 * proposal and current concerns. Perhaps we should be setting
6379 * KVM_REQ_EVENT only on certain events and not unconditionally?
6380 */
6381 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6382 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6383 if (r != 0)
6384 return r;
6385 }
6386 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6387 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6388 false);
6389 kvm_x86_ops->set_irq(vcpu);
6390 }
6391 }
6392
6393 return 0;
6394 }
6395
6396 static void process_nmi(struct kvm_vcpu *vcpu)
6397 {
6398 unsigned limit = 2;
6399
6400 /*
6401 * x86 is limited to one NMI running, and one NMI pending after it.
6402 * If an NMI is already in progress, limit further NMIs to just one.
6403 * Otherwise, allow two (and we'll inject the first one immediately).
6404 */
6405 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6406 limit = 1;
6407
6408 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6409 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6410 kvm_make_request(KVM_REQ_EVENT, vcpu);
6411 }
6412
6413 #define put_smstate(type, buf, offset, val) \
6414 *(type *)((buf) + (offset) - 0x7e00) = val
6415
6416 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6417 {
6418 u32 flags = 0;
6419 flags |= seg->g << 23;
6420 flags |= seg->db << 22;
6421 flags |= seg->l << 21;
6422 flags |= seg->avl << 20;
6423 flags |= seg->present << 15;
6424 flags |= seg->dpl << 13;
6425 flags |= seg->s << 12;
6426 flags |= seg->type << 8;
6427 return flags;
6428 }
6429
6430 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6431 {
6432 struct kvm_segment seg;
6433 int offset;
6434
6435 kvm_get_segment(vcpu, &seg, n);
6436 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6437
6438 if (n < 3)
6439 offset = 0x7f84 + n * 12;
6440 else
6441 offset = 0x7f2c + (n - 3) * 12;
6442
6443 put_smstate(u32, buf, offset + 8, seg.base);
6444 put_smstate(u32, buf, offset + 4, seg.limit);
6445 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6446 }
6447
6448 #ifdef CONFIG_X86_64
6449 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6450 {
6451 struct kvm_segment seg;
6452 int offset;
6453 u16 flags;
6454
6455 kvm_get_segment(vcpu, &seg, n);
6456 offset = 0x7e00 + n * 16;
6457
6458 flags = enter_smm_get_segment_flags(&seg) >> 8;
6459 put_smstate(u16, buf, offset, seg.selector);
6460 put_smstate(u16, buf, offset + 2, flags);
6461 put_smstate(u32, buf, offset + 4, seg.limit);
6462 put_smstate(u64, buf, offset + 8, seg.base);
6463 }
6464 #endif
6465
6466 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6467 {
6468 struct desc_ptr dt;
6469 struct kvm_segment seg;
6470 unsigned long val;
6471 int i;
6472
6473 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6474 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6475 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6476 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6477
6478 for (i = 0; i < 8; i++)
6479 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6480
6481 kvm_get_dr(vcpu, 6, &val);
6482 put_smstate(u32, buf, 0x7fcc, (u32)val);
6483 kvm_get_dr(vcpu, 7, &val);
6484 put_smstate(u32, buf, 0x7fc8, (u32)val);
6485
6486 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6487 put_smstate(u32, buf, 0x7fc4, seg.selector);
6488 put_smstate(u32, buf, 0x7f64, seg.base);
6489 put_smstate(u32, buf, 0x7f60, seg.limit);
6490 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6491
6492 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6493 put_smstate(u32, buf, 0x7fc0, seg.selector);
6494 put_smstate(u32, buf, 0x7f80, seg.base);
6495 put_smstate(u32, buf, 0x7f7c, seg.limit);
6496 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6497
6498 kvm_x86_ops->get_gdt(vcpu, &dt);
6499 put_smstate(u32, buf, 0x7f74, dt.address);
6500 put_smstate(u32, buf, 0x7f70, dt.size);
6501
6502 kvm_x86_ops->get_idt(vcpu, &dt);
6503 put_smstate(u32, buf, 0x7f58, dt.address);
6504 put_smstate(u32, buf, 0x7f54, dt.size);
6505
6506 for (i = 0; i < 6; i++)
6507 enter_smm_save_seg_32(vcpu, buf, i);
6508
6509 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6510
6511 /* revision id */
6512 put_smstate(u32, buf, 0x7efc, 0x00020000);
6513 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6514 }
6515
6516 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6517 {
6518 #ifdef CONFIG_X86_64
6519 struct desc_ptr dt;
6520 struct kvm_segment seg;
6521 unsigned long val;
6522 int i;
6523
6524 for (i = 0; i < 16; i++)
6525 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6526
6527 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6528 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6529
6530 kvm_get_dr(vcpu, 6, &val);
6531 put_smstate(u64, buf, 0x7f68, val);
6532 kvm_get_dr(vcpu, 7, &val);
6533 put_smstate(u64, buf, 0x7f60, val);
6534
6535 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6536 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6537 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6538
6539 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6540
6541 /* revision id */
6542 put_smstate(u32, buf, 0x7efc, 0x00020064);
6543
6544 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6545
6546 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6547 put_smstate(u16, buf, 0x7e90, seg.selector);
6548 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6549 put_smstate(u32, buf, 0x7e94, seg.limit);
6550 put_smstate(u64, buf, 0x7e98, seg.base);
6551
6552 kvm_x86_ops->get_idt(vcpu, &dt);
6553 put_smstate(u32, buf, 0x7e84, dt.size);
6554 put_smstate(u64, buf, 0x7e88, dt.address);
6555
6556 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6557 put_smstate(u16, buf, 0x7e70, seg.selector);
6558 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6559 put_smstate(u32, buf, 0x7e74, seg.limit);
6560 put_smstate(u64, buf, 0x7e78, seg.base);
6561
6562 kvm_x86_ops->get_gdt(vcpu, &dt);
6563 put_smstate(u32, buf, 0x7e64, dt.size);
6564 put_smstate(u64, buf, 0x7e68, dt.address);
6565
6566 for (i = 0; i < 6; i++)
6567 enter_smm_save_seg_64(vcpu, buf, i);
6568 #else
6569 WARN_ON_ONCE(1);
6570 #endif
6571 }
6572
6573 static void enter_smm(struct kvm_vcpu *vcpu)
6574 {
6575 struct kvm_segment cs, ds;
6576 struct desc_ptr dt;
6577 char buf[512];
6578 u32 cr0;
6579
6580 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6581 vcpu->arch.hflags |= HF_SMM_MASK;
6582 memset(buf, 0, 512);
6583 if (guest_cpuid_has_longmode(vcpu))
6584 enter_smm_save_state_64(vcpu, buf);
6585 else
6586 enter_smm_save_state_32(vcpu, buf);
6587
6588 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6589
6590 if (kvm_x86_ops->get_nmi_mask(vcpu))
6591 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6592 else
6593 kvm_x86_ops->set_nmi_mask(vcpu, true);
6594
6595 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6596 kvm_rip_write(vcpu, 0x8000);
6597
6598 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6599 kvm_x86_ops->set_cr0(vcpu, cr0);
6600 vcpu->arch.cr0 = cr0;
6601
6602 kvm_x86_ops->set_cr4(vcpu, 0);
6603
6604 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6605 dt.address = dt.size = 0;
6606 kvm_x86_ops->set_idt(vcpu, &dt);
6607
6608 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6609
6610 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6611 cs.base = vcpu->arch.smbase;
6612
6613 ds.selector = 0;
6614 ds.base = 0;
6615
6616 cs.limit = ds.limit = 0xffffffff;
6617 cs.type = ds.type = 0x3;
6618 cs.dpl = ds.dpl = 0;
6619 cs.db = ds.db = 0;
6620 cs.s = ds.s = 1;
6621 cs.l = ds.l = 0;
6622 cs.g = ds.g = 1;
6623 cs.avl = ds.avl = 0;
6624 cs.present = ds.present = 1;
6625 cs.unusable = ds.unusable = 0;
6626 cs.padding = ds.padding = 0;
6627
6628 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6629 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6631 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6632 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6633 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6634
6635 if (guest_cpuid_has_longmode(vcpu))
6636 kvm_x86_ops->set_efer(vcpu, 0);
6637
6638 kvm_update_cpuid(vcpu);
6639 kvm_mmu_reset_context(vcpu);
6640 }
6641
6642 static void process_smi(struct kvm_vcpu *vcpu)
6643 {
6644 vcpu->arch.smi_pending = true;
6645 kvm_make_request(KVM_REQ_EVENT, vcpu);
6646 }
6647
6648 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6649 {
6650 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6651 }
6652
6653 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6654 {
6655 u64 eoi_exit_bitmap[4];
6656
6657 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6658 return;
6659
6660 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6661
6662 if (irqchip_split(vcpu->kvm))
6663 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6664 else {
6665 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6666 kvm_x86_ops->sync_pir_to_irr(vcpu);
6667 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6668 }
6669 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6670 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6671 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6672 }
6673
6674 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6675 {
6676 ++vcpu->stat.tlb_flush;
6677 kvm_x86_ops->tlb_flush(vcpu);
6678 }
6679
6680 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6681 {
6682 struct page *page = NULL;
6683
6684 if (!lapic_in_kernel(vcpu))
6685 return;
6686
6687 if (!kvm_x86_ops->set_apic_access_page_addr)
6688 return;
6689
6690 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6691 if (is_error_page(page))
6692 return;
6693 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6694
6695 /*
6696 * Do not pin apic access page in memory, the MMU notifier
6697 * will call us again if it is migrated or swapped out.
6698 */
6699 put_page(page);
6700 }
6701 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6702
6703 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6704 unsigned long address)
6705 {
6706 /*
6707 * The physical address of apic access page is stored in the VMCS.
6708 * Update it when it becomes invalid.
6709 */
6710 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6711 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6712 }
6713
6714 /*
6715 * Returns 1 to let vcpu_run() continue the guest execution loop without
6716 * exiting to the userspace. Otherwise, the value will be returned to the
6717 * userspace.
6718 */
6719 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6720 {
6721 int r;
6722 bool req_int_win =
6723 dm_request_for_irq_injection(vcpu) &&
6724 kvm_cpu_accept_dm_intr(vcpu);
6725
6726 bool req_immediate_exit = false;
6727
6728 if (vcpu->requests) {
6729 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6730 kvm_mmu_unload(vcpu);
6731 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6732 __kvm_migrate_timers(vcpu);
6733 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6734 kvm_gen_update_masterclock(vcpu->kvm);
6735 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6736 kvm_gen_kvmclock_update(vcpu);
6737 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6738 r = kvm_guest_time_update(vcpu);
6739 if (unlikely(r))
6740 goto out;
6741 }
6742 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6743 kvm_mmu_sync_roots(vcpu);
6744 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6745 kvm_vcpu_flush_tlb(vcpu);
6746 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6747 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6748 r = 0;
6749 goto out;
6750 }
6751 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6752 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6753 r = 0;
6754 goto out;
6755 }
6756 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6757 /* Page is swapped out. Do synthetic halt */
6758 vcpu->arch.apf.halted = true;
6759 r = 1;
6760 goto out;
6761 }
6762 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6763 record_steal_time(vcpu);
6764 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6765 process_smi(vcpu);
6766 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6767 process_nmi(vcpu);
6768 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6769 kvm_pmu_handle_event(vcpu);
6770 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6771 kvm_pmu_deliver_pmi(vcpu);
6772 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6773 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6774 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6775 vcpu->arch.ioapic_handled_vectors)) {
6776 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6777 vcpu->run->eoi.vector =
6778 vcpu->arch.pending_ioapic_eoi;
6779 r = 0;
6780 goto out;
6781 }
6782 }
6783 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6784 vcpu_scan_ioapic(vcpu);
6785 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6786 kvm_vcpu_reload_apic_access_page(vcpu);
6787 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6788 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6789 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6790 r = 0;
6791 goto out;
6792 }
6793 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6794 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6795 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6796 r = 0;
6797 goto out;
6798 }
6799 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6800 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6801 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6802 r = 0;
6803 goto out;
6804 }
6805
6806 /*
6807 * KVM_REQ_HV_STIMER has to be processed after
6808 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6809 * depend on the guest clock being up-to-date
6810 */
6811 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6812 kvm_hv_process_stimers(vcpu);
6813 }
6814
6815 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6816 ++vcpu->stat.req_event;
6817 kvm_apic_accept_events(vcpu);
6818 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6819 r = 1;
6820 goto out;
6821 }
6822
6823 if (inject_pending_event(vcpu, req_int_win) != 0)
6824 req_immediate_exit = true;
6825 else {
6826 /* Enable NMI/IRQ window open exits if needed.
6827 *
6828 * SMIs have two cases: 1) they can be nested, and
6829 * then there is nothing to do here because RSM will
6830 * cause a vmexit anyway; 2) or the SMI can be pending
6831 * because inject_pending_event has completed the
6832 * injection of an IRQ or NMI from the previous vmexit,
6833 * and then we request an immediate exit to inject the SMI.
6834 */
6835 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6836 req_immediate_exit = true;
6837 if (vcpu->arch.nmi_pending)
6838 kvm_x86_ops->enable_nmi_window(vcpu);
6839 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6840 kvm_x86_ops->enable_irq_window(vcpu);
6841 }
6842
6843 if (kvm_lapic_enabled(vcpu)) {
6844 update_cr8_intercept(vcpu);
6845 kvm_lapic_sync_to_vapic(vcpu);
6846 }
6847 }
6848
6849 r = kvm_mmu_reload(vcpu);
6850 if (unlikely(r)) {
6851 goto cancel_injection;
6852 }
6853
6854 preempt_disable();
6855
6856 kvm_x86_ops->prepare_guest_switch(vcpu);
6857 kvm_load_guest_fpu(vcpu);
6858
6859 /*
6860 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6861 * IPI are then delayed after guest entry, which ensures that they
6862 * result in virtual interrupt delivery.
6863 */
6864 local_irq_disable();
6865 vcpu->mode = IN_GUEST_MODE;
6866
6867 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6868
6869 /*
6870 * 1) We should set ->mode before checking ->requests. Please see
6871 * the comment in kvm_make_all_cpus_request.
6872 *
6873 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6874 * pairs with the memory barrier implicit in pi_test_and_set_on
6875 * (see vmx_deliver_posted_interrupt).
6876 *
6877 * 3) This also orders the write to mode from any reads to the page
6878 * tables done while the VCPU is running. Please see the comment
6879 * in kvm_flush_remote_tlbs.
6880 */
6881 smp_mb__after_srcu_read_unlock();
6882
6883 /*
6884 * This handles the case where a posted interrupt was
6885 * notified with kvm_vcpu_kick.
6886 */
6887 if (kvm_lapic_enabled(vcpu)) {
6888 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6889 kvm_x86_ops->sync_pir_to_irr(vcpu);
6890 }
6891
6892 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6893 || need_resched() || signal_pending(current)) {
6894 vcpu->mode = OUTSIDE_GUEST_MODE;
6895 smp_wmb();
6896 local_irq_enable();
6897 preempt_enable();
6898 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6899 r = 1;
6900 goto cancel_injection;
6901 }
6902
6903 kvm_load_guest_xcr0(vcpu);
6904
6905 if (req_immediate_exit) {
6906 kvm_make_request(KVM_REQ_EVENT, vcpu);
6907 smp_send_reschedule(vcpu->cpu);
6908 }
6909
6910 trace_kvm_entry(vcpu->vcpu_id);
6911 wait_lapic_expire(vcpu);
6912 guest_enter_irqoff();
6913
6914 if (unlikely(vcpu->arch.switch_db_regs)) {
6915 set_debugreg(0, 7);
6916 set_debugreg(vcpu->arch.eff_db[0], 0);
6917 set_debugreg(vcpu->arch.eff_db[1], 1);
6918 set_debugreg(vcpu->arch.eff_db[2], 2);
6919 set_debugreg(vcpu->arch.eff_db[3], 3);
6920 set_debugreg(vcpu->arch.dr6, 6);
6921 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6922 }
6923
6924 kvm_x86_ops->run(vcpu);
6925
6926 /*
6927 * Do this here before restoring debug registers on the host. And
6928 * since we do this before handling the vmexit, a DR access vmexit
6929 * can (a) read the correct value of the debug registers, (b) set
6930 * KVM_DEBUGREG_WONT_EXIT again.
6931 */
6932 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6933 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6934 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6935 kvm_update_dr0123(vcpu);
6936 kvm_update_dr6(vcpu);
6937 kvm_update_dr7(vcpu);
6938 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6939 }
6940
6941 /*
6942 * If the guest has used debug registers, at least dr7
6943 * will be disabled while returning to the host.
6944 * If we don't have active breakpoints in the host, we don't
6945 * care about the messed up debug address registers. But if
6946 * we have some of them active, restore the old state.
6947 */
6948 if (hw_breakpoint_active())
6949 hw_breakpoint_restore();
6950
6951 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6952
6953 vcpu->mode = OUTSIDE_GUEST_MODE;
6954 smp_wmb();
6955
6956 kvm_put_guest_xcr0(vcpu);
6957
6958 kvm_x86_ops->handle_external_intr(vcpu);
6959
6960 ++vcpu->stat.exits;
6961
6962 guest_exit_irqoff();
6963
6964 local_irq_enable();
6965 preempt_enable();
6966
6967 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6968
6969 /*
6970 * Profile KVM exit RIPs:
6971 */
6972 if (unlikely(prof_on == KVM_PROFILING)) {
6973 unsigned long rip = kvm_rip_read(vcpu);
6974 profile_hit(KVM_PROFILING, (void *)rip);
6975 }
6976
6977 if (unlikely(vcpu->arch.tsc_always_catchup))
6978 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6979
6980 if (vcpu->arch.apic_attention)
6981 kvm_lapic_sync_from_vapic(vcpu);
6982
6983 r = kvm_x86_ops->handle_exit(vcpu);
6984 return r;
6985
6986 cancel_injection:
6987 kvm_x86_ops->cancel_injection(vcpu);
6988 if (unlikely(vcpu->arch.apic_attention))
6989 kvm_lapic_sync_from_vapic(vcpu);
6990 out:
6991 return r;
6992 }
6993
6994 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6995 {
6996 if (!kvm_arch_vcpu_runnable(vcpu) &&
6997 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6998 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6999 kvm_vcpu_block(vcpu);
7000 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7001
7002 if (kvm_x86_ops->post_block)
7003 kvm_x86_ops->post_block(vcpu);
7004
7005 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7006 return 1;
7007 }
7008
7009 kvm_apic_accept_events(vcpu);
7010 switch(vcpu->arch.mp_state) {
7011 case KVM_MP_STATE_HALTED:
7012 vcpu->arch.pv.pv_unhalted = false;
7013 vcpu->arch.mp_state =
7014 KVM_MP_STATE_RUNNABLE;
7015 case KVM_MP_STATE_RUNNABLE:
7016 vcpu->arch.apf.halted = false;
7017 break;
7018 case KVM_MP_STATE_INIT_RECEIVED:
7019 break;
7020 default:
7021 return -EINTR;
7022 break;
7023 }
7024 return 1;
7025 }
7026
7027 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7028 {
7029 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7030 kvm_x86_ops->check_nested_events(vcpu, false);
7031
7032 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7033 !vcpu->arch.apf.halted);
7034 }
7035
7036 static int vcpu_run(struct kvm_vcpu *vcpu)
7037 {
7038 int r;
7039 struct kvm *kvm = vcpu->kvm;
7040
7041 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7042
7043 for (;;) {
7044 if (kvm_vcpu_running(vcpu)) {
7045 r = vcpu_enter_guest(vcpu);
7046 } else {
7047 r = vcpu_block(kvm, vcpu);
7048 }
7049
7050 if (r <= 0)
7051 break;
7052
7053 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7054 if (kvm_cpu_has_pending_timer(vcpu))
7055 kvm_inject_pending_timer_irqs(vcpu);
7056
7057 if (dm_request_for_irq_injection(vcpu) &&
7058 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7059 r = 0;
7060 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7061 ++vcpu->stat.request_irq_exits;
7062 break;
7063 }
7064
7065 kvm_check_async_pf_completion(vcpu);
7066
7067 if (signal_pending(current)) {
7068 r = -EINTR;
7069 vcpu->run->exit_reason = KVM_EXIT_INTR;
7070 ++vcpu->stat.signal_exits;
7071 break;
7072 }
7073 if (need_resched()) {
7074 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7075 cond_resched();
7076 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7077 }
7078 }
7079
7080 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7081
7082 return r;
7083 }
7084
7085 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7086 {
7087 int r;
7088 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7089 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7090 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7091 if (r != EMULATE_DONE)
7092 return 0;
7093 return 1;
7094 }
7095
7096 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7097 {
7098 BUG_ON(!vcpu->arch.pio.count);
7099
7100 return complete_emulated_io(vcpu);
7101 }
7102
7103 /*
7104 * Implements the following, as a state machine:
7105 *
7106 * read:
7107 * for each fragment
7108 * for each mmio piece in the fragment
7109 * write gpa, len
7110 * exit
7111 * copy data
7112 * execute insn
7113 *
7114 * write:
7115 * for each fragment
7116 * for each mmio piece in the fragment
7117 * write gpa, len
7118 * copy data
7119 * exit
7120 */
7121 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7122 {
7123 struct kvm_run *run = vcpu->run;
7124 struct kvm_mmio_fragment *frag;
7125 unsigned len;
7126
7127 BUG_ON(!vcpu->mmio_needed);
7128
7129 /* Complete previous fragment */
7130 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7131 len = min(8u, frag->len);
7132 if (!vcpu->mmio_is_write)
7133 memcpy(frag->data, run->mmio.data, len);
7134
7135 if (frag->len <= 8) {
7136 /* Switch to the next fragment. */
7137 frag++;
7138 vcpu->mmio_cur_fragment++;
7139 } else {
7140 /* Go forward to the next mmio piece. */
7141 frag->data += len;
7142 frag->gpa += len;
7143 frag->len -= len;
7144 }
7145
7146 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7147 vcpu->mmio_needed = 0;
7148
7149 /* FIXME: return into emulator if single-stepping. */
7150 if (vcpu->mmio_is_write)
7151 return 1;
7152 vcpu->mmio_read_completed = 1;
7153 return complete_emulated_io(vcpu);
7154 }
7155
7156 run->exit_reason = KVM_EXIT_MMIO;
7157 run->mmio.phys_addr = frag->gpa;
7158 if (vcpu->mmio_is_write)
7159 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7160 run->mmio.len = min(8u, frag->len);
7161 run->mmio.is_write = vcpu->mmio_is_write;
7162 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7163 return 0;
7164 }
7165
7166
7167 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7168 {
7169 struct fpu *fpu = &current->thread.fpu;
7170 int r;
7171 sigset_t sigsaved;
7172
7173 fpu__activate_curr(fpu);
7174
7175 if (vcpu->sigset_active)
7176 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7177
7178 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7179 kvm_vcpu_block(vcpu);
7180 kvm_apic_accept_events(vcpu);
7181 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7182 r = -EAGAIN;
7183 goto out;
7184 }
7185
7186 /* re-sync apic's tpr */
7187 if (!lapic_in_kernel(vcpu)) {
7188 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7189 r = -EINVAL;
7190 goto out;
7191 }
7192 }
7193
7194 if (unlikely(vcpu->arch.complete_userspace_io)) {
7195 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7196 vcpu->arch.complete_userspace_io = NULL;
7197 r = cui(vcpu);
7198 if (r <= 0)
7199 goto out;
7200 } else
7201 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7202
7203 if (kvm_run->immediate_exit)
7204 r = -EINTR;
7205 else
7206 r = vcpu_run(vcpu);
7207
7208 out:
7209 post_kvm_run_save(vcpu);
7210 if (vcpu->sigset_active)
7211 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7212
7213 return r;
7214 }
7215
7216 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7217 {
7218 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7219 /*
7220 * We are here if userspace calls get_regs() in the middle of
7221 * instruction emulation. Registers state needs to be copied
7222 * back from emulation context to vcpu. Userspace shouldn't do
7223 * that usually, but some bad designed PV devices (vmware
7224 * backdoor interface) need this to work
7225 */
7226 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7227 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7228 }
7229 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7230 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7231 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7232 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7233 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7234 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7235 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7236 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7237 #ifdef CONFIG_X86_64
7238 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7239 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7240 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7241 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7242 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7243 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7244 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7245 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7246 #endif
7247
7248 regs->rip = kvm_rip_read(vcpu);
7249 regs->rflags = kvm_get_rflags(vcpu);
7250
7251 return 0;
7252 }
7253
7254 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7255 {
7256 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7257 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7258
7259 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7260 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7261 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7262 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7263 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7264 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7265 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7266 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7267 #ifdef CONFIG_X86_64
7268 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7269 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7270 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7271 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7272 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7273 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7274 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7275 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7276 #endif
7277
7278 kvm_rip_write(vcpu, regs->rip);
7279 kvm_set_rflags(vcpu, regs->rflags);
7280
7281 vcpu->arch.exception.pending = false;
7282
7283 kvm_make_request(KVM_REQ_EVENT, vcpu);
7284
7285 return 0;
7286 }
7287
7288 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7289 {
7290 struct kvm_segment cs;
7291
7292 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7293 *db = cs.db;
7294 *l = cs.l;
7295 }
7296 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7297
7298 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7299 struct kvm_sregs *sregs)
7300 {
7301 struct desc_ptr dt;
7302
7303 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7304 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7305 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7306 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7307 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7308 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7309
7310 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7311 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7312
7313 kvm_x86_ops->get_idt(vcpu, &dt);
7314 sregs->idt.limit = dt.size;
7315 sregs->idt.base = dt.address;
7316 kvm_x86_ops->get_gdt(vcpu, &dt);
7317 sregs->gdt.limit = dt.size;
7318 sregs->gdt.base = dt.address;
7319
7320 sregs->cr0 = kvm_read_cr0(vcpu);
7321 sregs->cr2 = vcpu->arch.cr2;
7322 sregs->cr3 = kvm_read_cr3(vcpu);
7323 sregs->cr4 = kvm_read_cr4(vcpu);
7324 sregs->cr8 = kvm_get_cr8(vcpu);
7325 sregs->efer = vcpu->arch.efer;
7326 sregs->apic_base = kvm_get_apic_base(vcpu);
7327
7328 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7329
7330 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7331 set_bit(vcpu->arch.interrupt.nr,
7332 (unsigned long *)sregs->interrupt_bitmap);
7333
7334 return 0;
7335 }
7336
7337 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7338 struct kvm_mp_state *mp_state)
7339 {
7340 kvm_apic_accept_events(vcpu);
7341 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7342 vcpu->arch.pv.pv_unhalted)
7343 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7344 else
7345 mp_state->mp_state = vcpu->arch.mp_state;
7346
7347 return 0;
7348 }
7349
7350 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7351 struct kvm_mp_state *mp_state)
7352 {
7353 if (!lapic_in_kernel(vcpu) &&
7354 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7355 return -EINVAL;
7356
7357 /* INITs are latched while in SMM */
7358 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7359 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7360 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7361 return -EINVAL;
7362
7363 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7364 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7365 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7366 } else
7367 vcpu->arch.mp_state = mp_state->mp_state;
7368 kvm_make_request(KVM_REQ_EVENT, vcpu);
7369 return 0;
7370 }
7371
7372 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7373 int reason, bool has_error_code, u32 error_code)
7374 {
7375 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7376 int ret;
7377
7378 init_emulate_ctxt(vcpu);
7379
7380 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7381 has_error_code, error_code);
7382
7383 if (ret)
7384 return EMULATE_FAIL;
7385
7386 kvm_rip_write(vcpu, ctxt->eip);
7387 kvm_set_rflags(vcpu, ctxt->eflags);
7388 kvm_make_request(KVM_REQ_EVENT, vcpu);
7389 return EMULATE_DONE;
7390 }
7391 EXPORT_SYMBOL_GPL(kvm_task_switch);
7392
7393 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7394 struct kvm_sregs *sregs)
7395 {
7396 struct msr_data apic_base_msr;
7397 int mmu_reset_needed = 0;
7398 int pending_vec, max_bits, idx;
7399 struct desc_ptr dt;
7400
7401 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7402 return -EINVAL;
7403
7404 dt.size = sregs->idt.limit;
7405 dt.address = sregs->idt.base;
7406 kvm_x86_ops->set_idt(vcpu, &dt);
7407 dt.size = sregs->gdt.limit;
7408 dt.address = sregs->gdt.base;
7409 kvm_x86_ops->set_gdt(vcpu, &dt);
7410
7411 vcpu->arch.cr2 = sregs->cr2;
7412 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7413 vcpu->arch.cr3 = sregs->cr3;
7414 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7415
7416 kvm_set_cr8(vcpu, sregs->cr8);
7417
7418 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7419 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7420 apic_base_msr.data = sregs->apic_base;
7421 apic_base_msr.host_initiated = true;
7422 kvm_set_apic_base(vcpu, &apic_base_msr);
7423
7424 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7425 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7426 vcpu->arch.cr0 = sregs->cr0;
7427
7428 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7429 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7430 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7431 kvm_update_cpuid(vcpu);
7432
7433 idx = srcu_read_lock(&vcpu->kvm->srcu);
7434 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7435 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7436 mmu_reset_needed = 1;
7437 }
7438 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7439
7440 if (mmu_reset_needed)
7441 kvm_mmu_reset_context(vcpu);
7442
7443 max_bits = KVM_NR_INTERRUPTS;
7444 pending_vec = find_first_bit(
7445 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7446 if (pending_vec < max_bits) {
7447 kvm_queue_interrupt(vcpu, pending_vec, false);
7448 pr_debug("Set back pending irq %d\n", pending_vec);
7449 }
7450
7451 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7452 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7453 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7454 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7455 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7456 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7457
7458 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7459 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7460
7461 update_cr8_intercept(vcpu);
7462
7463 /* Older userspace won't unhalt the vcpu on reset. */
7464 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7465 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7466 !is_protmode(vcpu))
7467 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7468
7469 kvm_make_request(KVM_REQ_EVENT, vcpu);
7470
7471 return 0;
7472 }
7473
7474 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7475 struct kvm_guest_debug *dbg)
7476 {
7477 unsigned long rflags;
7478 int i, r;
7479
7480 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7481 r = -EBUSY;
7482 if (vcpu->arch.exception.pending)
7483 goto out;
7484 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7485 kvm_queue_exception(vcpu, DB_VECTOR);
7486 else
7487 kvm_queue_exception(vcpu, BP_VECTOR);
7488 }
7489
7490 /*
7491 * Read rflags as long as potentially injected trace flags are still
7492 * filtered out.
7493 */
7494 rflags = kvm_get_rflags(vcpu);
7495
7496 vcpu->guest_debug = dbg->control;
7497 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7498 vcpu->guest_debug = 0;
7499
7500 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7501 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7502 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7503 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7504 } else {
7505 for (i = 0; i < KVM_NR_DB_REGS; i++)
7506 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7507 }
7508 kvm_update_dr7(vcpu);
7509
7510 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7511 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7512 get_segment_base(vcpu, VCPU_SREG_CS);
7513
7514 /*
7515 * Trigger an rflags update that will inject or remove the trace
7516 * flags.
7517 */
7518 kvm_set_rflags(vcpu, rflags);
7519
7520 kvm_x86_ops->update_bp_intercept(vcpu);
7521
7522 r = 0;
7523
7524 out:
7525
7526 return r;
7527 }
7528
7529 /*
7530 * Translate a guest virtual address to a guest physical address.
7531 */
7532 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7533 struct kvm_translation *tr)
7534 {
7535 unsigned long vaddr = tr->linear_address;
7536 gpa_t gpa;
7537 int idx;
7538
7539 idx = srcu_read_lock(&vcpu->kvm->srcu);
7540 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7541 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7542 tr->physical_address = gpa;
7543 tr->valid = gpa != UNMAPPED_GVA;
7544 tr->writeable = 1;
7545 tr->usermode = 0;
7546
7547 return 0;
7548 }
7549
7550 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7551 {
7552 struct fxregs_state *fxsave =
7553 &vcpu->arch.guest_fpu.state.fxsave;
7554
7555 memcpy(fpu->fpr, fxsave->st_space, 128);
7556 fpu->fcw = fxsave->cwd;
7557 fpu->fsw = fxsave->swd;
7558 fpu->ftwx = fxsave->twd;
7559 fpu->last_opcode = fxsave->fop;
7560 fpu->last_ip = fxsave->rip;
7561 fpu->last_dp = fxsave->rdp;
7562 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7563
7564 return 0;
7565 }
7566
7567 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7568 {
7569 struct fxregs_state *fxsave =
7570 &vcpu->arch.guest_fpu.state.fxsave;
7571
7572 memcpy(fxsave->st_space, fpu->fpr, 128);
7573 fxsave->cwd = fpu->fcw;
7574 fxsave->swd = fpu->fsw;
7575 fxsave->twd = fpu->ftwx;
7576 fxsave->fop = fpu->last_opcode;
7577 fxsave->rip = fpu->last_ip;
7578 fxsave->rdp = fpu->last_dp;
7579 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7580
7581 return 0;
7582 }
7583
7584 static void fx_init(struct kvm_vcpu *vcpu)
7585 {
7586 fpstate_init(&vcpu->arch.guest_fpu.state);
7587 if (boot_cpu_has(X86_FEATURE_XSAVES))
7588 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7589 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7590
7591 /*
7592 * Ensure guest xcr0 is valid for loading
7593 */
7594 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7595
7596 vcpu->arch.cr0 |= X86_CR0_ET;
7597 }
7598
7599 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7600 {
7601 if (vcpu->guest_fpu_loaded)
7602 return;
7603
7604 /*
7605 * Restore all possible states in the guest,
7606 * and assume host would use all available bits.
7607 * Guest xcr0 would be loaded later.
7608 */
7609 vcpu->guest_fpu_loaded = 1;
7610 __kernel_fpu_begin();
7611 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7612 trace_kvm_fpu(1);
7613 }
7614
7615 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7616 {
7617 if (!vcpu->guest_fpu_loaded)
7618 return;
7619
7620 vcpu->guest_fpu_loaded = 0;
7621 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7622 __kernel_fpu_end();
7623 ++vcpu->stat.fpu_reload;
7624 trace_kvm_fpu(0);
7625 }
7626
7627 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7628 {
7629 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7630
7631 kvmclock_reset(vcpu);
7632
7633 kvm_x86_ops->vcpu_free(vcpu);
7634 free_cpumask_var(wbinvd_dirty_mask);
7635 }
7636
7637 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7638 unsigned int id)
7639 {
7640 struct kvm_vcpu *vcpu;
7641
7642 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7643 printk_once(KERN_WARNING
7644 "kvm: SMP vm created on host with unstable TSC; "
7645 "guest TSC will not be reliable\n");
7646
7647 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7648
7649 return vcpu;
7650 }
7651
7652 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7653 {
7654 int r;
7655
7656 kvm_vcpu_mtrr_init(vcpu);
7657 r = vcpu_load(vcpu);
7658 if (r)
7659 return r;
7660 kvm_vcpu_reset(vcpu, false);
7661 kvm_mmu_setup(vcpu);
7662 vcpu_put(vcpu);
7663 return r;
7664 }
7665
7666 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7667 {
7668 struct msr_data msr;
7669 struct kvm *kvm = vcpu->kvm;
7670
7671 if (vcpu_load(vcpu))
7672 return;
7673 msr.data = 0x0;
7674 msr.index = MSR_IA32_TSC;
7675 msr.host_initiated = true;
7676 kvm_write_tsc(vcpu, &msr);
7677 vcpu_put(vcpu);
7678
7679 if (!kvmclock_periodic_sync)
7680 return;
7681
7682 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7683 KVMCLOCK_SYNC_PERIOD);
7684 }
7685
7686 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7687 {
7688 int r;
7689 vcpu->arch.apf.msr_val = 0;
7690
7691 r = vcpu_load(vcpu);
7692 BUG_ON(r);
7693 kvm_mmu_unload(vcpu);
7694 vcpu_put(vcpu);
7695
7696 kvm_x86_ops->vcpu_free(vcpu);
7697 }
7698
7699 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7700 {
7701 vcpu->arch.hflags = 0;
7702
7703 vcpu->arch.smi_pending = 0;
7704 atomic_set(&vcpu->arch.nmi_queued, 0);
7705 vcpu->arch.nmi_pending = 0;
7706 vcpu->arch.nmi_injected = false;
7707 kvm_clear_interrupt_queue(vcpu);
7708 kvm_clear_exception_queue(vcpu);
7709
7710 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7711 kvm_update_dr0123(vcpu);
7712 vcpu->arch.dr6 = DR6_INIT;
7713 kvm_update_dr6(vcpu);
7714 vcpu->arch.dr7 = DR7_FIXED_1;
7715 kvm_update_dr7(vcpu);
7716
7717 vcpu->arch.cr2 = 0;
7718
7719 kvm_make_request(KVM_REQ_EVENT, vcpu);
7720 vcpu->arch.apf.msr_val = 0;
7721 vcpu->arch.st.msr_val = 0;
7722
7723 kvmclock_reset(vcpu);
7724
7725 kvm_clear_async_pf_completion_queue(vcpu);
7726 kvm_async_pf_hash_reset(vcpu);
7727 vcpu->arch.apf.halted = false;
7728
7729 if (!init_event) {
7730 kvm_pmu_reset(vcpu);
7731 vcpu->arch.smbase = 0x30000;
7732 }
7733
7734 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7735 vcpu->arch.regs_avail = ~0;
7736 vcpu->arch.regs_dirty = ~0;
7737
7738 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7739 }
7740
7741 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7742 {
7743 struct kvm_segment cs;
7744
7745 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7746 cs.selector = vector << 8;
7747 cs.base = vector << 12;
7748 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7749 kvm_rip_write(vcpu, 0);
7750 }
7751
7752 int kvm_arch_hardware_enable(void)
7753 {
7754 struct kvm *kvm;
7755 struct kvm_vcpu *vcpu;
7756 int i;
7757 int ret;
7758 u64 local_tsc;
7759 u64 max_tsc = 0;
7760 bool stable, backwards_tsc = false;
7761
7762 kvm_shared_msr_cpu_online();
7763 ret = kvm_x86_ops->hardware_enable();
7764 if (ret != 0)
7765 return ret;
7766
7767 local_tsc = rdtsc();
7768 stable = !check_tsc_unstable();
7769 list_for_each_entry(kvm, &vm_list, vm_list) {
7770 kvm_for_each_vcpu(i, vcpu, kvm) {
7771 if (!stable && vcpu->cpu == smp_processor_id())
7772 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7773 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7774 backwards_tsc = true;
7775 if (vcpu->arch.last_host_tsc > max_tsc)
7776 max_tsc = vcpu->arch.last_host_tsc;
7777 }
7778 }
7779 }
7780
7781 /*
7782 * Sometimes, even reliable TSCs go backwards. This happens on
7783 * platforms that reset TSC during suspend or hibernate actions, but
7784 * maintain synchronization. We must compensate. Fortunately, we can
7785 * detect that condition here, which happens early in CPU bringup,
7786 * before any KVM threads can be running. Unfortunately, we can't
7787 * bring the TSCs fully up to date with real time, as we aren't yet far
7788 * enough into CPU bringup that we know how much real time has actually
7789 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7790 * variables that haven't been updated yet.
7791 *
7792 * So we simply find the maximum observed TSC above, then record the
7793 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7794 * the adjustment will be applied. Note that we accumulate
7795 * adjustments, in case multiple suspend cycles happen before some VCPU
7796 * gets a chance to run again. In the event that no KVM threads get a
7797 * chance to run, we will miss the entire elapsed period, as we'll have
7798 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7799 * loose cycle time. This isn't too big a deal, since the loss will be
7800 * uniform across all VCPUs (not to mention the scenario is extremely
7801 * unlikely). It is possible that a second hibernate recovery happens
7802 * much faster than a first, causing the observed TSC here to be
7803 * smaller; this would require additional padding adjustment, which is
7804 * why we set last_host_tsc to the local tsc observed here.
7805 *
7806 * N.B. - this code below runs only on platforms with reliable TSC,
7807 * as that is the only way backwards_tsc is set above. Also note
7808 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7809 * have the same delta_cyc adjustment applied if backwards_tsc
7810 * is detected. Note further, this adjustment is only done once,
7811 * as we reset last_host_tsc on all VCPUs to stop this from being
7812 * called multiple times (one for each physical CPU bringup).
7813 *
7814 * Platforms with unreliable TSCs don't have to deal with this, they
7815 * will be compensated by the logic in vcpu_load, which sets the TSC to
7816 * catchup mode. This will catchup all VCPUs to real time, but cannot
7817 * guarantee that they stay in perfect synchronization.
7818 */
7819 if (backwards_tsc) {
7820 u64 delta_cyc = max_tsc - local_tsc;
7821 backwards_tsc_observed = true;
7822 list_for_each_entry(kvm, &vm_list, vm_list) {
7823 kvm_for_each_vcpu(i, vcpu, kvm) {
7824 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7825 vcpu->arch.last_host_tsc = local_tsc;
7826 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7827 }
7828
7829 /*
7830 * We have to disable TSC offset matching.. if you were
7831 * booting a VM while issuing an S4 host suspend....
7832 * you may have some problem. Solving this issue is
7833 * left as an exercise to the reader.
7834 */
7835 kvm->arch.last_tsc_nsec = 0;
7836 kvm->arch.last_tsc_write = 0;
7837 }
7838
7839 }
7840 return 0;
7841 }
7842
7843 void kvm_arch_hardware_disable(void)
7844 {
7845 kvm_x86_ops->hardware_disable();
7846 drop_user_return_notifiers();
7847 }
7848
7849 int kvm_arch_hardware_setup(void)
7850 {
7851 int r;
7852
7853 r = kvm_x86_ops->hardware_setup();
7854 if (r != 0)
7855 return r;
7856
7857 if (kvm_has_tsc_control) {
7858 /*
7859 * Make sure the user can only configure tsc_khz values that
7860 * fit into a signed integer.
7861 * A min value is not calculated needed because it will always
7862 * be 1 on all machines.
7863 */
7864 u64 max = min(0x7fffffffULL,
7865 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7866 kvm_max_guest_tsc_khz = max;
7867
7868 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7869 }
7870
7871 kvm_init_msr_list();
7872 return 0;
7873 }
7874
7875 void kvm_arch_hardware_unsetup(void)
7876 {
7877 kvm_x86_ops->hardware_unsetup();
7878 }
7879
7880 void kvm_arch_check_processor_compat(void *rtn)
7881 {
7882 kvm_x86_ops->check_processor_compatibility(rtn);
7883 }
7884
7885 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7886 {
7887 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7888 }
7889 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7890
7891 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7892 {
7893 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7894 }
7895
7896 struct static_key kvm_no_apic_vcpu __read_mostly;
7897 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7898
7899 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7900 {
7901 struct page *page;
7902 struct kvm *kvm;
7903 int r;
7904
7905 BUG_ON(vcpu->kvm == NULL);
7906 kvm = vcpu->kvm;
7907
7908 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7909 vcpu->arch.pv.pv_unhalted = false;
7910 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7911 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7912 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7913 else
7914 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7915
7916 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7917 if (!page) {
7918 r = -ENOMEM;
7919 goto fail;
7920 }
7921 vcpu->arch.pio_data = page_address(page);
7922
7923 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7924
7925 r = kvm_mmu_create(vcpu);
7926 if (r < 0)
7927 goto fail_free_pio_data;
7928
7929 if (irqchip_in_kernel(kvm)) {
7930 r = kvm_create_lapic(vcpu);
7931 if (r < 0)
7932 goto fail_mmu_destroy;
7933 } else
7934 static_key_slow_inc(&kvm_no_apic_vcpu);
7935
7936 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7937 GFP_KERNEL);
7938 if (!vcpu->arch.mce_banks) {
7939 r = -ENOMEM;
7940 goto fail_free_lapic;
7941 }
7942 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7943
7944 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7945 r = -ENOMEM;
7946 goto fail_free_mce_banks;
7947 }
7948
7949 fx_init(vcpu);
7950
7951 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7952 vcpu->arch.pv_time_enabled = false;
7953
7954 vcpu->arch.guest_supported_xcr0 = 0;
7955 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7956
7957 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7958
7959 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7960
7961 kvm_async_pf_hash_reset(vcpu);
7962 kvm_pmu_init(vcpu);
7963
7964 vcpu->arch.pending_external_vector = -1;
7965
7966 kvm_hv_vcpu_init(vcpu);
7967
7968 return 0;
7969
7970 fail_free_mce_banks:
7971 kfree(vcpu->arch.mce_banks);
7972 fail_free_lapic:
7973 kvm_free_lapic(vcpu);
7974 fail_mmu_destroy:
7975 kvm_mmu_destroy(vcpu);
7976 fail_free_pio_data:
7977 free_page((unsigned long)vcpu->arch.pio_data);
7978 fail:
7979 return r;
7980 }
7981
7982 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7983 {
7984 int idx;
7985
7986 kvm_hv_vcpu_uninit(vcpu);
7987 kvm_pmu_destroy(vcpu);
7988 kfree(vcpu->arch.mce_banks);
7989 kvm_free_lapic(vcpu);
7990 idx = srcu_read_lock(&vcpu->kvm->srcu);
7991 kvm_mmu_destroy(vcpu);
7992 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7993 free_page((unsigned long)vcpu->arch.pio_data);
7994 if (!lapic_in_kernel(vcpu))
7995 static_key_slow_dec(&kvm_no_apic_vcpu);
7996 }
7997
7998 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7999 {
8000 kvm_x86_ops->sched_in(vcpu, cpu);
8001 }
8002
8003 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8004 {
8005 if (type)
8006 return -EINVAL;
8007
8008 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8009 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8010 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8011 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8012 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8013
8014 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8015 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8016 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8017 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8018 &kvm->arch.irq_sources_bitmap);
8019
8020 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8021 mutex_init(&kvm->arch.apic_map_lock);
8022 mutex_init(&kvm->arch.hyperv.hv_lock);
8023 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8024
8025 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8026 pvclock_update_vm_gtod_copy(kvm);
8027
8028 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8029 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8030
8031 kvm_page_track_init(kvm);
8032 kvm_mmu_init_vm(kvm);
8033
8034 if (kvm_x86_ops->vm_init)
8035 return kvm_x86_ops->vm_init(kvm);
8036
8037 return 0;
8038 }
8039
8040 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8041 {
8042 int r;
8043 r = vcpu_load(vcpu);
8044 BUG_ON(r);
8045 kvm_mmu_unload(vcpu);
8046 vcpu_put(vcpu);
8047 }
8048
8049 static void kvm_free_vcpus(struct kvm *kvm)
8050 {
8051 unsigned int i;
8052 struct kvm_vcpu *vcpu;
8053
8054 /*
8055 * Unpin any mmu pages first.
8056 */
8057 kvm_for_each_vcpu(i, vcpu, kvm) {
8058 kvm_clear_async_pf_completion_queue(vcpu);
8059 kvm_unload_vcpu_mmu(vcpu);
8060 }
8061 kvm_for_each_vcpu(i, vcpu, kvm)
8062 kvm_arch_vcpu_free(vcpu);
8063
8064 mutex_lock(&kvm->lock);
8065 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8066 kvm->vcpus[i] = NULL;
8067
8068 atomic_set(&kvm->online_vcpus, 0);
8069 mutex_unlock(&kvm->lock);
8070 }
8071
8072 void kvm_arch_sync_events(struct kvm *kvm)
8073 {
8074 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8075 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8076 kvm_free_pit(kvm);
8077 }
8078
8079 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8080 {
8081 int i, r;
8082 unsigned long hva;
8083 struct kvm_memslots *slots = kvm_memslots(kvm);
8084 struct kvm_memory_slot *slot, old;
8085
8086 /* Called with kvm->slots_lock held. */
8087 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8088 return -EINVAL;
8089
8090 slot = id_to_memslot(slots, id);
8091 if (size) {
8092 if (slot->npages)
8093 return -EEXIST;
8094
8095 /*
8096 * MAP_SHARED to prevent internal slot pages from being moved
8097 * by fork()/COW.
8098 */
8099 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8100 MAP_SHARED | MAP_ANONYMOUS, 0);
8101 if (IS_ERR((void *)hva))
8102 return PTR_ERR((void *)hva);
8103 } else {
8104 if (!slot->npages)
8105 return 0;
8106
8107 hva = 0;
8108 }
8109
8110 old = *slot;
8111 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8112 struct kvm_userspace_memory_region m;
8113
8114 m.slot = id | (i << 16);
8115 m.flags = 0;
8116 m.guest_phys_addr = gpa;
8117 m.userspace_addr = hva;
8118 m.memory_size = size;
8119 r = __kvm_set_memory_region(kvm, &m);
8120 if (r < 0)
8121 return r;
8122 }
8123
8124 if (!size) {
8125 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8126 WARN_ON(r < 0);
8127 }
8128
8129 return 0;
8130 }
8131 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8132
8133 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8134 {
8135 int r;
8136
8137 mutex_lock(&kvm->slots_lock);
8138 r = __x86_set_memory_region(kvm, id, gpa, size);
8139 mutex_unlock(&kvm->slots_lock);
8140
8141 return r;
8142 }
8143 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8144
8145 void kvm_arch_destroy_vm(struct kvm *kvm)
8146 {
8147 if (current->mm == kvm->mm) {
8148 /*
8149 * Free memory regions allocated on behalf of userspace,
8150 * unless the the memory map has changed due to process exit
8151 * or fd copying.
8152 */
8153 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8154 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8155 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8156 }
8157 if (kvm_x86_ops->vm_destroy)
8158 kvm_x86_ops->vm_destroy(kvm);
8159 kvm_pic_destroy(kvm);
8160 kvm_ioapic_destroy(kvm);
8161 kvm_free_vcpus(kvm);
8162 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8163 kvm_mmu_uninit_vm(kvm);
8164 kvm_page_track_cleanup(kvm);
8165 }
8166
8167 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8168 struct kvm_memory_slot *dont)
8169 {
8170 int i;
8171
8172 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8173 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8174 kvfree(free->arch.rmap[i]);
8175 free->arch.rmap[i] = NULL;
8176 }
8177 if (i == 0)
8178 continue;
8179
8180 if (!dont || free->arch.lpage_info[i - 1] !=
8181 dont->arch.lpage_info[i - 1]) {
8182 kvfree(free->arch.lpage_info[i - 1]);
8183 free->arch.lpage_info[i - 1] = NULL;
8184 }
8185 }
8186
8187 kvm_page_track_free_memslot(free, dont);
8188 }
8189
8190 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8191 unsigned long npages)
8192 {
8193 int i;
8194
8195 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8196 struct kvm_lpage_info *linfo;
8197 unsigned long ugfn;
8198 int lpages;
8199 int level = i + 1;
8200
8201 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8202 slot->base_gfn, level) + 1;
8203
8204 slot->arch.rmap[i] =
8205 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8206 if (!slot->arch.rmap[i])
8207 goto out_free;
8208 if (i == 0)
8209 continue;
8210
8211 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8212 if (!linfo)
8213 goto out_free;
8214
8215 slot->arch.lpage_info[i - 1] = linfo;
8216
8217 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8218 linfo[0].disallow_lpage = 1;
8219 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8220 linfo[lpages - 1].disallow_lpage = 1;
8221 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8222 /*
8223 * If the gfn and userspace address are not aligned wrt each
8224 * other, or if explicitly asked to, disable large page
8225 * support for this slot
8226 */
8227 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8228 !kvm_largepages_enabled()) {
8229 unsigned long j;
8230
8231 for (j = 0; j < lpages; ++j)
8232 linfo[j].disallow_lpage = 1;
8233 }
8234 }
8235
8236 if (kvm_page_track_create_memslot(slot, npages))
8237 goto out_free;
8238
8239 return 0;
8240
8241 out_free:
8242 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8243 kvfree(slot->arch.rmap[i]);
8244 slot->arch.rmap[i] = NULL;
8245 if (i == 0)
8246 continue;
8247
8248 kvfree(slot->arch.lpage_info[i - 1]);
8249 slot->arch.lpage_info[i - 1] = NULL;
8250 }
8251 return -ENOMEM;
8252 }
8253
8254 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8255 {
8256 /*
8257 * memslots->generation has been incremented.
8258 * mmio generation may have reached its maximum value.
8259 */
8260 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8261 }
8262
8263 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8264 struct kvm_memory_slot *memslot,
8265 const struct kvm_userspace_memory_region *mem,
8266 enum kvm_mr_change change)
8267 {
8268 return 0;
8269 }
8270
8271 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8272 struct kvm_memory_slot *new)
8273 {
8274 /* Still write protect RO slot */
8275 if (new->flags & KVM_MEM_READONLY) {
8276 kvm_mmu_slot_remove_write_access(kvm, new);
8277 return;
8278 }
8279
8280 /*
8281 * Call kvm_x86_ops dirty logging hooks when they are valid.
8282 *
8283 * kvm_x86_ops->slot_disable_log_dirty is called when:
8284 *
8285 * - KVM_MR_CREATE with dirty logging is disabled
8286 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8287 *
8288 * The reason is, in case of PML, we need to set D-bit for any slots
8289 * with dirty logging disabled in order to eliminate unnecessary GPA
8290 * logging in PML buffer (and potential PML buffer full VMEXT). This
8291 * guarantees leaving PML enabled during guest's lifetime won't have
8292 * any additonal overhead from PML when guest is running with dirty
8293 * logging disabled for memory slots.
8294 *
8295 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8296 * to dirty logging mode.
8297 *
8298 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8299 *
8300 * In case of write protect:
8301 *
8302 * Write protect all pages for dirty logging.
8303 *
8304 * All the sptes including the large sptes which point to this
8305 * slot are set to readonly. We can not create any new large
8306 * spte on this slot until the end of the logging.
8307 *
8308 * See the comments in fast_page_fault().
8309 */
8310 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8311 if (kvm_x86_ops->slot_enable_log_dirty)
8312 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8313 else
8314 kvm_mmu_slot_remove_write_access(kvm, new);
8315 } else {
8316 if (kvm_x86_ops->slot_disable_log_dirty)
8317 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8318 }
8319 }
8320
8321 void kvm_arch_commit_memory_region(struct kvm *kvm,
8322 const struct kvm_userspace_memory_region *mem,
8323 const struct kvm_memory_slot *old,
8324 const struct kvm_memory_slot *new,
8325 enum kvm_mr_change change)
8326 {
8327 int nr_mmu_pages = 0;
8328
8329 if (!kvm->arch.n_requested_mmu_pages)
8330 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8331
8332 if (nr_mmu_pages)
8333 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8334
8335 /*
8336 * Dirty logging tracks sptes in 4k granularity, meaning that large
8337 * sptes have to be split. If live migration is successful, the guest
8338 * in the source machine will be destroyed and large sptes will be
8339 * created in the destination. However, if the guest continues to run
8340 * in the source machine (for example if live migration fails), small
8341 * sptes will remain around and cause bad performance.
8342 *
8343 * Scan sptes if dirty logging has been stopped, dropping those
8344 * which can be collapsed into a single large-page spte. Later
8345 * page faults will create the large-page sptes.
8346 */
8347 if ((change != KVM_MR_DELETE) &&
8348 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8349 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8350 kvm_mmu_zap_collapsible_sptes(kvm, new);
8351
8352 /*
8353 * Set up write protection and/or dirty logging for the new slot.
8354 *
8355 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8356 * been zapped so no dirty logging staff is needed for old slot. For
8357 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8358 * new and it's also covered when dealing with the new slot.
8359 *
8360 * FIXME: const-ify all uses of struct kvm_memory_slot.
8361 */
8362 if (change != KVM_MR_DELETE)
8363 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8364 }
8365
8366 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8367 {
8368 kvm_mmu_invalidate_zap_all_pages(kvm);
8369 }
8370
8371 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8372 struct kvm_memory_slot *slot)
8373 {
8374 kvm_page_track_flush_slot(kvm, slot);
8375 }
8376
8377 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8378 {
8379 if (!list_empty_careful(&vcpu->async_pf.done))
8380 return true;
8381
8382 if (kvm_apic_has_events(vcpu))
8383 return true;
8384
8385 if (vcpu->arch.pv.pv_unhalted)
8386 return true;
8387
8388 if (atomic_read(&vcpu->arch.nmi_queued))
8389 return true;
8390
8391 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8392 return true;
8393
8394 if (kvm_arch_interrupt_allowed(vcpu) &&
8395 kvm_cpu_has_interrupt(vcpu))
8396 return true;
8397
8398 if (kvm_hv_has_stimer_pending(vcpu))
8399 return true;
8400
8401 return false;
8402 }
8403
8404 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8405 {
8406 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8407 }
8408
8409 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8410 {
8411 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8412 }
8413
8414 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8415 {
8416 return kvm_x86_ops->interrupt_allowed(vcpu);
8417 }
8418
8419 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8420 {
8421 if (is_64_bit_mode(vcpu))
8422 return kvm_rip_read(vcpu);
8423 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8424 kvm_rip_read(vcpu));
8425 }
8426 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8427
8428 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8429 {
8430 return kvm_get_linear_rip(vcpu) == linear_rip;
8431 }
8432 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8433
8434 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8435 {
8436 unsigned long rflags;
8437
8438 rflags = kvm_x86_ops->get_rflags(vcpu);
8439 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8440 rflags &= ~X86_EFLAGS_TF;
8441 return rflags;
8442 }
8443 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8444
8445 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8446 {
8447 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8448 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8449 rflags |= X86_EFLAGS_TF;
8450 kvm_x86_ops->set_rflags(vcpu, rflags);
8451 }
8452
8453 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8454 {
8455 __kvm_set_rflags(vcpu, rflags);
8456 kvm_make_request(KVM_REQ_EVENT, vcpu);
8457 }
8458 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8459
8460 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8461 {
8462 int r;
8463
8464 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8465 work->wakeup_all)
8466 return;
8467
8468 r = kvm_mmu_reload(vcpu);
8469 if (unlikely(r))
8470 return;
8471
8472 if (!vcpu->arch.mmu.direct_map &&
8473 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8474 return;
8475
8476 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8477 }
8478
8479 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8480 {
8481 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8482 }
8483
8484 static inline u32 kvm_async_pf_next_probe(u32 key)
8485 {
8486 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8487 }
8488
8489 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8490 {
8491 u32 key = kvm_async_pf_hash_fn(gfn);
8492
8493 while (vcpu->arch.apf.gfns[key] != ~0)
8494 key = kvm_async_pf_next_probe(key);
8495
8496 vcpu->arch.apf.gfns[key] = gfn;
8497 }
8498
8499 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8500 {
8501 int i;
8502 u32 key = kvm_async_pf_hash_fn(gfn);
8503
8504 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8505 (vcpu->arch.apf.gfns[key] != gfn &&
8506 vcpu->arch.apf.gfns[key] != ~0); i++)
8507 key = kvm_async_pf_next_probe(key);
8508
8509 return key;
8510 }
8511
8512 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8513 {
8514 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8515 }
8516
8517 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8518 {
8519 u32 i, j, k;
8520
8521 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8522 while (true) {
8523 vcpu->arch.apf.gfns[i] = ~0;
8524 do {
8525 j = kvm_async_pf_next_probe(j);
8526 if (vcpu->arch.apf.gfns[j] == ~0)
8527 return;
8528 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8529 /*
8530 * k lies cyclically in ]i,j]
8531 * | i.k.j |
8532 * |....j i.k.| or |.k..j i...|
8533 */
8534 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8535 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8536 i = j;
8537 }
8538 }
8539
8540 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8541 {
8542 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8543 sizeof(val));
8544 }
8545
8546 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8547 struct kvm_async_pf *work)
8548 {
8549 struct x86_exception fault;
8550
8551 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8552 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8553
8554 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8555 (vcpu->arch.apf.send_user_only &&
8556 kvm_x86_ops->get_cpl(vcpu) == 0))
8557 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8558 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8559 fault.vector = PF_VECTOR;
8560 fault.error_code_valid = true;
8561 fault.error_code = 0;
8562 fault.nested_page_fault = false;
8563 fault.address = work->arch.token;
8564 kvm_inject_page_fault(vcpu, &fault);
8565 }
8566 }
8567
8568 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8569 struct kvm_async_pf *work)
8570 {
8571 struct x86_exception fault;
8572
8573 if (work->wakeup_all)
8574 work->arch.token = ~0; /* broadcast wakeup */
8575 else
8576 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8577 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8578
8579 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8580 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8581 fault.vector = PF_VECTOR;
8582 fault.error_code_valid = true;
8583 fault.error_code = 0;
8584 fault.nested_page_fault = false;
8585 fault.address = work->arch.token;
8586 kvm_inject_page_fault(vcpu, &fault);
8587 }
8588 vcpu->arch.apf.halted = false;
8589 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8590 }
8591
8592 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8593 {
8594 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8595 return true;
8596 else
8597 return !kvm_event_needs_reinjection(vcpu) &&
8598 kvm_x86_ops->interrupt_allowed(vcpu);
8599 }
8600
8601 void kvm_arch_start_assignment(struct kvm *kvm)
8602 {
8603 atomic_inc(&kvm->arch.assigned_device_count);
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8606
8607 void kvm_arch_end_assignment(struct kvm *kvm)
8608 {
8609 atomic_dec(&kvm->arch.assigned_device_count);
8610 }
8611 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8612
8613 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8614 {
8615 return atomic_read(&kvm->arch.assigned_device_count);
8616 }
8617 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8618
8619 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8620 {
8621 atomic_inc(&kvm->arch.noncoherent_dma_count);
8622 }
8623 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8624
8625 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8626 {
8627 atomic_dec(&kvm->arch.noncoherent_dma_count);
8628 }
8629 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8630
8631 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8632 {
8633 return atomic_read(&kvm->arch.noncoherent_dma_count);
8634 }
8635 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8636
8637 bool kvm_arch_has_irq_bypass(void)
8638 {
8639 return kvm_x86_ops->update_pi_irte != NULL;
8640 }
8641
8642 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8643 struct irq_bypass_producer *prod)
8644 {
8645 struct kvm_kernel_irqfd *irqfd =
8646 container_of(cons, struct kvm_kernel_irqfd, consumer);
8647
8648 irqfd->producer = prod;
8649
8650 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8651 prod->irq, irqfd->gsi, 1);
8652 }
8653
8654 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8655 struct irq_bypass_producer *prod)
8656 {
8657 int ret;
8658 struct kvm_kernel_irqfd *irqfd =
8659 container_of(cons, struct kvm_kernel_irqfd, consumer);
8660
8661 WARN_ON(irqfd->producer != prod);
8662 irqfd->producer = NULL;
8663
8664 /*
8665 * When producer of consumer is unregistered, we change back to
8666 * remapped mode, so we can re-use the current implementation
8667 * when the irq is masked/disabled or the consumer side (KVM
8668 * int this case doesn't want to receive the interrupts.
8669 */
8670 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8671 if (ret)
8672 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8673 " fails: %d\n", irqfd->consumer.token, ret);
8674 }
8675
8676 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8677 uint32_t guest_irq, bool set)
8678 {
8679 if (!kvm_x86_ops->update_pi_irte)
8680 return -EINVAL;
8681
8682 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8683 }
8684
8685 bool kvm_vector_hashing_enabled(void)
8686 {
8687 return vector_hashing;
8688 }
8689 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8690
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);